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ABSTRACT

In this thesis we introduce Non-Standard Methods, in particular the
use of hyperfinite difference equations, to the study of space-time random
processes. We obtain a new existence theorem in the spirit of Keisler
(1984) for the one dimensional heat equation forced non-linearly by white
noise. We obtain several new results on the sample path properties of
the Critical Branching Measure Diffusion, and show that in one dimension it
has a density which satisfies a non-linearly forced heat equation. We also

obtain results on the dimension of the support of the Fleming-Viot Process.

Edwin Perkins
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CHAPTER ONE

Introduction

1.1 Why this Thesis

The aim of this work is to‘introduce nonstandard methods, and in
particular the use of hyperfinite difference equations, to the theory of
multi-dimensional stochastic processes. Non-standard analysis is a
particularly appropriate tool when investigating random processes over a
region in-space, which evolve in time, especially when the support of these
processes is confined to a region of infinitesimal volume, as is frequently the
case. The evolution through.time of all the processes discussed in this work

may be described by the heat operator %E._ A , but in the opinion of the

author, nonstandard techniques may be equally fruitful in the analysis of
processes whose development through time is described by different operators

as well.



1.2 SPDEs

The approach to the theory of SPDEs which we will follow has its home in
the theory of multiparameter processes, and in particular in the theory of multi-
parameter stochastic integration that has been developed in recent years.
Walsh (1986) contains a systematic treatment of this theory. This approach
emphasizes sample path properties. An alternative approach considers SPDEs as
stochastic evolutions on a space of functions, and emphasizes analytic
properties. See Dawson (1975) and (1985) and the references there for further
information on this approach. We will not follow it closely here.

The type of SPDE we will be considering most often in this work, is

ou .
(1-1) at = Au+ £(u) W
+ d N . " . . " + d .
where t € R and x € R . th is "white noise" on R x R ; that is, the

derivative, in the sense of distributions (or generalized functions) of a

- da
random process Wy o indexed by sets A c R'X.R. ., such that
i) EM,) =0 ii) E(Wi) = X(A) where A 1is Lebesgue measure

iiiy if A n B =g , then Wy is independent of wip . For further information
on white noise see Walsh (1986)° Chapter 1. £f(u) is a real-valued function
of the point values of u .

Equation (l-1) cannot possibly hold in the classical sense of an equation
between the values of functions at every point in the domain. The th term is
far too rough. Rather we usually interpret (1-1) in the weak sense. That is,
if we multiply (1-1) by a C:( R@) (smooth, with compact support) function
¢ (x) and integrate over a rectangle [0,T] x A , where A contains supp ¢ ,

then



( ( T
(1-2) JA utx¢(x)dx - JA uox¢(x)dx = JO(JAuSXA¢(x)dx)ds

T
+ [ { flu )¢ (x)aw
Jo Ia SX sxX

where the last integral on the right is the multiparameter stochastic integral
in the sense of Ito discussed in Walsh (1986) © Chapter 1. ‘Equation (1-2) may

be derived from (1-1) taken in the classical sense, by integration of the middle
term by parts.

An existence theory for (1-1) has been developed in the case 4 =1 ,
when £ : R~ R , is a Lipshitz - continuous function which grows at most
linearly at infinity. Dawson (1972) established existence and uniqueness under
these conditions, using a Hilbert space approach.

Funaki (1983), established the same result, with joint continuity of
sample paths in t and x . Walsh (198l) established a modulus of continuity
in t and in x for solutions of an equation similar to (1-1) and investigated
finer sample path properties, under the same conditions on f .

In Chapter Three of this thesis an existence result is. established for (1-1)
assuming only continuity and linear "growth of £ for 4 =1 .

The situation for d > 2 is entirely different. The term th in (1-1)
may be regarded as a derivative of order d + 1 of a continuous function of
unbounded variation (the Brownian Sheet) on Rf X Rd . When d > 2 there is
no hope of finding a continuous function u to satisfy the equatién, even in
- the weak sense of (1-2). The most we can hope for is to find a continuous

process Vv , such that u may be regarded as a derivative, in the sense of



disfributions, of order d - 1, of v . 1In this case u will not, in
general, have point values, and it is difficult to see what sense can be made
of the term f(usx) occurring in the stochastic integral on the r.h.é. of
(1-2). 1In order for our theory of stochastic integration to make sense of
(1-2) we would need f(usx) to be an adapted continuous process. This is out
of the question if f is supposed to be a real function of the (non-existent)
point values of u .

The functions £ for which (1-2) can be reasonably expected to make
sense are the constant functions. Walsh (1984) has shown existence and
uniqueness of solutions to (1-2) in this case. We were not able to extend

his results (see Appendix B).



1.3 The Dawson Critical Measure Valued Diffusion

MeaSure-Valued Branching Processes (MB Processés) were first obtained by
Jirina (1958) as a limit of a branching diffusion of a large number of
particles. These processes were studied extensively by Watanabe (1968) and
co-workers, and lately many details of the fine structure have been obtained
by Dawson and Hochberg (1979). The name of Dawson is particularly associated
with the case we shall study here, hence we refer to it often as the "Dawson
Process". We will however most often make use of a martingale characterization
of this process described in Roelly-Coppoletta (1986).

A simple construction, for the case of a initial Lebesgue measure is as
follows. Let particles be distributed initially on Rd or a portion thereof,
according to a Poisson point process with intensity A . Suppose that thereafter
each particle independently executes a Brownian motion on Rd . Also suppose
that each particle independently undergoes ¢xritical branching with rate wu ,
i.e. at fixed or exponentially distributed times, whose number in a unit time
interval has expectation u , the particle dies or splits into two particles,
each outcome being equally likely. If the particle splits, both daughter
particles begin independént careers from the point of bifurcation. We now
assign a mass. of". %— to each particle, and obtain a random measure on Rg at
each time.

Now. suppose that both the initial density of particles A, (which is the
reciprocal of the weight assigned to each particle) and the branching rate u,

are allowed to go to infinity in such a way that 3 is constant. Then there

A
. . C d
is a limiting process taking values in the space of positive measures on R .

Dawson (1972) indicated a connection in d = 1 between this process

obtained as a limit of a particle system, and the solution to the SPDE



52 .
(1-3) 22w ,
2 tx
X

but this connection has not yet been made rigorous, since the function

f:u— Y4 is not Lipshitz, and hence (1-3) does not fall under the purview
of the existence theory discussed in 1.2. With the existence theorem in chapter
three, we may now close the gap in Chapter Five, and establish the identity of
the solution of (1-3) with the MB process in one dimension.

As mentioned in 1.2, it is difficult to make sense of an equation like
(1-3) in dimensions d > 2 . However a non-standard analogue of (1-3) may be
constructed, and its solution may be shown to coincide with the Dawson process.
This construction is used in Chapter Four to establish several previously
unknown results on the sample paths of the Dawson Process. Specifically we
show that i) any given Lebesgue null set is.a.s. never charged, ii) the
mass on any given Lebesgue set is a.s. a continuous function of time,

iii) convergence of a sequence of bounded functions in measure, implies the’
a.s;'convergence of the integrals of those functions with respect to the random

measure, uniformly on finite time intervals.



1.4 The Fleming-Viot Process

In Fleming and Viot (1979) a measure-valued process was introduced as a
limit, under suitable scalings of time and space, of the Ohta-Kimura stepwise
mutation model. Further results on the structure of the sample paths have
been obtained by Dawson and Hochberg (1982). Among these results is the
fact that for fixed times the support of the random measure has Hausdorff
dimension not greater than 2, almost surely. In Chapter Six we establish
this result for all times simultaneously using Non-standard methods to
amplify some of the ideas of Dawson and Hochberg (1982). For further
information on the Fleming-Viot process, the reader is referred to section

6.1.
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CHAPTER TWO

Non-Standard Analysis and Probability

2.1 Some Definitions and Notations from Non-Standard Analysis

For a real introduction the ideas of non-standard analysis, with a minimum
of. technical apparatus, we fefer the reader to Cutland (1983).
An internal object in the non-standard universe is one which may be

referred to in the non-standard language. One of the consequences of the

transfer principle is that internal objects described in the non-standard

language inherit all the qualities of standard objects that are described in

analoguous -standard language. This is useful when dealing with hyper-finite
.collections, which may be treated as finite sets, though they are generally
infinite.

We will usually denote non-standard objects by capital letters or
underlined. letters. Unless otherwise noted, lower case roman letters will
stand for standard objects. The embedding of a standard object into the

non-standard universe will be denoted by an asterisk (*) to the left.

e aEa s . . 1
We say that X € *R is infinitesimal if ]§J <4 for every n € N ;

we denote this X T 0 ; x ¥y means X -y = 0 . We say x € *R is infinite,
if I§J >n , for every ne N . If x e *R is finite (not infinite) then

there is a unigue’ x € R such that x = *x . We say that x 1is near standard

and call x the standard part of x , denoted 9§_ or st(x) . These concepts

may be extended, in the obvious fashion, to any space. In particular, if

n * k

fec( ka;R ) and Fe "C(R5; R) , then st(F) = f <= “F(x) = £(x)

L

for all nearstandard x € *Rk .

We shall require the.following axiom of saturation (see Cutland 1983, 1.9).
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If {a } N is a decreasing family of non-empty internal sets, then
n ne :

n A is not empty. Two consequences of this are
n
neN

a) Denumerable Comprehension. For every internal set A , and every function
f : N> A , there is an internal function F : *N - A which extends £ .

b) Infinitesimal Underflow. Let S be internal, S ¢ *R , and suppose for
some a > 0 , X € S whenever 0 < °§_§_a . Then for some € & 0 ,

X € S whenever € < x < *a .

A useful notion is S-continuity (S for standard).

Definition 2.1.1. An internal function F : E < *Rd > *R®  is called

S-continuous iff X x y => F(x) = F(z)s.ns(*~Rn)lif That this is the appropriate

notion of continuity to link standard and non-standard,-.is shown by,

Theorem 2.1.2. (Cutland (1983), Theorem 1.6).

Let F : Ec * > *R be internal. Then °F exists and is continuous
iff F 1is S-~continuous on E .

Nonstandard Probability Theory really came into its own after.the development

of Loeb Measure.

Theorem 2.1.3. (see Cutland (1983), Theorem 3.1).

Every internal *finitely additive measure space ([, F, 1) gives rise:
tO0  .a classical o-additive measure space ([, L(F), L(y)) , such that
FCL(F) , and if A e F, then L(W(A) = W(A) . If A e L(F) , then
L(u) @A) = inf{QEjB) | AcSB,AceF} . Further, if L(p)(A) < ® , then there
is Be F , with L()(B A A) =0 .

The (complefe) measure space ([, L(F), L{y)) is called the Loeb extension

of (I', F, u) . In the case of probability measures, we will denote the Loeb

extension of (2, F, P) by (&, F, P) , contrary to our usual convention.
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Theorem 2.1.4.  (see Cutland (1983) Theorems 3.1, 3.5).

d

If E is an internal field of subsets of [ , and F.: [ - *R% is an

internal E-measurable function then the projection st o F : [ - &2 | {=} is

L(E) measurable. Conversely if £ :F.+;Rd is L(E) measurable, and [ is

o-finite with respect to L(y) (as is always the case here), then there is

¢

an internal E-measureable function F : [ > *Rd such that

st o P(x) = £(x) L(y) - a.e. Such an internal F is called a lifting of

£ . If £ hag finite support, i.e. L(E)({Ejf(g) # 0}) < o , then f admits

a lifting F with the same property. If F_E *Rd if £ : [ - R is continuous,
then we may obtain a lifting F which is S-continuous and for which

st o F(x) = £(°x) , ¥xel n st_l(Rd) (the near-standard points). Such an F

is called a uniform lifting of £

Definition 2.1.5. An internal function F on ([, F, u) is called

S-integrable, iff J |Fldy is finite, and

J IF(§)|dH,+ J |F(§)|d£_z 0 , for all

x: JF)| <8} {x: |[Fx)| > H]

infinitesimal ¢ and infinite H . F 1is said to be s-1.% with respect to

B, if |F|q is S- integrable.

Theorem 2.1.6. (see Cutland (1983) Theorem 3.9).

If F is S -integrable on ([, F, u) , then for all A e F ,

Jde_=J “F d L)
A ‘A



Definition 2.1.7. An internal measure space ([, F, u) is called a
hyperfinite representation of a topological measure space (E, F, u) iff
(1) [ 1is a hyperfinite internal subset of *B
(ii) F is the internal power set of [
(iii) A set B ¢ E is u-measureable, iff st_l(B) n [ is L(u)-measureable.
In that case u(B) = L(y) (st 1(B) n ) .
The canonical example of a hyperfinite representation is the discrete

representation of Lebesque measure on Rd , which we will use frequently.

Theorem 2.1.8. (see Cutland (1983) Theorem 4.1).

Let Axi be any infinitesimal, i = 1,...,d. Let Mi e *NXN be infinite,
i=1, 2,...,4 such that 9M.Axi # 0 . Then let
i

*

X = {k Ax.,...,k.Ax.)Ik. € Z,‘k-i < M,} . Define a measure )} on X by
171 Jj 3 i it — i -
d
setting the value of A on each point x € X to be n Axy - Then
i=1

(X, PX), (1)) 1is a hyperfinite representation of the rectangle

d

‘{x||x,l j_oMiAxi} <€ R , equipped with Lebesgue measure.
=i

In this thesis we will prove results about S-continuity of functions
from hyperfinite grids X to *R . All the preceding definitions and
theorems apply as if these functions were step functions on a rectahgle in *Rd
Theorems about S-continuity on a hyperfinite grid X , can be translated
into theorems about the weak convergence of a sequence of processes on a

sequence of finite grids to a continuous limit. We will not explicitly make

such a translation.

