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Abstract

Research into the relationships between General Relativity, topology, and gauge theory

has, for the most part, produced abstract mathematical results. This thesis is an attempt

to bring these powerful theories down to the level of explicit geometric examples. Much

progress has recently been made in relating Chern-Simons gauge field theory to (2+1)-

dimensional gravity over topologically non-trivial surfaces. Starting from the dreibein

formalism, we reduce the Einstein action, a functional of geometric quantities, down to

a functional only of the holonomies over flat compact surfaces, subject to topological

constraints. We consider the specific examples of a torus T 2 , and then the two-holed

torus, T2#T 2 . Previous studies of the torus are based on the fact that the torus, and only

the torus, can support a continuous, non-vanishing tangent vector field. The results we

produce here, however, are applicable to all higher genus surfaces. We produce geometric

models for both test surfaces and explicitly write down the holonomies, transformations

in the Poincare group, ISO(2,1). The action over each surface is very nearly canonical,

and we speculate on the phase space of dynamical variables. The classical result suggests

the quantum mechanical version of the theory exists on curved spacetime.
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Introduction

Using General Relativity (GR) to study of the dynamics of a spacetime generally follows

a simple algorithm: Write down the action; break up the spacetime under a splitting —

usually (3+1)-dimensional; re-write the action in terms of the dynamical variables on the

spatial slices and constraints that govern the splitting; vary this action with respect to the

dynamical variables; solve the resulting PDE's subject to the constraints for the compo-

nents of the metric. In practice, even the first step of choosing an appropriate action can

be daunting, let alone solving an often highly non-linear system of constrained PDE's.

One approach to removing these problems is to study a different system! Rather than

tackle the full 4-dimensional theory, which may describe physical space in some cases,

consider the simpler case of merely 3-dimensional spacetime. This space is easily split

into (2+1)-dimensions — 2 spatial and 1 temporal. While the results of these studies are

clearly not physical, the techniques and problems that arise may shed light on the orig-

inal (3+1)-dimensional case. fortunately, the mathematics of GR on (2+1)-dimensions

is much simpler and the physics of the space is not (so) lost in mathematically difficult

equations that much be examined.

With 3-dimensional spacetime sliced into (2+1)-dimensions, a system is defined by

the choice of the 2 spatial dimensions. The simplest cases are those where the space

is a plane or some similar infinite region. More interesting problems arise when the 2

dimensions are wrapped up into compact surfaces, especially when the surfaces are not

simply (topological) spheres. In this thesis we will consider first the torus T 2 and then

a genus 2 surface, the 2-holed torus T*T 2 (See Figure 0.1), and the interplay between

the differential geometry of GR and the non-trivial topology of this surface.
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Figure 0.1: A simple torus, a 2-holed torus, and a g-holed torus, as they appear embed-
ded in R3. Also shown are the non-trivial loops, 2 around each 'hole', that cannot be
continuously contracted to point.

In choosing to study the simpler (2+1)-dimensional case, we have given up the possi-

bility of producing a theory which directly describes the dynamics of the space about us.

The goal, instead, is to find a mathematical result that reveals some of the subtleties of

GR on non-trivial spacetimes. Nothing helps to answer questions more than a working

model — where would mechanics be without the simple harmonic oscillator, or quantum

mechanics with the Stern-Gerlach experiment? These idealized models answer questions

about physics without the clutter of experimental error or unsolvable mathematics. Real

physical systems can then be studied as perturbations of the ideal model, and generaliza-

tions to more complex models can be made from the simple ones. This is what we hope

to achieve here. By constructing a simple, though unphysical, model on which we can

see the roles of GR, topology, and ultimately quantum mechanics, more complex models

may be built. Hopefully this will contribute to one day producing a theory of quantum

gravity, one of the last stumbling blocks towards a Grand Unified Theory.

This thesis is developed as follows. We recall first, in Chapter 1, the dreibein formalism

for GR and see how this approach, together with gauge field theory, has recently renewed
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interest in using (2+1)-dimensions to attempt to model quantum gravity. In Chapter 2,

we reduce the Einstein action down to an (almost) canonical form. In this procedure,

we see how the differential geometry drops out leaving only topological quantities: the

holonomies associated with each non-trivial loop on the 2-dimensional surface. The result

comes from carefully keeping the boundary terms in the action, rather than dismissing

them as irrelevant, as far as the action is concerned. In Chapter 3, we construct a model

for T 2 . Taking this model through the prescription of Chapter 2 endows it with a frame

field and connection. The resulting action depends only on the holonomies of T 2 . An

explicit, geometric model of the torus also shows that there are enough degrees of freedom

that many different collections of holonomies are possible, some possibly admitting closed

time-like curves. As a more complicated trial, Chapter 4 repeats the process over a genus

2 two-holed torus. The reduced action again depends only on the holonomies about non-

trivial loops on this surface. We construct a model for r#T 2 by folding up an octagonal

and calculate the holonomies of this particular construction. In Chapter 5, we speculate

on the classical conjugate variables. The action we produce is not canonical and we

make a qualitative interpretation of the phase space. While the results of Chapter 2 are

classical, the form of the "conjugate variables" strongly suggests the quantum mechanical

version of the model lives on curved spacetime. Finally, in Chapter 6, we see how the

results may be generalized to higher genus surfaces, and where further research can be

done on the link between gauge field theory and General Relativity.

This is a subject rich in both Physics, through GR and the equations of motion,

and Mathematics, through topology and gauge theory. For the purpose of this thesis,

we are considering (2+1)-dimensional gravity over topologically non-trivial surfaces as a

Physics problem. It can equally be approached as an example of differential geometry

over surfaces with non-trivial fundamental groups. The relations we encounter and choose

to interpret as topological constraints imposed on the space are none other than the
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representation of the fundamental group of the surface in the gauge group. The particular

collection of holonomies of the surface, a subset of the gauge group, obey relations which

demonstrate the structure of the fundamental group. So while this thesis emphasizes the

Physics interpretation of the results, the Mathematically-minded reader can translate

these same results into Theorems, Proofs, and Corollaries.

Finally, a word on whom to attribute the results of this thesis. The ideas of Chapter 2

are developed as a special case of the theory of GR, and not as an interesting observation

of the manipulation of the dreibein and connection. The difference between these two

approaches is that the former requires an understanding of and experience in the me-

chanics of GR, gauge theory, and even index manipulation. For these reasons, Chapter

2 is a reproduction of work done by my supervisor W.G. Unruh, and to him the results

should be attributed. The calculations in the rest of the thesis, the "easy part", were

carried out by both of us independently, in the sense that we ended up with two stacks

of paper, although I was prodded in the right direction at several stages. Therefore, this

thesis should be viewed as a report of Unruh's exploration of (2+1)-dimensional gravity

in the dreibein formalism, annotated and "demystified" to allow graduate students like

myself to understand and appreciate the results.
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Chapter 1

The Dreibein Formalism

The basis for studying spacetime dynamics in classical GR is the Einstein action. 1 This

action is a complicated functional of the metric components g . An alternative approach

is to use the tetrad, or vierbein, formalism. In this chapter, we see how in only (2+1)-

dimensions, the triad, or dreibein, variables greatly simplify the Einstein action. We also

review recent work that recasts the dreibein approach to GR in a Chern-Simons gauge

field theory.

1.1 The Dreibein Formalism of General Relativity

The most common approach for finding the metric on a spacetime is the Lagrangian

formulation with the Einstein action

I =

where g is the metric determinant and R, the Ricci scalar, is the twice contracted Reiman-

nian curvature tensor. Various constants that often appear before this action, for example

[1] or ifir [2], can be ignored when using variational principles. Equations of motion

are found by variations of the action with respect to the metric components, g These

equations of motion are generally highly non-linear PDE's, owing in part to the square

root VIM. The advantage of the dreibein formalism is that is supplies a kind of square

root for gµ„ by using the components of the frame field as variables. The dreibein is

'This action is variously referred to as the Einstein [4], Hilbert [3], and Einstein-Hilbert [1].
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Chapter 1. The Dreibein Formalism^ 6

the collection of three vectors^where indices ,a, v,^= 0,1, 2 are the tangent-space

components. We will use i, j, = 1, 2 to indicate the spatial components. The indices

a, b, .= 1, 2, 3, sometimes known as the Lorentz indices, merely label the vectors in the

frame. The metric on the spacetime is defined by e

gab, = epa eva

hence giving a kind of 'square root' to gov . The vectors must remain orthogonal in the

Lorentz space:

a pcbe e = ab

where qa b =diagf— + +} is the usual Minkowski metric in (2+1)-dimensions. All raising

and lowering of a, b indices is done with qab. A new connection co: b is required to account

for curvature in this mixed space. Covariant differentiation is defined by

Dtheva = a^„ a^, a b

^

ip,v'A^"1 b'y (1.2)

where ['A are the usual Christoffel symbols. We demand that lab be constant in it'sAv

Minkowski space, which forces Witab to be antisymmetric:

0 = Doab

ab
= +WA

a
cil

cb 
+ Wit

b 
cri

ac

= ab^ba

The spin connection co: =- 2615ibc Wizbc is sometimes used in place of the connection, al-

though throughout this thesis we will remain with co: b •

We can now re-write the Lagrangian in terms of the variables e and co. The Ricci

scaler R is found by contracting the "internal" curvature tensor R it, ab with the dreibein:

R^R^= aellb R /Iva!)

(1.1)

2 Here and in all that follows, we adopt the Einstein summation convention of summing over repeated
indices, both latin and greek.



Chapter 1. The Dreibein Formalism^ 7

While Roz, aP is the curvature of spacetime, R iwab is the curvature that relates the space-

time (av) to the internal space (ab). The curvature is exchanged between the two spaces

via the dreibein: = eacpbRtwab. A flat internal space, R iLva b = 0 implies a flat

spacetime, Ritv P = 0. In this mixed spacetime-internal space, the Lagrangian becomes

Og iR = ( Epvp a^c, \( ^df
C abC)k e deaf  -"Aa ) •

By the associativity of addition, we can re-arrange the summed Lorentz indices:

= f twP Eadf epaevb epc ObeucRAu 
df

E""Eadf e tLa j pA d;RA, df

by the orthogonality (1.1), leaving simply

= cpvp cab, e a R be .A

The curvature tensor can be calculated by looking at the failure of covariant deriva-

tives to commute. Given a vector field Va, the curvature tensor is defined by

[Do , DI,JVa — Rk,,,bVb

With the definition of covariant derivative (1.2), it is simple to calculate

Alp ab^„ ab^, a , db
-"pv^'11 ,v^"Iv d'p •

Finally, with volume form fluiPd3x =^A dxv A dxP, we arrive at the expression

a(
I = fabcep kWv

bc
 ,p

b
dWp

dc )ale A dxv A dxP (1.3)

The great advantage to this formulation of the problem is that we will nowhere encounter

below a raised tangent-space index ,a. This allows us to work in the more general case

where gi`u may not exist; that is, where singularities are allowed. Furthermore, on so-

lutions to the equations of motion, the variation of the action with respect to the e:
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variables must vanish. From (1.3) we clearly see that these solutions are those connec-

tions for which dw w A w, the Ricci curvature, vanishes. Now in three dimensions, the

full Reimann tensor can be written in terms of the Ricci tensor and the Ricci scalar.

Hence a vanishing Ricci tensor, which immediately produces a vanishing Ricci scalar, in

this particular case also implies the Riemann tensor vanishes: the solution spacetimes

are truly FLAT. This is one of the main reasons why (2+1)-dimensions are studied — the

geometry does not contribute to the physics of the spacetime, thereby leaving topological

considerations more apparent.

In analogy with the ADM formulation [7] of (3+1)-dimensions, the action (1.3) is

re-written in terms of the canonical variables and their conjugate momenta. Because of

the antisymmetry of the volume form, neither e 0a nor c;)0 ab appears in the action, where

( ) indicates differentiation with respect the time coordinate of the spacetime. Without

conjugate momenta, these variables are constant in time. In the language of variational

calculus, e oa and c00% are Lagrange multipliers of constraints which govern the way the

2-dimensional slices of 'space' evolve in 'time'. Explicitly, we find

I = —2 fdt P2 x Eije j aci7j,

•eoa cij(wi bc j^w j b dwi dc wi bdw j dc)idt fd2 X eabcf

^wo bc fij ( ci a^j^e^eidw j ad^eidwi ad il

The constraints, proportional to e oa and wo bc , are recognized as

Rij bc^0^ (1.4)

= 0 ,^ (1.5)

respectively. These two constraints, which tell us the spatial slices are flat and torsion

free, greatly simplify the system, as we will see in chapter 2.
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We see that of all the ways to attempt to describe the geometry of 3-dimensional

spacetime, the result produced by the theory of GR is fairly simple. In fact, most of the

gymnastics of differential geometry have disappeared! It is no wonder, then, that this

"simple" result can be reproduced from a quite different abstract approach, Chern-Simons

gauge field theory.

