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Abstract 

We present a survey of the theory of skein modules of manifolds, and an intro­
duction to skein algebras of groups. By applying a trick of Doug Bullock, we 
use 51/(2, C) character varieties to highlight some infinite linearly indepen­
dent families of knots in the Kauffman Bracket skein module of a 3-manifold. 
These families are composed of a knot K, together with all (1, n)-cablings of 
K. We also exhibit a method of explicit computation based upon the work of 
Robert Riley, which can identify infinite linearly independent families in the 
skein algebras of 2-bridge knot groups. 
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Chapter 1 
Introduction 

1.1 Motivation 

Skein modules are the foundation of a new algebraic approach to manifold 
theory, which has knot theory at its core [22], and this new approach is par­
ticularly applicable to manifolds of dimension three. Specifically, the skein 
module of a 3-manifold M is a module whose structure may allow one to dis­
tinguish M from many other 3-manifolds. As well, if one succeeds in finding 
a basis for the skein module of M, then this basis provides an entire family of 
invariants of links in M. 

Previous invariants of manifolds, such as the homology or fundamental 
group of a 3-manifold, have been based upon equivalence relations between 
submanifolds of M that are relatively weak - namely the relations of being 
homologous or homotopic. Skein modules involve an importation of classi­
cal knot theory into arbitrary 3-manifolds, where one uses the relationship of 
"similarity of knots" to construct this new algebraic invariant, the skein mod­
ule. As most geometric relationships between knots run deeper than (for ex­
ample) either homology or homotopy, this new algebraic invariant will likely 
out-perform classical structures in many ways, as well as providing an arena 
for the study of knot theory in an arbitrary manifold. 

At present, one of the main objects of study in the theory of skein modules 
is the Kauffman bracket skein module, which is a specialization based upon 
the well-known Jones polynomial of knots. However, as has happened in the 
past with new structures in algebraic topology, the problem of computing the 
Kauffman bracket skein module of a given manifold is initially proving to be 
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Chapter 1. Introduction 2 

quite difficult. 
Doug Bullock observed a close relationship between the SL(2, C) charac­

ters of the fundamental group of M (characters in the sense of representation 
theory) and the Kauffman bracket skein module [6]. This has provided a con­
nection via which one may be able to translate intractable topological ques­
tions about the Kauffman bracket skein module into approachable problems 
in the world of algebra. 

New results concerning the structure of this module will have direct im­
pact on the theory of links in an arbitrary manifold, as well as the theory of 
3-manifolds, both of which are interrelated quite closely. However, some re­
sults may have impact beyond even the scope of mathematics, as there is a 
very explicit relationship between the Kauffman bracket skein module and 
modern physics, via quantum invariants [1]. 

1.2 Introduction 

1.2.1 Definition of Knots and Links and Equivalence 

A knot in a 3-manifold M (typically M = S3) is a piece wise-linearly em­
bedded circle: S 1 M. Alternatively we can require that the embedding be 
smooth, these restrictions can be shown to be equivalent. A link L is a collec­
tion of disjoint circles, also piecewise-linearly embedded in M 

n 

i=l 

A knot or link is oriented if each copy of S1 is assigned a preferred orien­
tation. A knot or link is called framed if we think of each copy of S1 as a 
skinny solid torus, together with a preferred longitude on its boundary. This 
longitude is sometimes referred to as the framing. 

A better way of thinking of "preferred longitudes" is to think of the knot 
as an embedded ribbon, instead of a skinny torus with preferred longitude. 
The two ideas are equivalent, by taking the preferred longitude to be one side 
of the ribbon: 

Two knots are considered equivalent if they are ambient isotopic. The for­
mal definition of ambient isotopy is as follows: 
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Figure 1.1: A torus with preferred longitude, and the corresponding ribbon 

Definition 1.1. A n isotopy between knots K\ and K<2 in a 3-manifold M is a 
homotopy H(x,t) between K\ and Ki, such that for each fixed t, the map 
H(—,t) is a piecewise-linear embedding. A n ambient isotopy between K\ 
and K2 is an isotopy of M to itself that carries K\ to K2. This means that the 
ambient space is doing the deforming, and the knots simply "come along for 
the ride". For framed knots, the isotopy must carry the preferred longitude of 
one knot to the preferred longitude of the other, or equivalently one ribbon 
must be carried onto the other. 

This formal definition is meant to model the cornmonplace idea of untan­
gling/knotting a string. In plain English, two knots are equivalent if one can 
be manipulated (without the string breaking or passing through itself) so that 
it appears exactly as the other. This notion of equivalence generalizes to links 
in the obvious manner. 

1.2.2 Diagrams and Local Diagrams 

In the special case where our ambient space is R 3 or 5 3 , there is a less cum­
bersome way of thinking of knots and links. Given a knot K we can create a 
diagram of K, which is essentially a picture of K obtained by projecting into 
a plane. To the image of the projection, we add information at doubly cov­
ered points to create crossings, allowing us to recover the original knot from 
a diagram. This gives us things as in figure 1.2. 
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The trefoil The cinqfoil 

Figure 1.2: Diagrams of the trefoil and cinqfoil 

Here, the crossings are the regions appearing as and the 'added infor­
mation' is the break in one of the arcs; indicating that the broken arc appears 
below the unbroken arc in our original knot. 

The equivalence relation of ambient isotopy can be carried into the world 
of diagrams. Two diagrams are equivalent if one can be reached from the 
other via a sequence of planar isotopies and Reidemeister moves, which are 
local diagram manipulations. There are three such moves: 

Theorem 1.2. (Reidemeister) Two knots (in S3) are ambiently isotopic if and only if 
their diagrams are related via a sequence of Reidemeister moves and planar isotopies. 

A more strict definition of the Reidemeister moves and a proof of this theorem 
can be found in [26]. 

If we are not working within 5 3 or M 3 , then global projections are not 
possible, but we do have "local" diagrams. Suppose that we have a link L 
in M , and some 3-ball B in M such that B n L / 0. Then we can produce 
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a diagram of the part of L that lies inside B by projecting the contents of B 
onto some plane, and creating crossings as before. The intersection B D L is 
called a tangle. The part of L which lies outside of B is often referred to as the 
external wiring of the room B. A tangle diagram appears as: 

Often we restrict ourselves to tangles with dB n L — four points, as in 
figure 1.4. 

Two tangles in B are equivalent if one can be obtained from the other via 
isotopies of B which fix the points in dB D L. Accordingly, we can rephrase 
this equivalence in terms of Reidemeister moves on tangle diagrams. 

A common way of communicating the structure of a link L in some part of 
a manifold M is to say that L "looks like" a given diagram inside some 3-ball 
B. This colloquial language is just a way of communicating that there exists a 
series of ambient isotopies of the tangle LHB, and some plane of projection 
so that L fl B can be projected to the given diagram. 

We also sometimes say that a certain equation involving diagrams is true 
"by tilting your head". This means that the desired equation results from the 
given equation by rotating all diagrams in the given equation in the same 

Figure 1.3: A tangle diagram 

Figure 1.4: A tangle for which dB n L = four points 
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direction - usually by 90 degrees. For example, the implication 

<8>-©-<8>-© 
follows by tilting your head. We cannot say the same of equations that do not 
involve pictures. For example, even though 

813 = 810 + 3 

it is pure nonsense to say that 

oo oo 
— = — +w. 
w 0 



Chapter 2 
Skein Modules 

2.1 Skein Modules by Example 
We would like to build a setting for the study of knot theory in an arbitrary 
3-manifold. 

Let R be a commutative ring with 1, M an orientable 3-manifold, and 
£ the set of all links in M considered up to ambient isotopy, including the 
empty link. If the links in C are oriented we add a subscript "o", and if they 
are framed we add a subscript "/"• Thus, we have things like C0j; the set of 
all oriented, framed links in M. 

Let RC (resp. RC0, etc.) be the free i?-module with basis C (resp C0, etc.). 
The idea of skein module theory is to start with this structure, and then clev­
erly select some family of relations between elements in RC. The skein mod­
ule of a 3-manifold M with coefficients in R is then an algebraic invariant of 

The relations that one chooses can vary greatly. If the relations are too weak, 
the resulting skein module may be intractible, and of no use. If the relations 
are too strong, the resulting module may contain no useful information. We 
illustrate this idea with a very geometric example. 

We begin with a simple relation that allows us to eliminate all the cross­
ings in any given knot. Suppose that L\ and L2 are two oriented knots in a 
3-manifold M , and that they are identical everywhere in M, except in a 3-ball 
where they differ as in figure 2.1. 

M: 

relations 

7 
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Figure 2.1: The appearance of the links L\, L2 in some 3-ball in M 

In this case, we set L\ = L2 in the skein module, sometimes called 'smooth­
ing a crossing'. We write: 

S2{M) = 

Remark 2.1. As a consequence of this single relation, we can compute: 

so that we can smooth crossings of the opposite orientation. 

With this choice of relations, we find 52(M) = RHi(M; Z ) via the homo-
morphism 

4>:RC0^ RHi(M;Z), <j>(L) = [L] 

where we extend this definition linearly to all i?-linear combinations of links. 
This fact is found in [16], we offer a proof here. Here [L] is the equivalence 
class of L in the first homology of M. 

First, to see that <f> descends to an homomorphism 

$ : 5 2 (M) ->RHi(M;Z), 

suppose that we have links L\ and I_ i n M that differ in some 3-ball J53, as 
depicted in figure 2.1. In this case, we break L\ and L2 into arcs (think: 1-
chains in singular homology) which lie inside S 3 , and arcs which lie outside 
B3. Label the arcs inside B3 as in figure 2.2. Outside of B3, L\ and L2 share 
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Figure 2.2: Labelling the arcs inside Bz 

the same external wiring, and so denote this common external wiring by e. 
Then we compute: 

<j){Ll-L2) = [Ll}-[L2} = [a + b + e]-[c + d + e},_ 

where addition inside the square brackets corresponds to addition in the first 
homology group, and the subtraction is taking place inside the group ring 
RHi(M;-Z). We can see that [a + b + e] = [c + d + e] in Hi(M;Z), as the 
difference: 

(a + b + e) — (c + d + e) = a — c + b — d 

is the boundary of a "twisted" disk, so that [a + b + e] — [c + d + e] = 0 in 

Figure 2.3: The twisted disk with boundary a — c + b — d 

RHi ( M ; Z ) . Thus the map $ is well-defined. It is evident that $ is a surjection, 
because any element of the homology group H\(M\ Z ) can be represented by 
some link in C0. 

To see that $ is an monomorphism, we need a lemma: 

Lemma 2.2. Given any link L, we may choose a representative V of the equivalence 
class of L in S2 (M) such that L' single copy ofS1. 