13
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2.2 Non Standard White Noise

Anderson (1976) introduced a hyperfinite representation of Brownian
Motion, namely an infinitesimal random walk with spatial excursions of
size /ZE- in a time step At . Implicit in this construction was a
non-standard representation of white noise on the line, as a sum of IID

random variables Et , each of mean O and variance At , on a hyperfinite

time-line of spacing At .
Recently Andreas Stoll (1985) has generalized Anderson's construction

to. arbitrary o-~finite Radon spaces. For our purposes we only need

representations of white noise on rectangles in Rd , or on all of Rd .

Let X be a hyperfinite lattice as described above, and let § be an

internal space-on which are defined a family {& } of I.I.D. S—L2

§-§EX
internal random variables, such that E}EX) = 0 and var(gx) =1 . For
most of our applications we will need finiteness of all the higher moments of
£ as well.
X
The existence of such a space  may be shown by example. Let

. X
@ =1{-1, 1} . Let F be the family of internal subsets of § , and define

P@R) = lél— for A ¢ F . Then (2, F, P) is an internal probability space,
o]

and we may define Ex as the coordinate maps.

We will most often be using a “countable lattice X =‘{(kiAx,...,ijx) l

A , X
kl,..,,kd e * Z} . BAn exemplary space  is then {-1,  1}" . wWe may take F

to be the *Oéfield generated by the *finite subsets of @ (closed under
*o-unions and *o -intersections). The internal probability measure P may

be defined as in the standard analogue: P is the unique “o-additive measure
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on F such that, {wx TX €1X} are independent and for any x € X,

’

N =

-1}

I
o
o~
g
l

P({w_ =1})
- X

The transfer principle guarantees that the Kolmogorov Extension Theorem carries
over to the non-standard setting, and therefore that such a measure P  exists.
In this case again we will take the probability space (Q, F, P) to be the
Loeb extension of (R, F, P)

Given such a space § , and random variables £ , define for internal
) X
a X

sets A E.X ,. W@A) = Z 3 N Ax, ; themap W : A > W(A) 1is called
XeA 2 =1 *
d-dimensional S-white noise on X . Stoll (1986) shows

Lemma 2.2.2. If °A(A) <~ and A(A A B) =0 , then °W(a) = °W(B) P-a.s.

Thus we may make

Definition 2.2.3. For each Loeb measureable set A < X , with L(A)(A) < o ,

a standard random variable w(A) is well defined (up to a null set) by
w(A) = ‘Ww(@) P -a.s.
whenever A 1is internal and L(A) (A A A) =0 .

Theorem 2.2.4. (Stoll (1986) Theorem 2.5).

The family '{WIAZ:LALGQJ[A)ﬁ< ©}, is a white noise on the Loeb extension

of (X, A) with respect to the Loeb probability space (@, F, P) .
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2.3 Adapted Stochastic Integrals

Iet At and Ax Dbe infinitesimals, and let T be a lattice of
spacing At representing a line segment in R+ , and let X be a lattice of
spacing Ax in each direction representing a rectangle in Rd . Let &£ be

an internal space supporting a collection Et , (£,x) ¢ Tx X, of I.I.D.
% Zr2

S—L2 random variables, as described above.

In this section we will use the notation th to represent
X

gtx»ﬂt Axd . We define an internal filtration Ft' teT on @ to be the

algebra of internal sets generated by '{WSX|0 <s<t, xe X} . On the Loeb

space (R, F, P) we define a filtration Ft , t e st(T) , by

F = n o(F) VN, where N is the collection of P-null sets. For

£ ooy £

properties of this filtration see Hoover and Perkins (1983) §3.

We say that an internal process Utx(w) is a lifting of a process
d

+ *
u (@ on R xR xQ , if for He N\N and n € N , J J y2 I({[xl > H ;
Tix & =~

=

t<nh) d dr =0, and
L, X2 B U x o] ‘v #u (Wl =0 .
-t -X - tx o, o

- = t’_}_(_

We say that an internal process U,_(w) on T x X is Ft—adapted, if

= t
U , 0<s <t ,ye X, is F measureable.
SY -0 - - t
We shall call a process ut on Rf X Rq ’ Ft—adapted, if, for each
X

t e R , usx(m),,(s € £0, tl, x € Rd , we ), is B(Lo,t]) x B¢ Rd) x Ft

measureable. Since our filtration Ft is continuous and we do not wish to
integrate discontinuous integrands, we shall not make distinctions between

adapted, progressively measureable, optional, and predictable processes.



We shall usually be working with Ft—adapted liftings of Ft—adapted

processes.

: +
Theorem 2.3.1. Suppose utx(w) is an L° Ft—adapted process on R

and that an internal Ft adapted process Utx(w) lifts u , and is

. + .
s (T x X x Q; L(X, ¥ A, X-P)). Then for any te R and t=m t

' t v a.s. .
(2-1) J | u_dw = ) ) u_ W
O<s<t xeX == =¥

where the integral on the left is in the sense of Ito.
Proof: We first establish an isometry property:

E

) ) U _aw
Oi§<.t' iEX §>_{ SX

2
=g } Yy U _aw + 2% ) ) ( ) U aw ) g( )

(since dw _,
s

X

-ef J ] [vlaw’ + § u vu_,aw aw _ J+2x0
“loss<t xeX BEOEX oy SESX SX 5K
-7 gﬁex
I ] E@)sx%¢t + 0 (using E(@i’ ) = ax®ht)
Oss<t xeX == ' ==
2
= |]u]|

L2 (TxXxQ)

--is’ (conditionally) independent of FS)

d

X R

X

Y]

17



Hence the mapping U —> Z z stdwsx acts isometrically from the
Oss<t xeX == ==

2
space of Ft—adapted S—LZ(TXXXQ) processes to LYW . Hence, if U and

U are any two S—L2 Ft—adapted liftings of u ,

2
E ) U _aw_ - U aw
_ _ ' 2 d
- O<§<t XZX E'|UE§ UE§ frae
~ O
o a.s. ° '
Hence z z st<le§>_< = 2 z U§§dw§§

0<s<t  xeX -- Oss<t  xeX

. <
A similar argument shows that if t' x t , then

° a.s.
) ) u_aw =",
£r<g<t xeX sx sSX

, so that the r.h.s. of (2-1) is well defined

up to a null set.
We must show that the r.h.s. of (2-1) coincides with the Ito integral.

Consider a process u of the form

u, (w) =
x

& (t) - IA(X) : IR(wJ '

L
.[tl’tz)

where R is an Ft measureable set in 2 , and A is Lebesgue measureable
1



*
in Rd . Pick 32 = _t2 , and pick A " internal in X such that

L(Xx)(A A st_l(A)): 0 . By Theorem 3.2 in Hoover and Perkins (1983), we may

- e

“find '?i N *ti. and. an ihtefﬁal subset - R of Qif‘SuEh that R ¢ Ft and
PRARy =0 . : -1
Let U, (w) = 1[21’22] CE¥?£A£§¥ IRG”i

t
Then JO J . us-xdwsX = IR(w) : J dng
t_,tA x
R L 11T A
a.s. et s ’
= IR(w) . z z daw % ; (by.definition of the white

£ <s<tAt 8=
slme= =2 noise dw, )
XeA Ex’

sx sx

Thus the left hand side and rhs of Theorem 2.3.1 coincide for simple
functions u of the form indicated, and hence for linear combinations thereof.
Such linear combinations are clearly dense in.the Hilbert space of L2
Ft—adapted processes on, [O;QE]', asﬂih the case-of the ordinary stochastic

integral. Hence the two sides must coincide for all such u and U by

the isometry property of the stochastic integral, and of the hyperfinite sum.

19
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CHAPTER THREE
The Heat Equation with Non-Linear Stochastic Forcing
3.1 Scope

In this chapter I will use hyperfinite methods to prove a weak existence

theorem for solutions of equations of the form

(3-1) —au—éz—u—+f()v'v
ot 2 u tx'
ox
+ o . . . + .
on R X R . Here th is "white noise" on R X R . We suppose the function

f " to be continuous, and to satisfy a growth condition: there is a real K ,

such that

2
(3-2) f2(u) < K(l+u') for all u .

We solve (3-1) subject to an initial condition
(3-3). u(0,x) = uo(x) ;

where uO(XI is a bounded continuous function.

With minor changes iﬁ notation f could be made to depend on t and x
as well as u , and uo(x) could be taken as a random function. With more
significant changes, the same construction can be made to work if (3-1) is
modified by the introduction of an additional forecing term + g(t, x, u) ,

or by the introduction of a bounded, non-zero, continuous non-linear function
a2
of u multiplying the term 22 . wWith appropriate inequalities analogous

2
ax

to those in Appendix A, a treatment very similar to the remainder of this

chapter can be done for equation (3-1) on a strip R x [a, b] with



Dirichlet or Neumann type boundary conditions specified at a and b . A

random initial condition uO independent of the white noise Wt may be
be
handled by enlarging the probability space § .

As discussed in section 1.2, (3-1) is only solvable in a 'weak' sense,

that is, if ¢ c:( R) ,

0o o t co
(3-4) J_m_utx¢(x)dx - f uy b x)dx = J J;musyA¢(Y)des

-0

+ f aw
JO J_w (w )eIan

This is called the "weak" form of (3-1). The main theorem (3.9.2) of

this chapter asserts that there exists a space § , such that, for any £ ,

a stochastic procesé ut , jointly continuous in t and x , may be defined
X

on & , for which (3-4) holds for any ¢ € C:(R) .

Section 3.2 introduces the probability space § and discusses the
construction of a white noise on Q .

Section 3.3 exhibits a hyperfinite analogue of (3-1) and shows how .it
may be solved internally, for a solution Utx .

Section 3.4 contains several inequalit;;s which are used subsequently.

Proofs are delayed until Appendix A,

Section 3.5 contains estimates on the moments of the internal solution

UtX , which are necessary for 3.6 and 3.7.

Section 3.6, obtains bounds on the moments of spatial differences

Utx - Uty . In section 3.7.wé obtain bounds on the moments of temporal

21



differences Utx - Urx . We use the results of 3.6 and 3.7 in 3.8 to show

that UtX is, with probability 1, a lifting of a jointly continuous process

tx

In 3.9 we verify that the process u . actually satisfies (3-4), hence

is a weak solution of (3-1).

22



3.2 White Noise on the space @

Let a positive infinitesimal Ax be given. Let X be the set

[s]

{kAxlk ¢ ¥z} . Now pick an such that 0 < °a < , and let At = a Ax2

w |+

Now suppose tf > 0 is given and let t be any number of the form

£

{kft, k € *N} such that t_=m t Let T be f{kdt|k ¢ "N, k <t / At}

-f f

We have mentioned in section 2.2 that if £ is a *countable space
. : TxX . . i
(such as {-1, 1} ) on which are defined a family of I.I.D. random

variables {gtxlg eT, xe¢ X} such that E(Etx) =0 & E(EEE) =1 \/(E,§) '

and such that gtx possesses finite higher moments of all orders, then
> z £, VAtAx induces a
- X
(grx)ed —=

the random (internal) set function A

"white noise" '{wA(w)|A e Btlo, tglx R)} .  Further, this white noise is
adapted to the filtration Ft derived as per section 2.3 from the internal

filtration Ft genexated by the values {Esxls f_t} . It is with respect to

this white noise that we shall solve (3-1). The method we shall use is similar

in spirit to that employed in Keisler (1983) for stochastic O.D.E.'s.
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3.3 Hyper-Finite Difference Equations

Let F(u) be a uniform lifting of £(u), subject also to the growth

condition (3-2). Let UO be a uniform lifting of u which is also

uniformly bounded on X . Then consider the hyperfinite analogue of (3-1),
Yerst,x T Ve B Yeprax T 2 Vex T U xax F(UEE) Sex

or equivalently,

O R AX_ZEUEA_HAX T30 T Yt TV P i_i

We may solve (3-5) in principle inductively. The specification of U

0,
and EO x for x € X gives us enough information to find Upe - Knowing
r ;"
U.. and we may solve for U and so on.
At,. gAt,‘; ! Y 208,
Continuing in this manner, we define an internal process Utx(w) . We

may find a closed form expression for this inductive definition as follows.

From (3-5) it is clear that the value F(Ut ) Et enters into the definition
X X

g U U and then five
of U§+At,§ , then U§+2At,§—Ax ' EfZAt'E ' E+2At,§+Ax '

. At
» and so on. The coefficient Qz_y

with which F(U ) §

£
values o U tx £x

t+34¢, ¢

enters into the definition of U. . -,may be found as the solution of a
- tindt,y

Il
=
0

difference equation: Q

0 =()V§ #0 ;

nAt
x+AX

: 1)At At
(3-6) o, T = e gk

+ (1—2a)Q2At +aQ
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But we may recognize (3-6) as the difference equation governing the

density of a Markov Process, in fact, a random walk. Thus we have

t
ILemma 3.3.1. The coefficients Q; are the "density" of an infinitesimal

random walk on the lattice X , starting at x = 0, at time At , and taking

one step to the right (or left) in each'time period At with probability o

With this notation, we may write

t-s t
(3-71 U= ) ) o 2 FU_) & /E
B pgger yeX XY sy sy
t+At
+ Z Q U
yeX X Y Oy

The second term on the r.h.s. of (3-7) is the deterministic solution to

~

the hyperfinite heat equation (3-5), which we will designate hereafter UtX
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3.4 Some Useful Inequalities

We will find the following inequalities helpful in the next three
sections. Proofs are deferred to Appendix A, since they do not illuminate

the particular subject matter of this chapter.

Lemma 3.4.1. There is a finite constant Ka , depending on o , such that for

Lemma 3.4.2. There is a finite constant Ku , depending on o , such that
' 2
for all t , . z z (Q§) <K vt/At .
T o<g<t xeX % @

Lemma 3.4.3. There is a constant Ka , depending on & , such that \/E e X

Y . 2_ ©
0<s<t -EeX

2
T g LX Izl /0

X 1

Lemma 3.4.4. There is a constant Ka , depending on o , such that, for all

teT , and r < t

t-s r-s 2
I I e -0 <x YErn/at .
0<s<r xeX 3 ‘ o )
We shall also require the following theorem of Burkholder (1973, Theorem

2.1.1., specialized slightly) .

