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Abstract 

We present various published arid unpublished results on elliptic curves. In 
particular, we focus on the torsion structures of elliptic curves, and how this is 
influenced by the relative sizes of the coefficients. We see in the final chapter 
that these results are special cases of a more general result, on approximating 
rational numbers by j-invariants of elliptic curves with certain structures. 
Various other results regarding the divisibility properties (and consequently 
integrality) of rational points on elliptic curves axe also discussed. 
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Preface 

This thesis follows the 'manuscript style' in the terminology of the Faculty 
of Graduate Studies at U B C . That is to say, it is primarily a compilation 
of works that have been accepted for publication by, or at least submitted 
for publication to, academic journals. This differs from a more traditional 
thesis in at least two ways. First of all, the reader might notice a slight lack 
of cohesion in the thesis as a whole. None of the chapters, save the first 
and last, were meant to appear in the current format, and so no effort, has 
been made to tie them together other than here. The author has resisted the 
temptation to provide more natural segues in the interests of presenting the 
material exactly as published. Secondly, as per the style in most academic 
journals, the text is short on exposition. Given the wealth of good expositions 
on much of the background material, I have maintained this terseness in the 
introduction. 

In the first chapter we provide a brief overview of the mathematics used 
in the various papers. It is by no means our goal to provide here anything 
more than a listing of prerequisite knowledge. References containing more 
background information are given. 

In Chapter 2, the author and Michael Bennett explore the claims of [5], 
which turn out to be false. In constructing our counterexamples, we found 
that the claims of [5], while based on deeply flawed arguments, represent a 
remarkably good approximation of the truth. In particular, we demonstrate 
that, for any e > 0, there are at most finitely many pairs of integers A and 
B satisfying \A\ > \B\2+£ > 0 such that the elliptic curve 

E : y2 = x3 + Ax + B . 

has a <Q)-ra.tional point of finite order not dividing 3. In Chapter 3 the au
thor continues in this vein to consider the restrictions imposed on the torsion 
in E(Q) by inequalities of the form \B\ > \A\K for various n, leading to 
similar results. As noted in Chapter 6, Chapter 2 (respectively Chapter 3) 
essentially a-sks the question "If E/Q is an elliptic curve with E(Q)^ors of a 
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certain form, how well can j(E) approximate 0?" (respectively "... 1728?"). 
In the concluding remarks, we briefly take up the problem of approximat
ing an arbitrary rational number by the j-invariants of elliptic curves with 
various torsion structures (the subject of upcoming joint work with Joseph 
Silverman). 

In Chapter 4 we examine another problem in the interface between dio-
phantine approximation and the'arithmetic of elliptic curves. In particular, 
we tackle the. problem of primitive divisors in elliptic divisibility sequences. 
In a paper of Everest, Mclaxen, and Ward [3] some partial bounds axe ob
tained on the index of the last term in an elliptic divisibility sequence to fail 
to have a primitive divisor. In our work we lower these bounds, in the cases 
in which they apply, and give examples to demonstrate that they cannot, in 
general, be lowered further. It is interesting to note that Silverman [4] has 
obtained uniform bounds in these cases for the number of terms in such a 
sequence that fail to have a primitive divisor. 

Finally, in Chapter 5 we provide an example of how transcendence may 
be used more directly to study elliptic curves. Using methods of David [2] 
we find all integral points on a given elliptic curve. Note that, this problem is 
not unrelated to the material in Chapter 4. Certainly, the terms in an ellip
tic divisibility sequences corresponding to multiples of the base point which 
have integral co-ordinates can have no primitive divisors (as denominators 
of integers have, in general, no prime divisors whatsoever). Tangentially, we 
prove that a certain family of Diophantine equations each admit only finitely 
many solutions. 

As mentioned above, Chapters 2 through 5 have been published or sub
mitted fox publication. Chapter 2, co-authored with Michael Bennett, has ap
peared in the Transactions of the American Mathematical Society [1]. Chap
ter 3 will appear in a forthcoming volume of the Proceedings of the London 
Mathematical Society, and Chapter 5 in the Comptes rendus mathematiques 
de TAcademie des sciences. Chapter 4 has been submitted to the Journal of 
Number Theory, and the material in the concluding remarks is currently be
ing refined for eventual publication. All published works are reprinted with 
permission of the publishers. 
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Chapter 1 

i 

Introduction 

We provide here most of the necessary background for the results presented 
in the various chapters. Those chapters, all of which have appeared or are. 
intended to appear in academic journals, are appropriately terse. In keeping 
with this, the introductory chapter will reproduce no proofs of well-known 
results. Results on elliptic curves can be found in [17], while results on 
diophantine approximation are, unless otherwise noted,' in [15] or [16]. 

1.1 E l l i p t i c curves 
A n elliptic curve E over a field K is a, genus one algebraic curve defined 
over K with a /^-rational point. Such a curve may always be written in 
Weierstrass form, 

y2 + a-ixy + a-Ay = x3 + a2x2 + a4x + a6, 

with a,- € K. When the characteristic of K is not 2 or 3 (indeed, we restrict 
ourselves throughout to characteristic 0), we may write such a, curve in 'short 
Weierstrass form', as 

y2 = x3 + Ax + B; 

We define, for such a curve, the discriminant and j-invariant in the usual 
way : 

A(E) = -16(4A3 + 27B% j(E) = ~ ™ ^ \ 

where A(E') ^ 0 by the non-singularity of E. In some cases it makes sense 
to consider equations such as the above with A = 0, but such objects are 
not elliptic curves. The j-invariant classifies E up to isomorphism over an 
algebraic closure of K. It is simple enough to show (see [17]) that' two curves 
in short Weierstrass form, y2 = x3 + Ax + B and y2 — x3 + A'x + B', are 
isomorphic over an extension field L D K just in case there is some ( G L 
such that A = <f 1.4' and B = <f B'. Note that the condition A. B. A1, B' G K 
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ensures £ 2 G K, unless JB = 0 or A = 0, in-which case we may conclude at 
most £ 4 G K or £ 6 G /\" respectively. Two elliptic curves over K which are 
isomorphic over K are said to be twists of one another. 

We denote by E(K) = (E(K), +, O) the group of A"-rational (projective) 
points on E, where O is the unique point on E at infinity, and addition is 
defined by 

/', • l\ • I',, O 

just in case Py, P2, and P 3 are co-linear on E with multiplicity. This defines an 
abelian group which, by the theorem of Mordell-Weil, is finitely generated. 
Note that the isomorphisms discussed above are also group isomorphisms. 
We denote by E[n] the set of points (in some algebraic closure K of K) of 
order (dividing) n. As we will see in Section 1.4, if E/K is an elliptic curve, 
J( C C , then there is an analytic group isomorphism 

i> : E(C) -> C / A , 

for some lattice A C C . In particular, we have that E[n]-= (Z /?7 ,Z) 2 , al
though, in general, E(K)[n] is much smaller. By the Mordell-Weil Theorem, 
in fact, Un^]E(K)[n] will always be finite, and it is a straightforward exercise 
to show that it takes the form Z/nZ x Z/nmZ for some n, m G Z. There are 
somewhat stronger results known for specific fields : 

Theorem 1.1 (Mazur [12]). Let E/Q be an elliptic curve. Then the sub

group of points in E{Q) of finite order. E(Q)xors, is isomorphic to one of the 

following groups : 

Z/nZ, n G {1,2,3,4,5,6,7,8,9,10,12} 
Z / 2 Z x Z/2??,Z, n G {1,2,3,4}. 

Note, apropos of Chapter 2, that the only primes that may divide the 
order of -E(Q)Tors are 2, 3, 5, and 7. We will also, in Chapter 3, require a 
similar itemization of possible torsion structures over quadra-tic fields. 

Theorem 1.2 (Kamienny [10]). Let K/Q be a quadratic extension, and 

E/K an elliptic curve. Then £ , ( A ' ) T o r s is isomorphic to one of the following 

groups : 

Z / n Z , n G {1,2, . . . ,16,18} 
Z / 2 Z x Z / 2 n Z , ii G {1,2, 3,4,5,6} 

Z / 3 Z x Z / 3 n Z , n e { l , 2 } 
(Z/4Z)' 2 . 
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Note that while all of t h e above groups occur as torsion groups of elliptic 
curves over quadratic fields, not all groups occur over all quadratic fields. 
One can show, for example, that if P,Q G E(K) generate E[v], then the 
Weil pairing of P and Q, an element of K, must in fact, be a primitive nth 
root of unity. Thus the torsion group (Z /4Z) 2 occurs only over (extensions of) 
Q(i), while the groups Z / 3 Z x Z /3nZ , n G { 1 , 2 } , occur only over (extensions 
of) Q ( v / = : 3 ) . 

Slightly more generally, we will say that the curve E/K admits an isogeny 
of degree n if there is a subgroup T C E{K) of order, n which is fixed, 
setwise, by the action of the Galois group G a l ( A ' / A ) . This is equivalent to 
the condition that there be a A'-rational homomorphism from E to another 
elliptic curve over A", with degree n. In fact, Mazur's result above is really 
a result restricting the possible degrees of isogenics on elliptic curves over Q 
(see page 39). 

1.2 Height functions 
For a point P — [XQ : • • • : XN] in iV-dimensional projective space over K we 
define the absolute logarithmic height of P to be 

H P ) = l R , o j logmaxJlxoU . . . , \xN\v}, 

where MK is a maximal set of normalized, pairwise non-equivalent absolute 
values on K, and Kv denotes the completion of K at v (we will let the 
reader check, for example in [17], that this is independent of the choice of 
co-ordinates). For a given number field K, one maximal set of valuations on 
K is given by the set of archimedean valuations 

\x\„ = \a(x)\ 

for each embedding a : K —> C, along with the non-archimedean 'p-adic' 
valuations defined by the primes p of K by 

|pa7?]p = e~° 

for all a: G Z and all (5 G K which do not contain p in their factorization. 
For a number a G A' , we set h(a) = h([a : 1]), and for a point P G E(K) 

we set, 
' h(P) = h(x(P)), 
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where P = [x(P) • y(P) '• 1]- Occasionally we shall refer to non-logarithmic 
height, H(x) = ell(-x\ defined the same way in all of the above settings. 

While the definition of height above is useful in a general context, over 
Q it represents a complete obfuscation of the more elementary definition of 
height. Let p/q € Q be written such that (p.q) — 1. Then at least one of 
\p\c, \q\e is 1 for each ^-adic absolute value, as p and q are integers not both 
divisible by any given prime. Thus, if P = : 1] — [p : q], 

h(^j = / i (P) = logmax{|p|,| t 7|}, 

where | • | denotes the usual, archimedean, absolute value (note that, if we set 
logO = —co, and treat this as smaller than any real number, the above is 
defined and real). Similarly, it, might be worth noting (see [17, p. 211]) that, 
if a G Q of degree d has minimal polynomial f(x) — aLiXd + • • • + a,\X + a0, 

where n,- 6 Z are pairwise coprime, then 

h(a) - ^ logmax{|o, r f |...., |o0|} ^ l o g 2 . 

One might note, also, from the above listing of absolute values, that, h(P) = 
h{Pa) for all a e Ga\{K/K). 

The height above interacts relatively well with the arithmetic structure 
of an elliptic curve, but it behooves us to uniformize it, somewhat. The 
canonical height of a point P 6 E{K) is defined as 

h(P) = l im ^h(TP). 

n—>oo 4 
The fact that this limit exists will not, be proved here, but, is a, ready conse
quence of a careful examination of multiplication by 2 on an elliptic curve. We 
note, however, that this new height function has properties more amenable 
to the study of elliptic curves, for example 

h(P + Q) + h(P - Q ) = 2h(P) + 2h(Q) 

K{mP) - m2h(P), for all m G Z , 

and consequently 

h{P) = 0 if and only if P G E{K)Tors, 
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while still retaining a close connection to the 'naive' height defined above : 
there exist effective constants c\ and c2 (depending on E and K) such that 

- C i < h(P) - h(P) < C2 

for all P € E(K). See, for example, [18] for some explicit constants when 
K — Q. Note that, by the conditions above, h is a quadratic form on E(K). 
Thus if P\,..., Pk are a set of generators for E(K), then there is a matrix 
/?,, the regulator matrix of E, such that 

h(niPi + ---nkPk) = [ n i nk ]R 

This matrix depends, naturally, on the generators chosen, but only up to 
similarity. There seems to be a. great deal of disagreement as to whether or 
not this height ought to be scaled by a factor of \ . but this is, of course, of 
little import as long as consistency is maintained. 

1.3 D i o p h a n t i n e a n a l y s i s 

Every undergraduate mathematics student learns, in some initial course in 
analysis, that the set of rational numbers is dense in the set of real numbers 
(and most, sometime later, come to think of this as a definition of R. rather 
than a theorem). But one might still ask how efficiently a given real number 
may be approximated by rationals. That is, how does the error in a given 
approximation compare to the 'complexity' of the rational number doing the 
approximating? One may, in fact, approximate some real numbers quite suc
cessfully, but algebraic numbers are, in some sense, too close to the rationals 
to be approximated particularly well (and rational numbers are downright 
lousy approximations to each other, except in the trivial case). The first 
theorem in this direction is that of Liouville, that for an algebraic number a 
of degree d over Q, there is a constant c(a) such that 

V 
a 

(J 

, -d 

> c(a)H I H 

This result follows immediately from the mean value theorem once one notes 
that, if f(x) € Z[.r] is the minimal polynomial of a/Q, \ f(p/q)\ ^ \q\~d- The 
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history of improvements on this result is an interesting one, but we shall ski]) 
ahead to the strongest possible result. 

Theorem 1.3 (Roth [14]). Let e > 0 and let a be an algebraic number. 
Then there is a constant c(a,e) such that for all rntionals p/q € Q. 

This result, relying on the pigeonhole principle, is entirely ineffective. 
There is no known method for constructing such a, c(o:.e) in general. Indeed, 
the proof assumes the existence of arbitrarily many very good approximations 
to a, which, is a rare occurrence to say the least (but, of course, if that 
supposition fails, the theorem follows). 

There are various effective results in this direction (see, for example, [7]), 
but none even remotely near the strength of Theorem 1:3. The exponents, 
in most cases, are very slightly smaller than that in Liouville's result (al
though, this is enough to ensure, for example, the effective solution of Time 
equations). For some particular algebraic numbers, reasonably good results 
are known ([6] and Chapter 3), but the general state of the art for effective 
irrationality measures lags far behind Roth's Theorem. Note, also, that the 
theory of continued fractions allows one to construct, for a given irrational 
a and sufficiently small c(a) > 0, infinitely many rationals p/q satisfying 

demonstrating the strength of Theorem 1.3. To see this, fix a0 = a and 
define a sequence of integers eij by 

1 
a 

a.; — cu 

If we write 
— = [r/, 0 , . . . , ak] = a0 + 
qk • " i + 

then it is rather elementary (see [11] or [13]) to show that 
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These tools axe the main means by which we derive the results in Chap
ters 2 and 3, and, through the effective solution of Thue equations, those in 
Chapter 4. Compare Theorem 1.3, also, with the discussion in Chapter 6 on 
the approximation of rational numbers by ̂ '-invariants of elliptic curves. 

1.4 Integral Points on el l ipt ic curves 
Consider the Diophantine problem of finding all integral solutions to a given 
polynomial equation 

F ( X , Y ) = 0. 

If the curve defined by this condition is of genus one (and has a rational 
point), then there are several ways in which we can bring our knowledge of 
elliptic curves to bear on the problem. It is a, well-known result of Siegel (see 
[17]) that such an equation admits only finitely many integral solutions, but 
this result is ineffective; it provides no computable bound on the sizes of the 
solutions. There is an algorithm for solving an equation of the above form 
which relies on lower bound on linear forms in logarithms, but in Chapter 5 
we eschew this method in favour of a method based on lower bounds on 
linear forms in elliptic logarithms. This latter process, while not algorithmic 
in general (as it depends on finding a. complete set of generators for the 
Mordell-Weil group of the curve), seems more natural from the viewpoint of 
the arithmetic of elliptic curves. 

Suppose the equation above defines an elliptic curve E/Q (note that to 
talk coherently about integral points, we must be considering a, particular 
model of an elliptic curve), and suppose that Q E E(<Q) is an integral point 
on E. For simplicity of exposition we will assume that E is presented in 
short Weierstrass form, although we see in Chapter 5 how this is done more 
generally. Then we know that h(Q) = log|:c(<3)|. Write Q — n\P\ + • • • + 
nrPr + T, where P i , . . . , Pr are generators for the'free part of E(Q) and T is 
some arbitrary element of E(Q)rors. Then, if n = (n t,...,??,,.) and R is the 
regulator matrix defined in Section 2. one obtains 

h(P) ^ n T P , n ^ cmax{n;2}, 

where c is the smallest eigenvalue of R. Combining these two facts with the 
bounds on the difference h(Q) — h(Q) mentioned in Section 1. one obtains 
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for some constants C\ and c 2 and for N = max|?v,,|. This may, in turn, be 
used to bound the 'elliptic logarithm' of the point Q. ME is isomorphic to 
the curve 

V2 = / ( * ) = 4a;3 - g2x - </3 

and one defines 
, , r { p ) dt 

'HP) = 
VW) 

one obtains a mapping w : E(C) -> C / A for the lattice A generated by 
n'2 dt 

P2 dt 

where the 7, are the roots of f(x) chosen in such' a, way as to ensure u>\ 6 
In particular, one obtains, for \x(Q)\ > 2max|7i|, 

mQ)\2 < 

This bound is elementary, and does not depend on Q being integral, but 
when combined with (1.1) yields a bound of the form 

\ib(Q)\ < c,e'c"N\ (1.2) 

On the other hand, tp turns out to be a homomorphism satisfying 

tl){Qi + Q2) = V'(Qi) + HQ2) (mod A). 

Thus 'ip(Q) may be written as 

/ / i v . • ( / ' , ) + • • • nrtjj(Pr) + i>{T) + mw,, 

where \m\ < rAT + 2. It is a result of Hirata-Kohno [9], made explicit by 
David [8], that such a, linear form in elliptic logarithms has an absolute lower 
bound of the form 

exp ( - c 5 ( l o g N + c 6 ) ( loglogN + c 7 ) r + 2 ) , 

where c 5 , eg, and c 7 are effectively computable constants. Comparing this 
with (1.2) yields an upper bound on N. In practice this upper bound is rather 
ungainly, and must be lowered through an application of the L L L algorithm 
(see, for example, [19]). 
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Chapter 2 

Torsion subgroups of elliptic 
curves in short Weierstrass 
form 

2 .1 Introduct ion 
In a recent paper of Wieczorek [28], the claim is made that any elliptic curve 
of the form 

EA,B • y2 = x3 + Ax + B, 

where A and B are integers satisfying the inequality 

A^\B\>0, (2.1) 

must have rational torsion subgroup isomorphic to either the trivial group, 
Z / 3 Z or Z / 9 Z , with the final case conjectured impossible. Unfortunately, 
this is rather over-optimistic. Indeed, one can verify easily that 

y2 = x3 + 1213612539482606085.T - 844976094618678570 ' (2.2) 

is an elliptic curve satisfying inequality (2.1) but with a point of order five (for 
example, (x,y) = (1884166899,94739648709888)), providing a counterexam
ple to the claim. As we shall observe, there are, in all likelihood, infinitely 
many such counterexamples - the curve (2.2) provides the "smallest". The 
main difficulty is that the results of [28] rely heavily upon those of [21] (re
garding which the authors feel they can scarcely improve upon the eloquent 
Math Review of Bremner, MR2001F : 11085). There are, however, variants 
of the claims of [28] which turn out to be true. Our first result is 

1 A version of this chapter has been published. Bennett, M . A. and Ingram, P. (2005) 
Torsion subgroups of elliptic curves in short Weierstrass form. Transactions of the Amer
ican Mathematical Society 357:3325-3337 
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T h e o r e m 2.1. Lete>0. Then there exist at most finitely many integers A 
and B satisfying 

A > \B\l+£ > 0 

for which EA,B{Q)TOI-S is nontrivial and not isomorphic to Z / 3 Z . 

