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Abstract

The von Karmãn constant (k) and the Monin-Obukhov similarity formulation oc-

cupy very important positions in the theoretical framework of the atmospheric surface

layer (ASL). Measurements, however, provide a great scatter in their estimates mainly

because the requirements of neutrality (only for estimate of tc), stationarity and hori-

zontal homogeneity in the real atmospheric boundary layer (ABL) are hardly achieved.

Therefore, a long-time dispute over the value of the von Karman constant applicable in

the neutral-static-stability ABL has not been settled yet; another controversy concerns

the form of the universal Monin-Obukhov similarity functions in very unstable conditions.

A numerical tool, three-dimensional large eddy simulation (LES), is adopted to simu-

late turbulence in the ABL, with a fine resolution in the ASL, so that an "a priori value"

of the von }Carman constant and the Monin-Obukhov similarity formulas can be derived

from the resolved-scale turbulence in the upper surface layer (USL). Only an ideal geom-

etry, flat but rough surface, is treated. Horizontal homogeneity of all dependent mean

variables is assumed except the mean pressure, which is the driving mechanism of the

whole turbulent boundary layer due to the geostrophic flow aloft. Smagorinsky's sub-grid

scale (SGS) model is adopted.

In the present study, the Smagorinsky-model Reynolds number (Resm) is proposed for

a LES adopting the Smagorinsky SGS model. This number is shown to be an independent

model parameter, which determines the statistics of resolved scale (RS) turbulence in

the USL. If Resm is smaller than a critical value, RS fields are damped out. This fact

establishes a criterion for a LES adopting the Smagorinsky SGS model.

For a neutral-static-stability ABL, the present study uses grid spacings that fall within



the inertial subrange of the USL turbulence in order to follow the assumption of the

Smagorinsky SGS model. Other specifications of grid spacing are also used to show

the influence of grid spacing and validity of &sm. The largest computation involves

64 x 64 x 50 grids. The average of the velocity fields over the whole horizontal plane and

time domain yields a logarithmic velocity profile in the USL, from which the von Kãrman

constant can be derived. The value of IC found in the study ranges from 0.17 to 0.35,

depending on the value of Resm when the domain size and the Rossby number are fixed.

Other quantities in the USL, such as profiles of (l2)/u, (432)/n2, (ti.52)/n2, _(ti))/n*2 and

—(i)/u, also exhibit a very strong dependence on Resm.

For an unstable ABL, in which an additional turbulent sensible heat flux is imposed

on the surface, profiles of the mean velocity in the USL yield a Monin-Obukhov simi-

larity formula for the dimensionless momentum flux. For —5 < zIL < —1, where L is

the Monin-Obukhov length, the formula gives smaller values of 077,(z/L) than existing

empirical formulas, but close to Carl et al.'s —1/3 power law (1973). LES results of

o-o/T*,, fit the empirical similarity formulas fairly well, and derive a power law exponent

of about —0.4, which is smaller than —1/3. Similarity results for uti-,/u* in the USL has

also been examined.
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Chapter 1

Introduction

Turbulence is a complex but common form of fluid motion, and has been considered

the most difficult research topic in the area of fluid dynamics. Turbulence has been the

subject of scientific study for at least a century. During this period, various ideas and

techniques have been proposed to tackle this extremely complicated problem; all of them

have in common their complexity, as well as inabilities to solve the problem universally.

The most basic question of how to define turbulence is even uncertain.

Extremely schematically, two opposing points of view have been advocated: "sta-

tistical" and "structural". The first one comes from Taylor and Kolmogorov in the

nineteen-thirties and nineteen-forties and assumes that all fluctuating quantities are ran-

dom functions satisfying homogeneity' and isotropy2. Models of this type try to solve

the evolution of ensemble -averaged quantities of turbulent flows by parameterizing higher

moments through lower ones, which is sometimes called phenomenological modelling or

ensemble -average model (EAM). It is well known that this parameterization includes

many uncertainties. The most successful statistical model is therefore homogeneous

isotropic turbulence (Hinze, 1975; Panchev, 1971). For some inhomogeneous flows in

practical applications, this type of models can be adopted to calculate the mean quan-

tities for simple turbulent shear layers such as jets, wakes, mixing layers or boundary

layers on flat plates (Patankar, 1980; Rodi, 1980). But, the statistical models can never

answer the question of how turbulence is generated, developed and dissipated.

'Here, homogeneity means statistical invariance under linear transformation.
2Isotropy means statistical invariance under rigid rotation.

1
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The second type of model, developed in the past several decades, considers turbulence

from a purely deterministic point of view, by studying either the behaviour of dynamical

systems or the stability of flows in various situations. The fundamental assumption is that

turbulence, no matter how fully developed it is, always obeys the Navier-Stokes (N-S)

equations, the continuity equation and the energy conservation equation. Under certain

conditions, the deterministic three-dimensional (3D) solutions can evolve with time in a

very complicated way due to nonlinear interactions. The theoretical description of this

behavior is impossible now, but is stimulated by the development of the so-called "dynam-

ical systems approach", which deals with chaos phenomenon, the temporal complexity

exhibited by the evolution of an ordinary differential equation (ODE) system with only

few degrees of freedom3. There is enough evidence now that low-dimensional4 temporal

chaos has provided new as well as useful ideas and tools for analyzing early stages of

transition' in some types of flows (Sreenivasan, 1985). One type of advance made in

low-dimensional chaos that has found some application in turbulence is the invention of

several dynamical measures such as Liapunov exponents (Keefe, Moin and Kim, 1992;

Liapunov, 1966). Fully developed turbulence has millions of degrees of freedom (Con-

stantin et al., 1985), and, in addition, exhibits spatial complexity which the dynamical

systems approach is not able to handle. Therefore, there is a huge gap between realistic

continuum models of fluid systems, such as the N-S equations with appropriate boundary

conditions, and ODE dynamical system with only few degrees of freedom. This spatial

complexity may exist in the form of a "coherent structures" a large scale ordered eddy

or vortex that persistently appears, disappears and reappears. Such structures evolve

3Degree of freedom is sometimes called "dimension", not to be confused with space dimension. Gen-
erally speaking, for a set of ODE system, degree of freedom corresponds to the number of equations.
There is no strict definition of "degree of freedom" for a set of partial differential equation (PDE) system.
For a discretized PDE system, however, degree of freedom corresponds to the number of spatial grids.

4of small degrees of freedom
3from a laminar flow to a turbulent flow
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in space and time typically in a complicated fashion, often exhibiting a repetitive cycle

of events, such as lift, oscillation and ejection of longitudinal boundary layer streaks,

followed by sweep and reformation. Flow visualization by injected dye, smoke, hydro-

gen bubbles etc. has revealed persistent organized structures in many flows (Brown and

Roshko, 1974; Kline et al., 1967). It is generally accepted that these structures give im-

portant contributions to energy generation and transport in turbulent flows (Cantwell,

1989).

In the past decade, another way that has emerged to reveal these coherent struc-

tures is numerical simulation. Direct Numerical Simulation (DNS)6 is based on the N-S

equations, while Large eddy simulation (LES) is based on the grid-volume-averaged N-S

equations with parameterization of the subgrid-scale (SGS) stress tensor. The number

of numerical grids required by a DNS is of the order of degrees of freedom of turbulence7

to be simulated. Therefore, DNS can only be applied to relatively low Reynolds number

cases, (Coleman, Ferziger and Spalart, 1990; Coleman, Ferziger and Spalart, 1992; Kim,

Moin and Moser, 1987; Spalart, 1988). LES is free of this constraint and it has been

widely adopted in many engineering applications and geophysical flows (Moeng, 1986a;

Moeng, 1986b; Moin and Kim, 1985; Schmidt and Schumann, 1989).

Success of LES mainly depends on whether the SGS parameterization well describes

the momentum interaction occurring between resolved-scale (RS) eddies and SOS eddies.

The Smagorinsky SOS model (Smagorinsky, 1963) is one of the simplest SGS models and

it is based on the assumption that the grid spacing falls into the inertial subrange (ISR)

of the turbulence spectrum. A model constant Cs, which represents the ratio of mixing

length in the SOS model to the grid spacing, is to be determined by analysis or numerical

experiment. Lilly (1967) provided a theoretical estimate of 0.17 for this value, assuming

6also called Full Turbulence Simulation, or FTS
'Degrees of freedom of turbulence is approximately of the order of Re914 , where Re is based on

characteristic large scales, D and U, see Reynolds (1989).
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turbulence to be homogeneous and isotropic, with no discretization error. Taking into

account some discretization error, this value must be revised to the range from 0.20

to 0.22 (Deardorff, 1971). Applying the value of Cs 0.2 to turbulence driven by

thermal convection yields a satisfactory agreement with observations (Deardorff, 1972;

Mason, 1989). When this value is applied to inhomogeneous boundary layer turbulence

in which only shear production dominates, the resolvable scale motions were found to be

damped out (Deardorff, 1970c; Mason and Callen, 1986). Smaller values of Cs, e.g., 0.1

in Deardorff (1970c), have to be adopted to sustain the RS eddies.

Not only can LES reveal the details of turbulent structures, but also it can produce

mean statistical quantities of the flow, some of which can not be derived from the afore-

mentioned phenomenological models. One such quantity which can be calculated by LES

is the numerical value of the von Karman constant K.

The von Karman constant is a fundamental parameter in the mean velocity structure

of a turbulent flow near a wall, and occupies an important position in turbulence theory.

The value of K had only been determined by experiment through the past several decades

because no alternative was available. Wind tunnel experiments, in which the Reynolds

numbers8 are usually of the order of 105 to 106, suggest that KR..' 0.4 (Hinze, 1975).

There is still some doubt about value of the von Karman constant (K) applicable in

the neutral-static-stability9 atmospheric boundary layer' (ABL) and whether very high

Reynolds numbers and rough boundaries associated with the atmosphere may produce

values of K different from those observed in engineering applications. Measurement of

8This Reynolds number is usually denoted by Re,, which is based on the characteristic velocity U
and the boundary layer depth b.

9Neutral-static-stability means the air is neutrally stable when it has no motion; in other words, its
potential temperature 0 is constant in whole atmospheric boundary layer. For simplicity, neutral-static-
stability is referred to as "neutral", and neutral-static-stability atmospheric boundary layer is referred
to as "neutral atmospheric boundary layer ".

10The atmospheric boundary layer is the lowest portion of the atmosphere, which intensively exchanges
momentum as well as heat and mass with the earth's surface. The height of the ABL may vary from a
few hundred meters to more than one thousand meters.



Chapter 1. Introduction^ 5

turbulent structures of the atmospheric boundary layer, especially the atmospheric sur-

face layer' (ASL), has been greatly developed in the past several decades. Most of the

observations are conducted below about 30 m, the easiest attainable height range for

measurement in the ASL. Under neutral conditions, velocity profiles have been shown to

have a logarithmic form from several meters above the ground to the top of the ASL.

However, the value of the von Karman constant estimated from the observations is too

scattered to be satisfactory, because the real ABL rarely meets the requirements of neu-

trality, stationarity and horizontal homogeneity. A very carefully designed observation of

the ABL was carried out in Kansas in 1968. This experiment provided very detailed data

which for many years have been and still are the source of information on the ASL, but

it surprisingly yielded an unexpectedly low value of ic = 0.35, which gave great impetus

to the debate on the value of ti (see, e.g., Dyer (1974), Wieringa (1980), Wieringa (1982),

Wyngaard et al. (1982)). The true value of li is still hotly debated in the meteorological

community. In the recent Tenth American Meteorological Society Symposium on Turbu-

lence and Diffusion, Frenzen and Vogel (1992a) estimated n = 0.381 + 0.017, and a panel

discussion headed by Businger gave no conclusion on this topic.

With dramatically increasing power of computers, the potential capability of LES

to resolve eddies close to the wall and therefore to evaluate the von Karman constant

emerges. There have been many DNS and LES approaches for near wall turbulent struc-

tures of channel flows (Kim, Moin and Moser, 1987; Moin and Kim, 1982), but few for

turbulence in the ASL. One objective of the present work is to explore the extent to

which the logarithmic region of the ASL can be modelled and the von Kaman constant

determined using LES.

The present study views LES of a neutral ABL as a non-linear system of PDEs similar

11The height of the atmospheric surface layer is defined as that elevation above the ground below which
the stress magnitude varies by less than 20% (Lumley and Panofsky, 1964); or, to a good approximation,
the lowest 10% of the whole ABL (Sorbjan, 1989).
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to the N-S equations. It is assumed that the behavior of the RS motions mainly depends

on the ratio of advection term to the SGS diffusion term. If the Smagorinsky SGS model

is employed, a Smagorinsky-Model Reynolds number (or SM-Reynolds number) Resm

can be defined by this study to represent the magnitude of this ratio (see the definition in

(2.86) on page 38). One of the feature of LES' is that as Resm is sufficiently large, the

solution of the system must fall into a non-linear unstable regime, with which no existing

mathematical theory is able to deal. The unstable solution is typically represented by

eddy-like structures with continuous spectra, which are characteristics of turbulence.

Due to nonlinear interactions among these eddies and the presence of SGS diffusion, the

solution does not possess any spatial or temporal singularity; a statistical equilibrium

state can be reached as time approaches infinity. If Resm is smaller than a critical value,

say Resm,„, only trivial solutions can exist — these do not include unstable modes

with a continuous spectrum. Based on the definition of the SM-Reynolds number and

above arguments, too large a value of Cs will cause too small an Resm, and unstable RS

eddies will be damped out if the number of grids is not large enough. Deardorff (1970c)

adopted 6720 as total number of grids, which corresponds to about 19 grid points in

each direction. This resolution is far coarser than the ideal one which would resolve all

eddies between the energy-containing range (ECR) and the ISR, a wavenumber span of

more than two decades. However, using a smaller value of C, (equivalently increasing the

value of Resm) makes it possible for Deardorff to run his LES. Mason and Callen (1986)

adopted more grid points, i.e., 40 x 40 x 32 in three respective directions. They found

that a Cs as large as 0.2 allowed the RS eddies to be sustained but a larger Cs caused the

decay of the RS eddies. In other words, the value of Resm in their case was larger, but

not much larger than Resm,„. In this situation, the RS motions must be SM-Reynolds

12Because the present study adopts the Smagorinsky SGS model, the word "LES" hereafter stands
for LES with the Smagorinsky SGS model, unless otherwise specified.
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number dependent. This dependence will be alleviated as Resm becomes very large and

an asymptotic state will be reached as Resm —÷ oo. This asymptotic state is considered

as the aim of LES by the present study.

Turbulence statistics in an unstable ABL with geostrophic wind remain difficult to

measure, especially far from the surface. In this case, LES is a useful supplemental

tool for investigating the turbulence structure and statistics of the ABL because it is

relatively easy for LES to resolve layers higher than easily attainable measurement levels.

The pioneering LES work by Deardorff (1972), adopting a total of 32,000 grid points,

simulated an unstable ABL with the geostrophic wind. Different values of the stability

parameter, IZi/L I = 0, 1.5, 4.5 and 45 (Zi is the height of the unstable ABL and L is

the Monin-Obukhov length), were used to obtain turbulence statistics above the ASL.

Most subsequent LES approaches to the unstable ABL are without the presence of the

geostrophic wind; this ABL is called a pure convective boundary layer (CBL). Continuing

from the work of Deardorff (1972), the present study refines resolution in the ASL so that

turbulence in the upper surface layer (USL) can be resolved, and verifies surface layer (SL)

similarity for dimensionless momentum flux profile, variances of temperature fluctuations

and vertical velocity fluctuations through LES output in the USL.

This thesis is organized as follows. In chapter 2, I give a brief account of DNS, LES

and EAM; I list governing PDEs, the SGS model and boundary conditions; then I define

the SM-Reynolds number and rationalize its definition; finally I discuss discretization

and certain criteria regarding grid size and domain size.

Chapter 3 turns to analysis of LES results of a neutral ABL; I recall the scaling

analysis for the neutral ABL and some sufficient conditions for the logarithmic velocity

profile; I briefly review some measurement results for the neutral ABL; then I show my

LES results of the logarithmic profile of the mean velocity, the so-called "SGS buffer

layer", estimates of the von Karman constant and its dependence on the SM-Reynolds
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number, and some other turbulence statistics in the USL; I also present some mean

profiles of turbulence statistics in the whole ABL and compare them with observation or

previous LES, to demonstrate the credibility of my LES.

In chapter 4, I give the analysis of LES results of an unstable ABL; I outline the

scaling analysis for the unstable ABL, the Monin-Obukhov similarity work and corre-

sponding empirical formulas; then I present my LES results of SL similarity for the

dimensionless momentum flux Om (c), the dimensionless standard deviation of RS tem-

perature fluctuations cro/T.,s, and the dimensionless standard deviation of RS vertical

velocity fluctuations in the USL.

The last chapter, chapter 5, contains a summary of the present research work and

some suggestions for further research on this topic.



Chapter 2

Large Eddy Simulation and Subgrid Scale Model

2.1 Direct Numerical Simulation, Large Eddy Simulation and Ensemble-

average Model

Turbulent flow is one of the most complex phenomena found in nature; it is a 3D,

time-dependent interchange of energy and momentum between vortices of different sizes

and life-times. Since there is no evidence of any physical difference between a fluid in

turbulent flow and the same fluid in laminar flow, the N-S equations that govern lam-

inar flows can be used to represent those smallest eddies in turbulent flows. From the

viewpoint of the solutions to PDEs, the Navier-Stokes equations along with the conti-

nuity equation completely describe incompressible laminar flows with sufficiently small

Reynolds number Re = UDIv (where U is the characteristic velocity of the flow, D

the characteristic length and v the kinematic viscosity of the fluid). While the exis-

tence and uniqueness of the solution for small Re problems have already been proven

(Ladyzhenskaya, 1969), there are no similar results for large Re problems'.

From the perspective of dynamical system approach, the development during the past

two or three decades has shed some light on the behavior of the fluid flows characterized

by large Re. It has been shown that deterministic nonlinear dynamical systems with a few

(but not less than three) degrees of freedom can exhibit chaotic behavior, or sensitive

1A nonstationary boundary-value problem for the two-dimensional (2D) N-S equations has a unique
solution for all instants of time. For the 3D problem, if the external force can be derived from a potential
and if the Reynolds number is small at the initial time, its solution is unique. In the general 3D case,
the uniqueness of the solution cannot be asserted.

9
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dependence on initial conditions (Lichtenberg and Lieberman, 1982). One example is

the Lorenz system of three nonlinear ordinary differential equations (ODEs) (Lorenz,

1963). Bifurcation theory applied to simplified model problems yields predictions that

are amazingly close to real fluid phenomena and lead one to believe that transition to

chaos can follow some rather generic patterns (Gollub, Benson and Steinman, 1979;

Ruelle, 1980). The question arises as to whether the results from ODEs can be applied

to the very complicated N-S equations. In contrast to the output of low-dimensional

systems, turbulence governed by the N-S equations could have a very large (potentially

infinite) number of degrees of freedom, since the N-S equations are partial differential

equations and represent a flow in a continuum. In spite of these difficulties, some have

speculated that the chaotic phenomena and the strange attractors found in simple ODE

systems could also be characteristics of turbulence (Holmes, 1989).

A short-cut to reveal some of the turbulent structure is to numerically solve the N-S

equations along with continuity equation, ignoring questions concerning the existence or

otherwise of unique solutions. It is expected that numerical simulation can create all types

of phenomena observed in nature, such as transitions from laminar flow to turbulent flow,

and the development of turbulent structures and even the so-called "coherent structures".

The difficulty encountered here is that existing computers do not have enough power to

allow the resolution of all sizes of turbulent eddies exhibited by real flows. An accurate

simulation of a flow problem requires a very large number of degrees of freedom and the

long time runs necessary to correctly simulate the evolution of turbulent structures are

rather expensive in computer time.

In order to overcome this difficulty, the N-S equations are subjected to various averag-

ing schemes. Depending on which averaging scheme is employed, the numerical methods

which deal with turbulence characteristics can be classified as: DNS, LES and EAM.
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2.1.1 Direct Numerical Simulation

DNS has been developed to reveal details of flow structures down to the smallest

eddies. DNS is a 3D time-dependent numerical simulation. The main idea of this method

is to assume that the size of the smallest eddies in any turbulent flow is of the order of the

Kolmogorov microscale2 (Batchelor, 1960), and to specify the number of grids in space so

that these eddies can be resolved. The eddy flow embedded in such a fine mesh system

can be well described by the N-S equations, without any parameterization. Once the

simulated results (3D, time-dependent eddy fields) are obtained, the average fields (zero-

moment statistics) and all higher moment fields can be produced by simple statistical

calculations. Unfortunately, on today's biggest computers, DNS can only be applied to

very small Reynolds number problems, because the necessary number of mesh points is

roughly given by (Reynolds, 1989)

N = 0(Rell), (2.1)

where the Reynolds number is defined based on the bulk velocity and the characteristic

length of the flow. This relation is extremely restrictive of much development of DNS.

In spite of this restriction, more and more DNS approaches still appear because of the

development of computer technology. These range from homogeneous isotropic turbulent

flow to channel flow and the turbulent Ekman layer (Clark, Ferziger and Reynolds, 1978;

Coleman, Ferziger and Spalart, 1990; Coleman, Ferziger and Spalart, 1992; Gerz, Schu-

mann and Elghobashi, 1989; Holt, Koseff and Ferziger, 1989; Kim, Moin and Moser, 1987;

Lesieur, Metais and Laroche, 1989; Spalart, 1989). These approaches remain confined

to flows with very low Reynolds number, of the order of 103 for homogeneous isotropic

2The Kolmogorov microscale can be derived from dimensional analysis as follows. It is assumed that
in the dissipation subrange, there are only two important parameters, v and c, which is the dissipation
rate of the turbulent flow. The length scale corresponding to the eddy size in the dissipation subrange
must be a function of v and c. Applying corollary 2 in appendixB yields that this length scale must be
of the form of (v3/01/4.
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turbulence for example, if the Reynolds number is defined as RCT = q4/(ev), where

q is the velocity scale of turbulent kinetic energy (TKE) and e the rate of dissipation

of TKE per unit mass. Most of these flows are in the transition regime. Because of

the Reynolds number restriction, it is believed that DNS will not be widely applied to

practical problems unless computer speed is enhanced tremendously.

2.1.2 Ensemble-Average Models

In contrast, from a practical viewpoint, EAM provides a simple and powerful tool

to obtain solutions to many simple flows. In an EAM, all effects due to turbulent eddies

are parameterized by the specified kinematic Reynolds stresses —u,u3 or other important

correlations. The model needs only a small number of mesh points; however, it often

seems that the parameters specifying the model closure have to be adjusted to match

observational data for each application. In other words, EAMs are not fully universal.

According to whether of not the eddy viscosity assumption is used as a basic closure

scheme, EAM models can be divided by two groups, namely, eddy-viscosity models and

shear-stress models. In eddy viscosity model, Reynolds turbulence stresses arising from

the ensemble averaging procedure are modeled by:

au3,_ ) (2.2)e ax3 

where ve is referred to as the effective turbulent viscosity, Sz3 the Kronecker delta, fi,

the ensemble-averaged velocity component and E represents the TKE. The order of the

unknown ve suggested by experiments is (Tennekes and Lumley, 1972):

ve a UL^ (2.3)

where L and U are the characteristic length scale and the velocity scale of the ECR

eddies, respectively. To parameterize ve, zero-equation models (e.g., the mixing length



Chapter 2. Large Eddy Simulation and Subgrid Scale Model^ 13

model), one-equation models (e.g., equation for TKE) or two-equation models (e.g., k-e

model) can be adopted (Rodi, 1980). The shear-stress model, however, abandons the

assumption (2.2) and employs either algebraic or PDE equations for —u:u'i (Launder,

1989).

In general, predictions of current eddy-viscosity models agree fairly well with exper-

imental data for simple flows, such as 2D boundary layers, jets, wakes, mixing layers,

channel flows and tube flows, and some 3D flows without strong swirl and density vari-

ations (Rodi, 1980); predictions of current shear-stress models agree fairly well with

experimental data for recirculating flows (Launder, 1989). However, these "good pre-

dictions" are based on different empirical choices of model constants for different flows.

Those constants are not truly universal but functions of characteristic flow parameters.

Existing EAMs were shown to be less than universal at the 1980-81 Stanford meeting on

Computation of Complex Turbulent Flows (Kline, Cantwell and Lilley, 1981). Further-

more, model effectiveness did not necessarily increase with increasing model complexity.

2.1.3 Large Eddy Simulation

From the above discussion, the major disadvantage of DNS is that it can only deal

with the low Reynolds number problems using currently available computers, and the

major defect of EAMs is that they are not truly universal for different turbulent flows

and are even inapplicable to some flows. LES, however, has advantages over both DNS

and EAM; it employs a mesh resolution coarser than that used by DNS but fine enough

to resolve the large-scale eddies in the ECR, and parameterizes those eddies whose sizes

are smaller than the mesh spacing. This parameterization is called SGS model; it reduces

cost so that it can be applied to relatively high Reynolds number problems, or even to

some complicated ABL problems.
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As an example, in Smagorinsky's scheme (Smagorinsky, 1963), the SGS parameteri-

zations are as follows:

)^2vs • si • — —
2

E8,^ (2.4)3^3

(2.5)

1 afti^02713
= ^ —)1^ (2.6)

2 Oxl

2
S = Lsij • Sij, (2.7)

where Ti(;) is the SGS shear stress tensor, Es is the SGS TKE, ft, is the RS velocity,

the parameter A is a length scale related to the mesh spacing; C's is a constant to

be determined by numerical experiments. The mesh size must be chosen so that the

parameterized eddies behave like homogeneous isotropic turbulence and therefore have

more universal properties. In this sense, LES models are more universal than EAMs.

It is worth noting that, from a mathematical point of view, the closure scheme (2.4) in

LES is formatted the same as that in EAM, namely, (2.2), even though they are derived

from totally different averaging processes. However, the behavior of their solutions will

be different because of the order of the magnitude of the "eddy viscosity". It is assumed

that the deformation rate .5 in (2.5) has an order of U/ L because of (2.6) and (2.7).