Theorem 3.4.5. Let M , n € *N be a hypermartingale and let <M>n ne *N
n .

be the associated predictable square function, and let p > 1 be finite.

Then there is a finite constant K depending only on p , such that
p [

v/

n

- |P)

2
+ K Em M M
-) (max k+1 k

E (M) <K EXEM>
-0 P = T 0<k<n
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3.5 Bounds on Moments of UtX

|2

Pick g > 1 , and let Rq(E,§) = EIUEE

Let H_(t) = sup R _(t,x)
! xeX
Consider any fixed (t,x) ., and let u be the measure on [9, E] x X

2
- At
£ g) == | Let |u| denote w ([0, t1 x X).

defined by u({(s,y)}) = 0%

Let ¢ denote, in what follows, a finite constant, depending only on g

and tf , which may change its exact value from line to line.

Now
1/2)2d
- At ~ 2
RC,X)iC_E_’ ) ) ru_) of e &5 +c|Ulq
- | 0<s<t  yeX Sy "X~y sy Ax tx

In the summation above, the term corresponding to (s, Z) may be regarded

as a martingale increment with respect to the filtration F . Hence we may
' S

apply Burkholder's inequality (3.4.5) to obtain

R (£,x) <cEl § Y Fiu_) uls,y 1Y
. 0ss<t yeX =
(3-8)
. 12 A2
+c E|l sup| F(U )]g Yu(s,v 14 ¢ lu | 4
sy sy - = =
ozg<e A =
XeX

The second term on the r.hs. of (3-8) is clearly equal to

g9
¢ E[ max F2(Usy) 52 u(s,y)] which is bounded by
= S

osg<¢ == 77
: q
c Bl } ) F2(u ) £2 u(s,y)l . Thus
0<s<t  yeX HOH

2 2U(l)q A2
Ry e 1] rrw s e ) SR T o [T

sy

0<s<t yeX == [
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Applying Jensen's Inequality to the probability measure u(')/|u| ’

we find
2 2 wis,y)+, 19 ~ 2
R (t,x) < cE[ J olr@ T+ |5y BRIt 4 1o, |22
4-= 7 —.Of§<E ZeX sY | 52! | d tx
Now we use the facts that |u|q/|u] = |u|q_l , that |u| is bounded

uniformly for °t < t_ by Lemma 3.4.2, that the moments of &£ are finite,
c sy

£

that ¢& is independent of U , and that U is bounded uniformly
sy sy tx

in (E,§) , Since U is bounded, to obtain

0
R (£,%) <c(l+ 7§ y ngkUé’)Izq(l v ele_ %Y of 3?2 %E)
q Oi§<E YGX _X §Z X X X
2q 2q. , t-s,2 At
<c@ + ) ¥+ elu | @EFH T =
- Oi_Es_:<E YEX - 5y XY Ax
e 2
sc@+ J 7 R (s,y) @557 LK
0is<t yeX R
se@+ ] m_(s)( ] —EX an
0<s<t yeX °F
Now using Ax = vAt/a , and lemma 3.4.1 we find
Lemma 3.5.1.
-1/2 | .
(3-9) H_(t) = SUP‘Rq(E,Z) < c(l + z H(s) (t-s) At) , for all t in

Y 0ss<t

Lo, Ef] , where ¢ 1is a constant depending on o , g and tf .

Now, iterating (3-9) and integrating by parts,
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-1/2 -1/2
Hy() 2 ¢ ) (Q1+c )] (L+H (w) (s-u) / At) (t-s) /25t
0ss<t oguss ?
-1/2 -
SelVep + L @+ Hq(l_l))( }  (s~w / (1:-§)1/2At) At
Oust Yuss<t
(3.10)
-1/2 -1/2
< c(l + Z (L +H (u)) ( Z S /(‘_cf-) '/‘_'At)At
Osu<t ? 0<s<ty
< c(l + Z H (u) At)
0su<t

where c¢ 1is another constant depending only on «, ¢, and tf

We now require a type of Gronwall's lemma.
Lemma 3.5.2. There is a constant ¢ depending only on (g, max}Uo§12q , O,
== < v y ,

2
and tf , such that EJUtx' 4 < ¢ exp(ct) , for t j_Ef , and for any x ¢ X .
.2

Proof. We may take ¢ to be the maximum of Hq(O)(= maxonyl) 9 and the c

Y

* _+

of equation (3-10). We proceed by induction, on n € 2

the lemma holds for t = nAt .

Suppose now that for n € *N

H(kAt) < c(l + ¢ At)k , for k=0, 1,..., n-1

Then H(mAt) < c(l +c¢ ) (1 +cAnk¥ At @y (3-10))

0<k<n

(1+cAt) ™ - 1
cht

=c(l + ¢ At) .

(summing a geometric series)

= c(l + c At)™
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This is the induction step.

By the transfer principle, we may conclude that this internal argument
verifies H(nAt)‘j_._c(l+cAt)n , for all n e "N such that nAt j_Ef
Then we notice that (l+cAt)n < exp(cnAt) , (in fact they are infinitesimally

close). O
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3.6 Bounds on Moments of Spatial Differences

et U =U + Vv , where V represents the contribution from the
tx tx x

~

random forcing. U is S-continuous (in fact S-smooth), and we are

interested in the continuity of V . In this section we obtain estimates

on the moments of the differences V v
B

. . 2
Lemma 3.6.1. There is a constant c¢ , depending only on g > 1 , maX|UO

a , and t. , such that, for all x, y in X , and for 0 < t <t

2
Blve, - v [T elx - yl®

Proof: We may write V__ - as a sum of martingale increments with

v
tx ty
respect to the internal filtration FS ; by (3-7),
t- ar 172

t-s S
= ) ) Q3 - Qi_é)F(U§E) €z (o i

v \Y
Ef EZ . 0<g<t ZEX

We will estimate the 2g-th moment of this using Burkholder's Inequality

(Theorem 3.4.5).

We will designate by u(s,z) the measure on [0, t] x X which assigns

_ e 2
to each point (s,2) the weight (Q§ s . QE 2) At .
- x-z y-z Ax
2q 2 q
Elv. -V F ,
ElVix by < ¢ E( J (UEE)du(g z))
[0,t)xX
2 2
+ c E( max F (U ) &7 u(s,zn?
= sz _Sz —_ -

Oss<t == 77
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. [[F-?(U 1171+ [g]29) Sulerm) e
- Sz sz

z z |y

| A

(Jensen's Inequality applied to THT)
u

c J k%9 H_(s) ilsez) gy

[l

| A

(using independence of USZ and gsz ; and also finite moments of § )
Sz

<c l§ - z|q

t = oAx ) . . O

(using lemmas 3.5.2 and 3.4.3, noting that %
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3.7 Bounds on Moments of Temporal Differences

In this section we obtain estimates on the moments of the differences

v -V .
£ rx

Lemma 3.7.1. There is a constant ¢ , depending only on q > 1 ,

, and all x € X,

2
max IU | ! , &« , and t_. , such that, for all t , r < t
Oy £ - - — -f
X =
2 2
Elv. v |*®<c|t-|¥? .
-k e — 7= -
Proof: We may suppose w.l.o.g. that r<t.
We may write Vt - er as a sum of martingale differences with
X
respect to the internal filtration Fs
1/2
t-s r-s At
V.-V, = 1 Lo 2 -0 ru ) B (5
.t_:?-{ .E)_{ OES<I' EEX X-z § z Sz §E Ax
1/2
t-s At
+ - ZF —
z z Qx—z (Usz) gsz(Ax)

r<s<t z€X - = - -

We will designate by u(s,z) the measure on Lo, E) x X which assigns

t-s r_s) 2 At

to each point (s,z) the weight (Q§'§ - Q%—é i if s < r , and the
t-s, 2 At . .

weight (Q; =) Ax ! if r < s < t . THen using Burkholder's Inequality
-z 2= =

(Theorem 3.4.5)

2q 2 R
EIV‘_CE - VP_J < ¢ E( PU ) (s,2))
[o,t)xX
+ ¢ E( max F2(U z) Ez U(§,E))q
O<g<t §_ 55

zeX



| A

| A

<c

2 q 2q, _du(s,z) y (4
cgJ(F (U§E)> (1 + |g§5| ) ] [

(using Jensen's Inequality)

cE J k29 g (s) T . |y|?
= q= u

(using independence of US,z and gsz , and the

finiteness of E|£ '2q
—' sz

)
(E‘E)q/z

(using lemma 3.5.2, and lemmas 3.4.2 and 3.4.4, with

At
e = VoAt )
x
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3.8 S-Continuity and the Standard Part

The main result in this section is that UtX , the solution to the

hyperfinite difference equations (3-5) is a.s. S-continuous. We shall
obtain this by applying a non-standard version of Kolmogorov's Continuity

Criterion:

*
Theorem 3.8.1. Let Ux : @ x T > R be an internal process on a hyperfinite

lattice I which represents a finite rectangle in Rd . If there exist

positive real numbers Bé,...,Bd ' Yl""'Yd ;, K such that for k =1,...,4
B +y

2V, Y <K |§ - ¥| , whenever x, Y € I' are such that X -y

lies along the kth coordinate axis, then if Gk < v. /B k=1,...,4 there

kK "k '

o
is a set Q' ¢ Q@ of Loeb Probability 1, a function §&§(w) , §(w) > 0 on Q' ,
$
and a constant ¢ , such that for k =1,...,d |UX - Uy[ i_clg - zl k

whenever x, y € T, |x - y| < §{w) and x - y 1lies along the kth

coordinate axis. In particular U is a.s. S-continuous on T .

Proof: See Stoll (1984), Lemma 3.2. The result he states is not as detailed

as ‘3.8.1, but his proof is sufficient.

Theorem 3.8.2. The hyperfinite process Utx(w) constructed by the solution

of (3-5], is a.s. S-continuous on near standard points in T x X . Moreover,

. 1 1 ..
if Bl < 7 and 82 <3 and A < X is a rectangle whose sides have finite

length, there is a set Q' < @ of probability 1, a positive real function

§(w) on Q' , and a constant c¢ , depending on Bl ’ 82 max U . . & , and
yeX 2

t. , such that \/ we' ,x, yea, t,r <t

£ L4 - £

35
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Bl 82
0 " Oyl ottt T lx -yl L se ferl ¢ faey] <6
Proof: Pick q € R+ such that Bl < glgaé—g' and 82 < q;i By lemmas

3.6.1 and 3.7.1, there are constants ¢ such that

EIV -y 2+(q/2 - 2)

tx rx =c 12 B E'

2 -2
E[Vi, -V |x - g7

Hence by Theorem 3.8.1, the statement of the lemma is true with v in place
of U on any set T x A , where A is an internal finite rectangle in X ;
but the near standard part of X is a o-union of such A . Now U = 6 + VvV
and U is a 1lifting of a smooth function, which is.a.-solutien-to thé'heat
equation. An examination of the explicit form (3-7) for U yields quickly

that

~

U = O, 1 s ede -zl + |x - D

tx ry' —

Hence the theorem is true for U =U + V . d

1
In general the exponents 7 and are best possible (see Walsh (1986),

1
2
Corollary 3.4).

We may allow slightly more general initial conditions,\if we are prepared

to relax the conclusion slightly. The arguments in lemmas 3.6.1 and 3.7.1

depend only on the boundedness of max |U l . Thus the boundedness of U

yveX 24 0

-~

is enough to ensure the S-continuity of U - U . However, in this case U
itself will not be S-continuous in the monad of zero. If U0 is bounded but

discontinuous the conclusion of the theorem will have to be restricted to
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oE’ 0£>O.
Returning to the case when UO is continucus, we find that another way
of phrasing the conclusion of Theorem 3.8.2 is that U is nearstandard

. *

almost surely in c(lo, tf] X R : R) . Hence we may define a process u(w)
as the standard part of U(w) , or equivalently u = éUt#‘ for all
t, X -

t, x , a.s. It is clear that that set Q' = {w :Vn € N,S'k € N,v X, Y € X,

L = |u_-u_| <

t,r<t., |x-yl <=, |t-x| < ex ~ Uyl ©F is in the

1
f k - - k ry
o-algebra generated by the internal sets, hence is Loeb-measureable.

Thus the process °Utx(wl for any (t,x) = (t,x) ., if we Q'

f[o , if w g Q

has sample paths in C([0, tel xR :R) .
We are of course really interested in solutions for all t . Thus take

the hyperfinite time line T up to some infinite number L , and take

larger enough to support a white noise on T x X . Construct the solution
Utx as before. All theorems proved previously hold true up until any finite
time Ef . Thus we have

' Corollary 3.8.3. The solution U on T x X, where T now is an

infinitesimal grid representing R , constructed from the difference equations

(3-5) is S-continuous in {°|x| < =} n {"t < =} , a.s.

We note also that u is G(Fs) measureable for any s with °s > t

hence by definition (in section 2.3) u is Ft—adapted.
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3.9 Solution of the SPDE

We now show that the process utx of section 3.8 is in fact a solution
of (3-1) with respect to the white noise defined on f in sections 2.2 and
3.2. We must check condition (3-4).

We need first a new definition.

Definition 3.9.1. An internal function ¢ on an infinitesimal lattice

* 4 ) . ) k . d
X € R, is called a lifting to order k ofa C function ¢ : R~ > R,

k
(o] 3 [o]
i L. (8 ) ... T — X . S
if 8 . ( ( - ) ) (%) TR ¢ (' x) for all x ¢ Here .
1 lk ll lk 1

is the finite difference operator in the direction xi: (Gx (®) (x) =
i

[®(§l,...,§i+Ax,...,§d) - ®(§l""’§d)]/AX . A consequence of this definition

9
is that for nearstandard X, O[®(>_<+Ax) - 20(x) +®(§-Ax)]/Ax2 = ——§'¢(°§)
9xX

if ¢ 1is a lifting to order 2 of ¢
We note that every Ck function ¢ has a canonical lifting to order k ,
namely *¢ restricted to the lattice.
Now fix any ¢ ¢ CZ( R) , and let ¢ be a lifting to order 2 which is
exactly O on values of X whose standard parts °§ lie outside the closed support of
$ ,{to avoid (unnecessary) concern over the convergence of *-countable sums) .

