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ABSTRACT 

Local Mode Analysis was introduced by Achi Brandt as 

a h e u r i s t i c p r a c t i c a l tool for determining the expected 

convergence rate of a Multi-Grid algorithm. It i s shown 

that this tool may be j u s t i f i e d rigorously. Furthermore, 

computations analogous to actual relaxation processes 

y i e l d results much l i k e Local Mode Analysis predictions. 

This analysis is also useful for a h e u r i s t i c understanding 

of certain relaxations independently of the Multi-Grid 

context. 
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CHAPTER ONE 

INTRODUCTION 

1.1 The Subject 

Numerical techniques for the solution of p a r t i a l 

d i f f e r e n t i a l equations (PDEs) are finding increasing 

application in science and industry. Much current research i s 

devoted to finding fast and robust algorithms for this 

purpose. E l l i p t i c PDEs arise from steady state problems, and 

commonly the f i r s t step in their solution is the translation 

of the continuous problem into a large sparse system of 

algebraic equations by the use of a f i n i t e difference or 

f i n i t e element d i s c r e t i z a t i o n . These systems are frequently 

solved by f i r s t approximating the solution very roughly, and 

then reducing the error in th i s aproximation by an i t e r a t i v e 

method (relaxation scheme). 

In the Multi-Grid (MG) method, relaxation techniques are 

used, not to eliminate the error in an approximation to the 

solution, but only to smooth th i s error. (For a description of 

relaxation techniques and the MG method, the reader may refer 

to Chapter Two.) Since the p r a c t i c a l introduction of the MG 

method by Achi Brandt in 1971, i t has shown great early 

promise and i s now being investigated systematically. A 

c r u c i a l problem for applications is the estimation of the rate 

of convergence of a MG algorithm. This requires an estimation 

of the e f f i c i e n c y of the smoothing performed by the 

relaxat ion. 

Local Mode Analysis (LMA) or Local Fourier Analysis was 

introduced by Brandt (see Brandt(1977)) to r e a l i s t i c a l l y 
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estimate the convergence rate of the smoothing step in a 

Multi-Grid algorithm. Like the von Neumann s t a b i l i t y analysis 

for parabolic systems, LMA treats a model system without 

boundaries, i . e . , on a gri d which i s i n f i n i t e in extent. LMA 

can be used to obtain good estimates of the (rapid) 

convergence rate of the MG algorithm as a whole. Brandt has 

not given a rigorous j u s t i f i c a t i o n of this procedure (on t h i s 

topic, see Brandt (1982)). 

Other mathematicians have t r i e d to develop rigourous 

convergence estimates for MG methods, but they have not found 

LMA useful for their theories. Most such rigourous convergence 

estimates have been too conservative (by several orders of 

magnitude) to be of any p r a c t i c a l value. Therefore LMA remains 

the p r a c t i c a l tool for r e a l i s t i c estimation and decision 

making with regard to MG methods. 

Despite i t s p r a c t i c a l success, the a p p l i c a b i l i t y of LMA 

to real problems has been neither rigourously j u s t i f i e d nor 

disproven. It i s not even clear how the analysis of an 

i n f i n i t e model system ought to be brought to bear on the 

f i n i t e system at hand. Thus far mathematical work related to 

LMA has taken three di r e c t i o n s . 

Trottenberg and Stueben (1982) carried out a rigourous 

Fourier analysis of certain special MG situations ( e s s e n t i a l l y 

D i r i c h l e t problems in a square using Red-Black or Richardson 

relaxation for smoothing). They derived convergence rates for 

the smoothing step which turned out to be i d e n t i c a l with 

convergence rates derived via an extension of LMA for the same 

problems. They claimed that the identit y of these results gave 

c r e d i b i l i t y to the application of LMA in more general 
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settings. A second avenue of the mathematical work has been 

the elaboration of Brandt's o r i g i n a l notion of an i n f i n i t e 

g r i d model. Hemker (1980a) described in d e t a i l the Fourier 

analysis of i n f i n i t e g r i d analogues of prolongation and 

r e s t r i c t i o n operators. Further Hemker (1980b, 1981), Mol 

(1981), and de Vries (1982) analysed an i n f i n i t e g r i d model of 

the Incomplete L-U Decomposition (ILU) relaxation process. 

However, they did not rigourously j u s t i f y the use of these 

estimates for f i n i t e g r i d problems. 

It i s worth noting that de Vries (1982) went further than 

Brandt's o r i g i n a l intent regarding the range of a p p l i c a b i l t y 

of LMA. de Vries computed the LMA convergence rate estimate 

for a certain low frequency Fourier component. He then 

compared th i s with the actual spectral radius of the 

relaxation operator on a grid whose mesh spacing was 

determined by the frequency. These two values were close, 

e s p e c i a l l y for fine meshes, which suggested that LMA might be 

used to estimate the o v e r a l l performance of relaxation 

schemes. This idea extends the o r i g i n a l horizons of the 

method, which was envisaged to be r e a l i s t i c only for high 

frequencies (see Brandt 1977, 1982). 

A t h i r d mathematical dir e c t i o n related to LMA i s 

mentioned by Trottenberg and Stueben (1982), MO1(1981), and 

Hackbusch (1983). LMA may be interpreted as a rigourous 

analysis of a f i n i t e discrete problem which arises from a 

d i f f e r e n t i a l equation problem in a rectangle with doubly 

periodic boundary conditions. These authors imply that the 

s i m i l a r i t y between the periodic problem and the (more usual) 

D i r i c h l e t problem j u s t i f i e s the use of LMA for the l a t t e r . 
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Hackbusch (1983) went on to relate the periodic and 

D i r i c h l e t cases e x p l i c i t l y . He treated the MG solution of 

singular perturbation problems in one dimension, which are to 

be smoothed by Gauss-Seidel relaxation. He derived an equation 

involving the periodic relaxation operator, the D i r i c h l e t 

relaxation operator, and a rank one perturbation matrix. He 

used t h i s to l i n k the size of the D i r i c h l e t relaxation 

operator to the size of the periodic operator in a special 

norm related to the high frequency components. This estimate 

is further used in a rigourous estimate of the convergence 

rate of the MG algorithm for t h i s problem. Hackbusch i s the 

only author who has made use of LMA type analysis in a 

rigourous treatment of MG. 

1.2 Outline of t h i s Thesis 

In t h i s work I treat two-dimensional D i r i c h l e t problems 

on grids which approximate a r b i t r a r y domains. The discrete 

systems a r i s i n g from these problems are relaxed by any of a 

large class of i t e r a t i v e schemes to be described. In Chapter 

Three, I interpret LMA as an approximate description of the 

relaxation of Fourier components on the f i n i t e grids. This 

description i s asymptotically correct in the l i m i t of very 

fine grids. To show t h i s , I perturb the matrix describing the 

actual relaxation to obtain a matrix which operates on Fourier 

components exactly as described by LMA. In the case of 

rectangular domains, this perturbed operator i s i d e n t i c a l with 

the relaxation operator for a problem with periodic boundary 

conditions. I show that t h i s perturbation i s asymptotically 

small in norm, and hence validate LMA on fine grids. This 
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v a l i d a t i o n i s i l l u s t r a t e d w i t h s e v e r a l examples worked out in 

d e t a i l , to show the a c c u r a c y of LMA. LMA i d e a l i z a t i o n s for 

s e l e c t e d F o u r i e r components are compared wi th a c t u a l 

r e l a x a t i o n s over a range of problems and meshes. 

In Chapter F o u r , I i n v e s t i g a t e , as d i d de V r i e s (1982), 

the p o s s i b i l i t y of u s i n g LMA to d e s c r i b e the o v e r a l l 

convergence r a t e of r e l a x a t i o n s o u t s i d e the MG c o n t e x t . The 

u s e f u l n e s s of LMA in p r e d i c t i n g the optimum r e l a x a t i o n 

parameter for the SOR scheme i s i l l u s t r a t e d over a range of 

problems and meshes. LMA i s a l s o used to h e u r i s t i c a l l y e x p l a i n 

the e f f i c i e n c y of the ADI method a p p l i e d to L a p l a c e ' s e q u a t i o n 

and the d e g r a d a t i o n i n performance for non-symmetric 

o p e r a t o r s . 

Chapter F i v e i s a d i s c u s s i o n of some of the ideas beh ind 

t h i s work, as w e l l as a proposed e x t e n s i o n . 

I hope t h i s work w i l l b u i l d c o n f i d e n c e i n LMA and suggest 

i t s p o s s i b l e uses as a t h e o r e t i c a l t o o l . 
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CHAPTER TWO 

BACKGROUND 

2.1 F i n i t e D i f f e r e n c e S o l u t i o n of E l l i p t i c P a r t i a l 

D i f f e r e n t i a l E q u a t i o n s 

In p r a c t i c e the s o l u t i o n of e l l i p t i c P a r t i a l D i f f e r e n t i a l 

E q u a t i o n s (PDEs) i s f r e q u e n t l y o n l y f e a s i b l e by n u m e r i c a l 

methods. Commonly the (continuum) PDE i s t r a n s l a t e d i n t o a 

system of d i s c r e t e e q u a t i o n s ( d i s c r e t i z a t i o n ) . These e q u a t i o n s 

may be s o l v e d e i t h e r by a d i r e c t method or by an i t e r a t i v e 

a l g o r i t h m . A r e c e n t development has been the M u l t i - G r i d (MG) 

method i n which t h e r e i s i n t e r a c t i o n between the i t e r a t i v e 

s o l u t i o n of the e q u a t i o n s and the d i s c r e t i z a t i o n i t s e l f . The 

MG method has proven q u i t e e f f e c t i v e i n t r e a t i n g many 

d i f f e r e n t t y p e s of problems. In t h i s work one f a c e t of the MG 

t e c h n i q u e , L o c a l Mode A n a l y s i s (LMA), i s j u s t i f i e d and a p p l i e d 

t o the s t u d y of i t e r a t i v e methods. 

C o n s i d e r a t w o - d i m e n s i o n a l f i n i t e domain fl and an 

e l l i p t i c p a r t i a l d i f f e r e n t i a l o p e r a t o r L. We w i l l c o n s i d e r 

o n l y l i n e a r o p e r a t o r s L. The problem i s t o f i n d a f u n c t i o n u 

on 0 which s a t i s f i e s 

(2-1 ) Lu = f ( x , y ) , 

where f i s a p r e s c r i b e d f u n c t i o n on fl and u and/or i t s 

d e r i v a t i v e s s a t i s f y some p r e s c r i b e d l i n e a r boundary c o n d i t i o n s 

on 9 f l , t he boundary of fl. 

Our f i n i t e d i f f e r e n c e s o l u t i o n of t h i s problem proceeds 

as f o l l o w s . P l a c e a d i s c r e t e s e t of N p o i n t s on fl, spaced 
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evenly in x and in y to form a rectangular g r i d . Frequently 

the same spacing i s used in both co-ordinate directions and 

thi s spacing i s c a l l e d the mesh size h. There are several ways 

to approximate the boundary of a non-rectangular domain. We 

w i l l discuss one of them in Chapter Three. The g r i d points are 

ordered so that numbers assigned to them form the components 

of a vector U which we c a l l a g r i d vector. 

Now we approximate the continuum equation for u by a 

system of N algebraic equations which determine the values of 

U at the N gri d points. The components of U are to 

approximate the values of u on the corresponding gri d points. 

We construct an equation at each i n t e r i o r grid point (x,y) by 

approximating the derivatives that appear in Lu(x,y) by f i n i t e 

differences, e.g., 

(2-2) 9 2u/9x 2(x,y) = (1/h 2)(u(x+h,y)-2u(x,y)+u(x-h,y)) +0(h 2). 

These difference approximations to the derivatives are used to 

build up an approximation L*U(x,y) to Lu(x,y). The discrete 

equation corresponding to a grid point (x,y) i s then 

(2-3) L*U(x,y) = f ( x , y ) . 

Thus for each i n t e r i o r g r i d point we have an equation 

involving the component of U corresponding to that point and 

the components of U corresponding to neighbouring points. At 

grid points (x,y) on or near the boundary of fi, similar 

approximate equations are set up, but now they must take into 

account the boundary conditions imposed on u. We obtain a 
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linear N x N system of equations AX = b, whose solution 

X = U approximates the solution u of the PDE. The 

approximation generally becomes better as N increases. For 

further information on the d i s c r e t i z a t i o n process see Young 

(1971 ) . 

Now we .must find an e f f i c i e n t algorithm for solving 

AX = b. This i s the most costly part of the f i n i t e difference 

solution of the PDE. For the large systems (N > 10 3) that are 

desirable to ensure accuracy, the usual Gauss elimination (GE) 

algorithm turns out to be too space- and time-consuming. Other 

d i r e c t methods, based on the Fourier transform or on reduction 

(transformation of the large sparse system into a smaller 

dense system), may be used to obtain exact solutions of some 

special discrete systems. These methods are faster than GE and 

the development of large core computers has made them 

p r a c t i c a l for the solution of larger systems. 

In general large systems can be handled more quickly i f 

they are solved only approximately using i t e r a t i v e methods (or 

relaxation techniques). A common class of relaxation schemes 

are the fixed point i t e r a t i o n s . It i s these methods with which 

we s h a l l be concerned. A fixed point i t e r a t i o n for the system 

AX = b obtains a matrix B which approximates A and which i s 

e a s i l y inverted. Then the function 

(2-4) h(X) = X - B"1AX + B" 1b 

has a fixed point X = U the desired discrete solution. 