Compared with (2.3) in an EAM, the magnitude of "eddy viscosity" in LES with the

Smagorinsky SGS model is

2U
vs CX Ao—

L
.

where Ao is a typical value of A in (2.5). This therefore yields

Us = (C,A)2S,
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If the two closure schemes (EAM's and LES's) are substituted in the averaged N-S

equations, the corresponding stress-flux terms

auzLI.,^a^2 aEc,
^(2v„s23)

axa^ax^3 axj
=

will have different orders of magnitude relative to other terms in the equations. The two

closures therefore yield solutions with different stabilities because of the different mag-

nitudes of diffusion terms, or, different magnitudes of the mathematical model Reynolds

numbers. In general, EAM runs in a "mathematically stable regime", while LES runs in

a "mathematically unstable regime". This issue will be discussed in more details later in

section 2.3.

To summarize, DNS resolves almost all sizes of eddies, while EAM parameterizes

almost all sizes of eddies. As far as LES is concerned, it has been suggested that a good

rule of thumb is that 80% of the TKE should be contained in the resolved eddies and

80% of the dissipation should be in subgrid eddies (Ferziger, 1977).

2.1.4 Historical Survey of LES

The first application of LES was made by Deardorff (1970c) who studied the plane

Poiseuille flow. His pioneering paper provided many of the foundations of this subject

and influenced much subsequent work. Deardoff has also performed LES studies of

atmospheric turbulence (Deardorff, 1970a; Deardorff, 1972; Deardorff, 1973).

Following Deardorff's work, Schumann (1975) divided SGS stresses into a locally

isotropic part and an inhomogeneous part and adopted a separate PDE for the SGS

TKE. However, this extra PDE did not significantly improve the results over the LES

using the Smagorinsky SGS model.

Reynolds and Ferziger at Stanford University began work in 1972 and have con-

centrated on developing the fundamental formulation of SGS schemes, with systematic
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extension to more complex flows. The use of spectral methods was introduced by them

(Mansour, Reynolds and Ferziger, 1979; Moin, Reynolds and Ferziger, 1978). They car-

ried out interesting tests of the eddy viscosity SOS models by comparing LES predictions,

based on a coarse mesh, with DNS of homogeneous turbulence on a finer mesh (Clark,

Ferziger and Reynolds, 1978; McMillan and Ferziger, 1979). An excellent LES of a tur-

bulent channel flow (Momn and Kim, 1982), a DNS of a channel flow (Kim, Moin and

Moser, 1987) and interesting DNSs of the turbulent ABL (Coleman, Ferziger and Spalart,

1990; Coleman, Ferziger and Spalart, 1992) were also reported. The NASA Ames group

has also specialized in DNS of simple flows (Spalart, 1988; Spalart, 1989). Leslie and his

group at Queen Mary College in London began in 1976 to look at a number of issues,

including the use of turbulence theories in developing SOS models (Antonopaulos-Domis,

1981; Leslie and Quarini, 1979; Love and Leslie, 1977).

With the development of research on LES models, its application to the atmosphere,

especially to the microscale problems, has been carried out by many meteorologists. One

of the major groups is the National Center for Atmosphere Research (NCAR). Its work

includes:

• Neutral ABL (Deardorff, 1970a; Deardorff, 1972);

• The convective ABL (or called CBL) decay (Brost and Nieuwstadt, 1986);

• Clear CBL dynamics (Deardorff, 1972; Moeng, 1984; Moeng and Wyngaard, 1984;

Moeng and Wyngaard, 1986; Moeng and Wyngaard, 1988);

• Cloud CBL dynamics (Deardorff, 1980; Moeng, 1986a; Moeng, 1986b; Moeng and

Randall, 1984; Smolarkiewicz and Clark, 1985; Smolarkiewicz and Clark, 1986);

• Passive scalar dispersion in the CBL (Wyngaard, 1984a; Wyngaard, 1984b);
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• Use of LES results to test ensemble-average parameterization (Moeng and Wyn-

gaard, 1986; Moeng and Wyngaard, 1989; Wyngaard, 1985).

In the Netherlands, Nieuwstadt and his colleagues concentrated on buoyant scalar

dispersion in the CBL (van Haren and Nieuwstadt, 1989; Nieuwstadt and de Valk, 1987),

and also conducted a LES on the CBL decay (Nieuwstadt and Brost, 1986).

In England, Mason carried out studies of the Smagorinsky model's coefficient C, in

Equation (2.5) (Mason and Callen, 1986), as well as the application of LES to the CBL

(Mason, 1989), neutral ABL (Mason and Thomson, 1987; Mason and Thomson, 1992)

and the stably-stratified ABL (Mason, 1990).

A German group led by Schumann has been active following his fundamental approach

on SGS modelling (Schumann, 1975). Ebert, Schumann and Stull (1989) used LES

results of the CBL to directly determine the so-called transilient matrix, proposed by

Stull (1984), Stull and Hasagawa (1984) in the Transilient Turbulence Theory. They also

analyzed the coherent structure of the CBL in detail (Schmidt and Schumann, 1989),

carried out LES of the CBL with chemical reactions (Schumann, 1989), and performed

LES in a domain bounded by a rigid adiabatic lid and a wavy lower surface whose height

varied sinusoidally through a single cycle across the domain (Krettenauer and Schumann,

1992). They also conducted a DNS on stratified homogeneous turbulent shear flows (Gerz,

Schumann and Elghobashi, 1989).

A group at Colorado State University has also conducted LES which has been intro-

duced into its RAMS (Regional Atmospheric Modelling System) code. Application to

the clear CBL was carried out by Chen and Cotton (1986), to passive scalar dispersion

by Cotton et al. (1987). Hadfield, Cotton and Pielke (1991), Hadfield, Cotton and Pielke

(1992) have performed LES over a flat surface with horizontal variations in surface heat

flux, and Walko, Cotton and Pielke (1992) examined the effects of hilly terrain on the
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CBL using LES.

Several other researchers have performed a variety of LES studies. For example, Sykes

and Henn (1989) studied free and sheared convective flow between moving flat plates.

Miyake, Kajishima and Hamaogi (1989) simulated a channel flow with fluid injection

or a sink on one wall; Bader and Horst (1988) and Sykes, Lewellen and Henn (1988)

used LES to evaluate dispersion of passive tracers; Lesieur, Metais and Laroche (1989)

carried out a LES of stably stratified homogeneous turbulence and coherent structures

in the mixing layer; Dang and Teissedre (1989) studied the energy exchange between

resolved and unresolved scales in LES of homogeneous turbulence by using DNS; Shaw

and Schumann (1992) applied LES to an atmospheric surface layer in which the lower

third of the domain is occupied by a drag layer and heat sources to represent a forest;

Sykes, Henn and Lewellen (1993) conducted a LES to study the structure of the boundary

layer close to the surface under free-convection conditions. Other LES approaches have

been reviewed in the following papers: Herring (1979), Ferziger and Leslie (1979), Voke

(1983), Wyngaard (1984c), Yoshizawa (1986), Young (1988), Schmidt and Schumann

(1989) and Reynolds (1989).

2.1.5 A General Evaluation of LES

Based on previous studies using LES, one can list the advantages of LES as follows:

• Simulated flow fields can provide information on the statistics of large eddies which

cannot be reflected by EAMs;

• The results of the averaged quantities derived from LES agree well with many

measurements;

• As far as the model constants in various LES applications are concerned, LES is

highly universal because it uses fewer model constants than EAMs. For example,
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only one constant appears in the Smagorinsky model (2.4) to (2.7), while there

are normally 5 constants in the k- E closure model often employed in EAMs. In

addition, the SOS modelling constant Cs can be theoretically derived (Lilly, 1967).

• LES handles the CBL very well, despite the fact that the mean velocity gradient is

almost zero whereas EAM fails to deal with this case.

Another potential of LES is to study the closure problems in EAM. For example, using

LES output, Moeng and Wyngaard (1986) calculated the pressure-scalar covariances,

which dominate the Reynolds flux equations but are impossible to measure directly.

They used the LES model results to evaluate existing EAMs (Moeng and Wyngaard,

1989).

In spite of its successes, LES still remains underutilized because the successes are

based on a high resolution of the flows, and hence very high computational costs. For

example, Moeng and Wyngaard (1988) used 96 x 96 x 96 c 106 grid points; each time

step, corresponding to 1 second of real time, consumes about 36 seconds CPU time on

a CRAY-XMP. In order to obtain a satisfactory results for about 1.6 hours of real time,

about 57.6 hours of CPU time were consumed on a CRAY-XMP! The largest computation

of the present study involves 64 x 64 x 50 2 x 105 grid points and each time step of

1.5 seconds of real time costs about 24 seconds CPU time on an IBM RISC 6000/560

workstation. In contrast,an EAM can simulate the same problem for the same time

period with less than 1% of that computing time.

Because of this fact, LES cannot be used as a prediction tool at present. But, one must

realize that field experiments cannot provide enough data owing to limitations of cost

and instrumentation; even well-designed laboratory experiments are similarly limited.

Fortunately, LES may compensate for these shortages. Such excellent examples of LES

are the ABL studies of Deardorff (1974a), Deardorff (1974b).
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2.2 Governing equations and subgrid scale model

2.2.1 Partial differential equations for the ABL

Flows in the ABL have to follow three basic conservation laws: conservation of mass,

conservation of momentum and conservation of energy. The set of governing equations

can therefore be derived based on these three laws. The equation that results from the

law of conservation of mass is called the continuity equation:

a(pui)^n
-at^ax, =^

(2.8)

where p is the air density, ui the velocity vector, xi the spatial coordinates with x3

vertically upwards, and t is the time.

Equations of motion are the mathematical expressions of the conservation law of

momentum. The equations of motion in a noninertial reference frame rotating with the

earth are given by

aui^au,^ap^a2ui

u3 ax 
 ^8---, +v,„^gi3 2E1kfri3Uk^(i -= 1,2,3),^(2.9)at^p oxi

where p is the pressure, v the kinematic viscosity of air, g the gravity acceleration of the

earth, fijk the alternating unit tensor, and 113 the angular velocity vector of the earth's

rotation.

The conservation law of energy is the First Law of Thermodynamics. One of its

expressions is

6Q = CpdT —^ (2.10)

where 6Q is the quantity of heat energy entering unit mass, Cp the heat capacity at

constant pressure per mass, T the absolute temperature. One defines the potential
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temperature 0 for an air mass with temperature T and pressure p through a reference

pressure No)

0 = T(P0,0 rd/cp,^ (2.11)

where p0,0 is usually taken as 1000 mbar, and Rd is the gas constant. For dry air under

standard conditions, Rd = 287M2S-2K-1 . Substituting (2.11) into (2.10) yields another

form of the energy conservation law:

GT—de = SQ.
()

Therefore, the equation of 9 can be derived:

ae^a®+ u^= ^ H
at^3 axi cipT

Or

50^50+ u
St lax;

(2.12)

where SH is the total source of heat energy per unit mass per unit time, and Se(=

SHO/CpT) is the corresponding source of potential temperature per unit time. In a

laminar atmospheric flow, major contributors to S H include radiative flux convergence,

dissipation of heat by molecular diffusion and latent heat.

Finally, the equation of state is included to close the PDE system:

p = pRdT.^ (2.13)

The PDE system (2.8), (2.9), (2.11), (2.12) and (2.13) has 7 equations, while involving

7 variables: ui (i = 1,2,3), p, T, 9 and p. Therefore, this PDE system is closed.

Simplification of the equations

Some assumptions are made to simplify the above basic equations:
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i) f-plane assumption:

The term 26iikfljuk can be denoted in the form of vectors as 2572 x 0, if 52i is denoted

by 52 and ui by U. By setting x3 to the vertical direction at a place of a latitude 0

on the earth, the angular velocity vector Si can be projected onto the x3-axis and onto

the horizontal plane, and C-23 and 572.12 are obtained, respectively. Letting f = 252 sin 0,

referred to as the Coriolis parameter, one obtains 25-23 = (0, 0, 252 sin 0) = (0, 0, f). Since

1/3 is perpendicular to the horizontal plane and the mean wind 0 is parallel to the plane,

12.3 X U will be parallel to the horizontal plane and 012 X U will be in the vertical direction

as a vertical acceleration. In mid-latitude regions, the magnitude of 113 x 0 is almost the

same as that of 1i12 x 0, but their importance in their respective momentum equations is

not the same. Compared with other terms in the vertical momentum equation, fin X

is negligible (Sorbjan, 1989). Therefore, one obtains

252 x U 23 x^(—fv, fu, 0),^ (2.14)

or, equivalently,

2Eijkgiuk^—f uifii3.^ (2.15)

ii) Incompressibility approximation

As long as the ABL depth (its typical value is 1 km) is much smaller than the density

scale height 14 = 1(1/Po)(aP/az)01-1 8 km, where the subscript o denotes the value at

the earth surface, the air can be approximated as incompressible (Pielke, 1984) and:

aui = 0.
axi

(2.16)
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iii) Boussinesq approximation

For simplicity, the thermodynamic variables are decomposed into two parts: the

regional mean variables3 and the perturbation part; namely

aP aPo
ax,^ax, ' ax,^P P°

T = To +^,^= 00 + 6,^ (2.18)

where the subscript ü represents the regional mean quantities, and represents the per-

turbation about the regional means. The perturbation parts are assumed to be much

smaller than the regional average parts. It is also assumed that the ABL is horizontally

homogeneous and the above reference variables satisfy:

1 apo
— g6i3 ji_xjEjj3 = 07

Po °xi
(2.19)

where G1 and G2 are components of the geostrophic wind'. These yield, to the first order

of perturbation quantities,

1 ap^1̂  apo +^_L Op
(p°^)gn^0,3 =p uxi^Po + ‘P` ax,^ax,^1682}3

1^1 16 aPo^015
( — —^ + pog8i3 + 1)0i3)
Po PO PO UXi OXi

1 (9.75
+ —goio + fG3c233^ (2.20)

po oxi po

From (2.11), (2.13), (2.17) and (2.18), one obtains to the first order,

^Rd /5^6

Po

3Regional mean value refers to horizontal average over a region whose horizontal dimension is com-
parable to the domain size of this LES study, for example, four or five kilometers. For the pressure
field, pressure gradient, rather than pressure, is subjected to this averaging procedure, because a linear
distribution of pressure field (constant pressure gradient) is the driving force of the neutral ABL.

4The geostrophic wind is usually 2D, parallel to the horizontal plane, which implies that G3 = 0.

(2.17)
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Since the ABL depth (its typical value is 1 km) is much smaller than the density scale

height Hp 8 km, the value of fi/po can be ignored compared with fi/ po (Pielke, 1984).

The above approximation can be written as

Po^00 •

Substituting this into (2.20) yields

1 op^1 Ofi
— g513^— fGjeja3.^ (2.21)

p oxi^po oxi

After applying approximations i) to iii), the basic equations become:

aui
0

'^
(2.22)

OXi 
= 

aui^aui^op + v^ +^c^
f(Gj — Uj)Eij3^= 1, 2, 3^(2.23)at^ax 520,90 Oxi^ax3^eo

00 50
+^= ^ + other source terms,^ (2.24)at ax3 3

where 77 is the molecular thermal diffusivity of potential temperature. If "other source

terms" are known, the above five equations includes five unknowns (744, 6), and so

are a closed set. The present work only investigates an idealized situation, in which no

cloud, water vapor, or chemical reactions occur in the ABL. There is also no radiative

flux convergence within the region. Therefore, the "other source terms" in the potential

temperature equation (2.24) can be eliminated. The equations can be solved if combined

with proper boundary conditions, from the viewpoint of initial-value and boundary-value

PDE.

2.2.2 The Smagorinsky Model

Averaging processes

It is noted that the averaging procedure can be defined in many different ways, and

introduces many difficulties for nonlinear problems. Generally speaking, three averaging
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procedures are well recognized: ensemble averages, time averages and space averages. If

0 is a flow variable, it can be decomposed as follows no matter what kind of averaging

process is taken:

(x1, t) = Oxi,t)^01(xi,t),^ (2.25)

where is the averaged component and 0'(x, t) is the residual field.

Ensemble average

Ensemble averaging has the following properties (Hinze, 1975):

=--(1^a0 - - b71) =^+^ (2.26)

ao ao^ao ao
(2.27)at^at'^ax,^ax,'

= o,^=O ,^ (2.28)

= 00,^0 = 0,^ (2.29)

where 7,b is any other flow variable, and a and b are constants. Applying ensemble

averaging to equation (2.22) to (2.24) yields

(2.30)

au,^au,^1ö ^0 c
+ i-L •^= ----, + g—oi3 — f (G.; — ui)Eii3at^3 aXi^Po OXi^00

a2u, Nu;+v ax?^ax .i3
(2.31)

a®^a® a2® au,"
at^3 ax,^ax, •

  

(2.32)

      

In the momentum equation the unknowns —uiui are called Reynolds stress terms and

in the potential temperature equation, the unknowns ti'.70' are called turbulent kinematic

heat flux.
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Time average and space average

Time or space averaging is very different from ensemble averaging. Firstly, unlike the

latter, they are not unique in the sense that the averaged value depends on the choice of

the moving filter F in the definition:

0(t, xi) = 1+: cb(r, xi)F(t — r)dr,^ (2.33)

or

0(t, xi) =^.1+ cb(t ,^(xi —^ (2.34)

(2.33) is time averaging, while (2.34) is space averaging; LES adopts the latter. F is

usually taken as a symmetric function of its argument ri = xi — 4", with an integral of

unity which has a maximum at the origin and tends to zero as r = Vriri A, where A

is of the order of the grid spacing. One can therefore think of c—k (t, x) as a local spatially

averaged field. A common form for F is the top-hat function, which is defined as

1/(A1A2A3) Ix i —^Ai/2^for all i = 1, 2, 3
F(xi,) =^ (2.35)

0^otherwise,

while another example is the Gaussian filter, which is defined as

6 i^6(xi —
F (xi,^= (^ )2 exp[^]. (2.36)

The properties of time or space averaging are:

(2.37)

O'cb'^0,^OP (2.38)

while (2.26) and (2.27) are still satisfied. This presents difficulties when applying time

or space averaging to the governing equations.
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Applying spatial average operator to equation (2.22) to (2.24) yields

(2.39)

aui aniu,
at^ax„

^ap^0 ,
=^g— oi3 —^ — u )cij3

^poaxi^Coo

(s)a2fLi
+ v^ + ^ax^ax3

(2.40)

ae au,0^a20 arils) 
(

at^axi = ax^ 2.41)
3

where 7-i(;) =^— ftiiii) is an unknown stress tensor, H.^) = uie — fliO are sensible

heat fluxes. Closure of these unknowns will be left to the next section.

Another form of momentum equation was proposed by Leonard (1974):

au, ouiui
at^axj

^

ap^0
+ g—Vi3 f (G3 U3 )6i33

^

PO aXi^eo

+ 3̂-Fu ^
aX

(2.42)

where 41'2) = —(fzitt"i Witi!i). Note that ftiu'i and Wifil do not disappear because of

(2.38). The difference Ti(s'2) — Ti(3s) = = — flifti is called the Leonard stress term.

Leonard (1974) proved that L23 is responsible for significant energy extraction from the

large scales due to triple correlations of these motions.

One has the option of calculating the term ftift3 in (2.42) explicitly with double ap-

plication of the averaging operator, or, as Deardorff (1971) has done, to incorporate ri(;)

in a modelling assumption. In the present work, the latter option is adopted with the

Smagorinsky SOS model.

In this thesis, subscript or superscript (s) is usually adopted to denote a SGS quantity.

For example, ri(;)(= —u1u3 uitt,) denotes the SGS shear stress tensor; —zilsw's(= —70+
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ftt-v) represents the SGS shear stress component 438), which is also denoted by re(if) or SGS

Tutu; u's2(= —u2 U2) represents the SGS velocity fluctuations of u component.

For simplicity, the bars on top of the first moment variables denoting spatial average

operator defined by (2.34) are dropped hereafter.

The SGS model

Noting that ri(;) expresses the effect of the SGS eddies on the RS eddies, this effect

is represented as an additional "viscosity". Namely, using the Smagorinsky SGS eddy

viscosity vs, one writes

(s) = 2 7.7

(2.43)
3

1, 024
(2.44)

(9x.i=

where Es is the SGS TKE defined by E, =^_i2), and si3 the RS strain rate tensor.

To derive the closure scheme for vs, it is proper to assume that the grid spacing A

is in the inertial subrange, and therefore vs must be a function of A and turbulence

dissipation rate f only. Dimensional analysis tells us that

cA413d13,^ (2.45)

The local equilibrium assumption is made to relate E to the RS components' ; namely,

(3) (9u i^ (2.46)E=T 2
3
. 

aXi .

Substituting (2.43), (2.44) into (2.46) and combining (2.45) yield

vs = (CL)2s, (2.47)

  

'The RS TKE is not necessarily dissipated through the local SGS dissipation, but it is a good
approximation for homogeneous turbulence. In some part of the ABL where transport of TKE is much
smaller than dissipation rate of TKE, this assumption can also be valid (Stull, 1988).
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S2 = 2s t.j s i.j•
^ (2.48)

Note that after substituting ri(;) into the momentum equations one can absorb the Es term

into the pressure gradient term. E, is therefore not explicitly calculated in computation.

A similar parameterization can be constructed for the sensible heat flux, .//-8) =

uie — ui0:

(3)
50=3^OX31

(2.49)

= 3.0v,. (2.50)

The ratio ys/v, was determined empirically by Deardorff (1972) who found that a ratio

smaller than 3 led to excessive intensity at the larger wavenumbers in the temperature

spectrum at interior levels.

2.2.3 Boundary conditions and initial conditions

Height of the ABL

The ABL height, h, is separately defined for the neutral ABL and the unstable ABL.

For the neutral ABL, this height is denoted by hE; relevant external parameters are the

Coriolis parameter f, the geostrophic wind speed U9 and the roughness length 2.0. A

dependent parameter is the friction velocity us, = fro, where 70 is the kinematic shear

stress at the surface. The set of parameters forms two length scales: either (U2/f, zo)

or (us,/f, z0). Observations indicate that the length scale u./f is the most relevant one

when considering hE. The empirical relation is (Nieuwstadt and van Dop, 1982)

hE^0.3—.^ (2.51)

For an unstable ABL, the inversion layer, typically represented by a large positive

gradient of potential temperature, confines the development of turbulence in the ABL.
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This layer acts as a lid on the top and thus defines the height of the ABL, denoted by

Upper boundary conditions

Above the height of the ABL, the flow is considered as being 2D on a horizontal

plane, and is assumed to be no vertical wind shear and no turbulence. This assumption

yields the balance between the pressure gradient and the Coriolis force:

1 apo
— g8i3 f G jEij3 = 0,^ (2.52)

Po taxi

Through these equations, the pressure gradient and the geostrophic velocity component

are related to each other. As vectors, they are perpendicular to each other. The upper

boundary conditions for horizontal velocity components u, v and w are:

u(x, y, z)lz, = Ug, (2.53)

v(x,y,z)lz.. = Vg, (2.54)

= 0. (2.55)

where U9 = G1 and Vg = G2. A more realistic way of improving this is to specify a finite

height, say .1),(> h), above which the assumption (2.52) holds. The boundary conditions

are thus written as:

u(x, y, z)Iz=D. — Ug, (2.56)

v(x, y, z)Jz=-Dz — Vg, (2.57)

w(x, y, zAz.Dz = 0. (2.58)

It is noted that equation (2.52) has the same form as equation (2.19), which governs

the regional mean pressure gradient inside the ABL. Therefore, specification of boundary
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conditions for velocity components with the values of geostrophic wind components im-

plies a specification of a pressure gradient acting upon air inside the ABL. This fact can

be seen from the derivation of equation (2.23). The term —f Gjeo on the right-hand side

was obtained from —(1/ po)Opo/Oxi because of (2.52). The pressure gradient is a driving

force of the ABL turbulence. Unlike the mean pressure gradient in a turbulent channel

flow which is parallel to the mean flow, it is perpendicular to the mean wind above the

ABL (the geostrophic wind). The kinetic energy (KE) of flow in the ABL is obtained

from the work done by the mean pressure gradient, transferred to eddies of different sizes

through the cascade of TKE and eventually dissipated into heat.

Lower boundary conditions

It is assumed that the lower boundary is a rough layer with a constant roughness

length zo. For a neutral ABL, the velocity profile near the surface obeys the so-called

"law of the wall" in which the roughness length zo and friction velocity u, determine the

velocity:

zu(x,y,z) 
tco^zo

(2.59)

where Ko is the value of the von Karman constant in the specification of the lower bound-

ary conditions'. This yields the boundary conditions for the velocity components:

u(x, y, z)I., =

V(X, Y7 Z)IZ=Z1 =

w(x, y, z)1z=z, =

u.
— in — cos av,o,
Ko zo

—ln — sin av,07
ZO

(2.60)

(2.61)

(2.62)

in the USL61t is shown in chapter 3 that the effects of accuracy of no and zo on the RS turbulence
are very small.



u(x, y, z) = —u* [in— — u(.5-)],
KO^ZO

0(x, y, z) = 00 + 
cEeT*

'^
s
[ln—

z 
— Te(7)1,

Ko^ZO

&IP°
u*

=

(2.63)

(2.64)

(2.65)

u(x, y, z)Iz=zi =
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where z1 is the height at which the lower boundary is located and a„,0 denotes the angle

from the x-axis to the wind direction at the surface. (2.60) and (2.61) imply that zi > zo.

For an unstable ABL, the lower boundary conditions for the velocity components can

be derived from the Monin-Obukhov similarity formulas (Paulson, 1970):

where ao = 0.74 (Businger et al., 1971). For the unstable regime,

1 -1- x2^= 21n 1 +^x
u

2̂
+ In  2 u 2 arctan x. + —2

= 21n 1 +We (L-) ^2^•

(2.66)

(2.67)

where x„ = (1 — 15z/L)1/4 and x® = (1 — 9z/L)1/4. In consequence, the boundary

condition for the velocity components and the potential temperature are as follows:

-2-"u [ln —
z
1 —1)] cos

Ko^Zo

u*^zi^zi.
—[in — — (—L )] sin

zo

w(x, y, 4=i = 0,

creL^z
1e(x, y, z)1z=z, = 00 +^ n —'s [1^

zi— 0 — )
Ko^zo

The present study does not deal with the stably stratified ABL.

