HYDROLYSIS OF ALUMINUM SULPHATE SOLUTIONS AT HIGH TEMPERATURES

: . 1

ΒY

CVETKO NIKOLIC

Dipl. Ing. (Chemical Engineering) University of Belgrade, 1963

A THESIS SUBMITTED IN PARTIAL FULFILMENT

OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF APPLIED SCIENCE

In the Department

of

METALLURGY

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

February 1971

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Metallurgy

The University of British Columbia Vancouver 8, Canada

Date April 28, 1971

ABSTRACT

Normal and acid aluminum sulphate solutions containing about 6.0 gr/l of aluminum and up to 50 gr/l SO_4^{-} were hydrolyzed until equilibrium was reached in the temperature region 125-250°C. Under the equilibrium conditions the only stable solid phase observed in equilibrium with a liquid phase of various compositions was basic aluminum sulphate with nominal formula $3Al_2O_3.4SO_3.9H_2O$. A small portion of the ternary diagrams for the system $Al_2O_3-SO_3-H_2O$ at 225°C and 250°C was constructed. A mixture of aluminum sulphate and other metal sulphates, K_2SO_4 , Na_2SO_4 , Li_2SO_4 , $FeSO_4$ and $CuSO_4$ i.e. was hydrolyzed at 225°C in order to find the effect of these salts on hydrolysis.

The overall hydrolysis reaction was found to occur according to the chemical equation:

$$6A1^{+++} + 4HSO_4^{-} + 14H_2O \longrightarrow 3A1_2O_3.4SO_3.9H_2O + 14H^{+}$$

The equilibrium constants at 125, 150, 175, 200, 225 and 250°C were determined.

Finally a mechanism for the hydrolysis of aluminum sulphate was proposed.

ACKNOWLEDGEMENT

The author wishes to express sincere thanks to Dr. E. Peters for his continuing guidance and interest in this project. His thanks is extended to fellow graduate students, particularly Mr. D. Jones and the technical staff of the Department of Metallurgy for their helpful discussions and assistance.

Financial support from the National Research Council of Canada in the form of a Research Assistantship is gratefully acknowledged.

TABLE OF CONTENTS

Page

1.	INTR	ODUCTIO	Ν	1
2.	A RE	VIEW OF	THE LITERATURE	3
	2.1	The Fe	2 ⁰ 3-S03-H20 System	3
	2.2	The Al	2 ⁰ 3-S0 ₃ -H ₂ 0 System	6
	2.3	The M ₂	0-A1 ₂ 0 ₃ -S0 ₃ -H ₂ 0 System	10
3.	EXPE	RIMENTA	L	12
·	3.1	Experi	mental Technique	12
	3.2	Materi	als Used	18
	3.3	Prepar	ation of Solutions for Hydrolysis	21
	3.4	Chemic	al Analysis	22
4.	RESU	LTS AND	DISCUSSION	24
	4.1	The Ef	fect of Temperature on Hydrolysis of Aluminum	
		Sulpha	te Solutions	25
		4.1.1	Hydrolysis of Aluminum Sulphate Solutions at	
		$M_{e^{+}}$	125°C	25
		4.1.2	Hydrolysis of Aluminum Sulphate Solutions at	
		¥ *	150°C	28
		4.1.3	Hydrolysis of Aluminum Sulphate Solutions at	• *
		•	175°C	30
		4.1.4	Hydrolysis of Aluminum Sulphate Solutions at	÷
			200°C	32
		4.1.5	Hydrolysis of Aluminum Sulphate Solutions at	
			225°C	34

24,

	4.1.6	Hydrolysis of Aluminum Sulphate Solutions at	•
		250°C	36
4.2	The Ef	fect of Sulphuric Acid Concentration on	
	Hydrol	ysis of Aluminum Sulphate Solutions	38
	4.2.1	Hydrolysis of Aluminum Sulphate Solutions	
		with Initial SO3: Al203 Ratio > 3.0 at 250°C	38
	4.2.2	Hydrolysis of Aluminum Sulphate Solutions	
		with Initial SO3:Al203 Ratio > 3.0 at 225°C	40
4.3	The Eq	uilibrium Constants	42
4.4	Ternar	y Diagrams for the System $A1_2^0_3$ -S 0_3 -H $_2^0$	51
4.5	Mechan	ism of the Hydrolysis of Aluminum Sulphate	55
4.6	The Ef	fect of Alkali Metal Sulphates on Hydrolysis	
	of Alu	minum Sulphate at 225°C	56
	4.6.1	The Effect of Lithium Sulphate on Hydrolysis	
		of Aluminum Sulphate at 225°C	58
	4.6.2	The Effect of Sodium Sulphate on Hydrolysis	
		of Aluminum Sulphate at 225°C	60
	4.6.3	The Effect of Potassium Sulphate on Hydrolysis	
4	· · · ·	of Aluminum Sulphate at 225°C	61
4,7	The Ef	fect of Divalent Metal Sulphates on Hydrolysis	
	of Alu	minum Sulphate Solutions at 225°C	65
	4.7.1	The Effect of Copper Sulphate on Hydrolysis	
		of Aluminum Sulphate Solutions at 225°C	67
	4.7.2	The Effect of Ferrous Sulphate on Hydrolysis	
		of Aluminum Sulphate Solutions at 225°C	69

v

Page

		Page
4.8 Appli	cation of the Hydrolysis Process	71
5. CONCLUSION	IS	74
APPENDIX I	SOLUBILITY OF ALUMINUM SULPHATE	75
APPENDIX II	ANALYSIS OF THE SOLID PHASE	76
APPENDIX III	X-RAY DIFFRACTION PATTERNS	77

LITERATURE	 81
DIIDIGILUIG	 01

- vi -

LIST OF TABLES

Table		Page
1	Hydrolysis of aluminum sulphate solutions at 125°C	26
2	Hydrolysis of aluminum sulphate solutions at 150°C	28
3	Hydrolysis of aluminum sulphate solutions at 175°C	30
. 4	Hydrolysis of aluminum sulphate solutions at 200°C	32
5	Hydrolysis of aluminum sulphate solutions at 225°C	34
6	Hydrolysis of aluminum sulphate solutions at 250°C	36
7	The effect of excess sulphuric acid on hydrolysis of	
	aluminum sulphate at 250°C	40
8	The effect of excess sulphuric acid on hydrolysis of	
	aluminum sulphate at 225°C	42
9	Equilibrium constant for the reaction $HSO_4^- \neq H^+ + SO_4^-$.	45
10	Hydrolysis constant of water	46
11	Equilibrium hydrolysis of normal aluminum sulphate in	
	the temperature range 125-250°C	47
12	Equilibrium constants for hydrolysis of aluminum	:
	sulphate solutions with excess sulphuric acid at	-
	225°C and 250°C	47
13	Equilibrium constants for the hydrolysis reaction of	
	aluminum sulphate	49
14	Solution composition of 250°C	51
15	Solution composition at 225°C	52
16	Equilibrium constants for reaction $A1^{+++} + H_2^0 \ddagger$	
	A1(OH) ⁺⁺ + H ⁺	56

ļ

Table		Page
17	Hydrolysis of aluminum sulphate-lithium sulphate	
	solution at 225°C	58
18	Hydrolysis of aluminum sulphate-sodium sulphate	
	solution at 225°C	61
19	Hydrolysis of aluminum sulphate-potassium sulphate	
	solution at 225°C	63
20	Ionic radii of the ions involved in the system	65
21	Hydrolysis of aluminum sulphate-copper sulphate	
	solution at 225°C	67
22	Hydrolysis of aluminum sulphate-ferrous sulphate	
	solution at 225°C	69
I-A	Solubility of Al ₂ (SO ₄) ₃ in water	75
I-B	Solubility of aluminum sulphate in aqueous solutions	
	of sulphuric acid at 25°C	75
I-C	Solubility of aluminum sulphate in aqueous 10% H_2SO_4 .	75
II	Analysis of the solid phases	76
III-A	Diffraction pattern of the precipitate obtained at	
	150°C	77
III-B	X-Ray diffraction pattern of the precipitate obtained	
	at 175°C	77
III-C	X-Ray diffraction pattern of the precipitate obtained	
	at 200°C	78
III-D	X-Ray diffraction pattern of the precipitate obtained	
	at 225°C	78
III-E	X-Ray diffraction pattern of the precipitate obtained	
	at 250°C	79

:.

<u>Table</u>		Page
III-F	X-Ray diffraction pattern of the precipitate obtained	
•	from FeSO ₄ -A1 ₂ (SO ₄) ₃ solution at 225°C	79
III-G	X-Ray diffraction pattern of potassium alunite	
	obtained at 225°C	80
III-H	X-Ray diffraction pattern of sodium alunite obtained	
	at 225°C	80
III-I	X-Ray diffraction pattern of lithium alunite obtained	
	at 225°C	80

LIST OF FIGURES

Figure		Page
· 1	Fe ₂ 0 ₃ -S0 ₃ -H ₂ 0 system at 200°C	4
2	Fe ₂ 0 ₃ -S0 ₃ -H ₂ 0 system at 140°C	5
. 3	$A1_{2}O_{3}-SO_{3}-H_{2}O$ system at 220°C	7
4	Experimental Apparatus	13
5	YSI-602 Termistor Calibration	14
6	Transducer Calibration	1 <u>5</u>
7	Pressure Dependence on Temperature	16
8	Heating Time to Reach the Working Temperature	17
9	Hydrolysis of Aluminum Sulphate at 125°C	27
10	Hydrolysis of Aluminum Sulphate at 150°C	29
11	Hydrolysis of Aluminum Sulphate at 175°C	31
12	Hydrolysis of Aluminum Sulphate at 200°C	33
13	Hydrolysis of Aluminum Sulphate at 225°C	35
14	Hydrolysis of Aluminum Sulphate at 250°C	37
15	Hydrolysis of Acid Aluminum Sulphate at 250°C	39
16	Hydrolysis of Acid Aluminum Sulphate at 225°C	41
17	Phase Diagram of the Al ₂ O ₃ -SO ₃ -H ₂ O System	43
18	Equilibrium Hydrolysis	48
19	The Change of Equilibrium Constant with Temperature	50
20	$A1_{2}O_{3}-SO_{3}-H_{2}O$ System at 250°C	53
21	$Al_2O_3-SO_3-H_2O$ System at 225°C	54
22	Hydrolysis of Lithium-Aluminum Sulphate Solution at	
	225°C	59
23	Hydrolysis of Sodium-Aluminum Sulphate Solution at 225°C	. 62

		- xi -	
	Figure		Page
	24	Hydrolysis of Potassium-Aluminum Sulphate Solution	
		at 225°C	64
	25	Hydrolysis Yields Dependence on Ionic Radii	66
	26	Hydrolysis of Copper-Aluminum Sulphate Solutions at	•
	•	225°C	68
×	27	Hydrolysis of Iron-Aluminum Sulphate Solutions at	
		225°C	70
• . •	28 [.]	D.T.A. of 3A1 ₂ 0 ₃ .4S0 ₃ .9H ₂ 0	72

• •

•

•

.

· ·

1. INTRODUCTION

The aluminum industry was the first to use a pressure hydrometallurgical process (The Bayer process) on a large scale. Caustic soda solutions are used to dissolve aluminum from bauxites and alumina is separated. Even though caustic solutions are not very selective and the Bayer process is limited to low silica ores, alumina is produced commerically only by this process. This has imposed on the aluminum industry the task of transportation of bauxties over a long distance because the producing countries do not have bauxites of their own. The production of aluminum in countries such as Canada and the United States is today very sensitive to the availability of bauxites from foreign countries.

With a desire to recover aluminum from clay minerals, processes have been considered, from time to time, that are applicable to common North American clays for the domestic production of alumina. Such processes might also be useful in the treatment of certain mine waters from copper dump leaching, which contain dissolved aluminum sulphate, among other sulphate salts.

Any new process producing alumina must compete in price with the Bayer process. This limits new leaching processes to cheap reagents. Sulphuric acid is the favourite reagent considered for alternate

- 1 -

alumina production processes and an acid process developed by C.S.I.R.O. has been found to produce aluminum sulphate solutions which can be hydrolysed to yield basic aluminum sulphate.

Most of the work in hydrolysis has been done with basic aluminum sulphate solutions, or solutions containing alkali metal sulphates and under "process conditions". Because of this there is practically no data on equilibrium hydrolysis available in the literature.

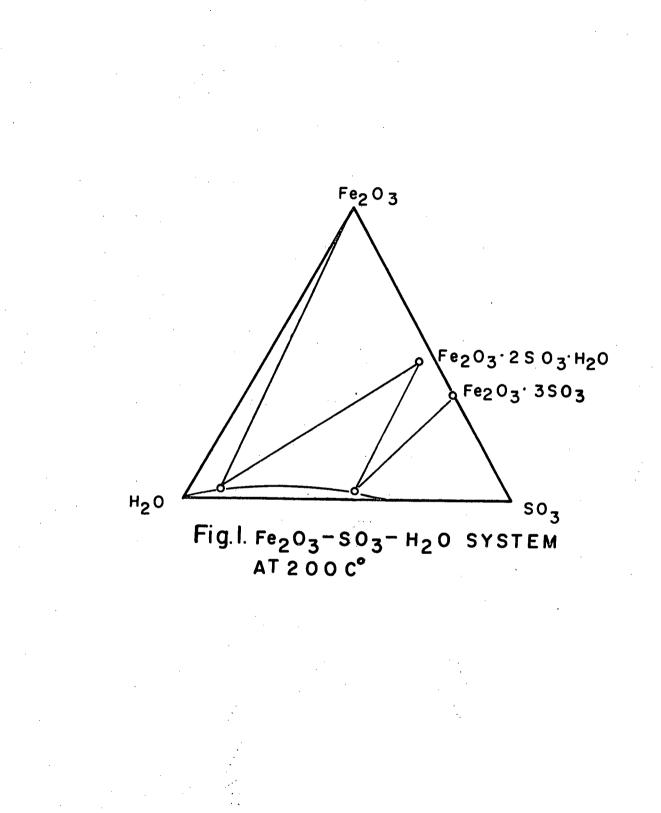
Some equilibrium hydrolysis work was carried out on the $Fe_2O_3-SO_3-H_2O$ system. With some exceptions $Al_2O_3-SO_3-H_2O$ and $Fe_2O_3-SO_3-H_2O$ systems precipitate similar compounds during hydrolysis.

The separation of basic aluminum sulphate salts from aluminum sulphate solutions is not well understood either from a kinetic or thermodynamic point of view. This work is concerned with hydrolysis reactions of aluminum sulphate solutions that occur in the temperature range 125-250°C, and attempts were made to study both precipitation rates and the final equilibria.

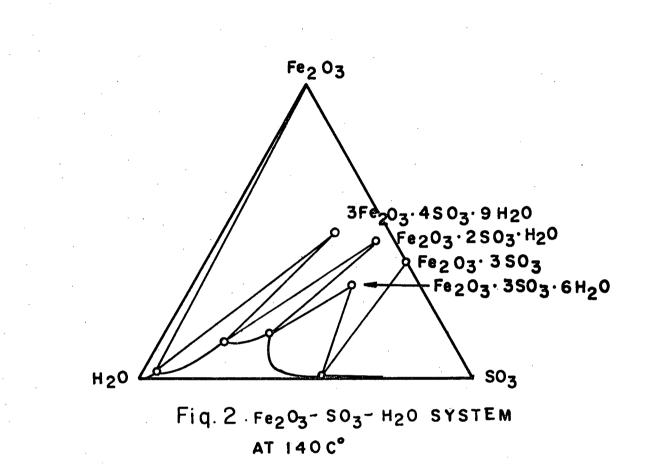
1 1

Commonwealth Scientific and Industrial Research Organization -Melbourne

- 2 -


2. A REVIEW OF THE LITERATURE

It is generally known that above a temperature which is a characteristic of the metal ion involved, a subplate salt becomes less soluble as the temperature is further increased.


E.T. Carlson and C.S. Simons¹ have reported the necessity of temperature increase from 200 to 275°C to achieve selective extraction of nickel and cobalt from laterite ore. At 200°C, even though nickel and cobalt sulphate solubility was high enough to give good recoveries, the selectivity was rather poor because of the high solubility of aluminum and iron sulphates. They noticed that the $SO_3:Al_2O_3$ ratio in the residue was about 1:1 and suggested that Al_2O_3 and SO_3 exist in it as a compound.

2.1 <u>The Fe</u> $_2O_3$ -SO $_3$ -H $_2O_3$ System

At elevated temperatures ferric sulphate solutions hydrolyze to precipitate ferric oxide or basic salts. Posnjak and Merwin² have studied the $Fe_2O_3-SO_3-H_2O$ system at temperatures up to 200°C. At 200°C only three solid phases exist in equilibrium with various compositions of the liquid phase. Fe_2O_3 is in equilibrium with dilute solutions of ferric sulphate. The stable phase in equilibrium with a somewhat higher concentration of sulphuric acid in solution is a basic salt of the composition $Fe_2O_3.2SO_3.H_2O$. Finally, at high concentrations

- 4 -

- 5 -

of sulphuric acid in solution the stable phase is the normal salt, Fe₂0₃.3S0₃ (Fig. 1).

