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~Abstract

We sufvey recent results on o-minimal theories, and in particular o-minimal - -
expansions of real closed fields. The recent work in the classification of re-
ducts of the field of real numbers, largely the work of Peterzil, is presented,

as is the basic groundwork of o-minimality. It is shown that if X C R" is

semialgebraic, but not semilinear, then multiplication on R may be defmed. ,
locally in terms of X, modulo the vector space properties of the reals. If X\ K
is not semilinear for any compact K, then the condition of locahty can be -
removed.
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Introductibn

The aim of this thesis is to explore the subject of o-minimal structures, and in
particular survey the use of o-minimal structure theory to classify reducts of
~ the field of real numbers. The thesis itself is written with the assumption that
~ those reading it will have a basic understanding of model theory, but we will
lay out here the requisite fundamentals informally.
Initially we should attempt to define model theory. Wilfrid Hodges! de-
scribes model theory as ‘algebraic geometry minus fields.” This is a rather
- good description both because it gives a fairly good idea of what the subject
is, and because it makes model theory seem very cutting-edge. Indeed, model
theory was recently used to solve a significant problem in algebraic geome-
try [Bou98]. One wanting a description more thorough (and less glib) might
like this: Model theory is the subject in mathematics interested in determin-
ing what mathematical structures exist, and what mathematical structures are
worth studying, primarily by examining the subsets definable in structures
by first-order sentences. In the classical sense, a ‘structure’ is a non-empty
set with certain distinguished relations, functions, and elements. For exam-
ple, a group, (G, €) is a structure. A definable set in a structure is the set
of tuples from the structure satisfying some first order formula, with possi-
ble additional constants from the structure. If any additional constants used
come from the set A, the set is said to be A-definable. The center of G is a
definable subset of G, namely the set of all z satisfying ' ‘

Vy(zy = yz).

In fact, it is O-definable. For those unfamiliar with the concept of a first-order
formula, it suffices to consider any coherent string of symbols either from the
‘language” of the structure (the distinguished relations, functions, and con-
stants) or from the language of logic: A (and), V (or), — (implies), = (not), V
(for all), 3 (there exists), and variables. The variables which are not bound
by quantifiers are ‘free variables’ and we can view a first order formula as a
condition on elements (or tuples of elements) in the structure. If ¢ is such a
formula, and ./ is a structure, (/) is exactly that set of elements (or tuples)

1[Hod93]
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from the structure of which ¢ is true. We use a great deal the fact that first
- order formulas are of finite length.

We use = to denote equivalence of first order formulas to avoid confusion

with the uses of = in the formula. This symbol also has another important us-
age, however: we say that two structures .# and ./ are elementarily equiva-
lent, written .# = ¥, if they have the same language, and the same first or-
der sentences (formulas without free variables) are true in . and .#". Anem-
- bedding of .# into 4" is an injective function from .# to .# which sends the
various constants of .# to the appropriate constants in 4", commutes with all
of the distinguished functions, and preserves the distinguished relations (i.e.,
atuplea € 4™ is related by R if and only if (f(ap), ..., f(an)) € A ™ is related
by R). An elementary embedding is an injective function which preserves the
relations defined by any first order formulas. We say that .# is a substruc-
ture of A (resp. elementary substructure), # < A (resp. 4 < N), ifitisa
* subset and the identity inap is an embedding (resp. elementary embedding).
If .# is a substructure of .4/, .4 is an extension of .#. An isomorphism is a
surjective embedding. A first order theory T is a set of first order sentences
(formulas without free variables), and a model of a theory is a structure .#
which makes each of these sentences true, denoted .# = T.

It is common, however, in Amodern model theory to view a structure some-
what differently. We typically consider two structures on the same underly- -
ing set to be ‘the same’ if the same sets are (-definable (or even, for some
purposes, simply definable) in both. Thus (Q, +) and (Q, —) are more or less
the same structure. A strong reduct of a structure .# is another structure .4
on the same set with every (-definable set in .#" being (-definable in .Z. A
structure .4 is simply a reduct of #, A <« %, if every definable set in A
is definable in .#Z. If .4 is a reduct of .#, .# is an expansion of 4. As a
more general sense of reduct, the structure .4 is said to be ‘definable’ in .# if
N C A" is definable, and each definable subset of 4™ is a definable subset
of .#™". For example, the group of invertible 2 x 2 matrices over some field
F (viewed as a subset of F%) is definable in F.

We also make use of a sort of infinite conjunction: an n-type over
A C # is an ultrafilter of A-definable subsets of .# "} the set of all such being
denoted S, (A). The realizations of p (the intersection of all of the definable
sets) is p(.#). In a given structure, and for a given type, this may or may not
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be empty, but the compactness theorem ensures that every type is realized in
some elementary extension. A type p is atomic if it is generated (as an ultra-
filter) by a single formula, or definable set. Atomic types are always realized.
The type of a tuple @ over a set A is denoted tp(a/A).

A great deal of work has been completed in an attempt to separate those
structures which are easy study in some sense or other, and those that are not.
One particular class of structure which has been studied is that of minimal
structures: a structure .# is minimal if for any definable X C .#, either X or
# \ X is finite. Note that in any structure .# the set {ao, ..., a,} is defined by
the formula ' '

' r=aq9V..VZ=a,,

and A \ {ao, ..., an } is defined by the negation of this formula, so a minimal

_ structure is a structure in which only those subsets of .# which must be defin-
able are definable. However, this does not mean that there are no interesting
definablevs_ubsets of #™ for n > 1. It is not true that any structure elemen-
tarily equivalent to a minimal structure is again minimal, but structures with
that property form an even more interesting class, called strongly minimal
structures. ' . '

The archetypical example of a strongly minimal structure is an algebra-
ically closed field. It is easy to show (using, say, Theorem 1.2.2) that if T, is
the set of axioms for an algebraically closed field of characteristic p, then T}, is
complete (that is, any two models of T}, are elementarily equivalent) and has
elimination of quantifiers (any definable set is definable using a formula with-
out V or 3). In particular, the definable subsets of k |= T, are simply boolean
combinations of zero sets of polynomials, and so are finite or cofinite. And
it is rather easy to study models of T, as there is exactly one, up to isomor-
phism, for each cardinal number «, namely the algebraically closed field with

" transcendence degree « over the prime field of characteristic p.

More generally, interest has recently been focussed on structures which
show strong geometric properties and independence relations. Given a set
A C A (definable or otherwise) we define the algebraic closure of A to be the
union of all finite A-definable sets. In algebraically closed fields this corre-
sponds to algebraic closure in the usual sense?; in vector spaces, span. Several

2Precisely: the ‘algebraic closure’ of a set is the algebraic closure of the field genérated _
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of the familiar properties from these settings transfer to more general settings: .
e if A C acl(B) then acl(A4) C acl(B)
e forall A, A Cacl(A4) -
‘e if 7 € acl(A) then z € acl(Ao) for some finite®> 49 C A

In certain structures, however, we have another useful property. We say that
a is independent from b over A, denoted a |4 b, if a & acl({b} U A) \ acl(4).
If this relation is symmetric (for any A) in a given structure, we say that this
structure satisfies the exchange law. In structures with this property we can
define a reasonable sense of algebraic dimension. The dimension of a tuple.
a € A" over A, dim(a/A), is the number of elements in any algebraically
independent (over A) @’ C a such thatacl(aU A) = acl(@’ UA). If X C .#" is
A-definable, then dim(X) = max{dim(a/A) : @ € X} (which turns out to be
independent of A).

Another related tool used to study structures is Morley dimension or rank.
If .# is a structure we may define a relation R between nonempty definable
subsets of .# and ordinals by transfinite induction, using

o R(X,0) for all definable X

e R(X, ) if and only if R(X ,a) for all & < A\, when A is a limit ordinal
e R(X,a+1)if and only if there is a countable family Xo, X, ... of defin-
able disjoint subsets of X such that R(Xp, ) for all n.

It is a simple observation that if R(X, o) fails for some ordinal then there is
a greatest ordinal for which it is true, and this ordinal is the Morley rank of
X, Mrank(X). If R(X, &) is true for all o then we put Mrank(X) = 0. Thus
. R(X,a) is equivalent to & < Mrank(X), and Mrank(X) = 0if and only if X is
finite. Structures of finite Morley rank have been studied at great length. Note
that if ./ is strongly minimal (and infinite), then Mrank(.#) = 1. We know
that R(.#, 1) because .# is infinite, but if we have infinitely many disjoint de-
finable subsets of ./, at most one may be infinite (as that one will be cofinite)

by that set.
3This is because z is in some finite set defined using constants from A, and the defining
formula is of finite length.
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and so it is false that R(.#,2). It is currently conjectured (Cherlin’s conjec-
ture) that every simple group of finite rank is an algebraic group. As it is also
true that any structure definable in a structure of finite Morely rank is again
of finite Morely rank, the truth of this conjecture would imply that any simple
group definable in a strongly minimal structure is an algebraic group. Many
other conjectures have been put forward regarding strongly minimal struc-
tures. In particular, it was conjectured that the only non-degenerate exam-
ples of strongly minimal structures arose from vector spaces and algebraically
closed fields. This turned out to be true given additional assumptions. »

In this thesis we will study o-minimal structures. An ordered structure -
is, for us, one in which one may define a dense linear ordering without end-
points. Such a structure cannot be strongly minimal as one may define open
intervals, which are infinite but not cofinite. But here again we introduce a
subfamily of ‘minimal’ structures, where only the bare minimum of sets may
be defined. In the case of ordered structures, at minimum we may define
boolean combinations of singletons and open intervals, and so a structure
in which only sets of this form may be defined is called order-minimal, or
o-minimal. Again, this does not prohibit interesting behaviour in higher di-
mensions. Although the study of o-minimal structures is much younger than
the study of strongly minimal structures, progress has been rapid. A version-
of the conjecture above, called the trichotomy theorem, has been proven. Any
o-minimal structure is, locally, either trivial, a vector space, or an expansion
of a real-closed field. It is also known that the only simple groups definable
in o-minimal structures are algebraic groups, either over real closed fields or
algebraically closed fields. Vaught’s conjecture and several other well known
model theoretic claims have been demonstrated in the o-minimal case. O-
minimal structures provide a natural context for studying structures over R,
and so are a natural class to consider. By a ‘structure over R’, here, we mean
an expansions of (R, <).. Indeed, as we shall see, many familiar structures
over R are o-minimal. As we are allowing (in fact insisting on) consideration
of the order on R, we may also study some topological properties of struc-
tures over R. Recently some work has been done on the fundamental groups
of sets definable in o-minimal structures over R. '

Another way of viewing the study of o-minimal structures is as a gen-
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eralization of semialgebraic geometry (gedmetry in the field* (R, +,)). Any.
subset of R” constructible in this field turns out to have a very simple form. -
A cell is defined recursively to be a singleton or open interval, or the graph
of a continuous rational function on a cell, or the region above or below the
graph of some continuous rational function on a cell, or the region between
two continuous, nonintersecting rational functions on a cell. Every semial-
gebraic set then turns out to be a finite union of cells. A similar statement is* -
true in the study of subanalytic geometry. If one makes the same definition
of a cell in an o-minimal structure, replacing ‘rational” with ‘definable’, the
analogous theorem can be derived (Theorem 1.1.2). Sets and functions defin-

- able in o-minimal structures over R can then be shown to have various nice
topological and analytic properties.

Recent work has used strong minimality to classify, to some extent, the
reducts of (C,+,-). It was shown by Marker and Pillay in [MP90] that for
algebraic sets X C C*, (C, +, X) is either locally modular’ or defines all alge-
braic sets®. Of course, it suffices to show that one can recover multiplication .
from X. One of the more concrete reasons to study o-minimal structures is
that it allows us to make great strides towards classifying the reducts of the
field of real numbers. This may seem, as we are working within (R, +, ), to
be a question of semialgebraic geometry, but a significant amount of model
theory is required as well. It was conjectured by van den Dries that there was
no nontrivial reduct of the field of reals which properly expanded the vector
space of real numbers. The motivation for this is obvious: given many sim-
ple rational functions it is possible to recover multiplication using only vector
space algebra. For example, if f(z) = z?, zy = F(flx+y) - f(=) - f);
if g(z) = 1/z, x2 = g(g9(z) — g(z + 1)) — z, and so on. The conjecture, how-
ever, turns out not to be true. The structure & = (R, +, *, <), where * is the
restriction of multiplication to [0, 1]?, is one such proper reduct, but this is
the only counterexample. We can then show, using similar methods, that the

4 Although not explicitly an ordered structure, the field of real numbers defines the
usual ordering on the reals, by z < y « 3z(2? =y — z).

. See [Bou98]. A structure is modular if for any sets A and B, dim(A) + dim(B) =
dim(A N B) + dim(A U B). A structure is locally modular if it is modular in terms of-
the closure operator cly (4) = acl(A UY") for some large setY.

®Le., is the same structure as (C, +, ).
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only proper reduct of (R, -+, -) which properly expands (R, -, <) is (R, ®, -, <),
where @ is the restriction of + to [1, 2]2. These facts can be expressed in terms
of growth rates of functions, as can a similar fact about exponentiation.
The limits of space and time restrict our ability to prove certain results. For
the most part, any result which is not model theoretic is deferred. Well-known
" results of model theory which do not require knowledge of o-minimality are
also assumed without proof. We will also omit the proof that (R, +, -, z + €%)
is o-minimal, a result shown by Wilkie. The main substance of this rather long
proof is the proof of model completeness. This tells us that every definable
set is the projection of some quantifier-free definable set. As we do demon-
strate the o-minimality of (R, +, -) we can take this result to be a corollary of
Speiséegger’s theorem on Pfaffian differential equations ([Spe99, LS00]): if Z
is an o-minimal expansion of (R,+,-), U is an open, connected, %Z-definable
subset of R" and f:U — Risa C! function satisfying a system of differential
equations

2@ =F(@.2)

w1th each F; : R x U — R definable in #Z and C? then (%, f ) is o-minimal.

Applying this to f(z) = €%, U = R, Fi(y, ) = y we have our result. The proof
of Speisseger’s theorem requires a great deal of heavy differential geometry,
and not a great deal of model theory. '

Current research in o-minimal structures is too broad to survey succinctly,
but there are a few large questions which remain unanswered. Possibly the
greatest of these is whether or not there are any examples of o-minimal struc-
tures not arising from the real numbers. So far all known examples are gen-
erated in a simple fashion”: one constructs some o-minimal structure on R,
builds an elementary extension, adds constants from the new structure, and
then restricts attention to an elementary substructure. There is no proof, how-
ever, that this generates all o-minimal structures. There are also some ques-
tions regarding proper o-minimal expansions of the prime models® of cer-
tain theories. It is, for example, widely conjectured that there is no proper
o-minimal expansion of (Q, +, <). In [LS95] the question is widened to the

’With the possibility of some steps being trivial.
8A (the) prime model of a theory is a model which elementarily embeds into every
other model.
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field of algebraic numbers and the prime model of the theory of the exponen-
tial field of real numbers. The general statement, however, cannot be true as
the ordered vector space (R, +, <, A, : a € R), where \;(z) = az, is prime and
o-minimal, but properly expanded by (R, +, -).

Xii




Chapter 1
0_-_minima| structures

1.1 Introduction

A structure is o-minimal if it defines a linear ordering < and, modulo this fact,

has the smallest possible class of definable subsets. Stated formally:

Definition 1.1.1. Let .# be an ordered structure, and X C .# be definable.