(2.68)

(2.69)

(2.70)

(2.71)
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Lateral boundary conditions

The present work only investigates a very idealized situation in which turbulence in

the ABL is horizontally homogeneous and extends to infinity on horizontal planes. In

other words, statistics will be the same at all points on the horizontal plane at height z.

Mathematically, a Cauchy problem can be proposed in the x and y directions. It is noted

that LES solves a nonlinear PDE in a turbulent regime, in which detailed "accurate"

solutions cannot be achieved. In other words, long-time behavior of the detailed structure

of the solution can not be accurately simulated. However, statistics of the solution are

still very useful for practical problems.

Is is assumed that the turbulent flow is confined by 0 < z < h in the vertical direction;

the size of the largest eddies in the ABL is therefore of order h. These eddies make major

contributions to two-point correlations of velocity fluctuations Ri3() =^+

with a scale of order h, where denotes any point in the ABL, and is a vector lying

on a horizontal plane. As 0 tends to infinity, the value of the correlation is expected to

approach zero. This can be interpreted as a diminished correlation of turbulent structure

between two points in space as their distance increases. For 3D, stationary, homogeneous

and isotropic turbulence, the correlation function is a function of = 11 only and an

integral length scale can be defined as:

z.. _ f Rj.g) 
u^ (2.72)

/2^/20 ui

Denoting the order of Z23 by G, one expects that G h in the case of the ABL for the

reason that largest eddies in the ABL are of the size of h.

Instead of solving (2.39) to (2.41) in a domain with infinite size in the horizontal

direction, they are solved in a finite domain 52 = {(x, y, z)10 < x < D, 0 <y < D, 0 <

z < DT}, where Ds, Dy and D, are the length, width and depth of the domain. As

discussed above, in order to take into account the largest possible eddies, one must
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choose :

> .C, > and Dz > G. (2.73)

The lateral boundary conditions for velocity components are crucial to LES of tur-

bulence, especially in LES studies of shear dominated turbulence. Shear turbulence is

produced by instabilities of the mean shear flow and develops as it is advected down-

stream by the mean flow. If the boundary conditions for the velocity components of the

inflow are imposed as smooth profiles, one needs a section of domain in which turbulence

is allowed to be initially produced and then fully developed. This is a "transition to

turbulence" problem. The length scale of the transition section would have to be so large

that the computations would be impossible in today's computers. To solve this difficulty,

periodic boundary conditions for the velocity components and for potential temperature

are imposed in both x and y directions. These boundary conditions allow fully developed

turbulence that is advected out of the domain to re-enter the domain and thus allow

the maintenance of turbulent intensity. In fact, this study adopts this cyclic horizontal

boundary condition for all variables.

One difficulty that arises from periodic boundary condition is that the technique may

contradict the irregularity of turbulence if it allows periodic variations to be sustained as

possible solutions. This question cannot be answered analytically. Examining two-point

correlation functions of RS velocity fluctuations of LES output, however, may provide an

answer (see page 114 for details).

Initial conditions

To generate fully developed turbulence as quickly as possible, random initial distur-

bances with finite amplitudes are added to the initial velocity mean field. The amplitudes
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are specified as functions of z, given by

27 z^z
CiUg-,T7-1(1 — T1)2 i = 1,2,3

where C1 = 0.06 and C2 =- C3 = 0.03 are three constants, and h is taken as 1000 m. These

values are in fairly reasonable range. As stated by Reynolds (1989), for homogeneous

isotropic turbulence, where the decay history is to a large degree set by the initial state,

the initial conditions are very important; for homogeneous shear flow, the developed

spectrum and its statistics are less sensitive to the initial field; inhomogeneous flows,

such as the channel flow, establish their own steady-state spectrum and hence the initial

conditions are not important at all. The ABL flows are subjected to external forces —

pressure gradient associated with the geostrophic wind, and/or buoyancy force associated

with the surface heat flux — which make it similar to a channel flow in the sense that

both flows have energy flux from large scale motions. At a sufficiently long time, the self-

generated and self-sustained turbulence has no memory of initial conditions and reaches

a statistically stationary state. In other words, the ABL turbulence statistics of LES is

insensitive to its initial conditions.

Descriptions of the code of this study and its numerical scheme can be seen in ap-

pendix A.

2.3 The Smagorinsky-Model Reynolds number

By adopting the the Smagorinsky SGS model and omitting the buoyancy force term

and the molecular viscosity diffusion term, the momentum equations (2.40) becomes

NJ^au,^1 afi^—^a ,,aui,
+7-1 ^ =^f (G 3 ft 1/ ii3 +^kvs ^ ))^ (2.74)

ai^3 aii^;60.9±‘,^ai‘i^a±-,

I^II^III^IV

-^au, au^-
,,--(c,,A)2[_(__ +

_2_^-u.) 1/21)^ ] (2.75)
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where in this section denotes a dimensional variable.

Solution to the laminar Ekman layer

Consider the simplest situation in which I = 'I) constant, flow is steady with no

turbulence and no variation on the horizontal plane, and 7./7 = 0. The equation (2.74)

becomes

a ,, afti,o = — f(Gi —ua)eia3-4- (2.76)

Or

a „ a ct_f(fig i.))+

a at;o f(09 — 71) + R(va7z-..).

(2.77)

(2.78)

Its solution was found in 1905 by Ekman:

= 0 — e(0 cos -!ir

= 19— e(12.; cos

is,^:1
vg sin —7r),

- 09 sin !T7r),

(2.79)

(2.80)

h = 7421)/ j. (2.81)

It is noted that iz is the only length scale in the problem.

Although the solution (2.79) and (2.80) does not depend on the Reynolds number

Re = = ral11'f/2, where = i2 the N-S-like equations (2.74) are

unstable as Re exceeds a critical value, say Re, (Brown, 1974). As Re increases, the

relative importance of i becomes weaker, the flow evolves in a very complicated way due

to non-linear interactions, and the flow becomes turbulent. When Re is large enough,

say Re > Ret, a turbulent field is fully developed; (2.81) no longer holds and the length
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scale ti/j is becomes important. This scale relates to the height of the turbulent Ekman

layer, which is about 0.3z/././ as suggested by observations (Nieuwstadt and van Dop,

1982).

Definition of the Smagorinsky-Model Reynolds number

If the horizontal plane is effectively infinite in extent, no characteristic horizontal

length scale is introduced. The present LES adopts finite horizontal domain sizes, which

are not very large due to limitation of computer, and therefore introduces a characteristic

horizontal length scale; in the vertical direction, however, the length scale is izE, which

is defined by the Ekman spiral. Taking into account both horizontal domain size and

vertical length scale izE, the characteristic length scale of LES is defined as

b = (b,13yilE)113.^ (2.82)

Equation (2.74) is similar to the N-S equations except for the second term on the

right-hand side, which plays the role of a driving force. In a turbulent channel flow, for

example, the driving force is replaced by a constant horizontal pressure gradient. By

analogy, one analyzes qualitatively the importance of /is and therefore of the coefficient

Cs. In this study, it is assumed that in the momentum equation (2.74), /it, has the order

of 6, which is the magnitude of the geostrophic wind, has the order of b, and fis given

by (2.75) has the order of (C3A0)26/n, where Ao is the typical size of A. Therefore, the

order of the advection term (term II in equation (2.74) is

6i2
(2.83)

D

the order of the Coriolis force term (term IV in equation (2.74) is

—.1(6j — )f3 /6,^ (2.84)
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and the order of the SGS diffusion term (term V in equation (2.74) is

a^ail,^1^ O2
— (v ^) —(Csa0)2—(—) = (c )2--

^axi ax,^b^b^. 0 ,53. (2.85)

Since the magnitude of the ratio of the advection term to the molecular diffusion term

in the N-S equations gives the definition of the Reynolds number, which determines the

stability of the flow, the magnitude of the ratio of the advection term to the SGS diffusion

term in equation (2.74) yields the definition of the Smagorinsky-Model Reynolds number,

or SM-Reynolds number:

Advection term^02/i)   2 Re SM •^( 2.86 )
SOS Diffusion term^(csA0)2O2//53 `Cs3,‘

This number determines the mathematical stability' of the LES model adopting the

Smagorinsky SGS parameterization. The magnitude of the ratio of the advection term

to the Coriolis term in equation (2.74) defines the domain Rossby number:

Advection term 621:6^6 
= ^ =ROD.^ (2.87)

Coriolis term^id^in
After normalization with the length scale n, velocity scale O, equations (2.74) become

au,^au, Op^1^1^,,+ ^ tuuoci,3+ r,^ „^),^(2.88)
Ot^aXj^aXi ROD 3^ITCSA1 UX3 UX3

where t = t7(.1VO) and p = /5N0O2). It is therefore concluded that for LES flows to

be formally similar with each other for an ABL flow, identity of both Resm and ROD is

required.

Model Reynolds number for DNS, LES and EAM

DNS attempts to solve the problem deterministically by employing an "effective vis-

cosity" i'd = Its "mathematical Reynolds number" or DNS "model Reynolds number"

7Mathematical stability refers to the stability of a mathematical model, such as a LES model or a
EAM model, due to intrinsic nonlinear characteristics.



UD
i!DNS 

= Re. (2.94)ReDNS

REAM
,^( Â- )2 =- Resm,
,,LES^Usl-A0 (2.96)
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is defined as ReDNs = Re = OD/fi, where b and U are the characteristic length and

velocity of the flow, respectively. In LES, however, those small eddies8 have to be explic-

itly modelled, for example, as given by (2.43), (2.44), (2.47) and (2.48). Compared with

DNS, LES has a larger "effective viscosity", 1.)LES 1%,s^'1)DNs =1), and equivalently, a
smaller "mathematical Reynolds number", ReLEs = Ob/hEs < Re =0D/1).

In an EAM, an "effective viscosity" i)EAm is also employed, but for the same turbulent
flow, it is much larger than LES in LES models. The mathematical Reynolds number in
EAM models is ReEAm = OnPEAm < ReLEs. Generally, the orders of the "effective
viscosities" for the three models are:

hAm i5U, (2.89)

hES (C53■0)2C,^ (2.90)

1;DNS =1)) (2.91)

where A0 is the typical value of grid spacing. Therefore, one obtains

UDReEAm =- ^
VEAM (2.92)

ReLES =
On OR  n 

 )1= 0(Resm),
VLES^CsA0 (2.93)

It is also concluded that

11EAM Re,
(2.95)

 

8smaller that grid spacing, still playing an important role in exchanging momentum, dissipating KE
etc.
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i;LES ^

Re(
C,93,0 )2 ^Re

fiDNS^D^Resm.
(2.97)

Estimate (2.92) shows that the order of model Reynolds number of an EAM is very

small, and therefore may imply the mathematical stability of the solution to the EAM

(although there is no theoretical proof). Equation (2.94) reveals that DNS possesses the

same stability as real flows. If a real flow is in the turbulent regime, DNS also runs

in the turbulent regime. In a LES with the Smagorinsky SGS model, its mathematical

Reynolds number ReLEs is of the order of Resm, with the magnitude between ReEAm

and ReDNs.

Applying the same procedure of dimensional analysis as that for LES model to DNS

of an Ekman layer, two non-dimensional parameters are obtained: ROD = 0 Lin and

Re = 'di)/ 'I). The Ekman layer becomes turbulent as the Reynolds number Re exceeds

a critical number, Re„. The statistical properties of RS turbulence will be Reynolds

number dependent unless the Reynolds number is so large that the turbulence statistics

approach asymptotic values. Spalart (1989) used DNS to investigate an Ekman-layer-

like turbulent flow, and Coleman, Ferziger and Spalart (1990) conducted a DNS for a

turbulent Ekman layer with very low Reynolds numbers (Re ,-,, 500).

By analogy to a DNS, LES must be run in a "turbulent regime" to show a continuous

spectrum for the RS motions. If Resm ---+ 0, the "simulated flow" becomes stable and

"laminar"; when Resm > Re sm ,„ , the "simulated flow" becomes unstable and "turbu-

lent". The statistical properties of RS turbulence is SM-Reynolds number dependent

except when Resm is large enough.

This approach clearly shows that Resm is not only a mathematical stability criterion

for a LES which employs the Smagorinsky SGS model, but it is also the dimensionless

parameter on which the statistics of RS turbulent eddies depend.
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2.4 Discretization and criterion of grid resolution

Rewriting the set of partial differential equations derived in the last section as follows:

au
0Xj

aui auiui 

^

— --n g,^J^ui )60at^ax,^['aux,^—vo

n2^(8)u u^a,

^

+u^axi

^ao attic)^520 aRls)
at^ax, =11 ax.1^ax,

(s) 2
=^+2vss,

^

1,au,^au,,
si.^—)

^

2 aX^aXi

us = (CsA)2S,

S
2^23•.s• •ij 23,

Hj(s)^ 50
ax„'

71s^3.0vs.

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

In this section, the discretization of the PDEs will be discussed.

It is recalled in section 2.2.2 on page 28 that the derivation of vs in the Smagorin-

sky model (2.103) requires that the grid spacing A must be in the inertial subrange of

turbulence spectrum. This requirement is referred to as the "ISR rule" hereafter, and it

becomes effectively a criterion for choosing the grid size. For ABL turbulence, the ISR
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can be identified in the observational curves of the power spectra of velocity components.

It is known that a necessary condition for an ISR of homogeneous and isotropic turbu-

lence is —5/3 power law of velocity spectra. There is no sufficient condition to identify

the ISR for practical purposes. The present study assumes that a —5/3 power law of

velocity spectra is a sufficient condition for the existence of an ISR as an approximation.

2.4.1 Mixed layer

Figure 2.1 presents observed velocity spectra after Kaimal et al. (1976). fi is defined

by fi = nZiIU, where U = U(z) is the mean speed at the height where the measurement

was taken and n is the frequency of signals in Hertz. All spectra collapse into a single

curve in the ISR (I; > 20 for u and v, and varying with z/Zi for w), but at lower

frequencies the curves separate as a function of z/Zz. It is also seen that the —2/3 laws9

extend to lower frequencies as the height z/Z, increases for all three spectra.

To find the spectral density as a function of eddy size, one must interpret A, the

normalized frequency of the time series measured at a fixed point in the ABL, as meaning

wavenumber or wavelength of the turbulent eddies. Since the measurements of turbulence

spectra are based on the Taylor hypothesis which assumes that "frozen turbulent eddies"

are passing the anemometer, nIU can therefore be interpreted as wavenumber k/(27r),

namely,

n^k
— 27r.

Replacing n by A yields

kZi= 27r

9Traditionally, turbulence spectra in the ABL are plotted as nS(n) vs. n in log-log coordinates; if
S(n) follows a —5/3 power law, nS(n) will exhibit a —2/3 power law.
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.1 - I 141 /

Figure 2.1: Universal curves for velocity spectra expressed in ML similarity coordinates. The
function (P;(= isZitju) in the spectral normalization is the dimensionless energy dissipation
rate. (After Kaimal et al., 1976).
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which is the dimensionless wavenumber (normalized by 1/Z1). By introducing the wave-

length A = 27r/k, one obtains

ft =
^

(2.107)

Therefore, for a value of fi^5, for example, the corresponding wavelength is about

A 0.2Z1. The value of fi at which the ISR starts is denoted by 4'2,, and the value of
(c)corresponding wavelength by A^i, n which u, is referred to as u, v or w, for i = 1,2,3.

Some useful information is provided by figure 2.1. For the power spectra of u and v,

small variations with z/Zi are found. This is the reason that Kaimal et al. only classified

the spectra into two categories: z/Zi E [0.01, 0.02] and z/Zi E [0.02,1.0]. The difference

in the peak valuesl° is not significant, which implies that the typical size of the (energy-

containing) horizontal velocity fluctuations is less influenced by the wall (compared with

that of w). The value of fjcu) or f,(:) indicated by the figure is about 20, corresponding to

1°Most of measured turbulence spectra are presented as fSo(f) vs. f in log-log coordinates. This
presentation has the advantage of showing the inertial subrange of velocity spectra as a —2/3 line on
the graph. Unfortunately, the area under the curve is no longer proportional to the corresponding
velocity variance (Stull, 1988). Furthermore, the peak of the spectrum associated with the production
of turbulence and usually the largest eddy sizes is not clear from such a presentation.

It is proved here that for fSo(f) vs. f under log-log coordinates, the location of peak value
for Sa(f) is at the place where the curve has a slope of 1.

At the peak value of Sa(f), it suffices

d,Sa(i)^0
df —

(2.108)

Let

x = In(f)^and^F(x) = ln(fSa(i))•^ (2.109)

Taking derivative with respect to f for both sides of the second equation in (2.109) yields:

F'(x) dd; = fsol(f)^+ fS'o(f)].^ (2.110)

Using (2.108), one obtains

P(x) =1.

It is therefore concluded that the frequency of the peak value of sa(f) is located at the left-side of the
peak value of fSo(f).
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orAc,i) P.,- 0.054 but in most part of the mixed layer (ML) where z/Z E [0.02,1.0]

it seems to be a good approximation that f(c)or fi(cj 10 which corresponds to Act! or

Ac2 0.1Z. As seen in the figure, however, the power spectra of w show a wide spread

with z/Z and the position of the spectral peak shifts to increasingly lower values of A

as z/Zi deceases. The value of ,fic„) varies with z/Z and shifts to the larger values as

one approaches the surface. Table 2.1 gives a list of approximate values of fc2 , 42,

Table 2.1: Values of AT, AT, fi(,ce)„^A/Zi and Act)„/Zi as functions of z/Zi.

z/Zi .f,c,), Act)i/Zi fi(ci Ac2/Zi fi(c,„), Act)„/Z1

0.2 - 1.0 10 0.1
0.1 - 0.2 10 0.1
0.06 - 0.1 10 0.1 10 0.1 10-20 0.05

0.03 - 0.06 20-30 0.03-0.05
0.02 - 0.03 30-50 0.02-0.03
0.01 - 0.02 20 0.05 20 0.05 50-70 0.014-0.02

Ac2/Z1, A/Z1 and 4c,)„/Zi as functions of z/Zi.

The grid spacing can then be determined by the observational information provided

by figure 2.1. In the horizontal directions, if one takes the largest wavelength of the

inertial subrange eddies as the marginal value, 0.1Z, and a typical value of Z as 1000 m,

then the largest wavelength of the horizontal velocity fluctuations in the ISR is about

100 m. This determines that the grid size must be equal to or smaller than 50 m, because

at least two mesh points are needed to resolve a wave.

In the vertical direction, it has already been shown that the value of fz(2 (therefore

the value of Ac)) varies significantly with height in the ABL. A non-uniform mesh will

therefore be the best choice in the vertical direction. For example, in the region of

z/Z E [0.2, 1.0], A, can be chosen as about 0.5\ 0.1Z0.1Z (assuming that f2(c„,) P.,- 5); in
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the region of z/Zi E [0.01, 0.02], Az can be chosen as about 0.5)^0.005Z0.005Z (assuming

that fi(c2, R-2. 100). In consequence, using the value of Zi of 1000 m, the former region will

adopt Az 100 m and the latter region will adopt A, Ri 5 m.

2.4.2 Surface layer

Generalized spectral curves for u, v and w in the ASL are shown in figure 2.2 obtained

by Kaimal et al. (1972). The curves for z/L = 0 (the neutral case) are of interest. The

value of f at which the ISR starts is denoted by ft(:), and the value of corresponding

wavelength by A(st . No matter whether the neutral limit is taken on the stable side

(z/L > 0) or on the unstable side (z/L > 0), the curves collapse to a universal line

in the ISR. The value of fn in the neutral case is about 0.5. A big difference can be

seen in the value of f(c) between the ASL here and the ML discussed above. In the ML,
5 V

4C1,) Re, fi(,C2 ; in the ASL, as shown in figure 2.2, a larger value of fSc,), R.: 1 is found, and an

approximated value of fnt, is also about 2.

Based on the observational values of fn, fn and f
, 

one obtains the maximum

wavelengths of the "ISR eddies":

^A(c)^= 2z

^

s'u^0.5

^

A(sc)^= z^,v^,

= 0.5z.

^

s'w^2

(2.112)

(2. 1 13 )

(2.114)

Notice that all wavelengths are linearly proportional to the height z. It is impossible

to design a mesh that has variant A, and Ay changing with height. Therefore, it is

inevitable to include some of the larger eddies outside of the ISR into the SGS model

as z approaches to the surface. This basically violates the ISR rule. However, one can

examine how serious the violation is. It is assumed that a uniform horizontal mesh
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Figure 2.2: Universal curves for velocity spectra expressed in SL similarity coordinates. The
function 0,(= Kzciu) in the spectral normalization is the dimensionless energy dissipation
rate. (After Kaimal et a/., 1972).
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spacing Ax, Ay and A, are adopted. The shortest wavelength it can resolve is 2,6,;

therefore, if 2Ax = A(4, from (2.112), one obtains

z(u) Ax, (2.115)

where z(u) represents the height above which the largest size of u fluctuations in the ISR

can be resolved by the mesh. Similar results can be obtained for the velocity fluctuations

of v and w, from (2.113) and (2.114), respectively:

z(v) 2Ay, (2.116)

z(w) 4Az. (2.117)

It is therefore ensured that, from (2.115), (2.116) and (2.117), the requirements of the

ISR rule can be achieved in the region where z > ze = max{z,(u,), i 1, 2, 3} =

max{AT, 2Ay,4Az}.

2.4.3 Grid spacing and Domain size

In the present simulations, the typical horizontal grid spacing of 60 m x 30 m is

adopted as the reference grid specification for most runs (see table 3.4 on page 66). To

resolve turbulent eddies in the ASL, the present study specifies the first vertical grid

spacing of 2 m. The vertical grid spacing is non-uniform, given by an expansion rate of

1.2 up to a maximum grid spacing of 60 m (see table 2.2). Compared with the results

discussed above, the resolution in the horizontal directions is about on the margin of the

requirement of the ISR rule in the ML for the grid size. In the ASL, however, from (2.115)

and (2.116), it yields that z(u) 60 m and z(v) 60 m. The effects of grid spacing

on LES results will be shown in chapter 3 and chapter 4. As for the resolution in the

vertical direction, an almost uniform grid spacing of 60 m in the ML is smaller than the

value of 100 m, required by the ISR rule. In figure 2.3, some data in table 2.1 are drawn:
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Table 2.2: Specification of the grid spacings in the z direction. i denotes the grid number
along vertical direction; z(i) is the height of i-th vertical grid; Az(i) = z(i + 1)- z(i) is the grid
spacing in the vertical direction.

i

z(i)
Az(i)

1

1.0
2.1

2

3.1
2.6

3

5.8
3.2

4

8.9
3.8

5

12.7
4.5

6

17.3
5.5

7

22.7
6.5

8

29.3
7.8

9

37.1
9.4

10

46.5
11.3

11

57.8
13.6

i 12 13 14 15 16 17 18 19 20 21 22

z(i) 71.4 87.7 107.2 130.6 158.8 192.5 233.0 281.8 340 400 460
Az(i) 16.3 19.5 23.4 28.1 33.8 40.5 48.8 57.2 60.0 60.0 60.0

i 23 24 25 26 27 28 29 30 31 32 33

z(i) 520 580 640 700 760 820 880 940 1000 1060 1120
Az(i) 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0

i 34 35 36 37 38 39 40 41 42 43 44

z(i) 1180 1240 1300 1360 1420 1480 1540 1600 1660 1720 1780
Az(i) 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0

i 45 46 47 48 49 50

z(i) 1840 1900 1960 2020 2080 2140
Az(i) 60.0 60.0 60.0 60.0 60.0
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Figure 2.3: Profiles of A/Zi as function of z/Zi. Solid line represents the value of A/Zi
as a function of z/Zi, while dashed line represents the value of )e/Z1 or A:,ei,)/Zi as a function
of z/Zi. Diamonds denote the values of 2L/Z, circles denote the values of 2&/Z and the
triangles denote the values of 2L /Z1.

the solid line represents the value of A/Z, as a function of z/Zi, while the dashed line

represents the value of A/Z, or 4,c„)/Zi as a function of z/Zi. Any point (\c)/Z,,z/Zi)

located above or to the left of the lines corresponds to a grid spacing at z/Z, which falls

into the ISR of respective turbulence component. Therefore, 2Az/Z1 should be assigned

above or to the left of the solid line, while 2Ax/Z1 and 2Ay/Z1 should be assigned above

or to the left of the dashed line. In this figure, the diamonds in figure 2.3 represent the

values of 2Az/Z, adopted in this study,' which should be above or to the left of the solid

line to meet the requirement of the ISR rule; the circles represent the values of 2Ax/Zi

and the triangles represent the values of 2Ay/Zi, which should be above or to the left

of the dashed line to meet the requirement of the ISR rule. Figure 2.3 shows that the

above-mentioned specification of grid spacing is satisfactory to resolve the ISR eddies in

'The value of Z, is taken as 1500 m, which is the typical height of a CBL in summertime (Garratt,
1992).
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most part of the CBL except very close to the surface.
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^
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^
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^
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c) 2A (m)

Figure 2.4: Profiles of AV) as function of z. Solid line represents the value of AN, as a function
of z, dotted line represents the value of AN, and dashed line represents the value of AV4.
Diamonds denote the values of 24, circles the values of 24x and the triangles the values of
24y.

For the ASL, figure 2.4 shows the requirements for wavelengths by the ISR rule, i.e.,

equation (2.112), (2.113) and (2.114). The solid line represents the value of A(sc?u, as a

function of z, the dotted line represents the value of A(.9c„ and the dashed line represents

the value of Ms. The regions above these lines are the ones which fall into the ISR

of respective turbulence component. For the grid sizes the present work adopts, the

same symbols as those in figure 2.3 are used to denote 2As, 2Ax and 2Az. For the

x-component, 2Ax (circles) do not fall into the inertial subrange unless z > 60 m; for the

y-component, 2As (triangles) do not fall into the inertial subrange unless z > 60 m; for

the z-component, 2A, (diamonds) do not fall into the inertial subrange unless z > about

40 m. It is thus concluded that when z > 60 m or so, the grid configuration mentioned

above satisfies the ISR rule.
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In section 2.2.3 on page 33, the requirements for the domain size were discussed in

detail. The major conclusion is, in order to take into account the largest possible eddies,

one must choose Ds ,--, h and Dy — h. Further constraints on the size of Ds and Dy are:

Ds > E, and Dy > E,

where E is the order of integral length scales.

