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ii

The relative waiting times in a G/G/2 Queue are investi-
gated for FIFS vs. cyclic service order. We . will prové

" that under the FIFS system the expected wait is shQrter ‘
given rather weak conditions on the arrival process. How-
ever, the wait is not necessarily stochastically less, nor
is the average wait less for every realizatioﬁ.:-This result
\'bears on the upper-limits on expected wait in .a G/G/k queue

- given by,Brumélle and Kingnan..
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I. Introduction and Summary

A familiar example of a queuing system is the ser-
vicing of customers at a bank. Customers arrive at the
bank according to some probability law. There are k tel-
lers working in parallel. A given customer either gets
served immediately by one of the tellers or else he first
waits in some line. The successive time spans marked off
by the arrival of the customer, his beginning of service,
and end of service are called the waiting time and service
time. The method whereby a customer is assigned to a given
teller is called the éervice discipline. For example,
banks in Vancouver, B.C. prior to 1974 had the following
service discipline: there were k separate queues, one in
front of each teller, and a given customer would choose
one of the queues (presumably the shortest) immediately
upon his arrival. The customer could also leave the bank
without being served (this is called "balking") or he
could switch queues during his waiting period ("jockey-
ing"). Dﬁring 1974 some Vancouver banks switched over to
the single queue system wherein the person in front of the
queue would go to the next available teller. This service

discipline is called "first-in-first served" (FIFS).



Although most phenomena that occur in real-world
gqueuing systems (jockeying,balking, bulk arrivals, spe-
cialized servers, etc.) have been considered and analysed
in the queuing literature, substantial attention is still
being paid to the standard classical model, which may be
described as follows: The service discipline is FIFS,
with no balking, the interarrival times are independent,
identically distributed (i.i.d.) random variables indepen-
dent of the service times, which themselves are i.i.d. ran-
dom variables, and the k servers all work at the same rate,
independent of the length of the queue. The behavior of
this system depends only on the distribution function of
the service times, H{(s), and that of the interarrival times,

G(t).

Of particular interest are the waiting times of cus-
tomers, and indeed a good figure of merit for a gqueuing
system is the limiting expected waiting time. 1In general,
this quantity is difficult to calculate, even for a single
server queue (k=1). Marshall [l] and Kingman [3] have
developed an upper bound for the expected waiting time in—
a single-server queue in terms of the means and variances
of the service and interarrival times. For k21, the sit-
uation is considerably more complicated. However, Brumelle
[2] and Kingman [3] have succeeded in establishing upper

bounds for the expected waiting time in a k-server queue



by comparison to a judiciously chosen single-server queue

in which the expected waiting time is greater. Brumelle's
single server queue was constructed from the k-server queue
by assigning all arrivals in the latter to the first server,
but giving fhose arrivals that would not have gone to the
first server a zero service time. Under this modification

none of the waiting times is decreasedl.

Kingman, on the other hand, asserted that the expec-
ted waiting time in a k-server queue cannot decrease if the
service discipline is changed from FIFS to one where the
arrivals are assigned cyclically to the k servers. (Thus

th a0 a2t L

the ith server would get the i
arrivals. This creates k stochastically identical single-
server queues). Since Kingman's bound is a sharper one

than Brumelle's, it is important that Kingman's assertion

be proved.

In this paper the case k=2 is examined in depth.
We will show that
i) the limiting expected waiting time for the FIFS
system is less than or equal to that for the

cyclic system, however,

lSince the single-server queue thus generated does not
have independent input, Brumelle had to extend Marshall's
results.



ii)

iii)

there exist realizations where the average wait

is lafger for the FIFS system, and

there exist service time and interarrival time
distributions for which the waiting times are

not stochastically greater for the cyclic system.



II. The Two Systems - Definitions and Elementary Notions

We consider a system of two parallel servers each
working at unit rate. The ith arriving customer (denoted
by (:) ) has service time Si and interarrival time Ti
(taken to be the time between the arrivals of (:) and
(:::)); Si and Ti are random variables. We assume that
the first customer finds the system empty. Initially,
no assumptions are made about the probability law govern-
ing the process {(Si,Ti), i=1,2,..:}.‘ A given set of

-numbers {(s.,t.).: s.Z 0,t.ZlJ;i=l,2,..} is called a
i’7i i i

realization of the process if Si=si'Ti=ti for all iz 1.