We say that X is of finite type if X is a boolean combination of sets of the form

.-(a,b) = ‘{:v:a<cc<b}
(-00,a) = {z:z<a}

(byoo) = {z:b<z}

and {a}, with a,b € .#. # is said to be o-minimal if every definable X C ./
is of finite type.

We will consider only o-minimal structures whose underlying order is a

dense lvinear‘ order with no endpoints. It was shown by Pillay and Steinhorn

that any o-minimal structure can be definably ‘split’ into a trivial part, and a

part with the above order. Note also that every ordered structure .# comes
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equipped with a natural topology, genefated by the open intervals
(a,b) ={z:a <z Az <b}

where a,b € #U{+o00}, and where oo are imaginary elements added above
~ and below the structure. Similarly, we form a topology oﬁ A" in the usual
way, by taking products. Unless noted, all topological references will be to
these topologles One should also note that while an o-mlmmal structure
may not be complete, it must be definably complete. That is, for every defmable -
“set X C .//{ both inf(X) and sup(X) must exist in .# U {£o0}.

Lemma 1.1.1. Let int(X), cl(X), and bd(X) denote the interior, closure, and
boundary of a set X, in the usual topologieal sense. Then if X is a definable subset of
A", fo}‘ some o-minimal structure 4, int(X), cl(X), and bd(X) are definable.

Proof. Let p(x) define X C .#. Then the formula
JIe(y <z < 2z AVw(y < w < z — p(w)))

defines the interior of X. Then, cl(X) is the comﬁleme_nt of the interior of
the complement of X, and bd(X) is the closure of X less the interior of X.
Now, if X C .#" is defined by ¢(z1, ..., z,), it is enough to point out that

(a1,..,an) € int(X) if and only if a; € int(e(ar, ..., ai-1, #, ait1, ..., an)) for

each i, simply by the definition of the product topology. - Q

Notice, in fact, that all three sets are definable using only the parameters
used to define X and that they are all ‘uniformly’ definable, in that each op-

eration is given by a scheme in the formula defining the set.
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The groundwork for the study of o-minimal structures was set down in
[PS86, KP886, PSSS], with perhaps the most key theorem being the cell decom-
position theorem. This theorem allows us to perform many useful inductions
oﬁ the definable séts in an o-minimal structure, by building these deﬁnable‘
sets in a simple, recursive fashion. The theorems and lemmas in this section-

are all contained in the three papers listed above.

Definition 1.1.2. Let .# be an ordered structure. Any singleton subset of 4
will be called a O-dlmensmnal cell, and any open interval a 1- dimensional
cell IfC C M s a k-dimensional cell, and f, g : C’ — M are contmuous,
definable functlons with f < gthen f C .#™*! (viewed as a set of tuples) is a

k-dimensional cell, and

.(f,g)={(56,y):f()<y<g }C'///n—i-l

is a k + 1-dimensional cell. In the latter we allow f = —oo and/or g = 0.

Theorem 1.1.2. Let .# be an o-minimal structure, and let X C .#™ be a definable
set. Then there are cells C1, ...,C, C A" such that X = C1U...UC%. Furthermore,
if f : X — M is definable, the C; may be chosen such that f | C; is continuous for

each i.

This theorem cannot be proven right away. Its proof is a rather complex

induction, intertwined with the following, very useful, result.

Theorem 1.1.3 (Uniform bounds). Suppose # is an o-mmzmal structure, and

that X C A" "+1 has the property that each fibre

Xz ={z: (z,a) € X},
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a € A", is finite. Then there is a uniform bound on the sizes of the X;. | |

' _Note that the theorem extends easily to X C .# ("), It is well known that
not every minimal structure is strongly minimal. As a witness to this, (w, <)

is minimal, but is not sfrongly minimal as
(,<) = (wx {0} U (Z x {1}),

ordered reverse lexicographically, and z < (0,1) defines a set in the latter
which is neither finite nor cofinite. Assuming the above.theorem we may
easily prove that such an example cannot be constructed in the o-minimal -

case. ‘Strongly o-minimal’ is equivalent to ‘o-minimal.’
Theorem 1.14. Let .4 be o-minimal, and N = . Then N’ is o-minimal.

- Proof. We will assume Theorem 1.1.3. Suppose that o(z, ) is a formula in the
language of .#. Let # [ ,(a,b) if and only if a is a boundary point of
o(A,b), and let ' '

oy = Vg2 (P (2, ).

As M is o-minimal, ¥, (4, b) is finite for all b, and so, by the theorem on finite
bounds, there is some n for which .# = 0g. But then 4 |= 07, and so each

fibre of ¢ in ¥ is of finite type. As p was arbitrary, .4 is o-minimal. O

Theorem 1.1.2 also allows us to define a reasonable dimension for defin-

able sets: if .# is o-minimal and X C.H"isa deﬁnable set, then

dim(X) = max{dim(C) : C C X, C'isacell}.
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Itis easy‘ to verify that this is defined for all definable sets X, in particular be-
cause C C X impliés dim(C) < n. By a curve in .# we mean a 1-dimensional
subset of .42, |

We will prove Theorems 1.1.2 and 1.1.3 in Section 1.3. .First, however, we
will establish a technical lemma needed in the result. This lemma is clearly

the base case for the induction to prove Theorem 1.1.2.

Lemma 1.1.5. Assume that # is o-minimal, and that f : (a,b) — A is definable,
where a,b € A U {£oo}. Then thereexista = ap < a1 < -+ < ap = b such that
forall i, f | (as,aiy1) is either constant, or a bijection which preservéé or reverses

. order.

- Proof. To éimplify the proof we introduce a claim. Also, for the remainder of
this proof, a function which is either constant or strictly monotone on a given

interval is said to be basic on that interval.

Claim. Let f and M be as in the lemma. Then there is an interval I C (a,b) such

" that f is basic on I*.
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Proof of claim. Let

wo(r) = a<z<bAIy(y<zAVuly<u<z— f(u)= f(z)))

VIy(y > z AVu(z <u <y — f(u) = f(2)))

cpi(z) = a<az<bAFyzly<z<zAVuly<u<z o f(u) < f()
AVu(z <u <z — f(z) < f(u))) |
eae) = a<o<bAyay<e<zAVuly<u<z— f@)> [() |
| AVa(z < u < 2 — f(z) > fw)) |
p3(x) = a<$'<b »
Ay, <z <zAVu(y <u<zo (w=zV () > f(2)))
pa(z) = a<z<bd |

Ay, z(y<z<zAVuly<u<z— (u=zV flu) < f(z))))

‘We first need to show that (a,b) = wo(#) U ... U pa(A). Suppose that
z € (a,b) \ po(A). Let | |

X+ ={ye(ab): fy) > f(z)},
X~ ={y€(ab): fy) < f(=)}.

 Then for all y € (a,b), y < z, either X* or X~ must intersect (y, z), or else
- that y vwitnesse.s vo(z). By 'o-minimali‘yty,,then, either X+ or X~ must contain
‘aﬁ intervalvof the form (o, z), with @ < z. Similarly, either X+ or X~ must
contain an interval of the form (z,B), with 8 > z. The four cases, where

: d,:r € X* and (z,8) € X*, correspond to the four cases, ;(z),...,¢s(x
P

Thus one of the sets y;(.#) must contain an interval I.
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Suppose that I C po(.#) (indeed, suppose po(#) # 0). If z € po(A)
then there is an interval to the left or right of  on which f is constant, and so
* basic. We have our I.

Suppose that I C ¢1(#), let z € I be arbitrary, and let
X={y:yel'Ay>zAf(z)>fy)}

If there ié some y > z with f(y) < f(z) then X. # 0. Ify € X then, as
y € p1(A), there is an interval to the left of y which is also contained in X.
As X is definable, then, it must be a finite union of intervals. Also note that '
there is, by-cpl(m), some z > z such that X is disjoint from ( —oo,.z) N 1. Solet
- ¢ =inf (X ). Of course, ¢ € X, as any element of X h;as an interval to its left
contained in X. Thus f(z) < f(c). But because ¢ (c), there is sbme interval J
to the right of csuch that j € J — f(e) < £(5). Clearly J must be disjoint from
X, contradicting the assumption that ¢ was the left endpoiﬁt of an interval in
X. So X is empty and, as = was arbitrary, f is increasing (whence basic) onl.

Suppose that I C cpz(//( ). Repeating the proof in the above paragraph
with the order reversed, we see that f is decreasing on I. ‘

Suppose that I C p3(#). Let
X= {x.GI:\?’y el(z<y— f(z) < fly)}

If X contains an interval then f is clearly increasing on this interval, and we.
are done. As X is definable, if it does not contain an interval it is finite, so let

I'={z € I : z > max(X)}. Then I’ is a subinterval of I, and

- MENTel'Iyel(y > ac/\»f(y.}) < f(z).
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Suppose that for some zo € I’ there is no y such that the above statement
holds with strict inequality. Then there is some z; € I ", 1 > o, with
f(z1) = f(zo). There can be no y for z; for which the inequality is strict
(or this y would also serve for zp), so .there isan xy € I', x93 > z1, with
f(z2) = f(z1) = f(zo). Continuing this way we have an infinite set, and so

an interval, on which f is constant. So we may assume that
MENzel'Iyel(y >_:c/\f(y)‘<f(x)). (1.1)

By a similar argument, and another refinement of the interval, to I, we may

also assume that
MYz eI eT(y<zAf(y) > f(2). (12)
Now fix some z € I" ,and let

Xt = {yeI”zf(w)<f(y)}
X' = {yel”: f(z) = f(y)}

CXT = {yeI":f(x) > fy)}

Clearly these three sets are definable and partition I”, and clearly X? is finite,
or we are done. Thus either X* or X~ must contain an interval (c, d), where
d is the right endpoint of I " . Take ¢ to be the least such point, and suppose
(c,d) C X*. We cannot have f(c) > f(z), as p3(c) implies that. there is some
u<cwithu<v<co f(v) > f(c) > f(z), and so (u,d), a proper superset

of (c,d), would be contained in X*. So we must have fle) € f(=). By> 1.1

there is some y > c (in I”) with f(c) > f(y). But then f(y) < f(z), and so
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y € X, contradicting (c, d) ﬂ"X ~ = {. If we assume i_that (¢,d) € X, for
séme ¢ < d, then the same argument (reversing inequalities and replacing 1.1
with 1.2) we also get a contradiction. |

| Finally, if I C @4(4#), we éan modify fhe proof above m the obvious way

to see that the claim is true. : ’ - Q

Note that any subintervai of (a, b) meets the criteria in the lemma, and so
will contain a subinterval on which f is basic. Now let ¢(z) be a formula
>saying that z is the left endpoint of some interval I C (a,b) such that f is
basic on I and forno I’ > I is f basic on I'. Suppose = € 1)(.#). Then there
is some y > z such that f is basic on (x,y). If z € (x,y), then, we cannot have
1/1(2), because if I is the interval witnessing v(z), I is properly expanded by
I U (z,y) which leads to a contadiction!. So ¢(.#) contains no interval. Let
V() = {ag,a1,...,an} where a; < a;+1. We claim that f is basic on each
' (a;, a;+1). If not, let (@, ) be a maximal subinterval of (a;, a;+1) on which f is
~ basic. We know by: the claim that there must be one such interval, say I’, and

we know that there must be a maximal such as it is defined by
x(z) = Ju,v((u,v) 2 I' Az € (u,v) A fis basic on(u,v)).z‘

If o > a; then, since a < a;41, we have missed a member of (A ) in our
list. If @ = a; then 8 < @441, and so there must be a maximal subinterval of

(B, a;+1) on which f is basic, and again we have missed a point on our list.

1t is clear that if f is basic on I; and I, and I; N I, # @, then fisbasicon I; U I,
2We can take the union of all intervals extending I’ on which f is basic, but it is not
clear a priori that this set has endpoints in .Z. L
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Similarly, if ap > a then we are missing a pbint on our list, and so a = q¢ and
' b = ap. Thus f is basic on each (@i, @it1)-

Now, finally, Suppdse that f is stfiétly increasing on (a;, ai+1): Then -
Y ={f(z):a <z< Qit1l}s

being definable, is a finite union of points and open intervals. Let {81, ..., Bm }
be the points, and let f(a;) = §, a0 = 6;, and @my1 = ais1. Then the
image of f over each (a;,a;j41) is an interval, and f is strictly increasing on
eéch (aj,@j+1), so f must be an order preserving bijection on each of these
intervals. By performing a similar refinement on the intervals bf decfease for

f,we can expand our list {ao, ..., Gp } to the list described in the lemma. a

. This lemma, at first glance, may make o-minimal structures seem like a
rather trivial class, but we shall see that many important structures fall into
this family. ‘The class of o-minimal structures can also be shown, from this

lemma, to have a very important geometric property.

| Definition 1.1.3. In a strﬁcture (ordered or otherwise) ., Wé.say that an el-
ement a is algebraic over a set (not necessarily definable) A C ./ if there is a
formula with constants from 4 which a and only finitely many other element$ '
of .# satisfy. The set of all elements algebraic over A is acl(A). |

The element a is further said to be definable over A if there is some formula
with constants from A which g, and orﬂy a, satisfies. The set of elements

definable over A is dcl(A).

Note that both acl and del are closure operators in the algebraic sense. It is

cléar, for example, that acl(A) and dcl(A) both contain A, and that A C acl(B)
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implies acl(A4) C acl(B) (similarly for dcl). It is also true that these closure op-
erators are finitary (i.e., if a € acl(A) then a € acl(Ay) for some finite Ay C A),
as any formula may contain only finitely many symbols. In o- minimal struc-

tures, as in strongly mmlmal structures, we have another important property

Theorem 1.1.6 (The exchange law). Let .# be an o-minimal structure, A C A
(possibly not definable), and a,b € #. Then if a € acl({b} U A) \ acl(A4), then
b € acl({a} U A).

What this theorem says is that if there is a dependence of a on b over the set
A that is more than simply a dependence of a on A, then there is a symmetric

dependence of b on a (over the same set).

Proof. 'fhe first step in the proof of this theorem is to note that inan o-minimal .
structure (indeed, any linearly ordered structure), acl(-) = dcl(-). If ais ene of | |
only n realizations in M of (), where the constants in ¢ come from 4, then |
a is the sole realization of one of the formulae “a is the first realization of w0
“a is the second realization of ¢,” et cetera.

Now we wish to show that a is definable over AU {b} if and only if there is
an A-definable interval or singleton X, and an A-definable function f : X —-
# with f(b) = a. One direction is clear, so suppose p(.#,a,b) = {a}, where

@A Let |
| f(z) = inf{y : (y,a,2)}.