With decreasing temperature the isotherms become more complicated and at 140°C, there are five solid phases in equilibrium with different compositions of the liquid phase (Fig. 2). With further decrease in temperature the equilibrium isotherms become still more complicated. At 130°C, ferric oxide monohydrate replaces the anhydrous ferric oxide, and at 110°C anhydrous ferric sulphate disappears and two acid salts are stable ($Fe_20_3.4S0_3.3H_20$ and $Fe_20_3.4S0_3.9H_20$).

2.2

<u>The Al</u> $_2^{O_3}$ -SO $_3$ -H $_2^{O_3}$ System P.T. Davey and T.R. Scott³ have studied the Al $_2^{O_3}$ -SO $_3$ -H $_2^{O_3}$ System under process conditions in order to determine the optimum conditions for production of alumina. Their experiments approached equilibrium to varying degrees. Solutions with initial SO3:A1203 ratio less than 3.0 and high in aluminum content were hydrolyzed at temperatures of In this temperature range the only stable phase observed, 100-220°C. in equilibrium with various liquid phases, was basic aluminum sulphate of the nominal formula 3A1203.4S03.9H20. At these temperatures, the precipitated phase was in equilibrium with acid solutions of aluminum sulphate. Only a limited number of experiments were performed for periods of time long enough to reach the equilibrium. The equilibrium saturation curve for this system at 220°C is given in Fig. 3. This saturation curve was obtained by hydrolyzing aluminum sulphate solutions with initial SO3:Al203 ratio less than 3.0.

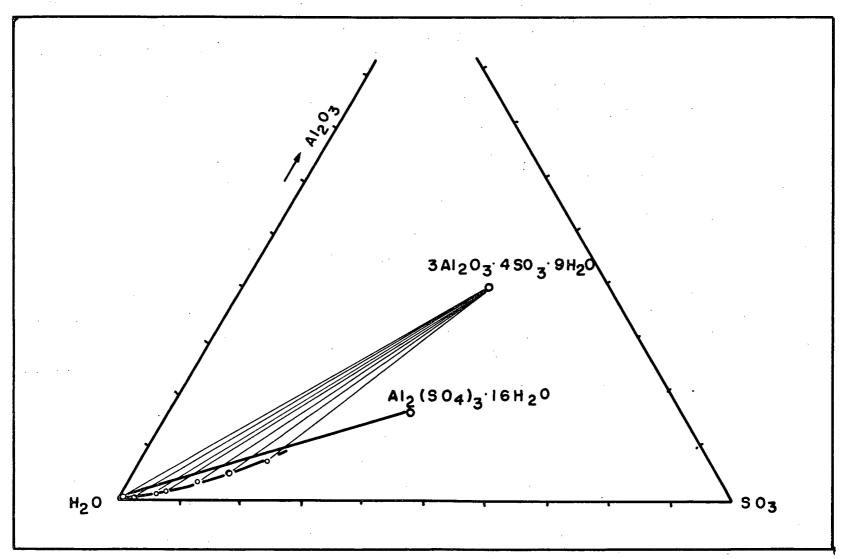


Fig. 3. AI203-S03-H20 SYSTEM AT 220 C°

7.

Basset and Goodwin⁴ have studied the system $A1_2O_3-SO_3-H_2O$ at 25°C at this temperature concentrated solutions of aluminum sulphate can be crystallized to yield either hydrated aluminum sulphate $A1_2(SO_4)_3.16H_2O$ or the basic salt $A1_2O_3.2SO_3.11H_2O$ depending on $SO_3:A1_2O_3$ ratio of the initial solution. These crystalline materials tend to occlude mother liquor and are readily soluble in water, which makes it difficult to remove impurities by washing without redissolving a substantial amount of the solid phase.

T.R. Scott et al.⁵⁻⁹ have proposed an acid process for recovery of aluminum from ores low in bauxite content and high in silica. The stages of the new process are described as follows:

a. <u>Digestion</u> Recycled liquor containing aluminum sulphate is used to recover extra aluminum from an ore at 180°C.

b. <u>Modification</u> A liquor from the digestion stage is treated with fresh bauxite to give a solution of basic aluminum sulphate with $SO_3:Al_2O_3$ ratio less than 3.0.

c. <u>Reduction</u> Modified liquor is treated with sulphur dioxide to reduce soluble iron to the ferrous state at 100°C.

d. <u>Hydrolysis</u> Reduced liquor is hydrolyzed at 220°C in the absence of oxygen to produce basic aluminum sulphate.

e. <u>Calcination</u> Basic aluminum sulphate is heated, preferrably in stages at 1200 °C-1300°C, to yield the required α -alumina and a mixture of sulphurous gases for recycling.

J.L. Henry and G.B. King¹⁰ have studied the system A1₂0₃-S0₃-H₂0

at 60°C. At this temperature two basic salts were found to be in equilibrium with solutions of aluminum sulphate having an $SO_3:A1_2O_3$ ratio very close to 3.0. The salt $A1_2O_3.2SO_3.11H_2O$ is in equilibrium with solutions of pH about 2.5 and $A1_2O_3.SO_3.6H_2O$ is in equilibrium with solutions of pH 2.5-3.20. At very low concentrations of free sulphuric acid in solution normal aluminum sulphate is the stable phase at 60°C.

R.A. Chaves, V.V. Kavelin and B.P. Sobolev¹¹ have studied the side reactions occurring in the sulphuric acid process for extracting nickel and cobalt from Cuban laterites and have revealed the presence of the following compounds: hematite α -Fe₂O₃, boehmite γ -Al₂O₃.H₂O, aluminochromite Fe(CrAl)₂O₄, basic iron sulphate Fe₂O₃.2SO₃.H₂O, basic aluminum sulphate 3Al₂O₃.4SO₃.9H₂O and hydroniojarosite 3Fe₂O₃.4SO₃. 9H₂O.

The largest amount of basic aluminum sulphate is formed in the autoclave where the preheated pulp at 250°C mixes with concentrated sulphuric acid, indicating very high reaction rate at this temperature.

Beside aluminum and ferric sulphate salts, other trivalent and quadrivalent metal sulphates can be hydrolyzed.¹² At room temperature violet-coloured chromium sulphate solutions are stable, but at high temperatures these are converted into green complexes in solution. When $SO_3:Cr_2O_3$ ratio in the initial solution is less than 3.0 hydrolyzed chromic oxide is precipitated but only at temperatures higher than 180°C.

Even at high temperatures solutions of lanthanum sulphate do not hydrolyze readily below pH 7.

- 9 -

Vanadium is almost completely precipitated even in the presence of free sulphuric acid to yield $V_2^{0}_5$. In the absence of oxygen at 100°C, the solutions are stable, but precipitate $V_2^{0}_4$ at temperatures above 200°C.

Scandium could be separated from rare earths provided that the solubility product of the scandium compound was exceeded at the temperature and in the solutions used.

Indium can be separated from zinc electrolysis liquors under the same conditions as for scandium.

Titanium and zirconium sulphates hydrolyze readily without recourse to autoclave conditions.

2.3 <u>The M₂O-Al₂O₃-SO₃-H₂O System^{*}</u>

Under otherwise the same conditions, the presence of alkali metal sulphates will increase the hydrolysis yield of a basic salt from aluminum sulphate solutions. V.S. Sazhin, A.K. Zapolskii and N.N. Zaklarova¹³ have studied the influence of ammonium, sodium, and potassium sulphates on hydrolysis of aluminum sulphate solutions. The degree of hydrolysis was increased in the following series: $(NH_4)_2SO_4 < Na_2SO_4 < K_2SO_4$.

S. Bretsznajder, J. Boczar, J. Piskorski and J. Porowski¹⁴ have studied the hydrolysis of aluminum sulphate solutions with addition of sodium hydroxide at 179-285°C for 0-240 min. The precipitated solid phase was found to be $Na_20.3Al_20_3.4SO_3.7H_20$. Excess sodium hydroxide

 M_2^0 = alkali oxide; M = Li, Na, K, NH₄

greatly increased the yield. Higher temperature and more dilute solutions gave higher yields. There was little change in yield for periods longer than 30 min.

A.K. Zapolskii et al.¹⁵⁻¹⁸ studied the effect of potassium sulphate from 0-167.5 gr/ ℓ K₂SO₄ on hydrolysis of aluminum sulphate solution containing 308 gr/ ℓ Al₂(SO₄)₃ at 170-250°C. The degree of hydrolysis sharply increased at all temperatures for K₂SO₄ concentration from 0-1 mole/ ℓ . Further increase in K₂SO₄ concentration had little influence on hydrolysis. In the absence of K₂SO₄ basic aluminum sulphates of constant composition (3Al₂O₃.4SO₃.7H₂O) were formed. Potassium alunite K₂[Al₆(SO₄)₄(OH)₁₂]^{*} was preferentially formed at 230-250°C from solutions containing 1 mole of K₂SO₄, or more, per mole of Al₂(SO₄)₃. At temperatures 170-190°C a less basic salt K₂SO₄.3Al₂O₃.4SO₃9H₂O was observed. The system Na₂O-Al₂O₃-SO₃-H₂O was studied at 200°C under process conditions in order to determine the conditions for recovery of alumina from ores.¹⁹ The precipitated compound was found to have a formula very close to Na₂O.3Al₂O₃.4SO₃.6H₂O.

* $K_2[A1_6(S0_4)_4(OH)_{12}] = K_20.3A1_20_3.4S0_3.6H_20.$

3. EXPERIMENTAL

3.1 Experimental Technique

A shaking autoclave (Fig. 4) made of zirconium was used for all hydrolysis experiments. The autoclave was placed in an aluminum block containing five heaters (100 W. each) to provide good heat distribution. The temperature was controlled by a 71 model "Thermistemp" temperature controller to within ± 0.1 °C. The temperature controller was used with a YS1-602 sensing probe with a range of 80 to 250°C, and was independently calibrated against a precision mercury thermometer in oil for each temperature used. The calibration curve is shown in Fig. 5.

In the low pressure region the pressure in the system was monitored by a transducer and recorded by a "Heath" servo-recorder. For the high pressure region, a pressure gauge was used. A calibration curve for the transducer is shown in Fig. 6. The variation of pressure with temperature is given in Fig. 7. The heating time varied with temperature and this variation is shown in Fig. 8.

For each run, the autoclave was filled with 75 ml of solution leaving about 30 cc of gas volume in the autoclave.

- 12 -

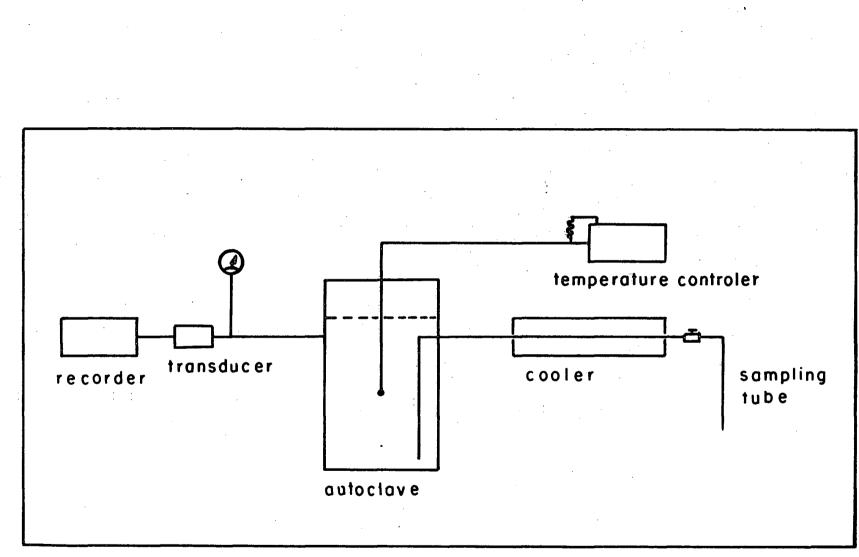
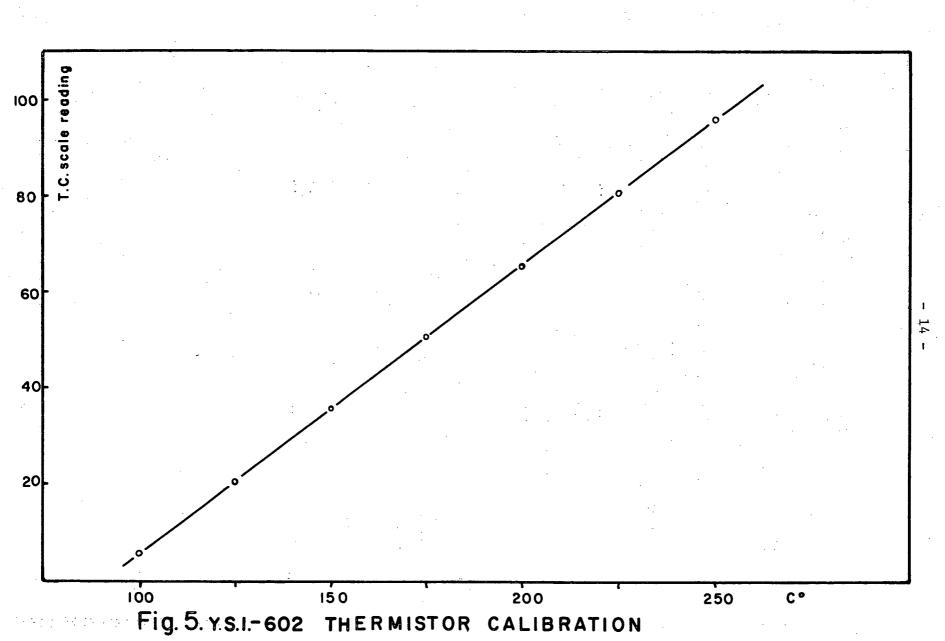
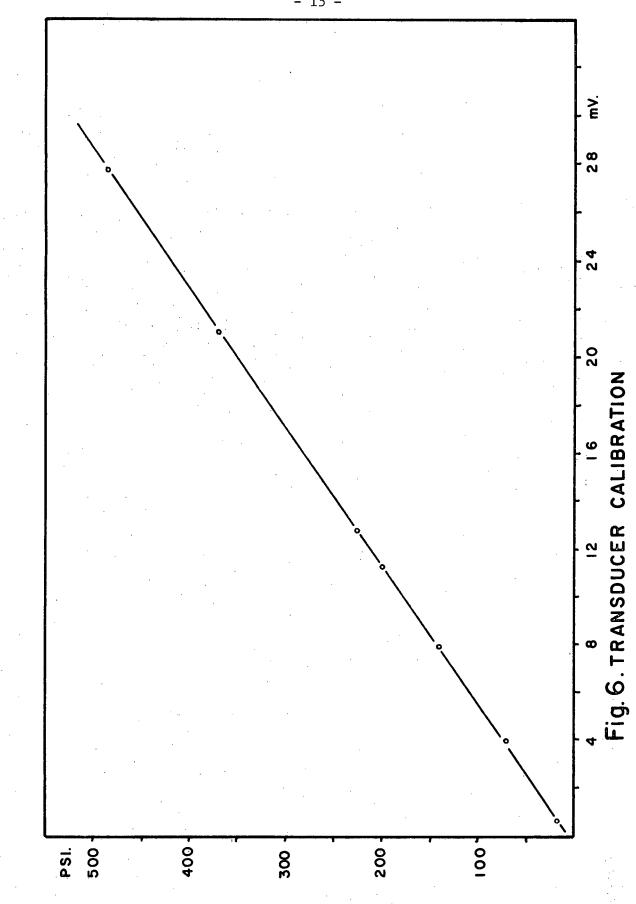
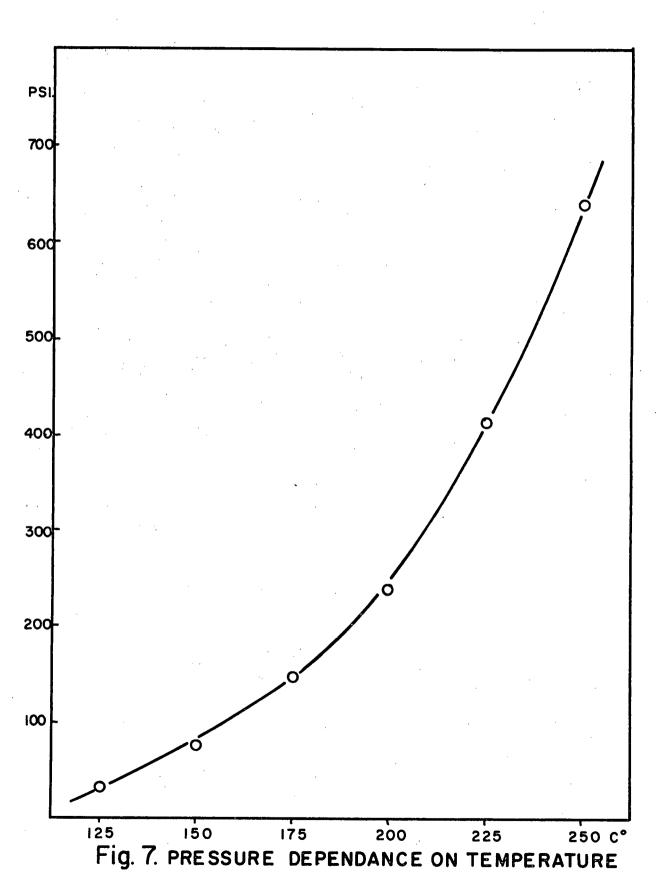
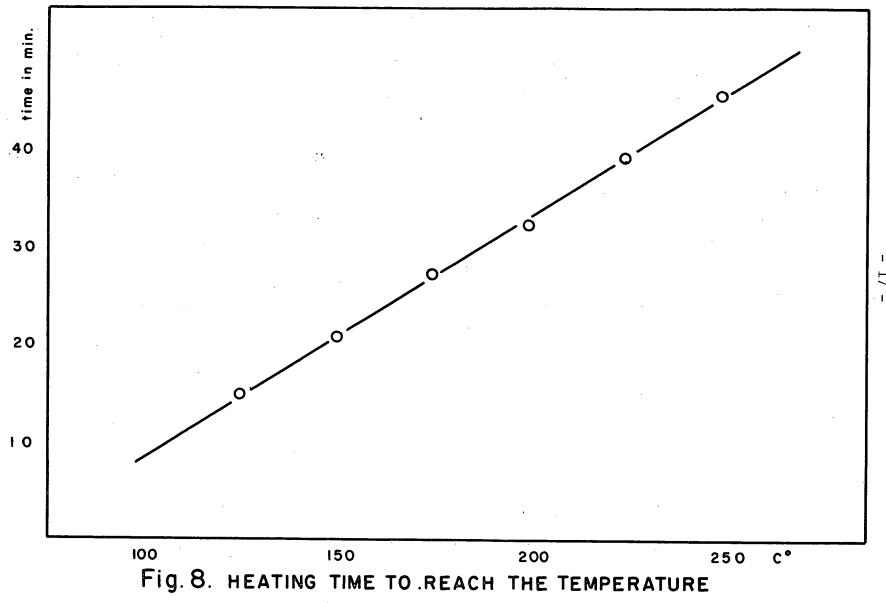





Fig. 4. EXPERIMENTAL APARATUS



- 15 -

- 16 -

Samples of hydrolyzed solution were taken from the cooling system and the sampling time was between 2 and 3 minutes depending on temperature. To make sure that the samples represented the solution from the autoclave, the first 3 ml of solution from the sampling tube were discarded.

