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ABSTRACT

An attempt has been made to study the change in the electrical
resistivity of a powder compact during the initial stages of hot-pressing.
Theoretical models have been formulated on the basis of plastic
deformation of spheres in a compact. The resistivity change during
densification has been derived for various packing arrangements.

For small deformation of spheres, the final equation is

om_ JrD Vs
o 0L(D ) -
C

and the more generalized equation for larger deformation is

g .
B—I:-=0L(D2/3 82/3 82 _ 1)

where O and g, are the conductivities of a compact of spheres having

a relative density D, and at the theoretical density (D = 1),
respectively. DO is the initial relative density of the compact before
deformation. o is a constant depending on geometry and R is the radius
of spheres at any stage of deformation in arbitrary units. The

derived relatioﬁship was tested by: (a) measuring the electrical
resistivity as a function of density during hot-pressing of compacts

of glass spheres, (b) measuring the electrical resistivity of different
compacts of nickel spheres at room temperature, and (c) comparing

previous resistivity data with the theoretical equation.



ii

: ACKNOWLEDGEMENTS

The author is grateful for the advice and encouragement
given by his research director, Dr. A. C. D. Chaklader. Thanks are
also extended to other faculty members and fellqw graduate students
for many helpful discussions. Special thanks are extended to Dr. R.
Blair and Asst. Prof. R. G. Butters for their help and advice.
Financial assistance from both Defence Research Board of Canada and

National Research Council is gratefully acknowledged.



1I.

IIT.

iii

“'TABLE "OF CONTENTS

" 'PAGE

INTRODUCTION « v v v o o o o e e e e e e e e e e e o 1

I.1 PREVIOUS RESISTIVITY MEASUREMENTS . & & &« « o & « & 2

I.2 QUANTITATIVE APPROACH « 4 ¢ ¢ ¢ ¢ ¢ o o « o o o o o 5

CI.3 OBJECTIVES OF THE PRESENT WORK . . ¢ ¢ & o ¢ o o & 12

THEORETICAL DEVELOPMENTS . & & ¢ 4 & o o o o o o ¢ o o o 14
I1.1 GEOMETRIC RELATION AND CURRENT NETWORK . . . . . . 14
I1.2 THEORETICAL MODELS & & &+ o o o « o « 2 o o o ... . 16
11.3 GEOMETRIC RELATIONSHIPS . v ¢ 4 & o o o o o o o o & 17
a) Simple Cubic Packing .+ + « « ¢ o &+ ¢ o ¢ o & « o 17

b) Orthorhombic Packing . « « ¢ ¢ ¢« ¢ o o o« ¢ o« o o« & 19

c) -Rhombohedral Packing . . . ¢ & & ¢ v ¢ ¢ o o « « » 21

d) i) B.C.C. PAcking « w v o v 4 4o 4 v w w e e a .. 23

ii) : Tetrakaidecahedron Packing . . « ¢« ¢« ¢« ¢« . .« . 25

I1.4 DEDUCED RELATIONSHIPS . « ¢ « o o o o o o o s s o s 27
a) When R = R

D) Whem R # Ry« v e o o o o e v a o e o o n w v oo 28

I1.5 PRESENT VS. PREVIOUS CONDUCTIVITY EQUATIONS . . . . 32

EXPERIMENTAL VERIFICATION OF THEORY .+ . & o « o o o o o o 34
ITT.1 FEQUIPMENT & & v o o + o o o o o o o o o o o o o o« . 34
ITI.2 PROCEDURE + & v « « o o o o o o o o o o o o o « o o 37
III.3 MEASUREMENT ON NON-POROUS GLASS . « « « « « « » » . 38

ITI.4 PROCEDURE FOR NICKEL SPHERES . & ¢« v & ¢ o « o o & 38



" TABLE OF CONTENTS {(continued)

Iv.

VI.

RESULTS AND DISCUSSION ., . & « + & &

Iv.1 CONDUCTIVITY VS. DENSITY FOR GLASS . . . . .

Iv.2 CONDUCTIVITY VS. RELATIVE DENSITY FOR NICKEL

Iv.3 TEST OF THEORETICAL MODELS . .

Iv.4 ELECTRICAL CONDUCTIVITY OF GLAS

Iv.5 RELATIVE CONDUCTIVITY VS, RELAT

1v.6 ELECTRICAL CONDUCTIVITY OF THE GREEN COMPACT

Iv.7 VERIFICATION OF THE THEORETICAL
PREVIOUS RESISTIVITY DATA . .

Iv.8 PACKING GEOMETRY INSIDE THE DIE
Iv.9 DEFORMATION GEOMETRY INSIDE THE

IV.10 EFFECTS OF OTHER PARAMETERS ON
MEASUREMENTS . . . « ¢« « « « &

a) Surface Effect « v ¢ & « o o &

'b) Size Effect . . . . . . . ..
SUMMARY AND CONCLUSIONS & 4 &« o« o o o

SUGGESTIONS FOR FUTURE WORK . . . . .

APPENDICES '+ v o o o o o o o o o o« o

BIBLIOGRAPHY . & & ¢ ¢ ¢ ¢ « o o o &

. . . . «

S . . 3 . .

IVE DENSITY

MODELS WITH

DIE . . .

CONDUCTIVITY

v

" 'PAGE

43

43

43

43

47

52

52

56
59

62

63
63

63

66

67

68

90



10.

11,

12,

13.

14,

"LIST OF FIGURES

Effect of compacting pressure on the electrical
resistivity of coarse (75-100u) carbonyl _nickel powder
compacts during sintering (After Hausner”) ... . . . . . .

Electrical resistivity vs. density of coarse and fine
(<441) carbonyl nickel powder compagts heated in hydrogen
from 600°C to 1100°C (After Hausner®). « v v v v « o & o

Effect of atmosphere on change of electrical resistiv1tg
in raising temperature of copper compacts (After Kimura

Porous bronze: variation of electrical conductivity (20°¢)
with density. Al’ g, etc, refer to porous bronze specimens

(After Grootenhuis

. . * o . . « e o . e . . . . . .

Porous copper: electrical conductivity at 20°¢C (After
GrootenhuiS ™ ). v o & o & o o o o o o & o s o o o 4 o o o

Porous nickel: electrical conductivity at ZOOC (After
Grootenhuislo). C et e e e e e e e e e e e e e e e e e

Geometric distribution of phases (parallel slabs) and
directions of current-flow . . & ¢ ¢« ¢« ¢ ¢ 4 ¢ s 4 4 . W

Conductivity curves for parallel and series circuits of a
two-phase system. Maxwell's equation for spherical
inclusion is also included. (02 = 1001 assumed). . . . .

Change in conductivity with relative density for pressed
copper powder (After Huttigzz). e e e e e e e e e e e

Measured and calculated electrical conduct1v1%1es of high-
purity sintered copper specimens (After Klar .« o e e

Geometry of deformation of two spheres in contact and
equivalent electrical network. . + ¢« & o ¢« ¢ v & o o o & &

Spheres in two-dimensional cubic array and equivalent
electrigal network. . + v ¢ o ¢ ¢« ¢ ¢ o e 4 4 e e e e e .

Geometric relationship of simple cubic model and current-
path (X = X)u v o 4 o v o o o o e o o o o 4 e e e e e

Geometric relationship of orthorhombic model and current-
path (Xn_ X). . . . . e . . . . . . - ¢ o . . s o . . .

"PAGE
. 3
. 3
.4
. 4
. 6
. 6
. 8
. 8
. 10
. 10
. 15
. 15
. 18
. 20



LIST

OF FIGURES (continued).

15,

16.

17.

18,

19.

20,

21.

22,

23,

24,

25.

26.

27

28.

29,

30.

Geometric relationship of rhombohedral model and
Cu'rrent—paths Y . . . » . . . . . . . . 3 . 3 . 3 . . 3 . .

Geometric relationship of b.c.c. model and current-paths. .

Geometric relationship of tetrakaidecahedron model and the
additional current-path . . .« + ¢« o v & v v 4 0 s e e e e .

