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ABSTRACT 

An attempt has been made to study the change i n the e l e c t r i c a l 

r e s i s t i v i t y of a powder compact during the i n i t i a l stages of hot-pressing. 

Theoretical models have been formulated on the basis of p l a s t i c 

deformation of spheres i n a compact. The r e s i s t i v i t y change during 

d e n s i f i c a t i o n has been derived for various packing arrangements. 

For small deformation of spheres, the f i n a l equation i s 

and the more generalized equation for larger deformation i s 

^ = a ( D 2 / 3 e 2 / 3 R 2 _ , ) 
c 

where a and a are the c o n d u c t i v i t i e s of a compact of spheres having m c 

a r e l a t i v e density D, and at the t h e o r e t i c a l density (D = 1), 

r e s p e c t i v e l y . D q i s the i n i t i a l r e l a t i v e density of the compact before 

deformation. a i s a constant depending on geometry and R i s the radius 

of spheres at any stage of deformation i n a r b i t r a r y u n i t s . The 

derived r e l a t i o n s h i p was tested by: (a) measuring the e l e c t r i c a l 

r e s i s t i v i t y as a function of density during hot-pressing of compacts 

of glass spheres, (b) measuring the e l e c t r i c a l r e s i s t i v i t y of d i f f e r e n t 

compacts of n i c k e l spheres at room temperature, and (c) comparing 

previous r e s i s t i v i t y data with the t h e o r e t i c a l equation. 
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CHAPTER 1 

I. INTRODUCTION 

S i n t e r i n g ^ i s a complex process by which d e n s i f i c a t i o n 

of a powder compact takes place at a temperature below the melting 
(2) 

point of the (bulk of the) material. Hot-pressing i s a s i n t e r i n g 

process, i n the presence of an applied pressure. Hot-pressing methods 

promise products of greater density at much lower temperatures and for 

shorter times than conventional s i n t e r i n g processes. 

The degree of d e n s i f i c a t i o n during and a f t e r s i n t e r i n g or 

hot-pressing can be determined i n several ways, some of which are l i s t e d 

below: 

1) measurement of density changes, 

2) measurement of strength, 

3) microscopic examination, 

4) e l e c t r i c a l measurement, 

5) thermal conductivity determination, 

6) sound v e l o c i t y determination, 

7) X-ray d i f f r a c t i o n a n alysis, etc. 

Density determination i s the most widely used technique. 

For small objects, this does not pose any problem, but f o r large pieces 

such as those fabricated by hot-or c o l d - r o l l i n g , hot-or cold-extrusions, 

density measurement i s not easy and frequently involves destruction of 

the objects. Measurements of strength and thermal c h a r a c t e r i s t i c s are 

d i f f i c u l t and are of low precision,when porous bodies of very low strength 

are to be measured. Microscopic observations show very l i t t l e change 

during early stages of s i n t e r i n g . Measurement of sound v e l o c i t y i s 
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f a i r l y c o m p l i c a t e d as a r e X-ray d i f f r a c t i o n measurements. 

Compared w i t h a l l t h e s e methods, measurements o f e l e c t r i c a l 

p r o p e r t i e s , s u c h as e l e c t r i c a l r e s i s t i v i t y and t e m p e r a t u r e c o e f f i c i e n t 

o f r e s i s t a n c e , have many a d v a n t a g e s . They can be made w i t h f a i r l y 

s i m p l e equipment. Because of the much g r e a t e r change i n r e s i s t i v i t y 

t han i n d e n s i t y , they a r e e x c e l l e n t i n d i c a t o r s i n e a r l y s t a g e s o f 

s i n t e r i n g when o t h e r methods can be a p p l i e d o n l y w i t h a low degree o f 

p r e c i s i o n o r w i t h g r e a t d i f f i c u l t y . 