Immediately after the sample was taken it was filtered and its pH measured. Most of the hydrolysis product was precipitated on the autoclave walls and remained inside after the liquid was removed. The autoclave was then cooled with running water to room temperature and opened.

The precipitate was removed from the autoclave walls mechanically by shaking the autoclave with glass balls and a few milliliters of distilled water. After being filtered and washed, the precipitate was dried for 24 hrs at 105°C.

After the solid phase was removed the autoclave was washed with sodium hydroxide solution and then successively with dilute sulphuric acid and water. To evaporate the residual water, it was then heated and again allowed to cool to room temperature.

3.2 Materials Used

Aluminum sulphate, crystal, reagent, B&A,

A1₂(SO₄)₃.18H₂O; M.W. 666.45

Maximum Limit of Impurities

Insoluble 0.005% Free acid (H₂SO₄) 0.20% Chloride (Cl) 0.002% Arsenic (As) 0.00005% Heavy metals (as Pb) 0.001%

Iron (Fe) 0.002%

Substances not precipitated by $\rm NH_{\ensuremath{\Delta}}OH$ as sulphates 0.20%

Lithium sulphate, granular reagent B & A

Li₂SO₄.H₂O M.W. 127.96

Maximum Limit of Impurities

Insoluble	0.010%
Chloride (C1)	0.002%
Nitrate (NO ₃)	0.001%
Heavy metal (as Pb)	0.0005%
Iron (Fe)	0.0002%
Potassium (K)	0.05%
Sodium (Na)	0.10%

Potassium sulphate, crystal, reagent B & A

K₂SO₄ M.W. 174.27

Maximum Limit of Impurities

Insoluble	0.005%
Chloride (C1)	0.001%
Nitrogen Compounds (as N)	0.005%
Arsenic (As)	0.00005%
Calcium, Magnesium and R_2^{0} precipitate	0.020%
Heavy metals (as Pb)	0.0005%
Iron (Fe)	0.0002%
Sodium (Na)	0.005%

Sodium sulphate, anhydrous, granular reagent B & A

Na₂SO₄ M.W. 142.05

Maximum Limit of Impurities

Insoluble 0.010% Loss on ignition 0.50% Chloride (C1) 0.002% Nitrogen compounds as (N) 0.0005% Arsenic (As) 0.0001% Calcium, magnesium and $R_2^{0}0_3$ precipitate 0.010% Heavy metals (as Pb) 0.0005% 0.0005% Iron (Fe)

Ferrous sulphate, crystal, reagent B & A

FeSO₄.7H₂0 M.W. 278.03

Maximum Limit of Impurities

Insoluble	0.005%
Chloride (C1)	0.001%
Phosphate (PO ₄)	0.001%
Copper (Cu)	0.005%
Ferric Iron (Fe ⁺⁺⁺)	0.01%
Manganese (Mn)	0.05%
Substances not precipitated by	
NH ₄ OH	0.050%

Zinc (Zn) 0.005%

Cupric sulphate, granular crystals, B.D.H. reagent

CuSO ₄ .5H ₂ O M.W. 2	49.69	
Alkalies (suphated)	not more than	0.5%
Chloride (Cl)	not more than	0.005%
Iron (Fe)	not more than	0.08%

Aluminum "AnalaR" B.D.H.

A1 M.W. 26.98

Acid insoluble matter passes test Iron (Fe) 0.004% Copper (Cu) 0.005%

Silicon (Si) 0.01%

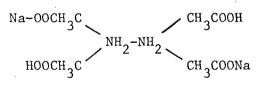
Total nitrogen (N) 0.002%

3.3 Preparation of Solutions for Hydrolysis

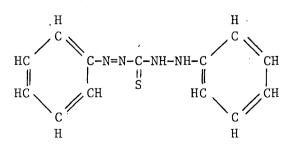
The aluminum sulphate solution was prepared by dissolving hydrated aluminum sulphate $Al_2(SO_4)_3.18H_2O$ in distilled water. A solution of approximately 6.0 gr/ ℓ of aluminum was made having $SO_3:Al_2O_3$ ratio of about 3.0, and a pH of 3.10. The solution was filtered before it was used for hydrolysis. Solutions of the lowest pH (pH = 0.70) used in this work were prepared by dissolving $Al_2(SO_4)_3.18H_2O$ in dilute sulphuric acid. Any solution between these two limits (pH = 0.70 and pH = 3.10) was prepared by mixing selected ratios of the two.

Solutions containing alkaline metal sulphates and divalent metal sulphate salts were prepared by mixing the solution of the corresponding salt with aluminum sulphate solution.

Solutions of normal aluminum sulphate were discarded after 7 days of

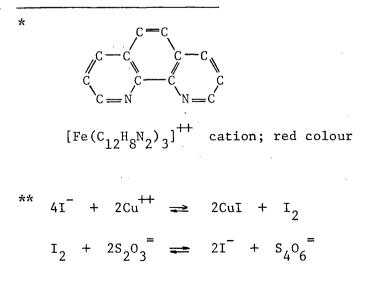

storage. Aluminum sulphate solutions containing excess sulphuric acid were kept for a few weeks. Solutions containing alkaline metal sulphates were prepared just before using them.

3.4 Chemical Analysis


Initial and final solutions were analyzed for aluminum, sulphate, and added metal ions. The pH of the solutions was measured before and after hydrolysis.

The sulphate content was determined by precipitation as $BaSO_4$. Aluminum was determined²⁰ by complexing with EDTA^{*} and then back titrating the excess EDTA with zinc sulphate using dithizone^{**} as an indicator and 1 M CH₃COOH-1 M CH₃COONH₄ solution as a buffer. Standard aluminum sulphate solution was made from "Analar" aluminum by dissolving it in sulphuric acid.

* disodium salt of ethylene diamine


diphenylthiocarbazone

Divalent iron in the aluminum sulphate solution was analyzed by titrating Fe⁺⁺ with Ce(HSO₄)₄ to oxidize it to Fe⁺⁺⁺ using 1,10- orthophenanthroline^{*} ferrous sulphate (Ferroin) as an indicator. In this case the aluminum content of the solution was determined from the difference in EDTA used to titrate both iron and aluminum.

Copper and aluminum sulphate solution was analyzed by titrating liberated I_2 with $Na_2S_2O_3$ to determine the copper content.^{**} The aluminum content was determined from the difference in EDTA used to titrate both copper and aluminum.

The precipitated phase was also analyzed for aluminum and sulphate. The solid phase is soluble in strong sulphuric acid and strong sodium hydroxide, and therefore the same methods as for the solutions were used for analysis. Water content was taken as the difference between the total weight and the aluminum and sulphate content. Li, Na and K content was determined by the "EEL" flame photometer.

- 23 -

4. RESULTS AND DISCUSSION

The intention of the work presented in this thesis was to study the change in equilibrium hydrolysis of aluminum sulphate solutions with temperature, sulphuric acid concentration and other cations. It is generally known that the amount of precipitated phase is determined by the concentration of aluminum and sulphate in the initial solution for a given temperature.³ In the present work the concentration of aluminum in the initial solution was not varied in order to make it possible to establish the effect of other factors. Results obtained are discussed under the following classifications:

- 4.1 The effect of temperature on hydrolysis of aluminum sulphate solutions.
- 4.2 The effect of sulphuric acid concentration on hydrolysis of aluminum sulphate solutions.
- 4.3 The equilibrium constants
- 4.4 Ternary diagrams for the Al₂O₃-SO₃-H₂O system.
- 4.5 Mechanism of the hydrolysis of aluminum sulphate.
- 4.6 The effect of alkali metal sulphates on hydrolysis of aluminum sulphate.
- 4.7 The effect of divalent metal sulphates on hydrolysis of aluminum sulphate solutions.

4.8 Application of the hydrolysis process.

4.1 <u>The Effect of Temperature on Hydrolysis of Aluminum Sulphate</u> Solutions

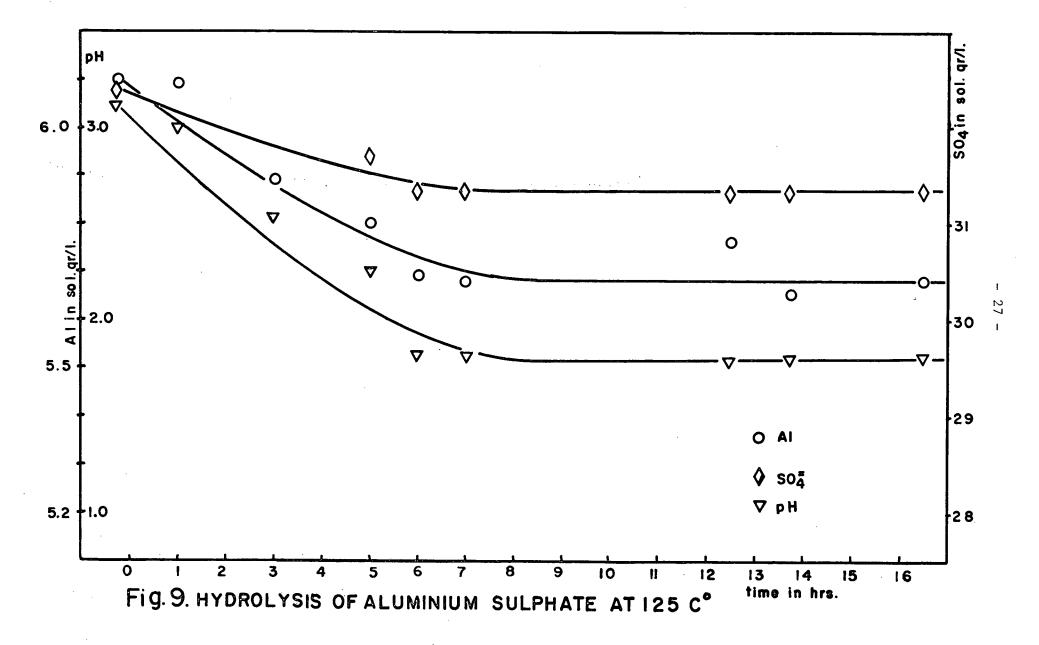
At ordinary temperatures, concentrated solutions of aluminum sulphate will only crystallize a basic salt if the $SO_3:Al_2O_3$ ratio in the initial solution is less than 3.0.

S. Bretsznajder¹⁴ has obtained normal aluminum sulphate from clay (calcined at 770-820°C for 1 hr)by leaching it with dilute sulphuric acid for 10-12 hrs at 80°C and cooling the filtrate to crystallize the normal aluminum sulphate hydrate. It was reported by T.R. Scott³ that at temperatures higher than 110°C hydrolysis of aluminum sulphate solutions with initial $SO_3:Al_2O_3$ ratio less than 3.0 precipitates crystalline material "basic aluminum sulphate" (B.A.S.). This compound is related to the mineral alunite, having a formula expressed as $3Al_2O_3.4SO_3.9H_2O$ with a theoretical composition as follows: $Al_2O_3 =$ 38.8%; $SO_3 = 40.6\%$; $H_2O = 20.6\%$.

The temperature effect on hydrolysis was determined by hydrolyzing dilute solutions of aluminum sulphate with initial $SO_3:Al_2O_3$ ratio of about 3.0 in the temperature range 125-250°C. Retention time in these experiments was as long as 16 hrs. The equilibrium was determined from the hydrolysis curves when there was no further change in the aluminum concentration with prolonged time.

4.1.1 Hydrolysis of Aluminum Sulphate Solutions at 125°C

Hydrolysis experiments at this temperature were done with unfiltered solutions of pH = 3.10. Results obtained were not reproducible. When the same solutions were filtered, and then hydrolyzed, results were more uniform. Hydrolysis yields at equal time intervals were less for

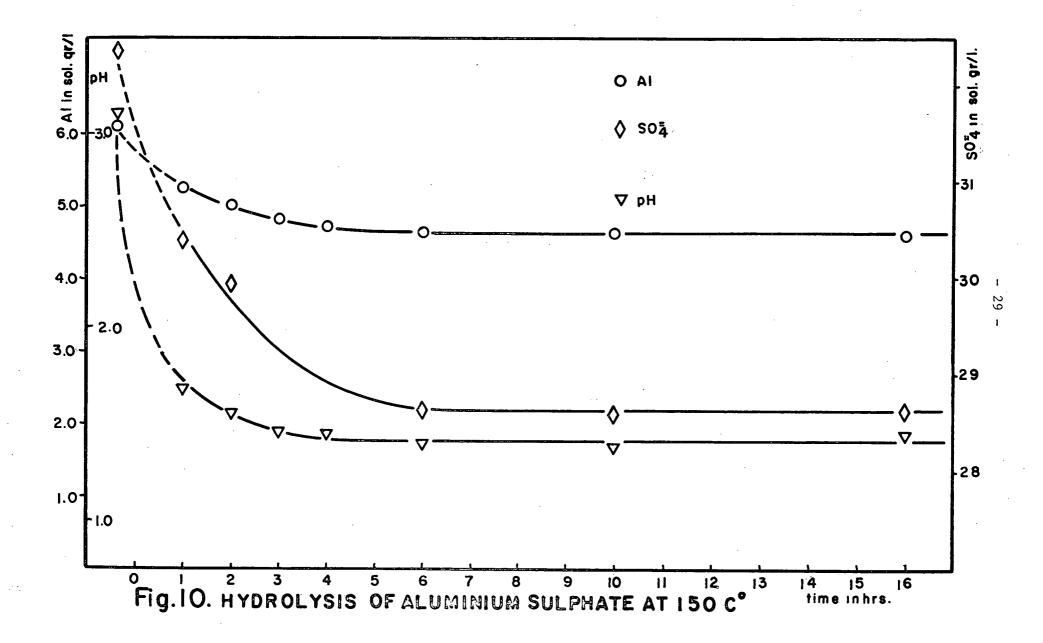

- 25 -

filtered solutions, and, in both cases, not sufficient for chemical analysis. For times which were long enough to establish equilibrium, hydrolysis yields were almost the same for both the filtered and the unfiltered solutions, thus suggesting that a nucleation process plays an important role in the kinetics of the reaction at this temperature. Results of the analysis of hydrolyzed solutions are shown in Table 1 and Fig. 9.

Table 1. Hydrolysis of aluminum sulphate solutions at 125°C.*

Time at 125°C	Al in sol.	SO_4 in sol.	. Al prec.	SO ₄ prec.	рН	303/A1203
hrs	gr/l	gr/l	gr/l	gr/l		in the prec
1.00	6.09	_	0.01	-	2.98	_
3.00	5.89	-	0.21	-	2.53	_
5.00	5.80	31.70	0.30	0.70	2.24	1.31
6.00	5.69	31.33	0.41	1.07	1.80	1.47
7.00	5.68	31.34	0.42	1.06	1.80	1.41
12.50	5.76	31.30	0.34	1.10	1.78	1.82
13.75	5.65	31.38	0.45	1.02	1.79	1.27
16.50	5.68	31.38	0.42	1.02	1.78	1.36
*						

Starting solution: 32.40 ± 0.3 gr/l SO 6.10 ± 0.05 gr/l AI pH = 3.10


4.1.2 Hydrolysis of Aluminum Sulphate Solutions at 150°C

Filtered solutions of aluminum sulphate with initial $SO_3:A1_2O_3$ ratio of about 3.0 were hydrolyzed at 150°C for different times. Results obtained are presented in Table 2 and Fig. 10. From Fig. 10 equilibrium seems to be reached in 6.0 hrs and the $SO_3:A1_2O_3$ ratio of the precipitated compound remains unchanged with prolonged times. The amount of precipitated compound was not sufficient for chemical analysis but the X-ray diffraction pattern indicated that basic aluminum sulphate existed at this temperature (see Appendix III-A).