Choose any grid vector X° and construct a sequence of 

i t e r a t e s X°, X 1 = h(X°), X 2 = h(X 1),... Let e be the 
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difference between an it e r a t e X and U, e = X - U. Then 

the difference e' between the next approximation X' and U 

i s given by 

(2-5) e' = (I - B"1 A)e. 

If the spectral radius of the amplification matrix I - B"'A 

i s less than 1 then c l e a r l y the errors in the sequence of 

iterates w i l l go to 0 and the sequence w i l l converge to 

X = U. 

There are simple s u f f i c i e n t conditions which are known to 

guarantee convergence of such an i t e r a t i o n scheme (see Young, 

1971). For example: l e t A be s p l i t into A = B - (B - A); i f 

B"1 and B - A are non-negative (a "regular" s p l i t t i n g ) , then 

the i t e r a t i o n w i l l converge. Most of the common fixed point 

i t e r a t i o n s produce regular s p l i t t i n g s as outlined below. 

In the Jacobi (or simultaneous displacement) method, B 

i s the diagonal of A (see Young, 1971). In the Gauss-Seidel 

(G-S) method, B i s the lower triangular part of A 

(including the diagonal). For l i n e relaxation, B is the lower 

tr i a n g l e and one of the non-zero superdiagonals of A. In 

Successive Over-Relaxation (SOR), B i s D + a>L where D i s 

the diagonal and L the lower triangle not including the 

diagonal of A. Incomplete L-U Decomposition (ILU) (see de 

Vries, 1982) finds matrices L, U, and R such that L i s 

lower triangular, U is upper triangular and R i s "small" in 

some sense and such that A = LU + R; B i s LU and i s 

therefore e a s i l y inverted. For sparse matrices A a r i s i n g 

from PDEs L , U and R should be sparse. The Alternating-
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Direction Implicit (ADI) method is not based on a simple 

s p l i t t i n g but rather on a sequence of two s p l i t t i n g s . It w i l l 

be discussed further l a t e r . The Conjugate-Gradient (CG) 

it e r a t i o n i s not of the type described above. 

The p r a c t i c a l implementation of a relaxation scheme 

en t a i l s more than just a knowledge of the s p l i t t i n g on which 

i t i s based. We w i l l discuss the implementation of the 

simplest widely used relaxation, the Gauss-Seidel scheme. This 

method w i l l be used frequently in examples. 

The gri d points are ordered in some manner. In that order 

each approximate solution value i s adjusted to s a t i s f y the one 

corresponding discrete equation. Depending on the ordering of 

the points, the determination of the value of the next iterate 

at a grid point may involve using the newly determined values 

at one or more neighbouring points as well as values of the 

1 1 --5-1 5 — 8 
I I I I 2-12--6-16 . 
I I I I 
9 — 3-1 3 ~ 7 
I I I I 1-10--4-14 

(a) (b) 

Figure 1. Orderings: (a) Lexicographic and (b) Red-Black 

current i t e r a t e . The most common orderings are lexicographic 

and red-black (see Figure 1). Lexicographic relaxation starts 

at one corner of the grid and proceeds along one grid l i n e . 

When the end of the l i n e i s reached, relaxation starts again 

at the f i r s t position of the next l i n e , and so on. u n t i l a l l 

points on a l l grid l i n e s have been modified. This constitutes 

13-14-15-16 
I I I I 9-10-11-12 
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one i t e r a t i o n . Red-Black relaxation divides the grid points 

into two ordered subsets related to each other l i k e the red 

squares and the black squares of a checkerboard. A l l the 

points of the red subset are relaxed in their order, and then 

a l l the points of the black subset. 

2.2 The Multi-Grid (MG) Method 

The best of the relaxation schemes mentioned above are 

better than Gauss Elimination, but they are s t i l l quite 

i n e f f i c i e n t , and therefore s t i l l c o s t l y . Typ i c a l l y on the 

f i r s t few passes of a relaxation scheme, the error in the 

approximate solution (as measured by the size of the residuals 

r = b - AX) i s decreased substantially (on the order of 10% to 

50%). However, subsequent passes are not so e f f i c i e n t and long 

before the desired tolerance on the residuals i s reached, they 

are being reduced by only a small f r a c t i o n on each i t e r a t i o n . 

Very many relaxation sweeps are thus required to solve the 

equations. 

For most of these schemes the theory shows that the 

spectral radius of the amplification matrix i s of order 1 -
k 

0(h ), where h is the mesh size. Depending on the scheme used 

and the s p e c i f i c problem, the power k of h varies from 3/2 

to 5/2. In practice the convergence rate asymptotically 

approaches the spectral radius, since the components of the 

error along the eigenvectors of the amplification matrix, with 

the largest eigenvalues, gradually become dominant. That i s , 

the quickly converging error components (small eigenvalues) 

are almost eliminated by the f i r s t few it e r a t i o n s , but the 

slowly converging components are worn down only gradually and 
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thus stand out after many passes. If we are to' more 

e f f i c i e n t l y solve the problem we need to find some other way 

to eliminate these components. 

What do the slowly converging error components look lik e ? 

The residuals after several applications of nearly any 

relaxation scheme are smoother than the residuals for the 

i n i t i a l guess X°. That i s , there i s more co r r e l a t i o n between 

the residuals at neighbouring points, and fewer sign changes 

as one moves along a row of the gr i d . Thus i t i s natural to 

conjecture that the slowly converging error components are 

also smooth. Numerical computation of the eigenvalues of the 

amplification matrix for simple model problems bears out th i s 

i n t u i t i o n . The largest eigenvalues are generally associated 

with eigenvectors, whose values at neighbouring gri d points 

are strongly correlated. On the other hand, the eigenvectors 

corresponding to small eigenvalues vary quickly along g r i d 

l i n e s . 

These observations suggest that the relaxation schemes 

might be better understood by decomposing the error e = X - U 

in an it e r a t e X, into a f i n i t e Fourier-type ser i e s . A 

he u r i s t i c analysis suggests, and this thesis makes i t 

rigourous, that while most relaxation schemes are e f f i c i e n t at 

reducing the high frequency Fourier components of error, they 

are not e f f i c i e n t at reducing the low frequency components. 

Thus we cannot in general eliminate the slowly converging 

error components from one relaxation scheme simply by using a 

di f f e r e n t scheme. 

The idea behind the MG algorithm i s to use the relaxation 

methods to do only what they do well - reducing the high 
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frequency components of the error, and to find some other 

method to eliminate the low frequency components. The problem 

then is to find a way to eliminate a "smooth" or slowly 

varying error in an approximate solution. 

This may be approached as follows. Suppose several 

relaxation sweeps have been done on the discrete system 

AX = b obtained from (2-1), y i e l d i n g an approximate solution 

U 1, and suppose that the residuals r 1 = b - AU1 are smooth. 

The determination of the exact discrete solution U is 

equivalent to the determination of the smooth error vector 

e 1 = U 1 - U which solves Ae 1 = r 1 . Consider Ae 1 = r 1 as the 

d i s c r e t i z a t i o n of a PDE problem Le = r in J2, where e i s to 

s a t i s f y homogeneous boundary conditions. We might expect then 

that e w i l l be smooth r e l a t i v e to the grid we are using for 

Lu = f. Then an accurate solution for e may be obtained with 

a much coarser g r i d . Thus we set up a f i n i t e difference system 

A*e* = r* by d i s c r e t i z i n g Le = r on a coarser grid (see Figure 

2). The solution e* of thi s system should be a good 

—-C f C f 
I I I I 

— f f f f 
I I I I — c f c f 

Figure 2. Relation of Fine (f) and Coarse (C) Grids 

approximation on the points of the coarse g r i d to the smooth 

function e which i s approximated on the fine grid by e 1. 

Since e i s smooth, values of e on the fine g r i d points may 

be obtained accurately simply by interpolation from the coarse 
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gr i d points. Thus a good approximation for e 1 can be obtained 

from e*, and this smooth error can be almost eliminated. 

Why would this procedure (called Coarse Grid Correction 

(CGC) ) be more e f f i c i e n t than simply eliminating e 1 by many 

more relaxations on the o r i g i n a l fine grid? It i s because each 

relaxation of A*e* = r* i s much less expensive than a 

relaxation of Ae 1 = r 1 (which i s equivalent to a further 

relaxation of AX = b). In addition fewer i t e r a t i o n s w i l l be 

required to solve the coarse gr i d system to a given tolerance 

than w i l l be required to solve the fine g r i d system to the 

same tolerance. Thus a smooth error can be eliminated more 

quickly t h i s way. 

Of course the solution of the CGC problem may be 

accomplished in the same way; a few relaxation sweeps and then 

transfer to a yet coarser g r i d . Thus a recursive multiple-grid 

algorithm i s devised. On each g r i d the rough component of the 

error i s reduced by relaxation and the smooth ( r e l a t i v e to the 

resolution of that grid) component is reduced via the next 

coarser g r i d . 

These ideas may be implemented in several ways. The 

algorithm sketched below is referred to as an adaptive V-cycle 

correction scheme (see Brandt, 1977, 1982) Let the sequence of 
1 2 n 

successively finer grids be G , G ,... ,G ; the desired 
n 

solution i s a g r i d vector on G . Let the mesh sizes be 
1 n m m+1 

h > ... > h ; usually h = 2h . There are operators which 
transform gr i d vectors on one g r i d to g r i d vectors on another 

k k-1 
g r i d . Prolongation I acts on g r i d vectors on G and 

k-1 
smoothly interpolates to y i e l d values at a l l the g r i d points 

k k-1 
in G . The reverse procedure, r e s t r i c t i o n I , interpolates 

k 
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k-1 
values at g r i d points in G using the data supplied by the 

k 
values of a g r i d vector on G . Both operations find a good 

representation on the target grid of a function which i s 

represented by a vector on the o r i g i n a l g r i d . 
k k k k 

We solve a problem A X = b on each grid G as 

follows. The system i s relaxed several times u n t i l the error 
k 

in the last approximate solution Z i s judged to be 

"smooth". This i s determined by measuring the rate of decrease 

of the residuals in some suitable norm. As long as the error 

has large non-smooth components, each relaxation should 

e f f i c i e n t l y reduce the residuals. An e f f i c i e n c y c r i t e r i o n K 

(0 < K < 1) must be set. As soon as the size of the residuals 

after a relaxation i s no less than K times the size before, 

then the error i s judged to be smooth. Ty p i c a l l y less than 5 

i t e r a t i o n s are done. 

After these relaxation sweeps we set up the CGC problem 
k-1 k k k k k-1 k-1 k 

on G . Let r = b - A Z , and b =1 r . The system 
k-1 k 

to be solved using grid G is then 

k-1 k-1 k-1 
(2-6) A X = b 

k-1 k-1 
The operator A used for G may be taken to be the 

k-1 
f i n i t e difference approximation on G to the underlying 

d i f f e r e n t i a l operator L , or, (more suitably for theoretical 
k-1 k-1 k k 

purposes), as A =1 A I 
k-1 k k-1 

On G (2-6) may be solved either by GE or by a 

s u f f i c i e n t number of relaxation sweeps. Using either method 

the amount of work done i s small on the coarsest g r i d . On the 

other grids (2-6) i s solved by smoothing steps and a CGC. It 
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is only necessary to solve the CGC problem to an accuracy 

commensurate with the size of the remaining non-smooth error 
k 

on G 
k-1 k-1 k-1 

When a solution X = U i s obtained on G then l e t 
k k k-1 k k 

e = 1 U . An improved solution Y on G is obtained via 
k k k-1 k 

Y = Z - e. This eliminates most of the smooth part of the 
k k k 

error in Z . Since the error Y - U is now dominated by i t s 

non-smooth component, t h i s error may be further e f f i c i e n t l y 

reduced by relaxation steps. 

Thus the non-smooth component of the error in the 
n 

o r i g i n a l approximation on G has been cut down by 

relaxations, and the smooth part has been almost eliminated by 

the CGC. 

The Multi-Grid procedure outlined above is complicated 

and although the MG idea seems promising, there i s s t i l l 

controversy among those who have applied i t . Brandt f i r s t 

implemented the scheme in the early seventies (see Brandt, 

1977) and suggested that i t was an e f f i c i e n t (rapidly 

converging) algorithm for numerical solution of PDEs. He 

promoted i t vigorously and many d i f f i c u l t problems were solved 

e f f i c i e n t l y via MG. However, slow convergence of the method 

for other problems has led to much doubt regarding i t s 

robustness. 

There i s l i t t l e theory which can help decide whether the 

poor performance of some MG applications i s the result of 

inappropriate implementation, or whether i t r e f l e c t s a 

fundamental l i m i t a t i o n of the method. Convergence proofs for 

the MG algorithm (given already in the early s i x t i e s by 

Bakhvalov (see Brandt, 1977)) show that a reduction of one 
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order of magnitude in the o v e r a l l error can be achieved in 

0(N) operations (N i s the number of grid p o i n t s ) 1 . However the 

constant in this 0(N) i s so large as to have no bearing on 

convergence rates in practice. 