Then f is elearly A-deﬁnable, as is dom(f), and f(b) = a. As shown aboVe,

the boundary points of dom(f) are A-definable, and so dom(f) is a union -

of points and intervals, each of which is A-definable. Let X be the point or
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1nterva1 contalnmg b. . _ _
So suppose X is an A definable point or interval, f : X — ./// an A-
definable functlon, and f (b) = a. Because dcl(dcl(4)) = dcl(A) ‘we cannot
v have b € dcl(A) (or del({d} U A4) \ dcl(4) = 0), and so X is an 1nterval Letv ‘
ag, --., 0, be as in Lemma 1.15. A close examination of the proof of the lemma _
' shows that these elements are also deflnable over A, and so we cannot have
b= az for any i. Suppose b e (ai, @it1)- If fis constant on thlS interval, |
| then ais the sole reahzatlon of Hy € (a;,ai41)(f(y) = 3:) and sois in dcl(A)

So f must be a bijection of (a;, a,+1) onto some open interval contalnlng a

which either preserves or reverses order, and thus is invertible. This inverse -

. , is definable over A by “f(y) = ,” and shows that b € dcl({a} U A). Q. o
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1.2 The Tarski-Seidenberg theorem

Before continuing, we wish to give at least one exampie of an o-minimal struc-
ture. Of course, quantifier elimination tells us that (Q, <) is o-minimal, but

the following example is somewhat less trivial (and somewhat more interest-
ing). ' |
Theorem 1.2.1. Let X C R" be definable in the field R. Then X is a boolean‘
combination of sets of the form

{z: f(z) >0}

{z:f() =0}
as f runs through R[Z]. In particular, the ﬁéld of real numbers is o-minimal.

Sets definable in this structure are called semi-algebraic. To prove this the-

orem, we will quote the following from [Hod93].
Theorem 1.2.2. If T is a theory satisfying

a. if A, N ET, M < A, and o(x) is a quantifier frée formula with parame-
ters from # then N E 3zp(z) implies A = Jzp(x)

b. if ¥ \=T and M < N then there is an M =T such that # < M < N
and if /' =T contains A then A may be embedded into N over M |

then T has elimination of quantifiers. If in addition T has a model which can be

embedded into all others (an algebraically prime model) then T is complete.

For what follows, we take a real closed field to be a structuré

M= (M,+,-,0,1,<)
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such thaf .
a. (A,+,-,0,1)is a field

~ b. < is alinear ordering on .# which preserves the field structure, in the
sense thatif z < y,thenz + 2z <y + z forall z and zz < yz or yz < zzif

z > 0 or z < 0 respectively

c. forall f € A[z]Janda < b e A, if f(a)f(b) < Othenforsomea < c < b,
fle)=0. |

Clearly we can give a(n infinite) set of first order axioms equivalent to the
above. One can reformulate these axioms in an entirely field-theoretic way, -

but this is the most convenient context for our purposes.

Proof of Theorem 1.2.1. The proof here follows the proof in [Hod93]. Let .#
and .4 be as in peirt b of Theorem 1.2.2, with T the theory of real closed fields
(described above). Let .# be the set of elements from .#” which are algebraic
over A (in fhe usual, field-theoretic, sense). It is known (see, for éxample;
[Fra93)) that this is a field. As it is a substructure of .4/, all of thé universal '
axioms of .# hold in .#. It is also clear that < induces a dense linear order

without endpoints on M, as

z+y
ac<y—-+m<———2——<y.

Now suppose f € .#[z], and that f(a)f(b) < 0. Then there is some ¢ € A

with a < ¢ < band f(c) = 0. But then ¢ is algebraic over .#, and so over .#

(again, see [Fra93]). Thus c € /.
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To show a, let p(z) be a quantifier-free formula with parameters from .#,

and suppose A" |= 3zp(x). Using basic logic, we may fearrange Jzp(x) into

the form
n mg n mq
3z \/ A wii@) = \/ 3z A\ eii(2),
§=04=0 j=0  i=0

where each ¢;;(z) is either an atomic formula, or the negation of one. In this
structure each negated atomic formula is a disjunction of atomic formulae,
and so by rearranging each goﬁ (and possibly factoring out disjunctidns in the
negated case) we see that each ¢;; may be taken to be p;i(z) = 0 or pj;(z) >0
for sonie pji € A [z]. We clearly need only show the reSuif whenn = 0. So let
(writing m for mg and 4 for (0,2))

‘ m

o(z) = )\ wilz)
‘ i=0

where each ¢; is atomic or negated atomic. If, for some i, we have ¢;(z) =
‘pi(x) = 0 then, as % is real closed, anyvrealization of ¢ is already in ./#.
Thus we may suppose that for each i, p;(z) is pi(z) > 0. Letcp < ¢1 < ... < ¢
be a list of all roots of the p;. If b e A realizes ¢ then b is on one of the
intervals (—oo0, ¢p), (co, ¢1), .., (k, 00). By the reasoning above, c; € /// for all
J. Now simply notice thaf any c in the same intervai as b must also satisfy.go,
by the intermediate value property. So we choose one such ¢ € .# and we aré

done. _ o A a

Notice also that the field of real algebraic numbers is an algebraically

prime model of the theory of real-closed fields, and so this theory is complete,

and any real closed field is o-minimal.
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1.3 The proof

In this section we will complete the proofs of the Cell Decomposition Theo-
rem and the Theorem on Uniform Bounds. In what follows, I'(f) will denote

the gfaph of a function f.

~ Definition 1.3.1. Let X g M bé an .open cell, apd let o(z,7) be a formula
(with parameters from .#) Such that for eacha € 4™, o(A ,a) is finite. We
will say thata € X 1s good for (Z,y) if for all b € .4 ,.there is én open box
(i.e., a product of intervals) B 'g X containing @ and an interval I containing

b such that

(i) A = ¢(a,b) implies that p(.#) N (B x I) is the graph of a continuous

function from B to I and
(ii) 4 ¥ o(a,b) implies that o(.#) N (B x I) = 0.
The proofis a simulta_ﬁeous induction of the following claims:

I, Given any cell X C M ", aﬁd finite collection {X;} of definable subsets

. of X , there is é (finite) partition of X into cells which pa'rtitionsbeach Xi;’

I, f X C . #™is definable and f : X — . a definable function, there is a
partition of X into cells such that the restriction of f to each cell in the

partition is continuous.

I, Let X C .#™ be definable, and ¢(Z,y) a formula where Z is an n-tuple.
Then if for each a € A", p(a, A ) is finite, the set {|p(a, #)| :a € A"}

is bounded.
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IV, Let X C .#™ be an dpen cell, and (Z, y) a formula where Z is an n-
tuple. Then if for each @ € A", p(a, #) is finite, if the mappings
'z~ min{y : p(Z,y)}
and
z — max{y : p(Z,y)}

are continuous, and if @ is good for ¢, for all @ € X, then |p(ay, .#)| = .

lp(ag, #)| for all Gy,ay € A.

 The Base Case. First note that I; follows from the definition of an o-minimal
structure, and II; follows .from. Lemma 1.1.5>. '

Let us now show IVj. Assurne that X = (a,b), each ¢ € X is good for ¢, | _
.each @(c, A) is finite, and that |

fr(@) = minfy : p(z,3)}

and
fr(z) = max{y : p(z,y)}

are con;cinuousv. If the statement is false, then there is some k € w for which
the set X3 = {c :»3=ky<p(c, y)}is ﬁon;empty, but not all of X. Letc € X Be
a boundary point of X;. Our aim is to show that ¢ is not good for ¢, which '
contradicts an hypothesis. Let ¢(c, #) = {do, ...,dn}, where d; < d;y1.-We
may inductively choose disjoint intervals Jy, ..., Jy, such that d; € J; for all 5,
and an interval / containing ¢, such that for each i, p(.#)N(I x J;) is the graph
of the coﬁﬁnuous function g; : I — J;. Soforalld € I, |p(d, #)| > N. If there

were an interval I' C I containing c such that for all d € I', |p(d, #)| = N,
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‘then we w'oind have I' N X 1#£ 0, Whence N = k, whence c is interior to X1,
" not a boundary point. As {d:|p(d, #)| = N}is definable, there must be an .
| interval to the left or right of ¢ which is not contalned in it. Suppose, without

loss of generahty, that there is an 1nterva1 I' on the right of ¢ with

E Sef

’yd.e I',|go(d,///)|>N.j S OO
- - ‘N .
g(z) = min{y : p(z,y) A \ v # gi(x)}.
© =0

; By * and by the fact that go(d M ) is finite for all d € X, g is defined (and |
~ definable)on I'. As fr < g < fL onl, lim,_, .+ g(x) exists, say d. If =p(c,d),
then ¢ is not good for @ as any box contalmng (c d) also contains part of the
graph of g. If (¢, d) then d = d; for some . But g # gi, and hmz_ﬁc+ gl(x) |
lim,_, .+ g(z), so no box about (e, d) intersects ¢(#) as the graph of a contin-
uous function. | - | - )
Finally,'we willvpmve III;. Let X ,. ¢ be as in the s‘tatement.‘ Note that we
- can get away with proving the statement for each of the cells in some finite
decomposition of X, as the maximum of the uniform bounds on the sizes _of
ﬁbree on each cell in the decomposition will serve as a bound on the sizes of . ;
the fibres over all of X. If X is a smgleton the result is trivial, so let X = (a,b),
where we may have a,b= +00. We may assume, by I, and the above remark,
that X = dom(y), and so fr and fr, are deflned. By II; we may also assume |
that these two functiohs are confinuous. Let Y be the (d_efinable)_s_et Of peints ,

~ which are not good for . If Y = {ag, ...,an} then on each interval (a;, ai+1),' :

where d_1 = a and Ant1 = b, the size of the fibres of ¢ is a constant by IV, .
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- and so Wé are done. We shall prove, by contradiction, that Y is indeed finite.

V.Suppose that (a1,b1) € Y. We say that (¢,d) € M? is type I nasty for
¥ if ¢(c,d) and for all boxes B about (c, d), o(#) N B is nof the graph of a
continub_us ﬁanctioﬁ. We say that (c, d) is type II nasty for ¢ if —¢(c,d) and for
‘all boxes B about (e,d), BN o(A) # 0. Thus for each ¢ € Y there is at least |
one d such that (c, d) is nasty for ¢ (type I or II).

| Claim. For all ¢ € (a1,by) there is a least d € A such that (c,d) is nasty for .

" Proof of thé claim. As Wé are assuming that ¢ has finite fibres on X, @ may
only have finitely many type I nasty points for each c, thus it remains only to
show that if (d1, ds) is an interval such that for all d € (dy, dg), (c,d) is type I
nasty for ¢ then (c, d1) is nasty (type I or II) as well. First we establish that d;
is,‘ in fact, finite. If not, let ap > a1 > ... be elements of (—o0, d2), decreasing
without bound. We may iﬁductively construct boxes B; about (c, a;) with
Bi N B; = () whenever i # j and, és @(#) N B; # 0 for all i, conclude that
o(c, M) D (—o0, ) for some a. But then (e, A ) is not finite.

If ~¢p(c,d1) then let B be a box containing (c,d;). Of course, B contains
(¢,d) for some d € (di,ds), and so, by hypothesis, (.#) N B # . On the
other hand, if (¢, dy) then take I and J to be intervals containing ¢ and d;
respectively. If (I x J) N (#) = I'(f) for some continuous f : I - J, let
. € (d1,ds). For ahy box B Q (I x J) containing (c,d’), I'(f) N B # . Thus
limg_,. f(z) = d'. But d’ was arbitrary, contradicting the uniqueness of liﬁﬁts.

Thus (I x J)Np(A) is not the graph of a continuous function, and again (c, d)

is nasty for ¢. ' Q
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Let

- g(z) = min{d: (z,d) is nasty for ¢}
gi(x) = max{y:p(z,y) Ay < g(z)}

g2(z) = min{y:p(z,y) Ay > g(2)},

allowing g; and g3 to take the values —oo, co when undefined. By applying :
II;, we may refine our interval to one on which g, g1, and g, are conﬁnuous
(or +o0, in the latter two cases). Suppose that there is a sub-interval I of this
interval such that forall ¢ € I, (c, g(c)) is type I nasty. Fix some ¢ € I, and
_ choose dy, ds such that g;(c) < d1 < g(¢) < d2 < g2(c). By the continuity of
these fuhctions on this interval, we may choose a sub-interval I’ such that fdf
Calz e, gi(z) < di < g(x) < da < ga(x). But then (I x (di,ds)) N () =
I'(g), which is a contradiction. So suppose that there is a sub-interval I such
that for all ¢ € I, (¢, g(c)) is type II nasty3. Constr}lct ¢, dy, dy,and I’ as abdve.
Then (I’ x (dy,ds)) N () = 0. . ‘ ]

To prove the inductive step we require the following, useful, lemma:

' Leﬁlma 131 Let C C A" beacel, k = dim(C) > 1. Then there is a cell
Nl L definably homeomorphic to C. '

Proof. If n = 1 the result is trivial. Suppose that C; C .#" is a cell, suppose |
that f: Cy — A is continuous and deﬁn_able, andlet C* =T'(f). Leth: Cy —
. C”* be given by h(Z) = (Z, f()). Then clearly h is a bijection. Also, if B is an

open box about some z € .Z", and I C . is an open interval containing

3There must be one or the other, as nastiness is definable.
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£(@), then h~Y(B x I) = BN f~}(I) is open. Coﬁversely, h~! is continuous as
h(B)= (B x #)NT(f). |

Now sﬁppose thét C* = (f,9), where f,g: Cy — A are continuous and
definable (C} a cell), and suppbse that h : C; — C5 is a definable homeomor-
phism. Then define &* : (f,g) — 4™ by (Z,y) — (h(Z),y). Again, thisis

clearly a bijection from (f,g) onto (f o A™,g o h™1). If B x Ic (f,9), then

h*(B x I) = h(B) x I, and vice versa, so h* is a homeomorphism. The lemma

follows. . o a

The Inductive Case. In light of Lemma 1.3.1, and the observation that cell de-
compositions will carry through a definable homeomorphism, we can as-

sume that the statement I, holds for any cell X with dimension less than

~n. So suppose X = (f,g), where f,g . X* — & are continuous and de- _

finable, X* a cell in .#™1. For a given X; C X, let X} C X* be the pro-

_jection of X;. We may choose some partition {C} of X* which partitions

each X}. Let C; = (f [ C},g [ C}) for each j. Fix some C = Cj and let
I'={i: X; NCj # 0}.

Claim. If C is open then it admits a partition partitioning each X;, i € I'.

Proof of the claim. Let (X)g = {b € A : (@,b) € X} for all definable sets X. By
the induction hypothesis, the boundary of (X;)a is uniformly finite. By using

cell decomposition for .#, we can clearly assume that each (X;); (as @ ranges

through .#™!) is of the same type!. Let f1(a), ..., f¥(@) be the boundary

- points of (X;)z ar_\d, again using cell decomposition at lower levels, assume

“Here type refers to the set’s representation as a union of points and intervals.
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that the set of functions { fj : < |0, 1 k } can be rewrltten as a

' ’, sequence 91 < g2 < ... < gg- Note that each of these functlons is deﬁnable

‘ One more apphcatlon of the induction hypothe31s allows us to assume that

each g; is contmuous on its domain, and then_

U1 Cogima 1) uJT(90),

. i=0 _ i=1 ,

- where go=1f and Jkt+1 =G, is a cell decomposition of C partitioning each X;,

ier. o o o
The result follows by the fact that the non-open cells are of dimension at

. most n—1. | . _ _ |

In order to prove II,, suppose X C .//{" is a cell and f: X — A a

: .‘deﬁnable function. Again, if X has dimension 1ess that n a definable home- - -

omorphism with a cell in .#™~! shows the result. So assume X is open, and -

set
X1 = {@beX: f(mi, vy Zn—1,b) is cts on some box :
B> aw1thB x {b} C X}
X, = {( b) €eX:f (a mn) is constant or a monotone b1]ect10n on some

| mtervalIa bwith {a} x I C X}. ,

o - Let Z be a cell decotnposition of X which partitions both X; and X5, and

N -"letC € & be open. We intend to prove that f | C'is continuous. Suppose
C = (fu, f2) for some fu, fo : C* — M. 1 (3,b) € C then f(z1, .., Tp1,b)

s cleﬁned on some open subset of C*. By_th_e induction hypothesis, there is

an open cell D g C* such that f(z,b) is continuous of D. 'Now, ifa e D,
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(@,b) € X;. Since X3 N C # 0, we have C C X;. A similar proof shows that
C C X, | |

Now, if f(@,z) is not constant or a monotone bijection on (f1(a), f2(a)),
the let f1(a) < 61 <. <by < fé(a) be the points shown to exist in the
rriénotcinicity lemma, with m minimal. Then there can be no I > b; with
f(a,z) constant or a monotone bijection on I, so (@, b1) & X2; But C C X5, so
this is impossible '

Let (a,b) € C,and let J 3 f (@,b). We want to find an open box about (a,b) -
| whlch f maps into J. We can find aclosed interval I = [by, b] C (£1(a), f2(@)) - '
such that f(a,I) C J by continuity. As (@, b1), (@,b2) € X; we can find open
boxes By and B2 with f(By,b1) C J and f(Bsg,bs) Q J. Let B = By N Bs.
Then B’ x int(I) C C. Also, if (@,V/) € B’ x I, we have f(@,t)) € Jas
- f(@, by), f(@,b2) € J and f(@', z) is constant or monotone on I.

