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ABSTRACT

For a given abelian category CV , a category «5 is
formed by considering exact sequences of 07. If one
imposes the condition that a split sequence‘be regarded’as
the zero 6bject, then the resulting sequence category :Zﬁ
is shown to be abelian. The intrinsic algebraic structure
of éZé is examined and related to the theory of coherent
functors and functor rings. EAé is shown to be the
natural setting for the study of pure and copure sequences
and the theory is further developed by introducing repure
sequences. The concept of pure semi-simple categories is
examined in terms of 3&5 . Localization with respect to
pure sequed@és is developed, leading to results concerning
the existence of algebraically compact objects. The final
topic is a study of the simple sequences and their relation-
ship to almost split exact sequences. '
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~ INTRODUCTION

Category theory has drastically altered the face of ring
theory. However ' there is still a great resistance to
category theory as a bona fide branch of mathematics. One
even has the algebraist (mis)using Mitchell's [21]
embedding theorems of abelian categories into module cate-
gories to dismiss abelian category theory as esoteric
ring theory.

Given suitable knowledge of abelian categories, the
study of rings by examining the module category gives a
firm foundation and structure to much of the existing
theory and stimulates further research. However if
abelian category theory were only slightly generalized ring
theory, then this approach would be putting the cart before
the horse. '

There are two key features to this thesis which the
reader should keep in mind. The first is to regard the
thesis as a demonstration of applied elementary abelian
category theory. A specific category, the sequence cate-
gory, is introduced, and is examined as an abelian category.
To some extent, module techniques :can be mimicked, however
attempts to represent'this category as a module category
fail. Indeed, the sequence category will not have a
generator and will not be locally small (i.e., objects will
not have just a set of subobjects) except in very special
circumstances; 1in particular, it 1s not a Grothendieck
category. The second feature will be the direct application
of the results, gleaned from the sequence category, to
the study of rings, accompanied by indirectly revealing that
a suitable framework has been established into which various
ring theoretical problems may be posed and solved. Hope-
fully fertile ground has been exposed.

The following 1s a quick breakdown of the contents. Chap-
ter one is a short intuitive introduction to the object of



study : the sequence category EZJ « In chapter two, chain
homotbpy'between exact.sequénces becomes the crucial factor
in defining morphisms for the sequence category. The major
result is to demonstrate explicitly that i%é is an
abelian category. The chapter concludes with propositions
intended to give the 'flavour' or 'feel' for the algebra
involved in working with sequences as objects, so that the
reader will be comfortable with the mechanisms of this
specific abellan category. In chapter three, the basic
link between the underlying category and the sequence category
1s established by examination of the projectives in 5%3 .

Chapter four placés the sequence category within the
familiar ground of coherent functors. The equivalences
established in this chapter should be kept in mind, so that
any result concerning sequences can be formulated into
functors. A torsion theory for ZZJ is introduced in
chapter five. The familiar concept of purity enters as
the torsion free part of this theory. In chapter six the
probdlém of characterizing those module categories, in
which every object is a direct sum of finitely generated
objects, is examined in the context of 52@5.

The repure category 1s introduced and studied in chapter
seven, as the torsion free part of a torsion theory, now
using pure sequences as torsion.

(Co)localization is the major topic of chapter eight
using the torsion theories of chapters five and seven. The
major result shows the existence of the category of additive
fractions with respect to pure sequences. This category
turns out to be a fundctor category, and consequences of
this fact are examined.

Chapter nine is somewhat of a diversion, relating the the-
ory of functor rings to the functor category arising in Chap-
ter eight. In chapter ten, the simple objects of £/ are
characterized and compared to almost split exact sequences.



CHAPTER 1

THE SEQUENCE CATEGORY

In the study of an arbitrary abellan category (ﬂ the
subcategories &)and.\Q, projective and injective objects,
figure prominently. If one establishes an adequate know-
ledge of either class,afor example in ceﬁtain module categor-
les every proJective is free, then in s%udying the structure
of general objects one would like to dispense with 'project-
iveness' or 'injectiveness' (these terms to be taken intui-
tively for the moment). The method of this disposal will be
to pass to the additive quotient categories qb@D and qﬁ4;
(Chapter 3). However these quotient categories are rarely
abelian (3.9), and this is a major stumbling block.

Another way to study O/ is to consider the category £
of exact sequences of Cﬂ . has objects - . exact se-
gquences and a morphism is a'triple of morphisms of Cy

making the following diagram commutative

0—> A—»B—>»C—>0 = Bq
Lo b :
0—>A'»B'>(C'—0 = E,

Although 67 naturally inherits an additive structure, it

is never abelian except trivially when O7== 0. We will
elaborate on a proof of this statement (Maclane [14 ],

page 375). because it will give some insight into what fol-
lows.

1.1 8 is not abelian, unless 07= 0.
Proof a map of the form

0 > A—>»B~—>C—0

O———VA'»-V%'———)"G'—-—'O
will be epi in & if B—»yB' and C—»C' are epi
in 07 . For suppose



0 —» A——- B~ C—0

Q——spA'—nB'e—s C'—s 0

|

0 —>A"wupB"—=C'"—s 0

gives the zero map. Then since both C—»Cc'—» "

and B-»*B'—»B" are zero, the epis in 07 cancel

to give C'— C" =0 and B'—>B" = 0. But then
A'— B! Al
l l' 0 gives L : is the zero map,
A">—~>B" ~ A'»—s B"

and the monic can be cancelled, so A'—»A" 1is also
the zero map.
Dually, a map of the form

0—> A—>B~—>C—>0

~
0—=A'—>B'—sC'—> 0

is monic in Ci .
Hence the map 0—>0——>»B'— B—>0

T s

0 —» B—>»B—> 0 —0
is both monic and epi. But there is only one map
from the lower sequence to the upper, the zero
morphism
0-+B-——»i———s®-——$0

/olo

0
0~—»0—>»B—>B~—>0

so there can be no inverse map. Hence (f cannot
be abelian.//

The proof suggests both sequences of the form
0—>A:—>A—>0—> 0
and
0—> 0.*— B'—B—>(
be considered as zero objects, and so the natural sum
0 —>A—AMPB—B—>0 , the canonical split sequence, should



also be the zero object. Thus one is led to consider the
quotient category é;Q{,'where Af is the subcategory of split
sequences. Objects of &Dﬁ5 are those of é: , but

HOM,,/ (Ey,E,) = HOM, (Ey,E,) /4 (Eq,E,) where »f (E_,E,)

is the subgroup of morphlsms.that factor through a split se-
quence (the zero obJect). Properties of this subgroup will be
given in Chapter 2 (Prop. 2.4).

&AZ is an abelian category (Chapter 2, Thm. 2.5), and if
Q7 has sufficient projectives (injectives) then there is a
full embedding o/ P = ELS (o /Qc— E/S)
assigning to each objJect X a projective presentation
0 —>K—»>P—>X—>0 (inJective co-presentation 0—>X—I—>N—0)
(Thm. 3.6). Under this embedding,of/ip 077@&) becomes a
(co)-resolving class of projectives (injectives) (see Chapter
3). One then has this curious process of eliminating pro-
jectiveness from Of via the passage 07-—’ Oﬂﬂf’, but then
embedding of/f’ as a resolving class of projectives in the
larger abelian category Eaéé . Thus in some ways the diffi-
culty of non-abelianness of 4079 is somewhat overcome in
the embedding, and the embedding is quite efficient because
the study of projective objects is a tractable one.



CHAPTER 2
BASIC FACTS CONCERNING £/&

In this chapter we show /4 1is abelian and investigate
various consequences of this.  The aim is to work in 5%5 and
translate results to Of , so we will develop the algebra of
/S , explicitly illbstrating the abelian concepts of
kerneis, cokernels, sums, products, intersections, etc.

The following three lemmas are recorded for reference
(they arose in the study of homological algebra, but in
essence are statements reflecting the abelian structure of

E/4 ).

Lemma 2.1 (Hilton and Stammbach [15 ], page 83)

Given o,
«“{ \e
2 2
B —-—7 D (d-l 1«:} ('ﬁ;)

then (0—>) C ——> A®B —>D [—0]

is exact iff the square is a (pull-back),[push-out].

Lemma 2.2 (Hilton and Stammbach [2!], page B84)

If 0 —»B—>E" >Al—> 0

| y

0—>B-——a E—>A——> 0

is commutative with exact rows, then the right-hand
square 1s a. pull-back and a push-out.

Lemma 2.3 (Mitchell [ ], page 163)
Any A-—>B in £ has a factorization

0 > A"—3 A —>A'—>0

fl;
L
L
[



That is, A—»B can be factored as a push-out (of A"—A )

1"
A'
followed by a pull-back (of B——?%' ). This will be the
epi-monic factorization of A given morphism in 5%3.

Recall that oy (A,B) = HOME (A,B) / 4 (A,B)

£/5
where ,45 (A,B) was the -~ ..subgroup of morphisms factoring
through split sequences. The next proposition gives the
basic facts concerning such morphisms. Since the objects
of & , being exact sequencés, can be thought of as (short)
chain complexes, the notion of homotopy naturally arises.
Proposition 2.4

Glven . g—pn —S-—zA—Tlﬁ;A' —0
£I f"l %"’flb,,, f" ’
B 0 —»B"—» B>"—asB'—> 0

the following are equivalent
(1) there exists g such that ge = "
(11) there exists h such that /S'h = !
(111) there exists g and h such that ﬁg + ha’ = ¢
(iv) f factors through a split exact sequence
(v) F is chain homotopic to zero (f ~0).

NOTE : (i) &> (ii) €&>(i1i) Fieldhouse [ 6].
(1) &= (iv) Freyd [8 ] .

Proof It suffices to show (1)& (iv) for then
(i1) <>(iv) 1is proved dually, and (i) with (i1) &
(11i) is clear, finally (i))(ii)/(iii) constitute (v).

(iv)=>(1) O-’i\"—ﬁf‘-ﬁf"-,—’O
>. D—»D 0
0—¢ ——7@ 7

O——?g“——aB——aB'——90

The required g 4is achieved via the projection
c @ D —x.



(1)=2(iv) Consider

\~ 3 B"

where the square 1s a push-out., K exists to
glve a commutativé diagram. Hence B"—*E 1is
split monic and result now follows by

Lemmas 2.2 and 2.3 .//

The following theorem is the major result of this section.
The proof is adapted from Freyd [8 ], Thm. 3.3. However, we
wish to work internally in £&Q§ , and for our purposes we
need the explicit calculation of the kernel and cokernel of
a morphism and its canonical factorization for further
propositions.

Theorem 2.5 5&3 is abelian,.
Proof Z/8 1is additive because & 1s additive (additivity
easily seen to be preserved under quotients). Hence it will

suffice to prove that every morphism f has a kernel and
cokernel, and a factorization f = igh where h is a cokernel
and g a kernel (Stenstrom [25], page 87).

Given f : A—B we wlll show

f Y S
0—3A"——3 A—A'—>0 =
{ I h

0 —“’B".—-—-——eE-——,A‘L'———BO

?—
T

¥ } |
0—E —— BOA' —=B'— 0
represents O—ker f >3 A—>im f >—>B—)coker f —>0.
By Lemma 2.3, f =gh . The exact sequences at top
and béttom result from Lemma 2.1, using Lemma 2.2 and
its dual to show they are exact.



We prove (a) k = ker f (b) g = ker 1

then dually (a') 1 = coker £ (b') h = coker k.

(a) (1) k is monic X" X X"

| el ] x
A"—s B"@A—E
le | Vo k

A"—— A —0 A

If X x = 0 then € exists by Proposition 2.4.
The same & then shows x ~ 0
(11) hk =0

Fs

= A" - —> B'@A
I ,’, . Take ¥ to be
i'f L the projection.
i’ ;

(i11) Suppose h x =0 X" —3 X —s X!

L ¢ |

A" —5 A — p?

L. L)

B"—> B —— B"
so that & exists with the properties of
Prop. 2.4. Then

X" —a X ——s X"

J

A"— B"WA—E

I [

A" —> A —— A"
~glves a factorization of x through k.
(1), (11) and (11i1) establish (a) k = ker f ,
(b) (1)_g is monic, proof same as for k.
(11) 1 g=0 B"——E

B 0

LDI, , take @to be iden-
E tity.
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(1i1) Suppose 1l x =0, X"—sX—X'
A
B!l 4 T ’ B'
E<—spfn'—B"
Then & exists as in Prop. 2.1l.

Let.;? be the composite in é? .

X" —» X —> X'
& >
B"——E—A

U A

B"——5 B—> B'
Then (x -~ 5?),«,0 because left side of

x - x° 1s the zero map. Hence in &8, x = x°

and-.x:ecan be-factored through g.
(1), (41) and (iii) establish (b) g = ker 1 .//

2.6 Subobjects and Quotients |
We use the factorization of a morphism, and the construction

of cokernel and kernel to next investigate the concepts of
subobject and quotient object.
Suppose 0 —>A"—> A —>A'"—0

: V)

0 —B"—>B——>B'—> 0

represents a monic. Factoring this monic as in the theorem

0 A" > A ———> AV ()

[epo. )

0 ~—~———B"eoy E —A'"—— 0

I | es.d

0 —>B"—> B——>B'—— 0

establishes an isomorphism

0 —A"— A ,fx' >0
!

d

0——>B"——s E—> A'—— 0
So, without loss of generality, one can assume each subobject
of a sequence results from a pull-back, and dually each
quotient from a push-out.
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2.7 Kernels and Cokernels
Given a map of sequences E,-—E, , the kernel K is deter-

mined by a push-out as follows
0 —> A —-—*:AZ@Bl —> E —>0

( B

0*——e>Al~———9 B1 —3C, —™> 0

1
! l |
0—> A, —> B,—C, —> 0

where E 1s the push-out of A, — B,

N

|6 e |11 4 |
n ]

1

) .
2

Dually, the cokernel 1 1s also determined by E as a

pull-back
0 —>»A, —> B, —™> C., — 0

Ll N tl } 1l
00— A, —> B, —™> C,—> 0
0—s E — C,6B,—> C, —> 0

et

- | 1| I
N

I

where E 1s also the pull-back of C1
Suppose 0 —> Al — B1 —_> lCl —» 0 is monic.

~

00— A2-—a B2-——9 02———> 0

Then in factoring this map into epi—monig the epl is an iso-
morphism : 0 -—’i&l—-—-‘» fl\a 'Cl——-> 0
[
00— A2——_, E——> Cl-——9 0 . .
We exhibit the inverse as an illustration of techniques
used in £/8 : one has the kernel
0 ——>)A1 — A2%Bl —2E 0

. . &
Qg——ﬂ Al~——9 Bl — C1

but this splits, so by Prop. 2.4 'E—ecl-vfactors over B1 (the
map E—>C, is the composite E-—*Aé@Blf—>B1 the splitting
map followed ™ by the projection). Thus one can form the

diagram :
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0—>A -—»E‘—*C — 0

$2 3t
0-—*A1-—>Bi—»cl-—¢ 0 s
where A,—>A is the map induced on kernels. This gives

2 1
the required inverse of the sequence morphism. We remark -

that A,— A, . is not the component of the splitting

oAy
ABB,—>A,.
Dually, if 0 —s A, —»B. —» C. —» 0

ll ll ll
0—~;A2f-—>B2f—->Cz——a 0
is epi, then 0 ——9324—» ?-—~9.fl-—a 0
0—s Ay —> B, —>C, — 0
is an isomorphism. For the inverse, form the cokernel

0 ~—>A,—>B —sC, — 0

l2 - ¢2 'IZ
0—9E—-—>C@B C, —0
which splits so A2~%'E factors over B2 (B2-»E is the

composite Bz-—7clﬁme——>E: the natural injection followed by
the splitting). So forming the diagram
0 “‘>‘A2——9£2——9 92—~90

v
0 ——9A2——1»E ——€>C1—-9 0 ,
where C2-—9C1 is map induced on cokernels, gives the inverse.
If E; —E, 1s an isomorphism. the two inverses above

can be combined to give an explicit inverse, However there
is another way of viewing this isomorphism which lacks rigour
but gives some insight into the character of E/4 , and how
it differs from <E by regarding split sequences as zero. If
E.~>E, is an isomorphism then both 0?-§Alfﬁ>Bf9Aé——>E”~70

=1 =2
and O——)E——aCi@Bz—i C,—»0 split, so :
~ 0—A;—B,—C,—0 = 0—>Al@E —>B,@(C @B )-»Cl@c?_-—:,o
and

- — =

0—>A,>B,~> C5>0 OeAzeBl—asz@(Bl@cl)—vclecz——e 0

and these sequences are isomorphic in the category E . That
is, by adding suitable split sequences an isomorphism can be
“lifted to & .
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Proposition 2.8 1If Q7 is (co-)complete, then so is E/S
Proof Since ¢/ is abelian, it suffices to show direct sums

exist for co-completeness. The obvious cholce works.
Given 0-—9A1——’Bi——5ci~*’o , form
O%@AA10~>®B1—-76901"‘90 . This sequence will have
the universal property; the only non-triviality is
uniqueness.
Suppose 0 ﬁ@Ai — ®L81 -_—%@fi — 0
0 — — Y — 7 —>0

has the propefty that 0 — fi——> lBi_QJCi —» 0
O——#C%Aiﬁﬂj%i-ﬁ>;Ti——é 0
0 —>X Y — 2 —>0
is zero. Then each Ci~—CBCi——>Z factors over Y and
hence (jci—a>z factors over Y by taking the sum of
the individual factorizations. Thus the lower sequence
map is zero.

Using additivity, this will imply uniqueness of
the two maps induced from this sum sequence agreeing
on the natural injections.//

2.9 Example ‘

For direct sums and products, the procedure 1s to form
them in E and pass to Z//J . This method fails to form
general limits -and colimits. To illustrate the difficulties,
let 07= Ab , abelian groups, and consider the non-split
sequence 0—>K-—>PF-—>@ —>0 where F 1is a free abelian
group, @ the rationals. Now @ is a direct limit of its
finitely generated subgroups Gi . Forming pull-baéks

O-ﬁK-——bfi

0—-9K——'>F——-7@ s
one has that in é the sequence 0— 1(3:——>F-—>Q——)0 is

a direct 1limit of 0—>K— Ei——>Gi—-—7 0. But all finitely
generated subgroups of Q are isomorphic to Z. Hence each
0—K —E,—G,—>0 splits and is zero in /8 and . the direct

limit in ¥/ will then be zero.
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2,10 Sums of Subobjects
Let xiC—>x be subobjects in an abelian category. Then
the sum of these subobjects in X is the image of the induced

map (:Mi——ax. Applying this procedure to %/5 , let

A— B, —C
R
A—B—>C
represent a set of subobjects. The sum map 1s
0—>@A—>@B, —>@C,—>0
L \'Li l/i
0— A— B—> C—0

and its image 1s Oﬁﬁﬁfﬂ%aﬁw

0—=A—=B—> C —0 3
that is, the sum 1s achleved by taklng the pull-back of
the sum map (901~—$C with the given epi B—>C—>0,
2.11 Intersection of Subobjects

If X1‘—°X then the intersection of the X
the kernel of the map X'—vﬂ'X/Xi .

In Eﬁé the quotients are 0—B

where B

N equals

4 —7C,®B —>C—>0 ,

is the pull-back of C . So the map to

i Li
B—>¢C
the product is 0—~—if *-#;9\? —> C —>0
0—*TrBi*—>7r(CfDB)——97TC-——9O

which has kernel 0.—A —> BOWB, —N—>0 .

i
There is another more intuitive way to construct the
intersection : one has

0 —>A—7B —> M —>0

i :
| " &
0—>A > Bi > Ci——>0 R
where M = cokernel, and M-—-—7Ci induced from M, So

0 —>A ——)71‘81———9 M—>0 1s :.contained in the intersection.

But also, 0 — A — B®KXB,)—>N —0
: i :
“ 3 9 middle map

0 —> A ——V.TBi —2 M —>0 projection
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shoﬁs that the intersection 1s contained in

0-—9A——,7rBi——> M—> 0 ., Hence this is the intersection. To

exhibit an explicit inverse to this isomorphism :
0-——>A-—sﬂtBi—4e?]w—*O
Lt
] S
0—> A-—’BGNKBi)—iN——*O
where middle map is the sum of the identity on 'n'Bi and

-;rBi——bBJ—vB for any BJ',where BJ—>B result from
formation of BJ as pull-baék of BJ--——';vCJ .

A

B —»C
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CHAPTER 3

EMBEDDING OF 'Of‘INTO"g/ks‘AND'PROJECTIVES

We now investigate the intimacy of 07 with its associated
sequence category. In some respects, the situation is simi-
lar to the Yoneda embedding -©  A-—HOM(-,A) , which embeds
07 as a resolving set of projectives 1in thé functor
category.

For each A, choose a projective presentation
0 —3K—>P—> A—> 0 (we assume 07 has sufficient
projectives).

Proposition 3.1 The assignment of projective presentations
constitutes a functor T° o] — £/ .
Any two such functors are naturally

equivalent.
Proof Given a morphism f : A—B , there is an induced
morphism between projective presentations
0—>K—P —> A —=>0
n(r) oy :
0 —>L —Q—>B—>0 £
If two different sequence maps both induce A—>B ,
then the difference is homotopic to zero since right

side is the zero. map A Oi B

Hence by Prop. 2.4 this constitutes . the zero map in
8/¥5 . Hence this 1is a well-defined assignment which
is then clearly a functor ¢/—> &/S.

If Y’/ were defined using different presentations then
0 —K —P —A wY(A)

0 N YTl 6

0—y K'— P'—>A-  7/A)
constitutes natural transformations Y, e , and
(1 -VYa 6% y ~ 0 since the right side of (1- % G4 )
is the zero map A—>A . Hence 1n €/4, Wpand Ba
are mutual inverses determining a _natural equivalence
petween 1 and ﬁ/(in particular different projective
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presentations of A are isomorphic in 2@@5). //
Lemma 3.2 A projective presentation 0 —>K —>P—>A—>0
is a projective object of E&/D .
Proof Let 0 —K—>P —= A —>0 be a given morphism.

| y \)

0 — B'—B—> B"—>0
If E—>B —20 1s epl, without loss of generality
assume B 1s a quotient of E. Then the given morphism
can be factored as

0 ——9!§——*~§—~—9A——~b0

[V v
0 —2>X—>Y —» B"—> 0

E
J Y I ¥
0 —»B'—>B —>»B"—>0 B
Hence 0 —» K—>»P —>A—> 0 has the projective

property. //

Proposition 3.3 The image of 7rf 47"9 5%4 is a resolving
set of projectives.
Proof 20 =K —» P—7A —0 is epli , so result

v v
0 —>C—>B —>A —>0 follows with Lemma 3.2. //

3.4 The Projective Homotopy Category

The additive functor TT: 07-? Zyﬁé has kernel those
objects A of 07 whose projective presentation is zero in
'5/25 , 1.e. 1t splits and so A itself is projective. Given
f : A—B , then T(f) = 0 if

K—»>P—-——>A is the zero map, and this occurs

N v
L~ Q —B

if and only if A——9B factors over Q=B by Prop. 2.4,
Proposition 3.5 For f : A—B , the following are equivalent.
(Hilton [13], page 131)
(1) £ can be factored through some projective.
(11i) f can be factored through a projective
Q, such that Q-»¥B (14r(f) = 0).
(111) f can be factored through any C-»» B.
Proof (1) =P (ii) If f : A—»B = A—»P—>B then
wW(r) : W) —> W (P) —> 7"(B) 1is zero since
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™Pp = 0.
(11)=>(111) Let . C-»B. Then there is a map
0 >K—> P —A M) —E
0 -——af—-—%\é —=>‘1t3———> 0 = E
which factors as Ry
TET)

M(A) 1 (B)—> E
and hence is zero, so by Prop. 2.4 A->B
factors over C. .//

(U

We have now characterized the kernel of and can form

a quotient category Ofﬂf>.'The objects of #VUO are those of
67 , but HOM (A,A') = H0M07(A,A') / 0P (A,A")

9/ ,
~ where (P (A,A') 1is the subgroup of morphisms factoring over
a Projective. Combining results gives

Theorem 3.6 o7 ;E;> £/8 is a full embedding of o /P
\{) u’ as a resolving category of
7/P projectives.

We will now denote ¢f/P e /<4 vy T
Proposition 3.7 9//° has weak kernels.
Proof Let A—>B in o/, pass to &8 , and let

K r>(A)—> M (B) be exact in &/, If (K) —»K

then MWK) — W(A) —T(B) 1is a weak kernel, for 1if

(X)) —> T(A) — W(B) 1is zero

_-T(X)
é.”/, ol \>

¥ (K) —>> K >—> T(a) —> W(B)
there is an induced map into the kernel K, and since
¥ (X) is projective, this factors over MW(XK)->>K. //

Proposition 3.8 If 0—»P—A-—B—0 is exact in o7 , and
P projective, then A->B is monic in /R

Proof Let Q—>B , Q projective, forming pull-back
0 —>P—>E~—~>2Q —0

el

0 —>P—A—>B—>0 .
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Top row splits since Q 1s projective, hence E is pro-

Jective.
If X—sA—B 1is zero in ¢//°, it factors over

Q->>B by Prop. 3.4; hence

X--»E 1nduced into pull-back

so X —A factors over the projective E and is zero in
of/ . So X—> A—>B zero implies X— A is zero and
by definition A-—»B is monic. //

3.9 Example
d/P will not, in general, be abelian. Take ¢= Ab,

% = = frees. Then in Ab/¥ , @ —> @ / Z 1is monic

and epl but not an isomorphism.

Proof HOM, (®,2Z) =0 implies HOM, (&,F) = 0 for
F free. Suppose ® —> X in Ab, then this remains epi
in Ab/P% . For if @ —> X—sA 1is zero in Ab/ ¥ , it
factors over some free H-=X—->A but @ —>F = 0 implies

F
®—> x—a is zero, further implying X—>A 1s zero. In
particular ®@ —>> @/ Z 1is epi and by Prop. 3.8 it
is monic, but this could not be an isomorphism because

HOM4, (§/Z, @) = 0 implies also HOM, ((22/2,42) =0. //

Ab/F
Proposition 3.10 Let 6 be a full subcategory of resolving
projectives of an abelian category c . Then

. the inclusion B> C preserves kernels.
Proof Suppose K—>C:1is the kernel of C—»D in & . Claim-
~ K—C 1is monic in C . Por if N—>K—=C is zero let
B->>N, B in & , then B~»»N—»K—>C = 0 implies
B—?N—K = 0 fufther implying N—K = 0.
Let L —>C be the kernel of ¢C—D in C and let B—»L,

Bing.
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L ,7K———?C >D
Lo +d
," &/ >
B——> L &

g exists since L = ker C—>D 1in C , and K—>C monic

ifplies g is monic. 4. exists since K = ker C—D

in B.
//”T////”C //K-———»C C
B L B B——>L
and the monic L —>C can be cancelled hence /.,i(
B—> L

is commutative, implying that g 1s also eplc, g is
then an isomorphism and K—=C 1is also the kernel of
c—Din C . 7/

Corollary : W+ 07/03 —> 5&5 preserves kernels.