Theoretical r%lationship of R vs, a/g for the models
(After Kakar2®) . . . . v v o s e e e e e e
Theoretical relationship of relative conductivity vs.
Relative density for the proposed models . . . . + « « + .

Comparison of the present and previous theoretical equations.

Photograph of a) glass spheres,0.42 mm average dia., b)
glass spheres, 0.70 mm average dia., and c) nickel spheres,
0.65 mm average diad.. « o & ¢ ¢ ¢« ¢ ¢« o s 4 4 e s s e s e s

‘Schematic diagram of the equipment used for resistivity

measurements of glass spheres . + + ¢ ¢ ¢ ¢ ¢ ¢ o s o s o .

Schematic diagram of the die used for hot—pressing nickel
Spheres s e 8 e e & e & e & s & e s e e & 8 e s s s & o o o

Photograph of the vise used to measure the electrical
conductivity of nickel «compacts. . « + ¢ ¢« o ¢ o o ¢ o o

Conductivity vs. Relative density for glass compacts at
different temperatuUreS. « « o« « o o o 2 o o o o o o s o ¢ &

Conductivity vs. Relative density for nickel compacts at
TOOM EemMPeratuUTE. o« « o o o o o o o o o o o o s o o o o o o

p y%/3
Log o, vs. log ( B-) -1 for glass compacts. « « « . .
o}

Log o vs. %-for the non-porous glass at different times . .

Log o, (calculated) vs. %-for non-porous glass and

log o VS.'% fOr porous glass (0.70 relative density). .

Relative conductivity vs, relative density for glass at 550°C

vi

PAGE

22

24

26

29

31

33

35

36

40

41

44

46

48

50

51

53



vii

LIST OF FIGURES (continued)

NO PAGE

31. Relative conductivity vs. relative density for glass at
600°C & v v v b b e e e e e e e e e e e e e e e e e e 54

32. Relative conductivity vs. relative density for glass at
6500C 3 . . - L] L] L] . L] L] L] . . . . L] . L] - [ ] L] . . (] . ] - 55

33. Relative conductivity vs. relative density for nickel at
TOOM LEMPEeratUTE. sue o o o o o o o o o o o o s o o o o o & 57

34, Corrected values of relative conductivity vs. relative
density for nickel compacts . « ¢ ¢ ¢ ¢ o ¢ 4 o s o o 0 . 58

35. Results of previous investigations compared with proposed
MOdElS. & 4 siis o o o o o o o o o o a4 o o o o o & o o 8 o a 60

36, Effect of container-size on the _efficiency of packing
one-size spheres (After McGeary l) e s s s e s s e e s s 61

) (
37. Basic systems of spherical packings (After Morgan356 . e e 71

38. Theoretical felationship of D vs, a/R for the proposed
models (After Kakar2®)., . . v v v v v v v v e e e e e e 73

39. Geometric relationships for the unit-cells in different
orientations with respect to current path « « + + ¢« « &« & & 83



II.

ITI.

LIST OF TABLES

Electrical conductivity equations for two-phase
COMPOSIEES W 4 o« v o o s o o o o = s o o o o s o s o o

Geometric constants for the proposed models . . . . .

2
Basic methods of packing and their construction . . .

viii

"PAGE

13

32

69



CHAPTER 1

I. INTRODUCTION

(1

Sintering is a complex process by which densification
of a powder compact takes place at a temperature below the melting

point of the (bulk of the) material, Hot—pressing(z)

is a sintering
process, in the presence of an applied pressure. Hot-pressing methods

promise products of greater density at much lower temperatures and for

shorter times than conventional sintering processes,

The degree of densification during and after sintering or
hot-pressing can be determined in several ways, some of which are listed

below:

1) measurement of density changes,

2) measureméﬁt of strength,

3) microscopic examination,

4) electricél measurement,

5) thermal conductivity determination,:
6) sound velbcity determination,

7) X-ray diffraction analysis, etc.

Density determination is the most widely used technique.
For small objects, this does not pose any problem, but for large pieces
such as those fabricated by hot-or cold—rolling, hot-or cold-extrusions,
density measureméht is not easy and frequently involves destruction of
the objects. Measurements of strength and thermal characteristics are
difficult and are of low precision,when porous bodies of very low strength
are to be measured. Microscopic observations show very little change

during early stages of sintering. Measurement of sound velocity is



fairly complicated as aré X-ray diffraction measurements.

Compared with all these methods, measurements of electrical
properties, such as electrical resistivity and temperature coefficient
of resistance, have many advantages. They can be made with fairly
simple equipment. Because of the much greater change in fesistivity
than in density, they are excellent indicators in early stages of
sintering when other methods can be applied only with a low degree of

precision or with great difficulty.

I.1. PREVIOUS ELECTRICAL RESISTIVITY MEASUREMENTS

(3)

The earliest work in this field was that of Trzebiatowski .

who reported a rapid decrease in electrical fesistivity of sintered

copper and gold compacts with increase in temperature and density. This

(4) (5) (6)

work was followed by that of Iwase and Ogawa s Myers , Huttig

(7) (8)

Adlassnig and Foglar etc.. Hausner studied the behaviour of copper

and nickel powderé hot-pressed in hydrogen at 5 to 80 t.s.i. in the
temperature range 600°C to 1000°C. He plotted the electrical resistivity
as a function of density and compacting pressure at various temperatures,
(Figures 1 and 2). He noted a difference in the electrical resistivity

at a given densify for powders of different sizes both in the as-compacted
stage and hot—pféssed condition. The electrical resistivity of the green

compact was found to be a function of the particle size,

(9)

Kimura and Hisamatsu carried out sintering studies on
copper and nickel powders in hydrogen, argon and vacuum. They plotted

the electrical resistivity as a fumction of temperature in different

atmospheres ., (Figure 3), and noted different steps in the resistivity
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(5)

curves,in agreement with Myers' work . In hydrogen, two steps of
rapid decrease were observed. 1In argon and vacuum, only one step

was observed. The first step in hydrogen at low temperature could be
due to the reduction of the surfa;e oxide layer or removal of adsorbed

gases, The subsequent step at higher temperature (in all atmospheres)

is due to sintering and bonding of metal powders.

(10)

studied the electrical resistivity

@, 7,

Grootenhuis et al
of sintered bronze (Figure 4). They replotted the works of others
8,11 to 15) on copper and nickel powders (Figures 5 & 6),and claimed
that in all cases the experimental data conformed to the straight line,
drawn from the point for solid metal to cut the x—-axis at a porosity
of 47.6%. This porosity corresponds to the maximum porosity, which can
be attained on packing equal sized spheres in simple cubic array.
Consequently, zero. conductivity was assumed for a simple cubic packing
of spheres, and the dincrease in conductivity with density was attributed
to increase in contact area between particles, and increasing interparticle
bonding. The rathér large scattér<in the result was caused by

difficulties in obtaining the data from various figures in the publications,

and the differencé in quality of the specimens used by the investigators.

I.2, QUANTITATIVE APPROACH

All fﬂese studies (so far listed) have been qualitative
in nature. A rigSrous mathematical approach to predict accurately
the conductivity 6f porous compacts from the known conductivity values
of the solidimatérials was not available. This is primarily due to the

fact that the paéking geometry of the random shaped powders is very
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complicated and it is very difficult to predict the resistivity of such

a network. However, the studies carried out on the thermal and
electrical conductivities of two phase systems;in terms of the volume
fractions of the two phases;have thrown much light in this field. The
equations derived for two phase systems, in many cases,allow one to
closely estimate the electrical conductivity of porous sintered materials,

by assuming one of the phases to be the pore phase.

A simplified approach is to consider the material as having
a regular orientation and a structure such as the parallel slabs shown
in Figure .7 . If the ;urrent flow is paraliel to the plane of the
slabs, they are equivalent to a parallel electrical circuit. The total

conductivity of the material o, is given by
o, = Viop + VoGyg = = - = — = - — ¢D)

where V| and V) are the volume fractions (equal to cross-sectional area)

and 0y and o) are the conductivities of each component.

