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Abs t r ac t 

Various models are currently in existence for determining the deflection of lithospheric 

plates under an applied transverse load. The most popular models treat lithospheric 

plates as thin elastic or thin viscoelastic plates. The equations governing the deflection 

of such plates have been solved successfully in two dimensions using integral transform 

techniques. Three dimensional models have been solved using Fourier Series expansions 

assuming a sinusoidal variation for the load and deflection. In the engineering context, 

the finite element technique has also been employed. The current aim, however, is to 

develop an efficient solver for the three dimensional elastic and viscoelastic problems 

using finite difference techniques. A variety of loading functions may therefore be 

considered wi th min imum work involved in obtaining a solution for different forcing 

functions once the main program has been developed. The proposed method would 

therefore provide a valuable technique for assessing new models for the loading of 

lithospheric plates as well as a useful educational tool for use in geophysics laboratories. 

The mult igr id method, which has proved to be a fast, efficient solver for ell iptic 

part ial differential equations, is examined as the basis for a solver of both the elastic 

and viscoelastic problems. The viscoelastic problem, being explici t ly time-dependent, 

is the more challenging of the two and wi l l receive particular attention. 

Mu l t i g r i d proves to be a very effective method applicable to the solution of both 

the elastic and viscoelastic problems. 
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C h a p t e r 1 

In t roduc t ion 

The aim of this dissertation is to provide a fast, efficient, numerical method for deter

mining the deflection of lithospheric plates under an applied load. In particular, the 

mul t igr id method is employed in this capacity. We wi l l examine plates having hori

zontal dimensions ranging from those of sedimentary basins to continental plates. We 

wi l l also consider a wide range of other physical parameters. Therefore, our atten

t ion is focussed on developing a method capable of providing a solution to a variety 

of geophysical problems rather than on developing a good model to one particular 

geophysical situation. In other words, we shall concentrate mainly on the numerical 

aspects of the topic while still maintaining a geophysical framework wi th in which our 

forcing functions and model parameters wi l l lie. 

Our discussion wi l l begin wi th a justification of the treatment of lithospheric plates 

as thin elastic or viscoelastic plates. In elastic theory one assumes that at any given time 

the plate responds only to the applied load at that time so that once the load is removed, 

the plate instantaneously reverts to its undisturbed state. In viscoelastic theory the 

assumption is that the plate responds not only to the present load but also to all 

previous loads so that it has the capacity to remember previous states of deformation. 

O n removal of the load, a viscoelastic plate slowly relaxes to its undisturbed state. 

We thus find ourselves in the regime of thin plate deflection to which much attention 

has been given in the engineering literature. The equations governing thin elastic or 

viscoelastic plate deformation have already been solved numerically, quite successfully, 

1 



Chapter 1. Introduction 2 

using finite element packages, but such methods tend to be very expensive. In a few 

special cases, an analytic solution may also be obtained allowing for a more objective 

evaluation of the numerical results. 

The application of the current work to the evolution of sedimentary basins is of 

particular interest since such areas tend to be rich in hydrocarbons. Sedimentary 

basins are generally considered to be-formed by the combination of a load due to 

thermal contraction following a sub-surface heating event and a subsequent load due to 

infilling of the deflection by sedimentary layers. It is the load due to thermal contraction 

which is generally considered to be responsible for the in i t ia l deflection in the plate and 

incidentally, the thermal anomaly causing this contraction also plays an important role 

in the maturat ion of petroleum, see Nunn , Sleep and Moore [8]. 

Various models for the evolution of sedimentary basins have been developed for 

both elastic and viscoelastic plates. Beaumont [2] examined the formation of sedimen

tary basins due to the loading of elastic and viscoelastic lithospheres. The problem was 

considered in cyl indrical co-ordinates wi th the deflection depending only on the radial 

component. A simple ^-function was used to represent the spatial variation (point 

loading) in the forcing term for the elastic model. For the viscoelastic problem, the 

forcing function was augmented wi th the heavy-side-step function to represent the time 

dependence. Model l ing of the plate loading was therefore very simple, however, math

ematical tractabili ty was maintained in the process. B o t h the elastic and viscoelastic 

problems were solved using integral transform techniques. 

Beaumont also addressed the problem of basin ini t iat ion, i.e. that mechanism by 

which an in i t ia l deflection is created in the lithosphere in which sediment subsequently 

accumulates. Six possible mechanisms were proposed including thermal contraction 

following a sub-surface heating event, a subsiding graben and necking due to stretching 

of the lithosphere. Deflection of the lithosphere due to the sedimentary infill of an 
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instantaneously formed graben was examined. The case of an exponentially subsiding 

graben was also considered where subsidence was assumed to occur over a period of 

lOOMa. Results from the viscoelastic, rather than elastic, model were found to be in 

best agreement wi th seismic data obtained from the Nor th Sea basin. 

Watts , Karner & Steckler [12] examined a two-dimensional model where thermal 

contraction was assumed to control the tectonic subsidence of the plate, i.e. that subsi

dence which is independent of subsequent deflection due to sedimentary infil l . Fourier 

transform techniques were used to solve the governing equations which are simplified 

by the assumption of two-dimensionality. Sedimentary loading was assumed to be 

constant over discrete time intervals so that at the beginning of each new period a 

layer of sediment was assumed to instantaneously infill the cavity caused by tectonic 

subsidence. 

Two models were considered for tectonic subsidence the latter being attr ibuted 

to thermal contraction in both cases. The first assumed that the depth of the basin 

increases as the square root of t ime since basin ini t ia t ion. Aga in , formation of the 

basin was assumed to occur over a period of lOOMa. The second model was based on 

the assumption that the lithosphere is stretched laterally at the time of basin ini t ia t ion 

resulting in plate thinning and heating which in turn resul t / in plate subsidence on 

cooling. 

A variation in elastic thickness, and therefore flexural rigidity, w i th time was allowed 

for in both the elastic and viscoelastic. models between time periods. Spatial variation 

of the flexural rigidity was also considered. The latter problem was solved using a 

numerical finite difference scheme rather than Fourier Transform techniques. It should 

be noted that this problem is simplified considerably in two-dimensions, the extension 

to three dimensions being non-tr ivial . It was concluded that the best model fit to overall 

basin geometry arises from an elastic model in which the flexural rigidity increases with 



Chapter 1. Introduction 4 

t ime after basin ini t iat ion. This increase is due to an increase in elastic thickness wi th 

age as the plate cools. It should be noted that the conclusion here is at variance wi th 

Beaumont who favoured the viscoelastic model although the latter model assumed the 

flexural rigidity to be constant. It was again deduced that the dominant mechanisms in 

the formation of sedimentary basins are thermal contraction, which controls the overall 

shape of the basin, and sedimentary loading. 

Nunn & Sleep [7] considered the load due to both thermal contraction and sedimen

tary loading for an elastic and viscoelastic lithosphere. A sinusoidal spatial variation 

was assumed for both and solutions were obtained using Fourier Series expansions. 

A linear deposition of sedimentary layers over discrete time intervals was considered 

where a variation in sediment density from one layer to the next was incorporated in 

the model. 

A n estimate of the thickness of sedimentary layers obtained from lithostratigraphic 

data for the Michigan Basin was used to compute the Fourier coefficients for the ex

pansion representing the load due to sedimentary infi l l . Fourier coefficients for the load 

due to thermal contraction were computed using the fact that the deflections due to 

thermal and sedimentary loading must add to yield the observed deflection at some 

time, tmax, after basin ini t ia t ion. These coefficients were therefore re-computed for 

each set of rheological parameters. 

It was estimated that the load due to sedimentary infill constitutes approximately 

75% of the total driving force. The best model fit to observations was obtained for a 

viscoelastic lithosphere wi th low flexural rigidity. However, it was pointed out that wi th 

the data available at present, either model yields acceptable results, and a better un

derstanding of basin ini t iat ion, sediment budget and sediment compaction is necessary 

before any definitive statements can be made. 

We wi l l examine the deflection due to the loading of both elastic and viscoelastic 
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plates, al l models being three dimensional. Simple models which account only for 

sedimentary loading wi l l be considered. We therefore assume that some process such 

as thermal contraction is responsible for the formation of a cavity in which the sediment 

accumulates. In the viscoelastic case, we allow the basin to form gradually so that the 

sediment accumulates in a continuous fashion. The infilling sediment is assumed to 

have constant density. 

We now present an overview of material to be found in the following chapters. In 

Chapter 2 we wi l l call upon material found in the engineering literature to provide 

a derivation of the governing equations for the deflection of a viscoelastic plate. In 

doing so we wi l l closely follow a derivation of the equation governing deflection of an 

elastic plate replacing the elastic constitutive equations wi th those for a viscoelastic 

solid. We wi l l also present appropriate boundary and ini t ia l conditions along wi th a 

nondimensionalized form of the governing equations. To conclude the chapter we wi l l 

consider an appropriate reformulation of the governing equations which wi l l make their 

solution easier numerically. 

For both the elastic and viscoelastic problems, we are faced wi th solving a pair 

of coupled, linear, elliptic equations. A n efficient solver for such a system is therefore 

required. In Chapter 3 we present an introduction to the mult igrid method and consider 

its application to the two problems in hand. The presentation includes a discussion of 

the main components of mult igr id as well as some basic algorithms. The fundamental 

difference between the elastic, and viscoelastic problems, from a numerical standpoint, 

is that the viscoelastic model is time-dependent whereas the elastic problem is not. 

Chapter 3 is therefore concluded wi th a discussion of mult igrid for time-dependent 

problems. Two algorithms are considered, one of which follows immediately from the 

time-independent, elastic problem. The applicabili ty of the two algorithms is discussed 

and some attempt is made to ascertain the conditions under which one is expected 



Chapter 1. Introduction 6 

to perform more efficiently than the other. The performance of the two algorithms is 

tested numerically in Chapter 5. 

In Chapter 4 we examine the elastic problem on a square domain. The assumption 

of a square domain places some restriction on the problem geophysically, but it s t i l l 

maintains a definite advantage over the assumption of two-dimensionality which has 

been used by other authors. However, the regular domain leads to an easier treatment 

of the problem from a numerical standpoint since irregular domains involve added 

computational difficulties near the boundaries and hinder the development of fast, 

efficient solvers. 

We begin with the presentation of an analytic solution to which later numerical 

results wi l l be compared. This analytic solution is used to examine the effect of altering 

the elastic properties of the plate on subsequent, plate deflection. A relation expressing 

the degree to which a load is supported by the flexural rigidity of the plate wi l l be 

derived. It wi l l be shown that the problem is potentially tougher to solve in cases 

where the degree of support is either very high or very low. 

The rate of convergence and accuracy of the mul t igr id solution wi l l be examined for 

various plate dimensions and elastic constants representing a wide spectrum of degrees 

of support. A comparison between mul t igr id and a simple Gauss-Seidel iteration wi l l be 

carried out showing that mul t igr id performs relatively more efficiently except in cases 

where the degree of support is very low in which case the numerical solution becomes 

t r iv ia l . We conclude the chapter by considering a Gaussian distribution for the loading 

for which an analytic solution is not available. 

In Chapter 5 we turn to the viscoelastic (time dependent) problem which is certainly 

the more interesting of the two problems in hand. We begin with the presentation 

of an analytic solution representing an exponentially increasing forcing function wi th 

periodic spatial dependence. This representation has some major shortcomings in the 
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geophysical context but it is nonetheless considered acceptable in so far as it provides a 

means for assessing the numerical results more objectively. Two mult igr id algorithms 

for time-dependent problems wi l l be contrasted and compared. After an examination 

of the results and a consideration of the work involved in each of the algorithms, one 

wi l l be eliminated on the grounds of both efficiency and accuracy. Some analysis of 

the reason for the efficiency and accuracy of one algorithm over the other w i l l also be 

presented. 

Having chosen a suitable algorithm we then examine the performance of three dif

ferent approaches to dealing wi th the time discretization, namely, Backward Euler , a 

centred difference scheme and a two-step backward difference formula. The first of these 

provides a first order approximation in time to the solution while the other two provide 

second order approximations. It wi l l be seen that the centred difference scheme, while 

providing a second order approximation, involves no more work or storage than Back

ward Euler, the first order method, making it an extremely attractive method from the 

point of view of both accuracy and efficiency. We examine the effect of reducing the 

time step and, in consideration of the results, the centred difference scheme is selected 

for use in future numerical experiments. 

Next we consider the effect of allowing the forcing to reach a steady state. Ana ly t 

ically we expect all plates, regardless of size or elastic properties, to relax unt i l they 

are in hydrostatic equil ibrium wi th the applied load. We conduct two experiments for 

plates of different sizes and different elastic properties and show that if integration is 

continued for long enough after the forcing reaches a steady state then the numerical 

solution indeed appears to converge to the solution representing an adjustment of the 

plate to hydrostatic equil ibr ium. 

Final ly , we consider a forcing function which is more reasonable geophysically. The 

spatial variation is represented by a Gaussian distr ibution and the time dependence is 
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such that forcing is ini t ia l ly zero and reaches a steady state asymptotically. T w o sizes 

of plate wi th different elastic properties wi l l be considered and again the numerical 

results indicate that if integration is continued for a sufficiently long period, the solution 

converges to one representing hydrostatic equil ibrium. 