Under the FIFS system (hereafter .denoted system
'I)(:) is immediately served if he finds one of the servers
idle; otherwise he waits in gueue an amount of time Wi
until the first time a server becomes free after (:::)
starts service. Although this description suggests a
single queue of waiting customers, it is more convenient,
as in [2] , to consider each server to have his own queue,
sucﬁ that a given customer immediately joins the queue
of that server who eventually serves him. If we denote
by Qi the hypothetical waiting time of (:) if he were to
join the other queue, then the pair of numbers of (Wi,Qi)

denotes the remaining work (at the instant of (:) 's



arrival) of the two respective servers if (:::) were to
be the last customer granted service. These definitions

yield the following recursion relationships:

+ +
Wi+l min{ [Wi+si_Ti]> [Qi_Ti_-’ }
+ +
max{ [Wi+si—T£])[Qi—T;]'}
where the [:TBperator denotes the diode function:
(4] {x if xZ0
o if x =0,

A useful schematic aid in depicting the process is shown

I

(1)

Q41

in Fig. 1, with the bars being "fed" sporadically on the
right by amounts Si and being "eaten away" from the left

at a uniform rate.
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In the cyclic system (hereafter denoted system II)
customer (:) goes to the first server if i is odd, to the
second if i is even. We define ﬁ& to be the current visible
work of the server that (:)goes to at the time of his arri-
val, 6i the work of the other server, and obtain the follow-

ing recursion relationships:

- ]+
Wig1 = [Qi_Ti

Qi Wi+S;-Ti) -

t

(2)

We note here briefly that system II is, in princi-
ple, simpler than system I, since it can be reduced to a

one-dimensional process by considering two-step recursions:

+
~J
i+ = twi+si—Ti—Ti+l] . (3)

=)

It is useful to define two more quantities:

Total Work: L. = W.+Q. .
i i =i

Unevenness: U. = Q.-W.
i i 1

(and, similarly, E} and ﬁi in system II).

In comparing system I with system II it is at first
instructive to assign them the same realization of {(Si,Ti),

i=l,2,..} and calculate the corresponding set of numbers



(Wi’Qi) and (W;fSi) for every i. For every realization
we have Wléﬁi=wz=ﬁ5=0 and the two systems run identically
until some arrival C) (12 3) sees (Wi=a,Qi=b) in system I
and'ﬁi=b,6i=a) in system II for some a,b Where‘a<fb. At
this point the two systems part company with system I
gaihing an immediate advantage in waiting time but at the
cost of an "inferior" state for the next arrival. A
"good" state, intuitively, is one with a high amount of
unevenness for a given amount of total work. However,
very high unevenness may occasionally cause a server to

become prematurely idle, which is "bad" since then the

total work is not being reduced at maximum rate.

\ Intuitively, it is clear that system II will tend
to have more imbalance in the two queue lengths than
system I and hence be more susceptible to partial server
idleness. This implies more totai work and therefore
longer waiting times. However, it is difficult to quantify
these statements for a formal proof. In fact, the proof
presented in section IV will not be along this line of

reasoning.



ITI. The Two Systems - Some Partial Results

A. Comparison of Realizations

In this section we view the Si and Ti as given num-
bers and ignore their probability laws. No restrictions
are placed on them other than their non-negativity. We

will say that an n-block violation occurs starting at (:)

if
ten-| L+n-lﬁu
E Wj g Z Wj
=t =t

and ask whether it is possible for an n-block violation
to occur starting at (:) and, if so, what is the minimum
such n. These questions are answered as follows (the

groundwork and proofs are presented in Appendix A):

Lemma l: Suppose arrival (:) finds the state to be (a,b)
in system I and (b,a) in system II with a<b. Then an
n-block violation starting at (:) is impossible for

n=1,2,or 3.