I.e. S.‘.“.: (1"V2)9._1.+ Vo

02 _0'2

It gy >> 01> for éxample’component 1 being air,

m v,  --e---- (2)

If the slabs are arranged normal to current flow, they

are equivalent to a series electrical network and
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or ol 192 - e — == - - (3)

m = =———————————
Vlc2 + VZGl
and Sﬂ. _ 1
g, V2 + (1—V2)~£
91

In Figure 8 , equations (1) and (3) are plotted for g, = 1001.

(22)

Huttig has shown that all conductivity data on sintered
porous materials should fall within the region bounded by the two curves,
given by equations (2) and (4). These two equations define the upper

and the lower bounds for conductivity data (Figure 9).

The above equations are idealised. In practice, it is
essential to use equations derived for random spherical inclusions in
a continuous matrix phase,or spherical particles in a continuous minor
phase. Relationships applicable to random mixtures have been derived

(16)

by various authors from Maxwell's equation for a ‘continuous

matrix phase Oys with spherical dispersed phase aye The conductivity

(16)

of the mixture Om‘is given by

Om — 92 Vl(Gl - 02)

Og + 202 0] + 209
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V., and V

1

5 are the volume fractions of the dispersed and matrix phases.

When 0y >> 07, for example, phase 1l being spherical pores,

1
o =o0
m 2 1 4v. /2
1
2(1 - Vl)
=0, T S - - - - - === (6)
2+Vl

Equation (9) is included in Figure 8 and is found to satisfy some of

the experimental results. Similar equations derived by Juretschke et al(17),
Doebke(18), Torkar(193and Grekila and Tien(zo), all starting from

(16)

Maxwell's relation , are shown in Table I. These equations are
converted for applying to porous compacts and are also included in the
table. All these equations are found to hold good only for certain sets
of data, and for the final stages of sintering and hot-pressing. For

(21)

instance, Klar and Michael tested the equations on sintered copper
powder and found good agreement with Maxwell's equation (equation (6)),

but only at higher densities (> 80% bulk density), as shown in Figure 10,

(23) (24)
a

Mal'ko et al nd Litvinenko et al have considered
another set of equations for the electrical conductivity of porous

metal compacts, which are listed below:

(2 -.3v))
w92 9 (a)
m 214y (b)



12

o ==V, o0, —m——— — (c)

(22)

They were developed using Odelevskii's formulae for
statistical mixtures and matrix systems. These equations are similar to

those listed in Table I. Equation (a) was found to fit their

experimental results satisfactorily at higher densities.

I.3. OBJECTIVES OF THE PRESENT WORK

A literature survey reveals that there is no satisfactory
equation to predict the electrical conductivify of a powder compact
during the initial stages of sintering or hot—pressing. Investigations
carried out so far during the early stages of densification merely point
out, that the expérimental data scatter arouﬁd a linear rate of increase
of electrical cohduc;ivity with increasing density of hot-pressed
compacts. Towafdé the end of hot—pressing,4however, Maxwell's and other
similar equationslhave successfully predictéd the variation of the

0]

relative electrical conductivity Eﬁ-w1th the relative density (or volume
' 2

fraction V2; density of phase 1 - air— can be considered to be negligible).
The purpose of this investigatioh is:

a) to derive an equation to predict the conductivity of a porous compact
as a function of its relative density in the range 0.6 to 0.75,
Compacts of relative density 0.6 to 0.75 constitute the early stages

of densification during sintering and th—pressing, and

b) .to test the derived equation with experimental data for validity.



TABLE I

13

ELECTRICAL CONDUCTIVITY EQUATTONS FOR TWO-PHASE COMPOSITES

Equation for Two-phase Equation for Porous Comments Reference
System Body
G -0 V.(c, - 0,) 20,(1 - V.) )
A. Om T 25 = lc l+ 202 oy = ; T v——l—- Spherical Maxwell(l6)
m 2 1 2 1 Inclusions
o -0 V.(¢, - 0,) o,(1 - V.)
B. Om T 02 = 10 l+ 5 2 S 22 TV L Cylindrical Juretschke(l7)
m 2 1 2 ' 1 Inclusions
On = 91 Vploy - op) Ko, (1 - V) _ (18)
¢ 5 ¥ Ko, o (AFH ‘aT TK+V Kis a Doebke
m 2 2, 1 Function of
99/9)
D w7 %2
: 2 2 1/2
o + K(ol + 02)
o Vyley m o) Ko, -V (19)
= 7 5 1/ Om = ——I-(——_l_'*-V*—— Inter- Torkar
o, + K(c; +0.) "2 1 Penetrating
1 1 2
Phases
02('AV2 - B)
EL. T TV Same ,as two-phase Tetrakaideca-
» 2 system hedron Model
for Y2>0.25
E2, o= Or———L-“— Same as Two-phase Tetrakaideca~ Grekila (20)
(1 - VZ) system hedron Model and Tien

for V2<0°25
A, B and C = constants.
o] =
m

01 and 02 =

electrical conductivity of the compact,

Vl and V2 = Vdiﬁme fraction of the pore and matrix phases.

electrical conductivity of the pore and matrix phases,
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CHAPTER 2

II. THEORETICAL DEVELOPMENTS.

IT.1. GEOMETRIC RELATION AND CURRENT NETWORK

In the development of the theory, it is assumed that the
particles in a compact are monosized spheres (because a sphere is the
simplest and most symmetric shape) and that they are. arranged in a
regular three-dimensional array. During hot—pressing;they deform
plastically at the points of contact and form flat faces. The compact
density change as a result of this deformation, with respect to contact

(26)

radius, has been derived by Kakar and is given by

where D is the bulk~density of the compact at contact radius 'a'. R is
the instantaneous radius of the particle at neck radius 'a' and B is a

geometric constant which depends on the packing configuration.

First, consider the geometry of deformation of two spheres
in contact (Figure 11). Let the two spheres constitute an electrical
path. The equivalent resistances are shown. In the initial period of
deformation, the ﬁeck region will have a much higher resistance, rj,
(neglecting contaét resistance) as compared to the resistance rj of
the spheres. Hehée,the conductivity of the circuit will depend upon

the neck area ﬂaz

- and the thickness of the neck G (boundary width). The
total current path is (G + 4y'). The boundary width G can be assumed

to remain constant during neck growth and as G << 4y', the total path

length 4y ' = 4y,
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Figure 11. Geometry of deformation of two spheres in contact and
equivalent electrical network.
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Figure 12.. Spheres in two-dimensional cubic array and equivalent

electrical network.
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The spheres céh be arranged in a two dimensional cubic
network, as shown in Figure 12 , The corresponding resistance circuit
is also shown., If r is the resistance of each neck region, a vertical
column of spheres in Figure 12 will have a resistance of 2r (neglecting
resistance of the sphere). If there are n spheres in a horizontal
row, they constitute n parallel paths. As there is no flow of current
along a horizontal direction, the resistance of the network becomes
2r, If there are N stacking of spheres, each column will have a resistance
n
of (N - 1)r = Nr (since N >>1, N~ 1 = N). The circuit resistance becomes
N r. The principle can be extended to spheres arranged in a three-
n
dimensional array. Each sphere can now be contained in a unit cell.

The specific resistance of this unit cell is the same as for the spheres

packed in three dimensions.

I1.2, THEORETICAL MODELS

The basic systems of packing which give rise to space-filling

(29)

unit cells can be summarised as follows: (1) simple cubic (Z = 6),

(2) orthorhombic (Z 8), (3) body-centered cubic (Z = 8), and

(4) rhombohedral (Z

12), where Z is the coordination number. Of these
the b.c.c. packing is an unstable arrangement in a unidirectional field
of force (i.e. gravitational force). However, the b.c.c. packing gives
rise to a tetrakaidecahedron unit cell which has been extensively used

(D

in the theoretical models for sintering , grain growth etc.. For
theoretical purposes, it is assumed that each fype of packing is stable
and maintains its symmetry on application of pressure, and that the
material at the points of contact spreads symmetrically during deformation

to maintain the sphericity of the particle. The different modes of

packing are showh in the Appendix.
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i II.3. GEOMETRIC RELATIONSHIPS

a) Simple Cubic Packing

Consider a cubic array of spheres, deformed under uniform
hydrostatic pressure along the three mutually perpendicular directions.

