(2+1)-DIMENSIONAL GRAVITY OVER A
TWO-HOLED TORUS, T*#T*
By
Peter R. Newbury
B.Sc.Hons., University of Manitoba, 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES
DEPARTMENT OF MATHEMATICS

INSTITUTE OF APPLIED MATHEMATICS

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
March, 1993
© Peter R. Newbury, 1993



In presenting this thesis in partial fulfiment of the requirements for an advanced
degree at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. | further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature)

Department of _ Mathematics

The University of British Columbia
Vancouver, Canada

| Date (_Z Moandh 1993

DE-6 (2/88)



Abstract

Research into the relationships between General Relativity, topology, and gauge theory
has, for the most part, produced abstract mathematical results. This thesis is an attempt
to bring these powerful theories down to the level of explicit geometric examples. Much
progress has recently been made in relating Chern-Simons gauge field theory to (2+1)-
dimensional gravity over topologically non-trivial surfaces. Starting from the dreibein
formalism, we reduce the Einstein action, a functional of geometric quantities, down to
a functional only of the holonomies over flat compact surfaces, subject to topological
constraints. We consider the specific examples of a torus 72, and then the two-holed
torus, T%#£T2. Previous studies of the torus are based on the fact that the torus, and only
the torus, can support a continuous, non-vanishing tangent vector field. The results we
produce here, however, are applicable to all higher genus surfaces. We produce geometric
models for both test surfaces and explicitly write down the holonomies, transformations
in the Poincaré group, ISO(2,1). The action over each surface is very nearly canonical,
and we speculate on the phase space of dynamical variables. The classical result suggests

the quantum mechanical version of the theory exists on curved spacetime.

il
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Introduction

Using General Relativity (GR) to study of the dynamics of a spacetime generally follows
a simple algorithm: Write down the action; break up the spacetime under a splitting —
usually (3+1)-dimensional; re-write the action in terms of the dynamical variables on the
spatial slices and constraints that govern the splitting; vary this action with respect to the
dynamical variables; solve the resulting PDE’s subject to the constraints for the compo-
nents of the metric. In practice, even the first step of choosing an appropriate action can
be daunting, let alone solving an often highly non-linear system of constrained PDE’s.
One approach to removing these problems is to study a different system! Rather than
tackle the full 4-dimensional theory, which may describe physical space in some cases,
consider the simpler case of merely 3-dimensional spacetime. This space is easily split
into (2+1)-dimensions — 2 spatial and 1 temporal. While the results of these studies are
clearly not physical, the techniques and problems that arise may shed light on the orig-
inal (3+1)-dimensional case. fortunately, the mathematics of GR on (2+1)-dimensions
is much simpler and the physics of the space is not (so) lost in mathematically difficult
equations that much be examined.

With 3-dimensional spacetime sliced into (2+1)-dimensions, a system is defined by
the choice of the 2 spatial dimensions. The simplest cases are those where the space
is a plane or some similar infinite region. More interesting problems arise when the 2
dimensions are wrapped up into compact surfaces, especially when the surfaces are not
simply (topological) spheres. In this thesis we will consider first the torus 72 and then
a genus 2 surface, the 2-holed torus T%#T? (See Figure 0.1), and the interplay between

the differential geometry of GR and the non-trivial topology of this surface.



Figure 0.1: A simple torus, a 2-holed torus, and a g-holed torus, as they appear embed-
ded in R3. Also shown are the non-trivial loops, 2 around each ‘hole’, that cannot be
continuously contracted to point.

In choosing to study the simpler (2+1)-dimensional case, we have given up the possi-
bility of producing a theory which directly describes the dynamics of the space about us.
The goal, instead, is to find a mathematical result that reveals some of the subtleties of
GR on non-trivial spacetimes. Nothing helps to answer questions more than a working
model — where would mechanics be without the simple harmonic oscillator, or quantum
mechanics with the Stern-Gerlach experiment? These idealized models answer questions
about physics without the clutter of experimental error or unsolvable mathematics. Real
physical systems can then be studied as perturbations of the ideal model, and generaliza-
tions to more complex models can be made from the simple ones. This is what we hope
to achieve here. By constructing a simple, though unphysical, model on which we can
see the roles of GR, topology, and ultimately quantum mechanics, more complex models
may be built. Hopefully this will contribute to one day producing a theory of quantum
gravity, one of the last stumbling blocks towards a Grand Unified Theory.

This thesis is developed as follows. We recall first, in Chapter 1, the dreibein formalism

for GR and see how this approach, together with gauge field theory, has recently renewed



interest in using (2+1)-dimensions to attempt to model quantum gravity. In Chapter 2,
we reduce the Einstein action down to an (almost) canonical form. In this procedure,
we see how the differential geometry drops out leaving only topological quantities: the
holonomies associated with each non-trivial loop on the 2-dimensional surface. The result
comes from carefully keeping the boundary terms in the action, rather than dismissing
them as irrelevant, as far as the action is concerned. In Chapter 3, we construct a model
for T?. Taking this model through the prescription of Chapter 2 endows it with a frame
field and connection. The resulting action depends only on the holonomies of T?. An
explicit, geometric model of the torus also shows that there are enough degrees of freedom
that many different collections of holonomies are possible, some possibly admitting closed
time-like curves. As a more complicated trial, Chapter 4 repeats the process over a genus
2 two-holed torus. The reduced action again depends only on the holonomies about non-
trivial loops on this surface. We construct a model for T%T? by folding up an octagonal
and calculate the holonomies of this particular construction. In Chapter 5, we speculate
on the classical conjugate variables. The action we produce is not canonical and we
make a qualitative interpretation of the phase space. While the results of Chapter 2 are
classical, the form of the “conjugate variables” strongly suggests the quantum mechanical
version of the model lives on curved spacetime. Finally, in Chapter 6, we see how the
results may be generalized to higher genus surfaces, and where further research can be
done on the link between gauge field theory and General Relativity.

This is a subject rich in both Physics, through GR and the equations of motion,
and Mathematics, through topology and gauge theory. For the purpose of this thesis,
we are considering (2+1)-dimensional gravity over topologically non-trivial surfaces as a
Physics problem. It can equally be approached as an example of differential geometry
over surfaces with non-trivial fundamental groups. The relations we encounter and choose

to interpret as topological constraints imposed on the space are none other than the



representation of the fundamental group of the surface in the gauge group. The particular
collection of holonomies of the surface, a subset of the gauge group, obey relations which
demonstrate the structure of the fundamental group. So while this thesis emphasizes the
Physics interpretation of the results, the Mathematically-minded reader can translate
these same results into Theorems, Proofs, and Corollaries.

Finally, a word on whom to attribute the results of this thesis. The ideas of Chapter 2
are developed as a special case of the theory of GR, and not as an interesting observation
of the manipulation of the dreibein and connection. The difference between these two
approaches is that the former requires an understanding of and experience in the me-
chanics of GR, gauge theory, and even index manipulation. For these reasons, Chapter
2 is a reproduction of work done by my supervisor W.G. Unruh, and to him the results
should be attributed. The calculations in the rest of the thesis, the “easy part”, were
carried out by both of us independently, in the sense that we ended up with two stacks
of paper, although I was prodded in the right direction at several stages. Therefore, this
thesis should be viewed as a report of Unruh’s exploration of (241)-dimensional gravity
in the dretbein formalism, annotated and “demystified” to allow graduate students like

myself to understand and appreciate the results.



Chapter 1

The Dreibein Formalism

The basis for studying spacetime dynamics in classical GR is the Einstein action. ! This
action is a complicated functional of the metric components g,,. An alternative approach
is to use the tetrad, or vierbein, formalism. In this chapter, we see how in only (2+1)-
dimensions, the triad, or dreibein, variables greatly simplify the Einstein action. We also
review recent work that recasts the dreibein approach to GR in a Chern-Simons gauge

field theory.

1.1 The Dreibein Formalism of General Relativity

The most common approach for finding the metric on a spacetime is the Lagrangian

formulation with the Einstein action

1= [\iglR

where g is the metric determinant and R, the Ricci scalar, is the twice contracted Reiman-
nian curvature tensor. Various constants that often appear before this action, for example
2 {1 or 5= [2], can be ignored when using variational principles. Equations of motion
are found by variations of the action with respect to the metric components, g,,. These
equations of motion are generally highly non-linear PDE’s, owing in part to the square

toot 1/|g|- The advantage of the dreibein formalism is that is supplies a kind of square

root for g,, by using the components of the frame field as variables. The dreibein is

This action is variously referred to as the Einstein [4], Hilbert [3], and Einstein-Hilbert [1].
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the collection of three vectors e/, where indices y,v,...=0,1,2 are the tangent-space
components. We will use ¢,7,...= 1,2 to indicate the spatial components. The indices
a,b,...=1,2,3, sometimes known as the Lorentz indices, merely label the vectors in the

frame. The metric on the spacetime is defined by?
Guv = eﬂaeua

hence giving a kind of ‘square root’ to g,,. The vectors must remain orthogonal in the
Lorentz space:

e et = (L.1)
where n®*=diag{— + +} is the usual Minkowski metric in (2+1)-dimensions. All raising
and lowering of a,b indices is done with . A new connection w,y is required to account

for curvature in this mixed space. Covariant differentiation is defined by
D,e) = eua,u — Fu’\,,e,\“ + wuabel,b (1.2)

where 1—;‘;}/ are the usual Christoffel symbols. We demand that 5% be constant in it’s
Minkowski space, which forces wﬂ“b to be antisymmetric:
0 = Dunab
— nabm _I_wuacncb_i_wubcnac

_ ab ba
= w, —l—wﬂ .

The spin connection w,* = %eabc wﬂbc is sometimes used in place of the connection, al-
though throughout this thesis we will remain with w ;.
We can now re-write the Lagrangian in terms of the variables e and w. The Ricci

4

scaler R is found by contracting the “internal” curvature tensor R,,** with the dreibein:

— uy o __ LV ab
R—RW —eaebRw }

?Here and in all that follows, we adopt the Einstein summation convention of summing over repeated
indices, both latin and greek.
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While R, °* is the curvature of spacetime, Rwab is the curvature that relates the space-
time (uv) to the internal space (ab). The curvature is exchanged between the two spaces
via the dreibein: R,, " = e7,¢’,R,*. A flat internal space, R, = 0 implies a flat

spacetime, R, 7 = 0. In this mixed spacetime-internal space, the Lagrangian becomes
d
9IR = ("¢, eac) (€’ Ry, V) -
By the associativity of addition, we can re-arrange the summed Lorentz indices:

v a b, c Ao df
= Pere,’e e, eye’ Ry,

d
= eul/peadf eua(sl//\(ng/\a 4

by the orthogonality (1.1), leaving simply
= e eM“RVp be

The curvature tensor can be calculated by looking at the failure of covariant deriva-

tives to commute. Given a vector field V¢, the curvature tensor is defined by
[Du, DV =R, 3V .

With the definition of covariant derivative (1.2), it is simple to calculate

db

ab __ ab a
Rﬂ,, =w,” , tw w,

Finally, with volume form ¢#*?d®z = dz* A dz" A dz”, we arrive at the expression
I= /eabceu“(wybcyp + wybdwpdc)dx”/\ dz" A dzf (1.3)

The great advantage to this formulation of the problem is that we will nowhere encounter
below a raised tangent-space index u. This allows us to work in the more general case
where ¢ may not exist; that is, where singularities are allowed. Furthermore, on so-

lutions to the equations of motion, the variation of the action with respect to the e’
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variables must vanish. From (1.3) we clearly see that these solutions are those connec-
tions for which dw + w A w, the Ricci curvature, vanishes. Now in three dimensions, the
full Reimann tensor can be written in terms of the Ricci tensor and the Ricci scalar.
Hence a vanishing Ricci tensor, which immediately produces a vanishing Ricci scalar, in
this particular case also implies the Riemann tensor vanishes: the solution spacetimes
are truly FLAT. This is one of the main reasons why (2+1)-dimensions are studied — the
geometry does not contribute to the physics of the spacetime, thereby leaving topological
considerations more apparent.

In analogy with the ADM formulation (7] of (3+1)-dimensions, the action (1.3) is
re-written in terms of the canonical variables and their conjugate momenta. Because of
the antisymmetry of the volume form, neither ¢ * nor w, % appears in the action, where
() indicates differentiation with respect the time coordinate of the spacetime. Without
conjugate momenta, these variables are constant in time. In the language of variational

calculus, e, and w,* are Lagrange multipliers of constraints which govern the way the
2-dimensional slices of ‘space’ evolve in ‘time’. Explicitly, we find
I = —2/dt /d2x eijei“cbja
n /dt /dzxeabc{ eoacij(wibc’j _ wjbc’i n wjbdwidc _ wibdwjdc)
+ wobcfij(eia,j -+ eidwjad - ejdwiad)} .