Since the condition of Lemma 1 can be fulfilled at
the very earliest at i=3, it is clear that, starting at (:),
5-block violations cannot occur. However, 6-block violations

are possible:

. Theorem 1: The minimum n necessary for an n-block viola-

tion, starting at (:) , is 6.
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et us for a moment consider the service and inter-
arrival times to be independent random variables, so that
the instances where an arrival finds both system I and II
empty are renewal points. With a very light traffic intensity
(ES/2ET<< 1) the renewal periods would encompass only a
few arrivals, which, by Theorem 1, would tend to favour

system I.

We will say that a systém becomes partially idle if,

when one of the servers finishes the work of a customer, no

new customer is in the queue to immediately take his place.

A necessary condition for a 6-block violation is that
system I becomes partially idle before (:) arrives. One may
ask whether an n-block violation (nZ7) is possible in which

system I never becomes idle. The answer is no:

Theorem 2: If system I does not become partially idle
at any time after the arrival of (:) , then
an’ n-block violation, starting at (:) , cannot

occur for any n.

Thus system I is certainly no worse than system II in

a fully congested system (no partial idleness).

Suppose we have an n-block violation for a given set
of numbers {(Si,Ti), i=1,2,...,ﬂ}. Let us take the n ordered

numbers Sl’s2""’sn’ permute them in some way and compute
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the new waiting times. For a permutation B in [\n' the
. ' G G
group of permutations of {l,..,n} , let Wi ,Wi be the
corresponding waiting times obtained as above. Consider
the conjecture that
N [4]
S >

> 2w s 22 W

Gep, ©! Geln !
If this conjecture was true for all n and any set of Si’
it would follow that the expected wait in system I is less
than or equal to that in system II provided that the Si
are independent and identically distributed. Unfortunately,

the author has been able to prove this conjecture only for

the case of n=6.

B. Comparison of Distribution Functions for Waiting

Times and Total Work

In this section, we make the usual assumptions about
the {(Si,Ti),'i=l,2,... process, namely that the service
times are i.i.d. with distribution function H(s) and
independent of the interarrival times which are also i.i.d.
with distribution function G(t). We define the following

two-variable distribution functions:
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F.(x),%,) = P[wis Xq,Q;S xé]
Fi(xl’x2) = P[Wis. xl,Qiﬁ xz] .

The following recursion relationships can be derived

- via a method given in [4] (see appendix B):
Let U(Xl'XZ) be the two-dimensional unit-step-function:

1 if xlzo and x22 0
U(xl,xz) =

0 otherwise

o~
Then Fl(xl,xz) = Fl(xl’XZ) = U(xl’XZ)

and, for iz 1,
Fi+l(xl’X2) = U(xl,xz{i{Fi(x2—s+t,xl+t)dH(s)dG(t) (4)

U(xl,xz);(Fi(x2—s+t,x2+t)dH(s)dG(t) if le:x2
Fiyp (%pr%p) = o (5)
U(xl,xz)iji(xl,xz,s,t)dH(s)dG(t) if xl< X,

where
Ai(xl'XZ’S't) = Fi(xl=s+t,x2+t)+FiQx2~s+t,xl+t);Ei1§i—s+tgxl+t).

- : 7
It is shown in [4] that Fi(xl,xz)_ Fi+l(xl,x2)

for every (Xl’XZ) and evefy i, and that
F(xl,xz) = &:2 Fi(xl,xz)

is the steady-state distribution function provided that ES< 2ET.
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A similar statement may be made for system II.

We consider the following series of conjectures

(an omitted subscript indicates steady-state conditions):

o~
A. EW= EW
B. EW.=< EW. for all i
i i

C. F(x,00) Z'%‘,(x,OO) for all x
D. F.(x,00)Z F(x,e) for all i, all x

>~ .. . .
E. -Fi(xl’XZ)"'Fi(Xl’XZ) for 0< X:L.SX2 and all 1i.

(Note that E=D=C=7A and D= B =A.)

When investigating these conjectures, the author at
first thought it possible to prove conjecture E via the recur-
sion relationships (4) and (5). However; it is not true for
every possible pair of probability distributions H(s) and G(t).
In fact, a counterexample can even be produced for conjecture

C. This is shown in appendix B.

A random variable X is said to be stochastically larger

than another random variable Y if, for every 2z, we have

P[X‘.? z] z P‘[Y? z],



The fact that conjecture C does not hold for every H(s)
and G(t) means that W is not necessarily stochastically

larger than W.