Thus f is continuous on every open cell in &, and is continuous bn every
other cell as well (by the induction hypothesis).

To show I, let (1, ..., Zn,y) be a formula (with parameters from‘.//{ )

- and X C .#™ an open cell. Suppose ¢ is finite on X , and let

X,

{(@,b) € X : ais good for p(z1,...,Zn-1,0,9)}
X, = {(a,b) € X : bis good for o(a, Zn, )}
Again let Pbea cell decomposmon of X partitioning both X; and X5, and

let C e Pbe open We shall show that O cX; N Xa.
Let B C C be an open box, (a,b) € B, and B* C .#™! be its projection.

Then ¢(z1, ..., Tn—1, b, y) is uniformly finite on B*. By cell decomposition, pick
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| some open cell D C B* such that fdr alla’ € D, |p(@,b, M )| = k and such

that the first, second, ..., kth points Mncﬁéns are continuous. Clearly ifa’ € D,
_then @' is good for ¢(Z,b,y), so (@',b) € Xi. Butthen C C X). The proofis the '
. same to show that C C Xs. : -
7 » The following claim proves III,. It also finishes the theorem, as the és— '

sumptions of IV, imply X = X; = Xs.

Claim. If C C X is an open cell and C C X1 N X3 then for all €1,82 € C,
(e, )| = (@, )]

Proof of the claim. Suppose that for some k<w, Cy={c €Y : lo(c, #)| =k}
isa nonerhpty, proper subset of C. Then there is a boundary point ¢ of Cy, in
C. Let B be an open box in C containing ¢, choose (a1, b1), (a2,b2) € B, and
let B* be the projection of B (in .#™"1). By hypothésis every @ € B* is good
for <p(:i, b1,y), and so
|P(a’1’ bl? ‘ﬂ)| = ‘90(5’2, bl, ‘%)la

by IV,,_1. Similarly, by IVy,

) lQO((-IQ, bl)‘ﬂ)l = I(P((_IQ, b27‘%)|

But then B cannot contain both points in Cj and points not in Cj.. a

1.4 Algebraic structurés

In Section 1.2 we saw that the field of real numbers, and hence ‘the ordered

. group of real numbers, is o-minimal. Here we will see that these are, from the
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‘view point of first order logic, the only o-minimal ordered rings and groups.
For the remainder of this section we will lift the restriction that ordered struc-
tures have a dense underlying order. The structures below are only assumed

to be ordered linearly.

Theorem 1.4.1. Let & be an o-minimal ordered group. Then ¥ is abelian and divis-

ible. In particular, 4 = (R, <,+).

Proof. We will prove that ¢ must be abelian and divisible, and let folklore
- take care of thé completeness of these axioms (see, e.g., [Hod93]). The key is |
- that if H C ¥ is a definable subgroup, then H is trivial. If H # {0},leth > 0
be mH If there is some g € (0,h)\ H thennh € H foralln,and g+ nh ¢ H

for all n, but
.<nh<g+nh<(n+lhh<g+(n+1h<...,

© so H must have infinitely many connected components, which is impossible. .
Thus H is,; connected. Now let h = sup(H), and suppose that A < co. Clearly
we cannot have h € H, or 2h < has 2h € H, whence h < 0..Soh ¢ H. Lef
0 <Ag < h,sothatg € H. Then0 < h—g < h,and so h — g € H. But this
would mean that (h — g) + g = h € H, whichis a contradiction. So h = oo, |
and consequently H = ¢. | |

We éan now easily show that ¢ is abelian and divisible simply by noting
that the centralizer of any element of Gisa nonﬁ'ivial definable suBgroup of

4, as is n¥, for each n. : | ' ol

Theorem 1.4.2. Let % be an o-minimal ordered ring. Then Z is a real closed field

(and hence Z = (R, +, -)).
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To prove this we will need a version of the intermediate value property

that will hold in all o-minimal structures.

" Definition 1.4.1. Let .# be a structure, and X C .#" be a definable set. X is’
said to be definably connected if there do not exist two open, definable sets U
and V not disjoint from X suchthat X CUUV,but XNUNV =0.

It shoulci be noted right away that open and closed intervals are definably
connécted, even though théy may not be connected. The interval (0,1) in
(Q, <) is diconnected by the open sets (0,1/7) NQ and (1/7,1) N Q, but any
definable pair of open subsets of (0,1) would themselves have to be finite

unions of open intervals, and so could not disjointly cover (0, 1).

Lemma 1.4.3. If X C .#™ is definable and definably connected, Y C .#™ is de-
finable, and f : X — Y is definable, continuous, and surjective, then Y is definably

connected.

Proof. The standard topological proof works, just noting that the inverse im-

age of a definable set by a definable map is definable. d

Proof of Theorem 1.4.2. 1t was shown above.that (Z, <,+) must be an abelian
group. Also, if z € %, % is a subgroup of the additive group of %, and so
is the entire group. This implies that # has inverses and an indentity. Now
consider the group 4 whose underlying setis{r € Z:z >0}, and whose op-
eration is the mulﬁplicaﬁon operation in %. The sets definable in this group
are clearly all definable in the ring %, so ¢ is an o-minimal ordered group;

Thus % is a field. Now all that needs to be shown is that every polynomial

assuming both positive and negative values has a root. But it is clear that any
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 f € Z|z] is definable and continuous. If f (a) < 0and f(b) > 0 suppose,
w.lo.g., thata < b. Then, as (a, b) is definably connected, the image under f

of (a, b) must also be, and 50 f has a root. Q

1.5 Prime models |

For the remainder of the section we fix some o-minimal L-theory T

Definition 1.5.1. A model .# k= T is prime over the set A C .# if whenever |
there is an elementary map of Ainto A |= T, the map can be extended to an

~ elementary embedding of .# into A

The existence and uniqueness of prime models over arbitrary sets, demon-
strated in [PS86], shows a strong similarity between o-minimal structures and
strongly minimal structures. The proof presented here is much simpler and,

we feel, more intuitive than the original, but requires an extra hypothesis.

Theorem 1.5.1. If # |= T and there are O-definable functions f : M* — M and
g MM satisfying

VeVy(z <y — z < f(z,y) <y)

- Vz(g(z) > )
then there is, for any nonempty A C .#, a unique prime model over A.

- The hypothesis above requires that we have Skolem functions demon-
strating the order type of the structure. The added hypothesis does not weigh
us down too much, however, as any group satisfies this requirement (using

fv(w, y) = (z+y)/2 g9(z) =z +1).
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Proof. Let T have the speciai property above. For the remainder of this proof,
~ an o-minimal theory will be called regular if every (-definable n-ary partiai
funiction definable in T is already represented by a function symbol in L. Of
course, if T is not regular; we may expand the language to a new one L* which
~ contains a function symbol for every @-definable function, and exténd T and
its models in a unique way to L* strti‘ctures. It is clear that the conéepts of
elemeﬁtary embeddings, isomorphisms, et cetera are not chahged by doing

- this. The concepts of embedding and substructure, however, are.

Claim. Let A4 |= T and let & < # (not necessarily a model of T). Then"vzf T is
regular, &/ < M.

Proof of the claim. By the Tarski-Vaught criterion, we must check that if (z, y)
is an L-formula (without parameters) and a e N with A k= Jyp(a,y) then
_there is a d € A4 with # [ ¢(a,d). Suppose 4 E Fyp(a,y). By o-

B ~ minimality, X = ¢(a@, #) is a finite union of points and intervals. Sup-

pose that inf(X) is in X, and let ¢(E,y) = “y = inf{z : p(Z,2)}". Clearly
(] defines a function (where 1t is deﬁned), and so there is an n-ary fqnctiori
symbol f, such that fy(5) = y © ¥(5,y). As ' < A, f4(a) € H. But
M = p(a, fy(a)). Now suppose that inf(X) is not in X. Then set ¥(Z,y) aé
above, and x(Z,y) = “yt = sup{ziz (fy(Z),2) € X)}’. Then botfl Ib = fy(a)
and ¢ = f,(a) are in /. As ./ is a dense order (by our added hypothesis),
letd € (b,¢) N A. Thend € (b,¢) = (f4(@), fx@) € X, and A | p(a,d). Q

Now assume T is regular, let A C .# |= T, let & be the substfuctﬁre of

A generated by A, and let .4 be a structure into which A may be elemen-
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 tarily mappéd. Without loss of generality, we can assume that A C ./'. Then
o < A, and so & < ,/V . For uniqueness, suppose 4 is another structure -
prime over A, A C 4. Then, again, &/ ‘4 AB. Let f : B — o be an elémeﬁ-
tary embedding fixing A. Then f must also fix the structure geﬁerated by A,
namely &/. So we have o = &. | ' Q

Note that the claim in the proof is not true if the special assumption is
dropped. In particular, if f(z) = , the theory of (Q, <, f) is regular.
. We may use similar ideas to prove the following useful lemma which will '

_ be needed in Chapter 2:

Lemma 1.5.2. Let .# be an o-minimal expansion of a group, and let ~ be a de-
finable equivalence relation on some definable X C ™. Then there is a definable

transversal for X, that is, a function f : X — X such that z ~ y « f(z) = f(y).

Proof. We will deal first with the case ‘where n=1X = A. For eéch x,
let S, = {y:z ~ 'y}, a; = inf S, and b, = sup{y : (a;,y) C S;}, and let’
¢ > 0 be an arbitrary point. We will define f(z) as follows if a;, # —oo: if
az ~ z then f(z) = ay; if a; + z and by < oo, f(ac)iz (az +b2)/2; if by = o0,
f(x) = az +c. If ay is —o0, we define’f(ac) by: if b, # oo, f(z) = by — ¢; if
by =00, f(z) = c It has been engineered such that f(z) ~ z for all z. Ttis also
clear thatAf(a:) = f@) cz~yasT~y o Sp =8,

If X is a proper subset of .# we may extend ~ to the rest of .# by sétting '
S, = {m} forx € A\ X. Ifn > 1we may use the same definition of f(z)

usingAthe lexicographical ordering. o : : .




Chapter 2
The real numbers

One of the goals of this chapter is to examine reducts of the field of real num- -
bers. In particular, we will outline the work leading to the classification of .
all reducts of this structure. We will also look ét somé important o-minimal
expansions of the reals. We begin, however, with a justification of our focus

on the real numbers.
2.1 Archimedean ordered groups

Recall that an ordered group ¥ is Archimedean if for any g1,g2 € ¢ Wheré
g1 > 0, there is a natural number n sﬁch that ng; > —92- It is well known that
any'ab.elian Archimedean ordered group may be embedded into the group of
real numbers. Laskowski.‘ and Steinﬁo_rn [LS95] extended this result using the

- strong structure of o-minimal ordered groups.

Theorem 2.1.1. Let .# be an o-minimal expansion of an Archimedean ordered
group. Then A can be elementarily embedded in an o-minimal expansion of the ‘

g“rouﬁ (R, <,+,0).

In fact, if ¢ € . is positive, we will construct a‘unique elementary em-

30
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N

bedding of (.#, c¢) into a unique expansion of (R, <, +,0, 1). This has the im-
portant consequence that, to study o-minimal expansions of Archimedean

. ‘ordered groups, we need only study o-minimal expansioné of the real ‘group.

Definition 2.1.1. For any structure .#, let qf(.#) be the set of elements of
A definable over 0 by quantifier free formulas. An ordered structure .# is’
standard if qf () is dense in 4. -

Lemma2.1.2. Let 4 = (G, <,+,0, 1) be o-minimal. Then &4 is Archimedean if and

-only if it is standard.

Proof. If we embeci the rational numbers into ¢ in the canonical way, note
that qf(¢) = Q. Suppose Q is dense in ¢, and let g;,92 € ¥, g1 > 0. If there
'is no positive integer m With g2 < m, then (g3,00) N Q = 0, contradicting
the hypothesis, 80 let g2 < m. By the density of the rationals, let 0 < g <%
(where p and ¢ arevpositive integers). From the Archimedean property of the
intégers, there is an n with gm < pn. Thus m< g < g1,and so g2 < m < ng.
Now suppose that ¢ is Archimedean, and let a < bbe elements of 4. Also’
suppose, without loss of generality, that a > 0. Then there is some natural
number n such that n(b—a) > 1, and thus 1+na < nb. Also, na > 0,50 we may;
choose a natural number m withm—1 < na < m. Thenna < m < na+1 < nb,
soa <X <bas desired. -

Q

Notice that if # and A4 are elementarily equivalent, there is a unique

elementary map fo:af(A) — of(A).
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Lemma 2.1.3. If A and N are elementarily equivaleﬁt and o-minimal, fo is the
* map above, and N is standard, then an order preserving map f : M — N extend-

- ing fo is an elementary embedding.