Proposition 3.11 (A remark of Freyd [ 8], page 88)
1f o61/P has kernels, the projective
, dimension of Ebé' < 2,
Proof For N in £/4 , choose W(B) — W(C)— N —> 0 exact,
B,C in 67, by Prop. 3.10 ,
0 —> Y(A) — W(B) — W(C)—> N—>0
for some A 1in of , since W (A) is projective,

p.d.N £ 2. //

Lemma 3.12 If R (A) ¥ W(B) @ X then X T T(B")
for some B'.
Proof . If 0—X —e’iﬁ'(A)——e’W (B)—> 0 1is an exact
splitting, then the map AW (A) —> T (B) arises from
a map A—?B, and corresponds to the commutative

diagram
0 —>K—>P—A—>0
Lo
0—>L—>Q—=B—>0

Forming the pull-back B*—A

l

Q—78B
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the sequence 0 —>B'— A®Q—>B—>0 1is the coker
of W (A)—>T7(B) , which is zero, and hence splits.

Then
X ¥ ker: T (A)—>7 (B) = kerV (A®Q)—>T (B) = 1T (B')
since T(A) =T(A®Q). //

The image of M is a resolving class of projectives, : but
are there others ? To answer this, we mimic a result of

H. Bass, replacing free modules by elements of the image

of W. Assume 07.15 co-complete, if X is projective in Eﬁé
then X @® X' =17 (A) ® Tnen 1f I is a countable index set
X@"\T(?A) X@(}DTT’(A) by 2.8

W u

I® X @®N® X ®x) © ...

Y XE@X)® X®@X)P...

= @ (8) T M (@A) by 2.8
I 1

Proposition 3.13 If ‘07 is co-complete, then every
projective is of the form TT(A) for some A.
Proof Given X projective, one can determine a C such that
X® W(c) ® W(C) by above. Now apply Lemma 3.12:.//

3.14 The Syzygy Functor

The functor ‘W was defined by choosing specific projective
presentations for each object of 07, different choices
giving rise to a functor naturally equivalent to N . Associ-
ated with W, define Z(A) by 0—Z(A)—>P —A—20 = 1T (A).
Z 1is not a functor from of tolﬂ ; however if the target is
Cﬂ/dp, then Z is a functor.
. Deéfining 7 on morphisms by
0 —>Z(A)—>P—> A—0
yAG L f
W R ’
0—> Z(B)—> Q —B—0

if 2(f) is well-defined, then it will clearly be an additive
functor 01——7 °7/ﬁ . To do this, it will suffice to consider

the case f=0, and prove Z(f) = 0; that is, Z(f) factors

over. a projective. However even more 1is true : if f factors
(*for/some A since image U resolves.)
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over a projective (f = 0 intﬂ/f))'then so does the induced

wap ‘Z(A)—>Z(B). In fact, if f factors over Q in the above
diagram, then by Prop. 2.4 Z(A)—> Z(B) factors through P .

Hence Z is a fg?ctor and factors
o —=— of /P

\‘OW - '

It will be more convenient to ldentify Z with the functor

g — of /P .

Suppose Z and Z' are  different Syzygy functors, arising
from different presentations chosen.

Consider
Kl — K!
U |
K—» N-— P! .
i $ !

K—sP——> A

Let 'h, : K—> K@ P' Y K'*'@P—>>K' . Then h, is an

isomorphism in 01/0’ and determines a natural equivalence
between Z and Z°',.

The nth Syzygy functor 1s then defined by

z,(A) = z(Z__,(R)) ,
where Z is now regarded as a functor 6f/® —> 6///° . One can
now extend Z to a functor 5/»(5 — &/ using
3.15 (Freyd [ 8], Prop. 1.2 )

For any abelian category , 1f B3 is a full subcategory

of resolving prejectives, then any functor C; : é3-—9¢25 N

,9 abelian, has a unique right exact expansion G: C—0 .,
B!'—> B —C—0,

Explicitly for each C € C s choose
B,B!' in B and define

B(C) = coker : G(B')—> G(B).

Let A = 0—>A"—A—A'—>0 be exact in o.
Then there exists an exact sequence in Z2/4

(columns are elements of £/4 ), where P, P',P"
are projective.:

Theorem 3,16




0 — K" == K'—> K —>K'—>A"—=0
SRR b
0 —>K—>P » P >P?t - » A—> 0
y ooy (#)
O___,K'———aA"'——’A — At —— AY 5 0
-W

Before the proof, some corollaries.

' Corollary 3.17 If A = 0—A"—>A—>A'—>0 1is exact in ¢/
then 0-—Z(A")—>Z(A)—>Z(A')~— 0 1is exact
in &4 (using the embedding ol &> 27;5).
Proof Using notation of theorem, X = Z(A) , K' = Z(A')
and K" = Z(A") in 47/49, hence in 2}&5 S/

Corollary 3.18 (Remark of Freyd. [8 ], page 109)
(1) The extension of the Syzygy functor to 2%3 is given
by Z(A) = 0—Z(A")—Z(A)—>Z(A')—>0 .
(11) 0—Z(A)—> T(A") —= T (A) —> 7 (A')—>A —0 1is
exact in 564 .
Proof From Thm. 3.16 7 (A") —> @ (A) —> TW(A'")—>A —0 1is
exact for any exact sequence A. By definition of the

extension functor
~
Z(A) = coker (M(Z(A)) —> T (Z(A")))
coker (M (K) — W (K'))
0— K"—K—>K'— 0 (by theorem applied
to K = 0—=»K"—=»K>K'—=>0 )
0— Z(A") —Z(A)— Z(A')—0 in E/5. //

]

Corollary 3.19 (1) is a half-exact functor /> &/,
(11) T is right exact iff Z/4=0 iff all
short exact sequences split.
(111) If T is left exact then proj. dim &/d<2.

Corollary 3.20 (Remark of Freyd [ 8 ], page 109)

is an exact functor &/Jd—> Z/d.

: €0 E/,5 1is the uniquéxg;act extension of

Z : qn@o—-aaﬁap , hence it suffices to prove Z preserves
monics.

Let £ © A—™B be monic in /4

7
Proof f
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f O—> A" —> A —> A'—>0
'fnj/ j/ \L °
0—> B"—> B —> B'—0

Using the canonical factorization of f given in

Theorem 2.7, one can assume A" = B" and f" is the lden-
tity. But then
0 — Z(4) > W (A") —> TU (A)

2 ) N/
0 —> z(B) — T (A") — T (B)
implies ﬁ(A)-—vg(B) is monic. //

| Corollary 3.21 Following is a projective resolution of A :
->7(Z. (A\)——ﬂr(Z (AY) ~9Tr( ';:))9..,77(2—:(/4 ))- —?TI(F) )—>7rm)~>7rm )»ﬂ» ~

Remarks (a) The extension of the Syzygy functor qﬁp’*%ﬁo
is not the Syzygy assoclated with E44 but the
3rd Syzygy functor.

(p) Starting with the diagram
Z(A') —>P'—A!

Wl Lo

00— A" A —> A'—> O ,

let £ =A—A' , [,=A"~?A, fo=-w:Z(A')—>A". This

gives rise to an infinite sequence

"2, (A>2Z, (A)—»z (AT = = Z(A>—+z(/a)—»r4" —»A——#) —O0

Corollary 3.22'(1) If fm factors over a projective then
- p.d. A £ m-1.
" (ii) In particular, if fl factors over a pro-
jective then A = T (A'), and is projective.
Proof In the extension of (#) in Thm. 3.16 to the projec-
tive resolution given in Cor. 3.21, the sequence of
maps fm is formed from the bottom row. If fm factors
over a projective then the corresponding map between

exact sequences is zero. // v
(¢) If £ : A—B in of , let g : @Q—>B ,

Q projective. Then(f) . A ® Q-»yB, and
o -8
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one can define the projective dimension of f
as the projective dimension of
0—>K—= A(MOQ—> B —>0

in Eaﬁé .

Corollary '3.23 (a) If p.d.A"< n then p.d. <£3n+ 1, n20

A
p.d. A< n then p.d.A = 3n, n20
p.d.A'S n then p.d.A = 3n-1, n21
p.d.A' = 0 then A = 0.

(b) If p.d. 6/ < n then p.d. &/ < 3n-1, n>1
p.d. o = o0 iffr E/4 = o.

Proof ‘I kills projectives, apply resolution of Cor. 3.21.//

Remark All results of this section dualize for injectives,

resulting in a functor q.; 10/ — Of /X using
injective co-presentations.

We are now ready to prove Thm. 3.16. The proof commences
exactly as the construction of the long Ext homology se-
quence, and in fact Thm. 3.16 could be proved using the iong
Ext sequence, but we prefer to work within the category EVQﬁ .
Proof of Theorem 3.16 Let P'— A' and P"—>A" , P',P"

projective. Set P = P' @ P", then form (+)

0

N
(]

~

l
RE——0O

N
=0

&
OQ-———{!;(';"U &«
\-‘.

B

ko) <
\!
IR

J

-
u\
TR

-
-

U e

av)
v
o

(+) 0

N

N
=
'
o

0 ——

y

N
O &

y
o €

The maps r,s,u,v result from the splittihg of
P"——=P->P', via canonical projections énd injections
and give the properties of Prop. 2.4, so that « and E
as sequence maps are homotoplc to zero.
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(I) Making use of Thm. 2.7, one starts a projective
resolutlon of " A.

k' (WP an @ (—g) S A

| ' V¥

Kl' Ifé/ —> \\/1:' 06/ ? A" s
_ s

ikw L > A £ > L'

w the induced map on kernels, since the lower
right square commutes by (+). Top sequence is
the kerhel; to continue the resolution, use

Thm. 2.7 agailn to find an epi from a projective
sequence to the kernel. '

(II) K K'®P ——> A"@® P!
| Y l
K 2 > 7 < > A
k| (-r,p)¥ (—f) “
K" -75—9 A" @P' S > A

One need verify the bottom squares commute. For
lower left, one needs k' (3' =/3p which is clear
from (+) , and k'w = -Br , PFor the second
equality apply the monilc f.

(k'w + Ar)f = k'wf + B rf
k'f's + B(«~ ps)
k'S's - Aps
(k'ﬂ' -ﬂpe)s

A simllar calculation for lower right square.
(III) Continuing to project on the kernel, the obvious

choice is (0,A") (p,r)
K" — p > @A"

) J S|

K —? K' ® P — 2 P' @ A"
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However (p,r) : P*®P" =P —p'® A"

: 1 0. :
(p,r) = <0 w.) = 1@®«"
(this follows by definition of r, and s from projec-
tions and injectlions, and diagram chase). So the
top row is isomorphic in &/4 to
0 —> K" -—»P"—sA"—5 0 . We use this
representation, and then compute the kernel

3

(k, ") 0 -1
K" ——— KOP"———-—-—-? Kr®P

PR N I A

K" Pll — A"
K L 1(0,1) l (0,-1)
K ( )e K' ©p Pt @ A"
k" - ! -W
E (£

Lower left commutes by (+). For lower right,

- ' -W
o (# )
For upper right,
(k" ﬁ) (-w)
0 -1 -r

where k'w = —/Sr is proved in (II).
(IV) The kernel of (III) is isomorphic to K"—>K—>K' via

(ip,=fr) = (0,-x") (by (+)).

(-k'w-fBr , ir) = (0,a")

k' — X 5k — K »

‘ (l,u)l i(l,v)

K" ,______;K@n .-’———9 K'

eTey T

K" — X

: O
1= e I}, &I

€
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All squares commute, the only non-trivial one being
the upper right
_ k' B . ( :
(1,u) ( ). = (k',./3 +ul) = (k',v) = ‘k'(1,v).

0 i :

That (1 -0 ) ~ 0 and (1-¥©)~ 0 is clear because

left sides for both are.the zero map and so are

trivially homotopie to zero. I,II,III,IV establish

(#) of the theorem. //
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. CHAPTER 4
" THE FUNCTORIAL APPROACH

Another method of stﬁdying Cﬂ is to study the assoclated
category of additive covariant functors from of to Ab
(Abelian groups) (contravariant). These functor categories
inherit most of the properties pointwise from Cﬂ, and using
the Yoneda lemma, the assignment A —>(-,A) [A-—>(A,-)]
is a full-embedding of 6/ as a class of resolving projectives.
However 1if 67 is not small, these functor categories are |
too large to manipulate. To make the embedding 'tighter',
one can consider the sub;category of coherent functors. F is
coherent if it is the cokernel of a transformation between
representable functors (which are small projectives in
the functor category, so coherent functors are analogues
of finitely presented modules in the module category). The
full subcategory of coherent functors is abellan and has
projective dimension at most two (a quick proof : if F is
cokernel of (-,B)—>(-,C), by Yoneda this arises from
a morphism B—C, 1if 0> A—B-—C i1s exact then
0 —2(-,A)—>(-,B)—>(-,C)—F —>0 1is a projective resolution
of F).

Now the notion of killing projectives, by the passage
Qf—* 0f/¢9, can be combined with the study of coherent
functors by considering the full subcategory of coherent
functors that factor through oﬂ&P; that 1s, those coherent
functors that vanish on projectives. With each coherent
functor, one can associate a left exact sequence 0—2>A—=B—>C
where F = coker (-,B)—>(-,C).

Proposition 4.1 If F is contravariant ..coherent, and
F = coker (-,B)—>(-,C), then F factors through cv?ﬁp
~1ff 0—2A -5B-—>C-—0 1s exact.
" Proof (=) Let B-—->C-—>D-—=0 be exact. Consider

. ,P
%\

PR ‘ , P projective (we assume
B—>C —D —0 sufficient projectives).
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There 1is an induced % since P 1is projective. But
0 —>(P,A)—> (P,B}—>(P,C) —>F(P)—>0 is exact
2 00— (P,A)—>(P,B)—> (P,C)—>0 1is exact, since F(P)=0
== Y can be factored over B

Vl _-oP E P
Yoo /
<y é but then Vv = = Oj
B——> C — D =30 a0 D B—>C —D

= D=o.
= Given 0-—»>A —>B-—>C-—>0 then

0~—~»(-,A)—>(-,B)—>»(-,)—>F—>0 1is exact, so
for any P, 0 —»(P,A)—(P,B) —(P,C)—=F(P)—>0 1is exact.
But any P—C can be factored through the epi B-%>C, so
(p,B)~>>(P,C) , implying F(P) = 0. //

Theorem 4.2 The assignment F +——> (0—> A —>B—>C—0

establishes an equivalence between 5} (the
category of coherént functors vanishing on
projectives), and &/J .
Proof To make this a functor we must first define it in
morphisms. Suppose F —F' 1is a natural transformation
10— (~,A) —>(=,B) = (-,8)—> F—> 0

’
w

0 —>(-,A")—>(=,B")—P(~,C')>F'—> 0
This induces a commutative diagram on the projective
resolutions of F and F', and by Yoneda this arises
from a commutative diagram in ¢/

0 —>A~-» B —>(C —0

S

0 —>A'—>B'— C'—>0
and this can be considered as a morphism in 3%5 .
To check that this is well-defined, suppose
0 —A —>B—>—=0
fii giL hif both induce F—F',
0 — A'—»B'—C+—=0 1 =1,2.
Then the difference will induce the zero transformation
F—F' ; evaluate at C
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(c,c) >F(C) —> 0
Lh-—h jo
(c,B') — (C, C')—>F'(C) —> 0 .
Follow 1 : C—>C, implies - h1 h2 is in the kernel of

(C,C')—>F'(C) , = by exactness that there exists ¥
in (C,B') such that ¥+r— (hy-h,) which means that

h,-h, factors over B'—>C', So applying Prop. 2.4
the difference map on sequences is homotopic to zero,
hence 1s zero in &/S

The fact that the assignment is well-defined
easily yields that it 1s also functorial.

For the inverse, given an exact sequence
0—A—B —C —0, assign the cokernel, and any morphism

of sequences:induces a unique transformation on the

cokernelsv%' .
0—A —B—->(C ——0 :
J I 4 in Zﬂé leads to

00— A'—>B'— C'—0

0 —*(-,A)—> (-,B) — (-,C) —>F —> 0
v v Xy N

0—(-,A'")—(-,B'")—>(~-,C')—>F'—>0
This gives rise to a functor &— é% » and split
seguences are assigned the zero functor, so it yields
a functor gﬂé
Now 07_-, E/A ——>' & is the identity.
Consider E/8 —> & —» £/
say 0—» A—>B—=C—>0 > FH0—-A'—>B'—>C'—20.
Then 0 —> (~,A')—> (- B! )——9(- C')——aF ~> 0"
0 -—9(— A) —> (— B)-—o(— C) —~>E“‘ﬁ0
0 — (JA") —5 (5,B) —= (-, C')——vF—-?O .
Taking the difference of the videntity map and the
composition of these maps, results in the zero trans-
formationn F—>F , so the induced map of differences
between sequences is zero in féé , and hence the map
induced f;gm 0 >A'"—>B'-——-C'—>0 to itself is the
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" A
identity in &8 , hence ¢/ —> &8> 0of 4 naturally
equivalent to the identity transformation.//

The following hold by duality.

F = coker : (B,-)=>(A,-) , then F factors
through O//G) iff 0 2>A—=B— C—>0 is exact.

establishes a contravariant equivalence between
3? (the categary of covariant coherent functors
vanishing on injectives) and &/ .
Corollary 4.5 There is a contravsriant equivalence
between ¢/ and ¢ .
Remarks Auslander provés that 47 is abelian,so Thm. 4,1
would establish that &/ is abelian (Thm. 2.7).. The

proof 1s easy once it has been established that the subcate-

gory of coherent functors is abelian, but this is non-
trivial (Auslander [2 ] ). v
. A or
We now examine the equivalences ¢/, &/, of

and interpret results of Chapter 3 in terms of functors.
. o .

4.6 (a) Injectives in &

The sequences 0—>K—P—2>A —>0 are projective in
&/6 , for P projective, and if ¢ is co-complete all such
projectives are of this form (by 3.2 and 3.13). Under
the contravariant equivalence ¥/8—> 67 , the resulting
functor is

coker : (P,-)—>(K,-) = E}t ' (A,-)

and so these are injective in o7 .

The projective objects 7TZn(A) correspond to the functors

Extn(A,f) and the projective resolution of Cor. 3.21 is
the standard long Ext:homology sequence, truncated of
the first three terms

054 “Ext! (A',-) Ext' (A,-)>Ext' (A",-) Ext>(A",-) 7 ...
This is an injective co-resolution in o7 .
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)

(b) Projectives in of

The functors corresponding to sequences 0 2 K—=»> P—=> A—>0
under the equivalence &/ —> Q7 , are coker : (-,P)—>(-,A).
Now for fixed X, images of (X,P)—>(X,A) are those
morphisms which factor through P and hence by Prop. 3.4
those morphisms factoring through any projective and so
coker (X,P) —>(X,A) = (X,A) / (P(X,A)

= Homg/p (X,A) (Prop. 3.5)

Thus projectives are 'representable' functors

Homw%p(- A) , following Hilton [ ], we denote these as

7 (-,A) (it is for this reason we chose 7/ : qyﬁte>57%5
as embedding functor)
Note that since 7 : ¥/P — &/ is . full,
Hom »,p (X,A) = Homg/g (77 (X), 7 (A)). |
To. carry the correspondance further, set
T o(A) = 77(zn(A)) , and 77n(-,A) = 77'(-,Zn(A)). Then

the projective resolution of Cor. 3.21 is
T (AN D T (A T (M) > TT(A") —» T (A) —> 7T(AT) —> A>0

and correspondingly a long homology sequence (Hilton [ 1)

. .‘Dﬂl(_,A)*7 7[1(",A' ) ’9713(,-,1\-")"?71'(-,1\) —Dﬂ-’A' )"—> é'?o

which is a projective risolution in é?.
4,7 (d) Injectives in ¢

The sequence 0 —2>A—> I —> N—> 0 1is injective in L
for I injective, and if o/ is complete all injectives are
of this form (dual of 3.2 and 3.13).

The co-Syzygy functor W can be defined on /< by
0—>A—=>I—>W(A)—>0 and W (A) =W__,(W(A)).

Finally set

Y(a) =0 -4 —I—>W(A)—> 0, and
V’n(A) = V’(Wn(A)) , so that

—= £/4 is a full-embedding of
/”q/ as a co-resolving class of

°77’ef injectives.
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Now examine the equilvalence 'SZJ““? 67
¥(A) M coker : (-,I) —>(-,N) = Ext'(-,A)
and Y (8) F> Ext™(~,A).

The dual of Cor. 3.21 1is an injéctive co-resolution of
A=0—"A"—=A—A""0 ,

0—>A—s P(A")— ¥ (A=Y (A") ¥ (AM) > ¥ (A=Y (A1) 7.,

and in Q7 this is the truncated long Ext sequence
0 > A—2Ext'(-,A") ’Ext'b-A)“’Ext%- A')—7 Ext2(- JA") .
v
(b)'PrdjectiveS'in'07
With notation as above, these are of the form
coker : (I,=) 2 (A,-) = (A,=) /(A=) = ¥ (A=) .
In analogy with the 7 (-,A) functors, where
J 4A,X) = maps A-3»X which factor through an injective,

and setting SPn(A,-) = L?(wn(A),-) , one gets another

homology sequence
.“ewm"qvvm')>WA4eru4a5%m”

which is a projective resolution in 47
NOTE  W(A,¥) = Hom,,, (A,X) = Homg/g ( #(a), ¥(x))

and W(A,-) = Homg )y (A,-) 1is representable.
We would now like to transfer some homologi¢al algebra into
the category EZé. A )
4,8 Example The functor Ext'(-, Z) 1in Ab corresponds to
the sequence 0> Z > R —> R/ Z o in &[4,
which then corresponds to W(&,-) in io.
The Whitehead conjecture is Ext'(A,Z) =0
= A is projective
A natural dual would then be W (Z,A) =0 implies that A
is injective. This holds.
Proof We show A is divisible. Let a €A and n an integer.
’ We need to solve nx = a

L L GSQ Complete this diagram in Z/A§
a
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0_-,72__’_1'_1.;®—-an2_ —= 0 = W(2)
[
o,—ez\(—-al—-aw(A)——a‘O = Y (n .

By assumption y( Z,A) = Homg/‘é,j (Y(2), ¥) =0,

so there exists a factorization over @(Prop. 2.4), To
solve nx=a, follow 1 from ®R—=A. //

Proposition 4.9 (Hilton and Rees [4], Cor. to Thm. 1.3)
EveryAnatural transformation ' o
©: Ext'(B,-) —2Ext'(A,-)
is induced by a map f :ﬂA——?B.

Proof Using the contravariant equivalence of &/d and 7,

O can be regarded as a morphism from fr(A) to 1T (B) ,
but T : o7/P —=&/E 1is full so this morphism is
induced from a morphism A—>B 1in 4009, and hence
represents a morphism £ in o . //

Proposition 4,10 A hap f : A—B 1induces the zero map

Ext'(B,-)—>Ext'(A,-) 1ff f factors over
a projective.

Proof The map f : A—»B regarded in Q%P is zero iff f
factors over a projective. Since 7 P—> /4 is
full, the contravariant equivalence of &[4 and &7
gives the result. //

Proposition 4.11 (Auslander and Bridger [ 4], Thm. 1.40)

0—>P(A,B) —> (A,B)—> [Ext'(B,-),Ext’ (A,-)1—>0
i1s exact. [ , 1

natural transformations

Hom set in functor category

Proof 0 —=2P(A,B)— (A,B)—AaTT(A,B)—A;O is exact by defin-
ition.
X (A,B)

Homq/f(A,B)
Homg/g (T (A), T (B)) . o/e - &8 is full

Homy (Ext'(B,-),Ext'(A,-)) contravariant eq.
of E/S and &
[ (Ext'(B,-),Ext'(A,-)] since the subcate-
gory é? is full in the functor
category.//
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We also extend a result of Hilton and Rees [#“], Thm.2.1.
Theorem 4.12 For f : A—B, the following are equivalent :
(1) Ext'(B,-) >» Ext'(A,~) 1is monic.
(i1) Ext'(B,=)>—> Ext'(A,-) splits.
(11i1) There exists B' with
Ext'(B,-)>>Ext'(A,-) ™>>Ext'(B',-)
‘ (split) exact.
(iv) W (-,A)~—>> TT(-,B) epi.
(V) w(-,A)—>» T(-,B) split epil.
(vi) There exists B' with
0— T (-,B")>> T (-,A) =T (-,B)—>0
(split)exact.
(vii) W (A)—>>W(B) epi (in E/8).
(viii) W(A)—7 ar(B) split epi.
(ix) There exists B' with
02>MW(B!') 5T (A)—->1w (B)—™ 0
split exact.
(x) Given Q=7 B, Q projective, A@®Q—>>B splits in O7 .
(x1) A—>B 1is split epi in O&//P.
Proof If (vii),(viii) and (ix) are equivalent, then
category equivalences handle (i) through (vi).
(1ix) = (viii) = (vii) trivial
(vii) = (viii) since N(B) is projective in E/h.
(viii) =>(ix) by lemma 3.12.
(1x) & (x) is done in proof of lemma 3.12.
(x1) & (vii) since d/P—> &/& is full. //
Theorem 4.14 If‘°7 is co-complete, then every direct
summand of Ext'(A,-) is also of the form
Ext'(B,-) for some object B. (Auslander [3]).
Proof This is a restatement of Prop. 3.13 using contra-
variant equivalence of g8 — ﬁ ./
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Corollary 4.13 For f : A—>»B The following are equivalent
(1) Ext'(B,-)—>Ext'(A,-) 1is an isomorphism.
(i1) W (-,A)—TM(-,B) 1is an isomorphism.
(11i1) W(A)—>T(B) 1is an isomorphism in &[S .
(iv) Given Q—>B , Q projective, then Q ® A—>> B
splits and has a projective kernel.

(v) There exist projectives P,Q with an isomorphism
A@Q—B®P , where f is the component A—>B.
(vi) A—>B is an isomorphism in &f /@ .
Proof Again (1),(ii) and (iii) are equivalent by category
éqgivalences, and (1i1) & (vi) since |
T:o/P >> ﬁ/é is a fully faithful embed-
' ding. (i1i)=>(4iv):By Thm. L4.12 B'>> AGQ-»>B splits;
then T (B'@B) ¥ WB') ® TB) T W) =T(4)
implying W (B') = 0 so B' is projective.
(iv) = (v) = (vi) trivial. //
Remark Condition (v) is the definition of stable isomorphism.
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CHAPTER 5 :

“ PURE AND COPURE SUBCATEGORIES

We return to the internal structure of 5%5 by consider-
ing the subcategory of pure and copure sequences. Before
doing so, we establish a few lemmas.

An object in an abellan category is called small if
any map into an arbitrary sum - ° factors through a finite
sum via the canonical map of the finite sum into the total
sum. An object is finitely generated if an eplmorphism to
it from an arbitrary sum can be reduced to some finite sum
and can remain an epi.

Lemma 5.1 For any abelian category, a quotient of a small
object is small.
Proof Let B be small, and C—%GB%_ where C is a quotient
of B /%in . A finite sum @in
By C _—”G)Xi

4

v
D

exists which factors the composite map, since B is
small. Taking coker D , then B~9>C-v&ﬂi—;>D is
zero, and B—»> C. 1is epi, so can be’cancelled. Hence

C —»@X, factors through ker :@Xi——»D , which is @in.