The author does believe that L is stochastically
larger than L. However, as indicated in appendix B, the
recursion relationships involving P[UiS'xl;Lis xé] are not
nearly as simple as those for Wi and Qi' Moreover, :‘the non-
monotonic behavior of the unevenness quantity, alluded to
in Section II and further illustrated in appendix B, makes
it difficult to generate a suitable induction statement
involving the Ui’ Consequently, the question whether T is

stochastically larger than L is left as an unsolved problem.

14
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IV. Proof of EWSEW via Value Functions

As in section II, we consider each server to have
his own gqueue, but assume at first some general but fixed
policy of assigning arrivals to servers. We also drop the
assumption of an empty system when (:) arrives. Observing
this stochastic process only at the arrival epochs, we may
extract the following discrete-parameter, two-variable

continuous state stochastic process:

{zi=(xi,yi) , 1=1,2,... I Zl=(x,y)}

work that (:) sees ih front of that server to

whom @ was assigned,

work that (:) sees in front of the other server.l

where Y.
i

X,
i

Under a stationary policy the decision to assign <:)
to a specific server depeﬁds only on the state Zi of the
process and not on the previous history. For example,
both system I (FIFS) and system II (cyclic) constitute

stationary policies.

We note that if, in addition to a stationary policy,
we also have i.i.d. service times and i.i.d. interarrival
times, then {Zi, i=l,2,..:} is a Markov Process. If we
leave the policy open to choice and specify some cost
structure, we have a Markov Decision Process. However,

in the following exposition we will not assume that the

lThis is a slight change in order from the state defini-
tion of Section III A.



16

interarrival times are i.i.d., and consequently the resulting
process may not be Markov. Nevertheless, we will borrow from
Markov Decision Process theory the concept of immediate cost

and state value functions.

We restrict our attention now te-nrew to two policies:
FIFS and cyclic assignment. We.take as immediate cost the
actual waiting time and consider the criterion of total
expected cost over a finite horizon. The following conditions
on the {(Si,Ti),i=l,2,..} process will be sufficient to

prove system I to be better than system II:

Cl) {Ti& is any arbitrary sequence of non-

negative random variables.

C {Si&is an iJi.d. sequence of non-negative

5)

random variables independent of {Ti}.d

For convenience, we denote by ﬂ?i the portion of
Euclidean n-space in which every coordinate is non-negative.
A given realization of the first n interarrival times t=

(tl’t ,...,tn) and the first n service times §=(sl,sz,...,sn)

2
can thus be viewed as points in.ﬂ{i and the sequence of
random variables Eé(Tl,TZ,...,Tn) and §;(Sl,82,...,sn) as

. n
random vectors 1n'ﬂ{+,
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We define the following value functions for k= n:

Vi (x,y,t,8) = é_ (Wil Z,={(x,y) ,T=t,5=s) (6)
=1

vV (x,y,8) = E§ Vi (X,¥,£,8) (7)

V:k(XIY) = ET Vk(XIYIE_) . (8)

where Wi is the waiting time of () in system I..Corresponding
definitions for system II are made using the ‘r? symbol.
Referring back to Section IITI A, we see that Vn(x,y,g,g) is

an n-block sum of waiting times for a given realization start-
ing with the state (x,y). We note that Vn(x,y,E,§)=Vn(y,x,E,§)

and also that by Lemma 1
Vo (x,y,t,8) S Vn(x,y,g,g) for n=1,2, or 3. (9)
We will prove that
~S
Vn(XIYI_t_)S_ vn(xIYIE) (10)

for any (x,y) € TR i,any te ']Ri, and any positive integer n.

It is clear that if (10) holds then so does
< v 11
Vn(.x,y) = Vn(x,y). (11)
If, in addition,
i) {Ti} is an i.i.d. sequence, and

ii) ESs < 2ET,
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then the steady state waiting times EW and EW exist and are

given by
EW = lim 1 v_(x,y)
neo [ B»
EW = lim — V_(x,Vy) (see, for instance, Ross [5]).
neco n 1

Thus (10) is a stronger statement than EW = EW.

To prove (10), some properties of the value functions

are first established via the following lemmas:
Lemma 2: G;(x,y,g,§) is a non-decreasing function
in x and y.