To limit the computational effort, a relatively small number of grid points was used,

namely, 24 x 24 x 50, 32 x 32 x 50 or 64 x 64 x 50. These correspond to horizontal

dimensions of 1440 m x 720 m, 2100 m x 1050 m or 3840 m x 1920 m, respectively. The

vertical dimension of the calculation domain is 2140 m. Limited by total number of grids,

LES cannot resolve both large and small eddies. To take into account the eddies in the

ISR, LES has to lose its resolution of the largest eddies whose sizes are proportional to

the ABL depth; to take into account those largest eddies, LES has to lose its resolution

of small eddies that reside in the ISR. Previous LESs of the ABL only paid attention

to those largest eddies, ignoring the resolution of "ISR eddies". For example, Moeng

(1984) adopted A, = Ay = 156 m and an equal value of A, = 40 m to simulate a CBL.

Mason and Thomson (1987) conducted LESs of the neutral ABL and used Az = 600m,

Ay = 300 m and Az,i = 11 m in his case A, where Az, . is the first vertical grid spacing,

A, = 150m, Ay = 75 m and Azo, = 6 m in case B, and A, = 75m, Ay = 37.5 m and

Az,i = 4 m in case C. The present study adopts relatively small grid sizes in order to

resolve turbulence in the USL and it inevitably, but not seriously, loses resolution of the

large eddies.

The criteria for a LES are listed as follows:

CR1 grid size must fall into the ISR of the turbulence so that the Smagorinsky SGS

model can be employed properly;
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CR2 Resm must be larger than Resm,„ so that the model runs in turbulent regime and

the behavior of RS fields is turbulent;

CR3 Cs must be large enough so as to eliminate grid-mode TKE12 accumulation.

As long as the grid spacing is determined under the first criterion CR1, the second

criterion CR2 can be achieved either by increasing the number of grids, or by reducing

the value of Cs while checking if the third criterion CR3 is satisfied.

It is interesting to examine such a simulation: its domain size falls into the ECR,

but its grid spacing is larger than the size of eddies in the inertial subrange due to

limitation of the total number of grids. To satisfy CR2, the only way is to reduce the

value of Cs, while it may conflict with CR3. Figure 2.1 and figure 2.2 show that the

order differences between the largest ECR eddies and the largest ISR eddies are about

two decades, noticing that the frequency of the peak value of Sa is smaller than that of

nSa•13 In other words, if grid spacing falls into the ISR and the domain size includes the

most-energetic eddies, D/A will be at least of the order of 102. With Cs = 0.2, say, the

value of Resm is about 250,000.

Another simulation is also interesting: CR1 is met, but the domain size is not large

enough to include all ECR eddies. D/A0 in this case is also small owing to the limitation

of possible grids and it causes a small Resm. Reducing the value of Cs can obtain a

larger value of Resm so as to meet CR2, but it may violate CR3.

12Grid-mode TKE is the TKE component whose wavelength is 2A, where A is the grid spacing.
13see the footnote on page 44.



Chapter 3

Large Eddy Simulation of a Neutral Atmospheric Boundary Layer

3.1 Scalings and dimensional analysis

In this chapter, a horizontally homogeneous ABL under adiabatic and barotropic

conditions is investigated by LES. The surface heat flux and evaporation are taken as

zero so that conditions are neutral; the ABL is in the Northern Hemisphere; there is no

thermal wind and no mean streamline curvature and the surface is homogeneously rough,

with a constant length scale zo; there is no cloud, no moisture in the ABL; it is further

assumed that the wind above the ABL is geostrophic, determined by the balance between

the horizontal pressure gradient and the Coriolis force; for simplicity, the geostrophic wind

is taken to be along the x-axis of LES model.

The most important dynamical characteristic of the whole ABL is the balance between

the Coriolis force term —f — u j)ci,3 (see equation (2.99)) and the vertical momentum

flux gradient, which results in a length scale related to the depth of the layer. The ABL

under this situation is also called the Ekrnan Layer, because Ekman provided an analytic

solution for a laminar model for it (see equation (2.79) and (2.80)). The development of

the theoretical analysis on this topic had been slow for several decades, partially because

of a lack of applications and partially because there were no enough experimental data

for the entire ABL. The situation with regard to data acquisition has gradually changed

in the last two and three decades, but there are still demands for more data and for

less scattered data. The surface layer, in which fluxes do not deviate too far from their

54
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surface values and where the shear is large and the generation of TKE the greatest, is

about 10 per cent of the ABL depth. Measurements in this layer are relatively attainable

and have been carried out frequently, which stimulates the advancement of theoretical

analysis of the ASL (Sorbjan, 1989).

3.1.1 Laminar Ekman layer

Consider a simple situation in which the flow is steady, there is no turbulence, no

variation on the horizontal plane, and w = 0. Its solution is given by (2.79), (2.80) and

(2.81); they are re-written here with dropped:

U = U9 - e-"Ihv (U9 cos 7r—
h, 

Vg sin 7r—
z

),^ (3.1)
h,

V = 179^h' (179 cos 7r—
z 

— U.g sin 7r—
z

),^ (3.2)h,^h,

h, = rV2v/f,^ (3.3)

where the length scale h, represents the height of the laminar Ekman layer. Since v

x 10-5 m's and f = 10-43-1, the height of the laminar Ekman layer h, 1.72 m.

One can assume a very simple EAM for a turbulent Ekman layer by replacing v with

an effective constant eddy viscosity ve. If ve 10 Tri's" and f = 10' s", then hv,e Ps-1

1400 m. This gives a way to estimate the order of the effective eddy viscosity through

the height of the turbulent Ekman layer. But the solution given by (3.1) to (3.3) does

not agree well with observations. For example, the angle between the shear stress vector

and the geostrophic wind vector, cur, can be derived from (3.1) and (3.2)1:

T1JW^VaViaZ^cos(7rz/h,) — sin(7roz/k)
= arctan — = arctan^arctan 

cos(irz/k) sin(rz/h,)•^
(3.4)

vaU/OzTim 

'For simplicity, the geostrophic wind is taken to be along x-axis; i.e., U9 = G, 1/ = 0.
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As z -- 0, one obtains

7r
ct,,o = (3 .5)

However, in the turbulent Ekman layer, observations consistently suggest a much smaller

value of ar,o than 7r/4 (Brown, 1974). It is shown that the assumption of the EAM model

with a constant eddy viscosity is too simple to represent the complicated turbulent Ekman

layer.

3.1.2 Scaling in the turbulent Ekman layer

The solutions of a laminar Ekman layer, (3.1) and (3.2), are independent of the

Reynolds number Re = Gliv/v -= 1,7rG1\57f. This does not imply that the solutions

are unique for any value of the Reynolds number, recalling that equation (2.76) is a

simplified form of the full equation (2.74). As the Reynolds number is larger than a

critical value, say Re„, the solutions given by (3.1) and (3.2) becomes unstable and

cannot be observed in a real ABL. When Re is large enough, say Re > Ret, a turbulent

Ekman layer is fully developed, and its scaling is different from that of the laminar Ekman

layer.

Smooth surface

When the ground surface is smooth, the molecular viscosity coefficient v is not

important in momentum transferring processes of the turbulent Ekman layer except in

the viscous sublayer in the near-surface region. The independent external parameters are:

the Coriolis parameter f, the molecular viscosity coefficient v and the friction velocity

u,r. An asymptotic matching processes applied to a turbulent flow can yield approximate

solutions. It is assumed that, in a turbulent Ekman layer with a smooth surface, when

the Reynolds number is large enough, the whole layer is separated into two layers: the



Chapter 3. Large Eddy Simulation of a Neutral Atmospheric Boundary Layer^57

outer layer, in which the effects of v is omitted, and the inner layer, in which the effects

of f is omitted.

Based on this assumption, independent external parameters' are f and u,, in the

outer layer. Including any concerned variable 0 and spatial variable z, the parameter

group becomes (0, z; f, u.)3 , which involves two independent units: (L, T). Based on

corollary 2 in appendix B, a single-variable function is obtained:

^ = F(')(  z )
LOPv(013^L(°)

where L(°) = u./f, v(°) = u., a and # are constants appropriate for dimensional ho-

mogeneity of the variable 0, and F(') denotes an undetermined function. If 0 = u,

then

u — U
g = 11(°)( 

 z 
 )^ (3.6)

u./ f

which is sometimes called the velocity-defect law.

In the inner layer, independent external parameters are v and u.. Including any

concerned variable 0 and spatial variable z, the parameter group becomes (0, z; ii , u.),

which involves two independent units: (L, T). Based on corollary 2 in appendix B, a

single-variable function is also obtained:

^ = F(i)(—z
L(1) ),av(iP3 

^

where L(i)^v/u., v(i) = u, ,^and a and^are constants appropriate for dimensional

homogeneity of the variable 0 and F(i) denotes an undetermined function. If 0 = u, then

U = F(i)( Z ),

U*^v/u.
(3.7)

which is referred to as the law of the wall.

2External parameters are referred to those global parameters which do not depend upon any spatial
variable xi nor upon temporal variable t.

3Semicolon is used to divide external parameters and other variables.
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The velocity-defect law (3.6) and the law of the wall (3.7) can be matched in an

overlapped region (Tennekes and Lumley, 1972). Let

z
^and^z(°)z")^L(i)

L(°) •

Taking derivatives with respect to z for (3.6) and (3.7), respectively, yields

du^u! dF(i)
dz^v dz(i)'

du^f dF(')
dz^j dz(°) •

Anticipating a logarithmic wind profile, (3.8) and (3.9) can be rearranged as:

z du 
= z(i)

dF(1) 
= .7(i)(z(0),^ (3.10)u,, dz^dz(i)

z du 
= z(o)

dF(')
dz(°) 

= 1.(0)(z(0)),^ (3.11)dz 

where .F(i) and T(') are two undetermined functions, and thus

./(0(z(i)) _,T(0)(z(0)).

^A double-limit process z(i)^oo and z(°) —+ 0 with a fixed z in the "matched layer" is

taken. This limit process can be achieved by allowing the ratio of the inner variable z(i)

to the outer variable z(°) to approach infinity:

z(1)^u.2 2= Re. -4 oo,z(°)^vf

where Re,. = u.1,07. Under this limit process, "we will have a trivial result (.1(0(z(i)),

.F(')(z(0) —+ 0, or oo) unless .7-(i)(z(i)), P°)(z(°)) become asymptotically independent of

their arguments in the limit process envisaged. Hence, to the first order approximation

(3.10) and (3.11) must involve the same universal constant. It is concluded that for

(3.8)

(3.9)

(3.12)

z0>> 1 and z(°) < 1, the wind shear is

z du 1
dz
^ (3.13)
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Here, K is the von Karman constant; its value has to be determined experimentally"

(Tennekes and Lumley, 1972).

Rough surface

The exact same results can be obtained for a rough surface with a roughness length

scale zo. If v/u is replaced by the roughness length zo, and it is defined that

(i)z =^and^z(°)^= ^
zo^ L(°)^u,/ f'

one obtains the same form as (3.10) and (3.11):

= z(o dF(i) =
u* dz^dz(i)

z du^(0)dF(°)
z  ^.F(')(z(0).

u. dz^dz(°)

(3.14)

(3.15)

Then the double-limit process z(i)^oo and z(°) —> 0 is taken under the condition

z(0^u.
z(0) fzo= — = Ro. oo, (3.16)

where Ro is the surface Rossby number based on u*. The analysis also yields the

logarithmic velocity profile involving the von Karman constant:

—
u 

= —
1 z

^ln —^(z/zo> 1 and zf/u. <1).^ (3.17)
U*^K ZO

3.1.3 Sufficient conditions for the logarithmic velocity profile

Much work has been done on the logarithmic wind profile in a wall-bounded turbulent

flow. The logarithmic velocity profile occurs in a turbulent boundary layer (TBL) over a

rough or smooth plate with no pressure gradient, in a turbulent pipe flow and also, in the

ABL. No a priori justification has been given for the necessary and sufficient conditions

of the logarithmic profile. Here, a review is given for some sufficient conditions.
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Mixing length assumption

For a wall-bounded turbulent flow, Prandtl proposed a hypothesis that the eddy

viscosity ve is proportional to a length scale, 1, and the surface friction velocity, u.

(Schlichting, 1979, Chapter 19):

du
—u'w' =

dz

ve , /u..

It was further assumed that

/ = KZ,

(3.18)

(3.19)

(3.20)

where K is a constant (the von Karman constant) and z is the distance to the wall.

An additional assumption is that there exists a "constant-stress" layer, 0 < z < hs,

throughout which the shear stress is approximately constant, i.e.,

— u ' w' = — u ' w/o = Pu!, (3.21)

        

where u'w'o is the shear stress at the wall. Substitution of (3.19) to (3.21) into (3.18)

gives

du u.-_,
dz Kz

and its integration yields a logarithmic velocity profile:

u^1
— ------ — ln z + constant.
u.^K

(3.22)

(3.23)

As a conclusion, this set of sufficient conditions for a logarithmic velocity profile is:

• eddy viscosity assumption (3.18);

• Prandtl's mixing length hypothesis (3.19) and (3.20);

• assumption of a "constant-stress" layer.
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Asymptotic matching theory

In section 3.1.2, the application of asymptotic matching theory applied to the Ekman

layer yielded another set of sufficient conditions for a logarithmic velocity profile:

• the Reynolds number (or equivalently the surface Rossby number in a rough-surface

case) is sufficiently large;

• II (or zo in a rough-surface case) is dropped from the external parameter group in

the outer layer; f is dropped from the external parameter group in the inner layer;

• there exists an overlap layer where the asymptotic matching process is applied.

Dimensional analysis

It is possible to apply a dimensional analysis to derive the logarithmic profile. Taking

a smooth surface as an example. It is assumed that v is excluded from the external

parameter group in the outer layer, and f is excluded from the external parameter group

in the inner layer. An additional assumption is that as the Reynolds number exceeds

a critical value, there exists an overlap layer where both assumptions of the inner layer

and the outer layer are met. This implies that in the overlap layer both I, and f are

excluded from the external parameter group, leaving only one external parameter, u,„

which represents the momentum flux through the layer. Therefore, the only possible

functional form for the velocity profile can be written as:

u F(u., z)^Or^z) = O.^ (3.24)

While the functional form of these three variables does not imply a logarithmic relation

between u and z. This relation can be derived by writing a functional form as follows:

du^ du
—
dz 

= F (u., z)^or .1( —dz
, u., z) = 0. (3.25)
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Two independent physical units, (L,T), are involved. Based on theorem 1 in appendix B,

one obtains

,r../ z du ,^n
../- — — ) = u,

u* dz

which then obviously yields a logarithmic velocity profile:

z du
-- = constant.
u* dz 

(3.26)

3.2 Some measurements

Measurements of the ASL below 30 m have been conducted in the most detail. The

tasks in this layer include measurement of the velocity profile, value of the von Karman

constant, variances (or standard deviations) of the velocity fluctuations, shear stresses,

and power spectra of the velocity fluctuations. Notable measurement programs are: The

1953 Great Plains Turbulence field Program (Lettau and Davidson, 1957), the 1967 Wan-

gara Experiment (Clarke et al., 1971), the 1968 Kansas Field Program (Businger et al.,

1971; Haugen, Kaimal and Bradley, 1971), the 1973 Minnesota Experiment (Izumi and

Caughey, 1976) and the 1976 Australian International Turbulence Comparison Exper-

iment (Dyer, Garratt and Francey, 1981; Garratt et al., 1979). These and numerous

other observational studies have provided substantial experiment data and a significant

increase of our knowledge of the ABL, including the ASL.

Logarithmic wind profile and the von Karman constant

Most observations showing logarithmic velocity profiles were carried out below 30 m

or so. It is shown, however, by Thuillier and Lappe (1964) and Carl, Tarbell and Panofsky

(1973) that logarithmic velocity profiles have been observed up to 150 m. Unfortunately,

no well-instrumented towers are located over completely homogeneous terrain in the



Chapter 3. Large Eddy Simulation of a Neutral Atmospheric Boundary Layer^63

world. Most such towers are built either in urban areas or in places surrounded by

complex terrain. For this reason there is no enough data to test the height of applicability

of the logarithmic velocity profile.

Table 3.1: Estimates of the von Karman constant IC from measurements

Author(s) Comment

  

Goddard (1970)
Dyer & Hicks (1970)
Hicks (1970)
Businger et al. (1971)
Pruitt et al. (1973)
Frenzen(1973)
Frenzen(1974)
HOgstrOm (1974)
Hicks (1976)
Garratt(1977)
Wieringa (1980)

Francey Garratt(1981)
Shirasawa (1981)
Kondo Sato(1982)
Dyer Sz Bradley (1982)
Telford (1982)
Frenzen & Hart (1983)
HOgstrOm (1985)

HOgstrOm (1986)
HOgstriim (1988)
Zhang (1988)
Frenzen & Vogel (1992)

0.41
0.41
0.42(+0.02)
0.35
0.42
0.35(+0.01)
0.36(+0.01)
0.35(+0.03)
0.4
0.415(+0.02)
0.41

0.38(+0.04)
0.42(+0.03)
0.39(+0.03)
0.385(+0.021)
0.37
0.41
0.4(±0.011)

0.39(+0.01)
0.4
0.4
0.38(+0.017)

Also see Dyer (1974)
No detail provided
See, e.g., Wieringa (1980)
0.39 by Kondo & Sato (1982)
au = 0.55 was assumed
See Garratt (1974)

= 0.55 was assumed

inferred from Cf data
Re-analysis of the Kansas data
used by Businger et al. (1971)
Oug) = (1 — 15.50-1/4 was used

<0.1 or 0.03
IRd <0.02 or 0.05
0.4 was suggested
"Theoretical Value"
au = 0.52 was assumed
0.36 suggested by Telford

Businger (1986)

As for the value of the von Karm.in constant, measurements exhibit a great scatter.

A chronological list of the value of IC is shown in table 3.1. In general, the values of IC

fall in the range of 0.35 to 0.43. The large value of 0.43 has been frequently reported by
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Russian atmospheric scientists. The low value of 0.35 was obtained by Businger et al.

(1971) from the Kansas experimental data, which has been considered to be very carefully

conducted. Among the various values of K listed in table 3.1, some were evaluated

from the measurements without adequate accounts of instrumental errors, and some

approaches of the evaluation of K are questionable.

Many authors such as Shirasawa (1981) and Kondo and Sato (1982) adopted the so-

called "wind-profile approach"; assuming the boundary layer to be a near-neutral, and

K is calculated from the measured wind profile. In fact true neutrality rarely happens

in the ABL. This approach, therefore, gives errors associated with the deviation from

neutrality. According to Kondo and Sato (1982), a small deviation from neutrality can

cause significant errors in the estimates of K (see table 3.2, in which L, called the Monin-

Obukhov length, is defined by (4.4).

Table 3.2: Relative errors of estimated value of k due to deviation from neutrality when the
wind profile approach is adopted (see Kondo and Sato, 1982).

((= z/L) -0.061 -0.026 0.03 0.086

Error % -17.6 -8.6 12.4 28.8

Other workers such as Frenzen (1973), Frenzen (1974) and HOgstriim (1974) adopted

the so-called "dissipation (c) approach". This approach, however, starts with the TKE

budget equation, assuming negligible pressure-velocity correlations and TKE redistribu-

tion, and under the condition of neutrality, it derives a formula for the von Karman

constant:

3U*
IC = -,

CZ
(3.27)

where c is the viscous energy dissipation rate. Here, the value of f can be determined
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from the ISR of the power spectra of velocity fluctuations. In this case, another universal

constant, au, has to be measured. Again, as shown in table 3.3, a slight deviation from

neutrality can give a significant effect on the estimated value of K (Frenzen and Hart,

1983; Wyngaard and Cote, 1971).

Table 3.3: Relative errors of estimated value of k due to deviation from neutrality when the
dissipation (c) approach is adopted (see Wyngaard and Cote, 1971).

((= z/L) -0.05 -0.02 -0.01 0.01 0.02 0.05

Error % 10.30 5.60 3.50 24.50 37.90 68.20

Variances of the velocity fluctuations

In the ASL, the Coriolis parameter f is not important so that nondimensional vari-

ances of velocities at the surface, o-u/u. (i.1,2,3) are about constants. Observations in

the ASL (Panofsky and Dutton, 1984) suggest that

= 2.39 + 0.03, (3.28)

ailu* = 1.92 + 0.05, (3.29)

= 1.25 + 0.03. (3.30)

3.3 LES results for the upper surface layer

Specification of LES cases

Three types of domain size (see table 3.4) have been adopted to examine LES results

of resolved turbulent statistics in the USL. For all LES cases, the geostrophic wind is
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Table 3.4: Specification of domain size and grid spacing for LESs of a neutral ABL. Ds, Dy
and D, are domain sizes in the x, y and z direction, respectively; Nz, Ny and N, are the grid
numbers in the x, y and z direction, respectively; Az and Ay are the grid spaings in the x and
y direction, respectively; nn is a few digits that stand for the value of C3.

Run Domain Ds(m) D(m) D(m) Ns Ny N As(m) Ay(m)

N16Ann A 960 480 2140 16 16 50 60 30
N24Ann A 960 480 2140 24 24 50 40 20
N32Ann A 960 480 2140 32 32 50 30 15
N24Bnn B 1440 720 2140 24 24 50 60 30
N32Bnn B 1440 720 2140 32 32 50 45 12.5
N24Cnn C 3840 1920 2140 24 24 50 160 80
N64Cnn C 3840 1920 2140 64 64 50 60 30

specified as:

(U9, V) = (10 m/s, 0).^ (3.31)

It is shown later in this chapter that the height of the ABL hE is about 1000 m if

the geostrophic wind speed is 10 m/s. The largest domain, D, has the ratio Dx/hE

4 and Dy/hE^2, which allow the largest eddies to develop, while the smallest, A,

cannot resolve these large eddies, but it produces fairly satisfactory results in the USL.

In addition, under neutral conditions, those large eddies are of small magnitude', and will

not play important roles in momentum transfer in the whole layer. Therefore, domain A

may still be meaningful for LES of the USL.

The parameters for model runs are shown in table 3.5. The value of Resm is based

on the length scale of domain size, D = (DrDyhE)1/3, and the typical grid size, Ao =

(AxAyAz,typ)113, where Az,tyy = 0.5 max{Az(i)} = 30 m (see table 2.2 on page 49).

4LES of a whole neutral ABL by Mason and Thomson (1987) shows no evidence for any distinctly
roll-like motions which are the largest eddies in the ABL. DNS conducted by Coleman, Ferziger and
Spalart (1990) also confirmed this conclusion.
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Table 3.5: Parameters for each run. Ni,. and Ny are the grid numbers in the x and y direction;
NhE is the grid number in the vertical direction within the ABL; hE is the height of the ABL;
C., is the Smagorinsky SGS model constant; Ao = (Az Ay Az,typ)113 is the typical vertical grid
size which is taken as 30 m; D = (D7DyhE)113; Resm = [I) i(CsA0)]213; ROD = Ugl(fD); zo is
the roughness at the surface.

Run Nr Ny Nh, hE Cs Lo D Resm ROD Zo

N16A05 16 16 32 830 0.050 37.8 730 147500 138 0.10
N16A06 16 16 32 830 0.060 37.8 730 102400 138 0.10
N24A078 24 24 32 830 0.078 28.8 730 104100 138 0.10
N24A1 24 24 32 830 0.100 28.8 730 63300 138 0.10
N24A15 24 24 32 830 0.150 28.8 730 28100 138 0.10
N24A2 24 24 32 830 0.200 28.8 730 15800 138 0.10
N32A08 32 32 32 830 0.080 23.8 730 145200 138 0.10
N32A1 32 32 32 830 0.100 23.8 730 92900 138 0.10
N32Al2 32 32 32 830 0.120 23.8 730 64500 138 0.10
N32A15 32 32 32 830 0.150 23.8 730 41300 138 0.10
N24B052 24 24 36 970 0.052 37.8 1000 255900 100 0.10
N24B06 24 24 36 970 0.060 37.8 1000 195200 100 0.10
N24B08 24 24 36 970 0.080 37.8 1000 109800 100 0.10
N24B1 24 24 36 970 0.100 37.8 1000 70300 100 0.10
N32B06 32 32 36 970 0.060 31.2 1000 286400 100 0.10
N32B08 32 32 36 970 0.080 31.2 1000 161100 100 0.10
N32B1 32 32 36 970 0.100 31.2 1000 103100 100 0.10
N32B12 32 32 36 970 0.120 31.2 1000 71600 100 0.10
N24C06 24 24 42 1080 0.060 72.7 2000 209700 50 0.10
N64C06 64 64 42 1080 0.060 37.8 2000 775300 50 0.10
N64C075 64 64 42 1080 0.075 37.8 2000 496200 50 0.10
N64C1 64 64 42 1080 0.100 37.8 2000 279100 50 0.10
N64C15 64 64 42 1080 0.150 37.8 2000 124000 50 0.10
N64 C2 64 64 42 1080 0.200 37.8 2000 69800 50 0.10
N32B08z01 32 32 36 970 0.080 31.2 1000 161100 100 0.01
N32B08z05 32 32 36 970 0.080 31.2 1000 161100 100 0.05
N32B08z5 32 32 36 970 0.080 31.2 1000 161100 100 0.50
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ROD = U.9 / f D is the domain Rossby number based on domain size D. Since Uy and

f are fixed for all runs, the domain Rossby number is constant for fixed domain size,

and varies with only domain size. hE is the height of the neutral ABL. It is noted

that hE is adopted as a representation of characteristic length in the vertical direction.

Its determination is based on shear stress profile in the whole ABL, and is given in

section 3.4.1 on page 100.