The constraints, proportional to e ® and w,’, are recognized as

R =0 (1.4)

13
Dyey =0, (1.5)

respectively. These two constraints, which tell us the spatial slices are flat and torsion

free, greatly simplify the system, as we will see in chapter 2.
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We see that of all the ways to attempt to describe the geometry of 3-dimensional
spacetime, the result produced by the theory of GR is fairly simple. In fact, most of the
gymnastics of differential geometry have disappeared! It is no wonder, then, that this
“simple” result can be reproduced from a quite different abstract approach, Chern-Simons

gauge field theory.

1.2 Chern-Simons Gauge Field Theory over the Poincaré Group

In recent work that rekindled interest in (241)-dimensional GR, Witten [1] recognized
the Einstein action written as (1.3) as a Chern-Simons action of the the gauge field theory
for the Poincaré group. This gauge group is the collection of all Poincaré transformations,

consisting of a Lorentz transformation followed by a spacetime translation:
Ve s ULV T . (1.6)

The Lorentz subgroup of the Poincaré group, more often associated with Special Rela-
tivity, has disconnected components corresponding to proper, orthochronous transforma-
tions of the connected component of the identity, and components connected to parity-,
time-, and total-inversion. The Lorentz transformations we will deal with here are re-
stricted to the first of these components, the only component which represents physical
transformations. An ISO(2,1) representation (/nhomogeneous Special Orthogonal) of the

Poincaré group is the collection of 4x4 matrices

uab Ta
T =

0 1

where % is an SO(2,1) Lorentz transformation. Properties of these matrices /% that will

be used below are found in the Appendix A. Transformations of 3-dimensional vectors
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V@ are carried out by appending a fourth component, of fixed length 1, to the 3-vectors

forming V4 = (V*,1):

uab Te Vc uabvb + Ta

0 1) 1 1
The 3-dimensional component of these resulting 4-vectors reproduces the 3-dimensional

Poincaré transformation on V?°.

The Poincaré group has generators

00 O 0 0 -1 0 10
0 0 —1(0 0 0 010 1 0 00
J1= J2: J3:
01 0 -1 0 0 0 00
0 0 0 0 0 0

Under exponentiation, these generate, in Minkowski space where z* = {t, z, y}, rotations
in the zy-plane, boosts in the (—y)-direction, and boosts in the z-direction, respectively.
While these 4 x 4 matrices generate the Lorentz subgroup of ISO(2,1), the upper left 3 x 3
submatrices by themselves generate the pure Lorentz group SO(2,1). The generators of

translation in the ¢-, z-, and y-directions are, respectively,

( 0

( 1 0
0 {0 0 1 0 0
P1: P2: P3=
0 0 1
0 0 0 0 0

The generators of this group obey the Lie algebra

[Jaa Jb] = Cabc']c
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[Ja,Pb] = Eabcf)C
(PP =0.

In [1], Witten observes that in taking the 1-form A = A,dz* with components
Ap=¢,Ptw’d,
as a gauge field, the Chern-Simons action
Ios = %/M Tr(AAdA+2AN AN A)

exactly coincides with the Einstein action (1.3). We see that ISO(2,1) is the gauge group
by varying the gauge field A,. The infinitesimal transformation of A, generated by a

parameter u = p* P, 4+ 7%J, with infinitesimal p®, 7% is defined as
6A = uyu+[Ay,u] .

This variation is the covariant derivative of the field with respect to the connection A,.

Varying the field in this way produces
0A, =dePo 4 dw,J,

where

a __ a abe abc
de = —p’ — € euT. — " wupe
bw, = —15 - e“bcwﬂbrc .

Witten notes that by setting p* = V*e, for an infinitesimal spacetime vector V#, the
difference between these transformations of €}, and w,?, and those generated by infinites-
imal Lorentz transformations along with infinitesimal diffeomorphisms (translations!) in

the —V* direction, is simply a Lorentz transformation. Since Lorentz transformations
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are part of the gauge group, any gauge invariant quantity, like the action, will be unaf-
fected by this difference. That is, the Chern-Simons action in the gauge field A, over the
Poincaré group is the same as the Einstein action of GR. Gravity can be re-expressed as
a gauge field theory, which greatly increases the chances of finding a quantum mechanical
version of the theory. Though this thesis is based on classical GR, and not quantum or
gauge field theory, we will see the importance of the Poincaré group in the results that

follow.



Chapter 2

The Einstein Action

In this chapter we derive the main result of this thesis: the Einstein action over a compact
surface can be written explicitly in terms of the holonomies on the surface. Before we
produce this result, let us briefly review holonomies and boundary terms.

Intuitively, a holonomy is the failure of a vector to return to its original orientation
after being parallel transported around a closed path, or loop. We will define holonomy
as the transformation which carries the initial vector onto the final. While in general
a holonomy is an automorphism of the tensor fields over a manifold, the holonomies
encountered here are simple transformations on the tangent space. Curvature, also a
measure of the changes in parallel transported vectors, is closely related to the holonomy
of trivial, or contractible, loops. When a surface is flat, the holonomy of all trivial loops
is simply the identity — no change occurs in a vector when it is parallel transported
about a flat surface. When curvature is present, the holonomy depends both on the
base point of the loops and the shape of the loops itself: parallel transport around “long
and twisting” loops will alter a vector more than parallel transport around “small and
simple” loops.

As we saw in Chapter 1, the surfaces we deal with here are flat, and the presence
of interesting holonomies seems unlikely. However, the surfaces we deal with are also
topologically non-trivial, and are covered in non-contractible loops, those paths which
get “caught” on one or more holes formed by the surface (See Figure 0.1). The holon-

omy over these non-trivial loops may not be the identity, even though the surface is

13
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everywhere flat. The topological degrees of freedom can generate non-trivial holonomies.
Assuming hereon that “surface” means a flat compact surface with interesting topology,
we recall that all homotopic curves have the same holonomy. Two curves which can be
smoothly deformed into each other differ by a contractible loop (See Figure 2.1). This
path does not contribute to the holonomy as the surface is flat, so the holonomy of the
two homotopic paths is the same. Therefore all holonomies on a surface will be known
once those about a few representative non-trivial loops are known. Just as the genus 1
torus has 2 distinct classes of incontractible loops, a genus g surface, like a g-holed torus,
has 2¢g generating loops. By finding, or specifying, the holonomies about each of these
2¢g loops, the geometry of the surface is completely determined, at least up to global
gauge transformations. These are the transformations which transform the entire surface
while leaving the action (or any other gauge-invariant function) invariant. It is these 2¢
holonomies which will play the role of the dynamical variables in the expression for the
action we derive from the Einstein action (1.3) in this chapter.

Connected-sum surfaces, like those in Figure 0.1 have no boundary. How then, do
we handle boundary terms that arise in the action? The answer comes by looking at the
way these surfaces are constructed. Generally a genus g surface is constructed from a 4g-
sided polygon with pairs of sides identified, folding up the polygon, creating the surface.
The matched points on the boundary of the polygon come together to form a seamless,
boundary-less, surface. Another way to view this construction is to tile some infinite
plane with these polygons, so that moving off one tile onto an adjacent one is the same
as travelling off a single polygon and reappearing at the identified point on the boundary.
The boundary can be re-inserted into the closed, compact surface by slicing the surface
open. This does not affect integration over the surface: A continuous function has the
same value at two identified points on the boundary. Since the outward-pointing normals

from the two identified boundary points have opposite orientations, any contribution to
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(i) (iv)

Figure 2.1: The difference v; — v, between two homotopic curves 4; and 4, is contractible
to a point. The holonomy of this trivial loop is the identity, so v, and -, have the same
holonomy.
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a boundary integral along one boundary component is exactly cancelled by the matching
boundary’s contribution. The converse to this situation need not by true, though, as we
will see below. By starting with the tile and matching pairs of sides, we are no longer
guaranteed that functions are continuous across the boundary. The discontinuities we

allow are exactly the holonomies that appear in the action.

2.1 Reduction of the Einstein Action

The dynamical variables that appear in the Einstein action (1.3) are the dreibein e,* and
the connection w,*,. Let us assume there exists a collection of e,*(z”) and w,*,(z") which
are continuous over the surface, or equivalently, continuous on the tile, even across the
identified boundaries. Because only the torus T2 can support a non vanishing tangent
vector field [6], we must allow the possibility of the dreibein becoming singular on the
tile.

First consider the symmetries of the action. The action, as the Correspondence

Principle implies, is Lorentz invariant. Transform the variables under

éua — uabeub
wb = @,5aU UG+ USUS,) - (2.1)

Some index manipulation along with the properties of & (Appendix A) show the action is
the same functional of € and @. Recall from the (2+1)-dimensional splitting of spacetime
that the space is subject to the constraint Ri]-“b = 0. This implies that on any coordinate
patch, we can find a particular Lorentz transformation 4%(z") such that &;% = 0 (See
Appendix B). Note that only the spatial components of & can be made to vanish because

only the spatial R,; ® =0,
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In this new coordinate system, consider a transformation in the internal space gener-
ated by a function p®(z¥):
& =6+ D.p*, (2.2)

u
where D is the covariant derivative with respect to the connection &. While is is assumed
that e,* is continuous across the boundary, it is not necessarily true that €, is continuous.

With this transformation, the action becomes
I = / €abe (€, + D#p“)éupbc dz# A dz” A dx”
M

where M is the (2+1)-dimensional manifold and R is the curvature, also written in terms

of &. An integration-by-parts on the second term gives

I = [ cad?R, o do"Ndo" A da?
M
+ / €abe paRWbc dz* A dz”
oM

—/ eabcp“f)[ué bedz” A dz¥ A dz” .
M

vp)

The last term vanishes by the Bianchi Identity. A second constraint imposed on the
system by the (2+1)-dimensional splitting is Dj;e;{ = 0 in the original coordinate system.
This constraint implies we can find a p®(z”) such that the spatial €;* = 0 (See Appendix
B). The first term of the above action vanishes leaving only the boundary integral. The
boundary here includes the spatial boundary where the identification takes place and also
the initial and final hypersurfaces in time. The integrals over these temporal boundaries,

however, come from the term
/ €abe Do(pa];?,,pbc)dxo/\ dz" A dz* .
M

This total time derivative can be removed form the Lagrangian as it adds only a constant

to the action and has no effect on the equations of motion found by variational principles.
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This leaves only

~ L be ~ b ~ ~ b ~ ;
] = /Z;cabc pa(w bc __ &+ wibdwodc - bdwidc)dxz

0,t % 0

where O represents the spatial boundary. As the spatial components @&, vanish, the

action is further reduced to

I =/8€abc pt,; dz" .

One more integration-by-parts gives
I=— / €ase P30 0dT .
a b

The boundary term of this integration vanishes, being the boundary of a boundary. Now,
each side of the 4¢g-sided tile is attached to another tile by the identifications used to get
the topology. Thus each distinct edge of the tile contributes twice to this integral. Call

the two matching sides ‘1’ and ‘2’. Summing over the 2¢g different edges gives

~  bc a ~ be ;
I = Z / €abe (P1%; 01, ° — p2*; W2, )dz" .
edges ¥ 98¢

Recall from the transformation (2.1)

3, = w, U Ut — U U . (2.3)

o

Just consider the first term, in w,. Asw, is assumed to be continuous across the boundary,

wr,2¢ = wy, b we can write just w *. This first term of the action is

b ¢ b ¢ d ¢
Z / €abe (pla’i ul dul e P2a’iZ/{1 dul e)wo ¢dz* .
edges edge

As Uy and U, are both Lorentz transformations, there is a Lorentz transformation between

them. Define

Us, = Wiy, (2.4)
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This maps U on one side of the boundary onto I on the other side, in some sense carrying
U across the boundary. Observe that
Ul Uy, = (W Uz )(WELULS),
= (chch) u2dau2eb,i
N’

6d

e

+ Weth W, Us%
With &,% vanishing in (2.1) and w; b = wy b,
ulda uldb,i =Uzy" uZdb,i .

Hence

W, Uz W, U5 =0,
or
We,=0: (2.5)
the W transition matrices are constant on each time slice. Substitute into the action for

U, in terms of W and U;. Property (A.4) then reduces this term of the action to simply

S [ (o = W p ) Ut 0 d (2.6)
edge

edges

Before we calculate the second part of the action from the UYU term in (2.3), not
the following. Recall w,% does not appear in the action by the antisymmetry of the
volume form. Thus w, % is a Lagrange multiplier. The UU term contains no w, %, so
the constraint associated with this Lagrange multiplier comes from the first term of the
action alone, namely

pis = Wik =0 (27)

We found in (2.5) that W¢ is constant on each time slice, so this constraint is equivalent

to

ot + 117 = py (2.8)
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where I1* is constant. Under the identification of points that generates the topology of the
surface, p; and py are two vectors sitting at the same point (in the same tangent space).
The relation (2.8) shows these two vectors are related by a Poincaré transformation (see
1.6)). Another way to compare vector p; with vector p; is to parallel transport p; across
the tile between the two identified points on the boundary. The resulting vector is defined
to be p2. Now (2.8) shows the holonomy of this loop in a Poincaré transformation. We
have seen that the W are constant on each time-slice and that the holonomies are path
independent. Thus p on the whole of side 1 maps onto p on the whole of side 2 under
this Poincaré holonomy.