This is easily proved by induction using the recur-

sion relationship:

~ ~ + + A A
Vn(X'Y'E'E) = x+Vn_l ([y—ti])[x+sl—t£], t,s) (12)
where t = (t,,ty,...,t ) € R,
A i n-1
and s = (52,s3+..,,sn)é'ﬂ% 4

~d
.Corollary: Vﬁ(x,y,E) is a non-decreasing furction

in x and y.
3: ¥ v
Lemma : Vn(xl,yl,_t-_,ﬁ) + Vn(XZIYZ’E’E)

~ ~
=V (x3,¥,,8,8) *+ Vn(xz,yl,g,g)

for any X,,¥y,%X,,¥,s k8.
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Proof: This can be seen intuitively by considering two
cyclic queuing systems with different initial work loads
but identical future arrivals and exchanging their second

servers. Formally, we proceed by induction:
n=1l: Each side is equal to XX, .

We assume the statement for i=1,2,...,n-1 and use relation-

ship (12):

VoV lad
Vn(xllylrt—,§) + Vn(XZIY2’E'§)

A A

- T ([yy-t ], [xprsy e ]88

A A

+ + l(fyz i] [x +s '] 'ty §

~ A

=%, + V(- 1] [x5+s1 ] r£:8)

~ A A

+xp + T (frgmt i] [X *S1 ] 1£e8)

~e ~
- Vn(leyllEIE) + Vn(XlIyZIEIE)
A ~r ~
Corollary: - v (xl,yl,t) + Vn(xz,yz,E) = Vn(xl,yz,g) + Vn(xz'yl’E)

Lemma 4: Let (al,az) and (bl’bz) be states given by
+
1 [x+s—tl—t2]
+ +
, = [[y-tl] +s—t2]
- +
1 l y+s—tl—t2]

5 = [Ex—tl]++s—t2]+

where 0 x<vy, s20, tlz 0, t,Z 0.

o]
Il

]}
|

on
Il

o
|



Then als a2 and either

A als b2 and a2=bl

or B: als bl and a2=b2.

(using PLUS 1 and PLUS 3

+
Proof: 1) a2Z [y—tl+s—t2] zZ a
from appendix A)

1

2) if tls y then

1

a,=b, and b,z a (by PLUS 1, PLUS 3)

2 1 1

which is case A.

If tl>-y then

a2=b2 and als b (by PLUS 3)

I_J

which is case B.

The following lemma will be essential in the final

proof of (10):

Lemma 5: Let conditions Cl and C2 hold for the arrival and
service processes and let x,y be numbers satisfying 0<x<y.

Then
~s lad
Vn(x,y,_f:) = ‘Vn(YIXrE)
n L .
for any t e ﬂ?+ and any positive integer n.
Proof: By induction.

’

~ o~ A
For n=1, Vl(x,y,E)‘F X<y = Vl(YrﬁiE)'

20
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X + [y—tl]+
y + [x—t1]+.

The desired inequality follows from PLUS 4. Now

o~
For n=2, Vz(x,y,E)

~
V2 (YIXI_t_)

assume induction hypothesis for i=1,2,...,n-1. If the
present state is (x,y), then the next two waiting times will

+
be x andl&—Tl] , and the future state (two steps from now)

will be
( [x+sl—Tl—T2]+) [[y—Tl_]+ + SZ—TZJ*?:
Hence,
- 4
y;(x,y,g) = X +[y—t£] +¢§%§?_f ([x+S -t’ [[y t T;S é] t)
(13)
where g = (tgrannrt) )e R 2 13

Denoting by A(x,y,t) the last term of (13), we have

~ . +

Vn(erlE) = x + ‘_Y—tl-] + A(x,y,_t':)

‘\\7 (YIXIE_) =y + x-t ]++ A(Y,X,E_)_
n 1

We show that A(x,y,t) < A(y,x,t).
By definition,

A(x,y,t) = 5‘?711_2([x+sl—tl—t2]‘:[[y—tl]++sz—t2:r ,?i-:) dH(s,) dH{(s ) .

le,sz):slz O,SZZ(ﬂ
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Dividing the region of integration, we have