Statistical averaging operator for LES output

As introduced before, the symbol [-] denotes an average over a horizontal plane, or,

in the simulation domain, over Nx x Ny grid points in a horizontal plane. Hence, any

variable can be decomposed into two parts, i.e., horizontal average and fluctuation:

cb(t, x, y, z) = [O](t, z) , x, y, z). (3.32)

The fluctuation part -0' (t, x, y, z) carries information on RS turbulence, from which the

LES results are derived. For example, [fin(t, z) (i = 1, 2, 3) is RS variance of the velocity

fluctuation; [iiiitillt, z) (i j) is RS kinematic shear stress; etc.. Taking averages of

['](t, z) over a vertical direction yields the domain-averaged quantity:

1 hNW) = 10 At, z)dz, (3.33)

which is a function of time. Another notation, (-), is introduced here, which denotes an

average over (i) the horizontal plane, and (ii) a time interval [ti, t21:

(0)(z) = 1̂ f2 [0](t, z)dt.
t2 - ti ti

If the time interval, t2 — ti, is large enough to include all important scales in the problem

and the time variation of quantities of interest is considered to be stationary within

the time interval, such an averaged quantity is a statistical description of the vertical

distribution of ABL turbulence.
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The statistical results presented in this paper are taken according to the following

procedure:

1st-moment quantities Variable is 0(t, x, y, z), for example. Two basic steps are nec-

essary:

1. an instantaneous, horizontal average is taken to derive [0](t, z).

2. a time average is taken to derive (0)(z):

(0)(z) = ^
1^

ti 
[0] (t, z)dt.

.2 - tl 

2nd(or higher) -moment quantities Variables are 01 (t, x, y, z) and 02(4 x, y, z) (and

03(t,x, y, z)...) , for example. Four basic steps are necessary:

1. an instantaneous, horizontal average is taken to derive [0](t, z).

2. instantaneous fluctuations are derived from

"0(t,x,y,z)-= 0(t, x, y, z) — [OW, z).

3. an instantaneous, horizontal average is taken to derive [0-10-2](t, z)

(or [W4.2i-k3](t, z))-

4. a time average is taken to derive (0-10-2)(z):

()(2")= 4 1 4̂ it2 k'61-21(t, z)dt
-^ti

(or^(1 23)(Z) = 1̂
t2 - ti Q.)123](t, z)dt).

Time scaling of the Coriolis force

Domain-averaged RS TKE is defined as

3 1
ER(t) =

2
(3.34)
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and the domain-averaged KE of mean velocity is defined as:

3
EM(i) = E -1 {[ui]2}.^ (3.35)

2

By ignoring the shear stress terms and the advection terms, a simplified model of mo-

mentum equations (2.74) can be written as

au—at = f(v - vg),

(u — U9).at

If one assumes a solution of the form

u = Ug uoeiwt,

v = V.g voeiwt,

(3.36)

(3.37)

(3.38)

(3.39)

where i = \F-T, uo and vo are the amplitudes of the fluctuations and w is the unknown

frequency, substitution of (3.38) and (3.39) into (3.36) and (3.37) gives

iwuo = fvo,^ (3.40)

iwvo = —fuo,^ (3.41)

from which one obtains

w = f.^ (3.42)

The frequency in (3.38) and (3.39) is therefore f, and the corresponding time period is

27r/f. Figure 3.1 shows the time variation of Em(t) calculated from the case N16A06.

The lower abscissa represents the real time simulated in seconds, and the upper abscissa

is the corresponding CPU time in seconds on an IBM RISC 6000/560 workstation. It

is noted that the period of the sinusoid variation in figure 3.1 is roughly equal to but
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CPU Time on IBM RISC 6000/560 (seconds)

Figure 3.1: Time variation of the total KE averaged over the whole domain for case N16A06.

a little smaller than 2r/f^6.28 x 104 seconds, and the magnitude of this variation is

about 3% of mean KE.

After the initial perturbation, LES model runs until a statistically stationary state

has been reached, as indicated by the time variation of domain integrated quantities. For

example, RS TKE summed over the whole domain is one of the indicators. Figure 3.2

shows the time variation of domain-averaged RS TKE, E(t), calculated from the case

N16A06. The figure shows that ER(t) reaches a statistical steady state in a very short

time after a randomly disturbed initial velocity field. The variation with a period of about

27/f can not be seen clearly in the figure. As illustrated in figure 3.1, the amplitude of the

variation is about 3 (m/s)2, which is much greater than domain-averaged RS TKE, of the

order of 0.04 (m/s)2, which implies that the inertial variation is filtered by the averaging

process involved in calculating ER(t). The statistics involving the horizontal components
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Figure 3.2: Time variation of the RS TKE averaged over the whole domain for case N16A06.

of motion have the fluctuations (it, b) relative to the instantaneous horizontal average

au], [v)) rather than about the average value over space and time ((u), (v)). Therefore,

a major influence of the Coriolis force is on the inertial adjustment of the mean flow.

The ASL, where the time scale of turbulent eddies is much smaller than if = f',

is affected very little by the Coriolis force. Take for example the largest possible eddy

(therefore, the longest time scale) in the ASL: its length scale is about 0.1hE, where

hE denotes the height of the Ekman layer, and its velocity scale is about u,K; using the

observational relation hE c---- 0.3u,if (Nieuwstadt and van Dop, 1982), the time scale is

about 0.1hE/u,, ,=,-, 0.1 x 0.3/f = 0.031f = 300(sec). This implies that taking a time

average over at least 27r/f, as recommended by Mason and Thomson (1987), is not

strictly necessary for the investigation of SL turbulence. Furthermore, in some part of

the SL in which local equilibrium prevails, time scales are even shorter. This means
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that small eddies respond quickly to changing conditions in the mean flow. Small eddies

are therefore always in approximate equilibrium with local conditions in the mean flow.

However, in order to take into account the possible effects of the large eddies of the size

of hE on the turbulent statistics of the ASL, the present study still average the results

over at least tf = J. seconds in the time domain for most LES runs.

3.3.1 Logarithmic profile of the mean speed

SGS buffer layer

The results for the averaged speed profile, defined by 1v1(z) = V(u)2 + (v)2 are

presented here. Figure 3.3 shows an example of the mean speed profile under a semi-log

Figure 3.3: An example of the velocity profile derived from LES (case N64C06).

coordinate. This figure exhibits a logarithmic portion for the wind speed, located not

immediately above the surface, but at some height above the surface, denoted by hb, as

shown in the figure. The region below hb is referred to as the SGS buffer layer. The

logarithmic portion extends to the top of the ASL, 113, defined as 0.1hE, where hE is the
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height of the ABL. A question arises why the logarithmic profile can not be extended

down to the surface as measurements suggest.

One of the most difficult problems to approach through LES is the presence of a

solid boundary. For a TBL over a smooth plate, for example, in the region very close

to a smooth boundary, turbulence is partially or totally suppressed and a thin "viscous

sublayer" separates the surface and the turbulent layer aloft (with a logarithmic velocity

profile) but transfers the same amount of momentum flux. The thickness of the viscous

sublayer becomes thinner as the Reynolds number increases. For a rough surface, if the

Reynolds number is large, no viscous sublayer is observed, and the logarithmic velocity

profile can then be extended very close to the top of the roughness elements. In either

case, the size of the eddies in the region of the logarithmic profile increases with the

height. However, LES, employing a finite number of mesh points, has to adopt artificial

conditions for mean velocity components at the first vertical grid, because this elevation

is within the logarithmic region and no specification of the true velocity fluctuations is

possible at this height. The wall-function is often adopted as the artificial condition.

For a TBL over a smooth plate, DNS, adopting a very fine mesh, resolves the viscous

sublayer, and is thereby able to reproduce the whole layer. LES, however, is not capable

of resolving the viscous sublayer if the Reynolds number of a smooth case is very large.

By setting the first vertical grid of the simulation domain in the logarithmic profile

region, LES adopts the universal logarithmic law as the boundary condition for the

velocity components. Again, no velocity fluctuations are introduced at the boundary.

The velocity boundary conditions are correct for the mean velocity components at the

first vertical grid point. The mean velocity components above the boundary must depend

on (i) the SOS viscosity if SGS motions dominate; (ii) RS momentum flux if RS motions

dominate. (iii) both SOS viscosity and RS momentum flux if SOS and RS motions are

competitive. In the region near the surface, since no fluctuations are specified for the
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velocity components on the boundary, RS motions must be significantly suppressed while

SGS motions prevail. Therefore, the dynamics in the region is mainly determined by the

SOS turbulence model, and the same is true of the velocity profile.

For a TBL over a rough plate, both DNS and LES must place the numerical bound-

ary in the logarithmic profile region. The same difficulty is encountered at the lower

boundary.

Effects of roughness length zo on LES of USL

Two different roughness lengths are involved in LES of the USL: one is the rough-

ness length zo in (2.60) and (2.61) as an external parameter specified through the lower

boundary condition; the other is the value obtained by extrapolating the logarithmic

velocity profile to intercept u 0. This intercept is denoted by ZO ,r. It is implicit in

figure 3.3 that the value of zo,, is about 0.01 m, much smaller than the specified value of

zo = 0.1 m, namely,

Zoo. < Zo. (3.43)

It is assumed in this study that the specification of zo at the first vertical grid does

not significantly influence the evaluation of the von Karman constant. To examine this

assumption, four LES cases with different value of zo have been carried out: zo 0.01,

0.05, 0.1 and 0.5. The speed profiles of these four cases are shown in figure 3.4, where

the speed is normalized by u* and z by hE. Profiles are almost parallel to each other in

the ASL, and therefore the slopes of the logarithmic portion are approximately the same.

In figure 3.5, those profiles are plotted under the coordinate of u/u* vs. z/zo. Without

the defects of the SGS buffer layer, the velocity profile

1 Z= — —
U *^Ic^Zo



0.01 0
^

0.100
^

1.000

N32B08z01: z_0= 0.01
^ N32B08z05: z 0= 0.05
- - - N3212108: z_0=. 0.10
- - N32B08z5: 2_0= 0.50

40

=
>• 30sa
-aa)
N=czE20
8c

-c)a)a) 10
O-
W

o
0.001

40
=
›..._o
-a 30a)
N=al
E
lo 20
C

13a)a)
Cl
CO 10

0
1 10^100^1000

z/z0
1 0000
^

1 00000

N32B08z01: z_0= 0.01
N32808z05: z_0= 0.05
N32B08: z 0= 0.10
N321308z5: 2_0= 0.50

Chapter 3. Large Eddy Simulation of a Neutral Atmospheric Boundary Layer^76

z/h E

Figure 3.4: The velocity profiles derived from LES with different value of zo as the boundary
condition at the surface. In the legend, z_O represents zo.

Figure 3.5: u/ui vs. log z/zo for different value of zo as the boundary condition at the surface.
In the legend, z_O represents zo. The solid line is: u/u. = (1/K0)1n(z/z0); the dashed line is:
u/u. = (1/K0)1n(z/z0,,.).
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must correspond to the solid line in this figure. The dashed line in the figure is obtained

from LES, represented by

u^1^z
— = ^ ln ,
U* "LES ZO,r

where ,LES is the value estimated from the dashed line. The offset from the solid line is

determined by the "quality" of the SOS model and is independent of the boundary value

of zo. The performance of the SOS model in the near-wall region for a high Reynolds

number flow is still an open question. The present study does not concentrate on this

topic.

Some weaknesses in LES have been seen arising from the representation of turbulence

near the wall. To improve these, the so-called "stochastic backscatter" was proposed in

recent years. See, e.g., Leith (1990), Chasnov (1991), Mason and Thomson (1992) for

further details.

Effects of Ko on LES of USL

The lower boundary conditions for mean velocity components are given by (2.60)

to (2.62), in which two constants, rco and zo, are specified. For simplicity, the x-axis

is aligned with the surface wind direction; this assumption will not affect the following

analysis. Thus, (2.61) and (2.62) are trivial; (2.60) becomes

u(x,y,z)12,1 = 1, zi
— in —,

u.^Ko zo
(3.44)

where zi. = 0.95 m is the height of the first vertical grid, which is fixed for all LES runs

in the present study; Ko = 0.35, and zo = 0.01, 0.05, 0.1 and 0.5 as discussed above.

It is obvious that varying zo while fixing /co is equivalent to varying ko while fixing zo

for the present LES model. As long as the value of the right-hand side of (3.44) is the
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same for a pair of different values of (K0, zo):

1 , zi
A =

Ko^zo'

these boundary conditions are identical, because Ko and zo are not used anywhere else in

the LES model. If 4;) denotes the i-th value in the number set (0.01, 0.05, 0.1, 0.5), and

A(') denotes the value of A when izo = 0.35 and zo = 4:

^1^zi
= — ln

(2)1^0^Z0

then another number set for 4) is obtained from the following equation:

^1^Zi
A(i) = 

(i)
111 —

'z°

with fixed value of zo = 0.1. Table 3.6 shows that value of 4) varies from 0.17 to 1.22 if

Table 3.6: Equivalent varying-values of 4), with zo = 0.1, for the cases N32B08z01,
N32B08z05, N32B08 and N32B08z5.

LES run N32B08z01 N32B08z05 N32B08 N32B08z5

A(2) 13.02 8.43 6.45 1.85

Ko fixed Si

4,i) varied

ko 0.35 0.35 0.35 0.35

4,i) 0.01 0.05 0.1 0.5

zo fixed &

te varied

zo 0.1 0.1 0.1 0.1

K,,i) 0.17 0.27 0.35 1.22

the value of zo is considered to be "fixed".

It has already been shown in figure 3.4 that the slope of the logarithmic portion

of LES speed profile is almost independent of the value of zo. Based on the argument

discussed above, it is also concluded that the slope of the logarithmic portion of LES

speed profile is almost independent of the value of Ko.
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Friction velocity

Friction velocity, as a controlling parameter in the ASL, cannot be specified before-

hand, but rather has to be calculated through the model. By definition, u. must be

derived from the shear stress at the wall:

,2 0 =^
(,(8) )2^(,(s) )2

u'*^11.'uw,0/^'uw,0/ (3.45)

where and 7-,„0 are the kinematic shear stress' components in the x and y direction,

respectively, at the surface. LES produces two kinds of shear stresses at the same place:

RS one and SGS one. At the wall, RS shear stress is zero; in the interior, the total

shear stress is equal to the sum of the two parts, but SGS stress diminishes dramatically

away from the boundary and total shear stress is almost equal to RS one. Figure 3.14

on page 88 shows an example of the vertical distributions of the shear stresses. A near-

constant momentum flux region is observed sufficiently close to the boundary (< 0.1hE),

at the top of which SGS contribution is very small and RS shear stresses are almost at

their maxima. Therefore, one can also calculate another value of friction velocity, being

referred to as u,, through RS shear stresses:

2
Ur = max V(lti))2^(t-ith)2}.

zE[o,hE]
(3.46)

u, and u.0 usually have slightly different values; the former is more sensitive to SM-

Reynolds number than the latter, because the existing SGS buffer layer damps the influ-

ence of the eddies from the outer layer.

Effects of Resm on the velocity profile

In figure 3.6, a comparison of the logarithmic portion of mean speed among five

5The kinematic stress includes 1/p. In the rest of this thesis, shear stresses always mean kinematic
quantities, unless otherwise specified.
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Figure 3.6: The velocity profiles for domain A.

different SM-Reynolds number cases (domain A) is illustrated. As shown in figure 3.6,

the SGS buffer layer becomes shallower with increasing SM-Reynolds number. Compared

with case N24A1 which adopts 24 by 24 grid points in horizontal directions and Cs = 0.1,

case N32Al2 adopts a larger value of Cs = 0.12, but it has more gird points than

case N24A1 and therefore it has a larger value of Resm. Figure 3.6 shows clearly the

dependence of profiles on the SM-Reynolds number, which supports the proposal of

Resm.

For domain B, mean speed profiles in the ASL are presented in figure 3.7, which also

demonstrates a clear dependence of the logarithmic portion on the SM-Reynolds number.

3.3.2 Investigation of the von KArman constant

The von Karmãn constant can be calculated from the slope of the logarithmic portion

of the wind speed profile. The region over which IC is evaluated is taken as 0.05 < z/hE <

0.1. In fact, figure 3.14 on page 88, figure 3.17 on page 90 and figure 3.18 on page 91 show

that in the region 0.05 < z/hE < 0.1, RS shear stresses (itib) are near their maxima,
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Figure 3.7: The velocity profiles for domain B.

which ensures that RS components are dominant in this region. Also, in figure 3.6 and

figure 3.7, logarithmic profiles are displayed in the region 0.05 < z/hE < 0.1, which

guarantees the region to be within the ASL.

Evaluation procedure

The evaluation of the von Karman constant over time interval [t1, t2] involves two

averaging processes:

• [t1, td is divided into N sub-intervals, each of length 0.03t1, which is the time

scaling of surface layer eddies; time averages are taken for velocity profiles at each

i-th sub-interval; based on the logarithmic portion of the averaged profile, the von

Karmân constant is evaluated in this time sub-interval:

(21.)^in zoo-
uk(i)^1

= 
,(i)
^ in zk

u *r LES^ILES
k = ki,k2 (3.47)

where (') indicates the i-th sub-interval, and k1 and k2 are the vertical grid index

corresponding to 0.5h5 and h3, respectively. The least square method is adopted to
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derive a value for Kas.

• a further time averaging process is taken over these N sub-intervals to obtain a

value for ICLEs:

1^k.(i)KLEs =--„r 2_, ,-LES1
IV i

and also the standard deviation for the estimate.

(3.48)

The effects of Resm on 'LES for a fixed domain size

In the ideal case, LES-estimated values of KLEs should be close to those observed in

the ASL and independent of numerical specifications, such as SGS model, grid size and

domain size. In practice, due to the limitation in computer size, domain size and the

total number of grids cannot be very large so that their influence on the evaluated 'LES

cannot be ignored. In order to understand how serious this influence is and what relation

can be established, an important parameter, Resm, is proposed in section 2.3. It should

be pointed out again that the length scale of domain size, expressed as (DsDyhE)10, in

the definition of Resm is suitable for a group of cases in which the ratios of the three

domain dimensions are fixed.

Figure 3.8 shows the estimated values of the von Karman constant as a function of

SM-Reynolds number for domain A. The triangles represent the average values taken over

f-1 and error bars indicate standard deviations with time. The value of u., involved in

the calculation of 'LES is 21.7.• One of the reasons for adopting the local value rather than

the surface friction velocity u.0 is that the value of u.0 is apparently underestimated by

LES. The circles are the corresponding KLEs values when the surface friction velocity u.o

was used in the estimation. In this group of simulations, there is no significant difference

between adopting u, and adopting u.o.
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Figure 3.8: The von Karman constant evaluated from LES for domain A; A, the value based
on u.,.; 0, the value based on u.0; the error-bars are from the averaging process of i based on
n*r •

It is clearly demonstrated in figure 3.8 that, Cs is not the only parameter which

determines KLEs, while the parameter Resm is a good parameter for this purpose. For

each one in N24A-cases, the value of KLEs increases as Cs decreases; in N32A-cases, the

same tendency is indicated. Case N32A08 adopts a larger value of Cs than case N24A078,

for example, but the former gives a larger value of ICLEs than the latter, because the former

case uses more mesh points than the latter so that the value of SM-Reynolds number of

the former case is larger than that of the latter case. Another example is the comparison

between case N24A1 and case N32Al2: Cs in N32Al2 is larger than that in N24A1, but

both cases produce almost the same value of KLES; the reason is that they have almost

the same value of Resm.

A question arising from the definition of Resm is that one could reduce the value of

Cs to obtain a larger Resm with a fixed number of mesh points. In fact, if Cs is too small,

RS turbulence cannot be dissipated properly and some of its energy is accumulated near

the high-wavenumber end of energy spectra as grid-mode turbulence (Mason and Callen,
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1986). This is generally adopted as a criterion for choosing the value of C.
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Figure 3.9: As in figure 3.8, but for domain B.

Figure 3.9 shows KLEs VS. Resm for domain B. Two groups of cases are involved:

N24B-cases adopt fewer mesh points than N32B-cases. The same results as those of

domain A are found, which again support the proposal that SM-Reynolds number, rather

than Cs is the unique dimensionless parameter for RS turbulence statistics when the

domain size is fixed. A noticeable scatter occurred for the low SM-Reynolds number

cases may be attributed to a poor statistical average, because those four cases only run

for 1.8i.

There is a significant difference between adopting u„ and adopting u.0 when Resm >

1.5 x 105, which implies that the value of u.0 is significantly smaller than that of u, in

that range of Resm•

In figure 3.10, 'LES vs. Resm for domain D is given. The trend of increasing KLES

with Resm is the same as those observed in figure 3.8 for domain A and figure 3.9

for domain B. As SM-Reynolds number increases, the simulated value of 'LES becomes

progressively larger. Because of the large number of grid points for N64C-cases, the value
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Figure 3.10: As in figure 3.8, but for domain C.

of Resm reaches as large as 7 x 105 for case N64C06. The value of 'LES of this case

is about 0.35, the largest among all cases in this study; however, this value is slightly

overestimated because this case exhibits some grid-mode turbulence, which enhances

turbulent transport in the whole layer and therefore increases the value of 'LES. This

is the same as the value obtained by Businger et al. (1971) from the Kansas observation

data. It is unlikely that the value of 'LES will reach 0.4 by extrapolating those points in

figure 3.10 to the place where Resm 106 or larger, but taking into account that is

underestimated (see later in this chapter) this possibility cannot be excluded.

It is also found that variations of 'LES with time (indicated by the lengths of the

error bars) for domain D are smaller than those in results of domain A (see figure 3.8)

and domain B (see figure 3.9). Furthermore, the difference between adopting u,,, and

adopting u.0 is smaller than those in results of domain A and domain B. Although there

are fairly large uncertainties (long error bars shown in these figures) for the estimates of

KLEs, there is an obvious relation between KLEs and Resm: the value of KLEs increasing

with Resm for a fixed domain size.
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The effects of domain size of KLES

The above discussion concerns the dependence of 'LES on Resm for a fixed domain

size. If the domain size varies, the domain Rossby number ROD changes (see table 3.5):

a larger domain corresponds to a smaller ROD; the value of KLEs might be influenced.

In figure 3.11, those points in figure 3.8 and in figure 3.9 are plotted together. In

Resm

Figure 3.11: As in figure 3.8, but for domain A and domain B.

horizontal directions, domain B is 50% larger than domain A, but the results of 'LES

exhibit weak dependence on the domain size. Case N32A08 has almost the same value of

'LES as case N32B08; case N24A1 and case N32Al2 have almost the same value of 'LES

as case N24B1 and case N32B12, respectively; other cases fit one KLEs-Resm relation

very well.

In each horizontal direction, the dimension of domain C is four times of that of

domain A. Big differences are seen in figure 3.12 between the LES cases in these two

groups: as domain size increases, with the same value of SM-Reynolds number, the LES-

estimated value of the von Karman constant decreases. The same result can be seen in
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Figure 3.12: As in figure 3.8, but for domain A and domain C.
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Figure 3.13: As in figure 3.8, but for domain B and domain C.
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figure 3.13 between the cases for domain B and the cases for domain C. Considering that

some cases exhibit differences between U.,. and u.0 and that a good correlation is seen

between this difference and the value of Cs, the values of KLEs based on u.0 (indicated

by those circles in figures) becomes valuable. From figure 3.13, the indication from those

circles is that the difference due to domain size decreases as Resm becomes larger.

3.3.3 Shear stress components

Figure 3.14 shows the effects of SM-Reynolds number on the shear stress component

ruv, for domain B. A very good Resm-dependence for profiles of Tuw is found in this
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Figure 3.14: SGS stress —Woes, RS stress —(ilib) for domain B.

figure. The peak value of RS Tutu/ u,, occurs at a lower elevation as Resm increases, while

the maximum SOS ruw/u,, at the surface does not change with Resm. For a very small

Resm, the peak value of RS Tu,, becomes very small and even is diminished as those

RS eddies die out. SGS ru„, however, switches its profile to a lower elevation as Resm

increases. The total shear stress component r„„, = RS ru„ SGS Tut, exhibits almost

Resm independence, as shown in figure 3.15.
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Figure 3.15: Total stress —u ^— (iii-v) and —este, — (irib) for domain B.

For the shear stress component r, a very good Resm-dependence is also found for

SGS part and RS part of Tv,„ in the ASL for domain B, as shown in figure 3.16. The

value of SGS rvtv at the surface varies with Resm, corresponding to the turning angle

between the shear stress vector at the surface and the geostrophic wind vector above the

ABL. As expected, when Resm is very small (e.g., case N24B1), RS Tvw becomes very

small compared with its SGS part, which implies that this case is by no means a good

LES for surface layer turbulence. The total shear stress component Tvw RS 7,„ SGS

Tvw also shows little dependence on Resm in figure 3.15.

Further indications of Resm-dependence of shear stresses can be found in figure 3.17

and figure 3.18, for domain A and domain C, respectively.

3.3.4 Standard deviations of velocity fluctuations

The value of SM-Reynolds number also affects the vertical distribution of ati, uf, and

which are the standard deviations of RS velocity fluctuations of u, v and w com-

ponent, defined respectively by au = V(12), Grf'^1/(62) and o-w- = Oti32)* Figure 3.19
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Figure 3.16: SGS stress —visiv's, RS stress —(ini,) for domain B.
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Figure 3.17: SGS stress —u/swi, and —viswis, RS stress —070 and —(frth) for domain A.
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Figure 3.18: SGS stress —uw's and —viswis, RS stress —(iiib) and —(friv) for domain C.

presents the vertical profiles of cr,-,/u., c/u and a/u for domain A. As SM-Reynolds

number increases, cru/u, tends to peak at a lower elevation; similar trends can be seen

for the and cr/u.. The height of maximum of crau is larger than that of a-au.;

the height of maximum of cri,-/u is larger than that of o-u/u.. The peak value of crii/u.

occurs in the region: 0.01 < z/hE < 0.05; that of occurs in a higher region:

0.02 < z/hE < 0.08; that of o-ti,/u occurs in the region 0.1 < z/hE < 0.2. This implies

that RS fluctuations of u component are least affected by the presence of the wall, those

of v component are the second, and those of w component are most affected by the pres-

ence of the wall. In the range of Resm indicated by the legend figure 3.19, the maximum

value of o4u is about 2.7; that of crau,, is about 1.4; and that of cri,-/u is about 0.95.

In the SOS buffer layer, crii/u,„ cri,-/u and crii,/u increase with the SM-Reynolds num-

ber, and all profiles show this dependence very well. One can see that a higher value of

SM-Reynolds number will "erode" the SGS buffer layer more deeply and "squeeze" this

buffer layer closer to the surface, while the outer layer is not significantly influenced.