Brandt's claim that the MG algorithm w i l l converge 

quickly i s based not on rigorous theory but rather on a 

h e u r i s t i c l o c a l Fourier analysis of relaxation (and also 

r e s t r i c t i o n and prolongation). With suitable r e s t r i c t i o n s and 

prolongations, this analysis suggests that MG w i l l converge 

rapidly provided that the non-smooth error components on each 

grid are substantially reduced by relaxation. In t h i s thesis 

we w i l l be concerned with the application of t h i s Local Mode 

Analysis (LMA) to relaxations. 

2.3 Local Mode Analysis 

For a given problem and a s p e c i f i e d relaxation scheme LMA 

i s used to estimate the rate of reduction of the various 

Fourier modes which comprise the error. Brandt's o r i g i n a l idea 

was that relaxation at one g r i d point strongly affects the 

relaxation only at nearby gri d points, i . e . , "relaxation i s a 

l o c a l process" (see Brandt, 1977). Thus he imagined a 

relaxation acting on an i n f i n i t e g r i d and asked how relaxation 

would reduce a p a r t i c u l a r Fourier component. 

We w i l l i l l u s t r a t e LMA by considering Gauss-Seidel 

relaxation of Laplace's equation in some domain. The equation 

l i n k i n g the new values X' to the old values X during a sweep 

over lexicographically ordered g r i d points i s 

1 Straightforward use of a good relaxation w i l l result in 
convergence in 0(N 2) (or possibly N to the power 3/2) 
operat ions. 
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(2-7) 4X'(i,j) -X'(i-1,j) -X'(i,j-1) -X(i+1,j) -X(i,j+1) = 0. 

Note that when the point ( i , j ) i s reached, newly computed 

values X' at points ( i - 1 , j ) and ( i , j - l ) are already in place. 

The desired solution U also s a t i s f i e s this equation and upon 

subtracting we obtain the error transformation equation, 

(2-8) 4e'(i,j) - e ' ( i - 1 , j ) - e ' ( i , j - 1 ) -e(i+1,j) - e ( i , j + l ) = 0. 

Brandt (1977) suggested that one can "analyse i t [2-8] in 

the i n t e r i o r of the grid by ( l o c a l l y ) expanding the error in 

Fourier s e r i e s . ... Thus to study the d = (d*,d2) Fourier 

component of the error before and after the relaxation sweep, 

we put 

(2-9) e ( i , j ) = A ( 0 ) e x p ( i ( 0 1 i + 0 2 j ) ) ( i = /-I) 

and 

e ' ( i , j ) = A*(0)exp(t(0 1i + 0 2 j ) ) . " 

Here 01 and 82 must be interpreted as wave numbers in the x 

and y d i r e c t i o n s , respectively. Using the id e n t i t y 

exp( c0(k±1 )) = exp( t0k)exp(± it9) the error transformation 

equation (2-8) becomes 

(2-10) (4 - exp(-i0 1) - exp(-i0 2) )A'(0) 

+ (-expd .0 1 ) - exp(t0 2) )A(0) = 0. 

The convergence rate of the 9 \ 8 2 component i s then given by 

the r a t i o 
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(2 -11) M ( 0 ) = A' ( 0 ) / A ( 0 ) 

= (- exp( <,en - exp( id2) ) / 

( 4 - e x p ( - i 0 1 ) - e x p ( - i 0 2 ) ) . 

Brandt expected this estimate of the convergence rate to be 

good for the high frequencies (which are the only ones of 

interest in the MG context where the role of relaxation i s 

smoothing only), because for these frequencies the 

interactions of the solution value at an i n t e r i o r point with 

the boundary conditions and with far away points are small. 

For the usual case where the mesh size in the finer g r i d i s 

half the mesh size in the coarser grid, the boundary between 

"high frequencies" and "low frequencies" i s taken as 

max ( | 9 1 | , | 92 \ ) = 7r/2 , since the ( 0 1 , 0 2 ) component i s 

indistinguishable from the (9 1 -TT, 92-IT) component i f only 

values at every second grid point in the fine g r i d are 

considered. The exact form of u.(9) i s usually ignored and an 

estimate of the convergence rate of the high frequency 

components (called the smoothing factor) i s taken as 

(2 -12) u = max{|/z(0)| ; max ( | 9 1 | , | 92 | ) > TT /2}. 

This e f f e c t i v e rate of smoothing can be used to estimate the 

e f f i c i e n c y of the algorithm as a whole, and to estimate the 

t o t a l work required for a MG solution. In practice i t 

estimates accurately the high e f f i c i e n c y of many MG 

implementat ions. 

Despite i t s p r a c t i c a l success so far, many people who 

have worked on MG methods have found the LMA procedure 
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dubious. Brandt himself has never come forth with a 

j u s t i f i c a t i o n for i t or even a statement about when i t might 

be reasonably expected to work, and when i t might not. 
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CHAPTER THREE 

A JUSTIFICATION OF LOCAL MODE ANALYSIS 

In t h i s chapter we w i l l consider the v a l i d i t y of Local 

Mode Analysis (LMA) for problems with D i r i c h l e t boundary 

conditions. We w i l l take the point of view that LMA should 

approximately describe the transformation of a Fourier mode 

error under relaxation. We w i l l show that this approximation 

becomes better as the grid i s refined. We w i l l give several 

concrete examples of how good the approximation i s in 

p r a c t i c a l situations. 

3.1 The Meaning of Local Mode Analysis. 

In explanations of Local Mode Analysis (e.g., Brandt, 

1977) the error is supposed to be written as a " l o c a l Fourier 

series" near a gr i d point ( i , j) . This notion of " l o c a l Fourier 

series" arises from an attempt to make LMA look plausible in 

the case of general boundary conditions and variable 

c o e f f i c i e n t s , by ignoring the boundary conditions and the 

v a r i a t i o n of c o e f f i c i e n t s . However we must . f i r s t dispose of 

the notion of a " l o c a l Fourier series" in order to make a 

rigourous, global, interpretation of the analysis. 

We f i r s t discuss this in the context of a one-dimensional 

continuum, and l a t e r we w i l l discuss the multi-dimensional 

discrete case by analogy. Consider a function f(x) defined on 

some i n t e r v a l I containing a point x = a. Consider what would 

be required of a " l o c a l Fourier s e r i e s " 

(3-1) 2 L d(0)exp(i0(x-a)) 
e 
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for f(x) near x = a. We might require i t to converge in a 

neighbourhood of x = a and to describe the behaviour of f 

close to a, perhaps converging at a to the value f ( a ) . But 

these ' l o c a l ' requirements actually come from the idea of a 

Taylor series. Furthermore, how would the c o e f f i c i e n t s d(0) be 

determined? If we determine them over the neighbourhood 

(a~c,a+c) of x = a, then the c o e f f i c i e n t of the 0 component i s 

given by 

* a+c ma+c 
(3-2) d(0) = l e x p ( - 0 i x ) £ ( x ) d x /J |exp(-10x)| 2dx. 

J a-c / ' a-c 

Note that 

(3-3) lim d(0) = exp(- i 0 a ) f ( a ) 
c-K) 

which is independent of the behaviour of f(x) near a, so that 

the l i m i t of d(0) as c goes to 0 is not a determination of the 

l o c a l importance of the 0-component. We must then pick some 

c > 0, but which one? This brings us to the heart of the 

problem. A Fourier series can be defined only for a function 

and an i n t e r v a l , not a function and an in d e f i n i t e 

neighbourhood of a point. 

In the case of a discrete point set in real N-space, 

e.g., a g r i d covering a domain 1, consider a g r i d vector v and 

a s p e c i f i c point a. The c o e f f i c i e n t of a Fourier mode in a 

1 The discrete Fourier modes are then vectors with components 
equal to the continuum Fourier functions evaluated at points 
of t h i s ordered set. The inner product < , > on such a g r i d i s 
pointwise complex conjugate m u l t i p l i c a t i o n of two vectors with 
summation over a l l grid points. 
<v,w> = £v(i,j)w(i,j) 
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" l o c a l expansion" of v near x = a w i l l depend on which points 

are considered to form the neighbourhood of a. This 

neighbourhood i s not well-defined. It is also not clear which 

discrete frequencies are to be selected for the expansion. A 

discrete Fourier series can only be defined for values of a 

gri d vector corresponding to a s p e c i f i c rectangular subset of 

the g r i d . 

There i s then, no unique way to form a " l o c a l Fourier 

s e r i e s " in the usual sense that ' l o c a l ' objects are defined in 

mathematics. The concept of " l o c a l Fourier series" i s r e a l l y a 

conflation of the idea of a Fourier series and that of a 

Taylor s e r i e s . While the existence of such a " l o c a l Fourier 

series", and of " l o c a l Fourier modes", i s suggested by the 

language in some of the papers written on MG methods, th i s is 

misleading. We suggest that LMA be reinterpreted as a l o c a l 

analysis of the action of a relaxation scheme on Fourier modes 

over the whole gr i d . We w i l l show that the a t t r i t i o n rate of 

errors having the form of a Fourier component (over the whole 

grid) i s accurately computed by LMA for fine meshes. The 

interest of these special forms of error i s only that they 

w i l l be used to give an acceptable interpretation of LMA. 

3.2 Accuracy of Local Mode Analysis 
We develop an interpretation of LMA and j u s t i f y i t in the 

following s i t u a t i o n . We consider a second order linear 

e l l i p t i c PDE problem in two dimensions with constant 

c o e f f i c i e n t s of the form 

(3-4) Lu = a9 2u/9x 2 + b3 2u/9y 2 + c3u/3x + d9u/9y + eu = f 
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in a domain fl with smooth boundary 3fl. The solution u is 

assumed to s a t i s f y D i r i c h l e t boundary conditions on 3fl. A grid 

G covers fl and without loss of generality we assume that the 

g r i d spacings in the x di r e c t i o n and in the y di r e c t i o n are 

equal. We consider zero-order approximations to the boundary 

and to the boundary conditions. That i s , the domain i s 

approximated by l i n e segments along grid l i n e s , and the 

D i r i c h l e t data are assigned to gri d points on these l i n e s . 

Grid points w i l l be doubly indexed ( i , j ) (in 2D) as i f 

the gri d were part of a larger rectangular grid running 

p a r a l l e l to the co-ordinate axes (see Figure 3). The f i r s t 

(3,5)--(4,5) 

(2^4>^T3)4)--( 4,4) 

( 1 ,3)<f2,3)--(3,3)--(4,3) 

(2^>K^3,2)--(4,2) 

(3,1)--(4, 1 ) 

Figure 3 - Numbering of Grid Points 

index i numbers the values of x and j numbers the values of y. 

The equations are doubly indexed ( i , j ) l i k e the grid points, 

so that equation ( i , j) involves values of the solution at 

points ( i , j ) , ( i - 1 , j ) , (i+1,j), ( i , j - l ) , ( i , j + l ) ( i f a l l these 

are in the gri d i n t e r i o r ) . This notation makes discussion of 

LMA easier. 

If the usual centered differences are used to approximate 

the derivatives in t h i s PDE, then only the values at a point 

and i t s four nearest neighbours are involved in the difference 

equation corresponding to that point. Thus a " f i v e point 
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formula" may be used in the i n t e r i o r of fl. A system of f i n i t e 

difference equations i s obtained, AX = f, where each equation 

corresponds to a gr i d point.. In case the equation at a point 

involves boundary points, (at most three), the fixed values at 

those points are to be included in the grid vector f. We w i l l 

suppose that the equations have been multiplied through by h 2, 

where h i s the mesh si z e . 

We w i l l j u s t i f y LMA for linear relaxations of AX = f 

which meet the following conditions. F i r s t the relaxations 

must be of SPLITTING TYPE, i . e . , the c o e f f i c i e n t matrix A i s 

rewritten as A = L - R with L non-singular. We fi n d the next 

iterate X' from the current i t e r a t e x by solving 

(3-5) LX' = RX + f. 

This s p l i t t i n g need not be regular (L~ 1 and R non-negative), 

and i t need not be the same at each i t e r a t i o n . Secondly, we 

w i l l only discuss s p l i t t i n g s for which each s p l i t equation 

involves only the same fi v e points as the o r i g i n a l equation. 

This means 

(3-6) a(m,n) =0 => l(m,n) = r(m,n) = 0. 

F i n a l l y , in order that LMA i t s e l f be feasible we must require 

that every l i n e in LX' = RX + f which corresponds to a point 

which i s not next to a boundary point i s of the form 
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( 3 - 7 ) l 1 X ' ( i , j ) + l 2 X ' ( i - 1 , j ) + l 3 X ' ( i , j - 1 ) 

+ 1 " X ' ( i + 1 , j ) + 1 5 X ' ( i , j + 1 ) 

= r ' X l i , ] ) + r 2 X ( i - 1 , j ) + r 3 X ( i , j - 1 ) 

+ r'X(i+l,j) + r 5 X ( i , j + 1 ) + f ( i , j ) , 

where 1 1 , . . . , 1 5 , r 1 , . . . , r 5 are constant c o e f f i c i e n t s . This 

condition w i l l be subsequently referred to as 'homogeneity'. 

Many common linear relaxation schemes s a t i s f y these 

conditions, including Jacobi, Gauss-Seidel, SOR, l i n e versions 

of these, and ADI (see Chapter Two). One i t e r a t i o n of ADI 

consists of two steps such as are considered here, with L and 

R interchanged. The ILU method does not s a t i s f y the 

homogeneity condition and cannot, s t r i c t l y speaking, be 

analysed by LMA. In practice an i d e a l i z a t i o n of the ILU method 

is analysed t h i s way, but "we w i l l not j u s t i f y that here. 

