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ABSTRACT

Intracellular calcium ions (Ca?*) play important roles in
neurobiology by.either triggering or médulating a large number of
processes which are associated with nerve cell behaviour. In
spite of this importance, it is very difficult experimentally to
obtain quantitative information on the dynamics of intracellular
calcium. For this reason, Connor and Nikolakopoulou [13]
formulated a diffusion model based upon experimentally estimated
parameters. They wused this model to study the spatial
distribution of calcium within the cytoplasm and the increases in
the concentration of intracellular calcium 1ions that a given
influx of calcium through the cell membrane can Sring about. The
mathematical model <consists of a system of five reaction-
diffusion equations which is treated as a two-point initial-
boundary-value problem with constant initial states and nonlinear
boundary conditions. Analytical results reveal that the system
admits a unigue spatially homogeneous stationary state which 1is
asymptotically stable. A regular perturbation technique is used
for constructing  an approximate transient solution which
possesses transition layers., A simplified comparison theorem for
parabolic equations is used to provide analytical bounds on the
approximate solution. Finally, a B-spline <collocation code,
called PDECOL, is used to supplement the analytical results to

provide a detailed description of the calcium dynamics.
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1. INTRODUCTION

In this thesis, the phrase' nonlinear diffusion equations
refers specifically to semilinear systems of second-order partial

differential equations of the form

du/at = DAU + F(X,t,u,vu), u=(u,...,u). (1.1)
. . 1 m
n n n '
Here X e R, A =L 3%2/3x%? 1is the Laplace operator in R, and the
j=1 3

diffusion matrix D is diagonal' consisting of constant

nonnegative elements? only.

Diffusion 1is a physical phenomenon by which matter is
transported from one part of a system to another as a result of
random molecular motions. Diffusion eQuations of type (1.1) with
appropriate initial and boundary conditions are widely used as
models for biological, ecological, and chemical systems. In most
physical applications, the independent variables x and t
represent positions in space and time, respectively. In the
context of ecology, the components of u represent the population

densities of various species, the term DAuU represents the rate of

'In anisotropic media, e.g., crystals and textile fibres, in which
the molecules have a preferential direction of orientation, D is
generally not diagonal. '

2In many systems, e.g., the interdiffusion of metals or the
diffusion of organic vapours in high-polymer substances, D
depends on the concentration of diffusing substances, u,,u;,...
In this case and also when the medium is not homogeneous so that
D varies from point to point, the diffusion term in (1.1) becomes -
ADU, where D may be a function of x and u.



change of the population densities at any given position and time
due to random spatial migration, and the term F represents the
interactions between various species such as reproduction
processes or deaths. Various examples of biological and

ecological diffusion models are given in [4,12].

In this thesis, we study a special case of equation (1.1)
which | models the dynamics of intracellular calcium ion
concentration changes in one spatial dimension. Intracellular
calcium either triggers or modulates a large number of processes
which are associated with nerve cell behaviour. Some of these are
muscle contraction, release of neural tfansmitter, and sensory
cell transduction. The mathematical model [13] consists of a
system of five nonlinear diffusion equations describing the
evolution of the wvarious 1ionic concentrations which are taken

into account. The system of equations is of the form
du/dt = Da?u/9x? + F(uU), (1.2)

where U = (u,,uz,u3;ua,u5), x € [a,b], D is a diagonal matrix
with constant positive entries d , and F is a quadratic poly-
nomial in u. The initial condition; are specific constants chosen
to represent the equilibrium state of the system. The boundary
conditions are of nonlinear Neumann type. Equations of type (1.2)

with F polynomials in u,,u,,..,us are sometimes known as

reaction-di ffusion equations.

Although (1.2) 1is a special case of (1.1), it includes two

very lmportant extreme cases



au./at = d'azu./axz, i=1,2,...,5. (1.3)
1 1 1

Thus each equation is a scalar diffusion equation.

ii)da =0 :
i

du/dt = F(u), (1.4)

which is a system of kinetic equations associated with (1.2).
Observe that even when D # 0, equation (1.4) is satisfied by

x-independent solutions of (1.2).

The layout of this thesis is as follows. In Chapter 2 we
introduce the mathematical model proposed by Connor and
Nikolakopoulou [13] (CN) in their efforts to study the dynamics
of intracellular calcium ion concentration changes 1in nerve
cytoplasm! resulting from external influxes of calcium ions.
Numerical solutions to the mathematical model are given in their
paper. However, they have included no analytical results. It 1is
our objective in this thesis to provide some analytical
descriptions of the calcium dynamics and compare them with the

numerical solutions,

In Chapter 3 we reformulate the CN model so that it is

amenable to various mathematical analyses and in Chapter 4 we

'Cytoplasm is characterized as a simple diffusion compartment
containing an intrinsic buffer for Ca.



explore some of its mathematical properties. These properties are
used in subsequent sections to facilitate the calculations of the
éteady*State solution and to éstablish its unigueness and
asymptotic stability. 1In Chapter 5, we use a regular
perturbation technique to obtain an approximate small-time
solution ‘to the model equations éo that we can make a
guantitative statement about the transient behaviour of the
calcium concentration. Moreover by wutilising a | comparison
theorem, we ©provide analytical bounds on the exact solution. In
Chapter 6 we present the numerical solutions to the problem and
compare them with the experimental results given by Connor and

Nikolakopoulou [13].

In Appendix A, we give a brief description of the numerical
algorithm, PDECOL, which was used to solve tﬂe model equations
and report some of the difficulties encountered in the numerical
procedures. In Appendix B, we find an approximate solution to a
linear second-order partial differential equation with nonlinear
boundary conditions and tﬁe results are used to simplify the

calculations for the transient solutions.

All computations leading to the numerical results presented
in this paper were performed in double precision at the
University of British Columbia Computing Center using an Amdahl

V/8 Model 470 computer.



2. THE MATHEMATICAL MODEL

There 1s a considerable amount of evidence in the
literature (Sandow [23], Jobsis & O'Connor [18], Ebashi &
Endo [16]) to suggest that small transient changes in
sarcoplasmic calcium concentration play a crucial part in the
complex process of excitation-contraction coupling in skeletal
muscle. It is thus of interest to know the precise sizes of these
calcium changes that lead to the production of tension. Various
experimental methods such as photometric [6], voltage clamp
teéhnique (11, and indicator dye absorbance [9] have been
designed for this particular purpose. Among them, indicator
methods have proven to be the most successful because of their
sensitivity and ability to respond rapidly to concentration
changes. However, such methods are imprecise as to the location
of changes within the cytoplasm. Several reviews of the indicator

techniques are given in [8] and [9].

Experimental results by Ahmed and Connor [2] using indicator
techniques show that the internal calcium concentration ([Ca?*])
changes are brought about either by a calcium influx from some
extracellular reservoir or by the release of calcium ions from an
internal source. However, the short time course of the calcium
influx (on the order of ten milliseconds) and the small
concentration changes of Ca?* (in the micromolar range) together
with the small volumes generally encountered with biological
preparations make the problem of direct guantitative measurement

of the Ca?* transient a very difficult one.



In 1982 Connor and Nikolakopoulou performed experiments' on
molluscan giant neurons wusing indicator dye absorbance in
combination with a voltage clamp technique in an attempt to make
a Qguantitative statement about the dynamics of intracellular
calcium ion concentration changes. The experiments provided them
with a great deal of qualitative information about calcium entry

~into the neurons but with little or no insight as to the spatial
distribution of the Ca?* within the cytoplasm. To add to their
frustration, the experiment provided no 1information as to the
magnitude of the perturbation in [Ca2?*] that a given influx can
bring about. 1In order to solve the puzzle, Connor and
Nikolakopoulou formulated a one-dimensional? diffusion model
based upon experimentally estimated® parameters and what appear
to be reasonable estimates for those parameters which they have

not been able to measure.

Figure 1 1indicates the structure of the CN diffusion model
and shows that extracellular calcium ions, Ca,, are loaded
through the membrane for a period t*.(= 100msecs). As soon as
the calcium 1ions enter the cell membrane, they are assumed to

be instantaneously at local equilibrium with the intrinsic

'Detailed descriptions of the experimental methods are given 1in
Ahmed & Connor [1], Ahmed, et al. [2].

2It will soon be <clear from the model equations that a more
realistic model in 3-dimensions would be mathematically too
complicated to handle. ' :

3Experimental methods used in estimating the parameters of the
model are described in [13].



buffer (B)', and the calcium indicator dye arsenazo I1II (Arz)?2.
Initially, the two buffers (B and Arz) have uniform
concentrations and thus the entry of calcium 1ions causes

diffusional movement within the membrane.

Ca,
extracellular space surface membrane
x=0 _
intracellular space v
o
| K, r K3 l
| > I ! > |
CaArz Arz + Ca?*| + B CaB |
I <— | I <
R S L R ke !
b e e
l l T l
v v v v
D, D, D, D, D,
Diffusional movement along
X the x-direction

Figure 1t : Structure of diffusion model with local reactions.