Fime at 150°C	Al in sol.	$SO_4^{=}$ in sol.	Al prec.	SO ₄ prec.	pН	so3:1503
hrs	gr/l	gr/l	gr/l	gr/l		in the prec.
1.00	5.28	30.44	0.82	1.96	1.67	1.34
2.00	5.07	29.96	1.03	2.44	1.55	1.33
3.00	4.84	_	1.26	. –	1.45	-
4.00	4.76	-	1.34		1.45	-
6.00	4.64	28.65	1.46	3.75	1.40	1.44
10.00	4.64	28.60	1.46	3.80	1.38	1.46
16.00	4.65	28.64	1.45	3.46	1.44	1.34

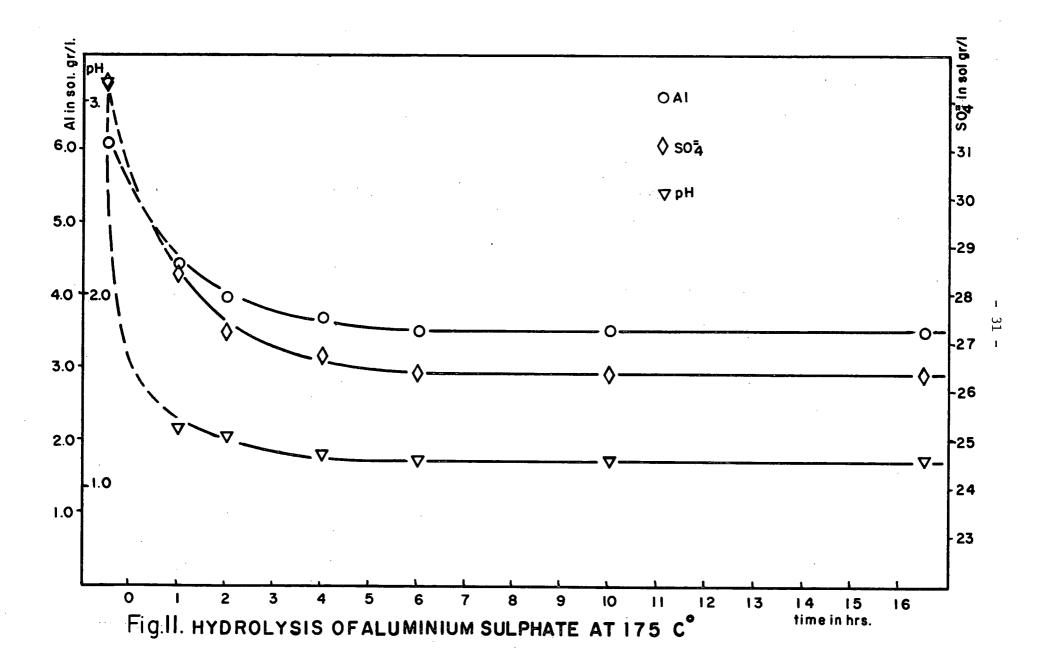
Table 2. Hydrolysis of aluminum sulphate solutions at 150°C*

Starting solution: 32.40 gr/l SO₄ 6.10 gr/l Al

4.1.3 Hydrolysis of Aluminum Sulphate Solutions at 175°C

- 30 -

Filtered solutions of aluminum sulphate with initial $SO_3:Al_2O_3$ ratio of about 3.0 were hydrolyzed at 175°C and results obtained are presented in Table 3 and Fig. 11. The precipitated phase has a ratio of $SO_3:Al_2O_3$ of about 1.32 (calculated from Fig. 11) corresponding to the ratio of basic aluminum sulphate. Analysis of the solid phase confirmed the presence of the basic aluminum sulphate (see Appendix II. for Chem. Anal. and Appendix III-B for X-ray diff. patterns.).


Table 3. Hydrolysis of aluminum sulphate solutions at 175°C*

1.00 4.45 28.53 1.54 3.87 1.30 1.32 2.00 3.96 27.26 2.14 5.14 1.27 1.35 4.00 3.68 26.76 2.42 5.64 1.18 1.31 6.00 3.56 26.39 2.54 6.01 1.15 1.33 10.00 3.55 26.40 2.55 6.00 1.15 1.32	Time at 175°C	Al in sol.	$SO_4^{=}$ in sol.	. Al prec.	SO ₄ prec.	рН	so3:1203
2.00 3.96 27.26 2.14 5.14 1.27 1.35 4.00 3.68 26.76 2.42 5.64 1.18 1.31 6.00 3.56 26.39 2.54 6.01 1.15 1.33 10.00 3.55 26.40 2.55 6.00 1.15 1.32	hrs.	gr/l	gr/l	gr/l	gr/l		in the prec.
4.00 3.68 26.76 2.42 5.64 1.18 1.31 6.00 3.56 26.39 2.54 6.01 1.15 1.33 10.00 3.55 26.40 2.55 6.00 1.15 1.32	1.00	4.45	28.53	1.54	3.87	1.30	1.32
6.003.5626.392.546.011.151.3310.003.5526.402.556.001.151.32	2.00	3.96	27.26	2.14	5.14	1.27	1.35
10.00 3.55 26.40 2.55 6.00 1.15 1.32	- 4.00	3.68	26.76	2.42	5.64	1.18	1.31
	6.00	3.56	26.39	2.54	6.01	1.15	1.33
	10.00	3.55	26.40	2.55	6.00	1.15	1.32
10.50 5.50 20.40 2.00 0.00 1.15 1.50	16.30	3.50	26.40	2.60	6.00	1.15	1.30

Starting solution: 32.40 gr/ ℓ SO₄

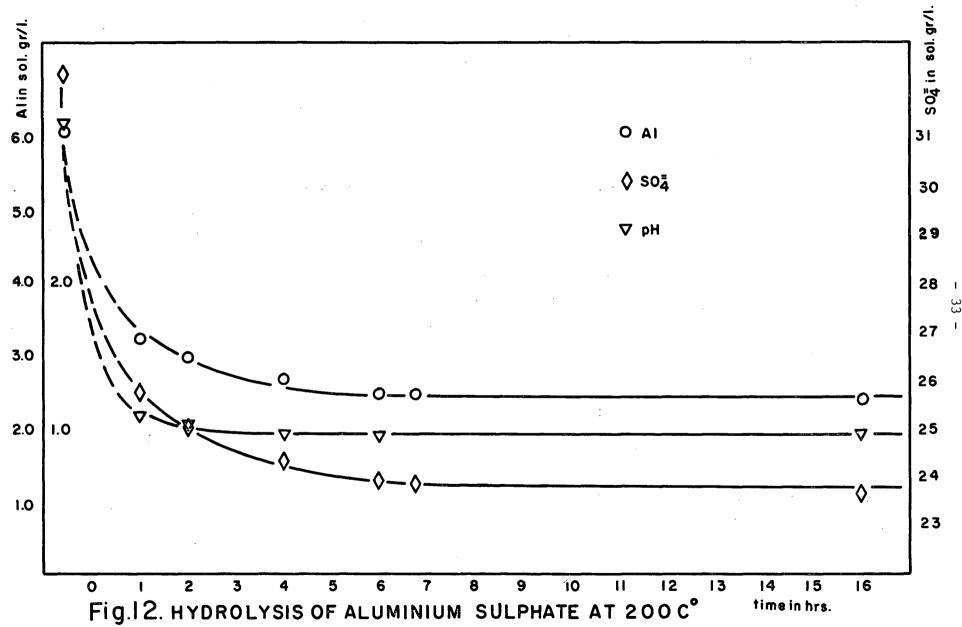
*

6.10 gr/l A1

4.1.4 Hydrolysis of Aluminum Sulphate Solutions at 200°C

- 32 -

Solutions with intial $SO_3:Al_2O_3$ ratio of about 3.0 were hydrolyzed at 200°C for as long as 18 hrs. Results obtained are shown in Table 4 and Fig. 12. The equilibrium hydrolysis yield is higher than at 175°C. The $SO_3:Al_2O_3$ ratio of the precipitated compound calculated from Fig. 12 is about 1.31. Analysis of solid phase shows that the precipitated compound is the basic aluminum sulphate (see Appendix II for Chem. anal. and Appendix III-C for X-ray diff. pattern).


Table 4. Hydrolysis of aluminum sulphate solutions at $200^{\circ}C^{*}$

						,
Time at 200°C	Al in sol.	$SO_4^{=}$ in sol.	Al prec.	SO ₄ pre	c. pH	so ₃ :A1 ₂ 0 ₃
hrs.	gr/l	gr/l	gr/l	gr/l		in the prec.
1.00	3.30	25.78	2.80	6.62	1.07	1.33
2.00	3.01	24.98	3.09	7.42	1.03	1.35
4.00	2.71	24.32	3.39	8.08	0.99	1.34
6.00	2.51	23.91	3.59	8.49	0.98	1.33
6.45	2,51	23.89	3.59	8.51	0.98	1.33
18.00	2.40	23.65	3.70	8.75	0.98	1.33

Starting solution: $32.40 \text{ gr/l } \text{SO}_4^{=}$

*

6.10 gr/l Al

4.1.5 Hydrolysis of Aluminum Sulphate Solutions at 225°C

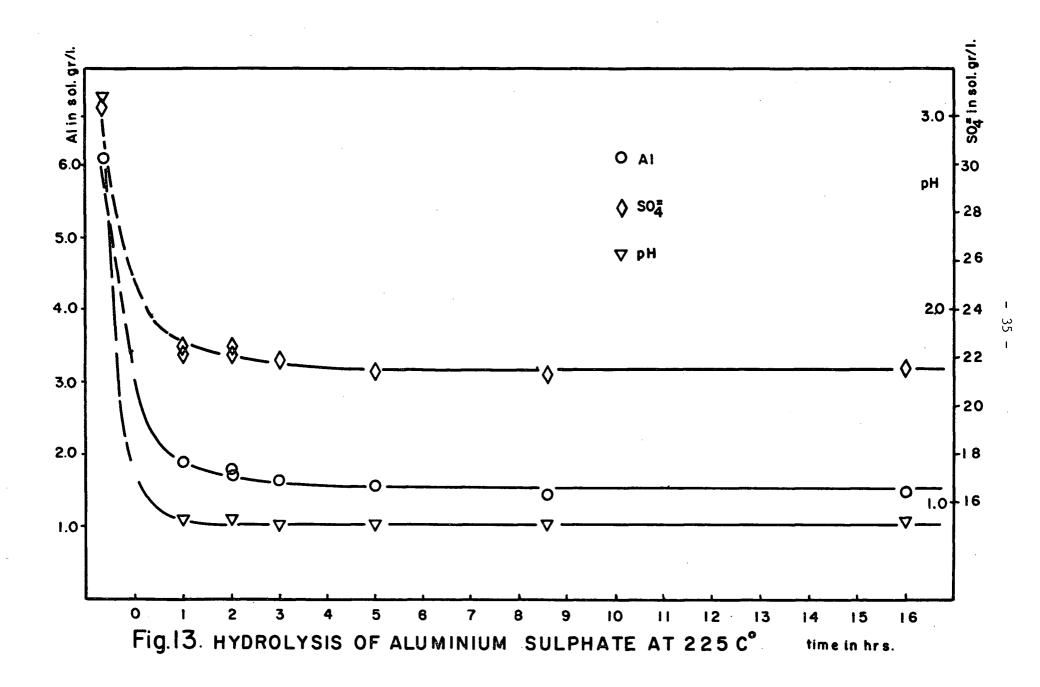

Filtered solutions of aluminum sulphate with initial $SO_3:Al_2O_3$ ratio of about 3.0 were hydrolyzed at 225°C and results obtained are shown in Table 5 and Fig. 13. Hydrolysis yields are very high. The precipitated phase has an $SO_3:Al_2O_3$ ratio 1.33 (calculated from Fig. 13). Analysis of the solid phase showed the composition of basic aluminum sulphate (see Appendix II for Chem. anal. and Appendix III-D for X-ray diff. pattern).

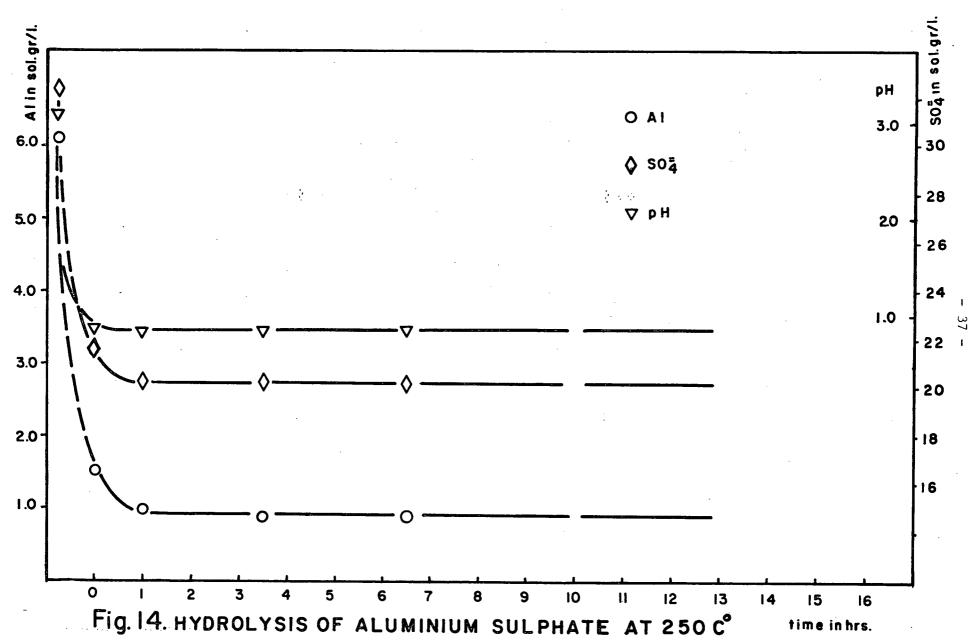
Table 5. Hydrolysis of aluminum sulphate solutions at $225^{\circ}C^{*}$

Time at 225°C	Al in sol.	$SO_4^{=}$ in sol.	Al prec.	SO ₄ prec.	pH SC	⁰ 3 ^{:A1} 2 ⁰ 3
hrs.	gr/l	gr/l	gr/l	gr/l	ir	the prec.
1.00	1.89	22.45	4.21	9.95	0.89	1.33
1.00	1.88	22.35	4.22	10.05	0.92	1.34
2.00	1.80	22.31	4.30	10.09	0.92	1.32
2.00	1.73	21.55	4.37	10.85	0.89	1.39
3.00	1.65	21.96	4.45	10.44	0.88	1.32
5.00	1.58	21.40	4.52	11.00	0.89	1.37
8.40	1.44	21.36	4.66	11.04	0.85	1.33
16.00	1.48	21.63	4.54	10.77	0.85	1.33

* Starting solution: $32.40 \text{ gr/l SO}_{1}^{=}$

6.10 gr/l A1

4.1.6 Hydrolysis of Aluminum Sulphate Solutions at 250°C

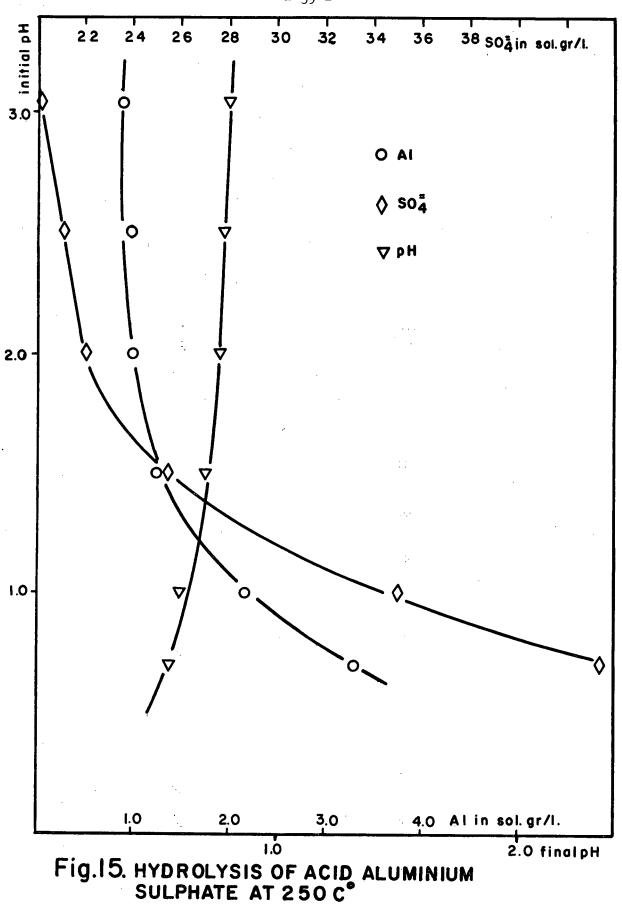

Filtered solutions of aluminum sulphate were hydrolyzed at 250° C and it was found that the amount of precipitated basic aluminum sulphate on heating the autoclave to this temperature was comparable to the amount of basic salt precipitated in 16 hrs at 225°C. This suggests that the reaction rate above 225°C must be very high. Results obtained at this temperature are shown in Table 6 and Fig. 14. The SO₃:Al₂O₃ ratio of the precipitated compound is 1.33. Analysis of the solid corresponds to the basic aluminum sulphate (see Appendix III-E for X-ray diff. pattern).