//

Lemma 5.2 In any abelian category, a small projective

is finitely generated.

Proof If(]xf—§7 P , P small projective, it splits so
P——aCﬁxi——a P the identity for some P——?(@Xi . But
this factors through a finite supsum

P—> @)X, —> @, —»P ,
and hence @;X; —>@X; —5 P 1is epic. //
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Lemma 5.3 If C is small in ¢/, then 0 —>A —>B—C —>0
is small in &/48 .
Proof 0-—=A -—->B— C >0 1is a quotient of T(C), so
by lemma 5.1 it suffices to show M (C) is small.
Given 0 —» K —=>pP —3C—> 0 = T (C)

v { J

0 -—9(£mi——>(9Bi->éﬁci-——"90
then C"”CECi factors through a finlte subsum and

0 —> K —» P —>C —>0

A

. Y4
0 —s @:;A —@,B ———)JJC — 0
y J

0 — @A; —>@B, —BC;—7 0

.18 a factorization of the sequence morphism through

a finite subsum.//
Lemma 5.4 If C is finitely generated in 0 then

0 —>A-—>B—> C 0 1is finitely generated in.Zﬁé.

Proof 0 ->A-—-B—->C—=>0 1is a quotient of M (C), which

is small and projective, hence finitely generated by

lemma 5.2. Hence also 0— A—B —=C—>0 1s finitely

generated.//
Remark It is not true for abelian categories 1n general
that finitely generated implies small or vice versa,
and a direct proof of 5.4 avoiding smallness is non-trivial.

Assume O has a generating set of small projectives

(in particular o/ will be locally small, i.e. every object
has a set of subobjects). So one can consider the set of
finite presentations 0—>K —>P—=A-—>0 , P finitely gener-
ated projective, K finitely generated. Let Y be the full
subcategory generated by this set. Objects of J are
guotients of direct sums of finite presentations. Define S
such that Homé%é (3/,AV) = 0, 1.e. a seduence is in Ay'if

~S
the only morphism from a sequence in <J 1is zero.
For 01= MOD R, ASY is the class of pure sequences (in
the sense of Cohn, remaining exact under tensoring; for .a
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proof, see.my Masters Thesis, Gentle [12], or Fieldhouse[é6]).

So we adopt this terminology and call K? the category
of pure sequences and <r'thé category of copure sequences.
Clearly A and J are additive. Much of what follows is
standard .'torsion theory' simply applied to the pair
(J,S5) but will be included for completeness, and for ease
of reference.
Proposition 5.5 (1) érlis closed under quotients (taken in

/4 ).

(11) If T, > T, is epi in J’, then it

is epi in E/é .
(1i1) 3~ is closed under colimits (which
are taken in E%é)
Proof (1) Trivial by definition of J J” (this is non-trivial
if one first defines purity in Cohn's sense).
(11) Suppose T, =T, 1is epi in 37, and 1let

T,—>TI,—~>X Dbe zero. Then T, — T, »»T >»X 1s

also zero (factoring T, —»X Into -epi-monic).
This implies that T,—> T, -» T is zero. But T

1s in I by (1) so T,~—>T is zero since T, —>7T, 1s

2
epl in J”. Hence I,—>X is zero.
(ii1) T 1s closed under direct sums, so combined with
(1) gives result. //
Proposition 5.6 I,—™ '_:1‘_2 is monic in & iff its kernel 1is
pure in £/4 .
Proof & J Jis additive, so we need only show T“—aTdf—>T2

—> T, factors

zero implies T —» T, zero. But T — T,

' 5_/

through the pure kernel K. ;*-“ S t T
But then T—> X is zero implying that T-—»Tl is also

zero.
=) Form the kernel K. If T-3K with T in 3’ then
CISK T, T, is zero, so =  T»K»T, 1s zero.
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Cancel the monic to get T—»K is zero. Then by defi-
- nition, K is pure. //
Proposition 5.7 Jis closed under extensions.
Proof Suppose 0—> T, -ag——»g_éséo is exact. By definition
of &, one can choose projectives (also copure)
with P, —=>T, 4P, 5 + Since X—>T, the map
P, —>T, factors over X—=>>T, . Then the sum map

- T

P;@B,~>>X . Hence X is a quotient of P, ®p, and

1s in J°. //
Theorem 5.8 For any sequence E there exlists a subobject T
in 3 with
0»2T-—>E-»>»3-~0 , S in/SJ,

and T is unique with this property. (Character-

ized as being the largest copure subobject of E.)
Proof Let E=0— A~—B—>C~—>0 , and {Xi} be the set
of finitely present objects of ¢/ . For each )(i , let

Y = ® . X where X is a copy of X
i ge(x ,C‘)“:‘i’g isg i
i
for each g of Hom of (Xi,C) . Then ‘there is a canonical
map' Y, = @ Xy —» C , the image being the trace of
(X, ,0)
Xi in C, Set Y =@Yi , and Y—> C the sum map.

Now form the pull-back T from this map
0 —> A —YE-— Y —0

] y y .

0x~>A —>B —>C —0
T is a copure subobject of E (it is a quotient of W(Y)
and Y is a direct sum of finitely presented objects).
Claim T 1s the sum of all copure subobjects of
0—A-—>B~—>»C—0 . In fact, any copure subobject is
generated by 1mages of morphisms Tr(Xi)-9§., which
are of the form

Ki——* Piﬁ Xi

T

A—>B — C
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Since xi~—>c factors naturally through Xi—-?Y —>C,

there is a factorization TW(Xy) W (Y)—E . But
the map T (Y)~— E factors as mW(Y)->> I>> E . Hence
all copure subobjécts are contained in T,
To prove S 1s pure, it suffices by Prop. 5.5 to
show it has no copure subobjects., Suppose X223,
" X copure,, In &/4 , form the pull-back
0T —E'—>X —0
T I \ .

0—>T—E —>'S —=0
"E' > E 1is monic (pull-back of monic is monic). E' 1is

copure by Prop. 5.7. But _'I_‘_f:“.'is sum of all copure sub-
objects so E'™E factors over T. Then

T—E' T —E" T
e = N = .
T—E E T—E

Cancel monic to get — B! . Hence E'»T 1s

/l-

also epl and so an isomorphism, which then implies

k=13

T—E' 1s an isomorphism and X its cokernel is zero.
For unigueness, If 0 »>T'—> E— §'— 0 with T
copure, S' pure, then the maps induced on kernels and

cokernels T —E —3
¥ i <
T'— E— 8§
v I %
T—>E— 3

gshow that T = :I‘_" as subobjects of E. //
Corollary 5.9 E is copure iff Hom (E,S') = 0.
Proof = By definition of &

& Form 0 —T —E—>S —>0 as in theorem. S=0 so

T = E is copure. //

An object X in 01 is called pure projective 1if given
X

v

0—> A —>B~— C0=E
with E pure, there is a factorization over B. This 1s
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-
equivalent to ¢ (X) being in J . By construction of
xSY , the set of finitely presented objects are pure-
projective,. and clearly direct sums of pure projectives
are pure projective.
Suppose now X 1s pure projective, so that

0—>L—>P~—»X-—>»0, P projective is in 3" . Then using

the construction of the largest copure subobject,

Y =@®Y Y = @ X
i > i gG(Xi,X)i’g 3

the subobject 0—>L —»E —»Y —>0

I

0 —>L —>P—>»X—>0
is actually the sequence itself, i.e. the cokernel
is zero, i.e. it splits. The cokernel is
0 —>E—>P®Y—>X—>0.
Hence X is a direct summand of P @Y. Now O has a
generating set of finitely generated projectives (by
assumption) , so P can be taken as a direct sum of
finitely generated projectives, thus establishing
Corollary 5.10 (i) An object X is pure projective iff it is
a direct summand of a direct sum of

finitely presented objects. //

For any C there is a pure sequence 0 —>» N—>»X —C —»0
with X pure projective. In fact, take X = P@ Y of the
theorem, with P taken as a direct sum of finitely generated
projectives. This property is usually stated as the property
of 'sufficient pure projectives' in the literature. This
is well-justified intuitively, but also in the following
sense : that the sequence 0— N —>X—>C — 0 1is
projective 1n AY.

In fact, we have an exact sequence 0—T —M(C)— S—>0
where S = 0—>N—2X—>C—>0 1is pure and T is the maximal
copure subobject of T (C).

Suppose 0 — T — T (C) — S —» 0

1] ,l
v

S5,
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There is an induced map from TN (C) by projectivity, but
this will factor through the cokernel of 0-—>T —>TT (C)

since T is copure. Then W(C)—> 8 T(C) *(C)—> S
8,—s; s, s, S,

Cancel epl to get S—>S; factoring over S,=» .5 So

_1‘
S is projective in /SV.

Now suppose E = 0—>A —-»B—>C—»0 1is pure. Then
T — W(C)—> S shows S—>»>E ,
1.
thus establishing
Corollary 5.10 (ii) Given C, there is a sequence
0—>N—>X—> C—0 in 5 which is projective
as an objJect of ﬁy, and X can be taken to
be pure projective. Every pure sequence
0—>A—>B—>C—»0 is a quotient of thils
sequence. Hence as an abelian category,f;
has sufficient projectives./7

Lemma 5.11 (1)ASyis closed under subobjects (taken in g/d).
(11) '\Ts is pure iff all S, are pure.
(111) &' is closed under limits (taken in Z/d).
Proof (i) S is pure 1ff S has no copure subobjects, so (1)
is trivial.

(11) X~—>‘“'S is zero iff X—?TrS —)Si is zero for

all 1, so (ii) follows from Hom (J A?)
(111) follows from (i) and (11). //

Theorem 5.12 £;>—+'546 is a full exact'émbedding. (i.e.é?
1s an abellan full subcategory of i/,é and the
inclusion is exact).

Proof It will suffice to prove A; is closed under quotienté

taken in EZé

Let S—) S'. We need to show that T(C)—S' is
zero for C finitely presented; but T(C)—>S' factors
over S by projectivity, and this must be zero since
S 1is pure. //
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Proposition 5.13 Ayis closed under co-limits,

Proof By Thm. 5.12, it will suffice to show 5  is closed
under direct sums.

If 7’[‘(0)—-»@8i , then since TU(C) is small by

lemma 5.3 (if ¢/ has a generating set of small projectives
then a finitely génerated object is a quotient of a
small object, hence small; so C is small), we have
’R‘(C)-—i@J Si~-°-*®si for some finite subsum, but

a finite sum is also a finite product, so @Jsi i1s pure
by 5.11 and R(C)—> @J S; is then zero. //

Proposition 5.14 AV is dense in EZJ (Closed under sub-
‘objects, quotients and extensions).
Proof All that is needed is extensions

'

I
"
Consider O —35; /X —>S,—=0 , with T copure,

Then T —X factors through the kernel of X—3, since
I —X-—S, 1s zero. But then also T—S, is zero, result-

ing in T—X zero. //

We now recall the definition of a torsion theory
(Dickson [5 ], pages 223-235) for an abelian category C
is a couple (J-,?;) of classes of objects of & satisfying

LWINF = {of
(11) If T —>A—>0 1s exact with T€ J’, then A T .
(111) If 0—>A —>F is exact with F€ P, then Ae F .
(iv) For each object X of C » there is an exact sequence
0 —T-—=X—sF—0 with T¢J , Fe 7.
The pair (JF,S ) is thus a torsion theory for Z/4§, and
by theorem 5.12, ,Syis closed under quotients, so it is
cohereditary.

We will return to the study of these subcategorlies as a

torsion theory in a later chapter.

right adjoint.

"" -



46
(ii) The inclusion W: S — €[4 nhas a

left adjoint.
Proof Define ¢t(E) and r(E) by
0 —> t(E)—> E —>r(E)—>0
with t(E) copure and r(E) pure (using Thm. 5.8)
(for torsion theories t the radical, r the coradical).
Then the uniqueness and Hom (:T,A?) = 0 easlly shows
t and r are functors |
Hom 5 (T,t(E)) = Homg, , (J(T), E)
is simfly the statement that J 1s closed under
quotients.
Hom o (r(E),S) * Homg s (E, u(8))

assigns E -———‘9/,.((8) the induced map E —> S
R ol
v P
r(E)
out of the cokernel r(E), since ¢t(E)
" E—> S

is zero. //
Remarks J 1s generated by b?(xi} , X finitely presented,
a set of small projectives. This would yield an abundance
of results if J were abelian because then j’ would be
equivalent to a functor category. Unfortunatelyfr will
rarely be abelian as is suggested by prop. 5.6. On the other
hand, A? is abellan, however it is doubtful that it will ~
have a generating set of small projectives. Indeed, 1t
will even likely not be locally small. That is, subobjJects
of a given - ‘object may not form a set.

As to throwing the pair (3’,5’) into the machinery of
torsion theories and localization, the major obstruction is
that all such literature on the subject imposes a minimum
condition that the underlying category be locally small, and
more usually that it is Grothendieck.

Just when is 'fAé Grothendieck, or even just locally
small ? The next section will take this subject up.
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5.16 Finiltely Presented Objects

(a) We assume o/ is equivalent to a functor category

(co-complete with a set of generating small projectives).

In particular, of is Grothendieck and every object is

a direct limit of its finitely generated subobjects.

Suppose X 1s finitely generated. Then X is a quotient

of a finitely generated projective. Form 0—>K—P—X—0,

then K = 1inm Ki R Ki finitely generated subobjects of K.

Then 0— K —%P——Bxi-—-a(i)

Vool .

0—> K —» P —X —0

The Xi are finitely presented and X = lim Xi . Every

object will be a direct limit of its finitely generated
subobjects, which in turn are direct limits of finitely
presented objects. Combining these limits gives that
every object 1s a direct 1limit of finitely presented
objects.

(b) Suppose P 1is a small projective. Consider a map
P-—algﬂgYi (direct limit over a directed set). Now we

have an epi C)Yif-y>lim Y, , soby projectivity

@Y. —> 1ny
i =5 1
But P is small so this can be reduced to a finite

subsum. Then since this is over a directed set, there
exists a YJ with P —— l1lim Yi . This establishes

\ —
AYJ. el

»:1im Hom (P’Yi) = Hom (P,lim Yi) ,
where 1lim Hom (P,Yi)-—a Hom (®,lim Yi) is the unique

map out of the direct 1limit induced by the compatible
maps Hom (P,Y,)—>Hom (p,1im Yi) which arose from

Yi——é lig Yi
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Proposition 5.17 (stated without proof by Stenstrom [24],
page 323)
If A is finitely presented, then for any direct
system (Yi) , 1lim Hom (A’Yi) = Hom (A,lim Yi) .

Conversely, if 1im Hom (A,Yi)——>>Hom (A,ligmi) for

any directed system, then A 1s finitely presented.
Proof Let P'—»P —->A—0 be exact, P, P' small projectives.

0-—y1}§ Hom (A,Y,) —> 1lim HomﬁfP,Yi)———»lim HOT;(P"Yi)

oy e

1
0 —>Hom (A,lig Yi)~—9fkm1(P,11g Yi)——$»Hom (P',1im Yi)

implies that the left side is also an isomorphism.
Conversely, 1f A = lim Ai for some directed system
(Ai) of finitely presented objects, and if

lig Hom (A,A,)—»»Hom (A,lim Ai) = Hom (A,A)

then thé identity factors over some A1

A. '
,/” 1\u . Hence A is a direct summand of a
A =—— A
finitely presented object and is also finitely presented.

//

5.18 Construction of Pure Sequences

Suppose 0 —>A—»B—»C—>0 1is exact, and C = linm Ci R

Ci finitely presented. Form the pull-backs

0 —>A—>»B,—m>C,—>0

i i
| A

O~—>A—>B—=>(C —=*0 .
Then in the category & , 0—>A—>B—>(C—>0 is the direct
limit of 0-—»A-—»Bi~—9ci——90 . !

Now if 0—» A—B—=C—>0 1s also pure, then each

0——5A-—%Bi-’ci——90 splits since it is a copure subobject

of a pure object, hence zero. So a pure sequence is a
direct limit of split sequences, in £ .

Conversely, given such a direct limit and a map from a
finitely presented object
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J

g Ay Ug B> UL Gy :

=]
>
|
[
=]
o
| —
o

X factors over C, for some j, so X

s

0 —> Ay —> .BJ;'—'.__; Cy —>0

{ ¢ )

0 —>»1im A, — 1im B, —=1im C
— 1 ——y i —— i
shows X —=1im C, factors over 1lim B . Thils shows the

limit sequence is pure, establishing

Proposition 5.19 0 —>A—»B—C—>0 1is pure iff it 1is a
direct limit, in & , of split sequences.//

Corollary 5.20 0 —>® Ai———%TfAi———a E—> 0 1s pure.

Proof This is the direct 1limlt of sequences
0—=@a, — T a,—>E;—> 0, J finite. //

Corollary 5.21 (of Prop. 5.17) The sequence

0—>K—>@ A, —> 1im A

i———aO

used in the construction of direct limits from
the sum is pure.
Proof If X 1s finitely presented, then any X — ;1g A
P hence 'chrough@Ai Y.

i
factors through some A
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CHAPTER 6 2

PURE SEMISIMPLE CATEGORIES

Rather than impose that £/& be Grothendieck, we will
find sufficient conditions on 07/ to force E//é to become
Grothendleck. -

Suppose £/4 has a generator 0 —>A—B—>C—0, so
X (C) also 1s a genefé’cor. C is an object of ¢/ and we can
assume it generates of . (If necessary, replace Cby COU,
with U generating :¢f , and 0 —>A-—>B— C—0 with
0—A—>B@®U—-CHU—20.)

Given X in 0/‘, form E = 0—>K—@;C —>X—0 for some

direct sum of C. Now m(C) generates this sequence, SO
@ K’/t‘(C)-)? E for some index set K. Then the cokernel must

split, and this 1s the sequence.

0 -—9L—%(®k O®(®; ¢) —>X—>0 , L the
kernel of the sum map. This gives the nontrivial part of
Proposition 6.1 ¥/3 has a generator iff there exists

an object C in_°7 such that every object of q7 is
a direct summand of a direct sum of copies of C. //
By Prop. 2.8, if Of is (co-)complete, then so is EL& .
This is condition ADb 3(*) . Condition Ab 4 is ' : given a
family of monics {,Ai'J’Bi% , then @Afﬁ@ By is monic

. (Mitchell calls this condition Cl)'

Proposition 6.2 01, Ab 4 —> €/ , Ao b,

Proof If A, - B, are monic, realize these as

7" 1
0—-—>Al.i ———>Ai—-—->Ai — 0
v l l ¢
0 -—BBi"——-—b Bi-———>Bi'——-—>0

Then the kernel O —-9Ai"—->AiC+) Bi"——-a E; — 0 splits.

The sum map 1s Orﬁ@i" ___>@Ai = ®Ai‘ — 0

0 @8, "—» @B; —>@B, '—> 0
with kernel 0 —@A,"—> (@B,") ® (@Ai) —> E —>0.
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But (@Bi") @ @n,) T @ (B;" @Ai) , sSo the sum

of the splitting maps splits the kernel sequence.
Hence @ﬁi—e@_B_i is monie. //
A category is C2 if for any direct sumC’Xi , the natural

map(:)Xi-—a.TrXi is monic. Module categories are trivially

C2, in fact most reasonable categories are 02. However

this is a very deep imposition on ¥/4 .

Proposition 6.3 £&/4 1is C, 1ff given any set of monics
¢;—D; in ¢, the map @, —>( Il ¢ )DED,)
splits.

Proof This is simply a restatement of the definition from
[ toof ,1.e.®C > (Tg) ©® @D))—>E—>0
is the kernel of the map from sum to product. //

Lemma 6.4 Given A—B monic,and A—>I, I injective. If

A7 B®1I splits, then A>> B splits.
Proof Lift A—>I1 to B-gLaI. Then
(a)
A>>»B—> B@I = A>» B®I splits and hence
also A>—>B splits.
(Note In ¥4 jargon, the kernel of
0—>A —> B —> N—0
L_Po. L H
0 —> —»E —>N —>0

splits hence 1is zero, so this 1s an isomorphism, but

the bottom row splits because I is injective, hence
top row also :splits.) //

A locally Noetherlan category is a Grothendieck category
having a set of Noetherian generators (i.e. Mod R 1s locally
Noetherian iff R is Noetherian). When Cﬂ has a generating
set of finitely generated objects, this is the equivalent
to the condition that the direct sum of injectives is
injective.

Corollary 6.5 If O] is locally Noetherian, £/ is C
C)Ai———QTTAi splits for any direct sum.

Proof Take A,—> I, , I, injective, apply Prop. 6.3 and

Lemma 6.4, //

iff

2
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At this point Of will become : a module category over
a ring R, although much of what follows probably generallzes
to functor categories.
Definition (a) M is Pure - injective if given any map

O-—%A-——)B—""-C-———»O

|

M
with 0-—>A-—=B—>C—>0 pure, A—M
factors through B. This is more frequently
called algebraically compact.
(b) M is 2 -algebraically compact ( Z pure-
injective) if any direct sum of copies of
M is algebraically compact.
By a Theorem of Wolfgang Zimmermann [2%], this 1s
equivalent to 0—>@  M— T M splitting for arbitrary

sums of ceoples of M.
(Note - Cor. 5.20 gives the implication one way.)
Theorem 6.6 The following are equivalent .
(1) A1l modules are algebraically compact (pure injective).
(ii) All modules afg pure projective, '

(111i) All pure sequences split.
(iv) All sequences are copure.
(v) €Ly 1is c, and 67 1s locally Noetherian, -
(vi) /4 1is C, and has a generator.
(vii) <£/50 1s Grothendieck.
(viii) £/ is equivalent to a functor category.
Proof Equivalence of (i),(1i),(iii),and (iv) is playing

with language.

(1v) = (viii) The {K———»P——a A} = ot of finite projective
presentatiqhs, P finiltely generated projective, K
finitely generated, 1s a generating set of small
projectives in the co-complete abelian category 2%5.
Hence ¥/d is equivalent to ({*,’ Ab).

(viii) =2 (vil) = (vi) trivial.



(vi) =>(v) By Prop. 6.1, every object of O07/= Mod R >3

is a direct summand of a direct sum of copiles of some

fixed module (subobject would suffice). This implies

that R is Noetherian (e.g. Fuller & Anderson [1 ],

page 297 Cor. 26.3).

(v) =>(1i) By Cor. 6.5 ,()Bm—anM splits for arbitrary
sums. Applying the Zimmermann result- gives that

. every M is Z: algebraically compact.//

Corollary 6.7 A ring R satisfying the condition of the

theorem 1is artinian.

Proof Since all pure sequences split, flat =» projective
(M is flat iff 0-—>A—>B-—=M—0 pure for all
such sequences)., Hence R is both perfect and Noetherian,
which implies Artinian. //

Corollary 6.8 The conditions of Thm. 6.6 are also equivalent

to : every module is a déreet sum of
finitely generated modules.

Proof A module is pure=projective iff it is a direct
summand of a direct sum of finitely presented modules
by Cor, 5.10 (i). |

Now each finitely presented module is a direct
sum of indecomposables (necessarily finitely presented)
with local endo morphism rings since R 1is Artinian.

By a theorem of Crawley-Jonsson-Warfield and its ‘
corollary ([ ], pages 299-300), any direct summand of
a direct sum of finitely presented'modules with local
endomorphism rings is again of this form. A

Conversely, R is Noetherian (again see reference in
(vi):%>(§) of theorem). ‘
Hence we can assume finitely presented instead of
finitely generated, and so Cor. 5.10 implies that all
modules are pure-projective. //
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6.9 Remarks
Can the condition of Cor. 6.8 be weakened to 'every module

is a direct sum of indecomposables' ? For there is a
striking similarity with the rings satisfying Thm.6.6 and
semi-simple rings. For semi-simple rings, one has that

(1) all sequences split ( &[4 = 0) ; and

(i1i) all modules are direct sums of simples
are equivalent statements. Replacing all sequences by pure
sequences and simples by finitely generated indecomposables,
the equivalente remains intact. Daniel Simson has coined
(or at least prohotes) the name pure semi-simple rings for
the rings satisfying pure = split. For semi-simple rings,
one has the Wedderburn structure theorem, which uses
matrix rings as building blocks. Is there a structure
theorem for pure-semi-simple rings, and what is the suitable
replacement for matrix rings (simple rings) ?

The Wedderburn theorem yields two important results
That right semi-simple =p left semi-simple, and a quick
proof that there are ohly finitely many non-isomorphic simples.
Even if there is no structure theorem akin to the Wedderburn,
is it true i1that right pure semi-simple = left pure
semi-simple , and 1s there only a finite number of non-
isomorphic (fi;itely generated) indecomposables ? Towards
a solution of these problems, M. Auslander has shown that
a ring is both right and left pure semi¥simp1e iff it 1is
of finite representation type (left Artinian, with a finite
number of non-isomorphic finitely generated left decompo-
saples). So the problem becomes one of showing that left
pure semi-simple rings are of finite representation type.
A great deal of effort has been put into this. I had the
opportunity to talk to M.Auslander (and others at the
Canadian Mathematical Conference, Decémber, 1980) concern-
ing this problem. M,Auslander at first thought the proof
would be straight?forward, and in fact thought he had
solved it, but caught his own error when writing it up.
Kent Fuller was 1¢ss fortunate and Auslander caught his

- deeeTlL T e . cs . Pd p—
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mistake during Fuller's presentation at a ring theory

conference.D.Simson even less fortunate, published an
incorrect proof, agaln error was pointed put by Auslander,
(see Simson [23]). L.Gruson also believed he had solved
the problem but fell short of completion.

As of December 1980, Auslander still felt that left pure
semi-simple = finite representation type, but had
stopped working on the problem. Kent Fuller also had given up,
commenting that he felt it was 'undecidable', and that a
solution would 1nvolve set theoretic considerations (akin to
Martin's axiom for the solution of the Whitehead conjecture
that Ext'(A, &) = 0 =» A 1s free), and D.Simson now
believes the conjecture is false.(see Simson [231).

It is unfortunate_that .at present I cannot conquer the
dragon. However I hope that the previous discussion
indicates that this is an important area of investigation.
So the following reeults may seem lacking in content
standing on their own, but the hope 1is that they can be
used as bullding blocks towards a solution.

The first move towards a solution will be to express the
condition of finite representation type into a statement
concerning E/xb (a more categorical condition).
Proposition 6.10 A ring R is of finite representation type

iff fibé is equivalent to a module category.
Proof =P Rings of finite represented type satisfy the
conditions of Cor. 6.8 (see for instance Fuller &
Reiten [©]). So Z/& is a functor category with
the set of. {.KfaiP—a A} of finite projective
presentations as a set of generators. But if there is
only a finite setiof finitely generated indecomposables
this can .further be reduced to a finite set. So
¢/ has a small projective generator and is co-com-
plete, implying that it is equivalent to a module
category (the ring belng the endomorphism ring of the
small projective generator)
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& By Thm. 6.6, &/& 1is a functor category with
{W(A)_}= { K—>P—>A} , with A indecomposable finitely
presented, as a set of small projective generators.

Lemma 6.11 (1) If A has a local endomorphism ring, then

7 (A) is indecomposable projective (also with
local endo_morphism)

(11) 0 # W(A) = T(A') 1iff =+A=A' (where A'
has local endomorphism).