Let U,(x,t), U,(x,t), Us(x,t), U, (x,t), and Ug(x,t)

'An intrinsic buffer is an inherent substance in the solution that
makes the degree of acidity (hydrogen ion concentration)
resistant to change when an acid or base is added.

2The absorbance spectrum of the dye arsenazo III undergoes known

changes when the dye forms a complex with calcium. These changes
have been wused in a number of studies to describe calcium
movement levels in 1living cells. (See Baker, Hodgkin &
Ridgway [5].)



represent the concentrations of CaArz, Arz, Ca?*, B, and CaB,
respectively. Recall from elementary chemistry that the Ilaw of
mass action for a first-order chemical reaction between species

A, B, and C,

is given by

th]/dt

= k-[B][C] - k*[A],
d{Bl/dt = k+*[A] - k-[B]IcC],
= k+[A] - k—[B][C],

dalfcl/at

where [-] denotes the concentration of a chemical and where k*
and k- denote the forward and reverse reaction rate constants of

chemical A, respectively.

Thus assuming a first-order reaction in an isotropic medium
and ignoring spatial inhomogenities', we can apply the 1law of
mass action and write down the Kkinetic -equations plus the

diffusion terms associated with our chemical model :

dU,/dt = D,9%U,/9x? + k,U,U; - k,U,, (2.1a)
dU,/0t = D,82%U,/9x2 - k,U,U; + k,U,, (2.1b)
dU3;/0t = D,02%U;/0x2 - k,U,U; + k,U, - k,3U,U, + k,Ug, (2.1c)
dU,/0t = D,32%U,/0x2% - k,U,U, + k,Us, (2.14)
dUs/0t = D,82%Us/0x2% + k,U3U, - k,Us, (2.1e)

where D,, D,, and D, are constant diffusion coefficients, and k;,,

'These are reasonable assumptions to ensure that the diffusion
matrix D i1s diagonal and constant.



k,, k3, and k, are the forward and reverse reaction rate

constants as shown in Figqure 1.

It 1is <clear from the chemistry of our physical model that
[Arz] and [B] in the system are conserved at each x and for all
t 2 0; we shall denote these concentrations by [Arz] and [B]

T T
respectively. But moreover, since the initial distribution is

I

uniform and since U, and U, have the same diffusion coefficient,
we have

[Aarz] = U,(x,t) + U,(x,t)," (2.2a)
T

for t 2 0 and all x. Alternatively, (2.2a) can be derived by

adding equations (2.1a) and (2.1b) giving
3(U,+U,) /3t = D,22(U,+U,)/dx2.

Now since there 1is no flux contribution from U, and U, at the
boundaries and since (2.2a) holds at t = 0, it holds for all
t 2 0. Similarly

[B] = Ua(X,t) + U5(X,t)- (2.2b)
T

Thus equations (2.2a)-(2.2b) allow us to eliminate two of the
five equations in (2.1a-e). We choose to eliminate U, and U,
since they correspond to the concentrations of the buffers and

hence are of less interest. The reduced system becomes

du,/dt = D,d%U,/8x2? + k,([Arz] - U,)U; - k,U,,
9U,/0t = D,32%U,/0x? - k,([Arz]T— U,)U; + k,U,
- k3([B] - Us)U; + kuUf,
U /0t = Dzazus/gx2 + k3([B] - Ug)U; - k,Us. (2.3)

T



10

In order to completely specify the problem, we must impose
appropriate initial and boundary conditions to (2.3). To this end
observe that the system is initially at equilibrium and thus the
initial conditions can be obtained by simply setting the kinetic

terms to zero, giving

U,(x,0) = k,U5(x,0)[Arz] /(k, + k,U;(x,0)) uM/1,
T
U,(x,0) = [ca?*] uM/1
R
Us(x,O) = k3U3(X,O)[B] /(ku + k3U3(X,O)) IJ-M/l, (2.4)

T
where [Ca?*] denotes the 1initial rest wvalue of calcium ion
R
concentration and uM/1 stands for micromolars per liter.

The boundary conditions must take into account the influx of

Ca?* at x

0. By Fick's law [15], we have

aU;;(o,t)/aX

1 /(zFD,),
Ca

where I
Ca

]
tf

calcium current, z valence of Ca?* = 2,

|
]

faraday constant (96500 coulombs/mole).

From Ohm's Law

1 =g V,
Ca Ca
where g = conductance of membrane,
Ca
V = net driving potential on Ca?*
=E - E ,
m Ca

where E 1is the membrane potential and E is the Nernst
m Ca
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potential for Ca?* [21] given by

E = (2.303RT/2F)log;o,[Ca?*] /[Ca?*] Volts,
Ca 0 i

where R universal gas constant (8.31 joules/mole/°K),

T

temperature in °K,
[Ca?*] = the extracellular concentration of Ca?*,
0
[Ca?*] = the intracellular concentration of Ca?*.
i
Thus assuming a temperature of 18°C, the Nernst potential for
Ca?* is

E = 29log,o[Ca?*] /[Ca?*] mvVolts.
Ca 0 i

Finally, since all other fluxes are zero at the boundaries,

the appropriate boundary conditions for our problem are

U, (0,t)/8x = 0

9U, (L, t)/0ax,

i}

0

dU:(0,t)/dx oUs(L,t)/ox,

39U, (0,t)/ox (g /zFD3)(E -~ 29log,0[Ca?*14,/U,(0,t)) uM/1m,
Ca m
0,

dU5 (L, t)/9x

where L represents the radius of a neuron. For the purpose of
mathematical calculations, we can choose L sufficiently large so
that during the entire 1loading period t*, the influx at the
boundary (x = 0) does not induce concentration changes near the
center of the neuron. In Table 1, we summarize the parameter
values used by Connor and Nikolakopoulou's [13] in their

diffusion model.

Numerical results published in Connor and Nikolakopoulou's
paper [13] indicate that the proposed model gives a good account

to the true qualitative behaviour of calcium dynamics. However,



the paper
eqguations.

give some an
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contains no mathematical analysis of the model
It 1is our intention to adopt the model and use it to

alytical descriptions of calcium dynamics.

Table 1 : Parameter Values used in Diffusion Model
(Taken from Connor and Nikolakopoulou [13])
Cytoplasmic and Indicator Parameters :
[Arz] = 300 uM/1, [B] = 200 uM/1,
T T
D, = 0.06 um?/msec, D, = 0.01 um?/msec,
D; = 0.2 um?/msec, k, = 0.025 1/uMmsec,
k, = 1.0/msec, ky = 1.0 1/uMmsec,
ky = 1.0/msec.
Parameter Values used for Calcium Influx :

Control

[cal] = 10000 uM/1, [cal] = 0.1 uM/1,
0 R
F = 96500 coulombs/M, g = 8.6x10"* mhos/cm?,
. Ca
E = 10 mVolts, z = 2,
- m
Parameters :

t* = 100 msec, L = 30 um,
Dimensions of the Variables :
[x] = um, (t] = msec,

[U1] = [Uz] = [Ua]

[}
c
=
]
(o
i
r
=
~
=
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3. MATHEMATICAL FORMULATION

Exact solutions to differential equations are rare in
practice because of nonlinearities, inhomogeneities, and general
boundary conditions. As a result, solutions are approximated
using analytical techniques, numerical techniques, or
combinations of both. In this and the next two chapters, we shall
concentrate on analytical techniques, which when combined with
the numerical solution discussed in Chapter 6, give a thorough

description of the behaviour of the model equations (2.3)-(2.5).

Our first step 1in solving the present problem is to
nondimensionalize the governing equations (2.3)-(2.5); for it is
only in dimensionless form that we can compare the order of
magnitude of the different variables and parameters‘of the system -
and thus be able to identify the important ones. For our problem
the diffusion coefficients satisfy D; >> D, > D; and thus U,
diffuses faster than U,; and Ug;. Moreover since the system is
initially at equilibrium (i.e., the forward and backward
reactions are 1in balance), the diffusion process of U; will, at
least in early stages of development, dominate the entire
reaction-diffusion process. Thus we rescale the governing
equation of U, so that the 3/dt and 38?/9x% terms are of the same
order. In view of (2.2a)-(2.2b), the other two dependent
variables U, and Us can be made dimensionless by normalizing with
respect to [B] and [Arz] , respectively. The independent time

T T

variable t can be made dimensionless by using vk,k, which has the

convenient value of 1., The dimensionless independent variable
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corresponding to x 1is now determined. In summary we have
introduced the following dimensionless independent variables, x'

and t', and the dimensionless dependent variables U, V and W :

t' = V{kky)t, _ x' = x/D,
U = U,/[Arz] , V = kU,,
W = Us/[B] ,T (3.1a)
T
where
D = yD,;/V(k,k,), k = vV(k,ki/kky).