Conclusions arising from the numerical experiments are presented in Chapter 6. 

Suggestions as to the direction of future research are also proposed. 



C h a p t e r 2 

D e r i v a t i o n o f t h e G o v e r n i n g E q u a t i o n 

2.1 L i t h o s p h e r i c P l a t e s 

In considering the deflection of lithospheric plates, we wi l l be encountering horizontal 

dimensions ranging from 250km to 1000km. This covers anything from the formation 

of sedimentary basins to the deflection of continental plates due to topographic load

ing. In order to derive an equation governing plate deflection we make the following 

observations. Firs t , that the horizontal extent of the plate is not so large as to make 

the effects of the earth's curvature of importance. We therefore assume that in their 

undisturbed state, the plates are completely flat. Second, the thickness of the plate is 

very small in comparison to the horizontal dimension. In general, lithospheric plates 

have an elastic or mechanical thickness of between 25 and 50km depending on whether 

the plate is oceanic or continental. This is considerably less than the seismic thickness 

which is of the order of 100km, see Nunn & Sleep [7, p.590]. It is the mechanical thick

ness which is of importance in an elastic or viscoelastic model so we therefore assume 

that lithospheric plates may be treated as thin elastic or viscoelastic plates. 

In elastic theory, we assume that at any given time the plate responds only to the 

applied load at that time so that on removal of the load, the plate instantaneously 

returns to its undisturbed state, having no memory of the previously applied load. 

Should we wish to examine the deflection of the lithosphere under an applied load at 

a given point in time, the present day for example, then elastic theory provides us 

9 



Chapter 2. Derivation of the Governing Equation 10 

wi th an adequate model for achieving this. However, if we wish to study the evolution 

of the plate's deflection then a viscoelastic model is more appropriate. In viscoelastic 

theory the elastic properties are assumed to be a function of time so that materials 

have the capacity to remember, and therefore respond to, previously applied loads as 

well as the current one. If the load is removed at a given time, a viscoelastic plate 

does not instantaneously revert to its undisturbed state but rather relaxes, possibly to 

a steady state, as t ime goes on. Obviously, from a geophysical standpoint, we wi l l not 

be considering the complete removal of the load but, in the case where the load reaches 

a steady state, the subsequent evolution of the plate's deflection is of interest. 

2.2 Classical Elasticity and Viscoelastic Theory 

Having justified the treatment of lithospheric plates as th in elastic or viscoelastic plates 

we now derive an expression governing the deflection of thin viscoelastic plates under 

the action of transverse loading. 

We begin with an overview of classical elasticity introducing the ideas of stress, 

strain and subsequent particle displacement. Consider a volume element of an elastic 

material as shown in Figure 2.1 with Cartesian axes-in the given orientation. This 

volume element is subject to normal and shear stresses due to its interaction wi th 

neighbouring volume elements. Figure 2.1 indicates the direction in which these stresses 

are taken as positive. Note that stresses acting on surfaces normal to the x 2 -di rect ion 

have been omitted for clarity. Subscripts on the stresses are in the following convention: 

(i) the first represents the direction normal to the surface on which the stress is acting, 

(ii) the second indicates the direction parallel to which the stress is acting. We adopt 

a suffix notation wi th respect to Cartesian axes (x1, x2, x3) and assume the Einstein 

Summation Convention to be in operation over repeated suffices. The notation (. )_j 
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^33 

Figure 2.1: Elements of Stress 

represents differentiation wi th respect to xr 

Following Vinson [11], we now present the governing equations for the deformation 

of an elastic, body. A more in-depth discussion than that given in V inson may be found 

in Hunter [6]. Consideration of conservation of momentum for a static, elastic body in 

the absence of body forces (such as gravity) yields the following equil ibr ium equations 

°~H,j = 0 (2-2.1) 

Conservation of angular momentum requires that 

a,? = on (2.2.2) 

in other words that the stress tensor be symmetric. 

A deformed elastic body has associated with it not only stresses but also strains 

and a displacement field. Assuming small displacements, it can be shown that the 

strains e,7 (suffix convention being the same as for the stresses at]) are related to the 



Chapter 2. Derivation of the Governing Equation 12 

displacement field in the following way 

£H = \(u*J + U3,i) (2.2.3) 

F ina l ly we have the constitutive or strain-stress relations. Assuming the material to be 

isothermal, isotropic and homogeneous we have: 

1 
£ij E 

(1 + v)uij - v ukk 8{ (2.2.4) 

where the superscript e refers to an elastic solid, E = Young's Modulus , v = Poisson's 

Rat io and 

6{j = Kronecker Del ta 
1 if % = j, 

• 0 otherwise. 

Drucker [3, p.267] shows that the strain-stress relations for a linear elastic solid lead 

directly to those for a linear viscous solid wi th the replacement of the strains e\- by 

the rate of strain zv- where the dot denotes differentiation wi th respect to time and the 

superscript v refers to a viscous solid. For an isotropic material we replace Young's 

Modulus E, by the coefficient of viscosity, p. Hence, for a linear viscous solid we have: 

£ii = ~~ K1 + v) ~ v t>ij} (2.2.5) 
A4 

where the assumption of isotropy and homogeneity has been maintained. 

The linear viscoelastic model consists of a combination of the above linear and 

viscous models. T w o possible formulations exist, the Maxwel l model and the K e l v i n 

model. The Maxwel l model assumes that the strain for a viscoelastic body is given by 

the sum of the strains arising from the elastic and viscous models. The K e l v i n model, 

however, assumes that the stress for a viscoelastic body is given by the sum of the 

stresses arising from these models. As pointed out by Turcotte [9, p.70], the usual 

approach, at least in the geophysical context, is to deal wi th the problem using the 

Maxwel l model. 
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We therefore assume that the rate of strain, e^, is given by 

hence, using equations (2.2.4) and (2.2.5) we have: 

£ij = (1 + z/) (7,;, U. 

E 
&kk Pkk 

~E /T (2.2.6) 

As w i l l be seen shortly, for our purposes it wi l l be of use to have a form of the constitu

tive equations where summation from only 1 to 2 and not to 3 is implied over repeated 

suffices. Inverting equation (2.2.6) wi th this in mind we have: 

<7„ + 
o~ij _ E 

T (1 + 1/ ^ + (1 - ") 
- kk^ij 

where 

T _ E 

[2.2.7) 

(2.2.8) 

is known as the relaxation constant. 

2.3 T h i n Elas t ic Plates 

Vinson [ l l ] derives an equation for the deflection of a thin elastic plate. We shall follow 

along the same lines using the constitutive equations for a viscoelastic solid in place 

of those for an elastic solid, hence deriving an equation governing the deflection of 

a thin viscoelastic. plate. Consider a thin, rectangular, isotropic plate with horizontal 

dimensions x\, x\ and thickness h. We assume that the conditions h -C x\ and h <C x% 

define a thin plate. We now position a set of Cartesian axes at the centroid of the plate 

as shown in Figure 2.2 so that the mid-plane of the plate is the plane x3 = 0. 

Consider a cuboid element of the plate extending through the plate thickness as 

shown. We assume that on the application of a transverse load this element remains 
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C U B O I D 

E L E M E N T 

M I D - P L A N E 

Figure 2.2: T h i n plate deformation 

normal to the deformed mid-plane, i n other words, it undergoes at most a translation 

and rotation wi th respect to the co-ordinate system. The element therefore remains 

straight upon load application. This means that sides of the cuboid init ia l ly ly ing in 

the X ] and x 2 -directions remain perpendicular to sides ly ing in the x 3 -direct ion after 

deformation. Hunter [6, p . I l l ] interprets the strains etJ (i ^ j) as representing a 

measure of the deviation from perpendicularity, after deformation, of sides init ia l ly 

pointing i n the i and j-direct ions. Since in the current problem sides in the X j and 

x 2 -directions remain perpendicular to sides in the x 3 -direct ion, we may deduce that 

e 1 3 — £ 2 3 = 0-

We also assume that an applied transverse load results in plate bending but does 

not lead to compression or tension in the plate thickness direction. This is in contrast 

to the behaviour of a sponge where a transverse load is absorbed by compression in 

the thickness direction and not by bending. A g a i n referring to Hunter [6, p . I l l ] , we 

see that the strains £,-j (i — j) may be interpreted as representing some measure of 
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the elongation or compression of an element in the z-direction. Since in the current 

application there is no elongation or compression in the ^ - d i r e c t i o n we therefore deduce 

that e 3 3 = 0. Equat ion (2.2.3) then implies that u3 (the displacement in the x3-

direction) is independent of x3. 

Hence, the admissible form of the subsequent displacement field for a thin elastic 

plate is: 

ux = u1(x1,x2,x3,t) = u<t(x1,x2,t) + x3a1(x1,x2,t) 

u2 = u2(x1,x2,x3,t) = u°2(x1,x2,t) + x3a2(xux2,t) > (2.3.1) 

u3 = u3(x1,x2,f) 

where u°(xi,x2,t) — u , ( x i , x 2 , 0, t) for i = l , 2 and a1(xi,x2,t) represent rotations to be 

defined later. 

From here we shall adopt modified forms of the suffix notation and summation 

convention which have been used to this point. We shall assume that al l suffices run 

only from 1 to 2 and not to 3. A n y variable wi th a suffix 3 wi l l be writ ten explicitly. 

We now derive expressions for the net moments and forces acting on an element 

across the plate thickness. The moments, per unit area about the mid-plane are 

given by: 

= cr%jX3 

Integrating these across the plate thickness we have: 
h 

Mij — J\ azjx3 dx3 (2.3.2) 

The transverse shears, ql, in the x 3 -direct ion are given by: 

and so integrating over the plate thickness we have: 
h 

Q% = f\ al3 dx3 (2.3.3) 
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We now derive an integrated form of the equil ibrium equations (2.2.1). Mu l t i p ly ing 

(2.2.1) by x3 and integrating over the plate thickness we have 

0 - ^ 2 : 3 dx3 + / c r l 3 ,3X 3 dx3 = 0 

Mijtj + Ol3X3 
o%3 dx3 = 0 

=*> Mijj - Q, .= 0 (2.3.4) 

assuming there are no shear stresses acting on the surface of the plate. Integrating 

(2.2.1) for t = 3 we have 

2 12 

h o3h] dx3 + I 0-33,3 dx3 = 0 

Qj,i + o-33 

=4- Qj,j +p = 0 (2.3.5) 

where 

p = p(x1,x2,t) = o-33 

represents the net force per unit area acting normal to, the plate surface. Combining 

equations (2.3.4) and (2.3.5) we have 

Mijjti + p = 0 (2.3.6) 

We now relate the moments Ml3 to the vertical displacement of the plate. Combining 

equations (2.2.3) and (2.2.7) we have 
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where the zero subscript has been dropped from E and r . M u l t i p l y i n g through by x 3 , 

integrating and making use of (2.3.1) we have: 

h 

2 

2=3 

E 
[l + u) 

/ • 0 , - 0 \ , V • 0 r 

+ 
E 

(1 + 

1 
-[Ct 

.2 ( 1 - ^ ) 

We now relate the rotations a%(xi,x2,t) to the vertical deflection u3(x1,x2,t) which 

from here wi l l be denoted by w = w(x1, x2,t). Equations (2.2.3) and the assumption 

that e 1 3 = e23 = 0 imply: 

a h l ) X3 + 2 c 

dx-. 

dx-- (2.3.7) 

£23 = - ' 

dxi 
dw 

0 =±> 

0 

d w 

a, 

9xi 

dw 
dx2J dx2 

Notice we have dropped the comma notation for derivatives and wi l l continue to do so 

for the remainder of this discussion. Equat ion (2.3.7) may now be writ ten 

Mi. -D 1 - V 
d2w d2w 
dxjdx., + v dxf.dxk

 ZJ (2.3.8) 

where D , the flexural r igidity of the plate, is given by 

D = E h 3 

12(1 - v2) 

Equations (2.3.6) and (2.3.8) represent a closed system of equations for the vertical 

deflection w, in terms of the applied transverse load p. E l imina t ing Ml3 from these 

equations we have 

dx\ I 
D 

d2w | d2w 
dx2\ 

+ 2 
dxidx2 

D(l -
d2 

w 
dx-t dx* 
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dx\ 

d2w d2w 

.dx\ dx\ 

which may be written 

p
 , • 

= - +P 
T 

V 

where 

and 

V2{D(V2w)) - (1 - u)0\D,w) = -+p 
T 

(2.3.9) 

04(D,w) = 
d2Dd: 

w 

dx\ dx\ 

d2D d2w d2D d2w + 
dx\ dx\ dx1dx2 dxidx2 dx\ dx\ 

Recal l that we have assumed the plate to be homogeneous so that E and v are constant. 