Each sphere will have six flat faces formed as shown in Figure 13.

2 2
a

The unit cell in this case is a cube of side 2y,where y = (R” - 1/2.

)
The number of current-paths through the unit cell = 1. !
The area of current-flow = waZAand

aZ 1/2;

The path-length = 2y = 2(R2 - a’)

The conductivity of the unit cell,l/R (where Rm = resistivity) is given

m
by
1 1 1
R TR Tt (8)
m c i
where 1 .. . .
= conductivity of the solid, viz. sphere,
. .
and 1 .. . X Py
if-=_conduct1V1ty of the insulating phase filling the
i . .
rest of the unit cell, which is air in the case
. of porous compacts,
Now,
1 Ac Ai
—}i—=r O'C‘l"’]_:‘Ol —————————— (9)
m c i

where AC and Ai are the areas of current-flow, LC and Li are the path-lengths,
and o, and o, are the specific conductivities. Subscripts c and i stand

for conducting and insulating phases, respectively.

As o, > o (for air), equation (9) reduces to

>

1 c
R e OC ————————————— (10)
m c
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Figure 13. fGeometric relationship of simple cubic model
:and current-path (x - x).

18



19
For the cubic cell,

1
C .
Rm 2y

The specific conductivity of the unit cell O is

Ls 1
C,= % XF 2 — T T - m------ (11)
s m
where LS is the length of the unit cell,
and AS is the area of the unit cell normal to current-flow.
Substituting for 1 in equation (11) from equation (10), we get
R
" L A
g =—S—.—g.o-
m A L c
s c
m Ls Ac
i.e. P e 12)
c c s
For the cubic cell, LS = 2y and As = 4y2.
Hence the relative conductivity is
°n _ 2y | ma’
O’C 2y by
o . aZ
H=> g - - - - - - - - - - - (13)
9. 4 R™ - a

b) Orthorhombic Packing

Each sphere after deformation will have eight faces. The

deformed sphere for this model and its unit cell are shown in Figure 1l4.



( \ 2y

P

Figure 14. Geometric relationship of orthorhombic model
and current-path (x - x).
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In this case,
the number of current-paths = 1,
the area of current-flow = ﬂaz = A
and path-length = 2y = L .

For the unit cell, LS = 2y

A = 2/§y2
s
Hence,
on g A
8;.= T (equation 12)
c s
= 2y . Waz
2y 2/3y2
o 2
u a

B

2

g, 2/3 (R2 - a’)

c) Rhombohedral Packing*

(F.C.C. and H.C.P Packing)

Each sphere has twelve points of contact and forms twelve
flat faces, The resultant unit cell is a rhombic dodecahedron shown in
Figure 15,
The number of current-paths through the unit cell = 3
Therefore, the area of current-flow = 3wa2 x cos O,
where 0 is the angle between the centre to centre line of spheresin two

different planes and the direction of current-flow. The distance between

* Alternative aonroach in the Annendiv



Figure 15.

Geometfib relationship of rhombohedral model and

current-paths
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centres of any two spherés in contact during deformation = 2y,3

and cos 6 /2 /V/3 , from geometry.

Hence,A = 3ra® x V2 V3,
The length of current-flow through the sphere = AB =-¥§ y = L..
V3
. /8
For the unit cell, length of current-flow =—y =1
@ S
Area projected normal to current-flow = 2/3&2 = A_.

n Ls Ac
el . (equation 12)
c c s
B, |
_ 3 /6 na’
/8 2/3 y2
-y
3
o 2
i.e. _m a

Q
Sl
~
7o}
i
o)
~

d) (i) B.C.C. Packing*

The shape of the deformed sphere is schematically represented
in Figure 16. .There are eight points of contact during the initial
stages of deformétion.

The number of current-paths = 4,
Area of current-flow = 4ﬂa2 cos 6,
where 6 is the angle between centre to centre line of two spheres

in contact and the direction of current-flow.

* Alternative approach in the Appendix.



Figure 16.

Geometric relationship of b.c.c. model and
current-paths.
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1
cos 6 = — , from geometry.
V3
< A = 4ﬂa2 x1 .
C —————
V3
The length of current-flow = AB = g~-y =L..
/3
For the unit cell, L = g-—y
® V3
Area normal to current- A = ié_y2
flow s 3
v Sg.= EE.. ﬁg (equation 12)
o A
c c s
= 47a” X l—-x-é— 5
V3 lé6y
Om ) ‘/_3t," a2 _______
o] 4 R2 - a2
c

(ii) Tetrakaidecahedron Packing

This is the same as b.c.c. packing,with six additional
points of contact giving rise to fourteen flat faces. The unit cell
is shown in figure 17. There is an additional current-path through
face radius a,.

2
4+ 1

Number of current-paths

i

2
yl and LC Hyz

Lengths of currenf—flow are Lc
1 /3 2

1 2.1
where y1= (R2 ~ alz) /2 and Y= (R2 - 2, ) /2
L = AB ; -2 3 L = CDh = 2
c; T VIS c, 72



Figure 17.

N

Geometric relationship of tetrakaidecahedron
model and the additional current-path.
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Areés of current-flow are A = 4ma 2 x cos B and A = ma, ,
¢y 1 ¢, 2

where cos 6§ = l—-, from geometry.
3

For the unit cell, LS = g;yl H LS = 2y2 .
1 V3 2
. . 16 2
Area of unit cell normal to current-flow is AS =37
5 L A L A
m_ 1, 1 P2 %
o, L A L A
¢y s ¢y s
4 Z WZ
e W B .
16 2 16 2
3 Y1 371
. B,
Owsyl_zyz
Substituting for ¥q and simplifying,
o a 2 a 2
m i 1 2
) 3 2 T3 2
o 4 R™ - a R™ - a
c 1 2

IT.4. DEDUCED RELATIONSHIPS

a) When R = R,

In all four cases, the final form of the equation can be

represented by

Q
N

27

L (17)
5 |
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where o is a constant,dependent upon deformation geometry.

The compact density change with respect to contact radius,
as given in equation(7)ycan be modified by using a = o when D = Do’

i.e. the initial packing density before deformation. This gives

Where Ro is.the initial particle radius before deformation. As the
deformation proceeds, the value of R increases, as shown by Kakar(26)
(Figure 18). It can be seen from the figure that for a/R < 0.25,

i.e. for small deformations, R remains approximately constant (R = RO).

Then,

o ltj
Il
N
()
1
1
1
|
1
1
|
|
1
|
1
I
|
1
VN
—
O
N

~——
~
w
1
—
u
ro
o)
~
N
o
N

Om D 2/3
LN 1 T (21)
Oc (Do)

b) When R¢ RO

A more rigorous derivation, taking into account the

variation of R, can be obtained as follows:
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.

1
D = (equation 7).
B(R2 aZ 3/2
..‘ B2/3 D2/3= 5 ]. 2
R™ - a

Multiplying both sides by . Rz, we get

2
D2/3 62/3 R2 - — R ;
R™ - a
2 2 2 a2
DY/3 %3 R% - 1= 52— e e - (22)
R™ - a .

The above geometry of deformation is valid only till a
critical stage is reached when the flat faces formed on the spheres begin
to touch each other. Table II shows the values of a«,RB, Dd and (a/R)
critical for the different packing geometries.The relative conductivity
values for different relative densities have been calculated using the
relationship (23) for different_packing geometries. The results are
plotted in Figure 19. Equations (21) and (23) are the same equation at

the initial stages of deformation.
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TABLE IIT
Type of o B8 D
PZEking 0 (a/R)
in percent Critical

Simple cubic w/4 8 52.36 1/v2
Orthorhombic  m/2V3 4/3 60.46 1/2
Rhombohedral n/V2 4Y2 ' 74,05 1/9

b.c.c. /374 32/3 68.02 1/,

9

IT.5, PRESENT VS. PREVIOUS CONDUCTIVITY EQUATIONS

(16)

Figure 20 shows the theoretical curves of Maxwell and

(19)

Torkar "

calculated for spherical pores in a continuous matrix. A

19)

value of 0.72, as suggested by Torkar in his paper( , 1s used for the
structural constant K (equation D Table I). The theoretical curves

of the present investigation are superimposed for comparison. The present
theory predicts much lower conductivity values for the compacts.