Proof.. (1) Trivial since End (7T (A)) =< End A/P(A)
( P(A) = endomorphisms factoring over a projective)
(i1) If T(A) ¥ Tt(A') this isomorphism must arise

from a map A—>A' inducing the isomorphism

0—>»K—>P—3>A—>0

T T

0~ K'—>P'—A'—0
But then the cokernel is zero, i.e. the sequence
0 —=>E—>P' ' MDA—>A'—=0 splits. But since
A' has a local endomorphism ring, P'® A—> A'—>0
splits, forcing P'— A'—0 or A—A'—0 to
split (see Lemma 6.14 ahead). The first would
imply T(A') = 0 (i.e. A' projective). Hence
A—>A'— 0 splits, and so must be an isomorphism.//
Proof of Proposition 6.10 continued
. So {ﬁt(A)} , A indecomposable finitely generated, is
a generating set\bf small indecomposable projectives

with local endomorphism rings. Then U = (:)ﬂTAQ
‘ iel

taken over the set {Aii of nonisomorphic indecomposable

3

finitely'generated\ modules, 1s a '‘generator. Now, by
assumption, £/x) has a small projective generator, so
there is an epil ()(J——ﬂbv. But then the splitting monilc
Vr—>® U can be reduced to a finite subsum of copies

of U, and then further reduced to a finite subsum of

{W(Ai)} . That is, there is a splitting V.>— G)?T(Ai).;
- finite

this implies that @W(Ai) is a generator. Now
' finite



57
“glven any AJ , ﬂT(Aj) is the (split) epi image of

( ® T —»Tay
finite
for some n. But 7t(Aj) has a local endomorphism

ring soA7r(Ai)-—9>‘n(AJ) splits for some i, by the

Lemma 6.11, Ai’%’.AJ . Hence there are only finitely
many nonisomorphic Ai . Hence R is of finite representa-
tion type (R is Artinian by Cor. 6.7). //
'6.12 Remarks
Thm. 6.6 was proved for 0/ a module category, the crucilal
step being the use of the Zimmerman result that M 1s
Z -algebraically compact 1ff @I M——»'“-IM splits for
arbitrary index sets I. All the rest of the theorem is
valid providing that 07 has a generating set of small

projectives and is co-complete (i.e. a functor category).
The Zimmerman result probably holds for functor categories,
but I have not proved it yet. This raises the question of
generalization simply for the sake of getting new results.
The theory surrounding Thm, 6.6 arises from pure-semi-simple
rings which are important enough to neglect the added
constraint of proving the result for functor categories.
However one is faced with problems which ‘‘can not be
dismissed as Just 'generalizing'. For the conjecture is
now: Eb&functor category = Z/[.3 module category .
If the problem is to be solved, a first battle plan would
be to study £/ as a functor category. To a great extent
this will require verifying that certain ring theory
results hold in ~ functor categories, so we will assume
for the next section that 07 is a functor category with
a generating set {Rx} of small projectives.

For the results concerning semi-perfect objects, the
proofs in the ring theory case (module categories) can be
found in Mares [ 18].
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6.13 Baer-Injective Test
X 1s injective 1ff X is injective relative to {Rm§ .
Proof Consider A>—3$B . Let A be a maximal extension

]

X

in B. (Zorn's lemma can be used since there is only

a finite set of non-isomorphic monics into B). Assume

A # B.

Form K—>P—>C X (C)
v ¢ | ¥
A—E—>C E'
| S ¥
E—>B—>T 'E
| }
X ——sI—> X' J (X)

where C 1s a non-zero finitely generated subobject

of C , by assumption K — & —>X can be lifted

to Py , i.e. W(C)—»> E'>—>E —>f(X) = 0 where

¢ (X) is the injective sequence. Hence E'>E —al(X) = 0
which means A— X can be extended to E (Prop. 2.14).

But E>> B since it 1s a pull-back of the monic

C>»C . Then the maximality of & implies that A>— E

is an isomorphism =» C = 0 a contradiction. //
Lemma 6.14 If C has a local endomorphism ring and

n e n
@® C;—>7C split then ci——>® c,—>C
splits for sQme i.

" Proof Let c?i = C >——>®ci——>>c and-

n
Wi = C>—*'GDCi——+7Ci where Y i1s the split.

i

Then Z:\Vi(fi = 1, 1in End C. So at least one of

C
the \.viwi is a unit, implying that W, is a split

epl. // :

Lemma 6.15 If P is indecomposable projective with a local
endomorphism ring, then P—>>X 1s a projective cover.
(That 1s, all subobjects are superfluous.)




59

Proof Let -0 —>K-—>P— X —>0. Assume K—>P 1is
not superfluous, then there exists Y&—> P with
K+ Y=P, Form
0—> K—>P—>X—0" T(X)
g v —
o—»K'—»Ef—»ﬁ——»o_ | @ .
o——=£——-»1>——=x——~vo, T (X)
Let ({ be P—> Y—> P, Consider the difference 1-&@

0 — K — P—»X—>0
d |1 lo .
0 — K— P—>»>X—>o0
Commutativity implies 1-® 1s not a unit in End P,
hence ® must be a unit since End P is local. Hence
Y &>P is also epi, implying that Y = P. //
Remark If C is finitely generated with local endomorphism
ring, then TC(C) 1is a small projective with .local endo-
morphism ring in ibé , and all its subobjects are super-
fluous. If (C) had only a set of subobjects, the total
sum would be the unique maximal subobject of T(C) (since
T (C) is a small object, a direct sum of proper subobjects
1s proper ) , and so the quotient would be simple. Un-
fortunately, this quick way of producing simples will fail
if there is more than a set of subobjects.
Lemma 6.16 Let 0 # X be a small subobject of A, such that
X ¢ N, N € A. Then there is a subobject N
containing N maximal with respect to not contain-

ing X.
Proof Order the subobjects of A containing N but not X.
If N, N, N C;%'Nu ... 1s an ascending chain,

1 2 3

1t ¥ = UN, . Since X is small, X& N. This is

the essence of smallness, so we give a proof : let
P be a small projective with P—»>X. Form
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Py @Y,
A ,
X c;————et)Ni =N

assuming X <> N , P is small so there 1s a factor-
ization through a finite subsum

P—-—->®N s ®ON,

Z] &
=)

Ny
\//
By diagram chase, E
v ////7

and the epl P —>> X can be cancelled, so X— N— N/N,

—> / Ny

=2

N —>

L]
o
-

/ Ny

b

is zero and X—> N can be factored through NkC——-»ﬁ s

that is X <> Nk contradiction.
Hence Zorn's lemma can be applied to achileve
maximal elements. //

Corollary 6.17 If X + N = A and N i1s maximal with respect
to containing N but not X, then N is a
maximal subobject of A. //

Corollary 6.18 Rad A = 2_ superfluous subobjects of A..

Proof Definition of Rad A =_/\ maximal subobjects.

If X is superfluous, and M is maximal then
X+M#£ZA D X &M
Since any object is the directed limit of its
finitely generated subobjects, and finitely generated

implies small (if there is a set of small projective
generators, see Lemma 5.2) , it suffices to show that
small subobjects X of Rad A are superfluous.

Suppose X + N = A, If X & ‘N , there exists a
maximal subobject'not containing X, by Cor. 6.17,
which contradicts X & Rad A. //



61
G.M.Kelly [1#] defined the radlcal of a category by

}(Hom.o’(A,B)) {fetion(,B) | 1-gf s a unit in End A
for all g€ Hom(B,A) j’

Equivalently, _
- {feHom(A,B) } efeRad(End A) YgeHom(B,A)§
Equivalently,
=,{feHom(A,B)[ 1-fg is a unit in End B
for all ge Hom(B,A)}
Equivalently,

{ feHon(4,B) | fgerad(Ena B) VgeHom(B,A) § -

Thel next_proposition is a simple extension of the fact
that Rad (End P) 1s the set of morphisms with superfluous
images. In fact, the proof is almost identical, but 1s
included for completeness. '

Proposition 6.19 .~ iy If7 P 18 projective, then

(Q,P) 1is the subgroup of morphisms with
superfluous 1lmages.
Proof Suppose md 1s superfluous, ({: Q—>P.
Given anyi'w/:‘P;;>Q,
P=1Im 1 = Im ((-IP-—‘HQ) +  ww)

S Im (1, -yYe) + Im (¥YW)
so P = Im (1P—\M) + Im (4Q ). But if Im U is

P

superfluous then so is Im WU , hence Im (1P -4Yy¢) = P,

.lP -Y§ is an epl, P—>P hence splits implying it
is a unit in End (P,P). So by definition ( is in
Rad (Q,P).
Conversely, if W& is in ;L(Q,P) suppose K + ImW = P,
then Q > P—>P/K 1is epi , and

P
5T \L"" gives (1 - s )h = 0.
e v
> P —
g PR Y,

But if & eé(Q,P) , 1-s® 1is invertible hence h is
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- zero implying K = P , so Im (@ is superfluous. //
Corollary 6.20 Red P =Im ( ® ( ®. P, , )  where
< qey(p )

P i isomorph 0o f P f ach
2 S an morphic copy of E or eac

we (B ,P) and P, ,—>P is the map .
Proof By Prop. 6.19, if Qe}(P‘&:P) then Im() is

hence the image of
((:L «:)R&QQ ))—>P
is contained in Rad P,
Conversely, let X be any small object of Rad P,
Then X is superfluous in P. Letting E—>>X , by
Prop. 6.19 again P ~>>X<—P lies in 9,(2(,P). Since
Rad P is the sum of its small subobjects, this implies
the inclusion the other way. //
Corollary 6.21 Rad P # P for P projective (an extension
of a theorem of Bass, see Prop. 17.14 in

superfluous?

‘Fuller & Anderson [ 1 ] for module case).
Proof If Rad (P) = P , then ‘@ ( @P_  ,)—>>P 1is epi,
' . 3

A
hence splits. For each P«_@“‘IT*P » let @ be
>

P—®(®P, ,)—2sP (first map the split monic),
H
i.e. the 'dual basis'., For X a small subobject of P,
the split monic factors through a finite subsum of
®(®r_ o ) » Which means that there is a finite set
’ -

LQi with (1 - Z:&i Q&)I the zero map (on X).
X

A
But since the sum is finite, Z:Qitfi €Rad (End P),
implying that 1 -~ Zf&i Qi is invertible, which

is 1mpossible, hence Rad P # P. //
Corollary 6.22 If P is a projective summand of ‘A and
P < Rad A then P = 0.
Proof Let X béefihitely generated, hence small subobject
of P. Then XS P € Rad A = 2. superfluous
= by smallness, that X is superfluous in A. Since
P 1s a direct summand, this implies X is also super-
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fluous in P, hence X & Rad P. This implies that
P = Rad P , hence P = 0, // _
A semi-perfect object 1is definéd to be a projective
object sueh that all its quotiénts havé projective
covers.

(i) Rad P is superfluous in P
(11) P/Rad P 1is semi-simple
(1i1i) each simple component of P/Rad P has a
projectivé cover.,
Proof (=) To establish (i) , let Q->>P/Rad P be a
projective cover, claim Q ¥ P
Form Qr —> P —> %'————9 0
o;-,Rad P ————3\11-—>> P/RAA P — 0
The map P-—-»Q resulting from projectivity of
Q must be epi since Q—» P/Rad P 1is a cover.
Hence P—»> Q splits and Q' 1is a projective
summand of P contained in Rad P )'=§ Q' =0
by Cor. 6.22, hence Q¥ P and Rad P is super-
fluous. '
To establish (ii) , let P/Rad P—>»V . We
must show that this splits. Let Q—>>V be a
projective cover, and consider
K

,‘/$ '
———+> ﬁ '
P/Rad P-——>7V

There is an induced map from Q —»P which is a
split monic since Q —»V is the unique projective
cover. Then K is superfluous in Q hence in P,
and so K— P/Rad P = 0 inducing a map out
of V = coker : K<>Q. This is the required
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split since

Q
i
= = P—>V

— J 1l

P/Rad P —7 V P/Rad P—=>»V \'f
Cancel the epi Q—»V.
(iii) is obvious. ,

(&) Let A>»—P , we want to construct a projective
cover for K = coker : A>>P . W.l.o.g. , Rad P & A.
for consider

A — > P —» P/A —> O
! | &

A +Rad P—? P —> P/A + Rad P ——>» O
P/A—P/(A + Rad P) is superfluous, for its
kernel is (A + Rad P)/A which is superfluous in
P/A, since Rad P 1s small in P. Hence a projective
cover of P/(A + Rad P) will also be a projective

< O

<= O

cover of P/A.
So assuming Rad P & A, consider
0 —»Rad P — P —P/Rad P —0

[ Y -

g ——» A —»P —> P/A —> 0
Since P/Rad P is semi-simple , so is P/A.
Let P/Rad P ¥ P/A@ X with P/Rad P= @ sy

iel
and P/A ® s, , X @ s, J asubset
JEJT Y k € I\J
of I, -Si ‘simple objects. Let Pi—-—-*'Si be project-
ive covers, and consider
C;EIFi
-G By

2o ’

-
-

< ~ A
P — P/Rad P = (& S.) (G S.)
(OJ' 1 @ OT.E\:T k
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VY exists since@Pi is projective, it is epi >

since P—>P/Rad P is superfluous, hence it splits
because P is projective. But then KerV & ®Ki

< z: (superfluous subobjects of (:)I Py )
Rad ((:& P,) 1is a projective summand of the

radical and is zero by Cor. 6.22. Y is thus an
isomorphism, implying that (:& Ki is small in

't Py, which implies (:% KJ is small in(jﬁ PJ R

SO C)J PJ——e?(:h‘Sj = P/A 1is a projective cover.//
Corollary 6.24 A finite direct sum of semi-perfect

objects is semi-perfect.//

We return to the category /8 . By Lemma 6.15, indecom-
posable projectives with local endomorphism rihgs are
semi-perfect. Suppose C 6‘@7 has a local endomorphism ring.
Then N (C) is projective with local endomorphism ring, hence
semi-perfect. If n
C=@Ci'>

n
with each End (Ci) local, 1((c) = (E)?T(Ci) is then

semi-perfect by Cor., 6.24.

Now if _ €/ is a functor category , {TT(CM)} with Cq
finitely ..presented and End (Cy) local 1is a generating
set of small projectives. Hence every finitely generated

object of ib@ is an epimorphic image of C) 'ﬂf(C*)
finite

for some finite set and thus has a projective cover ; this

establishes

Proposition 6.25 If &8 is a functor category, it is
semi-perfect ( finitely generated objects
have projective covers).//

Remark For Grdthendiéck categories, the condition 'the
direct sum of injectives is.injéctive' is equivalent to
locally Noetherian. The proof parallels the module proof
using the Baer-Injective test as formulated in 6.13.
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By Thm 6.6, &€/5 a functor category implies &7 is
'locally Noetherian, which in turn lmplies the direct sum
of injectives in ¥€/§ 1is injective (since &)QDAi)’g(:XJ(Ai) ,

where oJ (A) = 0—>A—>I—N—>0 1s an injective co - pre-
sentation). So since &/84 will in this case also be
Grothendieck, this yields that €/& 1s locally Noetherian.
Thus if 07 is pure semizsimple, thén £/4 1is a semi-perfect
locally . Noetherian functor category. Next, we show E%é is
in fact perfect.
Theorem 6.26 If 6f is pure semi-simple, then E/J 1is
a perfect, locally Noetherian functor category.
Proof We need to show that each object has a projective
cover. To do this, it suffices to show that every
projective is semi-perfect. And since {7((0¢)} R
where Cy 1is finitely presented and indecomposable,

is a generating set of projectives, we need only show

that @@ T(C, ). is semi-perfect for arbitrary index
x€eT

set I.

Now T(C,) is semi-perfect by 6.25. Hence W(C,)
satisfies the three conditions of Prop. 6.23, and
the last two will also hold for arbitrary sums of‘ﬁ(qi)
so it suffices to prove that the radical of

@ T (C,) 1is superfluous. The following lemmas hold
oel

for a general abelain category 67.
. n .
Let ®Ai and @Ba-_be finite sums in %/. Then
n M ,
Hom @A,., ®B,) = M (Hom (A, ,B,)) [nxm matrices].
i J n n,m J i*™j
Lemma 6.27 O\(Hom (®a , ® By y) = Mn’m (}(Hom(Ai,BJ)))

" ProofThis follows ea§ily from
é(Hom (AI@AZ,B))”’- }(Hom(Al,B))@ g(Hom(Az,B))

and

Y (Hom (4,B,@B,)) ¥ }(Hom(A,Bl) @ >(Hom(A,B2) ).//

- . -~
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The essence of this lemma is that
n

m,
f @Ai—»@B is in the radical

J
if and only if the component maps

fi’J P A DA @Bj—fw> B,
are in the radical. The extension to arbitrary sums
is the following result.

Lemma 6.28 Suppose f : ® A —> ®A, , I
‘ o«e I sel

arbitrary, A, objects of o/ , has the property

that each compnnent
i : A, S>@A, —> @A, —> Ag

*,B 3

lies in C}(Hom(Ai,Ap)). Then 1-f is pure monic,
Proof q@IA“ is the filtered direct limit of “@JA‘* R

J a finite set. SO
® (1-0) ;

A %C%:Ad’
U
Q A"‘T—) @ A

~gives 1-f as a direct limit of the maps (1-f)ng

Hence it will suffice to prove that these are
split monics.
Now

(-0
@) A L@ Ac—>@; A,
is the matrix map (1 - (fd.@)) where (x,p) range

$hrough J ; this is a unit by Lemma 6.27; hence
(-DJ A,—>®@; A is a split monic. //

We now return to the hypothesis that q7 is pure
Semi-simple.
. ‘Corollary 6.29 If O7 is pure semi-simple, then
Rad (End (®A,)) consists of those maps whose
components lie in >(AouAp) for each o, 3.
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Proof The set of such maps 1s an ideal containing
the radical, hencéiit suffices to show that 1-f
is a unit for such an f. But by Lemma 6.28,
1-f is pure-monic and hence splits. //

. For objects A,B of O7 , the natural map
;e Hon%V(A,B)——9> Hom€u§7r(A),7t(B)) sends gl(A,B)

into (( T(A),7T(B)). If A,B are lndecomposable with

local endomorphism rings, then }(A,B) equals

Hom (A,B) for A,B non-isomorphic, and equals the unique

maximal ideal of End (A) for A ¥ B. So in these cases,

N (f) lies in the radical only if f does. (For inde-

composables with local endomorphism rings,

A ¥ B iff Ay T T (B) . )

Corollary 6.30

Let ®C, be a direct sum of indecomposables
with local endomorphism rings in 07. Then
Rad (End T( ®© C,)) consists of those maps
whose components lie 1n<£>(7r(q¢),7r(gs)) for
each d,ﬁ.

Proof The implication is trivial one-way. So suppose
M(f) is a map in End (M(® C,)) whose components
lie in the radical. These components can be
represented as ﬁ(-fw/&)

furp c. > D¢ < @c,—>> Cq .
And since C , qﬁ have local endomorphism rings,
I;,p lie in <}(C‘,L,Cﬁ). Hence by Cor. 6.29, f lies
in the radical of End (®C,) and so MU(f) lies
in the radical of End (X ® Qa)‘ //

Corollary 6.31

(End P) = Hom (P,Rad P) for P any projective

in €4 . ©] pure semi-simple)
" Proof Any projective in ZJé is isomorphic to (a direct

summand of)ag%fkkqxl_ for a sultable index set I.

Now if R(f) € é}.(&nd P) , its image 1s
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superfluous by Prop. 6.19.. (holds 1in any abelian
category), hence ~.TU(f) can be regarded as an
element of -Hom (P,Rad P).

Conversely, if T(f) : @7A(G,) —>BT(C,)
factors through Rad @ 7(C.)) = @® Rad w(C,) ,
then

/K(foc.,(s) :’)'C(C“)—>®7KC°L )—@® Rad’]((coc)c_;@ﬂ'(cx)_>>7{(cﬁ)

factors as ’»T(Co()—aRad'lt'(C/j)C——)’/‘r(C/;)

and hence has a superfluous image since Rad'ﬂ(qﬁ)
is superfluous in ‘ﬂigé) (It is a small pro-
jective). So by Prop. 6.19 each‘ﬂ(ﬁxye) lies

in éHom (7((00‘),’7(‘(0'5)) and by Cor. 6.30 7U(f)
is in the radical.//
... Corollary 6.32
Rad P is superfluous in P, for P any projective
in Z/4 (¢l pure semi-simple).
frool @n(C,). Suppose
N +® (Rad T(Cy)) @7T(C.) . Then the epil
N® (@ Rad (C,))—> @7 (C,) splits , so the
idenéity can be written as
@7 (C ) >> N® ( @ Rad 7 (C,)) —>> @T(C,)
that is, it is the sum of
@7 (C,) —> D Rad 7(C)—> ®T(C,)

Proof Again w.l.0.g. P

and
@T(C)—> NSs>@T (G,) ; but the first lies
in \End (CD?T(Q‘)) by Cor. 6.31, so this forces
the second to be a unit, and so N = @7(C.//
This also completes the proof of Theorem 6.26.//



One now has

Corollary 6.33 O is of finite representation type iff
22&5 is equivalent to a module category

over an Artinian ring{
Proof Prop. 6.10 and Thm. 6.26 yield result. //

70
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CHAPTER 7
" THE REPURE "SUBCATEGORY
In Chapter 6 we concerned ourselves with the situation

in which every sequence was copure (pure semi-simplicity).
The other extreme is more familiar : "all sequences pure"
is Von Neumann regularity. We return now to the general case
and investigate the relationship between the pure and
copure sequences.

The category AV of pure sequences is a full exact abelian
subcategory and is dense in ?Qgé (Thm.5.12, Prop.5.14).
For the moment, we turn our attention to density. Let C
‘be any class of sequences in Eﬁ, the sequence category.
Denote by 6%1 (respectively, @é ) the corresponding class

of monics (epis). C is called a proper class if (Maclane [
page 367)

P.l1. Every split sequence is in c .

P.2, If %,6 e C . then Jxe € if defined.

P.2 1if x\/g e Ceo » then ﬁxe Ce if defined.

P.3 If Bt e C_,then = & C .
p.3" Ir Bt € C_ then B e C_.

e e

]

Denote by C the class of representatives of C in g/ .

Since we will always regard spllit sequences as zero, we

tacitly assume P.1 is satisfied.

Proposition 7.1 C is proper iff C is dense in £/,8 .

Proof Remark This is fairly routine , Jjust a matter of
reformulating the concept of proper in its 'proper'

setting. That is to say, the axioms of properness
seem more awkward than the concept of deﬁsity. The
details are as follows

(&) P2 Let X be A>>B, B be B™C. Let « be

the corresponding sequence A >—>» B—>>A' and
"2 bve B>»>C—>yB'.
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Consider the morphism in €/.3

Taking the kernel and image in &/3 (using Thm.2.5)
leads to

A —B®C — D K
Y
S 5
B —>» E ——> (! L ¢
I | Y !
B ——s ¢ —> B! é

“represents a subobject in €AY . Hence K is in €
and L is a subobject of /é hence also in C , but

0—>K~—> S<—>L—>0 1s exact in E/d, so L«

is in € . This gives B e Cm and P.2 is established.
P.,2 is established in a completely 'dual' fashion.

P.3 Again let & = AS»B—> A" and (8 = B>C—2B'
with f«in C .

m

Forming o )
A—> B — B!
I L

'[Ee—l&

A— C—>C' _

shows that « is a subobgect of AX, so « 1s in C.
*
Thus « is in Cm , establishing P.3. Again P.3

is a dual argument. _
(=) Let C be a proper class. First we show C 1is
closed under isomorphisms in E&/& .
Let E¥ E' with E in C. Factoring the iso-
morphism in canonical method (Thm. 2.5)
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00— D—>B'®MBC—>C'—0

0—> A —A'"@B—>D—>0 K (=0)
I Y Vo Y
0—>A —> B —> C —>0 "E
{ \ l D
0—>A' — D —> C —0 "D
I \ ) y =
0—> A' —> B' —> C'—0 E'
l 1y ! Y
N

(=0)

Kernel and cokernel are both split sequences and D
is also isomorphic to E.

By P.B* , D-»C is in fe, so D is in C, hence
A'>>D is in Cw. . N splits so lies in C. fThen
A'>—D>—>B' @ C , which equals
A'>->B'>>B'®C, is in C. by P.2. Then P.3
gives A'>> B' in C.so E' is in C .

Supposes now 0-—>E; —E -:—9 §3-——-> 0 1is exact
in €] . Since by the above C 1s closed under
isomorphisms, we can represent this exact sequence
in ZLZ) as a quotient with corresponding kernel :

0 — A — A'®B — B' —>» 0 E

=1

Ny 1} !
0—>A —@8> B —> C —> 0 B,
{ | | v

0 —>A' —> B' —> ¢ —— 0 E,

(a) If E, is in C, P.3 gives A>—»A' ®B in Cm so
- M
E, is in C , and P.3 gives B'—>C 1nC_  so
E, is in C .,

—

(b) If E; and E; are in C then A'@®B —»B'—=»0

*
and B'—C— 0 are in Ce and by P:2>

A'@B—>B'—»C—0 = A'"@B—>B-—-»-C—>0 is
*
in ee . Applying P.3 gives B—C in Ce R

hence E, 1s in C. This establishes the density
of C . //
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Remark A dense subcategory of an abelian category wlll be
a full abelian subcategory with exact inclusion.

Returning to the category of pure sequénces, by
Cor. 5.10 (1i1) , &' has sufficient projectives. This
result rests upom the fact that given an object C of Q7,
there is a pure epli X—»C —>0 with X pure projective.

If CV,is a module category, then given C there is a pure
embedding C—>Y with Y pure injective ( = algebralcally
compact, Warfield). Stenstrom has extended this to
functor categories.For the remainder of this chapter, Q/ is
a functor category.

Lemma 7.2 If 0—C—Y—>N-—>0 is pure exact and Y is

pure injective, then it 1is the unique maximal
pure subobject of the - injective &J(C) in &/S
(contains all pure subobjects of &J(C) ).

Proof Suppose 0 —>C —E — 72 —>0

hoLod

0—=C—>I—>C'—>0 = ) (C)
1s a pure subobject of &f(C). Then 0—>C—=E
L’/

11§ts to Y.Since Y is pure injective, this ylelds

0 —C —=E — 72 —=0

L , showing that 0 —>C—>E—>Z—0

0 —C —Y —N—0 is a Subobject of
0—>C —=»Y—>N—>0, //

Corollary 7.3 (1) Every object E of /4 has a unique
maximal pure ‘subobject t'(E).
(1i) t' 'is an additive functor.
Proof Let E = 0—>C—>D—>C'—50. Then E <><}(C) and,
by Lemma 7.2 and Stenstrom's result, o«9(C) has a

unique maximal pure subobject S. The required maximal
pure subobject of E 1s the intersection of E and S.-
The uniqueness of the maximal pure.subdbject follows
from the uniqueness of S and easily establishes that
t' is an additive subfunctor of the identity. //
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At this stage of the development, it will be useful to
introduce a new subcategory R ; for want of a better term,
R will be called the répure subcategory. Define ' Re &
iff Homg 4 (5, R)=0

Since <5 is closed under epis, this is equivalent to
having no pure subobjects. (A?,ée) is a torsion theory
since &Y is closed under quotients and sums and 6€is its
‘complement’

Proposition 7.4 (1) &£ 1is closed under subobjects.
(11) If R,—>R, is monic in & , then it

is monic in &/D .
(111i) £ is closed under limits (which are
taken in &[S ).
Proof Dual to Prop. 5.5. //

Define r'(E) by exactness of

0—-—>t'(E)—-°E -—~>r(E)——-—>O .
Proposition 7.5 r' is an additive functor and r'(E)
lies in & .