Red-Black and Zebra relaxations do not s a t i s f y these 

conditions and i t is known (S. McCormick and K. Stueben, 

private communication) that LMA applied simple-mindedly yi e l d s 

misleading estimates of smoothing rates in these cases. 

In j u s t i f y i n g LMA we w i l l consider the reduction of error 

from one iterate X to the next iterate X' which i s given by 

(see notation in Chapter Two) 

( 3 - 8 ) Le' = Re. 

It i s too complicated to consider an ar b i t r a r y error e, and 

write a Fourier series for i t (which amounts to taking a 

f i n i t e Fourier transform), and then ask what happens to the 

values of the Fourier transform under a relaxation step. 

Rather we suppose that the error consists of a multiple of 
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only one Fourier component \p(8) , as defined below, and show 

that af t e r a relaxation step the new error i s U(8)\}J{8) 

plus something small. On a grid with the index convention, the 

value of a discrete exponential Fourier component, \p(8) 

(with frequencies 8 = ( 0 1 , 0 2 ) , in two dimensions), at a grid 

point ( i , j ) i s given by 

( 3 - 9 ) .//(0)(i,j) = e x p { i ( i 0 1 + j 0 2 ) } . 

We need only consider -n < 8},82 <n. 

As mentioned in Chapter Two, LMA treats the Fourier 

component ^(8) as an eigenvector of the amplification matrix 

of the relaxation. As noted in Chapter One, t h i s i s only the 

case for certain relaxations of problems with periodic 

boundary conditions on a rectangle. However, as w i l l be seen, 

for many relaxations, the Fourier components are in fact 

"close to being eigenvectors", because they are eigenvectors 

of an idealized relaxation that i s "close" to the actual 

relaxation. The idealized relaxation w i l l be i d e n t i c a l with 

the actual relaxation except at points next to a boundary 

point. Since the proportion of such points in the grid becomes 

smaller as the mesh becomes f i n e r , the idealized relaxation 

gives a good approximation to the actual relaxation in the 

l i m i t of fine grids. The estimate of the accuracy of LMA which 

w i l l be developed makes such arguments rigourous. 

For a s p e c i f i c Fourier component, \p(8) given by ( 3 - 9 ) , 

we w i l l construct a system L*\p* = R*\p(8), similar to 

L\//' = R \ M # ) , for which 4/(8) i s an eigenvector of both L* 

and R*. F i r s t note that every l i n e in L\p' = R\p(8) which 
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corresponds to a point which i s not next to a boundary point 
is of the form 

(3-10) l V ( i , j ) + l V ( i " 1 , j ) + 1 3 V>' ( i , j - 1 ) 

+ I V ( i + 1 , j) + I V ( i , j + 1 ) 

= r V 0 ) ( i , j ) + r V S ) (i-1 , j) + r V 6) ( i , j-1 ) 

+ r V 0 ) ( i + 1 , j) + r V 0 ) ( i , j + 1 ) , 

(cf. (3-7)). Using (3-9) the right hand side s i m p l i f i e s to 

(3-11) ( r 1 + r 2 e x p ( - i 0 M + r 3 e x p ( - i 0 2 ) 

+ r"expU0 1) + r 5exp ( i 0 2 ) )tf ( e)(i,j) 
= r * i / / ( e ) ( i , j ) . 

Now i f \p(8) i s substituted for \p' on the l e f t side of (3-10) 
then i t s i m p l i f i e s to 

(3-12) ( l 1 + l 2 e x p ( - i 0 1 ) + l 3 e x p ( - i 0 2 ) 

+ l a e x p ( i 0 1 ) + l 5 e x p ( i 0 2 ) )<//(0)(i,j) 
= l * ^ ( 0 ) ( i , j ) . 

Now we construct R* so that values of [ R*\//( d) ] ( i , j ) which 

correspond to points ( i , j ) next to a boundary are equal to 

r*i//( 8) ( i , j ) , l i k e values corresponding to other i n t e r i o r 

points. We construct L* likewise so that for every i n t e r i o r 

point ( i , j ) [L*\p(8) ] ( i , j) = l * ^ ( 0 ) ( i , j ) . We do th i s by 

including an appropriate multiple of e x p ( ± i # 1 ) or e x p ( ± t # 2 ) , 

for every equation involving a boundary point, to 
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make i t l i k e the equation for points away from the boundary 2. 

S p e c i f i c a l l y , suppose we are constructing an equation at a 

l e f t edge point ( i , j ) where a term 12\^' (i-1 , j ) and a term 

r2\//( 8) ( i-1 , j ) are missing in (3-10). Then to form the ( i , j ) 

equation in L*\J/* = R*\p(8) , add l 2 e x p ( - i d 1 ) i//* ( i , j ) and 

r 2exp( - c 9 1 ) \//( 8) ( i , j ) to the l e f t and right sides, 

respect i v e l y . 3 

If we denote these extra elements along the diagonal by 

L1 = L* - L and R1 = R* - R, then LI i s 0 except for 

diagonal entries corresponding to boundary points. 

LEMMA 1: The Fourier component ip{6) is an eigenvector 

of the system ^L*e = R*e with eigenvalue M(#). 

PROOF: If ( i , j ) is an i n t e r i o r grid point the ( i , j ) 

entries in L*\jj(8) and L\p{8) are both equal to ( 6) ( i , j ) . 

At a point next to a boundary point the additional entries in 

L* are chosen to make L*\//( 6) ( i , j ) equal to l * i / > ( 8) ( i , j ) . 

Sim i l a r l y , for i n t e r i o r points and points near the boundary, 

the ( i , j ) entry in R*4/{8) i s r * t f ( 0 ) ( i , j ) . 

If we do a LMA and put 

2 If Q i s a rectangle, and the values of 0 1, 82 are r e s t r i c t e d 
to those values that would occur in a Fourier transform, then 
the matrices L* and R* describe the relaxation of a problem 
with periodic boundary conditions. However the construction 
used here i s not r e s t r i c t e d to rectangular domains. 
3 E.g., for the Gauss-Seidel relaxation of Laplace's 
equation,the l e f t edge equation which has the form 

4e' ( i , j ) - e'(i , j - 1 ) = e(i+1,j) + e ( i , j + l ) , becomes, 

(4 - e x p ( - i f l 1 ) ) e * ( i , j ) - e * ( i , j - l ) 
= e ( i + 1,j) + e ( i , j + 1). 
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(3-13) v = A ( 0)exp( i ( 0 1 i + 0 2 j ) ) , and 

v' = A ' ( 0 ) e x p ( i ( 0 1 i + 0 2 j ) ) , 

where v and v' are the errors before and after relaxation, 

then 

(3-14) A ' ( 0 ) ( 1 1 + l 2 e x p ( - t 0 1 ) + l 3 e x p ( - t 0 2 ) 

+ l " e x p ( i 0 1 ) + l 5 e x p ( i 0 2 ) ) e x p ( i ( 0 1 i + 0 2 j ) ) 

= A ( 0 ) ( r 1 + r 2 e x p ( - i 0 1 ) + r 3 e x p ( - i 0 2 ) 

+ r " e x p ( i 0 1 ) + r 5 e x p ( i 0 2 ) ) e x p ( i ( 0 1 i + 0 2 j ) ) . 

Thus, 

(3-15) /x ( 0 ) = A ' ( 0 ) / A ( 0 ) = r * / l * 

and therefore 

(3-16) L * M ( 0 ) < / > ( 0 ) = R*\p{9). QED 

Now l e t us consider the difference between 

i / / * = M ( 0 ) * M 0 ) which solves 

(3-17) L*\p* = R*tf(0) 

and the grid vector which i s the actual solution of 

(3-18) LiT = R\p(6) . 

The difference between L and L* occurs only at points next 

to a boundary point. For thi s difference to be small then, we 

need a lemma to guarantee a small number of grid points next 

to a boundary point. 

LEMMA 2: Let the domain 0 be f i n i t e with piecewise smooth 

boundary 3S2. Then for h s u f f i c i e n t l y small there i s a number 

a, such that for any grid of mesh size h, the number N(b) of 
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grid points in the i n t e r i o r of fl, one of whose four nearest 

neighbours l i e s on or outside 9fl, is bounded by a/N, where N 

is the t o t a l number of g r i d points in intfi. 

PROOF: This is i n t u i t i v e l y obvious although there are 

subtle points in a rigourous j u s t i f i c a t i o n . For technical 

d e t a i l s see Appendix A. 

For ease of analysis we w i l l consider only relaxations 

where, in the equation corresponding to an i n t e r i o r grid point 

( i , j ) , the values at each of the neighbouring points 

( i - 1 , j ) , ( i , j-1) , ( i + 1 , j ) , ( i , j + 1) occur either on the l e f t side 

or on the right side of t h i s equation, but not both. Formally 

th i s says that only one of the members of each of the pairs 

( 1 2 , r 2 ),...,(1 5, r 5 ) is not zero. A l l of the common relaxation 

schemes s a t i s f y this condition. 

Now we are ready to consider the rel a t i o n s h i p between 

equations (3-17) and (3-18). 

THEOREM 1: If 90 i s smooth and the induced 2-norm of L~ 1 

is bounded independently of the number of grid points N, then 

there is a constant A independent of the grid such that 

(3-19) - u(d),p(6)\ < A|i//(0)|/VN 
PROOF: From (3-16) we find that 

(3-20) R\l/(6) = (R* - R1 )i/>(0) 

= u(6) (L + L1 )\jj(e) - R 1 ^ ( 0 ) . 

Thus from (3-18) 
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( 3 - 2 1 ) = L " yR\p{9) 

= L " 1 (ix(d)L^(d) + u(d)L1\p(6) ) - L-1R1i// 

= fi(d)4/(6) + L " 1 ( M(0)L1 tV(0) - RI<//(0) ). 

This equation shows that v//(0) i s "almost an eigenvector of the 

relaxation" i f the term L~ 1 ( M ( 0) L11// ( 0) - R1iM0) ) i s of small 

norm. We w i l l show thi s by showing that L1\J/(0) and R1<H0) are 

of small norm. 

Consider the entries of R1i/>(0). This grid vector w i l l be 

zero at grid points not next to a boundary. Corresponding to a 

grid point exactly one of whose four nearest neighbours i s on 

the boundary, the vector w i l l have one of the following 

values: r 2 e x p ( - i 0 1 ) , r 3 e x p ( - i 0 2 ) , r * e x p ( i 0 1 ) , or r 5 e x p ( i 0 2 ) . 

For the case of a point with two nearest neighbours on the 

boundary, e.g., with points to the right and on the bottom, 

one obtains the entry r 3 e x p ( - i 0 2 ) + r a e x p ( i 0 1 ) (see Figure 4). 

At other 'corner' points and at points with three nearest 

__ 0 0 r*exp( i 0 1 ) 

__ 0 0 r"exp( t0 1 ) 

— 0 r 3 e x p ( - i 0 2 ) — r 3 e x p ( - c 0 2 ) + r " e x p ( 1 0 1 ) 
I 

Figure 4 - Entries in R1 Corresponding to Grid 
Points on the Boundary 

neighbours on the boundary, the entry w i l l s i m i l a r l y be the 

sum of two (or three) of the preceeding numbers. L1\^(0) w i l l 

be s i m i l a r . Let N(e), N(c) and N(w) be the number of points 

with one (edges), two (corners), and three (wedges) 

neighbouring boundary points, respectively. Let 
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a 0 = m a x ( | r 2 | , . . . , | r 5 | , | l 2 | , . . . , | l 5 | ) . Then in the grid vector 

M(0)L1I//( 0) - R1\//(0) there are N(e) entries of modulus bounded 

by a 0 (since |ju(0)| ^ 1), N(c) entries of modulus bounded by 

2a°, and N(w) entries of modulus no larger than 3a°. Thus 

taking the 2-norm by summing the squares of the entries, 

(3-22) | M(0)L1<//(0) " R1i/>(0) | £ aV(N(e) + 4N(c) + 9N(w)). 

From Lemma 2 there is a number a such that for any grid 

with h small enough, 

(3-23) N(e) + N(c) +N(w) < a/N. 

Thus from (3-20) and (3-22) 

(3-24) - M(0)^(0)| ^ |L- 1|a°VN 3v/a. 

If N i s the number of i n t e r i o r g r i d points then the norm 

of \p(8) , each of whose entries has modulus one, i s i/N. Since 

3|L _ 1| a 0 /a i s bounded independently of N the result follows. 

QED 

This i s a bound on the r e l a t i v e norm of the difference 

between an actual relaxation and the LMA i d e a l i z a t i o n . 

We may also obtain simple lower bounds on this 

difference, i f for some b(e) > 0, N(e) ^ b(e)/N for N 

s u f f i c i e n t l y large. This occurs for c i r c u l a r and rectangular 

domains. Obviously for rectangular domains which have been 

rotated through 7r/4 radians there are no edge points so that 

the following simple argument won't go through. 