Dimensionless parameters are

a4 = V(k1;k35r a; = /(kz;kusr

Dy; = D1/D3, Dy; = Dz/Dar

6 = kz/(a2k1[ArZ] ), € ='kua2/(k3[B] )- (3.1b)
T T

After dropping the primes, equations (2.3)-(2.5) become

dU/dt = D,,;02U/0x2% + f(U,V),
av/ot = 32Vv/ax? + g(U,V,W),

dW/dt = D,;02W/3x% + h(V,W), (3.2)

where f(u,v) = a,(1-U)V - a,U,
h(v,wWw) = (1-W)V/a, - W/a,,

g(u,v,w) = -[(1/(8a,))E(U,V) + (a,/e)h(V,W)],
subject to the boundary conditions for t 2 0,

aUu(0,t)/ox

aW(0,t)/ax

0,

dU(L,t)/3x

oV(L,t)/ox ow(L,t)/ex = 0,
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A + Ban(O,t), 0 <t £ t*,
aV(0,t)/0x = [
0, t > t*, (3.3)

where A= ¢[E - (29/1n10)ln(k[Ca]o)],
m
B = 29¢/1n10,
¢ = (107g/zFD,)kD,

and initial conditions on 0 < x < L,

U(X,O) = UQ = Vo/(az/a1 + Vo),
V(x,0) = V, = 0.1k,
W(x,0) = Wy = Vo/(a,/a, + Vg). (3.4)

Hence the present problem depends on six parameters, a,, a,,
e, 6, Dy3, and D,3;. For the set of parameter values given 1in
Table 1, 0 < € << & << 1. Thus since ¢ and § are small we can use
them as perturbation parameters to obtain an approximate solution

to the problem (see Chapter 5). In the special case when e = 0,

the solution to (3.2) subject to 1initial condition (3.4) is

simply
U(X,t) = Uo, V(X,t) = Vo, W(X,t) = WO.
Note that if V, is chosen such that 1nV, = -A/B, the
boundary conditions reduce to homogeneous Neumann types at t = 0.

In other words, the reactions are in a steady state and the
concéntration level of each chemical will remain at its rest
value. Henceforth we assume that 1nV, # -A/B and work with the
dimensionless ‘equations (3.2)-(3.4) which we shall refer to as

system (P). Using the set of parameter values given 1in Table 1,



16

we can calculate the dimensionless parameter values from

equations (3.1a-b), (3.3) and (3.4). The results are summarized

in Table 2.

Table 2 : Values of the dimensionless parameters

a, = 0.1581, a, = 1.0000,

D;; = 0.300, D;; = 0.050,‘

e = 0.0050, 8§ = 0.1333,

D = 0.4472, k = 0.1581,

A = -1.,30398, B = 0.19842,

U, = 0.00249, Vo = 0.01581,

Wo = 0.09091. |

In Chapter 5 we shall rescale the initial values U,, V,, and
Woe to O0O(1) before wusing a regular perturbation technique to
obtain an approximation to the initial transient solution. We
shall, however, first investigate some mathematical properties of

system (P).
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4. MATHEMATICAL PROPERTIES

In the analysis of a given problem, it is always wuseful to
first exploit the special structures of that problem, e.gq.,
symmetry. These special structures often facilitate calculations
and, more importantly, provide greater intuition and
understanding of the problem. In this Chapter, we shall examine
some mathematical properties  of system (P) {equations
(3.2)-(3.4)]. These properties are useful for our analyses in

later chapters.

Property 1 : Special features of the kinetic terms -

The vector-valued function F = (f,g,h) possesses two special
features which will gfeatly simplify our later analyses. Before

stating them, we need the following definitions :

1. A vector-valued function G(U) is said to be
quasi-monotone nondecreasing in U if each G
i
is nondecreasing in u , for j # i.
]

2. For any given V 2 0, define the set

T(V) = {(U,V,W) : U = a,V/[a, + a,V], W= a,V/[a; + a,V]}.
The two special features of F are :

St : F is quasi-monotone nondecreasing in u = (U,V,W).
s2 : F(u,v,w) = (£(U,v),q(U,v,W),h(V,W)) = T,

for all Vv 2 0 and (U,V,W) e T(V).

S1 can be verified directly by differentiating F with
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respect to u and noting that both U and W must lie between 0 and
1 (cf. Property 3). To prove S2, we simply set
£(u,v) = 0 = h(V,W)., 'S2 states that our chemical system has a
continuum of equilibrium states and in the special case when
V = V,, 1t reduces to the statement that the chemical system is

initially at equilibrium,

Property 2 : Conservation Law

As in the case of many physical systems, the solution to
system (P) 1is governed by a conservation law. To show this

observe from equation (3.2) that

(1/8a,)3u/3t + av/at + (a,/e)dW/at

= (D13/581)32U/3X2 + aZV/axz + (D23a1/€)32W/aX2- (4.1)

Integrating both sides of equation (4.1) with respect to x from

0 to L and using boundary conditions (3.3) we have

L .
[ 9z/0ot dx = -3V(0,t)/ox, (4.2)
0
where z(x,t) = U/(8a,) + V + (a,/e)W. Integrating equation

(4.2) with respect to t, we have

IA

t*,
J [z(x,t) - z(x,0)] dx =
0

L g(t), t
[ (4.3)

v

glt*), t tx,

where

t
B(t) = -f av(0,s)/dx ds. (4.4)
0
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Equation (4.3) is the conservation law governing system (P).
Observe that since [Ca?*] is loaded into  the system,
ov/(0,t)/dx < 0 for 0 < t < t*, and hence B(t) is positive and

strictly increasing for 0 < t < t¥*,

In Section 4.1 we shall show that the steady-state solution
to system (P) 1is spatially homogeneous and in such case (4.3)

simplifies to
z(x,») = z(x,0) + g(t*)/L. (4.5)

Equation (4.5) states that ﬁhe total equilibrium concentration of
the chemicals is the sum of the total initial concentration plus
the total amount of [Ca?*] injected into the system. We shall see
in subsequent sections that equations (4.3)-(4.5) play key roles
in establishing the uniqueness and stability of the equilibrium

solution.

Property 3 : Invariant Region

From the chemistry of the system, one would conjecture that
U, V, and W are bounded functions of x and t. In particular, it
is clear from (2.2a-b) and (3.1a) that U and W must lie between 0
and 1. We shall now give a mathematical statement of our
conjecture which relies on the concept of an invariant region

originally introduced by Chueh, Conley, and Smoller [11].

An invariant region I is a subset of the phase space (i.e.
(U,V,W) space) such that if the values of the solution of the PDE
are contained in the region for some value of t, e.g., the

initial conditions, then the solution remains in the region for
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all later times. We shall show that an invariant region to

system (P) is given by

£ =1{ (U,v,W) : 0 < U,

IA
c
IA
IA

U 1, 0 SV, £ V<V < o,
m m
W < 1}, (2¢.6)

m

0

IA

Wo

IA
=
IA

where (U ,Vv ,W ) e T(V ) and V is a finite upper bound of V. to
m m m m m
be determined.
Since the second spatial derivative is always nonnegative
(nonpositive) at a minimum (maximum), by the closing remark in
Section 2 of [14], it suffices to show that F does not point out

of Z, i.e.,

(1) £(Uy,vV) 2 0, f£(u ,v) < 0;
m
(2) g(u,ve,w) 20, g(Uu,v ,W) <0,
: m
(3) h(v,Ww,) 2 0, h(v,w ) £ 0;
m

hold for all (U,V,W) € Z. To this end observe that

£(U,,V) £(Uo,Vo) + a,(1-Uy) (V-Vy,) a,;(1-Uy)(V-v,) 2 0,

and f(u ,v) £(U ,v ) + a,(1-U0 )(V-V ) a,(1-u )(v-v ) £ 0,
m m m m m m m

since by S2 £f(Uy,,Vy,) = 0 = £(U ,v ). The proof for (3) is
m m
similar. To prove (2) simply observe that

g(UrVOIW) 2 g(UOrVOIWO) = 01

—_—

and g(u,v ,W) < g(U ,V ,W)
m m m m

0,

where we have again applied S2 in obtaining the right-hand
equality. In Chapter 5 we shall obtain an analytical estimate

for Vv .
m
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4.1 EXISTENCE AND UNIQUENESS OF THE STEADY STATE

In this thesis, a vector u 1is defined as a steady-state
solution to a system of PDEs iff u is a time independent solution
to the PDEs satisfying the boundary conditibns‘. For a general
system of reaction-diffusion equations, two questions concerning
the steady-state of the system arise naturally. First, does there
exist a unique steady—étate solution? Second, which steady-state
solutions are stable? In this section we shall answer the first
question and show that for all positive parameter values a,, a,,
6 and e, system (P) has a unique steady-state value. In the next

section we show that the stéady-state solution is asymptotically

stable.

Before proving the main result, we shall use the concept of
invariant region developed in Chapter 4 (Property 3) and state a
lemma which 1is a direct consequence of a theorem proved by

Conway, Hoff, and Smoller (Theorem 3.1 in [14]).