The proof of this result depends, perhaps somewhat surprisingly, upon. 
Roth's Theorem on rational approximation to algebraic numbers. Wi th 
slightly stronger restrictions upon A and B, under an additional hypoth
esis, we may in fact rule out the existence of any rational torsion point on 
EA,B ( a t least with finitely many exceptions) : 

T h e o r e m 2.2. Let e > 0 and suppose that the abc-conjecture of Masser and 
Oesterle holds. Then there are only finitely many integers A and B satisfying 

\A\ > \B\2+S > 0 (2.3) 

for which EA,B has nontrivial rational torsion. 

Recall that the abc-conjecture asserts, if a, b and c are positive integers 
with a + b = c, that, given e > 0, we have 

p\abc 

It is worth noting, before we proceed with our proofs, that these are 
not general facts about integer points on elliptic curves. If we set B — 1, 
A = t2 - 2 for t > 2 integral, then EA>B(Q.) always contains the point (1,*), 
while A > \B\5 for all positive 5. 

The outline of this paper is as follows. In Section 2.2, we describe the 
basic structure of our argument and prove a more precise version of Theorem 
2.1. In Section 2.3, we produce families of examples to demonstrate that our 
results are sharp and subsequently indicate a number of counterexamples to 
the claims of [28]. Section 2.4 is devoted to the proof of Theorem 2.2 and a 
corresponding result (Proposition 2.8) which guarantees that this theorem is 
essentially best possible. Finally, in Section 2.5, we address the problem of 
finding effective and unconditional versions of Theorems 2.1 and 2.2. 
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2 . 2 P r o o f of Theorem 2 . 1 
We will restrict A and B to non-zero integers, and only consider the group 
of Q-rational points on any given curve. Our first result is trivial. 

L e m m a 2 .3. If A and B satisfy A ^ \B\ > 0 then the curve EAj3 has no 
rational point of order two. 

Proof. It is elementary to show that if the above curve has a rational point 
of order two. then x3 + Ax + B must have an integral root. But if x ^ 1 we 
have -B ^ A ^ Ax, whence Ax + 5 ^ 0 , and so x3 + Ax + £ > 1. The case 
x ^ —1 is similar and. as B ^ 0, we obtain the desired result. • 

From this and work of Mazur [24], classifying possible rational torsion 
subgroups, it follows, if £ v i , B ( Q ) x o r s is nontrivial, that 

£/!,/j(Q)Tors = Z / 3 Z , Z / 5 Z , Z / 7 Z or Z / 9 Z . 

Theorem 2.1 is thus an immediate consequence of the following 

P r o p o s i t i o n 2.4. Let e > 0. Then there are at most finitely many integers 
A and B for which 

(i) \A\ > \ B \ L + £ and EA,B has a rational point of order 5/ 

(ii) \A\ > \B\4/R>+E and EA,B has a rational point of order 7; 

(iii) \A\ > \B\3/4+E and EA,B has a rational point of order 9. 

Our proof of this proposition relies upon the well-known rational para-
metrizations for A r ! (7Y) with TV 6 {5,7,9} (see e.g. Kubert [23]). Specifically, 
we use these to show that there is a finite collection of algebraic numbers 
0\..:.,0k such that, given e > 0, there exists an e' > 0 for which a curve 
EA.B, with (A, B) satisfying (i),(h) or (iii) above, necessarily corresponds to 
a rational p/q with 

1 
< q2+e' 91 

for some i € ( 1 , . . . , k}. By Roth's theorem [25], there can be only finitely 
many such p/q. 

J 
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It is known (see e.g. [23]) that any elliptic curve over Q with (Q-rational) 
torsion group isomorphic to Z/NZ may be written in Tate normal form as 

y2 + (1 - c)xy - by = . T 3 - bx2, 

where b = c — t, in case N = 5, 6 = t 3 — t2 and c = t2-1, in case N = 7, and 
ft = t2{t-l){t2-t+l) and c = t 2 ( t - l ) , if N = 9. Here, £ is a nonzero rational. 
It is easy to show (see [26]) that, the elliptic curves in short, Weierstrass form, 
birational to EA,n, are exactly those of the form EAq4Bqc>, with q a nonzero 
rational. If A and B are nonzero integers such that there is no prime / with 
I4 | A and / 6 | B, then every curve with integer coefficients, birational to 
EA,B> is of the form EAk*,Bk6 for some nonzero integer k. We call such an 
(A.B) a minimal pair. If a minimal pair (A, B) fails to satisfy \A\ > 

(for 8 > 2/3), then so does (Ak4, Bk6) for any nonzero integer k, whereby 
any birationally equivalent curve with integer coefficients also fails. If, on 
the other hand, (A, B) does satisfy such an inequality, then there are only 
finitely many integers k for which the same is true of (Ak.4, Bk6), and hence 
only finitely many birational images of the given elliptic curve (with integer 
coefficients) satisfy \A\ > \B\S. It therefore suffices to prove Proposition 2.4 
for minimal pairs (A,B). 

2.2.1 Short Weierstrass form 
We begin by finding curves in short Weierstrass form, birational to the above 
Tate normal forms. It is a, routine exercise to verify that an elliptic curve 
E/Q with a rational point of order N is birational to 

EA,B • y2 = x3 + AN(t)x + BN(t) 

where AN(t) - -27A*N(t) and BN(t) = 54B*N(t), for 

t 4 - 1 2 t 3 + 14t2 + 12/; + l , UN = 5 

A*N{t) 
t8 - 12t7 + 42£6 - 56t5 + 35t4 - 14t'2 + At + 1, if N = 7 

(t3 - 3 i 2 + 1) (t9 - 9t8 + 27t7 - 4 8 f 
+54t5 - 45t4 + 27t3 - 9t 2 + 1), if N = 9 
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and 

(t2 + l )( t 4 - 18*3 + 74t2 + I8t + I), if N = 5 

tn - 18£" + 117t1 0 - 354t9 + 570*8 - 486£7 

, \ +273t6 - 222£5 + 174*4 - 46t3 - 15t2 + Qt + 1, if N = 7 
f>NV'J — \ 

t18 - 18£17 + 135t 1 6 - 570t 1 5 + 1557*1 4 - 2970£13 

+.4128*12 - 4230t u + 3240i 1 0 - 2032t9 + 1359t8 

-1080* 7 + 735t( i - 306f5 + 27t* + 42t3 - 18f2 + 1, if TV = 9. 

Here, t is a nonzero rational number. It is straightforward to check that the 
polynomials B^it) have either 4 real roots (if N = 5) or 6 (if N — 7 or 9). 
For future use, we will refer to these roots as 0jv,i where 1 ^ i ^ 4 (if TV — 5) 
or 1 ^ i ^ 6 (otherwise), and where we always assume 

The following result characterizes minimal pairs (A, B) for elliptic curves 
EA,B with a rational TV-torsion point. N G {5, 7,9}. 

L e m m a 2.5. If N G {5,7,9}, the minimal pair corresponding to 

(AN(p/q),BN(p/q)) . 

'where p and q are coprime integers with q > 0. is either 

{q2N-«AN(p/q),q™-»BN(p/q)) 

or 

{3-V"-*ANlp/q),3-*q™-»BN(p/q)). . * 

The latter case occurs precisely when N G {7,9} and p = —q (mod 3). 
Proof. To find possible common factors of the two integers q'2N~bA^(p/q) 
and q3N~9BN(p/q), we calculate the resultant, of A*N(t) a n d B*N(t). These 
turn out to be 

2 1 2 - 3 6 - 5 , - 2 2 4 - 3 1 2 - 7 and - 2 3 6 • 3 2 7 , 

for N = 5, 7 and 9, respectively, and so it follows that 

gc,d{q2N-6AN(p/q),qAN-<>BN(p/q)) (2.4) 
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is not divisible by I4 for any prime I > 3. Further, if either p or q is even, 
then qAN~-]B*N(p/q) is odd, while, if both p and q axe odd, 

</;/^!/'/</) = (P2 + q2W - pq ~ q2)2 + 3 p V ) = 8 (mod 16), 

qHAl(p/q) = (p4 + p2q2 + q4)2 = 1 (mod 2) 

axid 
ql2Al(p/q) = pn + p8q4 + q12 = 1 (mod 2). 

We may thus conclude that either 16 fails to divide q2N~<iAN(p/q) or 64 does 
not divide q3N~9BN(p/q). 

It remains, then, to consider the powers of 3 dividing the quantity (2.4). 
In case N = 5, we have 

q4At(p/q) = {p2 + q2)2 = I (mod 3) 

and so 34 fails to divide q4A5(p/q). If N = 7 or 9, then 

q2N-%A*N(p/q) = (p + q)2 (mod 3) 
and hence to have 3 4 | q2N~bA^(p/q), necessarily p = —q (mod 3). Con
versely, if p = —q (mod 3), it follows that 

q3N-9B*N(p/q) = 0 (mod 27) 

and thus 'Z~4q'2N~bAN(p/q) axid 3~6q3N~9BN(p/q) are integers. Assuming, 
that p = —q (mod 3), however, implies the congruences 

q8A*(p/q) = 3c/8 (mod 9) 

and 
qi2At(p/q) = 9q12 (mod 27). 

Since p and q are coprime and p = —q (mod 3) (so that q is not a multiple 
of 3), we can thus never have q'2N~bApj(p/q) divisible,by 3 8 . This completes 
our proof. • 

Let us note at this stage, if iV 6 {5,7,9} and .4, B are integral such 
that the curve EA,B has a rational AR~torsion point, then Lemma 2.5 ensures 
that B is necessarily even. In particular, this precludes the possibility that 
B = • ± 1 . It follows that Theorem 2.1 implies the existence of a constant 
K > 0 such that if A > \B\K then either EA,B(Q)TOTS is trivial or 

EAMQWOT* = Z /3Z . 

We will explore this further in Section 2.5. 
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2 .2 .2 Connections to Diophantine approximation 
Given Lemma 2.5, we now show that a minimal pair (A, B) with \ A \ suitably 
larger than | B | necessarily corresponds to a good rational approximation to 
one of the roots of the polynomials BN(t). To be precise, we have : 

Proposition 2.6. Let e be a nonnegative real number, N € {5, 7,9} and set, 

- (3iV - l l ) 2 e 
£ n ~ 2 i V - 6 + (3N - ll)e' 

Further, define constants CVi via 

i odd i even 

22.91 157.07 
12.73 118.33 
11.06 110.63 

If A and B are nonzero integers for which EA,B has a rational 'point of order 

N. where 

\A\ > \B\ 

then there exist integers k, p, q and i, with k and q nonzero, such that either 

A = (k/3)Aq2N-6AN(p/q), B = (k/Z)6q3N-9BN(p/q), 

in case N € {7,9} and p = —q (mod 3), or 

A = kAq2N-6AN(p/q), B = kGqm~9BN(p/q), 

otherwise. Further, we have-that either 

A = 10992742853 and B = -1657321950314, 

or 

Here, 

c ' i V . i 

ft P 

< 
1 

3 J • CN,J if N -— 7 and p = -q (mod 3) 
3 " 2 / 3 • c'N,i if N = 9 and p = -q (mod 3) 

Cw,i otherwise. 
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Proof. We begin by considering the case N = 5. From our prior remarks, it, 
suffices to treat minimal pairs (A, B). In this situation, the assumption that 

\q4A,(p/q)\ > \qGB,(p/q)\ 

implies the inequality 

\B5(p/q)\ < \A5(p/q)\Th • q 

In particular, for any e ^ 0, we have ^ 

\B5(p/q)\ <max{l,\A,(p/q)\}-q-2. 

-2-65 (2.5) 

(2.6) 

For fixed q, since the degree of the polynomial A5(t) is less than that of 
B5(t), there are at, most, finitely .many integers p for which p/q satisfies (2.6). 
We easily compute, via Maple VII, that there are, in fact, no such p/q with 
1 ^ q ^ 1000. We may thus assume that q > 1000, whereby, from (2.6), 

\B5(p/q)\ < 10" c max{l , | .4 5 (p/g)|} . 

This inequality implies, after a, short calculation, that 

1 - 8 < 5 x 10" (2.7) 

for one of* € {1,2,3,4}. 
Next, note that, via the Mean Value Theorem. 

\B5(p/q)\ = 75 ,T 1*5(01 

for some ( between 95j and p/q. From (2.5) and the fact, that \A5(p/q)\ > 1 
on the intervals defined by (2.7), we thus have 

5,t 
P <\A5(p/q)\-\B'5(Orl-q- (2.8) 

From (2.7), it, is an exercise in calculus to verify that, for £ between p/q and 
f?5 j , we have 

' 251.720151, if i = 1 
245.275862, if i = 2 
573453.818, if i = 3 
4033780.05. if % = 4. 

1̂ (01 > 



Chapter 2. Torsion subgroups of elliptic curves in short Weierstrass form 19 

Similarly, 

{ 10.98357, if % = 1 

1.561466, if?; = 2 
25022.03, if * = 3 
25679.46, if % = 4. 

From (2.8), then, it follows that 
'5,i 

P 
< 

1 (2.9) 

as claimed. 
If N G {7,9}, we argue similarly, with a few minor complications. Here 

the analogues of inequality (2.5) are 

\B7(p/q)\<Zs-\A7(p/q)\5/4-{3d-\A7(p/q)\ -i-/'i\4'+5e . r / - 2 - £ -

\Bg(p/q)\ < ^ • \Mp/q)\A/3 • 3 5 • \A9(p/q)r^Y^ • q~2^. 

and 

In each case, we have 6 = 1 if p = —q (mod 3) and 6 = 0 otherwise. 
Again, we. first search for nonzero p/q satisfying one of these inequalities 
with 1 ̂  q ̂  1000. We find such rationals only if iV = 7 and 

p/q G {28/5, —5/23, 23/28}. 

Each of these three values leads to 

.4 = 10992742853, B = -1657321950314. 

Otherwise, we may assume that q > 1000, \AN[p/q)\ > 81 and so 

\BN{p/q)\ < 3 ^ • \AN(p/q)\^ • q~2 < 3 • 10" ( i • \AN(p/q)\^ . 

After some computation, we find, in each case, that 

P 

(I 
N,i < 3 x 10" 7 

for some 1 ̂  % < 6 and that, 

< 3 ^ • | 4 ( p / ( , ) F • \B'N(Q\-] • q~2-e». 

Arguing as previously leads to the desired result. • 
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Let us note that 

B'7(9r,i)\-\A7(67ti)\ 
-5/4 

22.91796.. 
157.0820.. 

12.73690.. 
118.3370.. 

if i G {1,3} 
if?: e {2,4}, 

if i G {1,3,5} 
if «e {2,4,6} 

and 

B',(e^)\ • \A9(99,)\ 
-4/3 11.06719.. 

110.6379.. 
if i G {1,3,5} 
i f* G {2,4,6}. 

These represent, therefore, optimal values for CW,» which we may approach 
with additional computation. 

2.3 E x a m p l e s a n d C o u n t e r e x a m p l e s 

To find examples of curves EAR with a rational 5, 7 or 9-torsion point and \ A\ 
suitably large relative to \B\, we appeal to the following, a straightforward 
consequence of Proposition 2.6 : 

Proposition 2.7. Let N G {5, 7,9}. If A and, B are integers such that EA,s 

has rational N-torsion and 

then, in the sense of Proposition 2.6, the pair (A, B) corresponds to a rational 

number p/q such that p/q = Pj/qj is the jth convergent in the continued 

fraction expansion to 6Nti for some i. If we write 0 = 6Nti and denote the 

partial quotients of 6 by 

\A\>\B 
2N-6 

. I N - l l (2.10) 

A = 2>-4Sqf-BAN{p3lq3), B = r«Vf "IWnj/'lj) 
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where 5 = 1, if N G {7,9} and pj = -c/j (mod 3), a:nd 5 = 0,. otherwise. 

Then we have both (2.10) and 

E A < B ( ® h o r s = Z/NZ. 

Proof. If A and B axe integers for which E A t B has a rational JV-torsion point 
(TV G {5, 7, 9}) and satisfies (2.10), then applying Proposition 2.6 with e = 0, 
there exist integers p, q and i (q ^ 0) for which 

1 

Since C*Ni > 2 in all cases, we conclude that p/q = Pj/qj , the j t h convergent 
in the simple continued fraction expansion to for some j. From the 
well-known inequalities 

< , (2.11) 

(see e.g. Khinehin [22]; here a.j+\ is the (j + l)st partial quotient, in the simple 
continued fraction expansion to 'it follows that C*Ni < a 7 + i + 2 and so 
[C*Nil] < a j + l + 1. 

If, on the other hand, Pj/<7j is a convergent to one of the O^j., with corre
sponding partial quotient a J + i ^ [C'jvj + 1, then, from (2.11), 

1 

A short calculation ensures that, either q.j > 1000 or, as previously, N = 7, 

Pj/ fc e {28/5,-5/23,23/28} 

and 
A = 10992742853, B = -1657321950314 

(so that £4,e(Q)Tor S = Z /7Z) . We may thus assume that c/j > 1000 and so, 
using the fact that [C*N^/\ + 1 > Cjv,, + 0.09 and tracing our way back through 
the proof of Proposition 2.6, we find that 

I S - V ^ ^ f e / r y , ) ! > \ ^ c ? N - » B N { p : U U h ) f ^ 

as desired. ' • 

ft V 

< 1N.i 
Qi 
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Computing the continued fraction expansions of (95 i, we find that 

0 5 i l = [ - 1 , 1 , 5, o:,i, 0 5, 2 = [ - 1 , 1 , 1 0 , ft], 05,3 = [6, cv5] and 0 5 > 4 = [11, ft], 

where 

Q's - [ 1 , 9 , 1 , 1 9 , 1 2 , 3 2 , 1 , 5 , 1 0 9 0 , 1 0 , . . . ] 

and 

ft = [ 3 , 1 2 , 1 4 , 1 , 8 , 1 , 8 , 4 , 4 , 1 , 6 , . . . ] . 

Note that 
05,1 • 05,3 = 05,2 • 05,4 = _ 1 • 

From Proposition 2.7, it follows that counterexamples to the main theorem 
of [28], i.e. curves EA>B with A > \B\ > 0 and EATB(Q)TORH = Z / 5 Z , corre
spond to partial quotients a,- to a:5 with a% — 21 or 22 (possibly) or «; > 23 
(definitely). The first two such counterexamples are the curve (2.2) and that 
given by 

Y

2 = X

3 + 1846418414860182412922978853.x + 38812921993228946179376502. 

We expect, of course, that a, ^ 23 infinitely often. Computations in this case 
agree with the well-known general heuristics, which indicate that roughly 6% 
of the rt; should be at least this large. 

Similarly, examples of pairs (A, B) with —A > \B\ > O.and £/\,B(Q)TOIS = 
Z / 5 Z correspond to convergent^ to ft with suitably large partial quotients 
(the first such yields a curve with coefficients in excess of 250 decimal digits). 
For N e {7 ,9} , we have 

0 7 > 1 = [ - 1 , 1 , 3 , o:7], 0 7,3 = [0,1,4, a7), 0 7, 5 = [5, a7], 

0 7,2 = [ - 1 , 1 , 5, ft], 0-,4 = [O,l ,6 , f t ] , 0 7 i 6 = [7, ft], 

where 

a7 = [1,1, 2, 8 , 1 , 2 , 1 , 2 , 1 , 1 , 1 , 2 7 , . . . ] 

and 

ft = [ 2 , 1 , 1 , 1 , 1 , 1 5 , 1 , 1 , 1 , 4 , 2 , 2 , 5 3 , . . . ] , 
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and 
[ - l , l , 2 , a 9 ] , 09,3 

[ -1,1,3, ft], 09,4 

[0, l ,3,a 9 ] , 0 9 i 5 = [4,a9] 

[0,1,4,ft], 09,6 = [5,ft]. 

where 

a 9 = [2,10,1,2,7,5,1,1,6,2,56,...] 

and 

ft = [2, 5,2 14,1,4,1,1,1,2,1,6, . . . ] . 