Let b° be the minimum of the non-zero c o e f f i c i e n t s 

| r21, ...,|r5|,112|,...,115|. Then the g r i d . vector 
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u(8)L]\p(6) - R1\/>(0) has at least N(e) entries of size at least 

|M(0)|b° > 0 (since each of the four nearest neighbours i s 

involved in the relaxation at a point). Thus since 

N(e) ^ b(e)/N 

(3-25) |M(0)L1<M0) - R1<M0)| > |y(0)|bVN(e) 

> \u(6) |bVb(e) VN. 

Now 

(3-26) min |L~ 1x|/|x| = (max |Lx|/|x|)" 1 =1/|L|. 

Thus from (3-20) and (3-26), 

(3-27) |*« - M ( 0 ) ^ ( 0 ) | ^ (1/VN) ( |bVb(e)/|L| ) \*(6) | .QED 

In interpreting i n e q u a l i t i e s (3-24) and (3-27) i t i s 

important to r e a l i z e that the estimate above i s NOT the 

difference between the norm of the result of relaxing the 

vector ii, and the norm of u(6)\}/. These norms may. be closer 

than t h i s estimate would suggest, as w i l l be seen in the 

tables. It is rather the norm of the vector difference between 

these two which i s considered. This difference may have a 

s i g n i f i c a n t component normal to \/>, which means that t h i s 

component "feeds" other Fourier components during relaxation, 

e s p e c i a l l y on small grids. It seems from some sample 

calculations that usually the projection of this vector 

difference - u(8)\p(8), is largest on Fourier components 

whose f i r s t frequency l i e s in the range (6 1-0(h),d 1+0(h)) and 

whose second frequency l i e s in the range (0 2-O(h),0 2+O(h)). 
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(0(h) means of bounded by ch where c i s a positive 

constant.) 

Except for simple cases, some of which w i l l be discussed 

l a t e r , the estimates (3-24) and (3-27) above are too 

cumbersome to be of much use in practice. However (3-24) can 

be used to j u s t i f y LMA asymptotically." This gives some 

psychological grounds for confidence in i t s p r a c t i c a l use on 

fine grids. On the other hand, (3-27) suggests that LMA i s not 

such a good estimate for very coarse grids. The examples w i l l 

i l l u s t r a t e how good LMA i s in some t y p i c a l s i t u a t i o n s . 

3.3 Examples 

3.3.1 Gauss-Seidel Relaxation of Laplace's Equation in 

the Unit Square with D i r i c h l e t Boundary Conditions. 

The gri d i s as follows. We may suppose that the 

boundaries coincide with grid l i n e s . The mesh in x and y w i l l 

be h = l/(n+l), and the values of x and y which occur at grid 

points w i l l be indexed from 0 through n+1. Points not on the 

grid boundary w i l l have both indices i , j between 1 and n. 

The f i n i t e difference system consists of n 2 equations, 

where equation ( i , j ) has the form 

(3-28) 4u(i,j) - u(i-1,j) - u ( i , j - l ) -u(i+1,j) -u(i,j+l) = 0, 

" One unexpected inference we may draw from (3-24) and (3-27) 
above i s that LMA works well for giving an asymptotic estimate 
of the a t t r i t i o n rate of the low frequency Fourier components. 
This_ i s contrary to Brandt's expectation (1977) that LMA 
predictions would only be good for high frequency components. 
This fact suggests the use of LMA for the understanding of the 
ove r a l l performance (as d i s t i n c t from smoothing rate) of 
relaxation schemes. This w i l l be discussed l a t e r . 
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where i , j run from 1 to n. If any indices in this equation 

take on values 0 or n+1 then the values w i l l be understood to 

be taken from the boundary data. 

Relaxation w i l l proceed from the bottom l e f t corner to 

the right (lexicographic ordering). The equation to be solved 

to obtain the next iterate x' from the current iterate x i s 

(3-29) 4 x ' ( i , j ) - x ' ( i - 1 , j ) - x ' ( i , j - l ) = x ( i+ 1 , j ) +x(i,j+ 1 ) . 

Then the generic equation transforming the errors from one 

it e r a t i o n to the next i s 

(3-30) 4 e ' ( i , j ) - e ' ( i - 1 , j ) - e ' ( i , j - l ) = e ( i+ 1 , j ) +e(i,j+l). 

We estimate the difference between the result of relaxing 

a Fourier component \p(6) and the LMA estimate u(&)\ls(6) by 

following through the steps of the theorem. F i r s t we estimate 

|L1i//(0)| and |R1i//(0)|. The nxn grid vector L1i//(0) i s 0 , except 

for 2(n-l) entries of modulus 1 along the top and right sides, 

and an entry of modulus between 0 and 2 in the bottom l e f t 

corner. R]\p(6) i s 0 except for 2(n-l) entries of modulus one 

along the top and right sides, and one of modulus between 0 

and 2 in the top right corner. Then M ( 0 ) L 1 ^ ( 0 ) + R1^(0) w i l l 

have entries of modulus |M ( 0 ) | along the bottom and l e f t sides 

and of modulus 1 along the top and right sides. The sum of the 

moduli of the corner entries i s bounded by 6 ( 1 + | M ( 0 ) | ) . Thus 



37 

(3-31) (1+|M(0)I)/(2n-4) 

< \u(6)L^(8) + R1<//(c9) | 

< ( ]+u(6) | V(2n + 2) . 

The 2-norm of L i s bounded by 6 and that of L" 1 by 1/3. These 

estimates are obtained in Appendix B. The estimates of the 

difference between \//' and u(6)\j/(6) become 

(3-32) (l/6n)/(2n-4) 

< - »(d)t(6) \/\4>(6) | (1 + |M(0) I ) 

< (1/2n)/(2n+2). 

For an n=l00 by 100 gri d (10,000 i n t e r i o r points), 

(3-33) .0233 < -u(e)xP(6) \/\>l>(6) \ < .1421. 

This should be compared with Table I. 

The values in Table I were obtained as follows. For an 

(n+2)x(n+2) gri d , values were assigned to the nxn i n t e r i o r 

points as per the d e f i n i t i o n of \p(9) for various 0 1,0 2. One 

Gauss-Seidel relaxation sweep was performed, taking the values 

of boundary points to be 0. The norm of the relaxed vector was 

computed, as well as i t s projection on the o r i g i n a l Fourier 

component . These were both normalized, using |^(0)| = n. 

Table I i l l u s t r a t e s that as n gets larger, the LMA 

estimate better approximates the relaxed vector. 
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Table I - A t t r i t i o n Rates of Fourier Components of 
Gauss-Seidel Relaxation of Laplace's Equation in the Unit 
Square 

Grid 
(nxn) 

(6\d2)/ir Relative norm Projection |M(0)| 
\r\/\1>ie)\ (<//' ,tf(0) ) / \ $ ( 6 ) | 2 

5x5 

20x20 

100x100 

1 , 1 
1/5,3/5 
1/5,1 
3/5,3/5 
1 , 1 

4,4 
1/5,1/2 
1/5,1 
1/2,1/2 
1 . 1 

1/5,1/5 
1/5,1/2 
1/5,1 
1/2,1/2 
1 , 1 

.6174 

.3829 

.1839 

.3625 

.3028 

.7201 

.4864 

. 1 589 

.4360 

.3256 

.7464 

.4973 

.1488 

.4449 

.3318 

5859 
3453 
1 1 22 
3303 
2731 

71 04 
4768 
1 369 
4279 
3187 

7444 
4953 
1 442 
4433 
3304 

.7529 

.4232 

. 1 460 

.4004 

.3333 

.7529 

.5000 

. 1 460 

.4472 

.3333 

.7529 

.5000 

. 1 460 

.4472 

.3333 

3.3.2 Line Relaxation of .01(3 2U/3X 2) + (3 2u/3y 2) = 0 in 

the Unit Square. 

Table II was obtained l i k e the preceeding table using 

y - l i n e Gauss-Seidel relaxation on a 100x100 g r i d . In a sweep 

of y - l i n e relaxation, the values of the new ite r a t e along an 

entire g r i d l i n e of points whose second index j i s the same 

are determined simultaneously, using values of the new iterate 

at points whose second index i s j-1 and values of the current 

it e r a t e for points whose j index i s j+1. 

The LMA estimate i s less accurate here than for the point 

G-S relaxation on a comparable g r i d . This i s because the norm 

of the matrix L~ 1 i s much larger (although s t i l l bounded 

independently of h). 
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Table II - Line Relaxation 

(0',0 2 ) / 7 r Norm afte r relax- u(6) 
ation of Fourier mode 

.01,.01 .7767 .9094 

.50,.01 .3907 .4301 

.50,.05 .2121 .2187 

.50,.50 .0051 .0049 
1.0,1.0 .0025 .0025 

3.3.3 Accuracy of Local Mode Analysis Estimates for 

Di s t r i b u t i v e Gauss-Seidel (DGS) Relaxation of the 

Cauchy-Riemann Equations 

We seek solutions u , and v to 

(3-34) 3u/3x = 3v/3y, 

-3u/3y = 3v/3x 

in the unit square. 
The domain on which a solution i s sought i s parcelled up 

into square c e l l s of side h. Values of the discrete variable 

u are sought at the centers of v e r t i c a l c e l l sides and values 

of v are sought at the centers of horizontal c e l l sides. This 

placing of discrete variables ensures second order accuracy of 

the discrete equations 

(3-35) u(x+h/2,y) - u(x-h/2,y) = v(x,y+h/2) - v(x,y-h/2) 

u(x,y-h/2) - u(x,y+h/2) = v(x+h/2,y) - v(x-h/2,y). 

The f i r s t equation i s located at c e l l centers, and the second 

is located at c e l l corners. There i s no natural correspondence 

between variables and equations. 

To solve these equations a sweep i s made over a l l the 

f i r s t equations and then over the second equations. To relax 
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each equation each of the four variables that are involved in 

that equation are adjusted. The d e t a i l s of the d i s t r i b u t i v e 

relaxation may be found in Brandt(1979). In that paper he 

calculates a smoothing rate for residuals. The second column 

in Table III corresponds to the actual a t t r i t i o n rate of these 

residuals for the 40x40 g r i d . In the LMA i d e a l i z a t i o n , the 

amplitudes a 1 , a 2 of Fourier components 

r 1 = a 1 ( 0 ) e x p ( i ( i 0 1 + j 0 2 ) , and r 2 = a 2 ( 0 ) e x p ( i ( i 0 1 + j 0 2 ) 

before relaxation are related l i n e a r l y to the amplitudes 

a 1 , ( 0 ) and a 2'(0) after the sweep. Thus a matrix A(0) may be 

constructed specifying the linear linkage between the 

amplitudes of r 1 and r 2 before and after the sweep. In r e a l i t y 

a s i g n i f i c a n t component orthogonal to the o r i g i n a l vector 

a r i s e s . The norms of the relaxed vectors are compared below 

with the i d e a l i z a t i o n A(0) . The f i r s t column of each matrix 

records the r e l a t i v e norms of the relaxed residuals i f the 

o r i g i n a l residuals were r 1=\//( 0) , r 2 = 0 , the second column i f 

they were r 1 =0 , r 2=\i/( 0) . One sweep of DGS was performed taking 

the i n i t i a l and boundary values of u and v to be 0. After both 

phases of the relaxation sweep, the residuals were recomputed 

and the norms of the two residuals taken. These norms were 

normalized by the vector norms of the o r i g i n a l residuals, 

|r1|=N, | r 2 j = N-1. The t h i r d column records the actual 

transformation of errors, which i s too d i f f i c u l t to obtain via 

LMA. To obtain these values, vectors u and v were constructed, 

one of which was given values as per ^(0), and the other was 

set to 0. DGS relaxation was done, taking f1= f2=0, and the 

norms of the resulting vectors were taken and normalized. 

As may be seen from Table III the norms of the residuals 
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Table III - D i s t r i b u t i v e Relaxation of the 

Cauchy-Riemann Equations 

e\e2 

7T/2 , TT/2 

7T/40 , 7T 

7T/40 , 7T/2 

TT/40 , TT/40 

LMA Estimate 

.333 0 
0 .333 

.440 0 
0 .440 

.020 0 
0 .020 

460 0 
0 .460 

Actual Residual Actual Error 

.997 0 
0 .997 

.110 0 
0 . 1 07 

721 0 
0 .720 

709 0 
0 .716 

727 0 
0 .722 

.997 0 
0 .968 

.548 .038 

.038 .548 

.444 .022 

.022 .444 

.119 .035 

.025 .079 

.465 .021 

.020 .454 

.973 .012 

.012 .973 

after relaxation are considerably d i f f e r e n t from what would be 

predicted on the basis of LMA. In fact the LMA prediction for 

the residuals seems to conform more to the norm of the errors 

after relaxation though the difference is s t i l l marked. In 

th i s situation then, LMA does not y i e l d very accurate 

estimates of the e f f e c t of relaxation on the various Fourier 

components. For this weakly e l l i p t i c system, the relaxation i s 

complicated and cannot be described in the terms used to prove 

Theorem I. 

3.4 Comments and Miscellaneous Consequences 

3.4.1 Alternate Fourier Components 

In the above discussion only exponential Fourier 

components have been used. There i s no reason a p r i o r i why we 

could not have embodied the various frequencies as sine 

Fourier components. With the usual indexing convention such a 

component corresponding to frequencies 01 and 62 would be 
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defined as 

(3-36) u ( 0 ) ( i , j ) = s i n ( 0 1 i ) s i n ( 0 2 j ) . 