Lemma

o

Let = (u ,...,u), v=+«(v ,...,v), m21, x e I = [a,bl],
1 m 1 m
and D be a diagonal matrix with positive entries d . Let (S) and

i
(S') denote the problems

'we have excluded the steady oscillatory solution in our
definition.
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ou/9t = D3?uy/9x? + F(u)
‘1s) U(x,te) = Upl(x), X €1,

du(x,t)/9x = 0, X € 31, t 2 to.

dV/dt = ?(6)1

(s')
vito)

b
[f uUo(x)dxl/(b-a).
a

Finally let o denote the quantity

o =d\ - M
where @8 = m@n{d.},
i i
A = smallest positive eigenvalue of -d2/dx? on I subject to

homogeneous Neumann boundary conditions
= n/(b-a),
M = max {|dF(u)| : U e Z},

where Z is the invariant region defined by eguation (4.6), and
the quantity |dF(d)| denotes the determinant of the Jacobian
matrix with entries aF./au'. Now if Uo(x) € Z for all x € I, and
o > 0, then ' )

u(x,t) — v(t)
uniformly and exponentially for all x ¢ I as t —> <,

The above lemma states that the soiution to problem (S) can
be approximated arbitrarily closely by the solution fo the
related kinetic systemv(S') if t is sufficiently large. In other
words, when o¢ > 0, the large time behaviour of the solution to

system (S) is determined only by the reaction mechanism F(u).
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" In view of the above lemma, we make the following

proposition :

Proposition I :

All solutions to system (P) decay exponentially to a

constant steady-state solution for any (Uy,V,y,Wo) € Z.

Proof :

For t > t*, the nonlinear boundary condition to system (P)
reduces to the homogeneous Neumann condition. By assumption,
(Uog,Vo,Wo) € Z and it follows from Property 3 that

(U(x,t*),v(x,t*),W(x,t*)) e Z. Hence the guantities

L

up(t*) = [ U(x,t*)dx/L,
0
L

volt*) = [ V(x,t*)dx/L,
0
L

wolt*) = [ W(x,t*)dx/L,
0

also belong to I since they merely correspond to the spatial
averages of U(x,t*), V(x,t*), and W(x,t*), respectively. Thus if
we choose ug (t*), vo(t*), and wo(t*) as the initial conditions to
the related kinetic system for t > t*, then by our lemma, we need
only to show that ¢ > 0 and that the steady-state solution to the

related kinetic system is a constant. We calculate
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-a a;b 0
|dF| = a/(8a,) -b/8 - c/e (ay/e)d
0 c/a, -d
where a = a,V + a,, b = (1-U0),
c = (1-W), g -

V/a, + 1/a,.

Observe that the second row is a linear combination of the first
and third rows and thus |dF| = 0 for all (U,V,W) and all

parameter values a,, a,, 6, and e. Hence'
o = dx > 0,

Next we shall show that the steady-state solution to the
related kinetic system is a constant. Let
z(t) = (U-U ,V-V ,Ww-Ww )7
c c c
denote the deviation from the critical point (U ,V ,W ) of the
c c ¢

kinetic system. By Theorem (9.2) of [7], it suffices to consider

only the linearized form of the kinetic system about (U ,Vv ,W ),
: c ¢ c

z'(t) = A,z(t),

and show that all -eigenvalues of the linearized matrix A, are

either zero or have negative real parts. Clearly A, is the same

'One can interpret the condition that o be positive to mean that
the minimum rate of diffusion in the spatial domain 1is large
relative to the maximum rate of reaction.
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as the Jacobian matrix dF with (U,V,W) replaced by (U ,Vv ,W ) in
the definition of a, b, ¢, and d. We shall show in geciioi 4.2
(Property 4, with n = 0) that one eigenvalue of A, is =zero and
the other two eigenvalues have negative real parts. Thus the

steady-state solution to the related kinetic system 1is a

constant and this completes the proof.

We now turn to finding the steady-state solution (U ,V ,W )

S s s
of system (P). By Proposition I, (U ,V ,W ) are independent of x,
s s s
"hence they must satisfy
f(u ,v ) =0 = h(v ,Ww)
S s s s
or equivalently,
U = a1V /[a2 +a1V ), (4.1"1)
S s s ’
W = ale /[31 + azv ]. (4.‘-2)
s s s

Moreover, (U ,V ,W ) satisfies the conservation equation (4.5),

S S S
U /(a,8) + VvV + (a;/e)W = &, (4.1-3)
S S S
where
§ = Uo/(a,8) + Vo, + (a,/e)Wy + B(t*)/L (4.1-4)

and pB(t*) 1is defined by equation (4.4). Using equations

(4.1-1)-(4.1-3) we can prove the following proposition :

Proposition II

For all positive parameter values a,, a,, &, and ¢, the

steady-state solution to system (P) is unique.
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Proof

Observe that eqpations (4.1-1)-(4.1-2) define a monotonically
increasing curve in a 3-dimensional space with V as a parameter
ranging from O to infinity (see Figure 2). ghus the curve
intersects the plane defined by equation (4.1-3) at precisely one

point, (U ,v ,W ), and this completes the proof.
s s s

(0,5,0)

(u ,v ,w

U
(Sa16,0,0)

(0,0155/81)

Figure 2 : Geometrical illustration of the uniqueness
of the steady-state solution.

In order to find the steady-state value (U ,V ,W ), we

. s s s
substitute equations (4.1-1)-(4.1-2) into (4.1-3) and we see that

V must satisfy the cubic equation
s

V3 + k,V2 + k,V - § =0, (4.1-5)
S S S
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where «, a;/e + 1/(6a,) + (a,/a, + a,/a,) - &,

K2

1+ 1/(8a,) + a,/e - §(a,/a, + a,/a,).

By Proposition II, (4.1-5) has a unique positive real root. Using
formulas from a standard table [25], we obtain
\"/ = K1/3 + A1 + Az, (4.1_6)
s

where

A% = -p/2 + yp*/4 + qi/27, A,* = -p/2 - Vp?/4 + q3/27,

and where'
p = [2K13 - 9K1K2 + 27;]/27, g = [3K2 - K12]/3.

The wvalues of U and W can now be obtained from equations
s S ‘

(4.1-1)-(4.1-2). For the set of parameter values shown in
Table 2, the steady-state value is
U = 0.00711, Vv = 0.04525, W = 0.22249,

» s s

In passing we remark that due to the complexity of the
coefficients k; and k,, it is difficult to prove Proposition II
directly from using equation (4.1-5) and this illustrates the
importance of geometrical ideas in mathematics. We shall now turn

to study the stability of the steady-state solution.

'Note that since (4.1-5) has a unique positive real root, the
expression p?/4 + g?*/27 > 0.
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4.2 ASYMPTOTIC STABILITY OF THE STEADY-STATE

We shall begin by giving a formal definition of stability.

Let y (x) be a steady-state solution to a system of PDEs of
S

type (1.2) with 1initial condition y,{x,t,) and appropriate

boundary conditions. Let denote the wusual Euclidean norm.

The steady-state y (x) is said to be stable if given any € > 0,
s
there exists a 8§ such that

—_

|Fo(x,t0) - ¥ (x)]| <8 => |¥(x,t) - § (x)]| < e,
S S

for all t 2 to. If in addition
|y(x,t) - ¥ (x)] = 0 as t —> =,
s

then the steady-state y (x) is asymptotically stable.
s

Intrinsically, it is easier to prove instability than it is
to establish stabilgzy. For to establish stability we have to
show that \every sufficiently small perturbation dies away,
whereas 1instability will be demonstrated if we can show that one
sufficiently small perturbation away from the steady-state will

grow with time. Sufficient conditions for instability are given

by Amundson [3] and Jackson [17].

In this section, however, we shall wuse the linearization

technique' to establish the asymptotic stability of (U ,V ,W )
s s s

'Justification of the linearization technique for establishing
stability is discussed by Krasnosel'skii [19].
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found 1in the previous section. The 1linearized form of the

governing equations is

du/dt = D,;0%u/9x? - au + a,bv,
ov/dt = 8%v/0x? + au/(a,8) - (b/6 + c/e)v + (da,/e)w,
ow/0t = D,;0%w/0x%2 + (c/a,)v - dw, (4.2-1)
where
a=a,V + a,, b=( -U0),
S s
c = (1 -WwW), a = (V /a, + 1/a,),

S S

and where (u,v,w) are deviations from (U ,V ,W ), i.e.,

Moreover for every given steady-state value satisfying (4.5), it
is easy to deduce from (4.3) that the deviation must satisfy the
integral equation
L
[ [ulx,t)/(a,;8) + vix,t) + (a,/e)w(x,t)] dx = 0. (4.2-2)
0
Since the system of equations (4.2-1) is linear and has constant
coefficients, its solution can be found by separation of
variables. Moreover, for t > t¥*, the nonlinear boundary

conditions (3.3) reduce to the homogeneous Neumann type and hence

we write
u(x,t) = Z u (t)cos(w x), vix,t) = Z v (t)cos(w x),
n=0 n n n=0 n n
wix,t) = Z w (t)cos(w x), (4.2-3)
n=0 n n
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where

w =
n

nn/L,

Substituting equation (4.2-3)

ordinary-differential equations

where Z (t) (u (t),v (t),w (t))T and

n n n n
_(D13(4.)2 + a) a1b
n
A = a/(6a,) -(w? + b/& +
n n
0 - c/a,

We shall first establish the following

Property 4 :

For all positive parameter values

eigenvalues of matrix A have negative

into (4.2-1) we obtain a system of

’ (4.2_4)

0
c/e€) da/e

_(D23(.02 + d)

n ol

property of matrix A .
n

a,, a,, 6, and e, all the.

real parts for n > 0. When

n =0, one of the e?genvalues is zero and the other two
eigenvalues have negative real parts.
Proof :
To find the eigenvalues of A we set
n
E(N) = |AI = A | = A% + aX? + N+ vy =0, (4.2-5)
n :

where I is the 3x3 identity matrix and
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(1 + Dy3 + D,3)w?2 + (a + b/s + c/e + 4),
n

0
1}

B = (Dy3 + Dy3D;z3 + Dyj3)lwt

+ [(b/6 + c/e + d)D13n+ (a + b/6 + c/e)D,; + (a + 4d)Jw?