Proof. Note that f would be trivially injectivé, and unique by the density of
af(4"). All that remains to be shown is that if <p(§c) is any formula (without
‘ parémeters), and @ € #, then # | ¢(a) implies A4 = o(f(a)). We will
proceed by induction on 7, the number of free variables in . If n = 0, the
~ claim reduces to ./# = N |
Suppose the rémark is true for all formulae with at mos't n free variables,
- and let go(é, 7) have n + 1. As a first case, vsuppose that ¢(.#,b) is a sin-
- gleton, {a}. Then, by the mducﬁon hypothesis on 3=!zp(z, §), go(/ ,f (D)
is a singleton. Suppose ¢ € A4, and ¢ < f(a). Then, by the density of
- qf(A), let ¢ € of(A) N (¢, f(a)). As q < f(a), ¢* < a, where by ¢# we -
mean the interpretation of gin A. If w(:;c) is a quantifier (and pérarhéter) ’
free formula defining g, then, .# = —3z3y(z < y A %(y) A ¢(,b)). But then
s E -Jdz3y(z < y AP(y) A p(z, £(B))) by the induction hypothesis, and so
N = =p(c, f(b)). Similarly, if f(a) < ¢, & | —p(c, (b)), and so we must
~ have ' | (f(a), F(B). |
. Now suppose that o(, 5) defines an.in'terval (a1,a2) in . Let ¢1(z, b)
say that z is the infimum of realizations of p(.#,b), and vo(z,b) that z is
" the supremum.' By the above, applied to 91 and 1,, f(a1) is the infimum of
(A, (b)), and f(as) the supremum. But

M ‘|= VavyVa((z < y < 2 A 9(@,8) A p(2,8)) — 0(y, b))
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so by the induction hypothesis

N b= Vavy¥z((z <y < 2 Ap(z, F(b)) A w(z, £(B)) — o(y, F (),

whence p(¥, f(b)) is convex, and equal to (f(a1), f (ag)) By the order pfe-

| ser\}ing property, fhen, M = ¢(a,b) implies A = o(f(a), f(b)).
Finally, let p(.#,b) be any finite union of points and intervals, defined
by 1 (z, b), ¥a(2,b),. .., ¥x(z,b). By the induction hypothesis, (.4, f()) is
“the union of the sets deﬁned by ¥1(z, f()),...,¥(z, (b)), and by the above
work, .# |= ;(a,b) if and only if ./V> E ¥;(f(a), f(B)), for each i. So we are

done. : : =}
Definition 2.1.2. A type p € 51(.#) is an irrational cut if
C={c:(c<z)ep(z)}

isa nonprincipal Dedekind cut, that is, if C has no least upper bound. Any
other nonprincipal type in S1(.#) is a noncut. A type p € S1(A) is uniquely
realizable if for any A" = .# and any a-€ p(.#'), p is realized by only a in some

(the, up to isomorphism) prime model over .# U {a}. -
The following lemma is from [Mar86].

Lemma 2.1.4. Suppose A is o-minimdl, and p,q € S1(A) (not necessarily dis-
tinct). If #' = A is a model prime over a realization a of pand b € q(.#") is not a
then there is an .# -definable function f such that f(a) # a realizes q.

Proof. The Omitting Types Theorem (see [Hod93]) shows that b must realize

an atomic type! over .# U {a}, and so (by o-minimality) we must have either

1A type in which one formula implies all others.
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{

be dcl(//l U {a}) or there is some . U {a}-afomic interval (81, £2) contairﬁng
b. In the latter case, note that B, B, and b must all realize the same type over
A . Otherwise there is some A -definable initerval I C _(ﬁl, B2), contradicting ‘
either the atomicity of (81, 32) in .# or the non-principality of q; Thus there
. is some realizbation.v Qf q in dcl(j( U {a}).uBut we cannot have eithef B or 3o
deﬁhable over .#,or 3; € ./// and ¢ is not a type. So without loss of geﬁerality,
assume b € dcl(.# U {a}) \ dcl(.#). By the proof of the exchange law, we see
that there is an .# -definable interval I and a function f : I — M’ such‘that
f(a) =0 : o ' ‘ Q

In the above we can, of course, assume that f is a bijection preserving or

reversing order by the monotonicity lemma.

Lemma 2.1.5. Let .# be an o-minimal structure on a dense subset of R (with the
usual ordering), and suppose that every irrational cut in .4 is uniquely realizable.

Then .4 has a unique extension to R.

| Proof. We use Zorn's lemma. Let ./ <A CR,andleta e R\ . We claim

that the prime model .#" over .#" U {a} may be (order) embedded in R over
A If this is true, then any maximal elementary extension of ./ on a subset
of R must have all of R as its underlying set. The uniqueness is then not hard
to.prove.,'

Claim. Let A and A" be as above. Then A" realizes no non-cut q over A,

Proof of the claim. Suppose .4 realizes some non-cut ¢ € Si(.#). By Lemma

'2.1.4 there is an ¥ -definable function f : I — 4" such that f(a) realizes q.
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Case 1: ¢ = {“n <z <ry” : m <rg,n € A} for some ry € .#. Without
_ loss of generality, assume that f is increasing, and let I = (a, ﬁ) (where o, 3 €
,/V)As fis A -definable and rg € N, letc € N satisfy a < ¢ < f71(rg).
Then .4, and so .#”’, models Vm(d <z <c— f(z) < flc) < q). Buta < ¢,
and so f(a) < f(c) < g, and so it is false that ¢(f(a))-

Case 2: g={n <z’ :ne€ AN} Again assume that f is increasing, and
let I = (o, (). Again, as p is a cut, pick some ¢ € (a,) N .#. Because f is |
increasing,../V (and hence 4”) models Vz(a < z < ¢ — f(z) < f(c)). But
then f(a) cannot realize g.

The other two cases (for the other two types of noncut) are the same. U

The following is assumed without mention in [LS95], but we feel that it is

not trivial, and warrants proof.
Claim. Suppose # < & C R. Then every cut in N is uniquely‘ realizable.

Proéf of the claim. First we pro{re that if 41 has this property, then a model .45
prime over a realization of some cut p € S1(.41) has the property as well.

- Leta € p(A%), and let b € A3 \ A1. Then, using Lemma 2.1.4 we can find

a function f such that f is a bijection between realizations of p and reaIization

of the type of b over A. In particular, as a is the only realization of p, b is

the only realization of its type, f(a) = b, and b € del(A] U {a}). Now let .43

be the pi‘ime model over 4, U {b}, and let there be another realization in .43

| of the type of b over 3. Then we can find a function f2 such that fa(b) # b

realizes this type. As f; is definable over .45 = dcl(41 U {a}) we can find a

function g(i, y) such that g(a,y) = fa(y). Assume (by refining if necessary)
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 that g(z,y) # y- Then set h(z) = f~tog(z, f(z)). We can see that his A1 U{a}- -

definable, and that h(a) # f(a) = b are two distinct realizations of tp(b/.41).

This is a contradiction.

By induction, if A C R is a finite set then the prime model over .# U A has |
the property in question. '

Now, suppose A4 < A C R has a cut p which is not uniquely realizable.

_ Again, there is an .#"-definable function f such that in any N = AN, if pla)

then p(f(a)) (f(a) # a). Let A C R be a minimal set of parameters used to
define f. As Ais finite, the prime model over .# U A has uniquely realizable
cuts. But f contradicts this, by the density of .# in R. - Q

So now we are essentially done. If # < A4 CR theh we have shown that

the prime model over ./ realizes only cuts, and realizes them uniquely. Each

cut p over .4 can be realized by a unique real r, specifically the supremum of

{c:c <z ep(z)}.
Now let #; and %, be two elementary expansions of .# to R, and let
X, = (Ziva : a € A). Then clearly | = % and both are sfahdard;

By Lemma 2.1.3, applied to the identity map from .# to .#, we have that

%1 =.@2. . . ’ Q

Lemma 2.1.6. Let .# be an o-minimal expansion of 4 = (G, <,+,0,1). Then Gis

Archimedean if and only if every irrational cut in M is uniquely realizable.

Proof. First we will assume that & is Archimedean, and suppbse that the cut

| p € S1(A#) is not uniquely realizable. Let f : I — I be the function described

in Lemma 2.1.4 and assume, without loss of generality, that f is increasing.



Chapter 2. The real numbers , E ’ - 37

Set g(z) = f(z) — z. We can assume again, without loss of generality, that

gz)>0onl.LetC={ce .4 :c<ze€p()}
Claim. Forall ¢ > O thereisac € C such that x > c implies g(x) < e.

This claim clearly implies that for all z & C, g(z) < 0, which is a contra-

diction.

. Proof of the claim. Lete > 0 and let ¢y € C be arbitrary. As & is Archimedean,
let n € w be the least n such that ¢y + (n + 1)¢ ¢ C. Since we must have
f(C) CC,z>cp+ne — g(x) < ¢ orelse f(r) —z = g(z) > ¢, and so

flz)zz+egC. Qa

Now suppése that ¢ is not Archimedéan, and selecta > 0 and b > 0 such
that b < na fornon € w. Now let C = {na : n e w}, and let p be the cut
" determined by C, i.e., the unique type extending {c < z : ¢ € C'}. We can see
that p is a cut, and not a non-cut, as in r<de p(:é), z < d — ais as well. But if
p is realized by d in some exfension of .4, pis also realized by a + d, and so p

is not a uniquely realizable type. ’ Q

This proves the Theorem 2.1.1. If # = (A4, +,<,0,1,...) is as in the the-
orem, and A" = (#,+, <, 0, 1) is the reduct of .4 to the language of groups;
then & = (R, +,<,0,1) as both are diviéible, abelian ordered groups on
dense linear.orderings. By quantifier elimination, qf(#) = {¢-1: ¢ € Q},

and so the unique order-preserving extension of fy(g- 1) = ¢ is an elementary

embedding f of ./ into (R, +, <,0,1). If .#’ is the expansion of the image
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f(A) which is isomorphic to .#, Lemma 2.1.6 and Lemma 2.1.5 give us an

elementary extension of .#" to R.
.. 2.2 Semilinear and semibouhdéd sets

We will be \}iewing the real numbers in several different ways: as a group,
a vector space, a field, or a few other, unnamed, structures. We will always,
however, include the order on R, and use properties of o-minimality. -

Let £ be fhe structure (R, <,+,0,1,Aq : a € R), where X\, (z) = ax. This
is the set of real numbers viewed as an ordered vector space over the field
of real numbers. One can iook at the additive group of real numbers as the

vector space of real nu@bers over the field of ratiqnals. '
Definition 2.2.1. A set X C R" is semilinear if it is deﬁnab.le in &,
Theorem 2.2.1. .% ié exactly the structure generated on R by the sets

v {jelR” : Zaixi = b},
as b and the a; fun through R.

Proof. One direction is trivial. The other direction requires a quantifier elimi-
nation result.
For an arbitrary subfield> F C R, let TF be the axioms for the group

(R,+,0,1, <) plus the universal closures of the following axioms:

V1 Ao(z +y) = Aa(z) + Aa(y)

2We are proving a more general result which will be used later.
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V2 Aass(®@) = Aal() + Ao(2)
V3 Aap(2) = Aa(Mo(2))

foralla,b €F.

We now suppose we have some .4 |= Tr and some /// < . As the
additional axioms here are universal, .# |= Tr. Now suppose .# < QV ,
M, N = Tr, and p(z) is a quantifier free formula with parameters from .#
with p(4") # 0. As in the proof in Section 1.2, we will assume that ¢(z) is a
conjunction of étomic formulas of the form A, (z) + b = 0 or Ay(z) +b > 0. Of
course, if there are any formulas of the first form then ¢(4") = (M) as, if |
z € p(AN), = A_1/4(b) € A . But the set of solutions to a system of equations
of the 'se'cond form will be an interval with endpoints in .#, and so again we
have p(.#) # 0. So Tr is complete. Also, F, as a vector space over itself, must
certainly embed into each model of Tr, so the theory admifs elimination of

quantifiers as well. Taking F' = R we have the result we require. Q

It was conjectured by van den Dries that there is no structure properly in
between (in the sense of reduction) .2’ and &#. This question was answered

negatively by Pillay,'Steinhorn, and Scowcroft.

Definition 2.2.2. Suppose X is definable in the structure (R,+,<,B; :i € 1),
where {Bi : 4 € I} is the collection of all bounded subsets of R™ for any
n. Then we say that X is semiboundéd. We denote by # the expansion of
Z generatéd by all bounded semialgebréic sets (that is, the structure whose

definable sets are exactlyl the semibounded semialgebraic sets)®.

3Perhaps not a priori true, but true.
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AS we will see in subsequent secﬁoﬂs, it is possible to characterize B as
the structure (R, +, *, <) where * is the restriction of multipliéation to [0, 1)2.
In this lahguage or.leArcan prove elimination of quantifiers, although we will
not do so here. | |

It is cleaf that Z is a proper expansion of .Z (by the quantifier eliminatidn' _
result aboVé), but what is not clear is that Z is a proper reduct of #. This was
showﬁ by Pillay, Steinhorn, and Scowcroft in [PSS87]. The following result
gives a simple prbof. Once one has shown elimination of quantifiers (also
in [PSS87]) it is simple to show directly that any curve (in R?) definable in
this structure is semilinear outside of some bounded set, which gives another

proof that multiplication is not definable.

Theorem 2.2.2. Let # < N be two w-saturated ‘o-minimal structures, and ¢ be a
formula with parameters from .# such that (M) = o(N). Then if X C p(A),
(M, X) < (A, X). | |

Notice that the above theorem does not assume that X has any nice prop-

erties of its own. A lemma is needed:

Lemma2.2.3. Let # be an o-minimal structure, X an (-definable subset of M, and
ac . A" Then there is some finite A C X such that whenever & and b share the

same type over A, they share the same type over X.

- Proof. We will first assume that @ is algebraically ihdependent over X and
show that if tp(a/0) = tp(b/0) then tp(a/X) = tp(b/X). We will derive the

- result from this."

Let ¢(a) denote the length of the tuple a. We will proceed by induction on
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. £(@). If £(a) = 1 then @ is a single element a. Assuming that tp(a/@) = tp(b/0)
we will show, now by induction on n, that for any formula ¢ with n + 1 free

variables and no paraineters, _
v(a, &) « p(b,c), Ve e X™.

Starting withn = 1, let C = {c € X : p(a,c)}, and let C* = cl(C) \ int(C).
Note £hat as X is -definable, both C and C* are {a}-definable. Suppose C*
is not (Z)-definable. Then there is some d € C* such that d € acl(a) \ acl(0).
Note that d cannot be in X* = cl(X) \ int(X ), as this set is (-definable and
finite, so d € X. By the exchange law, a € acl(d).- But this contradicts our
assumption of algebraic independence as d € X. Thus C*, and so C, is 0- -
definable, and the statement holds for n = 1. Now suppose the statement
holds fdr n, and let ¢ € X™*!, and let p have n +2 freel Vériables. Again we
~ assume that ‘.tp(a/(b) = tp(b/0). Let C = {¢' € X : ¢(a,¢, )}, and C* be as
before'; The points in C* are now {a, ¢}-definable. Suppose that there is some
d € C* which is not {¢}-definable. Then d € acl(a, ) \ acl(¢). The exchange
law says that a € acl(d, ) \ acl(¢) C acl(X). Again this is a contradiction. So
C is ¢-definable and, by the induction hypothesis, ¢(a, ¢, ') < (b, ¢, ).
Now suppose that the result holds when ¢ (@) = n, and let a,d’ € A4, al-
gebraically independent over X. If tp(a, ' /0) = tp(b, b’ /@) then the induction
‘ hypothesis tells us that tp(a/X) = tp(b/X). Then there is some elementary
eXtension{ séy A, of A and an automorphism g of .4 such that g(b) = a
(see [Hod93]). So we need only prove thaf tp(a,d’/X) = tp(a, g(t')/X). But,

adding new symbols to the language for @, this reduces to the previous case

~ (where £(a) = 1).
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We will now show that, given any @ € .# and any (-definable X C .#

~ thereis some finite (possibly empty) A C .# such that a is algebraically inde-

péndent over X in (.#, A). The lemma will then follow as the type of a over
Ain . is the type of @ over 0 in (.#, A). Again we can proceed by induction
onf@). If£(@) =1land G = ais algebréically dependent over X, a € acl(X).

By the properties of élgebraic closure there is some finite A C X such that

- a € acl(4). Now suppose the result is true for £(@) = n, and let G,a' € 4.

By the induction hypothesis there is some finite Ap C X such that @ is inde-
pendent over X in (.#, Ag). If a,a’ is independent oVé_r X in this structure

then we are done. Otherwise, ¢’ € acl(@ U X). But then there is some finite

" A; C (@U X) such that o’ € acl(4;). Let A = AgU (4; N X). Q.