A(x,y,t) =ff'\7n_2([x+sz—tl—t2].: [{y—tlTjsz—tzT,z)dH(sl)dH(sz)
lefsz):sl=szz @
+jj [’\Fn_2 ([xrsy e~ 1) [ y'tl-rfsz'tz-]f"@

{(Sl,sz) :0€ Sl< 32]
o~ + + + A
+Vn_2((x+sz—tl—t£] ,[[y-tl] +Sl_té] 'EildH(Sl)dH(32L
Finally, employing the corollary to Lemma 3:

e + 2
A(x,y,t) =.sjvn;z([x+sz—tl—t2]+,[[y—tl]*+sz—t2] ,E)dH(sl)dH(sz)

Usl’sz):sl=522(ﬂ

+ Sy§£—2([x+sl_tl_té]+’[[y_tiT’+Sl_té]+'éﬁdH(sl)dH(Sz)

le,sz):os s,< si]

4—JI%;r2(E&Esz—tl—té]+,[[y—tljr+sz-t2]+}§)dH(sl)dH(sz)

&Sl,sz):OS s,< 52]

The corresponding integrands of A(x,y,t) can be shown to be
less than or equal to those of A(y,x,t). For example, the
respective first integrands are:

~ + 2 2
Vn_2([x+sz—tl—t£]+,[[y—ti1f+s2—té] ,%) = %;_2(al,a2,£)
and

A

- + A~
?f'n_z([y+s2—tl-t2] ,[[x—t1]++sz—t2] 8) =V __,(by,b,,t)

where al'a2’bl' and b2 are as in Lemma 4 (with s=s2).



For case A (in Lemma 4), we have

A

~ A ~ A ~ R
Vo paysa,8) =V _,(a5,a,,8) = V,_,(by,b,,t)

where the first inequality follows from the induction hypo-

thesis and the second from Lemma 2.

For case B
~s

~ 2 ) ‘
Vn_2(al,a2,E) < Vn-_-,é(bl,b2,3) by Lemma 2.

Applying similar arguments to the other integrands completes

the proof of the lemma.
We are now ready to prove assertion (10):

Theorem 3: Suppose the arrival process {(Si,Ti),i—l,Z...}
obeys conditions Cl’CZ' Then for every initial state (x,y)
€ W{i, every t € F{i, and every positive integer n, we
have

Vn(XIYIE) < Vn(X'Y’;E) .

Proof: By induction.

For n=1, Vl(x,y,E) min(x,y) and

-4 —
v, x,y,t) = x

If x< vy, then by inductive hypothesis
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+ + A
Vn(x,y,E) = x + ESan_l(fyfti] ' [x+Sl—tl] ')
<x +E.V (—t]+[+s—t‘_|+’1\:)
= X sln—llyi'xll'—
~
'—‘Vn(X,Y,_f_Z_)
If y<x then

~J
v, (x,y,t) =V (y,x,t)=V (y,x,t) as above,

but

~o latd
Vn(Y'XrE)S Vn(x,y,E) by Lemma 5.
This completes the proof.

Corollary: Under the standard assumptions of queuing theory
(i.e. {Si§ is an i.i.d. sequence, independent of {Ti& , also

i.i.d., ES<2ET), EWS EW.

Proof: Via standard definitions and’ limit theorems (see

Ross [5] , Cchapter 5)

n :
EW = 1lim E (}_ 2 W.) independent of initial conditions.
n> 00 n = 1
=i

By definition (8)
"N

v_(x,y) = E( Z..wi\ Z:1='-(x,y)>
t=

The desired result follows from Theorem 3.
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APPENDIX A: Proofs of Realization Theorems

Initial Note: It is possible to prove Theorem 1 directly
by using the recursion relationships (1) and (2) and con-

sidering the cases n=3,4,5.

For n=3, we have

f% . . +r +
& Wi O+ 0 + W3 mln{[sl—Tl—T;] ) [82_T2-] }

I
I

3~
2 Wy + Wy = l.-sl'Tl’TzTr

L=

il
o
+
o
+
=

I

The case n=4 is already long and tedious. Essentially,
1

it involves a case by case exploration of 4 different
situations corresponding to the number of ways arrivals

C) and <:> join the gueues in system I.