Now consider the remaining term in the action,

. h .
Z/ €abe ,01 Ul dul —P2iu2 duzcd) dz’

edges ed

From (2.7) and (2.4) we substitute

Because W“b does not necessarily vanish (only the spatial derivatives do), we cannot yet

. < b . . .
substitute for U, ;. These substitutions give

E/ €abc(P1 ul dul

edges ed

- Wea pleyi a2 d Wch/I]yd) dwl
Replace €;p, under (A.4) in the second term. Then (A.1) and (A.3) reduce the action to

2/ €abe 1% Uy — W 1B Uy o’

edges ed

Now
sz Z/Izzd - Wb .z/{2$d - Wb Z/{2xd
= U’ - W WU,
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giving

D / €abe 1" W2 W da' |
edge

edges
Recall the W9 are constant and hence can be pulled out of this integral along the edges

of the tile, leaving only

a i
. e / pl ,i dw .
edge

This integral, simply the difference in p; between the ends of edge 1 of the tile, we denote
by Ap,©.

Finally, we produce the action on the tile. By imposing the constraint (2.7), which
introduces the constant I1%, the first term of the action (2.6) vanishes. All that remains
for the action is the sum over representative edges

1= Api* W W eup (2.9)
edges
By constructing a tile and assigning on the tile fields of W and II, we can explicitly

calculate this action for a torus 7 and later, the more complicated but interesting two-

holed torus T%T7.



Chapter 3

The Simple Torus

An elegant, but not particularly profound result of differential geometry is the observa-

tion, here attributed to Carlip!, that

“a flat connection is determined, uniquely up to gauge transformations, by

its holonomies around the nontrivial loops...”

Mathematically, this is a concrete and definitive corollary, distilled from a much larger
theory. It is not an explicit statement of the physics of the system, though, for it still
deals with abstract ISO(2,1) transformations across some surface or region with identified
points. In this Chapter, we see how the result (2.9) of Chapter 2, which asserts that the
action in a function(al) of the holonomies (supporting Carlip’s statement), is manifest on
a simple 1-holed torus T2. This is relatively easy to do, as the flat genus g = 1 torus has
only two independent holonomies, and can be constructed by identifying pairs of sides of

a square in the Euclidean plane RZ.

3.1 The Action over a Torus

Each surface of constant time, the 2-dimensional spatial slices of (2+1)-dimensional space-
time, is tiled with squares, or more generally parallelograms. To calculate the action on
this tile, let us first label its components as in Figure 3.1(i). We call the sides A, B,C, D
and the corners 1,2,3,4. The identification of sides A&C and B&D is indicated by the

1[4], p. 2649.

22
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C
4 - 3
B!D
A 211 A
D y Vy B
C 314 C
B|D
1 N 2
(i) (ii)

Figure 3.1: (i) Labels for the sides and corners of the tile, and identifications of sides
A&C and B&D. (ii) The neighborhood of a vertex where four tiles meet.

arrows on the boundary. Folding up the tile by gluing together the identified sides with
the indicated orientation creates a torus, T?. The same gluing information can also be
exhibited by looking at the neighborhood of the vertex where the 4 corners come to-
gether, or where 4 tiles meet on the plane (See Figure 3.1(ii)). We produce this Figure
by “bootstrapping” around the vertex, a method we will employ frequently in what fol-
lows. Starting form the region about the vertex labelled 1, sides A and C are identified
as part of the topology generating gluing. Adjacent to side C is side D, and these two
sides meet at corner 4. Next, side B is glued onto D, side C is adjacent to B, and corner
3 lies at the intersection of these two boundary components. We continue in this way,
labelling each side and each region of the vertex, showing all the gluing of Figure 3.1(i).
Each line, like the one between A and C, is one of the boundaries we say has p;,&; on
one side, and p;, @, on the other. The corresponding edge along which we calculate Ap;®

is, in this case, the line that runs out from the 1-4 region of the vertex and returns to
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23 3[4

Qi alc G B|D
~— %A g I/I/DB
114 AE

Figure 3.2: The transformations W across the identified edges (1)C& A, (ii) D& B.

the vertex though the 2-3 region. Across the boundary between sides A and C' we find
from (2.8)
Weay pc® 4+ Moa® = pa® .
Here W4 is the Lorentz transformation which relates Woalde = U4 and Ilpy is the
constant defined by (2.7). This relation holds all along the edge between sides A and C
so we push the result down to the 1-4 region of the vertex. Evaluated at the vertex we
write
Woa®, po®(4) + Toa® = pa(1) .

The term p-%(1) is really the limiting value of po® as the vertex is approached along edge
C'. There is a similar relation at the other end of this C'A boundary, the end in the 3-2
region of the vertex. The relations across each of the four edges of the tile can be written

down by looking at Figure 3.2:
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Figure 3.2 (i)

(3.1)
Figure 3.2 (ii)

To produce the action we must evaluate the Ap® by integrating along the identified
edges. Each edge contributes twice, recall, but the return integral along the 2-side is
taken care of with the WW terms in the action. We need only consider the 1-sides, from

corners | — 2 and 2 — 3. The action is simply

1= {(eo@) - pa (D) Vo' Wea™

+ (p8%(3) — p5(2)) %B‘;WDB“} €ute

Now it is not true that, say, pc(4) = pa(1), even though these two functions are evaluated
at the same point, under the identification of sides A and C. There is the discontinuity
is p* defining W54 and I 4. It is true, however, that at vertez 4, pp(4) = pc(4), as these
are evaluated at the same point on the tile, without any identification of points required.

Call the corner value just ps. Similar relations hold in each region of the vertex:

pa(l) =pp(1) =p1  pB(2) = pa(2) = ps (52)
pc(3) =pB(3) =ps  pp(4) = pc(4) = p4
With these relations, along with the W and IT above, we can express p in each region
of the vertex in terms of, say, p;. By bootstrapping around the vertex from region 1,

jumping across boundaries with (3.1) and around corners with (3.2), we evaluate p3(p;),

for instance, in vector- rather than component-form, as

ps = Weil(py —Toa)

Wil (Wpppyr + Tlps — llga) -

Il
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Note that just as we define W54 to jump from side C to side A, Wac jumps from side A
to side C. Each of the W is invertible, though, so Wic = Wia'. In this way we find

p2 = Wbas(pr +1pg)
ps = Woil(Wpppy +Tpg — Mga) (3.3)
pe = Wei' (p1 — Hga)

We arbitrarily chose to write p3 = p3(p2(p1)), but we equally could have chosen p3(p4(p1)),
or even p3(pa(p1(p2(p3(pa(p1(--+)). In order that the results be consistent, it must be true

that the transformation giving a complete circuit of the vertex is the Identity:

p1(pa(p3(p2(p1)))) = p1 -

As the transformation is in general a Poincaré transformation, this means the Lorentz
part is the Identity, while the translation vanishes. Jumping all the way around the

vertex produces

p1 = WeaWbs ' Woa'Wbsp:
+ WeaWps ' Woa' llps
—~ WeaWps We i Tlga
—~ WeaWps Tlps

+ 1oy .
Hence the Lorentz transformations must obey the closure relation
Wos Wos Wi Whs = 1 . (3.4)

This “constraint” is the representation of the fundamental group m;(7?) in the gauge

group ISO(2,1). It is equivalent to the condition

WeaWbs = WppWea
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so that the two Lorentz transformations commute. Applying the relation (3.4), we reduce

the translation constraint to simply
(1 —Wea) lpg = (1 —Wpe) lHea - (3.5)

We will further analyse this constraint below, and how much, or how little, it further
constrains the system. First though, we calculate the action.

With the relations (3.2) and (3.3), we can express the action in terms of p; (or simply
p), W, and II, plus the constraints (3.4) and (3.5). We first introduce notation to remove

the cumbersome term

o W W e,

Define
{W}a = wawc:veabc .

We now adopt a 0-index notation so that
W W = I°{W}, — T{W}.

The algebra of reducing the action is greatly simplified by the following properties of
{W}, the details of which are found in Appendix C:

U {UW} = TI{W} (C.1)
{W W5} = TL{WW5} + T{V{} (C.2)
I ({5} — {Vig}) = (Wa™'mm) (W Wi} (C3)

With this new notation, the action, without the constraints yet imposed, reads

I = (Wei'p){Wei'Vog' WeaWbs}
— (Wei'Tloa){Wbg}

+ (Wos' llpp){Wos WeaWbi} .
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An example of the {W} algebra is shown below in the T%#T? case. If we now impose
the constraints on the system, the first term above vanishes, as {1} o 1 = 0. The action

is finally reduced to

I = (Wps'llpp){Wea} — (Woillloa){Wp5}
+ £ (WoaWpp — WppWoa)?,

+ Ca((l — Wea)llpg — (1 — Wpp) Hca)® (3.6)

where the constraints are included with the Lagrange multipliers ¢ and (.

The most important feature of this result in that it is written entirely in terms of
the holonomies [Wo4|llg4] and [Wpg|lips]. All reference to the geometry of the tile has
been removed. This is exactly the property that flat connections are completely specified
by a collection of holonomies. Furthermore, we see that the action is very nearly in the
canonical pq form, except that {W} is not merely %W. Before we attempt to extract

the canonical variables, we will look at the T%T? case for more insight.

3.2 Consistency of the Constraints

It appears from (3.6) that 6 degrees of freedom will be removed by imposing the con-
straints on the system: 3 from the vector constraint, and just 3 from the matrix con-
straint, due to the symmetry of Lorentz transformations. In fact, explicitly writing out
the constraints shows that these six equations are not independent, and only four degrees
of freedom are directly removed. Also, we will see that under a interesting identification
of the II with translations in the solution space of W’s, the relations (3.4) and (3.5)
contain the same constraints. This association is not precise, but merely suggestive of

the roles of W and II as canonically conjugate variables.
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The first constraint of the T2-system is the closure relation

b b
I/VCAabI/VYDB c %Bab%/l c = 0.

29

The W’s are forced by this constraint to lie on a surface in W-space. Hence variations

of the solution Wy4 & Wpp must also lie on the this surface. That is, variations of the

constraint with respect to the the coordinates W¢% must vanish. We will see that this new

condition is a copy of the second constraint on the system, subject to some interpretation

of the variables. The variation of WoaWhp — WpWi 4 is calculated by

J%Aab b 5%A
A* = OWE A" W - W CJW ®
¢ %Awy CA 4 DB DBbW z
5%3 Wb
+ Wost———SW, oWhg W e
ca% Wha" 3 pB" v Whs" } b’
where
W4
= 4§28 .
JWZ b
Thus

A%, = SWoa%Whr'. — Whp%dWba®,

c

b b
+ Wea"0Whbs°. — Wpe*Wea',
or, in matrix form,

A = WeaWpp — WppdWia
+ WeadWpp — SWpWeoa .

By varying the constant metric n?®, observe that (§W)W is antisymmetric:

0 = 5(n*)
= §(Wewb)
= SWeLWb + weswbe

= SWL WP 4 W Wee
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Insert factors of 1 = WW where necessary into the expression for A to get all §W into

this antisymmetric form:
A = (SWoaWe il YWoaWps — Wos(SWoaWo i )Woa
+ Wou(6WpsWops" ) Wop — (WhsWos" YWhsWea
= (OWeaWo i Y\WeaWps — Wop(SWeaWe i YWhE WosWea
+ Woa(6WopWos YWe i WoaWps — (SWpsWos" ) WosWea
where the last step puts each (§W W) into a similarity transformation. We right-

multiply by Wz 4Whg, or equivalently WpgWe 4, without changing the vanishing variation

and apply the relation (3.4) to find
0 = (WeuWpit) — Wop(SWeaWo it )WhE"
+ Woa(6WheWos )Wei' — (SWoeWhs") -
Now as (§W W) is antisymmetric, we can replace this matrix by an equivalent vector

A% defined as
A= e SWh W

The similarity transformations U (§W W)U become linear transformations U of the

vector. “Rotate” the antisymmetric matrix (W W) with a Lorentz transformation U:
SWoW — U SWHW, U™
This new matrix is also antisymmetric in b, ¢: interchange b and ¢ to find
u, (swew,u = ue, (swewe)u,

= —us, (Wi W,

as W W™ is antisymmetric. Now relabel the dummy indices, interchanging z and y:
= —ue, (swaw)ut,
= —u’, (swew, ) u .
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Define a new vector A’* from this antisymmetric matrix:

Mo = ey, (U U, sWEW YY)

By (A.4),
€, ubm ucy U €z$y :
SO
X =Y, SWHWY
which is simply
N = Yo\

Under this substitution of A%, the variation of the constraint on the W’s is equivalent to

the constraint

0 = Aoa— WbeAca+ Wearpe — Aps

= (1~ WbB)Aca — (1 —Woa)rps -
This is exactly the second constraint (3.5) under the identification
A% — I1% .