A relation between the maximum value of au (denoted by crumiax) normalized by u.
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Figure 3.19: Profiles of crii/u*, cri,-/u,, and an-,/n* for domain A.

and Resm can be found from LES results for domain A, shown in figure 3.20. Triangles

denote the value of az.,mar itt*r while circles stand for the value of ut-,,max/u*o. The

error bars represent the standard deviation with respect to time averaging (see averaging

process for ICLEs on page 81). The value of crii,mas/u* increases with the SM-Reynolds

number. The cases adopting more grid, i.e., N32A-cases, exhibit slightly smaller values of

au,./u. than N24A-cases, but the unique dependence of crii,max/u* on Resm is still fairly

good. Figure 3.21 shows the dependence of the value of RS cri,,,,a,/u,, on SM-Reynolds

number for domain A. Figure 3.22 presents the value of RS crti„max/u,, as a function of

SM-Reynolds number. It is found that a,./u* slightly increases with Resm and the

asymptote is about 0.95.

Figure 3.23 presents the vertical profiles of aii/u*, ai,-/u* and cy-„Vu* for domain B.

Similar trends and Resm-dependence are observed for all three variables. In the range

of Resm indicated by the legend figure 3.23, which is wider than that in figure 3.19,

the maximum value of o-ii/u* is about 3.0, which is higher than that in figure 3.19; the

maximum value of cri,/u* is about 1.45, which is about the same as that in figure 3.19;
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Figure 3.22: As in figure 3.20, but for a,„-,„,ax/u*.

Figure 3.23: Profiles of o-/u5, o-flus, and c, - /u for domain B.
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and the maximum value of o-i,-/u is about 0.95, also about the same as that in figure 3.19.

Figure 3.24 shows the vertical profiles of cri,-/u., o-,-,/u and a/u,, for domain C.

Similar trends and Resm-dependence are observed for all three variables. A noticeable

Figure 3.24: Profiles of au/u., crau* and^for domain C.

characteristic is the peak values of crau.: they do not vary too much (from 2.8 to 3.1)

for the range of Resm from 0.65 x 105 to 7.17 x 105. An asymptote of ut-,,,,„z/u,, for a

sufficiently large value of Resm is about 3.1. The same characteristic for the peak values

of cr/u can also be seen from this figure.

As for the profiles of o-uht., av/u,, and o-,„/u„ in the SOS buffer layer, LES can

only parameterize them by using, for example, the eddy viscosity assumption. Mason

and Thomson (1987) adopted two kinds of estimates for SOS cr. One is an isotropic

estimate, given by

1 3 ^
1232

^

E, = — E uf. 2^ (3.49)
2^2,s

C Ei=1



s^3 s 3 CE

2 /2s2
2 ___ /2 ____ ult 2 _ _2 E = (3.50)
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where E, is SGS TKE, 1 = C,A, s is the local velocity strain rate, and CE is the stress-

energy ratio, empirically taken as 0.3. This yields

Another is an anisotropic estimate, in which the weights over three components are based

on the observed values found in engineering shear flows near walls (Launder, Reece and

Rodi, 1975), given by

2 12.52
u2   + 2.435(1 — a)],

s2^3 CE^
(3.51)

--^2 /2s2
[a + 1.185(1 — ci)J,v' =  ^ (3.52)

a^3 CE

2 12s2
w's2 = d-c-[a + 0.5(1 — a)],^ (3.53)

where 0 < a < 1 is the matching parameter. If a = 1, (3.51) to (3.53) all become (3.50)

and can be applied to the interior where turbulence is more likely isotropic; if a = 0,

three different values indicate the degree of anisotropy and therefore they can be applied

to the flow in the near-wall region. Parameterization (3.50) is definitely not valid in

the near-wall region. Parameterizations (3.51) to (3.53) are based on engineering flow

which is different from ABL turbulence. Mason's results show that none of them give

a satisfactory profile in the near wall region in that profiles are not smoothly matched.

His better estimates were obtained for at-i/u* at the surface even by the so-called "eye

extrapolation". SGS part of au/u*, av/u,, and cr„/u. is not presented here.

3.3.5 Spatial correlation functions of velocities

When the velocity fields have been obtained from LES, instantaneous two-point

velocity correlations on horizontal planes can be calculated based on the RS velocity



The two-point correlation coefficients are defined by

R,„(t; Z, t)
11-4,2(i; z,t)j1[1(i; z,t)J1 •

rni,„(47; z,t) = (3.61)
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fluctuations about the horizontal averages. For homogeneous turbulence, the correlation

functions are defined as

Rnin,((-,t) = u(i;t)71'n(1 t:,t) rn,n = 1,2,3.^ (3.54)

For the present LES, the correlation functions are thus defined by

R,7,7g; z,t) = 
Nx

l
Ny ,

E itm(i; z, tyin( + z, t)
Es(z)

m,n = 1,2,3^(3.55)

where S(z) denotes the set of grid points on a rectangular horizontal domain at height

Z :

S(z) = {(xi, Yi, z), = 0, 1, ..., Nx, = 0, 1,^Nylxi = ix,^= jAy}

and (E (z) with

Nx
Si(z) =^G,i , z), i =^+ 1, ,

2
Ny

^

j =^+ 1, ..., —1,0,1,
2

= jAx,^jAY}-

(3.56)

(3.57)

One can define an extended horizontal domain using periodic extension so that some

values of ii(; t) and itri(i-F(; t) at outside of the rectangle region encountered in (3.55)

become meaningful. The correlation functions have the properties:

R„,,,(6; z,t) = [fini2 (Y; z,^m=1,2,3^ (3.58)

lin,m((; z,t) = Rm„,(—(; z,t)^in = 1,2,3^ (3.59)

lim R,„g; z, t) = 0^m, n = 1, 2, 3.^ (3.60)
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Figure 3.25: Contours of rii(e;z,t) at Of 7.2 for case N64C075. The solid curves are for
= 0; Each increment of 0.1 from ni = 0 to ni = 1 is indicated by a dotted curve; each

increment of -0.1 from ni = 0 to ni = -1 is indicated by a dashed curve. The long dashed
line represents the mean wind direction; dot-dash line represents the direction of local RS shear
stress.
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The correlation coefficients have the properties:

t) = 1^m = 1,2,3^ (3.62)

--1

rn,„(4.; z,t)^rnim(—;z,t)
^

m = 1,2,3^ (3.63)

lim rm,,,((; z,t) = 0^m,rt .= 1,2,3.^ (3.64)

Since shear turbulence is anisotropic, the contour lines for R7,2,.,(; z , t) or r,,,,,(; z, t) are

not circles.

Figure 3.25 presents the correlation coefficients at the instant Of = 7.2 and two

different height levels: z/hE = 0.081, which is within the USL, and z/hE = 0.216,

which is just above the ASL. Contours on the figure indicate the directional structure of

ABL turbulence and the order of the integral length scale: purely isotropic turbulence

would produce circular contours, and 2D horizontal rolls would produce parallel lines;

for turbulence with a large integral length scale, contours of positive values of ri, tend

to spread widely, and for turbulence with a small integral length, these contours will be

clustered. It is found in figure 3.25 that RS turbulence becomes increasingly isotropic with

increasing height and has larger integral length scales. The w-component of turbulence

has an extremely small integral length scale and the u-component has the largest scale

among the three components. The correlation coefficient r11 is more elongated along the

direction of the shear stress vector and the turning of the shear stress vector with height

(shown in figure 3.45 on page 115) causes the corresponding change in the direction of

the most highly correlated fluctuations.

3.4 LES results for a turbulent Ekman layer

In the last section, a broad range of results regarding to turbulence statistics in the

USL were presented. Even though the concentration of this study was on the USL, the
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numerical mesh has been set up to include the whole ABL, up to about 2 km. Previous

LES work by Deardorff (1970a) and Mason and Thomson (1987) solved the whole ABL

for their own purposes. The present LESs not only reproduce these results, but also

investigate the effects of SM-Reynolds number on the results in the whole ABL.

3.4.1 Mean profiles of velocities and the Ekman spiral

Mean profiles and the Ekman spiral

Normalized mean velocities for domain A are presented as components in figure 3.26.

The component curves are tightly clustered, and no indication of Resm-dependence of

1.2

...---.111,01•1

-0.2
0.0 0.5 1.0

z/hE
1.5 2.0

Figure 3.26: Profile of mean velocity components (u)/U9 and (v)/U, for domain A.

the velocity profiles is shown in this figure. As discussed in the beginning of this chapter

(see page 72), a major influence of the Coriolis force is on the inertial adjustment of the

mean velocity components. If the time averaging interval is not large enough compared

with the time scale of the Coriolis force, 27r/f r.--, 62800 second, mean velocity components

may deviate their true profiles. A slight scatter occurred for the mean velocity profiles
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in figure 3.26 and is attributed to the inertial oscillation due to the Coriolis force.

Figure 3.27 shows the normalized mean velocities for domain B, while figure 3.28

shows the normalized mean velocities for domain C. Also, Resm-dependence of the ve-

locity profiles is hardly seen from either figure.

Figure 3.27: Profile of mean velocity components (u)/Ug and (v)/Ug for domain B.

The hodograph form of the mean velocities for domain C is shown in figure 3.29,

together with the laminar solution of Ekman layer represented by equation (3.1) to (3.3).

It is obvious that the turning angle between the shear stress vector at the surface and

the geostrophic wind vector (x-axis) for the turbulent cases is much smaller than that

of the laminar case. Among those turbulent cases, only small differences of this turning

angle are observed. A scatter is seen in the upper Ekman layer, which is explained by the

inertial oscillation due to the Coriolis force. The hodograph form of the mean velocities

for domain A and that for domain B have similar results and therefore are not shown

here.
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Figure 3.28: Profile of mean velocity components (u)/Ug and (v)/U9 for domain C.
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Figure 3.29: Hodograph of mean velocity components (u)/U9 and (v)/Ug for domain C; "Lam-
inar Solution" represents the hodograph of velocity components for a laminar Ekman layer.
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3.4.2 Mean profiles of shear stresses

In the preceding part of the text, hE has been used to normalize z in many situations

and its determination is now explained. This study derives hE based on the mean profiles

of shear stresses in the whole ABL, rather than giving an accurate definition. It is

required that above hE, 1(itiv)/u! I and I (ini))/u1 should be very small (e.g., < 0.02), and

that profiles of —(fiti))/u! and —0z:0/u should be collapse into one for all runs. Based

on these criteria, this study found that the value of hE mainly depends on domain size:

hE P.:: 830 m for domain A, hE P.,- 970 m for domain B and hE 1080 m for domain C.

These data have been listed in table 3.5.

In figure 3.30, normalized RS shear stress components for domain A are shown. The

0.0^0.2^0.4^0.6^0.8^1.0^1.2
^

1.4
Normalized height z/hE

Figure 3.30: RS stress —(üib) and —(inb) for domain A.

Resm-dependence is not clearly shown except in the surface layer where z < 0.1hE. The

component Tu„ decreases with increasing height and changes its sign at z/hE 0.6. This

characteristic can also been seen from the RS shear stresses for domain B, as shown in

figure 3.31. In the cases of domain C, however, Tutu decreases to zero without changing
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Figure 3.31: RS stress —WO and —(frth) for domain B.

sign, as illustrated by figure 3.32. In addition, the Resm-dependence of profile of RS Tut,

and Tv„ can be seen from this figure: as Resm becomes larger, the profile of RS r„„, in

the middle of the ABL tends to be smaller for a fixed height, while the value of RS rut,

in the ASL increases; the same tendency occur to the profile of RS

Total shear stress components for domain A, domain B and domain C are shown

in figure 3.33, figure 3.34 and figure 3.35, respectively. One common characteristic

for the three groups of cases is that profiles are not smoothly connected in the ASL

where transition from RS dominated flow to SGS dominated flow occurs. This has to

be attributed to the poor performance of the Smagorinsky SGS model adopted by the

present study: it underestimates the SGS shear stresses. Since it is very difficult to

determine the amount of these underestimates, the "true" values of Tutu and r, are

unknown. The "true" values of ruill and 7„,,, are very important to determine u., and

therefore are the key points for the success of LES. Most LES results in the present

study are based on u,, which is obtained from the maximum value of Tuw and rut,. From

figure 3.33 to figure 3.35, if it is assumed that the surface values of rui, and rot, can be
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Figure 3.32: RS stress -(fLib) and -WO for domain C.
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Figure 3.33: Total stress -Wiwi., - (itiv) and vises - (ii(v) for domain A.
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Figure 3.34: Total stress —Woe, — (Rio) and —vw's — (frib) for domain B.
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Figure 3.35: Total stress —Woe, — (irtb) and --T,',/vis — (NO for domain C.
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obtained by smoothly extrapolating RS Tut, and Tv„ down to the surface, it seems that

the surface values of u* are larger than u, by from 10% to 20%.

In an EAM model of turbulent Ekman layer, an eddy viscosity closure is widely

adopted, which writes

a0 = — f(vg — +^ (3.65)

ao = f(Ug — u)^I)^ (3.66)az

au
Tuw = az 7^ (3.67)

aV
Tv w ==Ve.^ (3.68)

Expressed in the form of vectors, (3.67) and (3.68) are

of;
= Ve— .

Z
(3.69)

LES calculates the left-hand side term explicitly, as well as the velocity gradient ac/az
on the right-hand side of (3.69). One necessary condition for (3.69) to be satisfied is

that the turning angles of both sides must be equal. In figure 3.36, the variation of the

turning angle of total shear stress a, is shown, as well as the variation of the turning

angle of velocity gradient, ad,. All angles are measured with respect to the geostrophic

wind vector, i.e., the x-axis. A wide scatter near the top of the ABL is due to the small

values of local shear stresses since the turning angle is evaluated as a, = arctan(rytr.)•

It can be seen that a, decreases almost linearly (turn in clockwise direction) with height

and through much of the ABL, with nearly no dependence on SM-Reynolds number.

From the height z 0.05hE to z 0.6hE, in which RS turbulence plays an important

role, the turning angles of mean velocity shear are systematically smaller than those of

shear stress, with the former being parallel to the latter. If an average is taken over
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Figure 3.36: Turning angle between shear stress vector and the geostrophic wind vector,
denoted by a,-, and turning angle between velocity shear vector and the geostrophic wind
vector, denoted by ad, for domain B, as functions of z/hE.
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Figure 3.37: Case-averaged ar, ad, and a, as functions of z/hE for domain B; a, is the turning
angle between the mean velocity vector and the geostrophic wind vector.
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Figure 3.38: Turning angle a, and ad u for domain C, as functions of z/hE.

Figure 3.39: Case-averaged a,, ath, and a„ as functions of z/hE for domain C.
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the six cases, as shown in figure 3.37, such a characteristic holds up to z :---- 0.6hE.

Similar situations are seen for domain C, as shown in figure 3.38 and figure 3.39. It is

also indicated by figure 3.36 and figure 3.38 that the profile of turning angle of velocity

gradient ad„ depends on Resm, and it is more parallel to that of a, when Resm becomes

larger.

80
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Figure 3.40: Difference a, — ad, as a function of z/hE for domain B.

Figure 3.40 and figure 3.41 present the difference between a, and ad, for domain A

and domain B. The differences are about 15° to 20°. In spite of some scatter above

z P.-.,' 0.3hE, it seems that a positive value of a, — a dv prevails in most of the ABL. This

phenomenon can be stated as follows: with an increasing height, shear stress vector and

velocity shear vector rotate in the clockwise direction, but the former lags behind the

latter with an angle of about 20°. These significant differences in a„ and ad, imply that

the eddy viscosity closure (3.69) is not appropriate for the turbulent Ekman layer.
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3.4.3 Mean profiles of turbulence standard deviations

In this section, the vertical profiles of the components of RS turbulence energy, or stan-

dard deviations of the velocity fluctuations, are presented. It is noted that the heights

above which SGS motions have small contributions (smaller than 5%) to total shear

stresses are very low in the present LES runs (e.g., see figure 3.14), usually lower than

0.1hE. If (3.50) or (3.51) to (3.53) are adopted, which are based on the assumption

of constant stress-energy ratio, as a parameterization of SGS turbulence energy compo-

nents, one can conclude that the components of SGS turbulence energy must be of the

same order of those of SGS shear stresses, frequently less than 5% of RS parts.

Figure 3.42 presents vertical profiles of three components of standard deviations of

velocity fluctuations, normalized by u,„ for domain A. One typical characteristic of these

quantities is that they do not rapidly approach zero above the top of the Ekman layer.

LES of the ABL by Mason and Thomson (1987), DNS of the Ekman layer by Coleman,

Ferziger and Spalart (1990) and DNS of a Ekman-layer-like flow by Spalart (1989) gave
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Figure 3.42: Pronles of au/u, °Wu and o-6/us, for domain A.

similar results: shear stresses reach zeros but velocity standard deviations do not. This

can be explained by the fact that there are some turbulent eddies above the height of

the ABL, but the mean velocity components are almost constant so that a very small

amount of momentum can be transferred across horizontal planes, thus causing small

shear stresses. Some scatter is seen above z > 0.5hE for different SM-Reynolds numbers,

but for z from 0.2 to 0.4, the three profiles are almost SM-Reynolds number independent.

At heights above about 0.75hE, turbulence exhibits isotropy in that au Re, cri,-o.

When 0.4 < z/hE < 0.75, it is found from figure 3.42 that cri,- > o-i,- > a Similar

results were found in the DNS of the Ekman-layer-like flow by Spalart (1989) between

0.2 < z/hE <0.6. The tendency for cri, to exceed cri,- is observed at all Reynolds numbers.

Since no such phenomenon is found in turbulent channel flows (Mom n and Kim, 1982),

nor in the TBL over a plate with zero pressure gradient (Spalart, 1988), this might be a

real characteristic of a turbulent flow with a spiral, such as the Ekman layer (with the

Ekman spiral) and the spiral flow dealt with by Spalart (1989). Coleman, Ferziger and

Spalart (1990) obtained an interval of (0.4,0.75) in which cri, > o > ati, in their DNS
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of Ekman layer turbulence, but the three values were very close which means that the

turbulence is nearly isotropic in this interval. Figure 3.43 and figure 3.44 shows vertical
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Figure 3.43: Profiles of au/u, adu and atb/us, for domain B.

Figure 3.44: Profiles of au/u„, a,- /n,, and creau,,, for domain C.

profiles of au-/u,,, o-,-,/u and ail-du* for domain B and domain C, respectively. The Resm-

dependence is hardly seen in most of the ABL in this group of simulations. The closer
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to the ASL, the less isotropic the turbulence is. aidut rapidly climbs up to a value of 3,

larger than 2.5 of Spalart (1989) and 2.25 of Coleman, Ferziger and Spalart (1990). The

maximum value of cri,- obtained by the present LES is about 1.5, which is also larger than

that of Spalart (1989), of about 1.4, and that of Coleman, Ferziger and Spalart (1990),

of about 1.1. In fact, it is generally accepted that for most wall turbulent flows, the

close-wall values of au, a, and a„ increase with SM-Reynolds number. Therefore, the

larger values obtained from the present LESs for the larger Reynolds number flows should

not be much of a surprise. Another possibility is that underestimated shear stress or u,1,

at the surface (discussed in section 3.4.2) yields overestimated dimensionless quantities

when normalized by u.. The dependence of the surface values on SM-Reynolds number

has been discussed in section 3.3.4.

3.4.4 Spatial correlation functions of velocities

Figure 3.45 shows the correlation coefficients at the instant t/tf = 7.2 and two

different height levels: z/hE = 0.537, which is in the middle of the ABL, and z/hE =

0.814, which is near the top of the ABL. Since purely isotropic turbulence would produce

circular contour lines, the turbulence at these two heights is almost isotropic. In addition,

the integral length scales for three velocity components are almost the same. It is found

that the turning of the shear stress vector with height causes the corresponding change

in direction of the most highly correlated fluctuations.

In section 2.2.3 on page 33, the criteria for domain size were discussed, and periodic

boundary conditions were introduced for all variables in order to maintain turbulence.

It is expected that as long as the horizontal domain size is large enough, the eddies in

the center of the domain and those at the edge of the domain are nearly uncorrelated,

and side-effects of the periodic boundary conditions can be greatly reduced. In fact, it is

sufficient to require that the size be larger than G, the order of integral length scale of
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Figure 3.45: Contours of rig; z, t) at Of = 7.2 for case N64C075. The solid curves are for
= 0; Each increment of 0.1 from ri, = 0 to r2, = 1 is indicated by a dotted curve; each

increment of -0.1 from rii = 0 to rii = -1 is indicated by a dashed curve. The long dashed
line represents the mean wind direction; dot-dash line represents the direction of local RS shear
stress.
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the turbulence.

The r, = 0.2 contour has been suggested to be the criterion for LES domain size

(Coleman, Ferziger and Spalart, 1990; Mason and Thomson, 1987): if it is closed within

the simulation domain for several heights at which turbulence is well resolved, then the

domain size is considered adequate. Figure 3.45 indicates that horizontal domain size of

3,840 m x 1,920 m is large enough.



Chapter 4

Large Eddy Simulation of an Unstable Atmospheric Boundary Layer

4.1 Scalings and dimensional analysis

4.1.1 Structure of an unstable ABL

In chapter 3, a horizontally homogeneous ABL under adiabatic, barotropic conditions

was explored. Now, a positive turbulent sensible heat flux, denoted by w'0'0, is added at

the surface so that the ABL becomes convectively unstable, most other conditions being

the same as those described in chapter 3. When w'O'cl is sufficiently large, turbulence

in the upper part of the ABL is dominated by buoyancy, and mean wind velocity and

potential temperature profiles are nearly independent of height; this part of the ABL

is referred to as the mixed layer (ML). The entire ABL is often called a "convective

boundary layer", or CBL. In some cases, the term CBL is used to refer to a purely

convective ABL in which there is no geostrophic wind and therefore no shear-generated

turbulence. The present study uses the term CBL to represent an ABL which contains

a ML.

In a real CBL, it is recognized that the elevation of the so-called inversion base, above

which temperature' increases with height in the so-called inversion layer, often defines

the ABL height, which is denoted by Zi in this chapter. In general, Zi shows strong

diurnal variation, and typically reaches a height of about 1-2 km in afternoon of a sunny

day in summertime, and mainly depends on w10/0, vertical temperature profile in the

1"Potential temperature" hereafter is referred to as "temperature" unless otherwise specified.
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inversion layer and the mean temperature in the ML. Moreover, temperature profiles in

the inversion layer can be affected by synoptic processes (Garratt, 1992).

Sudden jumps of vertical profiles of temperature and other variables mark the en-

trainment layer (EL) or interfacial layer between the ML and the capping inversion

layer. This sublayer is a result of the continuous penetrative convection at the inversion

base by convective elements generated by surface heating which causes a turbulent trans-

port of warm air downward into the ML, a process referred to as entrainment. Dominant

processes in the EL are even more complicated than those in the ML, many remaining

unsolved as yet (Driedonks and Tennekes, 1984).

  

A
Inversion
Layer

-14 Entrainment
I Layer

                     

(b) Turbulent Sensible
Heat Flux

                       

Ah

              

Mixed w'
Layer

         

Surface Layer

              

0 0

  

w' 0
Figure 4.1: Sketch of (a) vertical profiles of mean temperature, and (b) heat flux in a CBL.
Z1 is the height of the inversion base; w'010 is the surface heat flux; w10', is the heat flux at the
inversion base; Ah, is the thickness of the entrainment layer.

The typical structure of a CBL can be shown through vertical profiles of mean temper-

ature and turbulent sensible heat flux in figure 4.1. The ASL in a CBL is conventionally

taken to be 0 < z < 0.1Z, the height of the ASL being denoted by It,. The depth of the
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EL is denoted by Ahi. The positive surface heat flux w'O'c, together with the negative

entrainment heat flux w'O'i will result in increasing ML temperature, while the negative

surface momentum flux together with the positive entrainment momentum flux 2 will

change the mean velocity in the ML.

For simplicity, the present study assumes that

1. there is no synoptical scale subsidence;

2. w'O'o is specified as a constant; therefore, diurnal variation of w'010 is not considered

here;

3. temperature profile in the inversion layer is a linear function of z:

30 r
az z > Zi,^ (4.1)

where F is called the environmental temperature lapse rate.

4.1.2 Scaling in a CBL

Scalings in the upper part of the ML are very complicated. A simplified treatment of

the effects due to entrainment is to choose w'O'i as one external parameter. An alternative

external parameter is F defined by (4.1), which is adopted in the present study; in other

words, it is assumed that w'O'i is not an independent external parameter and can be

determined by F, 00'0, Zi and /3 = g/00, the buoyancy parameter. For a CBL, there

are seven external independent dimensional parameters: the Coriolis parameter f, the

friction velocity tt, the roughness length 2.0, the buoyancy parameter 3, the surface heat

flux w'0'0, the capping inversion height Z, and the temperature lapse rate F, i.e.,

(f, u., zo, wvo, zi,F).^ (4.2)

2Geostrophic wind speed in the inversion layer is usually larger than wind speed in the ML.



Chapter 4. Large Eddy Simulation of an Unstable Atmospheric Boundary Layer 120

Three independent dimensional units are: length (L), time (T) and temperature (K).

Based on the principle of dimensional analysis (see appendix B), there are four indepen-

dent dimensionless external parameters; equivalently, there are five independent external

length scales, five independent external time scales and five independent external tem-

perature scales. One of the many possible choice of the five independent external length

scales is:

(zo, hE, L,^A),^ (4.3)

where L is called the Monin-Obukhov length, defined by

3

L = ^
Kfitv'O'o'

and Ai is defined by

w*
bh, =^ = w*tN,

(19F)h12

where tN = N, = (,3r)-'/2 is the reciprocal of the Brunt-Vaisala frequency, and w* is

called "convective velocity", defined by Deardorff (1970b) as follows:

w* = 
(gw'O'oZi)113.

Oo

If one assumes that the vertical velocity of penetrative convection in the EL is of the

order of w* (Driedonks and Tennekes, 1984), then A, can be interpreted as the depth of

the EL, i.e., bhi

One possible choices of the four independent dimensionless external parameters is:

(Ro = hE/zo,Lizo7ZilL,814/Z2). (4.7)

The last parameter represents the ratio of the depth of the EL to the depth of the CBL,

denoted by Sk

4_^tN= — = —7^ (4.8)
Zi^t*

(4.4)

(4.5)

(4.6)
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where t* is the turn-over time of convective eddies:

z,
w.