1.2 Chern-Simons Gauge Field Theory over the Poincare Group

In recent work that rekindled interest in (2+1)-dimensional GR, Witten [1] recognized

the Einstein action written as (1.3) as a Chern-Simons action of the the gauge field theory

for the Poincare group. This gauge group is the collection of all Poincare transformations,

consisting of a Lorentz transformation followed by a spacetime translation:

Va tlab V b Ta . (1.6)

The Lorentz subgroup of the Poincare group, more often associated with Special Rela-

tivity, has disconnected components corresponding to proper, orthochronous transforma-

tions of the connected component of the identity, and components connected to parity-,

time-, and total-inversion. The Lorentz transformations we will deal with here are re-

stricted to the first of these components, the only component which represents physical

transformations. An ISO(2,1) representation (Inhomogeneous Special Orthogonal) of the

Poincare group is the collection of 4x4 matrices

\^0

[PIT] =
Tatiab

where tiab is an SO(2,1) Lorentz transformation. Properties of these matrices liab that will

be used below are found in the Appendix A. Transformations of 3-dimensional vectors
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Va are carried out by appending a fourth component, of fixed length 1, to the 3-vectors

forming VA = (Va, 1):

/^\ /^\^/^\

tiabV b + T a=Uab Ta V'

Ik 10

The 3-dimensional component of these resulting 4-vectors reproduces the 3-dimensional

Poincare transformation on Va.

The Poincare group has generators

/ 0 0 0 1 /^0 0 —1 /0 1 0

0 0 —1 0 0 0 0 0 1 0 0 0
J1 = J2 = J3 =

0 1 0 —1 0 0 0 0 0

0 0/ 0 0 / \ 0 0/

Under exponentiation, these generate, in Minkowski space where xa = {t, x, y}, rotations

in the xy-plane, boosts in the (—y)-direction, and boosts in the x-direction, respectively.

While these 4 x 4 matrices generate the Lorentz subgroup of ISO(2,1), the upper left 3 x 3

submatrices by themselves generate the pure Lorentz group SO(2,1). The generators of

translation in the t-, x-, and y-directions are, respectively,

/ 11 / 0 " / 0 1

0 0 0 1 0 0
P1 = P2 = P3 =

0 0 1

\ 0 0 / \ 0 0 / 0 0 /

The generators of this group obey the Lie algebra

[fa , 'Id .= Cabcf c



Chapter 1. The Dreibein Formalism^ 11

Val Pb] = EabcP c

[Pal Pb] = 0

In [1], Witten observes that in taking the 1-form A = Apdx 1` with components

A, = coaP, c.o4aJa

as a gauge field, the Chern-Simons action

/cs = 2 f Tr(A A dA IA A A A A)
M

exactly coincides with the Einstein action (1.3). We see that ISO(2,1) is the gauge group

by varying the gauge field A. The infinitesimal transformation of A, generated by a

parameter u = pa Pa + TaJa with infinitesimal pa, Ta is defined as

8A„ = u,„ [A,, 'a] .

This variation is the covariant derivative of the field with respect to the connection A,.

Varying the field in this way produces

(SA„ = 8e: Pa + (5.co:Ja

where

Se a =^_ fabcembrc — cabc„4
bpc

,^a —Ta — abc bTp,^c •

Witten notes that by setting pa = Vaq, for an infinitesimal spacetime vector -PL, the

difference between these transformations of E lla  and co t:, and those generated by infinites-

imal Lorentz transformations along with infinitesimal diffeomorphisms (translations!) in

the —V 4L direction, is simply a Lorentz transformation. Since Lorentz transformations
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are part of the gauge group, any gauge invariant quantity, like the action, will be unaf-

fected by this difference. That is, the Chern-Simons action in the gauge field AN, over the

Poincare group is the same as the Einstein action of GR. Gravity can be re-expressed as

a gauge field theory, which greatly increases the chances of finding a quantum mechanical

version of the theory. Though this thesis is based on classical GR, and not quantum or

gauge field theory, we will see the importance of the Poincare group in the results that

follow.



Chapter 2

The Einstein Action

In this chapter we derive the main result of this thesis: the Einstein action over a compact

surface can be written explicitly in terms of the holonomies on the surface. Before we

produce this result, let us briefly review holonomies and boundary terms.

Intuitively, a holonomy is the failure of a vector to return to its original orientation

after being parallel transported around a closed path, or loop. We will define holonomy

as the transformation which carries the initial vector onto the final. While in general

a holonomy is an automorphism of the tensor fields over a manifold, the holonomies

encountered here are simple transformations on the tangent space. Curvature, also a

measure of the changes in parallel transported vectors, is closely related to the holonomy

of trivial, or contractible, loops. When a surface is flat, the holonomy of all trivial loops

is simply the identity — no change occurs in a vector when it is parallel transported

about a flat surface. When curvature is present, the holonomy depends both on the

base point of the loops and the shape of the loops itself: parallel transport around "long

and twisting" loops will alter a vector more than parallel transport around "small and

simple" loops.

As we saw in Chapter 1, the surfaces we deal with here are flat, and the presence

of interesting holonomies seems unlikely. However, the surfaces we deal with are also

topologically non-trivial, and are covered in non-contractible loops, those paths which

get "caught" on one or more holes formed by the surface (See Figure 0.1). The holon-

omy over these non-trivial loops may not be the identity, even though the surface is

13



Chapter 2. The Einstein Action^ 14

everywhere flat. The topological degrees of freedom can generate non-trivial holonomies.

Assuming hereon that "surface" means a flat compact surface with interesting topology,

we recall that all homotopic curves have the same holonomy. Two curves which can be

smoothly deformed into each other differ by a contractible loop (See Figure 2.1). This

path does not contribute to the holonomy as the surface is flat, so the holonomy of the

two homotopic paths is the same. Therefore all holonomies on a surface will be known

once those about a few representative non-trivial loops are known. Just as the genus 1

torus has 2 distinct classes of incontractible loops, a genus g surface, like a g-holed torus,

has 2g generating loops. By finding, or specifying, the holonomies about each of these

2g loops, the geometry of the surface is completely determined, at least up to global

gauge transformations. These are the transformations which transform the entire surface

while leaving the action (or any other gauge-invariant function) invariant. It is these 2g

holonomies which will play the role of the dynamical variables in the expression for the

action we derive from the Einstein action (1.3) in this chapter.

Connected-sum surfaces, like those in Figure 0.1 have no boundary. How then, do

we handle boundary terms that arise in the action? The answer comes by looking at the

way these surfaces are constructed. Generally a genus g surface is constructed from a 4g-

sided polygon with pairs of sides identified, folding up the polygon, creating the surface.

The matched points on the boundary of the polygon come together to form a seamless,

boundary-less, surface. Another way to view this construction is to tile some infinite

plane with these polygons, so that moving off one tile onto an adjacent one is the same

as travelling off a single polygon and reappearing at the identified point on the boundary.

The boundary can be re-inserted into the closed, compact surface by slicing the surface

open. This does not affect integration over the surface: A continuous function has the

same value at two identified points on the boundary. Since the outward-pointing normals

from the two identified boundary points have opposite orientations, any contribution to
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Figure 2.1: The difference 'Y1-72 between two homotopic curves 7 1 and 72 is contractible
to a point. The holonomy of this trivial loop is the identity, so 7 1 and 72 have the same
holonomy.
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a boundary integral along one boundary component is exactly cancelled by the matching

boundary's contribution. The converse to this situation need not by true, though, as we

will see below. By starting with the tile and matching pairs of sides, we are no longer

guaranteed that functions are continuous across the boundary. The discontinuities we

allow are exactly the holonomies that appear in the action.

2.1 Reduction of the Einstein Action

The dynamical variables that appear in the Einstein action (1.3) are the dreibein e ma and

the connection co: b . Let us assume there exists a collection of e fia(xv) and woa b (xv) which

are continuous over the surface, or equivalently, continuous on the tile, even across the

identified boundaries. Because only the torus T 2 can support a non vanishing tangent

vector field [6], we must allow the possibility of the dreibein becoming singular on the

tile.

First consider the symmetries of the action. The action, as the Correspondence

Principle implies, is Lorentz invariant. Transform the variables under

, a
Fi

a
WA b

Uab ettb

co1:d audb uc a (ucb,m )^ (2.1)

Some index manipulation along with the properties of U (Appendix A) show the action is

the same functional of e and L. Recall from the (2+1)-dimensional splitting of spacetime

that the space is subject to the constraint Ri j ab = 0. This implies that on any coordinate

patch, we can find a particular Lorentz transformation Uab (e) such that c" -;.5i ab = 0 (See

Appendix B). Note that only the spatial components of (.7., can be made to vanish because

only the spatial Rid ab = 0.
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In this new coordinate system, consider a transformation in the internal space gener-

ated by a function pa (x"):
et: eµ^DµAtpa^ (2.2)

where h is the covariant derivative with respect to the connection a While is is assumed

that e if is continuous across the boundary, it is not necessarily true that e lia is continuous.

With this transformation, the action becomes

I =^fabc (6Aa noa)fiupbc a A de A dx f)
M

where M is the (2+1)-dimensional manifold and R is the curvature, also written in terms

of a An integration-by-parts on the second term gives

I = e t: fcpbc axt.,, A de A dxPi fabc
M

+ I Ca bc pa ft,bc dx"A deI— I Eabc pa b[1Wc de A dxv A dxP .
it4-

The last term vanishes by the Bianchi Identity. A second constraint imposed on the

system by the (2+1)-dimensional splitting is D[ i cj]' = 0 in the original coordinate system.

This constraint implies we can find a pa(xv) such that the spatial e i a = 0 (See Appendix

B). The first term of the above action vanishes leaving only the boundary integral. The

boundary here includes the spatial boundary where the identification takes place and also

the initial and final hypersurfaces in time. The integrals over these temporal boundaries,

however, come from the term

bo(pa fiv \ ,x o
Eabc^

pbc)a A de A dxP .im
This total time derivative can be removed form the Lagrangian as it adds only a constant

to the action and has no effect on the equations of motion found by variational principles.



= E
edges^g

Cabc (Pla
^be^a^bc4.7610 — p2 632 o ) dx i

ed e^
.
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This leaves only

I = Eabc pa w bc
• —

be^ib dcjo dc^ob i dc)dx i

where 0 represents the spatial boundary. As the spatial components (Di ba vanish, the

action is further reduced to

I =Ea bc^bcdxp^.
j

One more integration-by-parts gives

I =PaCab Pa
coobcdxi

— Ja

The boundary term of this integration vanishes, being the boundary of a boundary. Now,

each side of the 4g-sided tile is attached to another tile by the identifications used to get

the topology. Thus each distinct edge of the tile contributes twice to this integral. Call

the two matching sides '1' and '2'. Summing over the 2g different edges gives

a

Recall from the transformation (2.1)

o cd = w oab uc a udb licb udb^ (2.3)

Just consider the first term, in coo . As wo is assumed to be continuous across the boundary,

wiobc = w2obc; we can write just w o bc. This first term of the action is

bd tiice — p2 a i^bd^de dx iCabc (P1  
edges edge

As U1 and U2 are both Lorentz transformations, there is a Lorentz transformation between

them. Define

ui ab = wac u2 c b^ (2.4)
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This maps U on one side of the boundary onto U on the other side, in some sense carrying

U across the boundary. Observe that

= (V V c ati2da )(W celk e

= (Wc dWce) 142 datt2 e b,i
be

+ Wed /122 w'e7i u2 e b

With C3i ab vanishing in (2.1) and co lobc = co2obc,

Hence

Or

uida^= u2da u2 dbi

wc d u2da wce,i u2 eb = 0 ,

ei = 0 : (2.5)

the W transition matrices are constant on each time slice. Substitute into the action for

U2 in terms of W and U1 . Property (A.4) then reduces this term of the action to simply

E f (pi ai wab p2^bd Ce wode dx

edges^

i
edge

(2.6)

Before we calculate the second part of the action from the UU term in (2.3), not

the following. Recall Coo de does not appear in the action by the antisymmetry of the

volume form. Thus wo de is a Lagrange multiplier. The UU term contains no CA) o de so

the constraint associated with this Lagrange multiplier comes from the first term of the

action alone, namely

Pic; — wa bb p2,, = 0 •

We found in (2.5) that Wab is constant on each time slice, so this constraint is equivalent

to

(2.7)

w bp2 19 + Ha = pi a^ (2.8)
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where Ha is constant. Under the identification of points that generates the topology of the

surface, p 1 and p2 are two vectors sitting at the same point (in the same tangent space).

The relation (2.8) shows these two vectors are related by a Poincare transformation (see

1.6)). Another way to compare vector P 1 with vector p 2 is to parallel transport p 1 across

the tile between the two identified points on the boundary. The resulting vector is defined

to be p 2 . Now (2.8) shows the holonomy of this loop in a Poincare transformation. We

have seen that the W are constant on each time-slice and that the holonomies are path

independent. Thus p on the whole of side 1 maps onto p on the whole of side 2 under

this Poincare holonomy.

Now consider the remaining term in the action,

a 7j b^cd^a 71. b 71 cdf^Eabc „ L41 d 71^— p2,, (42 d 442
edges edge

From (2.7) and (2.4) we substitute

dx .

P2 a,i = Wb a Pl b

/42 cd = wy c ul yd

Because Wab does not necessarily vanish (only the spatial derivatives do), we cannot yet
•

substitute for /42
b
 d. These substitutions give

cdE^cab, (pi a 141 b, i^d"1
edges edge

•
Wea P1 e ,i U2

b
 dWv c tOd ) dx i .

Replace E abc under (A.4) in the second term. Then (A.1) and (A.3) reduce the action to

Now
edges ledge

b^wb 71.^\ 71^iEabc^At'fl d — YV (-4 2 041 dx .

wbx 1:12d = wbs u2 x d Wbs u2 xd

= ui b d — wbx wy sui yd
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giving

E Eabcp1a,i 
wbx wcx ch i

edges edge

Recall the Wab are constant and hence can be pulled out of this integral along the edges

of the tile, leaving only

• • f p i a 
'
i dx i

edge 

This integral, simply the difference in p i between the ends of edge 1 of the tile, we denote

by Ap i a.