Proof of Theorem 2.2.2. LetF be the set of functions from (M) U{ag,...,ai} C
M to p(AN) U {b, ..., br} C A such that ’

a. f is tﬁe identity on ¢(.#)
b. tp(a/p()) = tp(B/0(N)
C. ’Vi, f(az) = bz

We will shdw that, for every f € F and o' € .# there is an extension geF
of f such that o’ € dom(g). We will also show that for every b’ € A there
is an extension h € F of f such that ¥/ € .rng(h.). As the identity map on

@(.#) demonstrates that F # (), F forms a back and forth system® which fixes

X C (M), and éonéequently (A, X) is elementarily embedded in (A, X). -

4See [Hod93]
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Ifa' € #,and f € F,weneedtofindab’ € 4 suchthattp(a,a’/p(#)) _
tp(b, b’ /p(A)). By the lemma aque, there is a finite A C (M) = p(N)
such that if tp(a, a’/A) = tp(C, ' /A), tp.(d‘, a' [o(A)) = tp(c, c'/<,0(JV)) As N
is w-saturated, we can find sbrﬁe b’v € . such that tp(b'/A U {bo, ...,bx}) =
tp(a’'/A U {aq, ..., ax }), and we may extend f by adding the point (d/,v). The

construction of h is identical (resting on the w-saturation of .#). - Q

By‘a pole in a structure % we mean a bijection between a bounded interval
(an interval with endpoints in %) and an unbounded interval (an interval
with an endpoint = +00). If a structure #Z on R defines multiplication then it

must define a pole, namely z — 1/z (fron:fl (0,1) to (1, 00)).
Corollary 2.24. If X C R" is bounded then V(R, +, 1, <, X)) defines no pole.

Proof. Let .# be an w-saturated extension of (R, +,1,<)and A = A x M
eqﬁipped with the product group operation and lexicographical order. If we
identify .# and .# x {0}, it is true that .# < .4 (as both are divisible, abelian
ordered groups and so eliminate quantiﬁérs). It is simple to show that .4 is
‘. w_-saturatéd ,in partiéular because it is defiﬁable in.#. Now,if X isa boundéd
set, X C [—c,c|" forsome c € 4. As /¥ is an end-extension of .Z, the linterval
[—c, c] is the same in botﬁ structures, so (.#, X) is elementarily equivalent to
(A, X). Butif (A, X) defines a pole, say f(z), (4, X) must as well. By the
cell decomposition theorem we can assume that f is a decreasing bijection,

and by scaling we may assume that f : (0,¢) — (a,00), € < c. But then if

a € N is larger than ény element of # C ./, f~1(a) must be smaller than
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any positiye element of ./# but still positive._ This contraaicts the fact that
{me///:0<w<e};{meﬂzo<m<s}.
a
 Strictly spéaking, this does not prove our result. But building a similar

end-extension of . and using the same proof we get our result.
2.3 Defining fields

The goal of the next two sections is to prove that the only nontrivial reduct of
& which properly expands .2 is %.
In what follows we will need to know something about the smoothness of

functions definable in o-minimal expansions of R, +,<).

. Theorem 2.3.1 (Laskowski, Steinhorn [LS95]). If f : (a,b) — R is definable in |

some o-minimal expansion of (R, +, <) then f is piecewiée C™, for all n.

Proof. We define a sequence of functions by

A f(z) = f(z)

A f(z) = Akf(z+h) - Aff(2).
Intuitively, Aﬁ f(z) =~ k¥ f*) (). We also define the formula ® fk,a,b to be

, Vth(a<m<m+kh<b-—>Afo(:c);0)

VVaVh(a < z < &+ kh < b — AL f(z) < 0).
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It is a theorem of Boas and Widder [BW40] that if ® s , 5 holds, f (k~2) exists
and is continuous on (a, b). We will first show that there is a subinterval (¢, d)

of (a, b) sﬁch that ® f,k’c,d; Let
X ={(z,h) : z € (a,b),h € (0,(b —z)/(n+2))},
and let

X, ={(z,h) e X : Ag+2f(m) > 0}

X_ ={(z,h) € X : AT?f(z) < O}.

By cell decomposition, there is a partition of X into cells which partitions both

X4 and X_. We can clearly find a cell which contains a subset of the form
{(2,h) : 3 € (c,d), h € (0,c — /(n +2))}

for some (c,d). So then ®¢,, 12 4. S0 now we know that the set on which f
is not n-times differentiable is finite, or it would contain an interval and the

above argument would show a contradiction. Q

We will also need to refer to the followihg theorem of semialgebraic geom- -

. etry, by Pillay and Nesin [NP91]. By a one-dimensional semialgebraic field, ‘

 we mean a field definable in .# whose underlying set is one-dimensional.

Theorem 2.3.2. Let F' be a one-dimensional semialgebraic field. Then there is a

semialgebraic isomorphism f : R — F.

Note that the theorem implies that a one-dimensional semialgebraic field

is pure. If X C F" is semialgebraic then f~1(X) C R™ is semialgebraic (as f
is). But then X = f(f~(X)) is definable in F, by f being an isomorphism.
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In this section we will show that if a reduct of % is not a reduct of &, one
can use this structure define on an interval of R a real closed field (with the
usual ordering). This field will allow us to construct all semibounded sets.

We first need a reduction lemma.

Lemma 2.3.3 (Laskowski,’Steinh‘orn. [LS95)). Suppose an o-minimal expansion
Z of % defines no function f : R — R which is not semilinear. Then it defines no

semialgebraic subsets of R™, for any n, which are not semilinear.

Proof. By cell decomposition we need to show thatAevery cell deﬁnable in '%‘ ; v
is semilinéér. It suffices to show that for every semilinear cell C and continu-
ous, definable function f:C — R, the graph of fis sefnilinear, and we will
prove this by induction on the dimension of the cell. For zero-dimensional
- cells (singletons), the result is triviai. We saw in Chapter 1 that if C CR"isa
. semilinear cell thén there is a senlilinear cell in R4m(C) to which C is semilin-
early hémeomorphic, so we need only prove our claim for open cells in R".
Assume the claim holds for all cells of dimension less than n, and let C C .]R”
be an open cell, f : C’i — R definable and’continuous.

" Let B C R™! be an open box, and a,b € R such that B x (d,b) C C.
Write f as f (Z,y), and for each ¢ € B let g = f(¢,y). By the ﬁ\dﬁcﬁon
hypothesis, each gz is semilinear, or piecewise linear, on (a, b). Let h(Z) be thg
least d € (a,b) such that g; is linear on (a,d). Again, h is semilinear By the
ihductio_ﬁ hypothesis. So there is a By C B aijd a d € (a,b) such that each
gé, € € By, is linear on (a,d). .Let hz(é) be the slope of g;. This is definable as

%(ga(a +7r)— ga(a).) for some fixed a € (a,d) and sufficiently small rational

r. Again, m is semilinear. We reduce to a smaller box, B; C By on whichmis
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lineaf, - : .

m(Z) = Aay(mi) + d.

As g; is linear on ('a, d), we can find a definable function e such that
9z(y) = m(Z)y + e(Z).

Coﬁsider the functioﬁ k(zZ,y) = f(Z,y) — A\i(y) — e(Z). This function, on
. By x (a, d) is definable and equal to (3 g, z:)y. If a; .=,£ 0 for some i, then
k(0,...,0, A\ /,;ix, 0,> sy 0, ) deﬁnes z — 22 on some intervai, confradicting the
induction hypothesis. So m is constant on By, and f(Z,y) = An(t) +e(Z), and
e is semilinear by the induction hypothesis, therefore f is semilinear. |
The above shows that given any open subset U of C' there is an open sub-
set of U on which f is éerrﬁlinear. Using cell decomposition, then, there is a " :
partifion of C into cells such that on all open cells f is semilinear. On non-

open cells the induction hypoth_esis applies. . a

Theorem 2.3.4 (Marker, Pillay, Peterzil [MPP92]). If X C R" is not semilinear
- then there is a real-closed field on some subinterval of R whose ordering is the usual .

- ordering and which is definable in (£, X ).

To prove this theorem we will also need the following lemma on analytic

functions:

Lemma 2.3.5. Suppose f and g are analytic on (—a, ) and f(0) = g(0) = 0,
f(0) = ¢'(0) and f"(0) # 0. Then there isa g > 0 such that for all 6 € (0, o)

there is an eq > 0 such that for all € € (0,¢&¢) there is an x € (—46, ) such that

f(@+¢€) = g(z) + f(e)-



' bChapter 2. The real numbers 48

Proof of Theorem 2.34. We will assume that X is a curve, and in particular thé'
null set of a nonlinear function F(z,y). We write F'(p), where p € R?, for the
slope of F at p. Because F is a non-linear function, we can find an interval in

~ the éet of F'(p), and a rational nﬁmber a such that F'(p) = a and F”(p) # 0.
We may then translate F lin.early' that F'(0,0) = 0, F'(0,0) = 0, F(0,0) # 0,

“and the range of F’ contain_s an interval around 0. Using the implicit function
theorem® we may shrink to an interval (—a,a) on which X is ‘the graph of |
some analytic function, g. By shrinking again if required, we can also assume
that ¢’ is an injection from (—a, a) into (—b, b) for some 0 < b < 1, g" # 0 on
(—a,a).

Claim. There is some c € (0, a) and two éleﬁnable functions, A and M, such that
for all z,y € (—¢,c), ' o
J(A@y)) =¢'(@) +9 W)

g (M(z,y)) = ¢'(z)g'(¥)-
~ Given the claim we will finish the result by defining a field of fractions .

| using A and M. Let Z = {(a,b) € (—¢, c)? : b # 0}, and define (ao, bo) ~

(a1,b1) if and only if M(ao,b1) = M(ay,by). LetY = Z/ ~, let (a,b) denote

the residue of (a,b) in Y, and define two operations on Y by

(a0, bo) @ (a1,b1) = (half(A(M (ao,b1), M (a1, bo)), half(M (bo, b1))),

(a0, bo) ® (a1,b1) = (M(ao, a1), M (bo, bl)},

" 55ee [Che01].
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where half(z) is the unique y such that A(y,y) = z. Then (Y, ®,®) is a real

~ closed field. To show this we will simply prove that
o | o) =g@/e®

is an isomorphism from (Y, ®,®) to (R,+,:). From this we can then use
Lemma 1.5.2 to find a definable transversal for ~ in R? making (Y, &, ®) de-
finablé in (]R, +, <, X).

First we should note that '

- {a,b) = {¢,d) — M(a,d) = M(c,b)
o ¢ (M(a,d) = ¢'(M(c,d))
> d@d@=g@g@d
‘ | | e a(@b) =a((cd).
So g is well defined and injective. If we fixsome § € (0,¢),and 0 < z < 1, pick

a such that ¢'(a) = z¢/(8), and then o({c, 8)) = z: If ¢'(8) < =, choose a so

that ¢’ () = 1¢'(8), and ({8, a)) = z. Thus, fnultiplying by —1if required, o

is onto. Notice that z = half(y) iff A(z,z) = y iff ¢ (z) = 29 (y). Now, finally,
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o((a0,bo) ® (a1, b1)) = o((M (ao,ax), M(bo,b1)))
' = g’(M(ao,al))/g'(M(bo,bl))
= (4'(a0)g'(@1))/(g' (bo)g (b))
= a((ao, bo))o (a1, b)), |

o((a0,b0) @ (ax,b0)) = (30 (A(M(ao, br), M(a, 00))))/ (5 M (b0, b))
g'(a0)g'(b1) + g'(a1)g' (bo)
IOy
= o({ao, bo)) + o({a1,b1)).

Now all that remains is to check the claim.

Proof of the claim. Let ¢ € (0,a) be small enough that for any u,v € (—c, ¢)

there are y, z € (—a, a) such that

| @)+ =)

g(wg'(v) = g'(2).

For éach ac (—c,c) let '
| 9o = 9(z + @) — g(a).
Then wé want A(u, v) to‘bé the unique w such that for all sufficiently small
4 and all sufficiently small ¢, gu + gv and g4 have at least two points o_f‘
intersection with z-coordinate in (-4, §). So A(u,v) = w will be equivalent to |

the formula

by > 0V4 € (0,d0)3eo > OVe € (0,0)

((gu + 9v) N gure N ((—6,6) x R) contains > 2 points),
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| taking the functions to be set of ordered pairs.

Our claim is,: of course, that this w is precisely the w for which ¢'(u) +
g (v) = ¢ (w). Note that this is the unique w for which g, + g, and g, are
- tangéntial at 0. For any ¢, S ‘

gu(T +€) — gu(€) = 9(z +w +¢) — g(w) — g(w + &) + g(W) = Gu+¢(2)-
So Lemma 2.3.5 guarantees that w will satisfy the formula above, taking f =
uw 9 = Gu+ Go- |

Now suppose z is some number other than w above. Then g, + g, isnot
tangential to g., and so we can see that for small enough ¢, g, + gy and g4

have only one point of intersection near 0.

We can define M (u, v) in the same way, using g, © gy. a

a .

Note in particular that if X is serhialgebraic but not semilinear, we may
define in (&, X) a real-closed field on some interval I C R. Every R-semi-

algebraic subset of I must also be I-semialgebraic as I is a pure field. By linear:

translations we may construct in (¢, X') any bounded semialgebraic set.

2.4 Nonlinear structures
Our next theorem towards this classification of reducts was shown by Peterzil
[Pet92].

Theorem 2.4.1. Let € C R? be a curve definable in some o-minimal expansion of

F. Then if € \ I is not semilinear for any bounded interval I C R, a bijection

_ between a bounded and an unbounded interval is definable in (]R', +,<,%).
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To prove this we will need a few lemmas about growth rates of real func-

tions. We will say that f grows like g towards co, denoted f R g, if

lim f(x)/g(z) =c#0.

We will séy that f grows less than g towards oo, f 2 g, if

lim_f(z)/g(z) = 0.
Note that ¥ is an equivalence relation and < a partial ordering. Moreover,
if f and g are definable in o-minimal structures, the monotonicity theorem
gives us the trichotomy f < 9,9 < forf&g.
Lemma 2.4.2. Ifl : (a,00) — R is definable in an o-minimal expansion of F and

limg 00 [(Z) = ¢ then limy_oo zl'(z) = 0 and li>m,:_,oo z2"(z) = 0.