Time at 250°C	Al in sol.	SO_4^{-} in sol.	Al prec.	SO ₄ prec.	рН	so3: 1503
hrs.	gr/l	gr/l	gr/l	gr/l		in the prec.
0.00	1.52	21.57	4.58	10.83	0.85	1.33
1.00	0.97	20.27	5.13	12.13	0.80	1.33
3.30	0.88	20.27	5.22	12.13	0.80	1.31
6.30	0.91	20.13	5.19	12.27	0.79	1.33

Table 6. Hydrolysis of aluminum sulphate at 250°C*

Starting solution: $32.40 \text{ gr/l SO}_4^=$

6.10 gr/l Al


4.2 The Effect of Sulphuric Acid Concentration on Hydrolysis of Aluminum Sulphate Solutions

Most of the work on hydrolysis of aluminum sulphate was done on solutions having initial $SO_3:Al_2O_3$ ratio less than 3.0. The reason for this was to obtain high yields in a short time and at low temperatures. If hydrolysis is to be used as a purification process for leach solutions higher concentrations of sulphuric acid would be expected. In the work presented in this thesis a series of experiments with solutions containing about 6.0 gr/l aluminum and different concentrations of sulphuric acid was done. Hydrolysis curves in the previous part were used to determine the retention time for the two temperatures 225°C and 250°C. These two temperatures were chosen because of the high yields at short times with solutions having an $SO_3:Al_2O_3$ ratio of about 3.0.

4.2.1 <u>Hydrolysis of Aluminum Sulphate Solutions with Initial</u> <u>SO₃:Al₂O₃ Ratio > 3.0 at 250°C</u>

Filtered solutions with excess sulphuric acid were hydrolyzed at 250°C for 4 hrs. The highest SO₃:Al₂O₃ ratio used in this set of experiments was about 4.63. Results obtained are shown in Table 7 and Fig. 15. As the concentration of excess acid in the initial solution was increased the amount of precipitated basic aluminum sulphate decreased.

- 38 -

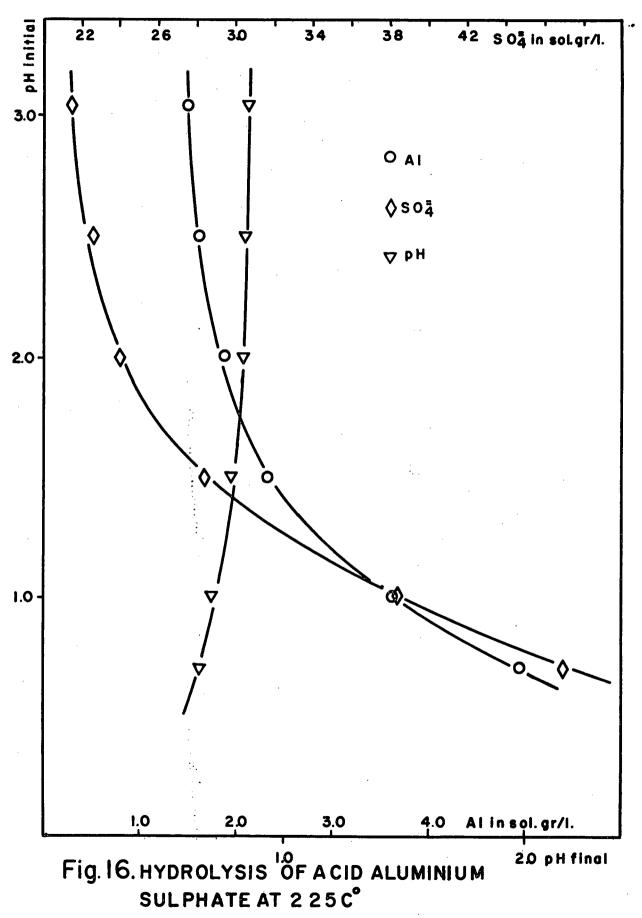

- 39 -

Table 7. The effect of excess sulphuric acid on hydrolysis of aluminum sulphate at 250°C.

pH initial	SO ₄ init. gr/l	Al in sol. gr/l	SO ₄ in sol. gr/l	Al prec. gr/l	SO ₄ prec. gr/l	pH
initial	gr/l	gr/l	gr/l	gr/l	arla	C 1
				6-,~	Br/r	final
0.70	50.08	3.31	43.43	2.79	6.65	0.56
1.00	44.26	2.17	34.97	3.93	9.29	0.60
1.50	37.05	1.25	25.45	4.85	11.60	0.70
2.00	34.08	1.00	22.05	5.10	12.03	0.76
2.50	33.21	0.98	21.13	5.12	12.08	0.78
3.10	32.40	0.91	20.13	5.19	12.27	0.80

4.2.2 <u>Hydrolysis of Aluminum Sulphate Solutions with Initial</u> $\underline{SO}_3:\underline{A1}_2\underline{O}_3$ <u>Ratio > 3.0 at 225°C</u>

Filtered solutions of aluminum sulphate were hydrolyzed at 225°C for 6 hrs. Initial solutions used in this set of experiments were the same as solutions used at 250°C. Hydrolysis yields increased with increasing pH of the initial solution. Results obtained from this set of experiments are presented in Table 8 and Fig. 16.

- 41 -

Table 8. The effect of excess sulphuric acid on hydrolysis of

pH initial	SO ₄ init. gr/l	Al in sol. gr/l	SO ⁼ in sol. gr/l	Al prec. gr/l	-	pH final
0.70	50.08	4.94	47.04	1.16	3.04	0.65
1.00	44.26	3.62	38.35	2.48	5.91	0.70
1.50	37.05	2.33	28.37	3.77	8.68	0.78
2.00	34.08	1.87	24.10	4.23	9.98	0.83
2.50	33.21	1.63	22.60	4.47	10.61	0.84
3.10	32.40	1.50	21.52	4.60	10.88	0.85

aluminum sulphate at 225°C.

4.3 The Equilibrium Constants

Application of the phase rule to the system $Al_2O_3-SO_3-H_2O$ requires that at constant temperature, a solution composition exists which is invariant when in equilibrium with two solid phases, e.g. $Al_2O_3 \cdot nH_2O$ and $3Al_2O_3 \cdot 4SO_3 \cdot 9H_2O$ (B.A.S. - the most basic salt).

If the starting solution has a composition below this point, the first phase to precipitate is always the oxide, but the solution composition will change in the direction of the invariant point until the basic salt also precipitates. The location of the invariant point P (Fig. 17) will change with the temperature.

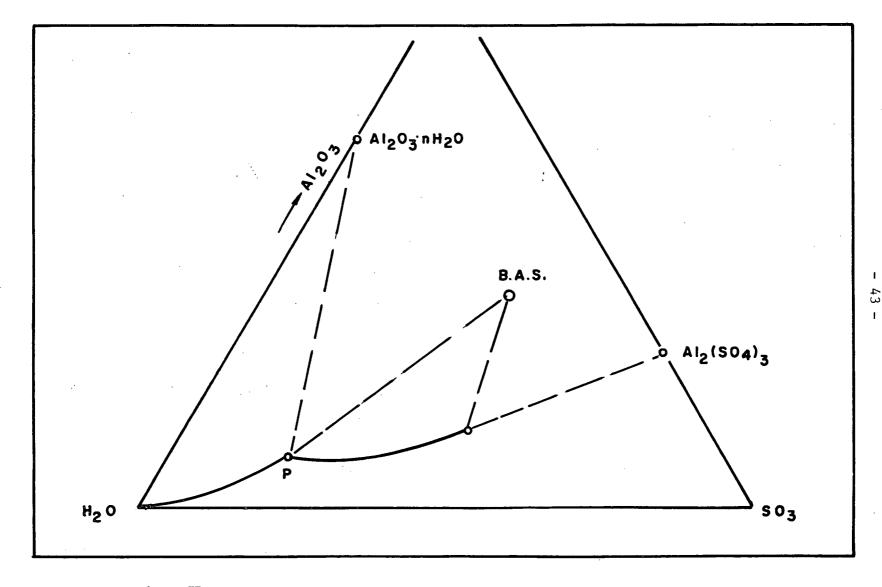


Fig.17. PHASE DIAGRAM OF THE AI203-S03-H20 SYSTEM

If the solution composition is below the invariant point P at the temperature T and above the invariant point at any temperature higher than T, then the oxide will precipitate in the early stages of heating and at later stages the basic salt will precipitate while the oxide will tend to redissolve. Eventually the oxide may completely disappear if the composition of the solution is such that it is above the invatiant point. In the work of T.R. Scott, a second phase $(Al_2O_3.nH_2O)$ was not observed because the hudrolysis was carried out at high concentrations of aluminum in solutions and it can only be expected to precipitate from dilute solutions of basic aluminum sulphate.

The X-ray diffraction patterns did not show the presence of Al_2O_3 in the solid phase and therefore it can be concluded that the solution composition is above the invariant point where only one phase exists in equilibrium with the liquid phase. The X-ray diffraction pattern of the precipitate obtained at 125° C, was very poor so that no conclusion about the presence of aluminum oxide could be made. If there is only one solid phase in equilibrium with liquid phase at all temperatures from 125° C up to 250° C, then the same hydrolysis reaction should occur. For such a reaction, the slope of a plot of log [equilibrium constant] vs. $1/T^{\circ}$ K should be linear.

R.G. Robins²¹ has reported values for the second dissociation constant of sulphuric acid up to about 200° C which are in good agreement with the values calculated from the correspondence principle. Values of these constants are given in Table 9. The presence of aluminum sulphate will shift the equilibrium to the left in the reaction $4SO_4^{-2} \stackrel{\rightarrow}{\leftarrow} H^+ + SO_4^{-2}$. Therefore only HSO_4^{-2} ions will exist in solution. Assuming that aluminum sulphate is completely dissociated, and that only HSO_4^{-2} ion can exist

- 44 -

Table 9. Equilibrium constants for the reaction $HSO_4^{-2} \stackrel{\rightarrow}{\leftarrow} H^+ + SO_4^{-2}$

Τ°C	125	150	175	200	225	250
log K	-3.53	-3.89	-4.40	-4.72	-5.95	-6.05

in solution in the temperature range 125-250°C the hydrolysis reaction can be written as:

$$6A1^{+++} + 4HSO_4^{-} + 14H_2O_{-} = 3A1_2O_3 \cdot 4SO_3 \cdot 9H_2O + 14H^{+}$$
 (1)

The equilibrium constant for this reaction can be expressed as:

$$K = \frac{[H^+]^{14}}{[A1^{+++}]^6[HSO_4^-]^4}$$
(2)

An expression for the variation of the equilibrium constant K with temperature is derived by combining

 $-\Delta G^{\circ} = RT \ln K$ (3)

and

$$\left[\frac{\partial}{\partial T} \left(\frac{\Delta G^{\circ}}{T}\right)\right]_{P} = -\frac{\Delta H^{\circ}}{T^{2}}$$
(4)

Therefore

. . .

$$\left(\frac{\partial \ln K}{\partial T}\right)_{\rm P} = \frac{d\ln K}{dT} = \frac{\Delta {\rm H}^{\circ}}{{\rm BT}^2}$$
(5)

assuming that ΔH° is virtually independent of temperature. Equation (5) can be also written as

$$\frac{d\ln K}{d 1/T} = -\frac{\Delta H^{\circ}}{R}$$
(6)

Thus, if ln K is plotted against 1/T the slope of the curve at any point is equal to $-\Delta H^{\circ}/R$. From the expression for the equilibrium constant (2) it follows that

$$-\log K = 14pH + 6 \log [A1^{+++}] + 4 \log [HSO_{4}^{-}]$$
(7)

The pH of the hydrolyzed solutions was measured at room temperature and as such it is different from the pH at which the reaction occurs. The change in the dissociation constant of water (Table 10) is such that the pH of the solution should decrease with increasing temperature.

Table 10. Hydrolysis constant of water

T C°	25	60	100	150	200	250	300	350
-1og K	14.0	13.05	12.21	11.65	11.30	11.18	11.19	11.33

True pH value at any temperature can be defined thermodynamically but it cannot be easily measured. The pH change which occurs in heating or cooling an electrolyte solution is due to the hydrolysis and change in activity of all ions in solution. Assuming that the pH of hydrolyzed solutions remains unchanged with temperature the equilibrium constant for the hydrolysis reaction can be calculated at each temperature.

- 46 -

Results of the equilibrium hydrolysis of normal aluminum sulphate solutions in the temperature range 125-250°C are presented in Table 11 and Fig. 18. Results in Table 7 and Table 8 were also used to calculate the equilibrium constants for hydrolysis of aluminum sulphate solutions with excess sulphuric acid. Calculated values of log K are presented in Table 12.

Table 11. Equilibrium hydrolysis of normal aluminum sulphate in the temperature range 125-250°C.

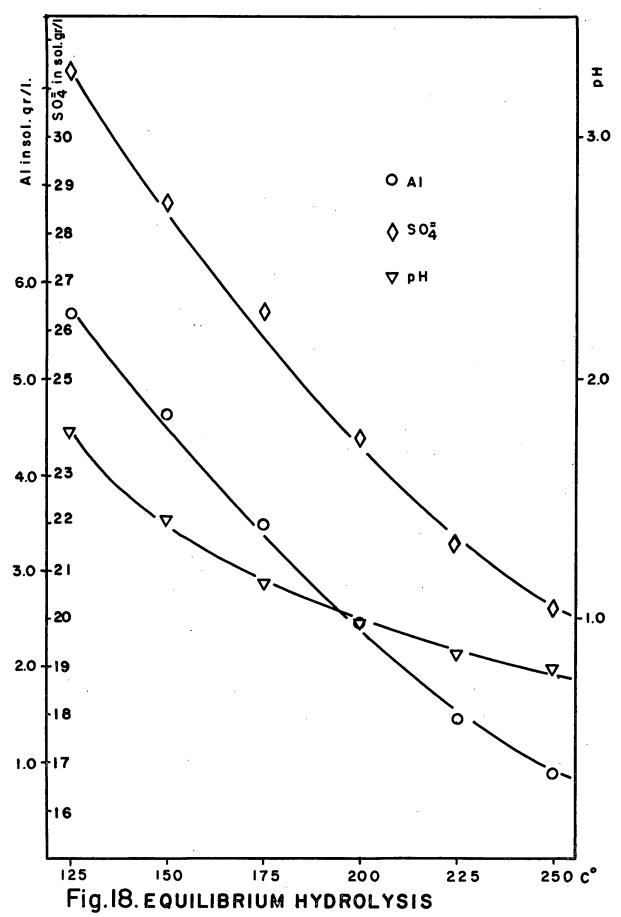

Temp.	Aluminum in sol.	Sulphate in sol.	рH
°C	gr/l	gr/l	
125	5.68	31.35	1.78
150	4.65	28.65	1.42
175	3.50	26.40	1.15
200	2.45	23.80	0.98
225	1.46	21.60	0.85
250	0.90	20.20	0.79

Table 12. Values of log K for the hydrolysis of aluminum sulphate solutions with excess sulphuric acid at 225°C and 250°C

Init. pH	0.70	1.00	1.50	2.00	2.50	3.10
log K ₂₂₅	-3.43	-2.96	-2.42	-2.16	-1.93	-1.77
log K ₂₅₀	-1.00	0.00	0.513	0.503	0.374	0.35

0

2

- 48 -

Mean equilibrium constants for 225°C and 250°C were calculated from Table 12 and were found to be:

$$\log K_{225^{\circ}C} = -2.44$$
 $K = 3.62 \times 10^{-3}$
 $\log K_{250^{\circ}C} = 0.302$ $K = 2.0$

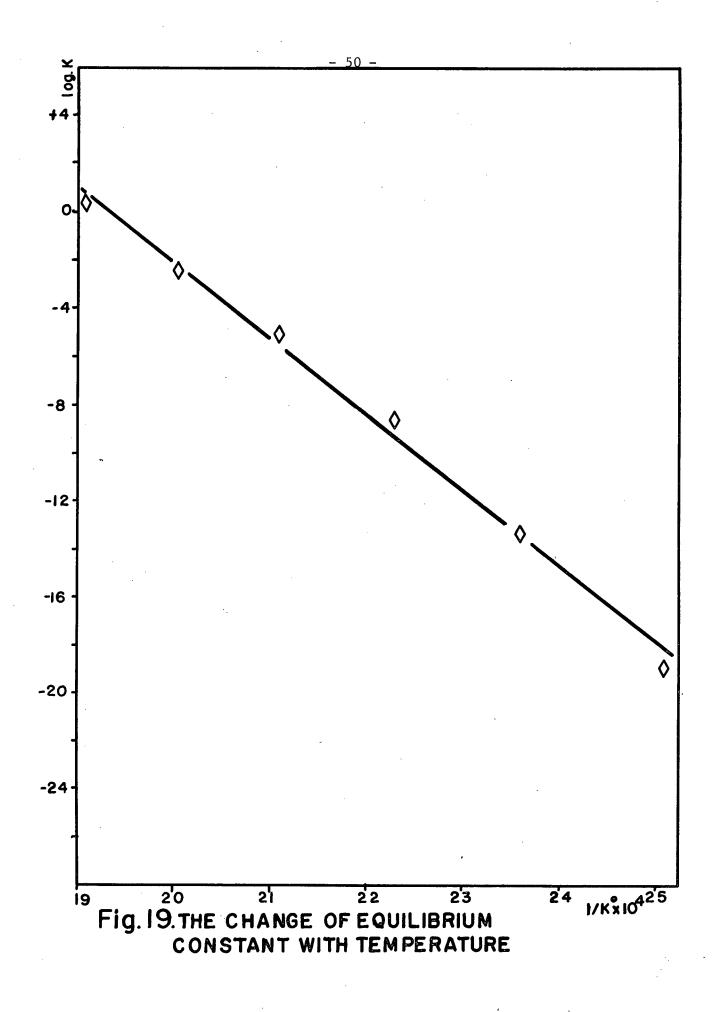

Table 13 presents the equilibrium constants for hydrolysis reaction of aluminum sulphate in the temperature range 125-250°C.