Finally, we produce the action on the tile. By imposing the constraint (2.7), which

introduces the constant Ha, the first term of the action (2.6) vanishes. All that remains

for the action is the sum over representative edges

= E Api a wbx wcx cabc^ (2.9)
edges

By constructing a tile and assigning on the tile fields of W and II, we can explicitly

calculate this action for a torus T 2 and later, the more complicated but interesting two-

holed torus T2#T2.



Chapter 3

The Simple Torus

An elegant, but not particularly profound result of differential geometry is the observa-

tion, here attributed to Carlip', that

"a flat connection is determined, uniquely up to gauge transformations, by

its holonomies around the nontrivial loops..."

Mathematically, this is a concrete and definitive corollary, distilled from a much larger

theory. It is not an explicit statement of the physics of the system, though, for it still

deals with abstract ISO(2,1) transformations across some surface or region with identified

points. In this Chapter, we see how the result (2.9) of Chapter 2, which asserts that the

action in a function(al) of the holonomies (supporting Carlip's statement), is manifest on

a simple 1-holed torus T 2 . This is relatively easy to do, as the flat genus g = 1 torus has

only two independent holonomies, and can be constructed by identifying pairs of sides of

a square in the Euclidean plane R 2 .

3.1 The Action over a Torus

Each surface of constant time, the 2-dimensional spatial slices of (2+1)-dimensional space-

time, is tiled with squares, or more generally parallelograms. To calculate the action on

this tile, let us first label its components as in Figure 3.1(i). We call the sides A, B, C, D

and the corners 1,2,3,4. The identification of sides A&C and B&D is indicated by the

1 [4], p. 2649.

22
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Figure 3.1: (i) Labels for the sides and corners of the tile, and identifications of sides
A&C and B&D. (ii) The neighborhood of a vertex where four tiles meet.

arrows on the boundary. Folding up the tile by gluing together the identified sides with

the indicated orientation creates a torus, T2 . The same gluing information can also be

exhibited by looking at the neighborhood of the vertex where the 4 corners come to-

gether, or where 4 tiles meet on the plane (See Figure 3.100). We produce this Figure

by "bootstrapping" around the vertex, a method we will employ frequently in what fol-

lows. Starting form the region about the vertex labelled 1, sides A and C are identified

as part of the topology generating gluing. Adjacent to side C is side D, and these two

sides meet at corner 4. Next, side B is glued onto D, side C is adjacent to B, and corner

3 lies at the intersection of these two boundary components. We continue in this way,

labelling each side and each region of the vertex, showing all the gluing of Figure 3.1(i).

Each line, like the one between A and C, is one of the boundaries we say has p i , Cj i on

one side, and p2 , w2 on the other. The corresponding edge along which we calculate Ap i a

is, in this case, the line that runs out from the 1-4 region of the vertex and returns to
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Figure 3.2: The transformations W across the identified edges (i)C&A, (ii)D&B.

the vertex though the 2-3 region. Across the boundary between sides A and C we find

from (2.8)

WC A a b PC b HCA a = PA a •

Here Wc A is the Lorentz transformation which relates WcAtic = 11A and HcA is the

constant defined by (2.7). This relation holds all along the edge between sides A and C

so we push the result down to the 1-4 region of the vertex. Evaluated at the vertex we

write

WCAab PC b (4) HCA a pAa(1) •

The term pc a (1) is really the limiting value of pca as the vertex is approached along edge

C. There is a similar relation at the other end of this CA boundary, the end in the 3-2

region of the vertex. The relations across each of the four edges of the tile can be written

down by looking at Figure 3.2:
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WCA ab PC b (4) HCA a

• 

PAa(1)
Figure 3.2 (i)

WCAab pc b(3) HcAa PAa(2)

Figure 3.2 (ii)^
WDBab PD b (4) + IIDB a

• 

pBa(3)

To produce the action we must evaluate the Apa by integrating along the identified

edges. Each edge contributes twice, recall, but the return integral along the 2-side is

taken care of with the WW terms in the action. We need only consider the 1-sides, from

corners 1 -4 2 and 2 3. The action is simply

{(PA a ( 2) PA a ( 1 )) WCA bxWCA cs

(PB a (3) PB a ( 2)) WDB bs WDB c  Eabc

Now it is not true that, say, pc (4) = pA (1), even though these two functions are evaluated

at the same point, under the identification of sides A and C. There is the discontinuity

is pa defining 14/cA and licit . It is true, however, that at vertex 4, pD(4) = pc (4), as these

are evaluated at the same point on the tile, without any identification of points required.

Call the corner value just p 4 . Similar relations hold in each region of the vertex:

P A(1) PD( 1 )
^

PB(2 ) = PA(2 ) = P2^
(3.2)

PC(3 ) = PB(3 ) = p3
^PD(4) = pc(4) = p4

With these relations, along with the W and II above, we can express p in each region

of the vertex in terms of, say, p l . By bootstrapping around the vertex from region 1,

jumping across boundaries with (3.1) and around corners with (3.2), we evaluate p3(pl),

for instance, in vector- rather than component-form, as

P3 = WC A l (P2 — HC A)

= IIVCA-1 (WDBP1 IIDB HCA) •

(3.1)

WDB ab PD b (1) + HDB a

• 

pBa(2)
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Note that just as we define Wc A to jump from side C to side A, WAC jumps from side A

to side C. Each of the W is invertible, though, so WAC WC A l • In this way we find

P2^WDB(P1 11DB)

P3^WCA-1 (WDBP1 ilDB — TIC A)

P4^WC A-1 (pi - HCA)

 

(3.3)

    

We arbitrarily chose to write p 3 = P3(P2 (pi )), but we equally could have chosen p3 (p4 (pi)),

or even p3(p4(pi (p2 (p3(p4 (pi (• • •))• In order that the results be consistent, it must be true

that the transformation giving a complete circuit of the vertex is the Identity:

Pi (P4 (P3(P2(Pi )))) = P1 •

As the transformation is in general a Poincare transformation, this means the Lorentz

part is the Identity, while the translation vanishes. Jumping all the way around the

vertex produces

TAT -1 Tv- -1 1,,
pi^WCA vvDB vvCA vvDBP1

+ WC AWD B-1 WC A-1 H D B

LT -1^-11-r
WCA WDB vvCA 11CA

— WCAWDB HDB

+ FICA •

Hence the Lorentz transformations must obey the closure relation

TAT -14,T7 -14,17

^

WCA vvDB vvCA vvDB 1 •^ (3.4)

This "constraint" is the representation of the fundamental group 7 1 (r) in the gauge

group ISO(2,1). It is equivalent to the condition

WCAWDB WDBWCA
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so that the two Lorentz transformations commute. Applying the relation (3.4), we reduce

the translation constraint to simply

^(1 WCA) HDB = (1 — WDB) HCA •^ (3.5)

We will further analyse this constraint below, and how much, or how little, it further

constrains the system. First though, we calculate the action.

With the relations (3.2) and (3.3), we can express the action in terms of p 1 (or simply

p), W, and II, plus the constraints (3.4) and (3.5). We first introduce notation to remove

the cumbersome term

viib wcxcx^abe

Define

{W}c, = Flibxwcscab, •

We now adopt a 0-index notation so that

H a vox wcscab, Ha { w} a^ll{w}

The algebra of reducing the action is greatly simplified by the following properties of

{W}, the details of which are found in Appendix C:

(un){tair} = n{W}
11{14i .w2}=

  

(C.1)

(C.2)

(C.3)H ({ 4 } 0721) _ (H72 -1 11) { 1472 -1 144}

 

With this new notation, the action, without the constraints yet imposed, reads

 

I = (I/K , p){WC A-1 WDB-1 WC AWD B}

— (WC A l llc A) {WD B}

  

+ ( wDB-1 11DB){WDB-1 WCAWDB} •
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An example of the {W} algebra is shown below in the 7 12#712 case. If we now impose

the constraints on the system, the first term above vanishes, as {1} oc 1 = 0. The action

is finally reduced to

(147DB-111DB){WcA} — (WcA 1 ricA ) {

a b ( WC A WD B 141D B WC A) a b

a ((1 — WC A)11 D B (1 — WD B) 11 C
^ (3.6)

where the constraints are included with the Lagrange multipliers e and C.

The most important feature of this result in that it is written entirely in terms of

the holonomies [W ITT 1C A I—CAJ and [W Ill 1DB i _DB J • All reference to the geometry of the tile has

been removed. This is exactly the property that flat connections are completely specified

by a collection of holonomies. Furthermore, we see that the action is very nearly in the

canonical 1,4 form, except that {W} is not merely I- W. Before we attempt to extract

the canonical variables, we will look at the r#T 2 case for more insight.

3.2 Consistency of the Constraints

It appears from (3.6) that 6 degrees of freedom will be removed by imposing the con-

straints on the system: 3 from the vector constraint, and just 3 from the matrix con-

straint, due to the symmetry of Lorentz transformations. In fact, explicitly writing out

the constraints shows that these six equations are not independent, and only four degrees

of freedom are directly removed. Also, we will see that under a interesting identification

of the H with translations in the solution space of W's, the relations (3.4) and (3.5)

contain the same constraints. This association is not precise, but merely suggestive of

the roles of W and H as canonically conjugate variables.
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The first constraint of the T 2-system is the closure relation

WCA abi/VDB b c TVDB abWCA b c = 0 .

The W's are forced by this constraint to lie on a surface in W-space. Hence variations

of the solution WCA^WDB must also lie on the this surface. That is, variations of the

constraint with respect to the the coordinates Wab must vanish. We will see that this new

condition is a copy of the second constraint on the system, subject to some interpretation

of the variables. The variation of WcA WDB — WDBWcA is calculated by

SWCA ab rTAT^6.WCAb 
a vvCAYTIVDB b^TVDBab TAT C SWCA sAac TVC A Xy^ V IVA Ty

(5 WDB b  1LIT^C5WB ab r+ 147C A ab^xC "rDBxy^U "
ixT

DB Ty WC A b c
'TDB y^WDDB Xy

where
swa

6 — sa
SWxy x

Thus

A ac^SWCAabWDBb WDB ab 0WCA b C

14/6 A abSWDB 6 SWD B ablVCA 6

or, in matrix form,

A = 8WcAWDB — WDB6WcA

WcASWDB — SWDBWCA •

By varying the constant metric 77 ab , observe that (SW)W' is antisymmetric:

(S (77
ab )

= s(wawbc)

= swac wbc w a c swbc

= swac wbc swb c w ac^ (3.7)
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Insert factors of 1 = W'W where necessary into the expression for A to get all SW into

this antisymmetric form:

A = (SWcAWcA-1 )WcAWDB — WDB( 6WCAWCA-1 )WCA

+ WC A(CSWDBWDB-1 )WDB (SWD BWD B-1 )WD BWC A

= (SWC AWC A-1 )WC A WD B WD B ( 6. WC AWC A-1 )WD B-1 WD B WC A

+ WC A (6. WD B 14713 B-1 )WC A-1 WC A IlVD B (8 WD BWD B-1 ) 14113 B (VC A

where the last step puts each (SW W') into a similarity transformation. We right-

multiply by IV

and apply the relation (3.4) to find

^\ ^—
0^(6WCA WCA-1) WDB (8WCA WCA-1 ) r

HT
DB

1

WCA ( 8WDB WDB-1 )WCA-1 (SWDB WDB-1 )

Now as (SW W -1 ) is antisymmetric, we can replace this matrix by an equivalent vector

A a defined as

Aa fabc
swbd wcd

The similarity transformations U(SWW -4 )/4' become linear transformations U of the

vector. "Rotate" the antisymmetric matrix (SW W') with a Lorentz transformation U:

swbdvrd^ubxjwxdwyducy

This new matrix is also antisymmetric in b, c: interchange b and c to find

ucx (swsdwy d) uby = ucx (6w dwyd)uby

ucx (5wyd wx.d) uby

as SW W-1  antisymmetric. Now relabel the dummy indices, interchanging x and y:

_= ucy swsd wylubx

ub x (
(
Swsd wy d) ucy

cAWDB, or equivalently WDBWCA, without changing the vanishing variation
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Define a new vector A'a from this antisymmetric matrix:

ya fabc (11bxtiVW dWyd) .

By (A.4),

SO

which is simply

Eabc tibs ti c y = tia z exy ,

Ala = ti az Ezxy ST/VxdWYd

A'a = tfazAz .

Under this substitution of A a , the variation of the constraint on the W's is equivalent to

the constraint

0 = ACA — WDBAC A + WCAADB — \DB

= (1 — WDB)ACA — (1 — Wc,A)ADB •

This is exactly the second constraint (3.5) under the identification

Aa^ila .

The Aa are infinitesimal translations in the space of W's, suggesting the holonomy com-

ponents II are related to translation-generating momenta, conjugate to the configuration

variables W. We will expand on this idea further, after considering the T2_//.T2 case,

where we reproduce the almost canonical p4 action.

3.3 A Model of T2

To transform the action in {W} and H into something that can be written on the back of

an envelope, we construct an explicit model for T2 and find the Poincare transformations
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[Will] across its boundaries. We will see that even a very simple model reveals interesting

details.

It is easy to construct a region representing the torus because the plane R 2 can be

tiled in unit squares. By identifying points on opposite sides of the square, the torus'

topology is produced. To bring this tile into the arena where we can study the action,

we must attach the holonomies [W ITT 1 anddj [WDB IllD )3] between the identified sides.