Here, in both cases 

0JV,1 • 0/V,3 • 0iV,5 = 0JV,2 • #JV,4 • #iV,6 — — 1-

Thus to obtain curves EA.B with a rational point of order seven which satisfy 
\A\ > \B\4/5 or one of order nine, with \A\ > \B\3/'1, we merely need search 
the continued fraction expansions to a-n ft, a:9 and ft for "large" partial 
quotients. The curve of lowest height satisfying either of these inequalities is 
one we encountered during the proof of Proposition 2.6, namely 

The next smallest example has a value of A with 65 decimal digits! 

We will now proceed with the proof of Theorem 2.2. From Proposition 2.4, 
it suffices to consider curves with a rational 2-torsion or 3-torsion point, for 
which the pair (A, B) satisfies (2.3) with A and B suitably large. In the case 
where EA;B has a rational point of order two, it follows that r/;3 + Ax + B 
has a linear factor in Z[x] and hence there exist integers a and j3 such that 
A = (3 — a2 and B = —a(3. Since we assume B ^ 0, we have 

y2 = x3 + 10992742853x - 1657321950314. 

2.4 P r o o f o f T h e o r e m 2.2 

\A\ _ \(3 - a 
132 ~ a2p2 

,2 \P\ + \<* 
a2(32 < 1 
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unless fi = ± 1 . If fi = 1, then A = 1 — a2 and B = - a , in which case. 
\ A \ < B2 (or 5 = 0). If, however, /? = —1, we obtain a family of curves 
given by A — —(1 + a2) and B = a:, for a integral. In any case, 

l i m s u p | A | / B 2 < 1 
|B|->oo ' 

and so, given e > 0, with at most finitely many exceptions, we contradict 
inequality (2.3). 

Suppose next that EA,B has a rational point (:;;, y) of order three (so that, 
via the theorem of Nagell-Lutz (see e.g. [26]), x and y are integers). Using 
the duplication formula for points on EA.B, we see that both 

/ ^ r ' 2 < A \ 2 

{' 2y ) =3a; and 3.x4 + 6Ax2 + 12 Bx = A2. 

The first of these equations implies x — 3,s2 for some positive integer s, 
while the second gives that A is divisible by 3, say A = 3AQ, and that 
x'A + 6A0x + AB = f2, where A0 = st. Solving the quadratic in t, we have 

t = 9.s 3 ±2v / 27s 6 + B , 

whereby 2 7 / ' + B is a perfect square. Let 9 = B/su\ If \9\ ^ 1, then 

L4| • \B\-2/* = 127 + 6^27 + 0! • | / ? | - 2 / 3 < 27 + 6\/28, 

and so 

\A\ < ^27 + 6\/28) \ B \ 2 / \ 

Now suppose that \9\ < 1 and let 

M2 = 27s 6 + B = s 6(27 + 6) 
(so that | M | < 2 \ /7s 3 ) . Given e > 0, let £i = e/{2e + 12). Then, applying 
the abc-conjecture to the equation M2 — B = 27s ( l, we have 

sG « ( s \ B M \ ) i + £ i « {s4\B\Y+£l, 
where the implicit constants depend only upon e. It follows that 

\B\ » s 4/(2+e/2) 

and so, since \A\ < s'\ we have \A\ <C \ B \ 2 + £ I 2 . For sufficiently large 
this contradicts (2.3), completing the proof of Theorem 2.2. 

One may construct examples to demonstrate that the exponent 2 above 
cannot be reduced : 
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Proposition 2.8. There exist infinitely •many pairs of integers (A, B) for 
which both 

A > If > I) 

and 
E A A Q h o r S = Z /3Z . 

Proof. Let s and u be positive integral solutions to the Pell equation Av? — 
3.s2 = 1, and set 

B = l- 3u 2 , A = 27 s4 + Cs(8'u3 - 3w). 

One easily checks that EA.B has a rational point of order three (with x-
coordinate 3.s2). On the other hand, 

A 48 + 32N/3 
l im — = n = 11.49173 . . . . 

• 
Whether or not, this value corresponds to the lim sup |^4|/B 2 (where this 

is taken over nonzero integers A, B for which EAIB(Q)TOIS = Z /3Z ) is an 
open question. 

2.5 E f f e c t i v e , u n c o n d i t i o n a l r e s u l t s 

In this section, we will concentrate on effective results along the lines of 
Theorem 2.1 (i.e. ones which do not rely upon Roth's theorem) and on 
an unconditional version of Theorem 2.2. To deduce these, we will need to 
assume much more restrictive bounds upon A, relative to \B\. In the case 
of rational 5-torsion, the fact that B5(t) is a reducible polynomial leads to a 
reasonably clean result : 

Proposition,2.9. If A and B are integers, there are no elliptic curves EA,B 
with a rational point of order five satisfying 

\A\ ^B2> 0. 
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Proof. Wi th A5(t), Bb(t) defined as previously, write B5(t) = 54(t2 + 
Then, from Proposition 2.6 with e = 1, if p/q corresponds to a curve E A Y B 

with rational five torsion and \A\ > B2 > 0, we have 

5,i < C5,q4 
(2.12) 

for one of i € {1,2,3,4}. On the other hand, since each 05,,- is a root of 
/(£), we may apply the Mean Value Theorem (in this context, Liouville's 
Theorem), to conclude that 

(2.13) 

for some £ between 0b4 and p/q. Consideration of the continued fraction 
expansions of the 6>5i): shows that inequality (2.12) has no solutions with 
1 ̂  q ̂  10 6, say, and hence we necessarily have 

OK — — 
f(p/q) 

Q no 

l/'(OI < 

From this, (2.12) and (2.13), it follows that 

\q4f(p/q)\ = \p4 - I8psq + 74p 2g 2 + ISpcf + q4\ < 9. 

It is nowadays a relatively routine matter to solve such a Thue inequality 
for p and q, via, e.g, Pari. We find that necessarily either p = 0 or q = 0, 
contradicting the fact that p/q is a nonzero rational. • 

For N e {7,9}, the polynomial B*N(t) is irreducible. As a result, we 
cannot obtain an analogous result to Proposition 2.9 from a straightforward 
application of Liouville's theorem. In each case, however, we may apply 
effective improvements upon Liouville's theorem (of Baker-Fel'dnian type), 
say those of Bugeaud and GySry [20], to conclude, if 

L 4 | > £ 
| 0 3 f l 0 

that EAJJ(Q) may contain a rational point of order seven or nine, only if E A . B 

corresponds to a parameter p/q with q < ew . We suppress the details. 
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Returning for a last time to the claims of [28], it is worth noting that, 
although the condition A ^ \B\ > 0 does not prevent EA^B(Q) from con
taining a point of order five, it probably rules out the possibility of rational 
points of order seven or nine (and hence the conjecture in [28] is likely true). 
To prove this, we would require a strong effective improvement on Liouville's 
Theorem for 9gA, of the form 

ft P 

" 9 , 1 
<1 

C 

where c is a suitable absolute positive constant. This seems to be out of 
reach, of current methods in Diophantine approximation. 

If, instead of Theorem 2.2, we desire an unconditional criterion to guar
antee trivial rational torsion, we may derive the following : 

Proposition 2.10. Let e > 0 be given. Then there exists an effectively 
computable constant c£ such that if A and B are nonzero integers for which 
the curve E A B has a nontrivial rational torsion point, then 

logUI <cJB i+e. 

Proof. By our preceding results, we may assume that EA,B has a rational 
point of order 3. Let s and M be as earlier in this section, so that M2 = 
(s 2 ) 3 + B. By a theorem of Stark [27], we have 

logmax( |M| ,s 2 ) < \B\l+£, (2.14) 

where the implied constant depends only on e. Recalling that, A = 27s 4 + 
6 s M , if s'2 < | M | then \A\ < 3 3 M 2 . Similarly, if \M\ < s 2 then \A\ ^ 33s 4. 
In either case, there is an absolute constant K such that 

log|.4| < /v,logmax(|M|,s 2), 

whence the desired inequality obtains from (2.14). • 

2.6 C o n c l u d i n g r e m a r k s 

Theorem 2.2 and (admittedly rather naive) computation lead us to close our 
paper by asking the following: 
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Ques t ion . Are the only curves EA,B with a nontrivial rational torsion point 
for which 

\A\ > \B\5/2 > 0, 

where. A and B are integers, those with 

(A, B) = ( -2 , ±1) , (57, - 2 ) , (381699, 37) and (4156357129881, 93886)? 

One finds the last three of these pairs by searching for integer values of s 
for which the quantity 3\/3-s 3 is close to an integer (at least, relative to s). 
Here, as previously, A = 3st, t = 9.s 3 ±2\/27s 6 +' B, and hence the condition 
that 3\/3s' 3 is well-approximated by an integer enables us to find "reasonably 
small" B. 
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Chapter 3 

Diophantine analysis and 
torsion on elliptic curves 

I n t r o d u c t i o n 

The claim was made in a paper of Wieczorek, [38], that for any elliptic curve 

E = E(A, B) : y2 = a; 3 + Ax + B, 

where A and B are integers satisfying A > \B\ > 0, the torsion subgroup of 
E(Q) must be isomorphic to the trivial group, Z / 3 Z , or Z / 9 Z . This claim, as 
it turns out, is false, and in [30] Bennett and the author constructed poten
tially infinitely many counterexamples. However, a result similar in flavour 
was derived from Roth's Theorem on diophantine approximation, namely 
that for any e > 0 and for all but finitely many integers A, B satisfying 

\A\ > \B\2+£ > 0, 

the torsion subgroup of E(Q) is trivial or isomorphic to Z / 3 Z . Moreover, 
assuming the abc Conjecture of Masser and Oesterle, we can eliminate the 
possibility of points of order three. The proof centres on showing how the 
above inequality obstructs the existence of points of order 2, 5, 7, or 9 which, 
by Mazur's theorem on the possible torsion subgroups of elliptic curves over 
the rationals, produces the desired result. As it turns out: similar inequalities 
in the other direction also inhibit torsion. Examining the methods of [30] 
more closely, we demonstrate the following. 

Proposition 3.1. For each e > 0 there are at most finitely many A, B G Z 
such that \B\ > | A | 6 + e and E(A, B)(Q) contains a point of order not dividing 
I 

2 A version of this chapter has been accepted for publication. Ingram, P. Diophantine 
analysis and torsion on elliptic curves. Proceedings of the London Mathematical Society. 
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This result, is. as stated, sharp, as we can see by considering the family 
of elliptic curves 

as s varies over the odd integers, each of which carries a, rational 3-torsion 
point 

contains the rational 2-torsion point P = (??,, 0), and so we cannot produce 
any result similar to Proposition 3.1, but ruling out all points of finite order. 
It is likely, however, that condition \B\ > | / l | K + £ prevents E(A,B) from 
having a, rational point of order 4, as we shall see below in an argument 
relying on the aba Conjecture. 

If E/Q is an elliptic curve with a Q-rational point of order N, then 
one may construct a Q-rational isogeny of degree N on E (i.e., a Q-rational 
morphism Avhose kernel is generated by said point of order iV). It, is therefore 
reasonable to ask if the results in [30] are special cases of a more general 
result on isogenics between elliptic curves. This is answered affirmatively by 
the following proposition, although the specific results we obtain regarding 
torsion are slightly stronger than those regarding isogenics (as one'might, 
expect). 

Proposition 3 .2. Let e > 0. There are at most finitely many A.B & Z 
such that \A\ > \B\2+e and E(A,B) admits a non-trivial Q-rational isogeny 
of degree other than 3. There are at most finitely many A, B E Z with 
\B\ > \A\6+e such that E(A,B) admits a non-trivial Q-rational isogeny of 
odd degree other than 5. 

These results, like those in the previous paper, rely on Roth's Theorem 
on diophantine approximation, and as such are ineffective. In Section 3, we 
derive effective analogues of some of our results, some derived by elementary 
means and some relying on effective irrationality measures. In Section 4, 
we extend these results, in a, limited fashion, to elliptic curves over certain 
number fields, and in the final section we consider similar results for elliptic 
curves in another common form. In particular, we prove 

We note also that each curve 

y

2 = x3 + x - n(n2 + 1) 
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Proposition 3.3. Let K be an imaginary quadratic extension of Q and let 
e > 0. Then for all but finitely many algebraic integers A,B € K satisfying 
\A\ > \B\2+£, E(A, B)(K) contains no •points of finite order other than those 
of order 3 or 11. 

If we consider curves of the form 

Ea,b • !J2 = x(x2 + ax + b), 

we may show 

Proposition 3.4. For each e > 0 there are at most finitely many a,h G Z 
such that b > |o , | 4 + f and 

Ea,t,(Qhors # {Z/2nZ : n = 1,2,3}. 

Remark. Note that, throughout, when considering elliptic curves E(A.B), 
we shall always assume that, AB 0 and that B / i l in order to avoid 
certain trivialities. The torsion subgroups of elliptic curves with AB = 0 are 
very well understood (see, for example, [36]). It is similarly straightforward 
to characterize the torsion on elliptic curves with B = ± 1 . In particular, 
one sees in [30] that if E(A, B)(Q) contains a point of order 5, 7, or 9, then 
B is even. Considering the factorization of .x3 + Ax ± 1 over Z one can see 
readily that E(A, ±1) cannot admit full 2-torsion over Q, and hence any 
torsion on said curve must, be cyclic of order 2a3'8 for a ^ 3 and fj ^ 1. 
Considering the relevant parametrizations from [30] or the appendix one sees 
that if e G {1,-1}, ' 

Z / 2 Z (A,e) e { ( - 2 , - 1 ) , (0,-1)} 
Z / 4 Z (A.e) = (-2,1) 
Z / 6 Z (>!,£) = (0,1) 
{0} otherwise. 

In particular, if £( .4,±1)(Q) contains a point of order three then A = 
27s4 + 6st where ± 1 — t? — 27s 6, the latter equations being easily solved 
as the elliptic curves Y2 = X3 ± 1 are both of rank 0. Examining again the 
factorization of xA + Ax ± 1 gives one all curves over Q with 2-torsion, and 
an elementary argument shows that, the only curve E(A, ±1) with a point of 
order 4 is that a b o v e (it, is, in fact, simpler to consider the parametrization 
of curves with isogenics of degree 4). 
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3.1 Results for all possible torsion groups 
Although the previous work constructed only upper bounds on log \A\/ log \B\ 
for elliptic curves y2 = x:i + Ax + B with certain torsion subgroups, it is 
possible to arrive at lower bounds using similar techniques. It is also possible 
to construct bounds, usually sharp, for all possible torsion groups, rather than 
simply relying on the bounds imposed by the prime divisors of the order of 
the group. The proofs are similar to those of previous results, relying on 
techniques of diophantine analysis. 

We summarize our main results on rational torsion below. For finite 
groups G we define 

P~(G) = l iminf ( J ^ f : G ^ E(a, b){Q), a, b G Z , \a\ > «„, |6| > b0\ 
<n,,bo— oo ^ log \o\ ) 

P+(G) = l im sup l ^ f e r : G «-» E(a, b)(Q), a, b G Z, \a\ > a 0 ) |6| > bA . 
0 0 , 6 0 - 0 0 I log |o| ' J 

More specifically than Proposition 3.1, we prove that P± takes the following-
values: ^ i 

G P - (G) P+(G) 
Z / 2 Z 0 2 
Z / 3 Z 1/6 2 t 
Z / 4 Z 1/6 t 1 t 
Z / 5 Z 1/3 1 
Z / 6 Z 1/3 1 
Z / 7 Z 1/2 4/5 
Z / 8 Z 1/2 4/5 
Z / 9 Z 5/9 3/4 

Z /10Z 5/9 3/4 
Z /12Z 7/12 8/11 

Z / 2 Z x Z / 2 Z 2/3 1 
Z / 2 Z x Z / 4 Z 2/3 1 
Z / 2 Z x Z / 6 Z 2/3 4/5 
Z / 2 Z x Z / 8 Z 2/3 8/11 

Remark. Entries marked with f are obtained only under the additional 
assumption of the abc Conjecture of Masser and Oesterle. Recall that this 
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conjecture states that for any e > 0 and integers a + b = c. we have 

|C|« n 
p\abc 

where the above product is taken over primes and the implied constant de
pends only on e. For elliptic curves with cyclic torsion of order 4 we tire 
unable to improve on the bounds that follow simply from the existence of a 
point of order 2 unless we assume this conjecture. See Lemma, 3.8 for this 
case, and [30] for P+(Z/3Z) . 

Proposition 3.1 is a corollary to the above table, which is in turn a conse
quence of the following result once one examines the parametrizations of the 
given torsion structures (see the appendix). Special care is needed for curves 
with rational points of order 3 or full 2-torsion. 

L e m m a 3.5. Fix e > 0. Let A(X) and, B[X) G Z[A"] be square-free poly
nomials of degree 2d, and 3d, respectively, with nonzero resultant. Then, for 
all but finitely many nonzero integers a and b viith 6 ̂  ± 1 and E(a, b) = c 
E(A(t), B(t)) for some t G Q, we ha,ve 

2 / I \ _ log |a| 2 
3 V d) £ < log |6| < 3 - 2/d + £' 

In fact, we will see in the proof below that, these bounds are sharp, 
i.e., that one can construct infinite families of such curves E(a,b) with 
log\a\/log\b\ tending towards 0 1 ~~ Vf0- Furthermore, if the par
tial quotients of the roots of A(X) and B(X) are sufficiently large infinitely 
often, these families can be made such that, log |a| / log |6| approaches s_yd 

from above or |(1 — 1/d) from below (so that the e in the Lemma must, 
truly be positive). If d is even then these bounds are sharp even within the 
subfamily parametrized by A(X) and B(X) up to Q-isomorphism. 

Proof. For relatively prime p, q G Z, set 

A(p1q) = q2dA(p/q), 

B(p,q)=q3dB(p/q). 

Additionally, let A(t) and B(t) be the least integers in absolute value (taking, 
without, loss of generality, \B\ minimal and B ^ 0) such that 

E(A(t),B(t)) ^ c E(A(t),B(t)). 
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Note that, if we avoid ab = 0, the C-isomorphic images of E(a, b) are precisely 
E(s2a, s3fe) for non-zero s € Q. Thus, as A(p, q), B(p, q) are integers, we have 
immediately that 

\A(p/q)\^\A(p,q)\ 

\B(p/q)\^\B(p,q)\. 

But we must have, for some integer m, A(p,q) = rn2A(p/q) and B(p,q) = 
m?B(p/q). Let fieZbe the resultant of A(X) and B(X), supposed above 
to be non-zero. Then, for (p,q) — 1, if m2 | A(p,q) and ra3 \ B(p,q). we have 
m? | R. In particular, 

\A(p,q)\^R,\A(p/q)\ 

\B(p,q)\^Rs\B(p/q)\. 

Now, applying Roth's Theorem to B(p, q), we obtain, for 5 > 0 and some 
constant C j . 

| S ( p / 9 ) | >csmex{\p\,\q\}M-2-s 

while clearly, if is the sum of the moduli of the coefficients of A(X), 

\A(p/q)\^\A(p,q)\^cAma,x{\pl\q\}2d, 

We thus obtain 

\og\A{p/q)\ < 2dh{p/q) + logcA 

log \B(p/q)\ (3d - 2 - $ ) % / ? ) +' logc 5 ' 

where /?. is the usual (logarithmic) height 

h {^j = logmax{|p|,|g|}. 