This is due to the fact that equatioﬁ(21)predicts zero conductivity when
D = Do’ i.e. for the 'green compact'. This need not be so, as discussed
in a later chapter. The conductivity o' of the green compact causes
the zero point of the curves to be shifted upwards. Consequently, the
theoretical curves lie closer to the Tquar equation. The zero-shift
has to be experiméntally determined by measuring the conductivity of the
green compact, as the relative conductivity of the green compact may

vary from almost zero for non-metallic materials to a value between

0.2 to 0.3 for metallic systems.
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CHAPTER 3

ITI.  EXPERIMENTAL VERIFICATION OF THEORY

To test the theoretical equation (21), it is necessary to
determine the electrical resistivity (or conductivity, om) of a compact
as a function of relative density. Initial attempts to test the models
with porous oxide compacts were not succeszuLvas the resistivity of
porous A1203 or MgO compacts was found to bevhigher (>1016 oﬁm—cm below
lOOOOC) than any die materials that can be used for hot-pressing. For
this reason, the models are tested with spheres of soda-lime-silica
glass, .having a resistivity between 104 to 102 ohm-cm in £he temperature
range 550 to 650°C. The glass spheres used are of two sizes - 0.70 mm
and 0.42 mm average diameter (Figure 21, a § b), the nominal composition
of which is $iO :70%, A1203 2%, CaO 127%, Mg0 2%, and Na,0 10%. The

2

glass spheres were supplied by the 3 M compaﬁy, St. Paul, Minnesota.

The model is also tested on nickel spheres of 0.65 mm average
diameter (Figure 2lc), supplied by the Sherritt Gordon and Company, Fort

Saskatchewan, Alberta.
III.1. EQUIPMENT

It was necessary to measure the conductivity of glass at a
sufficiently elevated temperature(550 - 6500CLas the room temperature
conductivity was greater than 1015 ohm-l—cm_l. The equipment was built
to measure the conductivity and the bulk density of the glass compacts
simultaneousiy dﬁring hot~pressing. A schematic diagram of the
equipment is shoﬁn in Figure 22. Stainless steel plungers were used as

electrodes. Small sections of transparent silica glass tubing of 17 mm

diameter were used as the die material, as silica glass has a very high
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(a) (b)

(c)
Figure 21. Photographs of a) glass spheres, 0.42 mm average dia.,
b) glass spheres, 0.70 mm average dia.,
c) nickel spheres, 0.65 mm average dia.

Magnification x 10.
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ele?trical resistivity' below 700°¢C (>1016fohm—cm). The die énd the
eleﬁtrodes were inserted into a recrystallised alumina tube and held by

a stainless steel pin, which also served as an electrical lead. The
alumina tube was lowered into the furnace. Shrinkage was measured with

a dial gauge having a sensitivity of 0.0002" per division. This

gauge was mounted on the alumina tube with its pin resting on a porcelain

rod fitted into the upper electrode.

Electrical resistance was measured with an Impedance bridge

3 o 107 ohms), operated at 1K ¢/s and 6v. A simple loading

(range 10~
device, made up of a lever arm and pans, was .used, as indicated in
the figure. A maximum of 25 lbs. could be loaded on the pans, which

was sufficient to hot-press the glass compacts to a pressure of 50 p.s.i.,

in the temperature range 550 - 650°C.
I1I.2. PROCEDURE

The glass spheres were cleaned with dilute hydrofluoric acid,
washed and dried with isopropyl alcohol to eliminate adsorbed water. A
- weighed amount o£ the glass spheres was loaded into the die, tapped
and well-shaken in order to obtain a uniform packing. The as—compacted
density was calculated from the initial volume of the compact and true
density of the giéés which was determined by the pycnometric method. It
took 20 to 25 minutes for the specimen to réach the furnace temperature,
after the assembj§ was introduced into the fﬁrnace. During this heating -
up period no appreciable shrinkage was recorded on the dial gauge. The
experiments were:carried out in dry air, as presence of water vapour
and low partial ﬁfessures of oxygen have beéﬁ known to affect the

(28)

electrical conductivity of glass. A.C. resistivity was measured in
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preference to D.C. to avoid electrode polarization, as glass is usually
an ionic conductor. A calibration experiment was initially performed

(without the glass spheres) to standardize the shrinkage curves.

III.3. MEASUREMENT ON NON-POROUS GLASS

In order to test equation (21), it was necessary to know
the conductivity of the non-porous glass. For.this, the following
procedure was adopted: a batch of glass spheres was melted in a
platinum crucible at 1500°C and held at this temperature for 24 hours
to eliminate pores. After 24 hours, the crucible was rapidly withdrawn
from the furnace; The glass was cast into ﬁfe—heated stainless steel
moulds. It was énnealed in air at 600°C for eight hours and furnace
cooled, Thin specimens of 17 mm diameter and 5 mm thick were cut with
an ultrasonic vibrator and silicon carbide suspension in petroleum
liquid. Both faces of the specimens were ground flat and as parallel as possible
to each other on the diamond-polisher. To énsure good electrical contact
with the eléctrodes, gold was vapour deposifed on the faces of the glass
with a guard—ri;g on one side. The purpose'of this guard-ring is to
prevent surface leakage. The glass specimén was equilibrated at different

temperatures for different periods, for the conductivity determination.

III.4. PROCEDURE FOR NICKEL SPHERES

The nickel spheres were initially cleaned and then held in
a stream of cracked ammonia at 6500C for 4 hours to reduce surface oxide.

The hot-pressing was carried out in a Philips - 12 KW induction unit.

"

_An %" Inconel die with a graphite sleeve and Inconel plungers were used
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for hot-pressing (Figure 23). A weighed amount of spheres was tapped
into the die,with graphite spacers between the spheres and the rams to
prevent adherence between nickel and the Inconel. The die and plunger
assembly was mounted on a hydraulic press and enclosed in a quartz
tube., An inert atmosphere was maintained around the die during
hot~pressing which was carried out under 7200 p.s.i. and at 800°C. The
shrinkage was measured with a dial gauge. The sample was cooled to
room temperaturé in the die and them removed. The apparent density

was determined from the weight to volume ratio. True density was
determined by the pycnometric method. Specimens of different relative

densities were produced following the above procedure.

D.C.- conductivity for the hot-pressed specimens was measured
at room temperature using a Kelvin bridge (Pye Cat.no. 7415). As the
change in electrical resistivity of nickel compacts is in the order of

several micro-ohms, the following procedure was adopted.

The compact was mounted inside a vise made of lucite, A
steady current of 7 amps. was passed thfough the compact, To obtain
uniform current distribution across the croéé;sectional area,Athin
lead discs (reagént grade) were pressed against the sides of the compact;
the current terminals were held against the lead discs by screws
provided on either side of the vise. Two potential probes were introduced
as shown in Figure 24 at a fixed distance apart. The probes were
made of nickel (to eliminate contact potentials with the specimen). Their
ends were narrowed to small hemispherical tips to ensure good electrical

contact. The nickel probes were set in two reamed holes to prevent any
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Figure 24.

Photograph of the vise used to measure the
electrical conductivity of nickel compacts.
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sideways movement. A number of measurements were made using the

Kelvin bridge and a deflection galvanometer (Tinsley Type S.R. 4/45 ),
It was observed that any variation in the pressure of the probes against
the specimen produced insignificant changes in the readings. The
electrical conductivity was calculated for each specimen from the

measured resistance values,
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CHAPTER 4

IV. RESULTS AND DISCUSSION

IV.1. CONDUCTIVITY VS. DENSITY FOR GLASS

The electrical resistivity of the compacts of glass spheres
was measured continuously as a function of'density during hot-pressing
under isothermal conditions. The volume of the compact was calculated
using the height of the compact at any stage of densification (indicated
By the dial gauge) and the diameter of the die, which remained constant.
The electrical conductivity o, Was calculated from the resistance
measurements. The o, values are plotted as a function of relative
density for threé different temperatures as shown in Figure 25a and b. The

conductivity of the compact increased with increase in relative density.