The constraints (3.4) and (3.5) make this a fairly simple procedure.

Because the Lorentz transformations Wc A and WDB commute, they must be boosts

in the same direction. Let us choose coordinates (x l , x 2 , x3) = (t, x, y) over the tiled R2

plane so that this direction is the x-direction, with the origin at corner 1 of the tile.

Recall from §1.2 that boosts in the x-direction are generated by exponentiation of the

matrix J3. We can choose

cosh(y) sinh(,u) 0 \

^WCA = eA.13^sinh(,u) cosh(,u) 0

0^0^1 j

cosh(ay) sinh(a,u) 01

^WDB = e la3^sinh(ay) cosh(au) 0

0^0^l/

where ,u is some boost parameter and au ensures WDB is parallel to WCA.

It is interesting to look at the translation constraint (3.5) with respect to this choice

of WCA and WDB. The constraint reads

1 — cosh(y) — sinh(y) 0 HDB 1

— sinh(u) 1 — cosh(y) 0 HDB 2

0 0 0 / HDB3
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/ 1 — cosh(ap) — sinh(a,u) 0 \ TIC A l

= — sinh(ap) 1 — cosh(ap) 0 TIC A 2

0 0 0 1 \ ITC A 3 I

While IIDB 1 , HDB 2 , HcA 1 , HcA 2 are coupled by two equations, IIDB 3 and HcA 3 are com-

pletely unconstrained. That is, for any translations Ir in the y-direction, the sequence

of transformations that circumvents the tile vertex is still the Identity. While initially it

appeared that the constraints would directly remove six degrees of freedom (df) from the

system, in fact only four are removed. This is not merely an artifact of our particular

choice of the x-direction for the boosts, for a rotation will not affect the indeterminacy of

the matrices 1— WDB or 1 — WCA• We will see below in the more complicated r#T 2 case

that this failure of the six constraints to remove six df is unique among the non-zero genus

surfaces to the torus. Furthermore, whereas the Lorentz component of the holonomies

confine the transformations to a surface of constant 0 2 — x 2 , the translation carries

vectors off this hyperbolic plane. With some translation in the t- and x-directions and

arbitrary y-translation, it seems possible that the sequence of transformations around

the vertex can be a loop with time-like sections, carrying vectors along closed time-like

curves.

To attach these Lorentz transformations to the unit square recall that W is de-

fined at the link between the values of the field Uab across the identification boundary:

W21ti2 = U1. The field Uab which is consistent with this choice of W's is found by treating

the transformations W as a sort of "phase difference" between identified points. Referring

again to Figure 3.1, first consider just the corners labelled 1,2,3,4. As the vertex at cor-

ner 1 on side D maps to the vertex at corner 2 on side B under WDB , U (2) = WDBU (1) .

To find U(3), we see that U(3) maps onto U(2) under Wc A, so U(2) = WcAU(3) or
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Figure 3.3: Values for the 'phase' U at the corners of the tile.

U(3) = WcVU(2) = WcA-1 WDB U(1). Similarly, U(4) = WcZ1U(1). Now if we cal-

culate U(3) from U(4), instead of U(2), we write U(3) = WDB U(2) = WDBMA 1 U(1).

So that the result is independent of the choice of evaluation, it must be true that

Wcit 1 WDB = WDBWCA 1 or WDBWCA = WCAWDB, exactly the constraint we encountered

earlier. Since the transformations W are determined only by the phase difference be-

tween the values of U at identified points, there is an over all arbitrary choice for U(1).

Setting U(1) = Wc

corner values are now interpolated smoothly over the tile, taking care to keep the correct

W phase difference between identified points on the boundary. The particular choice of

interpolation does not change the action, which depends only on the difference across the

tile (or across the boundary). One simple example of an interpolation is

ti(x, y) = e ( 1— f(Y) -Ectf(x))0J3

SA gives simple values to the corners of the tile (See Figure 3.3). These

where f is linear between f (0) = 0 and f(1) = 1. Smoother interpolations (quadratic,



Chapter 3. The Simple Torus^ 35

cubic, ... ) can be used where continuity of derivatives of U is required in further calcu-

lations.

The final step in the construction of our model is finding a set of H's. These trans-

lations entered the calculation through W21p2 + 1121 = p1, where pa(x b) = Fa(x b) is

the function chosen to eliminate the e i a. A simple choice is to give the translations

only y-components, n-CA = (0, 0, a) and IlDB = (0, 0, b), and set pa (x b) = xa . The

Lorentz components of the holonomies preserve 0 2 — x 2 while the translations shift the

y-components of parallel transported vectors by a constant. The tangent space over the

tile is a parallelogram on the surface of constant 02 - x 2 (See Figure 3.4). The relation

W21P2 + 1121 = p1 tells us which points are identified in the tangent space.

3.4 An Alternative Approach to the Torus

Another, more "standard", method for studying (2+1)-dimensional GR on a torus is

based on the fact that of all the compact surfaces, only the genus 1 torus can support

a continuous, non-vanishing tangent vector field. The approach, therefore, cannot be

generalized to higher genus surfaces.

Because the plane R2 can be tiled in unit squares, we break spacetime into R2 0 R.

By identifying opposite sides of a unit square, or defining spatial coordinates x and y

to be periodic with period 1, the spacetime T 2 R is generated. With this geometry,

Carlip [4] proceeds by specifying the holonomies of this surface, two commuting Poincare

transformations:

A l : (t, x, y) —f (t cosh^x sinh^x cosh + t sinh^y a)

A2 : (t, x, y) --+ (t cosh /2 x sinh^x cosh p + t sinh ,a, y b)

A dreibein and connection which exhibit these holonomies under a path-ordered integral
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Figure 3.4: Tiles of the tangent space over the torus are parallelograms in boost-transla-
tion space.
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or Wilson line [5] calculation of the holonomy are e1 = e2 = 0 , col = co2 = 0 and

e3 = (0, a, b)^w3 = (0, A, ,a)

This dreibein produces a singular metric, but we can gauge transform to a non-singular

system:
el = (— /3 , 0, 0 )^col = (0, 0, 0)

e2 = (0, #A, OF) w2 = (0, 0, 0)

e3 = (0, a,b)^co3 = ( 0, A, it)
where 13(0 is a function only of the time on the slice. On each slice of constant time,

a constant, continuous non-vanishing tangent vector field is realized. The metric arising

from this choice of dreibein is

ds2 = la 2 dt2 — (a2 + # 2 A2)dx 2

—2(ab + 13 2 A,a)dx dy — (b2 + /3 2 it 2 )dy2 .

Now Carlip observes that the spatial part of the metric, the metric on the torus, is

unchanged by the two coordinate transformations

(x + (ab + 0 2 Aµ ^Nap — Ab) ,,,) ___+
a2 + 13 2A2 Y a2 + /3 2A2 Y

(ab + 13 2A,a) ,,,, 0(a,tt — Ab) ,„)((x +1) + a2 + 0 2A2 '.9 a2 + 13 2A2 Y

(x + (at. + 0 2 A,u) ,,,, 13(a,a — Ab) ,,,)
a2 + 0 2x2 Y a2 + /32A2 Y

(x + (ab +
a2 + 

0 2 A,a)
(y +1), 

,3(af 
3 2A2

t — Ab)
 (y + 1))0 2A2^a2 + / 

The geometry of the space, therefore, is characterized by these two coordinate translations

in a, b, A, ,a, the parameters that fix the holonomies. Treating a, b, A, ,a as a new set of

coordinates, the Hamiltonian produced is simply

H = i3(a,u — Ab) .
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One interpretation of the canonical variables is to take the boost parameters A, p as

coordinates and the translations a, b as conjugate momenta.

This result is based on the existence of a non-singular spatial metric on the surface.

Its spatial periodicity is equivalent to the periodic tiling of the tangent space over the

torus. The holonomies (A, a) and (pi, b) completely determine the action because of the

flatness of the space.

A model for the genus g = 1 torus is simple to construct because the plane R2 can

be tiled in regular (4g = 4)-gons, or squares. This surface is also easier to study than

other genus surfaces because it is the only one that can support a non-vanishing tangent

vector field, immediately giving the surface a non-singular metric. We now turn a to more

complicated surface, the two-holed torus, where the results for T2 are closely mimicked.



Chapter 4

A Two-Holed Torus

In this chapter we apply the results of Chapter 2 to the more complicated genus 2 two-

holed torus, r#T2 . One would suspect that this surface is more difficult to study than

T 2 , for it is impossible to put a continuous non-vanishing tangent vector field onto this

surface whose non-zero Euler characteristic x = 2-2g = —2 is non-zero.[6] We will find,

however, that T2#T2 is simply the connected sum of two tori T 2 , and the action is more

complicated only because it is a functional of twice as many variables. This surface has

2g = 4 generating non-trivial loops. It can be constructed by identifying pairs of sides

of a (4g = 8)-sided polygon. Or equivalently, the two-holed torus can be conceived by a

tiling of a plane with octagonal tiles, with eight tiles meeting at each vertex. As we shall

see, but intuitively understand already, the plane R 2 cannot be tiled in regular octagons

without leaving gaps in the tiling. Hence we look to hyperbolic geometry where the

condition that triangles have 180° no longer applies. Before we construct such a tile and

its collection of holonomies W and II, we first consider the case of a general octagonal

tiling, and translate the results of Chapter 2 into the r#T 2 variables.

4.1 The Action over a Two-Holed Torus

We calculate the action over the two-holed torus exactly as we did for T 2 . Cover

each surface of constant time with octagonal tiles. Label the sides of the octagon

A, B , . . . , H and the corners 1,2, ... , 8 (See Figure 4.1(i)). The identification of sides

is indicated by the arrows on each side. Gluing the matching sides together generates the

39
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Figure 4.1: (i) Label for the sides and corners of the tile, and identifications of sides. (ii)
The neighborhood of a vertex where eight tiles meet.

boundary-less two-holed torus. Note the reversed orientation in the pairs of identified

sides C&A, D&B, G&E, H&F. The neighborhood of a vertex where eight tiles meet also

shows the identifications and labels (See Figure 4.1(ii)). As before, we bootstrap around

the vertex using the identifications and label the sides and regions of the vertex. Figure

4.1(ii) is a truer representation of the tile because the neighborhood of a vertex is a patch

of R2 , and the angular contribution of each tile is if. By drawing the whole tile on paper

(R2 ) as opposed to the hyperbolic plane where the tile really sits, we are forced to stretch

the angles out to ,ir-.

Across the boundary between sides A and C we find from (2.8)

WCA ab PC a + IICA a = PA a •

Here WcA is the Lorentz transformation which relates WcA Uc = UA and HCA is the

constant defined by (2.7). This relation holds all along the edge between sides A and C
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as Wab,, = 0 (2.5), so we push the result down to the 3-2 region of the vertex where

WCA ab PC a ( 3 ) + TICA a = pAa(2) •

The term pc a (3) is the limiting value

Similar relations across each of the identified

of pc a as the vertex is approached along edge C.

edges are defined in Figure 4.2:

mAab pc b (4) + HCAa
^pAa( 1)

Figure 4.2 (1)
WCA ab PC b ( 3 )^HCA a = PA a (2)

Figure 4.2 (ii)
WDBab pDb (4) + HDB a^Wa(3)

WDB ab PD b (5 )^IIDB a = PC a (2 )
(4.1)

Figure 4.2 (iii)
{

WGE ab pGb (7) + HGE a = PE a (6)

wGE ab pGb(8) IIGEa pEa(5)

Figure 4.2 (iv)
WHF ab PH b ( 8 )^HH Fa = PFa (7)

TVHF ab PH b ( 1 ) + 111 F a^pFa(6)

We must evaluate Ap i a by integrating along identified edges to produce the action.