Proof This holds in'a general torsion'theory setting,
but we supply proof in our setting. Functorially
of r' follows from that of t'. Form the pull-back 1n.q@
0 —>t'(E) — E' —>. S

o ¥

0 —>t'"(E) = E —» r'(E)—0
where S is a pure subobject of r'(E). Since S is
dense, E' is pure, so E' =2 t'(E). . since t'(E)
contains all pure subobjects. This forces t'(g) =
yielding S = 0 hence r'(E) € R . //

Corollary 7.6 S is pure iff Hom g/ (s 63) = 0.

Proof (=>) by definition of & .

(&) Consider S—>*r'(S). Since this must be zero,

t"(8) =8. // |
" Proposition 7.7 514~éf§2_is epl in ée‘gngits cokernel
is pure in Eﬁé .
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Proof the proof is almost 'dual' to Prop. 5.6 but using
Cor. 7.6 in place of actual definition of purity.//
7.8 Characterization of t'(E)
The explicit construction of t'(E) is as follows
given E = 0-—~»C—>D-—>C'—>0 , let S = 0—>C—=>Y—>N—0

be pure exact with Y pure injective. ¢t'(E) 1s the
intersection of S and E in & (C) which is
0—>C—=>D@®Y->M—0 (2.11) .
Proposition 7.9 " has sufficient injectives,
Proof Pure sequences of the form 0—>C—>Y—>N —0 ,
with Y pure injective, will be .injective in S s
and any pure sequence 0—>C—>B— A—0 will be embedded
in 0—C— Y—=N—>0. Proof is entirely dual to
proof of Cor. 5.10 (ii. ) which shows Aﬁ has enough
projectives. //
Proposition 7.10 (1) u :§'e—> &/ has a right adjoint t'.
(11) 7 : R <> £,8 has a left adjoint r'.
Proof Dual to Prop. 5.15, but we shall supply it
(1) Homg (S,t'(E)) = Homz%é(/u(§), E)

follows from the fact that the image of S—E
lies in AV', and so can be regarded as.a map to
t'(E).
' =
(11) Homéa(r (E), R) Hom £ (E, IL(B))

assigns g'—aaqfﬁ) the unique induced map

E—> R
Y A out of the cokernel. //
r'(E)’

‘Remarks The existence of the unique maximal pure
subobject could have been established directly as the total
sum of all pure subobjects, provided there were a set of
pure subobjects. However this is doubtful. On the other
hand, the maximal copure object can be explicitly -~ calcué

lated as the pull-back of B—>C and(BXb~470, the direct sum
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of finitely presented objects, the sum taken over the set
of morphisms from finitely presented objects to C.

(see 5.10)
0 —>A——>E ——eiI)Xf Tt

Ny y

00— A—>B —s C —0

= ~
] *’)Im

The key ingredient is that.jl has as generator the set
of finite presentations. Indeed, this was how 3 was Y
defined for us. An alternative approach is to first
define AV, purity in Cohn's sense, by means of the tensor
product. Then J  is defined by T € G’ iff Hom (T,4) = 0.
One must then show that 5 has finite presentations as
generator which would then yield the maximal copure sub-
object as above.

The advantage of this approach 1s that g and.@a can
simultaneously be defined. However one needs to verify
that the class AV can act as both the torsion free part
of a torsion theory, yielding § as torsion, and the torsion
part of a torsion theory, yielding ﬁi ¢s torsion free.
On the whole I feel the approach 1s easier to define J first
then 5 and fina11y<K . But now does duality really preside
for J° and R 2 Most of Chapter 7 was a dualization of
Chapter 5. However does the key fact concernihg (T'dualize?
Does é( have a set of cogenerators? We investigate this
topic further in the next chapter. '



78

CHAPTER 8
LOCALIZATION ‘AND COLOCALIZATION IN - Z/As

The triple (CT,;SZIQ) is a T.T.F. theory for £/
(torsion-torsion free). That is, (J,d) and (&,K) are
torsion theories.

We have an exact sequence

| 0—s>t(E)—E —>r(E)— 0
where t(E) is the unique maximal copure subobject of E,
and r(g) is pure. t 1is the right adjoint of the inclusion
:fC——a Z/8 + r is the left adjoint of the 1nclusion,6ﬂ3?éag,

We also have an exact sequence

0 — t"(E)—>E — r'(E) —> 0

where t'(g) is the unique maximal pure subobject of E
and r'(E) is repure. t' is the right adjoint of the inclu-
sion <~ g/d . r' is the left adjoint of the inclu-
sion K> =2/4 .

This holds for general T.T.F. theories in abelian
categories, and most of what follows could be formulated
as results for T.T.F. theory; at times one must impose
the existence of enough projectives and injectfves (which
€/ has) but reasonable abelian categorles have these
propéerties. However we stick to the notation of iﬂ;é rather
than attempt complete generality. Unfortunately a few
definitions must follow 3 we shall disbose of them
immediately before applying them.
8.1 Category of (Additive) Fractions

Let 0/ be an (additive) category, and J_ a class of
morphisms. The couplé (T, 01:) is a category of (additive)
fractions for Q7 and Z , if O/ 1is an.‘'(additive) category,
T an (additive) functor 0/—> 07y , such that T(s) is an
isomorphism for any se 2. ; and universal with this property.
That is, if T' is an (additive) functor 07— a3, with
T'(s) isomorphism for s € 2 5 there 1is a unique )
(additive) functor T such that TT is naturally equivalent
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to T!

Cz{ T R C;/ commutes in the category
Pl
. Z ‘ of (additive) categories

5 : and T is unique.

.
v

il 03

8.2 Divisible and Codivisible Objects

Let (¥ ,W) be a torsion theory,.in an abellian category
@B . Bes3 1is called divisible (codivisible) if
Hom6 (-,B) (HomB(B,—) ) is exact on all short exact

sequences 0— X'—>X-—X"—0 with X"éV (Xre M/).

1.e. 0 —>X'—>X —X"—0

-
.
.

BA’
X' —B 1ifts to B provided X" is in V .

i-en ’B

’
’
4

&
0—>X'—> X —»X"—>0

B—> X" factors over X provided X' is in)( .

8.3 Localization and Colocalization

notation as in 8.2
g : A—B is a localization
( f : B—A is a colocalization )
if ker g and cok g € \/ , BE W and B divisible
(1f ker £ and cok £ ¢ W , B ¢ ) and B codivisible).
(Co)localizations are unique and if every object has a
(co)localization, then (co)localization becomes an additive
functor (Tachikawa & Ohtake [26]).
"8.&'Category‘of'Fradtions‘Relative'tO'a‘Dense‘Subcategogy
Let Ci be an abelian category and.f§ a dense subcategory.
Define a.class<z: to be those morphisms whose kernel and
cokernel lie in D . If sz the additive category of
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fractions exists, it is usually denoted ‘5/23 Popescu [22]).

‘8.5‘(CaiSectidanundtor

Let T :C—> C;QB be the functor associated with the
category of fractlons.

If T has a left adjoint S, ,Z‘) is called a localizing
subcategory and . S is called a section functor ( Popescu
[22], page 174). (if T has a right adjoint R, D will be
called colocalizing and R the .cosection functor).

8.6 Outline of Remainder of Chapter 8

(1) For the torsion theory (GJ,AV), localization exists,
which will be denoted S(E).

(ii) For the torsion theory (472/{) , colocalization
exists, denoted R(E).

(111) LV is a dense subcategory of 5ﬂé ; the category
of fractions ( £/ )/ 4§ exists and is abellan, and
in fact equals J /N R .

(iv) ¥ is both %?calizing and colocalizing.

(v) *

commutes; t is right adjoint to g e éQQS
r' is right adjoint to colocalization
. T = r't is right adjoint to colocalizatlon
so R is left adjoint to T and is the cosection
functor. ’

(vi) Eﬁé <

NS

also commutes : r' is left adjoint to R c—> EAOS
t is left adjoint to localization
T = tr' is left adjoint to localization
so S is right adjoint to T, and is the section functor.
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Note We will need to establish T = tr' = r't .
(vit) (7/)/{ is a functor category.
(viii) Consequences of (vii)

" Remarks. Popescu handles the general theory of localization
in his book, but we cannot appeal to the results (which
would yileld (iii) the existence) because of his tacit
assumption that the underlying category be locally small.
(sets of subobjects) . We have the advantage of dealing
with an abelian cateoory Eygg with enough projectives

and injectives, but the disadvantage of being unable to
assume locally small.

Lemma 8.7 (i) t preserves monics and epics.
(ii) r' preserves monics and epics.
Proof (1) 0 —>t(E)—> E-—>r(E) —>0
N
0 —=t(F)—>F —>r(F)—>0
and map §3—>E_induces unique maps, t(E)—> t(F)
(into_kernél), and r(§)~—»r(g)‘ (out of cokernel)
making diagram commute. These are the maps
t(g) and r(g).
If g is monic, clearly t(g) is monic.
If g is epi then the connecting morphism
from ker r(g) to coker t(g) is epi, but ker r(g)
is a subobjéét of r(E) which 1is pure hence
ker r(g) is also pure and then coker t(g) is an
epimorph of ker r(g), and is also pure. But it
is also an epimorph of t(E) hence copure. Thus
coker t(g) = 0. .
(1i) Argument is dual (epi easy part, monic using
connecting morphism). //
Lemma 8.8 (i) If A—>B has pure kernel, then so does
t(A)—>t(B). ’
(11) If A— B has“pure cokernel, then so does
r'(A)—r"(B).
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Proof (1) ¢t(A) —>A—> r(A)

t‘(lxg)——s l}:3_.__>::"(L_B_)
ker (t(A)—> t(B)) &> ker (A—>B) by ker-coker
sequence.//
(ii) Dually.
Proposition 8.9 r't T tr'[hereafter define T to be r't.]
Proof Apply r' to the inclusion tE<—> E which has a pure

¢okernel. Note: r'tkE a quotient of tE 1is copure.
0—>r'tE>>r'E—>N->0 , N 1s pure by 8.8 .

Then
0'—~>r‘t§——$l”§l——a§_——’O

oo -
0 —>tr'E —»r'E—>rr'E-—>0

There is a unique map to the kernel tr'E (and out
of cokernel N). Uniqueness implies that 1t 1s natural
and ker-coker sequence yields it is monic.
| The connecting map from ker (N—>rr'E) to
coker (r'tE—>tr'E) 1is an isomorphism but the
former is pure and the latter copure hence both are
zero. So r'tE—>tr'E is a natural .isemorphism. //

Proposition 8.10 Localization exists for the torsion

theory Cé?,ﬁ{).

Proof Sublemma 8.10(a) Any repure sequence embeds in
W (D) for a suitable pure injective D. (3 (D)
is then injective and repure.)

Proof of Sublemma

If E is repure, E = r'(E). To commute r'(E)
form the pushout of
E=0-—>A—>B—>C—>0

IR A |

0—>D—>B"—sC —0
where D is pure injective and A»—> D is pure monic.
So E = r'(E)—> (D) and ¥ (D) is repure by
defintion of repure sequences-and pure- injectives.
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Proof of Proposition

- Given M any object of f/;é » embed r'(M) in an injective
and repure sequence ;[_4_(by‘ subl‘emma)_. Form
Pt (M) > M —>t ' (N)

I gre |

(M >>M—>r'(Me—sI—=>N—>0
by taking the pull-back of the cokernel map I-N
and inclusion of the mazimal pure subobject of N.
| Claim 0> t'"(M) — M —s M —>> t'(N)—> 0
is the localization of M.
(1) By dropping the monic r'(M)>— /M',
ker (M—sM) ker (M—>y r'(M))
» t'(M) , which is also pure.
(11) By dropping the epic M-—sy r'(M),
cok (_IV_[_——>‘I‘W_7_’) cok (r'(M)e—s M)
t'(N) , which is also pure.
(i11) ﬁcfﬁ_]; , 1 is repure so M is repure also.
(iv) coker (ﬁC——) I) = coker (t'(N)e> N)
= r'(N)

is repure. '
So given 0 — X' —> X —> X" —>0 with X" pure, form

0 —» X' — X

—> X" — 0

b3
— I r'(N) — 0

=€

0 —

X — 1 by injectivity, and X"— ¥'(N) , out of
cokernel. But i1f X" is pure, X"-— r'(N). is the zero
map. By Prop.2.4 this yields a map _}g—fl‘z such that

' N
0 —X'—>X commutes. Hence M is divisible. //

/
4
4
’

&

(R e

Proposition 8.11 Colocalization for the torsion theory

(T,S) exists.
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Proof Sublemma 8.12 ivAny copure .sequence is the epimorphic
image of - (D) for a sultable pure
projectivé'(D) (4r°(D) is then projec-
tive and copure).
" Proof Dual to 8.10(a) ‘
The proof of 8.11 is dual to 8.10 but we shall give
the construction as reference.
Given M, t(M) is the epimorphic image P —>t(M)
for some projective and copure P. Form

K>> P —>>tM <> M —> r(M)
g oor
r(K) — M
then 0 — r(K)—> E———»M —>r(M) —>0 gives
colocalization.//

For each M, set S(M) so that M—»S(M) is a locali-
zation. Then S is an additive functor (Tachikawa &
Ohtake [26], Cor, 1.6) , and also R(M) by R(M)—M
a colocalization. P

r
Proposition 8.13 élLd p= n R
N,
R ﬁ
RnT
r' is left adjoint to n
t 1s left adjoint to S (restricted to RnNIJTIR)

Hence T=r't is left adjoint to S.
Proof The cbjects S(M) are repure and T is naturally

equivalent to tr', so diagram commutes.
By Prop. 7.10 r' is left adjoint to n. To estab-

lish Homé{nj (t(R),E) = HomR (R,S(E))

since E is in & , its localization is
0 —E — S(E)— X — 0 where X is pure (i.e.
(i.e. ker (E— S(E) = ¢t'(E) = 0).
Given R—SE ., form ", 5 g
$ ‘ .
0 —>E —%SE —>X —>0

e — - .. L =



This assignment 1s the unique map into the kernel
(where tR —X = 0  since it is copure to pure).
This is natural by uniqueness.
For the inverse statement : given tR—>E ,
0 —tR —R —> TR —>0
l Lol :

0 — E —» SE —X —=0
By divisibility of SE , there exists a map R—SE .
But one must verify that it is unique. It suffices
to show that the zero map tR—s E induces only the
zero map R-— SE.

0 —>tR — R— rB — 0
¢ !
L a////$ v

0 — E-———>S§ X —> 0

By Prop. 2.4 there exists a map rR —>SE such that

r .
\ commutes. But rR is pure and SE is

> X

|

SE -~
- repure, so this is the zero map. Hence rg-—4>§

is also the zero map. The left and right sides
are both zero mappings, forcing the middle to be the
zero map also.

The assignments are clearly inverse to each other

which establishes the adjoint relationship. //
+t

ts &—— 7
) /
RNT
r' is right adjoint- to R
t 1s right adjoint to V
Hence T=r't is right adjoint to R.

Proof Dual to 8.13. //

Proposition 8.14
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Theorem 8.15 ‘éﬁé-;l;éﬁ€f7jp is the additive category

of fractions for the dense subcategory <5 .
Proof Let 0«—>K>>A—>B —»N—>0 be exact with K and
"N pure. We must show T(A)~=»T(B).

Consider
K" — K — K
\ J !
t(A)—= A —>r(4)
Voo :
t(B)—s B —»>r(B)
J l !
I_\I_""“" _I\_I_—"-;7_N-'

The ker-coker sequence is
0—->K"—> K—K'—3 N"— N—»N'— 0.
Now N is pure, and K' 1s pure, so

K!' > N" - N » X and Y are pure.

Ny

Then by density of pure sequences, N" 1s also pure.
But N" 1is also the epimorphic image of t(B) hence

copure. Therefore N" = 0. Also K"<—»K 1s pure.
Now form
0o —— L' > K" > L
\j v l
0—> t't(A) — t(A)—>r't(A) = TA—O .

0 —> t't(B) — t(B) —> r't(B)

TB —0

L

The ker-coker sequence immediately gives TA—>>TB.
And then O0-—5L'-—K"—L—L"—0 1is exact with
'§" and L" pure, which again yields L pure by density
of Aﬁ_. But‘;ic—ér'é(g) so L 1s also repure hence
"L = 0, —
This establishes TA —>TB.



+
Suppose now 2/& ——> TNR

> CF(D
T v

a
Tt is an additive functor with T'(g) an.. '~
isomorphism if ker g and coker g are pure.

Now 1if T exists to make TT naturally equivalent
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to Ti then 1t 1s obviously un1que because T restricted

to JNRK is the identity, so
T(g) = T(E) = TE) , E € TN R .

We need only verify this works:
that is, for any M we need

Fr(M) ¥ T'(M) naturally.
Now tM>» M and
tM—> r'tM
have pure kernels and cokernels, SO

~ ~

Pr(M) = Tr(tM) T T'(r'tM) = RA(preM) = TOM)  .//

Lemma 8.16 If A>™B [A.—»B] then TA>> TB [TA—>TB]
in €/48 .
Proof T = r't so this follows from Lemma 8.7. //
8.17 Remark
Any functor having a left adjoint preserves limits, and

any functor having a right adjoint preserves colimits

(Maclane [20], page 114 Thm. 1). We note that kernels
are a special 1limit and also cokernels (Maclane [20],

page 64) are a colimit.

Proposition 8.18 T : £/5—RAnNT 1is exact
(Note Regarded as a functor t%é—éaé%é, T need not
be exact.)

Proof T has a right and left adjeint’., -so. it preserves
kernels and cokernels. So given 0—»A—B—>C—0,
T(A) —>T(B) is the kernel of T(B)—> T(C), and
T(A)—> T(B) is monic and T(B)—>T(C) eplc in €/d
by Lemma 8.16, hence also in RNTL

So 0 = T(A)—>T(B)— T(C) — 0 1s exact in®NT .//
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Proposition 8.19 & J is abelian.

" Proof (K7 T 1s clearly »additi‘ve, so i1t suffices to prove
that any map
2153

has a factorization ~f = gi where h is a cokernel and
" g a kernel (Stenstrom [25], page 87). Let

A——>8
N
be a factorization in €/d . Claim that this same
factorization works in ® 77
D &>B hence D is repure
A—>>D hence D is copure
so D lies in &NT .
Let 0— 5H5~9§ﬁ>ﬁ—90 be exact in €/d . Then
Prop. 8.18 and the fact that T(A) = A , T(B) = B , T(D) =
yield that ‘

0 — T(K)—> A > B —= T(N)—> 0
N,

is exact in ®RNT , so 5_—32 is coker of T(K)—>A and
D—B is kernel of B—T(N). //

8.20 Remarks
RNT 1is not an exact subcategory of Z/sé For example,
to compute the kernel of a map A—sB, with A, B € Rn7T ,

one applies the exact functor T to
0—>K —>A —>B giving T(K)—> A—>B .
Now T(K) = r't(K) and t(K) is in &R since K is in®R , so
T(K) = t(K). So the kernel is the maximal copure subobject
of the kernel in &/ . Similarly,
cokerﬁn,_ (A—>B) = r!' (colfer/é A—>B) .

" Proof Since K427J is abelian, to show cocompleteness, it
suffices to show that arbitrary sums exlst. Given
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{E.} take ®B, in &S, then apply T. Since T
preserves sums (8.17) T(@Ed) is the direct sum

in ®N 7. Completeness in dual manner. //

The subcategory /f/ is dense in 8[6 and the inclusion
Sc &8 is exact. For Jec—=<€/& we have
Proposition 8.22 The following are equivalent

(1) J 1is an abelian category.
(i1) I < &.
(111) T is hereditary.
(1v) J is a dense full exact subcategory of fﬂ.

Proof Assuming (1), the inclusion functor J<> Z/,A preserves
isomorphisms., Suppose E 1s copure. The epimorphism
E—>r'(E) is also an epi in J , its kernel is t'(E)
which is pure, so by Prop. 5.6 it is monic in 7 .

So if J is abelian, E-»>r'(E) is an isomorphism in 7
hence also in€/& . But this forces t'(E) = 0. So |
E is repure.
(11) =»(11i) Let X be a subobject in & ofr T ¢ J
.‘Férming | '
t(X) —>X —>r(X)—> 0

1 ¢ $

t(X) —> T — T' —> o0

T' a quotient of T 1s copure, hence by

assumption repure. But then r(X)<>T' is

the zero map, hence r(X) = 0 and X is copure.
(1i1) =>(1v) J 1s always closed under extensions

(Prop. 5.7) and quotients (Prop. 5.5). So J

hereditary implies T is dense, and then

clearly 7<= /.3 is an exact embedding.

(iv) = (1) Trivial. //
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Dually,

- 'Proposition ‘8.23 The following are equivalent
(1) & 1is an abelian category.
(i) KT T
(1i1) &R 1s cohereditary.
(1v) (& is a dense.full exact subcategory of &/ .

The adjoint pairs (T,S) and (R,T) have units and counits.
8.24 Unit for (T,S) : A: 1 ——>gT

Given E, TE is repure, so localization yields an exact
sequence TE >>S(TE)—>> X — 0 with X pure. Form

tE —> E ——>rE

¥ i

M R < .

TE > STE —> X
By divisibility of STE a map is induced E —STE .
It is unique. (Proof as in Prop. 8.13, the zero map .
tE — TE would induce a map rE —> X out of the cokernel,
which would factor over »“STE by Prop. 2.4. This would
necessarily be the zero map since rE € 4 and ST§_€%0€.
This would then force E —>STE to be zero also.)

This 1is YlE . E—>STE .

Note also that from the diagram
t'tE > K —>> X'

T
tg———; _E_———->r§2_

\\l \L'\E L s

v

TE —> STE —> X

} .

0 > L —> L'

€« |

'L & L' = coker (rE —>X) 4is pure and K is an extension

of t'"tE and K' is also pure. Then

Ng
O——»K‘ﬂﬁli——9STE-—9IJ——9O

WIE is a morphism of ZZ;V s the class ' of morphisms associated
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with the category of fractions wlth "‘respect to Ari Also
since STE 1is divisible and repure, ﬂE is the localization
of E. '
8.25 Remark

We defined localization as the functor S (Prop. 8.10).
Here, S is an. additive functor Z/d —> &J . The functor
S was shown po be the right adjoint of T but to be precise,
since T : 8/8—> &N T , the actual right adjoint is S
restricted to £NnJ . However we wish to reserve S as
the right adjoint rather than change notation, but the
difference in usage should be noticed. (similarly for colocal-
ization R). So if the insistence is that S be the right
adjoint to T, then the actual localization functor is ST,
not S as before.

8.26 Counit for (T,3): &£: TS——>1
For E in R17J we have E>?SE —Y —> 0 where Y is

pure. Since E lies in J  , this sequence yields E ¥ t(SE),
hence

E = r'E ¥ r'(tSE) = TSE

so TS and 1 are naturally equivalent functors via the
counit (that the above isomorphism 1s the counit map is
'easy' to establish).

Corollary 8.27 S is full and faithful.
Proof This is a general categorical theorem concerning
counits : (F,G) adjoint pair, €&: FG—1 is
' equivalence 1ff G is full and faithful. //

IN an adjoint situation, (F,G) with .. counit an equiv-
-alence.'F 1s sald to be the 'left-adjoint-left-inverse' to G
(Maclane [20], page 92). Then if F : X — %}—, G is an
isomorphism of X# to a reflective subcategory }( of )L
(reflective means an inclusion has a left adjoint). Applying
this to (T,S) gives

—— N
R
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Corollary 8.28 S factors as = £NT ——> Im S > Z/S8
with Im S the class of divisible repure
sequences (denote this as ODNK). So DNR

_ is a reflective abelian subcategory of €/2 .

Proog SE is divisible and repure by definition of colocal-
ization. And if E 1s divisible and repure it is
isomorphic to its localization. //

Turning now to the adjoint pair (R,T)

8.29 Counit ' £: RT—>>1
Procedure is dual to 8.24.

0 — X — R'TE_——>>T§

S J

0—>t'E— E —» r'E

( g Will be the (unique) mapiinduced out of RTE using codivi-

-

sibility. Again kernel and cokernel are pure (using
ker-coker sequence) so that EE : RTE—>E 1s colocalization.

8.30 Unit n\: 1—>TR
Dual to 8.26. For E in ®n7 we have

0—>Y—>RE~>>E —> 0 with Y pure.
Since E lies in & , this sequence yields E ¥ r'(RE).

E = tE ¥ ¢tr'RE ¢ TRE

and this natural equivalence 1s the unit transformation.

gorollary 8.31 R is full and faithful.
Proof Again general category theory, but the idea is

simple so we sketch the proof :
(1) faithfulness is immediate from TR ¥ 1,
(i1) fullness : Any map in Hom (RE, RE') 1s naturally
assigned.by.&dJeintnéss. to-a map.-in - I
Hom (E,TRE') & Hom (E,E') [via 2:;. ]

and then apply R to the map in Hom (E,E') yield
original map. //
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For the pair (R,T) , T is the 'right-adjoint-left-
inverse! to R, and this yields : '
Corcllary 8.32 Factoring R as ®AJ —» Im R c—s E/d
Im R 1s the class of codivisible copure
sequences (denote this as C27), CNAK  1is a
coreflective abelian subcategory of 5%5 .
Proof Dual to 8.28, //

Corollary 8.33 The categories BNK and €NJ are equivalent
abellan.
Proof Both are equivalent to &N 5 .//

Proposition 8.34 (i) S preserves injectives.
(11) R preserves projectives.
Proof (1) Again general theory : S is the right adjoint
of the exact functor T.
[Details. Let I be injective in RNJ, with
0 —E'—> E —E"—>0 exact in ¥/8. Apply T
to get 0 —» TE'—> TE —> TE"—> 0 exact, I in-
Jective gives ,
0 Hom (TE",I)—> Hom (TE,I)—s> Hom (TE',I)—> 0
exact and adjointness gives
0 (E",SI)—>(E,SI)— (E',SI)— 0
exact which gives SI injective.]
(11) Dually. //

Lemma 8.35 (1) If 0>X—»R-—>S-—=>0 1is exact with R (R
‘and S € &5 , then X—R 1is an essentiol monic.
(1) If 08 —T—>X—>0 1is exact with S &
and T ¢ J , then T—>X 1is a superfluous epic.
- Proof (1) Suppose X'NX ‘= 0. Then

X'es R-»S
is monic, so X'*>»S gives X' € SNR_ = 0.
(i1) Dually. //
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The inclusion RN T <> &/} 1is not exact; however we

have the following results

Proposition 8.36 Given ‘ALsB ,ABEeRNT

B
' f has property P in RnJ 1ff it has P in &€/4 ,

where [P is any one of :
(1) monic
(i1) epic _
(11i) isomorphism
(iv) essential monic
(v) superfluous epic. :
Proof (<&=) Trivial in all cases since ®RnT is full.
(=p) (1) If kernel of A—>B equals K in ¥&/¥, kernel
of T(A)—T(B) (= A->B) 1in RNJT is T(K).
But T(X) = 0. Now K3 A €K hence K €/R and
so T(K) = t(K). t(K)= 0 means K is pure, but
also repure.Hence K = 0, |
(1i) Dually.
(1i1) Follows from ‘(i) and (1i) and (®NJ abelian.
(iv) Suppose XNA = 0 in €/4 , then tX = 0,
But tX € R2J hence tX = 0 and so
pure but also repure implying X
(v) Dual to (iv) .//

A
§ is
0

Proposition 8.37 (i) S preserves essential monics.