Table 13.	Equilibrium	constants	for	the	hydrolysis	reaction	of

$1/T \times 10^4$	log K	1/T ° K	T°C
25.10	-18.92	1.2×10^{-19}	125
23.60	-13.20	6.3×10^{-14}	150
22.30	- 8.63	2.3×10^{-9}	175
21.10	- 5.05	8.9×10^{-6}	200
20.05	- 2.44	3.6×10^{-3}	225
19.10	+ 0.302	2.0	250

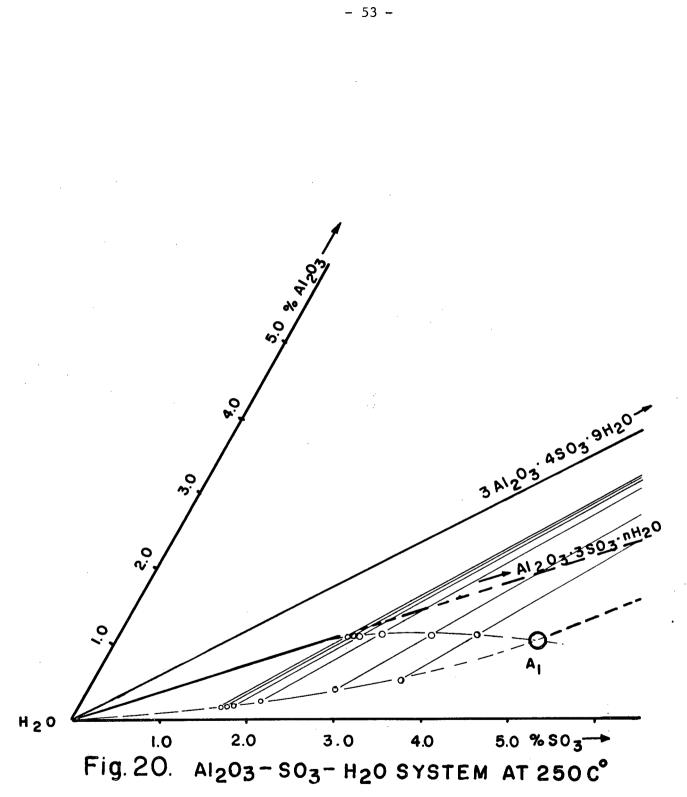
aluminum sulphate

Since the plot of log K against 1/T gives a straight line (Fig. 19) it is most probable that there is only one solid phase in equilibrium with the liquid phase. Therefore the solution composition is above the invariant point P (Fig. 17) at all temperatures.

Ternary Diagrams for the System A1203-503-H20_ 4.4

Some data is available on the hydrolysis of basic aluminum sulphate at temperatures up to 220°C,³ but no useful data is available on hydrolysis of acid aluminum sulphate solutions. Experimental data from Section 4.2 was used to calculate the equilibrium liquid composition in acid aluminum sulphate solutions at 225 and 250°C. Ternary diagrams were constructed for the water corner of the $Al_2O_3-SO_3-H_2O$ system at 225 and 250°C. Tables 14 and 15 show the composition of the initial and final solutions at 250 and 225°C.

	Starting liq. comp. wt %			Equil. 1	Equil. liq. comp. wt %			
	A12 ⁰ 3	SO3	^н 2 ⁰	A12 ⁰ 3	so3	^н 2 ⁰		
1	1.12	4.10	94.78	0.51	3.52	95.98		
2	1.12	3.59	95.29	0.40	2.84	96.76		
3	1.12	3.00	95.88	0.23	2.07	97.70		
4	1.12	2.77	96.11	0.184	1.79	98.03		
5	1.12	2.69	96.20	0.18	1.72	98.10		
6	1.12	2.64	96.24	0.168	1.63	98.20		


Table 14. Solution composition at 250°C

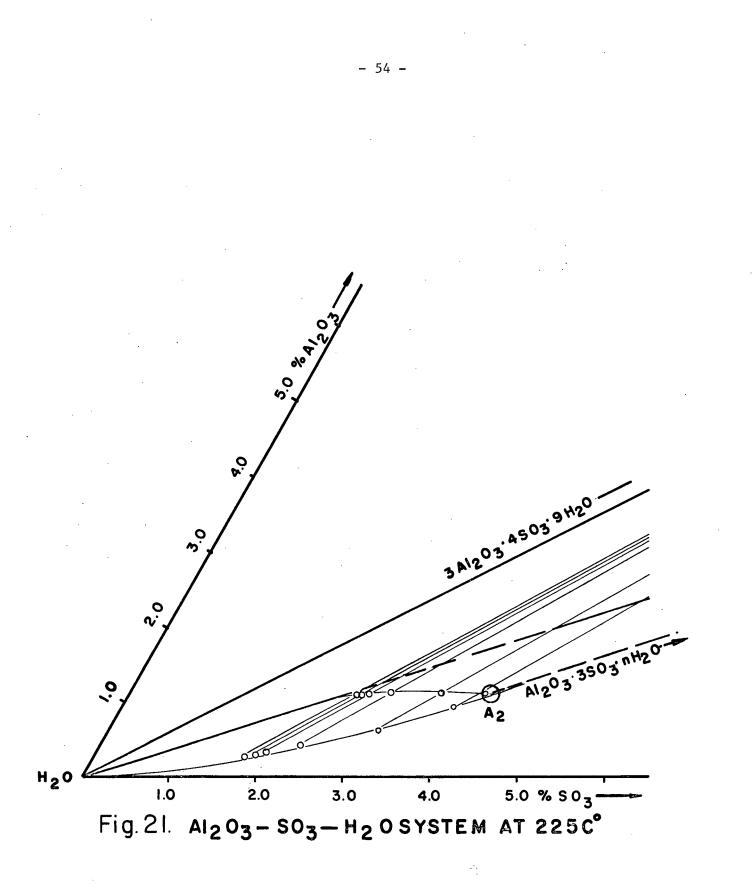

Starting liq. comp. wt % Equil. lig. comp. wt % A1203 SO3 H20 A1203 SO3 H_∂0 1 1.12 4.10 94.78 0.91 3.81 95.28 2 1.12 3.59 95.29 0.66 96.23 3.11 3 1.12 3.00 95.88 0.43 2.31 97.26 1.12 96.11 4 2.77 0.345 1.96 97.69 96.20 5 1.12 2.69 0.30 1.84 97.86 6 1.12 2.64 96.24 0.276 1.75 97.97

Table 15. Solution composition at 225°C

The data from Tables 14 and 15 are presented graphically in Fig. 20 and 21. The intersection of the initial and final liquid composition lines suggests the possibility of the presence of a second phase in the system at 250 and 225°C. The second phase is probably a normal aluminum sulphate but it could not be detected in any of the experiments from the X-ray diffraction patterns of the solid. Although a number of experiments with solutions of the composition corresponding to the points A_1 and A_2 in Fig. 20 and 21 were done, the presence of a second phase could not be unambiguously proven.

Acid aluminum sulphate solutions (compositions A_1 and A_2 - Figs. 20 and 21) were hydrolysed for predetermined times, and solution samples were taken. The autoclave and the remaining material was cooled to room temperature, and the resulting solution was analyzed. From the difference in solution compositions, the $SO_3:Al_2O_3$ ratio of the re-dissolved precipitate was calculated. It was

found to be slightly increased but it was far from the $SO_3:Al_2O_3$ ratio of a normal salt.

4.5 Mechanism of the Hydrolysis of Aluminum Sulphate

In aqueous solutions aluminum sulphate is at least partially dissociated into its constituents.

$$A1_2(SO_4)_3(aq) \longrightarrow 2A1^{+++} + 3SO_4^{=}$$
(8)

The A1⁺⁺⁺ ion in solution will react with H_2^0 to give:

$$A1^{+++} + H_2 0 \longrightarrow A1(OH)^{++} + H^+$$
(9)

The concentration of A1(OH)⁺⁺ in solution will depend on the concentration of A1⁺⁺⁺ and H⁺ in the intial solution. A1(OH)⁺⁺ cation in solution reacts with HSO_4^{-} ion to give the basic aluminum sulphate:

$$6A1(OH)^{++} + 4HSO_4^{-} + 8H_2O \rightarrow 3A1_2O_3.4SO_3.9H_2O + 8H^{+}$$
 (10)

The equilibrium constant for reaction (9) was reported by Helgeson²² and it is $10^{-4.75}$ for dilute solutions. Because of the change in the dissociation constant of water with temperature this constant will change, and become more and more positive as the temperature is increased. Helgeson gives the equilibrium constant values for the reaction:

$$A1(OH)^{++} \xrightarrow{\longrightarrow} A1^{+++} + OH^{-}$$
 (11)

Reaction (9) is simply a combination of reaction (11) and

$$H_2 0 \longrightarrow H^+ + 0H^-$$
 (12)

Knowing the equilibrium constants at temperatures up to 300°C for reactions (11) and (12) the equilibrium constant forreaction (9) can be calculated from the relation:

$$\log K_{9} = \log K_{12} - \log K_{11}$$

Calculated values for K_0 are given in Table 16.

Table 16. Equilibrium constants for reaction $Al^{+++} + H_2 0 \stackrel{2}{\leftarrow} A1(0H)^{++} + H^+$

Temp °C	25	50	60	100	150	200	250	300
log K	-4.75	-3.87	-3.53	-2.26	-0.84	+0.63	+1.97	+3.31

Precipitation reaction (10) is a fast reaction as can be seen from the precipitation curves at high temperatures where it reaches equilibrium during the heating period.

4.6 The Effect of Alkali Metal Sulphates on Hydrolysis of Aluminum Sulphate at 225°C

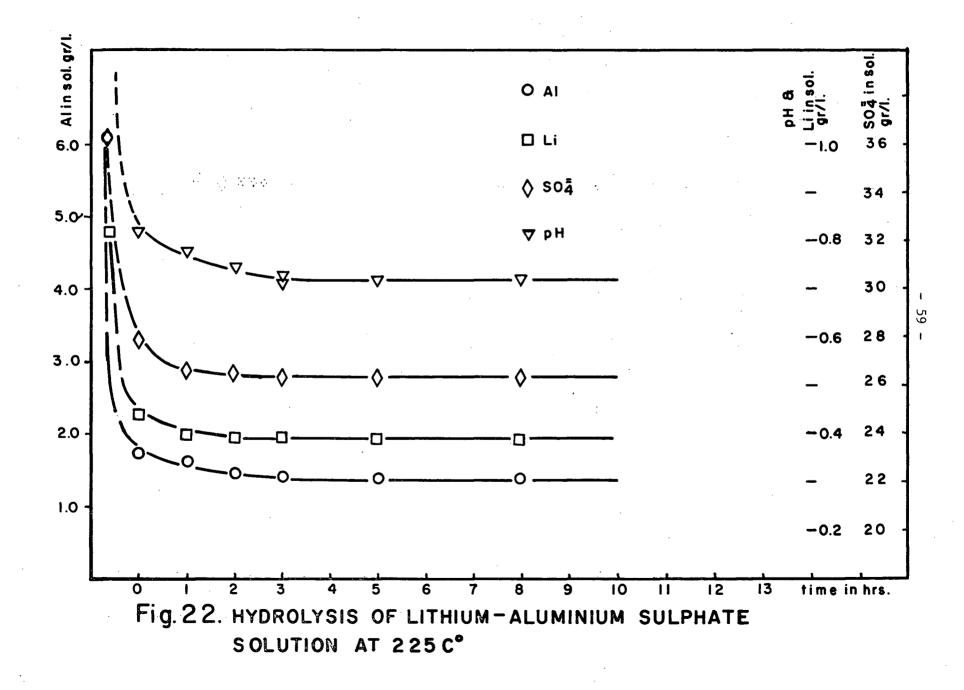
When sulphates of Li, Na or K are present in aluminum sulphate solutions during hydrolysis, corresponding alunites of the general form M₂0.3Al₂0₃.4S0₃.6H₂0 are precipitated instead of basic aluminum sulphate. Since the solubility of these compounds is less than the solubility of basic aluminum sulphate ("Hydrogen Alunite") the hydrolysis yields are higher and very close to 100%.

P.T. Davey and T.R. Scott³ have reported complete precipitation of aluminum in 30 min.at 220°C from solutions with initial $SO_3:A1_2O_3$ ratio of 2.87. The ratio of $K_2SO_4:A1_2(SO_4)_3$ calculated on the basis of aluminum present in starting solution was 2.16. The precipitated compound was of a composition corresponding to $K_2O.3A1_2O_3.4SO_3.6H_2O.$

V.S. Sazhin, A.K. Zapolskii and N.N. Zakharova¹³ have studied hydrolysis of aluminum sulphate solutions having an initial molar ratio of $K_2SO_4:Al_2(SO_4)_3$ of 0.33. Concentration of aluminum sulphate in solution was 308 gr/ ℓ (0.9 M), having SO₃:Al₂O₃ ratio of 3.0. Such solutions were hydrolyzed for 1 hr in the temperature range 175-250°C. Maximum hydrolysis yield at 250°C was about 82%. Their results show the presence of two solid phases. In the temperature range 175-190°C, basic potassium-aluminum sulphates of the form K₂SO₄.3A1₂O₃.4SO₃.9H₂O are precipitated. At temperatures higher than 230°C, alunites are formed with the formula K_20 .3Al₂0₃.4S0₃.6H₂0. In the temperature range 190-230°C they have reported a mixture of the two. In order to see the effect of alkali metal sulphates on hydrolysis of dilute solutions of aluminum sulphate, solutions with $M_2SO_4:Al_2(SO_4)_3$ ratio of about 0.5 containing 6.10 gr/L aluminum with $SO_3:A1_2O_3$ ratio of about 3.0 were hydrolyzed at 225°C until equilibrium was established. M_2SO_4 corresponds to Li_2SO_4 , Na_2SO_4 and K2S04.

4.6.1 <u>The Effect of Lithium Sulphate on Hydrolysis of Aluminum</u> <u>Sulphate at 225°C</u>

Aluminum sulphate-lithium sulphate solution containing 6.12 gr/ ℓ aluminum, 38.30 gr/ ℓ SO₄⁼ and 0.815 gr/ ℓ lithium was hydrolyzed at 225°C until equilibrium was reached. The results obtained are presented in Table 17 and Fig. 22.