+ [ac/e + ad + bd/s], "
v = Dy3D,;;w® + [dDy; + (b/8 + c/€)D,3D,;3 + aD,;]w’

+ [(bd/g)D13 + ad + (ac/e)D;;]w?. "

n

Observe that since a, b, c, and d are all positive, so are
a, 8, and . When n = 0, we have y = 0 and the required‘result
follows immediately since a and B are positive. For n > 0,

observe that
£(0) = v>0, and f(-a) = y - af < 0.

Thus there exists a negative real number A;, -a < A; < 0, such
that

f(>\1) = 0.

Dividing equation (4.2-5) by its factor (XA - \,), we see that the

other two roots must satisfy the quadratic equation
A2+ (a+A)h + [ + N (a+A;)] = 0.

Now since a + A\, > 0, the roots to the quadratic must have

negative real parts and this completes the proof.

According to the standard theory of linear stability [7],
Property 4 states that for n > 0, the system of ordinary
differential equations (4.2-4) is stable and the solution

z (t) = exp(A t) —> 0 as t —> «, For n = 0, (4.2-4) is neutrally
n n
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stable and the solution z,(t) = exp(A,t) is bounded.

Using the above result we <can prove the following

proposition about the stability of system (P).

Proposition III :

For all positive parameter values a,, a,, &, and e, the

unique steady-state solution (U ,V ,W ) is asymptotically stable.
s s s

Proof :

It suffices to show that the deviation (u,v,w) tends to zero
in the steady-state. By Property 4 the steady-state value can be

obtained by merely solving

—

Zo'(t) = ApZo(t)

and letting t —> «, The solution is

u(x,=) = ug(=) = (a,b/a)u,
V(X,w) = Vo(°°) = U,
wix,®) = wol=) = (c/da,)u, (4.2-6)

where pu 1s some constant depending on the initial condition as
well as the parameters a,, a,, &, and e. Since u(x,®), v(x,«) and
w(x,») are independent of x, the integral equation (4.2-2)

reduces to the algebraic eguation
up (=) /(ay8) + vole) + (a;/elwg(=) = 0. (4.2-7)

Combining equations (4.2-6) and (4.2-7) we deduce that
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u(x,») = v(x,®) = w(x,=) = 0

and this completes the proof.
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5. SOME FEATURES OF THE TRANSIENT BEHAVIOUR

One of our main objectives in formulating the mathematical
model (P} 1is to provide qualitative and quantitative information
about the behaviour of the initial transient changes of Ca2?*., 1In
this chapter we shall approximate the transient solution via a
reqgular perturbation approach. Moreover, we shall use a
comparison theorem to obtain analytical upper and lower bounds on

the exact solution.

We mentioned in Section 4.1 that dﬁring the 1initial
transient state, the diffusion rate of system (P) is very rapid
compared with 1its reaction rate. Thus before carrying out the
perturbation analysis, we shall rescale our variables so that the
diffusion terms are of dominant order. To this end we introduce

the stretching variables'

£ = V(8/e%)x, T = (8/€e2)t,
u(g,7) = U/(e/8)2, v(E,7) = V/(e/8), wif,r) = W/ (e/8).

In (&,7) space, system (P) becomes

du/or = D,;0%u/0t% + (e/6)[6a,v] - (e/8)2%[6a,u]
+ (e/8)3[6a,uv],
ov/dr = 3%v/03¢(% + (e/8)[a,w/a, - v]

+ (e/8)2[au/a, - v(1-w)] + (e/8)3[uv],

'"The new dependent variables are chosen such that the initial
conditions are of 0(1).
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ow/d7 = D,,02w/082% + (e/86)%[86(v/a, - w/a,)]
- (e/8)3[dwv/a,], (5.1)

with 1initial conditions

u(t,0) = uy, v(£,0) = vy, w(E,0) = w,, (5.2)

where

Uo = Uo/(e/8)2, vo = Vo/(e/8), wo = Wo/(e/8).
The boundary conditions are

ou(0,7)/9¢ = du(L',r)/2¢ = aw(0,7)/0¢

ow(L',7)/0¢ = 0,
ov(L',7r)/0¢ = 0, ov(0,7)/0¢ = A’

+

B'lnv(O,T), (5.3)

where A' = V§(A + Bln(e/8)), B' = V8B, L' = y(5/e?)L.

It is clear from (5.1) that (e¢/8) is a natural choice as a
perturbation parameter. For the set of parameter values shown in

Table 2, €¢/6 has a value of 0.0375.

In order to obtain an approximate transient solution to

system (P), we consider a regular expansion of the form

ulg,r) = u(g,7) + (e/8)u'(g,7) + (e/8)%u?(g, 1) +
vig,7) = vo(E,7) + (e/8)v'(£,7) + (e/8)2v2(g, 1) +
w(E,7) = wol(g,r) + (e/8)w'(E,7) + (e/8)%w2(E,7) + ... (5.4)

The nonlinear boundary condition on v({,7) becomes

A' + B'lnv(0,7) = A' + B'1lnv®(0,7) + (e/8)[B'/v°(0,7)]vi(o,7)

+ 0((e/8)2%).
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Our objective is to obtain the first-order correction terms
in the expansion (5.4). Substituting equation (5.4) into (5.1)

and collecting terms of the same order gives

0((e/8)°) : du®/ar = D,,0%u®/3¢t?,
avo/dr = 92%v9/0¢&?,
awo/aT = D2382w0/352, . . (5.5)

with initial and boundary conditions

UO(EIO) = uOI VO(E,O) = VOI WO(EIO) = wOr
ou°(0,7)/0f = 2u°(L',7)/0¢ = ow°(0,7)/3t = dwo(L',7)/3¢t = 0,
ove(L',7)/0d¢ = 0, 9v°(0,7)/8¢ = A' + B'1lnv°(0,7). (5.6)

Thus the zeroth-order equations' to our nonlinear system are
linear uncoupled heat equations with nonlinear boundary condition
on v°(f¢,7). 1In view of the initial and boundary conditions, the

solutions to u°(¢(,7) and w°(f(,7) can be obtained by inspection as
UO(SIT) = Ug, WO(E,T) = Wgoe (5.7)

However, because of the nonlinear boundary condition, the
exact solution to v°(¢,7) cannot be obtained analytically.
Morebver, linearization of the boundary condition is not fruitful
since v°(¢,7) changes rapidly near 7 = 0. Thus, v°(¢,7) Iis

calculated numerically wusing an algorithm called PDECOL (see

'On physical grounds, the zeroth-order solution corresponds to an
approximate solution of the system when the diffusion rate is
rapid relative to the reaction rate.
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Appendix A for a detail discussion).

We shall proceed to obtain correction terms for u, v, and w.

The first-order governing equations are

0((e/8)) : du'/d7 = D,,8%u'/3E2 + 6a,v°, (5.8a)
av'/dr = 92%v'/3t? + (a,w®/a, - v°), (5.8b)
dw'/dr = D,,02w'/3£2, (5.8¢c)

with initial and boundary conditions

u'(¢,0) =0, v'(£,0) = 0, w'(£,0) =0,
du'(0,7)/8¢ = du'(L',r)/0t = dw'(0,7)/8k = aw'(L',7)/3t = O,
av'(L',7)/3¢t = 0, ov'(0,r)/0t = [B'/v°(0,r)]Iv'(0,7). (5.9)

An inspection of the initial and boundary conditions on w!
reveals that

wl(g,7) = 0. (5.10)

Thus in order to obtain a correction term for w(f(,r), we must

consider the 0((e¢/8)%?) equation and we have
0((e/8)2) dw2/31 = D,,0%w?2/3¢2 + §[v°/a, - w°/a,], (5.11)
with initial and boundary conditions

w2(¢,0) = 0, aw2(0,7) /3¢ = 0 = aw2(L',7)/0t.  (5.12)

Equations (5.8a) and (5.11) are precisely of the form given

in Appendix B with a = 0. The solutions are

u'(g,7) = Z u (7)cosh (g-L'), (5.13a)
n=0 n n
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w2(g,7) = Z w (1)cosh (¢(-L') - (6wo/ay)T, (5.13b)
n=0 n n
where A = nn/L',
n
T

u (T) = [631] f g (S)exp(-D13X2(T‘S))dS,

n 0 n n

T

w (T) = [6/81] I g (S)exp(_Dzakz(T—S))ds,

n 0 n n

for n = 0,1,2,... and where

L' .
QQ(S) = (1/Lv)f ve(g,s)dE,
0
Ll
q (s) = (2/L')f v°(f&,s)cosh (¢-L')dg, n =1,
n 0 n

Since v°(f,7) 1is known from the zeroth-order calculation, gq (s)
n
can be obtained by direct numerical integration.