. Prqof. Of course we are done if I'(z) = 0 eventually. We can assume, by the

monotonicity theorem, that I and !’ are eventually strictly monotone (' is also
definable). By the mean value theorem, there is some y, € (z,2z) (for any z)

such that [(2z) — I(z) = 2l'(y;). Thus limg_,o z!'(yz) = 0. By the eventual

. monotonicity of I’ we have either

zl'(z) < zl'(yg) < a:l'(?a:)
or |
ol'(z) > ol (yz) > zl'(27) _ .

for large enough 2. But limg_o zl'(z) = 2lim,_,o 2l'(22), so if the first limit

. is‘negati\./e, s0 is limg_,0 2!’ (yz), by the squeéze theorem. Similarly, the first

~ limit cannot be positive. Thus lim;_,o zl'(z) = 0.
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Now we apply the above result to z!'(z). This tells us that

0 = lim 2(zl(2))

r—0o0

= lim z(I'(z) + zl"(z))

T—00

_ . ! : 21
= lengo zl (z) +$1Lrgox "(z),

and so we are done. ' . : : R 4

Lemma 2.4.3. Let f : (a,00) — R be definable in some o-minimal expansion of

and let a € Q. Then
o ifa# 0and f X x2, then f(z +1) — f(z) Tt
. lff &< 22, then flz+1)— f(ac) < gl

o iflim, .o f(z) = 00, @ > 0,and z* K f, then 1« zl/e,

~ Proof. Letl(z) = f(z)/z*: By the mean value theorem we can find, for each

T,ay; € (z,z + 1) such that f(z + 1) — f(z) = f'(y). Thus
fe+D)=f@) _ £
zo—t - ogel

oy Uly,) + y2U (ys)
_ ma—l

a—1 a—1

_ Y ' Y
= al(yz)mz_l + Yzl (yw)zﬁ—"_'f -

which tends to the same thing as ol(y.) by the previous lemma and because

Yz /T ~» 1. But in the first case al(yz) — ac # 0 and in the second case

al(yz) = 0, so the first two statements are true.
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Now notice that, in the third clalm, as fi is mcreasmg, SO 1s f 1, Thus we

 have (under the hypothe31s)

xa

0 = @
@)
= R

| @\
T (}.?éo wl/(:)>*

and so we are done. . , A C . @

‘We u\ay now complete the proof of the theorem.

.Proof. of Theorem 2.4.1. Let ¥ be non-linear outside of every bounded rectan-
gle, ‘as in the theorem. We 'mayassume, without loss of generality/ that &
is the graph of some eventually non-linear functlon f We may also assume
that f has no vertical or horlzontal asymptotes or the monotomc1ty theorem -
would allow usto find a bounded 1nterval on which e1ther for f~1 would be

- a pole As f is defmable in an o-minimal expansmn of the reals, we know that -
*either f(2) Rz, f(z) Lz orz L f(z). In the final case Lemma 2.4.3 allows

| us to conclude that f~!(z) & x, 50 without loss of generahty we may assume

‘ that one of the first two cases occurs. , » o
If f(z ) X, then Lemma 243 tells us that f(w +1) — f(z) ¥ 20 -1
Thus 11@_,00 fle+1)~ flz)=c# 0. Suppose f (z+1) — f(z)is er/entually

,\ conatant. Then, f1x1ng some I after which f (m+1) -f (x) is cor\stant,'we know -
that there is, by the mean value theorem, some y,, € (xo,z0 + 1) such that

' (Yzo) = f(zo+1)— f(zo) = c. Thereis also éor_ne Yoo+l € (m0+1, xo+2) such

that f (yzong) = ¢, and soon. As {z : f'(z) = c} is definable, and contains
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arbitrarily 1arge reals, f' is eventually consfant. But this contradicts the non-
lmeanty of f. The f(z+1)— f(z) is non-constant, and lim; o f (z+1)—f(z) =
c, and so we have a horizontal asymptote.

Now, if f(z) << z we have f(z+1)— f( ) <1, sohm_,,;_,oo flz+1)— f( )=

0. Asabove, f(z+1)— f(z) is not eventually constant, and so we are done. Q

With ohe further lemma this theorem will allow us to conclude that there
is no proper reduct of % which properly expands 2. This lemma gives us
insight into the structure of semibounded sets definable in a certain class of
o-minimal structures. We say that an o-minimal structure 2 satisfies the par-
tition condition if for any Z-definable set X C R™ there are disjoint analytic
sets (perhaps not definable) X, ..., X, C X such that X \ (U X;) has no inte-
rior in X. It is well known that & and ‘(]R, +, ,, <, — €7) satisfy the partition

condition.

Lemma 2.4.4 (Peterzil, [Pet92]). Let X bea defmable in an o- mmzmal expanszon N
of the reals satisfying the partztzon condition and suppose that every curve (in R?)
:deﬁnable in (R,+,<,X) is semilinear outside of some rectangle. Then there are
bounded sets By, ..., By and scalings Mg, ..., Ao, definable in (R, +, <, X ) such that
X is definable in (R, +, <, Mgy, -y Aaj» B1, -y Bi). In particular, X is semibounded.

- We know already that X being semibounded implies that every curve de-
finable in (R, +, <, X) is semilinear outside of some rectangle. Otherwise, the
lemma above would allow us to construct a pole from X, which is in turn

constructed from a bounded set (or several bounded sets, but the difference

is superficial) which would contradict an earlier result. So this lemma proves,
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for exarhple, that the structure of semibounded semialgebraic sets is the same
as the structﬁre generated over .Z by the bounded semialgebraic sets: if Xis
semialgebraic and senﬁBounded then.(R, +, <, X) is a reduct of %, and the
bounded sets needéd to define X are definable in this reduct of #. It also
pféves that if X is not semibounded, then a curve such as that needed in the
hypothe51s of the lemma above is definable, offermg a converse to the state-

ment made above.

Proof. In this proof we will treat tuples of reals as vectors to ease notation.
In particular, if @, b are n-tuples, (a,b) = Z?zl asb;. A set X definable in an
- o-minimal expansion % of (R,+, <) is said to be almost linear if there is a -

bounded ;%-lcell C and vectors 1, .., U € R™ such that

X = {5+Zti’lfitti>0Vi,E€C} : 2.1)
= C +spant{v,..., 0% }.

If the vectors are Iinearly independent and the scalars representing each point
are unique we say that X is in normal form. If X is as above, we let X be
the set defined as in 2.1 but with the écalars possibly 0. If f : X — Ris
a continuous functioh '(and X is almost linear), we Say that (X, f) is almost
llnear if f can be extended to f X - Rinsucha way that fi is bounded on

C and there are scalars a with

(c+thv¢) f(c (t,a).

Note that if (X, f) is almost linear, then the graph of f over X is almost linear,
as exhibited by the cellC’ , the graph of f over C, and the vectors o/, ..., %"
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which are obtained by concatenating @; and a; for each i, denoted (v;, a;).
Also, if Y is an almost linear subset of X then .(Y, f)is also. almost linear.

Fix the structure Z meeting the conditions of the theorem. We will show
that, if X is a cell, X can be written as a finite disjoint union of almost linear
sets in normal form. This will, of course, cover the case of any definable set.
We will prove this by induction on the n such that X € R". If X is a bounded

cell, then the statement is trivial. In particular, if X C R we need only consider

- the case where X = (a,0) (or (—00,a)) in which case X = {a} + span*{1}

(of {a} + span™{~1}). The induction step will be demonstrated modulo the

following claim, which is the real content of the result.

Claim. Suppose Y is almost linear in normal form, and f : Y — R is definable
and cohtinuous. Then there is a partition Y1, ..., Yy of Y such that (Y;, f) is almost

linear® for each i.

Proceeding with the induction, suppose that the claim is true for all sub-
sets of R”, and let X C R™*!. There are two cases for dim(X):
Ifdim(X) < n + 1 then X is (up to permutation of cb-ordinates) the graph -
_ of a continuous, definable function g on some cell Y C R". By the induction

hypothesis and the claim, we may parﬁtion Y into almost linear sets in nor-

" mal form, and then partition those sets further until we have X represented

as the union of the graphs of g over some Y; where each pair (Y}, g) is almost
linear.

If dim(X) = n+1 then X is the region between the graphs of two functions

*We will be sloppy with domains of functions in this proof.
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9: h Y — R, where Y C R" is an open ¢ cell. By the 1nductlon hypothe31s and
the clalm, we may partltlon Y = Y1 U...UY; such that (Y;,9) 1 is almost hnear "
_ for each i. We may then partltlon each Y Yi1 U U Y so that (Yi s h) is_
almost lmear for all 7, j. By the comment at the end of the first paragraph of
_ ﬂ‘llS proof, (Y, 0> 9 g) is still almost linear. So assume without loss of generahty‘

 that

Y=C+ Span+{171, ...,v‘;'c}‘
<C+ thvz> = g(c a’ £>
(c-l-ztzvz) = h(c b£>

for some tuples a,b. Note that we are dropping the distinction between g and .
| g. As g < honY, cont1nu1ty tells usthatg <h on C In fact g < hon C. This

, 1mp11es that a; < b; for all 4. If a; = b; for all i then
X=c" + span+{(v1, al) (vk, ak)}

o 'Where C*is the cell between the graph of g and the graph of h over C’ The |
new vectors are clearly lmearly mdependent as their pro]echons toa lower
' dlmensmn are. If (c, d) + Y 4,0 = (c d') + Y tiw;* for some ¢, d, etc, then,
: because Y isin normal form, ¢ = & and t; = ¢ for all i. But then d + (t a)y =

d + + ‘) and so d = d'. Thus points in X have umque representahon

Ifa; < b; for some ¢ then we will re-arrange indices such that a; < b; for‘

S all i<l and a;=1b for all i>1 By deflmtlon,

:{(5+Ztm¢, ceCt > 0V4, ye' (a, f) h(&) + (b f))}
. i=1
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: We will definably split X into three pieces: X1, X7, X3. In each the defining

condition will remain the same except for the range of ys. -
{ (c+ thvz, e Ct; > 0¥,y € (h(E) + (@, D), h(E) + (E,‘f_))}
= {(E—E—Ztiﬁi,y) ;e Ct; > 0Vi,y =h(C) + (E,f)}
i=1

X3 = { C+Ztvz,y) cECtz>0\7’z yE€(g (E)—i—(('zv,f),h(é)—%—(a,f))}..

i=1
Xy is the graph of an almost linear function over Y and so is almost linear in
normal form. Also, X3 is the case above. All that remains .to be shown is that
X, can be written as an almost lir}ear set in normal form, o
Let o . A
= {Ctwy) v e (@D, 6.9).4>0}.

Then X; is the graph of h over C shifted by Z. In particular, if Z is almost lin-.
ear in normal form sois X;. Let ai = (a1,az,...,a;) = (él, ceey G115, 01y ooy DE),

@y = (a1,...,a1—2,bj—1, ..., bx) and so on. Then by construction,
(@1,t) <(@,?) <. <(ai),
for f € (R*)k. If we set

%z{Zt,vl, (&, 1), (B _)}

then

Z= U Agh, U l_U1 {(Z t:0;, (di,ﬂ)} -
i=1 L
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The second type of set is clearly almost linear in normal form. So we need

only show that the Agj;l are as well. Suppose y € ((@;, ), (@31, %)). Then |

a1ty + .. + q_iti—i + bimiritiir1 + ...+ bity

.< y<ayty+ ... +ap s 1ti1 + b—iti—; + ... + brtr.

Writing y» =y- (a1t1 + .. + @peioiti—ic1 + b—iprti—gp1 + ..o+ bitx) we have
aj_iti—; < Yo < bj_sti_;. Choose 0 < t' < 1 such that yo = a_it;_it' +

bi—iti—i(1 — t'). Now

—(t1(91, @1) + o Htimim1 (Vi1 @imim1) i1 (Vi Bigr) o 8 (0, ak))
= t1_i(visi, y2)

= 't (visi, ar—i) + (1 — )i (viss, bi—s).

So Ag:ﬁ;r.l is the positive span of (3;,a;), for 0 < j < I — i, and (v;,b;), for

l—i<j<k

- Proof of the claim. Again we proceed by induction, this time on dim(Y’) and
the n such that Y C R", and again we assume that Y is a cell. If dim(Y") .< n,
then Y is the graph of some function gonacell Z C R*!. Leth: Z - R

be given by h(z1,...,2n~1) = f(21,..,Zn-1,9(Z1, ..., Tn-1)). By the induction

hypothesis we can partition Z into Z; such that (Z;, g) and (Z;, h) are almost
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linear. Fixiﬁg an index, let

Z.j = {E‘f‘Z.tiﬁi :‘EG C,t; > O}
g(e+ Ztiﬁi) = ¢(2) + (a,?)
c+ztzvz = h(e) + —>

Of Course, a, b and the 7; depend onj. Let
Y; = {(2,9(2)) + Zti(v_l,ai) 12 € Ct; > 0}.

By construction, on Y; we have-

f(G 9 +Zt u,a;) = f(e+ ) tivi,g(@) + (£,a)
= fE+)_tv,g(E+ Y tid))
= h(c+ ) tw)
= @+ 0D
= f@+ 3

Also as the Z; partition Z, the Y; partltlon Y. ‘ A

* Now suppose that dim(Y’) = n. By the partition. cond1t10n there are open, |
connected (not necessarily deﬁnable) sets U1, ..,Ur and analytic functlons'
fi, .-, fr defined on the U; such that f; = f; on U; N Uj, for all 4 and j, and
Y'\|J U, is contained in a definable set of dimension less than n. We will abbre-
viate this by saying dim(Y \ |JU;) < n. We will prove the result by induction
onr(Y, f), the minimum ndmbelj of U; required. If r(Y, f) = 0 then dim(Y) <

n, so this case has been dealt with. Now let Y = C + span*{%, ..., v }. For
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eacht € (Rt)*1and ¢ € C, set
k .
Fep(t) = f(E+ > tili + tvg).
i=1
It is our aim to use these functions to show that f is essentially linear in the v
direction. We will then apply induction to complete the proof. By hypothesis, -
F; (for fixed ¢ and ?) is eventually linear. Let [(C, t) be the least ¢ such that for

all s > 0and t1,t9 > ¢,

Fep(t1+8) — Fiep(t1) = Fep(ta + 8) — Fgp(t2).

This is the (or a) pbint after which F{; 7 is linear, and the function is definable.
Finally, let s(C, ) be the eventual slope of F(z 5. This is definable as

Fept+1)— Fep(t),

for some t > l(E, t). ‘

‘ lWe claim that the range of s is finité. If not, then it contains some inter-
val. ‘As dim(Y) = dim(C) + k, we will assume, to simplify matters, that C
is an open subcell of R"* . If it is not we can find a definable horﬁebmbr—
phism between C' and such é cell, and examine the images of s, etc through
this homeoniorphism. So s is defined on C x (RT)*~1. By cell decompo-
sition we can find an open, connected cell V on which s is continuous .and.
has infinite range. Sﬁppose that for all ¢ and a1, a3, ...,an—1 € C X _(]Rﬂ’“‘%
s*(z) = s(al,...,ai_l,x;ai+1,...,aﬁfl) has finite range. Then, by continu-
ity and by following paths along axes, we can show that s(a) = s(@') for

any a,a’ € V. This is a contradiction, so for some ay, ..., s*(x) has infinite

range. Choose, by the monotonicity lemma, some [a,b] C R on which s* is
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strictly monotohe, and let M = sup{l(‘al', vy @i, Ty Qig 1, ey Gn—1) : T € [a, b]}
Because there are no poles definable in the structure, M is finite. For any
x € [a,b], Flg,,. .z, ..an_1)(t + M) is defined on R+ and is linear (in t) with

slope s*(z). Let
90(z,Y) = Flay,..zan_1)(y + M) = 8™ (2)y + go(z, 0).
Now let g1(,y) = go(z, ) — go(z, 0) = s*(z)y. Now let

g2(z,y) = g1(s* "} (z),y) = 2.

If we reduce [a, b toa subinterval with rational endpoints, we can now define,

| using only the group structure,
g3: [Oab - 0,] x RT — Rbyg:i(x?y) = gZ(x +a’7y) — ay,

asa and b are rational. Again, g3(x,y) = zy, now defined on [0, b — a]. We can
define g4(z) on [1/(b — a), 00) to be the (unique) y such that g3(z,y) = 1. This
is a pole (namely z — 1/z). | |

~ So s has finite range, say {mi,...,my}. Let m be the least m; such' that
s~1(m;) is n — 1-dimensional, and set |

k—1 .
G={c + Z til; +tvg 1 € Cit;,t > 0, Fgp is linear with slope m

1=1

on some interval containing t}.