Proof. It suffices to consider the case when L = K\ U K2 has only two com­
ponents. We can isotope K\ and K2 so that they are very close to one another 
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K2 

Figure 2.4: The appearance of K\ and K2 in some 3-ball 

inside some 3-ball in M , and appear as in figure 2.4. Then in S2{M), we find 
the equality: 

so that we can apply this equation to figure 2.4 to find V, where L' is the 

Now suppose that we have two links L\ and L2 such that = &(L2), 
i.e. $ ( L i - L 2 ) = 0. By the above lemma and by well-definedness of we may 
assume without loss of generality that L\ — L2 is a knot K, which is mapped 
to zero under $. This means that K is homologous to zero, so there exists 
a surface F such that dF = K. By the classification of surfaces, F must ab­
stractly appear as in figure 2.5. However, from the calculation in our lemma, 

connected sum Ki#K2. • 

K 

Figure 2.5: A n abstract depiction of the surface F 

we know that we can break each handle using the relation 
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smoothing 0 
to get a new representative K' of the equivalence class of K, as in figure 2.6. 

no handles 

Figure 2.6: The surface F with broken handles 

Evidently K' is the boundary of a disk, and so it is the unknot. This trivial 
representative of L\ — Z_ shows that we must have L\ — Z_ = 0 in SiiM), so 
that $ is an isomorphism 

$ : S2{M) -> RH\(M\Z) 

as claimed, thus completing the proof. 
We will see shortly that by choosing different relations, we can recover a 

structure based upon the fundamental group of the manifold as well. 
It is important to maintain the distinction between links and their dia­

grams when working through proofs of this nature. The relation (^) ~ Q is 
a relation between links in M, and not between diagrams of links. At present 
it is only known how to diagrammatically encode knots and links in S3 or in 
a handlebody (virtual knots), there is no known way of creating diagrams of 
links in an arbitrary 3-manifold. For this reason, attempting such proofs in a 
diagrammatic manner can sometimes lead one astray. 
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2.2 The Kauffman Bracket Skein Module 

In this section, we attempt to choose a more useful set of relations. To motivate 
this choice, be begin with some combinatorics. 

Suppose that we are working in S3, or M 3 , so that every link under con­
sideration admits a diagram. One of the most powerful link invariants in this 
setting is the Jones polynomial. The Jones polynomial of a link L in S3 can be 
computed from a diagram of L by using the Kauffman bracket of a link, de­
noted (L), which is a polynomial in Z[a ,a - 1 ] . The Kauffman bracket (L) is 
defined according to.the following recursive (local) diagram manipulations 
[17]: 

.«8»=-<©>+̂ <©> <"> 
(L UO) =-(a2+ a-2)(L) (2.2) 

< O > = 1 (23) 
We are to interpret each of these equations as rules for mechanically de­

composing a diagram into a union of disjoint circles, by eliminating crossings. 
One finds that since these rules produce only local changes in a knot diagram, 
crossings can be eliminated in any order, with no effect on the outcome of the 
calculation. Therefore, eliminating all crossings in a link diagram gives rise 
to a well-defined polynomial (L), for which there is an explicit combinatorial 
formula. 

Next we assign an orientation to the diagram of L to create L0, and com­
pute the writhe of L0 (denoted w(L0)). First, assign to each crossing point p in 
the diagram a value e(p), which is either +1 or - 1 , according to the conven­
tion: 

Then if X is the set of all crossing points in the diagram of L0, we define: 

w(Lo) = E £(P) 

We are now in a position to make the following definition: 
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Definition 2.3. The Jones polynomial of an oriented link L0 in S3 is given by: 

vLo(t) = - « - M L o ) W i a _ a 

Example 2.4. We compute the Jones polynomial of the Hopf link by first com­
puting the Kauffman Bracket: 

(GD> - <JDMG£» 
- +{G5>-'(GD>] 
* -KQ>-(GD)] 

Since all the brackets now contain only circles, at this point we may use 
equation (2.2) to reduce the number of loops inside each bracket to one: 

= - « V + a" 2)( O ) + 2( O ) - a " V + a~2)( O ) 

= ( - a 4 - a " 4 ) ( 0 ) 
Using rule (2.3) we get a final answer of: -

(GDH--
We are only a step away from finding the Jones polynomial. Depending upon 
the orientation we choose at this point, we get two possible cases: 

1. Hopf+, satisfying w(Hopf+) = 2 

2. Hopf^, satisfying w{Hopf-) = —2. 

This yields the two polynomials 

VHopf^t) = - a - e ( - a " - a - \ = t _ k = (a-w + a - \ = t _ k = t l + ^ 

and 

VHoPfAt) = -a6(-a4-a-i)\ i =(a 1 0 + a 2)| > = n + n 
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This illustrates a general 
Fact: If L\ and L2 are identical, except for having opposite orientations, then 

vL,(t) = vLl(t-1). 

That this construction defines an oriented link invariant follows from a 
check that the bracket is invariant under Reidemeister moves II and III, and 
that the factor a~3w(L°} provides invariance under Reidemeister move I. More 
details can be found in the original expositions of this idea [18], [19]. 

This method of calculation using diagrams can be formally justified in the 
following way: 

Let V be the set of all knot diagrams, considered up to Reidemeister moves, 
including the empty diagram. Thus two diagrams in V are considered "the 
same" if one can be obtained from the other by a sequence of Reidemeister 
moves. Then if we let R = Zfa^a - 1 ] , the equations (2.1) and (2.2) can be 
interpreted as equivalences taking place in RV. Let X be the smallest ideal 
in RV generated by these equivalences, i.e. the smallest ideal containing all 
expressions of the form: 

«8»-<©>--<©> <̂> 
and 

( L u O ) + ( « 2 + a- 2 )(L}, (2.5) 

define 
S = RV/1. 

Note that in equation 2.4 we have reinterpreted (•), using the brackets to indi­
cate that the diagrams in equation 2.4 differ only locally; with the differences 
appearing as indicated. 

Within this formal framework, we can properly interpret the calculations 
in example 2.4 as computing a "nicer" representative of the equivalence class 

of the diagram (^{^) m S. 
It is only natural to wish to extend this computational technique to embed-

dings S1 M for arbitrary 3-manifolds M. However, this clever machinery 
of Kauffman is impotent if we adhere to our diagrammatic interpretations, as 
links in an arbitrary 3-manifold do not admit diagrams. We therefore think in 
a more general setting. 
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Definition 2.5. (Przytycki, [22]) Let M be an oriented 3-manifold, R a commu­
tative ring with identity, and a 6 flan invertible element. Let B3 denote an 
arbitrary 3-ball in M. Suppose that L+, LQ and are three links in M that 
differ from one another only inside B3, where they can be projected to appear 
as depicted in figure 2.7. 

Figure 2.7: The appearance of the links L+, L$ and in some 3-ball in M 

When such a situation exists, the expression L+ — aLo — a~lL00 is called the 
corresponding skein expression. Let ,!>2,oo be the smallest submodule of RC/ 
generated by: 

1. A l l skein expressions 

2. A l l expressions of the form LliQ + (a2 + a~2)L, where L is any link in 
M and O is the unknot in M. 

Define the Kauffman bracket skein module1 to be the quotient: 

S2,oo{M;R,a) = RCf/S2,oo. 

Hereafter, we suppress the subscript 2, oo when the context is clear. 

Example 2.6. It is clear that the definition of S = Z[a, a~l]V/l on the previ­
ous page and the definition of 5(5 3 , Z[a, a - 1 ] , a) are analagous in some sense, 
since Reidemeister moves are equivalent to ambient isotopy - the difference 
to be accounted for is framing. Consider the composition: 

S(S3, Z[a, a'1}, a)^S A Z[a, a'1] 
1The subscript 2, oo in our notation arises from the paper [16], where these subscripts 
are meant to refer to certain 4-tangles. 
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where the arrows above have action 

L h+ diagram ofL - (L) ( Q ) i-> (-a 2 - a~2)(L), 

each extended linearly to be maps of Z [ a , a _ 1 ] modules. We create our dia­
gram via cf> as follows: 

Suppose that we plan on projecting a link L into some plane P to create 
our diagram. Before projecting, we isotope L so that the speficified meridian 
of each framed component is 'parallel' to P, so that an additional twist in the 
specified meridian contributes ±1 to our writhe: 

pAsotopy 

With this convention for creating diagrams, the composition 

(V>° «/>)(£) H - a 2 - a - 2 ) ( L ) 

is: 

1. Well-defined, because our convention for creating diagrams via <f> en­
sures that the different possible diagrams for a framed link all have 
equal writhe; and because the equivalence relations used in defining 
S(S3, Z[a , a - 1 ] , a) are precisely the defining relations of the Kauffman 
bracket. 

2. Surjective, as 
( ^* ) (p (< i l «" 1 ) -0) = p ( a , a " 1 ) 

for any polynomial p(a, a~l) 6 Z [ a , a - 1 ] . 

3. Injective, as any two links differing by a skein or framing relation will 
(by definition) have different Kauffman brackets. 

We conclude that <S(53, Z[a, a - 1 ] , a) ^ Z [a, a x], in fact we can see that 

<S(5 3 ,Z[a,a - 1 ],a) 

is free on the basis 0. 
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For an arbitrary 3-manifold M, one may wonder if S(M, Z[a, a - 1 ] , a) ad­
mits such free bases - or at least an amenable set of generators. It is known 
that not all such modules are free, but it is not known which modules are free 
and which are not. Computing bases and sets of generators is an extremely 
difficult problem over which much ink has been spilled. 

Remark 2.7. Suppose that we can find a free basis for some S(M; R, a), say 

{[LdJLaULa],...}. 

Then if we are given any knot K in M, [K] e S(M\ R, a) has a unique representation 
relative to this basis as a finite sum: 

n 

[K] = ri[Li] for some n. 
i=i 

In this case the ring elements {r\,r2,rs, • • • } form a set of invariants of K in M, 
each analagous to the Jones polynomial in the case ofS3. 

In this definition we have chosen our variable a arbitrarily, but a more 
deliberate choice can simplify the matter. If we choose our invertible ring el­
ement to be —1, then the skein module S(M; R, — 1) enjoys additional struc­
ture. 

Lemma 2.8. S(M; R, -1) is a commutative algebra, with the product of two links 
given by taking their disjoint union, and identity [0]. 

Proof. Distributivity of this product follows immediately, since we extend our 
pair-wise definition of the product to all formal sums of links in precisely the 
way which conforms to the distributive law. Therefore, at issue is the com-
mutativity and associativity of this product. Observe that with a = - 1 , skein 
relations become: 

where the second equality follows from tilting one's head by 90 degrees. Thus, 
for any link L, [L] is independent of crossing changes. In particular this means 
that [Li] • = [Li U L2] is independent of the relative positioning of L\ and 
L2, so that 

[Li] • [L2] = [Lx U L2] = [L2 U L i ] = [L 2 ] • [L{\. 
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In the same manner we can argue that triple products are independent of our 
choice of bracketing, so that the product is associative. That the empty set is 
the identity is immediate from our definition. • 

There is an easier way of thinking of elements in this specialized skein 
module. In this skein module, we allow crossing changes. It is a well-known 
fact (cited in [24]) that considering embedded graphs up to ambient isotopy 
and crossing changes is equivalent to considering embedded graphs up to 
homotopy. Therefore in the specialized skein module S(M; R, -1), two links 
are equivalent if and only if they are homotopic. 