The A® are infinitesimal translations in the space of W’s, suggesting the holonomy com-
ponents II are related to translation-generating momenta, conjugate to the configuration
variables W. We will expand on this idea further, after considering the T%#T? case,

where we reproduce the almost canonical pg action.

3.3 A Model of T2

To transform the action in {W} and II into something that can be written on the back of

an envelope, we construct an explicit model for T2 and find the Poincaré transformations
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[W|I1] across its boundaries. We will see that even a very simple model reveals interesting
details.

It is easy to construct a region representing the torus because the plane R? can be
tiled in unit squares. By identifying points on opposite sides of the square, the torus’
topology is produced. To bring this tile into the arena where we can study the action,
we must attach the holonomies [W4|llga] and [Wpp|llps] between the identified sides.
The constraints (3.4) and (3.5) make this a fairly simple procedure.

Because the Lorentz transformations W54 and Wpp commute, they must be boosts
in the same direction. Let us choose coordinates (z!,z?,z%) = (¢, z,y) over the tiled R?
plane so that this direction is the z-direction, with the origin at corner 1 of the tile.
Recall from §1.2 that boosts in the z-direction are generated by exponentiation of the

matrix J3. We can choose

cosh(y) sinh(g) 0
Wea = e = sinh(g) cosh(u) 0
0 0 1

cosh(ap) sinh(ap) 0

Wop = ™% = sinh(ap) cosh(ap) 0

0 0 1
where p is some boost parameter and au ensures Wpp is parallel to Wp 4.
It is interesting to look at the translation constraint (3.5) with respect to this choice

of Wz 4 and Wpg. The constraint reads

1 —cosh(y) —sinh(u) 0 Ips'
—sinh(g) 1 —cosh(u) 0 [Ipg>
0 0 0 ) \ Ips°
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1 — cosh(ap) —sinh(au) 0 Hea'
= —sinh(au) 1 —cosh(au) 0 Hoa
0 0 0 g4

While HDBI,HDB2,HCA1,HCA2 are coupled by two equations, Ipg® and o4 are com-
pletely unconstrained. That is, for any translations IT? in the y-direction, the sequence
of transformations that circumvents the tile vertex is still the Identity. While initially it
appeared that the constraints would directly remove six degrees of freedom (df) from the
system, in fact only four are removed. This is not merely an artifact of our particular
choice of the z-direction for the boosts, for a rotation will not affect the indeterminacy of
the matrices 1 —Wpp or 1 — W5 ,4. We will see below in the more complicated T4£T? case
that this failure of the six constraints to remove six df is unique among the non-zero genus
surfaces to the torus. Furthermore, whereas the Lorentz component of the holonomies
confine the transformations to a surface of constant /22 — 22, the translation carries
vectors off this hyperbolic plane. With some translation in the ¢- and z-directions and
arbitrary y-translation, it seems possible that the sequence of transformations around
the vertex can be a loop with time-like sections, carrying vectors along closed time-like
curves.

To attach these Lorentz transformations to the unit square recall that W is de-
fined at the link between the values of the field &% across the identification boundary:
Woldy = Uy. The field U which is consistent with this choice of W’s is found by treating
the transformations W as a sort of “phase difference” between identified points. Referring
again to Figure 3.1, first consider just the corners labelled 1,2,3,4. As the vertex at cor-
ner 1 on side D maps to the vertex at corner 2 on side B under Wpg, U(2) = Wppld(1).
To find U(3), we see that U(3) maps onto U(2) under Woy4, so U(2) = Weald(3) or
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Figure 3.3: Values for the ‘phase’ U at the corners of the tile.

UB3) = WeiltU(2) = WeiWpplU(1). Similarly, U(4) = Wei't(1). Now if we cal-
culate U(3) from U(4), instead of U(2), we write U(3) = WppU(2) = WpsWea'U(1).
So that the result is independent of the choice of evaluation, it must be true that
WoilWos = WosWeit or WpsWea = WeaWps, exactly the constraint we encountered
earlier. Since the transformations W are determined only by the phase difference be-
tween the values of U/ at identified points, there is an over all arbitrary choice for ¢(1).
Setting U(1) = Wi4 gives simple values to the corners of the tile (See Figure 3.3). These
corner values are now interpolated smoothly over the tile, taking care to keep the correct
W phase difference between identified points on the boundary. The particular choice of
interpolation does not change the action, which depends only on the difference across the

tile (or across the boundary). One simple example of an interpolation is

Uz, y) = =@ +as(@)uls

where f is linear between f(0) = 0 and f(1) = 1. Smoother interpolations (quadratic,
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cubic, ...) can be used where continuity of derivatives of U is required in further calcu-
lations.

The final step in the construction of our model is finding a set of II’s. These trans-
lations entered the calculation through Wi ps + Il2; = p1, where p2(2b) = F*(z%) is
the function chosen to eliminate the €;°. A simple choice is to give the translations
only y-components, g4 = (0,0,a) and lpg = (0,0,b), and set p*(z®) = 2% The
Lorentz components of the holonomies preserve v/#2 — 22 while the translations shift the
y-components of parallel transported vectors by a constant. The tangent space over the
tile is a parallelogram on the surface of constant v/#2 — z2 (See Figure 3.4). The relation

Ws1p2 + Il31 = p; tells us which points are identified in the tangent space.

3.4 An Alternative Approach to the Torus

Another, more “standard”, method for studying (2+1)-dimensional GR on a torus is
based on the fact that of all the compact surfaces, only the genus 1 torus can support
a continuous, non-vanishing tangent vector field. The approach, therefore, cannot be
generalized to higher genus surfaces.

Because the plane R? can be tiled in unit squares, we break spacetime into R? @ R.
By identifying opposite sides of a unit square, or defining spatial coordinates r and y
to be periodic with period 1, the spacetime T2® R is generated. With this geometry,
Carlip [4] proceeds by specifying the holonomies of this surface, two commuting Poincaré

transformations:
Ay :(t,z,y) = (tcoshA + zsinh A, zcoshA + ¢sinh A y + a)

Ay (t,z,y) — (tcoshp+ zsinhp, zcosh u +tsinhu, y+ b)

A dreibein and connection which exhibit these holonomies under a path-ordered integral
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(o, d)

(0,0)

+ boost

Figure 3.4: Tiles of the tangent space over the torus are parallelograms in boost-transla-

tion space.
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or Wilson line [5] calculation of the holonomy are ¢! = €2 = 0, w! = w? = 0 and
e’ =(0,a,b) W°= (0, 1) .

This dreibein produces a singular metric, but we can gauge transform to a non-singular

system:

el = (—5,0,0) w'=(0,0,0)
e = (0,8, 6) = (0,0,0)
e* = (0,a,b) w? = (0, 1)
where (1) is a function only of the time on the slice. On each slice of constant time,

a constant, continuous non-vanishing tangent vector field is realized. The metric arising
from this choice of dreibein is
d92 — IH'Zdt2 _ ((12 +/B2)\2)d$2
—2(ab+ B p)dz dy — (b* + B2p?)dy? .

Now Carlip observes that the spatial part of the metric, the metric on the torus, is

unchanged by the two coordinate transformations

<m+ (ab+ﬁ2/\u>y, Blap — Ab) y) .

a2_|_ﬁ2A2 a2+/B2A2
b+ B2\ Blag— \b
<($ +1)+ (Zz _*_ﬁz)\/;)y’ a(zaiﬁzp) y)
b+ 8201\ Blay— Ab
(ac + (; +ﬂ2/\l;>y, a(zaiﬁz)\z) y) —
b+ B2\ — b
(o4 (S0 s, L) y)

The geometry of the space, therefore, is characterized by these two coordinate translations
in a,b, A, i, the parameters that fix the holonomies. Treating a,b,\, 1 as a new set of

coordinates, the Hamiltonian produced is simply

H = B(ap— Mb) .
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One interpretation of the canonical variables is to take the boost parameters A,y as
coordinates and the translations a,b as conjugate momenta.

This result is based on the existence of a non-singular spatial metric on the surface.
Its spatial periodicity is equivalent to the periodic tiling of the tangent space over the
torus. The holonomies (A, a) and (i, b) completely determine the action because of the
flatness of the space.

A model for the genus g = 1 torus is simple to construct because the plane R? can
be tiled in regular (4g = 4)-gons, or squares. This surface is also easier to study than
other genus surfaces because it is the only one that can support a non-vanishing tangent
vector field, immediately giving the surface a non-singular metric. We now turn a to more

complicated surface, the two-holed torus, where the results for 7% are closely mimicked.
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A Two-Holed Torus

In this chapter we apply the results of Chapter 2 to the more complicated genus 2 two-
holed torus, T%T?. One would suspect that this surface is more difficult to study than
T2, for it is impossible to put a continuous non-vanishing tangent vector field onto this
surface whose non-zero Euler characteristic y =2—2g = —2 is non-zero.[6] We will find,
however, that T%#7T? is simply the connected sum of two tori 72, and the action is more
complicated only because it is a functional of twice as many variables. This surface has
29 = 4 generating non-trivial loops. It can be constructed by identifying pairs of sides
of a (4g =8)-sided polygon. Or equivalently, the two-holed torus can be conceived by a
tiling of a plane with octagonal tiles, with eight tiles meeting at each vertex. As we shall
see, but intuitively understand already, the plane R? cannot be tiled in regular octagons
without leaving gaps in the tiling. Hence we look to hyperbolic geometry where the
condition that triangles have 180° no longer applies. Before we construct such a tile and
its collection of holonomies W and II, we first consider the case of a general octagonal

tiling, and translate the results of Chapter 2 into the T%#T? variables.

4.1 The Action over a Two-Holed Torus

We calculate the action over the two-holed torus exactly as we did for T2 Cover
each surface of constant time with octagonal tiles. Label the sides of the octagon
A,B,...,H and the corners 1,2,...,8 (See Figure 4.1(i)). The identification of sides

is indicated by the arrows on each side. Gluing the matching sides together generates the

39
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Figure 4.1: (1) Label for the sides and corners of the tile, and identifications of sides. (ii)
The neighborhood of a vertex where eight tiles meet.

boundary-less two-holed torus. Note the reversed orientation in the pairs of identified
sides C&A, D&B,G&FE, H&F. The neighborhood of a vertex where eight tiles meet also
shows the identifications and labels (See Figure 4.1(ii)). As before, we bootstrap around
the vertex using the identifications and label the sides and regions of the vertex. Figure
4.1(ii) is a truer representation of the tile because the neighborhood of a vertex is a patch
of R?, and the angular contribution of each tile is Z. By drawing the whole tile on paper
(R?) as opposed to the hyperbolic plane where the tile really sits, we are forced to stretch
the angles out to %”.

Across the boundary between sides A and C' we find from (2.8)
Woa® pc® + Iloa® = pa® .

Here W4 is the Lorentz transformation which relates Woa Uy = Uy and Iy is the

constant defined by (2.7). This relation holds all along the edge between sides A and C
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as W9, =0 (2.5), so we push the result down to the 3-2 region of the vertex where
Woa® po®(3) + Iloa® = pa”(2) .

The term po?(3) is the limiting value of po* as the vertex is approached along edge C.

Similar relations across each of the identified edges are defined in Figure 4.2:

Wea® pc®(4) + Tloa® = pa®(1)
(2)

Figure 4.2 (i)
3) + lea® = pa®(2

(
o po’(
Wpbs%, pp’(4) + Tlpp”" = po®(3)
Wobe% ppb(5) + lipp* = po®(2
(

)
)
Figure 4.2 (ii) { ;
)+ Hge® = p*(6
)
)
)

)
474 b7

Figure 4.2 (iii) | 08 2/ b( )

Wee® p6°(8) + llge® = pp*(5)

(

(

HF b,OH

8) + ur" = pr*(7
Figure 4.2 (iv) { urt = e
(

)
)

We must evaluate Ap;® by integrating along identified edges to produce the action.