(ii) R preserves superfluous epics.
Proof (i) For E €RNJ, 0 —>E—>SE—>X—>0 with X pure.
Hence E—>SE 1s essential by Lemma 8.35.
The commutative diagram
E >— SE

2 \

E-l Sy S_E-'
yields the result.
(i1i) Dually. //
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Corollary 8.38 (i) S preserves injective hulls.

(1i) R preserves projective covers.
 Proof By 8.37 and 8.34. //

We turn our attention now to the exact functor
v S —a RN T

Proposition 8.39 (1) If P is projective in E/§ and P e T
then T(P) is projective in N7 .
(11) If I is injective in /4 and Ie®&
then T(I) is injective in RNT .
Proof Since P eJ , T(P) = r'(P).

So given T(P) in JnNR , by Prop. 8.36 A->»B
A—>> B
is epic in £/& . So P
,7 T(P)=r'(P)
/
P
A—>r B

there is an induced map out of P. But

ker (P—w»r'(RP)) = t'(R) is pure, and A is repure
hence P—> A factors through the coker , T(P).

This is the required map showing T(P) is projective
in 7N R .

(11) Dual. //

Lemma 8.40 If P is a small projective in Zﬁé with g_GIT
then T(P) is a small projective in RN 7 .
Proof By 8.39, T(P) is projective. Gilven

T(R) —> @ A ,
el

the direct sum is taken in K/ J where A, erRnT

But this equals T ( C)'éi) where sum is taken in
1€l '

Z/¢§ (Cor. 8.21). Now i:f A; 1is copure, hence
€l

(@A ) = r'(®Ay). This leads to
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&1 (P)

d

P o--->®@a
Y y

T(p) = r'(p) —> r'(DA4)
where P —® Ay 1s induced because P is projectlve.

Since P is small, this factors through a finite sum
@J"é_i . But a finite sum of repure objects 1is repure

and the map P —»®J Ai factors over the coker of

(¢'(P)—P)
epl P—3yr'(P) shows the map r'(_P)-»@)J Ai factors

r'(P) . A dlagram chase, cancelling the

r'(p) —r'(®4A;) through.a finite subsum. So
r'(P) = T(P) is small. //

Theorem 8.41 (&1 J 1is a functor category.
Proof J has {.P_«} where P, is a finite presentation,

as a set of generators.. P, are small and projective
in €/Q& , hence T(P,) are small and projective in RNT
by Lemma 8.40, and clearly generate RNT . By - .
Cor. 8.21 RNT is complete and cocomplete. Hence
result follows by characterization of functor
categories.//

Since T(gd\) is a small projective 1n an abelian cate-
gory, it is also finitely generated and will have maximal
subobjects. Hence there will be epimorphisms T(g“’)—»_s_

in RNTJ hence in ’i/,é (by Prop. 8.36) with S simple in
RNT
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ALemma 8.42 If S -1is simple in RNT , then it is simple 3
o as an object of Eﬁé _
Proof If XF S then tX £5 , But tX € @NT =D tx = 0.
' = X is pure, but also. repure = X = 0. /_/

Theorenm 8.43 Given C finitel& presented there 1s an exact
sequence O—eA-->GB-—aC ~—>0  which is simple
as an object of &/8 .
Proof Follows from T(M(C)) belng a small projective
in TnK. //

We will return to the nature of simple sequences shortly,
but first derive some further consequences of Thm. 8.U41.

Let {-S—ﬁ} be the set of simples for ®NJ . Then
since &n3 has injective hulls (it is functor hence
Grothendieck), {I(gp)}. is a cogenerating set of
injectives (injective hulls of simples). By Prop. 8.34
S(I(Sﬂ)) are injective in /% and also lie in & .

Theorem 8.44 {S(I(S@))} are a set of (indecomposable)
., injective cogenerators for 0%
Proof I(Sﬁ) is repure hence I(%6)>—9 SI(S )—> Xﬂ-——% 0
with Xg pure. Given E € R, TE = tE 11es in ®N7T
so there exists an embedding

TE »—3 ;[};usﬁ)

for some product.(taken in Rn7T .) of the {I(Sﬁ)} .
This remains an embedding in '¢/3 by 8.36.

Now
‘&I(s = t( IV 1(s))
« gy P

ROT

(i.e. the product of copure objects need not be copure).
This, leads to |

0 —> TE ?' ——> E ——> r(E)—>0
t(TTI(s )) ' ".
A v :

0 -——>'TYI(SP) > Ts1cs (34) ——————9'7_3c€——ao
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—\TSI(Sp) is inJectivé in ¥/d so the induced map
' E_-—4TVSI(§G) exists. The kernel-cokernel sequence
gives
ker (E — 1 SI(S3)) >—> ker (r(E) ———ﬂTx/g)
hence 1is pure, but also a subobject of E hence repure,
thus zero.
So E embeds in a product of -TrSI(gﬁ)
To show SI(Sz) are indecomposable, suppose
‘)Sl@_)£2 = SI(SP) . Apply functor T to get

T(X,) @T(X,) = TSI(Sg) T I(Ss) by 8.26.

But I(Sg) 1s indecomposable in R J (hence also in ?1/443),
being the linjective hull of a simple . Now say

T(X;) = 0, since SI(Sg) € X = X, € X so
T(X,) = t(X;) = 0 dimplies X

is pure also = X, = 0.

1 =1

Similarly T™(X,) = 0 = X, = 0. //

The objects SI(Sg) are injective in E/S . Hence by
the dual of Prop. 3.13 are of the form
= —_— —
But this is also an element .of & . Hence %@ is pure-
injective.

Theorem 8. 45 Given 07 a functor category, there exists

a set of algebraically compact (pure injective)
objects {Auj .y such that X is algebraically
compact 1iff X is a direct summand of a direct
product of coples of Ay -
Proof (&) Since products of pure injectives and direct
summands of pure injectives are pure injective,.
(=) Given X algebraically compact, then &J(X)e& K
hence embeds in a suitable product 1T59(Ap),
where {Ap} as above.
So there 1s a monic
0 — X —m> I —> X' ——> 0 (I inject-

L l L ive)

0 — T ag —-——;ﬂxfs ——-—>fo,@ — 0
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Since 07 is a functor category, one can assume
I is the product of injective hulls of simple :
objécts of ¢/, and injective objects are alge-
braically compact.

But being a monic simply means

X — I®(ITAg) splits.

This gives the result. (Note that injective hulls
of simples in 07 have been thrown into the original
set of A/g.) //

This completes the duality of :T with & s In the sense
that & can be described as the set of objects cogenerated
by the class of of(X) with X algebraically compact
(pure injective) , g the set of objects generated by the
class of W(X) with X pure projective., The structure
theorem for pure projectives 5.10 (1) reduces this to
the set {ﬁ?(qx)} over the {C“S of finitely presented
objects. Thm. 8.44 allows the reduction to a set {QD(AP)}
for some (undetermined as yet) set {Aﬁ} of algebraically
compact objects. .

The category E&/J kmay not have injective hulls. However
we have the following.

Proposition 8.46 (i) Objects of (R have injective hulls
which are objects of R in the category
Tls .
(11) If RNTJT 1is perfect, objects of T have
projective covers ( which are objects
~of, J) 4in the category &5 .
Proof (i) Given X e , tX € RNT has an injective
hull in the category R/NJ which is Grothendieck.
If this is 'tX&>E then by Cor. 8.38 StX >>SE
is an injective hull of St(X) 'in €/8 . But
St(X) = ST(X) and since X€R , 0 —=X—>STX—>X'>0
is localizationAwhére X' is pure. By Lemma 8.35
“ X 77 ST(X) 1s essential. Thus X »> ST(X) >>SE is
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the injective hull of X, and SE e&-
(11) Dual. //

Lemma 8,47 (1) If E is injective and E € R then localization
"E —™ STE 1is an isomorphism.
(i1) If P is projective and P ¢ J then the
colocalization RTP—> P is an isomorphism.
Proof (i) Since Ee& , E»r»STE — X'—> 0 with X'
pure, but E injectlve implies this splits, so

-~ X' 1s a direct summand of STE which 1s repure,
hence X' = 0.
(ii) Dual. //

Lemma 8.48 (1) E ¢ K 1is injective ind& Iff it 1is injective
in €/§ .
(i1) P €7 is projective in J iff it is
projective in E/& .
Proof (ii) By.Prop. 5.5(11) T; —> T, is epl in J iff
it is epi in ¢/d . So projective in &/8 implies
projective in 7 .

Conversely, suppose

A —>B

copure so P—> B factors as P— tB<>B; and
by Lemma 8.7(i) t preserves epi, so

Ve f gives the required factorization
tﬂk' > tB through A.
A —» B:

(i) Dual. //

Proposition 8.49 (i) There is an equivalence of categories

between the injective subcategory of &
and the injective subcategory of®n7 .
(1ii) There is an equivalence of categories
between the projective subcategory of g
and the projective subcategory of RN7T
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Proof (i) Regarding T as a functor J —> J N (ghe
restriction of T to J°), then by Cor. 8.27 the
counit TS—=-1 1is an equivalence. But also, by
Lemma 8.47 (i) on injectives, the unit 1 —=»ST
is an equivalence. Hence J%-_’J'nkrestricts to
the required equivalence (lemma 8.48 tacitly
used in applying Lemma 8.47).

(11) Dual. //

Now J has a canonical set of generating small projectives,
the set of finite presentations {4(C.)} , Cx finitely
presented. SO via the equivalence above, @n7 has
{T Vi (C,L)} = {r' ’/I'(C“)} as a set of génerating small
projectives. Now RnJ 1is a functor category, hence by
the fundamental characterlization of functor categories

RnT = (frwc)} , )

(contravariant functors on the set of T ﬂTC“) ), hence
this yields

Proposition 8.50 ®knhJT ¥ ('{71’(0,,)_}* , Ab )
where t%r(cx)} is the set of finite present-
ations (of finitely presented objects C, )
in &8 .//

Remark Let 8 be the small additive category of finitely
presented objects in the underlying category o/ upon

which Z/4 1is established. And W(AB) its image under

o] I &8 . Prop. 8.50 gives &7 = (%(@)* , Ab).

"Now 9T (#3) can be described without referral to E/4 in
the following fashion = (recall o7 —%5&/8 factors as

61 — 6f/p — Z[8 and 4P >—>&/p was a full embedding)
objects of T((>) are finitely presented objects of 07 and

Hom,r«ﬁ)(X,Y) = Hosz(X,Y) / morphisms factoring
! through projectives

,Homﬂ(x,y) /PP(X,Y) .
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... . (CHAPTER 3
" 'FUNCTOR CATEGORY TECHNIQUES

In this chapter, we will be concerned with two functor
categories and their relationship via adjunctions. One
functor category will be R/ 7 , and the other will be
the module category R7VI where R is the functor ring

for the set of finitely presented objects of Q/ (definition
shortly). Muchr«of this chapter will be of a peripheral
nature to the theory of the sequence category ZD;§ R
however functor rings are a useful and important tool,

so an examiniation of how this concept fits into the frame-
work of the sequence category should be of some value,

if not immediately then at least as the groundwork for
future research.

' Let B be the small additive category of finitely
presented objeéts of 7. We use T to also denote the
restriction of the full embedding 7': o7/P >?E&/:8 to the
image of @B in 6///° . By Prop. 8.50, RnJT = (7F(03)*, Ab).
Considering the functor category (63*,Ab) , one can form

(8", ) =T (@), M) FRAT

B > 7(B)

The vertical inclusions are the Yoneda embeddings X +> (-,X).

The map:ﬁ;is the unique colimit preserving extension of the
map 3 ——s T(B) > (X (63)*, Ab) (see Mitchell [21],

page 106 Thm. 5.2). There %s also a nagural functor
induced by X, (¢ (MB) ,Ab) —» (43 ,Ab)

where TNz(F) =, FX.

Proposition 9.1 7T is the right adjoint of TJU.

" Remark This is a standard reuslt about functor categories
in a more general situation, but we remain with our speci-
fic framework.
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Proof First to establish ((Q,X),7T;G) = (7?(-,X),G)
By Yoneda,
((-,%), 746 T TLG(X) = (GT)(X) = &(7LX).
By Yoneda again,
GAX) T (-, 7TXN),6) = (T(-,X), G .
Then for arbitrary sums (& (-,X.) ,
@) (-5, &) = T ((-,%,), T:0)
T T (F(-,%0,8)
= (C;& (T (-,%,)),G)

(W(@I(—,X‘,‘),G) , since & 1is

colimit preserving.

"And finally, if F is in (ég*, Ab) since sums
of representables are resolving, F 1s the cokernel
P,— P, —aF-—>0 with P,,P, 'free'. Then '

172
0 —> (F, TtgG) — (Py, T4G) — (P, WyG)
o on S .

0 — (T F,6) —> (X Py,6) — (TP,,G)

The bottom row is exact because TC is cokernel
preserving, then apply (-,G). The induced map is
the adjunction isomorphism. // '

Proposition 9.2 T(,; 1is (1) exact
(1i) faithful
: (1ii) 1limit and colimit preserving.

Proof (1) 7t* is left exact since it is a right adjoint,

so it suffices to show that 7, preserves epis.

If F—>>G then F(7¢(X))—>> G(7t(X)) for

all X which bpecomes (TCF)(X) —ay (TC,G) (X).

(i1) Suppose V 1is a natural transformation
V: F—>G sueh that TV = 0. Then
(TuV )y ¢ (TCF) (X)—> (TC4G) (X) 1is the map

\J’H’X . F(NX) — G(7TX) and since
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every object of JU(4R) 1is of the form TX , VY
must be the zero transformation.
(111) 77U, preserves limits because 1t is a right
| adjoint; and since (ﬂ; is exact, for colimit pre-
serving one need only verify that sums are pre-
served

( e BFa)) (X

(@F)T)(X) = (@FE)(TX)

=@ (E(TX) = @(E.T)X)
= @UTRE) () = (@TEI(X).//
9.3 The Unit For (T, T4) : MN: '1——>7r*7—r
For (-,X) €(3", Ab)
M (=,X) = TG (-, XX) = (A=-,7X) .

This will yield the exact sequence

0 —>P(~,X) —>(-,X) e (o %) —> 0
where P(Y,X) = maps Y—> X factoring over projectives.
Since n(_’x) is epi, and representations generate, the

fact that both N and 7, are colimlit preserving implies AF
is epi for any F (if P -—9P1—59F—‘30, P2,P1 'free' then
P —_— P —_——> F —m«++—> o

e ng gt & e

'n'*np —_— r*nP ———> Ty F ————> 0

implies N, epi ) .

9.4 Counit for ( T5,TXC,) : 6:%7(4—-—71

— %
The functor TU is onto, for if G lies in (7t(03) ,Ab)

and :
G)Il<-,7rxd)——>®lz<-,7txp)——> G—>0

is exact then G =%t G where G = coker (@ (_ X )_17@ X.))

By the theory of adjoints,

— T = = E®
T 2L AT ——

is the identity, so using the above notation
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- TRz _ - _ . &gre — =
NG ——> T A NMT(G)—> 7T G
is the identity, giving
S ™Ma =
the identity. By 9.3, 7\5 is epi, and 7T preserves
colimits so 7t’ka is an isomorphism, hence also EG .

Proposition 9.5 The counit C: 5f7§-——351 is an equiva-
lence.//

Corollary 9.6 7T, is fully faithful.

Proof Fully faithful is equivalent (in adjoint situation)

| to components of counit being isomorphisms (Maclane [20],
page 88 Thm. 1) . // |

9.7 The Right Adjoint of TCy

Suppose a.right adjoint (unique up to equivalence) 7t*
exlsts, then _

(TG (=, TX) ,F) = ((-X), ®F) = (T FTX) .

Yoneda )
Since all objects of T(¢3) are of the form ZX, this
isomorphism can actually serve as a definition
TR(TX) = (Te(-,TX),F) .

Using the fact'that'ﬂ; is colimit preserving yields
(proof similar to 9.1) that (7CG,F) 1 (G,7C*F) .

9.8 Counit for (7T, 7['*): E: L?L}—-——';l

To the exact sequence 0 —2P(~,X) —>(-,X)—>»( -,AXX)—0,
apply (-,F) to obtain
0 “—5((7C-,75X),F)-——7((—,X),F) which is
0 —> (TCLTT F)(X) — F(X) , this will be
the counit. Note that each component of &€ 1s monic.

Lemna 9.9 For ®: F—>G, M, @ is an isomorphism iff (R
is an isomorphism,
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Proof Let 0 —>K—>F —»G —>N—0 be exact. Then
since TG is exact, the sequence
0—> MK — T, F —7C,6G —TN—>0
is exact. If 7f*F’—%7E*GI is an isomorphism, this
forces T,K = 7,G =0 , but evaluating

(MKI(X) = K(7TX) =
for all X, so K = 0, similarly N = 0. //
: * *

T h, . e

Ty ————>T T T — N,

is the identity. By 9.8, &JU, 1is monic, hence an iso-
morphism, which 1mplies’ﬂgrl is also an isomorphism, so
by Lemma 9.9 K is an isomorphism,

Remark That the components of the unit are lsomorphisms
can also be established by 'dualizing' Thml and its lemma,
page 88 of Maclane [20], yielding for an adjoint pair
(F,G) , F faithful iff wunit is moniec.

F full iff wunit is split epi.
In our case, TNy is fully faithful by Cor. 9.6.

9,11 Tensor Product

Before introducing the functor ring, we examine the
functor 7C in another fashion which may be more familiar
(once one swallows the elaborate definitions).

Let C be a small category. Then there is a unique
(up to isomorphism) functor

-®- : (C,ab) x ((S*,Ab)—-—-)Ab with the following
properties '

(a) -@®B and A ®- are right exact

(b) - ®B and A ® - preserve arbitrary sums

(e) (C,-) ®B = B(C) and A® (-,C) = A(C) for any
Cin C .

The existence of A ® - and - @B is established as
follows
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For fixed A in (C,Ab) , then A : C —> Ab can be
interpreted via Yoneda as mapping (-,C)+—> A(C) and so
has a unique right exact sum preserving extension A® - to
(Cf*, Ab). Similarly for - ® B. The uniqueness of
extension yields that (A @ -)(B) is naturally isomorphic

to (- ® B)(A).

9.12 The Left Adjoint T of W, using Tensor Product

(R(E)H(TX) = (KX,K-)DF |

Under this light the computation of 7T is hidden away by

the handy ' @ ' symbol, which avoids the actual computation
of T as the cokernel of applying 7T to a free presentation

Pz—é Pl-—sF — 0 (see Mitchell [21], page 106).

One can also compute the unit (see 9.8) by applying

~-®F to the exact sequence
0 —=P(X,-)—=>(X,-) > (XX, ¥ =-)—>0
to obtain o
P(X;=) @F—>(X,-) @F —> (X, -) @ F—>0
which becomes

(X)
P(X,-) @F —> F(X)Y\F

(TL,TF)(X)—>0

giviqg .
. Y\F H F —ﬁ)ch'*,)T F.

9.13 Counit Isomorphism Revisited

Consider the exact sequences
0 — P(X,-) — (X,-)—> (X, -)—>0

and 0—2P(-,Y)—=(-,Y) > (W -, XY)—> 0 , and form
0]
P(X,-)®P(-,Y) —> (x,-)?(-,Y) —3 (T X;C-@P(-,¥)—0
\Y

0 —P(X,-)®(-,Y) —e(x,-)(i)(-,y)_—a (KX -)XX=-,Y) —> 0
%

P(Xs".)‘@ﬁ'»"} ;WY)» _— (X,")QX”T‘;KYH (H,W—)QT—;WY)——? 0
v

0 0 ' D
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The middle row and column are exact because (-,Y) and (-,X)
are projective objects.
Using property 9.11 (¢) , this becomes
0

\!

P(X,-)@P(-,Y) —> P(X,¥) —> (T X,F-)FP(-,Y) — > 0

[ b 4
0 > P(X,Y) —> (X,¥) —> (WkXmY) —> 0
| ! \)
P(X,-)YNM-,8Y) —> @X,®Y) —> (KX, A=) 1T-wrY) —> 0
y | Y ) -
0 0 0
Now the map P(X,Y) —> (X,Y) of the lower
(r X, nY)
left square is zero, hence
P(X,Y)
Y

v
P(X,- XN =,7xY) >—> (KXwY)
is also zero, cancel the vertical epi, giving the horizontal
monic the zero map. Hence P(X,-) T-,TY) = 0.
Similarly using the upper right square yilelds

P(X,Y)—>> (X X, % -)®P(-,Y)

(TX,TY)
the zero map. Cancelling the epli gives vertical map zero.
But this map is monic (use the fact that P(X,-X®M-JY) =0
and Snake Lemma on top two rows). Hence also
(XX, T -) @P(-,Y) =0, and from this one also derives
(KX, r-Y®(7r-,xY) = (rX,*Y).
Now P(X,-)® (& -,xY) = 0 becomes

P(X,-) ® Ty(-,7TY) =0
and T, and P(X,-) @ -.. are colimit preserving (for fixed
object P(X,-)). Then since P(X,-) ® W3- kills the
projective (-,7*Y) , it must be the zero functor on

(K (@), ab).
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Applying -CD)T;G to the exact sequence
0 =3 P(X,-) —=>(X,=-)—ATX,r-)—>0
then ylelds
(X,~) ® TG —-9(’1:)( =)@ TyG
or ﬁ_
TeG(X) ——> T (TG (TX)
or _ o
G(TX) — ‘T WG(7 X) :
This is the counit isomorphiém, 1 — _7?’_71* .

9.14 The Functor Ring

Let D be an arbitrary abelian category and U= {Qw}
a set of small objects of 07 Then the functor category
(74 ,Ab) can be interpreted as a module category in the
following manner (Gabriel [111])

Let R =] @ € Homp (@Y ,@U*)‘(,QIU‘ =0 a.e.} .

R usually does not have a unity (unless the set {,U¢} is
finite), but this is replaced by a 'complete' set of
idempotents {e“} where

. —3D | U . f
e ?U‘d U“(’C—-f-)? 3 By a left

K-module M, one has the usual meaning but with the added
property that RM=M, so that M = “@e*M.
The category ﬁ?ﬂ of left R-modules is then a cocbmplete

abelian category with {Rq{} as a generating set of small
projectives.
Setting U =® U, , let

Hom (U,M) = {(QeHomb(U,M)\ LQ\ U, = 0 a.e.}

then Homib(U,-) is a functor'ia“‘—’§771 which assigns

Q*F—J*R%L and U+ R, Then the unique colimit preserving

®
extension to ( ﬁq*} , Ab). 1is an equivalence of categories
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( {U“}*, Ab ) --=- R(')T(

Yoneda ] .
embedding :
{U,c} ——> {Re ]

9,15 The Finitely Present‘Functor‘Ring(s)

For our purposes, let B = _ZC,cf , the set of finitely
presented objects of 07, and W(HB) = [%(C,L)f the
set of finite presentations in £/ .

Let R be the functor ring HOm ({@C.; s @c..)
and 7C(R) = Hom g, @®7(C,), ®X(CL)).

r~ * ~ *
Then 77 £ (43 , Ab) and oyl T (B, ho).

The natural functor 7T: 07/? —> Z//é induces a ring
homomorphlsm T : R—=> 7T(R) sending the complete set
of idempotents {e,d for R to a complete set {’TC(G&)}
for T7U(R).

This ring homomorphism induces a change of ring functor

71’*: 7C(R)%z—9 Rm where each left 7U(R)-module is

naturally a left R-module via 9 . 7 is the functor defined
in 9.1.

Just as for rings with unity, T4 has a left and right
adjoint.

9.16 Left Adjoint of 7, Revisited

The left adjoint is Jg(M) = T(R) @R M. Only a few

minor changes must be incorporated due to the lack of
unity element.
g(M, TON) = W(R)(TC(R)®RM,N)

sends iQt-——;@ where W(x®m) = x Q&(m) and conversely,
Q+>Q where if m = P e, My (the sum is direct M=Be M)
A€ T

J finite then
Q(m) = Ze @my).
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9.17 The Right Adjoint of ‘JUy (Once Again)

#* —
Just as for rings with unit, T (M) = Hom ( Z(R),M),
those ({: MR—>M with Q(¥e,) = 0 a.e., and
' # * ,
sends @ —> W where d (n)(x) = «@Q(xn) and conversely
*
@ — R where if n = 2 ®(e, )n, J a finite set,
, J

A(n) = %('w*(n*)mre,()

9.18 Unit for (TW(R) @ -, Ty)

This is the map M —> T, (w(R) @gM) sending
m=2em ——s Z?‘C(ed_) @ m,

'9.19 Counit for (JT(R) ®-,7y)

The counit for (7T (R) @ -,7y) 1s the isomorphism
T (R) @; 7¥M — M sending

ZT(e,) @ my, —> 2 e )my
(using the fact that T(R)M = ® T(e M ).
9.20 Unit for (4,70 )
Ay @ M —>% 00 = Homg (A(R),Ty(m) )
where (Y\V&_(m))(x) = xm for x &€ X (R)

with inverse LQ\“‘"%:Q('RTed_)

where sum is actually finite since (R(7 ex) = 0 a.e..
9.21 Counit for '("7[;,71’*)

“y T T w——>m

Em W, (Homg (TC(R),M)—> M

sends & —> z:.LQ(n‘%)

Note that Q(7e,) € e M since Q(Te,) Qg (Tex))

e, Q(7% e,)
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so the above sum is direct, implying €m 1s monic.

We will drop the topic of functor ring for the moment
since 1t is not the tool that we wish to utilize in this
thesis. However it will be convenient to call upon this
theory when necessary.

Since My 1s fully faithful, any map Tt,F —>7,G arises
uniquely from a map F—G.