2.3 The Relationship Between m (M) and <S(M; R, a) 

We begin with the definition of a tensor algebra of a module. This is a stan­
dard algebraic object, but is not so commonly discussed in algebra classes. 

Definition 2.9. Let R be a commutative ring, and M an .R-module. Let 

T°(M) = R 

Tl{M) = M 

T2(M) = M <g>M 

and in general 

Tr{M) = Af ®---® Af 

where the tensor above is taken r times. Define the tensor algebra over M to be 
oo 

T M = 0 T f c ( M ) 
k=0 

In the langauge of category theory, T is a functor whose action on objects 
is given by the above equation, and whose action on maps is given by the 
formula: 

T(/)(rai <g> • • • <g> mr) = / (mi) <g> • • • <g> f(mr). 

The object T M arises naturally as the 'free' algebra over a module, in the sense 
that T is left adjoint to the forgetful functor U mapping from fl-algebras to R-
modules. Therefore in a sense, it is not a surprising or artificial structure to 
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come across. Multiplication in the algebra T M is given by the tensor product 
of two elements, and the necessary distributive and associative properties of 
algebra multiplication follow immediately from the bilinearity and associa­
tivity of the tensor product. 

We use tensor algebras in the following construction, due to Przytycki and 
Sikora in [24]: 

Definition 2.10. Let G be a group with identity e, and J? a comutative ring with 
1. Denote the group ring over G with R coefficients by RG. Let I be the ideal 
of TRG generated by the expression e — 2 (here 2 = 1 + 1 € R), together with 
all expressions of the form: 

1. g ®h — h® g 

2. g ® h — gh — gh~l 

where g,h € G. Define the skein algebra of the group G with coefficients in R 
to be 

S{G;R) =TRG/I. 

The elements of a skein algebra are therefore (equivalence classes of) for­
mal sums of tensors of elements in G, weighted with coefficients from R. We 
use square brackets to denote the equivalence class of an element in S(G; R), 
for example [g\ ® g2 ® 53]. 

If we fix a ring R, then S(—; R) is a functor from the category of groups to 
the category of .R-algebras. The action of «S(—; R) on maps is to send a group 
homomorphism 4> '• G -» G' to the map denoted 4>* • S(G;R) ->• S(G';R), 
whose action is given completely by: 

Mb]) = Mg)] 
for all g G G. 

The skein algebra of a group satisfies the following properties, whose 
proofs are largely computational [24]. 

1. For any g € G, [g] = [g'1]. 
Proof. 

[g <g> e] = [ge + ge'1] = [g + g] = [g] + [g], 
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whereas we may also compute 

[g ® e] = [e <g> g] = [eg + eg'1} = [g] + [g'1] 

so that [g] + [g] = [g] + [g'1], giving [g] = [g'1]. • 

2. For any pair g,h E G, we have [gh] — [hg], and consequently 

[(hg)h-1] = [h-1(hg)] = \g]. 

Proof. 

0 = \g®h]-[h®g] = [gh] + [gh'1) - [hg] - [hg-1] 

= [9h] - [hg] - [hg'1] + [(hg-1)'1] = [gh] - [hg] 

where in the last step, the cancellation of [/ag-1] and [(hg-1)-1] follows 
from property (1). • 

3. The Universal Coefficient Theorem If 4> : R <-» R' are rings, and we 
regard R' as an i?-module with multiplication given by 

r • r' — (p(r)r' for any r G R and r' G R', 

then S(G; R') ^ S(G; R) ®R R'. 
Proof. The proof consists of showing that u : S(G;R)®RR' —> S(G;R'), 
defined by u([g] ®R r') = [r'g] is an isomorphism. 

Let X(R) denote the ideal of TRG constructed in definition (2.10), and 
1(R!) the analgous ideal in TR'G. Then we have an exact sequence 

1(R) TRG -» S(G; R) ->• 0, 

and because the functor ®R R' is right exact ([11], pp. 378-383), we 
obtain a second exact sequence 

X(R) ®R R' -> TRG ®R R' -> S(G- R) ®R Rl ->• 0. 
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This second exact sequence fits into the commutative diagram 

I(R) ®R R' • TRG ®R R' > S(G; R) ®R R' > 0 

h h « (2.6) 

l(R') • TR'G > S(G;R') > 0. 

Here, fa is the isomorphism given by 

f2({r • gi ® g2 ® • • • ® 9k) ® r') = (r'r) • gx <g> g2 ® • • • ® gk-

To see that fa is an isomorphism, note that 

TRG ®RR' = {R®RG®RG®RRG®---)®RR' 

= (R ®R R') © (RG ®R R') © {RG ®R RG ®RR')®---

since tensors distribute over arbitrary direct sums. Therefore we can 
consider fa as a map 

(R ®R R') © (RG ®R R') © (RG ®R RG ®R R') © • • • -> TR'G 

defined on each component of the direct sum by the same formula as 
before. We can then see that fa is an isomorphism component-wise on 
this direct sum, as the restriction of fa is the well known isomorphism 

(RG © • • • © RG) ®R R' = R'G © • • • © R'G 

arising from extension ofscalars. 

We obtain fa by simply restricting fa to the subalgebra T(R) ®R R', and 
so fa is clearly surjective. 

These facts allow us to apply the five lemma to diagram 2.6 to conclude 
that u is an isomorphism. • 

Remark 2.11. Via an identical proof, we can show that the Universal Coefficient 
Theorem holds for topologically defined skein modules. Namely, if r : R —> R! is a 
homomorphism of rings, then 

S(M; R,a)®R'^ S(M; R',r(a)). 

(Recall that we have chosen to suppress the subscript 2, oo.) 
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At last the promised connection with the fundamental group of a manifold 
emerges, following a proof presented in [24]. 

Theorem 2.12. If M is a 3-manifold and R is a commutative ring with 1, then 

S(M;R,-l) = 5(71-1 (M); R). 

Proof. Define a function on framed links, ip : Cf -> S(iri(M); R), in the fol­
lowing manner: Suppose that K is a knot in M , and that -K\(M) is calculated 
with respect to the base point XQ G M. Then we can connect K to XQ via a path 
a, yielding a representative element aKoT1 of a conjugacy class in TTI(M) (In 
doing this we have arbitrarily assigned an orientation to K). Let K denote 
this conjugacy class. Define ip by the rules ip(K) = —[K] and i/>(0) = —1. 

First, note that ip is well-defined, as property (1) of group skein modules 
shows that our choice of orientation for K does not affect ip{K), and property 
(2) of group skein modules shows that we may connect K to our base point 
using any path we please, so that our choice of a does not affect ip{K). 

Suppose a link L in M has components K\, • • • ,Kn. We define iponL G Cf 

according to the rule 

iP(L) = V>(#i U • • • LI #„) = {-l)ni>{Kx) ® • • • ® ${Kn) 

i.e., we extend to all elements in Cf precisely the way that agrees with the 
algebra multiplication. After extending multiplicatively to all of Cf, we then 
extend ip linearly to all of RCf. Note that there is no problem regarding the 
ordering of i/)(Ki), • • • , ip(Kn) in our product, because tensor products have 
been made abelian. 

Next we check that ip descends to an algebra homomorphism 

i> : S{M- R, -1) -> 5(7ri (M) ; R). 

With our choice of a = — 1, the relations defining <S(M; R, -1) become 

LUQ + 2L 

and 
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In this equation, O is a loop that is contained in some 3-ball, so we can directly 
compute 

# U O + 2L) = (-1)^(1) ® V(O) " 2V(£) = [e - 2]V>(£) = 0 

by noting that O is the identity in iri(M), and so [O] = [e]. 
Dealing with the second relation is trickier. First, observe that we can write 

any skein relation as 

Li U L+ + Li U L0 + Li U Loo = LX U (L+ + L0 + L M ) 

where L+ and LQ are knots, and L̂  is a two component link. We do this 
by absorbing into L\ all components of our link, except for the component 
that intersects our 3-ball of interest. With this choice of L\ we know that one 
of {LQ, L^} is a two-component link, and the other is a knot. Without loss of 
generality, we have chosen LQ to be the knot, and L̂  to be the two component 
link, for we can interchange LQ and Loo in the skein relation by tilting our 
head. 

By the above considerations, it suffices to show 

?/>(L++ L0 + Loo) =0 
in the case where L + and LQ are knots, and L̂  = K\ U K2 is a two-component 
link. In this case, choose a base point inside the 3-ball where L+, Lo and Loo 
differ. Then by connecting K\ and K2 to our base point and carefully choosing 
orientations, we get a, 8 e TTI (M) such that 

1. a ~ K\ and 8 ~ K2 

2. a8 ~ L_|_ 
3. ad'1 ~ LQ. 

Now we may compute 

(̂L+ + L0+Loo) = ^ ( L + H ^ L o J + ^ i - ^ ) = - [ a f l - ^ - ^ - K a ] ® ^ ] =0 

and hence ^ descends to i/> : «S(M; i?, -1) -» 5(^1 (Af); fl). 
To prove that 1/; is an isomorphism, we define an inverse. Let 

<f>: Ti?7ri(M) ->S(Af; .R,- l) 
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be the map defined by 
<t>{l) = 

where 7 € iri(M) and K1 is a knot representing 7, whose framing we choose 
arbitrarily. Note that if we are to have <p(r • a) = r • (j)(a), then we must also 
have 4>(r) — r • 0 for any pure ring element r G TRwi(M). This map is well-
defined because: 

1. Two homotopic knots will differ from one another by a sequence of am­
bient isotopies and crossing changes, and we can change crossings in 
S(M;R,-1). 

2. Choosing a = -1 makes the knots independent of framing, so we may 
assign any framing to K^. We can convince ourselves of this pictorially 
by computing using the Kauffman bracket notation, and with a = - 1 : 

hMH-(l°MK + 2 

Having convinced ourselves of well-definedness, we check that </> descends 
to a homomorphism 

4> : 5(TTI(M); R) -»• S(M; R, - 1 ) . 

1. Recalling that <p(r) = r • 0, 

<f>(e - 2) = - O - 2 • 0 = (a2 + <T2) - 0 - 2 - 0 = 0, 

where the last equality follows when we take a = — 1. 

2 . For any loops a, {3, we compute 

<i>{a®B-B®a) = Ka-Kp-KirKa = 0 

since our product in «S(M; R, —1) is commutative. 