Then Utx *®(x) is a (uniform) lifting of utx¢(x) a.s. for any t ®t . Thus

u (U, -0 ) o(x) Bx
R JR ox xeX =0 -
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U - U
_ oz | z —giéféé——_“gié"At - d(x) -Ax
xeX 0%s<t
-2 F
. U§_}§+AX US)_( + U§,§_Ax _ (Ug}_{)
= ) K 5 ®(x) + ——— & 2(x)| Ax At
ossst xeX Ax Jhehx 2%
) O (x+0x) - 20(x) + 0(x-Ax)
(3-11) _ = ¥ D 5 = Ax At
Ols<t  xeX == bx
(o]
+ ) ) F(USE) o (x) vAthx g§§

0ss<t  xeX =

Now USX[©(§+AX) - 20(x) + ®(§—Ax)]/Ax2 is a uniform lifting a.s. of usx¢"(x)

t
Hence the first term on the r.h.s. of (3-11) is a.s. [ J usx¢"(x)dx
0 -‘R

Now F(st)®(§) is a (uniform) Fs—adapted lifting of f(usx)¢(x)

Hence by Theorem 2.3.2, the second term on the r.h.s. of (3-11) is a.s. equal

t
to { [ flu Jo(x)aw . Thus we have, ¢ € Cm( R) t € R
0 ’r SX sX c

t
J f(u ) $ (X) dw
R S, X sX

Theorem 3.9.2. There is a Loeb space £ , on which any equation of the form

(3-1) has a solution jointly continuous in t and x with respect to the

canonical white noise on
NOTE: We believe it is possible to extend Keisler's internal transformation

principle to this Loeb space  (see Keisler (1984)).. In this case, the



40
equation (3-1) has a solution with respect to any white noise on R& X Rd
supported by

Walsh (1986) has established unigqueness for the case when £ is
Lipshitz. Presumably . this is false in general but we do not know a

convenient counterexample.



CHAPTER FOUR

The Dawson Critical Branching Diffusion

4.1 Introduction

The usé of hyperfinite difference equations, which was successful in
Chapter 3 for one spatial dimension may be attempted for higher dimensions as
well. This approach does not succeed to the séme extent as it does in one
dimension, as is spelled out in Appendix B. However it does succeed with
the Dawson Critical Branching Diffusion, as will be explained here.

It is possible to represent the Dawéon process non-standardly, by
placing, on a hyperfinite grid X ,‘representing a portion of Rd , d.>"1,

an infinite number of particles, each executing an infinitesimal random walk,

and undergoing branching. If we let Utx» stand for the density of particles

at any grid point x € X , at time t , then, if the initial_density :
is taken large enough, it is possible to show that U satisfies a hyperfinite

difference equation of the form

== = == AtAx

Hence % may be written as Yu W where W 1is like an S-white noise in

many respects. This noise W is however, a little awkward to work with, and

therefore we adopt the simpler scheme bf difference equations set out in 4.2.
In 4.4 we examine the total mass of the process constructed in 4.2, and

use this in 4.5 to establish some continuity results, which yield easily that

the standard part is well-defined. 1In 4.6 we verify that this standard part

41



does indeed coincide with the Dawson process. In 4.7 we obtain several
new results about the pathwise regularity of the Dawson process, using our

nonstandard construction.

42
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4.2 A Hyperfinite Difference Equation

Let Ax be any infinitesimal, and let X be
*
{§|§ = (kle,...,dex) P k€ 2y d > 1} so that X <represents rd |

We will treat here the construction of the Dawson Process only on the whole

d

of R A very similar treatment is possible if reflecting boundary

conditions are imposed on several hyper-planes in Rq , or along the edges
of a rectangle in Rq , but the inequalities are messier, and indeed depend
on those for the unbounded domain.

Let At be an infinitesimal, such that At/Axd ~ 0 . This makes some

parts of the treatment much easier. In case d =1 we require

. 1 . . . . .
At < §>AX2 , as in Chapter 3. Let T be a hyperfinite time line of spacing

At =

-
T={t:t=kAt, ke Z , k<M

We will suppose 0O < °(MAt) < « . Let ty = MAt

TxX

It is easier, and it suffices for our purposes, to take Q = {-1, 1} ,

and to let Et (w) Dbe-the.coordinate map, as-outlined in section 2.2. Thus
. % . <

= 1) =1 = -1} = &
P (& -l),—lg{EE}_{— 1} =3 -

The analogue of equation (3-5) in higher dimensions is:

tx tx )
(4-1) (s,0) = (AU) + —_— A £ ’
t o tx tx VAtAxd 2At tx

or equivalently,

E + At (A +
Utx (—U)tx

U
t+HAt, x tx tx Ax tx
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9
where ¢ is a finite difference analogue of 5; :

(6tU)tx [U§+At,§ - Ut,x] / At , and A is the finite difference analogue of

the Laplacian in Rd :

L] g
(4-2)  (AU) s (U
E(El""'Ed) sz i1 E(gl,...,§i+AX,...,§d)
+ U - 24 U
B e X 0%, LX) (ICIPRRNE
U
tx
The term A - is substituted for simply in (4-1),
in order to ensure, that, a non-negative value at (;,5) , all of whose

nearest neighbours are non-negative, will not become negative at the next

time step. The values of U for which the linear term is taken are

4At
3 -
Ax

0 < UK«

For an initial condition for (4-1) we may use any non-negative internal
: s def d
function U on X , requiring only that M_ = Z U_Ax~ , the total
Ox 0 Ox
< }_{EX i
initial mass, be finite and that the mass on points of X which are not
near-standard be infinitesimal in sum. We may represent any finite positive
Borel measure on Rd (we will denote the space of all such measures MF( Rd))

by such an internal function U0 (see Cutland (1983) Theorem 4.7 and

preceeding remarks).



4.3 The Coefficients Q

From (4-1) and (4-2) we observe that each value of

enters into the definition of subsequent Utx’s . We deriote the coefficient

t-s .
of the former term in the definition of the latter by Q;_; , observing that

these coefficients are homogeneous in space and time. We may then write the

analogue of a Green's function formula:

== t+At
(4-3) g, = ) ) £ Y oo- u
ix 0<s<t Yg)( 2 sY ZGX Xy 4

: t+At
Lemma 4.3.1. The coefficients Q; are the internal density for an

internal infinitesimal random walk Bt on X . The standard part of Bt

is a.s. d-dimensional Brownian motion of rate 2.

Proof: As in Lemma 3.3.1 we may construct difference equations for the

.. t .
coefficients Q- from (4-1) and (4-2). We observe that these difference
X .

equations correspond to a Markov process, B, + on X , with parameter t e T

where Bt starts at 0 € X , and at each time step Bt takes a step to one

of the 2d -nearest neighbours of its current position, with infinitesimal

probability a = At/Ax2 for each of the 2d possibilities. The process stays

: g +
put with probability 1 - 2da ~ 1 . QE At = P(Bt = x) .
X —
i . th . , . .
Let B denote the i coordinate of Bt . Since steps in opposite

directions have equal probability, B' is an internal martingale. Also

S i2 2
E((B - B} ; 0 < < t) = 20A = . ;

(B \t E) l B§ s <t X 20t Hence the (internal)
predictable quadratic variation <B™> = 2t . Using Burkholder's Inequality

E -
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on the higher moments of Bi , we may conclude that (B) is S-integrable

et e

t . Now a step in one direction excludes a step in any other direction during

the same time step. Hence E[ (B? - Bz)(Bl -BHY1 =0 if i# 3§ .

t+it t+it t
Successive steps are independent, so that the internal process

<B7, BJ>t = 26ijE . Now we invoke Hoover and Perkins (1983) Theorem 8.5

to assert that B has a.s. a standard part b , and we observe that b
satisfies
i} bt is a martingale i =1,...,d

ii) <b*, pI> =28, .t i, j=1,...,4

(again with reference to Hoover and Perkins (1983)). Now i) and ii) above
characterize d-dimensional Brownian Motion. O

We need a little more information about the Q's .

. Q§~ 2
o o X o 1 JES
Lemma 4.3.2: If t>0, —— =P ( x) , where P (x) = —— exp{——}
e - d °t = t 4t
Ax = " ATt
Q_
X
is the density for Brownian motion of rate 2. Hence —— is S-continuous in
Ax

°t >0 .

t for

Proof: We know from 4.3.1 that the distribution for oBt is the same as

that for bot , which has density Pot , for any °t > 0 . The statement of

t . .
the lemma will follow then, if Q}-{/Axd is ¢g-continuous for °t > 0 .

We observe that the following equation holds:

(4-4] 6,000 = (0D

X
-t

Now it is clear from the definition of the random walk B that the
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t . . .
coefficients Q; are symmetric with respect to change of sign on any of

the d indices gk

_ t t -
Claim: For each t, x , Q- > O- - for k=1,...,4 , where @
_— - = X = §+Axek k

represents a unit vector in the x direction, which points away from O .. -

k
We prove this by *-finite induction on t . It is clearly true for t = At :
At X .
Q ~=P(B = x) =.66 Suppose the claim holds for some t € T . Then by
X - =

(4-4) and (4-2),

d
t+At t t
(4-5) 7" = (-2da)os 4@ (] oof ) soand
o - j:l - J
t+At t d t
(4-6) 0 . = (1-2da)Q- . +a E Q- = i
x+8, A% x+8, Ox jop xHAxE T Axe.)

Now if X, # 0 then all terms appearing in (4-5) and (4-6) above lie
in the same half-plane; each term in (4-6) is shifted by ékAx relative to,

and hence, by the induction assumption, is not greater than, the corresponding
. + +
term in (4-5). Hence QE At > ot At_

X - x+Axek

Now suppose (w.l.o.g. k =1) x, = 0 . We pick one of the two

possibilities for éi and stick with it. Let y be a (k-1) tuple.

By our assumptions on At , in any dimension d , (2d+l)o < 1 . Hence

(4-7) (1—(2d+1)a)Q§y z_(l—(2d+l)a)Q§x v 3_(1—(2d+2)u)Q§x,y +a of

' y 20x,y
. t t t . .
Now adding o Q= + o Q + o Q= to both sides of (4-7) and using
vy Ax,y -0x,y
t t .
- = Q= we obtain:
Q—Ax,z bx,y '
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(4-8)  (1-2da) ng +a@f 4ot ) Z.(l-2da)Q§X Lo

t t
= 4+ 0=
Ax,y -0%,y 'Y (QOZ €

2Ax,z)

Now by the induction assumption

€ d

d
t
(4-9) o z Q6y+Axe. 2 Z QAx,y+Axe,
j=2 3= j=2 -

Adding (4-8) and (4-9) we obtain

t+At t+At

< s OoF

QOX —'QAX,X

t+At

This establishes the claim for {Q; lx € X} . Now we invoke the

principle of induction under the transfer principle to establish the claim
for all t e T .
Now by Lemma 4.3.1, for any internal rectangle A
t
Q_
[} X

(4-10) )
xeA Ax

I
o>
B
il
%
o
g
o+
x
Hh
(@)
[at
o
o
v
o

In light of the monotonicity claim just established, this means

°(Q£/Axd) = pot(°§) if °E >0, and x ¢ ns(X) .

- t
Qx
Therefore also —3 is S-continuous in t for OE > 0 , since Pt(x)
Ax
is continuous in t , in t > O . O

We prove the following inequality in order to obtain moment bounds in

section 4.5. It has no independent interest. We introduce the notation

t _ t
Oy = L ©

Lemma 4.3.3. There is a constant K < «» and a positive infinitesimal At'



such that for all internal sets A , and all y € X , whenever t,r, s e T

and r-s > t-r > At' ,

Proof: Suppose first that °(E—£) >0 .

Now clearly for fixed t, r and s ,

t-s r-s r- t-
max |97 ° - 07 2] = g 2 -9 -
ay R Pyersiy Spitirsty
- r—
where A = {x ¢ X|QE g < of" %
Y&/ 28 - x-y x-y

The standard part of this set is easy to identify, using Lemma 4.3.2. It

is the ball

= d —v|? {t=s) (x-s) t-r,

Ay't'r,S {x € R7| ||x-y] |2 < 24 1) logl1l + o1
where vy = °¥ »t=°t, r="°% and s = °§ . The radius Gt s of this
ball is computed by solving Pr—s(X) = Pt_s(x)

: 2 2
1 8 1 )
i.e. expl- ] = exp[- —————]
_ 4 _
[an (e-s)1%/2 4 (x-s) [am (t-5)1% 2 4(t-s)
s (t—s)d/2 - ex [E_ (t-s)-(r-s)
r-s Pl (r-s) (t-s)
<z> 62 = 24 (t-s) (r-s) 1 [Elij
t-s Y
Now fA (p S(x—y) - Pt_s(x-y))dx

49
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8
'S I { t,x,s
d-1 ! 1 2 d-1
= T an _“_"_575'9XP('P /4(x-s))p  “dp ,
(4m) 0 (r-s)
s, .1 Cers 2 -1
d-1 " exp(-p /4(t-s))p  “dp
- as2 J (t-5) %2
(4m) 0 s
where ISd—l' is the area of the surface, Sd—l  of the unit ball in g4

Now let p' = p/2Vt-s in the first integral, and p' = p/2Vr-s in the second,

to obtain

6 —_—
Vr- 2
|Sd_l| ( tir,s/2Vrms g %y,
———7525) p e
(4m) <St,r,s/2Vt-s
d-1 -02
Since the function f(p) = p e is bounded, we may find K to

bound this integral by

1l 1

K é§ )

t.r,s Yr-s Vt-s

= V- Vr-
= K,/log(l+t r) ( t-s I8
Y—-s /

t-r

Now if r-s > t-r we may bound this further, by

K ’t—r ((t—s)—(r—s) )
r-s

/t—r(/f—s + Vr-s)

Thus, if °{t-r) > 0

(4-11)

[Eal
1
10
| v
It
1
[Rat
I
\
0
S
> et
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Since the internal statement (4-11) is true for t-rx > ¢ for all
real € > 0 , then by the principle of infinitesimal overflow it must hold

for t-xr >A0t' =0 . 0

We believe that this Lemma is true for t - r down to At but an

internal proof of this is not easy.