Wirr®, pe® (1) + Ny p® = pr(6

The return integrals along 2-sides are accounted for by the WW terms, so we need only

consider the 1-sides, from corners 1 —+ 2,2 — 3,5 — 6, and 6 — 7. The action becomes

I = { (pa*(2) — pa* (1)) W * o Wea™
+ (p8°(3) — pa"(2))Wp5 s Whp™
+ (p"(6) — PE’a(5))VVGbeI/VGEC$

+ (or*(7) = pr®(6))Wjy o W™ } €ate - (4.2)

The field p® is discontinuous across the boundaries, the discontinuities related to the
holonomies W and II. But in region 4 of the vertex, for instance, pp(4) = pc(4), as this
is the limiting value of a function p?, continuous on the tile, without any identification

of points required. Call the common value just ps. An analogous relation holds in each
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(iii)

%

N

>/

E
~——
3
/

Figure 4.2:
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The transformations W across the identified edges (i)C&A, (ii)D&B,
(i) G&E, and (iv)H&F.
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region of the vertex:

pa(l) =pu(l)=p1  pa(2) =pp(2)=p
pB(3) =pc(3)=ps pc(4) =pp(4) =p
pp(5) = pr(5) =ps  pu(6) = pr(6) = pe
pr(7) = pc(T) =pr  pc(8) =pu(8) =p

By bootstrapping around the vertex from region 1 with these relations and the W, II
above (4.1) we can express all the p; in terms of p;. As vectors and matrices rather than

in components, we see

i

P2 Wea ps+1lca

= Wea(Wpbpps+Ups)+1ca

= Wea(Wps(Woi" (p1 — o)) + IIps) + 1lca
Repeating the process for each corner at the vertex gives

p2 = Woa(Wos(Wei'(py —lca)) + lips) + lca
ps = Wop(Wea'(pr — Hca)) + lps

ps = Wei (p—Tca)

ps = WeeWur ' (Wag' (Wirp: + Hur — lgg) — lur) + Hag (4.3)
pe = Wuyrp1 +1luyr

pr = Weg'(Warpr + lgr — lgg)

ps = Whur (Wag' (Warpr + lur — lgge) — yr)

J

We arbitrarily chose to write ps = ps(p7(ps(p1))) in finding the last result in this
list, but we equally could have bootstrapped the other way around the vertex, writ-
ing ps = ps(ps(p2(p3(pa(p1))))). For the p; to be well-defined, it must be true that a

complete circuit of the vertex is the Identity:

p1(pa(p3(p2(ps(ps(pr(ps(p1) - -+)) = p1 -
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The Lorentz part of this Poincaré transformation must be the Identity and the translation

must vanish. The transformation carrying p; around the vertex back onto p; is given by

p1 = WoaWbs ' Wei' WopWapWur Was War pr
+ WeaWpg ' Woa WosWee Wy Weg Ty r
— WeaWps Ve i WosWas Wy s Wag  Tge
— WeaWpg ' Wed ' WosWaeWyr lgr
+ WoaWps Wed Whsllas
+ WeaWps Vo' 1ps
— WeaWps o' Toa
— WeaWps ' TpB

+ Mgy . (4.4)
The Lorentz transformations Wz 4, Wps, Wag, Wiy r must obey the closure relation
WeaWp s Ve i Wos Wep Wi Wer Wyr =1 . (4.5)

Again we see the fundamental group m1(T%£T?) represented by the W in the gauge group.

Define
M = WoaWbs Ve Vbs (46)
= Wur' WeeWurWar' .
The constraint (4.5) is equivalent to
Ql - Qg =0.

While @ = Q1 (Woa, Wpg) but Qy = Q:(Wag, War), they are the same transformation:
; is a transformation halfway around the vertex in one direction, {1, is a transformation

halfway around in the other direction, and the two results coincide there. The decoupling



Chapter 4. A Two-Holed Torus 45

of the transformations into ABC'D terms and EFFGH terms is an indication of the
connected sum construction of T%#T2. The constraint (4.5) shows that the two tori glue
together smoothly. By inserting the factors missing from the cycle (4.5) and removing
the resulting factors of 1, we can reduce the translation part of (4.4) to the constraint
0 = I — WeaWps Wod'lca

—WeaWp5s Nps + WeaWps' We i ps

—Wai' e + Wa i WaeWarWes e

+ Wy g r — W Weelur . (4.7)

We can now write the action in terms of p; (or simply p), W, and II, plus the

constraints (4.5) and (4.7) with the help of (4.3). Again we introduce
{Wha = WO, W <ca

to more easily write

MW W€ = II{W} .

We use the properties of {W} found in Appendix C to reduce the action to a simple

form:

I = — p{WeaWps' Woi'Wos} + p{War WeeWarWer }
+ (VVDB_IHCA) {Wh5' 1} — (WDB“IHDB) Vet 0}
— Nee{WurL} + (%E%ilHHF) {%Eﬂz} .

The term in Ilg4, for example, is found as follows: Upon substituting the relations (4.3)

into the action (4.2), the terms containing Il¢4 are

— (VVC‘A%B%A_IHCA) {Woa} + Mea{Wou}
- (%B%A“IHCA) {Wps} + (WJA VVDBVVCA_IHCA) {Wpp}
—HCA{%B} .
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Rewrite this using (C.1) to give the terms the form of the right-hand side of (C.3):

= (_VVCA%BVVCA—I HCA) {WoaWpsWe i WoaWog' We i Wea}t

Nea{Wea} — Uea{Wps)} — (Vlﬁ)lﬂfchf1 HCA) {WoWo i WeaWbs' Wpp}

+ (VVCAVVDB%A_I HCA) {WeaWpsWei' WeaWps ' Woi' Whs} -

Now apply (C.3) to remove the under-braced terms:

= —Toa{WeaWp5'} + Noa{WearWog ' Wo i}
+Moa{Wen} — Toa{Wos} — Hoa{Wou} + Hoa{WeaWps'}
+Toa{WerWos* Wo i Wog} — Hoa{WoaWps ' Woa'} .

The only two remaining terms are grouped together with (C.3) to give

= (Wb5'llca) {Whs WeaWps Woi Vs -

Substituting ; from (4.6) produces the [Ig4 term in the action above.
By imposing the constraint {2, = §,, the terms in p cancel in the action, leaving the

constrained action

I = (I/VDB_IHCA) {Whg '} — <%B_1HDB) {Wei'Q,}
~Mop{WarCe} + (WapWar ur) {Wepa}
FEH U — Q)7

+Ca(Mea — WorWos Mo llgs + - -+ — Wy Wapllyr)® . (4.8)

The Lagrange multipliers ¢ and ( have been included to account for the constraints
imposed by (4.5) and (4.7), respectively. Observe again that the terms in ABCD are
decoupled from those in EFGH.

As in the T2 case, this action is written entirely in terms of the holonomies W and II.

The geometry of the tile has been removed. The action is very nearly in the canonical
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pqg form, except that the term {W} is not merely %W. The only difference between the
“simple” T? and the “difficult” T%#T? is that more variables have appeared to account

for the increased number of incontractible loops and holonomies.

4.2 Consistency of the Constraints

Recall the first constraint on the system is that the Lorentz transformations W obey the

closure condition (4.5)
WoaWps' Wei' WosWap Wi War War =1,

or with (4.6),
Ql — Qz =0.

The second constraint forces the sequence of translations to vanish (4.7), closing the

circuit of Poincaré transformations around the two-holed torus:

0 = Toa— WoaWps' Woilllos
—WeaWps lps + WouaWps Woillps
Wy lge + War Wes Wy rWes  lgg

+Wyrllyr — Wy Weellgr .

The “configuration” variables W (they are not quite the configuration variables be-
cause the action is of the form II{W}, not merely IIW) are forced by the first constraint
to lie on a surface defined by the relation (4.5). Variations, or nearby solutions, must
also lie in this surface. We will see that this new condition is the second constraint (4.7),
under an identification of the “conjugate” variables Il (as above, the IT are not quite
conjugate to W) with infinitesimal Lorentz generators. We will work both in tensor and

component form in showing this result.
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The variation of Q; — Q, is defined as

5( — Q) 5(y — Q)

A -W—JWCA + Wom Whbs
+——6(S};VV;EQ2)J%E + —“—6(211/‘;};;22)5%F
where
?;V/”z = —W,“W, 676Y

the latter coming from §(W W) = 0. In component form, the constraint reads

b d
0 = Woa',Wos WouWhbst

~Wapy, " Wor" War Ve, " .
The variation, with the §-functions evaluated, is

A%, = (8Won")WoB Woa Woss, — Wea®Wop, We a, Wea ! (SWE AP, )W,
—%Aab%pr%ch(5%qu)%Adc%Bde + Woa® Wos " Wea £ (6Whs?)
W, (6War ) W r® Wer, + Wary* War” Wap® Wep, Wer,* (SWeE",)

+Wirr, Wirr, (6 Waur®, ) Weg' Wi r Wer, — Wirr, Weag®. (Wt ) Wag,* .
This is merely the ( )% element of the matrix

A = (6Wea)Wo'WoilWop — WeaWps? We i (SWe )Wo' Wi
—WeaWos (6Whe)Wos* Ve i Wb + WeaWpg? Wei' (6WhB)
~War (SWep)WarWer™ + W WasWirWer" (6Wer)Wes'
+Wa i (W r) Wi Was Wy rWag™ — Wi Wee (W) Weg" |

which is clearly the variation of W aWpgWeilWpp — Wi r Weg Wy rWeg" under

W) = — W (W)W,
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Recall that (W)W is antisymmetric (3.7). Insert factors of 1 = W™'W where
necessary into the expression for A to get all éW into this antisymmetric form. As the
variation A must vanish, we can right-multiply A by Wog WeaWpsWe i, or equivalently

Wee Wy Weg Wi, to find the following:

0 = (WeaWoi) — WoaWps Vo i (SWoa Wo i )W aWps We i
~WeaWpg' (6Wps Wos ) WoaWe i + WoaWbs' Woi (§Wos W ) WoaWpeWeo i
—Wur! (6Wer Was )War + Wir WasWarWes (8Was Wae ) Wap Wi Woi War

+Wa i (Wi e Wa Y Wi — Wi Wag (SWar Wi )Wag Wi .

As (W)W is antisymmetric, it has only three independent components and can be

replaced by a vector A*:

X =€ W, W

Again, the similarity transformations U(§W W™)i{~! in the variation are simple linear

transformations U X of the vector A. The variation of the constraint becomes

0 = Aoa— WoaWps'Woitdca
—WeaWps  Aps + WouWos ' Wo it Aps
W' dee + Wi WaeWa i Wes deE

+ Wy Agr — War WapAnr -

Under the identification

Axy® — xy®,

this is exactly the second constraint (4.7). The same notion of the II being momenta
conjugate to the configuration variables W is suggested. We offer an interpretation of

these “canonical variables” in Chapter 5.
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We arrive at the question of how many degrees of freedom are directly removed by

these constraints. The condition Q;0Q5; =1 implies
WeaWpg Ve = QWhs . (4.9)
Taking the trace of this matrix equation shows
TrWpg* = Tr (WeaWog' Woi') = Tr (. WhE")

Whatever form (, takes, the components of Wpp must satisfy this (scalar) equation,
removing one df.

Using the fact that the Lorentz transformations form a Lie group, we can write each
element in exponential form & = €7/, where the generators J, introduced in §1.2 are a

basis for this vector space. We re-write (4.9) as

_ a -1 _ a
e~ Mo WeadaWea™ — 0y e DB Ja

Now —nDB“I/VCAJaI/VoA_l is a vector in the space spanned by the basis vectors Wo 4 J, W5 it
the original basis J, rotated by Wz 4. In the original, non-rotated basis, this is the vector
—(Woanpe)®J.. This is the same as the earlier result of §3.2 that showed A = U\ when

the matrices JW W are rotated by &. Thus we have

e~ (Weanpn)®Ja _ 0, e "bpJa (4.10)

The right-hand side is Wpg" ! transformed by ;. The vector representing this new Lorentz
transformation is —(Weanps)?, a rotation of n% 5. The equation specifies the direction
about which this rotation must occur (two equations) and its magnitude (one equation).

We see, however,

WeaWbs' Woi' = Wea(WpsWos )Wos Ve

= (WouaWps)Wp5' (WeaWps)™
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so that rotations about the npp-direction are inconsequential. Therefore, the rotation
specified by (4.10) is determined by only one parameter. Together with the magnitude
of the rotation, two df are removed. Coupled with the trace relation, a full three df are
directly removed by the relation ;93" = 1. The translation constraint (4.7) likewise
removes three df, directly reducing the dimension of the phase space by six. The failure
of the constraints to remove a full six df from the T2 system is due to the triviality of the
trace relation: The condition WeaWpg We i Wpg = 1 shows Wpg! = WeaWpg' Wed' so

that

TeWps' = Tr(WeaWps Weil)

= TrWpgs!.

This equation put no conditions of the transformation Wpp. This, together with the
corresponding translation “non-constraint”, supplies the unexpected extra df in the torus
system.

Each constraint also removes a gauge degree of freedom, that gauge transformation
generated by the constraint. Thus the dimension of the phase space over all genus g > 1
surfaces is (2g holonomies @ 6 df per holonomy) — (6 constraints + 6 gauge choices),
giving dimension 12¢g—12, except for the genus 1 torus, which has an unexpected 12—8=4

degrees of freedom.