The return integrals along 2-sides are accounted for by the WW terms, so we need only

consider the 1-sides, from corners 1 2, 2 -+ 3, 5 -+ 6, and 6 -4 7. The action becomes

I =^(PAa(2) PA a ( 1 ))WCA bsWCA cx

(PB a (3) PB a ( 2 ))WDB bxWDB cs

(PE a ( 6) PE a ( 5 ))WGE b zWGE cx

^(PF a^PFa (6)0H Fb^Fcs fabc •
^ (4.2)

The field pa is discontinuous across the boundaries, the discontinuities related to the

holonomies W and H. But in region 4 of the vertex, for instance, pp (4) = pc (4), as this

is the limiting value of a function pa, continuous on the tile, without any identification

of points required. Call the common value just p 4 . An analogous relation holds in each
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Figure 4.2: The transformations W across the identified edges (i)C&A, (ii)D&B,
(iii)G&E, and (iv)H&F.
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region of the vertex:

pA(1) pi-1M= pi^pA(2)= pB(2) =--- p 2

pB(3) = pc(3) = p3^pc(4) = PD(4) = P4

pD(5) = pE(5) = P5^P E( 6 ) = PF ( 6) = P6

PF( 7) = PG( 7) = P7^PG(8) = PH(8) = P8

By bootstrapping around the vertex from region 1 with these relations and the W, H

above (4.1) we can express all the pi in terms of p l . As vectors and matrices rather than

in components, we see

P2 = WCA P3 + HC A

WCA(WDB P4 + HDB) + HCA

WCA(WDB(WCA 1 (pi —HcA))+ HDB) + "CA

Repeating the process for each corner at the vertex gives

P2^WCA(WDB(WCA1 (pi —HcA))+HDB)+ 11 CA

P3^WDB(WCA1 (pi — HcA)) HDB

P4^111' ( p — "CA

P5^WGEWH F l (WGE 1 (WHF P1 + HHF HGE) HHF) + HGE

P6^WHFP1 HHF

-GE 1 \ •^1•HFP -HF -GP7^W (W^TT^TT E 1

P8^WHF1 (WGE 1 (WHF P1 + HHF HGE) - HHF)

We arbitrarily chose to write ps = Ps(P7(06(P1))) in finding the last result in this

list, but we equally could have bootstrapped the other way around the vertex, writ-

ing ps = ps(p5(p2(p3(p4(p1)))))• For the pi to be well-defined, it must be true that a

complete circuit of the vertex is the Identity:

(4. 3)

P1(p4(p3(P2(P5(P8(p7(p6(P1) • • •)) = P1
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The Lorentz part of this Poincare transformation must be the Identity and the translation

must vanish. The transformation carrying p i around the vertex back onto p i is given by

P1 = WC AWD B 1 WC A-1 WD BWG E WH F 1 WG E 1 WHF P1

+ WC AWD B 1 WCA4 WD BWG EWH F 1 WG E 1 H H F

- WC AWD B 1 WC A-1 WD BWG E WH F 1 WG E 1 H G E

- WC AWD B 1 WC A 1 WD BWGEWH F 1 H H F

+ WC AWD B 1 WC A 1 WD BHG E

+ WC AWD B 1 WC A 1 H D B

TAT 11,17 -ln
- WCAvvDB wvCA

- WCAWDB-111DB

• H C A •

The Lorentz transformations WCA,WDB1WGE,WHF must obey the closure relation

WCA WDB 1 WCA-1 WDB WGEWHF 1 WGE 1 WHF = 1 •

Again we see the fundamental group 7r i (T 2#T 2 ) represented by the W in the gauge group.

Define

1^WC A WD B-1 WC A-1 WDB

= WH WG EWH FWG E 1 •

The constraint (4.5) is equivalent to

(4.6)

f21 - f22 = .

While S2 1 = h1(WcA, WDB) but I/2 = 11 2(WGE, WHF), they are the same transformation:

hi is a transformation halfway around the vertex in one direction, C2 2 is a transformation

halfway around in the other direction, and the two results coincide there. The decoupling

(4.4)

(4.5)
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of the transformations into ABCD terms and EFGH terms is an indication of the

connected sum construction of r#T 2 . The constraint (4.5) shows that the two tori glue

together smoothly. By inserting the factors missing from the cycle (4.5) and removing

the resulting factors of 1, we can reduce the translation part of (4.4) to the constraint

0 = 11CA — WCAWDB 1 WCA 1 HCA

— WC A WD B-1 H D B WC A WD 13-1 WC A 1 H D B

— WHF 1 HGE WHF 1 WGEWHFWGE 1 HGE

+WH F-111H F WH F-1 WG EH H F •^ (4.7)

We can now write the action in terms of p i (or simply p), W, and H, plus the

constraints (4.5) and (4.7) with the help of (4.3). Again we introduce

{W}. = Ikxw'eab,

to more easily write

H a lkbsW'cabc H{W}

We use the properties of {W} found in Appendix C to reduce the action to a simple

form:

I = — p{WCAWDB 1- WCA 1 WDB} p{WHF 1 WGEWH FWG

(WD 13-1 HG A) {wDB 1 f2i } — (wDB 1 HDB) {wcA 1 121}

HGE{WHFC12} (WGEWHF-1HHF) {WGEg2} •

The term in HcA, for example, is found as follows: Upon substituting the relations (4.3)

into the action (4.2), the terms containing 11CA are

— (wcAwDBwc,VHcA) {14/CA} + HCA{WcA}

— (wDBMA i ncA) {WDB} + (wcAwDBwcA 1 11cA) {wDB}

—11cA{WDB} •
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Rewrite this using (C.1) to give the terms the form of the right-hand side of (C.3):

(— WC A WD B WC A-1 H C A) { WC A WD B WC A-1 WC A WD B-1 WC A-1 WC Al

—^ —^ —

11 CA { WcA. — HCA{WDB} — (WDB , v
7A7

cA
1 -Fr
iicA) {WDB v

TAT
CA

1
 ry

TA7
CAvv

TA7
DB

1
 ro'
Tv'

DB

+ (WC A WD B WC A 1 ri c A) WC A WD B WC A-1 WC A WD 13-1 WC A 1 WD B

Now apply (C.3) to remove the under-braced terms:

= —11 C A {WcAWDB-1 } + HC A {WC AWD B-1 WC A 1 }

+HCA {VI/6A} — HCA{WDB} — IICA {WCA} + HcA{ WCAWDB 1 }

+11cA{WCA WD B-1 WC A-1 WD B} HC A {1476 AWD WcA 1 } •

The only two remaining terms are grouped together with (C.3) to give

= (wDB-1 11cA) {WDB-1 WcAwDB-1 W6A-1 WDB} .

Substituting 52 1 from (4.6) produces the fIcA term in the action above.

By imposing the constraint Q i = 522, the terms in p cancel in the action, leaving the

constrained action

I = ( WDB-1 HcA) {wDB-l f/i} — (WDB-1 HDB) {Wcii-1 121}

—HGE{WBFQ2} + (WGEWBF 1 HBF) {WGE512}

— 
Q2)ab

+Ca C A — WC AWD B-4 IVC A-4 NC A + • • • — WH F-1 WG EH H Fr •
^(4.8)

The Lagrange multipliers e and have been included to account for the constraints

imposed by (4.5) and (4.7), respectively. Observe again that the terms in ABCD are

decoupled from those in EFGH.

As in the T 2 case, this action is written entirely in terms of the holonomies W and H.

The geometry of the tile has been removed. The action is very nearly in the canonical

•
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p4 form, except that the term {W} is not merely do W . The only difference between the

"simple" T 2 and the "difficult" r#T 2 is that more variables have appeared to account

for the increased number of incontractible loops and holonomies.

4.2 Consistency of the Constraints

Recall the first constraint on the system is that the Lorentz transformations W obey the

closure condition (4.5)

T^T^1WC AWDB 1 WC A-1 WDBWGE vvHF1 v1, vGE
1
 E

A 7
rHF 1

or with (4.6),

C21 -^= 0 .

The second constraint forces the sequence of translations to vanish (4.7), closing the

circuit of Poincare transformations around the two-holed torus:

1,17 -1 TAT 1 rr
0^HCA WC A v^vvC A "-CA

—wcAwDB 1 11DB+ WC A WD 13-1 WC A-1 H D B

- WHF 11IGE WHF 1 WGEWHFWGE 1 HGE

+WH F 1 HHF WH F 1 WG Ell' F •

The "configuration" variables W (they are not quite the configuration variables be-

cause the action is of the form 11{W}, not merely 11W) are forced by the first constraint

to lie on a surface defined by the relation (4.5). Variations, or nearby solutions, must

also lie in this surface. We will see that this new condition is the second constraint (4.7),

under an identification of the "conjugate" variables H (as above, the H are not quite

conjugate to W) with infinitesimal Lorentz generators. We will work both in tensor and

component form in showing this result.
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The variation of C2 1 — S22 is defined as

• = s ( — 112 ) ( — f22) 
^SWCA^SWDB

^

SWCA^SWDB

^+ S(f21 
n2) SWGE

^— C1 2) 
^SWGE^SWIIF

SWGE^SWHF

where
Swab^=
SW sy

SW b a y
^y ^a

^

sw x^Wp 14lb (5TS

the latter coming from 5(W W') = 0. In component form, the constraint reads

0 = WC A a bWDB cb WC A dc WDB d e

— WH F b a WGE b e l/VH F c d •WGE e d •

The variation, with the 5-functions evaluated, is

Aae = owcAaowDBcbwcAdcwDB de
WCAabWDBc5WCApcWCAdq(SWCAPOWDBde

_wcA ab wDBpbwDBcg(swDBpowcAdcwDB de wcAabwDBcbwcAdc(swDBde)

_KFba(swGE bc)wHF c dwGEed wHFbawGE b cwHF cd uT
vvGEpd WGE e q (SWGE Pq )

+WH F pa WH F b q (SWH FPOWGE b c WHF cd 14 E e d — 147HFb a WGE b c (SWHF C d)WGE e d

This is merely the ( )ae element of the matrix

• = ( 8WcA)WDB-1 WcA-4 WDB — TVC AWD B-1 WC A-1 (SWC A)WC A-1 WD B

—WC AWD B-1 (SWD B)WD B-1 WC A-1 WD B WC AWD B-1 WC A-1 (SWDB)

—WH F-1 (SWGE)WH FWGE-1 WH F-1 WG EWH FWGE-1 (SWGE)WGE-1

+WH F-1 (SWH F)WH F-1 WGEWH FWGE-1^F-1WGE (SWH F)WGE-1

which is clearly the variation of WcAWDB 1 WcA 1 WDB — WHF 1 WGEWHFWGE 1 under
s(w -1) =
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Recall that (SW)W -1 is antisymmetric (3.7). Insert factors of 1 = W'W where

necessary into the expression for A to get all SW into this antisymmetric form. As the

variation A must vanish, we can right-multiply A by WDB vv
TA,

C AWDBWC A1 or equivalently

/17^T r
WGEWHF-

1
 roGE VVHF, to find the following:

0 = SWC A 147C A-1 ) — 147C AWD B-1 WC A-1 (SWC A 147C A-1 )WC AWD B-1 WC A-1

— WC A WD B-1 (SWD B 147D B-1 )WD B .147C A-1 + WC AWD B-1 WC A-1 (SWD B WD B-1 )WC AWD B .147C A-1

— 147H F-1 (SWGEE WG E-1 )WH F WH F-1 WG E 147H F 147G E-1 (SWGE 147G E-1 )WG E 147H F-1 WG E-1 WH F

+WH F-1 (SWH F 147H F-1 )WH F WH F-1 WG E (SWH F WH F-1 )WG E-1 147H F

As (SW)W' is antisymmetric, it has only three independent components and can be

replaced by a vector Aa:

Aa = cabc 
swbd wdc

Again, the similarity transformations U(SW W')/1 -1 in the variation are simple linear

transformations UA of the vector A. The variation of the constraint becomes

= ACA — WC AWD B 1 WC A 1 ACA

— WCAWDB-1 ADB WCAWDB-1 WCA-1 ADB

— WH F 1 AGE + WH F 1 WG EWH F 1 WG E 1 GE

+WHF 1 AHF WHF 1 WGEAHF •

Under the identification

Axy a^xya ,

this is exactly the second constraint (4.7). The same notion of the 11 being momenta

conjugate to the configuration variables W is suggested. We offer an interpretation of

these "canonical variables" in Chapter 5.
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We arrive at the question of how many degrees of freedom are directly removed by

these constraints. The condition 52 1 5221 = 1 implies

WC A WD B 1 WC A-1 = 11 2 WDB1 •^ (4.9)

Taking the trace of this matrix equation shows

TrWDB-1 = Tr (WC A WD B-1 WC A-1 ) = Tr (0. W- -2 -DB 1 )

Whatever form 122 takes, the components of WD B must satisfy this (scalar) equation,

removing one df.

Using the fact that the Lorentz transformations form a Lie group, we can write each

element in exponential form U = enaJa, where the generators Ja introduced in §1.2 are a

basis for this vector space. We re-write (4.9) as

e -nDBawcA.lawcA1 = 122 e —971JBaJa

Now — 7/DB a WC A a WC A-1 is a vector in the space spanned by the basis vectors WCAJaWCA-1)

the original basis Ja rotated by WC A.. In the original, non-rotated basis, this is the vector

— (WCAT/DB) a Ja . This is the same as the earlier result of §3.2 that showed A' UA when

the matrices (SW W-1  rotated by U. Thus we have

e -(wcAnDB)aJa =11 2 e—naDEja •
^ (4.10)

The right-hand side is WDB1 transformed by 112. The vector representing this new Lorentz

transformation is —(WCA 71DB) a a rotation of 7/15B . The equation specifies the direction

about which this rotation must occur (two equations) and its magnitude (one equation).

We see, however,

147C A WD B-1 WC A-1 = WC A (WD BWD B-1 )WD B-1 WC A-1

= (WC A WD B)WD B-1 (WC A WD B) -1
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so that rotations about the riDB-direction are inconsequential. Therefore, the rotation

specified by (4.10) is determined by only one parameter. Together with the magnitude

of the rotation, two df are removed. Coupled with the trace relation, a full three df are

directly removed by the relation 52 1 1221 = 1. The translation constraint (4.7) likewise

removes three df, directly reducing the dimension of the phase space by six. The failure

of the constraints to remove a full six df from the T 2 system is due to the triviality of the

trace relation: The condition WcAWDB-1 WcA-1 WDB = 1 shows WDB 1 = WC A WD B 1 WC A 1 SO

that

Tr WD B1 = Tr ( WC A WD B-1 WC A-1 )

= Tr WDB-1 •

This equation put no conditions of the transformation WDB. This, together with the

corresponding translation "non-constraint", supplies the unexpected extra df in the torus

system.

Each constraint also removes a gauge degree of freedom, that gauge transformation

generated by the constraint. Thus the dimension of the phase space over all genus g > 1

surfaces is (2g holonomies © 6 df per holonomy) — (6 constraints + 6 gauge choices),

giving dimension 12g-12, except for the genus 1 torus, which has an unexpected 12-8=4

degrees of freedom.