4.4 The Total Mass Process M

let M
Now le £

whose density U

definition,

= +
Mt MO

In what follows

O<s<t yeX xeX = Ax

(o]

be the total mass of the internal measure

is obtained by solving (4-1) inductively. We have by

US At U
t-s = =
YL ZX %y ¢ — A=)

denotes a flexible constant whose values depend only on

g and Ef , and which values may change from line to line.

Lemma 4.4.1. There is a constant ¢ depending on g > 1 , MO ., and Ef '

such that VE < tf ’

Proof: Using Theorem 3.4.5 (Burkholder's Inequality), the fact that

2
g(mtq) <cE(] ¥} I 1- U, Athx

z QE—§
xeX Xy
(4-12)

= 1 and the fact that for any a, b, a A b < a

q
d

|
0ss<t yeX ==

2 4
+ ¢ E( max |UsAtAxd£ | )
0i§<£ _Z EZ
zeX
2q
+ M
%o

Now the second term in (4-12) above may be bounded by

c E( max Ms At]q) <c §| Z Ms At]q . Hence (4-12) becomes

0<s<t =

O<s<t -

52
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g(Miq) <cEl I M at] +c Méq

| A

2q
cEl 1 M ae]"+ c(M§q+l)
0is<t -

¢ 7 BPat + c(M§q+l)
Oss<t 2

(4-13)

| A

for all t g_gf

We complete the proof with an appeal to the appropriate version of Gronwall's

Lemma (Lemma 3.5.2).

We may now estimate the differences Mt - Mr as follows, in order to
obtain continuity of the mass process. Let g > 2 , and w.l.o.g. take
0 <r <t i_tf . Then

2q
(4-14) Emg - m | cce | I I v awxd|d

= - r<s<t  yeX ==

(using Burkholder's Inequality and applying the same reasoning as in going

from (4-12) to (4-13))

(applying Jensen's Ineguality to the probability measure

—— ) on the interval r < s < t)

0
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At
EMd -
<c r<£<t E ( §) (-2 (t-r) = .
(4-15) <cexplc ty) (t=0)?

by Lemma 4.4.1.

Thus we have

Lemma 4.4.2. The total mass process Mt , defined above, is a.s. S-continuous

on 0 < t<t
- - = -f

Proof: Apply the Kolmogorov Continuity Criterion (3.8.1) to (4-15). d

- ¢ forany ¢ >0 .

N |

In fact Mt is S—Hélder continuous of order
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4.5 S-Continuity of the Process

For internal sets

F

4a
an XE
class of

|f(X)| + |Af(§)| <K ‘/X € Rd} . Recall from section 3.9 that if an

internal

° (AF)fx )=

Lemma 4.5.1.

|F(x)| + [aF(0) |

T a.s.

Proof:

(4-16)

stand for X U
x€A ==

Axd
tx

(standard) functions

and 2 F(x) Utx Ax

C2
b

14

xeX

A , and internal functions

d

function F 1lifts to order 2 a function f£ €

pE(°x) , Vx € ns(X)

ris<t

If F

<K, ‘7:x e X , then the process Xi is S-continuous on

We introduce the

2
Cb,2 !

is an internal function such that

e T,
F _ _ d
X_ = ZX Fx)(U_ - U_)bx
U§+At,§ SX a
F(x) [ ] AtAx
-~ At
st )
2At €§§
d
(bF) (x) U__ Ax% At
st d
=2 A
F(x) (VU = =9 & pwxd
- sx 2 At s

F 1let the notations

2 = {f ¢ C2( Rd)l 3K.< «© such that

then

x>
t



res<t
AF .
Now X; <K MS . Hence if g > 1
2q 2
EXi—XF < cE( ) MAt)
- T ris<t -
2 q
+cE( ] 1P v axSan)

r$s<t  xeX =2

(using Burkholder's Inequality for the second term on the right and

incorporating the term involving "max" as we did in (4-12))

At 2q

<o [ Each -
- —r -— -

S
r<s<t 2

res<t xeX =
: F? 4 2
(we now recognize the second terms as Z §|X l At and X < K MS)
res<e - = =
(4-17) < c (E_£)2q + c (E—g)q ’

if t j_tf , using Jensen's Inequality a second time.

Now we apply the N.S. version of the Kolmogorov Continuity Criterion

(Theorem 3.8.1).



Lemma 4.5.2.

A ={x¢ X| l
n £

57

A
lim  sup °k " =0 a.s. where

t
me te [0,t.] -

* .
§] Z_n} ; that is, Xt is nearstandard in MF( Rd) for all

Proof: Let H be infinite. ILet F be an internal function such that

0<F<1,F=1 on AH, F=0 on A;-l and AF 1is bounded. Then
AH 1 t+At d
E(X) <E(X " =7 ( ¥ o %Hou  ax .
- E - t-:- €X x€A §_Z OX
b4 -1

" Now by Lemma 4.3.1, for each y € ns(X)

By assumption

Hence,

(4-18)

Now by Lemma 4

There is

oXF '= 0
t
Therefore
Ee[
A

but since X

t+At
~ 0

UO is nearstandardly concentrated, so that

lim °C ¥ UOyAxd) =0
s €A <
n X n
E(xi) < 1, e, U, x0 = xi X0 a.s.
yEX 3_’ Z -

.5.1 Xi is a.s. S-continuous.

-

a countable S-dense subset of T for which (4-18) holds. Hence

‘12 e T , a.s. => sup °XtH =0 a.s.
Ee[O,Ef] =
sup OX:n AN 0 as n > > ,
o,gf] = '
An+l

> X we must have convergence a.s. 0
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Theorem 4.5.3. X : [ > *MF( Rd) is a.s. S-continuous. Thus X is

nearstandard in *C( R ; MF( Rd)) , and (°X)o = L(Xt) ° St_l for alil
t -

telo, t .1 a.s.

Proof: Recall the weak topology on MF( Rd) : xn + x <=> for all bounded

continuous f , xn(f) > x(f) . Let {¢k} be a countable collection of

C; 2( Rd) functions which constitute a convergence determining class for
, :

M ( Rd) . Let {@k} be liftings to order 2 of the {¢k} . Then by Theorem

d
4.5.1 each xtk is a.s. S-continuous. Now by the Loeb construction

(see section 2.2)

= °X

(4-19) J ¢, @ LX) o st .

Therefore the l.h.s. of (4-19) is continuous a.s. for each ¢k in the

convergence determining class. Hence, almost surely L(xt) ° st—l = L(X ) ° st
s

-1

14

for all tRgelT.

*
From Lemmas 4.4.1 and 4.5.2, Xt is in fact nearstandard in MF( Rd)

for all t , a.s., so that °(Xt) exists and equals L(Xt) ° st_}v t a.s. 0

Now we show a stronger form of continuity.

Theorem 4.5.4. Let XO be nearstandard in *MF( Rd) (as discussed at the

. . A .
end of section 4.2). Let A be internal. Then Xt is S-continuous for

°t > 0 on a coarser grid T' c T of infinitesimal spacing At' independent of A .

Proof: We take At' from Lemma 4.3.3.

1
Let Y = z Ql:+At U Ax4 and let
t A:y Oy '

= yeX < <



From Lemma 4.3.3, there is a K such that, if

r<+t<22r in T', |Q§ - Q§ | < K{(t~r)/r . Hence if t ~ y and °r > 0
I olog - o |y axd
y€X S Y 'X
< E-(t-r) M
-r - -
~ 0 .

Thus Y is S-continuous in T' n st—l(t>0)

Now suppose r < t e T' ,

(Nad

-r<1l,0<y<1l,and gq>2 . Then
using Burkholder's Inequality and absorbing the terms involving a maximum into

the summations, as we did in section 4.4, ((4-12) and (4-13)),

2 - —g. 2
JEE IR I 1, O - oD e
L 0<s<r - (E'E)Y Y€ b4 5Y
I t-s x-s d|
-2 -p0== AtA
tCE Y gx (QA=Z 0. U, A%
r—(t—r)Yj§<£ 1
-g 2 q
+ cE y by y AtAde
- r<s<t y€X A.y EZ
- q
< cE )} 22 M_ At

O<s<xr-(t-1)" 2

(we invoke Lemma 4.3.3 and note (x-s) Z.(E‘E)Y .)



(since |Q§:§ - ngil < 1)
+ckE } z M At|q .
r<s<t -
(4-20) < olle=n P )Ty (e D)

(following the usual Jensen's inequality train of development,

by now so familiar).

Our faithful servant the constant ¢ has now acquired dependence on

M, 0, Ef , and g , but not on E and r

The best choice of <y for (4-20) seems to be %-, Using the Kolmogorov
criterion (Theorem 3.8.1) we get S-continuity with a modulus %-— € for any

e >0 . g

Remark: Of course if XO puts all its mass on a null set A , we get

failure of S-continuity in the monad {t =z 0}

Corollary 4.5.5. Let F Dbe any bounded internal function on X . Then

the process Xi is S-continuous on T' n st_l(t>0) , a.S8.

Proof: Let K be a bound for ]FI . Let X = z z F(x) Q§+At UO Axd, and
t yeX xeX XY Y
USy
~F t- =2
let X = ool (I Fe 0= %) o Athxd A — Axd
0<s<t yeX xeX Xy 4

)&
sY

X P “F ~F e [
=X +%X . Nowif t>reT
Then Xt t N t r



6l

U P L L I Ll

t o r

Following the first part of Lemma 4.5.4, iF is S-continuous in
T n {°t >0} .

Now if g > 1 ,

o~ F 2 29
elf - % T ceEl [T« ZF()(Q o) ? o seaxd
- - 0<s<r ZeX xeX b g 4 4
2
+eel 11 K2 U AtAx :
i<t yeX A
Now
- t-r
2 2 t-s _r-s ==
« F(X)(Q -oEEn? <ok (0="2 - Q=" 3) --,
XZX r - sk Ay TRy ST

by Lemma 4.3.3. Hence following the second part of the argument in 4.5.4 we

obtain the similar result

F ~F2q 2q/3

E|X - X < c(t-r) ’
. E Y — - -
~F . . '
and thus X is S-continuous on T a.s. g

Remark: We believe that §F is Holder S-continuous of index % - e for
any € > 0 .

Remark: If we took tf to be hyperfinite, °Ef = « , then 4.5.3, 4.5.4 and
4.5.5 will hold a.s. until all finite times, and hence a.s. on ns(T) . We

will use this fact without further ado in section 4.7.



4.6 Characterization by a Martingale Problem

We show now that the measure-valued process xt , which we constructed
in the last section as L(Xt) ° st_l is in fact the measure diffusion
studied by Dawson and other;. We will use one of the martingale
characterizations given in Roelly Coppoletta (1986), which are refinements
of the larger class of martingale problems investigated by Holley and Stroock
(1978) , Dawson and Kurtz (1982) and others.

The characterization of the critical branching measure diffusion xt

given in Roelly-Coppoletta (1986; Theorem 1.3, condition iii)) is as follows:

Theorem 4.6.1. X, is the (unique) MF( Rd) valued process with weakly

continuous paths, and the given initial condition such that for all ¢ € D(A)

(the domain of the Laplacian tA)

def
m¢ = ¢ _ x¢ - st¢’ds is a continuous martingale.

a)
t t o} o

We know already (Lemma 4.5.3) that our process is weakly continuous in

MF( Rd) . We will verify a) and b) above for functions ¢ € Cs 2( Rd) only.
The extension to D(A) (which is the closure under A of Cg 2( Rd) in

Cb(Rd)) may be done by a limiting argument. It is in fact unnecessary to

2 4
b,2( R7) .

For such a ¢ let ¢ be a lifting to order 2, and suppose |®‘ < X . Then

Ms. Roelly-Coppoletta'’s argument in her Theorem 1.3 to go beyond C

-~

X@ _ L $( x)d L(Xf) ,teT , a.s.
s (X)

(recall from 4.5.2 that the mass on X \ ns(X)

is always infinitesimal a.s.)

z ®(§) UtxAxd ;, by Loeb Lifting Theorem (Theorem 2.1.6)

xeX -
o &
Xt
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X ds
s

is indistinguishable from the standard part of

¢ def
M = xi - xg - ) x2? a¢
- - O<s<t -
= 7 oW _ -u )axd - T u_(8e) (x) 8x%At
- tx 0x SX - -
§EX == = 0<s<t xeX ==
(U§+At§ - Usg a
= 3 Y o(x) ~ T AtAx
0<s<t xeX t
a
- Loe() (U ) Athx
Oss<t  xe<X = -
(using the infinitesimal analogue of integration-by-parts)
— U
(4-21) = ) YoeolJu  aeax? A Zsx ax93e
- sX 2-- sy

O<s<t §€X

Now Mi is a martingale with respect to the internal filtration Ft

Hence mf = OMi \ft e T' , a.s. implies that mi is an Ft-martingale, by
. t =
Theorem 5.2 of Hoover and Perkins (1983). This verifies a) of Theorem 4.6.1.