If we further make the assumption that the plate thickness is uniform we may deduce 

that D is independent of position (although it may still maintain some time dependence 

if h changes with time) and so we have: 

D V 4 P w — hp 
r 

(2.3.10) 

wnere 

V \ i ; = V2(V2w) 

Inverting equations (2.2.4) and using the resulting equations in place of (2.2.7) in 

the above derivation leads to an equation relating the vertical deflection of an elastic, 

rather than viscoelastic, plate to transverse loading. Vinson [11, p.16] shows that the 

equation thus obtained is 

DV4w=p (2.3.11) 

instead of (2.3.10). 
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u Surface Rock Pa Pc 

w 

h. Mantle 
•m 

B 
F l u i d Mant le A Pm 

Figure 2.3: Hydrostatic Restoring Force 

2.4 T r a n s v e r s e L o a d i n g 

When considering the deflection of a lithospheric plate due to a transverse load, p, we 

must take into account the hydrostatic forces which result from such deflections. If 

a lithospheric plate having an overlying layer of sediment is deflected downward, the 

sediment which is usually less dense than the mantle, wi l l infill the cavity thus formed, 

resulting in a net hydrostatic restoring force. Following Turcotte & Schubert [10, p.121] 

we consider the case shown in figure 2.3 where the continental lithosphere of density pm 

and thickness hm rides on the fluid mantle, also of density pm. Overlying the lithosphere 

is a layer of sediment of thickness hc and density pc. A n applied transverse load pa 

causes a deflection w in the lithospheric plate. We shall now calculate the hydrostatic 

restoring force and hence the net transverse load. The pressure acting at the point A 

in Figure 2.3 below the deflected plate is given by 
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whereas the pressure at the point B under an undisturbed portion of the plate is given 

by: 

p c g h c + p m g ( h m + w) (2.4.2) 

Subtracting (2.4.2) from (2.4.1) we have the hydrostatic force acting on the deflected 

plate: 

(Pc - Pm)gw (2.4.3) 

Hence, the net transverse load is given by 

P = p a + {pc - p m ) g W = p a - JW (2.4.4) 

where 7 = ( p m — p c ) g . Hence, the governing equation for deflection of a viscoelastic 

plate under an applied load p a may now be written: 

DVAw + 7 ^ - + iu) = — +pa (2.4.5) 

and for an elastic plate we have: 

DV4w + j w = p a (2.4.6) 

From hereon, the subscript 'a ' on the loading, p , wi l l be dropped so that p w i l l be 

understood to mean the applied load. 

2.5 N o n d i m e n s i o n a l i z a t i o n 

For the purposes of numerical computation we.wil l now express equations (2.4.5) and 

(2.4.6) in nondimensional form. As our solution domains wi l l be square, we scale all 

lengths by a factor L . A l l times wi l l be scaled by a factor T. Using primes to denote 

nondimensional parameters, we have: 

w = w'L, p = p'/L, D = D'L2 
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7 = 7'/L 2 , T — T'T 

d I d d I d d i d 

dx! Ldx\\ dx2 Ldx'2' dt T dt' 

Hence, equation (2.2.5) becomes 

Cancel l ing the common factor 1/LT from each of the terms and dropping the primes 

we have: 

7 4 - . , (w , -'\ P DX7qw + 7 ^ - +wj= - + p (2.5.1) 

where now, all variables and parameters are nondimensionalized wi th respect to a length 

scale L and a time scale T . Similarly, equation (2.4.6) remains essentially unaltered in 

nondimensional form. 

2.6 B o u n d a r y and In i t i a l Condi t ions 

Consider a solution domain Q, wi th boundary d£l. Following Nunn & Sleep [7, p.597] 

we assume the plate to be simply supported at the edges so that there is zero deflection 

and zero curvature at the boundary, <9fi. Hence, 

.w = 0, V2u> = 0 on dn ' (2.6.1) 

For the time-dependent (viscoelastic) problem, we also need some ini t ia l condition. 

A n y condition consistent wi th (2.6.1) at t = 0 wi l l suffice. In cases where the exact 

solution, we, is known we wi l l take: 

w = we{t = 0) on Q, (2.6.2) 

as our in i t ia l condition where it is assumed that we satisfies (2.6.1). In cases where the 

exact solution is not known, we follow Nunn & Sleep [7, p.630] in assuming that the 
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deflection is ini t ia l ly zero so we have: 

w(t = 0) = 0 on n (2.6.3) 

A t this point we shall draw attention to an alternative formulation of (2.6.1) which 

w i l l be of use to us later. A s the boundary conditions (2.6.1) are assumed to hold for 

al l time they may be wri t ten equivalently as: 

w = 0, V2w = 0, on dft (2.6.4) 

Note that while the b.c.'s do not depend on time, the forcing function does. In the 

following chapter we shall consider possible solution methods for equations (2.4.5) and 

(2.4.6) wi th the above boundary and in i t ia l conditions. 

2.7 Reformulation of the governing equations 

Part icular analytic solutions are readily available for certain choices of the forcing 

function. Examples of these wi l l be encountered later where an analytic solution wi l l 

be used to assess the accuracy of a numerical solution. Nunn & Sleep [7] provide an 

in-depth discussion of the solution for periodic loading using the elastic and viscoelastic 

models. 

The current aim however, is to provide a means for solving the elastic or viscoelastic 

problem numerically in as efficient a manner as possible. We propose to solve the 

equations using finite difference discretizations, however, as both problems have 4th 

order derivatives in space, we are presented wi th several computational difficulties if 

they are left in their current formulation. We wi l l alleviate some of the difficulties by 

re-writing each equation as a pair of coupled, second order, p.d.e.'s as follows. Equat ion 
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(2.4.5) for the viscoelastic problem becomes: 

DV2v + 7 ^ — + uj = - + p 

V2u = v 

u = w 

(2.7.1) 

wi th boundary conditions: 

u = 0, v = 0 on dft (2.7.2) 

and ini t ia l condition: 

w(t = 0) = 0 on 9, (2.7.3) 

assuming the exact solution is unknown. Equat ion (2.4.6) for the elastic problem may 

(2.7.4) 

be written: 

D V 2 u + jw = p 

V2u> = v 

with boundary conditions: 

w = 0, v = 0 on dn (2.7.5) 

Notice that the boundary and ini t ia l conditions arise from a reformulation of those 

presented in section 2.6. 

It is clear that the elastic, rather than viscoelastic, problem is the easier of the two 

to solve. The solution of the elastic problem requires an efficient solver for coupled 

elliptic p.d.e.'s of the form: 

£ 1(u 1,« 2) = / 1 

C2(u\u2) = 0 

where 

u1 = u2 = 0 on dn (2.7.7) 

Later it wi l l be seen that having chosen a discretization for the time derivative, the 

viscoelastic problem may, in part, be written in the same form. So, once an efficient 

on n (2.7.6) 
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solver has been developed for the elastic problem, it may also be used to solve part of 

the viscoelastic problem which, on the grounds of efficiency and modularity, is desirable. 



C h a p t e r 3 

T h e M u l t i g r i d M e t h o d 

3.1 The basic method 

Consider the solution of 

Cu = f on ft (3.1.1) 

where C is an elliptic differential operator, and 

u — 0 on dtt (3.1.2) 

Define a grid £7^ on which a discrete approximation to u is to be computed. Then, u^, 

the exact solution of the discrete ^problem, satisfies: 

where C]x is a. discretization of the differential operator C. and fh is a discrete approx

imation to / . The discrete problem (3.1.3) may be regarded as a large sparse system 

of equations for the solution values at grid points. Direct methods tend not to be 

efficient solvers for such problems owing to fill-in during the decomposition stage. This 

fill-in is part icularly taxing as regards storage ^requirements. More efficient methods, 

in terms of storage, may be found amongst simple iterative schemes such as Gauss-

Seidel. However, the asymptotic convergence of such methods tends to be slow and 

• Chuh = fh on Q (3.1.3) 

and 

Uh = 0 on dn 

25 
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for very large systems such methods are extremely slow and therefore expensive. The 

mul t igr id method, about to be described, proves to be a fast, efficient solver for such 

a system. The mult igrid method can be viewed as a defect-correction method. Given 

an approximation Uh to Uh, the solution of (3.1.3), we define a defect, d^, by 

dh = h- £hUh (3.1.5) 

and a correction Vh satisfying: 

Ch{Uh + vh) = dh + ChUh (3.1.6) 

which, in the case of a linear operator Ch, reduces to 

Chvh = dh (3.1.7) 

where 

vh = 0 on dfl (3.1.8) 

Hence, our original problem (3.1.3) can be writ ten in terms of a defect, dh. and a 

correction, Vh- Having computed dh and solved exactly for Vh, our corrected solution 

becomes 

uh:=Ui + vh (3.1.9) 

so that uh now satisfies (3.1.3) exactly. As things are right now, we stand to gain 

nothing from our reformulation of the problem in terms of :a defect-correction scheme 

since solving (3.1.6) or (3.1.7) does not appear easier than solving (3.1.3). However, 

as yet we have not introduced the idea of mult igridding. In the mult igr id method, we 

propose to construct a hierarchy of successively coarser grids on which the defect for 

the problem on the previous finer grid may be represented. For simplicity, in this ini t ia l 

discussion we shall confine ourselves to only two grids, a fine grid 0^ and a coarse one 

£7H, where, for example, H = 2h and C fit,,. 
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Figure 3.4: The mult igr id two-level cycle 

W i t h a coarser grid defined, it is proposed to solve (3 .1.6) on this coarser grid rather 

than the finer one as this w i l l , of course, be computationally cheaper. However, the 

solution on QH cannot compensate for the high frequencyicomponents of the error which 

can be seen only on the fine grid. Hence, in order to achieve an approximate solution 

on the fine grid, the coarse grid correction or G G C is complemented by relaxation 

iterations on the fine grid. The elements of a mul t igr id two-level cycle are presented in 

Figure 3.4 where it has been assumed that is a linear operator. A s can be seen, 

the method consists of four main elements: 

1. - Relax": generally consists of v sweeps of a simple iterative method such as Gauss-

Seidel which serves to update the solution and to smooth out high frequency 

components of the error in the solution. It is applied before and after the coarse 

grid correction. 

2. Restrict: computes the defect on the finer grid and transfers it to the coarse grid 

using an appropriate restriction operator 1^. 

3. Solve: an exact, solver for the correction on the coarsest grid. 

http://C-h.Uk
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4. Prolongate: transfers the correction from the coarse grid to the fine grid using an 

appropriate prolongation operator 

The essential philosophy behind this two-grid method is that a simple relaxation scheme 

such as Gauss-Seidel can be a very efficient smoother even though it is slow to converge 

as a stand-alone iterative method. 

Before considering these components in more detail we must decide on a grid coars

ening process. We wi l l restrict ourselves to square domains on which we have a uniform 

grid. Assuming that the finest grid contains an odd number of grid points in each di

rection then a coarser grid can be defined by doubling the grid spacing in each direction 

so that al l points on the coarse grid are common to the fine grid and the grid remains 

uniform. Many other grid coarsening processes exist but the one described above is 

the easiest, to implement and wil l suit our purposes adequately. W i t h this assumed, we 

wi l l now consider the main components of the mul t igr id cycle in more detail. 

3.1.1 Relaxation 

The purpose of the relaxation routine is to smooth out high frequency components of 

the error: 

eh = Uh-uh (3.1.10) 

The generation of other error components is also undesirable and so the relaxation 

method, in itself, should be a convergent iterative scheme. We first describe some 

popular iterative schemes and their convergence properties. For ease of notation we 

define: 

A = Ck, x = uh, b= fh 

so we are interested in solving the system Ax — b. Let A be an approximation to A 

such that B = A~x is easily computed. We may now write an iterative scheme for 
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solving the given system as follows: 

n O + i ) : = (I - BA)xW + Bb (3.1.11; 

The matr ix M := I — BA is called the amplification matr ix. The methods we are about 

to describe are determined by the choice of A. We begin by considering a split t ing of 

the matr ix A into three components: 

A = D — E (3.1.12) 

where D is diagonal, —E is strictly lower triangular and —F is strictly upper triangular. 

T w o of the most common iterative schemes of this type are: 

1. The Jacobi Method where we choose A = D. We then have M = D'1(E + F) so 

that pointwise the iteration may b.e written: 

.(j'+i) 1 

Q>kk 
X] akl-

Si) 
1=1 
i^k 

(3.1.13) 

2. The Gauss-Seidel Method where we choose A 

and the pointwise iteration may be written: 

D - E so that M = (D- E)~lF 

1 

o-kk 
Yl a k i x i 
i<k 

(j+i) 

l>k 

3) (3.1.141 

B o t h the Jacobi and Gauss-Seidel iterations can be shown to converge provided the 

matr ix A is strictly diagonally dominant. Gauss-Seidel, however, generally provides 

faster convergence than Jacobi. We now consider, the smoothing properties of these 

iterations but first let us consider why this should be of concern to us at a l l . 