I . l . PREVIOUS ELECTRICAL RESISTIVITY MEASUREMENTS 

(3) 

The e a r l i e s t work i n t h i s f i e l d was t h a t o f T r z e b i a t o w s k i 

who r e p o r t e d a r a p i d d e c r e a s e i n e l e c t r i c a l r e s i s t i v i t y o f s i n t e r e d 

copper and g o l d compacts w i t h i n c r e a s e i n t e m p e r a t u r e and d e n s i t y . T h i s 

work was f o l l o w e d by t h a t o f Iwase and O g a w a ^ \ Myers ̂ \ H u t t i g ^ \ 

A d l a s s n i g and F o g l a r ^ ^ e t c . . H a u s n e r ^ s t u d i e d the b e h a v i o u r o f copper 

and n i c k e l powders, h o t - p r e s s e d i n hydrogen a t 5 t o 80 t . s . i . i n t h e 

te m p e r a t u r e range 600°C t o 1000°C. He p l o t t e d t h e e l e c t r i c a l r e s i s t i v i t y 

as a f u n c t i o n of d e n s i t y and c o m p a c t i n g p r e s s u r e a t v a r i o u s t e m p e r a t u r e s . 

( F i g u r e s 1 and 2 ) . He n o t e d a d i f f e r e n c e i n the e l e c t r i c a l r e s i s t i v i t y 

a t a g i v e n d e n s i t y f o r powders o f d i f f e r e n t s i z e s , b o t h i n t h e as-compacted 

s t a g e and h o t - p r e s s e d c o n d i t i o n . The e l e c t r i c a l r e s i s t i v i t y o f the g r e e n 

compact was found t o be a f u n c t i o n o f the p a r t i c l e s i z e . 
(9) 

Kimura and H i s a m a t s u c a r r i e d o u t s i n t e r i n g s t u d i e s on 

copper and n i c k e l powders i n hydrogen, a r g o n and vacuum. They p l o t t e d 

the e l e c t r i c a l r e s i s t i v i t y as a f u n c t i o n o f t e m p e r a t u r e i n d i f f e r e n t 

atmospheres., ( F i g u r e 3 ) , and n o t e d d i f f e r e n t s t e p s i n the r e s i s t i v i t y 
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curves,in agreement with Myers' w o r k ^ \ In hydrogen, two steps of 

rapid decrease were observed. In argon and vacuum, only one step 

was observed. The f i r s t step i n hydrogen at low temperature could be 

due to the reduction of the surface oxide layer or removal of adsorbed 

gases. The subsequent step at higher temperature ( i n a l l atmospheres) 

i s due to s i n t e r i n g and bonding of metal powders. 

Grootenhuis et a l ^ ^ studied the e l e c t r i c a l r e s i s t i v i t y 
(3 7 

of sintered bronze (Figure 4). They replotted the works of others * ' 

8,1] to 15) ^ copper and n i c k e l powders (Figures 5 & 6), and claimed 

that i n a l l cases the experimental data conformed to the s t r a i g h t l i n e , 

drawn from the point for s o l i d metal to cut the x-axis at a porosity 

of 47.6%. This pqorpsity corresponds to the maximum porosity, which can 

be attained on packing equal sized spheres i n simple cubic array. 

Consequently, zero conductivity was assumed for a simple cubic packing 

of spheres, and the increase i n conductivity with density was a t t r i b u t e d 

to increase i n contact area between p a r t i c l e s , and increasing i n t e r p a r t i c l e 

bonding. The rather large scatter i n the r e s u l t was caused by 

d i f f i c u l t i e s i n obtaining the data from various figures i n the publications, 

and the difference i n q u a l i t y of the specimens used by the i n v e s t i g a t o r s . 
1.2. QUANTITATIVE APPROACH 

A l l these studies (so far l i s t e d ) have been q u a l i t a t i v e 

i n nature. A rigorous mathematical approach to p r e d i c t accurately 

the conductivity of porous compacts from the known conductivity values 

of the s o l i d materials was not a v a i l a b l e . This i s p r i m a r i l y due to the 

fact that the packing geometry of the random shaped powders i s very 
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complicated and i t i s very d i f f i c u l t to p r e d i c t the r e s i s t i v i t y of such 

a network. However, the studies c a r r i e d out on the thermal and 

e l e c t r i c a l c o n d u c t i v i t i e s of two phase systems,in terms of the volume 

fra c t i o n s of the two phases shave thrown much l i g h t i n this f i e l d . The 

equations derived for two phase systems^in many cases, allow one to 

clos e l y estimate the e l e c t r i c a l conductivity of porous sintered materials s 

by assuming one of the phases to be the pore phase. 