Direct proof of n=5 was not even attempted since it not
only involves a doubling of the number of situations over
n=4, but also the individual comparisons are more complica-

ted. Lemma 1 avoids these problems.

It is expedient to first list some of the properties of

the [ J4.operation:'
+
PLUs 1: [x] zx
+ +
PLUS 2: If y Z O then [(] _y]'= [A_y]

PLUS 3: If A<B then

[A—fo [B—x—_r
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PLUS 4: If A<B and xz 0, then

[2]*+ [B-=]"< [8]" + [2-x]",

Proof of Lemma 1:

o~ . ~
We have Wi=a, Qi=b' Wi=b’ Qi=a, a<b.

Len-l wn-l
We must show that 2 W. < > W. for n=1,2,3.
jev 3 el

=1 wi=a<b=ﬁ

i+l T min{[aJ“Si'TiT; [b'?iT} 5-’[b;Ti-J+

i+l [a'Ti N

i
N
=

|

=
[

The desired inequality follows from PLUS 4.
~ +
n=3 Wiyp < [b+si_Ti_Ti+i]

: + :
Wi+2 < [b—-Ti—Ti_l_l] if @goes to the
same server as@
in system I,

+
W, < [a+Si—Ti—Ti+l] if @goes to the
other server,

27



Wiso

the desired inequality wheh combined with the result for

In any case we have Wi by PLUS 3. This yields

2=

n=2.

Proof of Theorem 1:

Without 1loss of generality we may assume that if
arrival C) finds Wi=Qi in system I he goes to the server
thatc::)did not go to.With this convention system I and
IT exhibit identical-beﬁavior (including identical waiting
times) until an arrival (:) sees ﬁ;>ﬂ6i in system II. At
this point we must have Wi=6;'and Qi=ﬁl, establishing the
condition of Lemma 1. The lowest i for which this can hap-
pen is i=3. So 5-block violations, starting at C), are

impossible.

To complete the proof we must show that 6-block

violations can occur. We do this by exhibiting an example:

' S T W, W 0o}
1 i i i Q; i Qs
1 2 0 0 0 0 0

2 1 0 0 2 0 2

3 1 0 1 2 2 1

4 2 3 2 2 1 3

5 2 0 0 1 0 0

6 1 3 1 2 0 2

S 4 3
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Fig. 2: Pictorial
Representation of
Counterexample.

I
o

i

!
I
i
|
i i |
4

/r
A
@
®)@)®)® 9; 9 here arrives here

arrive here

Proof of Theorem 2:

We will prove a stronger result:

< ~S ~d .
Wi + Wi+l" Wi + Wi+l for any 1.

To show this, we note that since system I is never
partially idle (after (:)), the- total work in I can never

be greater than that in II.

Thus we have 'f: = L, + A (A.ZO).
i i i i

Now, Qi = Li - Wi

+ . .
and Wi+ls [Qi—T;] = Qi—Ti (since no idleness occurs).

So W. + W, S W. +L. - W, - T, = L.-T..
i i+l i i i i i i



~5 P~
In system II, we have Q. = L. + A, - W.
i i i i

~nNoe ~ + ne
and W, —[Qi—Ti] z O -1, (by PLUS 1)

facd ~ ~ and
so that W. + W, - Z W. + L, +D. - W, - T. =5.. +8, - 7.
i i+l i i i i i i i i/

which completes the proof.
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APPENDIX B: Distribution Functions for Waiting

Times and Total Work

1. Waiting Times

In Kiefer and Wolfowitz [4] recursion relation-
ships for the k-server queue are established via the Yy
-set. In accordance with the terminology of our problem,

we define W-set as follows:

\'P (xllleslt) = {(yl,y2)= [Wi=ylrQi=Y2:Si=S,Ti=t)]

= [Wi+15 X109541% Xz]} i

With this definition, we have

Fi+l(xl,x2) = ij((Wi,Qi)e \P(xl,x2,s,t)] dH (s)dG(t)

A typical W -set is shown Fig. 3.