IV.2. CONDUCTIVITY VS. RELATIVE DENSITY FOR NICKEL

Compacts of nickel spheres were hot-pressed at 800°C under
a pressure of 7206 p.s.i. for differing peridds to obtain different
relative densitieé. These compacts were subsequently used for D.C.
conductivity meaéﬁrements at room temperature. The results are plotted

as a function of relative density, as shown in Figure 26.

IV.3. TEST OF THEORETICAL MODELS

The theoretical models were tested by comparing the results

with the general .equation

o]

2o (9—-)2/3 S I [ (21)

0
o
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- -4
cm ') x10

m-

CONDUCTIVITY (oh

10

46

Nickel (Room Temp) P

L ! | | | \
.6 .65 N4 75 8 85 .9

RELATIVE DENSITY

Figure 26. Conductivity vs. Relative density for nickel compacts
at room temperature.
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Where o and D are experimentally measured variables;

o, = a material constant and o = a geometric constant,

DO is the initial bulk density, which is constant for a given experiment.

D
o

shows that at every temperature the plot is linear with a slope close

2
Hence, log o is plotted wvs. log[(]—)-—) /3 _ .l:l in Figure 27, which

to unity for most of the data., This agreement between the theoretical
prediction and the experimental data confirms the validity of the above
equation. The deviation from the predicted curve,in the initial stages
of densification,is due to particle rearrangement in the density range
60 to 66%. The density increase in this range is caused by particle
sliding as well as by plastic deformation, rather than by plastic
deformation alone. This particle sliding changes the coordination
ﬁumber and establishes a greater number of current paths. Beyond 667%,
the density increases mostly by neck growth at the points of contact

and the theoretical equation is obeyed.

IV.4, ELECTRICAL CONDUCTIVITY OF GLASS

As the temparature is raised, the conductivity of solid
glass rapidly increases and over a considerable temperature range, the

conductivity can be represented by an Arrhenius type of equation,

o e—Q/RT
o
where o, = a temperature independent constant
Q = experimental activation energy for conduction.

Rand T have their usual meanings.

(29)

Terai has pointed out that in sodium aluminosilicate

glasses of composition similar to that used in this study, the electrical
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conductivity is electrolytic. The current is mainly carried'by the
sodium-ions moving through the 'holes' in the structure, and the
.'transport number of sodium ions is close to unity for sodium

aluminosilicate glasses.

To study the temperature dependence of electrical conductivity,'
the logarithm of the conductivity of the non~porous glass is plotted
against the reciprocal of absolute temperature in Figure 28. The

conductivity of a glass reaches an equilibrium value at a given

30).

temperature only after a long interval of time (Kaneko and Isard
However, the coﬁductivity values measured in ﬁhis work after a fixed

time interval at differént temperatures, lie on a straight line.

Figure 28 shows that the log conductivity vs, 1/T relationships

after constant intervals have nearly the same slope. In order to measure
the equilibrium conductivity at 6OOOC, the specimen was held for 72

hours at this temperature till it attained a steady value, which was

3 1 -1

3.5 x 107~ ohm— cm ~. This value is now substituted for 0. in equation

(21Y, Thus the only unknown parameter a in equation (21} can be

calculated, The value of o was found to be 0.9,

Equation (21 )can be rewritten as,

)2/3—1 B —— T

UIG

log o, = log o, - log o - log ( S
Using a = 0.9 and equation (24),log o, values at different
temperatures were calculated and plotted in Figure 29. This figure also

includes the logarithmic conductivity values for a porous glass
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(relative density = 0.7). For the porous glass, equation(2l)can be

rewritten, replacing o, by S, e_Q/RT:.

2/
o =aa, (%}-) 3 -1]e Q/RT

At a constant relative density, log o VS-. 1/7 gives the
experimental activation energy for porous glass, which has been found

to be the same as for the non-porous glass.

The lines in Figures 28 and 29 have a slope of (0.67 * ,05)x 10“4

degrees Kelvin and the corresponding activation energy for electrical
conductivity is 30 * 3 kcal/mole. This value is similar to the values
reported in literature (25 to 30 kcal/mole) for sodiumaluminosilicate

glasses.

IV.5., RELATIVE CONDUCTIVITY VS. RELATIVE DENSITY

Figure 30 shows the plot of relative conductivity vs.
relative density for glass spheres of two different sizes at 550°C.
The calculated 0, values from Figure 29 were used for calculating the
relative conductivity (om/cc) at different temberatures. The relative
conductivity values follow the general trend of the theoretical curves,
which are superimposed in the figure for comparison., Figures 31 and
32 show similar plots for the results obtained at 600°C and 650°C. The
deviation in the range .60 to .66 relative density is again indicative

of the contribution from particle rearrangement.

IV.6, ELECTRICAL CONDUCTIVITY OF THE 'GREEN COMPACT'

The theoretically derived equation(21)has the boundary

condition that when D = D o, = 0 i.e. the electrical conductivity of

(o 14
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the compact before deformation is zero. However, the particles in
contact with each other,before hot-pressing,do have a certain
conductivity. As a result equation(21)should be modified as

2/3

— .t D T
o, =0 + ao (Do) 1 (25)

where ¢' is the electrical conductivity of the compact before deformation.

Equation {25) can be rewritten as,
m D .
pU —a(D) s (26)

Thus, the experimental results have to be corrected for a zero—error
along the ordinate. For glass this error is negligible, as the relative
]

.o o . .
conductivity of the green compact, 5 1s < .005, below .63 relative
c

density.

The results for compacts of nickel spheres demonstrate the
~effect, when o'/o_ is rather large (Figure 33). The relative
conductivity of the green compact ( .60 relative density) was found to
be 0.18., The results were corrected for this error and replotted in

Figure 34, This corrected data fit the theoretical models more closely.

IV.7, VERIFICATION OF THEORETICAL MODELS WITH PREVIOUS RESISTIVITY DATA

As discussed previously, a large amount of data are available
on the resistivity of metal powder compacts. Although most of these
compacts were made-up of random-~shaped particles, it would be interesting

to see if any of these data fit the equation derived in this work. In
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order to do this, the work of Grootenhuis appears to be the logical
choice, as both densit§ and resistivity values were reported in his
work, Other resistivity data were mostly reported as a function of
temperature and pressure and thus could not be tested with the
theoretical equation. Some of the results of Grootenhuis shown earlier
in Figures 4 to 6 are replotted in Figure 35 and compared with the
curves drawn from the present theory. The curve for orthorhombic
packing is corfected for the zero-error and shifted upwards. A
reasonable agreement with the experimental data can be seen, which

again confirms the validity of the derived equation.

IV.8. PACKING GEOMETRY INSIDE THE DIE

It is evident from the Figures 30 to 34, that the experimental
data follow closely the theoretically derived equation for the
hexagonal prism model in the initial stages of densification. This
agreement indicates that the overall packing geometry of spheres inside

the die may be similar to the orthorhombic packing.

When a die is randomly filled with a number of monosized

spheres, with intermittent shaking and tapping in order to achieve a
uniform packing, the spheres tend to spread laterally to achieve the
most stable configuration. However, the die-wall offers resistance to
lateral spreading. As a result, a certain degree of stability of

s (3D
packing is maintained inspite of an unstable configuration. McGeary
studied the various modes of filling the die and the effect of container

size on the packing density. His results are shown in Figure 36. At

D values greater than 10, the packing density of the compact reaches
d
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a maximum of 62.5% of the theoretical density. This value is close to

the as-compacted density for orthorhombic packing.

(32)

Smith, Foote and Busang studied the coordination
number of spheres in a die resulting after shaking and tapping. Their
results showed a Gaussian distribution of the number of spheres with a
given coordination number. The average coordination number of the
spheres was close to 8. Thus these results confirm‘that the initial
packing of the spheres inside a die is close to orthorhombic, as was

observed in this study.