We shall now turn to the discussion of v'(f¢,7r). By Lemma !

of Appendix B, provided that

|alB' /ve(0,7)]/[B'/(v°(0,7)) ]| << 1,
or equivalently

[[ve(0,r+AT) - v°(0,7)1/v°(0,7)]| << 1, (*)
then v'(¢,7) is approximately given by

vi(¢,r) =

n

v (r)cos\ (&-L'"), - (5.14)
1 n n

nmMms

where A satisfies the transcendental equation
n

X sinA L' - [B'/v®(0,7)]cosA L' = 0, (5.15)
n n n
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and
r
v (1) = J p (s)exp(-A?(r-s))ds,
n 0 n n
with
L'
p (s) = [f (a;w%/a, - vO°(&,s))cosh (t(-L')dtl/c ,
n 0 n n
and where )
c = {L' + [B'"/v°(0,7)]Jcos?X L'/N\%2}/2,
n n n
for n=1,2,.

In order to ensure that condition (*) holds we divide the

interval [0,7] into m subintervals

0=7 <7 < .e... < Tt =7,
0 1 m
so that
.
_ m k
vir) =2 p (s)exp(=A%(r-s))ds.
n k=1 7 n n
k-1
For each subinterval 7 < 7 < 7 , we approximate v°(0,7) by
k-1 k .
vo(0,7 ) and generate a new set of {A } via equation (5.15).
k=1 n

Thus by choosing m sufficiently large, condition(*) is satisfied.

In summary the approximate transient solutions obtained from

the perturbation method are -

u(t,7) = ug + (e/8)u'(t,7) + 0((e/8)2),
v(ig, 7)) = vo(E,7) + (e/8)v'(E,7) + O((e/8)%),
w(E,7) = wo + (e/8)2%w2(g,7) + 0((e/8)3). (5.16)
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In terms of U, V and W, the perturbation solutions are

U(g,7) = Uy + (e/8)3u'(&,7) + 0((e/8)"), (5.17a)

V(g,7) = VO (E,7) + (e/8)2v i (E,7) + O((e/8)3), (5.17b)

W(E,7) = Wo + (e/8)3w2(f,7) + 0((e/8)*%), (5.17¢)
where VO(¢,7) = (e/8)v°(&,7). Thus our perturbation solutions are

good up to 0((e/6)?) for V and 0((e/6)3) for U and W. For values'
of t <1073 (t = r(e?/8)), equations (5.17a-c) provide good
approximations to the initial transient behaviour of system (P).
In Figures (3a-b) we compare the exact solution of V(¢(,7) with
the perturbation solutions for t = 10°? and 102, We have omitted
plotting the U(¢(,7) and W(§(,7) solutions since for wvalues of
t < 10°2, the deviations from the initial state, U, and W,, are

negligible.

Our perturbation analysis is wunsatisfactory in the sense
that we are not able to obtain an analytical solution? for
ve(f¢,7). Moreover for values of t > 10-%, the perturbation
solutions (5.17a-c) begin to deviate from the exact solutions and
they no longer provide any qualitative information of the true
solutions. Thus one would at least like to find good analytical
bounds which will give us quantitative information on the exact
solutions. The following version of the comparison theorem [10]

for parabolic equations suits our situation.

'The value t = 10-3 corresponds to 1 usec in physical units.

2However the computing time for solving V°(f¢,7) is less than half
the computing time for solving the full system of PDEs.
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V with the perturbation
t = 0.001, 0.01.
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Comparison Theorem

Consider the system of parabolic equations of type (1.2)

av/at

Da%v/9x? + G(V),

du/at

D32G/3x2 + F(T),

defined for x eI = [a,b], t >0 with prescribed initial

conditions and Neumann boundary conditions. Assume

i) F(4) is quasi-monotone nondecreasing in u,

ii) G(.) = F(.),
iii) v(x,0) = G(x,0), x eI = [a,b],
iv) ovi(x,t)/sn 2 du(x,t)/on, x e 98I, t > O,

where 3/90n denotes outward directional derivative on 3I. Then
vix,t) 2 u(x,t), for x e I, t 2 0,
for any continuous solutions u(x,t) and v(x,t).

Thus provided that condition (i) 1is satisfied, the above
theorem allows us to calculate an upper bound for u by replacing
the kinetic term, the 1initial condition, and the normal
" derivatives by any éonvenient differentiable functions subject to

conditions (ii)-(iv).

We shall use the above theorem to find analytical bounds for
U, VvV, and W. In pérticular we are interested in finding good
bounds during the initialv transient state. By Property 3 of
Chapter 4, we know that U,, V,, and W, are lower bounds for U, V,

and W, respectively. Moreover our perturbation solutions indicate
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that for small t, they are good lower bounds. Thus we shall
merely concentrate on finding analytical wupper bounds. The

following upper bounds for f, g, and h are easy to establish

£(U,V) <€ a,(1-U)(V -V,) = ¥, (5.19a)
m
g(U,V,W) < az/(681) + a1/(€az) = §I (5.19¢c)
h(V,W) € (1-W,)(V -V,)/a, = h, (5.19b)
o ,

where V is a finite upper bound on V to be determined.
m

We shall temporarily assume that V 1is known and prove the

m
following proposition

Proposition V

A pointwise upper bound (U,V,W) for (U,V,W) is given by

U(x,t) = U, + ft, (5.20a)
Wix,t) = W, + ht, (5.20b)
V(x,t) = Vo, + gt + V¥*(x,t), (5.20c)

where

Vx(x,t) = 28vt{ Z (1/Vm)exp(-(x-2kL)2/4t) - I P[(2kL-x)/2yt]
=1

k=-oo k
- = P[(x+2kL)/2/t]}, (5.21)
k=0
where B = -(A + BlnV,), P(z) = z erfc(z) and erfc(x) 1is the

complementary error function,

erfc(x) = 2/¥Vnm | exp(-a?)da.
X



44

Proof :

By Property ' of Chapter 4, F = (f,g9,h) is quasi-monotone
nondecreasing in u = (U,V,W). Thus condition (i) of our
comparison theorem is satisfied and an upper bound to system (P)

can be obtained by solving the system of equations

dU/dt = D,;02U/8x2 + £, (5.22a)
aV/dt = 32V/3x? + q, (5.22b)
oW/dt = D,;0%W/3x? + h, (5.22¢)

with initial conditions on 0 < x < L,

U(x,0) = Uy, V(x,0) = V,, W(x,0) = W, (5.23)

and boundary conditions for t > 0,

3U/3x(0,t)

0 = 3a0/ax(L,t), dW/3x(0,t) = O dW/ox(L,t),

avV/0x(0,t) -8, aV/ax(L,t) = 0. (5.24)

Observe that we have kept the same initial conditions and have
simply replaced the kinetic terms by their respective upper

bounds. Now since
3V/9x(0,t) = -8 = A + BlnV, < A + Blnv(0,t) = av/ax(0,t),

all conditions of the theorem are satisfied. The solutions for

U and W can be obtained by inspection as
U(x,t) = U, + ft, W(x,t) = W, + ht.
To solve for V(x,t) we consider the transformation

V¥(x,t) =V - V, - gt. (5.25)
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Substituting (5.25) into (5.21b) we have
oV* /3t = 92V*/0x?, (5.26)
subject to initial condition on 0 < x < L, .
v*(x,0) = 0, : (5.27)
and boundary conditions for t > 6,
avV*/3x(0,t) = -8, avx/ax(L,t) = 0. (5.28)

We shall solve (5.26) using the Laplace transform. Taking
the transform on both sides of (5.26) and wusing 1initial

condition (5.27) we have

d?v*/dx? - sv* = 0, (5.29)
where v*(x,s) = £{V*(x,t)}. The boundary conditions are
dv*(0,s)/dx = -8/s, "~ dv*(L,s)/dx = 0. (5.30)

Solving (5.29) subject to conditions (5.30) gives
v¥(x,s) = (B/Vs?)[coshy/s(x-L)/sinhysL]. (5.31)

Since we are interested in the solution for small t, we expand
(5.31) for large s and we get
@ _ ' o _
v¥(x,s) = (B/Vs3){ T exp(-v/s(2kL-x)) + ZI exp(-vs(x+2kL))}.
| k=1 k=0
(5.32)
Using a standard transform table [25], we can invert (5.32) term

by term and we obtain (5.21) as desired.
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An interesting feature of the infinite series representation
of V*(x,t) is that it converges rapidly for small t. To see this

recall that the asymptotic expression for erfc(x) is
erfc(x) = (1/Vm)exp(-x2)[1/x - 1/2x3 + 0(1/x5)] as x —> +o,
Using the above expansion it is easy to deduce that
[+ <]
V¥ (x,t) = g/t/7m { £ exp(-(x-2kL)2/4t)/[(x-2kL)2/4t]
k=-—
+ O([(2kL-x)/2yt] %)} as [(2kL-x)/2/t] —> +o,
(5.33)

For values of t < 0.1, it is only necessary to calculate the

k = 0,£1 terms to obtain sufficient accuracy for V*(x,t).