Ya
5 .
// A Fig. 3. Y -set for (W,Q)
Shaded area= W (1,3,1,2)
A=(xl—s+t,x2+t)
3t 8 Bﬁ(xz—s+t,xl+t)

O+
-+
«
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The rectangles formed by the two axes and the
points A and B (as shown) intersected with the region
above the line Yo=Yy determine the actual ¥ -set. Using
the inclusion-exclusion principle and noting that there

is no probability mass below the Yo=Yy line, we get

P [(wi,Qi)e q/(xl,xz,s,tﬂ

=Fi(xl—s+t,x +t) + Fi(xz—s+t,x +t) - Fi(x -s+t,x,+t),

2 1 1 1

If X2 X, then Q’(xl,xz,s,t) = q)(xz,xz,s,t),

This establishes equation (5),

The corresponding definition may be used for
system II (replacing Wi and Qi by ﬁ; and 6i); here the

resulting ql(xl,xz,s,t) set is a complete rectangle with

the upper right vertex at (x2—s+t,x +t) .

1

it ~
Hence P[(Wi’Qi)e W(xl,xz,s,t)] = Fi(xz-s+t,xl+t)

thereby establishing equation (4).

2. Counterexample to conjecture C

Let H(s) and G(t) be such that
ps,=s] = /2 s=2
-t 1/2 s=4

0 otherwise
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99/100  t=1
P[Ti=£] =4 1/100 t=A (large)

0 otherwise

With this arrival process both system I and system
II cannot become partially idle until for some i the
event [Ti=A] takes place. We pick A so large that the
probability that one of the two systems will not empty out
completely at that time is negligible. Thus, until [Ti=pq
happens for some i, the total work in system I and IXI
grows continually and equally, with system II tending to
be more unbalanced, so that it will tend to have both

short and long waiting times (relative to system I).

For example

P [W6_=o [ Ti=l,'i=l,...,5] =3/16 Z F,(0,00) ,
while P [W’6=o ] Ti=l,i=l,..,5] =1/4 = §’6(o,.oo) .

Thus the distribution functions for the Wi and
Wi variables (Fi(x,no) and ﬁ;(x,oo)) should intersect
for sufficiently high values of i. Since we have a
renewal process here (with the event T,=A initiating a
renewal period), the intersecting behavior of Fi(x,oé)
and F;(x,oo) should carry over to the steady-state dis-

tribution functions F(x,oe) and F(x,oo).
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3. Recursion Relationships Involving Work and Unevenness
With L, and U, defined as in section I1-and letting
%i(xl,xz) = P[Uis Xl,LiS xz—J)

we have Ki+.l(xl’X2) =[fP[(Ui,Li)eY(xl,xz,s,t)]dH(s)dG(t)

where V(xl,xz,s,t) = {(yl,yz) : [Ui=yl,Li=y2,Si=s,Ti=g

= [Ui+l =% L= xz]}'

A typical Y -set’ is shown in Fig. 4.

Ya-

Fig. 4, ¥ -set for (U,L).

Shaded area = Y (5,10,7,9)

2 BT " Y
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The vertices A-E are all functions of xl,x2,s,t.
It is clear that the term PﬁUi,Li)E Nf(xl,xz,s,t)] cannot
be expressed directly in terms of Ki(,) as was the case
for (Wi'Qi)' Rather such an expression would have to take

the form of a double integral with very complicated limits.

A further potential problem in proving Ki(oo,x)z
ﬁi(oo,x) is that this statement is in itself an insufficient
induction hypothesis: we would need a stronger statement

such as Ki(x ,x2)2 Ei(xl,xz) to insure that the induction

1
step goes through. However, the last hypothesis cannot
be true since ﬁ; can be negative while Ui cannot be. A
workable replacement is hard to find because functions

involving the unevenness quantity tend to be non-monotonic.

As an example consider the following function:

= 7 - ~
E(xy)=Eg ((Li+l Livny| ¥.=1.=a,0.=x,0,= ]
e i i i i

This is the expected difference in the next state
work given that the present work is equal but with system I
and II having unevenness x and vy, respectively; The non-
monotonic behavior in x and y can be demonstrated even for

the M/M/2 queue, with
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sign of f(x,vy).
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Fig. 5. An Example
of the Non-Monotonic
Behavior of U:

Regions where f(x,y)

is positive and nega-
tive (M/M/2,A=5)