The restriction operator, iff, may be viewed as an rnxn matr ix wi th m < n. The 

kernel of this matr ix, ker(l jf) , is therefore non-tr ivial . Hence, if dn •= iff dh represents 
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the defect on the coarse grid, it is possible that a non-zero defect on the fine grid could 

give rise to a zero defect, djj, on the coarse grid. This has disastrous consequences 

when solving the equation Cjjvjj = dn since if djj — 0 then VJJ = 0 and the iteration 

wi l l converge to the wrong solution. It is therefore extremely important to determine 

those dh E ker(J^f) and find a suitable means of dealing wi th them. A s observed 

by Wesseling [13, p.42] and as w i l l be seen here shortly, the restriction operator is a 

weighted average wi th positive weights, and so any dh (E k e r ( i ^ ) must have frequent 

sign changes and therefore be highly oscillatory. Notice that the error, := Uh — u^., 

satisfies the relation: 

Cheh = dh (3.1.15) 

Since C-h arises from the discretization of a differential operator, it does not, as noted by 

Wesseling [13, p.46], have a smoothing effect on ê ,. Hence, high frequency components 

of the error, e^, w i l l give rise to high frequency components of dh which as we have seen 

are undesirable. We therefore require some means of smoothing out high frequency 

components of eh-

It can be shown that Gauss-Seidel iteration acts as an effective smoother for high 

frequency components of the error whereas the Jacobi method is not as effective in this 

capacity. However, it should be rioted that variations of Jacobi, i.e. damped Jacobi, can 

be used as effective smoothers wi th an appropriate choice of the damping coefficient. 

The interested reader is referred to Hackbusch [5] for further discussion. Hackbusch also 

describes other possibilities which exist for performing the smoothing iteration such 

as Incomplete L U decomposition, Successive-Over-Relaxation, Al ternat ing Direction 

Implicit and Conjugate Gradient but we wi l l not discuss these methods here as Gauss-

Seidel wi l l prove to be adequate for our needs. 
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3.1.2 R e s t r i c t i o n 

The restriction procedure serves to transfer the defect from the fine to the coarser grid. 

The two most popular methods are: 

1. Straight Injection where the defect is injected through to the coarser grid at points 

common to both grids. 

2. Full Weighting where a weighted average of defects at points neighbouring those 

common to both grids is transferred to the coarse grid. In stencil form this 

method may be written: 

(3.1.16) 

In most circumstances, full weighting proves to be the better choice of the two 

since it uses information from all points on the fine grid rather than just those points 

common to both grids. 

3.1.3 P ro longa t ion 

The purpose of the prolongation routine is to transfer the correction from the coarse 

grid to the finer one. This may be achieved by injecting the corrections up to the finer 

grid at points common to both grids and then performing a bilinear interpolation. So, 

in stencil form we have: 

(3.1.17) 

Higher order interpolation may of course be carried out but, for our purposes, bilinear 

interpolation wi l l be sufficient. 
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3.1.4 T h e Coarse G r i d Opera to r 

Fina l ly we must define the coarse grid operator CH- There are two methods available 

to us for achieving this. 

1. We may use the same discretization of the differential operator on the coarse grid 

as was used on the fine grid. So for example, if a 5-point scheme was used to 

discretize a Laplacian operator on the fine .grid, then the same 5-point scheme 

could be used on the coarse grid to define CH-

2. The Gale rk in method defines the coarse grid operator in terms of the fine grid 

operator and the prolongation and restriction operators as follows: 

CH •= I K C J H • (3.1.18) 

The first method is the most popular for use with finite difference discretizations 

owing to its shear simplicity. However, for finite element methods the second method 

is the natural choice. It should also be noted that in 2 dimensions, (3.1.18) gives rise 

to a 9-point stencil even if Ch is only a 5-point stencil. We shall be dealing only wi th 

finite differences and so the first of these options wi l l be employed. 

3.2 Bas ic M u l t i g r i d A l g o r i t h m s 

Extending the concept of the two-grid method outlined in section 3.1, we may now 

define a hierarchy of grids such that grid spacing on each coarser grid is double that of 

the preceding one. If our finest grid is square and contains 2 n — 1 interior grid points 

in each direction then we could continue coarsening the grids unti l the coarsest grid 

contains only 1 interior grid point provided that the correct physical problem is st i l l 

represented on the coarsest grid. We assume this to be the case so that the exact 
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solution of the discrete problem on the coarsest grid is easily obtained by one sweep 

of Gauss-Seidel. Even though this is generally considered to be an iterative method, 

when used in this capacity wi th only one grid point where the solution is unknown, it 

in fact acts as an exact solver for the discrete problem. Should the coarsest grid contain 

more than one interior grid point, we simply postulate the existence of an efficient exact 

solver for the problem on that grid. Assuming the'hierarchy of grids consists of p levels, 

I = p being the finest and / = 1 the coarsest, we have defects di, corrections vi and 

operators for each level. W i t h this notation we may now define a basic mul t igr id 

algorithm, L M G , for the problem Cpup = fp as-follows: 

Algorithm 3.1 (LMG) 

Procedure L M G ( / ,7 , ui, u2)\ 

Begin 

if / = 1 then S O L V E ^ U i = ê ) 

else 

begin 

for i:= 1 to ux R E L A X ( £ ^ = d\); 

RESTRICT; {d^x <- j / - 1 ( d j - £ / U j ) } 

for j : = 1 to 7 

L M G ( / - 1, 7, uz, u2)\ 

PROLONGATE; {vt <- vt + I ^ v i ^ } 

for i : = l to u2 R E L A X ( £ ; u , = di); 

end; 

End ; 

Notice that the recursive call to L M G is made 7 times at each of the coarser levels. 

Usually, on the grounds of efficiency, 7 takes on only the values 1 or 2. The case 7 = 1 
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is known as the V(u1}u2) cycle while 7 = 2 is known as the W(ui,u2) cycle where vx 

and v2 are the number of pre and post C G C relaxations. 

A n alternative approach is to begin not on the finest level as in L M G but on the 

coarsest level. This method is commonly known as full mult igr id or F M G . Having 

obtained an approximation to the solution on the coarsest level this solution is inter

polated, using a high order interpolation / /_! , to the next finer level. L M G is then 

applied at this level after which the solution is interpolated to the next finest level and 

so on. Hence, our F M G algorithm may be written: 

A l g o r i t h m 3.2 ( F M G ) 

Procedure F M G ( / , 7, vx, u2); 

Begin 

S O L V E ( £ 1 u 1 = / a ) ; 

for I := 2 to p do 

begin 

I N T E R P O L A T E ; {ut <— f j ^ u ^ j } 

L M G ( / , 7, uu u2); 

end; 

End ; 

Final ly , it should be noted that for nonlinear operators, (3.1.6) may have to be used 

in place of (3.1.7) thus requiring that the solution-as. .well as the defect be transfered 

to each coarser level. This method is known -as the full approximation scheme or 

F A S . However, we shall be dealing exclusively w i t h linear operators and therefore the. 

nonlinear case wi l l not be considered further. 
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3.3 M u l t i g r i d for coupled equations 

We now consider the application of the mult igrid method outlined above to the following 

problem. 

£V.«2) = / 1 (3- 3 - 1 ) 

£2(u\u2) = 0 (3.3.2) 

u1 = u2 = 0 on dQ (3.3.3) 

Recall that both the elastic and, i n part, the viscoelastic problem may be wri t ten in 

this form. Discretizing these equations we may define a defect for each in the following 

way. O n the finest level we set d\ = f\ and d2

h = 0 so that 

d\-.= dl-C\(ulu2

h) (3.3.4) 

d2

h:=d2

h-C2

h(ulu2

h) (3.3.5) 

and a coupled system of equations for the corrections on n^ is also obtained as follows: 

4 ( « ) = 4 (3-3.6) 

C l ( v l v 2

h ) = dl (3.3.7) 

where 

vl = v2
h = 0 on dnh (3.3.8) 

The transfer of defects and corrections between coarse and fine grids remains standard 

since in our case the system (3.3.1) to (3.3.2) is only weakly coupled. However, the 

relaxation component requires some thought. A s we have a coupled system of equations 

there is some room for manoeuvre in this area. Basically we have to choose from the 

following: 

• Sequential Smoothing 
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• Collective Smoothing 

We now consider each of these in more detail. 

Sequential smoothing is performed by successively smoothing one component of the 

solution while keeping the other fixed and then reversing the roles. So, in consideration 

of (3.3.6) and (3.3.7) for example, at each grid point we might first update vx using 

(3.3.6) while keeping v2 fixed and then update v2 using (3.3.7) keeping Vj fixed. A n 

alternative strategy is to update one component over the entire domain using (3.3.6) 

while keeping the other fixed and then reverse the roles using (3.3.7) in place of (3.3.6). 

We should expect these methods to work well when the variables v1 and v2 are not 

strongly coupled. A t any grid point equations (3.3.6) and (3.3.7) may be written: 

A 
V i \ C j 

\c2 ) 
(3.3.9) 

\ v2 

where the 2x2 matr ix A and the right hand side ( c 1 , c 2 ) T are particular to the chosen 

discretization. If the matr ix A is strongly diagonally dominant then we may deduce 

that the variables v\ and v2 are not strongly coupled and that sequential smoothing 

may be considered for the relaxation procedure. 

Collective smoothing is performed by solving the above 2x2 system directly at each 

grid point so that the two variables are updated simultaneously. Computat ional ly 

this is more expensive than sequential smoothing but in cases where the variables are 

strongly coupled in one or other of the equations, this method is a necessary alternative 

to sequential smoothing. In our case, the added expense in using this method is almost 

negligible as we have only a 2x2 system and being a direct solver, it is more accurate 

than sequential smoothing which provides only an approximate solution. 
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3.4 Multigrid for time-dependent problems 

Consider the time-dependent problem 

Cu(t) = f(t) on ft (3.4.1) 

wi th the time-independent boundary condition: 

u = 0 on dn (3.4.2) 

Assuming a uniform discretization in time wi th time-step At, the discrete problem at 

the (n + l ) s t time step may be written: 

^W + 1 = A n + 1 on nh (3.4.3) 

where 

< + 1 = 0 on dtth (3.4.4) 

A t each time step we may consider using L M G to solve the problem for u^. A t the 

first t ime step we take u°h = 0 on the entire domain as an in i t ia l guess to the solution. 

Clear ly at each successive time step it would be pointless to use zero as an ini t ia l guess 

since un can be considered to be a better approximation to u n + 1 than zero. If the time 

step is small enough, these approximations may be good enough to allow us to use only 

one L M G iteration per t ime step while st i l l maintaining reasonable accuracy. 

A n alternative to L M G is the F M G algorithm. Gendler [4] (following Brandt) and 

Hackbusch [5, p.272] suggest modified F M G F A S algorithms for dealing wi th time de

pendent problems. Hackbusch [5, p.273] also presents criteria under which the proposed 

algori thm wi l l converge. In our case, the F A S component is not required since we are 

dealing with a linear problem, however, the procedure outlined below follows the same 

philosophy. 
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A g a i n the question uppermost in our minds is how information from the previous 

time step can best be used as an in i t ia l guess for the current time step. Consider the 

following: 

1. Inject the solution un down to every level. 

2. Solve exactly on the coarsest level to obtain u n + 1 

3. Perform a high order interpolation of the correction, u n + 1 — un, to this solution 

and add it to the solution on the next finest level. 

4. Perform one L M G cycle to obtain un+1. 

5. Repeat 3. and 4. unti l arriving at the finest level. 

Hence, at each time step, the problem may be viewed in terms of obtaining a 

correction at each level to the solution from the previous time step. This prompts us 

to define the following algorithm: 

A l g o r i t h m 3.3 ( M F M G ) 

Procedure M F M G ( / , 7 , U2); 

Begin 

for / :=p - 1 to 1 do 

u n I N J « + 1 ) ; 

R E L A X ( £ 1 U 1 = / i ) ; u f + 1 ] 

for / := 2 to p do 

begin 

u n+l ;= u? + INT(u n + l 
7-1 
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L M G ( / , 7, uu u2); {-> 

end; 

End ; 

where INJ represents the straight injection operator and INT is a high order interpo

lation. This algorithm involves more work than the L M G algori thm but only on the 

coarser grids so the cost is not significantly higher. It is obviously hoped that the 

additional expense results in a more accurate solution - this is yet to be established. 

In the M F M G algorithm we are making the assumption that the 0(2h)2 discretiza

t ion error arising from our approximation to u n + 1 on the next to finest level is a better 

ini t ia l guess to u n + 1 than the 0(h)2 approximation to un obtained at the previous time 

step. It is not clear why this should be the case. In the l imit as At —> 0 we can 

be certain that L M G should provide the more accurate solution since in this case the 

O ( A i ) error becomes insignificant in comparison to the 0(2h)2 error. A n estimate of 

the 0(2/i)2 discretization error would therefore be of use. The discretization errors, 8^-

and Sfj1, at each grid point on the finest and next-to-finest levels respectively, are 

given by 

% := - ui: ^ ClJh2 (3.4.5) 

6}} ':= u% - U i j ~ ClJ(2h)2 (3.4.6) 

Together these equations lead to the following: 
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We wi l l use an r.m.s. representation of so that the discretization error on the next-

to-finest level is approximated by: 

^ = = ^ ( E ( < - < ) 2 ] ( 3- 4- 9) 

Notice that such an approximation is easily obtained using the M F M G algori thm where 

the solution (not just a correction to the solution) is computed at every level. In test 

cases where the exact solution is known, we can compare the exact r.m.s. change in 

the solution from one time step to the next to the discretization error, 82h, on the 

next-to-finest level. In cases where the discretization error is larger than the change in 

the solution we expect L M G to provide a better solution than M F M G , in Chapter 5 

we wi l l show this to be the case., 



C h a p t e r 4 

The Elas t ic P r o b l e m 

4.1 A n a l y t i c Solu t ion 

First let us recall the governing equation wi th its boundary conditions: 

D V w + jw = p (4.1.1) 

where 

w ~ V"tt> = 0 on dfl (4.1.2) 

In this section we shall seek an analytic solution to which we may later compare our 

numerical results. 