4.3 A Model of T 2#712

While the results we have found are quite explicit, they are still based on some unspecified

octagonal tiling and an abstract collection of Lorentz transformations and translations.

We now propose to build an actual physical model (as physical as (2+1) can be...) for

the tiling and the holonomies. We will see, though, that to construct a model, we have
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to simplify the geometry with high symmetry, eliminating the translation components

IP of the holonomies altogether.

4.3.1 Tilings

To construct a closed surface without boundary, like T 2#T 2 , one abstractly thinks of a

plane or similar infinite region modulo some identification. Concretely this can mean

covering the infinite region with tiles and identifying sides of the tile in pairs. The plane

R2 , however, cannot be tiled with all regular polygons. Suppose the tiles are regular

p-sided polygons. The interior angle at each vertex of a p-gon is w (P-2) . If q such tiles

meet at every vertex then each tile contributes 29 so that 7r(P-2) = —21r or (p-2)(q-2) = 4.

The solutions to this condition are {p = 3, q = 6}, {p = 6, q = 3}, and {p = 4, q = 4}

which correspond to covering the plane in triangles, hexagons and squares, respectively.

The latter is the tiling we use to construct the torus T 2 . Clearly there is no integral value

of q for which p = 8 is a solution, meaning the R2 cannot be tiled in octagons.

Instead we look to a hyperbolic plane where the sum of the angles in a triangle is

less than 7r, and the interior angle of regular p-gon is less than 74P-2) . The neighborhood

of a vertex where q hyperbolic p-gons meet is a patch of R2 and still requires a full 27r

radians. Each tile contributes an angle of aLr. Since the p-gon is hyperbolic , r < w(P )q P 7

or (p — 2)(q — 2) > 4. One of infinitely many solutions to this condition is {p = 8, q = 8}.

While it is not clear how an octagon can regularly cover a hyperboloid, one must recall

that the hypersurface of constant time is embedded in Minkowski, not Euclidean, space

so that every point on the hypersurface is the same (proper) distance from the origin,

much like the 2-dimensional surface of a sphere in Euclidean R3.
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4.3.2 Construction of an Octagonal Tile

The constraints tell us R 23 a b = 0, so the tile we construct must be flat. Consider the

simplest flat 3-dimensional space, Minkowski. In polar coordinates, the 3-dimensional

Minkowski metric is

ds2 = —dt 2 dR2 R2 d02 .

Change coordinates (t, R, 0) to (T, p, 0) defined by

t^T cosh p

R^sinh p.^ (4.11)

Inverting this transformation shows

= +0 2 — R2

p = tanh -1 —
R

.

Observe that r is invariant under Lorentz transformations, while p is the magnitude of

the Lorentz boost which takes R 0 out to R sinh p. We exploit the invariance of r

under Lorentz transformations. By building the tile on a surface of constant r, points on

the tile will be connected with merely Lorentz, rather than full Poincare, transformations.

Finally, define a new coordinate

r = Ttanh( e )^ (4.12)

and consider for simplicity the r = 1 hypersurface. This coordinate transformation

projects the T = 1 hypersurface onto a unit disk with infinity at r = 1, much the same

way the stereographic map projects R2 onto the 2-sphere. The metric on this surface is

conformally flat:
4^r2do.2)do-2 = ^ (dr2

(1 — r2)2
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Because this disk is conformally flat, angles are preserved between the unit disk and the

(T, p, 0) coordinate system.

To construct the tile, we piece together 8 identical curves chosen in the following way.

In the original Minkowski space, consider the intersection of the T = 1 hyperboloid and

the "vertical" plane y = 0. This curve lies on the hyperboloid "above" the y-axis and

can be parametrized by

-y(A) = (t(A) = A, R(A) = NA 2 - 1, 0(A) =

for A > 1. Now Lorentz-boost every point in the y=0 plane in the x-direction by some

magnitude p; the points which lie on the y-axis are unaffected by this transformation

and the y = 0 plane is 'tilted' in the x-direction. With increasing boosts the intersection

curve y(A) moves away from lying over the y-axis until finally with an infinite boost,

the plane has tilted by 7r/4 and is just tangent to the hyperboloid at x = +oo. With

arbitrary but finite boosts by p, the family of curves -y(A; p) is parametrized by

t(A) = A cosh p

R(A) = VA2 cosh 2 p — 1

0(A) = tan -1 (+\/A2 — 1 
A sinh p )

One can check that y(A) = R(A) sin 0(A) remains unchanged under the p-boost, so that

the plane is tilted without any stretching.

On the unit disk with coordinates (r, 0) found by projecting down the T = 1 hyper-

surface, consider the collection of circles centred outside the disk which intersect r = 1

orthogonally (See Figure 4.3). The arcs within the unit disk are the geodesics of this

Poincare Disk model of hyperbolic geometry [8]. Parametrize in 0 the arc within the unit

disk of a circle of radius "r:
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Figure 4.3: Circles of radius F intersect the unit disk orthogonally. The arcs within the
unit disk are parametrized in O.
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r(0)^+ P2 COS 0 -^+ .7"2 ) COS 2 0 - 1

tan 0 E [ - , .

This circle is centered a distance 1/1 +^> 1 from the origin.

Transforming this family of curves r(0; F) with parameter F back to Minkowski coor-

dinates, we find

t(0) =
1 + r(0) 2

1 — r(0) 2

R(0) =
2r(0)

1 — r(0) 2

(^0 = e^)

Comparing this with the family of intersection curves y(A; p) we see

t (A) 2 — R(A) 2 = 1 = t(e ) 2 — R (19 ) 2

so that both families of curves lie on the T = 1 hypersurface. Furthermore, by comparing

the 0 = 0 points of both families we find the correspondence between p and "7-. and finally

that these two families of curves are identical. That is, the curve in Minkowski space

where the y 0 plane, tilted by tanh(p), intersects the T 1 hypersurface becomes

the arc of a circle of radius F(p) which orthogonally intersects the boundary of the unit

Poincare Disk.

By simply rotating these curves about the origin, we can piece together arcs in the

unit disk to form an 8-sided figure. We must now find the value of the parameter F , or

equivalently p, which produces the correct tile. The polygonal tile we are constructing

is regular, so the 8-sides must be spaced at equal intervals of 7/4. Consider the figure

produced by laying down 8 arcs of radius F centered at radius N/1 +^on the 8

7/4-'spokes' (See Figure 4.4). When i 0 the arcs belong to small circles centered just

beyond r^1 and the arcs do not intersect (Figure 4.4(i)). At some larger F when each
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Figure 4.4: For various values of F, arcs (i) do not intersect, (ii) are tangent to one
another, (iii) form an almost regular octagon about the origin, and (iv) intersect with
angle 7r/4.
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arc just intersects the two neighboring arcs, the angle at the intersection of two adjacent

arcs is 0 because all arcs intersect orthogonally with r = 1 (Figure 4.4(ii)). When r oo,

the arcs become diameters of the unit circle, and at large r, the 8 arcs intersect to form

an 8-sided figure about the origin which is very nearly a regular octagon (Figure 4.4(iii)).

The angle between adjacent arcs of this figure is almost - 147-r, the interior angle of a regular

plane octagon. For each value of r we amputate the legs of the 8-sided figure about the

origin and call the result an octagon. We must choose the value of r which generates an

octagon whose adjacent sides intersect at an angle ((Figure 4.4(iv)) so that 8 such tiles

will supply the 27r radians about the vertex. On the conformally flat Poincare Disk, we

can use plane geometry to find

r ( 4 ) =
1 

2 + 2V-2- •
(4.13)

This r corresponds to a boost magnitude of

   

ri^) p(i) 1ln [ 11 + 1
r^

ln
 1 — vl F(D 2 F(i) •

(4.14)

The magnitude p(i) generates a tile on the T = 1 hypersurface. The construction can be

repeated for hypersurfaces at arbitrary 7, but the result is the same. This magnitude is

actually independent of 7 and generates curves on all hypersurfaces of constant 7 from

which these octagonal tiles can be constructed.

4.3.3 Holonomies

The 8-sided figure on the hypersurface of constant time T is the tile we represent schemat-

ically in Figure 4.1(i). For simplicity, suppose the centre of the octagon lies over the origin

and that the 0 0 ray bisects side A. Corner 1 lies at 0 = -1, corner 2 at 0^corner

3 at 0 =^and so on (See Figure 4.5). The transformations W between the identified

sides can be easily found by recalling the procedure used to construct the curves which



Chapter 4. A Two-Holed Torus^ 59

Figure 4.5: The octagonal tile lying on a hyperbolic hypersurface of constant time r. In
Minkowski space, every point on the tile is the same distance 7 from the origin.
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became the sides of the octagon. Hereon, p will refer to the value p(i) produced from

i'(i). Just as a boost in the y-direction by p drops the curve over the x-axis down to

form side C of the tile, a boost in the (—y)-direction by p (or equivalently a boost in the

y-direction by —p) will lift side C back up to a curve lying over the x-axis. Rotate this

curve by -Fi (+ to generate the right orientation), and boost it by p in the x-direction

to drop it back down onto side A. This sequence of SO(2,1) transformations maps side

C onto side A. As SO(2,1) is a group, the composition of the three is a single Lorentz

transformation, which we call WCA•

A general Lorentz boost of magnitude 1u in the 0-direction is i -+ A(,u, 0)Y where

cosh Lt^sinh ,u cos 0^sinh ,u sin 0^N

sinh ,u cos 0 (cosh ,u — 1) cost + 1 (cosh — 1) cos 0 sin 0

sinh ,u cos 0 (cosh ,u — 1) cos 0 sin 0 (cosh ft — 1) sin e c + 1 /

Rotations about the origin in the xy-plane by angle 0 are produced under the transfor-

mation
I 1^0^0

R(0) = 0 cos 0 — sin 0

\0 - sin zi)^cost'

The transformations WCA , then, is given by

: maps side C onto side A

7r^ 7r
= A(p, 0)R(-2-)A(p, 

3
)

cosh 2p 0 — sinh 2p

sinh 2p 0 — cosh 2p

0^1^0

This method of lift-rotate-drop gives each of the W transformations:

WCA

WCA
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maps side D onto side B

—4 )R(-2 )A(P, —4 )

1^cosh 2p^sinh 2p v 2 sinh 2p \v 2 

sinh 2p^sinh 2 p^— cosh 2 p

sinh 2p^cosh2 p^— sinh 2 p

maps side G onto side E

^

A(p,7r)R(i^
2 )

cosh 2p 0 sinh 2p

— sinh 2p 0 — cosh 2p

■ 0^1^0

maps side H onto side F

(0, ) ( 7r ) (0 ,^)A., , 4 , R. 2 , A , 4 ,

cosh 2p^—  sinh 2p v,-
2 

sinh 2p \

sinh 2psinh 2 p^— cosh 2 p

sinh 2p^cosh 2 p^— sinh2 p

4.3.4 The Fields tiab and pa

The symmetry of the model for T 2#T 2 allows us to find a single transformation WcA that

maps side C onto side A. Because WcA is independent of the pair of identified points on

the matching sides, we see Wcki = 0 as required by (2.5). The same applies to WDB, WGE,

and WHF. The W transformations, recall, are the link between the values of the field U

on opposites sides of a boundary. We attach the W onto the octagon as we did for the

square tile of T 2 , by regarding the holonomy as a "phase difference" between identified

points.

WDB

WDB

WGE

WGE

WHF

WHF
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Figure 4.6: Values of the phase U on the corners of the r#T 2 's octagonal tile. The
constraints guarantee U(1) is well defined.

Again we start on the corners of the tile (Refer to Figure 4.1(i)). Since only the

phase difference between identified points matters, there is an arbitrary constant phase.

If we set U(3) WcA-1WDB, the U field nicely decouples into ABCD and EFGH, as

we found before (See Figure 4.6). By starting on corner 3 and transforming to each

corner under the W's, we find on corner 1 both U(1) = WH F-1 WGEWH FWG E-1 and U(1) =

WC A WD B-1 WC A 1 WD B . The constraint (4.5) ensures U(1) is well defined. It is now a simple

matter of interpolating these vertex values over the whole tile, while preserving the phase

difference between identified points. A simple choice is a linear interpolation between the

corners along the boundary, coupled with a radial interpolation under which the U field,

now defined on the boundary, decays down to the identity at the center of the tile. All the
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transformations W are in SO(2,1) and connected continuously to the identity. These two

interpolations together give a continuous field over the tile with points on the boundary

differing by the appropriate transformations W. Smoother interpolations can be used, if

necessary.