Lemma 9.22 (i) F—>G is epi in (7t(é3)*, Ab) iff
TyF —> 7, G is epi in 5(6*, Ab). \
(i1) F-—G 1is superfluous in (7 (R) »Ab) iff
7yF —> MG 1is superfluous in (ﬂ*, Ab) .
Proof (i) Proof same as Lemma 9.9.
(11)(=>) If X—>T,F —>7T,G 1s epl , first note

X ——=> JU,F

nx\L | L’—"_: “ILR.*F

)

71'*77.'X - 7{*:]—.6 TC‘*F

50 we only need_Eo verify that the lower map is
epi. Applying W,
N X —> TTGF —— T WG
Fioeoe——s G
Hence L X —> W XyF 1s epl since F—3G 1is
superfluous. Now apply W; to conclude
T, TT X ——-BT*—???C*F is epi.
(&) If Y—>F—G is epi , apply T,
TgY—>TCF —57C,G 1is also epl, so

T Y —> TCF  is epi , implying that
CTCLY ——)’)'C’/T*F is epi

e e

Y —->F gives Y—>F epi. //
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Proposition 9.23 (@3 ,Ab) perfect implies that

(71(43) Ab) is perfect.
Proof Let G be in (7t(43) ,Ab) and P—» ;G a projective

cover. L is colimit preserving and takes the repre-
sentabley(-,X) to (-,7X) hence also preserves

projectives. ' &
Claim =®*P——> A AX,G = G 1is a projective cover.
Form

_— yc*G

n? $ fgvb 7LK*Q
Jt 4P ————TC T TG

Lower map is superfluous since P —> TG is superfluous.
Hence by Lemma 9.22, 7CP—>G 1s superfluous.//

Remark This proposition is the functor version of 'factor
rings of a perfect ring are perfect'. Here the functor
ring @«(R) is a factor of the functor ring R.

Proposition 9.24 If hQ . Q@ —»» 7, TQ 1is superfluous for

all Q , and (ﬂf(&3)*,Ab) is perfect then
”@B* Ab) is perfect.

Proof Let M €& ((5 ,Ab) and TP—3)TM a projectlve
cover , P projective (all projectives of (ft(63) ,Ab)
are of the form 7TP, since T preserves sums and
7t (-,X) is the representable (-, TX) ).

Form
P -----——>M

Avi, i} Ny

The induced map out of the projective P 1s epl since

np4ls a superfluous .epil, and is superfluous since
“p is superfluous and 7, ,7CP —s> T, TM 1s superfluous

by Lemma 9.22. //
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Remark For factors of rings with unity R—>R/I , the
corresponding unit map is Q —y R/I @R Q = Q/IQ , the

condition of the proposition is that IQ is superfluous i1n
Q for any Q. This condition 1s equivalent to I being
left T-nilpotent (Anderson & Fuller [ 1], Lemma 28.3).
For the next proposition, let 07/ be an arbitrary
abelian category and {QL} a set of small projectives.

Proposition 9.25 The following are equivalent
(1) The set of morphisms between {R*} is left
T-nilpotent with respect to the radical.
(11) Rad (@B , @R.) 1is the set of morphisms
with components & , ég( Pfé)
(ii1i) Rad @R, is superfluous in @P,
Proof (i) =:>(ii) The set of & with Q¢/3= P C-;@P -L—eaGBP ———>PF
6}(2"35) is an ideal, hence it suffices to
shew that 1 - & 1is a unit for any such &R .
The Konig Graph Theorem and T-nilpotence implies
that given any small object X &@® P, (X='a finite
sum of F, would suffice) , there exists an n with

Q™(x) = 0 . Hence the infinite sum
1+ Q + (Qg + LQ3 + ... is well defined on
@ B¢ and is the required lnverse to 1 - Q& .
(11) =>(ii1).  (Remark Proof same as Cor. 6.32)

If N+ rad (®E ) = ®P, then the epi
N® ( ®rad P,)—>>® By splits so the ldentity
can be written as

@p, —2>N®( @rad Py )—e@P.,C

the sum of - .- R
® Py —>@ rad P -—-—)@Po(

and

®p — N—2>® Py .
But the first lies in rad (® B, ®P) Dby (ii).
So the latter is a unit, implying N = ®E_ .
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(ii1) =§(i) Given a sequence of maps P1;215P232,,P3~3 N

with each a, €>SP1’P1+1) let

a
1 9
0 an
0 a3
0 0 au

o O O ©O
(@]

Then the image of A :C)Pi—%>CDPi ~ is contained

in ® Rad B, which is superfluous. Hence a A lies
in Rad (@B, ,€R.) [for abellan categories,

Rad (End P) = ‘{CQ with superfluous images } . 1.
Letting B be the right inverse of (1 - A) , choose
n with
B o0
Pl——->® Pi —® Pi—%>@ P

i=n+l

equal to zero (Pl_can pe carried only so far by
B since P, 1s small ) .

Then

(1-a"*1yB = (1+a+...+A")(1-A)B
SO

n

1+A+...+A

nti

I—A B | ey
Pl—aCP-———~9GW——-aCEh—>Pn+1-Pl—aew-——eeﬁuern+l

But ad maps Pi-——'?P:H:j so this reduces to

M : n

—A B A
P1—9®P-—-———>@P——-’®P"‘) Pn+1 = Pl—i@P — ®P_9Pn+l

a LR 1 vh
a,8,...3, where

b is the (n+2,n+l)th component of B.

which yields —a1a2a3..;an+lb
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This gives (a;a,...a )(l-a ,.b) = 0

But an4y é:}(Pn+l’Pn+2)

80 apyy® € M(PpyysFpyy) implying that

1l- an+1b is a unit, hence a.a

1850008, = o. //

Proposition 9.26 If ¢ and (7t(&3)*,Ab) are perfect, then

so is (43*,Ab). _

Proof It will follow from a later result (Prop. 10.4%) that
(&3*,Ab) is semi—perfect. Hence it suffices to
prove that arbitrary sums of (-,Cy) are:semi-perfect
and, utilizing Prop. 6.23 since properties (ii) and

A~

(1ii) are preserved in taking sums, one needs only
show that the radical is superfluous.

By Prop. 9.24 one must show that {(-,qxl} is
T-nilpotent with respect to the radical.

We adopt the proof of Hullinger [/6]. Let

LAy a,

C; —=> Cp—> 03 ... with a, € dL (CysCi4q)
Then 7C (a;) € ) (T (Cy),M (Cy4q)), sO there exists
ny with 7t(a1)7r(a2) ce 7C(anl) = 0. That is,

213,008, factors over a (finitely generated)

1
projective Pl.

—>
Repeat this argument starting with C ., C, .5 -

1 1
then- an‘ an,
C1—= --- Cnl—“"cnln“)‘" CnZ';. an-ﬁ-vlk-.»
NS N/ i
P, et 2 Py -~ " e P3

The lower row are maps 1in §(P1’Pi+l) since they factor

i fect hence
via ani é-c)_(cni,cni+l) . But q7 1s.per ec
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{Pis is a left T-nilpotent system 1n C# . S0

composition of lower row becomes zero implying also
upper composition becomes zero. //
9.27 Remarks
Under reasonable conditions ¢7 will be perfect, i.e. if
CV'= Aﬁhl for A a perfect ring. So that R 1s perfect
iff 7t(R) 1is perfect. In Fuller [ 9], the functor ring
is based not on finitely presented modules but finitely

generated modules. However this will be the same
provided one imposes the Noetherlan condition, in which
case one then would like a perfect Noetherian ring, i.e.
Artinian.

Theorem 9.28 (Fuller)
Let A be a ring with identity and R the functor ring
from finitely generated left A -modules. Then R 1is
left perfect gggf' every left A-module is a direct sum

of finitely generated modules. //
Then using Thm. 6.25, Thm. 6.6 and 9.15 , one has

Proposition 9.29 If of = Am , A-Artinian, then Z/J38
is perfect iff RKRn T is perfect iff o7
is pure semi-simple. //

We summarize the various categories and adjoint pairings
in a quick overvliew of the previous sections. 03 is the
additive category of finitely presented objects.

* -_— # ~ —~ >
(B* ap)e—— (n(B) ,0) T RNT «—— &[S
: R
9.30 Starting with RNT I £1.8
-3
(R,T) 1is an adjoint pair, which factors as

R
RnNI _—__~ < Z/é
re

again adjoint.paifs.
(T,S) is an adjoint pair, which factors as
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rd

£ g

again adJoint pairs.

(1) T is exact

(11) &/® —IT S RNT 1is the category of additive fractions
with respect to the pure subcategory AY s which has
ST as localization functor and RT as colocalization.

(111) (a) The counit for (T,S) is an equivalence (so S is

fully faithful), i.e. T is the left-adjoint-left-
inverse to S. S then establishes an isomorphism of
RNT  to the reflective subcategory of divisible
repure objects R ND

S :R’RnNT —————a»62/723‘=———° &l

(b) The unit for (R,T) is an equivalence (so R is
fully faithful), i.e. T is the right-adjoint-left-
inverse to R. R then establishes an isomorphism of
Rn T to the coreflective subcategory of codivisible
copure objects CnN T

(1v) (a) S preserves injectives and essential monics.
(b) R preserves projectives and superfluous epis.

9.31 z

(6*,Ab) e————,ig(z(B)*;Ab)
T

— %
(7, 7,) and (74,7 ) are adjoint pairs.

(1) ’f is exact and fully faithful, giving an . exact
embedding of (rc(B)" ,Ab) 1into (B LAb).
(11) (a) The counit for (7r, Zy) 1is an equivalence ,i.e. T
is the left-adjoint-left-inverse to T ,. 7&,

then establishes an isomorphism of (75(43)*,Ab)
to the reflective subcategory of contravariant
functors on A which vanish on finitely generated
projective objects of 07 .
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(b) The unit for (9r*,7t ) 1is an equivalence , 1i.e.
% is . the right-adjoint-left inverse to 9f 7t
then establishes an isomorphism of (ﬂr(tS) Ab)

to the coreflective category of contravariant functors
on B which vanish on finitely generated projective
objects of 67.‘&233 this subcategory is both
reflective and coreflective.

%
9.32 Using the equivalences (/43 ,Ab) :R”L and

(K(B)*,Ab) = 7C(R)772 where 1R [respectively 7U(R) ]

is the functor ring with respect to B [ ~(AR)] , then
* #

e + (x2(B) ,Ab)—> (B ,ADb) is the change of ring

[, ] -
functor %(R)m R7’[ induced by the natural ring homo

— *
morphism R —> «x(R) . Wand T are then the associated left
and right adjoint as in 'standard' ring theory. In parti-
cular, x is tensoring over the ground ring

X—= N(R) @,

9.33 The isomorphism (W(ﬂ:)*,Ab) _= s&aT
results from the equivalence of the subcategories T (A3)
and T (B ), where by X (#3) one means
J-,mxn | xed}
which 1s a generating set of small projectives for
(% (B) ,ab) . T»(B) 1is the set
fre(x) | xe B5
where 7t(X) 1s the image under : 0'//09 > E&ld
this set is a generating set of small projectives for the .
functor category RN J .
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CHAPTER 10
' SIMPLE SEQUENCES

10.1 f7 —> o}/@ X s e/d
3 — B/pne3 |

We commence with a brief review. ¢7//° 1is the projective
homotopy category (3.4). 67 —s> ¢/ /(P identifies objects
but assigns a morphism its class modulo maps factoring
through projectives. T : of/Pc—> E/S assigns to an object
X a short exact sequence terminating in X, with middle term
projective. M 1s a fully faithful embedding of &7/ (as
a resolving set of projectives). Dually, one can consider
the injective homotopy category o7/df.

03 1s the subcategory of finitely presented objects. The
importance of £ is that it generates (via 7U ) the copure
subcategory 7 of /S 5 every pure projective is a direct
summand of a direct sum of finitely presented objects of 07 .
Note that 5%763 1s the category of finitely generated
projectives.

One can dualize @3 as follows (8.34 and 8.44) : let A’
be the set of pure-injectives resulting from taking
injective hulls of simples of ®N T , along with injective
hulls of simples of 07 (this latter set is a suitable
replacement for finitely generated projectives). By
Thm. 8.45, @' cogenerates (X . Every pure-injective
(algebraically compact) is a direct summand of a direct
product of dements from (3'. This creation of B' is not very
esoteric : the duality with (3 is imposed rather than
arising naturally. The duality can be better illuminated
if one imposes the following conditions

(a) Every pure-projective is a direct summand of a dipect

sum of pure projectives with local endomorphism rings.
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(a') Every pure-injective is a direct summand of a direct
product of pure injectives with local endomorphilsm
rings.

Now any simple of ANT 1is an epimorph of q(C) for
some C finitely presented. However, assuming (a) , one can
further assume End C 1local. In this case, /T (C) is a
projective with a local endomorphism ring, hence has an
unique maximal subobject. Conversely, 7©(C) 1s a small
projective for C finitely presented and will thus have a
maximal subobject. This yields a 1-1 correspondance between
simples of ANJ and non-projective finitely presented
objects with local endomorphism ring.

Suppose S = 0—s> A' —»B'—> C—>0 1is the simple
epimorph of o (C). ~ S is copure and simple hence must be
repure, so r'S =S . To compute r'S take A'>—> A" , pure

monic with A" pure-injective, and form push-out

0 —>» A' —» B' —»C —= 0

Loob

0 —» A" — B" —»C — 0 r'

N e W
n

so w.l.0.g. the first term of S 1is pure-injective. Now
assuming condition (a'), one can further assume A" = W‘Ai
with End A, local.(i.e. A" ®X = 7rAi for some X,
but then A'—> A"@ X 1is still pure monic ).

Now form - gquotients by taking push-outs

g —> A, —> B" —> C —>0

S
oL )
V L]
—_— —

0 —> A, —> By C 0 Sy
Since S is simple, §; = 0 or S8, . But not all 3, =0
since one has an embedding

0 —> WA, —>B" —> C —>0 5

—

0 — Ma, — T, — Nleg =0 s

;| ll T
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Thus S can be represented as a sequence 00— A —-B—>C —0
with C pure-projective (in fact, finitely presented) and
A pure-injective, and both End C and End A local. Noting
that YJ(A) is an indecomposable injective and §_¢>>Q)(A)
is the unique simple subobject, establishes

Proposition 10.2 If O7 satisfies conditions (a) and (a')
then any simple Sin ®2J7 has a unique
representation as 0-—>A—B — C —0 with
End A and End C local, A pure-injective and
C pure-projective. //

Before proceeding further into the topic of simples, we
pause to investigate individually the conditions (a) and

(a').

Proposition 10.3 07 satisfies (a') iff given C finitely
presented with local endomorphism ring, there

exists & simple sequence 0— A—B—=C —0:
with '€nd A local.

Proof (<) As in Thm. 8.45, I )} resulting from the
simples of Rn7T cogenerate R , and this implies
that if D is pure injective, J(D) >—> 7FJ(A )
for some product. So D> I® (T(Au) splits
where I is any injective containing D, but w.l.0.8.
I is the product of injectives with local endo-
morphism rings (injective hulls of simples in o/ ).

(=) As in proof of Prop. 10.2. //

Proposition 10.4 The following are equivalent for a

functor category O7 :
(1) Of satisfies condition (a)

(11) ® is a Krull-Schmidt category (every object 1s
a finite direct sum of objects with local endo-
morphism rings)

b ;
(11i) (A ,Apb) 1is semi-perfect.
(iv) ©6f.and ®RNJ are semi-perfect.

- Paiwm T A - ~ CN —
T - v o

PR - T I e e sen A 5 T . = Dl s
. " (SO By 4 R AUV | . T A e T T
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Proof Note first that a functor category C is semi~
perfect (every fip;tely generated object has a pro-
jective cover) ~iff C has a generating set of small
projectives with local endomorphism rings (achieved
by taking projective covers of simples).

(11) = (1) Trivial

(1) = (11) Every finitely presented objéct will be
a direct summand of a finite direct sum of objects
with local endomorphism rings. But every direct
summand of such an objéct is again of this form
(this is a consequencé of Azumaya's theorem, see
Andérson- and Fuller [ 1], Thm. 12.6, Cor. 12.7
and Lemma 12.3 ; the module techniques hold for
functor categories)

(11) = (111) (&3',a0) has {(-,X)§ with End X local
as a set of small projective generators, hence 1s
semi-perfect. ‘

(111)=>» (1) If (63*,Ab) is semi-perfect, then it
has a set of small projective generators with local
endomorphism rings. But any small projective in
a functor category is representable ( Freyd [ %],
page 119) Hence there is a set {(— Xf} with
End C local generating (63 ,Ab). And then any
pure-projective will be a direct summand of a
direct sum from '{X} .

(11) =(1iv) Every small projective 1n 6] is a finite
sum of objects with local endomorphism rings,

hence Of is semi-perfect. Also RNT = (’Z’(B) ,AD)
has {(—,WX)} with End &X local as a generating
set of small projectives, hence is semi-perfect.

(iv) =§(i) For thiqﬁmplication, some preparatory

results which can be found scattered throughout
the literature in various disgulses:
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Proposition 10.5 If o/ is semi-perfect and X has no

projective summands, then (}(X,P) = (X,P)
and }(P,X) = (P,X) for P finitely
generated projective.
Proof Since 07 is semi-perfeet, then P is a direct sum
of local projectives. Then using finite additivity
of C?(—,X) and 6$(X,-) (the Kelly radical), one can
assume P is a local projective. Then every composition
pP—>X—P 1is a non-unit since X has no projective
gummands, thus lies in (}(P,P). Result follows by
definition of 9_. //

Corollary 10.6 I1f of is semi-perfect, and X finitely
generated with no projective summands ,v then
P(-,X) £ § (=,%). v
Proof Suppose g € P(Y,X), then g factors as Y— P —>X
for some projective P which can be taken as finitely
generated since X i{s finitely generated. But-
@ é.}jP,X) by 10.5 , hence g ¢ }jY,X). //

Proposition 10.7 If of 1is semi-perfect, every finitely
' generated object X has a decomposition
X=X"@®@P , withP projective and X' has no
projective summands.
Proof Let Q =>»X be a projective cover. Then
Q/JL(Q) = X/c}(x) is a finite direct sum of
simples (Prop. 6.22). Now any projective summand
P' of X results in a non-zero summand P'/}L(P') of
X/J.(X). Remove P' from X, and continue removing
projective summands, since X/J_(X) is the finite sum
of simples, the process terminates. //

Corollary 10.8 If 0f is semi-perfect, X, Y finitely
generated. with decompositions X = X! @P, Y =Y@Q
as in 10.7. Then ({:X+>Y 1is an isomorphism iff

Xt —= X —-»Y—>Y' and P—-X-—2Y-—>Q are isomorphisms.
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&
Broof Writing d : X'@P —>Y'@Q as (‘Q' ',
— Y, &,
0 W

by Prop. 10.5 1 e-cﬁ_(x,x), hence
%, O

R, @, @, o
is an isomorphism 1iff @ is an
'7‘2 4?2 S == \0 5

isomorphism, " iff ¢, and ¢, are isomorphisms. //

Recall that X and Y are stably isomorphic if there
exist projectives P and Q, and an isomorphism P® X>Q® Y

o~

this 1is equivalent to W(X) = A(Y) by Cor. 4.13.

Corollary 10.9 For of semi-perfect, X,Y finitely,genéra@ed,
with no projective summands, then X is stably
isomorphic -to Y iff X is isomorphic to Y. //

Corollary 10.10 If of is semi<perfect, X finitely gener-
ated with no projective summands, then End 7T X
is local iff End X is local.
Proof Any element of End 7TX is of the form T . X is
a unit in End A X iff there is an isomorphism (Cor.4.13)

X@® P, —>X @ P, with P,,P, projective and the

component map X-—>X the map €. Then by Cor. 10.8,
W is a unit implies «& is a unit, but converse is
trivial, and result follows readily. //

We return to the proof of (iv) =» (i) of PROP. 10.3.
Just as in (ii1)=» (1), R T = (7:‘(/3)*,Ab) has {(-,71')()}
with End X local as a set of generators., Now 067 is semi-
perfect so w.l.o.g. X has no projective summands, then by
Cor. 10.10 End X is local. Then any pure projective is
a direct summand of a direct sum from the {:x} and the set
of small projectives with local endomorphism rings. //
©10.11 Remark

Starting with C finitely presented non-projective with
local endomorphism ring [if C is projective it will be the
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projective cover of a simple, associlate C to the injective

hull of this simple], one associates. the unique simple
epimorph of % (C). This association is 1-1 and onto the
simples of ®n J . The simplé then determines a unlique
pure-injective non-injective A with local endomorphism
ring (provided condition (a') holds). The correspondence
C—>A 1is 1-1, but is it onto?

We havé the following proposition which holds in general,
and whose proof is just a matter of definition of oF(A)
and characterization of subobjects in ¥E/< .

Proposition 10.12 Given A pure injective non-injective

then there exists a simple sequence
0 —>A —»>B—>C—>0 1iff «2(A) has a minimal
subobject. //

Corollary 10.13 For each A pure-injective non-injective,

there exists a simple sequence 0 —>A—>B-—C—0
iff ® 7 1is semi-Artinian (every object has
a minimal subobject).
Proof (&= ) Trivial
(=) Since {Td(A)} cogenerate 735 (as in
Thm. 8.45) and Tof (A) has a minimal subobject
iff J(A) has a minimal subobject. //

10.14 Remark

Returning to the situation for which (a) and (a') hold
in this case {T&(A)} with A pure-injective and End A
local cogenerates ®*kn7 . In this case, the correspondance

Ci—> A from the set of pure~-projectives local endomorphisms
to the set of pure-injectives with local endomorphisms is
121 and onto iff ®21J is semi-Artinian. Now
7 = i -
RnT 7((R;?71’ and the functor ring 7 (R) 1is semi

Artinian iff the radical is right T-nilpotent. But by
assuming (a), T(R) is semi-perfect which holds on both
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right and left. Hence 7t (R) will be right perfect (the
category ﬁbﬂI(R) E (x(AB) ,Ab) covariant functors on

T(A3)).
10.15 Remark )
In attempting to analyze condition (a'), the dual of

(a), for which every pure injective 1s a direct summand of
a direct product of pure Injectives with local endomorphism
rings, the major stumbling block is the mysterious
structure of pure injectives in the general case. The
basic tool is "Thm. 8.45, but this 1is essentially an exist-
ence theorem. One would like a closer dual to the set 43
in the general case.

The clue seems to be that in working with &, projectives
can be assumed to be finitely generated. As noted above,
for 07 semi-perfect it seems natural to associate thé pro-
jective cover of a simple to its injective hull. We
are thus led to consider finitely cogenerated injectives.
For instance, results 10.5 and 10.10 have natural duals.
The dual to 10.5 1is

Proposition 10.16 If X has no injective summands and I
is finitely cogenerated, then 9}X,I) = (X,I)
and }ﬁI,X) = (1I,X) . //

One need not impose‘restrictions on 07 since every
finitely .cogenerated injective is a finite direct sum of
local injectives (dual statement requires 01 to be semi-
perfect). .

One also has that any finitely cogenerated Y has a
decomposition Y = Y' @I , I injective, Y' no injective
summands.In fact, working with the /socle of Y, which 1is a
finite sum of simples rather than X/ly(x) as in Prop. 10.7
will give exlstence and will also yiéld that Y is a direct
sum of indecomposables. Furthermore, if Y is also pure
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injective these indecomposables have local endomorphism

rings (End A is local for A indecomposable pure injective,
B. ZimmermannHuisgen [28]). So the machinery is set to

go, except for a major stumbling block, the natural dual

of 8. A has the crucial property , upon which a great deal
depends : that a finitely generated pure-projective 1is
finitely presented, (since every pure-projective 1s a

direct summand of a direct sum of finitely generated pure-
projectives). A 'natural' dual of finitely presented could
then be a finitely cogenerated:pure=injeéctive, :Xiather - than
a cofinitely presented object! Consider then the condi-
tion (a%*) every pure-injective is a direct summand of a
direct product of finitely cogenerated pure—injectives.

Note that (a") implies (a') (again using the Zimmermann-
Huisgen result), so that one can further impose that the
endomorphism rings are local.

If (a") is satisfied, then {J(A)} with A finitely
cogenerated, pure-injective and local ehdomqrphism ring
eogeneratesR_ , hence for any given simple in ®RN7J , there
is a monic into Y (A) for some A. Since subobjects of of (A)
are of the form O0— A.—sx-—sY-90 for some X,Y, any given
simple can be represented with first term finitelyﬁéenerated
pure-injective with local endomorphism ring. But then again
this simple is copure, hence there is an epimorph of 7¢(C)
for some C finitely presented

0 — K —>P —>C —>0 (o)

U | )

0 —m A— X —>Y —0

v <

But the image S' of this .map can be computed by forming
the pull-back '
0 —2A~—>B——>C —>0

| A

0 —>A—>X—>Y—>0

|2 |2
n
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Hence assﬁming condition (a") any given simple will have
a répresentation 0—>A—=B—C~—0 with a finitely cogen-
erated pure-injective with local éndomorphism ring and C
finitely generated pure projective (finitely presented).

If one also imposes (a), one can further assume End C .is
local and in this case the representation is unique, by
Prop. 10.2.

Recall from 10.1, the set (3' of pure-injectives, which
was to act as the dual of B . This duality was imposed, and
I feel that the 'natural' dual is the set- of finitely
cogenerated pure injectives. The above has shown that this
1s indeed the case if (a") is satisfied.

10.17 The Intrinsic Characterization of Simples

An object S of &/4& is simple 1ff it has no proper
subobjects iff it has no proper quotients, other than the
zero object. ' :

Given any object S, let §f dénote the subobject resulting

from the pull-baék of a morphism f : X—C , i.e.

0 —m A —@mY — X ——=0 _S_f

(I )

0 —>A —8B ?2C —>0 S

Recall that any subobject of S can be represented as S, for

some f. Also let S; be the sum of subobjects S » f€l for

any set of morphisms I. S is simple iff §f =0 or
Sp = S for any morphism f. If Sp = S the cokernel sequence

splits; Aif §f =0 , f factors over B-—->C. One then has

Proposition 10.18 0 A —B—>C—0 is a simple object
of €[® iff given any morphism f : X—C,

elther f factors over B—C, i.e. _-X
o ¥
B —>7C

or the sum map X ® B—>» C splits. //
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Proposition 10,19 0—>A—»B—>C—>0 1s a simple object
of €/& 1ff given any morphism g : A—>Y,
either g factors through B, i.e. A—>8B

”
4

y e
or the sum map A>> B® Y splits. //
The resemblance to Auslander's almost split exact

sequences (a.s.e.s.) is immediate. I should mention that
my initial study of E€[8 resulted from piecing together some
notions of Fieldhouse [ 6 ] on purity, Freyd [ 8], Maclane's
[ @] brief mention of a sequence category, and Auslander [31].
Characterizing the simples as above came quite naturally,
it amazes me that Auslander pulled them out of partlally
clouded mid-air, but also saddens me not to be the creator
for I had never heard of an a.s.e.s., having shied away
from papers dealing with 'representation theory'. We
proceed then with the concept of a.s.e.s. and demonstrate
that it is not quite natural in the general setting of
the sequence category .
10.20 Almost Split Exact Sequences (a.s.e.5.)

0—>A-—>B—=>C—>0 1is an a.s.e.s. if A,B,C are finitely
generated, End A and End C are local, such that either (in
which case both)

(1) 1f £ : X—>C 1is not split epi, X finitely gener-
ated, then f factors over B—=C.
(1') if g : A—Y 1is not split monic, Y finitely gener-
ated, then g factors through A—>B.