¢

Further, since mt is a.s. continuous in t , the predictable square
function <m¢)>t coincides a.s. with the square function [m¢]t . Now by
another result of Hoover and Perkins (1983) (Theorem 6.7)

o 4 )
[st(ME)] = st[Mt] ,

the standard part of the internal square function, and by Theorem 8.5 of the

same paper,



o . . .
provided (Mt) is S-integrable, where <M¢> is the internal predictable

(with respect to Ft) sqguare process.

Now by Burkholder's Inequality, if p > 2

E( sup (Mé)p) <c_E 2 z @2(§) st Adit
EfEf < 0<s<t §€X =<
p/2
< c KPE' YoM Atl .
> % o o
O<s<t -~

(where Ms is the total mass process)

which is finite by Lemma 4.4.1.
Now apply Chebychev's Inequality to conclude that

as required.

Now <M¢>
t
2 d
2 U~ Ax d
= ® U A — 2
¥ ) x) [ ex 72 7o) Athx

0ss<t  xe

2
(4-22) = } o) u__ atax
- sX
O<s<t l(ex -
w2, 4
LY
7Y P (—= Xy
z 4t 4 At
O<s<t xeX {v__ < —=
-7 - - sX d
: -- Ax

Now the second term above may be bounded by

lel|> 7 ] ou 1 peaxd

O<s<t xeX == {u ant
2°z % sx a
: -- Ax

p/2

2

M)

et o

) Atax?
sX

is

S-integrable
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2 a
+  |]el] ) U1 A9t .
® oss<t §§X 22 o, < éég
C x> n 2 ax
< k2 - g . (g8 . AL
= k a
Ax

(4-23) +k° ) wElzed

S
Oss<t =

By Lemma 4.5.2, the standard part of the second term in (4-23) goes to

0 a.s. as L > . The first term is infinitesimal for all L finite.

Hence, for each t

o

. t -
¢> a.s. ° ] a-g. ° z ¢ a.g. J( = 2

(4-24)  <m®>, . x_ ot x: ds ,
£ - Oss<t = 0

as required by condition b) of Theorem 4.6.1. Hence

Theorem 4.6.2. The standard part X, of the hyperfinite process Xt

constructed by solving the difference equations (4-1) for an internal density
U , is the critical branching measure diffusion considered by Dawson and

others.
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4.7 New Results on the Dawson Measure Valued Diffusion

This section represents joint work with Ed Perkins, my thesis supervisor.
Now that we know that the measure valued process xt which we constructed
via solution of the hyperfinite difference equations (4-1) for an internal

"density" Utx , 1s in fact a construction of the Dawson Process, we may use

this construction to ascertain some regularity properties of the process.

First we need

Lemma 4.7.1. Let A ¢ X be a Loeb-measureable set of L(ux) measure 2zero.

Then on a set QA of probability 1 L(Xt)(A) =0 ,\fEEG T'' n st_l(t>o) .

Proof. Let {An}neN be a nested sequence of internal sets such that A c A
Iroot -n

*
for each n € N , and °(ux(An)) + 0 . Extend {An} to N in such a way
that the An's are still nested (that this may be done, follows from

wl—saturation).

Let H be infinite in "N . Then ux(AH) %~ 0 . Suppose te T ,

with °t > 0 . Now by Lemma 4.3.2, if K is a bound for p, (x) ,
t+it t
XY
Q§+ét = ax9 S Ku (ay) . Hence
L S A N X
- H
By a LAt a
E(X, ) =E( ) U_b8x% = ) 0 -U_  Ax" <Ku_(A)M. ~ o0 .
t - X A _:y Oy - x H'TO0
§€AH - ye H L L z
t AH

Thus for each t there is a set §~ of probability 1 on which Xt X0

Let {t } be a countable S-dense set in T . Let Qé be the set of

t
-k "keN A

probability one on which XtH

is S-continuous for t € T' . Let

Q.= n Q n Q. . Then on QH , (X)) = lim (X ) = 0 for some
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A

: H
seguence {Ek } . Thus Xt ~ 0 \/E e T’ , hence by infinitesimal underflow

i -

for each w € QH , there is an infinitesimal e(w) such that

xiHieV:ceT'.

A
For ne N, let Y = sup X " A1 . Then Y is S—Ll for each n , and
n vt n
teT =
the seguence {Yn}ne*N is internal. Now E(YH) & 0 , for any infinite

H ¢ "N . Hence °(§(Yn)) + 0 as n » » through N , and thus °Yn ¥+ 0 on

A .
a set Q f i13 . < — © n -
e A © probability one. Now L(XE)(A) __L(XE)Qﬁaf XE < Yn

\/E e 7', k/n € N . Hence L(Xt)(A) =0 ,\/E e T' on QA. a

Hence, we may draw

d

Corollary 4.7.2. If A c R® 1is a Lebesgue null set (A(A) = 0) , then

xt(A) =0 Vet >0, a.s.
proof: st T(A) is a Loeb null set. 0

f
We introduce the notations x, = J £ dx, and xi = xt(A) .

d . .
Theorem 4.7.3. If f : R > R 1is a bounded measureable function, then xi
is a.s. continuous in t > 0 . In particular xi is a.s. continuous in
t > 0 for any Lebesgue set A

Proof: Let F : X > *R be a lifting with respect to L(ux) of £ . Then

let A be {x : x e X °F(§) # f(°§)} which is a Loeb null set. By Lemma

4.7.1, LX) @) =0VteT aws. Now F is S-L' of (X,X) ¥Vt a.s.

o F !
t T
XVt e

t t

. .. £
{since M is finite \/E a.s.) . Hence x = J °F(§)dL(Xt)

o, .
a.s. By Lemma 4.5.5 Xt is S~continuous a.s. O



Theorem 4.7.4. Let ¢ be a bounded measureable function on Rd , and

suppose a sequence b{¢k}keN of uniformly bounded measureable functions

converges to ¢ in Lebesgue measure. Then for any € > 0

sup |x kK x
[e,tf] t t

Proof: Let ¢ and Qk k ¢ N, be liftings of ¢ and ¢k ; k e N
respectively. Extend {Qk}keN to an internal seguence {@k} k ¢ "N

Then if °t > 0

k, _ o ~ _ a
) = Z U, (Px) - & (x))bx

J ﬁo (p(x) - ¢k(x))dx where u = st(&) .
Rd =

~

>0 as k -+ ® , since utx is bounded and Ll( R) for

t >0
» * 3 » v >
Hence if H ¢ N 1is infinite,

(4-25)  E(X %0 a.s. VeeT.

¢ , -
Now Xt and XtH -are both S-continuous on T' n st l(t>0) a.s. by

Lemma 5.5.2. Therefore since (4-25) holds for a countable S-dense subset
@—@H
of T' , hence X ~0 Yt eT' a.s., and

9]
H

Y = max X ~ 0 a.s.

-
EET' t

P
Therefore °Y, —> 0 as k -+ « through N
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12 ¢
Now we have seen (Lemma 4.7.3) that for k ¢ & xt (resp. Xt) and

¢ .
o . . .
st(th)(resp. st(Xt)) are indistinguishable processes. Hence



70

CHAPTER 5

The Critical Branching Diffusion in One Dimension

5.1 Introduction

In Chapter Three we obtained an existence theorem for SPDEs of the form

WUt £ o
st AU W

where f grows at most linearly at infinity, without the necessity of imposing
a Lipshitz condition on £ . BAs discussed in Chapter One, the one dimensional

Dawson critical branching diffusion has been believed to satisfy the SPDE

2
3u_3u .
(3-1) 3t . 2 Yo Yex ”
Ix

However the theory of such an equation has not been well-known since
the function u -~ Y4 is not Lipshitz. In this section we use the results
of Chapter Three to show that the critical branching diffusion of Dawson does
indeed satisfy (5-1) in one spatial dimension, and thus it has a.s. a jointly

continuous density.



5.2 The SPDE and the Measure Diffusion

- TxX
Let d=1, and let Q be the space {-1, 1} as described in

section 4.2. Let Utx be the solution to the hyperfinite difference

equations (4-1):

. = + A — — ——
(5-2) 8 Uy, =8 Uy, + Oy = 77 —

and let X be the measure-valued process, whose internal density is U .

In section 4.6 we verified that the process X, = °(Xt) was in fact the

critical branching diffusion. 1In the case 4 = 1 however, we have the

1

additional information that if U0 is S-continuous and S-L~ , then Utx

is S-continuous on T x X a.s. by Corollary 3.8.3. Furthermore u = ‘U
satisfies (3-12), the weak form of an SPDE; to complete the identification

of u as the solution to (5-1), we need only note that, since o,

—
Ax

then for u € ns(* R)

°(

i)
>
N1
!>| >
rrvx
i}
ﬁﬂ
[

On the other hand, starting from the SPDE (5-1) we note that the

martingale problem is easily satisfied since for ¢ € C2( R)
c

t
J I Vu ¢ (x)dw
SX
0 “R

sX

is a martingale, whose increasing process is

t 2
J J u ¢ (x)dsdx
R

sX
0

) 1
If we also assume that uo is L , then

71



72

t
J J u dsdx < « a.s.
SX

0

and a dominated convergence argument ensures that the martingale problem is

satisfied for ¢ € Ci 2( R) (which coincides with D(A) in this case).
1

Thus we have

Theorem 5.2.1: Let uo(x) be continuous and Ll( R) . Let wtx be the
X

. . . . Tx
white noise constructed in section 2.2 from the Loeb space of {-1, 1}

+ . s . .
onto R X R . There is a jointly continuous non-negative process utx such

that

qu = uo (x) [

_and for all ¢ € C2

: +
b,2( R) , and all t ¢ R

t 32¢
(5-3) J utx¢(x)dx = J Uy, ¢ (x)dx + [ J uSx ——5-(x) dxds
R 0 ‘R 9x

R

t
+ J J Yu $ (x)dw N
0 'R S

Moreover any solution to (5-3) is the jointly continuous density of the
unique measure-valued solution to the martingale problem described in Theorem

4.6.1.

Remark: The existence of a jointly continuous density holds for all
realizations of the one-dimensional Dawson branching diffusion, not only the
one constructed here. This follows from the fact that the existence of a
jointly continuous density is a measureable property of the sample paths of

this process (see Cutler (1985)).
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CHAPTER SIX
The Support of the Fleming-Viot Process

6.1 Introduction and Construction

As mentioned in Chapter One, the Fleming-Viot process is the limiting
case of a model used in theoretical genetics: the Ohta-Kimura model for
d quantitative characters. Briefly, in this model, the total number of
individuals is conserved, and the dynamics involve two processes, genetic
"drift", and mutation. Mutation is modelled by a random walk on Zd .
"Drift" ;s modelled by replacing individuals at random by new individuals
whose genetic type matches another individual chosen at random from the rest
of the population. If we denote the types by points k € Zd , then we may
denote by p(t,k) , the number of individuals of type k alive at time

t e R+ , divided by N , the total number of individuals (conserved), then

p(t,+) forms a continuous-time countable state space Markov jump process with

~ generator:
(6~1) LE() = ) [y p(i)p(§) + D p(i) eijuf(p”) - £(p))
igje 29
(k) + L if k =3
p N’ i =3
where pJ(k) = { p(x) - %», if k=i
p (k) , otherwise, and
1, if |i-j| =1
g, . = {-24, if i = j
i3

0, otherwise, and



Y and D are positive constants describing the rates of "drift" and
mutation respectively.

Each of the N individuals takes one step ("mutates") in one of the
2d possible directions at Poisson times whose fate is D/N . Similarily each
individual dies and is replaced by another whose type coincides with that of
a given other of the N-1 individuals (i.e. an "offspring" of that
individual) according to a Poisson process with rate Y/N2 .

To construct the Fleming-Viot process, we re-scale time and space by

2

1/n% ana 1/nY/2 respectively: for A e B( r%)  let

(6-2) i = ¥ pw’e, k)

€A

2 b~

xt takes values in Ml( Rd) , the space of probability measures on Rd .

The result of Fleming and Viot (1979) is that in the 1limit as N »> « ,
the measure-valued process defined by (6-~2) converges in the spaceof gl(Rd)—
valugd processes provided the initial measure converges in Ml( Rd) . We
refer to Fleming and Viot (1979) and Dawson and Hochberg (1982) for more
details on this.

However, a non-standard construction of the Fleming-Viot process is
immediate from (6-2). We simply take N infinite and let the state space be
*z9 | Stated in non-standard language the result of Fleming and Viot is

*
Theorem 6.1.1. For N infinite, and t € n.s.( R+) (6~2) defines a.s. a

*
process with S-continuous paths in ns( Ml( Rd)) , if initially all but an

. . * d
infinitesimal fraction of the N "particles are on nearstandard points in A //E

Note that this result asserts that although the parameter space in (6-2) is

*+ . . -1, _+
technically R, that Xt ~ x; in the weak topology whenever t X r € st (R )

a.s. Hence X has a standard part, x , which is a measure-valued Strong Markov

process called the Fleming-Viot Process.
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6.2 The Dimension of a Putative Support Set

We use here the terminology of Dawson and Hochberg (1982) and some of
their results. What we aim to show in this chapter is that a non-standard
construction makes much of their work more natural (and a good deal easier!)
as well as extending their results. The main result (Theorem 6.4.4) of this
chapter asserts that the dimension of the support of the Fleming-Viot process
is at most 2 for all times simultaneously, a.s. (Dawson and Hochberg were
able to show this only for fixed times). In this section we derive the
dimension of.a set, that in section 6.4 will be shown to be the supporting
set.

Consider a particle (or individual) alive at some time t . As the
process evolves and the particle wanders, at some time r > t this particle
may disappear (to be replaced by another particle somewhere else), or else
it may serve as the 'type-model' for the replacement of some other particle which
disappears at time r . In this latter case we say that both particles at
time r are 'descendants' of the original particle at time t . For ease of
terminology we will say that the particle at any time s > t, up until the
time of disappearance of that particle, is the descendant of that particle at
time t . Note that ancestry is a transitive relation. Furthermore every
particle at time +t has a unique ancestor at any time s < t ; if we follow
the paths of particles backward in time, they may converge, but they will never
split. Two particles at a time xr > t are said to have a common ancestor
at time t , if they are both descendants of a given particle at time t .