4.3 A Model of T%T?

While the results we have found are quite explicit, they are still based on some unspecified
octagonal tiling and an abstract collection of Lorentz transformations and translations.
We now propose to build an actual physical model (as physical as (2+1) can be...) for

the tiling and the holonomies. We will see, though, that to construct a model, we have
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to simplify the geometry with high symmetry, eliminating the translation components

IT* of the holonomies altogether.

4.3.1 Tilings

To construct a closed surface without boundary, like T%£T?, one abstractly thinks of a
plane or similar infinite region modulo some identification. Concretely this can mean
covering the infinite region with tiles and identifying sides of the tile in pairs. The plane
R?, however, cannot be tiled with all regular polygons. Suppose the tiles are regular
p-sided polygons. The interior angle at each vertex of a p-gon is ﬂ%ﬁ. If ¢ such tiles
meet at every vertex then each tile contributes 2—;5 so that l(’:—Ql =2 or (p—2)(¢—2) = 4.
The solutions to this condition are {p = 3,q = 6}, {p = 6,9 = 3}, and {p = 4,9 = 4}
which correspond to covering the plane in triangles, hexagons and squares, respectively.
The latter is the tiling we use to construct the torus 7. Clearly there is no integral value
of ¢ for which p = 8 is a solution, meaning the R? cannot be tiled in octagons.

Instead we look to a hyperbolic plane where the sum of the angles in a triangle is
less than 7, and the interior angle of regular p-gon is less than ﬁ”pil. The neighborhood
of a vertex where ¢ hyperbolic p-gons meet is a patch of R? and still requires a full 27
radians. Each tile contributes an angle of 2‘11 Since the p-gon is hyperbolic, 2{}—" < ﬂp;_z),
or (p—2)(¢—2) > 4. One of infinitely many solutions to this condition is {p = 8,¢ = 8}.
While it is not clear how an octagon can regularly cover a hyperboloid, one must recall
that the hypersurface of constant time is embedded in Minkowski, not Euclidean, space

so that every point on the hypersurface is the same (proper) distance from the origin,

much like the 2-dimensional surface of a sphere in Euclidean R3.
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4.3.2 Construction of an Octagonal Tile

The constraints tell us R;;** = 0, so the tile we construct must be flat. Consider the
simplest flat 3-dimensional space, Minkowski. In polar coordinates, the 3-dimensional
Minkowski metric 1s

ds* = —dt* + dR* + R*d6°.
Change coordinates (¢, R,0) to (7, p,0) defined by

t = rcoshp

R = rsinhp. (4.11)

Inverting this transformation shows

T = xVit?— R?

R
p = tanh_IT.

Observe that 7 is invariant under Lorentz transformations, while p is the magnitude of
the Lorentz boost which takes R = 0 out to R = 7sinh p. We exploit the invariance of 7
under Lorentz transformations. By building the tile on a surface of constant 7, points on
the tile will be connected with merely Lorentz, rather than full Poincaré, transformations.

Finally, define a new coordinate

r = 7 tanh(%) (4.12)

NI

and consider for simplicity the 7 = 1 hypersurface. This coordinate transformation
projects the 7 = 1 hypersurface onto a unit disk with infinity at » = 1, much the same
way the stereographic map projects R? onto the 2-sphere. The metric on this surface is

conformally flat:
4

=

do? = dr? + r2d02) }
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Because this disk is conformally flat, angles are preserved between the unit disk and the
(1, p,0) coordinate system.

To construct the tile, we piece together 8 identical curves chosen in the following way.
In the original Minkowski space, consider the intersection of the 7 = 1 hyperboloid and
the “vertical” plane y = 0. This curve lies on the hyperboloid “above” the y-axis and

can be parametrized by
+(A) = (t(/\) =\ RO\ =V 1,000 = :t%)

for A > 1. Now Lorentz-boost every point in the y=0 plane in the z-direction by some
magnitude p; the points which lie on the y-axis are unaffected by this transformation
and the y = 0 plane is ‘tilted’ in the z-direction. With increasing boosts the intersection
curve () moves away from lying over the y-axis until finally with an infinite boost,
the plane has tilted by 7/4 and is just tangent to the hyperboloid at * = f£oo. With

arbitrary but finite boosts by p, the family of curves v(}; p) is parametrized by

t(A\) = Acoshp

R(\) = y/A2cosh®p—1
[ EVAZ -1
tan™ | ———— | .
Asinh p

e}

o~

>

Nal?
l

One can check that y(A) = R(X)sin #(A) remains unchanged under the p-boost, so that
the plane is tilted without any stretching.

On the unit disk with coordinates (r,8) found by projecting down the 7 = 1 hyper-
surface, consider the collection of circles centred outside the disk which intersect r = 1
orthogonally (See Figure 4.3). The arcs within the unit disk are the geodesics of this
Poincaré Disk model of hyperbolic geometry [8]. Parametrize in  the arc within the unit

disk of a circle of radius 7:
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Figure 4.3: Circles of radius 7 intersect the unit disk orthogonally. The arcs within the
unit disk are parametrized in 6.
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r(d) = \/1+F2c0s0—\/(71—|—f“2)cos29—1

o~

tanf € [-7,7].

This circle is centered a distance /1 + 72 + 7 > 1 from the origin.

Transforming this family of curves r(6;7) with parameter r back to Minkowski coor-

dinates, we find

w0 = G
RO = T2y
(6=0)

Comparing this with the family of intersection curves y(; p) we see
t(A\)? — R(A\)? =1=1(0)— R(0)?

so that both families of curves lie on the 7 = 1 hypersurface. Furthermore, by comparing
the 0 = 0 points of both families we find the correspondence between p and 7 and finally
that these two families of curves are identical. That is, the curve in Minkowski space
where the y = 0 plane, tilted by tanh(p), intersects the 7 = 1 hypersurface becomes
the arc of a circle of radius 7(p) which orthogonally intersects the boundary of the unit
Poincaré Disk.

By simply rotating these curves about the origin, we can piece together arcs in the
unit disk to form an 8-sided figure. We must now find the value of the parameter 7, or
equivalently p, which produces the correct tile. The polygonal tile we are constructing
is regular, so the 8-sides must be spaced at equal intervals of 7/4. Consider the figure
produced by laying down 8 arcs of radius 7 centered at radius /1 4+ 72 + 7 on the 8
m/4-‘spokes’ (See Figure 4.4). When 7 ~ 0 the arcs belong to small circles centered just

beyond r = 1 and the arcs do not intersect (Figure 4.4(i)). At some larger 7 when each
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Figure 4.4: For various values of 7, arcs (i) do not intersect, (ii) are tangent to one
another, (iii) form an almost regular octagon about the origin, and (iv) intersect with
angle 7/4.
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arc just intersects the two neighboring arcs, the angle at the intersection of two adjacent
arcs is 0 because all arcs intersect orthogonally with r = 1 (Figure 4.4(ii)). When 7 — oo,
the arcs become diameters of the unit circle, and at large 7, the 8 arcs intersect to form
an 8-sided figure about the origin which is very nearly a regular octagon (Figure 4.4(iii)).
The angle between adjacent arcs of this figure is almost 3;:—', the interior angle of a regular
plane octagon. For each value of 7 we amputate the legs of the 8-sided figure about the
origin and call the result an octagon. We must choose the value of 7 which generates an
octagon whose adjacent sides intersect at an angle T (Figure 4.4(iv)) so that 8 such tiles

will supply the 27 radians about the vertex. On the conformally flat Poincaré Disk, we

o / 1 .

This 7 corresponds to a boost magnitude of

L+ 1750 = 7(5)
1= /14722 +7(Z

can use plane geometry to find

m

o) =1n [ (4.14)

1
+r] =1In

1—r7r

The magnitude p(5) generates a tile on the 7 = 1 hypersurface. The construction can be
repeated for hypersurfaces at arbitrary 7, but the result is the same. This magnitude is
actually independent of 7 and generates curves on all hypersurfaces of constant 7 from

which these octagonal tiles can be constructed.

4.3.3 Holonomies

The 8-sided figure on the hypersurface of constant time 7 is the tile we represent schemat-
ically in Figure 4.1(i). For simplicity, suppose the centre of the octagon lies over the origin
and that the 6 = 0 ray bisects side A. Corner 1 lies at § = —%, corner 2 at 6 = Z, corner
3 at § = 37 and so on (See Figure 4.5). The transformations W between the identified

sides can be easily found by recalling the procedure used to construct the curves which
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Figure 4.5: The octagonal tile lying on a hyperbolic hypersurface of constant time 7. In
Minkowski space, every point on the tile is the same distance 7 from the origin.
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became the sides of the octagon. Hereon, p will refer to the value p(§) produced from
7(%)- Just as a boost in the y-direction by p drops the curve over the z-axis down to
form side C' of the tile, a boost in the (—y)-direction by p (or equivalently a boost in the
y-direction by —p) will lift side C back up to a curve lying over the z-axis. Rotate this
curve by +7 (4 to generate the right orientation), and boost it by p in the z-direction
to drop it back down onto side A. This sequence of SO(2,1) transformations maps side
C onto side A. As SO(2,1) is a group, the composition of the three is a single Lorentz

transformation, which we call W5 4.

A general Lorentz boost of magnitude p in the ¢-direction is £ — A(u, ¢)Z where

cosh p sinh p cos ¢ sinh p sin ¢
Ap, ) = | sinhp cos¢ (coshp —1)cos?p+1 (coshp —1)cos ¢ sin
sinhy cos¢ (coshpu —1)cos ¢ sing (coshpu —1)sin® ¢+ 1

Rotations about the origin in the zy-plane by angle ¢ are produced under the transfor-

madtion

1 0 0
RWY)=|0 cosyp —sing
0 —siny cosvy

The transformations W5 4, then, is given by

Wea @ maps side C onto side A

Wea = Alp,O)R(S)A(p, )

cosh2p 0 —sinh2p
= sinh2p 0 —cosh2p
0 1 0

This method of lift-rotate-drop gives each of the W transformations:
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Wpe : maps side D onto side B

™ U U

Wos = Alp, 1) R(5)A(p, —7)
cosh2p  Zzsinh2p —715 sinh 2p
= % sinh2p  sinh?p —cosh?p
71-5 sinh2p  cosh?p —sinh?p

Weeg @ maps side G onto side £

m

T
Wz = Ap,m)E(5)A(p,3)
cosh2p 0 sinh2p

= —sinh2p 0 —cosh2p

0 1 0

Wyr : maps side H onto side F'

om. _.m 3
= VR(EVA(p, 22
War = Alp, ) RC)AG, )
cosh 2p ——12~ sinh 2p % sinh 2p
= —% sinh 2p sinh? p —cosh?p
—\—}-5 sinh 2p cosh? p —sinh?p

4.3.4 The Fields Y% and p*

The symmetry of the model for T%#T? allows us to find a single transformation Wz 4 that
maps side C' onto side A. Because W, is independent of the pair of identified points on
the matching sides, we see W4 ; = 0 as required by (2.5). The same applies to Wpg, Wag,
and Wyp. The W transformations, recall, are the link between the values of the field &
on opposites sides of a boundary. We attach the W onto the octagon as we did for the
square tile of 7%, by regarding the holonomy as a “phase difference” between identified

points.
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Figure 4.6: Values of the phase U on the corners of the T*#T?s octagonal tile. The
constraints guarantee (1) is well defined.

Again we start on the corners of the tile (Refer to Figure 4.1(1)). Since only the
phase difference between identified points matters, there is an arbitrary constant phase.
If we set U(3) = Woi'Wpp, the U field nicely decouples into ABCD and EFGH, as
we found before (See Figure 4.6). By starting on corner 3 and transforming to each
corner under the W’s, we find on corner 1 both U(1) = Wy WaeWhrWag' and U(1) =
WoaWos ' WeaWpgs. The constraint (4.5) ensures U(1) is well defined. It is now a simple
matter of interpolating these vertex values over the whole tile, while preserving the phase
difference between identified points. A simple choice is a linear interpolation between the
corners along the boundary, coupled with a radial interpolation under which the ¥/ field,

now defined on the boundary, decays down to the identity at the center of the tile. All the
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transformations W are in SO(2,1) and connected continuously to the identity. These two
interpolations together give a continuous field over the tile with points on the boundary
differing by the appropriate transformations W. Smoother interpolations can be used, if
necessary.