This is clearly implies 

log \A(p/q)\ 2 ' 
log\B(p/q)\ 3 - 2 / r f 

by selecting 5 = 6(e) appropriately, with at most finitely many exceptions. 
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Now suppose that a and b are nonzero integers, b ^ ± 1 , such that 
E{a,b) =c E(A(p/q),B(p/q)), which is to say, such that a = t2A(p/q) and 
I) = t*B(p/q), for some nonzero t e Z . Then we have 

log M _ 21og[t| + l o g | i ( p A / ) | < \og\A(p/q)\ 

log|6| " 31og|t |+ log|S(p/g) | " log|B(p/<7)| 

Thus if a and 6 violate the above upper bound, so do A(p/q), B(p/q), and 
E(a, b) is C-isomorphic to one of our finitely many exceptional curves above. 
Furthermore, as the middle term' above converges to | as \t\ —> oo, we see 
that 

log\a\ 2 , 
log |6| 3 + 

induces an upper bound on \t\, and so at most finitely many isomorphic 
copies of each of the finitely many exceptional curves may violate our upper 
bound. Reproducing the analogous argument with Roth's Theorem applied 
to A(X) we produce the lower bound above. 

To demonstrate the sharpness of these bounds, we may simply note that, 
applying the theory of continued fractions (see, for example, [33]), we may 
construct sequences Pk/qk, Sk/h such that for appropriate constants c\ and 

\A(pk,qk)\ < CA niax{|p f c|, ^i}""' : ' 

and C c 2 max{|s A : | , | t , | } : W - 2 . 

Also note that d being even ensures that E(A(p,q), B{p,q)) is always Q -
isomorphic to E(A(p/q), B(p/q)). • 

Remark. It is worth noting briefly that elliptic curves which approach the 
above bounds, i.e., for which A is sufficiently larger than B or vice versa,, will 
have j-invariant rather close to either 0 or 1728. Indeed, if one fixes s > 0 
and bounds j(E(A, B)) away from these two values, then 

\og\A\ _ 2 

\og\B\ ~ 3 < 6 

with finitely many exceptions (independent of any structure on E). One 
might, however, inquire as to how well the j-invariants of elliptic curves in 

file:///og/A/
file:///og/B/
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short Weierstrass form with integral coefficients approximate various other 
rational values, subject to the level structure on those curves. 

Note also, in a similar vein, that if A(X) or D(X) has no real roots then we 
see immediately that log |a | / log \b\ is bounded below by ^ — e or above by | + £ 
respectively. Furthermore, effective results may be stated. In particular, the 
existence of non-negative minima of | A z / 2 z x Z / 4 z ( X ) | , | A z / 2 z x z / 6 z ( A ) | , and 
\Az/2Zxz/sz(X)\ lead us to effective statements on curves with these torsion 
structures over Q. 

We shall proceed now to prove the bounds in the cases requiring more 
attention: 

L e m m a 3.6. P~(Z /3Z) = 1/6. 

Proof. As in [30], note that the curves E(A,B) with points of order 3 are 
parametrized by 

A = 27s4 + 6 s M 
B = M2 - 27V\ 

where s, M G Z . For convenience we write t = 9s3 + 2M so that 

A = 3st 

B = ^ - (27s6 + I8s3t - t2) . 

We now note readily that for .9 and t nonzero, A ^ max{|.s|, \t\}, while 
B < f max{|s|6,\t\'2}. From this we see that P " ( Z / 3 Z ) ^ 1/6. On the other 
hand, by choosing s odd above we may set t = 1 (i.e., M = | (1 - 9s 3)); from 
this family we see that P~(Z/3Z) < 1/6. • 

The case of curves with full 2-torsion is similar to the other cases, but 
not exactly the same as the parametrization takes a slightly different form. 

L e m m a 3.7. P " ( (Z /2Z ) 2 ) = §, P+((Z/2Z) 2 ) = 1. 

Proof. Suppose that E(A,B)(Q) exhibits full 2-torsion. By examining the 
factorization 

x3 + Ax + B = (x- ei)(x - e2)(x - e3) 
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we see that 

A = - (e 2 + eie2 + e2,) 

B = e te2(ei + e2) 

for some integers e i , e 2. Assuming AB ^ 0, we have |.4| ^ | max{|e-| |, |e 2|} 2. 
On the other hand \B\ ^ 2max{|ei|, |e 2|} : t, whence 

log 1̂1 > 2 / i (e 1 /e 2 )+ log( | ) 
log | B| " 3Mei /e 2 ) + log(2)' 

proving that P~((Z/2Z) 2 ) ^ | . To prove the bound in the other direction, 
simply consider the (isomorphic) curves of the form E(—7t4,Qt6) for t G Z , all 
of which have full two torsion. Clearly, as t —> oo, this family demonstrates 
that P ~ ( ( Z / 2 Z ) 2 ) > §. 

For the other equality note that if we take, without loss of generality, 
lei.| > |ea|, thorn \A\ ^ 3|e.||2. On the other hand, either |ei| ^ 2|e2|, in which 
case 

or |ej I > 2|e 2|, from which we have |e.i.+ e 2 | ^ ||f.] | and the same lower bound 
on | P | . To prove sharpness of the bound on P + ( ( Z / 2 Z ) 2 ) simply consider 
the family defined by e 2 = e,\ — 1. • 

L e m m a 3.8. P~(Z /4Z) < 1/6 and P + ( Z / 4 Z ) > 1. If the abc Conjecture 
holds then these inequalities are strict. 

Proof. We prove the second equality and leave the first to the reader. We 
rewrite the pararnetrizations in the appendix as 

Az/4z(X) = - 2 7 ( 4 X 2 + 24X + 33) 

' BZ/4Z(X) = 54(4X + 9)(9 - 2 X 2 ) . 

Let X = p/q where (p,q) = 1. As in the previous cases, the result is trivial 
unless 3q = ±[p\ /2] , where [•] denotes the nearest integer function, so suppose 
that one of these equalities holds. If we set q = IN2, with / square-free, then 
the minimal coefficients in any isomorphism class are given by 

A = -27l2{4p2 + 24plN2 + 3312N4) 

B = 54/3(4p + 91N2)(9I2N4 - 2p2). 
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By the abc Conjecture, if 

F = 9(2N4 - 2p-,2 

then 
l2N4 < \FplN\l+£. 

Noting that |p| ̂  -j^q + we have, then, 

\F\ » lr£Nl~e 

and hence 
| B | > l*~eN3-e. 

As\A\4Z. l4N3 we have P+(Z/4Z) ^ 1. To show that F+(Z/4Z) > 1, simply 
let p, q satisfy 9r/2 — 2p2 = 1, that is, let 

(q\/S + p2V2) = (v /3 + 2v /2)A ' 

for large, odd k. • 

3.2 C u r v e s a d m i t t i n g Q - r a t i o n a l i s ogen ie s 

It is natural to ask if the results in Section 1 can be extended to the more 
general case of curves admitting nontrivial Q-rational isogenies. A Q-rational 
isogeny of degree Af on E is a Q-rational morphisni (necessarily a group 
homomorphism) ip : E —> E' with a kernel, in E(Q), of order N. If E(Q) 
contains a point of order N then we may readily construct such a map (see 
[37]). For the sake of simplicity we restrict our attention to isogenies with 
cyclic kernel. 

Proposition 3.2. Let e > 0. Then there are only finitely many A,B £ Z 
such that \A\ > \B\2+E and E(A,B) admits a Q-rational isogeny of degree 
other than 3. 

As before, our results are somewhat better when considering only isoge
nies of particular degrees. By results of Mazur [35], for 

{1,2,3, 4,5,6,7,8,9,10,12,13,16,18,25} 

there are at most finitely many elliptic curves over Q, up to twisting, admit
ting isogenies of degree N, and so if E(A, B) admits a Q-rational isogeny of 
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< 3 + e 

degree N then A = d2Ao and B = cPBo for some d G Z and some A 0 and 
BQ members of a finite set depending on N. It follows immediately that, if 
e > 0, ' • 

2 log |^4| 2 
3 _ e < log |£ | 

for all but finitely many such A and B. We will, then, consider only N in 
this set. Note that if E admits a Q-rational isogeny of degree N and M \ N, 
then E admits a Q-rational isogeny of degree M. If we define £(a<), fto) to be 
the set of all pairs of integers (a, b) such that |«,| > a 0 , |ft| > bo and E(a.b) 
admits a. Q-rational isogeny of degree N and 

r(N) = l i ininf 
ao.bn—>oc 

I+(N) = lim sup 

log \a\ 
ao,bn-»oo ( log |6| 

log 
an,ho—»no I. log |b| 

(a, 6) G S(a0,b0) 

(a, ft) G 5(a 0,ft 0) 

then it will suffice to prove that the following bounds apply: 

< / " ( A O / " ( A O < < I+(N) I+(N) 

2 0 0 2 2 
3 1/6 1/6 2 
4 0 0 2 2 . 
5 0 1/3 1 2 
6 1/3 1/3 1 1 
7 1/6 1/3 1 4/3 
9 1/3 1/3 • 1 1 
13 8/21 1/2 4/5 14/15 
25 8/15 5/9 3/4 10/13 

Note that as every point of order N induces a rational isogeny of degree N 
we have 

r ( N ) < P " ( Z / A r Z ) < - <:P+(Z/NN) < J+(A0. 
o 

Some of the results above, then, are trivial results of the analogous results 
in Section 1. 

The arguments in this section are similar in character to the arguments 
in Section 1, but here the parametrizing polynomials often share common 
factors. As a. result, Lemma 3.5 does not apply, and each case must be 
considered separately. The exception to this is the case of curves admitting 
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isogenies of degree 9. which succumb to the simpler methods applied above. 
We proceed with the case of curves admitting rational isogenies of degree 5. 
The other cases are variations of the argument. 

Lemma 3.9. There is a constant c such that, if A and B integers such that 
E(A,B) admits a rational isogeny of degree 5, then \A\ < c\B\2. 

Proof. Let 

A\{X) = - 3 ( . X 2 + 12X + 1%)(X2 + 4) 
B;(X) = 2{X2 + 18X + 76)(X2 + 4) 2 

as in the appendix, so that E(A, B) admits a Q-rational isogeny of degree five 
if and only if it is isomorphic to E(A*5(t), B£(t)) for some t G Q. For any rel
atively prime integers p and q, let TV = N(p, q) be the greatest integer whose 
square divides p2 + Aq2. In particular, N~2q4Al(p/q) and N~:iq(iB^(p/q) are 
integers. Let A(p, q) and B(p, q) (taking, arbitrarily, B(p, q) > 0) be the least 
integers (taking, arbitrarily, B(p,q) > 0) such that E(A(p,q), B(p,q)) is iso
morphic to E(A;{p/q),BJ{p/q)). Thus \N ~2 q4 A^p / q)\ and \N-3qR'B*(p/q)\ 
are bounded below by \A(p,q)\ and \B(p,q)\ respectively. We wish to show 
that, up to a constant, the inequality may be reversed. 

For brevity, set 

f = p2 + I2pq + 16q2 

g = p2 + I8pq + 76q2 

h = p2 + 4g 2. 

so that 

N-2q4A*5(p/q) = N~2fh 
N-3q(IB;(p/q) = N~?'gh2. 

Computing resultants 

res(/,/i) = 2 ' ' 3 2 V 

res(,9, h) = 2AZAbqi 

res(/,</) = - 2 4 3 V 
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and noting that (p. q) = 1, we can see that if / is a prime with 

I2 | N-'2q4A*5{p/q) and I3 | N~3q6B^(p/q), 

then / e {2,3.5}. This follows as, if the assumption holds, either / | / and 
/ | gh, in which case / | 30g, or I2 \ N~2h. The case I | q and / | fgh leads to 
/ | (p.q) — 1, a contradiction, while the second case defies the definition of 
N..We now consider / <£ {2,3,5}. Note that we cannot have 3 | fh, as 

f = h = p2 + q2 ( (mod )3), 

whence 3 | fh if and only if 3 | (p,q) = 1. 
Let 2 | fh. Then clearly 2 | p, so let p = 2ap2, with p2 odd. Then 

h = 2 2 ( 2 2 " - 2 P 2 + 9 2), and so 22\\h as long as a ^ 2. Similarly, if a ^ 3, 

2 4 | | / = 2 4 ( 2 2 a - 4 p l + 2 a - 2 3p2r/ + 9 2 ) . 

Thus if 213 | oM;(p /q) and 2° \ p then a. > 3 ensures /? ^ 6. Now, if a = 1, 
we have h = 22(p2 + q2) and p2, + Q2 = 2 ( (mod )4), and so 2 4 { h. Similarly, 
2 " 2 / = 1 ( (mod )2), and so (3 < 5. Finally, if a = 2, 22||/v, as above and 
2 ~ 4 / = 1 ( (mod )2), whence B < 6. In summary, if 2 2 r t | N'2q4Al(p/q) and 
23a | N-3qbBl(p/q) then certainly a ̂  3. 

Finally we will deal with I — 5. We observe that if 5 | / = (p + 
q)2 ( (mod )5) then for some r € Z we have p = 5r — c/, and so ,/' = 
5(5?-2 + lOqr + q2). In particular, 5 2 { / . The definition of /V prevents 
5 2 | N~2h, and so we have 5 2 n | N~2q4AZ(p/q), 5 3 f l | N-3qbBi(p/q) for at 
worst a ̂  1. Combined with the above we get 

N-2q4A;tP/q)^2bf>2A(p,q) 

N-3(fBl(;p/q) 2°53B{p,q). 

Using the fact that N < ^ p 2 + Aq2 and some calculus we can see that 
for p/q £ [ -12,-4] , \N~3B^{p/q)\ > 2\N-2Al(p/q)\ which in turn yields 
|v3| > 2 — s 5 — 3 1A| . So now assume that p/q E [—12,-4], and consequently 
l / K 20q2 

Write, for a particular (p,q), A = \(p,q) — log(iV)/log(/;,). For p/q e 
[-12, -4] we have \g\ ̂  1. This then gives 

\B{p,q)\ ^ 2- 9 5" 3 | iV | - 3 |2^ 2 | = 2 - 8 5 _ 3 | / J . 2 - 3 A | 



Chapter 3. Diophantine analysis and torsion on elliptic curves 43 

while 

We then have 

2 L 1 - 2 A I \A(Piq)\^3N-Vh\^m\<fh 

A 2Js . 3 . 5' 1 1 1 ^ 2 ' 6 - 3 - 5 7 

as 0 < A < 1/2 mid h ^ 4q2. 
This proves the result with c = 2 1 6 • 3 • 5 7 . . • 

The other cases are treated similarly, and the details of these proofs are 
left to the reader. The exception to this is the question of the values of 
log \A\ / log |B | when E(A, B) admits a rational 3-isogeny. One notes, in this 
case, that we may write 

D2A = 27s4 + Qst 
D3B = t2 - 27s 6, 

for some integers D, s, and t, and we may assume, without loss of generality, 
thai, there is no prime I with both I2 \ A and I3 | B. A n elementary argument 
shows that s | A, and so 7 _(3) ^ | . This is the best possible result, of 
course, as 7"(3) ^ P " ( Z / 3 Z ) — It seems, however, rather difficult to 
bound i + (3), even under the obc Conjecture. A naive computation leads one 
to believe that 7+(3) = 2. 

R e m a r k . It is perhaps interesting to note that, by the above, one might 
construct a family of elliptic curves E(Ai;,Bk) each admitting a rational 
isogeny of degree 9 such that 

log|A f c | _9_ 
log 173*1 10' 

say. By the results in [30], at most finitely many of these may contain a, 
rational point of order 9. 

3.3 E l l i p t i c curves over quadratic extensions 

For what follows let D G Z + , and let K = Qiyf-D). The main aim is to 
prove: 
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P r o p o s i t i o n 3.3. Let K be an imaginary quadratic extension of Q and let 
e > 0. Then for all but finitely many algebraic integers A,B e K satisfying 
\A\ > \B\2+e. E(A, B)(K) contains no points of finite order other than those 
of order 3 or- 11. 

Work by Kamienny [32] shows that for any elliptic curve E over K, 

' Z/mZ m ^ 16,m = 18 
pvrn ~ J Z / 2 Z x Z / 2 7 7 i Z m < 6 

£ ' l A j T o r s ~ ] Z / 3 Z x Z / 3 m Z ra ^ 2 
[ ( Z / 4 Z ) 2 . 

Note, then, that the above claim implies that E(A,B)(K)Tors = {0} ,Z/3Z, 
(Z /3Z ) 2 , or Z /11Z for all but finitely many A"-integers -4, B satisfying |;4| > 
\B\2+E > 0. 

Proof. We treat the case that E(K) contains a point of order n, for n E 
{2,5', 7, 9}. 

CASE n = 2: If E(A, B)(K) has a point of order 2 over K then we have, 
for some a and [3 G CV, 

xA - Ax + B = (x - a)(x2 + ax + fi). 

Now we have A = (3 — a2. B = —af3, and so under the hypothesis \A\ > 
\B\2+E > 0 we have 

\M _ \ft-a2\ ' max{|q| 2,|/?l} 
\B\2+e \a\2+e\l3\2+e ^ \a\2+e\/3\2+£ ' 

If |a ' | 2 ^ \j3\ then the above becomes 

Thus |Q:| ^ 2T and |/?| < s/2 as I 7 I ^ 1 for all 7 G C V As the integers in 
K are discrete, this gives us only finitely many possible pairs a, (3. We may-
proceed similarly in the case | a | 2 < \(3\. 

CASE n = 5: 
L e m m a 3.10. For a fixed K and e. there are only finitely many integers 
A, B G OK such that E(A, B)(K) contains a point of order 5 and \A\ > 
| £ | 2 + e > 0 . 
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Proof. Let Ab and B6 be the polynomials in [30] parametrizing elliptic curves 
with points of order five. By the standard argument from resultants, it 
suffices to prove the result for elliptic curves of the form E(A, B), where 

and where a and (3 are algebraic integers in K. As B5 is of higher degree than 
A5, we find that \B\ > \A\ for \a/(3\ sufficiently large, and thus will assume 
that \a/(3\ < N for some N. Furthermore, we will suppose that in this 
domain, \A5(a/-f3)\ < M for some fixed M. Now, suppose that \B\2+£ < \A\. 
Then 

for e' = 2e/(2 + e) and M 2

2 + e = M. As in [30], this bounds \f)\ unless a/(3 is 
particularly close to a root of Bh. If \f3\ is bounded then so too is |o:| and, as 
Jv-integers are discrete, there are only finitely many a/(3 to consider. Thus 
we assume that 

a n 

p - o < y 

for some 0 G C with B5(0) = 0 and some fixed 7 of our choosing. We will 
choose 7 sufficiently small that we may apply the mean value theorem to 
bound 

for some constant M 3 . By inspection, the roots of B5 are ±i and four real 
roots. 

First consider the case of 0 real. Note that if a/[3 G'M then a/j3 G Q and 
so we may simply apply Roth's Theorem, as in [30], to show that 

by considering a[3/\/3\'2 and noting that 2a(3 G TL\\J—L>\. This again restricts 

A = (3AAh(a/l3) 
B = (36Bb(a/(i) 

Bb{a/(3)\<M2\t3\ 

%-Q <M:iB5(a/P) 
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Now suppose that 0 = ±i. As above, if' Re(o.'//?) ^ 0 then one obtains 
rather easily a bound on 8, so suppose that Re(a./8) = 0. Then, if a/6 = 
±p\/—D/q, with p, q G Z , we have 

\p\/D 
2 + 6 w

2 

This again restricts us to only finitely many options for a/(3. • 
R e m a r k . Note that the above proof actually establishes the result for all K 
simultaneously. The obstruction to stating the result for all K simultaneously 
lies only in the case of points of order 13. 

CASE n = 7,9: These are similar to the last case and are left to the 
reader. 