In fact, sine Fourier components l i k e CJ above are the 

eigenvectors of the Jacobi relaxation of the model problem, 

whereas exponential components \jj are not eigenvectors for any 

scheme. However, one serious d i f f i c u l t y a r i s e s ; we cannot do 

LMA for sine Fourier components for lack of appropriate simple 

i d e n t i t i e s connecting values at adjacent points. As i t turns 

out the rates of a t t r i t i o n of sine Fourier components are 

quite d i f f e r e n t from exponential Fourier components for the 

same relaxation on the same problem. This casts some doubt on 

the interchangeability of the two types of Fourier components. 

3.4.2 Alternate Norms 
We have used the 2-norm throughout, because th i s arises 

from an inner product which must be used to compute orthogonal 

projections. The reader may check that i f the 1-norm were used 

then the result of the main theorem (whose developement i s 

independent of the norm used) i s 

(3-37) I*' - u(e)4>{6)\ = 0 ( I V (67) | /i/N). 

If the supremum norm i s used no useful bound i s obtained, 

since the contribution of boundary values to the norm of a 

gri d vector is not in proportion to their numbers. 

3.4.3 Residuals 

Using LMA i t i s possible to j u s t i f y the i n t u i t i v e l y 
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(3-38) r = b - AX = -Ae, 

r e f l e c t l o c a l errors in the current iterate X more than global 

errors, so that the size of residuals alone i s not a good 

estimate of the error in an approximate solution. We must also 

know whether the error i s smooth or o s c i l l a t o r y . 

F i r s t we prove a lemma which j u s t i f i e s the use of LMA 

type computations of residuals, and then we use these 

computations to show that the low frequencies in the error 

contribute much less to the residuals than the high 

frequencies do. 

LEMMA 3: Suppose the difference equation 

(3-39) a 1 U ( i , j ) + a 2U(i-1,j) + a 3 U ( i , j ~ 1 ) 

+ a"U(i-1,j) + a 5U(i,j+l) = h 2 b ( i , j ) 

i s to be s a t i s f i e d at every i n t e r i o r point ( i , j ) of a grid G 

covering a convex domain fl, and that zero order approximations 

to the boundary of fl and to D i r i c h l e t boundary conditions are 

made. Let \p(6) be as before. Then as h -> 0 the residuals 

associated with an error of the form \p{6) are asymptotically 

given by 

(3-40) r ( i , j ) = ( a 1 + a 2exp(-i0 1) + a 3exp(-i0 2) 

+ a*exp(i0 1) + a 5exp(i0 2) ) \p(d){i,j). 

PROOF: Consider the system of equations 
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(3-41 ) ( I + A )X = 0. 

Suppose we relax t h i s system by solving an equation of the 

form 

(3-42) IX' = -AX. 

This i t e r a t i o n s a t i s f i e s a l l the conditions of Theorem I. If 

the error in the current iterate X i s \p(6) then the error in 

the next iterate X' i s r, the residual for AU = h 2b. Theorem I 

then says that 

(3-43) | r - M(0)*(0) I = 0 ( 1 / V N ) . 

But y(0) for this relaxation i s given by (3-40). QED 

In our description of residual computation we assume that 

the sum a 1+a 2+a 3+a 4+a 5 is 0. F u l l generality i s restored by 

adding a term a°U(i,j) i f the function u i t s e l f appears in the 

d i f f e r e n t i a l equation which underlies (3-39). Consider what 

happens to .a single Fourier component of the form 

e x p ( i ( 0 1 i + 0 2j) under the mapping e->r: 

(3-44) r ( i , j ) = e x p ( i ( 0 1 i + 0 2j))(a° + a 1 + a 2exp(- t0 1) 

+ a 3exp(-i0 2) + a"exp(i0 1) + a 5 e x p ( i 0 2 ) ) 

If 0 1 and 0 2 are both small, then exp(±i0 1)and exp(±i0 2) are 

close to 1. At an i n t e r i o r point ( i , j ) therefore the modulus 

of r ( i , j ) i s close to |a°|. However i f 0 1 and 0 2 are both 

close to TT then exp(± i0 1 ) and exp(±i0 2) are a l l nearly -1, and 
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| D ( e ) ( i , j ) | i s close to |a° + 2a 1|. Lemma 3 insures that t h i s 

indicates the size of the global residuals. Thus unless - a 0 i s 

of the same order as 2a 1 ( i t i s t y p i c a l l y much smaller in 

pra c t i c e ) , the high frequency amplitudes are very much 

over-represented in the residual v i s - a - v i s the low frequency 

components. Since the lowest frequencies are on the order of 

the mesh size h, and exp(0(h)) i s 1 + 0(h), we see from (3-44) 

that the amplitude of a very low frequency residual i s only 

0(h) of the amplitude of the corresponding low frequency 

error. On the other hand the amplitude of a very high 

frequency residual can be many times (for the Gauss-Seidel 

relaxation of the model problem a 0 + 2a 1 = 8) the amplitude of 

the high frequency error. 
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CHAPTER FOUR 

A HEURISTIC LOOK AT RELAXATIONS USING LOCAL MODE ANALYSIS 

In Chapter Three i t was shown that LMA could be j u s t i f i e d 

in the l i m i t of very fine grids. It was also shown that the 

v a l i d i t y of the function M(0) was not r e s t r i c t e d to values of 

6\82 bounded away from 0. Here we compute the function u(6) for 

two common schemes: the SOR method and the ADI method. The form 

of uid) w i l l help us understand h e u r i s t i c a l l y what these schemes 

do. The algebraic theory of these schemes for special cases w i l l 

be adduced to confirm the understanding using LMA. LMA w i l l also 

be used to discuss why i t i s that most relaxations which meet 

the conditions outlined in Chapter Three do not e f f i c i e n t l y 

reduce smooth errors. 

4 . 1 The SOR Method 
The SOR (Successive Over-Relaxation) method has been 

commonly used for constant c o e f f i c i e n t problems with some 

success. A parameter co sets the amount of over-relaxation 

performed. A c r u c i a l question i s how to pick co (0 < co < 2) in 

order to optimize the performance of the scheme over many 

it e r a t i o n s , i . e . , minimize the spectral radius of the 

amplification matrix. Here we study the behaviour of the SOR 

method applied to the Laplace equation in a domain J2 which has 

been d i s c r e t i z e d on a grid with mesh size h. 

The discrete Laplace equation at a point ( i , j ) i s given by 

(4-1) U ( i , j ) = (1/4)(U(i-1,j) +U(i,j-1) +U(i+1,j) +U(i,j+1)). 
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Applying the SOR method, the equation of relaxation at a point 

( i , j ) i s 

( 4 - 2 ) X ' ( i , j ) = (l - c o ) X ( i , j ) + ( cu/4 ) ( X ' ( i - 1 , j ) + X ' ( i , j - 1 ) 

+ X ( i+ 1 , j ) + X ( i , j + 1 ) ) . 

Subtracting ( 4 - 1 ) from ( 4 - 2 ) we obtain the transformation of 

errors 

( 4 - 3 ) e ' ( i , j ) = ( l - u ) e ( i , j ) + (co/4)( e ' ( i - 1 , j ) + e ' ( i , j - 1 ) 

+ e ( i+ 1 , j ) + e ( i , j + 1 ) ) . 

Let e ( i , j ) = A ( 0 ) e x p ( i ( 0 1 i + 0 2 j ) ) and l e t 

e ' ( i , j ) = A' ( 0 ) e x p ( i ( 0 1 i + 0 2 j ) ) . 

Then ( 4 - 3 ) becomes 

( 4 - 4 ) A * ( 0 ) = (i-u)A ( 0 ) + (w/4)( A' ( 0 ) e x p ( - i 0 1 ) 

+ A'(0)exp(- i d 2 ) + A ( 0 ) e x p ( i 0 1 ) + A ( 0 ) e x p ( i 0 2 ) ) . 

The LMA estimate i s then given by 

( 4 - 5 ) M ( 0 ) = (exp( it?1 )+exp( i 0 2 ) - 4 ( w - 1 )/w) 

/ (4/co - e x p ( - t 0 1 ) - e x p ( - c 0 2 ) ) . 

The maximum of | M ( 0 ) | occurs at 0 1 = 82 = 0 and has the value 1 . 

The minimum occurs at ( 0 , T T) or (T T , 0 ) and has the value CJ - 1 . 

The p r o f i l e of the surface uid) resembles that for Gauss-Seidel 

relaxation, with a l o c a l maximum at ( 7 r , 7 r ) , see Figure 5 . 
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If CJ i s near 1 then the values of u(6) are well 

ca = 1 (Gauss-Seidel) CJ = 1.5 

Figure 5 - Contour Lines of |M(0)| for SOR Relaxation 

d i s t r i b u t e d , but as CJ increases to 2 the values of u(6) 

cluster together. For model problems i t i s known (Young, 1971) 

that the eigenvalues of the amplification matrix behave 

similar i l y . 

Can u(6) be used to estimate the rate of convergence of 

the SOR relaxation? Unlike de Vries (1982), I found that 

M(7rh ,7rh) was not a good estimate of K the spectral radius of 

the amplification matrix. There i s no other clear choice of 

Fourier component which should be analogous to the smoothest 

eigenvector of the relaxation (since M(0,0) = 1 always, i t 

cannot be used). T y p i c a l l y 1 - K was two or three times bigger 

than 1 - Ai (7 rh ,7 rh ) for problems in the unit square. 

Nevertheless, in certain cases i t i s possible to use LMA to 

estimate the best value of the parameter CJ as described below. 

We consider Laplace's equation in the following domains: 0 1 

i s the unit square; fi2 i s the c i r c l e (x-1/2) 2 + (y-1/2) 2 <l/4; 

fi3 i s the curved region {(x,y)| y>0, 4/5-(2x-l) 2< y <1-(2x-1) 2}. 

F i n i t e difference systems were set up for these problems for 

several values of h, as outlined in Table IV. It was not clear 
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which frequency ought to be analogous to the smoothest 

eigenvector for the domains fi2 and fl3. Since the number of grid 

points i s readily computed, the value of M was computed for 

ft = (7r//N, 7r/v/N) . This is nearly equivalent to ( 7 r h , 7 r h ) in the 

unit square. The value cjr of CJ which minimizes \u\ i s recorded 

in Table IV. For comparison purposes the value C J * of CJ which 

minimizes the actual radius of the amplification matrix i s 

included. For the unit square C J * i s known from a complete 

analysis of this model problem (see Young(1971)), and i s given 

by 

(4-6) CJ* = 2/( l+sinUh) ) . 

For the other problems, K ' an approximation to K , was 

determined using the successive iterates X1,X2,... . It i s 

defined by 

(4-7) K ' = |X 5 2 - X 5 1| / |X51 - X 5 0|. 

An C J * was computed which minimized K ' as a function of C J . 

We see that C J ' i s a good estimate of C J * p a r t i c u l a r l y , for 

large N. For fl3 the r a t i o of the number of gri d points next to 

the boundary to the t o t a l number of i n t e r i o r g r i d points i s 

rather larger than for the other domains with comparable N. The 

v a l i d i t y of LMA depends on t h i s r a t i o being small, and so i t i s 

not surprising that estimates for J23 were not as good as those 

for fl1 and fl2. 

Can LMA be used to choose parameters for more general 
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Table IV - Best values of CJ 

h N C J * 

. 2 1 6 1 . 2 3 6 1 . 2 6 0 

. 1 81 1 . 5 2 4 1 . 5 2 8 

. 0 5 361 1 . 7 2 9 1 . 7 3 0 

. 0 2 2 4 0 1 1 . 8 8 2 1 . 8 8 2 

n 2 . 0 2 1 8 4 7 1 . 8 6 1 . 8 9 

. 0 2 4 1 9 1 . 7 3 1 . 5 8 

. 0 1 1 7 8 7 1 . 8 6 1 . 7 9 

. 0 0 5 7 3 7 1 ' 1 . 9 3 1 . 9 3 

problems? I considered extension to two classes of equations; 

asymmetric constant c o e f f i c i e n t equations and equations with one 

variable c o e f f i c i e n t . 

I encountered two d i f f i c u l t i e s with asymmetric operators of 

the form - 9 2 / 9 x 2 - 9 2 / 9 y 2 - a9/9 x . The function UL{6) computed 

by LMA for such an operator may have a maximum at (T T , 0 ) rather 

than at ( 0 , 0 ) for some values of C J . There i s then even less 

p l a u s i b l i t y in computing u, for a low frequency component. 

Secondly, the eigenfunctions of the asymmetric operator are 

skewed exponentially (u(x,y) = exp(-ax/2) s i n ( n 7 r x ) sin ( m 7 r y ) in 

the unit square, for integers m,n). For h of order 1/a or 

larger, the discrete eigenfunctions are quite d i s s i m i l a r to the 

Fourier components, and thus we cannot expect LMA to be v a l i d at 

a l l . Several methods to estimate optimal parameter values using 

LMA were t r i e d and none approached the experimentally determined 

optimal value. 