The last component of this model is the field pa, introduced to write the dreibein as

eA a = DA pa . The choice we make is a very simple one; too simple, perhaps, for it sets the

translations H to 0. Consider the choice pa = xa = (t, x, y) in Minkowski space, giving

ex = (0, 1, 0) and ey = (0, 0, 1). Recall the solutions to the equations of motion are those

for which Rii, ab = 0, so in the solution space we can take e t = (1, 0, 0) as well. The two

fields U and p completely determine the holonomies. We found in (2.8)

W21 ab P2 a -I- 1121 a = /h a

where p 1 and p2 are the values of p on either side of the identified boundary. The

transformations WCA, for instance, maps (t, x, y) on side C onto (t, x, y) on side A:

But this is exactly

a = WCA ab PCPA ^7

showing the translation fI cAa is not needed to reproduce the discontinuity in p across the

CA-boundary. This choice of pa is "elegant" because it so easily exhibits the discontinu-

ities required for the holonomies to be non-trivial. The solution H = 0 just means the

configuration is (momentarily) stationary. This is consistent with the geometry of the

tile being independent of the time 7 on the spatial slice, a property we found in (4.14)

when we built the tile.
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Canonically Conjugate Variables and Quantization

We have seen from the two surfaces studied here that the Einstein action, on the solutions

to the equations of motion and with the constraints imposed, is of the form

17'2 = (wDB-1 11DB){1VcA} — (wcA-1 1-1cA){14/DB}

iT2#T2 = (WDB 1 11cA) {WDB 1 1/1} — (WDB 1 11DB) {wcief21}

—HGE{WHFI12} + ( WGEwHF 1 11HF) {WGEC22}

dThis result is not the canonical p4 form of the action because {W} is not —dt W but instead,

recall,

{W}. = wbxwexcabc

While this is not the vector ciW tangent to the space of W's, {W} is still tangent to

some W-space, related in a one-to-one way with the tangents of the space of Lorentz

transformations. The translations H are not (quite) the momentum conjugate to the

Lorentz transformations W, although the association or the H with infinitessimal trans-

lations of the W is very suggestive. It is possible to bring the result even closer to the

canonical form to reveal more about the phase space.

Every Lorentz transformation can be written in the form

W = ei r"1"

where the Ja are the 3 x3 Lorentz generators introduced in §1.2. The components 11a can

64
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be determined as follows. Write W = eA for some A. As BeAB -1 = e l3A13 -1 ,

eA^W

= W W W -1

= WeAW -1

= ewAw-1

so that A = WAW- 1 or [A, W] = 0. If we write A = 7rJa , then

0 = qa[Ja , W]

There are only three distinct components in this matrix equation due to the symmetry

of the Ja . The three equations are not linearly independent, though (the right-hand-side

has vanishing determinant, as det(Ja )=0). Another relation is needed to solve for the

components rya. Determinants will not suffice: As det(W)=1

1 = det(W) = eTrA

Thus TrA=0 and any constant times the matrix A will not change the determinant of

W. Instead, we consider

NTr W = Tr(eA ) = eA l + eA2 + eA3

where A i , A2, )t3 , the eigenvalues of A, are functions of ,.. This comes from the property

that A can be written DAD' for some D and diagonal A, so that Tr eA = Tr( eDAD-1 ) =

Tr( DeAD') = Tr e' by the cyclic nature of the trace. Since A is diagonal, Tr e A =

e'' -+ + eA3. This relation, along with the two equations arising from [A, W] = 0,

suffice to completely determine rf.

Now we can write

Ili = cii (ena.1“)
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^ow a ^

^

= ( th a ) q ^

Wbx = ( aaWirt )bx ir .

>

Therefore the action can be re-written as

E^(ll a a_aw \ b x wcs cabc) 7y
‘ re i

holonomies [Will]

This action is now in canonical /*form. This expression, however, is not as well behaved

as one would like. In a neighborhood of each W in the space of Lorentz transformations,

we can attach 77 coordinates and consider (OW107(). Writing W = e aJa is only shorthand

+ if ja + [qua, q bfb i 4_ . . .for the power series 1^ , so derivatives with respect to qz may

not even exist. Furthermore, there is no guarantee that the coordinate patches around

each W are part of some global coordinates over which we can compare the values of

(OW/Oqz) for two different holonomies.

With these problems in mind, let us speculate on the canonical coordinates. The

configuration space variables are qa, the coordinates in the space of Lorentz transfor-

mations. This space is now represented as a vector space with basis Ja . The relations

[Ja7 Jb] = Cabc Jc show the structure constants are c ab', suggesting a non-trivial geometry.

The momenta conjugate to these coordinates are related to the translations Ha. Under

this association, we would expect the Ha, as momenta, to generate translations in the

configuration space. And this is what we find in looking at the equivalence of the con-

straints: we make the association Aa --> pa for Aa = fabc 8W bd Wdc • It is easy to verify

that cab , = (Ja ) b, — these Aa are (infinitesimal) translations about the vector space of

W's. While the interpretation is by no means rigorous, it is very suggestive: The Lorentz

components W of the holonomies are the configuration coordinates. Translations in this

space, generated by the momenta Ha ,s, OW W)Ja, are infinitesimal Lorentz transforma-

tions. This is just what we expect for translation in a space of Lorentz transformations.
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Figure 5.1: (i) A principle ISO(2,1)-bundle over the base space T 2#T2 . (ii) The 'phase
space' is like an ISO(2,1)-bundle over the space of configurations of the surface.

There is another, more mathematical description of this system. Vectors in the tan-

gent space over each point of the surface, T 2 or r#T 2 , are subject to the action of

the Poincare group ISO(2,1). This group leaves the Einstein action invariant, and its

generators obey a Lie algebra. These are the ingredients needed to define a principle

ISO(2,1)-bundle over the surface. The group action moves us along each fibre over the

surface without changing the Einstein action. The holonomy at a point on one of the in-

contractible loops is the element [Win] of the gauge group ISO(2,1) relating two distinct

points in the fibre over this base point (See Figure 5.1(i)). In the language of princi-

ple bundles, the phase space is also like an ISO(2,1)-bundle, this one over a base space

consisting of configurations of the 2-dimensional surface (See Figure 5.1(ii)). The one

point in the base space we have found represents the regular octagonal tile constructed

above. Other points represent asymmetric tiles and their corresponding collections of

holonomies. The momenta H are infinitesimal generators of the group action in each
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fibre. The W and II vary as we move about in each fibre from one horizontal lift to

the next under global gauge transformations. Yet the projections down to the base

space of holonomies remains unchanged. If we rotate the tile, or globally boost it to

a new location, a similarly transformed collection of holonomies is produced. The tile

representing this new surface, though, is essentially unchanged, merely displaced. The

canonical variables W and H are phase space coordinates in this bundle: The W are

configuration coordinates in the fibre over a basepoint, a particular configuration of the

tile representing the surface. The momenta H generate translations along this fibre un-

der the infinitesimal group action. Different horizontal lifts, all differing by global gauge

transformations, have different coordinates (W, II), but project down to the same model

of the surface, perhaps displaced but leaving the Einstein action invariant.

In the full ISO(2,1) representation, the Poincare holonomies can be written as

[w(701 11 (0-a)] = enaJa+, apa

where Pa , introduced with Ja in §1.2, generates translation in the xa direction. In the

case of the torus T 2 , we can see T/CA a = (0, 0, p), 0-cA a = (0, 0, a) and 77DB a = (0, 0, au),

0DB a = (0, 0, b). For the two-holed torus r#T 2 , the transformations WCA, • • • , WHF are

compositions of boosts and rotations and the corresponding 71 a must be evaluated by

the method outlined above. The conjugate translations IIc A , ... , IIHF all vanish so

ocA " = (0, 0, 0),..., UHF" = (0,0,0). This exponential ISO(2,1) representation of the

holonomies matches the Chern-Simons approach. There, the gauge field is the collec-

tion of flat connections A t, that transform under the action of an infinitesimal parameter

u --,--- raJa +paPa . That is, the difference between two horizontal lifts along the same fibre,

(W, II) and (W', II'), which project down to the same model of the surface, is generated

by an infinitesimal Poincare transformation u. The coordinates W and H determine the

point on the fibre over the base space.



Chapter 5. Canonically Conjugate Variables and Quantization^ 69

When the canonically conjugate variables of a classical Hamiltonian system are known,

quantization in the Schrodinger picture involves expressing the variables as operators on

a Hilbert space of wave functions W. The observed values of the coordinates and mo-

menta are eigenvalues of coordinate and momentum operators. Unfortunately our choice

of canonical variables W and H have ill-defined operators, for the following reason. We

suggest that the configuration space has coordinates 7/a, the components of the vector

representing W in the vector space spanned by {J1, J2, J3} . The quantum mechanical 7/a

are the spectrum of a position operator Na:

Na T = qa kif

While J3 and J2 generate boosts in the x- and (—y)-directions, respectively, and have

spectra 7/3 , 7/ 2 E ( — oo, oo), recall that J1 generates rotations in the xy-plane. The eigen-

value of this operator is the angle of rotation, 7/ 1 ti 0:

N 1 (0)P =eW.

Because rotations differing by 27r give the same reading 0, we require both

N1 (0) 'P = 6411

1V 1 (0 + 27) = .

Thus N 1 is no longer a linear operator on the Hilbert space of T's. This tells us that 0,

or 7/ 1 , by itself cannot be an observable. Instead, some function of the operator N 1 , elN1

for instance, is needed for a well-defined operator. At the same time, the Hilbert space

is no longer a vector space, but has a "cylindrical" shape (See Figure 5.2).

Because the rotations are a subgroup of SO(2,1), which is itself a subgroups of the

gauge group ISO(2,1), perhaps this problem can be circumvented by re-defining the

configuration space modulo S 1 : R3181 0 R3/si 0 • • • ® R3is1, one term for each of the
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Figure 5.2: J2 and J3 are generators of Lorentz boosts while J i generates rotations.
Because the same eigenvalue 0 results from rotations by 0 + 2irn for all integers n, the
coordinate 7/ 1 0 is periodic and the Hilbert space of wave functions has a "cylindrical"
geometry.
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2g holonomies of the flat genus g surface. In any event, this complex structure of the

phase space arises from the choice of W and H as canonically conjugate variables, and

this interpretation is only speculative, based on qualitative observations.
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Conclusions

6.1 Generalization of the Result

The ease with which we jumped from the torus to the two-holed torus suggests this

formulation of the Einstein action can be applied to all higher genus surfaces. By choosing

an appropriate r on the Poincare Disk to produce a regular (4g)-sided polygon with an

interior angle of alr- tilings of the hyperbolic plane are produced. Algebraic topology4g

describes a genus g surface, a connected sum of g tori, in terms of 2g cycles [9]:

A -1 A-1 A -1A-1^-1A-1u i a 2 u2 a2 u2 • • • a l/ 1_4 11gg g g

We use this expression to read off the identification of sides of the tile. In the r#T 2

case, a l b 1 adbTl a 2 b2 aZ1 b2l H ABCDEFGH tells us to identify sides A&C, B&D, E&G,

F&H, each with the orientation of the 2 identified sides reversed. That is, choose a

representation of the fundamental group of the surface in the gauge group ISO(2,1). Each

additional "hole" formed by the surface simply adds two more holonomies, [W 29+1 ,IH2g+1 ]

and 1W M29+21 --2g+2] to the collection that determines the geometry of the surface. The

constraint that the transformation producing a complete circuit of the vertex is the

Identity ensures each additional torus glues smoothly to the rest:

W1 W2 -1 W1 -1 W2 • • • W2g-}-1W2g+2 1 W2g+0 W2g+2 = 1

W2g+2 1 W22+1 W2g+2^=^W2-1 W1 -1 W2 • • • W2g -1 W2g 1 W2g -1 1 W2g

T92+ 1 # 7-112 #^# 29 )

72
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These transformations can be attached to the tile with the "phase difference" approach.

The closure relation on the W's guarantees a well-defined U field. Analogously, two more

terms, (IT)\ ---- / 2g+1{W}2g+1 and (n)__,2g+2{W}2g +2, are added to the action to account for these

new degrees of freedom. The problems of conjugate variables and quantization are still

present, but not further obscured by the increase in genus.

6.2 Future Research

The Chern-Simons action based on gauge field theory and the usual Einstein action

of GR are two different representations of the same system. The former deals with

the gauge group theory of a principle ISO(2,1)-bundle over a (compact) surface, while

the latter looks at invariants of the Einstein action over a (2+1)-dimensional splitting

of spacetime. By comparing the ISO(2,1) gauge invariance of the Chern-Simons field

= eµ Pa c.umaJa with the usual Lorentz + diffeomorphism invariance of the dreibein

e: and connection w,,a, Witten [1] shows that the 2 representations differ only by a

transformation that is part of the gauge group, and thus is inconsequential. Therefore,

the general results of principle bundles and gauge theory can be used to study the specific

case of (2+1)-dimensional spacetime. There is reason to suspect, however, that the two

approaches are equivalent only under special circumstances.

Recall from §1.2 that the variation of A t, is given by SA A = Se: Pa + Sw:Ja where

a abcse a abcE C ilbrc — E WgbPc

scot: = —T
a 

— abc Lc)br c •

Under the substitution pa = V iL e tta these transformations coincide, on the solutions to

the equations of motion, to infinitesimal diffeomorphisms and Lorentz transformations,

the invariants of the Einstein action. In the case where e t," is everywhere non-vanishing,
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this gauge transformation is a physical coordinate transformation generated by the vector

field 174 = paella . Note that Va = Va(eaa ), where eac, = g 4Lve„•

Now on all but the torus T 2 , the tangent vector field to the spatial surface must

have at least one singularity. Suppose the spatial ei a fail to span the tangent space at

the point V'. Where does this point "slide" to under the diffeomorphism generated by

pa = Vae ir We cannot say, as the vector field Vµ(e) cannot be determined! The

perfectly acceptable gauge transformation is no longer a coordinate transformation and

hence is no longer physical. When we drop the requirement that the results be physical,

we are left with an exercise in mathematics, not a theory of spacetime dynamics.