(4.9)

Any field quantity, say 0 (assumed to be a function of z only), must then be written as:

„,'
—

z^L^
"

\
= P —• Ito^—^)^ (4.10)

L^zo' L 

where 00 is a power product of dimensional parameters and must have the same dimension

as 0.

4.1.3 Monin-Obukhov similarity

The above system is very complicated since it has four independent dimensionless

external parameters which implies that any field quantity must be a function of the

four parameters plus spatial variables, as given by (4.10). Fortunately, if the following

conditions are satisfied:

hE Z„^Zi
-- >>. 1,^

o^ z
--- < 1^and^

_ ,
(4.11)

ILI^l'^ILI^ILI^ILI — I.

then the function form in (4.10) becomes3 asymptotically independent of all but ( = z/ L:

cb^z
To = F(I).^

(4.13)

For mean velocity shear au/az, one obtains

Z Ott =KU* —aZ  Oni(C)) (4.14)

  

'Details are given as follows. In a sublayer where z is of the order of ILI, a flow quantity is asymp-
totically independent of zo, Zi, Ohi and hE, and only three dimensional external parameters in (4.2)
remain, namely, u*, [9 and 0010. Adding 0 and z into the parameter group yields

(0, z; u*,13, &IN).^ (4.12)

Applying corollary 2 in appendix B to this case yields (4.13).
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which is called the Monin- Obukhov similarity formula for momentum flux. In (4.14),

tc is conventionally introduced so that 0,,(0) = 1 for the neutral case. More generally,

dimensional analysis should lead to the conclusion that the quantities u'iu/j/u! (i, j =

1,2, 3), 09'/(uT,„8) and 602/T.2,8 are also universal functions of C = z/ L if (4.11) holds.

In a real CBL, however, those quantities involving horizontal fluctuations u' and v' do

not follow this similarity. It has been suggested by Panofsky et al. (1977) that u'2 and

v'2 are strongly affected by large convective eddies of the scale length Z , and they are

very little influenced by the distance to the surface z.

It is assumed that in a CBL, influence of Z, dominates over that of hE so that the

latter is often ignored (Garratt, 1992). Under this assumption, the limit process discussed

above still holds as long as the following conditions are satisfied:

zo
FLI 1^

and 2- --ILI — • (4.15)

4.1.4 Free convection layer

Under the assumption that the length scale hE is unimportant, if (4.15) holds and,

in addition,

> z >> IL I^ (4.16)

hold, then Zi and L are not important at the height z. All external length scales drop out

and the only remaining length scale is z. In this case, there are only three independent

dimensional parameters:

(z; , tvVo).^ (4.17)

Three independent dimensional units are: length (L), time (T) and temperature (K).

Including a field quantity, 9O/az, for example, allows use of corollary 1 of appendix B
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to yield a power law for aefaz:

(4.18)

where C' is a constant. An equivalent expression of (4.18) in terms of ( is:

z  ao
Oz = coh (4.19)

This is referred to as the "minus one-third law" for temperature gradients. The region

where (4.16) holds is referred to as the free convective layer (FCL).

The unique velocity scaling, temperature scaling and length scaling in the FCL are

given by Wyngaard, Cote and Izumi (1971):

uf = (z9w7o10 ) 1 13 ,

()f^(^ )1/3,

zi3

21=Z.

One can then derive other results in the FCL, such as:

ae—crtv = constant,^and^= constant,
ryf

which are equivalent to

uf
= constant .1.7

. 

— C ( ()1/3— c„,  —

of
=_- constant — =^(—c)-1/3.

T,„5^T,,,s

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

Similar results for au/u. and (7,/u,, would be expected, but are not supported by ob-

servations (Panofsky et al., 1977). A more relevant length scaling is Z , associated with

large convective eddies of the CBL.



Chapter 4. Large Eddy Simulation of an Unstable Atmospheric Boundary Layer 124

A power law for velocity shear in the FCL derived from dimensional analysis is:

z Ou
= constant •(---C)113,

Ku. az

while observations indicate a minus one-third law (Carl, Tarbell and Panofsky, 1973),

which is the same as that of temperature shear. Moreover, Lumley and Panofsky (1964)

justified the derivation of a minus one-third law for velocity shear as follows. Two as-

sumptions are involved: (i) the FCL is still within the constant-flux region; namely, both

momentum flux and heat flux are almost constant in the FCL; (ii) the ratio of effective

thermal diffusivity 77, to eddy viscosity ve is still constant in free convection. From (4.19)

and the two assumption above, one can obtain

= Cohlufz^and^ve = Arie = Cof z•

Applying ve5u/Oz = u! yields

z Ou = C-i
1

_ = com(113•
KU* Z ^21 f

4.1.5 Mixed layer

Ti the spatial variable z is large enough to satisfy

z^> L(> zo),

(4.27)

(4.28)

one obtains ML similarity in which only z, 8h, and Z, are important length scales. The

relevant velocity scale w. is defined by Deardorff (1970b) as in (4.6) and the temperature

scale O. as:

0. =  ^ (4.29)
w.

All field quantities in the ML can be expressed as universal functions through these

scalings. For example, o-w/w* can be written as

o-„^z Shi
—w. = F^ (4.30)

(4.26)
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4.2 Some measurements

Even though many careful field measurements have been made during the past three

decades, a wide dispute over which empirical form of cbm,(() is correct continues amongst

the meteorological community. Forms of Om (() proposed for the unstable case include

the "KEYPS" equation (Panofsky, Blackadar and McVehil, 1960), the exponential profile

(Swinbank, 1964), and a popular form called the Businger-Dyer relation:

= (1 — a()b^and^Oh = C(1 — aC)b
^

(4.31)

where a, b and c are constants to be determined by measurement. Businger et al. (1971)

proposed an empirical formula for 0,(() based on the Kansas field experiment in which

measurements were made from a 32 meter high tower:

= (1 — 150-1"^E (2, 0)^ (4.32)

It is noted that the range of applicability of (4.32) is constrained to small values of J.

A reanalysis of Kansas data by Wieringa (1980) suggested that a = 22 in (4.32) instead

of 15, while Dyer and Bradley (1982) obtained an even larger value of a = 28 from

wind profiles recorded during the 1976 International Turbulence Comparison Experiment

(ITCE).

As to the value of b in (4.31), a number of experiments have pointed out that Om

(-0-113 as —(^oo to reach the asymptote of the free convection regime. Analysis of

data measured on three different towers (with heights of 61 m, 96 m and 150 m) by Carl,

Tarbell and Panofsky (1973), however, leads to a proposal that b in (4.31) must be —1/3

to be consistent with the asymptotic limit (4.27) for sufficiently large 1(1. Carl's formula

is

Om = (1 — MC) —1/3^( E ( _10, —2).^ (4.33)
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Korrell, Panofsky and Rossi (1982) found that (4.33) can be extended to the range of

their measurements at the Boulder Tower (300 m high), ( E (-0.6, 0) in which the form of

Businger et al. (1971) overestimates Om. Measurements by Tsvang et al. (1985) (ITCE)

on a low tower (32 m) also supported the —1/3 power relation for ( E (-0.7, —0.07).

Other investigations, together with those mentioned above, are listed in Table 4.1. Among

Table 4.1: Estimates of 0,(() from measurements for unstable surface layer

Source 0.(C)

Panofsky et al. (1960) Om - Kern = 1 KEYPS formula

Dyer and Hicks (1970) (1 - 160-1/4 —1 < ( < 0

Businger et al. (1971) ( 1 - 150-1/4 —2 < C < 0

Carl et al. (1973) ( 1 - 160- "3 —10 < ( < —2

Wieringa (1980) (1 — 220-1/4 —2 < C < 0

Dyer and Bradley (1982) (1 — 280-1/4 —4 < ( < —0.004

Kai (1982) (1 — 70'14 — 0.2 —0.1 < ( < 0

Korrell et al. (1982) (1 — 150'0 —0.6 < C < 0

Foken and Skeib (1983) 1 —0.06 < ( < 0

(—C/0.06)-1/4 —2 < ( < —0.06

HOgstrOm (1988) (1 — 190-1/4 —3 < C < 0

Frenzen and Vogel (1992) (1 — 22.6()-1/4 —0.6 < ( < 0

(1 — 15.1()'" —0.6 < ( < 0

these results, recent measurements (Frenzen and Vogel, 1992b) obtained estimates for Om

following the —1/3 power law:

Om = ( 1 — 15.1()-1/3
^

CE (-0.6, 0).^ (4.34)
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Table 4.2: Estimates of u„/u from measurements for unstable surface layer

Source o-„/u,,

Wyngaard, Cote and Izumi (1971) 1.9(-01/3 -2 < ( < -1

Haugen, Kaimal and Bradley (1971) [1.6 + (-2C)2/3]h/2 -1.5 < C <0

Merry and Panofsky (1976) 1.3(0,, - 2.5013 -2 < ( < 0

Panofsky et al. (1977) 1.25(1 - 3()"3 -4 < ( < 0

Bradley and Antonia (1979) [0.089 + 0.174-W2/1-V2 -2 < ( < -0.1

Dyer and Bradley (1982) (1 - 14()V4 -4 < ( < -0.01

Kai (1982) 1.3(1 - 30113 -1 < C < 0

Table 4.2 gives a list of empirical formulas for o-„/u,,, based on observations. Most

formulas in this table have asymptotes of (-013 as -( --- oo, which is consistent with

(4.24).

In table 4.3, some examples of measuremental empirical formulas for o-e/T,,,, are listed.

All of them have asymptotes of C(-()-113 as (Cl -4 oo, even if some of them are only

valid in small ranges of 1(1. These empirical formulas support the theoretical argument

that cro/T,„., obeys a -1/3 power law for a large (Cl (see section 4.1.4). Among three

formulas given by Bradley and Antonia (1979), the first one was derived from the Kansas

data, the second one from the Minnesota 1972 data, and the third one from the ITCE

data.

As shown in figure 4.2, the dimensional analysis prediction of a -1/3 law for cru,/u.

is supported by the observation given by Kaimal et al. (1982) which shows a good fit to

1/3 power law for (Cl > 1. In addition, temperature variances behave as predicted for

-C> 0.1 (see figure 4.3).
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Table 4.3: Estimates of o-e/T*,, from measurements for unstable surface layer

Source

Wyngaard, Cote and Izumi (1971) —0.7 < C < 0

Tillman (1972) 0.95(0.05 — —10 < C < —0.1

Monji (1973) 0.92(-0-1/3 —10 < C < —0.1

Bradley and Antonia (1979) [0.004 + 1.11(-01-1 —0.6 < C < —0.2

[0.13 -I- 0.84(-0111-1 —3 < C < —0.1

[-0.22^1.28(-01/3]-1 —2 <^< —0.1

10.0

5.0

b 2.0
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0.5

0.05 0.1
^
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Figure 4.2: Universal function a./u under very unstable conditions according to Kaimal et
al. (1982).
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Figure 4.3: Universal function cre/T.,, under very unstable conditions according to Kaimal et
a/. (1982).

4.3 LES results for the upper surface layer

Four types of domain size (see table 4.4) have been adopted to examine LES results

of resolved turbulent statistics in the USL. The parameters for model runs are shown in

Table 4.4: Specification of domain size and grid spacing for LESs of an unstable ABL. Dr, Dy
and D, are domain sizes in the x, y and z direction, respectively; Ni,, Ary and .Nz are the grid
numbers in the x, y and z direction, respectively; and Ay are the grid spaings in the x and
y direction, respectively; kk is a few digits that stand for the value of 00'0•

Run Domain D(m) D(m) D(m) N Ny N„ As(m) Ay(m)

U16A2.kk A 960 480 2140 16 16 50 60 30
U24B2.kk B 1440 720 2140 24 24 50 60 30
U64C2.kk C 3840 1920 2140 64 64 50 60 30
U32D2.kk D 1920 960 2140 32 32 50 60 30

5.0 10.0

table 4.5. In these runs, witro is specified at the first vertical grid elevation; L is derived

from its definition (4.4), in which IC = 0.35, and u. and 0(= g/00) are calculated from
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LES output (u*0 is adopted to be u* and 00 is the horizontally averaged temperature at

Table 4.5: Parameters for each run. Ax = 60 m and L1 , = 30 m; C, is the Smagorinsky sub-grid
model constant; w/0/0 is the turbulent sensible heat flux at the surface; L is the Monin-Obukhov
length scale; Zi is the height of the CBL; -Zi/L is a measure of stability of a CBL; Resm is the
SM-Reynolds number; w* is the convective velocity of a CBL; t* is the time scaling of convective
thermals.

Run Cs L Z, -Zi/L Resm w,, ts,00'13

U16A2.1 0.20 0.10 -55.5 1500 -27.0 13700 1.72 0.243
U16A2.15 0.20 0.15 -40.7 1480 -36.4 13600 1.96 0.210
U24B2.05 0.20 0.05 -136.3 1240 -9.1 20700 1.29 0.268
U24B2.1 0.20 0.10 -78.1 1360 -17.4 22000 1.67 0.227
U24B2.2 0.20 0.20 -44.5 1420 -31.9 22600 2.13 0.185
U32D2.01 0.20 0.01 -433.6 1060 -2.4 27300 0.71 0.412
U32D2.2 0.20 0.20 -47.1 1480 -31.4 34200 2.16 0.191
U64C2.1 0.20 0.10 -66.5 1300 -19.5 79000 1.64 0.220
U64C2.15 0.20 0.15 -50.8 1360 -26.8 81400 1.91 0.198

the surface); Z, is estimated from LES output of vertical profile of mean heat flux (see

details later); w* is derived from (4.6) while t,, from (4.9); 0* is the temperature scaling

in the ML, defined as

w'19'0 0. =^ (4.35)
w*

not to be confused with the temperature scaling in the ASL, defined as

= wit9'0

 

(4.36)
u* •

The initial velocity fields have been disturbed with the same magnitudes of random

numbers to the mean velocities as those for the neutral cases (see chapter 3), but the

effects of the velocity perturbations are overwhelmed by imposed buoyancy. For simplic-

ity, the initial vertical temperature profile within the ABL is given by a constant value of
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284° K. To save computation, it is reasonable to run one case with a moderate w'0'0 for

a certain length of time, say tit. 10, with all other runs starting with the output from

this run as their initial conditions, but with the different surface heat flux w'O'o• This

type of initialization is called a "hot start". With a hot start, RS turbulent eddies in

the CBL can adjust themselves into a new equilibrium state very fast and this transition

period must be shorter than that in a run through a "cold start".

Determination of Z,

Figure 4.4 presents the vertical distributions of RS turbulent sensible heat fluxes for

different cases. Very clear linear distributions of (11:fi) in most of the CBL are shown

0.20 ^

0.0

500
^

1000^1500
^

2000
^

2500
z (m)

Figure 4.4: Profiles of RS turbulent sensible heat fluxes in the CBL.

except for the near-surface region where RS heat fluxes are suppressed to zero. Extrapo-

lating these linear portions to the surface yields the intercepted values shown in table 4.6.

These values are very close to the imposed values of wV0 at the surface (see table 4.6).

In all runs, as shown in figure 4.4, (fOO) deceases linearly to zero at a height near

-0.05
0
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Table 4.6: Intercepts at the surface by extrapolating the linear portions of (ii/O).

U64C2.15 U64C2.1 U32D2.2 U32D2.01 U24B2.2 U24B2.1 U24B2.05

0.1547 0.1006 0.2036 0.0095 0.1996 0.09894 0.04946

the top of the CBL and overshoots to a negative value. Passing a negative minimum, it

turns to increase to a positive maximum and then approaches zero at a sufficiently large

z. This characteristic is consistent with observations (e.g., Stull and Eloranta (1983)).

The portion of negative (ibi)) implies a downward heat flux which is associated with the

inversion layer aloft, where temperature increases with height; in other words, hot air is

entrained downward in this region. The present study defines the height at which (a)

is a negative minimum as Zi for LES runs. Since these LESs are started from slightly

different initial conditions, the values of Zi are different. It is noted that the ratio of

(a)=z (the buoyancy entrainment heat flux at Z,) to &Oil) (the surface heat flux) is

larger than the observational value, —0.2. This may be partially attributed to the big

value of F (= 0.011° K/m, see page 136) adopted by the present study.

Unsteadiness of the CBL height

Since the surface heat flux provides a continuous energy input to the simulated

boundary layer, the total energy in the domain will increase unless there is the same (or

larger) amount of energy flowing out of the upper part of the domain. The boundary

condition at the upper layer does not necessarily provide such an energy flux. The

Rayleigh damping layer (see appendix A) consumes some energy, but the specification

of this layer is such that it cannot have a significant influence on the energy balance,

because the position of this layer is much higher than Z. The consequence is that total
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energy in the ABL accumulates in an obviously unsteady process. The unsteadiness can

be illustrated by a mean quantity such as the mean temperature. Since the vertical profile

of turbulent sensible heat flux is nearly linear in the vertical direction throughout the ABL

and it distributes heat energy almost evenly to every elevation, the mean temperature is

therefore almost constant but continuously increasing with time. The height of inversion

base is also unsteady as a consequence of the temperature increase and entrainment

process. The change rate of the inversion base aZi/Ot is referred to as entrainment rate.

The present study, however, proposes at least two reasons to neglect the effects of

this unsteadiness on turbulent processes in the CBL. Firstly, if most of the energy stays

in the form of heat and does not convert to kinetic energy, one can thus assume that

the processes only involving kinetic energy are steady, admitting that mean quantities

such as mean temperature are increasing with a certain rate. Secondly, the entrainment

rate is insignificantly small when compared with the convective velocity scale of the CBL

turbulence w. when only turbulence statistics are dealt with. The proof follows five

assumptions: (a) temperature in the ML, 0, is constant, varying with time only; (b) the

relation between the rate of change of 0 and the rate of change of Zi is

az, az,^_ lao

(c) heat flux at the interfacial layer w'0', = Rw'010 where R is a function of At; (d)

is a linear function of z; (e) other sources affecting temperature in the ML are ignored.

An estimate for the variation of mean temperature based on the simplified equation of

(2.100) is:

ao^aw,o, _ 019,0 — wit9,2
at — az^zi

w'0'0= [1 R(814-)]  z  .

(4.37)at — ao at — f—ac

Therefore, the ratio of aziiat to w,, can be estimated:

azilat a0/at^[1— R(skiliwie,0
Fw. (4.38)
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Applying (4.8) and (4.5) to (4.38) yields

aziiat R(6701(5h-1-)2. (4.39)

    

Let R —0.2, w'9'0 = 0.15° Km/s, 0 = 300° K, Z2 = 1500 m and F = 0.003° K/m (these

are typical values in a CBL), and the value of dimensionless depth of the EL is about

Sht 0.131. Therefore, (OZi/at)/w. P.,- 0.02; this estimate shows that the unsteadiness

of Zi is unimportant when only turbulence statistics are investigated. It is expected that

those turbulence statistics are almost steady.

Time scaling of the convective eddies

Because t.(= Z1/w) represents approximately the time during which convective

eddies move from the bottom to the top of the CBL, the time scale of 2t,, to rt must

be associated with a complete cycle of those convective motions.' Figure 4.5 shows the

time variation of the domain-averaged RS TKE, ER(t), for case U64C2.1. ER(t) was not

developed until t 1000 sec (or t/t,, 1.3); then it oscillates with a period of about 1800

to 2140 sec (or 2.3t. to 2.8t.), which demonstrates the importance of convective eddies in

a CBL. This type of time scale exists throughout the simulation. The oscillation is purer

in the on-set period, which implies that only large eddies are dominant, and becomes

more chaotic as smaller eddies are superimposed on the persisting large eddies, thus

revealing a cascading process.

Averaging time interval

Figure 4.6 shows that effects of the Coriolis force on the oscillation of mean velocity

profile, and therefore on the variation of total KE, Em(t), still exist in an unstable ABL

'A complete cycle of an up-and-down convective eddy is 21., while a complete cycle of a circularly
moving convective eddy is 7rt.. Therefore, a real convective eddy may move along an ellipse which takes
a period of between 2t„ and
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Figure 4.5: Variation of RS TKE (averaged over the numerical domain) with time for
case U64C2.1.

(only 18000 second, about 1/4 of the oscillation with period of 2r/f, is shown). As

discussed in chapter 3, this effect is negligible if one is only interested in turbulence

statistics.

The conclusion is that compared with the time scale of the convective eddies

103 sec) which play the most important role in CBL turbulence, the time scale of the

Coriolis force 2R-104 sec) can be ignored' and the time scale due to the unsteadiness

of Zi 104 sec) can also be ignored.6 This is the reason that the simulation duration

for the cases in this chapter can be shorter than those in chapter 3, while still being

long enough to obtain stable statistics for convective eddies. Figure 4.5 shows that

LES output for analysis must be taken after tit. > 12 or so, and the time interval

5This time scale can be expressed by ti = 27r/f. A complete cycle of convective eddies is rt..
Therefore, rt. It f = f /2w. 0.05 if f = 10-4 sec, Zi = 1000 m and w. = 1 m/s.

6This time scale can be expressed by ti = (Zi-1aZ1/at)-1. Applying (4.39) and definition of t. in
(4.9) yield t./ti R.: [1 + R(Sizt)](611h2 , which is very small if (Mt takes its typical value of about 0.2.
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Figure 4.6: Variation of total KE (averaged over the numerical domain) with time for
case U64C2.1.

in which temporal averaging procedure is implemented must be much larger than t. in

order to obtain a stable statistics. Some previous LES approaches, such as Mason (1989),

Schmidt and Schumann (1989) and Nieuwstadt et al. (1991), adopted one t. as the time-

averaging interval to avoid unsteadiness due to azdat. This procedure may result in

non-representative statistics. These authors adopted F = 0.003° K/m, which yields large

values of 8h, and therefore a large degree of unsteadiness represented by (OZi/Ot)/w,, in

(4.39). To obtain better average statistics and reduce the influence of the unsteadiness

of Z, the present study uses the value of F = 0.011° K/m. This value is rather large,

but reduces the value of (OZi/Ot)/w by about three quarters while only halving values

of At . In the present study, LES results with F = 0.011° K/m, the unsteadiness of Zi

is hardly seen within a time interval of several t.'s, so a time-averaging procedure over
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up to 10t, can be used.'

Cs and Resm

In a neutral case the only turbulence production term is shear instability which

requires a large value of Resm (small SGS dissipation) to retain RS motions. In an

unstable ABL, a positive buoyancy production term is added to produce extra RS TKE,

thus relaxing the requirement of large Resm. In his investigation of a pure CBL, Mason

(1989) adopted values of Cs of 0.2 to 0.46, and addressed the size of Cs in a LES (with

the Smagorinsky SGS model). He found that the factors which proved to be critical were

the mesh resolution and the implied SGS constant Cs. If a value of Cs as small as those

for the neutral cases (e.g., 0.08) is still used, extra RS TKE will be accumulated at the

wavenumber of grid spacing (see the footnote on page 12).

The values of Cs (= 0.2) employed in this chapter are much larger than those employed

in chapter 3, and therefore the SM-Reynolds numbers Resm in this chapter are much

smaller than those in the neutral cases.

The SGS model for a CBL must be modified to include buoyancy effects on the SOS

7Suppose that Zi vary K% within At = Nt is required, i.e.,

AtOZilOt^Nt.OZilOt^OZilOt
 < K%.< K%^<=>^= N

w.

Applying (4.39) to the above inequality yields

K%N<
— (1 — R)(614- )2

Substitution of typical values of R •--ze, —0.2, w/010 = 0.15° Km/s, ê = 300° K, Z = 1500 m and (i)
F = 0.003° K/m; (ii) r = 0.011° K/m into the above inequality gives

(i) N < 48K%;^(ii)N < 178K%.

If K% = 5% is required, then for (i), N < 2.4; for (ii) N < 9.
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eddy viscosity, and is expressed by the following equations (Lilly, 1962):

rsl^2
Ti‘ji = —TE'86jj + 2113Sip^ (4.40)

1 au,^aft•
•5i3 = -(— + —1)^ (4.41)

2 axj

vs = (C3A)2s(1 — ^ (4.42)

s2 = 2sjsj ,^ (4.43)

where Es is SGS TKE, and Rf,s is the SGS flux Richardson number, defined by

g/00,90/az
Rf,s =^ (4.44)

Pr,s2

The parameter Prs is the SGS Prandtl number, which is defined by

vsPi's = —7
rls

(4.45)

where n, is the SGS eddy thermal diffusivity for temperature. In the present study, the

SGS Prandtl number is taken as 1/3 as suggested by Deardorff (1972). The modified

form (4.42) has a larger value of viscosity under an unstable situation. Mason (1989)

concluded from his LES runs for a pure CBL that the SGS Prandtl number had very

little effect on the results, and adopted Pr, = 0.5 in most of his cases.

Determination of hb

To analyze the output of LES, one must exclude the SOS buffer layer since RS

quantities are poorly represented in this region (see the discussion in section 3.3.1 on

page 73). In the ASL of a CBL, one more length scale L is present than that in a neutral

ABL. Therefore, in a LES model of an unstable surface layer, relevant length scales

include the Monin-Obukhov length scale L, the roughness length zo, the height of the
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Figure 4.7: Profiles of RS turbulent sensible heat fluxes in a CBL. Height is normalized by Zi
and lee' is normalized by its surface value w'O'o•

SGS buffer layer hb, and spatial variable z. In this chapter hb is arbitrarily defined as the

height from the surface where the RS heat flux (a) = 0.800'0 for the first time, or where

(a) is a maximum if max (a) < 0.8w'010. This definition is found to be appropriate

for the unstable cases. As shown in figure 4.7, hb/Zi is about 0.03 to 0.09, depending

on IZi/LI, domain size and the SOS parameterization. With other parameters fixed, hb

decreases with I Zi/LI; the effect of a larger SGS diffusivity (either by increasing the value

of C, or adopting a larger grid spacing) is to enhance the value of hb; the influence of

domain size is also to raise hb.