Extension to problems with one variable c o e f f i c i e n t was 

more successful. Numerical experiments were done using the 

following problem: 
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(4-8) (1/10 +x2 + y 2)9 2u/9x 2 + 9 2u/9y 2 = 0, 

with D i r i c h l e t boundary conditions on [0,1]X[0,1]. A mesh size 

of .02 was used. The determination of co' was insensitive to the 

c o e f f i c i e n t of 9 2u/9x 2 over the range .1 to 2.; CJ' = 1.88. The 

value of co* was determined experimentally, as outlined 

previously, to be co* = 1.90. Similar comparisons where a term 

-u/lOh 2 was included in the discrete operator f a i l e d to give 

such good agreement between co1 and co* . 

Apparently LMA has some limited usefulness with respect to 

choice of parameter for solution of Laplace type equations by 

SOR relaxation. This i s p a r t i c u l a r l y true for domains with a 

small r a t i o of boundary length to area, approximated by fine 

grids. However, there is no obvious way to use LMA to estimate 

the actual rate of convergence with the optimal parameter. 

4.2 Alternating-Direction Implicit Iteration 

For ADI i t e r a t i o n on an equation AX = h 2b, the matrix A 

is s p l i t into matrices H 1 and V 1. For any grid vector X, and 

any gr i d point ( i , j) , ( H 1 X ) ( i , j ) involves only the values of X 

at the points ( i , j ) , ( i - 1 , j ) , and (i+1,j), and V'X(i,j) involves 

only the values of X at the points ( i , j) , ( i , j - 1 ) , and ( i , j + l ) . 

Thus H1 and V 1 represent the f i n i t e - d i f f e r e n c i n g in the x and 

y d i r e c t i o n s , respectively. A parameter p, which may vary from 

one i t e r a t i o n to the next, determines the form of the 

relaxation. Optimal choice of values for p is important" in 

ensuring quick convergence. 

One i t e r a t i o n of ADI consists of solving 
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(4-9) (H 1 + p h 2 I )X* = ( p h 2 I - V 1 )X + h 2 b , 

and then s o l v i n g 

(4-10) (V 1 + p h 2 I )X' = ( p h 2 I - H 1 )X* + h 2 b , 

to o b t a i n the next i t e r a t e X' from the c u r r e n t i t e r a t e X , u s i n g 

X* as an i n t e r m e d i a t e . 

I f the two m a t r i c e s H 1 and V 1 commute, then the a l g e b r a i c 

t h e o r y guarantees r a p i d convergence of the i t e r a t e s (see Young 

1971). The m a t r i c e s commute o n l y for the s p e c i a l case of 

s e p a r a b l e e q u a t i o n s of the form 

(4-11) ( 3 / 3 x ) ( f ( x ) 3 u / 3 x ) + ( 3 / 3 y ) ( g ( y ) 3 u / 3 y ) + cu = h ( x , y ) 

on r e c t a n g u l a r domains . I f these c o n d i t i o n s are not met, ( for 

example, i f l a r g e f i r s t - o r d e r d e r i v a t i v e terms are p r e s e n t ) then 

convergence i s f r e q u e n t l y slow i n p r a c t i c e . An h e u r i s t i c 

e x p l a n a t i o n of t h i s phenomenon u s i n g LMA i s now g i v e n . Theorem 1 

of Chapter 2 p r o v i d e s some j u s t i f i c a t i o n for t h i s n o n - r i g o r o u s 

a p p r o a c h . 

The l o c a l mode a n a l y s i s f or the ADI method a p p l i e d to 

L a p l a c e ' s e q u a t i o n runs as f o l l o w s . The r e l a x a t i o n a t g r i d p o i n t 

( i , j ) c o n s i s t s of s o l v i n g 

(4-12) ((2 + p h 2 ) X * ( i , j ) - X * ( i - 1 , j ) - X * ( i + 1 , j ) ) 

= ( ( p h 2 - 2 ) X ( i , j ) + X ( i , j - 1 ) + X ( i , j + 1 ) ) + h 2 b ( i , j ) , 
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and then s o l v i n g 

(4-13) ((2 + p h 2 ) X ' ( i , j ) - X ' ( i , j - 1 ) - X ' ( i , j + D) 

= ( ( p h 2 - 2 ) X * ( i r j ) + x * ( i - l , j ) + X * ( i + l , j ) ) + h 2 b ( i , j ) . 

L e t e* be the e r r o r i n X*. Then the e r r o r t r a n s f o r m a t i o n 

c o r r e s p o n d i n g t o (4-13) i s 

(4-14) ((2 + p h 2 ) e * ( i , j ) - e * ( i , j - 1 ) - e * ( i , j + l ) ) 

= ( ( p h 2 - 2 ) e ( i , j ) + e ( i , j - D + e ( i , j + l ) ). 

L e t e ( i , j ) = A ( 0 ) e x p ( i ( 0 1 i + 0 2 j ) ) , and 

l e t e * ( i , j ) = A * ( 0 ) e x p ( i ( e ' i + & 2 j ) ) . Then (4-15) becomes 

(4-15) A * ( 0 ) ( 2 + ph 2 - 2 c o s 0 1 ) = A ( 0 ) ( -2 + p h 2 + 2 c o s 0 2 ) . 

U s i n g s i m i l a r arguments we a r r i v e a l s o a t 

(4-16) A ' ( 0 ) ( 2 + p h 2 - 2cos0 2) = A * ( 0 ) ( -2 + p h 2 + 2COS0 1). 

Thus 

(4-17) n(6) V - S V - t 

V + S V + t 

where v = p h 2 , s = 2 - 2 c o s 0 1 , and t = 2 - 2 c o s 0 2 . 

N o t i c e t h a t i t i s p o s s i b l e t o make ix(d) e q u a l t o 0 f o r 

any 8 by s u i t a b l e c h o i c e of p. For s m a l l p the components 

w i t h s m a l l 0 1 or s m a l l 62 v a l u e s a r e b e i n g e l i m i n a t e d s i n c e 

1 - c o s ( 0 ( h ) ) = 0 ( h 2 ) . As p i s i n c r e a s e d , the z e r o of M(0) 
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o c c u r s a t i n c r e a s i n g l y h i g h e r f r e q u e n c i e s , u n t i l f o r p = 4/h 2 

t h e z e r o i s ( 7 T , 7 r ) . T h i s i s t h e same ra n g e f o r p t h a t was 

a r r i v e d a t by more d i f f i c u l t c a l c u l a t i o n s i n Young ( 1 9 7 1 ) . 

Now c o n s i d e r t h e PDE 

(4-18) 9 2 u / 9 x 2 + 9 2 u / 9 y 2 - a9u/9x - b9u/9y = 0. 

As m e n t i o n e d a b o v e , ADI methods a r e n o t e x p e c t e d t o work a s w e l l 

f o r t h i s e q u a t i o n . The f i n i t e d i f f e r e n c e f o r m of t h e e q u a t i o n a t 

g r i d p o i n t ( i , j ) i s 

(4-19) - 4 U ( i , j ) + d + a h ) U ( i - 1 , j ) + ( 1 + b h ) U ( i , j - 1 ) 

+ ( l - a h ) U ( i + 1 , j ) + ( 1 - b h ) U ( i , j + 1 ) = 0. 

Then LMA y i e l d s 

(4-20) M(0) = v ~ s - 2 i a h s i n 6 1 ^ v - t - 2 i b h s i n 6 2 

v + s + 2 i a h s i n 6 1 v + t + 2 i b h s i n 6 2 

N o t i c e t h a t i t i s n o t p o s s i b l e t o c h o o s e p i n o r d e r t o make 

u(6) e q u a l t o 0 f o r any g i v e n 0. W h i l e f o r s m a l l p t h e minimum 

of |ju(0)| s t i l l o c c u r s a t low f r e q u e n c i e s , i t s v a l u e i s o f o r d e r 

1 i f ah and bh a r e 0 ( 1 ) . F o r l a r g e r t h e minimum o c c u r s a t h i g h 

f r e q u e n c i e s and a l t h o u g h i t s v a l u e i s n o t 0, i t w i l l be s m a l l 

( 0 ( h ) ) p r o v i d e d t h a t ah and bh a r e n o t 0 ( h " 1 ) . 

Thus t h e r e i s no c h o i c e of p w h i c h w i l l e f f e c t i v e l y 

r e d u c e t h e smooth (low f r e q u e n c y ) e r r o r components. Thus 

a l t h o u g h t h e ADI method w i l l s t i l l e f f e c t i v e l y smooth t h e e r r o r 

i t s o v e r a l l p e r f o r m a n c e w i l l be s i g n i f i c a n t l y d e g r a d e d from i t s 
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performance on the model problem. 

4.3 Smoothing Property of Relaxations 

Suppose we have a difference equation at every i n t e r i o r 

point of a g r i d covering a domain fl; 

(4-21) a 1 U ( i , j ) + a 2U(i-1,j) + a 3 U ( i , j - l ) 

+ a 4U(i+1,j) + a5U(i,j+D = h 2 b ( i , j ) , 

where a 1,...,a 5 are constant c o e f f i c i e n t s . Suppose there i s no 

term of degree zero in u in the underlying PDE so that 

(4-22) a 1 +a2 + a 3 + a• + a 5 = 0. 

Suppose we have a s p l i t t i n g A = L - R which yie l d s a relaxation 

scheme for (4-22), 

(4-23) l 1 X ' ( i , j ) + l 2 X ' ( i - 1 , j ) + l 3 X ' ( i , j - D 

+ 1 " X ' ( i + 1 , j ) + 1 5 X ' ( i , j + i ) 

= r 1 X ( i , j ) + r 2 X ( i - 1 , j ) + r 3 X ( i , j - l ) 

+ r 4X(i+1,j) + r 5 X ( i , j + l ) + h 2 b ( i , j ) . 

Then since 1* - r* = a*, * = 1,...,5, we must have 

(4-24) 1 1 + 1 2 + 1 3 + 1 « + 1 5 = r 1+r 2+r 3+r"+r 5. 

The reader w i l l r e c a l l from Chapter Three that the function u(6) 

for the relaxation scheme (4-24) i s 
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(4-25) u(6) = ( r 1 + r 2 e x p ( - i 0 1 ) + r 3 e x p ( - i 0 2 ) 

+ r ' e x p d f l 1 ) + r 5 e x p ( t 0 2 ) ) 

/ ( l 1 + l 2 e x p ( - i 0 1 ) + l 3 e x p ( - t 0 2 ) 

+ l"exp( i0 1 ) + l 5 e x p ( i d 2 ) ). 

Thus, i f 

(4-26) l 1 + l 2 + l 3 + 1" + l 5 * 0, 1 

(4-27) u(e) - > 1 , as e\e2 -> o. 

The l i m i t (4-28) says that the function u(6) i s near 1 i f 6 \ 

62 are near 0. Thus for the re laxat ion of a constant 

c o e f f i c i e n t equation by a scheme which s a t i s f i e s the condit ions 

out l ined in Chapter Three, the low frequency Fourier components 

in the error are not e f f i c i e n t l y reduced. The best we can hope 

for in general is e f f i c i e n t smoothing, but not e f f i c i e n t 

reduction of the error o v e r a l l . 

1 Only the ADI re laxat ion of the model problem with a small 
value of the parameter r comes close to v i o l a t i n g th i s 
cond i t i on . The reader w i l l r e c a l l that low frequency errors 
could be e f f i c i e n t l y relaxed in th i s case. 
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CHAPTER FIVE 

DISCUSSION 

5.1 A p p l i c a b i l i t y of Local Mode Analysis 

The results in section 2.2 j u s t i f y LMA under the 

following conditions. The relaxation for which LMA i s done 

must be a linear fixed point i t e r a t i o n which i s based on a 

s p l i t t i n g of the c o e f f i c i e n t matrix into A = L - R. 

Alternately each relaxation step could be a sequence of 

several procedures each of which i s based on a s p l i t t i n g . 

Although the s p l i t t i n g ( s ) need not be regular, they must be 

homogeneous, i . e . , each point must be in the same position 

r e l a t i v e to the set of previously relaxed points. Thus 

red-black relaxations are excluded. A further condition, which 

we imposed for ease of analysis, was that in the relaxation 

equation at a given point, no other neighbouring points occur 

than those which occur in the o r i g i n a l difference equation at 

that point. We considered only second order difference schemes 

based on f i v e point formulae, which excluded relaxations for 

which the relaxation at point ( i , j ) required values at points 

other than the four nearest neighbours. This condition may 

not, in fact, be neccessary for the results but no relaxation 

scheme i s known to us for which i t i s not true. 

The condition that the relaxation be based on a s p l i t t i n g 

of the c o e f f i c i e n t matrix was intended to ensure that Fourier 

analysis was meaningful. We do not think that Fourier analysis 

is relevant to the understanding of schemes such as the 

Conjugate Gradient Method. 

The homogeneity condition guaranteed that the 
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cross-coupling of Fourier components undergoing relaxation was 

asymptotically negligible; i . e . , that each Fourier component 

behaved l i k e an eigenvector. A l o c a l Fourier analysis is 

possible for inhomogeneous schemes such as red-black 

relaxation; then however, because cross-coupling of the 

Fourier components is important, they must be arranged in 

invariant subspaces rather than being treated l i k e 

eigenvectors. Under red-black ordered Gauss-Seidel relaxation, 

Fourier components with frequencies ( 0 1 , 0 2 ) , ( 0 1 , 7 T - 0 2 ) , 

( T T - 0 1 , 0 2 ) , and ( 7 T-0 1 , 7 T-0 2) feed into each other 

s i g n i f i c a n t l y for a l l mesh sizes, and must be treated as a 

four-dimensional invariant subspace (see Trottenberg and 

Stueben, 1982). 