CASE n = 13: Here it suffices to observe that as AT (13) has genus two, 
Faltings' Theorem (see [31]) ensures that Xi(13)(A~) is finite, and so there 
are only finitely many isomorphism classes of curves over K with a point of 
order 13. 

• 
In' general, the results above do not extend readily even to real quadratic 

fields. We do have, however, the following special case. 

P r o p o s i t i o n 3.11. For any real Galois extension K/Q there is a constant c 
such that for all A,B€ OK such, that E(A, B)(K) contains a point of order 
5, 

\NK/Q(A)\ < cNK/Q(B)2

: 

Proof. If E(A, B) contains a point of order five over K, then E(A, B) is 
isomorphic to E(A5,B$), where 

A5 = - 2 7 (cv4 - I2a:i(3 + Ua23'2 + Ylaf + fi1) , 

735 = 54 (a2 + 02) (a4 + I8a:i,8 + 74a2B2 + 18a/33 + B4) , 

for some a, 8 E OK. Applying the same argument about resultants as in the 
rational case, we may find a constant C € OK depending only on A" such 
that 

Ars\CAA,Bb\CbB. 
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In particular, it suffices to prove the result for A 5 , B5. Note that lAV/o^OI ^ 
1 for all £ € OK and so, if we define 

m(a,3)= m a x ( K | , | / ? C T | } , 
cr€Ga.l(K'/Q) 

we have 

\NK/Q(BS)\ > 54d\NK/Q(a2 + P2)\ > 108 ( 'm(a,/?) 2, 

where d = [K : Q]. On the other hand, calculus shows that 

\Nm(A5)\ = 27t\NK/Q{a* -••• + /?4)| < imd

m{aJ3)'\ 

We thus obtain 

I^/VVQ(A0I < ( ^ ) NK/Q(BR)2, 

from which the result is immediate, with 

o 
c 54 

As C 4 | R e s ( A 5 , 735) we see that c can me made to depend only on d = [K : 
Q]. ' • 

C o r o l l a r y 3.12. Let K be a real Galois extension o / Q . For any e > 0 there 
are, up to multiplication by units, at most finitely many A , B € OK such that 
E(A, B)(K) contains a point of order 5, and 

2+s \NM(A)\ > \NK/Q(B)\ 

3.4 Effective results 

We return our attention to elliptic curves defined over Q. The results of 
Sections 1 and 2, most of which depend heavily on Roth's Theorem, are of 
course computationally ineffective. Effective results may be obtained in any 
case where one may explicitly improve upon the "naive" Liouville theorem, 
that if f(0) = 0 for some (possibly reducible) f(X) G Q[X] of degree d, then 
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The most glaring improvement occurs when / factors over Q, in which case 
we may apply Lemma 3.13. By the results on lower bounds on linear forms in 
logarithms we may, of course, always improve upon the above, but these small 
improvements do not yield interesting explicit results about elliptic curves. 
In the case of isogenies of degree nine, we apply an effective irrationality 
measure for \pi due to Bennett to obtain an effective statement. 

We will make use of the following analogue to Lemma 3.5: 

L e m m a 3.13. Let A(X) and B(X) be square-free polynomials of degree 
2d, and 3d, respectively, and suppose that B(X) = Ylfi(X) over Z , d\ = 

max {deg (./;:)}. Then for all integers a. and b with E(a,b) =• E(A(t), B(t)), 
we ha.ve 

\a\ < c-im^nj^ 
for some effectively computable c\. Similarly, if'A(X) = Yl9i> and if vie set 
d,2 = ma,x{deg((/;)}; then we have 

\b\ < c 2 | a | ^ 4 7 d . 

Proof. The proof is similar in spirit to that of Lemma 3.5, but, rather than 
rely on Roth's Theorem we simply note that if B(X) factors as above, then 

\B{p/q)\ >cmax{ |p | , | g | } - d ' 

for a. readily computable constant c. The first inequality then follows from 
the same argument as in Lemma 3.5. The result in the case that A(X) factors 
is similar. • 

P r o p o s i t i o n 3.14. There exist effectively computable constants C\,....c<n 



Chapter 3. Diophantine analysis and torsion on elliptic curves 49 

such that for all A, B G Z , 

Z / 4 Z E(A, B 
Z / 5 Z 

Z / 6 Z 

Z / 7 Z 

Z / 8 Z 

Z / 9 Z 

Z /10Z 

Z /12Z 

Z / 2 Z x Z / 4 Z 

Z / 2 Z x Z / 6 Z 

Z / 2 Z x Z / 8 Z 

=-> E(A,B 
^ E(A. B 
^> E(A, B 

^ E(A, B 

^ E(A, B 

E(A, B 

<-> E(A,B 

^E(A,B 

E(A,B 
^ E(A, B 

E(A, B) G X 0 ( 5 ) 
E(A,B)eXQ(7) 
E(A;B) G X0(9) 

E(A, B) G X 0 (13) 
E(A,B) GX 0 ( 25 ) 

Tors 

Tors 

Tors 

Tors 

Tors 

Tors 

Tors 

Tors. 

Tors 

'Tors 

'Tors 

\A\^c,\B\2 

\A\ < c 2|73| 2 (3.1) 
\A\^c,\B\2AB\^cAAf (3.2) 
J 5 | < CslAI6 (3.3) 
|A| < c f i|v3| 2 

\B\ < c 7 |A | ^ r . (3.4) 

< c 8 | B | ! • 

|-4| < c9\B\2,\B\ < c„,|A| 6 

|A| < c : l l|V3|,|73| < cl2\A\i 

\A\^cl3\B\,\B\^cu\A\i 

\A\ ^ c 1 5 | B | , | B | < c l 6 | A | i 

\A\ < c, 7|73j 2 (3.5) 

| B | < c 1 8 L 4 | 6 (3.6) 

| S | < c.l9\A\W (3.7) 

|-4| < C2o | f i | ^ , |B | <-<>n\A\% 

\A\ < c 2 2 | 5 | 2 . (3.8) 

Note that some of these results may be redundant. For example, (3.5) 
clearly implies both (3.1) and (3.8), although the constants in the later cases 
may be different. 

R e m a r k . It is also worth noting that (3.3), which follows directly from (3.6), 
provides an explicit irrationality measure 

9 >Cq -10.666... 

for the roots of the polynomial Br (as found in [30]), an irreducible polyno
mial of degree 12. This may be shown simply by considering the converse of 
the proof in [30]. Similarly, (3.4), which follows directly from (3.7), provides 
an irrationality measure 

9 > Cq -8.28 

for the various roots of Y3g, some of which are algebraic numbers^of degree 9. 
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Proof. We apply the factorizations of these polynomials to acquire most of 
the effective results, but (12) is obtained from the following inequality of 
Bennett (see [29]): 

5 

for all rationals p/q. Note that the exponent in the second inequality in (3.2) 
may be effectively improved using similar techniques. 

We will, for purpose of example, prove the first claim in (3.2) with c 3 = 
jjfc. This is sharp as y2 = x 3 — 15x + 22 contains a rational point of order 
six. For another example, Co = 59/6750000, with sharpness demonstrated by 

y2 = x3 + 25488.1; - 54000. 

We will write A = Az/ez, B = 2?z/ez- l n the notation of Section 1, it is 
easy to show that 

A(p/q) = N-yA(p/q) 

B(p/q) = N-Gq(iB(p/q), 

for some divisor N of 6. Note that for t [-4,3] we have c 3 | 6 " 6 B( t ) | 2 > 
\6~4A{t)\, and so in particular, \A(t)\ < r,/>'(/}. On the other hand, if 
6\ < ... < 94 are the real roots of 5 , we have, for teX = [-4, 3] \ {J'l=1(0i -

\B(t)\ ^ 0.79 

L 4 ( * ) K 53163, 

where e = 0.01. This yields 

\A(t)\ > c,B2(t) 

only if, for t = p/q, ^ 

6-4q4\A(p/q)\>c36-V2ql2B2(p/q), 

which in turn implies q < 25. We can enumerate all such p/q easily, and we 
see that \A(p/q)\/B2(p/q) is maximized with p = —15, q = 22 (note: it is in 
fact maximized by p = - 1 , q = 9, but this yields a singular curve). 

<i 



Chapter 3. Diophantine analysis and torsion on elliptic curves 51 

For t = p/q • <= [0X - e, 6y+e) we can see thai \B(X)/(X - 6>i)| is bounded 
below by 445000 while \A{X)\ is bounded above by 18600. Thus if we have 

6-W\A(p/q)\^c^vY2B2(p/q), 

then we obtain 

0i < 2.26c/""4. 

Let F(X,Y) be the binary form associated with the minimal polynomial of 
By. Then on the interval in question, 

\F(p,q)\ < 190-74 0i 

which, when combined with the above inequality, tells us that any coun
terexample to our claim occurs with \F(p,q)\ < 430. There are only two 
non-trivial solutions to this inequality (p/q = 1 and p/q = 1/2), neither of 
which offers a counterexample to our claim. 

We perform the same computation in (03 — e, 03 + e) to see that a. coun
ter example here implies that 

< 146g~ 

This in turn implies \F(p.q)\ ^ 1022. The one solution to F = 792 is our 
optimal value of A/B2. 

The roots (92 and 04 are roots of the quadratic factor of B. On the first 
of these intervals we have, for counterexamples p/q, 

6-4q'l\A(p/q)\ > c,\6^q6B(p/q)\2 > 2^THc3\F(p/q, 1 ) | V , 

which in turn yields q ^ 41. Checking these values we find no counterexam
ples. On the final interval, a counterexample would have q ^ 5, which again 
produces no counterexamples to our claim. • 

3.5 Curves in another common form 

It is natural to ask to what extent the results above are artifacts of the chosen 
form of the elliptic curve and to what extent the results are more general. 
To this end we prove similar results for curves of the form: 

• Entb:y2 = x(x2 + ax + b). • 
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Note that, such curves always contain the point (0,0) of order two: 
In particular, we obtain 

P r o p o s i t i o n 3.4. For all e > 0 there are at most finitely many a, b G Z such 
that b > \a\'l+£ and 

EaMQUnt { Z / 2 n Z : n = 1,2,3}. 

Note that results of Mazur (see, for example, [36]) tell us that in general 

^ o , 6 ( Q ) i b r s e {Z /2nZ : n = 1, 2,3,4,5,6} U {Z/2Z x Z / 2 n Z : n = 1, 2, 3,4}. 

The primary tool here is the obvious analogue to Lemma. 3.5. We present 
the particular results below, where P.f axe defined as P'k but in terms of 
log\ct\l log |6| in the notation above. 

G *r(G) 
Z / 2 Z 0 oo 
Z / 4 Z 0 oo 
Z / 6 Z 0 CO 

Z / 8 Z 1/4 1 
Z/10Z - 1/3 3/5 
Z /12Z 3/8 4/7 

Z./2Z x Z / 2 Z 1/2 oo 
Z / 2 Z x Z / 4 Z 1/2 1 
Z / 2 Z x Z / 6 Z 1/2 4/5 
Z / 2 Z x Z / 8 Z 1/2 2/3 

L e m m a 3.15. Fix e > 0 and d > 1, and let A(X) and B(X) G Z[X] be 
square-free polynomials of degree d and 2d respectively, with nonzero resul
tant. Then for all but finitely many nonzero a, b G Z with EA^ =C-EA(I.),'B(I.); 

for some i G Q, we have 

1 - 2/d _ log |q| 1 
2 £ < lo7J6| < 2 - 2/d + £' 

As in Section 1, these bounds are sharp, and if d is even are sharp within 
the subfamily parametrized by A, B up to Q-isomorphism. 

The proposition is then proven by referring to the parametrizations in the 
appendix, first noting that if E exhibits full 2-torsion over Q then 4b < a2. 
as x2 + n.x + 6 = 0 must have rational solutions, and so a2 < 4b implies 

EadQhors = Z /2nZ , n G {1, 2, 3,4,5, 6}. 

file:///ct/l
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The details of the above table are left to the reader and are essentially the 
same as those in Section 1. 

3.6 The parametrizations 
Though the parametrizations for curves with given torsion subgroups used 
above are obtained easily from those in [34] by computing the standard in
variants C4 and Cg of the given families presented in Tate normal form, we 
provide the reader with a few examples here. For any elliptic curve E con
taining G as a subgroup, E is isomorphic (over the field in question) to 
E(Ac,{t), Bc(t)) for some parameter t. 

-27 (1GA 2 + 16X + 1) 

-54 (8A + 1)(8A 2 - 16A - 1) 

-27(X4 - 12X3 + 14X 2 + 12A' + 1) 

54(A"2 + 1)(XA - 18X 3 + 7 4 X 2 + 18X + 1) 

-27(3 A + 1)(3A 3 + 3 A 2 + 9 X + 1) 

- 5 4 ( 3 A 2 - 6 A - l)(9A' ' + 3 6 X 3 + 3 0 A 2 + 12X + 1) 

- 2 7 ( A 4 + 14 A 2 + 1) 

- 5 4 ( A 2 + 1)(A"2 - 6 A + 1) (A 2 + QX + 1) 

Bz/4z(X) = 

Az/5z(X) = 
BzMX) = 
AzMX) = 
Bz/&(X) = 

Az/2Zx'£/4z(X) = 

• S Z/2Zx7V« ( A ) = 

Similarly, let E be an elliptic curve defined over Q admitting a Q-rational 
isogeny of degree N with j(E) 0 {0,1728}. Then E is a twist of the curve 
E(A*N(s), B*N(s)) for some s € Q where 

A;(X) = - 3 ( A + l ) ( A + 9) 
B;(X) = 2(X + 1) (A 2 - 18A - 27) 

Al(X) = - 3 ( A 2 + 1 2 A + 1 6 ) ( A 2 + 4) 

Bl(X) = 2 ( A 2 + 1 8 A + 76)(A 2 + 4) 2 

A*7(X) = - 3 ( A 2 - l l A + 2 5 ) ( A 2 - 3 A + 9) 

B*T(X) = 2(X4 - 18A 3 + 111A"2 - 298A + 393)(X 2 - 3 A + 9) 

A;(X) = - 3 A ( A 3 - 2 4 ) 

Bl(X) = 2( . \ " 3(i.V ! • 210). 
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Here we simply apply the standard, well-known j-parametrization, noting 
that, if we let, 

/ - 3 J - 2 J \ 

V ( J - 1728)' (.7 - 1728)/ 

(where this is defined and non-singular) then j(E) = J. 
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Chapter 4 

Elliptic divisibility sequences 
over certain curves 

4.1 Introduct ion 
In a recent work, Everest, Mclaren, and Ward [41] consider the following 
problem, suggested by Silverman [44] :' let E/Q be an elliptic curve, P <5 
E(Q) be a point of infinite order, and define a sequence of integers {/>'„ }„--i 
by 

in lowest terms (taking, without loss of generality, Bn > 0). The sequence, 
denoted B(E, P), satisfies the condition that n | ra implies B„. \ Bm, that 
is, it is a divisibility sequence. Can one derive results analogous to those 
that Zsigmondy [45] and Bilu-Hanrot-Voutier [39] prove for other classes of 
divisibility sequences? That is, if we define the Zsigmondy bound of an 
arbitrary divisibility sequence { A J n ^ i to be 

Z({An}) = sup{m : Am has no primitive divisor}, 

where a primitive divisor of Am is a prime divisor that, doesn't divide An for 
any n < rn, can we bound Z(B(E, P))l 

It is a result, of Silverman, [44], that Z(B(E, P)) is always finite, but 
the proof relies on Siegel's Theorem and is, as such, ineffective. Indeed, if 
one allows non-minimal models of elliptic curves, Z(B(E,P)) can be made 
arbitrarily large in the same way that one constructs elliptic curves with 
arbitrarily many integer points. There are, however, some results along these 
lines due to Everest, Mclaren, and Ward [41]. In particular, for divisibility 

3 A version of this chapter has been submitted for publication. Ingram, P. Elliptic 
divisibility sequences over certain curves. 
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sequences associated with the congruent number curves 

EN : y2 = r' - X2.,: 

it is shown (Theorem 2.2 of [41]) that if B.„ has no primitive divisor and n is 
even, then n ^ 18 (note the lack of dependence on N), while under certain 
additional restrictions on P , n ^ 21 independent of parity. By considering 
certain Thue ec|uations arising from the division polynomials of the elliptic 
curves in question, we improve their result to the following : 

T h e o r e m , 4.1. Let N be square free, and P a point of infinite order on the 
congruent number curve y2 = x3 — N2x, and suppose, that BN(E, P) lias no 
primitive divisor. Then 2 j/n unless n — 2, and 5 ]fn. Furthermore, if one of 
the following conditions holds, n ^ 2 or 1 n =1.1 : 

1. P = 2Q for some Q € E(Q), 

2. x(P) < 0, or 

3. x(P) is a rational square. 

To see the deficit in this result, one need look no further than the point 
(12,36) on the curve y2 = x3 — 36.x, which fails to meet any of the three 
conditions in the theorem. 

Note that Theorem 2.2 of [41] shows that if 2 | n. then n ^ 18, while 
conditions (2) and (3) respectively ensure that n < 5 and n < 21 respectively 
for n odd (arid, of course, condition (1) implies that, n < 9 immediately, by 
applying Theorem 2.2 to B(E.Q)). It is interesting to note that, while the 
authors of [41] treat case (3) directly, the hypothesis that one of {x(P),x(P)'+ 
N, x(P) — N} is a square ensures that P = 2Q for Q a point on E over some 
quadratic field. In this case, Everest, Mclaren, and Ward's proof may be 
extended to said quadratic field to give a slightly sharper bound, but there 
seems, in light of Theorem 4.1, little reason to present, that proof. It also 
seems unlikely that this technique can be extended to quartic fields, which 
would produce the chief desideratum : a uniform bound on Z(B(EN, P)) . 
Many terms in [41] are estimated quite generously, and it is useful to note 
that a more careful analysis of this work does show that in this last case, 
n < 15. 

Theorem 4.1 follows from a more general result by carrying out some 
reasonably straightforward, but nonetheless nontrivial computations. 

1For a.n improved result, see Chapter 6. 
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T h e o r e m 4.2. Let S be a finite set of primes. Then the set of pairs [E,P) 
where 

• E/Q is a minimal model of an elliptic curve, with j(E) E {0,1728}; 

• P E E(Q) is a point of infinite order; and 

• Bn = Bn(E, P) fails to have a primitive divisor, where n ^ 5 is a 
product of primes in S 

is finite and effectively computable. 

The additional claim in Theorem 4.1, that B-,m has a primitive divisor 
for all ra, is proved using techniques similar to those in [41], but exploiting 
the 5-isogeny on curves with j = 1728. In any case where such an isogeny 
exists, similar results may be derived. 

One finds, in the literature, a startling dearth of examples of sequences in 
which terms beyond the first fail to have primitive divisors. To provide the 
reader with some reason to believe that these exist, we display two families 
of examples. First, apropos of Theorem 4.1, note the points 

on the curve y2 = x3 - (T 3 - 16T)2.r. As (T 3 - 16T) is square free infinitely 
often (see Mirsky [42]), this provides infinitely many examples witnessing the 
sharpness of Theorem 4.1. 

In general, we may show that there exist infinitely many (non-trivial) el
liptic divisibility sequences with Z(B(E, P)) > 3 by considering the equation 

(T 2 + 16)2 (T 2 + 16)(r2 + 8T - 16) (T 2 - 8T - 16) 
16 ' 64 ) 

3(0, T) = (8T2(8T'i + 1), T(512r 8 + 96T4 + 3)) 

on the curve y2 = x3 + x + T2. Notice, though, that none of these curves 
have j-invariant 0 or 1728 (for T > 0). 
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4.2 C u r v e s o f t h e f o r m y2 — x 3 + B 

The proof of Theorem 4.2 is broken down into the two obvious cases. A l 
though the general technique is the same for all curves under consideration, 
the details differ slightly. 