We will construct a supporting set for the mass of N particles at any
time, by looking for a small (finite) set of ancestors, at an earlier time

whose descendants comprise all of the N particles at the later time.
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Consider any finite time interval [0, T] . Let e > 0 , and let
{an} and {An} be strictly decreasing sequences of positive numbers such

a2/A
that An e ", o and

_ A(4+e)/(4+2e)
n

)

+ C .
ai E/An -0 as n >« ., (A convenient choice would be an

We suppose W.l.o.g. that {T/An} are all integers so that for each n ,

the (finite) sets {tn,kltn,k =k An , 0 <k §_T/An} form a partition of

fo, T] . We let N be the number of ancestors at time

t £ th
n,k n,k-1 °F €

N particles alive at time tn x Let An Xk be the union of balls of
’ 14

radius a_, centered at each of the N ancestors at time t of
n n,k n,k-1

the system of N particles at time t x ° et A K be the union of
n, n,
a

smaller balls of radius —%—, centered at the same points. (Technically
all of the above are non-standard (internal) objects, but since they are all
near-standard I will make the distinction between standard and internal only

when necessary.)

t ), t

Let kn(t) = [t/An] identify in which interval [tn n,k+1)

k'

lies. Then let

(6-3) At = v n St(An,k (t))
m=1 n=m n

which is a (standard) Borel set for each standard t in [0, T1 . This will

turn out to be our supporting set. The dimension of this set depends on the

number of ancestors at time t ok of the N particles at the times tn " (and
’ 14

and t ) .

hence of all the particles alive between times ¢t )
n,k n;k

Dawson and Hochberg treated this problem for fixed times by constructing

an infinite particle system to describe the Fleming-Viot process at that



particular time. Using our hyperfinite model, we can use the same system of
N particles at all times. Dawson and Hochberg (1982; (6.23)) showed that
the distribution of the time Trlj\ taken (in reverse time) to reduce the

number of ancestors of N particles to m only, had Laplace transform

-sT -1
(6-4) E(e ™) = T 1+ —=)
= k=m+1 Yk (k-1)

(Their argument applies perbatim to our hyperfinite scheme.) We may use (6-4)

. N [+] C
t timate P (N >-£) =p(°r > ; < . -
o estimate P( nk B ) ( /b A for integral < From (6-3)
. n n n
A
N 1 1 1 n
- T = = - —x — a
(6-5) E c/A ) z c vk (k+1) c YN 7 ye ! an
k= —+1 A
A n
n
N N 1
Var (T / ) = z
c
k= S 4+ 1 [kG-D1
n
<1 Hreig-d
k= S 41 3 (k-1) k
A
n
3
1 1 1 An
-l -3 53
Y (Z') N 3y ¢
n
N °h o032 1
n
Now by Chebychev's Inequality, P(T > — + ) < =
c/b Yc /3§c3/2 h
hence, taking h = O/EE(Yc-l)/VAn ’
c A -
(6-6) P (N > —) < n (for ¢ > v ™)
n,k An
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Let 6§ >0 Let uE(A)
A . Then
P( max N X > 6/a2+€)
’
ki?/An
T 2+¢
< =
PN 1> 87
n
T An
iE 5A (SAn 5 (from (6—6))
n -
3 %4 W e~ 1)
a a
n n
T
-7 =
=7 An An 2
368 7 (W6 — - 1)
a a
n n
An
+ 0 as n - © since > o
2+¢
n

denote the Hausdorff x2+€

measure of a set

Hence P( max ai+€ Nn K () > §) - 0 , and by taking a subseguence, if
tel0,T] "“n
necessary, we can ensure
(6-8) max a2+€ N X (t) +~ 0 a.s.
tefo,T] ™ mety
(o]
Now for each m , Am,k (t) is a covering of n An,k (t) by Nm,k (t)
m n=m n m

balls of radius am

[es]
v u
€ m=1

and hence

458

Hence (6-8) ensures that

An,kn(t)) = 0 uniformly in t ,

A ) =0, for all t e [0, T]

n,k_(t)
n

a.s.

a.s. This is true
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for any € > 0 .

Lemma 6.2.1: The random set-valued frunction At

Hausdorff dimension at most 2 for all time, a.s.

defined by (6-3) has
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6.3 A Useful Stochastic Differential Equation

We study the numbers of descendants of a specified group of particles.

At any time, we stop the Fleming-Viot process, designate

n particles out

of the N , and restart this (Markov) process. For this section w.l.o.g.

suppose the process is re-started at time 0 . Let Yt

associated with -the designated n particles at time

1
t

d

0

enote the mass

,.and with their

descendants at times t >0 . Y = 5 (# of particles alive at time t

which are descended from the original n) . Recall that we are including

particles in the original n that have remained unchanged until time t , in

this count.

Now Yt changes only when

1) one particle out of the NYt disappears, and is replaced by a

particle of a type-model not included in the

NY

¢ v OF

ii) one particle out of the N—NYt excluded particles disappears

and is replaced according to the type of one of the NYt

descendant particles.

Disappearances and replacements happening entirely within the context of

the NY designated particles or amongst the N-NY excluded particles,

t t

make no change to Yt .

Now the replacement of any given particle according to the type model of

any other given particle happens according to a Poisson process with rate vy

(see (6-1)).

There are NYt . (N—NYt) possible ways for an event of type i) to occur,

each happening according to a Poisson process with rate

t

Y

1 .
a decrease of size ﬁ' in Y_ . There are (N-NYt) . NYt

an event of type ii) to occur, each with the effect of increasing Y

, and each causing

possible ways for

1
by =

t N

r
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and occurring at the same rate 7y as an event of type i). Thus Yt is

an (internal) martingale. The associated predictable increasing process

is easy to compute, since the change to Yt at any time is the sum of

2NYt(N—NY£) independent Poisson processes, each of rate vy , whose

predictable quadratic variations are each —% .  Thus
N
t
<Y> = -
J 2y Yt(l Yt)dt
0
(6-9)
<y> = 2y Y (1-Y
a<y N Y t( t)dt

Hence by Hoover and Perkins (1983)l we may conclude that the paths of

]

*
Y are a.s. nearstandard in the space C((0,»®); R) . Let y = Y . Then

1 .
from (6-9) d<y> = 2y y.(l-y.)dt and hence b. = { —_—— dy s
t t t t e 1 t
0 V2y yt(l-yt)

a standard Brownian motion (up till the time of extinction of y) . Thus by

enlarging our probability space we may find a Brownian motion b such that

t
(6-10) dy, = v2y v, (1-y,) db_ .
Furthermore we have the following lemma.
Lemma 6.3.1: Suppose y0 = ¢ where 0 < g < %—. Then there are finite

lNote. Hoover and Perkins (1983) Theorem 8.5 refers to *—discrete time
processes X , such that if Ax is the change in X over an infinitesimal
time step At , then sup °|Ax = 0 a.s. By looking at our process Y
only at intervals of At = 1/N? , we may ensure sup °TAY| =0 a.s. and
bring Y into the framework of the theorem quoted.
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constants Kl' K2 independent of € , such that

> lw

P(3s e [0, t] such that y < 2 ¢€) <K, exp [- ==—] .
s — — 1 Kzt
Proof: Write y, as the time change of a Brownian motion bt . As long as

Y stays in the range [3 €, 2 €] the derivative of the time change must be

t 4
at least g_"“l_§—_ . Now use the estimate
EYE(l_ZS)

P( 3s ¢ [0, t] such that |bs| >c) <2 P(lbtj > c)
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6.4 Verification of Support

We now check that the random set At of section 6.2 does indeed support

the measure X, of Theorem 6.1.1 (the Fleming-Viot Process).

Lemma 6.4.1: Consider at time +t any particle p . Let s < t , and trace

the path of the (unique) ancestor of p at each time r , for s < r < t .

Then this path is an infinitesimal random walk whose standard part is a

d-dimensional Brownian motion of rate 2D .

Proof: Between the appearance and ultimate disappearance of any given
particle, it takes a step of size - from its current position to any one
N

of the 24 neighbouring positions according to a Poisson process with rate
DN . Replacement (which is bifurcation of an ancestor particle) occurs
according to a Poisson process which is independent of the motion of the
particle. If we imagine such a motion continuing indefinitely and call this

. . i i, .
process Bt , and its coordinates Bt , then clearly each Bt is an internal

martingale, since steps to the right occur at the same rate as steps to the
. 2 .
left. Now <Bl>t = 2DNt ( - ) = 2Dt , since Bt is the sum of 2 independent
N

. : . . i
Poisson processes, of rate 2DN , and of amplitude . The motions B and

2l

BJ happen according to independent Poisson processes, hence <Bl, BJ>t =0

if i # j . Thus by Hoover and Perkins (1983) (once again!)2 Bt has a

standard part bt a.s., and this bt satisfies the characterization of

d-dimensional Brownian motion: E(btlbr 0<r<s) =b_; <b>_ = 2DIt. 0

]
\’

Al

2Again we must look at the process Bt at discrete intervals (of size At = l/N)»

to put it in the framework of Theorem 8.5 of this paper.
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Referring to 6.2 for the definitions of the sets An k and An x
4 ’
R K, . -a2/K2A
Lemma 6.4.2: P(x ((°An k)c) > €) j_—g e " " for finite constants
t r
n,k

K K
1" 72
Proof: Consider
at time t
n,k-1

the movements of

until we come to

we find a motion

a Brownian Motion.

the family of descendants of any one of the N particles

n,k

used in defining A . If we trace back from time ¢t

n,k

any one of the particles in this family, and its' progenitors,

n,k

the position of the one ancestral particle at time tn k-1 '
1

of the kind described in Lemma 6.4.1, whose standard part is

Hence the displacement of any given particle at time t

n,k
from its' ancestor at time tn k 1 is distributed N(O, 2DAnI) For any
k-
particle p at time tn,k '
a, —ai/KzAn
< — <
E(IAC (p)) < P(BDA > 2) __Kl e
A n
n,k
Hence
A E(x (& )= = E < °k
E(.Xot A e (tnkn’) s igl_IAAc (p,) < K e
n,k ! n,k
and
2
K -a_/K_A
~ [¢]
P (x (A ) ) >e) < — ‘e ™ 20
o n,k
tn,k 9
oA C Kl o _an/KA
Lemma 6.4.3: P(x (¢ A ) ) >e) < — e
—_— ot n,k €
n,k+1

Proof: As above, with larger K2 , since displacements are distributed

N(O, 4D A 1)
n
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Let € > 0 . From Lemmas 6.4.2 and 6.4.3 we may deduce

. oA ~
P( max {xt ( Ag WY X (°a° k)} > %ﬁ
T n,k ! n,k+1 T
k<—
-A
n
K 2
1T -a“/K. A

< e B -+ 0 as n -+ »
- EAn

(as per usual, our trusty servants, the constants Kl and K2 are changing

values when necessary).

Hence a fortiori

°o_C
A
P( max {xt ( ok

) Vox (°a° >}>§)+o.
T n,k

t .
n,k+1 n,k
" %n

~

. P ° . £
Now considexr the possibility that the sets An " contain 1 - Y of

\ 14

the mass of the process x at times t and t , but that more than
t n,k n,k+1
€ of mass lies outside the sets oAn " at some time in between tn k and
14 ’
t . Let s be the first such time. s is a stopping time for
n,k+1 n,k n,k Pping
the Markov process xt and we may consider it restarted at time sn K from
’
its configuration at sn x One of the following must occur during the
’
interval s ) .
( n,k’ tn,k+l
a) at least one fourth of the mass € that lies outside An Xk initially
a . ’
travels a distance — (to re-enter A )
2 n,k

b) the mass € that lies outside A x decreases by at least one fourth
14

£

2 N particles have at most é—e N descendants at

(that is the 7

time t
n,k+1)

Consider case a).

For each particle p at time , the displacement from its

tn,k+l



ancestor at time s

n,k

is distributed N(0, D(t - s

I) . 1
k41 Spx T - Recall

from section 6.3 that the number of descendants at a future time of any

given subset of particles, forms a martingale. Hence the expected mass at

time

t

n,k+1
a

outside balls of radius —%

of descendants of the enN particles at time s

’

, which are
n.k

centered on their ancestors, is equal to the

initial mass € , times the probability that any one particle is outside such

a ball, which product is bounded by ¢

Hence using Chebychev's Inequality,

P (for a fixed n and k, case a) occurs) < K_e

T

_ai/KZAn
Kl e {(as in Lemma 6.4.2).

2
-an/KzAn
1

2
KT - A
an/K2 n

1
< — < and < e
Hence P (for some k A Sn,k 0, k+1 nd case a) occurs) R e
n n
which goes to zero as n > « .
Now by Lemma 6.3.1
P(for some k < Zi—, sn,k < tn,k+1 and case b) occurs)
T 3
< — P s < t - 8 < A s.t. = = =
=4 (3s < n,k+1  ~n,k n Yo=3¢lvy=¢0
(where y 1is the process mentioned in 6.3.1)
. _E.K —e/K2An
=ax 1 ¢
n
which also goes to zero.
T o~ C £ o~ C I
P(: < — such that x A < — and x A < =
Hence (3x i ( n,k) > ‘ ( n,k) 5

n

and 3 s € (t
n

'k

I

t
n,k+1

n,k+1

) such that x (OA ¢ y >e) >0 .
[ n,k
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ok aC 2
Thus sup x ( An,k (t)) as n > o ,
n

telo0,T] t

By taking a subsequence, if necessary, we may ensure

sup xt(oAC K (t)) 2-Ss 0] .i Again by taking a subsequence we may assert
te[0,T] nr¥n
°o_¢C
z sup x,( A ) < » a.,s.

n=1 tefo,T] & Pk, (F)

c
Then sup Xt(At)

tel0,T]

) for any me N ,

< sup 2 x_(°a € )
t€[OlT:| n=m

z sup X (OA
n=m tel[0,T]

| A

>0 as m~»> ®

Thus we have

Theorem 6.4.4: The random measures Xy which are the realizations of the
Fleming-Viot process, are supported for all times t on a set At of

dimension at most 2 , a.s.
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APPENDIX A

Some Inequalities Used in Chapter 3

A.1 Purpose

In Appendix A.3, we derive some inequalities involving the coefficients
Qi which were presented in Chapter 3.4. 1In section A.2 we derive some

identities which provide a neat route to the inequalities in A.3.