Scaling regimes

The value of L can indicate the type of turbulent processes in a region above hb and

below h, 0.1Z2. Since L is defined by

eou3. L =
'^

(4.46)
Kgw'0'0

with other parameter unchanged, ILI must be decreased if w'010 becomes larger.
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Figure 4.8: Sketch of length scales in a simulated CBL. hb is the height of the SGS buffer layer;
Zi is the height of the inversion base; zo is the surface roughness length; L is the Monin-Obukhov
length; zo is the surface roughness length (zo is drawn vertically for illustrative purpose only
and should not be interpreted as the vertical extent of any physical object). (a) weak convection
case; (b) moderate convection case; (c) strong convection case.
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Figure 4.8 illustrates some possible situations with variation of ILI. In case (a), when

ILI hs (ILI may be larger than, or smaller than Zi), the value of z/ILI in the surface

layer is very small; therefore turbulence production by buoyancy is weak in this region and

shear turbulence dominates. The processes in the so-called "near-neutral upper layer"

(Holtslag and Nieuwstadt, 1986) are not strongly mixing. This case corresponds to a

near-neutral ABL, or a weak CBL. In case (b), when ILI hs, the ML is well developed,

most mean variables being almost constant. In the top of the surface layer, turbulence

production by buoyancy is as important as that by velocity shear, but there is no free

convection layer, which requires that z/L >1 and z/Zi < 1. In case (c), when ILI < hs

(it could be smaller than he,), the region in which the turbulence production by velocity

shear dominates is squeezed to a very shallow layer (it could be within the SGS buffer

layer). A free convection layer emerges near the top of the surface layer. In the present

LES cases, due to the presence of the SGS buffer layer, the region in which surface layer

similarity analysis is applicable to the LES output must be above z = hb and below

z = hs, as shown in figure 4.8. Therefore, the output of case (a) in the applicable region

are applied for small —( (= —z/L< 1), the output of case (b) for --C — z/L — 1, and

the output of case (c) for large —( (= — z/L^1). In a real ABL, case (c) in figure 4.8

rarely happens which requires a strong surface heat flux and a weak wind.

Figure 4.9 shows a plot of z/Zi against the stability parameter —Z/L, first given by

Holtslag and Nieuwstadt (1986). LES applicable region occupies the upper part of the

ASL (hb < z < 0.1Zi), while the lower part of the ASL is the SGS buffer layer. As — Zi/L

increases up to 10, the USL transits to FCL. From table 4.5, those cases with Cs greater

than 0.1 satisfy the condition of — Zz/L > 10, and therefore LES output of these cases

can be adopted for FCL analysis.
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Figure 4.9: Sketch of scaling regimes in a CBL after Holtslag and Nieuwstadt (1986) and the
present LES applicable region, which is indicated by shaded area.
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Mean velocity components and the friction velocity

Vertical profiles of velocity components in the surface layer are averaged over a

time interval 10t.. Figure 4.10 and figure 4.11 show a vertical mean speed profile for

25

                                                                                                                                                

hb hs

                               

500^1000^1500^2000
Height (m)

Figure 4.10: Vertical profile of the wind speed for case U64C2.1.

case U64C2.1 under two different coordinates. The profiles are very different from those

in a neutral case shown in figure 3.3 on page 73, for example. In most of the CBL, the

mean speed is almost constant, with a very large shear in the near surface region. Near

the inversion base (z 1500 m), the mean velocity components have moderate shears

and adjust themselves to the geostrophic wind aloft. The Coriolis force affects the mean

velocity distribution at the inversion base.

4.3.1 Momentum flux profile in the USL

The dimensionless momentum flux 0,(C) in the USL can be calculated from the velocity

profiles in the region z E (hb, he), where he = 0.1Zi. In fact, the U32E-cases are not

suitable for surface layer similarity because the region (hb, he) for these cases disappears
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Figure 4.11: Vertical profile of the wind speed for case U64C2.1 under a semi-log coordinate.

as hb > hs (see figure 4.7). To obtain the dimensionless momentum flux 0,i(() in the
USL, the following evaluation procedure is adopted:

• the time interval of evaluation, [t1, t2], is divided into N sub-intervals, each of
length t*, which is the time scaling of convective eddies; time averages are taken

for velocity profiles at each i-th sub-interval; based on the averaged profiles, 0,,(C)
is evaluated in this time sub-interval:

tiZ (921(i)^aV(i)OnC)^ _2h1/2
U*0 v z e (hb, hs)^ (4.47)

where (i) indicates the i-th time interval; u(i) and v(t), are mean velocity components
averaged over this time interval in the x and y direction, respectively; the value of

is then calculated based on the definition of L in (4.4), in which the value of is

taken as 0.35, and u*o, the friction velocity evaluated at the surface, and Coo, the
temperature at the surface, are adopted.
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• a further time averaging process is taken over these N sub-intervals to obtain a

value for Om:

= N
(4.48)
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Figure 4.12: Momentum flux profile Om as a function of —zIL from the LES output, indicated
by symbols, together with measurement points from Carl et al. (1973), indicated by solid
triangle, and empirical formulas for Om based on observations, indicated by lines.

In figure 4.12, momentum flux profile Om from the LES output, together with empir-

ical formulas for Om, are presented as a function of —z/L. Case U24B2.2 is in very close

agreement with the empirical formula proposed by Carl, Tarbell and Panofsky (1973)

in the region —4 < C < —2, while other cases in this range of give smaller values.

Case U64C2.1 and U64C2.15 show the smallest Om in the region of —4 < < —1.6,

which seems to demonstrates that a larger domain size produces a smaller value of Om.

This might be explained by the fact that a larger domain brings more influence of the

convective eddies on the momentum transfer in the USL, and therefore flattens the mean

velocity profiles. For small 1), LES results also show smaller values of Om com-

pared with those empirical formulas, but two cases with relatively small number of grids,
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case U16A2.1 and U16A2.15, give fairly good results in agreement with observations.

Some measurement points (indicated by solid triangles) are also plotted in figure 4.12.

These data are collected from four different sites by Carl, Tarbell and Panofsky (1973),

who proposed the —1/3 formula of (4.33). There are many data points in —( E (1,2)

that fall into the same range of Om values as the LES results, while only two points are

above all empirical formulas. Unfortunately, there is no measurement data in the region

of — ( E (2.1, 3.5).

5.0

0. 1
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50
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Figure 4.13: As in figure 4.12, but in log-log coordinates.

In figure 4.13, the same results are plotted in log-log coordinates. The formulas given

by Businger et al. (1971), HOgstrOm (1988), Dyer and Bradley (1982) and Kai (1982) fit

Carl's data (indicated by solid triangles) very well in the region of —( E (0.1, 0.8), but

overestimate the value of Om when —( > 0.8. Most measurement points in --(" E (1, 2),

together with most of LES results in this region, are below Carl's empirical line. The

slope derived from LES results is generally steeper than —1/3, indicated by solid line in

figure 4.13. This LES-fitted line by the least square method is given by the following
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formula:

0.363(—C)-0.482.^ (4.49)

4.3.2 Standard deviation of temperature fluctuations in the USL

From equation (4.25) on page 123, the standard deviation of temperature fluctuations

cre/T.,,, follows —1/3 law in the FCL for very large values of ICI. In addition, observations

Figure 4.14: Standard deviation of RS temperature fluctuations ae, normalized by T , 3 , as a
function of z/L from the LES output, indicated by symbols, together with empirical formulas
for ao/T,, based on observations. Wyn71: Wyngaard et al. (1971); Ti172: Tillman (1972);
Mon73: Monji (1973); Bra79: Bradley and Antonia (1979).

illustrated by table 4.3 or figure 4.3 on page 129 surprisingly suggest that the —1/3 law

remains valid even for small values of ICI, although the theoretical argument does not

support this form.

Figure 4.14 presents the LES results for o-o/T.,,, together with the empirical formulas

listed in table 4.3. U64C-cases agree with the empirical formulas fairly well, while the

cases representing smaller domains show smaller values of cre/T,,,,. The effects due to the
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domain size can be seen from this figure: the smaller the domain size is, the lower value

of cro/L,, will be. However, the differences between U16A-cases and U24B-cases are very

small.

Figure 4.15 shows the same LES results for cre/T,„.s, but plotted in log-log coordinates.

The agreement with —1/3 law, given by Wyngaard, Cote and Izumi (1971), is fairly good,
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Figure 4.15: As in figure 4.14, but plotted in log-log coordinates.

even though the points of U32D- and U24B-cases are parallel to but smaller than the

empirical curves. This is attributed to the lack of representation of large eddies due to

the smaller domain size than that of U64C-cases. If 0' has no relation to large eddies,

ao/T,,,., should not have such a strong dependence on domain size. Figure 4.15 also shows

a very weak dependence of LES output on the surface heat flux w'0'0, except for the case

U32D2.01 which has an extremely small w'0'0. For large value of —c, it seems that a

little steeper slope can be fit for LES results than those of the empirical curves. The

values of the power n obtained by fitting the linear sections of LES output are given in
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Table 4.7: Coeffient Go and power n from least-square fit of the LES output to the formula
Cae(-0n.

Run Fitted Co. a Fitted n Run Fitted Go Fitted n

U16A2.1 0.762 -0.365 U32D2.01 0.726 -0.420
U16A2.15 0.755 -0.394 U32D2.2 0.909 -0.443
U24B2.05 0.779 -0.365 U64C2.1 0.987 -0.393
U24B2.1 0.787 -0.425 U64C2.15 1.030 -0.424
U24B2.2 0.821 -0.443 Average 0.840 -0.408

table 4.7. The power law for temperature fluctuations as derived from the LES is:

 

= 0.84(-C)-° A08 (4.50)

 

4.3.3 Standard deviation of vertical velocity fluctuations in the USL

From LES output, one can examine the portion of^that follows the 1/3 power

law. This portion for each single run is very short in space since in is remarkably sup-

pressed by the presence of the wall and by the SOS effects. However, the appropriateness

of identifying this portion is supported by consistency with the 1/3 law for different

runs as shown in figure 4.16. Case U64C2.1 and U64C2.15 are not shown here because

they produce small values of o-ti-,/u.. Agreement with the empirical formulas is good for

cases shown in figure 4.16. In figure 4.17, those cases together with case U64C2.1 and

U64C2.15 are plotted on log-log coordinates. For U32D- and U24B-cases, this portion

of LES output consistently follows the 1/3 power line, with magnitudes a little smaller

than the empirical formula proposed by Wyngaard, Cote and Izumi (1971). The effects

of w0 is insignificant. This result reveals that with a small domain size which may lose

accuracy of the ML, LES can still show some properties in lower part of the CBL. It is
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Figure 4.16: Standard deviation of RS vertical velocity fluctuations, a-„;, normalized by u., as a
function of — zIL from the LES output, indicated by symbols, together with empirical formulae
based on observations. Wyn71: Wyngaard et al. (1971); Hau71: Haugen et al. (1971); Pan77:
Panofsky et al. (1977); Bra79: Bradley and Antonia (1979); Dye82: Dyer and Bradley (1982);
Kai82: Kai (1982).

Figure 4.17: Standard deviation of RS vertical velocity fluctuations, c., normalized by u,„ as
a function of zIL from the LES output, indicated by symbols, together with empirical formula
by Wyngaard et al. (1971) based on observations: auju„ 1.9(—()h13.
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surprising that with a large domain size, U64C-cases present smaller values of ati-,/u..

4.3.4 Spatial correlation functions of velocity fluctuations

Instantaneous spatial two-point correlations and correlation coefficients of RS velocity

fluctuations on horizontal planes can be derived from LES output through (3.55) and

(3.61). Figure 4.18 gives contours of correlation coefficient z, t), r22((, z, t) and

r33((, z, t) for tit,, = 22.76 at two higher levels: z/Zi = 0.082 and z/Zi = 0.217 which are

located in the ASL and just above the ASL, respectively. Compared with figure 3.25 on

page 98, which shows contours of correlation function ri(, z, t) under neutral conditions,

very different features are demonstrated in the unstable cases. Firstly, integral length

scale of turbulence is much larger than that in a neutral case. In figure 3.25, positive

contours (corresponding to dotted curves) are clustered; in figure 4.18, however, these

dotted contours here spread widely, which represents a larger integral length scale. In

figure 3.25, horizontal fluctuations are more directionally elongated with shear stress

direction, indicated by dot-dash line, than those illustrated in figure 4.18. In other words,

horizontal velocity fluctuations becomes more isotropic with an increasing surface heat

flux. Contours of rii = 0 (represented by the solid curve) indicate that simulation domain

size is large enough to resolve the eddies at least near top of the ASL. The vertical velocity

fluctuations have elongated structure near top of the ASL (z/Z2 = 0.082), but velocity

fluctuations in the x direction do not show this property, neither velocity fluctuations

in the y direction. Above the ASL, r11 presents a very good horizontal isotropy; r22 is

almost isotropic but stretched along the y-direction; and r33 does not display a strong

elongated structure anymore, yet shows some anisotropy, stretched along wind direction.
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Figure 4.18: Contours of rii(; z, t) at
for rii = 0; Each increment of 0.1 from
increment of -0.1 from r•; = 0 to rii =
line represents the mean wind direction;
stress.

t/t. = 22.76 for case U64C2.1. The solid curves are
0 to ri, 1 is indicated by a dotted curve; each

-1 is indicated by a dashed curve. The long dashed
dot-dash line represents the direction of local RS shear



Chapter 5

Conclusions

5.1 The Smagorinsky-model Reynolds number

In the present study, the Smagorinsky-model Reynolds number is proposed for a

LES adopting the Smagorinsky SGS model. This number is shown to be an independent

model parameter based on the assumption that the velocity scale and the length scale

in the strain-rate of the RS field are of the order of Ug and D, respectively. When the

Rossby number and the simulation domain is fixed, i.e., Dslh and Dylh are fixed, the

SM-Reynolds number determines the statistics of RS turbulence in a LES of a neutral

ABL.

The criteria for a LES are listed as follows:

CR1 grid size must fall into the ISR of the turbulence simulated so that the Smagorinsky

SGS model can be employed properly;

CR2 Resm must be larger than Resm,„ so that the model runs in a turbulent regime

and the RS fields are fully turbulent;

CR3 Cs must be large enough so as to eliminate grid-mode TKE accumulation.

As long as the grid spacing is determined under the first criterion CR1, the second

criterion CR2 can be established either by increasing the number of grids, or by reducing

the value of C., while checking if the third criterion CR3 is satisfied.
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If Ddh and Dylh vary, these two parameters enter the external parameter group and

LES results must depend on them. For a horizontally homogeneous ABL, LES results

are independent of Ddh and Dylh if they are sufficiently large. For a neutral ABL, the

present study shows that when Dx/hE > 1 and Dy/hE > 1, LES results are satisfactory

and less dependent on Dx/hE and Dy/hE. The reason is that turbulent eddies whose

sizes are comparable to hE are of small magnitude under neutral conditions.

The present study adopts grid spacings falling into the ISR of ABL turbulence (60 m

and 30 m in x and y direction, respectively) in order to meet the assumption of the

Smagorinsky SGS model. Other specifications of grid spacing are also used in order to

show the influence of grid spacing (or domain size) and the validity of the SM-Reynolds

number. Three groups of LES runs have been conducted:

1. fixing mesh configuration and varying C9;

2. fixing Cs, Dxlh and Dylh, and varying Nx and Ny;

3. fixing Cs, Ax and Ay, and varying Nx and N.

The first two groups are used to check the validity of the SM-Reynolds number, while

the third group of LESs are used to examine the effects of Ddh and Dr/h.

5.2 A defect of LES in the ABL — the SGS buffer layer

Near wall region is one of the toughest problems that LES faces. Unlike the near-

wall region in engineering flows, the atmospheric LES has no resolution in the so-called

"low Reynolds number region"; in the present study, the first vertical grid point is at

z P-- 2 m, where turbulence is already fully developed. For a few vertical grid points

from the surface, all fluxes are virtually subgrid scale due to the nature of LES — no

RS fluctuations at the first vertical grid point near the surface, which can be considered
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as "boundary conditions" for all RS velocity components. At this height in the ABL,

horizontal grid spacings are too large to fall into the ISR of turbulence. The Smagorinsky

SOS model fails to describe the SGS turbulence, which now includes energy-containing

eddies. Poor representation of the SOS momentum flux extends up to a certain height

hb, above which RS motions dominate the flow. The defined "numerical" sublayer (called

the SGS buffer layer), from the surface to hb, is intrinsic in LES of wall turbulence with

a very large Reynolds number. By analogy with low-Reynolds number wall turbulence,

which has a shallow genuine buffer layer' in the near-wall region, the SGS buffer layer

has low local SM-Reynolds number layer if D in the definition of Resm is replaced by hb.

RS turbulence is relaminarized due to the small local SM-Reynolds number. This buffer

layer does not show the real logarithmic velocity profile and it "buffers" the momentum

connection between the logarithmic region and the surface. In the logarithmic region,

RS eddies can sense the presence of the wall and therefore form the logarithmic velocity

profile. The value of lib depends mainly on Resm, and also on the stability parameter

Ziff, for unstable ABL simulation.

5.3 Neutral-static-stability ABL

The present work shows that a LES can be employed to study statistical properties of

turbulence in the upper surface layer. A neutral ABL turbulent flow has been simulated

by LES, the largest computation involving 64 x 64 x 50 grids. Results show that, for a

LES with the Smagorinsky SGS Model, a logarithmic wind profile is obtained above the

SGS buffer layer and below 0.1hE. The von Karman constant calculated from slope of

the logarithmic profile is found to be dependent on the proposed SM-Reynolds number

(rather than on C3) and domain ratio Ds/hE and Dy/hE. The present study shows that

'This buffer layer is sometimes called the low local Reynolds number layer, not to be confused with
the low-Reynolds number wall turbulence.
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a domain size of 3840 m x 1920 m x 2140 m gives a satisfactory results. An asymptotic

value of the von Karman constant is observed to approach about 0.35 as Resm becomes

large. In addition, when the domain configuration 3840 m x 1920 m x 2140 m with

64 x 64 x 50 grid points is adopted, Cs can be as small as 0.06 while a negligible amount

of grid-mode TKE is observed in the x direction only.

The dependence of the vertical profiles of some RS quantities on Resm and domain

ratios in the USL has also been examined. These quantities are: dimensionless shear

stress components 7-/u and r,„/u!, and dimensionless standard deviations of RS ve-

locity fluctuations o-ii/u., o-i,-/u and o-ti,/u.. These results show that for a fixed domain

ratio, Resm is the parameter on which the vertical profiles of RS quantities depend.

When Dr/hE is large enough (> 2.5, e.g., for domain C), asymptotes for the maxima of

o-i,-/u., o-i,-/u and o-ti-,/u are about 0.3, 1.47 and 0.96, respectively.

In contrast to that in the USL, turbulence statistics in the whole boundary layer show

a little dependence on Resm and Dx/hE. The vertical profiles of mean velocity compo-

nents normalized by the geostrophic wind speed and the RS shear stress components

normalized by u! for different values of Resm collapse into a cluster. The eddy viscosity

closure scheme in an EAM is shown not to be appropriate for the neutral ABL by an

angle difference of about 20° between the RS shear stress vector and the mean velocity

shear vector in almost whole ABL.

5.4 Unstable ABL

The present study also explores the extent to which LES resolves the upper surface

layer and derives the surface layer similarity formulas. Horizontal grid spacings adopted

fall into the ISR of turbulence (Ax = 60 m and Ay = 30 m), but the domain size

is small owing to limitation of the total number of grids; LES results have shown that
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momentum flux in the upper surface layer is generally smaller than all empirical formulas

for ---C > 1. The closest empirical formula to LES results is the one given by Carl, Tarbell

and Panofsky (1973), which were derived from high-tower data. The present study also

shows that the power law exponent of 0,(() is about —0.48 for —C > 1, which is much

smaller than —1/3. LES results of o-o/T.,, fit the empirical formulas fairly well, and derive

a power law exponent of about —0.4, which is also smaller than —1/3. In addition, the

present study produces the standard deviation of RS vertical velocity fluctuations in

the USL and the results are in agreement with the empirical power law proposed by

Wyngaard, Cote and Izumi (1971).

5.5 Future work

It is worth noting that most of the present work was accomplished on an IBM

workstation. Therefore, this practice gives us a promising future of conducting LES

with more grid points to get better results for more complicated cases, perhaps even

considering some cases with real terrain or time varying forcing. As an illustration, the

largest computation of the present study is with the grid points 64 x 64 x 50. It takes

about 24 seconds of CPU time on an IBM RISC 6000/560 workstation for one time step.

It is therefore not difficult to run an unstable case for several t.'s. Even though it takes

a large amount of CPU time to run a neutral case for even one 2r f', such a LES is still

possible.

This work, as the first trial of resolving part of the ASL by LES, demonstrated that

it is possible to adopt a relatively small number of grid points to reveal some important

features of USL turbulence. From the comparisons among different cases, better solution

of the SL turbulence mainly depends on better grid resolution. An ideal LES of an ABL

excluding the ASL is: A0 falls into the ISR of the ABL turbulence; D is larger than the
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most energetic eddies; C, Ri 0.17. This requires 106 or more grid points in the simulation

domain. Based on the definition of Resm, as grid resolution becomes finer, the value

of Resm will be larger; when D/A0 is large enough, adopting the theoretical value of

0.17 suitable for homogeneous turbulence will give a large value of Resm. An ideal

LES of an ABL including the ASL is: Ax and 4, fall into the ISR of turbulence at the

height desired to resolve the ASL; D is larger than the most energetic eddies in the whole

ABL; and C, :::,- 0.17. This LES would require many more than 106 grid points. It is

expected that a value of 1£ evaluated from such a LES will be made more accurate by

adopting such a fine resolution, a task that can be accomplished in the near future.



Appendix A

Code and numerical scheme

The numerical code used is the Regional Atmospheric Modeling System (CSU-

RAMS), which is a highly versatile numerical code developed by scientists at Colorado

State University for simulating and forecasting meteorological phenomena (Walko and

Tramback, 1991). This model is constructed around the full set of primitive dynami-

cal equations which govern atmospheric motions, and supplements these equations with

optional parameterizations for turbulent diffusion, solar and terrestrial radiation, moist

processes, multiple soil layers, the kinematic effects of terrain, and cumulus convection.

RAMS is fundamentally a limited-area model, while there is no lower limit to the do-

main size or to the mesh cell size of the model's finite difference grid. RAMS has been

successfully applied to several large-eddy simulations (Chen and Cotton, 1986; Cotton et

al., 1987; Hadfield, Cotton and Pielke, 1991; Hadfield, Cotton and Pielke, 1992; Walko,

Cotton and Pielke, 1992). All finite differencing is carried out on the staggered grid

described by Tripoli and Cotton (1982). Acoustically active terms are integrated with a

small time step, while other terms are integrated on a large time step. This separation is

called the "time split" technique (Klemp and Wilhelmson, 1978). The leap-frog method

is employed for time advancement, operating on advection, buoyancy and Coriolis terms.

Horizontal turbulence terms are integrated in a forward sense along the two time-step

leap of the leapfrog advection scheme while the vertical part of the turbulence term is

integrated on a small time step for stability. A second-order scheme is used for the
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advection terms. For any variable 0, the advection term is given by:

a^a
axj (Nui°) c6Y;;(P'')*

It is written as the difference between a mass flux divergence term and a momentum

divergence term to increase numerical conservation. To minimize restrictions of the

Courant restriction on time step At, calculations are carried on in a frame moving at the

mean velocity of the initial velocity field prescribed in the whole domain.

In the upper part of the computational domain, a damping layer is prescribed by

adding a friction term —aui to the equation (2.99) to absorb gravity waves so that

they will not reflected back into the ABL. The value of the Rayleigh friction relaxation

coefficient aR is taken as:

ceR
0^ z < Zr

I. aR (z — zr)/(D, — zr) z > Zr(0) (A .1 )

where 4) = 50 s' and Zr = 1840 m. The damping layer is of particular importance in

simulating a diabatic ABL.

RAMS model adopts the so-called Exner function as the equivalent quantity to the

pressure p. Exner function is defined as

^

H=-- Cp( )Rd/cP = C 1 .^ (A.2)
Po^P 0

Through this variable substitution, the pressure gradient term in the momentum equation

(2.99) can be written as

l ap
— —  — Y 0^•

Po ux,^ux,

Therefore, the momentum equation (2.99) can be written as

au, autUi^rl an^e
^ - - v:70— +^— f (G — us)E,23at^ax,^ax,^00

^a2ui^ari(s)
+V^ + 3̂ .^ (A.4)

ax3

(A.3)



Appendix B

Fundamentals of dimensional analysis and similarity

Theorem 1 (The Buckingham H theorem (Buckingham, 1914)) It is assumed
that the physical quantities xi, x2,..., xn involve m independent fundamental dimensional
units (f.d.u.^), say u1, u2, (m < n); the dimension of xi, denoted by [xi], is a prod-
uct of powers of the fd.u.s, i.e., [xi] = iii;l'u2b2 • • • un,bms , where bi^b2i, • • • , kii)T
the dimension vector of xi, or the i-th column of the dimension matrix

b11^b12^b1.

B

kn.]. bm2 • • • bmn

and the rank of matrix B is denoted by k. If xi, x2, . • •

background and the relationship is written as

f(Xi, X2, •••, X/c) Xk-F1 • • • Xn) = 0,

then (1) can be simplified as

F(ri , 71.2, •••, rn-k) -= 0,

are related by a physical

(B.1)

(B.2)

where ri,^are dimensionless power products of xi, x2,..., xn.

Proof of the theorem is found in, for example, Bluman and Cole (1974).

For two special cases, the following corollaries are obtained:
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Corollary 1 If n = k + 1 in the II theorem, then a power law can be obtained which

relates xi, x 2, ... , x ,i:

el I 42 ^ en = C,n

or^xi -= Ci • x12 ^ OnXn

An example of this case is the Kolmogoroff spectrum law for homogeneous turbulence in

the ISR.

Corollary 2 If n = k + 2 in the H theorem, then a single variable function can be

obtained which relates x1,x2,—,xn:

F(ri, r2) =0,^ (B.5)

or^ri = f(r2).^ (B.6)

A good example of this category is the Monin-Obukhov similarity theory in the atmo-

spheric surface layer.

(B.3)

(B.4)
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