A s i m p l i f i e d approach i s to consider the material as having 

a regular o r i e n t a t i o n and a structure ssuch as the p a r a l l e l slabs $shown 

i n Figure .7. . If the current flow i s p a r a l l e l to the plane of the 

slabs, they are equivalent to a p a r a l l e l e l e c t r i c a l c i r c u i t . The t o t a l 

conductivity of the material o m i s given by 

°m = Vl°l + V 2 ° 2 CD 

where and V 2 are the volume f r a c t i o n s (equal to c r o s s - s e c t i o n a l area) 

and a j and a 2 are the co n d u c t i v i t i e s of each component. 

± ' e * = (1 - V 2) !L + V 2 

a 2 P2 

If a2 > y o i ' f ° r example^component 1 being a i r , 

m̂ = V 2 (2) 

If the slabs are arranged normal to current flow, they 

are equivalent to a serie s e l e c t r i c a l network and 

crm ax o2 
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Figure 7. 

Geometric d i s t r i b u t i o n 
of phases ( p a r a l l e l 
slabs) and d i r e c t i o n s 
of current-flow. 
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or a a l g 2 (3) m 

and a 
m 

V l°2 + V l 

°2 " V 2 + <1-V2>f2 
°1 

If a 2 >> o^, 

fm q l / g 2 (4) 
a 2 (1-V 2) 

In Figure 8 , equations (1) and (3) are plotted for = lOo^. 

(22) 

Huttig has shown that a l l conductivity data on sintered 

porous materials should f a l l w i t h i n the region bounded by the two curves, 

given by equations'(2) and (4). These two equations define the upper 

and the lower bounds for conductivity data (Figure 9). 

The above equations are i d e a l i s e d . In p r a c t i c e , i t i s 

e s s e n t i a l to use equations derived for random s p h e r i c a l i n c l u s i o n s i n 

a continuous matrix phase,or s p h e r i c a l p a r t i c l e s i n a continuous minor 

phase. Relationships applicable to random mixtures have been derived 

by various authors from Maxwell's equation f o r a continuous 

matrix phase o^, with s p h e r i c a l dispersed phase The conductivity 
(16) of the mixture a i s given by m ' 

VjCo"! - a 2) 
( 5 ) a m + '2a2 CT ^ + 2 a 2 



0 0.2 0.4 0.6 0.8 1.0 
Relative Density 

Figure 10. Measured and calculated e l e c t r i c a l c o n d u c t i v i t i e s 
high-purity sintered copper specimens (After Klar 
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and are the volume f r a c t i o n s of the dispersed and matrix phases, 

When a^ y > °\> f ° r example, phase 1 being s p h e r i c a l pores, 

a = a_ m 2 1 + Vj/2 

2(1 - V ) 
= a — (6) 

2 + Vl 

Equation (5) i s included i n Figure 8 and i s found to s a t i s f y some of 

the experimental r e s u l t s . Similar equations derived by Juretschke et a l ^ 

Doebke^^, T o r k a r a n d G r e k i l a and T i e n ^ ^ \ a l l s t a r t i n g from 
(16) 

Maxwell's r e l a t i o n , are shown i n Table I. These equations are 

converted for applying to porous compacts and are also included i n the 

table. A l l these equations are found to hold good only f o r c e r t a i n sets 

of data, and for the f i n a l stages of s i n t e r i n g and hot-pressing. For 
(21) 

instance, Klar and Michael tested the equations on sintered copper 

powder and found good agreement with Maxwell's equation (equation (6))> 

but only at higher densities (> 80% bulk density), as shown i n Figure 10. 
/ o o \ ( / \ 

Mal'ko et a l and Litvinenko et a l have considered 
another set of equations f o r the e l e c t r i c a l conductivity of porous 

metal compacts, which are l i s t e d below: 

(2 - 3V X) 
a = o m 2 „ (a) 

1 - V l 
°m = °2 7 ~ ~ — (b) 
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3 0.9 - V 
a m 2.1 + V* 

(c) 
2 

They were d e v e l o p e d u s i n g O d e l e v s k i i ' (22) f o r m u l a e f o r 

s t a t i s t i c a l m i x t u r e s and m a t r i x systems. These e q u a t i o n s a r e s i m i l a r t o 

t h o s e l i s t e d i n T a b l e I . E q u a t i o n (a) was found t o f i t t h e i r 

e x p e r i m e n t a l r e s u l t s s a t i s f a c t o r i l y a t h i g h e r d e n s i t i e s . 