It 1is clear from (5.33) that for small t, the contribution
of V* in (5.20c) is small' compared with V, + gt. Thus for values

of t < 1, we shall neglect the V* term in (5.20c) and we have
vV (t) = V(x,t) = V, + gt, x ¢ [0,L], 0 <t < 1.

m

Thus for small t, the bounds (U,V,W) are independent of x.
Using the set of parameter values given in Table 1, we summarize
in Table 3 the true maximum values of (U,V,W) which occur at

Xx = 0 together with their respective upper bounds for t = 0.001,

0.01, and 0.1, -

'Numerical calculations indicate that for values of t < 1.0, the
contribution from V* is negligible.
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= 0.001 t = 0.01 t = 0.1

Max U(x,t) 0.00250 0.00258 0.00314
X

U 0.00250 0.00374 0.12719

Max V(x,t) 0.07776 0.13423 0.14558
X

v 0.09488 0.80651 7.92283

Max W(x,t) 0.09111 0.09514 | 0.12851
X

W 0.09136 0.13638 4.63752

Table 3 : Summary of the true maximum values of (U,V,W)
together with their respective upper bounds.

It 1is <clear from Table 3 that as t increases the bounds

deviate further and further away from the exact solutions and
hence they are not very useful for large values of t. This is due
mainly to the rough estimate we used in calculating £, g, and h
in equations (5.19a-c). Our present analysis, however, provides
us with an idea of the relative maximum amplitude of U, V, and W.

We shall now turn to discuss the numerical results of system (P).
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6. NUMERICAL SOLUTION

In the area of chemically reacting systems, nonlinearity 1is
more the rule than the exception, and accordingly analytical
solutions are rare. We were "fortunate" to obtain analytical
results for the steady-state and the initial transient behaviour
of system (P). However for intermediate values of t, analytical
results for system (P) are beyond our reach and we must resort to

numerical techniques.

In order to give a complete description of the calcium
dynamics, we use the parameter values in Table 1 and solve the
full system of equations (3.2)-(3.4) using PDECOL. Figures (4a-c)
show the concentration profiles of'U, Vv, and W ([Caarz], [ca?*],
and [CaBl) in their original physical units during a 0.1 second
(t*) 1loading period. It 1is clear from the figures that the
concentrations of CaArz, Ca?*, and CaB rise to their respective
maxima' at t = t* and as Ca?* influx continues, the front of CaB
and CaArz moves away from -the surface membrane (or into the

cell).

In Figures (5a-c¢) we show that after the pulse
stops (t > t*), diffusion proceeds carrying Ca?* and the
complexes further 1into the <cell which permits a spatial

redistribution of Ca?* inside the cytoplasm. The concentrations

'At the same time, the intrinsic buffer concentrations Arz and B
decrease according to equations (2.2a) and (2.2b), respectively.
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Figure 4a : Concentration profiles of CaArz during a
0.1 second loading period.
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0.1 second loading period.
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0.1 second loading period.
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of the Ca?* and the complexes steadily approach their respective
equilibrium values and the recovery time 1is approximately 8
seconds. Using the set of parameter values given in Table 1, we
summarize.in Table 4 the initial, maximum, and steady-state

concentration levels of CaArz, Ca?*, and CaB.

t [CaArz] [Ca?+] [caB]
secs uM/1 : uM/1 uM/1
Initial 0.0 0.7482 0.1000 18.1818
state
Max imum 0.1 49.0101 10.0776 181,1472
value
Steady-state 8.0 2.1413 0.2876 44,6679
value

Table 4 : Summary of the initial, maximum, and steady-state
concentration levels of CaArz, Ca?*, and CaB.
Finally we remark that our numerical results are identical
to those given by Connor and Nikolakopoulou. (See Figures 5A-B
and Figure 7 of their paper [13].) As mentioned in their paper,
the numerical results do not only give a good qualitative account
of the calcium dynamics, but quantitatively, they are within 50%
of the experimental values. Possible changes in the model
parameters which give better experimental-computational agreement

are also discussed in their paper.
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7. CONCLUSION

In this thesis we analyse a diffusion model which érises in
neurobiology describing the dynamics of intracellular calcium ion
concentration changes due to diffusion and to buffering in nerve
cytoplasm. The model was originally formulated by Connor and
Nikolakopoulou [13] in an effort to answer some Quantitative
questions including the spatial distribution of calcium within
the cytoplasm and the 1increase in intracellular [Ca?*] that a
given influx can bring about. The model consists of a system of
five reaction-diffusion equations describing the evolution of the
various ionic‘concentration changes which are taken into account.
The 1influx of calcium 1ions through the nerve cell membrane
results in nonlinear boundary conditions which make analytical

solution unobtainable,

Through simple mathematical manipulations, we reduced the
model to a system of three reaction-diffusion equations and we
found that the system possesses some interesting mathematical
properties such as a conservation law and an invariant region.
The conservation law plays a key role 1in establishing the
uniqueness and asymptotic stability of the steady-state which was
shown to be spatially homogenéous and an analytical expression
for the steady-state value 1is given. On the other hand, the
invariant region simply confirms the chemical 1law that the
concentration levels of the complexes at all .times must be
greater than the initial concentration levels but less than the

initial <concentration levels plus the total amount loaded into
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the system.

Further examination of the equations reveals that the system
possesses two small parameters, e and 8§, whose presence allows us
to construct an approximation to the initial transient solution
using a regqular perturbation technigue. However, because of the
nonlinear boundary conditions, we were not able to find an
analytical approximation to the initial transient solution which
is valid for a longer period of time. To this end, a simplified
comparison theorem was used to provide rough bounds on the exact

solutions.

In order to give a complete description of the calcium
dynamics, a B-spline collocation code, called PDECOL, is used to
solve the full system of equations. The results are identical to
those given by Connor and Nikolakopoulou [13]. However we believe
that our numerical scheme 1is more efficient than the POST

algorithm used in [13].

In closing, we note that our analytical results in this
thesis have provided greater understanding and insight into the
mechanisms of diffusion, kinetics, and sequestration of calcium

in nerve cells.
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APPENDIX A : DISCUSSION OF THE NUMERICAL ALGORITHM - PDECOL

The UBC library program, PDECOL, is used to solve the full
system of equations (3.2)-(3.4). PDECOL 1is a general purpose
program for numerically solving systems of partial differential
equations in one spatial dimension. The class of problems which

PDECOL can solve must have the following structure :

au/ot

F(x,t,u,ou/ax,09%u/ax?), (A.1)

where u = (u ,...,u ), F=(f ,...,f ), x e I = [a,b] and t =2 t,.
: 1 n 1 n
The boundary conditions must have the form

B(u,au/ax) z(t), X € 3l, t > to, (A.2)

NI

where B = (b ,...,b ) and = (z ,...,2 ). The initial conditions
1 n : 1 n
on a £ x £ b are

u(x,to) g(x), (A.3)

where g = (g ,...,9 ).
1 n

The initial conditions must be consistent with the boundary

conditions, i.e.,
B(g,ag/9x) = z(t,), x e oI. (A.4)

Finally all functions must be continuous in t and piecewise

continuous in Xx.

Given a system of PDEs of the above structure, PDECOL solves

the system wusing time discretization and collocation spatial
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discretization techniques'. For simplicity, we shall set n = 1
and outline the solution procedures used by PDECOL. For more

detailed information we refer the reader to [22].

PDECOL Algorithm

The algorithm requires the user to specify a spatial mesh

(x ,...,x ) on [a,b] such that
1 N

4 = X < X < ... <X = b.
1 2 N

Associated Qith each interval in the mesh are the polynomials
p.(x), i=1,...,N-1, which form a piecewise polynomial space
t;at is used to compute the approximate solution. The user must
specify k, the order of the polynomials (k = the polynomial
degree + 1) and the number of continuity conditions (NCC) to be
imposed on the polynomial pieces across the mesh points X . The
recommended choices are k = 6 and NCC = 2 so that the appréximate
solution which is made up of separate fifth-degree polynomial
pieces and the first derivative of the approximate solution are
both continuous across the mesh points and hence on the entire
interval [a,b]. The dimension’ of the 1linear polynomial space

(i.e., the total number of degrees of freedom) over [a,b] is

therefore

m = k(N-1) - NCC(N-2).