First we must choose a forcing function, p. Consider the case of periodic loading 

on a square domain where two adjacent sides of the domain lie along a set of Cartesian 

axes x and y. Assume we have a periodic topography with wavelength \ x in the re

direction and Xy in the y-direction, so that the topographic displacement, hr, at any 

point (x,y) is given by: 

where ho is the maximum topographic amplitude. Hence, if pc represents the density 

of the rock forming the surface topography we have: 

(4.1.3) 

We now assume that the plate deflection responds in such a way that: 

(4.1.5) 

41 
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where w0 is a constant to be determined. In other words, it is assumed that the plate 

deflection is also periodic wi th a period equal to that of the loading function. 

Notice that in order to satisfy the boundary conditions (4.1.2) we must insist that 

2L/XX and 2L/Xy be positive integers where L represents the length of the domain. 

Now, substi tuting (4.1.4) and (4.1.5) into (4.1.1) we obtain: 

2 - i - i 

(4.1.6) 

which represents the amplitude of the deflection. 

Whi l e the application here is obviously to topographic loading such as mountain 

ranges and valleys, equation (4.1.4) may also be seen to represent a simple model for 

the formation of sedimentary basins. This requires the assumption that A x = Xy = 2L 

so that the forcing increases towards the centre of the plate. We therefore assume that 

a basin of shape hj is formed by some process such as thermal contraction so that w 

represents the subsequent, deflection of the plate due to sedimentation. However, we 

shall proceed wi th the assumption that we are attempting to model deflection due to 

topographic loading. 

For most practical applications we wi l l be considering the case of mountain ranges 

which extend the length of the domain in the y-direction and vary periodically i n the 

x-direction so that Xy = 2L and nXx = 2L hence, Xy = nXx where n is a positive 

integer. We may therefore write (4.1.6) in the form: 

w0 
ho 

2 T T \ 4 D \ ( 1 y / 7 

K.) \ Pc9J V1 n2 / \pcg 
(4.1.7) 

where now the two terms in the denominator are nondimensional. Turcotte & Schubert 

[10, p.123] point out that the quantity (D/pcg)1/4 has dimensions of length and is 

proportional to the natural wavelength for flexure of the lithosphere. Let us first 

consider the case where the wavelength of the forcing function is much greater than 
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the natural wavelength so that: 

( 1 + (4.1.8) 

then we have: 
Peg h{ •0 

(4.1.9) 
7 

where wl represents the amplitude of deflection resulting from an isostatic adjustment 

of the lithosphere to the loading. In other words, the lithosphere may be considered to 

have no rigidity and to be in hydrostatic equil ibrium. Alternatively, if the wavelength 

of the forcing is much less than the natural wavelength, we have: 

and the deflection of the lithosphere is negligible. In other words, the r igidity of the 

plate totally supports the load. 

The above discussion is crucial to the understanding of future numerical results. 

In cases where the plate's r igidity is of importance, the biharmonic operator plays a 

heavy role in the governing equation and we may therefore consider the problem to 

be tougher to solve. At the opposite end of the spectrum, in cases where the plate's 

rigidity is not significant, we have the equivalent of a small parameter mul t ip lying the 

highest derivative in the equation. This yields a singularly perturbed problem which, 

although a very simple one, could again give rise to difficulties in obtaining a numerical 

solution. A s we proceed, we shall therefore bear in mind that some difficulty may 

be encountered in these extreme cases. Turcotte &i Schubert [10, p.123] examine the 

degree to which a load is compensated by the plate's flexural rigidity. In a similar vein, 

so that: 

< h0 
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Figure 4.5: Degree of support as a function of nondimensional topographic wavelength 

we wi l l compute the degree to which the plate's rigidity supports the load as this wi l l 

provide us wi th some measure of the importance of the biharmonic operator in the 

solution of the equation. Let R = (u>, — w0)/w.i so that for iy0 — 0, R. ~ 1 and we have 

the case where the plate's rigidity totally supports the load, the effects of buoyancy 

are low and the biharmonic operator plays an important role in the solution of the 

governing equation. However, for w0 — to,-, R — 0 and we have the case where the 

plate's rigidity is ineffective against the loading, the effects of buoyancy are significant 

and the biharmonic operator does not play an important role in the solution of the 

governing equation. Substi tuting for WQ and w, we have: 

(4.1.11) 

Figure 4.5 represents the degree of support, R, as a function of nondimensional 

http://Cha.pt
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L(m) D (Nm) 

I 1 x 10 2 1 1 x 10 2 3 1 x 10 2 5 

2.5 x 10 5 11.3 92.7 99.9 
5.0 x 10 5 0.8 44.3 98.8 
1.0 x IO 6 0.05 4.7 83.2 

L = Length of Plate 
D = Flexura l Rigidi ty 

Table I: Degree of support (Elastic Model) 

topographic wavelength. Hence, for a 50% support of the loading by the plate's r igidity 

we have: 

= 2 * 1 - 1 (4.1.121 
1 + rt2 j \ 7 

We may also express R as a function of the plate length, L, as follows 

- l 

R = 
r VD/ V l 

1 

n ' 
(4.1.13) 

Table I gives appropriate values of R for various values of D and L where a value 

of n — 2 has been assumed. The range of values of D covers most of those found in 

the literature for geophysical applications. The range of values of L covers everything 

from sedimentary basins to continental plates. The degree of support depends directly 

on n , hence, for a given length, L, and rigidity, D, larger values of n correspond to 

greater support. Following Turcotte & Schubert [10, p. 123], we take p m , the density of 

the mantle, to be 3300 kg m ~ 3 and p c , the density of the surface rock to be 2800 kg 

m ~ 3 . Hence, 7 has the value 4900 k g 2 m ~ 2 . 
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4.2 N u m e r i c a l S o l u t i o n 

Recall that we propose to solve the problem numerically by reducing (4.1.1) to two 

coupled equations so that at the grid point we have: 

D^Vij+'ywij =Pij (4.2.1) 

V2Wij = Vij (4.2.2) 

with boundary conditions 

to = w = 0 o n 80, (4.2.3) 

We discretize the Laplacian operator using the standard five-point formula: 

V ^ u ' t ; = —(Wij-x + wlJ+1 + wz_ltj + wl+li3 - 4wli0) (4.2.4) 

where h represents the grid-spacing which we have assumed to be uniform over the 

entire domain. We use full weighting for restriction and bilinear interpolation for 

prolongation. Relaxat ion is carried out using Gauss-Seidel wi th red-black ordering, see 

Hackbusch [5, p.51]. We assume that the coarsest grid contains only one interior grid 

point so that one sweep of Gauss-Seidel solves the discretized problem exactly on the 

coarsest level. Final ly, we must decide on sequential or collective smoothing as outlined 

in section 3.3. Recall that our choice depends on the degree to which the variables are 

coupled in each of the equations. Having chosen an appropriate discretization of the 

Laplacian, we may now write our equations in the form (4.2.4) where the 2x2 matr ix, 

A, becomes: 

' 4/h2 - i j U \ 
(4.2.5) 

1 4 /A 2 / 

Notice that the primes have been brought back into use to stress that numerically we 

deal wi th nondimensional quantities, see section 2.5. Sequential smoothing should be 
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L ( m ) 2.5 x 10 5 5.0 x 10 5 1.0 x IO 6 5.0 x IO 6 

ijU 1.9 31.0 4.9 x 10 2 3.1 x IO 6 

L = Length of Plate 
7'/D' = Nondimensionalized j/D. 

Table II: j' / D' as a function of plate length 

effective when A is diagonally dominant, this requires that: 

h2 D' 

anc 

J ? > 1 

The second inequality is clearly satisfied for all sensible choices of h. In the worst case 

(i.e. on the coarsest level) we have 4 / / i 2 = 16. For sequential smoothing to be effective 

we therefore require j'/D' < 16. Table II indicates values of "y'/D' for various choices 

of L where D is taken to be 1 x 10 2 5 (i.e. the best choice for which we might expect 

the inequality to hold). 

It can be seen that sequential smoothing should be considered for only the smaller 

domains since the variables become strongly coupled for L > 500 km. Notice that 

smaller values of D would result in an even stronger coupling for a given L. It is there

fore clear that sequential smoothing should be avoided and hence we choose collective 

Gauss-Seidel for the relaxation procedure throughout. As was pointed out earlier, this 

does not lead to any significant additional expense since we are dealing only wi th a 

2x2 system. There is also the added benefit of obtaining an exact solution of the 2x2 

system at each grid point. 
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4.3 Numerical Results 

We now examine the performance of the suggested mult igrid procedure for various 

lengths of domain and choices of flexural rigidity. We first consider periodic loading for 

which an analytic solution is available making it possible to determine the accuracy of 

the numerical results. We shall then proceed to examine Gaussian loading for which 

an analytic result is not available. 

4.3.1 Periodic Loading 

In examining the performance of a numerical procedure there are two things to con

sider. Fi rs t , the rate of convergence of the numerical solution to the exact solution of 

the discrete problem and second, the accuracy of the numerical solution which, given 

convergence of the solution, depends on the discretization error or in other words the 

difference between the exact solutions to the discrete and continuous problems. Ide

ally, we would like to have a method which provides us wi th a good combination of 

both - clearly one is not much use without the other. As we have an analytic solution 

available, we can easily find a good measure of the accuracy of the numerical solution. 

A root mean square error, E , expressed as a percentage of the maximum displacement 

wi l l be used in this capacity so that: 

of the deflection derived from the exact solution. 

W h e n considering periodic loading where the solution may become zero at interior 

points of the domain we must be careful how we measure convergence. The easiest 

(4.3.6) 

where wl] is the numerical solution, u>,7 is the exact solution and w0 is the amplitude 
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method is to examine convergence at one particular point and take this to be represen

tative of the overall convergence. Hence, it is imperative that we choose a point where 

maximum deflection, rather than zero deflection, is expected - knowing the exact solu

tion, this wi l l be possible. We wi l l terminate the iterative procedure at the kth iterate 

when 

(k) (k-

(k) 

where the grid point is a location where max imum deflection is expected. In 

all cases TOL is chosen to be 1 x I O - 4 so that the iterative procedure is terminated 

when the solution at a point of maximum deflection has converged to wi th in one ten 

thousandth of its computed value. 

In Tables III, IV and V , we present results for various sizes of plates, flexural 

rigidities and topographic wavelengths. The number of iterations, I T N , required for 

convergence, the r.m.s. error, E , and the predicted, Rp, and exact, Re, degrees of 

support, are given in each case. The mul t igr id hierarchy of grids consists of 4 levels, the 

finest, having 15 interior grid points in each direction and the coarsest having only 1 

interior grid point. The L M G algorithm wi th V ( 2 , 2 ) cycles was employed throughout. 

Our results clearly indicate the relevance of the degree of support to the accuracy 

and convergence rate of the numerical method. We see that for small degree of support, 

the mult igr id iteration generally converges quickly to a solution which is a very good 

approximation to the exact solution. This is worthy of note since for a small degree 

of support, the nondimensionalized equations have a small parameter mul t ip ly ing the 

highest derivative i.e. the biharmonic operator. We therefore have a singularly per

turbed problem for which our mult igr id method provides a good solution. However, 

in consideration of the discretized equations we see that in the l imit as the degree of 

< TOL (4.3.7) 
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n D ITN E(%) Rp(%) Re(%) 

1 x 10 2 1 4 0.13 11.1 11.3 
2 1 x 10 2 3 5 1.09 92.6 92.7 

1 x 10 2 5 5 1.18 99.9 99.9 
1 x 10 2 1 4 3.12 57.2 59.5 

4 1 x 10 2 3 4 5.42 99.2 99.3 
1 x 10 2 5 4 5.46 99.9 99.9 

Table III: L = 2.5 x 10 5 m, Periodic Loading 

n D ITN E{%) RP(%) Re(%) 
1 x 10 2 1 5 0.01 0.8 0.8 

2 1 x 10 2 3 3 0.52 43.7 44.3 
1 x 10 2 5 5 1.16 98.7 98.8 
1 x 10 2 1 4 0.42 7.7 8.4 

4 1 x 10 2 3 4 4.87 89.3 90.2 
1 x 10 2 5 4 5.46 99.9 99.9 

Table IV: L = 5.0 x 10 5 m, Periodic Loading 

n D ITN E(%) Rp(%) Re(%) 

1 x 10 2 1 3 0.001 0.05 0.05 
2 1 x 10 2 3 3 0.04 4.7 4.7 

1 x 10 2 5 ' 5 0.98 82.9 83.2 
1 x 10 2 1 3 0.03 0.52 0.57 

4 1 x 10 2 3 4 1.87 34.3 36.5 
1 x 10 2 5 4 . 5.36 98.1 98.3 

Table V : L = 1.0 x 10 6 m, Periodic Loading 

n = 2L/XX 

D — F lexura l Rigidi ty 
ITN = Number of iterations for convergence 

E = Relative error 
Rp = Predicted degree of support 
Re = Exact degree of support 
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support tends to zero, equation (4.2.2) plays no role in the computation and equation 

(4.2.1) reduces to: 

wtj = ^ (4.3.8) 
7 

which is the solution of the reduced continuous equation representing an isostatic ad

justment of the lithosphere to the applied load. The iterative Gauss-Seidel procedure 

therefore becomes an exact solver for the problem which is further simplified by the 

fact that p = 0 on the boundaries so that there are no boundary layers. It is therefore 

no surprise that the numerical scheme deals adequately with the singularly perturbed 

problem. It should be noted that if we had not had p = 0 on the boundaries, the 

procedure would still have been good owing to the local nature of the Gauss-Seidel 

iteration. 