We will compute, for fixed square free n ^ 5, all (sixth-power free) B and 
rational points of infinite order P on E : y2 = x 3 + B such that, BN(E, P) 
has no primitive divisor. Note that, for arbitrary n, if BTI(EN,P) has no 
primitive divisor, then neither does BR(EN, ~P), where r = racl(v7.). In each 
example below there turn out to be no such examples, and so it, suffices to 
show this for n square free (except in the cases where rad(?7,) ^ 4, which 
we discuss below). In general, for fixed N and n, [41] bounds h(P) such 
that BN(EN, P) has no primitive divisor. Thus, once we have found all cases 
wherein Brad(n)(*N, P) has no primitive divisor, it is a simple search to find 
any points of which a given P. is a multiple (this requires a. lower bound on 
the canonical heights of rational points on a. given curve, which is known for 
curves of these forms). 

We must also consider the case where ??, is a power of two or three. By 
the same argument as above, it suffices to show that, B^ is divisible by some 
prime not dividing £ 3 and that B% is divisible by some prime not dividing 
B,\. these proofs follow the exact, same schema as those below. Indeed, when 
j(E) = 1728 we may show that, B4 always has a, primitive divisor, and when 
E is a, congruent number curve, that B% does as well. 

For arbitrary n, we define the polynomials if)m, (pm% and wm G Z[x, y, B) 
as in [43] by 

ipx = 1, %h = 2y 
<i/>3 = 3.r4 + 12 Bx 

•04 = 4y(.T6 + 20Bx* - 8B2) 

'02771+1 = i>m+2i>'m ~ 

ipm = x42

n - il)rn+ri!>m-\ 

4y0Jm = •lpm+2,lp'}n.-l - ^ 7 n - 2 V - ' m + l ' 

so that, 
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Note, in fact, that under the relation y2 = x3 + 73, -tjjm G Z[.i;, B] for m odd 
and ipm 6 yZ[x, B) for m even. Note also, either by induction or the relation 

tfn = rn2 J] (./: • ./:(/')) 
P€E[m} 

that for m odd (respectively, even), i/;m (respectively, •i/jm/y) is a. binary form 
in a:3 and 73 of degree ^ (m 2 — 1) (respectively \(m2 — 4)): and we will refer 
to them as such. Indeed, ijj2

n can always be written as a binary form in x:i 

and 73 (of degree |(m, 2 — 1), and we will abuse notation by denoting this 
i/;2

ra(:r3, B). Finally, note that, again by the above relation, 

lcm,|mV;m/ j I 4>m, 

where the product is taken over primes. In light of this, we will define 

vI'm(•'•''• B) = </v (lcni/|,n, , ^ m </V/)~ ' , 

making xl'w a, binary form in :r3 and B with integer coefficients (independent 
of 73). 

L e m m a 4.3. Let n ^ 5 be square free, and suppose that B„{E, P) has 
no primitive divisor. Then if x(P) = a /6 2 , and X — a:i/(a:i,B). Y = 
Bb6/(a3,B), we have 

1\ , (X ,Y) = ±2a313 ] J l £ { l \ 
l.\n 

where a < 8rf, 3 < 15rf/2, and e{l) < 6d + 1, rf = \n2(n2 - 1). 

Note that, under the conditions that 73 be sixth-power free, (a,b) = 1, 
and a 3 + Bbb — c2 for some c G Z, we may recover a unique pair a/b2, B 
from each solution X, Y to the above. Thus the above lemma injects the 
examples of sequences in which the ?v.th term fails to have a primitive divisor 
into the set of solutions to a family of Thue equations, finite as deg( lI'„,) ^ 3 
for n ^ 5 . 

Note also that solutions wherein X V = 0 may be ignored. Clearly, 73 — 0 
yields a singular curve, while X = 0 gives rise to P a point of order three on 
;/•' = .i- 3 + 73. 

Proof. We will make use of the following observations: 
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C l a i m 4.4. (For n ^ 5 square free) 

1. The resultant ofipn and ip2
n in Z[B] is (432B2)d

; where d = ±?/2(?r - 1). 

2. # n ( l , - 1 ) = ± 3 ( n 2 - | ) / 4 for n odd, ± 3 ( " 2 - 4 ) / 4 n for n even. 

3. Ifn is prime then <!>„.( 1,0) = n. Otherwise, *.„(]. , 0) = 1. 

Proof. By induction on n (in general, the assumption that n is square free is 
superfluous). • 

Now, suppose that P and B are as in the statement of the lemma, with 
./•(/>) = n/lr. We have 

/ T-)\ <Pn b2n2pn 

x[nP) = 

Note that the numerator and denominator of the last term are both integers, 
and so Bng2 = b2i)2{aA, Bb6), where g2 is the greatest common divisor of 
the aforementioned numerator and denominator (necessarily a square). Note 
that, by the claim, g divides (432B2)d/2. Thus, primes dividing <J>n(a:\Bb(i) 
must also divide 6Bb. Our aim is to show that, in fact, the only primes 
dividing \I/ n(a 3, Bb6) are 2, 3, and the divisors of n, and that each may occur 
only to certain powers. 

Let / / 6 n be a prime. Note that, if I | b, then / J/a, and so 

I y * n ( a 3 , Bbe) = //'•r/ : ! , i" i ; :M'' ' (mod /), 

where 
I n if n is prime 
1 1 otherwise. 

Thus, if I | * n ( a 3 , B & 6 ) , we have / | B and / )fb. If ord,(a3) ^ ord,(£), then 
/ ]/vpr,(x,y), where A" = a 3 / ( o 3 , £ ) , V = Bb6/(a?,B) as above (because 
precisely one of X and F is divisible by /). But suppose that ordj(a3) = 
ord/(B). As B is sixth-power free (and, by hypothesis, ord/(5) > 0), this 
means that ord/(o,3) = ord;(5) = 3. But ord/(o.3 + Bb°) is even, and so 
X = -Y ^ 0 (mod /). It follows that 

^n(X,Y) = A " d c g ( * n ) * n ( l , - 1 ) (mod I). 
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By the claim, the right-hand side of the above is not divisible by /. We have, 
now, that the only primes possibly dividing \ F p ( X , F ) are 2, 3, and those 
dividing ra. It remains to consider the power to which they might occur. 

Since ord,(73„) = ord,(#i) + 2ord ;(//) for all I | 73, (see, e.g., [41] or [43]), 
we have that 

* „ ( a 6 , Bbb) | ( 432 /3V / 2 n , (4.1) 

where d = 1??. 2(?7 2 — 1) as above. If / | 73 is a prime (at least five) not dividing 
n. the argument above shows that / )f^n(X,Y). As B is sixth-power free, 
then, its contribution in (4.1) divides (Gn)b, yielding 

*n{X,Y) | 2 8 d 3 1 5 d / 2 » i s d + 1 , 

which was what was wanted. • 

In fact, we may do much better than the above rough estimate in special 
cases. Note that the above argument, in the case where n is odd and hence 
\I/ n(l, —1) is a power of three, in fact shows that primes / > 5 may divide 
tyn(X,Y) to at most the first power. A more careful analysis also shows 
exactly .which powers of 2 and 3 may occur in values of ̂ n(X, Y), which we 
see below simplifies the computations in some cases. 

E x a m p l e . There are no sequences arising from curves with j = 0 wherein 
the 5 Q th or 7 a th term has no primitive divisor, a > 0. 

Proof. One notes that, for n = 5°', such an example must come from a 
solution to 

* 5 ( A , Y) = 5 X 4 + 3 2 6 A ' V - 7()8X2Y'2 - 2616XY' : t - 256F 4 = ±2 a 3 ' 9 5 e , 

with a, [3, and e bounded. Indeed, a careful examination of this form shows 
that Q: £ {0,6,8} while a comparison of ̂  and </25 show that not both may 
be divisible by 3 (and so 8 = 0). By the remarks above, e € {0,1}. At 
this point we may take the remaining equations to PARI and see that none 
admits (nontrivial) solution. 
• For n = 7", such a sequence must come from a solution to ^7(X.Y) = 

±2 a '3 / 3 7 £ . This, factoring ^>7, yields a simultaneous solution to 

X6 + 5 6 4 X 5 F - 5808A: 4 y 2 - 123136X 3 r 3 - 189696A 2 F 4 

- 49152AV 5 + 4096Y 6 = ±2 C "3^ 1 7 £ l 
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and 
7X2 - 4XY + 16Y2 = ±2°23lh7S2 

where, after some consideration of these forms modulo 2 and 3, we must have 
a , G {0,6,12}, 0i e {0,6}, a2 G {0,2,4}, ft G {0,2,3}, and e : l + s2 ^ 1. 
Solving these systems of equations is a straightforward, if somewhat, tedious, 
exercise, yielding only the trivial solutions. • 

4.3 Curves of the form y2 = x3 + Ax 
The proofs here are very similar. The division polynomials, defined by the 
same recursion as above with 

'<A3 = 3.r" + 6Ax2 - A 2 

^ = 4 ? y(x 6 + bAx4 - 5 A V - A 3 ) , 

are now, after squaring, forms in x2 and A. Note, also, that, in this case 
\T'4(.Y, Y) has degree 3, and so we may reduce the hypothesis of the Theorem 
to n ^ 4 (if we restrict ourselves to curves with j = 1728). 

C l a i m 4.5. (For n square free) 

1. For all in. the resultant of <pm and i/-'2,, m ^[A] is (4A)^"^, where d = 
i n 2 ( ? 7 2 - l ) . 

2. # „ ( 1 , - 1 ) - ±2 d e ^* "» for n odd and ±2'k^^-[n for n even. 

3. If n is prime then <!'„.( 1,0) = n. Otherwise. * „ (1 ,0 ) = 1. 

L e m m a 4.6. Let n ^ 5 be square free, and suppose that Bn(E, P) has 
no primitive divisor. Then if x(P) ='a/b2. and X = a2/(a2, A), Y = 
Ab4/(a2,A). we have 

yn(X,Y) = ±2a]~[leW, 
l\n 

where a < M and e(l) < 2d + 1, d = \if{if - 1). 

Proof. Follows from the claim above in an identical manner. • 

E x a m p l e . There are no sequences B(E, P), j(E) = 1728, in which the / / : th 
term has no primitive divisor, where k ^ 1 and p G {5, 7,13,17}. 
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Note that solutions (X , Y ) to the Time equations for which XY — 0 
or X = —Y correspond to torsion points or singular curves, and so may be 
disregarded. Also note that, as above, it suffices to consider the cases wherein 
k = 1. 

For p = 5, we see that such a sequence would correspond to a solution to 

* 5 ( X , Y ) = ( Y 2 + 2 F X + 5 X 2 ) ( r l - 5 2 Y ; , X - 2 6 X 2 y 2 + 1 2 X 3 T + X 4 ) = ±2°5 e 

for e G {0,1} and a G {0,6,9}. Noting that 

Y 2 + 2 Y X + 5 X 2 = (Y + X ) 2 + (2X ) 2 > min{(Y + X ) 2 , (2A') 2}, 
one might conduct a simple search for nontrivial solutions. There are none: 

In the case p — 7, a careful analysis shows that we are in fact solving 

vP 7(X, Y) = ±2 C T 7 f , 

where e G {0,1} and a € {0,12,18}. Solving this in PARI yields no non-
trivial solutions. 

For n= 13, we see that 

* i . , ( X , Y ) = ±2 Q 13 e 

for a G {0,42,63} and e € {0,1}, which in turn yields (by factoring $ V i ) a, 
simultaneous solution to 

- 2 6 X 5 Y + 3 9 Y 2 X ' ' + 2 2 8 X 3 Y 3 -f- 235Y ' 4 X 2 + 2 2 Y 5 X + 13X 6-+ Y 6 = ± 2 a i 13 e i 

and 
F(X, Y) = ±2 a " 2 13 f 2 

for a form F of degree 36, where av G {0,6,9}, a2 G {0, 36,54}, and e-\ +e 2 ^ 
1. Solving the various systems of equations requires only basic algebra and 
yields no non-trivial solutions. 

$>w(X,Y) factors as well and, again, we see that there are no solutions 
(beyond the trivial ones). 

4.4 Congruent number curves 

We return to the special case of curves of the form 

E„ : >r -r3 X 2 , - . . 
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with N square free, the congruent, number curves. This is, of course, a, special 
case of the material presented in Section 4.3. Lemma 4.8 arid the following 
computation, based on Lemma 4.6, complete the proof of Theorem 4.1. 

L e m m a 4.7. Let N be square free. P G -EW(Q) be a point of infinite order, 
and 

• n G {2a, 2 / 3 3 \ 2 ' V , 2 / 3 7 7 , 3 a 5 7 , 13 7 : a. ̂  2, 3 ^ 0,7 > 1}. 

Then Bn has a primitive divisor. Assuming GRH, if n — 11". a ^ 1. then 
. Bn has a primitive divisor. 

Proof. We proceed case by case. Note that it suffices to consider n square 
free (except to treat, powers of two, where we must, consider n — 4 ) . In light 
of the computations in the previous section, it suffices to consider 

n G {3,4,6,10,11,14, 15}. 

Let 11 = 4. In this case .£4 | 4732- If x(P) = a/b2, we have, by computing 
the relevant division polynomials, that 

— = 2 (a2 + A/ 2// ') (a2 + 2aNb2 - N2b4) (a2 - 2aNb2 - N2b4) I 2aNfj ' 
'tp-2 . 

for some a, ,8. Setting X = a,/(a, N) and Y = Nli2/(a, Ar) we have, as above, 

(A' 2 + Y2) ( A 2 + 2XY - Y2) ( A 2 - 2XY - Y2) = ±2e 

for 8 G {0, 3}. It, is simple enough to enumerate the solutions to X2 + Y2 ^ 8, 
and we see that there are no non-trivial ones (note that trivial solutions here 
are ones with XY = 0 or X = ±Y. These correspond to torsion points). 
Alternately, we might note that, the second two terms must be equal, whence 
I X V • 0. 

Let n = 3. Let x(P) = a/b2 = a/By with (a, b) = 1, so that 

B3 = S i ( 3a 4 - Ga2N2b4 - bs)2/g 

with g I 2' NJ. As we have seen above, this implies 

3 X 4 - 6 X 2 V 2 - V 4 = ±2°3 e 

where e G {0,1}, a G {0, 2}, X = a/k, and V = Nb2/k, k as above. Using 
PARI , we see that the only solutions to the above have X V = 0, or X — ± V . 
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Suppose n = 6 and that B„. has no primitive divisors. Then, by the above, 

*R(X, Y) = = (-3r* + 6Y2X2 + A 4 )F 6 (A,y)F f i (-A, Y) = ±2° :3 e . 
'02'03 

where 
F6(X, Y) = y 4 - 4Y'3X - 6 y 2 A ' 2 - 4 Y A 3 + A 4 

with a £ {0,6} and e G {0,1}. Note that for 3 to divide * 6(X,y), we 
must have 3 | X, and that the value of the form is even if and only if 
X = y = 1 (mod 2). The various cases all result, in F6(X, Y) = F6(-X, Y), 
arid so 

SXY(X2 + y 2 ) = 0. 

There are only the trivial solutions. 
Now let, 77, = 10. Just as above, 

ttIO(.Y,Y) = ^ - = ± 2 C f 5 e 

where e G {0,1}, a G {0,18}, and 

V ' I O ^ y 4 _ 2y2X2 + A 4 ) ( y 8 - 12Y*X2 - 26Y*X4 + 52X6Y2 + Xs) 

F,o,i (A, y)F10IL (-A, y)F10,2(A, y)F,0,2(-X, Y). 
where 

F10,I (A, y) = y 4 + 4 y 3 A + ioy2 x 2 + 4 y x 3 + A4 

and 

P i 0,2 (A, Y) = y 8 + iey7 A + 2oy 6 x 2 

- iey 5A 3 - 26y4x4 - iey 3A 5 + 2ox 6 y 2 + ieyx 7 + A8. 
Note that the various cases always result, in F|o.i(A, Y) = Pio,i(—X, Y), 
whereupon 

sxy(A2 + y2) = 0. 
This has, of course, only the trivial solutions. 

Consider n = 14. This yields the Time equation 

*u(X,Y) = ^ - = ±2aT 
-02-07 
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for £ G {0,1} and a- G {0, 36}, with 

- ^ l i - = (-jy24 + 3 0 8 Y 2 2 A 2 + 2 9 5 4 X 4 Y 2 0 - 19852X 6 Y 1 8 + 3 5 2 3 1 A 8 Y 1 6 

- 82264A ' 1 0 Y 1 4 + 111916A I 2 Y 1 2 - 4 2 1 6 8 A J 4 Y 1 0 - 15673X U 1 Y 8 

+ 14756A L 8 Y 6 - 1 3 0 2 A 2 0 Y 4 + 196X22 Y2 + X24)FUI(X,Y)FU(-X,Y) 

Where 

Ft4(x, Y) = A 2 4 + y" 2 4 - 1 1 6 Y 2 2 A 2 

+ 2 5 6 2 A 4 Y 2 0 - 4 0 0 4 A 6 Y 1 8 + 29423A 8 Y l f i - 6 4 4 8 8 A L 0 Y 1 4 + 6 0 9 5 6 X J 2 Y 1 2 

- 64488 Y 1 4 Y 1 0 + 29423A' 1 6 y 8 - 4 0 0 4 A 1 8 Y 6 + 25 6 2 X 2 0 Y 4 - 1 1 6 A 2 2 Y 2 

+ 16776Y 7 A' 1 7 + 2 0 7 2 A 1 9 y 5 - 456A ' 2 1 Y 3 - 2 4 Y 2 3 A - 2 4 A 2 3 Y - 55792Y 1 5 X 9 

+ 2 9 2 3 2 Y I 3 A 1 1 + 2 9 2 3 2 Y U X 1 3 - 5 5 7 9 2 Y 9 X 1 5 + 1 6 7 7 6 Y 1 7 X 7 + 2 0 7 2 Y 1 9 X 5 

- 4 5 6 Y 2 J A 3 . 

In all cases we have F\4(X, Y) = FI4(—X, Y), and thus 

FL4(X, Y) - F ] 4 ( - X , Y) = 1 6 Y A ( Y 2 + A ' 2 ) ( - 3 Y 4 + 6 Y 2 X 2 + X4) 

( - Y 2 + 2YX + X2)(~Y2 - 2YX + X2)(3X4 - 6Y2X2 - Y 4 ) 

( Y 8 + 2 0 Y 6 A 2 - 2 l i V l . V i + 2 0 A f i Y 2 + A 8 ) = 0 

As the factors above are all irreducible, we see that there are only the trivial 
solutions. 

Finally, n = 15. In this case, one agains sees that the division polynomials 
factors, and comparing the two factors shows that there are no non-trivial 
solutions. • 

R e m a r k . The form \ & n ( A , Y) is of degree 30, and so finding all ways of 
representing a small integer by this form involves a. nontrivial amount of 
computation. Considering \l>u modulo several small primes shows that any 
sequence wherein the 11th term fails to have a, primitive divisor corresponds 
to a solution to ' 

* n ( A , y ) = ( - l ) 0 + 3 2 " 

where o: G {0,30,45}. Although the computation of all solutions to this is 
incomplete at this time, an initial computation assuming the Generalized 
Riemann Hypothesis shows that none exist. 
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L e m m a 4.8. Let N be square free. P e EN(Q) be a point of infinite order, 
and B = B(EN, P). Then for all m, B5m has a primitive divisor. 