3. For any loops a, (3: 

<t>(a®8-aB- aB'1) =Ka-Kp + KaP + Kafi-i = + L+ + LQ = 0. 
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The constructed homomorphism cf> is the inverse of ip, and so tp is an isomor­
phism as claimed. • 

We construct an explicit connection with S(M; Z[a, a~l],a) via the follow­
ing isomorphisms: 

Corollary 2.13. For any Z-manifold M, we have 

5(7n(M),Q = ^ ( M ; C , - 1 ) *L S{M;Z[a,a-\a) ®z[a,a-i]C 

Proof. The first isomorphism is the result of our theorem. The second arises 
from applying the Universal Coefficient Theorem to this special case, taking 
the map r : R —>• R' to be the map 

Z[a,a _ 1] -> C 

defined by a i-> — 1. • 

It is because of this isomorphism that the algebraic object S(G;R) is of in­
terest to us. Knowledge of S(G; R) for some finitely generated group G can 
be translated into information about S(M; Z[a, a - 1 ] , a), whenever M satisfies 
7ri (M) = G. In particular, observe that any linear relationship between ele­
ments in S(M;Z[a,a~l],a) translates into a linear relationship between the 
same elements considered as elements of S(iri(M),C), considered as a com­
plex vector space. We can therefore state the following: 

Fact: If a family of elements in <S(7Ti (M), C) are linearly independent, then 
the same elements considered in S(M; Z[a, a'1], a) are still linearly indepen­
dent. 

2.3.1 The skein module of an Abelian group 

We start with some notation. 

Definition 2.14. For G a group and R a ring, define sym(RG)to be the subal-
gebra of RG generated by elements of the form g + g~l for g 6 G. 

We first need the following fact in order to tackle the skein module of 
abelian group. 
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Theorem 2.15. (Przytycki, Sikora, [24]) Let G be an abelian group. Then considered 
as an R-module, sym(RG) is a free R-module with basis {e} U [g + < ? _ 1 } s e _ , where 

1. B = G-{e} if 2 ^OinR 

2. B = {geG:g2^e}if2 — 0 in R 

Proof. First, note that though sym(RG) is generated as an i?-algebra by ele­
ments of the form g+g~l, it is also generated as an R-module by such elements, 
as direct computation reveals: 

The critical observation is that the right hand side is a sum of elements of the 
form g + g~x. 

To show that we indeed have a basis, suppose 0 ̂  2 in i?, and that 

re + n{gi + gT1) + r2(g2 + g^1) + h r„(#„ + c/"1) = 0 

in RG. Then since the elements g € G form a basis for RG, we wish to re-
bracket this sum as an .R-linear combination of elements in G so as to draw 
the desired conclusion - that all are zero. The coefficients distribute over 
the sums gi + g^1 giving a sum of 2n distinct elements in G, provided,-we do 
not have g^ = gT1 for some gk- In this case the term 2r^gk appears in our 
sum. Therefore in general, written as a sum of distinct elements in G, our 
rebracketing of the sum will have coefficients of the form r; and 2rj. Since 
2 ^ 0 , we can still use the fact that g € G is a basis of RG to conclude that all 
the J-J'S are zero. 

On the other hand, if 2 = 0 in R, then any term of the form g + g"1 — 2g 
in such a sum is zero, and hence we arrive at the generating set stipulated in 

In the above proof, we have used the fact that g 6 G is a basis of RG 
in order to show that a certain generating set of sym(RG) is a basis. We can 
now use this basis of sym(RG) in a similar manner, to show that a certain 
generating set of S(G; R) is in fact a basis in the case that G is abelian. 

Theorem 2.16. (Przytycki, Sikora [24]) Let G be an abelian group, R a commutative 
ring with 1. Define </>: TRG -> RG by 4>{g) = g + g'1 for all g s G. Then provided 

(g + g-^ih + h-1 ) = gh + (gh)'1 + gh'1 + (gh-1) 

(2). • 
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either 2 ^ 0 in R, or G has no elements of order 2, <f> descends to an isomorphism of 
modules $ : S(G; R) -> sym(RG). 

Proof. The map $ is well defined, as we compute: 

1. 4>(e - 2) = <f>(e) - 4{2) = e + e~l - 2e = 0 

2. (f>(g <g> h — h <g> g) = (f>(g)<f>(h) — <p(h)(f)(g) = 0, since G is abelian 

(upon expanding and collecting terms). 

We now construct a generating set of S(G;R), as an A-module. We know 
that TRG is generated as an JR-module by all finite tensors of elements of G, 
together with l e i ? . Therefore this set certainly generates S(G; R) as an R-
module. However, we can reduce this set. Using the identity g®h = gh+ghr1, 
we represent any finite tensor as sum of elements in RG, so we can discard 
all tensors from the generating set. We have now reduced our generating set 
to G U {1}. However, further using the fact that e = 2 and that g = g~l in 
S(G; R), we can reduce this generating set to 

By definition of our map <fr, we have that $(Ti?G) = sym(RG). By the 
previous theorem, the set 

3. Lastly, 

4>(g ® h - gh - gh x) <t>{9)4>{h) - 4>{gh) - <t>{gh~l) 

{g + g-l){h + h-1) 

-(gh + igh)-1)-^-1 +g~1h) 

0, 

Y = {g + g-1:g€G-{e}}U{e} 



Chapter 2. Skein Modules 28 

is a basis for sym(RG). As a map of jR-modules, $ carries the generating set 
X bijectively onto the basis Y, and hence $ is an isomorphism of .R-modules, 
and so is also an isomorphism of algebras. 

• 

This gives us a complete description of S(G;R) in the event that G is 
abelian. 



Chapter 3 
Connections with SX(2, C) Character 
Varieties 

3.1 The SL(2,C) Character Variety of a Group 

Let G be a finitely generated group. A representation of G in SL(2, C) is a ho-
momorphism p : G —> SL(2, C). Therefore we may think of elements p(g) as 
invertible linear maps 

C 2 __) C 2 _ 

There are two mutually exclusive types of representations: irreducible repre­
sentations and reducible representations. A representation is called reducible 
if there exists a proper subspace V of C 2 such that p(g) fixes V for all g G G. 
That is, 

(p(g)){v) G V for all g G G and for all v G V. 

If a representation is not reducible, then it is irreducible. 
The character of a representation p is the composition 

X p : G A SL(2,C) *™ce C. 

Let X(G) denote the set of all characters of the group G. For each g G G, there 
is a map 

T9 : X{G) -»• C 

defined by T9(xp) = Xp{g)- The maps rg satisfy: 
1. For any g € G,rg = rg-i. This follows from the identity tr(A) = tr{A~l), 

which holds in 51,(2, C). 

29 
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2. Since trace is invariant under conjugation, rg = Th if g and h are conju­
gate elements in the group G. 

Already we have a surprising result, which was proved independently by 
many people: 

Theorem 3.1. (Vogt, Fricke, Horowitz, Culler-Shalen [8]) There exists a finite set of 
elements 

{9i,-,9n} C G 

such that every rg is an element of the polynomial ring C [ r 5 l , T 9 J . 

Proof. Suppose that G has generators {hi,hm}. Let R be the ring generated 
by all the functions 

T/iij ...hiT 

where the ii,...,ir are distinct positive integers < m. The finite set of elements 

{h^ ...hiT : i i , i r are distinct positive integers < m} 

will correspond to the finite set of elements {gi,...,gn} stipulated in the state­
ment of the theorem. Under this correspondence, C [ T 9 i , r 9 n ] = R, so we 
prove that rg 6 R for every g € G. The proof will be an induction, which 
relies heavily upon the following lemma. 

Lemma 3.2. For any A, B e 5L(2 ,C) , 

tr(A)tr{B) = tr(AB) + tr{AB~l). 

Proof. For any A,Be SL(2, C ) , we find that the characteristic polynomial of 
B is 

A 2 - tr(B)X + 1 

and so by the Cayley-Hamilton Theorem, B satisfies 

B2 - tr(B)B + / = 0. 

We rearrange this expression to give 

B2 + I = tr{B)B 
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and multiply from the right by B 1 A to find 

BA + B~lA = tr(B)A 

which gives 

tr(BA) + tr{B-lA) = tr{B)tr(A) 

upon taking the trace of both sides, which can equivalently be written as 
tr(AB) + tr{AB~l) = tr(B)tr{A) 

by using tr(AB) = tr(BA). • 

Remark 3.3. From this lemma we get 

TgTh = Tgh + Tgh-1 

for all g,h G G. 

We now start our first of two inductions. This induction will show that 
Tg E R whenever g = h^...h^, where i\,...,ir are distinct integers between 
1 and m, and k\,...,kr G Z. We will handle the other elements of G with a 
second induction. 

Our first induction is on the positive integer fi, defined by 

m 

.7=1 

where 
—kj if kj < 0; 
kj - 1 if kj > 0. 

Of course there may be many different ways of writing an element g as a 
product of generators, so that our definition of u.(g) above may not be well-
defined. To remedy this, we take fi(g) to be the minimum arising from all 
possible ways of writing g as a product of generators. 

As our base case, note that if fi(g) = 0, then all the kj are either 0 or 1, so 
that Tg G R by definition of R. 
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Claim: Without loss of generality, we can assume k\ / 0,1. 
Proof of claim: Since n(g) > 0, there is some A;̂  that is not one or zero. Choose 
d to be the smallest integer for which ^ 1,0. In our argument we can re­
place the element g with the conjugate 

g' = hYd

l_i...hr1ghil...hid_1, 

since rg = Tg*, and because /j,(g) = n(g'), as a quick computation shows. The 
existence of g' proves the claim. 

We can therefore consider two cases: k\ > 1 and k\ < 0. 

1. If k\ < 0, then we can use our remark to write 

so that we find 

Note that 
Tftr1vi'ir1

1
 = T / J H ^ H = Th^g 

so we get 
T9 = rh-^Thixg ~ r h \ x g -

We show that the right hand side lies in R, completing the induction for 
the case k± < 0. Since k\ < 0, we compute that ^h^g) = n(g) — 1 and 
^(h^g) < n(g) - 1, so that rh2 g, Thi^g G R by the induction hypothesis. 
By definition, T . - i = € R. So the right hand side lies in R. 

2. If k\ > 0, we can proceed in exact analogy with the first case. We write 

and then note that 

so that we get 
Tn = Th T,-l„ — T .-2„. 



Chapter 3. Connections with SL(2, C) Character Varieties 33 

Then both ^(h^g) and ̂ (h^g) are strictly less than u-{g), in analogy 
with before, so that r.-2 0 , T , - I G R by the induction hypothesis. Noting 
that r/tj G i? (by definition) completes the induction in this second case. 

Therefore, by induction, T9 € R whenever g = / i * 1 . . , where ii,...,ir are 
distinct integers between 1 and m, and ki,...,kr G Z . 

We begin our second induction. Take any element g G G, and we write 
g = hk* —hk*, where ii,...,ir are no£ necessarily distinct. We induct on r (again 
taken to be minimal over all ways of writing g as a product of generators) to 
reach our desired conclusion. 