Iv.9, DEFORMATION GEOMETRY INSIDE THE DIE

The width of the die does not permit an integral number of
spheres across the diameter; hence the four ideal modes of packing
discussed in section II do not exist across the diameter of the die,
since a certain number of spheres are lightly held aéainst the die-wall
(due to the die-wall effect). On initial application of the load, the
loosely held spheres rearrange, giving rise to a higher relative density.

Duffield and Crootenhuis(33), and Kakar and Chaklader(34)

reported a
volume change of 1 to 4% for glass spheres of 0.5 mm average diameter,
when a load of 1000 p.s.i. was applied at room temperature. As no’

particle (sphere) fragmentation was observed, this volume change was

attributed to the particle rearrangement discussed above.

On further loading, the particles begin to deform. Kakar

and Chaklader(3a)

studied the deformation geometry of spheres in
randomly filled dies. Although individual colonies of rhombohedral or

tetragonal deformation were observed, the majority of the spheres showed
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a hexagonal prism mode of deformation., The mean coordination number of
spheres during deformation was between 8 and 9. This indicates that
the orthorhombic packing configuration is maintained during the initial

stages of deformation, as was observed in the present study.

IV.10. EFFECTS OF OTHER PARAMETERS ON CONDUCTIVITY MEASUREMENTS

a) Surface Effect

Surface conduction has been known to affect the electrical
conductivity measurements of dielectric materials. At temperatures
below 3OOOC, the elctrical conductivity of glass is greatly influenced
by its surface condition, Traces of water on the surface drastically
increases the conductivity of glass(28). Above BOOOC,'the contribution
of the surface conductivity to the total conductivity becomes less significant,
as the ionic conductivity of glass increases markedly. The surface to
volume ratio also affects the surface conductivity, but for spheres this
ratio has the minimum value and hence, the surface conductivity can
be expected to be minimum for the compacts of spherical particles. The
specific surface afea (i.e. sz/gm) of a particulate compact has the
most significant effect on the surface conductivity, as'compacts of very
fine particles will have a large.surface area available for éonduction.
In order to minimiée the contribution from surface conduction on the

overall conductivity, large spheres (0.4 to 0.6 mm diameter) of glass

were used for conductivity measurements.

b) Orientation Effect

As previously discussed in the theoretical models,
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o Ac. LS

T r '} ~ oo m----- (12)
c s o

This equation reduces to

a A

L&

c A
c s

since in all four models, LC = Ls’, The direction of current-flow in

the models discussed has been considered to be perpendicular to the face
of the unit cells. In practice, however, one has to consider cases when
the current-flow is parallel to the face-diagonal or the cube~-diagonal
of the unit cells. When the orientations of the unit cells are varied
with respect to the direction of current—flow; the number of paths
through the unit cell changes, but so do the effective area of current-
flow and the area of the unit cell normal to current-flow. The total
effect of the ch;nge of orientation with respect to the direction of
current-flow is such,that the conductivity of the unit cell is unaltered
regardless of its orientatioﬁ, as shown in the appendices., Hence,

the resistivity of systematically packed spheres does not change with
the direction ofvcurrent—flow. However, the packing of spheres inside

a die‘is not systematic, and this could cause large variations in
conductivity depending on the direction of current-flow. Any change
in the position of neighbours of a given sphere from the ideal configuration
could increase or decrease the number of current—péths and the effective
area of current-flow. The conductivity is a very sensitive function

of packing geometry.‘ The results obtained in the present-work on glass

and nickel only indicate that any such deviations due to random filling
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appareﬁtly nullify one another. Thus, the overall conductivity-density

relationship follows the orthorhombic model reasonably well,
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V. SUMMARY AND CONCLUSIONS

The electrical resistivity of a powder-compact during
hot—pressing is calculated using the geometry of deformation of particles
under load. The particles are assumed to be monosized spheres. Aﬁ
equation relating the electrical conductivity to the relative density
for different ideal packing arrangements has been derived, which is
om/oC =0 (D2/3 52/3 Rz ; 1). The theoretical equation was compared
with hot-pressing data on glass and nickel spheres. The following

conclusions can be made.

1) The general theoretical equation proposed is found to be
obeyed by the particles during the initial stages of hot-

pressing (in the range 0.65 to 0.75 relative density).

2) A deviation in the range 0.6 to 0.65 relative density was
encountered, which could be due to particle rearrangement

at the beginning of hot-pressing.

3) The relative conductivity vs. relative density plots showed
that the overall packing of spheres inside the die is close
to orthorhombic, in agreement with the observations of

previous studies.

4) The theoretical equation has been modified in order to take
into account the relative conductivity 'of the green compact.
The modified equation fits the data on metal-compacts obtained

in the present study and in previous investigations.
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VI. SUGGESTIONS FOR FUTURE WORK

1) It would be interesting to derive the resistance of a
sphere in terms of thé contact areas from potential theory and La Place's
equation in three-dimensions. This will give an equation which would
predict the resistance of the green-compact as well as the resistance

during deformation.

2) The coordination change in the initial stages of hot-pressing
could be closely followed by evaluating any change in the parameter 'o'

in this range.

3) The theoretical equation could be tested with more resistivity
data of random-shaped particles. Similarly, the particle size effect on
the relative conductivity should be experimentally determined and its

effect on the theoretical predictions should be evaluated.
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APPENDIX I 69

. There are five simple and systematic modes of packing of
uniform spheres. These are shown in Figure 37 (from Morgan(35)) and

can be described as follows.

1. Cubic Packing

This packing is constructed by placing spheres in square
formation {(figure 37a). Spheres in second and subsequent layers are
placed vertically over those in preceding layers. Such an arrangement

makes this packing most open and least stable.

2. Orthorhombic Packing

Figure 37 ¢ and d shows that this type of packing can be
obtained either‘be stacking spheres in second layer horizontally, offset
with respect to those in the first layer by a distance R (sphere radius)
along the direction of one set of rows, or by stacking vertically over those
in-first simple rhombic layer. It turns out that these two ways of packing

are identical in nature, though of different orientation in space.

3. Body-Centred-Cubic Packing

Figure 37 b shows this type of packing. It can be seen that
if the spheres in the third layer have to lie vertically over those in
the first, it forms a very unstable arrangement in a unidirectional

force field.

This is constructed by placing spheres in second layer horizontally,

offset with respect to those of the first layer by a distance R, along the
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direction of one of the sets of rows, All the layers are simple rhombic

in this case.

5.  Rhombohedral Packing.

As in the case of orthorhombic packing, this can be
constructed either from square-layer type base, or from simple rhombic-
layer type base. But in this case, the spheres in second layer are
horizontally offset with respect to those in the first layer. This
offset is in a direction bisecting the angie between two sets of rows
by a distance of R/2 in the case of square layer formation, and of
2R//§ in the casé of simple rhombic layer féfmation. These two ways
of packing are identical in nature, though of different orientation in

space.

Table III summarises the basic methods of simple and

systematic packing of uniform spheres,
TABLE TII

Basic Methods of Packing and their Construction

Method of Coordination : Density
Packing Number %
Simple Cubic 6 52,36
Orthorhombic 8 60.46
Body-Centred-Cubic 8 : v 68.02
Tetragonal ' 10 69.81

Rhombohedral 12 _ 74,05
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(a) Cubic (b) Body-centered cubic
(¢) Orthorhombic (d) Orthorhombic

(from cubic base). (from rhombic base).
(e) Rhombohedral (f) Tetragonal.

(from cubic base;
face-centred cubic).

(g) Rhombohedral (h) Rhombohedral
(from rhombic base; (from rhombic base;
face-centred cubic). close-packed hexagonal).

Figure 37. Basic systems of spherical packings (After Morgaéﬁ)_
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APPENDIX II

A, Theoretical Calacuations

The theoretical values are calculated using equation(23)for

different packing arrangements.

9]
— = 036238 - 1) - ---o- (23)
(o4

Equation(21)is the same equation as above for & < 0.25.

Values of R and D for different-% ratios are read from Figure 18

(which gives R values) and Figure 38 (which giVes D values), respectively.

(Ref. 26). R has arbitrary units.