As the degree of support increases for a given L the procedure requires a larger 

number of iterations to converge and the accuracy of the solution is seen to decline. 

It is also observed that for a given L and D , increasing n also increases the error in 

the solution. This is likely caused by a combination of two factors. Firs t , increasing 

n increases the degree of support and therefore the importance of the biharmonic 

operator, and second, it increases the frequency of the forcing function so that it is not 

as well represented on the finest grid. 

Overal l , we can be pleased wi th the accuracy and convergence rate. Note that 5 

V ( 2 , 2 ) cycles require only 20 Gauss-Seidel iterations on the finest grid so we have a 

very efficient solver in hand. Also , the r.m.s. error in the solution is at worst 5% of the 

maximum deflection which again can be considered as reasonable. A reduction in this 

error may be achieved by decreasing the stepsize on the finest, grid. 
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L D G S - i t n M G - i t n Re{%) 

1.0 X 10 6 1 x 10 2 1 5 3 0.05 
5.0 X 10 5 1 x 1 0 2 3 58 3 44.3 
2.5 X 10 5 1 x 10 2 5 94 5 99.9 

L — Length of Plate 
D = Flexural Rigidi ty 

G S - i t n = Number of Gauss-Seidel iterations 
M G - i t n = Number of Mul t i g r i d iterations 

Re — Exact degree of support 

Table V I : Mu l t i g r i d vs. Gauss-Seidel 

4 .3.2 M u l t i g r i d v s . G a u s s - S e i d e l 

In order to appreciate the efficiency of the mult igrid solver, we compare it to straight 

Gauss-Seidel where we repeatedly call the R E L A X routine on the finest level and do not 

perform coarse grid corrections. Three cases have been tested covering an extensive 

range of values of R. In all cases we take n = 2 and maintain TOL at 1 x 10~ 4 . The 

results are presented in Table V I where GS- i tn is the number of straight Gauss-Seidel 

iterations and M G - i t n is the number of mult igr id iterations required for convergence. 

The work involved in relaxing the 4 levels of one mult igr id V ( 2 , 2) cycle is equivalent to 

approximately 5 Gauss-Seidel iterations on the finest, level - this gives us some means 

of comparing the two methods. We see that for a small degree of support where 

the biharmonic operator is not significant, straight Gauss-Seidel proves to be more 

efficient than mult igrid. However, we suspect that the degree of support does not have 

to become too large before mult igrid performs"relatively more efficiently. Mu l t i g r i d 

certainly proves to be more efficient when the degree of support is at 44% or higher. 

We can therefore claim with some confidence that in cases where the flexural r igidity 

is significant, the mult igr id method described proves to be a very efficient solver for the 

problem. 
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4.3.3 Gaussian Loading 

We now turn our attention to a loading function for which an analytic solution may 

not be obtained. Consider a Gaussian distribution for the forcing so that 

The application here is to the formation of sedimentary basins where a basin of depth 

hr is formed by thermal contraction. We therefore attempt to predict the subsequent 

deflection, w, due to the sedimentary infill of this basin. 

The parameter o is chosen so that the loading function at the edge of the domain is 

close to zero and the function hr{r) is close to continuous at r — 0.5. The parameter a 

in some sense represents the wavelength of the loading. Notice that maximum deflection 

wi l l occur at the midpoint and so again we may compute the degree of support although 

we no longer have an exact value to which we may compare it. We again expect that 

smaller wavelengths in the loading result in greater support from the plate's rigidity. We 

therefore consider two choices for a, namely 0.04 and 0.08. Bo th choices are reasonable 

from a numerical standpoint in that the function / i j ( r ) is not too eratic when seen at 

the edges of the finest grid. The results are presented in Tables V I I , VI I I and I X . 

We again observe that in some cases faster convergence is achieved when the degree 

of support is lower. It can be seen that the larger value of a yields lower degrees of 

support. This is as expected since a larger value of a results in a larger wavelength in 

the forcing which in turn results in a lower degree of support as was seen for periodic 

loading. Aga in we can be satisfied wi th the convergence rate but of course we no 

longer have any means of assessing the accuracy of the solution, however, the fact 

(4.3.9) 

where 

(x - 0.5) 2 + (y- 0.5) 2 
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a ITN D Rp{%) 
4 1 x 10 2 1 28.3 

0.04 5 1 x 1 0 2 3 85.5 
5 1 x 10 2 5 99.8 
4 1 x 10 2 1 13.3 

0.08 5 1 x I O 2 5 76.9 
5 1 x 10 2 5 99.7 

Table V I I : L = 2.5 x 10 5 m, Gaussian Loading 

a ITN D Rv(%) 
5 1 x 10 2 1 4.6 

0.04 5 1 x 10 2 3 52.7 
5 1 x 10 2 5 96.8 
5 1 x 10 2 1 1.4 

0.08 5 1 x 10 2 5 32.4 
5 1 x 10 2 5 94.9 

T I L L = 5.0sx 10 5 m , G aussian . 

a ITN D Rp(%) 
3 1 x 10 2 1 0.3 

0.04 4 1 x 1 0 2 3 17.2 
4 1 x 10 2 5 74.8 
3 1 x 10 2 1 0.1 

0.08 5 1 x 10 2 5 6.9 
4 1 x 10 2 5 60.6 

Table I X : L = 1.0 x IO 6 m, Gaussian Loading 

a = Forcing function parameter, see (4.3.9) 
ITN — Number of iterations for convergence 

D = F lexural Rigidi ty 
Rp = Predicted degree of support 
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that it behaves qualitatively as expected seems to indicate that there are no serious 

difficulties. 



Chap te r 5 

The Viscoelas t ic P r o b l e m 

5.1 A n a l y t i c So lu t ion 

We begin by restating the governing equation wi th its ini t ia l and boundary conditions: 

74 • , (w , _-.\ P DV*w + 7 ̂ - +wj = ^ + p (5.1.1) 

where, assuming the exact solution is known, 

w = We(t = 0) on (1 (5.1.2) 

and 

w = V 2 u ; = 0 on dn (5.1.3) 

As for the elastic problem, we seek an analytic solution to which we may compare future 

numerical results. We again consider a forcing function which varies periodically over 

the domain but we must now include some time dependence. In geophysical applications 

such as the formation of sedimentary basins, the load increases from zero with time. As 

an approximation to this situation, bearing in mind that we need an analytic solution, 

we assume a loading function of the form: 

p = Pcgh0e^-^ s i n s m ^ ( 5 . L 4 ) 

for which we have a corresponding deflection: 

w = sin ( ~ ) sin (5.1.5) 

56 
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where 
. o -I -1 

1 1 w0 = (m + l)pcghQ 1 6 Z W 4 ( — + — ) + ( m + l ) 7 

and t e is the time at which the integration is terminated. Notice that at t = te, the 

(5.1.6) 

forcing reaches its maximum value of 

. (2irx \ . (2-Ky\ 
Pmai = Pcgho sin J s m \ j (5.1.7) 

which is the same as that considered for the elastic problem. 

As for the elastic problem, if we assume Xx = A^ = 2L we may regard (5.1.4) as 

representing the load due to the infilling of a basin of depth V m ( ' " l e ) / T - The basin, 

assumed to be formed by some process such as thermal contraction, therfore increases 

in depth exponentially over a period of te mi l l ion years. 

W i t h an appropriate choice of Xx and Xy the boundary conditions (5.1.3) may be 

satisfied. Notice also, that the deflection at t — 0 can be made arbitrarily small by an 

appropriate choice of m although large values of m result in larger rates of increase in 

the forcing which could have serious repercussions when it comes to finding a numerical 

solution. We shall return to this problem later but in the meantime we shall, on the 

above grounds, consider (5.1.4) to be an acceptable analytic solution. 

Taking Xy = riXx = 2L as in the elastic case we may again derive an expression 

for the degree, R} to which the load is supported by the plate's rigidity. For the case 

outlined above we have: 

R 1 + - ^ 1 + - (5.1.8) 
.TTJ \DJ V mJ V l + n 2 

Table I X gives appropriate values of R for various choices of L and D where values of 

n = 2 and m = 0.01 are assumed. If either m or n is increased, then R w i l l increase 

for a given L and D. As can be seen, the case L = 1.0 x 10 6 m is not particularly 

interesting as the lithosphere is close to being in isostatic adjustment for all choices of 
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L ( m ) D (Nm) 

1 1 x 10 2 1 1 x 1 0 2 3 1 x 10 2 5 

2.5 x 10 5 0.12 11.2 92.6 
5.0 x 10 5 0.0078 0.78 44.1 
1.0 x 10 6 0.0005 0.05 4.7 

L — Length of Plate 

D = Flexural Rigidity-

Table X : Degree of support (Viscoelastic Model) 

D. We therefore restrict ourselves to the two smaller domains for the remainder of this 

discussion since together they cover an extensive range of values of R. 

w = u 

V2u = v 

5.2 N u m e r i c a l S o l u t i o n 

Numerical ly the problem is solved by first rewrit ing (5.1.1) in the form (2.7.1) as follows: 

(5.2.1) 

(5.2.2) 

(5.2.3) 

These equations may now be viewed as a differential algebraic equation ( D . A . E . ) in 

time. The time component can be regarded as differential in w and algebraic in u and 

v. For a more in-depth discussion on the numerical solution of D . A . E . ' s see Ascher [l]. 

We now choose a discretization for the time derivative. A s a first choice consider 

Backward Euler (B .E . ) which is a first order method. Knowing quantities at time tn, 

the problem at time tn+1 may be written: 

(5.2.4) ,n+l _ 

w 
+ U 

At 

n+l 

T 
(5.2.5) 



Chapter 5. The Viscoelastic Problem 59 

X72un+1 = v

n + 1 (5.2.6) 

E l imina t ing wn+1 from (5.2.5) using (5.2.4) we have: 

+ 7 ( ^ + 1) un+l = gn+1 (5.2.7) 

V2un+1 = vn+l (5.2.8) 

where 

gn+1 = - +p-1wn (5.2.9) 
r r 

is known at each time step. We now have two coupled elliptic equations for u and 

v. Recal l that in section 2.6 we showed that our boundary conditions may be writ ten 

equivalently as: 

u = 0, v = 0 on dn (5.2.10) 

Thus, at each time step, our problem may be writ ten in the form (2.7.6) wi th boundary 

conditions (2.7.7) where ui = un+1 and u2 = vn+1. Hence, we may use a mul t igr id 

algori thm to solve for u n + 1 at each time step and then use (5.2.4) to solve for wn+1. 

A s an alternative, following Ascher :[1, p.12], we may consider computing w at time 

steps tn while u and v w i l l be computed at t n + 2 . W i t h this formulation we may use a 

centred difference formula ( C . D . F . ) for the time discretization hence giving us a second 

order method in time which requires no more work or storage than Backward Euler. 

So we have 
wn+1 -wn . 

un+? = (5.2.11) 
At v ' 

^-1 + u"+§ = 1 +pn+1i (5.2.12) 

VV +2=i; n +§ (5.2.13) 
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Now, wr i t ing 

w 
n+= = -(wn+i+wn) 

2 

= l-(Mun+* +2wn) (5.2.14) 

at each time step i n + 2 , we use mult igr id to solve the system: 

+ 7 + i ) = (5.2.15) 

V 2 u n + 2 = u n + § (5.2.16) 

where 

(?"+' = ^ - ^ - Iiy" (5.2.17) 
T T 

is known at each time step. Having solved for un+i we use (5.2.11) to solve for wn+1. 

Second order accuracy may also be obtained (with a little extra work) using the 

two-step backward difference formula ( B . D . F . ) : 

1 / 3 ^ , _ „ 1 
u 

n + 1 - — -wn+1 - 2wn + - u ; 7 1 " 1 ) (5.2.18) 
A t V2 2 J K .' 

This method also has greater storage requirements than Backward Euler or the C . D . F . 

approach and is slightly more awkward to implement if a change in step size, A t , is 

contemplated. Using (5.2.18) we have the following system of equations: 

DV2vn+1 + 7 + l ) wn+1 = .-gn+1 (5.2.19) 

V2wn+1 = vn+1 (5.2.20) 

where now 
~n+l „ n + l A i 

gn+l = t + pn + l _ _wn + _wn-l (5.2.2T 
T 3 3 

Again , this system may be writ ten in the form (2.7.6) and our mult igr id algorithm used 

once more. 
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We use the same 5-point operator to discretize the Laplacian and again use full 

weighting for the restriction and interpolation operators. Collective Gauss-Seidel is 

called upon once more for the relaxation procedure. 