Table 17. Hydrolysis of aluminum sulphate-lithium sulphate solution at 225°C^{*}

Time at 225°C	Al ⁺⁺⁺ in sol	$SO_4^{=}$ in sol	Li ⁺ in sol	Al prec	$S0_4^{=}$ prec	Li prec	рH
hrs	gr/l	gr/l	gr/l	gr/l	gr/l	ygr/l	
0	1.74	27.87	0.44	4.38	10.43	0.375 0	.82
1	1.29	26.71	0.40	4.83	11.59	0.415 0	.78
2	1.16	26.48	0.39	4.96	11.82	0.425 0	.75
3	1.07	26.36	0.39	5.05	11.94	0.425 0	.71
3	1.11	26.36	0.39	5.01	11.94	0.425 0	.73
5	1.05	26.37	0.39	5.07	11.93	0.425 0	.72
8	1.05	26.36	0.39	5.07	11.94	0.425 0	.72

Starting solution: $38.30 \text{ gr/l } SO_4^{=}$

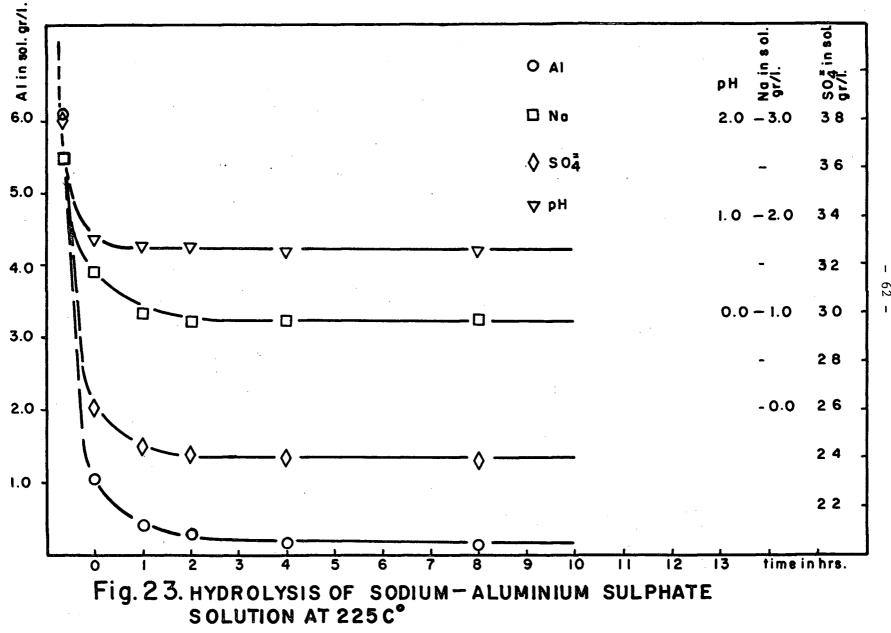
*

6.12 gr/l Al 0.815 gr/l Li

The precipitated compound was analyzed (see App. II) and its composition was found to be $\text{Li}_20.3\text{Al}_20_3.4\text{SO}_3.6\text{H}_20$. In a four component system such as this, it is normal to have at least two solid phases in equilibrium with the liquid phase, but since the concentration of Li^+ ions in solution is high enough to precipitate all the aluminum present in the starting solution as lithium alunite, only one solid phase is precipitated. The X-ray diffraction pattern for both basic aluminum sulphate and basic lithium-aluminum sulphate is almost the same, so it is difficult to distinguish between the two (see App. III-K and III-E).

4.6.2 <u>The Effect of Sodium Sulphate on Hydrolysis of Aluminum</u> Sulphate at 225°C.

Aluminum sulphate-sodium sulphate solution containing 6.12 gr/l Al⁺⁺⁺, 2.625 gr/l Na⁺ and 38.14 gr/l SO₄⁼ was hydrolyzed at 225°C. About 5.0 gr/l of aluminum was precipitated while heating the system to 225°C. When the equilibrium was reached about 98% of the aluminum present in the initial solution was precipitated as a basic salt. The results obtained in this set of experiments are presented in Table 18 and Fig. 23. Analysis of precipitated solid phase shows the composition corresponding to Na₂0.3Al₂O₃.4SO₃.6H₂O (see App. II). The X-ray diffraction pattern of this compound is the same as for basic aluminum sulphate and lithium alunite (see App. III-H).


Table 18. Hydrolysis of aluminum sulphate-sodium sulphate solution at 225°C^{*}

Time at 225°C	Al ⁺⁺⁺ in sol	$SO_4^{=}$ in sol	Na ⁺ in sol	L Al prec	$SO_4^{=} prec$	Na prec	рН
hrs	gr/l	gr/l	gr/l	gr/l	gr/l	gr/l	
0	1.05	26.06	1.44	5.07	12.08	1.185	0.77
1	0.41	24.58	1.00	5.71	13.56	1.625	0.70
2	0.24	24.19	0.925	5.88	13.95	1.70	0.69
2	0.32	24.06	0.925	5.80	14.08	1.70	0.69
4	0.17	24.04	0.925	5.95	14.10	1.70	0.63
8	0.13	23.84	0.925	5.99	14.20	1.70	0.63

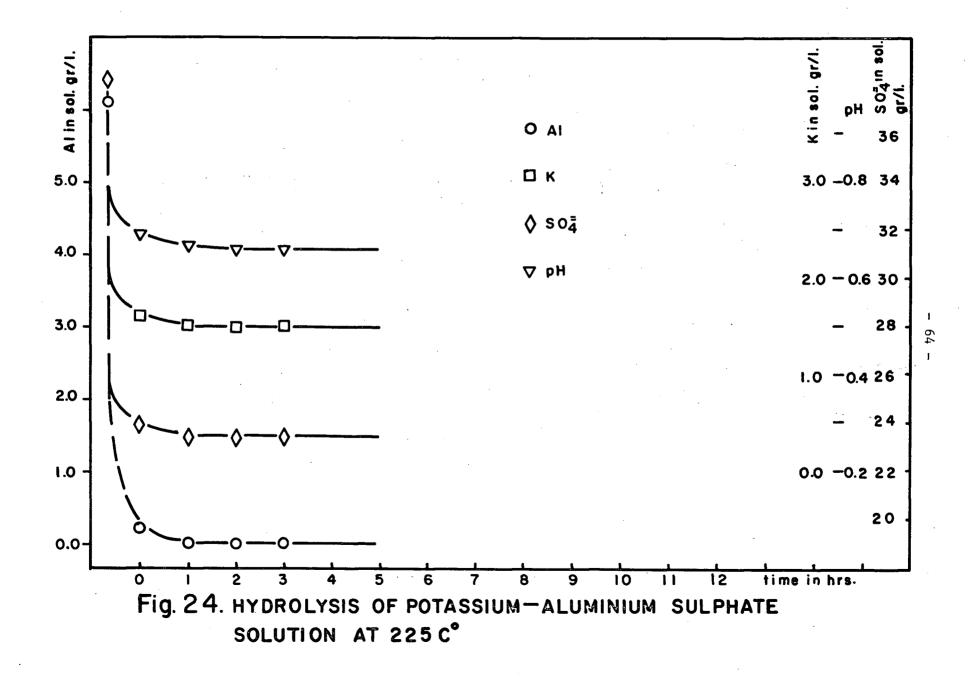
* Starting solution: 38.14 gr/l SO₄ 6.12 gr/l A1 2.625 gr/l Na pH = 3.09

4.6.3. <u>The Effect of Potassium Sulphate on Hydrolysis of Aluminum</u> Sulphate at 225°C

Potassium sulphate-aluminum sulphate solution containing 6.12 gr/l aluminum, 4.465 gr/l potassium and 38.14 gr/l $SO_4^{=}$ was hydrolyzed at 225°C. About 97% precipitation occurs in heating the system to 225°C. 100% precipitation occurs in only a few minutes at 225°C. Results obtained are presented in Table 19 and Fig. 24. The precipitated compound was analyzed and it was found to correspond to the formula $K_20.3Al_2O_3.4SO_3.6H_2O$ (see App. II).

Table 19.	Hydrolysis	of	aluminum	sulphate-potassium	sulphate	solution	
	at 225°C [*]						

Time at 225°C	Al in sol	$SO_4^{=}$ in sol	K in sol	Al prec	SO ₄ prec	Кргес рН
hrs	gr/l	gr/l	gr/l	gr/l	gr/l	gr/l
0	0.21	24.06	1.61	5.91	14.08	2.855 0.69
1.	0.00	23.54	1.51	6.12	14.60	2.955 0.67
2	0.00	23.56	1.51	6.12	14.58	2.955 0.66
3	0.00	23.54	1.51	6.12	14.60	2.955 0.66

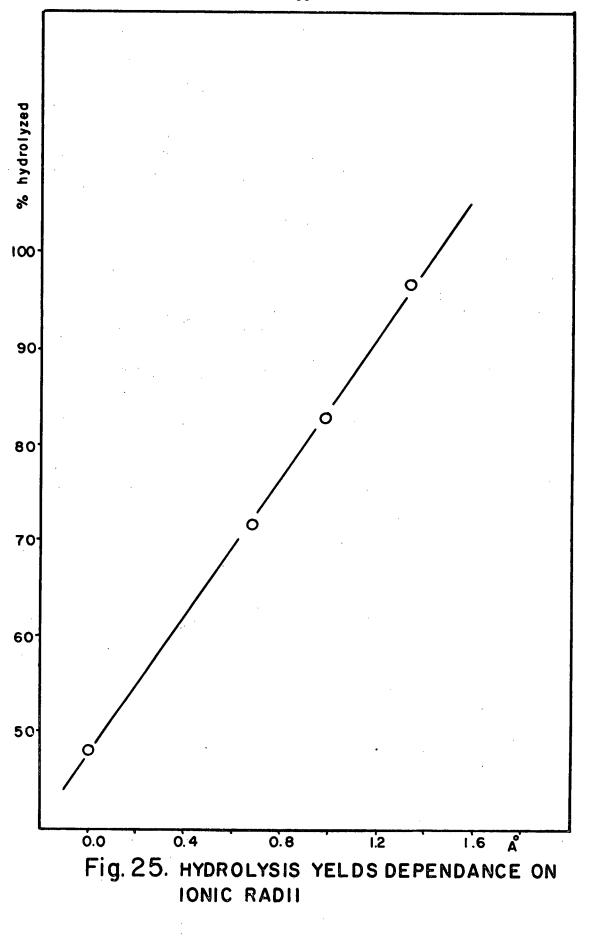

4.465 gr/l K

When alkali metal sulphate-aluminum sulphate solutions are hydrolyzed at 225°C only one solid phase is found to be in equilibrium with the liquid phase. The solid phase corresponds to the formula M₂0.3Al₂0₃.4SO₃.6H₂O. This is contrary to the results of V.S. Sazhin.¹³ If there is any temperature limit in formation of $M_20.3A1_20_3.4S0_3.6H_20$ it should be below 225°C and not 230°C. The most probable second phase in such mixed solutions would be the basic aluminum sulphate under the condition that there is **insufficient** M^+ present in the initial solution to precipitate all aluminum in the form of alunite.

reaction for the hydrothermal precipitation of alumites The can be written as

$$6A1^{+++} + 4Hso_4^{-} + 2M^{+} + 12H_2O \xrightarrow{} M_2O.3A1_2O_3.4SO_3.6H_2O + 16H^{+}$$
(13)

pH = 3.09


The effect of alkali metal sulphate salts is such that the hydrolysis yields are increased in the following series K > Na > Li. This series is the same if the ionic radii of the Li, Na, and K are compared. Table 20 shows the ionic radii of the ions involved in this system. Fig. 25 shows the straight line relation between the ionic radii and precipitated amount of aluminum in heating the system to 225°C.

 Element	Type of Radius	Ionic radius A°	Al prec. %	
Н	1+	0.00	48.00	
A1	3 ⁺	0.57		
Fe	3+	0.67		
Li	1+	0.68	71.80	
Fe	2 ⁺	0.80	60.50	
Cu	2+	0.80	61.40	
Na	· 1 ⁺	0.98	83.00	
К	1+	1.33	96.80	

Table 20. Ionic radii of the ions involved in the system

4.7 <u>The Effect of Divalent Metal Sulphates on Hydrolysis of</u> Aluminum Sulphate Solutions at 225°C

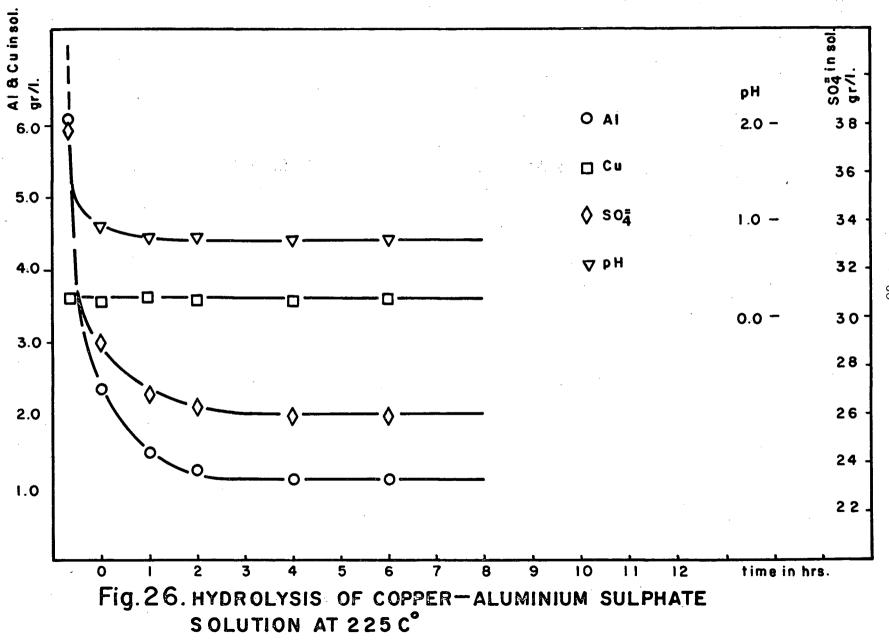
As a general rule, ions of divalent metals do not precipitate with basic aluminum sulphate. Many trivalent or quadrivalent metals precipitate as oxides, hydroxides or basic salts under the same

conditions as for hydrolysis of aluminum sulphate. The effect of copper and iron was investigated at 225°C mostly because of their presence in many leach solutions.

4.7.1 <u>The Effect of Copper Sulphate on Hydrolysis of Aluminum</u> Sulphate Solutions at 225°C

A copper-sulphate-aluminum sulphate solution containing 6.10 gr/L aluminum, 3.58 gr/L copper and 37.92 gr/L $SO_4^{=}$ was hydrolyzed at 225°C. There was practically no copper precipitation detected in these experiments. Results obtained are presented in Table 21 and Fig. 26.

Table 21. Hydrolysis of aluminum sulphate-copper sulphate solution at 225°C $\!\!\!\!\!\!^{\star}$


Time at 225°C	Al in sol	Cu in sol	SO_4 in sol	Al prec	Cu prec	SO ₄ prec	рН
hrs.	gr/l	gr/l	gr/l	gr/l	gr/l	gr/l	
0	2.35	3.56	29.02	3.75	0.02	8.90	0.94
1	1.48	3.58	26.92	4.62	0.00	11.00	0.85
2	1.23	3.57	26.32	4.87	0.01	11.60	0.82
4	1.12	3.56	26.06	4.98	0.02	11.86	0.82
6	1.10	3.58	26.06	5.00	0.00	11.86	0.82

Starting solution: 6.10 gr/L A1

-

3.58 gr/l Cu 37.92 gr/l SO₄=

pH = 3.0

4.7.2 <u>The Effect of Ferrous Sulphate on Hydrolysis of Aluminum</u> Sulphate Solutions at 225°C

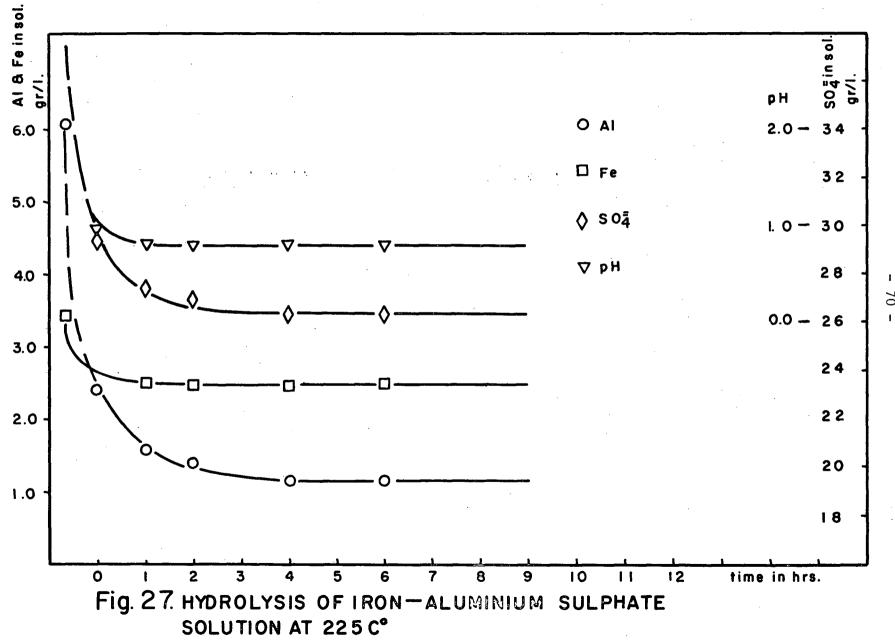

A ferrous subphate-aluminum subphate solution containing 6.12 gr/l aluminum, 3.26 gr/l iron and about 38.29 gr/l SO₄⁻ was hydrolyzed at 225°C. Some iron was precipitated in the form of Fe₂O₃ due to atmospheric oxidation of ferrous iron. Results obtained in this set of experiments are presented in Table 22 and Fig. 27. The increased precipitation of aluminum can be attributed to the common ion effect. The bivalent ions are not compatible with the alumite lattice and do not tend to replace the hydrogen ions in basic aluminum sulphate. T.R. Scott³ has reported that no contamination of basic aluminum sulphate occurs in the presence of Mg, Cd, Zn and Ni even at high concentrations.