Then G is, as shown above, definable. We will Show that either Y = G or.

r‘(G, f)and r(Y \ G, f) are both less than r(Y, f).
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Let
k—1
 Yep={e+ ) tili+tve:t >0}
i=1 .

If (¢, f) # (¢, 7) then, by unique representation, Yz; N Yu p = 0. Let

k—1
Z={c+) twi},
i=1

and
' k-1

i=1

Ifc+Z:'c ! t.5; € Zpm then Yc iNGis mﬁnlte So the Y; ;NG with c+2 t.0; €
Zm is a family of infinite subsets, and since dlIl’l(Zm) = n — 1, the dimension -
_ of G must be’ n. _ . |

Sﬁppose that dim(Y \ G) = n. Let Uy,.,U,, fi,..., fr be witnesses fo
r(Y, f) = r. As dim(G) = n, there is some ip with dim(G N IUiO) = n (that
is, this set has noh—empty interior). Similarly, there must be some jol' with
dlm((Y \ G) NUj,) = n. But if, for some given i, U; N G contains an open
set then, f; must be vk-hnear (with slope m) on U; N G by the defining con-
dition of G', But f; is-analytic on U;, so the same is true on U;. In particular,
U;Nn(Y\G) = (Z), and i # jo; Re-arranging fhe indices, we inay assume that,
for some s, i < simplies U;NY C G, and s < 4 implies dim(U; ﬂG) < n. Thus

dun((Y \ G) \ U U;)

i=s+1

| dim(G \ U U) <m,
i=1 :

"See [Pil88].
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demonstrating (Y \ G, f) <r—s<randr(G,f) <s<ras desued

Now suppose that dim(Y"\ G) < n. In this case we will have Y = G and
~ the result will follow. If, for some ¢, we have Yzz \ G finite then, as FC 7 is
continuous and lmear of slope mon @G, Yé,f C G. So we can define the set

, k-1 :
Z1 = {E—f—ztzﬁz GZ:YE,{\GiS ﬁnite} i
: =1 .

o k-1
= {c+thvz €Z:Y;; & G}
) i=1 - _ .

Note that theset of Yz:\ G withe+ }:f;ll t;5; € 7, partitions asubsetof Y \ G

which,'by hypothesis, has dimension < n, so dim(Z1) <n — 1. Now let
k-1 ' k-1
Y; = {E+Zt,—ﬁi 0T+ Y il € Zy,t > 0} .
‘ i=1 i=1
So dim(Y;) = dim(Z1) +1 < n. Nowif Y, = Y \Y;, Yo C€C Gand if ¢+
SiCi tili + t0g € Yo,
k=1 | k-1 A

f(c+Zt G +tok) = fE+ Y titi) + tm.

o i=1 i=1 ) .
But as dim(Y2 \ Y) <n-1Yyis dense in Y, so the above equation‘ holds
throughout Y (as both sides are continuous). By the 1nduct10n hypothe51s,

we can assume that (Z, f) is almost linear, and so we are done. ‘ Q
Q

We can now prove that 2 is the only structure ‘between’ .2 and %, as
observed in [Pet93]. -

Theorem 2.4.5. A is the only proper reduct of F which properly expands 2.
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Proof. Let Z be a feduct of # which properly 'expands 2. Becauée Z prop-
efly expands ., we know from Theorem 2.3.4 there there is an interval I such
that every senﬁalgébraic subset of I" is Z-definable. If X is any bounded
sémialgebraic éﬁbset of R™ we can linearly translate X into I", so X is %-
definable as well. Thus # < £. If Z is not & then the theorems of this
section tell us that there is an %-definable bijection from a bounded interval
to an unbounded interval. Linearly scaling and pasting aé needed, we may
assume that there is an %-definable bijection f : I — R. Now, if X is any
semialgebraic subset of R", f~1(X) is a semialgebraic subset of I", and so is

Z-definable. So X is #-definable, and Z is &. : a
2.5 Multiplicative reducts

A simﬂar résult tb those above can be had when considering reducts of &
which expand £ = (R,, <), asin [Pet93]. The only reduct of &# which prop-
erly. expands & is (R, +*, -, <), where +* is the restriction of + to the interval
[1,2]. In order to prove the following results We_ will need to assume that
the structure (R, +,:,2 — €%) is o-minimal. This was shown by Wilkie in
[Wil96] by demonstrating that every definable set is the projectidn of some
quantifier-free definable set (model completeness). It also follows that this
structure satisfies the partitibn condition. We will work over 22t = (R™, -, <)
for the rh'ost part, but this is for ease of notation. The results transfer readily ‘

to 2.

Definition 2.5.1. A set X C (R*)" will be called p-bounded if X C [a,b]"

for some 0 < a < b. We call X Cc R" p-semibounded_ if it is definable in a
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structure (R, -, <, B) where the B is a p-bounded set. We will let %, denote ‘

the structure generated on & by the p-semibounded sets.

- Lemma 2.5.1. Let X bea p-bbunded set. Then in (R,-, <, X )‘ one cannot define a

bijection between a p-bounded interval and a p-unbounded interval.

Proof. Let o(z) = In(z). Note that o provides a natural isomorphism between
2% and (R, +, <). Note that X C Ptis p-bounded if and only if o(X) is
boﬁnded. Consequently, by the isomorphism, X is p-semiboimded if and
only if cr(X ) is semibounded. So if there is a bijection f between a p-bounded
intérval and a p-unbounded interval definable in ($*, X)) then there is a bi-
~ jection between a bounded interval and an unbounded interval definable in |
(R, +,<,0(X)). By Theorem 2.2.2, theh, o(X) is not semibounded, whence X

is not p-semibbﬁnded.’ _ - Q

Lemma 2.5.2. Suppose X C (R*)™ is semialgebraic but not P*-definable. Then
o(X) is not & definable.

Prbof. Suppose that g(X) is .Z-definable. Then there are certain oy, ..., o
such that 0(X) is definable in (R, +, Aa;; .- Ay <). Notice that ¢ is a nat-.
ural isomorphism to this structure from Z = (R, -, i, .., Py <), Where
pa(z) = zP. By Lemma 2.44, the ), ére all (R, +, <,0(X ))-deﬁnéble, and
'S0 thé ﬂai are (#+, X)-definable. Now, if X is semi-algebraic, the y1,, need
all be sénﬁ-algebraic, and so the ¢; are all rafionai. - But then the pu,, are #*-
definable. | | 0

Lemma 2.5.3. Let X C (R*)" be F-definable. Then if o(X) is semibounded, X is

p-semibounded.
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Proof. As X is # -definable, 0(X) is (R, +, -,z +— e*)-definable. So the struc- -
ture (R, +, <, 0(X)) is o-minimal and satisfies the partition condition. If o(X)
is semibounded then there are Ay, ..., Ao, and bounded sets By, ..., B; defin-

able in (R, +, <, (X)) such that ¢(X) is definable in
(R, 4+, <, Aayy oo )\ak,B;, ey By).
If we let C; = 0~ 1(B;) for each i, we see as above that X is

] (R, Yy Maygs -+ Hags Cla ooy Cl)

-definable. As above, the C; are all p-bounded and the p,, must all be Pr

definable, and so X is p-semibounded. ' d

Theorem 2.5.4. The only proper expansion of & which is a proper reduct of F is
By

Proof. We let % be some proper reduct of # properly expanding & and
demonstrate that #Z = %,. First suppose that X C R" is %-definable but
not P-definable. Without loss of generality, we can assume that X C (R*)".
Thén (R, +, <, (X)) is o-minimal (it is a reduct of the exponential field) but
nof semilinear. In particular, we can define a real closed field on some subin-
‘terval of (R, +, <,0(X)). Let I = (a,b) be the o~ l-image of this interval. By
Theorem 2.3.2 every semialgebraic subset of I"™ is (£, X)-definable. If (v, d)
is any other interval in R, and o € (a,b) then there is a rational number g

= sufficiently small such that if 8 = a(6/7)?, (a, B) € (a,b). Then

In(§/~y

I\ 808/
y = (_) In(8/a)
(47
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is'a #-definable bijection from (o, B) to (7,6), and so every semialgebraic

| subset of (7, 6)‘is definable. In pa‘rticular, By L A. R
. Now suppose that some nbn—p—éemibounded Xis .%-deﬁneble. Again we
may assume that X C (R*)", and again we may apply previous theorems to
(R, +, <,0(X)). As 0(X) is not semibounded we may, in (R, +, <,0(X)), de-
fine a bijection between a bounded interval and an unbounded interval. This
translates in (£, X) to a bijection f between a p-bounded intervel and a non-
p-bounded interval. But any non-p-bounded intervel is either of the form
(a,00), or of the form (—o0, —a) or contains 0 in its closure. Using z +— 1/z if
required, we can assume that rng(f) = (Ia, 00). We may then also construct®
bijections with range (0,1/a), (—;1/a, 0), and (—o0, —a). Now any semialge-
~ braicset Y C R™ may be divided into Y N(a, c0)™, Y N[1/a, q]’", Yn(o,1/a)™,
et cetera, each of which is (£, X)-definable. So Z = #. g a

" The lemmas above show that both of these reductions are strict.

2.6 Polynomially unbounded structures

As in the previous section, the natural isomorphism (R, +,<) — (R, <)
‘- yields useful results. We will here prove a result due to Miller [Mil94], but in

a form presented by Poston [Pos95]. .

" Theorem 2.6.1. Let % be an o-minimal expansion of F in which some definable

function is ot bounded by any polynomial. Then x — €* is definable in Z.

8The function z — —z is definable as for all z # 0, —z is the unique y such that z* = y?
and zy < 0. ;
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.Proof. We will prove that (a:,vy) s ) is definable in Z. Theﬁ, if g(i) =
T = e(ln(“’j)2, Jg(z) = 21n(z)e(n(®)? /z is definable in %, and then so is |
3¢ (2)/9(z) = In(a). | |
Let £ = (RT, -, <), and @ = (]R,+,.<). Then & = ¢ by z +— In(z). Ndw,
if f. is definable in an o-fninimal expansion of Z, (#T, f) is also o-minimal.
- Let gbe the image of fin¥,sothat (2, f) = (S_é’, 9)- If g(z) < nz for any n, we
have f(z) < 2™, so g is not linearly bounded. Thus multiplication is definable
in (¢,9). Lifting through the isomorphism, (z;y) +— z'™® is definable in
@.n | | -0

2.7 O-minimal expansions of (Q, +, <)

Though it is widely believed that there is no proper o-minimal expansion of
@Q,+,<),it is not known. The evidence mounting towards this conjecture is
quite convincing, thbugh, and the above sections allow us to put some restric-

tions on possible counterexamples to the conjecture.
Theorem 2.7.1 (LaSdeski, Steinhorn [LS95]). There is no proper semialgebraic
o-minimal expansion of (Q, +, <).

By a semialgebraic expansion we mean an expansion by a set X N Q",

where X C R is semialgebraic.

Proof. Suppose X is a semialgebraic set, let Xg = X N Q", and suppose that
2 = (Q,+, <, Xq) is o-minimal. As shown at the beginning of this chapter;

2 can be elementarily embedded in a unique o-minimal expansion % of R

(unique assuming 1 — 1, in which case the embedding is the identity map).
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Claim. For every semialgebraic set Y CR¥, if Yo=Y N Q’“ is definable in 2 then
the interpretatioﬁ of Yo in Z (denoted Yg ) is simply Y.

Proof. We proceed by induction on the dimensioh of Y, and restrict our at-
tention tb cells. As seen before, we need only demonstrate the case where
Y is the graph of a continuous, definable f : C — R, for some dim(Y") — 1-.
dimensional cell C. Given the induction hypothesis (which is trivial for 0-

diinensional cells), Cg = C. Also, Yq is the graph of f restricted to Cq. Let

g : C — R be the function whose graph Y@? is. Then f = g on Cg, a dense

subset of C. This tells us that f = g on C (see, for example, [Kel55]). Q

- If X isnot serﬁilinear, then multiplication is definablé on [-2,2] in %, and
hence in 2. But this is impossible, as 2 = Z would imply that Q contains a
square ro‘ot for 2. Thus Z is a reduct of .Z. Again,. ifa € R\Q, then A\, cannot
be %-deﬁnable, as Ao (q) is irrational for any ratibnal g. Butif ais raﬁohal, Ao
is already definable in (Q, +, <). Thus,.if £ is o-minimal, 2 = (Q, +,’<). - Q

In fa‘ct,‘ in light of the theorems above, ‘if £ is an o-minimal expansion
of (Q,+,<) then 2 < %, for some o-minimal # on R. If 2 is proper, #
cannot be éemilinear, by the argument\ above; So there must be be some 69
and ® definable in 2 which make some interval of 2 into a real closed field.

Althbﬁgh it seems unlikely, it has not yet been shown that this cannot liappen.
2.8 End extensions

We conclude with a simple observation on the nature of non-Archimedean o-

minimal groups.'Theorem 2.2.2 allowed us to conclude that in any o-minimal
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- structure for which we may construct end-extensions, multiplication cannot
be definable. We can give a sort of converse to this in light of the theorems

above.

Definition 2.8.1. Let .# be an o-minimal structure. We deﬁné two types in
S1(A): poo(2) is the type generated by the formulae z > a forall a € A4 ,and
pe(2) is the type generated by 0 < z < a foralla € #, a > 0.-We say that .#
admits end-extensions if there is an elementary extension of . in which p

is realized but p; is not.

Lemma 2.8.1. Let .# be an o-minimal expansion of a group. Then if .# does not

admit end-extension, there is a definable pole in A . B

Proof. Suppose .# does not admit end-extension. By Lemma 2.1.4 there is a
definable function f : . # —> A such that in any elementary extension of ./Z,
.poc;(a}) '_ir'nplies pe(f (a)). By cell decomposition there are —c0 = ag, ...,an =
oco.such that the restriction of f to (a;,a:+1) for any i is either constant or a
bijection between intervals. "I = (@n-1,a,) we cannot have f constant‘on
I, as in eleméntary extensions of ./, f(I) contains realizations of pe (and in
: parﬁcular elemerjlts outside .#). So f is a bijection. Similarly, the closure of
fa )b must contain 0. Suppose f is increasing, and let ¢ € f(I) N (0, 00). Then
thereisa b € I such thatz > b — f(z) > ‘c.’_ But if a realizes Poo in an
eiementary extension of ./#, a > band f(a) <c. So f is decreaéing. Finally,
suppose that lim;_, f (z) = L < 0. Then there is some ¢ € (L,0) and somel
b€ Isuchthatz > b — f(z) < c. Again this is a contradiction, and so ‘

limy 00 f(z) = 0. Thus f restricted to some subinterval of [ is a pole. Q
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Applying the theorems above, if .# is Archimedean, ./ is an elementary

substructure of some o-minimal expansion of (R, 4+, <). Our pole above will

. allow us to define multiplication in this structure if the corresponding struc-

ture onv]R is semialgebraic, or at least a real-closed field on some subinterval
6therwi$e. Note that Lemma 2.1.4 also tells us that if ./ is end-extendible, -

there must also be an elementary extension of .# realizing Pe and not peo.

Also, every noncut over ./ is a translation of p, or a reflection across 0 of

such a translation, and so an end-extension may realize no non-cuts.
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