The cases r — 1,2 are both covered by our first induction, so that the base 
case for this second induction holds. 

If all ii,...,ir are distinct, this is a case we have already dealt with, so 
assume at least two of i\, ...,ir are equal. Upon replacing g by a conjugate 
element with equal value r, we may assume without loss of generality that 
is = %r for some s < r. Then we split g into two pieces 

X^hk'..hf Y = h!ls^...hf 

and write 
Tg = TXY = TXTY - TXY-1-

By the induction hypothesis, we clearly have TX,TY G R. Additionally, since 
is = irr the element XY~l can be written as a "shorter" product of generators 
than g, namely: 

XY~l = h'?i...h''s-krh;kr-1...h;ks+1 

which has r — 1 terms, so that r ^ y - i G R by the induction hypothesis as well. 
Therefore rg G R for an arbitrary g G G. • 

This proof gives a flavour for the techniques involved in this subject, while 
setting the stage for an even more surprising result. Fix the set of generators 
of R = C [ r 9 l , T 9 N ] provided by theorem 3 .1 . Then the map 

t : X(G) -+ C * t(Xp) = (Tgi(Xp),...Tgn(xP)) 

is an injection. To see this, suppose that t(xp) = t{Xp')> m other words 
T9i(Xp) = Tgi(Xp') f ° r i = l,—,n. Then given an arbitrary g G G, by theorem 
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3.1 we can write rg as a polynomial in r 9 l , r g n : 

T9 =P(T9n-,T9n)-

Now we check that Xp = Xp' hy verifying that they take the same value on 
this arbitrary g G G. A quick computation shows 

so that t is an injection as claimed. 
Recall that subset V C C 1 is called an algebraic set if V is the set of common 

zeros of some set S of polynomials contained in C[x\ ,...,xn]. 

Theorem 3.4. (Culler, Shalen [8]) The set t(X(G)) c C* is the zero set of an 
ideal in C [ r 9 l , T 9 J , and so is an algebraic set. For different choices of the ele­
ments g i , g n , the resulting different parameterizations oft(X(G)) are equivalent 
via polynomial maps. 

This theorem has been the foundation for an entire branch of study. The 
proof is extremely difficult and can be found in [8]. 

Recall that the coordinate ring of an algebraic set V c C 1 is defined as 

where 1(V) is the unique largest ideal of polynomials that are identically zero 
onV: 

I(V) := {/ G C [ ] • / (ai , . . . ,a„) = 0 for all (au...,an) G V}. 

There is a more convenient way of thinking of the coordinate ring. The poly­
nomials in C[xi,xn] define functions on the algebraic set V simply by re­
striction. Two polynomials / , g G C[xi,xn] define the same function on V 
precisely when / - g = 0 on V, which means that f — g G T(V). Therefore the 
cosets in C [ V ] can be thought of as polynomial functions restricted to V. 

xP(g) = Tg(xP) 

= P(T9i(Xp),-, 

= P(Tgi(Xp'),-

,T9n(Xp)) 

;T9n (Xp>)) 

= Tg(Xp') 

= Xp'(g) 
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If two algebraic sets V, W are equivalent via a polynomial map 4> : V —> W, 
then (j> : C[W] —> C[V] defined by ^(/) = / o ^ is an isomorphism of C-
algebras. From this algebraic fact, we choose not to study the object t(X(G)) 

of theorem 3.4, but instead the coordinate ring 

C[t(X(G))] = C [ r g i , T 9 n ] Jl(t(X(G))). 

We shorten the notation from <C[t(X(G))] to C[X(G)}, as the map t is imma­
terial - since t depends on the choice of coordinates, but our final object does 
not. 

In this discussion, taking G = TTI(M) for some 3-manifold M can already 
be used to yield powerful results. In this case, we often shorten X(-K\(M)) to 
X(M). The following result was first proven by Thurston, then reworded in 
a much different language by Culler and Shalen. 

Theorem 3 .5. (Thurston 1, Culler-Shalen [8]) Let M be a compact, orientable 3-

manifold. Suppose M has s torus components in its boundary, Tk ^ dM. Let 

p:7Ti(M) -+SL(2 ,C) 

be an irreducible representation such that 

p(ik, (TTI (Tfc))) g {/, -/} for each k. 

Then any component ofX(M) containing xP has dimension (as a variety) of at least 
s-3X(M). 

Corollary 3.6. If M is an n-component link complement, and if TTI(M) admits a 
representation p as stipulated in theorem 3.5, then X(M) has a component whose 
dimension is at least n. 

Proof. Since M is an n-component link complement, we get immediately 
that dM has n torus components. There is a well known formula for odd-
dimensional homology n-manifolds which says that [21], [14]: 

X(M) = \X{dM), 

1 Culler and Shalen attribute this theorem to Thurston, although the source they give 
appears to never have been published. 



Chapter 3. Connections with SL(2, C) Character Varieties 36 

which we can certainly apply in our case. Therefore, in the particular case that 
M is a link complement, we know that the component of X(M) containing p 
has dimension at least 

3 
s — 3x(dM) = n — -x(torus) = n — 0 = n. 

• 

3.2 The Connection wi th Skein Algebras 

It is reasonable to believe there could be a connection between SL(2, C ) char­
acter varieties and skein algebras, because of the striking similarities between 
the two defining identities: 

[<?] ® [h] = [gh] + [gh'1] 

and 
tr(A)tr(B) = tr(AB) + triAB"1). 

This connection was provided by Bullock, in the form of the following theo­
rem: 

Theorem 3.7. (Bullock, [6]) For any group G, there exists a surjective map of alge­
bras 

ip:S(G;C) ^C[X(G)] 

defined by ip([g]) = rgfor any g G G. Furthermore, 

ker(tp) = VTj, 

where Vo denotes the subalgebra of all nilpotent elements in S(G; C ) . 

Proof. First, note that from its definition, i/> is clearly surjective. Next we show 
that ip is well-defined, by showing that tp maps the defining ideal of S(G; C ) 
to zero. Applying the definition of ip to the three types of elements in the ideal, 
we get: 
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1. 
ip([e - 2]) = V(N) - M 2 ] ) = re - 2, 

However, because p(e) = € 5L(2, C) for any representation p, we 
find that: 

Te(Xp) = Xp(e) = trace(Id) = 2. 

Therefore the function r e — 2 is zero when evaluated on any character. 

2. 

tp([g ®h-h®g}) = T 9T,> - 7 7 ^ = 0, 

where the last equality follows from the commutativity of C[X(G)]. 

3. 

ij}{[g ®h-gh- gh'1}) = TgTh - Tgh - rgh-i - 0, 

where the last equality is exactly remark 3.3. 
We can readily observe that y/0 C ker(ip). Given a € \/0 C S(G;C), if 

the image ip{a) is non-zero, it must be nilpotent in C[X(G)]. However, from 
the definition of C[X(G)], we know that it cannot contain nilpotents (if the 
polynomial / is nonzero on some subset A c C, no power fn can be zero on 
^4). Therefore ip(a) — 0. 

That ker(ip) C V0 is much more difficult to prove, and it appears there 
are only two known proofs. One proof is algebraic, and the other is topologi­
cal/ combinatorial, both were created independently of one another. 

The algebraic proof involves universal representation C-algebras and the 
Brumfiel-Hilden algebra. The Brumfiel-Hilden algebra is a structure defined 
in [4] for the purposes of investigating SL(2, C) representations of groups, 
and is denoted TH<c{G). In [23] it is shown to be isomorphic to S(G; C). The 
proof of our theorem appears in [4], and is done in the language of Brumfiel-
Hilden algebras. 

The topological and combinatorial proof is extremely lengthly, and deals 
with resolving trees, Young diagrams and Procesi identities. It is the subject 
of [6]. Both proofs involve a great deal of tangential material, and so are not 
presented here. 

• 

Also in [6] is a partial proof of the following fact: 
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Proposition 3.8. The skein algebra S(G; C ) is finite dimensional as a complex vector 
space if and only if dim(X(G)) = 0. 

Proof. First, we remark that a variety V has dimension zero if and only if 
the coordinate ring C[V] is finite dimensional as a vector space, the proof of 
which can be found in Appendix A. 

Since X(G) is a variety, it is the zero set of some ideal I C C [ r 9 l , r 9 R J . 

Define a map 
4>:C[T9L,...,T9n}^S(G;C) 

by 4>{TG) = [g]. Since r 9 E C [ r 9 l r 9 J for every g EG, the map <p is surjective. 
Theorem 10.2 in [6] tells us that 

yjker(4>) = VI. 

Then any ideal contains some power of its radical (Chapter 15, Proposition 11 
of [11]), so that we get 

( V J ) m C ker(<t>) C v7. (3.1) 

We have the following isomorphisms: 

<r\Y(nw ~ ^ [ r 9 i ' T9n] / ~ C [ T 9 I , T 9 N ] I 
C [ X { G ) ] = J i(z(i)) = /VI 

where the last isomorphism follows from Hilbert's Nullstellensatz. This tells 
us that 

C [ T 9 I , . . . , T 9 J / 

/ v t 
is finite dimensional as a complex vector space, so that 

C [ T 9 I , . . . , T 9 J / 

/ ( V / r 

is also finite dimensional. However, recalling the inclusion of equation 3.1, we 
know that there is a quotient map 

C [ T 9 I , . . . , T 9 J / C [ T 9 I , . . . , T 9 J / 

/ {Vl)m / ker{<f>) 
S(G;C) 
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so that S(G; C) is the image of a finite dimensional vector space. 
Conversely, if S(G; C) is finite dimensional, then the surjection ip from the­

orem 3.7 tells us that C[X(G)] is also finite dimensional, and so dim(X(G)) = 
0. • 

Of course, we can restate this theorem as "dim<S(G; C) — oo if and only if 
dim(X(G)) > 1". Both of these statements are useful to bear in mind. 

C o r o l l a r y 3.9. Let M be a link complement. Suppose M has boundary components 

Tk ^¥ dM. Let 

p :7 r x (M) ->SL(2 ,C) 

be an irreducible representation such that 

p(ik.WTk)))£{I,-I} for all k. 

Then S(M; Z[o, a~l],a) is infinitely generated as a module. 

Proof. By applying corollary 3.6 and proposition 3.8 we get that S(TTI (M), C) 
is infinite dimensional, which gives the desired conclusion. • 

Immediately we have some obvious questions: When dim<S(G; C) < oo, 
what is the dimension? How does it relate to a manifold M in the event that 
we take G = -K\(M)1 More obvious would be the question: In any event, what 
is a basis of S(G; C)? We take some steps towards answering this last question 
by identifying some linearly independent families of elements in S(G; C). 