5.3 Numerical Results 

We begin by considering a case where an analytic solution is known thereby giving us a 

means of assessing the numerical results more objectively. Later we shall consider cases 

which are more meaningful geophysically but for which there is no analytic solution 

readily available. 

5.3.1 Periodic Loading 

In the results which follow we assume a forcing function of the form (5.1.4). W i t h so 

many parameters (D, L , m, n , r ) contained in the present formulation of the problem we 

must make some restrictions on their variabili ty in order to-make meaningful numerical 

•tests. We wi l l allow n to take on only the value 2 since this results in a forcing function 

which is both interesting and well represented on the fine grid. In other words, we 

avoid the uninteresting case of n = 1, which is similar in form to Gaussian loading, 

as well as larger values of n which may result in some error being introduced to the 

solution because of poor representation of the forcing function on the finest grid. 

Notice that in restricting ourselves to the case of n = 2 we are in some sense 

losing geophysical applicabil i ty since the application to sedimentary basins requires the 

assumption that n = 1. The case n = 2 is applicable to topographic loading although it 

is hardly reasonable to assume that the topography grows exponentially wi th time when 

in fact surface topography generally decreases in size after formation due to erosion. A 

more meaningful forcing function, from the geophysical standpoint, wi l l be considered 
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in section 5.3.3. 

We must also provide appropriate choices for m . Recall that m not only controls 

the magnitude of the forcing at t = 0 but also the rate of increase in the forcing. 

Increasing m yields a smaller forcing at t = 0 which is desirable, at least from a 

geophysical standpoint, but this also increases the rate of growth of the forcing which 

provides us wi th a tougher problem to solve numerically. Clearly, we wish to find 

a happy balance. Values of m — 0.01 and 0.03 result in an in i t ia l forcing having 

approximately 37% and 5% of its final value, respectively. The second of these is more 

reasonable geophysically but we expect it to be more difficult to solve numerically. 

Following Nunn & Sleep [7, p.607], we take the relaxation parameter, r , to have the 

value 1 x 10 6 years. Nunn & Sleep [7, p.588] also indicate that any physical theory 

should allow continual subsidence for a period of at least lOOMa in the modell ing of 

sedimentary basins. Integration wi l l therefore be carried out from 0 to lOOMa, however, 

all equations have been nondimensionalized wi th respect to a time scale T = lOOMa so 

that numerically, the equations are integrated from 0 to 1. 

We begin wi th a comparison of the L M G and M F M G algorithms for time dependent 

problems as outlined in section 3.4. Tables X I , X I I and X I I I present the r.m.s. error, 

Esoi and Eder, calculated as in (4.3.6), for the solution w, and its derivative u, for 

various values of D. For this comparison we allow m to have only the value 0.01. A n 

r.m.s. estimate of the discretization error, S2h, calculated as in (3.4.9), and an r.m.s. 

representation of the exact difference in the derivative u, at time t = lOOMa are also 

presented. The L M G and M F M G algorithms were tested using Backward Euler, the 

C . D . F . method and the two-step B . D . F . method all wi th a time step of l O M a . 

One of the first things that can be noticed from the results is that a better estimate 

of the derivative does not. necessarily lead to a better solution. A t first this may appear 

somewhat strange but we must bear in mind that we are dealing wi th both a time and 
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Esoi(%) Eder(%) ph A4 

D L M G M F M G L M G M F M G ( x l O - 2 ) ( x l O - 2 ) 

1 x 10 2 1 0.081 0.029 2.506 2.553 0.0079 0.3406 
1 x 1 0 2 3 0.259 0.470 2.323 2.127 0.1794 0.3029 
1 x 10 2 5 1.420 2.839 0.088 1.669 0.3444 0.0251 

Table X I : Backward Euler , L M G vs. M F M G 

Esol(%) Ed ph A* 
D L M G M F M G L M G M F M G ( x l O " 2 ) ( x l O " 2 ) 

1 x 10 2 1 0.050 0.066 0.063 0.037 0.0120 0.3406 
1 x 10 2 3 0.090 0.123 0.071 0.146 0.2404 0.3029 
1 x 10 2 5 0.144 1.119 0.180 1.808 0.0330 0.0251 

Table X I I : C . D . F method, L M G vs. M F M G 

Esol(%) Ed ph A* 
D L M G M F M G L M G M F M G ( x l O - 2 ) ( x l O " 2 ) 

1 x 10 2 1 0.034 0.002 0.139 0.163 0.0113 0.3406 
1 x 10 2 3 0.413 0.197 1.624 0.035 0.2268 0.3029 
1 x 10 2 5 0.248 1.153 0.176 1.808 0.0347 0.0251 

Table X I I I : Two-step B . D . F . , L M G vs. M F M G 

D = Flexura l Rig id i ty 
Esol = Relative Error in Solution 

Eder = Relative Error in Derivative 
ph = Discretization Error 

= Exact change in derivative 
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space discretization and hence some cancellation of the two discretization errors could 

well lead to some some spurious results. 

A very consistent pattern may be observed for results obtained for D = 1 x 1 0 2 5 N m . 

In these cases, L M G consistently provides a better approximation to both the solution 

and the derivative than M F M G . It can also be noticed that in these cases the dis

cretization error on the next-to-finest level is significantly larger than the change in 

the derivative and so we expect L M G to perform better than M F M G as discussed in 

section 3.4. 

For other values of D, things are not quite so clear cut. For D = 1 x 1 0 2 1 N m 

where the discretization error is consistently smaller than the change in the derivative, 

M F M G is expected to at least provide a better estimate of the derivative if not for the 

solution, but this occurs in only one out of the three cases. 

Overal l , L M G provided a better approximation than M F M G to the solution in 6 

out of the 9 cases and a better approximation to the derivative also in 6 out of 9 cases. 

We wi l l therefore conclude that L M G being the cheaper method should be employed 

for the remainder of our discussion on the viscoelastic problem. 

In the following discussion we examine the effect of altering m and attempt to 

determine how the degree of support, and therefore the importance of the biharmonic 

operator, affects the accuracy of the solution. We compare results using the B . E . , 

C . D . F . and two-step B . D . F . methods wi th one V ( l , l ) cycle per time step except the 

first where five V ( l , 1) cycles were used to ensure the solution got off to a good start. 

The results are presented in Tables X I V , X V and X V I . We can see that as the 

degree of support increases, the accuracy of the solution declines consistently. Also, for 

a given D, the accuracy decreases when m is increased. The reason for this is two-fold. 

Fi rs t , increasing m increases the degree of support and therefore the significance of the 

biharmonic operator and second, it increases the rate of growth of the forcing function 
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m D Esoi(%) Eder{%) Rv{%) Re(%) 

1 x 10 2 1 0.081 2.506 0.01 0.13 
0.01 1 x 1 0 2 3 0.259 2.323 10.8 11.2 

1 x 10 2 5 1.420 0.088 92.4 92.6 
1 x 10 2 1 0.600 6.741 -0.68 0.37 

0.03 1 x 1 0 2 3 1.350 6.092 25.2 27.0 
1 x 10 2 5 6.284 1.615 97.1 97.3 

Table-'-XIV Backward Euler , A t = l O M a 

m D Esoi{%) Ed„{%) Rp(%) Re(%) 

1 x 10 2 1 0.050 0.063 0.25 0.13 
0.01 1 x 1 0 2 3 0.090 0.071 11.3 11.2 

1 x 10 2 5 0.144 0.180 92.6 92.6 
1 x 10 2 1 0.458 0.239 1.36 0.37 

0.03 1 x 1 0 2 3 1.193 0.997 28.6 27.0 
1 x 10 2 5 1.490 1.423 97.4 97.3 

Table X V C . D . F . method, A t = 10M a 

m D Esol(%) EdeT{%) &,(%) Re(%) 

1 x 10 2 1 0.034 0.139 0.10 0.13 
0.01 1 x 1 0 2 3 0.023 0.183 11.2 11.2 

1 x 10 2 5 0.248 0.176 92.6 92.6 
1 x 10 2 1 0.264 1.047 0.06 0.37 

0.0? •1 x 1 0 2 3 0.413 1.684 27.6 27.0 
1 x 10 2 5 0.122 1.447 97.3 97.3 

Table X V I : Two-step B . D . F . , A t = l O M a 

m = Forcing function parameter, see (5.1.4) 
D — F lexural Rigidi ty 

Esoi = Relative Error in Solution 
Eder = Relative Error in Derivative 

Rp = Predicted degree of support 
Re = Exact degree of support 
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so that the solution from the previous time step is not as good an approximation to the 

current iterate. We expect the latter reason is the more significant since if we do not 

start wi th a good approximation to the solution at the current t ime step, we cannot 

expect to achieve reasonable accuracy from only one V ( l , l ) cycle per time step. We 

should expect this problem to be remedied by either selecting a smaller time step or 

choosing a higher order discretization for the time derivative. In comparing C . D . F . 

and B . D . F . to B . E . we see that the higher order discretization does much to reduce 

the error in both the solution and its derivative. Later we shall examine the effect, of 

reducing the time step. 

C . D . F . consistently provides better results than B . E . for the same amount of work 

making C . D . F . a very attractive method. C . D . F . also provides less spurious results 

in that as D increases, the errors in both the solution and the derivative are seen to 

increase as expected. This is not observed for either B . E . or B . D . F . . A comparison of 

C . D . F . and B . D . F . does not lead to any conclusive results. They should both provide 

approximations which are second order in time for the deflection w, however, C . D . F . 

provides only a first order approximation to the derivative u, whereas B . D . F . again 

supplies a second order approximation. There is a simple fix for this potential deficiency 

in C . D . F . , see Ascher [1, p.13], however we have not used it because the theory.is 

not borne out in the results. It is in fact C . D . F . which i n general provides better 

estimates for the derivative but these estimates have not led to better approximations 

to the solution. B . D . F . generally provides the better approximation to the solution. 

However, in consideration of the addit ional work and storage involved in using the 

two-step method, we may conclude that of the two second order methods, C . D . F . is 

preferable here. Before discarding B . D . F . completely, though, we wi l l examine the 

effect of reducing the time step. Tables X V I I , X V I I I and X I X give results for all three 

methods. We restrict ourselves to the case m = 0.03 which has proved to result in less 
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m D Esol(%) Eder{%) RP(%) Re{%) 
1 x 10 2 1 0.198 3.629 0.09 0.37 

0.03 1 x 1 0 2 3 0.899 2.973 25.8 27.0 
1 x 10 2 5 3.563 0.353 97.2 97.3 

Table X V I I : Backward Euler , A t = 5 M a 

m D Esoi(%) Ed„{%) RP(%) Re(%) 
1 x 10 2 1 0.120 0.074 0.63 0.37 

0.03 1 x 1 0 2 3 0.298 0.249 27.4 27.0 
1 x 10 2 5 0.278 2.257 97.4 97.3 

Table X V I I I : C . D . F metb.od,..At = 5 M a 

m D Esol(%) Eder{%) £P(%) Re{%) 
1 x 10 2 1 0.067 0.308 0.33 0.37 

0.03 1 x 1 0 2 3 0.100 0.453 27.1 27.0 
1 x 10 2 5 0.126 0.263 97.4 97.3 

Table X I X : Two-step B . D . F . , A t =-5 M a 

m = Forcing function parameter, see (5.1.4) 
D = Flexura l Rigidi ty 

Esoi — Relative Error in Solution 
Eder — Relative Error in Derivative 

Rp = Predicted degree of support 
Re = Exact degree of support 

accurate solutions. 

As expected, reducing the time-step has led to more accurate results for al l three 

methods. Backward Euler, being a.'hrst order method, provides an O ( A t ) approxima

tion (in time) to both the solution and its derivative. So, if there were no error arising 

from the spatial discretization and no significant roundoff error, reducing the time step 

by a factor of 2 should reduce the errors in the solution and its derivative by 50%. The 

errors we have presented, however, account for errors arising from both the time and 

spatial discretizations and so we should not necessarily expect a 50% improvement in 
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our results. We expect that reducing the time step by a factor of 2 for the C . D . F . 

method should reduce the error in the solution by a factor of 4 whereas the error in 

the derivative should be reduced by only 50% since C . D . F . provides a second order 

approximation to the solution but only a first order approximation to its derivative. 

B . D . F . , on the other hand, provides a second order approximation to both the solution 

and its derivative and so we should expect the errors in both to be reduced by 75%. 

Once again, however, the above arguments hold only for the error arising from the time 

discretization. We should not necessarily expect to observe the above improvements in 

accuracy since we also have an error arising from the spatial discretization. 

Backward Euler in fact provides close to a 50% improvement i n the approximations 

to both the solution and its derivative. The C . D . F . method in some sense behaves better 

than expected in that a reduction of close to 75% is observed not only for the error in 

the solution, but also for the error in the derivative when only a 50% improvement in 

the latter is expected. B . D . F . provides a near 75% improvement for both the solution 

and its derivative, as expected, except for the case D = 1 x 1 0 2 5 N m where the error 

in the solution actually gets worse! A n explanation for this strange observation is 

extremely hard to find. 