The last component of this model is the field p*, introduced to write the dreibein as
e, = D,p*. The choice we make is a very simple one; too simple, perhaps, for it sets the
translations II to 0. Consider the choice p* = 2® = (¢,z,y) in Minkowski space, giving
e; = (0,1,0) and e, = (0,0,1). Recall the solutions to the equations of motion are those

for which R,,* = 0, so in the solution space we can take e, = (1,0,0) as well. The two

fields U and p completely determine the holonomies. We found in (2.8)
Wai% p2* + i = pi*

where p; and p, are the values of p on either side of the identified boundary. The

transformations Wp4, for instance, maps (¢, z,y) on side C onto (¢, z,y) on side A:

tA tC
Ta | = Woa Ic
Ya Yo

But this is exactly

b
pa” = Woa po

showing the translation I1c4* is not needed to reproduce the discontinuity in p across the
CA-boundary. This choice of p* is “elegant” because it so easily exhibits the discontinu-
ities required for the holonomies to be non-trivial. The solution II = 0 just means the
configuration is (momentarily) stationary. This is consistent with the geometry of the
tile being independent of the time 7 on the spatial slice, a property we found in (4.14)

when we built the tile.
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Canonically Conjugate Variables and Quantization

We have seen from the two surfaces studied here that the Einstein action, on the solutions

to the equations of motion and with the constraints imposed, is of the form

Ir = (Wos'lpp){Wea} — (Woitlloa){Wos}
Ity = (%B_1HCA) {Wog* M} — (%B_IHDB) {Wei'Q}

—HGE{WH;?QZ} + (%EWHF_IHHF> {WGEﬂz}

This result is not the canonical pg form of the action because {W} is not %W but instead,
recall,
{W}a = szwwﬁabc .

While this is not the vector 41 tangent to the space of W’s, {W} is still tangent to
some W-space, related in a one-to-one way with the tangents of the space of Lorentz
transformations. The translations II are not (quite) the momentum conjugate to the
Lorentz transformations W, although the association or the Il with infinitessimal trans-
lations of the W is very suggestive. It is possible to bring the result even closer to the
canonical form to reveal more about the phase space.

Every Lorentz transformation can be written in the form
W = eVe

where the J, are the 3x3 Lorentz generators introduced in §1.2. The components n* can

64
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be determined as follows. Write W = e for some A. As BeAB™ = ePA™",

eA = W
= Www
= Wetw!

-1
eWAW

so that A = WAW™! or [A, W] = 0. If we write A = n%/,, then
0=nJ,, W].

There are only three distinct components in this matrix equation due to the symmetry
of the J,. The three equations are not linearly independent, though (the right-hand-side
has vanishing determinant, as det(J,)=0). Another relation is needed to solve for the

components n*. Determinants will not suffice: As det(WW)=1
1 =det(W) =e™ .

Thus Tr.A=0 and any constant times the matrix A will not change the determinant of

W. Instead, we consider
TTW = Tr(eA) =eM 4 &M 4 e

where A1, Az, A3, the eigenvalues of A, are functions of n*. This comes from the property

that A can be written DAD™ for some D and diagonal A, so that Tre* = Tr( eDAD_l)

Tr(De*D™) = Tr e* by the cyclic nature of the trace. Since A is diagonal, Tr et =
e’ + e’ 4 e*. This relation, along with the two equations arising from [A, W] = 0,

suffice to completely determine n®.

Now we can write
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oW ..
- (577“)n

al/Vb ‘q
ana)“’

W= (

Therefore the action can be re-written as

ow
Z (l—la(W )bx WCICabc) T-]z
(W] T

holonomies

This action is now in canonical pg-form. This expression, however, is not as well behaved
as one would like. In a neighborhood of each W in the space of Lorentz transformations,
we can attach 7 coordinates and consider (OW/dn?). Writing W = €""« is only shorthand
for the power series 1 + 1%, + 1[n%J,,n%)] + - -, so derivatives with respect to n* may
not even exist. Furthermore, there is no guarantee that the coordinate patches around
each W are part of some global coordinates over which we can compare the values of
(0W/0n?) for two different holonomies.

With these problems in mind, let us speculate on the canonical coordinates. The
configuration space variables are n®, the coordinates in the space of Lorentz transfor-
mations. This space is now represented as a vector space with basis J,. The relations
[Ja, Jo] = €,,°J. show the structure constants are €,,°, suggesting a non-trivial geometry.
The momenta conjugate to these coordinates are related to the translations I1*. Under
this association, we would expect the II*, as momenta, to generate translations in the
configuration space. And this is what we find in looking at the equivalence of the con-
straints: we make the association A* <+ p® for A\* = €%, W8 W, It is easy to verify
that €,°. = (J,)’. — these A* are (infinitesimal) translations about the vector space of
W’s. While the interpretation is by no means rigorous, it is very suggestive: The Lorentz
components W of the holonomies are the configuration coordinates. Translations in this
space, generated by the momenta [1*~ (§W W)J¢, are infinitesimal Lorentz transforma-

tions. This is just what we expect for translation in a space of Lorentz transformations.
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Figure 5.1: (i) A principle ISO(2,1)-bundle over the base space T*#T?. (ii) The ‘phase
space’ is like an ISO(2,1)-bundle over the space of configurations of the surface.

There is another, more mathematical description of this system. Vectors in the tan-
gent space over each point of the surface, T? or T%T?, are subject to the action of
the Poincaré group ISO(2,1). This group leaves the Einstein action invariant, and its
generators obey a Lie algebra. These are the ingredients needed to define a principle
[SO(2,1)-bundle over the surface. The group action moves us along each fibre over the
surface without changing the Einstein action. The holonomy at a point on one of the in-
contractible loops is the element [W|II] of the gauge group ISO(2,1) relating two distinct
points in the fibre over this base point (See Figure 5.1(i)). In the language of princi-
ple bundles, the phase space is also like an ISO(2,1)-bundle, this one over a base space
consisting of configurations of the 2-dimensional surface (See Figure 5.1(ii)). The one
point in the base space we have found represents the regular octagonal tile constructed
above. Other points represent asymmetric tiles and their corresponding collections of

holonomies. The momenta II* are infinitesimal generators of the group action in each
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fibre. The W and II vary as we move about in each fibre from one horizontal lift to
the next under global gauge transformations. Yet the projections down to the base
space of holonomies remains unchanged. If we rotate the tile, or globally boost it to
a new location, a similarly transformed collection of holonomies is produced. The tile
representing this new surface, though, is essentially unchanged, merely displaced. The
canonical variables W and II are phase space coordinates in this bundle: The W are
configuration coordinates in the fibre over a basepoint, a particular configuration of the
tile representing the surface. The momenta II generate translations along this fibre un-
der the infinitesimal group action. Different horizontal lifts, all differing by global gauge
transformations, have different coordinates (W, II), but project down to the same model
of the surface, perhaps displaced but leaving the Einstein action invariant.

In the full ISO(2,1) representation, the Poincaré holonomies can be written as
W ()11 ()] = o7 ete" P

where P,, introduced with J, in §1.2, generates translation in the z* direction. In the
case of the torus T?, we can see noa® = (0,0,u), oca® = (0,0,a) and npp* = (0,0, au),
ope® = (0,0,b). For the two-holed torus T%#T?, the transformations W5 4,..., WyF are
compositions of boosts and rotations and the corresponding n* must be evaluated by
the method outlined above. The conjugate translations Ilgy,...,1I1gF all vanish so
oca® =(0,0,0),..., ogr® =(0,0,0). This exponential ISO(2,1) representation of the
holonomies matches the Chern-Simons approach. There, the gauge field is the collec-
tion of flat connections A, that transform under the action of an infinitesimal parameter
u = 1%J,+p*P,. That is, the difference between two horizontal lifts along the same fibre,
(W, 11) and (W', Il"), which project down to the same model of the surface, is generated
by an infinitesimal Poincaré transformation u. The coordinates W and II determine the

point on the fibre over the base space.
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When the canonically conjugate variables of a classical Hamiltonian system are known,
quantization in the Schrodinger picture involves expressing the variables as operators on
a Hilbert space of wave functions ¥. The observed values of the coordinates and mo-
menta are eigenvalues of coordinate and momentum operators. Unfortunately our choice
of canonical variables W and II have ill-defined operators, for the following reason. We
suggest that the configuration space has coordinates n®, the components of the vector
representing W in the vector space spanned by {J;, J3, J3}. The quantum mechanical n*

are the spectrum of a position operator N°:
NV = n°¥ .

While J; and J; generate boosts in the z- and (—y)-directions, respectively, and have
spectra 1°,n* € (—00, ), recall that J; generates rotations in the zy-plane. The eigen-

value of this operator is the angle of rotation, n' ~ 0:
N'Y(0) ¥ = 0V .

Because rotations differing by 27 give the same reading 8, we require both
NY(O)¥ = 0¥ ,

NY (6 +27) ¥ = 0V .

Thus N' is no longer a linear operator on the Hilbert space of ¥’s. This tells us that 6,
or ', by itself cannot be an observable. Instead, some function of the operator N1, eV’
for instance, is needed for a well-defined operator. At the same time, the Hilbert space
is no longer a vector space, but has a “cylindrical” shape (See Figure 5.2).

Because the rotations are a subgroup of SO(2,1), which is itself a subgroups of the

gauge group ISO(2,1), perhaps this problem can be circumvented by re-defining the
configuration space modulo S!: R3/Sl ® RB/Sl ®-® RB/SI, one term for each of the
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Figure 5.2: J; and J; are generators of Lorentz boosts while J; generates rotations.
Because the same eigenvalue 6 results from rotations by 8 + 27n for all integers n, the
coordinate n' ~ @ is periodic and the Hilbert space of wave functions has a “cylindrical”

geometry.
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2¢g holonomies of the flat genus g surface. In any event, this complex structure of the
phase space arises from the choice of W and Il as canonically conjugate variables, and

this interpretation is only speculative, based on qualitative observations.
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Conclusions

6.1 Generalization of the Result

The ease with which we jumped from the torus to the two-holed torus suggests this
formulation of the Einstein action can be applied to all higher genus surfaces. By choosing
an appropriate 7 on the Poincaré Disk to produce a regular (4¢g)-sided polygon with an
interior angle of i—;ﬁ, tilings of the hyperbolic plane are produced. Algebraic topology

describes a genus g surface, a connected sum of g tori, in terms of 2g cycles [9]:

-17-1 -17-1 ~17-1

We use this expression to read off the identification of sides of the tile. In the T%£T?
case, a;b,ai b a,b,a5'05" <3 ABCDEFGH tells us to identify sides A&C, B&D, E&G,
F&H, each with the orientation of the 2 identified sides reversed. That is, choose a
representation of the fundamental group of the surface in the gauge group 1SO(2,1). Each
additional “hole” formed by the surface simply adds two more holonomies, [Wo,41|5541]
and [Wag42|Il2442], to the collection that determines the geometry of the surface. The
constraint that the transformation producing a complete circuit of the vertex is the

Identity ensures each additional torus glues smoothly to the rest:

mm—lm—lm e I/Vi.)g-f-lI/I/2vg+2_lwég+1_l I/V2g+2 =1 —
Wogrz Wogr i WogoWogy i = WAV W WS -+ Wgyy W5, WG, VG,
Tin # (T #T7) .
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These transformations can be attached to the tile with the “phase difference” approach.
The closure relation on the W’s guarantees a well-defined ¢ field. Analogously, two more
terms, (1) 2,41 {W }2g41 and (IT)zg42{W }2,12, are added to the action to account for these
new degrees of freedom. The problems of conjugate variables and quantization are still

present, but not further obscured by the increase in genus.

6.2 Future Research

The Chern-Simons action based on gauge field theory and the usual Einstein action
of GR are two different representations of the same system. The former deals with
the gauge group theory of a principle ISO(2,1)-bundle over a (compact) surface, while
the latter looks at invariants of the Einstein action over a (2+1)-dimensional splitting
of spacetime. By comparing the ISO(2,1) gauge invariance of the Chern-Simons field
A, =e P, +w,*J, with the usual Lorentz + diffeomorphism invariance of the dreibein
e, and connection w,*, Witten [1] shows that the 2 representations differ only by a
transformation that is part of the gauge group, and thus is inconsequential. Therefore,
the general results of principle bundles and gauge theory can be used to study the specific
case of (2+1)-dimensional spacetime. There is reason to suspect, however, that the two

approaches are equivalent only under special circumstances.

Recall from §1.2 that the variation of A, is given by A, = de* P, + dw *J, where

a a abe abe
de,t = —p° —eent. — € wup. ,

dw = —715 — e’

c
9 WubTe -

Under the substitution p* = V*e,* these transformations coincide, on the solutions to
the equations of motion, to infinitesimal diffeomorphisms and Lorentz transformations,

the invariants of the Einstein action. In the case where e’ is everywhere non-vanishing,
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this gauge transformation is a physical coordinate transformation generated by the vector
field V# = p%e# . Note that V* = V*#(e#,), where e*, = g"’¢,,.

Now on all but the torus 72, the tangent vector field to the spatial surface must
have at least one singularity. Suppose the spatial ¢,* fail to span the tangent space at
the point . Where does this point “slide” to under the diffeomorphism generated by
p* = V¥e 7 We cannot say, as the vector field V#(z") cannot be determined! The
perfectly acceptable gauge transformation is no longer a coordinate transformation and
hence is no longer physical. When we drop the requirement that the results be physical,
we are left with an exercise in mathematics, not a theory of spacetime dynamics.