3 . 3 An Application of Character Varieties 

We present here an application, due to Doug Bullock in [5]. 
Fix a representation p of a finitely generated group G. For each fixed p, we 

get a map 

evp : C[X{G)} -> C, 

the evaluation map, defined by 

eVp{Tg) = Tg(Xp) = Xp{9)-
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This evaluation "makes sense", as we recall that the elements of the coordi­
nate ring C[X (G)] can be thought of as restrictions of polynomial maps to the 
set of all characters, X(G). 

Fix an element g e G, and let A; be an arbitrary integer. Recall that 

ip:S(G;C) ->C[X(G)] 

is defined by i/)([g]) = rg, and consider the image of [gk] G S(G; C) under the 
composition evp o tjj. We first calculate that 

evp o ip{[g0}) = evp o ijj([e}) = eu p(r e) = Te(xP) = XP(e) = 2, 

and 
evp o tp([g]) = evp{Tg) = T9(XP) = x P ( o ) . 

Denote the complex number xp{g) by z. Then using this notation, 

evp o ip([gk}) = evp o ip{[gk~l] ® [g] - [gk~2]) as g ® h = gh + gh-1 

= evpoip([gk-1])z - evpoip({gk-2]). 

Therefore, we have a recursive formula for evp o ip([gk]) in terms of 

evp o ip([gk-1}) and evp o tp([gk-2}). 

Defining polynomials pk {z) by the same recursion, 

p0(z) = evp o V([<70]) = 2, 

pi(z) = evpoip(\g]) = z, 

and in general 
pk(z) = Zpk-i(z) -Pk-2{z), 

we have that evp o ,0([9 , f e]) = Pfcl- 2 )- The first few polynomials defined by this 
recursion are: 

p0(z) = 2 

pi(z) = z 

p2{z) = z2-2 

p3{z)=z3-3z 

pA{z) = z4 -4z2 + 2 

p5(z) = z5 - 5z3 + hz. 
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Remark 3.10. A quick way of computing the kth such polynomial is by making use 
of the determinant identity 

Pk(z) = 

z 1 0 •• • 0 0 0 
1 z 1 •• • 0 0 0 
0 1 z • • • 0 0 0 

0 0 0 •• z 1 0 
0 0 0 •• • 1 z 2 
0 0 0 •• • 0 1 z 

where the above matrix is of size k x k. This identity follows from remarking that 
cofactor expansion along the top row yields the same recursive relationship as the 
defining relationship of the p^'s. From this identity, or from a quick induction, one 
can see that deg(pk) = k. 

Define Mr to be the r x r matrix over C[z±,zr] whose (i, j)-th entry is 
Pi(zj). Then 

Lemma 3.11. [6] The determinant \Mr\ is a degree lll±il polynomial in the vari­
ables z±, ...,zr. 

Proof. The proof is by induction. First, the claim is certainly true for r = 1, as 

Mx = [p!(^)] = [z]. 

Suppose that up to r — 1, the determinant | M r _ i | is of the stipulated degree. 
Expanding Mr along the r-th row, we get: 

r 
Mr = J2Pr(zi)\Ci\, (3.2) 

where Cj is Mr with the r-th and i-th rows eliminated. But now the polyno­
mials appearing in the columns of C\ still satisfy the defining recursion 

Po = 2 

Pi= z 
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Pk = ZPk-l -Pk-2, 

but both the r-th row and the column containing polynomials in the vari­
able Zi have been eliminated. Therefore, we may apply the inductive hy­
pothesis to conduce that \d\ 2 is a degree r^ 2" 1^ polynomial in the variables 
z i , Z i - i , Z { + i , z r . Therefore, each summand in equation 3.2 has degree: 

degiprizi^dl) = degiprizi)) + deg(\Ci\) = r + = r±±A. 

The Zil±L\ degree term of the i-th summand is the only degree r ( r + 1 ) term in 
equation 3.2 that contains z\, so the degree terms cannot cancel. • 

Bullock applied this fact in a very clever way to S(G; C). 

Theorem 3 .12. (Bullock [6]) If there exists rg e C[X(G)] such that the image 
Tg(X(G)) is open (or whose image contains an open set), then 

Mb2],brV-} 
form an infinite linearly independent set in S(G; C), when considered as a C-vector 
space. 

Proof. The claim follows by showing that 

Vr:=span{[g],[g2},...,{gr]}^Cr 

for every r. The polynomial \Mr \ is non-constant by lemma 3.11, and so can­
not be identically zero on the open set Tg(X(G))T C C . Therefore, there must 
be a point 

{Tg(Xpi),Tg(Xpi), -Tg{Xpr)) £ Tg(X(G)Y 

on which \Mr | is non-zero, so that the matrix 

\Pi(T9(xPi))] = [evPi ° W})}, l<i,j<r 

is invertible. 
Define 

$ :S(G;R) -> C 
2d is (r - 1) x (r - 1) 
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by 
(evpi o V, evP2 o ip,evPr o ^). 

Then we compute 

span{H{g]),$([g2)),..., *([/])} 

span{{evPl o ̂ ([g]), ...,evPr o ip{[g})),... 

(evpi o ip{[gr]),evPr o ip{\gr]))} 

span{rows of [evPj o i/j([g1})]} 

Therefore, by invertibility of the matrix [evPj o ip(\g1])], the image of Vr under 
the map $ is an r-dimensional subspace of V —in other words, the map is 
surjective. Since Vr is at most r-dimensional, this forces 

This theorem admits a very nice topological interpretation, by using our 
isomorphism S(ni(M); C) = S(M; C, -1) to translate the skein module ele­
ments {[g], [g2], [g3],...} into knots. 

Suppose that K is a knot in a 3-manifold M corresponding to an element 
g e iri(M) that satisfies the hypotheses of theorem 3.12. Then correspond­
ing to the elements {[g], [g2], [g3],...} of the skein module S(iri(M), C) are the 
knots -[Ki],-[K2],-[K3],... G S(M; C, -1), where Ki is an (i, 1)-cabling of 
the original knot K. It should be noted that the negative signs arising from 
our isomorphism can be eschewed by using an alternate but isomorphic def­
inition of S(G, C) (see [24]), but the correspondence used here introduces a 
negative sign: [g] — Kg. The knots Ki look like: 

span{[g},[g2},...,[gr}} = C-

as claimed. • 
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inside a tubular neighbourhood of K. Here, the vertical dots are meant to 
indicate i parallel strands. To see that this corresponds to the element gl in the 
fundamental group, observe that we may homotope everything inside the 
indicated box to a single point: 

which gives us the desired element of the fundamental group. The skein rela­
tion 

[<?'] = [g1-1] ® [g] - ir2} 

also has a nice topological interpretation. If we resolve the innermost crossing 
in —Ki using the Kauffman bracket skein relation with a = — 1, we get: 

which, using our Ki notation, corresponds to Ki_\ U K\ + -£Q-2, upon relaxing 
and homotoping some of the components into more agreeable positions. This 
agrees exactly with the right hand side of the skein relation 

[gl] = [g1'1] ® [g] - [<T2L 
under the image of our isomorphism, as one would hope. 

In light of this theorem, we would like to know when there exists a map 
TG such that Tg(X(G)) contains an open set. 

Theorem 3.13. (Bullock [6]) If some Zariski component Xo ofX(G) has dimension 
greater than zero, then there exists T9 that is non-constant on XQ. Consequently, the 
image T9(X(G)) contains an open set. 
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Proof. Fix some system of coordinates C[T3I , ...,r f l n], and choose a Zariski 
component XQ of X(G) that has dimension at least 1. Since XQ is of dimen­
sion at least one, we can choose two distinct points Xpi a n d Xp2 m -̂ o- Since 
the characters Xpi and Xp2 a r e distinct, we can choose g € G on which they 
disagree. Then by this choice, 

Tg(Xpi) = XpAg) + Xpiia) = Tg(xP2) 

so that TG is non-constant on XQ. In our chosen coordinates, TG is a polyno­
mial map, and we have just shown that it is nonconstant on the variety Xo. 
Irreducible varieties (in general) admit a manifold structure on a dense open 
subset3 [31], so that we can conclude the polynomial T9 is nonconstant on 
some open neighbourhood U in Xo- In the chosen coordinates, TG is in fact 
a polynomial map, and so is holomorphic. Since non-constant holomorphic 
maps send open sets to open sets, TG sends the open neighbourhood U to an 
open set. • 

Corollary 3.14. Let M be a link complement, with boundary components included 
via the maps 

ik:dM = Tk^ M. 

Suppose the fundamental group ofM admits an irreducible representation 

p-.TTi(M) ->5L(2,Q 
such that 

p(u(iri{Tk))) <£ {I, -I}, for each k. 

Then there is some knot K in M such that the cablings 

{KUK2,K3,---} 

are linearly independent in S(M; R, -1). 

3The nonsingular points in a variety admit neighbourhoods with manifold structure, 
and the nonsingular points form a dense open subset [31]. 
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Proof. By applying corollary 3.6, we are able to conclude that X(M) has a 
component XQ of dimension at least 1. Hence, by theorem 3.13, there exists 
some p € 7Ti (Af) such that the image T9(X(M)) contains an open set. Theorem 
3.12 then tells us that the infinite family of elements 

{{9},[92U9%...} 

is a linearly independent set in S(iri(M), C ) . The isomorphism 

S (7 r i (M);C) ^S(M;C,-1) 

gives us the desired conclusion. • 

We wonder: What knot and link complements admit representations as in 
corollary 3.14? 

3.4 Hyperbolic Knots 

We begin with a more approachable class of manifolds than a general knot 
complement, by considering hyperbolic knot complements. We recall some 
general facts about hyperbolic 3-manifolds [20]. If M is a complete hyperbolic 
3-manifold, then there is a universal covering 

e 3 4 M . 

From this, Af can be realized as a quotient 

Af = H 3 y r 

where T is the subgroup of Isom + (H3) that consists of all isometries 7 satisfy­
ing p o 7 = p. Since Af arises as such a quotient, we know 

Tri(Af) = T '«-»• Isom +(H 3) * PSL(2,C) 

so that there is a canonical inclusion -n\ (Af) «-»• PSL(2, C ) . 

Proposition 3.15. (Thurston) Let Af be a hyperbolic manifold. Then the canonical 
inclusion 0/71-1 (Af) in PSL(2, C ) can be lifted to a representation in SL(2, C ) . 
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For a proof of this fact see [8]. We know immediately that the represen­
tation p : 7Ti(M) —¥ 5L(2, C ) arising from this proposition is injective, as the 
canonical map 7Ti (M) P5L(2, C ) that we lifted is injective. If we further as­
sume that M is a hyperbolic knot complement of finite volume, the represen­
tation p of 7Ti (M) in 5L(2, C ) provided by Thurston is necessarily irreducible 
[12], [8]. 

From this, we immediately get a fact found in much of the literature [9], 
[10], [2]: 

Corollary 3.16. If M is a hyperbolic 3-manifold of finite volume, and M is not 
closed, then some component of X(M) has dimension at least 2,4 and so M con­
tains a knot whose (l,i)-cablings form an infinite linearly independent family in 
5 ( M ; 1,-1). 