Although the theorem in Chapter Three was established 

only for relaxations of scalar problems with D i r i c h l e t 

boundary conditions which met the requirements described 

above, some extensions may be contemplated. Scalar problems 

with Neumann or mixed boundary conditions or higher order 

approximations to D i r i c h l e t boundary conditions may be treated 

using the method in Chapter Three, however, the algebra may be 

much more complicated. It seems straightforward to extend the 

result to strongly e l l i p t i c systems. Extension to weakly 

e l l i p t i c systems may be possible, but we anticipate 

d i f f i c u l t i e s with d i s t r i b u t i v e relaxation schemes. Of course a 

theorem l i k e that in Chapter Three i s not meaningful for 

variable c o e f f i c i e n t problems or non-linear problems. 

5.2 The Potential of LMA Outside the MG Context 

The theorem in Chapter Three j u s t i f i e d our explorations 
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in Chapter Four. We saw that LMA could be used to explain the 

behaviour of the SOR and ADI methods, and also the fact that 

linear relaxations reduce smooth errors poorly. We speculate 

that LMA has the potential to be more widely used in order to 

gain further h e u r i s t i c understanding of such methods. 

Frequently a s c i e n t i s t considers the use of a p a r t i c u l a r 

relaxation scheme for the solution of a problem and wishes to 

know how appropriate i t i s or how to pick relevant parameters. 

A rigourous algebraic answer would involve finding the 

eigenvalues and the eigenspaces of the amplification matrix of 

the relaxation. This i s generally more work than i s needed to 

solve the o r i g i n a l problem. On the other hand LMA i s a simple 

a n a l y t i c a l tool and i t can y i e l d much the same information. 

5.3 Possible Developments of the Theorem 

The theorem in Chapter Three establishes that LMA is a 

meanigful tool and imparts confidence in i t s use for MG 

problems. However, we have only shown that LMA y i e l d s a good 

description of the r e s u l t s of relaxation where the error i s a 

multiple of a single Fourier component. As w i l l be discussed 

below i t would be very useful to have a result of this kind 

for a r b i t r a r y errors. 

Suppose we have an a r b i t r a r y error e= x-u and decompose 

i t as 

(5-1 ) e = £A(0H(0) . 
e 

We ask how closely does e' the error after relaxation 

resemble e* the LMA estimate, which i s given by 
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(5-2) e* = £ ^ ( 0 ^ ( 0 ) ^ ( 0 ) . 

e 
An argument along the l i n e s of Chapter Three might be 

made that the difference e' - e* i s asymptotically small. We 

w i l l sketch t h i s here. We w i l l consider only rectangular 

regions so that the Fourier decomposition (5-1) i s well 

defined and the c o e f f i c i e n t s A(0) form the f i n i t e Fourier 

transform of e , where 01 and 0 2 take the values 27rk/N for k 

= 0,1,...,N-1. Note that the low frequency region i s 

(0 , 7r/2 )U( Ztt/2 , 27r) with these choices of frequencies. This i s 

equivalent to the previous d e f i n i t i o n . Now matrices R* and L* 

may be constructed independently of 0 so that 
(5-3) R*t//(0) = r*(e)xp(6) and L*«//(0) = l*(0)<//(0), 

for 0 1 , 0 2 = 27rk/N. Then since r*(0)/l*(0) = M(0), formula 

(3-17) reads 

(5-4) e' = e* + L" 1(L1e* - R1e), 

where again L1 = L* - L and R1 = R* - R. Now however we have 

no guarantee that L i e * and R1e are asymptotically small 

r e l a t i v e to e. In fact i f e is non zero only on points next to 

the boundary, L i e * and R1e can be large for any N. Thus the 

estimate obtained in Chapter Three may not be extended to 

arbi t r a r y errors. 

Does th i s fact invalidate convergence estimates of MG 

algorithms that rely on LMA for estimating the smoothing 

factor for any error? I think not. The smoothing rate i s taken 

as M=max|M(0)| for one of 0 \ 0 2 in the range (7r/2,3 7r/2) . Most 



61 

of the high frequency Fourier components are reduced by a 

factor much smaller than u. I believe that i t is s t i l l true 

that the non-smooth part er 1 of an a r b i t r a r y error e i s 

s t i l l reduced by a factor which is bounded by u + 0 ( i / V N ) . 

If t h i s could be proved then i t would be possible to show 

convergence of the MG method in much more generality than 

previously. Trottenberg and Stuben (1981) have already shown 

that direct solution of the coarse grid problem (the coarse 

grid correction step) s i g n i f i c a n t l y reduces the smooth 

component es = e - er of the error in the fine grid problem. 

Thus a proof that the relaxation on the fine gr i d strongly 

reduces the non-smooth error i s a l l that i s needed to show 

convergence of the whole MG algorithm. 

So far proofs of the convergence of the MG method have 

been d i f f i c u l t and r e s t r i c t e d to a few simple cases. They have 

also been highly a r t i f i c i a l . A proof via the LMA estimate 

which is used in practice would go a long way toward bringing 

together theory and ap p l i c a t i o n . 

5.4 Summary 

There seems to be potential for development of LMA beyond 

the p r a c t i c a l role for which Brandt introduced i t . As we have 

seen, under suitable conditions, l o c a l Fourier analysis can 

y i e l d quantitative information about the performance of 

relaxation schemes outside the MG context. It can also be made 

rigourous and thus is possibly part of a sound mathematical 

basis for the MG method. 
1 This i s the orthogonal projection of e onto the space 
spanned by {4/(6) \ 61 , d2 = 2nk/U, one of 6\62 e (n/2 , 3TT/2 )} 
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Appendix A 

Proof of Lemma 3, Chapter Two 

Let 7 ( t ) : [ 0,L]-> R 2 be a continuous piecewise 

d i f f e r e n t i a b l e curve parametrized by arc l e n g t h . For 

0 < t < L, l e t H(t,h) be 

(A- 1 ) H(t,h) = {(x,y)| | ( x , y ) - 7 ( t * ) | < h f o r some t * , 0<t*<t} 

Define A l ( t ) as the area of H ( t , h ) , denoted A(H(t,h)) 

Lemma A 1 : If 7 i s a s t r a i g h t l i n e then dAl/dt = 2 h . 

Proof: Obvious. 

Lemma A 2 : A(H(L,h) ) = A l ( L ) < T r h 2 + 2 h L 

Proof: Let D(a,h) be a d i s k of r a d i u s h centered at a po i n t a 

in R 2. Then c l e a r l y A l ( t ) = A( U D ( 7 ( r ) , h ) , 0<r<t). C l e a r l y A l 

i s a continuous non-decreasing f u n c t i o n of t . I t i s 

d i f f e r e n t i a b l e whenever 7 i s . Let t be a p o i n t where 7 i s 

d i f f e r e n t i a b l e ; then (see F i g u r e ) 

(A- 2 ) A l ' ( t ) = l i m (A(H(t+e,h)) - A ( H ( t , h ) ) ) / e 
6-HD 

= l i m ( A ( D ( 7 ( t ) + e 7 ' ( t ) , h ) U H ( t , h ) ) - A(H(t,h))) / e 
e-K) 

= l i m A ( D ( 7 ( t ) + e 7 ' ( t ) , h ) \ H ( t , h ) ) / e 

< l i m A ( D ( 7 ( t ) + e 7 ' ( t ) , h ) \ D ( 7 ( t ) , h ) ) / e. 
e-H3 
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HI D( 7(t),h) 

///D( T(t)+e T'(t),h) 

7(t) 

7 ( t ) + e 7 ' ( t ) 

Figure 

This l a s t l i m i t i s independent of 7 (since | 7 ' ( t ) | = 1 was 

spe c i f i e d ) . If 7 is a straight l i n e the la s t inequality i s an 

equality and for thi s case A l ' ( t ) = 2h by Lemma A1. Thus 

(A-3) A l ' ( t ) < 2h. 

Since Al(0) = 7rh2, the lemma follows. QED 

Lemma A3: (Lemma 2 of Chapter Three): Let fl be a domain 

with piecewise smooth boundary 7. There i s a constant a 

such that i f G i s any s u f f i c i e n t l y fine g r i d , and N is the 

number of grid points of G which l i e i n t e r i o r to fl, then the 

number M of such points which l i e next to a grid point which 

i s outside fl is bounded by 

(A-4) M < a/N 

Proof: (I am indebted to David Boyd of the Math. Dept. UBC for 

his suggestion of using gri d squares) 

Let A be the area of fl, L be the length of 7, and h 

be the mesh size of G. Let n be the number of grid squares 

(each of area h 2) which l i e e n t i r e l y in fl. Let m be the 

number of squares which intersect 7, or whose boundary 
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intersects 7. Then 

(A-5) A < (m+n)h2. 

The m squares which meet 7 must l i e e n t i r e l y in the set 

H(L,2/2"h) defined above. Now by Lemma A2 

(A-6) mh2 < A(H(L,2v/2h) < 8vrh2 + 4v/"2hL. 

Choose h < /2L/(8TT). Then 

(A-7) mh2 < 5/2Lh. 

Now choose h < A/(10/2L). Clearly A(H(L,2/2h)) < A/2, thus by 

(A-7) and (A-9) 

(A-8) nh 2 > A/2. 

Thus 

(A-9) m < 5/2L/h 

= (10L//A)(/A//2h) 

< (10L//A)/n. 

Now each of the n squares i n t e r i o r to S2 contribute at least 

one point to N (say the lower l e f t corner). Thus n < N. Each 

of the M points which l i e next to a point outside £2, i s a 

corner of one of the m squares. Clearly there are at most 

three contributions to M from each of the m squares. Thus 

(A-10) M < 3m < (30L/v/A)/n < (30L//A)/N. QED 
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Appendix B 

Norms of the matrices L and L" 1 for the Gauss-Seidel 

Relaxation of the Model Problem 

1. Form of L and L" 1 

For an nxn grid with n 2 i n t e r i o r points the n 2 by n 2 

matrix L has the form 

(B-1 ) 

A 0 0 

-I A 0 

0 -I A 

0 

0 . . . 0 -I A 

where A is an nxn matrix of the form 

(B-2) 

4 0 0 0 . . . 0 

-1 4 0 0 • 

0 -1 4' 0 • 

. 0 

0 . . . 0 - 1 4 

The reader may v e r i f y that A - 1 has the form 
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1/4 0 0 0 ... 0 

1/16 1/4 0 0 

1/64 1/16 1/4 0 

(B-3) 

0 

• • 

. . . 1/16 1/4 

where in the lower triangle the ( i , j) entry i s 4 to the power 

-1 - i + j . 

L" 1 has the form 

A" 1 0 0 0 ... 0 
A' 2 A"1 0 0 
A" 3 A" 2 A"1 0 

(B-4) . . 
0 

. . . A" 2 A" 1 

where the block in position ( i , j ) is A to the power -1-i+j. 

If we compare the ( i , j ) entry in AA~k with the ( i , j ) 

entry in A we obtain 

(B-5) 4A k ( i , j ) = A _ k ( i - 1 , j ) + A " k + 1 ( i , j ) . 

C learly the elements along the main diagonal of A k are 

(B-6) A _ k ( i , i ) = 4 • 
4 k 
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Using (B-6) and (B-5) the reader may v e r i f y that 

(k+i-j-1 )! k+i-j 
- -/4 , i f i ^ j , and 

(k-1)! ( i - j ) l ' 

0, i f i<j. 

Note that the entries in the rows are equal to the entries in 

the columns under the correspondence 

(B-8) A " k ( i , j ) = A'k (n-j + 1 ,n-i + 1 ) . 

Inspection of the form of (B-4) shows that then 

(B-9) L " 1 ( i , j ) = L" 1(n 2-j+1,n 2-i+1). 

2. Norms 

The square of the 2-norm induced on L by the 2-norm on 
gr i d vectors x i s 

(B-10) |L| 2 = max{(Lx,Lx)| | X| 2=1}. 

Thus |L|2= /K where K i s the largest eigenvalue of L TL. Let z 

be an eigenvector of L T L with eigenvalue K. Then 

(B-11) |K| = |L^Lz| /|z| < |LT| |L| = | L | J L ! , 
1 1 1 1 1 

where |L| denotes the induced 1-norm which i s the maximum of 

the sums of the entries in the columns of L, and |L|w denotes 

(B-7) A " k ( i , j ) = 
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the induced supremum norm which i s the maximum of the sums of 

the entries in the rows of L . From (B-1) and (B-2) both are 

6. Thus K < 36 and 

and we may write 

(B-14) | L - ' | < I L - 1 ! . 
2 1 

The reader may v e r i f y by inspection of (B-4) and (B-7) that 

the sum of the entries in the f i r s t column of L ~ 1 i s larger 

than the sum of the entries in any other column. Thus 

(B-12) | L | 2 < 6 . 

By a similar argument 

(B-13) | L - ' | 2

2 < I L - ' I J L - ^ . 

Because of the correspondence (B-9), 

(B-15) |L-'| 2 

" L, ,m+l l> n (m-j):j! j 

m=l 4 j=0 
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I 4 
m=0 4 m+1 

0 0 

I — 
m=0 2 m+2 

1/2. 