There is another problem related to this singularity. Suppose we are at a point z*
in flat spacetime where the dreibein is not singular. At this point, we perform the gauge
transformation with parameter p* chosen such that p?% = e, so that de, = —e,* and
the dreibein becomes singular. This simple gauge transformation does not have a corre-
sponding coordinate transformation. Furthermore, we cannot perform a gauge invariant
coordinate transformation to get away from this singularity, for the diffeomorphism must
be generated by V*e,® which vanishes for all V#. This suggests we can take two very
different spacetime (Euclidean and Minkowski R>, for instance) and glue them together
at this point z”. Moreover, there are gauge transformations that allow us to pass through
this point from one spacetime to the other. It may even be possible to extend this “phe-
nomenon” to a whole region, allowing us to construct a manifold whose metric changes
signature. Clearly the equivalence of the Chern-Simons and Einstein actions has inter-
esting details as yet unexplored.

One more question raised by the results deals with a subtlety of the dreibein approach
that suggests this formalism is somehow “larger” than GR. On all but the torus, the
vector field tangent to the spatial surfaces must vanish at one or more points. This

means the full spacetime metric must either be singular, or at least time-like. One of the
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gauge transformations allowed by the dreibein representation of the Einstein action ig the
internal transformation e,> — €2 4 D,p®. In general, this transformation will change
the metric components §,, = é,*€,,. At the point(s) where the metric g, is time-like, a
gauge equivalent metric §,, may be space-like or null — clearly this is not a coordinate
transformation. This phenomenon is prohibited in the usual form of GR written in
terms of the metric and its derivatives. There is a freedom allowed by the dreibein
formalism not allowed in GR. It may be possible to construct an explicit model and
study it in analogy with the gauge theory explanation for the Bohm-Aharonov effect.[10]
Overlapping coordinate patches may be related by a gauge transformation, but not a

coordinate transformation.

General Relativity is simpler in (241)-dimensions in the dreibein formalism because
the conditions that describe the slicing of 3-dimensional spacetime force the spatial hy-
persurfaces to be flat. We have considered the cases where these 2-dimensional slices are
folded up into compact surfaces, the torus 72 and the two-holed torus T%#7T2. While they
remain flat, removing the geometric degrees of freedom, the topology of these higher genus
surfaces becomes important. The Einstein action becomes a functional not of the geo-
metric quantities g, but the topological quantities [W|II], the ISO(2,1) holonomies over
the surface. The flatness of the genus g surface removes all but 2¢ distinct holonomies,
and the action is written entirely in terms of these Poincaré transformations.

From the form of the reduced action, we can speculate of the dynamical variables and
the phase space. It appears that the configuration space is the space of Lorentz transfor-
mations while the conjugate momenta lie in the collection of spacetime translations. We
make this interpretation because the translations II* are related to infinitesimal Lorentz
transformations, just as classically, momenta generate translation in configuration space.

While the action we have produced does not truly reveal the dynamical variables of
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this spacetime, and quantization of the phase space is not obvious, the method employed
to reduce the action is quite revealing. It is apparent that the correct phase space of the
classical conjugate variables is not simply R?". It is most likely curved, and quantum
mechanics on curved space is a problem that will not be tackled here. The result raised
interesting questions about the gauge structure of spacetime, and also, therefore, about

(2+41)-dimensional gravity over compact surfaces.
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Appendix A

Properties of Lorentz Transformations U%

By definition, a SO(2,1) Lorentz transformation ¢/% must keep the metric 7% invariant:
uac Z/lde]Cd — nab .

From this we see

uac ubc — nab

or

uacubc — 5;}1 (Al)

A similar relation can be derived can be derived from this one. Re-write (A.1) as
Z/[dc,r]daubc — nab

so that
U™ U nap =1 . (A.2)

Suppose, in all generality, that the transformation &/ has both different left and right

inverses:;

Together, these give
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so that the left and right inverses are the same. From (A.2) we see n%® 1, is the right

inverse of U;°. Left and right inverses coincide, so
N U may Uy® = 65

which is equivalent to

uca ucb — 53 (A3)

A third property of Lorentz transformations is also used in producing the results of

Chapter 2. We come across terms of the form
eabcuzu"y us, .

The indices z, y, z are still Lorentz indices, named from the end of the alphabet to clarify

the index maniupulations. Relabel the dummy indices b, c:
abc UL UL U, = eanUS U, UL,
= —eacULU U, .

Comparing the first and last expression, we see €. U U, U, is antisymmetric in b and c.
Analogous relabelling shows that €. U% U°, U, is totally antisymmetric, and therefore

must be proportional to the only totally antisymmetric 3-tensor, €,,,: Write
€abc U’ Z/lby U, = Negy, -

Solve for A:
A= Ve U, Uby U,

= det(uab) .

These Special Orthogonal matrices have unit determinant, so A = 1, and

6abczflaa; uby ucz = Czyz (A4)




Appendix B

Setting ;% =0 and ¢, =0

1

We have written

wuab = (:)ucd Z’[c ¢ udb + uca(ucb,u)

and claimed that because R;;% = 0, we can find a U9 such that & § = 0. That is, there

is a Y% for which

or

uab’i = uacwl‘cb . (B.].)
Formally we write the solution of this matrix equation

U= efw“da:"‘

This is not well-defined as U(z*) will in general have a different value for each path v(A)

integrated over, as
dy*(A)

) dA

dz* =

will be different for each path. Instead we write
U = Petreni=” (B.2)

where P stands for path-ordering the integral along the path 4. The meaning of a path-

ordered integral can be seen as follows. Discretize the path v()) over the surface under
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0 =X <At <:+- <Ay =1 with y(Ax) = z. Then the integral (B.2) is the limiting
value

wulzn)Azh ewu(xl)Aa:fewu(mo)Azg

lim e
n—o00

Each term e“»(#¥)4%} s a transformation acting on the term to the right, so that (B.2) is
an infinite succession of infinitesimal transformations in a direction tangent to the path,

parallel transporting along v(A). If Az, is tangent to the path at z; then

d
dz(zg) = —%d)\ ~ Az

and

f7 wydzh — \L wydzh
da:"(:ck)Pe Pe wy (k)

or,

U, =Uuw,

as required in (B.1).
There is no reason, however, for this result to hold for nearby paths. Integrated over
a different path ¥ between z, and z;, so that ’y(:\m) = Ym = Tn = Y(\), U(ym) and
U(z,) may have different values. While both
L,Pef‘y wpdzh - P6f7 wpda:"w

dzv Yo

TR —
dyv ’

it is not true in general that, say,

d—Pefv wydzH — P6f7 wydz#

dy” wuloe)

for in general

dz(z,) = d7§i")dA 4 d:’c(g’")di = dy(yn).
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Figure B.1: An infinitesimal loop of generated by vectors T, S* with area ATAS.

The constraints, however, tell us that the spatial components of the Reimann cur-
vature tensor vanish, R;;4 = 0. Recall what the Reimann tensor represents: Parallel
transporting a vector V* about an infinitesimal loop (See Figure B.1) changes V* in-
finitesimally by

§V* = ATASV'T*S"R,,,* .
The change in the vector V* is proportional to K, and to the loop’s area ATAS.
Notice that the indices p, v link the components of the tensor to the paths in the directions

T*, 8"

Returning to our problem, suppose U(z#) is calculated along the path y(A) as in
(B.2). When dz* = (dy*/d))d), equation (B.1) holds. We want to show that because

R;;% = 0, the result holds for all paths on the surface:

d
T @) = UleJu(zn)

for some other y* = 5#()) passing through z,,.
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Figure B.2: Two infinitesimally different paths to z,, = yn.

Consider an infinitesimal change in the path v (See Figure B.2). Along coincident
paths, U(zo) = U(yo),U(z1) = U(y1), ..., U(Tn-1) = U(Yn-1). Whereas U(z,) is calcu-
lated in the limit

. I
7}1{{}0 6w“(x"_l)Axn-IZ/[($n_1) :

U(yn) is calculated by traversing the loop of area Az,_;Ay,—1. The two paths from

o = Yo to z, = y, are

Lo, T1 - Tp-2y Tp-1, Tn,

Yo, Y1 " Yn—2, Yn—1, Y1, Y2y Yn -

Their difference is the loop

Tny Yn—-1, 517 ng Yn -

If U(z,) had been calculated by path-ordered integration along the varied path, then the
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2

difference in its value would be
6Z/{ab = Axn—lAyn—lXin(uchijca _Z/{acRijbC) .

Only the spatial components are present as the paths lie in a surface of constant time.
Since R;;% = 0, there is no change in U% because of this infinitesimal change in the path.

Macroscopic changes in -y can be built from many infinitesimal ones, the result holding
at each stage. The result tells us that the value of &% at z* is independent of the path
along which the integration occurs. Therefore, in checking that (B.1) is true at any
point, we can assume that the path used to calculate U% in (B.2) is the one for which
dz' = (dv'/d)\)d), so that (B.1) holds.

Finally, with U ,; = Uw; at all points on the tile,w,% = 0 must vanish, leaving only the
time components undetermined.

In the coordinate system where @,% = 0, we transformed the dreibein under

é“:é#“%—f)up“.

n

In this coordinate sytem, lN)ip“ = p% as the spatial &;% = 0. We claim that because
Dye;f =0, 0or € =0, we can find a particular p*(2*) such that > = 0. The solution
to the PDE

éua = pa,i (B3)
can formally be written as

ot =P [ &rdur
Y

where again P indicates path-ordering along the path . The result (B.3) holds along
the path where dz* = (dy*/d))d), but the result need not be true for different paths.

Like the w %, case above, we interpret the path-ordered integral as a limit. Discretize

the path y(A) so that zx = y(Ax) and Az, is tangent to the path at, say, z; + Az /2.
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The point where we evaluate does not matter in the limit. The path-ordered integral is
the limiting value

Az,

Az,

YAk

A .
JAZH + &% (2 + %)A:vi‘ +oo & +

To show that the value of p*(z*) is in fact independent of the path to z#, again consider
the two paths between z, = y, and z, = y, used above (See Figure B.2). The difference

between the two paths, recall, is the loop

Tny Yn—1, gl) g27 Yn -

This loop will contribute to the sum (or ‘integral’) an amount

 a Axp_ . Ay,
&, (wn — =5 ATE L + 8 (onr + =5 )AYL
ware o A . asn Ay,
+ &M+ — ) Azh_y — €2 — 5 Ay

These paths, and this loop, lie in a surface of constant time, so the displacements Ax;,
and Ay have no time-, or 0-, components. Furthermore, we can assume that these
displacements are in the spatial 1- and 2-directions, for any loop can be approximated to
an arbitrary degree by a tiling of parallelograms whose sides are in the 1- and 2-directions.
Thus with Az,_; = (0, Az,0) and Ay,_; = (0,0, Ay), the loop contributes

(éla("’n - ézﬁ + Ay) — &% (zn — %)

Ay
Ex(Tno1 + &L 4+ Az) — &, (Tnr + BY)
- 2 2 AzAy .
Az
In the limit where n — oo, this is simply
(51(,12 - 52?1)AxAy .
The constraint tells us €7 = 0, so variations in the path do not affect the value of

the path-ordered integral. Because of this path independence, we can always assume

dz' = (dy'/d)\)d) so that &% = D;p®. Therefore, ;> must vanish.



Appendix C

Properties of {I/'}

We define the symbol
(W} = W, WS¢,

so that
OW* Wy = TI{W} .

There are three properties of this symbol which will simply the algebra of reducing the
action to a more canonical form.
By definition,
UM UWY = UIL) UL, WY U, W e

= IUSU U, WY Wy, .

Recalling property (A.4) of Lorentz transformations #/,

= WY W ey, .
Relabelling dyz — abc gives
= W W=, .
That is,
UI) {UW} = I{W} (C.1)

86
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Next, in full component form,

{W,W;} = T°(Wit W) (Wit Wa,)eate
= Hande2d$W106W2ex€abc

. d
FIPWL W Wi Wa e -
Now the first term can be rewritten by first raising and lowering the e:

. b d < b d
MWy Wi Wot Wo,” €ape = "Wy ;W1 €
N—— ——’

8¢
= TI{W,}.
The second term is simply II{W; Ws} so that
{W, W5} = T{W} + I{W, Wy} (C.2)

Lastly, using (C.2) just derived, we can write
(a7 m) (W TWE) = (W57'I0) (W7 Wy + (W57 IT) (g} .

While (W5™11) {W™'W:} = TI{} by (C.1),

il

(W) (g} = (Wavs'Ir) {Ms¥i5}
= 1 ({5} - {gy)
= —I{W}

as {1} « % = 0. Therefore

(we11) {(We W0} = ({0} — (0a)) (C:3)
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