Proof. We apply corollary 3.6, using the representation provided to us by 
proposition 3.15. • 

Remark 3.17. Alarmingly, this already appears to contradict the result of [6] if we 
choose M to be a small, hyperbolic knot complement of finite volume. In this case we 
have proven that 5 (M, C , -1) is infinite dimensional, whereas [6] asserts that 

dimS{M,C, -1) < oo 

for all small 3-manifolds M. This is because the definition of "small" used in [6] is 
somewhat nonstandard, in that the incompressible surfaces inside the manifold M 
are not required to be closed. In this paper we take a small manifold to be a manifold 
that does not contain any closed, embedded, orientable surfaces that are both incom­
pressible and nonboundary parallel. 

Remark 3.18. Through an entirely different approach, it is shown in proposition 
2.4, [7], that in fact any knot complement M satisfies dim(X(M)) > 1. In fact, there 
can be no components of X(M) having dimension zero! This much more powerful 
result tells us that S(M; Z[a, a"1], a) is infinitely generated as a module for any knot 
complement M. 

4This bound can be sharpened substantially to X(M) = 1 in the case that M is a small 
knot complement [7]. 
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3 . 5 Comments 

In light of these facts, we would liket to find elements g such that rg is non-
constant on some 1-dimensional Zariski component of X(G), for it is these 
elements g which will yield infinite linearly independent families 

M b 2 ] . ! / ] . - } 

in S(G; C). In particular, if G is the fundamental group of some knot com­
plement M , we know that such a linearly independent family must exist, by 
remark 3.18. In this case, such an element g will correspond to an infinite fam­
ily of linearly independent knots 

{KUK2,K3,---} 

in<S 2 > 0 0 (M;C,- l ) . 



Chapter 4 
Some Infinite Families of Linearly 
Independent Knots 

4.1 Character Varieties of Hyperbolic Knot Complements 

We focus on some results of Culler and Shalen, first published in [9]. Let M 
be a hyperbolic knot complement of finite volume, with torus boundary com­
ponent 

/ : T«->- M 

and let 

po : TTI(M) SL(2,C) 

be a lifting of the canonical embedding 

po : irX{M) ^ PSL(2,C). 

By comments in [15] and [9], the hypothesis that M has finite volume forces 
the induced map /* between fundamental groups to be injective. 

Let Xo be the component of X ( M ) containing the character % P o, which we 
know (from the work of Thurston) has complex dimension 1. It is shown in 
[12] that the subgroup 

Po(MMT))) c PoMM)) 

consists entirely of parabolic elements. This means that if g G TTI(M) lies in 
the image of the map /*, then rg(xPo) — xpo (o) — ±2. Therefore, if such maps 

49 
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TG are to be constant on Xo, they must take on one of the two values ±2 on the 
entire variety XQ. 

Pick an arbitrary g € ir\(M) that lies in the image of /*, and define a 
subvariety Y C Xo, that can be thought of as the union of the two level sets 
T~ 1(2) and r~1(—2). Amore strict definition is as follows: for such an element 
g, define the algebraic set Y' to be the zero locus of the polynomial 

T 9 ( X ) 2 = 4. 

Note that 
Xp0 € Y'. The subvariety Y C Xo that we are seeking is an irre­

ducible component of Y' D Xo that contains xp0 • 
Theorem 4 . 1 . (Culler, Shalen, [9]). The variety Y has complex dimension 0, and so 
Y = {xPo}, since irreducible zero-dimensional varieties are singleton sets. 

From this theorem, we reason as follows: Given g € im{f*), the corre­
sponding map TG takes on the value +2 or —2 on the character Xp0 G -X"o- How­
ever, this is the only character in Xo on which r 5 takes on the value ±2, by our 
theorem. Therefore the map r s must be nonconstant on the one-dimensional 
component Xo. By the work of Bullock, this tells us that the infinite family 

{{gUg2U9%---} 

is linearly independent in S(G;C), and hence the corresponding knots are 
linearly independent in 

S(M;Z[a,a~l],a). 

As before, the case of hyperbolic knot complements of finite volume is a 
simpler special case, whose results we can generalize. 

4.2 Character Varieties of General Knot Complements 

Let M be any knot complement, with boundary T included via the map / as 
before, and with /* injective as before. The authors of [3], [2] have provided 
us with the following result. For any 1-dimensional component Xo of X ( M ) , 
one of the following cases holds: 

1. For every g G im(f*), the map rg is constant on XQ. 
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2. For every g G im(f*), the map rg is non-constant on Xo. 

3. There is exactly one primitive1 element g G im(/*) such that 

are constant on Xo. A l l other maps rg are nonconstant. 

Given our angle on this situation, we would like to know the circum­
stances under which cases (2) and (3) arise. We have the following partial 
answer. 

Theorem 4 .2 . (Boyer, Luft, Zhang, [2]) If M is small, then each one dimensional 
component X 0 ofX(M) satisfies either case (2) or case (3). 

From this, we follow a line of reasoning identical to before, and conclude 
that one of the following two cases hold: 

1. Every g G im(f*) gives rise to a linearly independent family of knots in 

2. There is exactly one primitive element g G im(/*) whose powers 

{g,92,g3,---} 

may not give rise to linearly independent families of knots in 

<S(M;Z[a,a_1],a). 

A l l other elements in im(/*) give rise to infinite linearly independent 
families in 

5(M;Z[a,a _ 1 ],a). 
1Here, we mean that the element g cannot be written as a power of any other element 
h E im(ft) 
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4.3 An Explicit Computation for 2-bridge knots 

First, some general facts from the work of Riley in [27]. Define a 2-bridge group 
of determinant a > 3 (a € Z is odd) to be a group G with presentation 

(xi,X2 • WXl = X2V)), 

where 

and 

w = x^x^xl3 „eQ-l 

±1 for j = l... a - 1. 

We call these groups 2-bridge groups, because this class of groups subsumes 
all 2-bridge knot groups [30]. Let C and D be the matrices: 

C = 

D = 

t 1 
0 1 

t 0 
-tu 1 

Given a 2-bridge group G, define W 6 GL(Z[t, t 1, u]) by 

W = CeiD62 •••Dea-1 = wn W12 
W21 W22 

Define a mapping 
pt,u : G - > G L ( Z [ M _ 1 , « ] ) 

by pt,u{x\) — C, and pt,u{x2) — D, where subscript is to indicate that such a 
map depends on our choice of t and u, which we are to think of as complex 
numbers. 

Lemma 4 .3 . If the pair t, u satisfy the polynomial wn + (1 - * ) ^ i 2 = 0, then pt>u 

defines a representation of G into GL(Z[t, t~l, u]). 

Proof. The assignment 

Pt,u(xl) = C ' Pt,u( x2) = D 
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defines a homomorphism precisely if pt,u preserves the single relation 

WX\ = X2W. 

Under this assignment, the single relation becomes: 

Wl2 t 1 t 0 " wu Wi2 
W21 W22 0 1 —tu 1 W21 W22 

or upon multiplying 

tWn W\i + W\2 

tW2\ W2\ + W22 

twn 

-tuWn + W21 
tWi2 

-tUW\2 + W22 

Equating entries and simplifying gives the four polynomial equations: 

twn = twn (4.1) 

wn + (1 - t)wu = 0 (4.2) 

{t - l)w2i + tuwn = 0 (4.3) 

-u;2i + tuw\2 — 0. (4.4) 

Equation 4.1 obviously does not concern us, as it is a simple identity. Equation 
4.3 can be reduced to an identity if we employ equations 4.2 and 4.4: 

0 = (t — l)w2i + tuwn 

= (t - l)w2i + tu((t - l)wl2) (by 4.2) 

= {t - \){-tuwi2) + tu{(t - l)wi2 (by 4.4) 

= 0. 

To complete the lemma we need only prove that 4.4 is an identity. 
Define 

r 
0 V = 

y/—tu 
0 

-tu 

Then a quick computation shows that 

(C€i)T = VD£iV~\ and {Dei)T = VCeiV~l, 
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for ei = ± 1 . This allows the clever observation: 

WT = (CeiDe2 •••D£*-i)T 

= ( Z ) e « - i ) T ( C e " - 2 ) T - - - ( C £ l ) T 

= {D£l)T(Ce2)T •••(C€a-1)T since the e/s are palindromic 
= VCeiV-1VDe2V-1---VD€a-lV~l by our choice of V 
= VCeiDe2 •••D£«~1V-1 

= vwv-\ 

In other words, 

W12 W22 

Wn —tuW2\ 

from which we can read off w2\ = —tuw\2- • 

In light of the importance of this polynomial, we define 

= wn + (1 - t)wi2. 

The properties of this polynomial are the subject of [27]. As is standard, let 
A = Z[t, t - 1 ] . Riley shows that u) always admits a factorization of the 
form 

$(t,u) = i f c$i(t,u)$ 2(*,w) • • • $,•(*,«) 

where k eZ, and each $j e A[u] is irreducible and distinct, and has a leading 
monic term of the form u n, n > 1. Additionally it is shown that though each 
factor lies in A[u], no factor can lie in Z[u\. This provides a decomposition of 
the zero locus of $ into irreducible affine algebraic curves, and each point on 
such a curve corresponds to a representation pt>u ofG. 

Also of great importance is a remark in [27], proven by deRham in [25], 
that 0) is a A-unit multiple of the Alexander polynomial A(t) of the group 
G. In the case that G is a 2-bridge knot group, there is a nice formula for the 
Alexander polynomial [13]: 

A(t) = 1 - f 1 + te i + e 2 - te i + e 2 + e s + • tEfcTi 1 € < . 

y/—tU 

0 
0 
1 

M i l Wl2 

1021 W22 

0 
/-tu 
0 v 7 1 1 ^ 
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We will make use of this information shortly. 
There is also a partial "converse" to this correspondence between repre­

sentations and pairs t, u, appearing as lemmas 7 and 8 in [28], and referenced 
in [27]. Suppose we are given a representation with nonabelian image, 

<f>: G -»• G L ( 2 , C ) , 

defined by <j){x\) = M\ and 4>(x2) = M2. Then there exists a matrix 

U G SL(2,C) 

and some numbers t, u satisfying wn + (1 — t)wi2 — 0 such that 

UMxlJ-1 = Vt~ldet(M]) t 1 
0 1 

, UM2U~l = Vt-ldet{M2) 
t 0 

-tu 1 

Furthermore, the pair t, u is unique if M i and M2 have a common eigenvector, 
otherwise the pair can only be replaced with t~l,u. What this means is that 
each representation ptyU corresponds to at most two points in the zero locus 
$(t,u) = 0. 