On comparing the two second order methods, we see that B . D . F . once more pro

vides better estimates of the solution whereas C . D . F . provides better estimates of the 

derivative. In view of the added difficulty and additional expense in using B . D . F . we 

shall from hereon restrict ourselves to the C . D . F . method. We shall also discard Back

ward Euler since we clearly gain nothing in using this method from the point of view 

of either accuracy or efficiency. 
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5.3.2 Integration with steady forcing 

We now consider the effect of allowing the forcing term to reach a steady state and 

observe the resulting deflection. Geophysically, this is of interest since, in consideration 

of the evolution of sedimentary basins, we may assume that after a given time, the 

sedimentary loading reaches a steady state. Hence, for t > te we look for a solution of 

the equation: 

D V 4 u ) + 7 + w^j = P (5.3.1) 

where now, p is independent of time. The solution to this equation is: 

w=- (5.3.2) 
7 

in other words, an isostatic adjustment of the lithosphere. Therefore, if we continue 

to integrate after the forcing reaches a steady state, the solution should converge to 

the isostatic solution. Owing to the expense of integrating for long periods of time, we 

have considered only two cases. 

We allow the forcing to have the form (5.1.4) as we integrate from 0 to te which we 

take to be lOOMa. For times greater than te, the forcing function has the form: 

. /2"7rx\ . / 27ry \ 
P = Pcgh0 sin [~^~J s m J (5.3.3) 

so that it maintains the value it had at lOOMa. We consider two cases having different 

values of L, D and m. The first takes L = 2.5 x 10 5 m, D = 1 x 1 0 2 3 N m and m = 0.03 

while the second has L = 5.0 x 10 5 m, D = 1 x 1 0 2 5 N m and m = 0.01. We take 

At = l O M a for both and use the C . D . F . method. In Table X X we present computed 

values for the max imum deflection, wmax, at intervals of lOOMa for case (i). The 

maximum deflection expected when the lithosphere is in isostatic adjustment is 16800m. 

It is very clear that the numerical solution behaves as predicted and converges to the 
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t (Ma) 

100 11995.21 
200 16797.98 
300 16798.74 
400 16799.10 
500 16799.76 

Table X X : Steady state integration : case 1 

t (Ma) 
100 . 9408.81 
200 14790.80 
300 16253.75 
400 16649.53 
500 16756.77 
600 16785.98 
700 16794.06 
800 16796.40 
900 16797.17 
1000 16797.49 

Table X X I : Steady state integration : case 2 
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isostatic solution. Table X X I gives results for the second case, again at intervals of 

lOOMa. These again show that the plate continues to deform unt i l it is in isostatic 

adjustment wi th the loading. We expect that the solution took longer to converge 

in the second case because it was further from isostatic adjustment at t = lOOMa 

from which time the forcing function was held in steady state. It should be noted that 

integrating to lOOOMa is somewhat unreasonable geophysically but the results obtained 

are certainly of interest since they would seem to indicate that under a given constant 

loading, any viscoelastic plate (regardless of length or flexural r igidity) wi l l deform wi th 

t ime unt i l it reaches isostatic adjustment. 

5.3.3 Geophys ica l A p p l i c a t i o n 

Final ly , we turn our attention to a forcing function which is more meaningful geophys

ically but for which there is no analytic solution available. We wi l l assume a Gaussian 

distr ibution for the loading. So, allowing f(t) to represent the time dependence and 

taking hx to be as represented in equation (4.3.9) we have: 

p = P c g h T ( r ) f ( t ) (5.3.4) 

Ideally, we would like to begin with zero forcing and have the load increase to reach a 

steady state asymptotically. We therefore consider a function of the form: 

f(t) = - arctan ( — ) (5.3.5) 
7 r \ r r i T J 

which has the required properties that / (0 ) = 0 and f(t) —> 1 as t —• oo. The 

application here is to the formation of sedimentary basins. A basin of shape KT is 

assumed to be formed by tectonic subsidence. The basin ini t ia l ly has zero depth but 

increases wi th time to reach a steady state asymptotically. The relaxation parameter, 

r , wi l l again take on the value 1 x 10 6 years so that the forcing grows by 50% in m M a . 

file:///rriT
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m /(ioo) /(500) /(1000) 
50 0.844 0.994 0.998 
75 0.674 0.986 0.996 
100 0.500 0.975 0.994 

Table X X I I : T ime dependence in terms of m 

t(Ma) m = 50 m = 100 
100 10102 5592 
,'.200 13783 11433 

s* 300 14975 13752 
•• 400 15537 14802 
•• 5 0 0 : '15872 15381 
600 16092 15743 
700 16247 15987 
800 16358 16158 
900 16442 16284 
1000 16505 16378 

Table X X I I I : M a x i m u m deflection (metres) for case (i) 

In Table X X I I we give the value of f(t) at t = 100, 500 and lOOOMa for various values 

of m. We propose to integrate from 0 to lOOOMa which we hope to be a long enough 

time period for the forcing to have reached a reasonably steady state - appropriate 

choices of m wi l l ensure this. We wish to choose values of m such that the following 

two conditions are met: (i) the forcing function is close to being in steady state towards 

the end of integration, (ii) the rate of increase at the beginning of integration is not 

too great. 

We wi l l consider the following two cases: (i) L = 2.5 x 10 5m, D = 1 x 10 2 3 Nm, 

(ii) L — 5.0 x 10 5m, D = 1 x 1025 N m and allow m to have the values 50 or 100 for 

both. Since, p = 0 at. t = 0 we have the in i t ia l condition w = 0 at t = 0. The C . D . F . 

method was used with one V ( l , l ) cycle per time step wi th At = l O M a . The results 

are presented in Tables X X I I I and X X I V . 
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t (Ma) m = 50 m = 100 

100 6688 3565 
200 9271 7585 
300 10719 9579 
400 11759 10904 
500 12539 11873 
600 13135 12607 
700 13598 13173 
800 13962 13617 
900 14254 13969 
1000 14491 14254 

Table X X I V : M a x i m u m deflection (metres) for case (ii) 

The results show that for case (i) the deflection is close to being in isostatic adjust

ment towards the end of integration - this is as expected since the derivative, p, is close 

to zero at this stage and, as was seen in section 5.3.2, the steady state solution is one 

representing an adjustment to isostatic equil ibrium. We also see that increasing m re

duces the in i t i a l rate of increase in the loading but towards the end of integration there 

is l i t t le difference in the two cases - again this is as expected owing to the asymptotic 

behaviour of the forcing function. 

For case (ii) the deflection is not as close to being in isostatic adjustment at the end 

of integration, we expect this to be due to the fact that the degree of support for this 

case is larger and therefore a longer period of integration wi l l be required before the 

plate reaches isostatic adjustment. This k ind of behaviour has already been observed 

in the previous section. The effect of increasing m is the same as was observed for case 

(i)-
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C o n c l u s i o n 

6.1 R e s u l t s 

A derivation of the governing equation for deflection of a viscoelastic plate under an 

applied load has been presented. The equation was found to be fourth order (in space) 

and time-dependent. For the elastic problem, the time-dependence is dropped but 

the governing equation remains fourth order. Boundary conditions were derived from 

the assumption that the plate is simply supported at the edges so that there is zero 

deflection and zero curvature on the boundary. 

M u l t i g r i d algorithms for the numerical solution of the elastic and viscoelastic prob

lems were presented. The discretization was applied after reformulating the fourth 

order equations in terms of two coupled second order equations. 

The mult igr id method has proved to be a very fast and efficient solver for the 

elastic, problem. It has dealt effectively wi th a wide range of plate lengths and flexural 

rigidities representing degrees of support ranging from 0.05% to 99.9%. The numerical 

solution has therefore proven to be stable wi th respect to varying degrees of importance 

of the biharmonic operator (which represents the highest derivative in the governing 

equation). In cases where the degree of support is very low and we have a singularly 

perturbed problem the numerical scheme in fact converges quickly to the solution of 

the reduced equation. As the degree of support increases and the biharmonic operator 

becomes more significant, the numerical solution takes longer to converge and becomes 
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less accurate, however, this deterioration cannot be considered to be serious as the 

convergence rate and accuracy are st i l l wi th in acceptable l imits. A l l i n all we can be 

very pleased w i t h the performance of the mult igr id method as applied to the elastic 

problem. 

The viscoelastic or time-dependent problem has proved to be the more challenging 

of the two. M a n y possible avenues may be travelled on both the algorithmic level and 

on the level of choosing appropriate time discretizations. We examined two mult igrid 

algorithms, L M G and M F M G , and compared results obtained from each of them against 

an analytic solution. A n estimate of the 0(2/i)2 discretization error was obtained from 

the M F M G algorithm and compared to the exact change i n the derivative over the last 

t ime step. It was found that in those cases where the discretization error was higher 

than the change in the derivative, L M G consistently provided better approximations 

to the solution and its derivative than M F M G - as expected. .Tfowever, M F M G did 

not consistently provide better results when the discretization error was less than the 

change in the derivative. O n the whole, L M G provided better results at a lower cost 

and so the M F M G algorithm was discarded. The time dependence was dealt wi th i n 

three different ways: (i) Backward Euler - a first order method, (ii) A centred difference 

scheme which provides a second order approximation with the same amount of work 

as Backward Euler and (iii) a two-step B . D . F . scheme which again provides a second 

order approximation but at greater cost than the centred difference scheme. The two 

second order methods consistently provided better approximations than the first order 

Backward Euler scheme. A comparison of the two second order methods did not reveal 

any conclusive results. However, it was decided, from the point of view of efficiency 

and ease of implementation to use the centred difference scheme for future numerical 

experiments. 

We also examined the effect of maintaining the forcing function at a steady state 
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after a given period of time and observing the subsequent deflection. Analy t ica l ly we 

expect the plate to relax, asymptotically, unt i l it is in isostatic adjustment regardless 

of plate size or elastic properties - this behaviour was also borne out in the numerical 

results. 

It appears that a very good degree of accuracy may be obtained wi th only one 

V ( l , 1) L M G cycle per time step. This represents a fast and highly efficient method. 

Perhaps the greatest advantage of the solution method we have developed lies in its 

adaptabili ty in that a min imum amount.of work is involved in solving the problem wi th 

different forcing functions once the program has been set up. This cannot be said of 

methods such as integral transform techniques and Fourier Series expansion methods 

which have been employed previously. The finite element technique also involves a lot 

of work in setting up (rather than solving) the problem when different forcing functions 

are considered. 

6.2 Future Work 

It is fairly clear that most of our interest for future work should lie in dealing wi th time-

dependent mult igr id . For this application it was shown that M F M G did not represent 

a viable alternative to the very straightforward L M G algorithm. This appears to be 

due to the high discretization error on the next-to-finest level relative to the change in 

the solution from one time step to the next. However, further investigation into the 

applicabili ty of M F M G against L M G is certainly required. 

Further investigation into the number of pre and post C G C relaxation iterations 

and the number of V-cycles per t ime step is also called for. We have consistently 

used one V ( l , 1) cycle per time step without any justification as to whether this is an 

optimal choice. The optimal number of V-cycles per time step is of course related to 
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the choice and control of the time step, A t , in that integrating wi th a time step A t 

using, for example, one V ( 2 , 2) cycle per time step involves the same amount of work as 

integrating wi th a time step A t / 2 using one V ( l , 1) cycle per t ime step. This question 

of at taining opt imal efficiency at the algorithmic level is certainly worthy of further 

attention. 

In the geophysical context there is st i l l room for improvement in the development of 

forcing functions which are more realistic. A s regards the application to the formation 

of sedimentary basins, we have assumed that the density of the infilling sediment is 

constant. In fact, the body of sediment infilling the deflection may consist of several 

layers each having a different density so that for the elastic model we might have a 

forcing function of the form 

P = ^2Pi9hi(x,y) (6.2.1) 
i=i 

where pl is the density of the z t h layer having a thickness h,(x,y). 

A comparison of the elastic and viscoelastic models would also be of interest. The 

deflection of an elastic lithosphere wi th time-dependent loading is governed by the 

equation: 

DV4w(t) +jw(t) = p{t) (6.2.2) 

Having solved the viscoelastic problem, the solution of (6.2.2) should not present any 

further difficulty numerically since it represents a simple continuation problem. The 

L M G algorithm wi th one V ( l , 1) cycle per time step should prove successful provided 

p(t) does not change rapidly. A s regards the formation of sedimentary basins, a compar

ison of the stratigraphy predicted by the elastic and viscoelastic models for a given p(t) 

would be a valuable exercise since, to the author's knowledge, no definitive statement 

has yet been made as to which is the more realistic model. 
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A further necessary improvement if a true geophysical situation were to be mod

elled, is the extension of the mult igr id method to deal with irregular domains. This 

involves much computational work since the discretization, interpolation and restric

t ion operators become non-standard at points near the boundary. The grid coarsening 

process also involves further difficulty since a regular coarsening may not be possible 

near the boundaries. It is highly unlikely that grid coarsening could be continued unt i l 

only one interior grid point remains thus making it necessary to develop an exact solver 

for the problem on the coarsest grid, however, this is not a serious drawback. 

To conclude, we suggest that many more hours of research into both the numerical 

and geophysical aspects of this topic are in order. We content ourselves wi th having 

provided what we hope to be a sound basis for future investigation in this field of study. 
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