A.2 Some Identities

As we saw in Lemma 3.3.1, Qi = E(Bz—At = x where BX is an infinite-

simal random walk starting at y at time O , and thereafter taking steps of

size Ax to the right or left with probability a , at each time interval

At , where a = At/Ax2 f_%—. The reason for not considering %-< a 5_%

will become clear later.

As we saw in Lemma 4.3.1 the above remarks are true also in d-dimensions,

where the random walk takes steps in any of 24 directions, each with
probability o = At/Ai . The identities in A.2 are true in

d-dimensions- although the d-dimensional versions will not be used

The first identity is trivial.

) -1, if =
Lemma A.2.1. z r L Ez-e
x X
— ¢ *z
Ax
s 2 25-At *
Lemma A.2.2. ) Q0 =9 ", if s/bt e N
X, -
— € Z
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5y _ 5)° _ S oS
Proof: ] (Q2) =()0Q) -] ] o o
- x - ¥y o =
_ 12 _ - -
-1 EE(Bg-At x) yfx g(B__At y)
(by A.1)
- 0 -4 - pg°
= 0 — 0]
=1- z BBy = %) (Bepe # )

(by symmetry; this step fails if we consider a reflecting

random walk.)

0 %)

7 o|Bs—At T X

|
o)

(by definition).
* *
Lemma A.2.3. 1If E/Ax e 2 , and §/At e N

2s=-At -A
s 2Q2§ t

0 Z

2
s s _

S
Xtz



2s-At 0 0]
= = -2 P(B = P(B = +
2 L ( s-bt x)P( s-At z)
(by Lemma A.2.2)
2s-At 0 0 0]
= - - 2 P = - P(B = -
2 % z -(B§-At X)P( 2s-2At z B§—At %)
(by symmetry)
_ 2s—At 0]
=29, -2 RB, ope T 2
_ 2(Q2§—At _ Q2§-At)
0 z :
r s *
. . 3 I N
Lemma A.2.4 If it AT € :
z . (Q£+§ Q§) _ Q3£+2§—At + QgE_At -5 Qg+2§—At
§/AX€ Z =
r+s s
P f: - - — 0=
Yoo Xz (Q§ QE)
*pd
Ax
-7 it ? Y p8° =xpY  =x) + ] (@
- Tr+s-At == s-At - x
% - X - - - X =
2r+2s-At 0 0 0
= =72 -2 ) P(B = -x)P (B = 0|B
QO x B r+s-At X P r+2s-2At | r+s-At
(by symmetry and A.2.2)
2r+2s-At 0 2s-At
= - - — = <+ —_
Q 2 1_9(B5+2§_2At 0) 2,



A.3 Some Inequalities

In this section I prove the four inequalities 3.4.1 through 3.4.4 of

Chapter 3.

Lemma A.3.1. (3.4.1). There is a constant K such that

t 2 — £ .
Y Q) <k VAt/t , if — e N
x - - At
xeX =
Proof: Clearly
t, 2 t, 2 -A
I @)= T, @) =0 pyaca.
xeX X x/bxe 2 X
c s k+1)At 1 , e
By definition, Qé ) = P(lsk| f_zﬂ ; . where ‘Sk is

the sum of k I.I.D. random variables taking the values -1, 0, +1 with

probabilities o , 1-20 , o respectively. Var(Sk) = 2ka

Since °a > 0 , then by Corollary 2.2.3 of Bhattacharya and Rao (1976),

| > =
2 VY2ka 2 I
ék+l)At _ J , L 2725, ¢ € a5 ko
1 1 vam vk
"2 V2ko
1 1
2 " Vke 2,5 . 1 1
Now e dz is asymptotically ———— + o(—) as k » @
1 2V/21ka vk

Thus there is a finite X such that

{(k+1) At < _%

N k ¢ N .
vk



* .
By the transfer principle this must hold for all of N . Thus (checking

t = At separately)

2t-At At . At
0 = 2t-20t — t

*
Lemma A.3.2 (3.4.2). There is a constant K such that for t/bt € N

2
y ) (02) < x/e/bt .

O<s<t xeX 2

. n
1
Proof: Follows from A.3.1 and the fact that Z — < C /n for all n e N ’
k=1 vk
*
hence for all n e€ N
2 »
Lemma A.3.3 (3.4.3). There is a finite constant K such that if E; € Z,
2 | z]
t * s s <
and =€ N , the - - Q- —_
n z z (Qx Qx+z) =K Ax

st Ossst xeX = F7-

Proof: Suppose w.l.o.g. that z2>0 . Let Bs be the infinitesimal random

walk whose density is Q§+At .
X
= I - B .

Let J(t,x) ) (Bg > x) (B, = B)

O<s<t - - =
Let L(t,x) = )} I(B_ = x)ix

O<s<t g
Let L(t,x) I T =x;B_ . =x+Ax)bx

O<s<t = -
Then L 1is the true occupation density ("local time"), for our random walk

with 'pauses', while L is the discrete analogue of Brownian Local Time.

Now E(L(t,x)) = ] PB(B_=x;B

- B = Ax)Ax
s
0<s<t =

s+At
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Y P(B, = x)a Ax
0§s<§ =

o E(L(t,x))

In Perkins (1982) Lemma 3.1, Tanaka's formula is established by internal

induction on t :

(B, - x7 = 3(t,x) + L(t,x
Thus

L(EIO) - L(Eri{) = B: - (Bt - ?_§)+ - J(EIO) + J(El}_()

Now J(EIO) and J(E,x) are both internal martingales, hence

g[B:] - EL(B, - x) "]

E(L(t,0) - L(t,x))

(A.3.1)

. o 1 s s
< = - = = > = = —
Now since 0 < & 3 v Qo lj(B§_At 0) __1_3(B§_At X) Q§ , as shown
in Lemma 4.3.2. Now by A.2.3
s s 2 2s-At 2s=-At
) ) ©=-09% » <2 ] o -0
O<s<t §€X = 'z 0<s<t z
=A =A
<2 ) (Q(—S) t—Qz &)
Ae<sz2t -
=2 ) P(B, =0) - P(B_ = z)

0<s<2t-2At S =

| A

2 E(L(2t-At, 0) - L(2t-At, z))
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LS

= & E(L(2t-At,0) - L(2t-At,z)

, by (A.3.1) g

I A
>
X {IN

Lemma A.3.4 (3.4.4). There is a finite constant K such that if

*
r/At < t/At are in N ,

_ e 2
I I @F2-o"®" <« x/itp /it .

O<g<r xeX = =

Proof: The l.h.s. above is equal to

2
+(t~
) JoostiED) | Qi) , which by A.2.4 is bounded by

O<s<r xeX = : =

(E—£)+2§—At

0] 0] 0 )

(A-2) Y (©

First, suppose t-r < r and (t-r)/At is even. Then many of the terms

in (A-2) cancel leaving

2s-At 2s-At
(a-3) ) o - y 028
t-x t-x
0<s< ——<g<t-r

- 2 = ==
2s-At 2s-At

) e ) 0;

t-x t-x
§<s<r+—§— r+ —<s<t
. °o <1 o s .
Since o — 3 ; the coefficients Qa are monotone decreasing as

S increases. Hence the sum of the second, third, and fourth terms in (A-3)
above is bounded above by 0 . The first term in (A-3) is bounded by

KV (t-xr)/At by A.3.2, as required.



tx

Now if t-r < r and Yy is odd the sum in (A-2) is bounded by
2s+2 (t-r) -4t 2s=At - t-r)+2 .
)y Lo s+2(t-1) + QO§ -2 Qé— r) 53 . Applying the same
O<s<X
cancellation argument, this is bounded by z Qg§_At < K /e-x/bt .
£z
0<s< +At

Now if t-r > r (i.e. r < t/2) , then

s+ (t-x) s 2
Lol @ T -0

O<s<£ x€X - -

[ A

-r).2 2
I D rotEDYT 4 o8
x %

0<s<r xeX =

_ ) QC2)§+2(1_:—£)—At+Q§§—At
O<s<r
(by A.2.2)
<2 ] o
O<s:r
r
— (by A.3.
< K 37 (by A.3.2)
t-r
= f The

1
Remark: If a = 5 then Lemmas A.3.3 and A.3.4 are false. The pattern of

.. . s * * .
non-zero coefficients in the array {Q;} » S/At € N, X/0x € Z , is a

checkerboard pattern. Thus U is independent of U and of any U
tx t-At,x s

t-s X7y
for which —ZE-+ :Z:- is an odd hyper-integer. Thus the moment inequalities
% ,



on spatial and temporal differences will fail. This is the reason for not

using the simplest finite difference scheme in Chapter 3.
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APPENDIX B

Internal Solutions to SPDEs in Higher Dimensions

The success of the hyperfinite difference equation approach in Chapters
3 and 4 to the existence of solutions to SPDEs in one dimension, and to the
Dawson measure diffusion in higher dimensions, leads one to wonder if the
use of hyperfinite difference equations might lead to a general theory of
SPDEs in higher dimensions.

So far at least, this hope has not borne fruit. The kind of egquations
that we would be led to consider after the analogy of those in Chapters 3

and 4, would be of the form

, du _ + d
(B-1) Eyalhe Au + f(u)dWtX , te R , x€R
and the corresponding internal equation
d
- = + F for
(B-2) wékgt (éUt)x (%x)iu{/ AtAx™ ,

te T and x ¢ X , hyperfinite grids representing .Rf and &9 respectively.
Now it is easy to see that an internal solution to (B-2) exists, by the
usual inductive construction. What is not so clear is whether or not this
internal solution U has a non-trivial standard part u , presumeably in
some space of distributions. It is also not clear what it would mean for
such a distribution-valued process u to be a solution of (B-1), in
general, since non-linear operations on point values of distributions are
undefined or discontinuous at best. It seems éossible to make sense of (B-1)
if f£(u) 1is an operator valued function of u with values in a class of

operators on a space of distributions, but to pursue this possibility would
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take us too far afield from the ideas of this thesis.

If we restrict ourselves to the case where f is a real valued function
of a real variable, and that F is some natural lifting of f , such as *f '
then we may still ask whether or not the internal solution to (B-2) has an
interesting standard part.

Sadly, in several cases the answer seems to be ‘no'.

The first case we considered is when f 1is a continuous function of
compact support, (and ¥ 1is an S-continuous lifting of compact support).
Then since At << Axd , changes to the internal solution Utx to (B-2) are
infinitesimal at each step and an easy induction argument shows that the
internal solution Utx is bounded by a finite constant. If we seek to

estimate the variance of z Utx Ax?  for some finite internal rectangle
X€A -

(or other set) A , then we are naturally led to examine §(F2(Usy)) . We may
set up a difference equation for this quantity, and show that it-;s everywhere
a.s. infinitesimal.

Thus the variance of the integral over any finite region of Usy , is
infinitesimal. Thus though the values taken by U 1lie almost always at
either end of the (connected) support of F , these values balance very
precisely on each monad. The balance point is infinitesimally close to the

value of the deterministic solution to the heat equation with the given initial

condition, at the standard point corresponding to the monad in question.

The other cases which we examined were when F(U) = v , when either
0 < p< % , Oor % <p<1l. We may try to follow the development of section

4.4 to find the total mass. In the case 0 < p < % , we find that

2 . o
E(Mt-MO) 4 is finite, at least in the case of reflecting boundary conditions

2p

on a finite rectangle, simply by bounding U by 1 + U . However, a closer

examination of the difference equations (B-2), will show that,



the values Utx are almost always infinite or

. e . . 2 i .
infinitesimal. Thus the quantity Z Uti is actually infinitesimally
xeX ==

smaller than z Utx ; since almost all the mass comes from points x
xeX

where Utx is infinite. Thus we end up with, in fact

2q lof
EiM,_ - My << E( ) M)

- O<s<t -

, and thus the total mass is infinitesimally

close to M a.s. If we examine the predictable increasing process

0
. . A . . .
associated with ) (Ut - U )®(x) - ) X ® At , as in section 4.5 we find
X 0x - S
xeX == 7% Oss<t =
. 2p ;2 a . . . . P .
it to be z z U 9% (x)Ax~ , which is likewise infinitesimally close

Oss<t  xeX =2

to 0 . Thus the process we get from solving (B-2) for F(U) = UP , 0 <p«< %

turns out to have a deterministic standard part.

1
If FU) = ¥ '3 < p <1, then, again Utx must almost always be

.infinite or infinitesimal. If we obtain an estimate of the variance of the

total mass Mt , we find E:(Mt - MO)2 = z z U2p AtAxd .
' - 0<s<t xeX sX
2
Whenever U is infinite U << U2P , and hence z U P Axd >> z U Axd
sX sX
xeX =2 §€X 22

The moment bounds on M cannot be obtained. An examination of the predictable

t
increasing process for Xi - xg - z xAQ
= O<s<t =

At as in section 4.5, shows

that this is a.s. infinite, and thus the quadratic variation is simply too large

for U to be nearstandard as a measure-valued stochastic process.

The only cases where the formulation (B-1) appears to yield anYthing are

if a) F 1is essentially like F(x) = C , in which case we recover the linear
theory of SPDEs in higher dimensions which was originally developed by

Walsh (1986), or b) F(x) = cvx essentially, which is treated in Chapter 4.
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