We now wish to consider these results as they apply to representations 
into SL(2, C). Note that if we instead had defined 

Pt,u(xl) = t 2 C = 

then the defining relation 

gets mapped to 

i i 

0 t _ 5 Pt,u 
i 

t2 0 
1 _ 1 

— t^U t 2 

WX\ = x2w 

(H)£ e < + 1 wc = (r^ei+lDW. 

Since we can cancel the powers of t on both sides, this alternative assignment 
still defines a representation of G for each pair t, uin the zero locus u) = 0, 
but whose image now lies in SL(2, C). Therefore, though our original assign­
ment of 

Pt,u{xi) = C, ' pt,u(x2) = D 

is beneficial for illustrating the correspondence between points satisfying 

$(t,u) = 0 
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and representations of G, we shall henceforth take pt,u to be the new assign­
ment 

We now consider the characters arising from this new assignment. To sim­
plify notation, let 

For an arbitrary g £ G, we would like to know about the values Tg(xt,u), 
which is now expressible as a polynomial in t and u. In general, Tg(xt,u) is a n 

unwieldy mess. However, we have the following lemma when we take u = 0: 

Proposition 4 .4 . Let g be an arbitrary element of the two-bridge group G, whose 
generators are x\ and x2. Then if 

Pt,u{x\) = t 2C, Pt,u{x2) =t 2D. 

9 = x h x h x h 

where ej = ± 1 , we have that 

Here, 
s 

is the exponent sum of g. 

Proof. We set u = 0 in the matrices C, D, C _ 1 , D _ 1 , and get: 

C 0 = t 1 
0 1 

D0 = 
t 0 
0 1 

t-1 t-1 

0 1 

and 

•o1 

t-1 0 
0 1 
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By induction on the length of the product, we will prove that an arbitrary 
product of these four matrices necessarily has the form: 

t" P(t) 
0 1 

where a is the exponent sum of the matrix product, and p(t) is some polyno­
mial in t. Observe that for a product of length one, the claim holds, as we can 
see from inspection of C, D, C _ 1 , D - 1 . 

Assume that the claim holds for some matrix A that is a product of length 
s of C's and D's with exponent sum k, so that 

A = 
tk p(t) 
0 1 

Then upon multiplying A on the left by Co, C 0

 1,DQ, and D0

 L, we get: 

AC0--

AC,~L = 

ADQ = 

AC0 = 

tk+l tkp(t) 
0 1 

tk-l tk~lp{t) 
0 1 

• tk+l 
Pit)' 

0 1 

tk-l Pit)' 
0 1 ' 

so that the claim holds true for an arbitrary product of length s +1. Therefore, 
with g £ G arbitrary, we can compute 

a(g) ( 

Tg(xt,o) = tr(pt,u{g)) =t 2 tri 
ta^) p(t) 

0 1 
= t 2 + t 2 . 

• 

Suppose that we find two different points (ri,0) and (r2,0) in the zero 
locus of $(£, if), both of which lie in the same irreducible component of the 
curve 

$(t,u) = 0. 
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Since $(£,0) = A(t) is the Alexander polynomial, finding ri,r2 amounts to 
finding roots of the Alexander polynomial, and somehow making an argu­
ment that the resulting points lie in the same irreducible component. Then if 
we find an element g € G such that 

g-(g) _zisl g ( » ) _ £ ( 9 ) 
T"! 2 +1"! 2 ^ r 2

2
 + J " ! 2 , 

we will have 
Tg(Xruo) + Tg(xt,u), 

so that Tg is a non-constant polynomial on the irreducible component of 
ii) = 0 that contains the points (ri, 0) and (r2,0). This is sufficient for us 

to apply Doug Bullock's result, and conclude that the elements 

are a linearly independent family in S(G, C). 

4.3.1 Computational Applications to an Infinite Family of 2-Bridge Groups 

First, we observe that 

r ? + r i - n = r « + r - « ^ ^ - ^ = 0 

<=» r 2 r V£ + r£ - rfV? - r? = 0 

( « - l ) ( r ? - r J ) = 0 . 

If we restrict ourselves to real values, the last equation can only be satisfied if 

1 
ri = — or r± = r 2 . 

This is not to imply that considering complex roots of the Alexander polyno­
mial cannot be fruitful. It is simply more to the point to restrict our attention 
to real roots for the exposition of these ideas. 

For p = 0 mod 3 an odd positive integer, we consider the family of 2-
bridge knots K v ̂ . (For an explanation of this indexing, see [29].) From [13], 
the corresponding knot group has presentation 

(xi,X2 • X\W = WX2), 
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where 

and 

„ , _ „ £ l „ £ 3 . . . ™ e 2 p - 2 
UJ — \ 2 1 

JP 

2p- 1. 
The e/s obey they pattern: 

for j = 1 • • • 2p - 2. 

e i = 1 
62 - -1 
€3 = -1 
64 = 1 
e5 = 1 

€2p-2 = 1 

here, the vertical dots indicate alternating pairs of -1 and +1. This is clearly 
a 2-bridge group, so we can compute the Alexander polynomial as: 

A ( i ) = l - t1 + tl~l - t1'1-1 + _ . . . + &u 

which gives 

A(i) = 1 - t + 1 - t~l + 1 - t + 1 - r l + 1 + 1 
where there are 2p — 1 terms in the sum. Grouping together like terms, we get 
the simple formula 

A«) = (̂ )( + P « + ( ^ ) r ' . 

To find the roots of this polynomial, we first multiply the Alexander poly­
nomial by a factor of t and then use the quadratic formula on the resulting 
polynomial. This yields the roots: 
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Both roots of the Alexander polynomial are real, and distinct. The two roots 
are not inverses of one another, because 

-p + y /2p~=rT _ 2p 
2p ~ -p - y/2p=l~ 

reduces to 
-Sp2 - 2p - 1 = 0, 

and considered modulo 3 this equation gives 2 = 0, since p = 0 mod 3. There­
fore the roots r\ and r2 satisfy 

r? + r - » ^ r » + r2-" 

for all nonzero n. Thus we already have the following fact: If G is a knot group 
corresponding to one of the knots K_s_, and g £ G has nonzero exponent 
sum, then 

TgiXnfi) +
 Tg(Xr2,o)-

It remains to show that the points (ri, 0) and (r2,0) lie ine the same compo­
nent of the variety defined by <£(£, u) = 0. 

Recalling that 

$(*, u) = t f c $ i ( t , « ) $ 2 ( « , « ) • • • $r ( i ,u) 

where k e Z, and each $j G A[u] is irreducible and distinct, we see that this 
must provide a factorization of A(t) over A of the form 

A ( t ) = 0) = t f c $ ! ( t , 0 ) $ 2 ( t , 0) • • • $ r ( t , 0) = tk

Cl(t) • • • Cr(t). 

Here, Ci(t) is the constant term of which lies in A. We consider the possible 

factorizations of 

over A. Any such factorization can only have two nonzero roots, correspond­
ing to the roots we have already computed. This means in our factorization 
tkc\ (t) • • • Cr(t), one of two cases may occur: 
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1. Two of the Cj's are linear factors, say cn and c m , while all others must be 
units in A. Then the points ( n , 0) and (r2,0) lie in zero loci of and 
<3>TO, and so are in separate components of $(£, u) — 0. 

2. Only one of the c/s is not a unit, and therefore has the same roots as the 
Alexander polynomial. Then the points ( n , 0) and (r2,0) lie in the same 
irreducible component of <&(i, u) = 0. 

For case (1) to occur, the polynomial 

P~ l \ . , ^ , (P 

must factor over the integers into two linear factors. This is not possible, be­
cause this polynomial has descriminant 2p — 1 = 2 mod 3, and 2 is not a 
quadratic residue modulo 3. Therefore ( n , 0) and (r2,0) lie in the same irre­
ducible component of u) = 0. This leads us to the following conclusion: 

Proposition 4 .5 . Suppose that G is the knot group of one of the knots K P . where 
2p—X 

p = 0 mod3 is odd, and that g € G has nonzero exponent sum. Then the elements 

are linearly independent in the skein module S(G, C). 

We can use this to make a modest gain in our understanding of the nilrad-
ical of skein modules. 

Proposition 4 .6 . Suppose that G is the knot group of one of the knots K_e_,where 
2p— 1 

p = OmodS is odd, and that g e G has nonzero exponent sum. Then [g] is not 
contained in the nilradical ofS(G, C). 
Proof. This is an immediate consequence of the 'reduction formula' 

[g] ® [h] = [gh] + [gh'1]. 

Supposing that 
[g] ® [g] ® • • • ® [g] = 0, 
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we may apply our reduction formula to the left hand side repeatedly until we 
obtain a sum of elements of the form [gh]. The equation we obtain in this way 
contradicts the linear independence of the elements 

• 

4 . 4 Questions for Future Research 

Computationally, skein modules are very difficult to tackle, any new compu­
tational techniques would be more than welcome in the field. The approach 
we have seen for finding infinite linearly independent families could be ex­
tended to yield new information by finding additional elements g 6 ir\ ( M ) 
that yield functions rg which are non-constant on positive dimensional com­
ponents of X(M). This is certainly an appealing avenue for future research. 

Based upon the explicit calculation for the knots K p above, we would 
2p— 1 

like to come up with better ways of finding pairs of points (ri,0), (r2,0) 
that lie in the same irreducible component of the curve u) = 0, and use 
these pairs to create infinite linearly independent families. Alternatively, it 
seems that this approach of using the roots of the Alexander polynomial is 
inherently weak in some sense, since it only applies to elements of the group 
that have nonzero exponent sum. Perhaps there is some alternative approach 
based upon the calculations of Riley, which will provide more trenchant in­
sights into the question 

When is the map p : S(G; C) C[X(G)] injective? 

specifically in the case that G is a 2-bridge group. This question was first 
posed by Przytycki in [23], and the answer is only known in a small num­
ber of cases. 

Recent interest in the A-polynomial has also lead to questions as follows: 
Suppose that a positive-dimensional component Xo 6 X(M) is defined by 
some set of polynomials 

(Pl.P2,P3,-- - ,Pn}, 
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and suppose that we find an element g G TT\{M) that is non-constant on the 
component XQ. It seems reasonable to expect that the linearly independent 
family of knots arising from this element would bear some connection to the 
defining polynomials {J>I,P2>P3J • • • ,Pn}- What would this relationship be? 

This is of particular interest for the following reason. Suppose we have a 
knot K with complement M. In [7], the authors define the A-polynomial of a 
knot K as the defining polynomial of a certain one-dimensional algebraic sub­
set of X (M). From the work of Doug Bullock, we know that there must exist at 
least one function rg that is non-constant on this one-dimensional component. 
The obvious question is: Which elements g G -K\(M) give rise to functions that 
are non constant on the variety defined by the A-polynomial. Having found 
these elements, what relationship would they bear to the A-polynomial? A n 
answer to this question could provide a connection between the skein module 
of a knot complement and the A-polynomial of the corresponding knot. 
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