1.3. OBJECTIVES OF THE PRESENT WORK 

A l i t e r a t u r e s u r v e y r e v e a l s t h a t t h e r e i s no s a t i s f a c t o r y 

e q u a t i o n t o p r e d i c t the e l e c t r i c a l c o n d u c t i v i t y o f a powder compact 

d u r i n g the i n i t i a l s t a g e s of s i n t e r i n g o r h o t - p r e s s i n g . I n v e s t i g a t i o n s 

c a r r i e d o u t so f a r d u r i n g the e a r l y s t a g e s o f d e n s i f i c a t i o n m e r e l y p o i n t 

o u t , t h a t the e x p e r i m e n t a l d a t a s c a t t e r around a l i n e a r r a t e o f i n c r e a s e 

o f e l e c t r i c a l c o n d u c t i v i t y w i t h i n c r e a s i n g d e n s i t y o f h o t - p r e s s e d 

compacts. Towards the end of h o t - p r e s s i n g , however, M a x w e l l ' s and o t h e r 

s i m i l a r e q u a t i o n s have s u c c e s s f u l l y p r e d i c t e d t h e v a r i a t i o n o f the 

r e l a t i v e e l e c t r i c a l c o n d u c t i v i t y —— w i t h the r e l a t i v e d e n s i t y ( o r volume 

f r a c t i o n V„; d e n s i t y o f phase 1 - a i r - c a n be c o n s i d e r e d t o be n e g l i g i b l e ) . 

a) t o d e r i v e an e q u a t i o n t o p r e d i c t the c o n d u c t i v i t y o f a porous compact 

as a f u n c t i o n o f i t s r e l a t i v e d e n s i t y i n the range 0.6 t o 0.75. 

Compacts of r e l a t i v e d e n s i t y 0.6 t o 0.75 c o n s t i t u t e the e a r l y s t a g e s 

of d e n s i f i c a t i o n d u r i n g s i n t e r i n g and h o t - p r e s s i n g , and 

b) .to t e s t the d e r i v e d e q u a t i o n w i t h e x p e r i m e n t a l d a t a f o r v a l i d i t y . 

a 

The purpose o f t h i s i n v e s t i g a t i o n i s : 
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•ELECTRICAL CONDUCTIVITY EQUATIONS FOR TWO-PHASE COMPOSITES 

Equation for Two-phase Equation for Porous Comments 
System Body 

Reference 

A. m 2 
a + 2a 0 m 2 

V g l - p 2 } 

°1 + 2°2 
a = m 

2 a 2 ( l - V L) 
2 + V, Spherical Maxwell 

Inclusions 
(16) 

° m - a 2 V a l " a 2 } 

a + a„ m 2 a l + °2 
a = 

a 2 ( l - V L) 
m 2 + V, C y l i n d r i c a l Juretschke 

Inclusions 
(17) 

a - a, m 1 V 2 ( a 2 - cjj) 
a + Ka„ a„(l + K) m I I 

a = m 
K a 2 ( l - V x) 

K + V, K i s a 
Function of 

a2/al 

Doebke (18) 

cr - a_ m 2 
a + K ( a 2 + a 2 ) 1 ^ m 1 "2 ; 

V 2 ( a 2 - a 2) 
? ? 1 / a L + K(OJ + a 2 ) X / 2 

a 
m 

Ko 2(l - V p 
K + V, Inter-

Penetrating 
Phases 

Torkar (19) 

E l . 
a 2 ( A V 2 - B) 

% _ (C- V„) Same,as two-phase Tetrakaideca-
system hedron Model 

for V2>0.25 

E2. a = a.-m 1 (i - v 2) 
Same as T w o - D h a s e Tetrakaideca- G r e k i l a 

system hedron Model and Tien (20) 

for V 2<0„25 

A, B and C = constants. 
a = e l e c t r i c a l conductivity of the compact, 
m ' 

and a 2 = e l e c t r i c a l conductivity of the pore and matrix phases, 

and V„ = Volume f r a c t i o n of the pore and matrix phases, 
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CHAPTER 2 

I I . THEORETICAL DEVELOPMENTS. 