Proof. Factoring '05, one sees through elementary calculus that 

log |73 5 m | = log\b50'ip5(a/b2)2/g\ > 9h(a/b2) - 9 log TV - 2 log 5 - logg 

where 
.9 = gcd(6 5 V5(a /& 2 ) ,& 5 V 5 (a /6 2 ) 2 ) 

and x(rnP) = a/b2. Comparing powers of various primes in the above (and 
considering resultants) shows that g | 2 1 2 i V 2 5 , whence . 

log 1735m| > 9h{rnP) - 43 log N - 14.6597 

using the bounds on the difference between naive and canonical height given 
in [40]. Under the assumption that B 5 m has no primitive divisor, the above 
and (9) of [41] combine to yield n = 5?n < 33. A l l such n are considered in 
Lemma 4.7 except for n = 30 which is dealt with by Theorem 2.2 of [41]. • 

4.5 Some special cases 
Although there are examples of elliptic divisibility sequences over congruent 
number curves in which the second term has no primitive divisor, we may, in 
certain cases, restrict Z(B(E, P)) further. Combining the lemma below with 
Theorem 4.1 yields the best possible Zsigmondy bound for the appropriate 
family of elliptic divisibility sequence (in light of the fact that infinitely many 
of these sequences start at a integral point). 

L e m m a 4.9. Suppose p > 5 is prime, P € EP(Q), 

r i 2 3 2 
Ep : y = x - p x, 

and B — B{EV,P). Then for all n, B<in has a prime divisor which doesn't 
divide Bn. 

Proof. Suppose not, and let x(nP) = a/b2 (so that Bn = b2). If B2n is 
divisible only by primes which divide b, we have from the above that 4o,b2(a2 — 
p2bA) | 2 3 p 4 s, where s is a product of (powers of) primes dividing b. Thus 
a(a2 — p2b4) | 2p4S2, for s 2 also a product of primes dividing b. Note that 
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2p, 

if / j 6 is a prime, I cannot divide a(a 2 - p2b4) as (a.b) = 1. so we have 
a(a2 — p2b4) | 2p4 (with the left-hand side even only if b isn't). Now, if p is a 
divisor of a, then 

.1)1(1. 
while otherwise 

a (a2 - p2b4) | 2. 

The. second case yields three possibilities: 

1 - p 26 2 = ± 1 
1 - p2b4 = ±2 
4 - p a 6 ' ' = ± l , 

which one can check admit no solution. Considering the first case similarly, 
one sees that this condition ensures that p = 3,5. • 

R e m a r k . Similar results can be shown for curves of the form y2 = a;3 ± p" 
and y2 = : i : 3 ± p^x, where a ^ 6 and (3 ̂  4. 
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Chapter 5 

On fcth-power Numerical 
Centres 

5.1 Two results 
We will call an integer N a kth power numerical centre for n if 

1* + 2k + • • • + Nk = Nk + (N + l)k + ••• + nk. (5.1) 

This equation is trivial in the case k — 0, while the solutions to the problem in 
the case k — 1 correspond to the solutions of the Pell equation A" 2 — 2Y2 = 1. 
with X = 2n + 1, Y = 2N. In [49] and [53] the cases with k = 2,3 were 
treated, and it was shown that the only solutions to (5.1) were the trivial 
ones, i.e., those with (N,n) E {(0,0), (1,1)}. We will prove the following: 

P r o p o s i t i o n 5.1. For fixed k > 1, equation (5.1) has only finitely many 
solutions. In particular, for k = 5 there are only the trivial solutions. 

Equation (5.1) is, of course, equivalent to 

Sk(N) + Sk(N-l) = Sk(n), (5.2) 

where 
Sk(x) = lk + 2k + --- + xk, 

which may be written in a closed form. For k even the curves defined by (5.2) 
are smooth and so have genus \k(k — 1) by a straightforward application of 
a theorem of Hurwitz (see [51], p. 41). When k is odd, the above admits the 
change of variables x — (2n + l ) 2 , y = (2JV)2 and the resulting curves are 
smooth in x and y of degree ^j 1-, and so have genus |(& — l)(k - 3). The 
general claim, then, follows from the celebrated result of Fallings [48]. For 

4 A version of this paper has been accepted for publication. Ingram, P. On k-ih power 
numerical centres. Comptes rendus mathema.tiques de PAcademic des sciences 27:105-110 
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a more direct proof we apply results of Bi lu arid Tichy [46] on the number 
of solutions to the Diophantine equation f(x) = g(y). More specifically, 
we apply, a refinement of this by Rakaczki [50] which applies just in case 
f(x) = Sk(x). 

For the result in the case k — 5, we apply the results of David [47], a.s 
presented in [55] (see also [54] and [56]). The problem of finding all integral 
points on the curve (5.1) in the case k = 5 reduces to that of locating all 
integral points on a certain non-Weierstrass model of an elliptic curve. As 
it turns out, integer points with sufficiently large naive height on this model 
correspond to rational points on a Weierstrass model abnormally close to a 
particular A'-rational point, for some cubic extension A ' / Q . Using David's 
explicit lower bounds on linear forms in elliptic logarithms one may thence 
obtain a bound on the heights of these points. 

We also note how one might go about finding all solutions to (5.1) in the 
case k = 4, although the required computations are daunting. 

Proof of the general claim. If gk.(x) := Sk(x) + Sk(x — 1) = Sk{y) has in
finitely many solutions then gk takes one of the forms presented in [50], and 
we will preserve the case numbering found in that paper. We note that cases 
VI and VII in this list require k = 3, which is a case dealt with by [53]. We 
note also that Case V is a special case of Case II. As noted in [50], if k is odd 
then Sk(x) = '</;fc(0<; + 1/2)2), for some polynomial ipk, clearly of degree ^p. 
Case I : gk(x) = Sk(q(x)), where q(x) € Q[x] is non-constant. Clearly in this 
case deg(f/) = 1, and so q(x) = p,x + A, p., A € Q. As the leading coefficient 
of Shfx) is 7q-j-, we have 

S,(7(.<-))- • 

On the other hand, the leading coefficient of gk(x) is -^y, and so p,k+l = 2, 
implying k = 0. 
Case II : k is odd and gk(x) = i[>k(5(x)q(x)2), with 6(x), q(x) e Q[x], 5 linear. 
Here we see, by comparing degrees, that 5 is constant and q linear. Again, 
the leading coefficient of tpk is and so the leading coefficient of ip(5q{x)2) 

is ^{7~, where q(x) = px + A, 5{x) = 5. We have then [5p2)^ = 2, 
implying k ^ 1. 
Case III : k is odd and gk(x) = ^.(^(.r)*), where S is linear, c G Q \ {0}, and 
t ^ 3 is an-odd integer. This is impossible as then deg(gk) = t (^p-) > k + 1. 
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Case VI : k is odd and gk{x) = yk((a5(x)2 + b)q{x)2) where a,b G Q \ {0} 
and 8, q are as above. This case, once degrees are compared, reduces to our 
analysis of Case II. • 

Proof of the specific claim. It now remains to deal with the case where k = 5. 
This will be resolved using lower bounds on linear forms in elliptic logarithms, 
as per [47] and [55]. For the solution of the general cubic elliptic diophantine 
equation see also [54]. 

In the case k = 5, the change of variables x. — (2n + l ) 2 , y = (2N)2 yields 
the elliptic curve 

.T 3 - 5x 2 + 7z - 3 = 2y3 + 20y2 - 16y. 

Note that we are passing from a, curve with only finitely many rational points 
to one with (it turns out) infinitely many. This is, in fact, an improvement 
of the situation as there are much better tools for finding integer points 
on a curve like this than for finding the rational points on a genus eight 
curve. We will, however, find it more convenient to deal with the following 
model, obtained by a, shift of one in the a-coordinate, which clearly preserves 
integrality of points: 

,/•(*, v) = t3 - 2t2 - 2u 3 - 20v2 + 16v = 0. (5.3) 

The transformation 

X = 

Y = - 2 

v 
At2 - At + lOv2 - t3 + 2v3 

yields a minimal Weierstrass model for (5.3), specifically 

E :Y2 = X3 - X2-A1X+ AA1. (5.4) 

Our method of proof, following [55], will be to bound some linear form in 
elliptic logarithms from above, and then from below using the explicit bounds 
of [47]. We will identify points on the various models of the elliptic curve. 

C l a i m 5.2. On the curve in (5.4), 

-8.025 ^ h(P) - h(P) <: 7.072 
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Proof. These are the height bounds presented in [52], although it is worth 
noting that we are using the definition of height found in [51], which differs 
from that found in [52] by a factor of two. • 

Cla im 5.3. The Mordell-Weil group of E/Q is generated by the points T = 
(—9,0) and Po = (1,20), the former having order two, and the hitter having 
infinite order. 

Proof. Noting that 7 and 37 are primes of good reduction for E, and that 
ffE(¥7) = 8 and #E(F:n) = 46, we see instantly that the order of torsion 
for E/Q divides two. A descent (using M A G M A ) shows that the curve has 
rank at most one. The two points above demonstrate the sharpness of this, 
and all that remains is to establish that (1, 20) is indivisible. Suppose that; 
(1,20) = nR or nR + T for some R € E(Q) and n > 2. Then one sees, 
through basic computation and height bounds, that h(R) < 17.26, and of 
course R must be an integer point. Thus X(R) is an integer of modulus at 
most 3.13 x 10 7, and a search of all such points confirms our claim. • 

The following claim is a simple computation, performed in Pa r i /GP . 

Cla im 5.4. The only solutions to (5.3) with \t\, \v\ $C 104 are 

(t, v) G {(0,0), (2,0), (8, - 8 ) , (8, - 6 ) , (8,4)}. 

Cla im 5.5. Let P — (t,v) = m P 0 + j'T be an integer point on (5.3) with 
\t\, \v\ > 10 4. Then 

~ $C exp(9.157-0.31?n 2). 
\v\ 

Proof. Our first order of business is to bound h(X(P)) in terms of \v\. By 
examining (5.3) we see that the condition that \v\ are large implies that 
P lies quite close to the asymptote T — aV + B, where a is the real cube 
root of 2, and B = In particular, for \v\ > 104, \t - (av + B)\ < 0.002. 
As t and v are integers, we have 

h(P) - 7.072 < h(X(P)) < log max{|8 -At- 3v|, 
^ logmax{8 + (4a + 3)u + 4/3 + 0.008, \v\} 
< log |(4a + 3.003)u| ^ log \v\ + 2.085. 

From this we conclude that 

- log\v\ ^ 9.157 - h(P) < 9.157 - 0.31m 2. 
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• 
Let Q0 be the limit point of points on (5.4) arising from the asymptote of 

(5.3), i.e., X(Q0) = - 4 a - 3. We wish to translate the above into an upper 
bound on the difference between the elliptic logarithms of Qc, and P. Note 
that as Q0 is defined only over K = Q(a:), we must consider elliptic logs over 
a number field. First note that 

h{Q0) ^ 10 

and 

K Q o ) | = 1.52086.., 
\u(P0)\ = 1.11199..., 

where, as Section 4 of [55], u denotes the elliptic logarithm. We set 

C = u{P)-u{Qo). 

C l a i m 5.6. 
\C\ < 

1 
A\v\' 

Proof. As in [55], we note that 

dv 
Jr^Of/Mf 

One may verify that \df /dt\ ^ Av2 for \v\ ^ 104, from which the above bound 
follows. 

Now we have 

• 

u(P) = mu(P0) + ju(T) + m0u). 

where m 0 is chosen to specify the branch of the log and where j G {0,1}, so 

\C\ = mu{P) - u(Q0) + (2777,o.+ ])- < exp(7.771 - 0.31m' 

Note that, (see [55]) ma ^ 2m + 1, and so if M is the largest coefficient, in the 
linear form, M ^ 4m + 3. 

It remains to determine a lower bound on |£|. In the notation of [47] we 
have D — 3, 60 = 0,6\ = m, ,62 — —1,^3 = 2m 0 + j- We will be considering 
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ui = u(P0),u2 =^u(Q0),u3 = u{T). So ji = P 0 , 7 2 = Qo,73 = T. The 
conditions on B, E, Vj,V3 become (note, our E is David's E) 

31og(P) > log(Vi) ^ log(V2) > log(V3) 

log(B) ^ ma,x{37.425,4m + 3} 

Jog(V'i) ^ max{13.76769, 5.7114} 

log(Va) > ma,x{ 13.76769,10.6837} 

log(V3) ^ 13.76769 

e < F 5.344 

which is obtained by making sharp the inequalities for the V*, E = 5.344, 
B = Am + 3 (at least for m > 9). This yields 

16g|£| ^ 2.891 x 10 7 5(Iog(P).+ 2.7747)(loglog(P) + 10.5121)'. 

Combining we obtain the absolute bound 

|?n | < 10 4 2 . 

Applying the L L L algorithm in a fashion similar to that in Section 5 of [55] 
we may reduce this bound to 27 at which point the result is easily verified 
using PARI . One notes that the only integer points on the original curve 
corresponding to points nP + jT with |n| ̂  27 are the points C , T, P + 
T, 2P, —P. corresponding to the points in Claim 3. The only integer points 
on the original curve arising from these are (0,0) and (1,1). • 

R e m a r k . In the case k — 4, one may, by performing the change of variables 

In + 1 
x = N 

is.// ' + 120/74 + 100n3 + 30n 2 - 1 - 9 6 A 5 - 80.Y 3 

Ni . 

reduce the problem of finding rational points on the (in this case genus six) 
curve defined by (5.1) to that of finding rational points on the hyperelliptic 
curve 

y2 = x 6 - 24.x5 + 400.x3 + 336.x + 7936. 

Unfortunately, this curve isn't easily treated with the methods of Chabauty; 
the sextic above has Galois group £ 6 , and the method'consequently requires 
computing the Mordell-Weil groups of elliptic curves over number fields of 
degree 45. 
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Chapter 6 

Concluding remarks and future 
directions 
In this final installment we explore some further avenues of research. 

6.1 A p p r o x i m a t i n g r a t i o n a l s b y j{E) 

As noted in the preface and in Chapter 3, the results of Chapter 2 may be 
viewed as an answer to the question of how closely one might approximate 
0 with the j-invariant of an elliptic curve with a. rational point of a. certain 
order. Similarly, the results of Chapter 3 may be seen as results on how 
closely one might approximate 1728 with the j-invariants of various types 
of elliptic curves. One might ask about approximating other rational values 
by j-invariants of certain classes of elliptic curves over <Q>. This problem, as 
it betides, bears remarkable resemblance to that of approximating algebraic 
numbers by rationals (although this is perhaps due more the the provenance 
of our results than any deep correspondence). For the remainder of this 
thesis, the term 'elliptic curve' is an abreviation for 'elliptic curve in short 
Weierstrass form with integral coefficients' unless otherwise noted. First, a 
remark. 

R e m a r k . F ix an integer N ^ 2. Then the set 

{j(E) : E(Q)Tms 2 Z/NZ} 

is either empty or dense in Q. 

Proof. Note, as in the appendix, that there is a rational function j/v G Q(i) 
such that for any field K, an elliptic, curve E/K is A'-isomorpliic to an elliptic 
curve with a A'-rational point of order N if and only if j(E) = jyv(i) for some 
t € K. As jjv is continuous for each JV, it suffices to check that the image of 
R by JN is dense in R. But jN maps R onto R, as every elliptic curve E/R 
contains an R-rational point of order N. . • 
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The following result may be extended to cover all possible torsion/isogeny 
structures over Q as in Chapter 3. A weakened version is stated here for 
simplicity of statement and proof. 

T h e o r e m 6.1. Let N G {5, 7,9}, and. let r G Q. Then for any e > 0. there 
exists a constant C = C(N, r, e) such that for all elliptic curves E/Q with a 
rational point of order N and j(E) ^ r, 

• \j(E)-r\ > C\A(E)\-^N'r)-e, 

where 

{A - 3 r = () 1 

| ( A - 3) r = 1728 
3 (AT - 3) otherwise. 

Suppose, further, that r is not the j-invariant of an elliptic curve E/Q with 
a point of order- N. Then there are infinitely many elliptic curves E/Q 
containing a rational point of order N such that 

\j(E)-r\ < C'\A(E)\-"<N'r), 

where C = C'{N,r) is some explicit constant. 

Compare this with the discussion of Roth's Theorem in Section 1.3. Note 
that the level structure is completely critical to the result. In general, one 
might observe that if r G Q and r ^ j{E), then 

\j(E)-r\>\CA(E)\-], (6.1) 

where C is the least positive integer with Cr £ Z (the denominator of r). As 
every rational number is the j-invariant of some elliptic curve over Q, this is 
the best one can do in full generality. 

Sketch of the proof of Theorem. 6.1 for N = 5. Let Et and be as in the 
proof above, and write j(t) = f(t)/g(t). We will take t = p/q throughout, 
(p, q) = l. Note that the discriminant of f(t)-rg(t) in Z[r] is 5 ' J V( r -1728 ) l i , 
and so for r ^ 0,1728, the polynomial f(t) — rg(t) is squarefree. We restrict 
our attention to this case, as the other two cases are essentially treated in 
Chapters 2 and 3. Note that A(Et) = 6l2g(t), which has no roots in common 
with f(t) — rg(t) unless r = 0 (a case we're ignoring for now). Note, also, as 
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in Chapter 2, that if E is an elliptic curve isomorphic over Q to Et and with 
integral coefficients, |A (£ ) | > c\qi2g(p/q) for some constant c ( . 

There are two cases : If \9 - t\ > 5 for all roots 9 of f(t) - rg(t) and 
some fixed 6 > 0, then \j(t) - r\ is bounded below by a constant. By Roth's 
Theorem there is, for any given e 0 , a constant c 2 = c 2(e 0) such that |A(£/)| > 
c2<?10~e°, and we are done. 

So suppose t is sufficiently close to some root 9. Again by Roth's Theorem 
we have 

, \f(t)-rg(t) \m > c2(e0)q-2-s\ 
g(t) 

for some e 0 to be chosen later. As noted, we may choose 

S = \ mm{\9 - £| : g{£) = 0 and f{9) - rg(9) = 0} > 0. 

Let 
c 3 = inf{|.o(t)| :\t-6\<5 whenever f{0) - rg{9) = 0}, 

so that for all E as in the statement, |A (£ ) | ^ C;ic 3g 1 2. Then we see that, 
choosing £ 0 sufficiently small and C4 sufficiently large, we have 

| . 7 ( ^ ) - r | > a 1 | A ( E ) | - H , 

• 
This result is a more specific, unconditional form of a result of Silvern1a.11 

to appear in [61]. Using effective methods, as in [58], we may always provide 
effective results in this direction, but the improvements in the exponent, in 
(6.1) will be very small. Notice, though, that (as in Section 3.4), substantial 
effective improvements on (6.1) are available when f(t)—rg(t). in the notation 
of the proof, factors. This occurs precisely when there is some elliptic curve 
E/K with j(E) — r such that E(K) contains a point, of order for some 
extension K/Q with Galois group a proper subgroup of (Z/(N — 1)Z) 2 . 

6.2 M o r e o n e l l i p t i c d i v i s i b i l i t y s equence s 

In Chapter 4 we mentioned a genera.lisa.tion of Everest, Mclaren, and Ward's 
[59] methods which apply over quadratic fields. When Chapter 3 was written, 
this generalisation seemed largely superfluous, but the claims in [59] have 

http://Silvern1a.11
http://genera.lisa.tion


Chapter 6. Concluding remarks and future directions 81 

subsequently been relaxed (Chapter 3 has been modified to account for this). 
In this section we establish a bound for Z(EN, P) where 

EN : ;//' = x3 - N \ 

N square free as usual, and P £ E(Q) a point of infinite order with the 
property that 

for some Q € E(K), 2Q = P and [®{x{Q)) : Q] < 2. (6.2) 

Note that in general, every point in E(Q) be may written as twice a point 
in some extension of Q with Galois group a subgroup of (Z /2Z ) 2 (see, for 
example, [62]). We note also that a careful examination of doubling points on 
EN shows that P has the above property if the set {x(P),x(P)-N, x(P)+N} 
contains a rational square. 