'"Theoretical results [20] suggest that the <collocation method
provides more reliable results than a straightforward
finite-difference method.
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In PDECOL a B-spline basis consisting of m known piecewise
polynomial functions 9_(x) are used to span the polynomial space.
This basis has the pr;perty that for any x e [a,b], at most k of
the 9_(x) have nonzero values. This property results in a banded
matfi; which leads to efficient numerical computation. For a
given value of t, the algorithm assumes an approximate solution

of the form

m
Ulx,t) = Z c ()8 (x),
i=1 i i

where the coefficients ¢ (t), i = 1,...,m, are determined by a
i

spatial collocation technigque. The collocation technigue requires

U(x,t) to satisfy the system of PDEs and the boundary conditions

at a set of m collocation points. The collocation points, § , are

]

selected automatically by PDECOL such that

a=§f < ¢ < < ¢ =D

1 2 m
Hence for each j = 1,...,m,
m
u(t ,t) =0(¢ ,t) = Z c (t)6 (&), (A.5)
j j i=1 i i 3

where u is the exact solution to the PDE. Substituting equation
(A.5) into (A.1) we obtain a system of time dependent ordinary

differential equations

nmM~Ms

6 (¢ )oc (t)/ot = F(¢ ,t,U(¢ ,t),0U(f ,t)/0x,02%0(¢ ,t)/0x?),

i=1 1 7 i ] ] ] J

(A.6)
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subject to the initial conditions

nm~Ms

c (to)o (&) = gl ). (A.7)
11 i 3 j . ‘

i
Equations (A.6)-(A.7) must be satisfied for j = 2,...,m-1. At the
boundaries, special collocation equations are formed to 'accoun£
for the boundary conditions. Thus we have transformed a single

PDE into a system of ordinary differential equations which can be

solved by integrating with respect to the time variable.

The present algorithm possesses three desirable features.
First of all, there are no limits on the number of PDEs to be
solved. Secondly, the solution procedures applied to the system
of time dependent ordinary differential equations (A.6)-(A.7) are
very efficient since the choice of the B-spline basis results in
a banded mxm matrix of maximum bandwidth [2n(k-1)-1]. Thirdly,
PDECOL allows the user to restart integration from the previous
termination time rather than to repeat the entire run. This is
particularly convenient and economical since the length of time

to reach the equilibrium state is not known a priori.

Despite all of the above desirable features, PDECOL suffers
from one major drawback’', namely, the consistency condition (A.4)
must be satisfied by the PDEs in order to invoke PDECOL

correctly. This 1is a severe restriction since in applications

'"Through private conservations with Carolyn Moore and Tom Nicol,
both of whom are numerical analysts at the UBC Computer Center,
we are unaware of any other collocation method which will
automatically handle the inconsistency situation.
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where an impulse or an influx is introduced into the system at

the boundaries at t

to*, the consistency requirement on the

PDEs is often violated.

In our case the initial and boundary conditions on V(x,t)

are
V(X,O) = VO!
| A + Blnv(0,t), 0 <t £ t*,
av(0,t)/ox = [
0, t > t*,

Now since 1lnV, # -A/B,
ovV(x,0)/0x # aV(0,t)/ax at (x,t) = (0,0),

and thus the consistency condition is not satisfied. Moreover,

we observe that 3v(0,t)/dx is not continuous at t = t*.

In order to overcome our present numerical difficulty, we

introduced a trapezoidal—shaped function
H(t) = 1/2 [tanh(y(t-t")) - tanh(y(t-t"))]
where we have chosen
v = 10'€, t' = 10°'4, t" = t* - t',
The above parameter values are chosen such that

H(0)

R

0 =~ H(t*), H(t') = 1/2 = H(t"),

ft

H(t) 1, 2t' < t < t*-2t',

where the "=" sign indicates an error of less than 10°49, A
g

sketch of H(t) is shown in Figure 6.
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Figure 6 : Sketch of the trapezoidal-shaped function H(t).

To overcome our numerical difficulty, we can reformulate our

boundary conditions as

[A + B1nVv(0,t)JH(t), 0 < t < t*,
av(0,t)/0x = [ |
0, t > t*,
Now since H(0) = 0 = H(t*), the <consistency <condition is

satisfied and aVv(0,t)/dx is continuous everywhere. Although the
above method is formulated to suit our particular situation, it

is clear that the method can be modified and adapted to other

similar situations as well,

We shall devote the remainder of this Appendix to discuss
the numerical accuracy of PDECOL. There are mainly two sources of
error in the approximate solution generated by PDECOL. The first

is due to the time discretization method and the second is due to
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the collocation spatial discretization technique. PDECOL controls
the time discretization error by selecting a stepsize below the
user's specification. However, it has no control over the spatial

discretization errors.

Theoretical results in [20] indicate that the maximum error
between the exact solution and the approximate solution generated

by PDECOL is proportional to h , where
h = max |x - x | .

Moreover the maximum error' between the jth derivatives of the

exact solution and that of the approximate solution is
k-3 _
proportional to h . Our system of reaction-diffusion equations

involves second order spatial derivatives and hence the maximum
. k-2
error is of the order h .

'In practice one should choose a variable spatial mesh so that
more mesh points are inserted near the region where the solution
changes rapidly.
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Appendix B : AN APPROXIMATION TO A SECOND-ORDER PDE

In this appendix we shall find an approximate solution to

the linear second-order partial differential equation

0z/0t = ad?z/9x? + bw(x,t) (B.1)
with initial condition on 0 < x < L
z(x,0) = 0, (B.2)
and boundary conditions
9z (0,t)/9x - a(t)z(0,t) = O, 2z(L,t)/9ox = 0, (B.3)

and where a(t) and w(x,t) are known functions and a, b are given

constants.

We shall temporarily set a(t) = a = constant and seek a
solution to (B.1)-(B.3) of the form
[=<}
z{(x,t) = Z T (t)cosr (x-L). (B.4)
=1 n n
In order to satisfy the boundary conditions, A must satisfy

n
the transcendental equation

N sinA L - acosA L = 0, | (B.5)
n n n
for n = 1,2,... with 0 £ A; < A3 < A3 < .... We expand

w(x,t) = Z w (t)cosh (x-L) (B.6)
=1 n n
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where
_ L ‘
{f w(x,t)cos\ (x-L)dx}/K , A # 0,
0 n n n
w (t) =
n L
[f w(x,t)dx]/L, N =0,
= 0 n
for n=1,2,... and where K = [L + acos?\ L/A?]/2. ( Note
n n n
A, = 0 iff a = 0.) Substituting equations (B.4) and (B.6) 1into
(B.1)-(B.2) and solving yields
t
T (t) = b J w (s)exp(-a\?(t-s))ds. (B.7)
n 0 n n ,

Thus for <constant a, a solution to the partial differential

equation (B.1)-(B.3) is given by (B.4) with T (t) defined by

n
(B.7).

The following lemma extends the above result for general

a(t).

TLemma 1 : Let a(t) > 0 be continuous and differentiable. Provided

that
|8a/a| = |la(t+At) - a(t)]/a(t)] << 1,

then (B.4) is an arbitrarily good approximation to the
exact solution of the partial differential equation

(B.1)-(B.3).
Proof : It suffices to show that

fax /x| = |Ix (t+at) - N (£)]1/x (t)] < |Aa/al,
n n n n n

for all n 2 1 so that the roots {A } to the transcendental
n
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equation are approximately constant  and hence equations
(B.4)-(B.7) hold.
We set a = a(t), A = A (t) and differentiate (B.5) with

n n
respect to t giving

N(e)/N = {1/G(N ,a)}la'(t)/a,

n n n
or IN(e) /N | = 11/ ,a)Ya' () /a
n n n
where G(\ ,a) = 1 + aL + A?L/a.
n n
Now
min |G(X ,a)| = [G(X ,A )| = |1 + 2x L].
a n n n n
Thus

16N /A | < [1/(1 + 2 L)]|Aa/a| < |Aa/al
n n n

for all n =2 1 as desired.

The key step 1in solving the partial differential eqguation
(B.1)-(B.3) lies in finding the roots of the transcendental
equation (B.5). Numerical schemes will be more efficient if we
can give an approximate location of the roots. The next lemma

serves this purpose.

Lemma 2 : Let

g = nn/L, n=20,1,2,...
n

denote the roots to (B.5) with a = 0. For a small positive
perturbation Aa, the roots to (B.5) are approximately given by

N, = y(Aa/LY, A= 8 + Aa/((n-1)m), n> 1,

n n-1
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Proof : Let § = AL and replace a by Aa in (B.5). It is easy to
n n

deduce from equation (B.5) that

tang tan(§ - (n-1)w) = AaL/§ ,

n n . n

and thus

¢ - (n-1)=w tan- '(AaL/¢ ) = (AaL/% )
n n n

for |AaL/§ | << 1. The last approximation is justified since the

n

perturbation Aa is assumed to be small and |AaL/§{ | decreases as
| n

n increases. Thus for n = 1,

¢, = (AaL/§,), or A, = y(Aa/L),

and for n > 1,

i

§ = (n-1)r + (AaL/§ ) or A g + Aa/((n-1)7)
n n n n-1

as required.