Table 22. Hydrolysis of aluminum sulphate-ferrous sulphate solution at $225^{\circ}C^{*}$

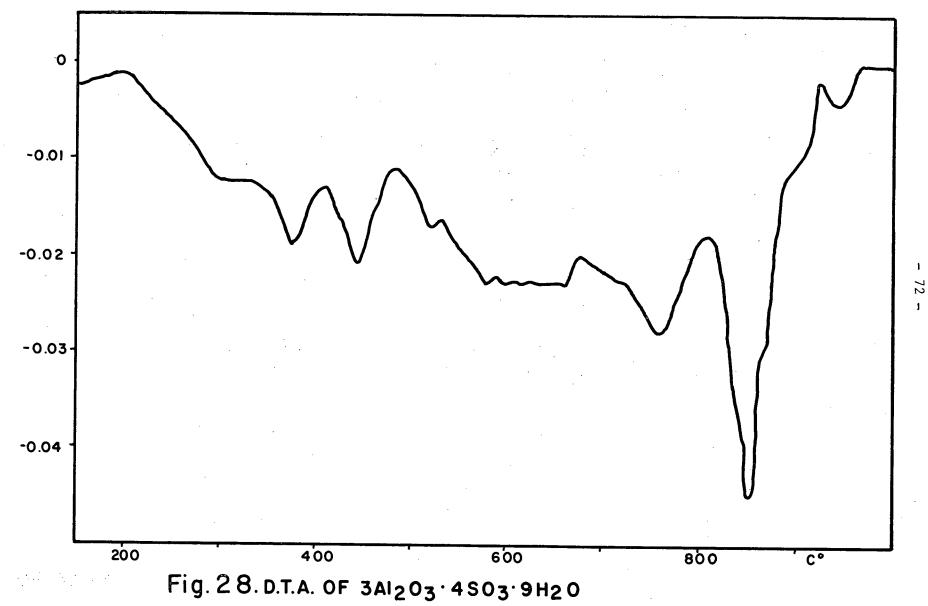
Time at 225°C	Al in sol	Fe in sol	$S0_4^{=}$ in so	1 Al prec	Fe prec	S0 ⁼ prec	рН
hrs	gr/l	gr/l	gr/l	gr/l	gr/l	gr/l	
0	2.42	2.69	29.44	3.70	0.57	8.85	0.97
1	1.57	2.68	27.48	4.55	0.58	10.81	0.82
2	1.40	2.69	27.04	4.72	0.57	11.25	0.80
4	1.15	2.66	26.42	4.97	0.60	11.87	0.82
6	1.12	2.69	26.40	5.00	0.57	11.89	0.80

Starting solution: 6.12 gr/l A1; 3.26 gr/l Fe; $38.29 \text{ gr/l SO}_4^=$;

pH = 3.0

ς,

4.8


Application of the Hydrolysis Process

Basic aluminum sulphate of the form $3A1_2O_3.4SO_3.9H_2O$ is the product of high temperature hydrolysis of aluminum sulphate solutions with a wide range of initial SO3:A1203 ratios. A basic salt of the form $M_20.3A1_20_3.4S0_3.6H_20$ is a high temperature hydrolysis product of aluminum sulphate solutions containing alkali metals (Li, Na or K). Thermal decomposition of such basic salts yields alumina as a final product which can be used for aluminum production. Thermal decomposition of a few samples of basic aluminum sulphate was followed by D.T.A. A typical D.T.A. curve is shown in Fig. 28. The first endothermic peak in the temperature range 200-400°C corresponds to the loss of interstitial lattice water.⁹ The peak at about 450°C corresponds to the dehydroxylation process. This process is completed at temperatures around 600°C where anhydrous basic aluminum sulphate exists.⁹ At temperatures above 600°C, SO_3 , SO_2 and O_2 are evolved yielding amorphous alumina which subsequently crystallizes to y-alumina at higher temperatures. γ -Alumina is transformed to α -alumina at temperatures of 1000°C and higher. A few samples of K20.3A1203.4S03. 6H20 were calcined at about 1000°C for 2 hrs. The decomposition of these samples was followed by the weight loss. Results of one of the decomposition experiments is shown below.

1.0811 gr K₂0.3A1₂0₃.4S0₃.6H₂0 $\xrightarrow{\text{calc.}}$ 0.5857 gr K₂S0₄ + A1₂0₃ + $\uparrow \text{ sulphurous}$ gases

0.5857 gr
$$K_2SO_4 + Al_2O_3 \xrightarrow{\text{leach}} 0.365 \text{ gr } Al_2O_3$$

In leaching processes at high temperatures where aluminum is present in solution it precipitates as a basic salt in autoclaves and pipelines¹¹ which necessitates "forced" shutdowns of the process in order to clean autoclaves and/or pipelines. With increasing sulphuric acid concentration and decreasing temperature the solubility of basic aluminum sulphate was found to increase. Therefore running concentrated solutions of sulphuric acid through the system at low temperatures should dissolve the precipitate.

In dump leaching solutions aluminum is present as aluminum sulphate. If aluminum is not recovered the viscosity of the solution will increase. To remove the aluminum from solution, a part of the liquor after cementation can be treated in an autoclave to precipitate basic aluminum sulphate. Liberated acid from the hydrolysis can be recycled to the heap.

5. CONCLUSIONS

1. Dilute solutions of normal and acid aluminum sulphate hydrolyze when heated above 125° C to yield a basic salt of the nominal composition $3A1_2O_3.4SO_3.9H_2O.$

2. Hydrolysis yield is a function of the temperature and initial concentration of sulphuric acid in solution.

3. Only one solid phase was found to be in equilibrium with the liquid phase in the temperature region 125-250°C, but there are some indications that a less basic salt may exist in the system.

4. When Li, Na or K ions are present in solutions of aluminum sulphate a basic salt of the form $M_20.3Al_20_3.4S0_3.6H_20$ is precipitated.

5. The hydrolysis yields are increased in the presence of alkali metal sulphates in the following series: K > Na > Li.

6. Aluminum can be selectively precipitated in the presence of Cu^{++} and Fe⁺⁺ as $3A1_2O_3.4SO_3.9H_2O_4$.

7. Both basic aluminum sulphate and alunites can be calcined at temperatures above 1000°C to yield alumina.

APPENDIX I

SOLUBILITY OF ALUMINUM SULPHATE

I-A

Solubility of $Al_2(SO_4)_3$ in water

Temp. °Ç	20	30	40	50	60	70	80	90	100
gr Al ₂ (SO ₄) ₃ 100 gr sat. sol.	26.7	28.8	31.4	34.3	37.2	39.8	42.2	44.7	47.1

I-B Solubility of aluminum sulphate in aqueous solutions of

sulpuric acid at 25°C.

$\frac{\text{gr Al}_2(\text{SO}_4)_3}{100 \text{ gr sat. sol.}}$	27.82	29.21	26.2	19.5	11.6	4.8	1.5	1.0	2.3	4.0
gr H ₂ SO ₄ 100 gr sat. sol.	0.0	5.73	10.0	20.0	30.0	40.0	50.0	60.0	70.0	75.0

I-C

Solubility of aluminum sulphate in aqueous 10% ${
m H_2SO}_4$

Temp. °C	30	42	50
gr Al ₂ (SO ₄) ₃ 100 gr sat. so	14.52	16.45	18.77

APPENDIX II

Time at hrs.	Temp. °C	^{% A1} 2 ⁰ 3	% ^{SO} 3	% M ₂ 0	% .H ₂ 0	Starting pH
6.00	175	38.7	37.2		24.1	3.10
10.00	175	38.5	39.6	_	21.9	3.10
16.30	175	38.7	39.7	-	21.6	3.10
4.0	200	38.6	39.5	-	21.9	3.10
6.0	200	38.8	39.9	-	21.3	3.10
18.00	200	38.7	40.1	-	21.2	3.10
1.00	225	38.8	40.2	-	21.0	3.10
5.00	225	38.9	40.8	-	20.3	3.10
16.00	225	39.1	41.6	-	19.3	3.10
0.00	250	38.8	40.3	-	20.9	3.10
1.00	250	38.7	40.2	-	21.1	3.10
3.30	250	39.0	40.5	-	20.05	3.10
6.30	250	39.2	40.9	-	19.9	3.10
6.00	225	39.0	40.6	_	20.4	2.5
6.00	225	38.7	40.6	· _	20.7	2.0
6.00	225	38.9	40.8	. –	20.3	1.5
6.00	225	38.9	40.2	-	20.9	1.0
6.00	225	39.2	41.7	· _	19.1	0.70
4.00	250	38.9	40.6	. –	20.5	2.5
4.00	250	38.8	40.7	-	20.5	.2.0
4.00	250	38.9	41.2	-	19.9	1.5
4.00	250	39.2	41.6	-	19.20	1.0
4.00	250	38.9	40.8	-	20.3	0.70
	•			Li ₂ 0		
3.00	225	39.90	42.00	4.00	14.10	3.05
				Na ₂ 0		
2.00	225	38.40	40.10	7.70	13.80	3.09
8.00	225	38.50	40.20	7.80	13.50	3.09
			•	к ₂ 0		
0.00	225	37.05	38.39	11.36	13.20	3.09
0.00	225	36.91	38.91	11.38	12.80	3.09
1.00	225	37.12	38.48	11.30	13.10	3.09

ANALYSIS OF THE SOLID PHASES

.

.

APPENDIX III

X-RAY DIFFRACTION PATTERNS

III-A Diffraction pattern of the precipitate obtained at 150°C

	Prec. ob	tained in 10 hrs.	Prec. obt	ained in 16 hrs	
<u>`</u>	d A°	1/10	d A°	I/I ₀	
•	5.71	7	5.71	7	
	5.03	2	5.03	2	
	3.55	5	3.57	5	
	3.01	1.	3.01	1	
	2.27	4	2.27	4	
	1.909	3	1.908	3	
	1.76	5	1.755	5	
	1.654	7	1.659	7	
	1.566	7	1.570	7	
	1.496	5	1.500	5	
	1.325	7	1.329	7	
	1.290	6	1.299	6	
	1.220	7	1.217	7	
	1.171	7	1.171	7	
	1.150	7	1.147	7	

III-B

• -

X-ray diffraction patterns of the precipitate obtained at 175°C

	Prec. obtain	ed in 2 hrs.	Prec. obta	ained in 16.5 hrs
	d A°	1/10	d A°	1/10
	5.71	7	5.75	7
	5.034	2	5.12	2
•	3.56	5	3.56	5
	3.01	1	3.04	1
			2.87	7
			2.486	8
	2.27	4	2.30	4
			2.22	8 -
	1.908	3	1.920	3
	1.757	5	1.770	. 5
	1.654	7	1.654	7
	1.566	7	1.570	7
	1.495	5	1.500	5
			1.380	8
	1.325	7	1.330	7
	1.293	6	1.290	6
. *	1.219	7	1.217	7
	1.174	7	1.172	7
	1.150	7	1.150	. 7

III-C	X-ray diffraction	pattern of the	precipitate	obtained at	200°C.

		Prec. obta	ined in 18 hrs.		
		d A°	I/I ₀		
		5.72	7		
		5.03	2		1
		3.56	5		
		3.04	1		
		2.87	7		
r		2.27	4	i .	
		2.22	8		
•		1.910	3		
	ę •	1.756	.5		
		1.654	7		
		1,565	7		
		1.490	5		
		1.387	8		
		1.290	6		
		1.217	7		
	-	1.171	7		
		1.151	7		

III-D

X-ray diffraction pattern of the precipitate obtained at 225°C

			3 hrs at		
	d A°	1/I	d A°	1/10	
	5.61	8	1.736	6	. ,
	5.02	2	1.666	8	
	4.80	2	1.641	8	
	3.43	6	1.550	· 8	
	3.03	1	1.546	8	
	2.932	1	1.479	4	
	2.806	4	1.4227	8	
	2.440	8	1.362	· 8	
	2.304	4	1.316	8	
	2.241	3	1.281	4	
	2.191	8	1.205	. 8	
	1.925	8	1.195	8	
	1.880	3	1,161	8	
·	1.767	8	1.132	8	
	1.758	6			

Prec. of	otained i	n 0.0 hrs	•	Prec. o	btained i	in 3.5 hrs	•
d A°	I/I ₀	d A°	1/10	d A°	1/1 ₀	d A°	0
5.61	8	1.765	. 8	5.61	8	•	
4.02	2	1.736	6	5.01	2	1.742	6
4.80	2	1.665	8	4.85	2	1.646	8
4.27	8	1.557	8	-		1.555	
3.40	6	1.479	4	3.46	6	1.483	4
3.01	1	1.424	8	3.01	• 1		
2.91	1	1.367	8	2.95	1	1.369	8
2.79	4	1.317	8	2.81	4	1.317	8
2.45	8	1.286	4	2.46	8	1.286	4
2.296	4	1.208	8			1.208	8
2.24	3	1.200	8	2.24	3	-	
2.187	8	1.167	8	1.895	8	1.167	8
1.929	8	1,138	8			1.139	8
1.879	3				• • •		

III-E X-ray diffraction pattern of the precipitate obtained at 250°C

III-F

X-ray diffraction pattern of the precipitate obtained from

from FeSO₄-Al₂(SO₄)₃ solution at 225°C

d A°	т / т	d A°	т / т	
u A	I/I	<u> </u>	0	
5.08	2	1.558	4	
4.80	2	1.501	5	
3.03	1	1.481	. 2	
2.915	1	1.423	5	
2.294	5	1.371	3	
2.234	1	1.314	4	
1.918	4	1.209	. 3	
1.888	2	1.1969	5	
1.768	5	1.1867	5	
1.737	2	1.1364	5	
1.637	4	1.1054	5	

-				
d A°	1/10	d A°	1/10	
 5.71	5	1.560	8	
5.01	· 2	1.546	8	
3.49	3	1,489	3	
3.01	1	1.422	. 8	
2.90	8	1.380	8	
2.47	8	1.316	8	
2.29	3	1.281	5	
2.20	5 .	1.205	5	
1.888	2	1,161	6	
1.736	2	1.132	6	
1.641	8			

225°C

. :

III-H X-ray diffraction pattern of sodium alunite obtained at 225°C

	d A°	I/I ₀	2.0 hrs. at 2 d A°	I/I ₀	
, .	5.70	5	1.746	2	
	5.01	2	1.644	8	
	3.496	3	1.554	8	
	3.01	1	1.538	8	
	2.91	8	1.505	3	•
	2.45	8	1,281	5	
	2.212	3	1.205	5	
	1.896	2	1,161	6	

III-K

X-ray diffraction pattern of lithium alunite obtained at 225°C

Prec.	obtained in	3.0 hrs. at 22	5°C	
d A°	1/1 ₀	d A°	I/I ₀	
5.68	5	1.736	2	
5.01	2	1.641	8	
3.491	3	1.554	8	
 3.01	· 1	1.535	8	
2.90	8	1.489	3	
2.44	8	1.281	5	
 2.20	3	1.205	5	
1.887	2	1.161	6	

LITERATURE

- E.T. Carlson, C.S. Simons, Met. Soc. of A.I.M.E., Extractive Metallurgy of Copper, Nickel and Cobalt. International Symposium, New York, February 15-18, 1960.
- 2. Posnjak, E., Mervin, H.E., J. Am. Chem. Soc. 44, 1965-1994 (1929).
- 3. P.T. Davey and T.R. Scott, Aust. J. Appl. Sci. 13, 229-241 (1962)
- 4. Basset, H. and Goodwin, T.H., J. Chem. Soc., 2239-2279 (1949).
- 5. T.R. Scott, Paper presented at the Annual Conference of the Institute, August 14-24, 1963, Melbourne.
- T.R. Scott, Extractive Metallurgy of Aluminum, Vol. 1, Alumina, International Symposium on the Extractive Metallury of Aluminum, February 18-22 (1962), New York.
- 7. T.R. Scott, Research Appl. Ind. 14, 50-54 (1961).
- 8. P.T. Davey and T.R. Scott, Nature 195, 376 (1962).
- P.T. Davey, G.M. Lukaszewski and T.R. Scott, Aust. J. Appl. Sci.
 <u>14</u>, 137-154 (1963).
- 10. Henry, J.L. and G.B. King, J. Am. Chem. Soc. 72, 1282-1286 (1950).
- R. Acosta Chaves, V.V. Karelin, and B.P. Sobolev, Tsvet. Met. 1968, 41 (4), 50.53.
- T.R. Scott, Internal Report, Division of Mineral Chemistry C.S.I.R.O., Melbourne.
- V.S. Sazhin, A.K. Zapolskii and N.N. Zakharova, Zh. Prikl. Khim.,
 41 (7), 1420-1423 (1968).
- S. Bretsznajder, J. Boczar, J. Piskorski, and J. Porowski, Prezmysl. Chem. <u>11</u>, 89-93 (1955).
- A.K. Zapolskii and G.I. Tsarenko, Ukr. Khim. Zh. 1969, 35 (8), 866-868.

- V.S. Sazhin, A.K. Zapolskii, N.N. Zakharova and A.I. Volkovska, Ukr. Khim. Zh. 1966, 32 (1), 95-100.
- 17. A.K. Zapolskii, Ukr. Khim. Zh. 33 (8), 805-809 (1967).
- A.K. Zapolskii, V.S. Sazhin, N.N. Zakharova and A.I. Volkovska, Ukr. Khim. Zh. 32 (11), 1222-7 (1966).
- 19. H.G. Iverson and H. Leitch. Report of Investigations 7162 (1968).
- Erkki Wanninen and Anders Ringbom, Analytica Chimica Acta Vol. 12 (1955), 308-318.
- R.G. Robins, LR 80 (NST) Report of the Mineral Sci. and Technology Div. of the Warren Spring Laboratory.

22. H.C. Helgeson, Am. J. of Sci. Vol. 267, 1969, 729-804.