There is another problem related to this singularity. Suppose we are at a point

in flat spacetime where the dreibein is not singular. At this point, we perform the gauge

transformation with parameter pa chosen such that pa4 = e4a, so that Sem(' = — e4a and

the dreibein becomes singular. This simple gauge transformation does not have a corre-

sponding coordinate transformation. Furthermore, we cannot perform a gauge invariant

coordinate transformation to get away from this singularity, for the diffeomorphism must

be generated by VI-Le lia which vanishes for all V. This suggests we can take two very

different spacetime (Euclidean and Minkowski R3 , for instance) and glue them together

at this point e. Moreover, there are gauge transformations that allow us to pass through

this point from one spacetime to the other. It may even be possible to extend this "phe-

nomenon" to a whole region, allowing us to construct a manifold whose metric changes

signature. Clearly the equivalence of the Chern-Simons and Einstein actions has inter-

esting details as yet unexplored.

One more question raised by the results deals with a subtlety of the dreibein approach

that suggests this formalism is somehow "larger" than GR. On all but the torus, the

vector field tangent to the spatial surfaces must vanish at one or more points. This

means the full spacetime metric must either be singular, or at least time-like. One of the
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gauge transformations allowed by the dreibein representation of the Einstein action is the

internal transformation coa --> e lf + D„pa. In general, this transformation will change

the metric components la,tiv = epaeva• At the point(s) where the metric g, is time-like, a

gauge equivalent metric .g,,,, may be space-like or null — clearly this is not a coordinate

transformation. This phenomenon is prohibited in the usual form of GR written in

terms of the metric and its derivatives. There is a freedom allowed by the dreibein

formalism not allowed in GR. It may be possible to construct an explicit model and

study it in analogy with the gauge theory explanation for the Bohm-Aharonov effect.[10]

Overlapping coordinate patches may be related by a gauge transformation, but not a

coordinate transformation.

General Relativity is simpler in (2+1)-dimensions in the dreibein formalism because

the conditions that describe the slicing of 3-dimensional spacetime force the spatial hy-

persurfaces to be flat. We have considered the cases where these 2-dimensional slices are

folded up into compact surfaces, the torus T 2 and the two-holed torus T 2#T 2 . While they

remain flat, removing the geometric degrees of freedom, the topology of these higher genus

surfaces becomes important. The Einstein action becomes a functional not of the geo-

metric quantities g,„ but the topological quantities [WIIn, the ISO (2,1) holonomies over

the surface. The flatness of the genus g surface removes all but 2g distinct holonomies,

and the action is written entirely in terms of these Poincare transformations.

From the form of the reduced action, we can speculate of the dynamical variables and

the phase space. It appears that the configuration space is the space of Lorentz transfor-

mations while the conjugate momenta lie in the collection of spacetime translations. We

make this interpretation because the translations H a are related to infinitesimal Lorentz

transformations, just as classically, momenta generate translation in configuration space.

While the action we have produced does not truly reveal the dynamical variables of



Chapter 6. Conclusions^ 76

this spacetime, and quantization of the phase space is not obvious, the method employed

to reduce the action is quite revealing. It is apparent that the correct phase space of the

classical conjugate variables is not simply R.2" . It is most likely curved, and quantum

mechanics on curved space is a problem that will not be tackled here. The result raised

interesting questions about the gauge structure of spacetime, and also, therefore, about

(2+1)-dimensional gravity over compact surfaces.
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Appendix A

Properties of Lorentz Transformations Uab

By definition, a SO(2,1) Lorentz transformation Uab must keep the metric lab invariant:

uac ubcocd = Ti ab

From this we see

uctc ubc = lab

Or

   

uac ?lb c _ Sg, (A.1)

A similar relation can be derived can be derived from this one. Re-write (A.1) as

ud c ridaubc = riab

so that

ud c 7idauboab = 1 .^ (A.2)

Suppose, in all generality, that the transformation U has both different left and right

inverses:

u(u -1 ) R = 1^(u- ')Lu = 1 .

Together, these give

(u-1)L u (u-1 ) R (u — 1 ) 1,

(u-1 ) 1, = (u-1) R
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so that the left and right inverses are the same. From (A.2) we see ridaubc7lab is the right

inverse of lid c . Left and right inverses coincide, so

ridau bf 77ab /id =

which is equivalent to

   

tra b sab (A.3)

A third property of Lorentz transformations is also used in producing the results of

Chapter 2. We come across terms of the form

Cabc Uas U by U cz •

The indices x, y, z are still Lorentz indices, named from the end of the alphabet to clarify

the index maniupulations. Relabel the dummy indices b, c:

Ea bc Uax ti by tt c, = Cacb teix U ey U bz

= —6abctiaxU cyU bz •

Comparing the first and last expression, we see Eabcuaxuby IA% is antisymmetric in b and c.

Analogous relabelling shows that EabcUaxUbyticz is totally antisymmetric, and therefore

must be proportional to the only totally antisymmetric 3-tensor, c xyz : Write

CabcUaxilbyticz = A 6syz

Solve for A:

= exYz f abc Uax U by ticz

= det(Uab ) .

These Special Orthogonal matrices have unit determinant, so A = 1, and

Cabc Uas U by IA% = 6xYz (A.4)



Appendix B

Setting CJi ab = 0 and e a = 0

We have written

w„ab = 73„cdtica udb + tica(ticb,,i)

and claimed that because Rij ab = 0, we can find a Uab such that 473, 6 = 0. That is, there

is a Uab for which

ab =^pcb,,)

or

Ua a cb,i = ticWib • (B.1)

Formally we write the solution of this matrix equation

= ef wpdsi`

This is not well-defined as /4(x 4 ) will in general have a different value for each path -y(A)

integrated over, as

de = dyµ (A) dA
dA

will be different for each path. Instead we write

= pef,^ (B.2)

where P stands for path-ordering the integral along the path -y. The meaning of a path-

ordered integral can be seen as follows. Discretize the path -y(A) over the surface under
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0 = Ao < A l < • • • < An = 1 with -y(A k ) = xk. Then the integral (B.2) is the limiting

value

urn ewP(„,),Axr,, • • • ewp(s 1 )Axii' ewp(x0 )Axt;
n—).00

Each term ewP(xk)°4 is a transformation acting on the term to the right, so that (B.2) is

an infinite succession of infinitesimal transformations in a direction tangent to the path,

parallel transporting along -y(A). If Ax k is tangent to the path at x k then

dx(x k ) = 
d-y(Ak)

dA dA Ax k

and
d ^f x0Pe -Y P d = Pef-Y wP dx1A Wv (Xk)

dX 1' ( X1c)

or,

14,,, =14w,

as required in (B.1).

There is no reason, however, for this result to hold for nearby paths. Integrated over

a different path "--y between x, and x l , so that --y (5m ) = yin = xn = -y(An ), ti(yrn ) and

/4(x,2 ) may have different values. While both

dxv 
Pe f- Y wP dx.P 

= Pef-Y w" dx1A co,, ,

p^=^wpdyP
tiv 7dyv

it is not true in general that, say,

pef w jA cist`^coudxt`i^= Pe'^co,, (

xk) ,dyv

for in general
d-y(An )^d-y(-Ani)

dx(x,i
) = dA dA 

^dA = dy(yrn )•dA
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Figure B.1: An infinitesimal loop of generated by vectors Tµ, S" with area ATAS.

The constraints, however, tell us that the spatial components of the Reimann cur-

vature tensor vanish, R2 j ab = 0. Recall what the Reimann tensor represents: Parallel

transporting a vector Va about an infinitesimal loop (See Figure B.1) changes Va in-

finitesimally by

SVa = ATASV b Tt'S" 'RAvt a •

The change in the vector Va is proportional to Rt,,,b a and to the loop's area ATAS.

Notice that the indices ,a, v link the components of the tensor to the paths in the directions

TA, S".

Returning to our problem, suppose /1(xµ) is calculated along the path -y(A) as in

(B.2). When dxil = (d-ya / dA)dA, equation (B.1) holds. We want to show that because

Rij ab = 0, the result holds for all paths on the surface:

  i(xn ) li(x0wi(xn)
dY 2 (yn)

for some other ya = yµ ( a) passing through xn.
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Figure B.2: Two infinitesimally different paths to xn =

Consider an infinitesimal change in the path 7 (See Figure B.2). Along coincident

paths, U(xo) = 14(y0 ),14(x i) ,14(xn_1) =-14(y„_ 1 ). Whereas U(xn) is calcu-

lated in the limit

llm ewp(Xn-1)AXt7:-1U(Xn-1)
n—).co

U(yn) is calculated by traversing the loop of area —Axn_ i Ayn_i. The two paths from

Xo = yo to xn = yn are

Xo, xi • • ' Xn-27 Xn-17 Xn

Yo, Y1 • • • Yn-2) Yn-11 Y1) Y21 Yn •

Their difference is the loop

Xn Yn-11 yl, Y27 Yn •

If U(xn ) had been calculated by path-ordered integration along the varied path, then the
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difference in its value would be

SUab = xn- Agn-i X 2 Y3 VbRuc a — UacRu b c ) •

Only the spatial components are present as the paths lie in a surface of constant time.

Since R23 ab = 0, there is no change in Uab because of this infinitesimal change in the path.

Macroscopic changes in -y can be built from many infinitesimal ones, the result holding

at each stage. The result tells us that the value of U ab at xiL is independent of the path

along which the integration occurs. Therefore, in checking that (B.1) is true at any

point, we can assume that the path used to calculate WI, in (B.2) is the one for which

dx = (d-yi I dA)dA, so that (B.1) holds.

Finally, with U,1 = Ucoi at all points on the tile,Co' i ab = 0 must vanish, leaving only the

time components undetermined.

In the coordinate system where CJi ab = 0, we transformed the dreibein under

nwo a

In this coordinate sytem, D i pa = io`:i as the spatial C3i ab = 0. We claim that because

D[iej Cil = 0, or E [iaji = 0, we can find a particular pa(xa) such that e ma = 0. The solution

to the PDE

e a^na^ (B.3)

can formally be written as

pa = PI e4adxii
-y

where again P indicates path-ordering along the path -y. The result (B.3) holds along

the path where dxa = (d-yi DOA but the result need not be true for different paths.

Like the co4a b case above, we interpret the path-ordered integral as a limit. Discretize

the path -y(A) so that xk = ry(Ak) and Axk is tangent to the path at, say, x k Axk/2.
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The point where we evaluate does not matter in the limit. The path-ordered integral is

the limiting value

Ax,
2^

Ax^ Ax
lim^ 1 

e a(x 0 + ^ )A4^
2

+ a(x i +^),A4 +^a(x„  ^A
^2 ^n

n)Ax .
1-i 

To show that the value of pa(e) is in fact independent of the path to xa, again consider

the two paths between x, = yo and x n = y 9., used above (See Figure B.2). The difference

between the two paths, recall, is the loop

Xn Yn-11 yl, y2, Yn.

This loop will contribute to the sum (or 'integral') an amount

Axn
etia(xn^_t^ AYn-1^Aepa(xn_ i

2^ 2

),A4^e a02 AYn-1 

^

e a 01 +^
Axn_i

2^-1^A^2

These paths, and this loop, lie in a surface of constant time, so the displacements Ax k

and Ayk have no time-, or 0-, components. Furthermore, we can assume that these

displacements are in the spatial 1- and 2-directions, for any loop can be approximated to

an arbitrary degree by a tiling of parallelograms whose sides are in the 1- and 2-directions.

Thus with Axn_ i = (0, Ax, 0) and Ayn_ i = (0, 0, ay), the loop contributes

Ay

e2a (xn-1 2 Ax) — e2a (xn-1 AxAy . .
Ax

In the limit where n -4 oo, this is simply

(6 1 72 - 6271 ) AxAy .

The constraint tells us e[a3] = 0, so variations in the path do not affect the value of

the path-ordered integral. Because of this path independence, we can always assume

dx 2 (d-y i /dA)clA so that e l a = Apa . Therefore, e t a must vanish.

e1 'L — t + AY) — ei a (xn — t) (



Appendix C

Properties of {W}

We define the symbol

{ W} a = Wbx wcx cab,

so that

H a -r -i- rbs
W Wcs Eabc = 11{W} .

There are three properties of this symbol which will simply the algebra of reducing the

action to a more canonical form.

By definition,

(un){uW1 = proaubyti/Yxuczwzx cabc

= fictuad . ; -, ,u ucz IksWzx cabc

Recalling property (A.4) of Lorentz transformations U,

= ri d Wyx wzx cabc

Relabelling dyz^abc gives

=_ Ha Wbs wcs cabc

That is,

(un){uW} = H{W}^ (C.1)
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Next, in full component form,

H { w1w2} = Ha (wi b dw2 d s)(wi b dw d2 ) 6abc

=^dw2c1 s wi c ew2 ex eabc

+H a W1 b^d0472 x Wl c e W2 ex Eabc

Now the first term can be rewritten by first raising and lowering the e:

• b^ b^cdH a Wi d Wi ce dW2 x W2 x Eabc = II ^dW1 Eabc

be
= H{W1}

The second term is simply 11{W1 W2 } so that

     

II{Wi W2} = 11{ -1/4}+ H{W1l4l2}

  

(C.2)

Lastly, using (C.2) just derived, we can write

   

( vv2 _11-) {w2 -1 wi} (w2 _11-T) {v2 _1 1471} (w2 _1 ro

 

While (W2 -1 11) {W2 -1 W1 } H11141 by (C.1),

   

(w2 _11-)^_ 0472 -1472 _1 1-0 {w214;-1 }

    

= n ({W214/2-1}—

= — H{W}

   

as^a (S! = 0. Therefore

    

(W2 -41) { 1472 -1 mo = HA} - {C)

 

(C.3)
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