The bound on even n such that Bn has no primitive divisor in [59] is 
obtained by contracting upper and lower bounds on B„ which conflict for 
sufficiently large n. The upper bound, which applies for any n such that B„. 
has no primitive divisor, is as follows: 

L e m m a 6.2. If Bn has no primitive divisor, then 

log Bn < 77(71) + p(n)n2h(P) + u(n) (log N + 0.347), -

where 

p\n p\n p\n 

all sums taken over primes. 

Note that p(n) < 0.453, while i](n),u)(n) are of order at most log(/7,). 

By contrast Everest, Mclaren, and Ward [59] obtain, for 77. even, the 
following: 

772 ^ 

log B„ ^ y / ^ P ) - 7 log N - log(7V2 + 1) - 1.774. 

One may derive similar results for 77, divisible by p, where E admits an isogeny 
of degree p, but these are in general much weaker bounds than obtained by 
an isogeny of degree two (see, for example, the case p = 5 in-Chapter 4). 

We shall prove, using some straightforward analysis of doubling point on 
E N , that the following holds : 
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L e m m a 6.3. For any n, if P e EN(Q) satisfies property 6.2, then 

\ogBn > ^h(P) - y logiV - . ^ l o g ( A 2 + 1) -7.7142. 

Combining Lemma 6.2 with Lemma 6.3 we obtain a bound on n for N 
fixed. To make this bound uniform we use an explicit statement of Lang's 
Conjecture for congruent number curves, found in [57] E 

L e m m a 6.4 (B remner , S i l ve rman , Tzanak is ) . For all P e EN(<Q). 

h{P)zhog2N2. 
o 

Note that as EN(Q) is finite for N < 5, we are free to assume /V ̂  5. 
.Combining Lemmas 6.2, 6.3, and 6.4 we obtain 

0 16 (,/(•»,) + uj(n)(\ogN + 0.347) + ]j log TV 4- j- \og{N2 + 1) + 7.7142) 
(l-2p(n))log.(2/Y2) 

Applying the bounds 

i](n) < 2 logn, w(n) < logn/ log3, p(?i) < 0.203, 

one see immediately that n ^ 13, while a more careful case-by-ca.se analysis 
(with the exact values of ??(n), uj(n), and p(n)) show in fact that the above 
condition implies n ^ 9. Thus we obtain the following result, which, in addi
tion to being stronger than Theorem 4.1, does not depend on the Generalised 
Riemann Hypothesis : 

T h e o r e m 6.5. Let N be. square free, and P a point of infinite order on the 
congruent number curve y2 = x3 - A2.-?;, and suppose that B„{E,P) lias no 
primitive divisor. Then 2 ]fn unless n = 2. and 5 )(n. Further'more, if one of 
the following conditions holds, n < 2 : 

1. P = 2Q for some Q e E(Q), 

2. x(P) < 0, or 

3. {x(P), x(P) — N,x(P) + N} contains a rational square. 

The remainder of the section is devoted to the proof of this. 

http://case-by-ca.se
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Proof of Lemma 6.2. We reproduce the proof in [59] for completeness. 
The following claim, from [62], also follows from the discussion of multi

plication by n in Chapter .4. 

C l a i m 6.6. For p prime, p \ Bn, 

ord p (Bkr)) = ord,, (Bn) + 2ovdp(k). 

From this we may derive that 

gcd(Bn,Bm) = Bgcx]n.m. 

Note, then, that if B„ has no primitive divisor, then every prime / | Bn must 
divide Bn/P for some prime p, and that the order to which / divides Bn is at 
most orch(£?„/)) + 2. It follows that Bn divides 

\{p2Bn/p, 
p\n 

from which Lemma 6.2 follows by taking logs. • 

Proof of Lemma 6.3. The proof of 6.3 uses techniques similar to those ap
plied in [59] to bound m for which B2m has no primitive divisor. The gain is 
obtained in part by extending the argument to quadratic fields, and in part 
by being somewhat more careful with various estimates. 

If P has property 6.2, we must first consider which fields K may occur. 
We will assume that property 6.2 holds non-trivially, that is, that P is not of 
the form 2R for any point R G E(Q) (the trivial case is treated in.Chapter 4). 
Then by a standard argument using the Kummer pairing (again see [62]), one 
sees that K is unrainified outside the set of primes containing 2 and tire prime 
divisors of A(Epj) (the primes of bad reduction for E^). In particular, if 
K —- Q(V~D) where D G Z is chosen to be square free, then D | 2iV. Although 
a minor observation, this restriction on the discriminant of K/Q allows a 
bound which is uniform. We should mention that while the explicit decimal 
values below have been rounded in the direction which favours the given 
inequality, the actual computations were carried out to a higher precision to 
avoid compound generosity in the estimates. 

C l a i m 6.7. Let K — Q(\/~D), where D \ 2N. Then for any £ G K, we may 
find a, 8 G Ok (with (5 0) such that. B£ = a and 

log |A%cd(o:,'8))\ < \ log N + b- log 2 - log TT. 
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Proof. We may write £ = A/B for relatively prime integral ideals A and B. 
These are clearly in the same ideal class, so let (a) = AI, (/3) = BI, where I is 
a representative of the inverse of this ideal class. Then, up to multiplication 
by units (which doesn't change norms), £ = cx/(3, while (a,(3) — I. By 
a theorem of Minkowski (see [60]), we may choose representatives of-the 
various ideal classes with norm each less than £ \[D. • 

The following bound on the difference between the naive and canonical 
heights over Q will be used to estimate the difference in the heights over K. 

Cla im 6.8 (Bremner, Silverman, Tzanakis [57]). For all P £ EN(Q), 

-ci(N)^h(P)-h(P)^o2(N), 

where c:, = \ log(JV2 + 1) + 0.116 and c2 = log N + 0.347. • 

Now, we write the doubling map on Epj as 

/a \ (a 2 + b2N2)2 _ F(a,b) 
U' / Aab(a2 - b2N) ~ G(a, b)' 

and use this to construct an explicit lower bound on log B„,. If nP = Q, for 
Q G EN(K), write x(Q) = a/j3, with a and (3 algebraic integers in K chosen 
as in Lemma 6.7. We introduce a third height on. A". Throughout we will let 
0 = gcd(a,/3). 

Cla im 6.9. Let h*(a,(3) = \ logmax{|A/7a')|, |Tr(o:^)|}. Then 

-c5(N,D) < h*(a, 8) - h(a/,8) < c(-,{N,D), 

where c 5 = 2 log 2, c 6 - log 2 + log |W(6»)|. 

Here J\f and Tr are the standard norm and trace functions 

<r€Gal(AVQ) 

Tr(, ;)= }2 r". 
<reGal(K/Q) 

Note that if we write 

r M[gcd (F(a,f3),G(a,l3) 

then logBn = \ log \M(G) \ — ^ logT. Our lower bound is now the result of 
some elementary calculus. 
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C l a i m 6.10. We write F = F(a,,8) and G = G(a\/3) for brevity. 

i logma.x{|yV '(F)|, \M(G)\} < 4h(a/f3) + 21og(JV) + 71og2 + 2log|AA(6>)| 

i l o g m a x d ^ F ) ! , pV(G)|} > 4/;,(o://3) - log A + 0.9163 

Proof of the claim. Expanding the expressions for log \jV(F) \ and log \jV(G)\ 
yields 

log \Af(F)\ = 2log \(Af(a) - N2M(p))2 + 7Y 2 Tr(«^) 2 | 

log \M{G)\ = log \M{AaL3)\ + log \{M(a) + N2N{(3))2 - N2Tv(aJ3)2\ • 

We will make use of the observation that for any X and Y, either 

{<f~<2 (6.3) 

or l o g | X -Y\> loginax{|X|,\Y\} - log 2. 
Now, notice that 

log \Af(F)\ ^ 2logmax{\Af(a) - N2AT(p)\2, N2TI(QIJ)2} 
> 4 log max{ \M(a) |, |A/"(,(?) |, | TV (a/3) |} - 2 log A 
^ 8h*(a,/3) - 2 log 2. 

unless the inequalities (6.3) hold with X = Af(a) and 1' = N2M(/3). So 
suppose they do, and suppose further that N2 > 2 (which is a modest as
sumption). This implies \ftf(ft)\ < \M(a)\, whence 

h*(a,P) = ^logmax{|A^(a)|,|Tr(o^)|}. 

For a,f3 with \NTr(ap)\ > \M{a)\ we have, from the above, 

log\Af(F)\ > 4 l og |ATr ( a0 ) | > 4log\JV(a)l 

and so 
l o g | ^ ( F ) | >8/»*(a,/3). 

Finally, suppose that \NTr(af3)\ < |A/"(or)|. and furthermore that N > 1, 
so that 

&->,/?) = i log |Jv7a)|. 
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We have also that 7V2LV(/0)| > \\N(ot)\, and so 

log \M{G)| ^ 4log \M(a)\ + log2 + l o g 5 - 2 l o g N . 

Combining this with Claim 6.9, we obtain one of the bounds. The other 
bound is similar. • 

Note that as 2Q 6 EN(Q), we may combine this with Claim 6.8 to obtain 
bounds on the difference between the cannonical and naive heights over K. 
We produce only the bound of interest to us. Note that while one may 
obtain a cleaner looking result by replacing 0 and Y with worst-case estimates, 
keeping track of these terms pays off in a better bound on n. 

Claim 6.11. Let Q be as above. Then 

h(Q) - h(Q) > - log AT - J log |A*'2 + 1| - \og\JV(0)\ + i l o g T - 1.2421. 
o o 

Proof. Write 

HQ) - h(Q) = \(4h(Q) - h{2Q)) +^[h(2Q) - h{2Q)). 

The result now follows from 6.8 and 6.10. • 

Claim 6.12. logT ^ log\JV{2 3N A0 4)\. 

Proof. We will in fact prove a stronger divisibility result, that T | J\f(2:iN404). 
Using resultants, if g = gcd(F(a, (3), G(a, 0)), then g | 2 1 2 AT 1 2 /? 1 6 . Let / be a 
prime (in K). Note that 

ordi(F(a,P)) = 2ord,,(tt2 + N2f32) 
ord,(G(a,/3)) = 2ord,(2)•+ ord,(«) + ord,(/3) + ord,(o:2 - N2fi2) 

while 

ordj{a2 ± N2(32} = 2 min ord,.{cv, N(3) 

unless these orders are equal, in which case 

minordj{a' 2 ± N2f32} < 2oidj(A>) + 2ord,(,tf) + ordj(2) 
min ord, {o;2 ± N2/32} $C 2ord,(cv) + ord, (2). 
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We wish to show that for each prime / of A", 

ordj(o) < 3ord((2) + 4ord,(0) + 4ord,(A). 

Suppose that ord/(a) > ordz(JV/3). Then ord,(0) = ord,(/3), and 

oidi{g) < ord,(F) = 4ord,(A/?) = 4ord,(A) + 4ord,(0). 

So we will assume that ord/(a) ^ ord»(A) + ord/(/3). 
If ord»(a) < ordi(Nd) then ordj(F) = 4ord/(«) < 4ord.(/V) + 4ord/(0) as 

either ordj(0) = ord,(o:) or ord/(0) = ordj(/3) and ord,(A) ^ 0. 
Finally suppose that ord;(a) = ord/(iV/3), and hence ord;(0) = ord/(/3). 

Then the above indicates that either 

ord,(a:2 + A 2 / ? 2 ) < 2ord/(A) + 2ord/(,0) + ord,(2), 

in which case we have 

ord,(F) < 4ord /(A) + 4ord,(0) + 2ord,(2), 

or ord,(a'2 - N'2B'2) < 2OKI<(7Y) + 2ord,(Yj) -I- ord,(2), in which case 

ord/(G) < 3ord/(2) + ordi(a) + 3ord,(/3) + 2ord,(A) 

= 3ord,(2) + 3ord,(A) + 4ord.(0). 

In either case we are done. • 

The following result, proved in a similar fashion to Claim 6.10, completes 
the basis of our proof. 

C l a i m 6.13. 

logbV(G)| ^4/ i * (a, /?) + log2-21ogJV. 

The proof is now, essentially, complete. As 

we have by 6.13 that 

log \B„\ > 2h*(a, B) + ~ log2 - logN - l- logT. 
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Applying Claims 6.9 and 6.11 we then obtain 

log \B n \ > 2h(Q) - 3 logN -1 log(A 2 + 1) - 2 log \Af{0)\ - i logT - 4.9101, 

while using Claims 6.7 and 6.12 (recall that 2Q = nP), this begets 

log |B„,| > ^h(P) - y log A - i log(A 2 + 1) - 7.7142. 

• 
Unfortunately, as mentioned in Chapter 4, it seems rather impossible to 

extend this result to the case where P = 2Q for some Q £ E(K), where 
[K : Q] = 4 (a condition satisfied by every rational point P). A n absolute, 
uniform bound on Z(EN,P), then, is still out of reach. 
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Appendix A 

Parametrizing polynomials 

A . l B y coefficients 
The following polynomials parametrize elliptic curves over Q with a given 
torsion group. For each admissable group G, E/Q contains a subgroup 
isomorphic to G if and only if E is Q-isomorphic to a, curve of the form 
E(Aa(t), Bc{t)) for some t'E Q. The parametriza.tions for curves with tor
sion subgroups isomorphic to Z / 2 Z , (Z /2Z) 2 , or Z / 3 Z are of a slightly dif
ferent form, and readers are directed to the presentations in Chapter 3. The 
following parametrizations are obtained simply by re-writing those found in 

- 2 7 ( 1 6 X 2 -I- 16X + 1) 

- 5 4 ( 8 X + 1)(8X 2 - 16X - 1) 

- 2 7 ( X 4 - 1 2 X 3 + 14X 2 + 12X + 1) 

54(X 2 + 1) (X 4 - 18X3 + 7 4 X 2 + 18X + 1) 

- 2 7 ( 3 X + 1)(3X 3 + 3 X 2 + QX + 1) 

- 5 4 ( 3 X 2 - 6 X - 1)(9X 4 + 3 6 X 3 + 30X2 + 12X + 1) 

- 2 7 ( X 8 - 12X 7 + 4 2 X 5 - 5 6 X 5 + 3 5 X 4 - UX2 

+ 4 X + 1) 

5 4 ( X 1 2 - 1 8 X 1 1 + 117X 1 0 - 354X 9 + 570X 8 - 486X 7 

+273A 6 - 222X 5 + 17AX4 - 4 6 A 3 - 15A 2 + 6 A + 1) 

-27 (16A 8 - 6 4 A 7 + 224A 6 - 448A 5 + 480X 4 - 288A 3 

+96A 2 - 16A + 1) 

- 5 4 ( 8 A 4 - 16A 3 + 16A' 2 - 8 A + 1)(8X 8 - 3 2 X 7 

- 8 0 A 6 + 352A 5 - 456X 4 + 288A 3 - 9 6 X 2 + 16A - 1) 

[64]. 

Az /4z (A ) 

Bz/4iXX) 

Az/Sz(X) 
Bz/hz{X) 
Az/t>z(X) 
Bz/oz(X) 
AznziX) 

Bz/7z(X) 

. Ax/sz(X) 

BJJR'AX) 
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Az/wXX) = - 2 7 ( X 3 - 3 X 2 + 1) (X 9 - 9 X 8 + 27X7 - 48X ( i + 54X 5 

. - 4 5 X 4 + 2 7 X 3 - 9 A 2 + 1) 

Bz/9Z(X) = 54 (A 1 8 - 1 8 A 1 7 + 135X 1 6 - 570A 1 5 + 1557A 1 4 

- 2 9 7 0 X 1 3 + 4128A 1 2 - 4230A" + 3240X 1 0 

- 2 0 3 2 A 9 + 1359A 8 - 1080A 7 + 735X 6 - 306A 5 

+27A 4 + 4 2 X 3 - 18X 2 + 1) 

AZ/wz(X) = - 2 7 ( 1 6 X 1 2 - 128X L 1 + 4 1 6 X J 0 - 720A 9 + 720A 8 

J - 2 8 8 A 7 - 256A 6 + 432A 5 - 240X 4 + 4 0 X 3 + 1GA 2 

- 8 A + 1) 

V3z/:ioz(A) = 5 4 ( 2 X 2 - 2 X + 1 ) ( 2 X 4 - 2 X + 1 ) ( 4 X 4 - 1 2 X 3 + 6 X 2 

+2A - 1)(4A 8 - 3 2 A 7 + 104A 6 - 176A 5 + 146A 4 

- 4 8 A 3 - 4A' 2 + 6 A - 1) 

A z / i 2 z ( A ) = - 2 7 ( 6 A 4 - 12A 3 + 12A' 2 - 6X + 1)(24A 1 2 - 1 4 4 X n 

+864A 1 0 - 3000A 9 + 6132A'8 - 8112A 7 + 7368X< : 

- 4 7 2 8 A 5 + 2154A 4 - 684A 3 + 144A 2 - 18A + 1) 

Bz/nz(X) = - 54 (24A 8 - 9 6 A 7 + 216A 6 - 312X 5 + 288A 4 - 168X : ; 

+60A 2 - 12X + 1)(72X J 6 - 576X 1 5 - 1008X 1 4 

+ 17136A 1 3 - 65880A 1 2 + 146304X 1 1 - 222552A 

+248688X 9 - 211296X 8 + 138720X 7 - 70632X 6 

+27696A 5 - 8208X 4 + 1776A 3 - 264A 2 + 24X - 1) 

A z / 2 z x z / 4 z ( A ) = - 2 7 ( A 4 + 14A 2 + 1) 

5 z / 2 Z x z / . i z ( A ) = - 5 4 ( X 2 + 1 ) ( X 2 - 6 X + 1) (X 2 + 6 X + 1) 

A z / 2 Z x z / 6 z ( A ) = - 2 7 ( A 2 - 6 A + 21)(A 6 - 18A 5 + 7 5 A 4 + 180A 3 

- 8 2 5 A 2 - 2178X" + 6861) 

£ z / 2 Z x z / 6 z ( * ) = 54(A 4 - 12A 3 + 3 0 A 2 + 228A - 759)(A 4 - 1 2 X 3 

+30A 2 - 156A + 393) ( A 4 - 1 2 X 3 + 3 0 A 2 

+36A - 183) 

A Z / 2 Z x z / 8 z ( A ) = -27 (256A 1 6 + 2048X 1 5 + 7168X 1 4 

+ 14336X 1 3 + 17664A 1 2 + 12800A n + 3200X 1 0 

. - 3 7 1 2 A 9 - 4624A 8 - 1856A 7 + 800A 6 + 1600X 5 

+ 1104A 4 + 448A 3 + 112A 2 + 16A + 1) 

£ z / 2 Z x z / 8 z ( A ) = 54(16 A 8 + 6 4 A 7 + 9 6 X 6 + 6 4 X 5 + 3 2 A 4 + 32 A 3 

+24A 2 + 8 A + 1)(32X 8 + 128A 7 + 192A° + 128X 5 

+ 16A 4 - 3 2 A 3 - 2 4 A 2 - 8 A - 1)(8A 8 + 3 2 A 7 

+48A 6 + 3 2 A 5 - 8 A 4 - 3 2 A 3 - 2 4 X 2 - 8 X - 1) 

.-6 

U O A 

14 

10 

6 
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A.2 B y j - i n v a r i a n t s 

An elliptic curve E/Q admits an isogeny of order N iij{E) — ji\-(t) for some 
t € Q. These parametrizations have been known for some time, but seem to 
appear explicitly only in [63]. 

m 

.m 

.U(t) 

m 

(/ + 256)3 

T2 

(t + 27)(/ + 243)3 

t:i 

(t2 + 256/; + 4096)3 

t4{t + 16) 
(t2 + 250/ + 3125)3 

¥~~ 7 

(t2 + 13/ + 49) (t2 + 245* + 2401)3 

_ 

(t + 9)3(fr3 + 243/ 2 + 2187/ + 6561)3 

t9{t2 + 9 /+ 27) 
(r2 + 5/ + I3)(t4 + 247t3 + 3380/ 2 + 15379/ + 28561)3 
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