Now this definitlion was used oriéinally in the context of
modules over an Artinian algebra, and has been adopted for

the more general case of Artinian rings (so that in (1) and
(1'). X can be taken to be indecomposable). For Artinilan
algebras, the condition that X (Y) be finitely generated
can be removed (one of Auslander's results).
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It follows that an a.s.e.s. 1s a simple obJject of E/é. A
That is, if one considers the subcategory of finitely gener-
ated subobjects o' in 6f, then forming ( €/8)' using
only objects from o7', and one has that (€48 )' is a sub-
category of EAJ . Then if 67 is a module category over an
Artinian algebra ( €/ )' 1is abelian and by definition an
a.s.e.s. is a simple sequence in (€/4)' in which
beginning and end termghave local endomorphism rings. And
1t then follows that it is also simple as an object of &€/& .

In easing the restrictions that 07 be a module category
over an Artinian ring, should finitely generated be replaced
by finitely presented?

For Artinian rings, the concepts coincide, and Thm. 8.43
suggests C should be finitely presented. However, it is
too stringent to impose that A and B also be finitely pre-
sented, for we have observed that the existence of simples
in €&/4 leads to A being pure-injective, not finitely pre-
sented. Furthermore, if one drops conditions that End C
~and End A are local, one is dealing with the simples of
6{/)9'. However the complete generality achieved in just
dealing with simples does not 'yield representation results.
A compromise dé}inition is as follows

10.21 Locally Represented Simple Sequences

0—A—=B—C—>0 1is locally represented simple if
(1) End A and End C are,blocal,
(2) either C is pure-projective or A is pure-injective, and

(3) either : if f:X—>C 1s not split epi, then f factors
over B—C ,
or : if ..g:A—>Y is not split monic, then g

factors through A —B.
Either condition of (3) states that the sequence is simple,
so 1f one helds then so does the other.
As for the conditions of (2), suppose C is pure=projective.
Then this is a copure séqUencé which is'simplé, hence it is
also repure. Consider S >»J(A). Since End A is local,
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End &f(A) is local, and so of(A) is indecomposable injective

with S as a minimal subobject, i.e. «f(A) is the injective
hull of S. This implies ¥(A) is also a repure sequence,
for if YJ(A) has a pure subobject, this object would contaln
the repure object S. But J(A) is repure iff A 1is pure-
injective.

Similarly, if A is pure-injective, this implies C is
pure-projective.

10.22 Remarks

The condition of Prop. 10.18 for a simple sequence,
that the sum map XG) B—>)C splits, 1is equivalent to X-5>C
splits, since End C is local.

We have attempted to give a self-dual definition, which
is why C 1s assumed to be just pure-projective and not seem-
ingly stronger 'finitely présentéd'.

However one has the following :

if End C is local, and 1if E§Xﬁ——9c splits, then

~Xi—4ic‘ spiiﬁgf%br‘some i, If C is finitely generated

(which implies small) then restriction to finite sums
is easily removed. Even more remarkable is that
finitely generated can be dropped (again a folklore
result).

Proposition 10.23 If End C is local, and @x&——e’c splits,
then for some « , X, —>C splits.
Proof Consider maps B, : C@D X DX TP B XK —>C
For any finitely generated subobject D of C, there
is a finite set of Y, such that é;?d& is the identity
onnD. So 1 -2, is not a unit, hence at least one
&, is not in ;L(C,C), and must be a unit. //

One is now faced with a problem of dualization. For
pure prgjective + local endomorphism"f> pure projective +
finitely generated <?j finitely presented. But when will
pure injective + local endomorphism =§ pure injective +
finitely cogenerated ? If this implication holds, conditions
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(a') and (a") are equivalent. The implicatlon does not
hold in general : for examplé; if O/= Ab, @ is not
finitely cogenerated, but 1s pure injéctive with local
endomorphism ring. Hence oné is léd to another generaliza-
tion of the a.s.e.s., that of 'finitely locally represented
simples' in which the final term is finitely presented with
local endomorphism ring and the beginning term is finitely
cogenerated pure- 1nJective with local endomorphism ring.

Note that for ArtinianAfinitely generated will imply
both finitely presented and finitely cogenerated pure
injective, so agreement is reached with a.s.e.s.
10.24 Existence Problems

Utilizing the proof of Prop. 10.2, one has

Proposition 10.25. Given C finitely presented with local -
endomorphism ring, there exists a [finitely]

locally represented simple with C as final term
if condition (a') [(a")] is satisfied. //

Corollary 10.26 If (a) holds, then condition (a') [(a")].
is equivalent to positive solution of existence

problem,
Proof For then any simple is the epimorph of. qr(C) for
some C finitely presented with local'endomorphism ring
and then the corresponding setﬁJ(Ai}cbgenerate R
(as in Thm. 8.45) which yields (a') [(a")]. //

The reverse procedure is to construct a [finitely]
locally represented simple starting with a pure-injective
[cofinitely generated] with local endomorphiSm ring. For
the first step, it will be necessary to assume that o (A)
has a simple subobject, which then repregents a simple
sequence 0 > A —-sX—->Y —>0. (This problem did not arise B
using C, for then T 9(C) was a small projectiVe in RN7T ,
hence has a simple epimorph;) ThéAnéxt step would then be

to apply condition (a)’ fb.achievé the requiréd [finitely]
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locally represented simple. (dualizing proof of Prop. 10.2),
one then has :

' Proposition 10.27 For £)7 semi-Artinian, then given A
pure-injective [finitely cogeneratedl with local
endomorphism ring, there exists a [finitely]

locally .represented simple with A as the first
term if condition (a) is satisfied. //

Corollary 10.28 If o7 is semi-perfect and Z (R) right
perfect, then the [finitely] locally represented

simple existence problem of Prop. 10.27 has a
solution.
Proof Condition (a) is equivalent to ¢7 and 7 (R) both
semi—pérfect; and right perfect is equivalent to
risemi-Artinian and semi-perfect. //

And a partial converse

Proposition 10.29 If A7 is semi-Artinian, o7 semi-
perfect and condition (a') [(a")] holds, then
condition (a) 1s equivalent to a positive solution

of the exlstence problem (of Prop. 10.27).
Proof (=) 10.27. '

(&) RNJT semi-Artinian and condition (a') [(a")]
implies that each simple will be a subobject of
o) (A) for some A pure-injective [finitely cogen-
erated] with local endomorphism ring. The
associated [finitely] locally represented simples
yield a set {Cj with C finitely presented with
local endomorphism rings. Then {T?t(c)} are
projective covers of the simples of N7 hence
generate A7, and hence {7 (c)} generate J .
Then given D pure projective, there 1is an epi
® m(c) —>» A(D). So if P—>» D is epi , with
P projective, then (®C) ® P—» D splits.

Now if o7 is semi-perfect, then P itself is a
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direct sum of finitely generated objects with local
endomorphism rings, which gives the result. //

‘10;30'Con3truction‘of‘Simples
Given C non-projective, finitely presented, by 10.2
there exists a simple 0 — A —B—>C-—0., If End C is

local, one has a procedure of constructing this simple
Step 1 For each finitely presented X, let

X = @ Xg , where for each g e}(X,C),

gég.(x,c) .
Xg = X ; one has a natural map X ->C with
components g : Xg—e(L

Note that since End C is local,
3.(X,C) = {g € (X,C) which are not split epi} .
As before, let 03 be the set of representatives
of finitely presented objects. Let C = ® X

Xeam

then there is a natural map : C—>C with compo-
nents X—C as above,

Step 2 Form the exact sequence in /S,
o—a%wnﬁa%w%agao,mujs

0 — K — E —> T —>0 X (C)
[ 1) ¥

0 — K —»P —/8> C —0 Z(c)
{ { I ¢

0 —mE —2PHC »C —0 E

Claim, 7C(C)V is the sum of all proper copure
subobjects of M(C). In fact, {7C(X), X & 3%
generates 9', and the 1lmage of

' L) : T (X) —>7(C)
lies in x(C), 1if L(?eg(X,C) by construction, i.e.

X
¢ Ja ,® factors over Y 1if L(?é()(X,C) >
C—fv‘,” C

and if ¢ QKX,C), § is split epl, and then
J(X) —» ®(C) is a split epi.
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Furthermore, 7W(C)y # 7 (C), . for if this were
true, then E = 0, which means P ®C—>C—0
splits. ‘Bﬁt End C is local, which means P-—>C—>0
splits of C— C -0 splits. The first 1s not the
case and‘if the latter holds, then some component
map X—C~—0 would split. But all components are
in the (Kelly) radical so this is not possible.

[gggg A non-constructive approach of achieving
A(C)y , i.e. without mention of ¥or T , is to
show that the set of proper copure subobjects
of 9r(C) is closed under finite union. 1In fact,

if QKC)fi ,i=1,...n, then the sum of 7T(C)f

. : i
is M(C)p, where fy : X,—>C and f is the sum of
the f;, f : @X;—>C. Then T(C)y = W(C) ALiff

f is a split epl 1iff fi is a split epil for some i,
since End C is local, 1iff 7I'(C)f_ = 7A(C) for
[

some i; Now since Jr(C) is a small projective,
the total sum is a proper subobject of x(C).]
Now every subobject of E is pure. In fact,
suppose E' 1s a proper subobject. We show that
tE' = 0. |
Form the pull-back in ¢/4
0 —>Z(C)y —> X —tE'—> 0

] § 78 §

0 — %(C)y, —MC) —»E —>0
is an extension of T(C), and tE', so by Prop. 5.7,
is copure. But this implies X = 7x(C) or
€ T(C)y. If the former holds, then tE' = E, so
' = E contradiction. The latter implies X = 7cf(c)9,,

1B bl Ell kol

forcing tE' = O. _

Form thé sequence r'E.

To form r'E , find a puré monic E>>A with
A pure-injective and form pushout in 0f .
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0 —E —P®C—>C —0

E
I { ) 0
0—2A—>B —C—>0 r'E

Now,
0 —>t'E —»E —r'E —50
/ is exact, where t'E is the unlque maximal pure
subobject of E (Cor. 7.3), but since all subobjects
of E are pure, t'E is a maximal subobject, hence

r'E is simple.

10.31 Remarks
The object C formed in Step 1 1is quite large (i.e. not
finitely generated). Reducing C to a finitely generated

object seems to be the crux of establishing the existence
of an almost split exact sequence terminating in C. The
following technical lemmas are useful. in controlling the
size of C. Let E= 0—A—B—»C—0 be an arbitrary
sequence (dropping conditions on c).

Lemma 10.32 If h : X—>C factors as x LIy -Bsc
: c
then the subobject Eh L= Eg .
Proof E_ results from the pull-back of h with B—>C. But

h
this can be achieved first as pull-back with g then f.

0 —>A— B"—> X —0 E.

[ g

0 —>A —B' —™ Y —5 0

L )

0 — A s B -» C » 0

N4

Lemma 10.33  If g @xi——ac has components g; then

| Eg Rt Y

" Proof Obvious from definitions. //
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Lemma 10.34 If S =-igi}ie1 generate. Hom (X,C) as an

End X module, then Eo = Ej o (x,c) °

Proof If hé€ Hom (X,C), there exists a finlte set {fi}
in End X such that h = 2 f,g, . Then h factors
. T
X - @x, &> C SOE € E_=E CE
i —h —-g —{gi} —-g
(equality step by .10.33). //

Lemma 10.35 If g : X—»C 1s epil, then
coker T(g) : T(X)— 7T(C) 1is
E=0-—2K—>X—>C —> 0.
Proof This follows from Cor. 3.21, for
- L2 (X)) T(C)—>E —0 1is the start of
a projective resolution for E.

[For an explicit proof,

0 —H —> P —> X —0 . T(X)
1« \L ls . L 7(g)
0 —>L —Q — C —0 T (C)
Loobo }
0 ®E— X®Q —™C—>0 E

Then 0 — K ——31? —3s C —>0 1s an isomorphism
0 —> E —mX®&Q—»C —0

with inverse
0 —E —@ X®Qq —™C—>0

; IO

0—>K —@83> X —> C——>0

where Y 1s the map 9,,Q , using projectivity
e & of Q.]
X—? C

10.36 Example
Let ©f = Ab, the category of abellan groups. Then

finitely presented is equivalént to finitely generated, and
(3 , the subcategory of finitely generated abelian groups,
has the property that every object is a finite direct sum
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of cyeclic groups Z(p-k), k = 0,1,2,... and p a prime.

End ZZ(pk) is local for k # 0, and for k = 0 one has the
integers Z . For Ab, G 1is puré ‘proj;é.ct‘i:ve' iff -G is a direct
sum of cyclic groups (this follows from a classical theorem
of Kulikov, that subgroups of direct sums of cyclic groups
are again a direct sum of cyclic groups, or can be derived
from the decomposition theorems in Fuller and Anderson [1 ].)
If one ignores the projective (free) summand of a pure-
projective object, then condition (a) holds, (i.e. modulo
projectives (a) holds for Ab). RNT = (7 (B) ,Ab) will
have {(-,7( ( Z(pk))} k=1,2,... as projective generators
with local endomorphism rings, so RNJT is semi-perfect,

but Of = Ab is not (recall that (a) holds iff both 07 and
®RNT are semi-perfect). Also for Ab, G is pure injective
iff G is a direct summand of a direct product of cocyclic
groups (see Fuchs [29], part of Thm. 38.1), ZZ(pk), k=1,2,...
and &0,

Note Z(pk)c‘—-—a Z(p™®) is an’ essentlal monic, and Z(p™)
is the injective hull of the simple Z(p), so all the cocyclic
groups are finitely cogenerated. Also all have local endo-
morphism rings. So (a") (and hence (a')) holds for Ab.
Hence every simple object of RNT (which is also simple in
£/$ ) has a unique representation 0—> A -—>B—>C —>0 with C
cyclic (and not Z ) and A cocyclic (and not Z(p=)), yield-
ing a 1-1 correspondence CHFH—>A, .

set ¢ = Z(pX). We construct 7(C), as in Step 1 of 10.30.
Given X—C, X finitely presented, since every finitely pre-
sented object is a direct sum of cyclics, we can assume by
Lemma 10.38 that X itself is cyclic. Then consider any map
not split epi g : X—>C. If g is not epi, g factors as

X — Z(pk"l)c_—i——-a Z(pk) (for the moment exclude the
case k = 1). Hence by Lemma 10.32, ﬂ1c)g < %%C)i . If

g is epl (but not split), then X is necessarily of the

form  P(p¥) , with r Yk. In this.
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v
case, g factors as X —> Z(pkH‘) — Z(pk) , wWith Y the

canonical epi. Again by Lemma 10.32, 7((C)g 557T(Czu
Hence 7(C), = 7Z(C); + T(C)y = A (C)ig,

where 1®» : Z(pF 1)@ Z(pk+l) —>> Zpk >
so by Lemma 10.37 the required copure simple of Step 2 is

coker U (i®Y) = 0= A — Z(pk_l) @ ZZ(pkH') — Z(pk)-—>0.
But then A is a finite abelian group, in particular A is
pure-injective, so Step 3 factoring out the maximal pure
subobject is not necessary. The simple has been achieved.
Zpk , and that the

A simple computation shows A

reduired simple is

p
0 — Z(p¥) {1.P), Z(pk‘1>®Z<pk*l)<_1_>aZ<pk)—a 0.

The case k=1 is even easier. In this case, non-zero maps
are epi, which implies that ﬂr(c)éig; Z(C), for all g

not split epi, where v: Z(p2) —» J(p). The resulting
simple 1is then

0 — Z(p) X2, 2(p?)— Z(p)— 0
So for 67 = Ab, the correspondence CH> A achieved by
constructing simple sequences 0—> A—>B—>C—>0
is just the identity.

10.37 Remark
By Cor. 3.23, if p.d.A = n , then p.d.¥%d < 3n-1.
Equality holds for Ab: for consider the simple ‘

S = O——>Zp———9—zp2 ——’Zp-——-ao , We show that
p.d.(S) = 2 , so p.d. &3 = 2.

By Cor. 3.21, one has a projective resolution
0> M(Z ) —> %(Zp'z_) — 2(Z)—>E—>0

If p.d.(S) < 2, then 0—> W(Zp) — 7 sz) is a split

monic, which is impossible since they are non-isomorphic
indecomposable projectives.
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10.38 The Existence of a.s.e.s.

The existence of a.s.e.s. with a given final term C
(finitely presented, local endomorphism ring) is of a more
difficult nature than the existence problem for locally
represented simples. The difficulty arises from the imposi-
fion that the leading term be finitely generated. This
seems to be a red herring : the basic justification is
that the category of' of finitely generated objects is an
abelian subcatégory of @f. So one can form a sequence
category &[4 ', where E € £/§' iff ET E' where E' is
an exact sequence with finitely generated terms. Then
€/8 ' is indeed a full exact abelian subcategory of &/ ,
but ‘iéd' is buried within J and does not play the role of
finitely generated objects. It seems more natural in
dealing with €/§ and its subcategories f,ﬁf/, J , to
consider sequences E = 0—»>A—>B—>C—>0 with A pure
injective and C pure pro}ective, i.e. E ¢ £, J (and
conversely, any object of RN 7T has such a representation).
These are precisely the sequences E such that Hom (g,ﬁpﬁ =
Hom (A?,g) = 0. Finite restrictions can then be imposed,
for instance, final term finitely generated and/or leading
term finltely cogenerated. One should note also that if
one imposes the condition that the final term has a local
endomorphism ring, then this is in fact a finite condition.
For . ° Prop. 10.23 implies 7T(C) is finitely generated if
End C is local, hence any quotient of 7W(C) is also finitely:
generated., So that any sequence terminating in C will be
will be finitely generated. Unfortunately the dual does
not seem to hold;'that is, End A local will not imply
NJ (A) finitely cogenerated.

Returning to a.s.e.s., to examine how the existence
problem fits within the framework of the sequence category
as noted in 10.20, an a.s.e.s. is a simple object of E /S 'y
the sequence category using finitely generated objects, and
every simple is uniquely represented as an a.s.e.s. (where
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of =A771 s A Artinian. So.condition (a) holds, so any
simple.can be represented with leading and final terms
finitely generated with local endomorphism ring). Now given
C finitely presented with local endomorphism ring, one can
'proceed as in 10.30 to construct the unique simple (in €438 )
epimorph ~ S of 7T (C). The object E arising from the exact
sequence O -——>7[’(C)P —> X(C) —> E —> 0 1in Step 1 of
10.30 is copure simple. That is, E 1s copure but every
proper subobject is pure. This is clearly equivalent to
every map (X)) —> E , with X finitely presented, either
zero or epl, If E=0—A'-2>B'—>C—0, this is equiva-
lent to the statement that any non split epi X—C, X
finitely presented, factors over B'—?C , 1i.e.
X
&« l« .
0 — A'——> B! —>C —> 0
Suppose now G = 0—s A" —B"— C—>0 1is an a.s.e.s. Then

Z(C), < R(C)—> G 1is elther zero or epl, but TC(C) 1is
a small local projective, so 7Z(C)—>>G is a superfluous
epl, so the composition cannot be epi. Hence one has

0 — T(Cly — W(C) —>E —>0

3 I &

0 ——> L —>n(C) —> G — 0
i.e. */T'(C)VC—-—> L. However the epi v : B"—>C factors
through the map ¥ since it is not split epi (see Step 2)
so by Lemma 10.32 , L = 7((C)y = 7((0)\', , Which implies
E = G. So the existence of an a.s.e.s. terminating in C
implies E € €/&'. Conversely, if E € £/8', it is a simple
object of Z/§'. Also M(C)—» E, so w.l.0.g. E terminates
in C (this is only a technicality but in detail,represent
"E = 0—>A'—5B'—5C'—>0 and T (C)—> E as

0 ——>K——P—>C —0 “Tr(c)
A A J
0—> A'—>B'—> C'—5 0 'E

then EJ_’?-’ Im (7v(C)—> E) which is computed as the pushout
of K—>P and K—>A', 1.e. EF 0—K—A'®P—>C—0
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and all terms are finitely generated.) Set E = 0—=>A'—>B'->C-—>0
then furthermore condition (a) holds so A' =@ Ai’ each with
local endomorphism ring, which implies E— Ei is an iso-
morphism for a unique i, where '

0 —>A'—>B'—>C—30 E
! } il y
0—> Ay — B,—> C —>0 E;

(since E > TT_E_:_i and E 1s simple in &/d').

Hence for the existence of the required a.s.e.s., it is
necessary and sufficient that E € E/$'. To make this more
tractible, we need the following technical lemmas

Lemma 10.39 o7 = ,\”)’Vl , A~Artinian, if _E_lH E, and
E,e £/Q8' then E, € g[§' iff E, is copure
and finitely generated as an object of &/ .
Proof (=») By Prop. 54 all objects of E[S ' are finitely
generated; and in 07 finitely generated implies
finitely presented so all objects of &8 ' are also
copure. '
(& ) For some X finitely presented, A (X) —» Ey
then E; 7 Im (7(X) 2 E;>> E; )

so if
0 ~—>»K—>P —X —=>»0 T (X)
Vool Y
Of‘etl—ﬁfl—ail—ﬁo %l
0 —“'PA2—~—7.B2—--; C2——7 0 ' §_2
then E;, = 0 —E —> X®B,—> C,—> 0 which has

finitely generated terms. //
Lemma 10.4%0  of =A5)7L , A- Artinian. If
0—E,— _552-——'9E_J3——='0 is exact in f/;é and

'--E-Z & ’géé‘, then E_‘._l 4 -ZL&' iff §3 ¢ -ZA&:
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Proof (=>) If E;—>E, 1is represented as

2
0—>A. — B —> C,—>0

L1 Ll l}

0 —A, —>B,—>C,— 0

2 2 . 2
with all terms finitely generated then
. /;/ . =
E3’= coker (1_&:_1——»‘52). 0 —>E—>C, @B, C,~>0.
So E, € EL'.

3
(&) Dual. //

Returning to previous discussion, we have an exact
sequence 0—>7((C)y —> @(C)—> E — 0, and 7(C). 1is
copure, so E € €/8' iff 7(C), € g§' (Lemma 10.40) 1iff
7 (C)y 1is finitely generated (Lemma 10.39).

This establishes part of

Proposition 10.41  Assume 07=AmL s A Artinian. Then
given C finitely presented with local endomorphism

" ring f.a.e.,
(1) there exists an a.s.e.s. terminating in C.
(11) the unique maximal proper copure subobject of
N (Cc) is finitely generated.
(11i) the unique simple epimorph of 7T (C) is
finitely presented in RN T .,
Proof (1) (ii) by previous discussion
(11) 3 (4i1) One has the exact sequence
0 —>J(C)y —> (C) ~»E ~»0 , and by assumption,
7C'(X)——97’/‘((C)q_ for some X finitely presented.
Then apply the exact functor T, TE is simple and
O*TK(C);’Tn(C)eTE»O and Tﬂ()o—»T’rc(C)\P, by Lemma 8.40 T a(X) is a
small projective in RNT hence finitely gener-
ated so TA(C), 1is also finitely generated.
(1ii) =»(11) By assumption, TR(X)-» T7Z(C)y for
some X finitely generated. Apply the right
exact functor R, RT W(X)—?? RTTC(C)y . But

~S

RTR(X) = 4¢U(X) by Lemma 8.47, and the
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counit RTN(C), —W(C)y 1is epi since A (Cly

is copure (8.29).
So X(X) = RTT(X)—» RTA(C) ~>? 7(C), ,

shows 7T(CL¢ is finitely génerated. //
Corollary 10.42 For Of=,% , A Artinian, then given
any C finitely generated with local endo-
morphism ring there exlsts an a.s.e.s.
terminating in C iff the simples of RNT
are finitely presented. //




[1]

(21

[3]

[4]

(5]

(6]

£71

£8]

(9]

(10]

(11]

[12]

[13]

146

- BIBLIOGRAPHY

Anderson, F.W. and Fuller, K.R. (1974), Rings and
 Categorles of Modules, Springer-Verlag (New York).
Auslander, M. (1969), "Comments on the Functor Ext',

Topology, 8, pages 151-166.

Auslander, M. (1965), "Coherent Functors", Proc. Conf.
Categorical Algebra, La Jolla, Springer-Verlag,
pages 189-231.

Auslander, M. and Bridger, M. (19 ), "Stable Module
Theory", Memoirs of the A,M.S., #94.

Dickson, S.E. (1966), "A Torsion Theory for Abelian
Categories", T.A.M.S., 121, pages 223-235.

Fieldhouse, D. (1969), "Pure Theories", Math. Ann.,
184, pages 1-18.

Freyd,‘P. (1964), An Introduction to the Theory of
Functors, Harper and Row.

Freyd, P. (1965), "Representations in Abelian Cate-
gories"”, Proc, Conf. Categorical Algebra, La Jolla,
pages 95-120.

Fuller, K.R. (1976), "On rings whose left modules are
direct sums of finitely generated modules'", Proc.
Amer. Math. Soc., 54, pages 39-44,

Fuller, K.R., and Reiten, I. (1975), "Notes on Rings of
Finite Represented Type and Decomposition of

Modules", Proc. Amer. Math. Soc., 50=, pages 92-94,

Gabriel, P. (1962), "Des categories abeliennes",

- Bull. Soc. Math. France, 90, pages 323-4i48,

Gentle, R. (1977), "F.P. Modules and Stable Theory",
Unpublished Master's Thesis, University of British
Columbila.

Hilton, P.J. (1965), Homotopy Theory and Duality ,
Gordon and Breach (New York).




147

[14] Hilton, P.J. and Rees, D. (1961), "Natural Maps of
Extension Functors and a Theorem of R.G. Swan",
Proc.- Camb. Phil. Soc., 57, pages u489-502.
(153 and Stammbach, U. (1971), A Course in
"HomOIogiéal‘Algebra, Springer-Verlag (New York).
[16] Hullinger, H.L. (1980), "Stable equivalence and rings
whose modules are a direct sum of finitely generated

modules", J. Pure and Applied Algebra, 16,
pages 265-273.

[17] Kelly, G.M. (1964), "On the radical of a category",
J. Austral. Math. Soc., 4, pages 299-307.

[18] Mares, E. (1963), "Semi-perfect Modules", Math. Zeit.,
82, pages 347-360.

[19] MacLane, S. (1963), Homology, Springer-verlag
(Berlin).

[20] (1971), Categories for the Working
Mathematician, Springer-Verlag (New York).

[21] Mitchell, B. (1965), Theory of Categories, Academic
press (New York). '

[22] Popescu, N. (1973), Abellan Categories with Applica-
tions to Rings and Modules, Academic Press (London).

[23] Simson, D. (1980), "Corrigendum, Pure Semi-Simple
Categories and Rings of Finite Representation Type",

Journal of Algebra, 67, pages 254-256.

[24] Stenstrom, B. (1970), '"Coherent Rings and F.P. Injec-
tive Modules", J. London Math. Soc., 22 pages 323-329.

[25] Stenstrdm, B. (1971), Rings of Quotients,
Springer-Verlag (New York).

[26] Tachikawa, H. and Ohtake, K. (1979), "Colocalization
and Localization in Abelian Categories", J. of
Algebra, 56, pages 1-23.




148

[27] Zimmerman, W. (1977), "Rein Injective Direkte Summen
von Moduln", Comm. Algebras, pages 1083-1117.

[28] Zimmerman-Huisgen, B. and Zimmerman, W. (1978),
"Algebraically compact rings and modules”,
Math. Zeit., 161, pages 81-93.

[29] Fuchs, L. (1970), Infinite Abelian Groups, Volume I,
Academic Press (New York).