Values of a, B, and DO for different packings are given in

Table I1 (Chapter II).
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1. Simple Cubic Packing

74

2 . %
O—C

0 0.620 52. 36 0

0.05 0.620 52.56 0.002
0.10 0.620 53,15 0.008
0.15 0.620 54.15 0.018
0.20 0.620 55,57 0.033
0.25 0.621 57.42 0.052
0.30 0.622 59.75 0.078
0.35 0.624 62.58 0.110
0.40 0.627 65.94 0.150
0.45 0.631 69.87 0.199
0.50 0.637 74.39 0.262
0.55 0.646 79.59 0.341
0.60 0.660 85.09 0.442
0.65 0.679 90.84 0.575
0.70 0.710 95.94 0.755




2, Orthorhombic Packing
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% R D% SE
%
0 0.620 60.46 0
0.15 0.620 62.51 0.021
0.20 | 0.620 64.12 0.038
0.25 0.622 66.21 0.061
0.30 0.623 68.77 0.090
0.35 0.625 71.82 0.127
0.40 0.629 75.34 0.173
0.45 0.635 79.27 0.230
0.5 0.643 83.51 0.302




3. Rhombohedral Packing
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R R Py _
O‘C
0 0.620 74.05 0
0.15 0.620 76.53 0.051
0.2 0.621 78. 44 0.093
0.25 0.622 80.84 0.148
0.30 0.624 83.70 0.220
0.35 0.628 86.91 0.310
0.40 0.633 90.32 0.432
0.45 0.642 93.65 0.564
0.50 0.656 96.41 0.741




4, B.C.C. Packing
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: : g‘ﬂ
C
0 0.620 68.02 0
0.15 0.620 70.33 0.031
0.2 0.620 72.14 0.057
0.25 0.622 74,48 0.091
0.30 0.623 77.37 0.135
0.35 0.625 80. 80 0.190
0.40 0.629 84.76 0.259
0.45 0.635 89.18 0.345
0.50 0.643 93.95 0.454




a = 0.70 mm average diameter; b

B.

" EXPERIMENTAL RESULTS

D =0.632 ;0
o : c

1, Glass at 550°C

= 0,42 mm average diameter

= 1,27 x 10~

3

ohm—l— Cm

-1
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O ¥ '10_5 5 ( 2~3/3_ {] . 10_2 SE

ohm- cm_1 Do %

a b a b a b a b
1.54 1.60 0.658 0.645 2,94 1.58 0.012 0.013
2.76 3.57 0.661 0.650 3.25 2,11 0.022 0.028
3.71 7.34 0.664 0.662 3.57 3.36 0.029 0.058
5.80 9.31 0.670 0.671 4.19 4,29 0.046 0.073
7.33 10.70 0.673 0.677 4,50 4,91 0.058 0.084
8.67 11.88 0.679 0.687 5.12 5.94' 0.068 0.09%4

13.41 14.80 0.701 0.703 7.38 7.58 0.106 0.117
14,09 15,89 0.712 0.707 8.50 7.99 0.111 0.125
16.76 17.34 0.725 0.721 9.82 9.41 0.132 0.137
18.04 21,47 0.733 0.75 10.06 12,33 0.142 0.169
18.53 24,13 6.74 0.765 11.33 13.52 0.146 0.189
20.23 27.09 0.751 0.78 12.43 14.31‘ 0.16 0,213




= 0.64

2. Glass at 600°C

Do . = ohm ~-cm

o X 107% . [(2 )2/3_ EIX 10-2 m

ohm cm—1 Do ) cc

a b a b a b a b
0.40 0.19 0.657 0.644 1.71 0.46 0.011 0.005
1.13 0.81 0.660 0.661 2.07 2.21 0.031 0.023
2.56 1.76 0.678 0.67 3.92 3.1 0.071 0,049
3.03 2,20 0.687 0.675 4, 84 3.56 - 0.084 0.062
3.81 3.09 0.692 0.690 5.35 5.16 0.106 0.087
4,79 4.81 0.724 0.728 8.57 8.97 0.133 0.136
5.44 5.28 9.87 9.91 0.151 0.15

0.737

0.738




3. ‘Glass at 650°C

D_ = 0.63 0_ = 6.45 x 107> ohm tocy!

O * 10 ) D (2) ?3_ 1| x 1072 gﬂ

ohmzlcm— 0 ¢
a b a b a b a b
2.43  1.62  0.667  0.665 3.88 3,67  0.037  0.026
3.65  3.47  0.676  0.678 4,81  5.02  0.056  0.055
4.85  5.95  0.684  0.691 5.64 6.36  0.074  0.095
6.42  6.72  0.695  0.700 6.77 7.28  0.098  0.107
7.71  7.74  0.714  0.712 8.70 8.50  0.118  0.123
'8.65  8.34  0.724  0.722 9.72 9.51  0.132  0.133

9.26 12.35 0.731 0.778 10.42 15.11 0.141 0.196

10,75 12.61 0.752 0.79 12.53 16.29 0.164 0.200
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‘4. Nickel at Room Temperature

o, = 14.62 x lO4 ohmi} cm_1

éjm
ohm__.1 cm 1 Cjm

4 D R
x 10 - c
2.63 0.602 0.180
3.79 0.646 0.259
4,87 0.688 0.333
4.95 0.692 0.339
5.34 0.715 0.365
5.95 0,720 0,407

9.8 : 0.877 0.67
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APPENDIX III

THEORETICAL MODELS FOR DIFFERENT ORIENTATIONS OF THE UNIT CELL

1) Simple Cubic Packing

Consider the current-flow along a face-diagonal (Figure 39a).

Number of current-paths 2.

2

Area of current-flow 2ma = A

1
X — c
V2

Area of the unit cell normal to current flow = A/E.yz~

.. o A
RN+
o A
c s

_ VIl

A/E‘yz

2

= a

4 R2 - a2

2) Orthorhombic Packing

Consider the current-flow normal to a prism-face (Figure 39b).

-~

Number of current-paths through the unit cell = 3;
one path lies completely inside the unit cell and the other two are

shared by three unit cells a-piece.
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Figure 39. Geometric relationships for the unit-cells, in different
orientations with respect to current path.



Hence effective area of current-flow through the unit cell ~

2,2 2
= ma + 5 ma cos 0, where

3
cos 6 = %,from geometry.
Hence _ A = ﬂaz + l-ﬂaz
c 3
= 2 a2
3 .
A = ﬁz—x 2y .
* V3
. o A
.. = __c
o A
c s
_ 4 waz - m a2
30042 2/3  R% - a2
/3

3) Rhombohedral Packing

Consider an F.C.C. unit cell. Let the current-flow be

parallel to the edge (Figure 39c).

Effective number of current-paths = 8.

S Area of current-flow is
2
= 8ra  cos O , where
1
cos g = = from geometry.
/2—- b
A = 8y2
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Figure 39. (c & d).Geometric relationships for the unit-cells in
different orientations with respect to current path
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Hence o] A
L .
g A
c s
ZE = 8ﬂa2 X 1 X 1
i.e. = =
o V2 8y2
c
2
=1 a
V2 R2 - a2
4) Alternative Approach for H.C.P. Packing

From Figure 39d,

Number of current-paths = 9,.
2 .
Ac = 9ma” cos 6, where
cos 6 = — , from geometry;
/3
2
and AS = 6/3 y .
o .SE = ﬁE.= 9 a2 21
o AS /3 6/3 y2
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5) Alternative Approach for B.C.C. Packing

Consider the current-flow along the edge (Figure 39%e).

Number of current-paths = 4 .

AC = 4ﬂa2 x cos 8 , where

cos § =~l from geometry;
3
2
and A = 16y .
s 3
v % Ac 4ra 3
—_——— = I —e—— X 2
o A /3 16y
¢ s
4 R? - 42

Consider current-flow along the face diagonal (Figure 39f),.

Number of paths through the unit cell = 2.

AC = Zﬂa2 cos 8, and cos © =(Z— , from geometry.
/3
I . 2
AN by 22y 82y
s
/3 V3 3
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39 (e)

39 (f)

Figure 39. (e & f). Geometric relationships for the unit-cells in
different orientations with respect to current path.
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