II.1. GEOMETRIC RELATION AND CURRENT NETWORK 

In the development of the theory, i t i s assumed that the 

p a r t i c l e s i n a compact are monosized spheres (because a sphere i s the 

simplest and most symmetric shape) and that they are arranged i n a 

regular three-dimensional array. During hot-pressing,they deform 

p l a s t i c a l l y at the points of contact and form f l a t faces. The compact 

density change as a r e s u l t of this deformation, with respect to contact 

radius, has been derived by Kakar and i s given by 

D = 2 1 2 3/2 " ( 7 ) 

g:(RZ - a V ' 

where :D i s the bulk-density of the compact at contact radius 'a'. R i s 

the instantaneous radius of the p a r t i c l e at neck radius 'a' and 5 i s a 

geometric constant which depends on the packing configuration. 

F i r s t , ' c o n s i d e r the geometry of deformation of two spheres 

i n contact (Figure 11). Let the two spheres constitute an e l e c t r i c a l 

path. The equivalent resistances are shown. In the i n i t i a l period of 

deformation, the neck region w i l l have a much higher resistance, r 2 , 

(neglecting contact resistance) as compared to the resistance r^ of 

the spheres. Hence,the conductivity of the c i r c u i t w i l l depend upon 

the neck area ira and the thickness of the neck G (boundary width). The 

t o t a l current path i s (G + 4y'). The boundary width G can be assumed 

to remain constant during neck growth and as G << 4y', the t o t a l path 

length 4y ' - 4y. 
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DEFORMATION OF 

TWO SPHERES 

EQUIVALENT ELECTRICAL 

NETWORK 

Figure 11. Geometry of deformation of two spheres i n contact and 
equivalent e l e c t r i c a l network. 

TWO DIMENSIONAL (CUBIC) 
ARRAY OF SPHERES 

Figure 12. . Spheres i n two-dimensi 
e l e c t r i c a l network. 

j 1 I • i i F ^ 1 I J 

j : r i i • * 1 1 ] I 
EQUIVALENT ELECTRICAL 
NETWORK 

1 cubic array and equivalent 
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The spheres can be arranged i n a two dimensional cubic 

network, as shown i n Figure 12 . The corresponding resistance c i r c u i t 

i s also shown. If r i s the resistance of each neck region, a v e r t i c a l 

column of spheres i n Figure 12 w i l l have a resistance of 2r (neglecting 

resistance of the sphere). If there are n spheres i n a h o r i z o n t a l 

row, they constitute n p a r a l l e l paths. As there i s no flow of current 

along a h o r i z o n t a l d i r e c t i o n , the resistance of the network becomes 

2r. If there are N stacking of spheres, each column w i l l have a resistance 
n 
of (N - l ) r - Nr (since N >>1, N - 1 = N). The c i r c u i t resistance becomes 

N_ r. The p r i n c i p l e can be extended to spheres arranged i n a three-
n 

dimensional array. Each sphere can now be contained i n a unit c e l l . 

The s p e c i f i c resistance of this unit c e l l i s the same as for the spheres 

packed i n three dimensions. 

II.2. THEORETICAL MODELS 

The basic systems of packing which give r i s e to s p a c e - f i l l i n g 
(29) 

unit c e l l s can be summarised as follows: (1) simple cubic (Z = 6), 

(2) orthorhombic (Z = 8), (3) body-centered cubic (Z = 8), and 

(4) rhombohedral (Z = 12), where Z i s the coordination number. Of these 

the b.c.c. packing i s an unstable arrangement i n a u n i d i r e c t i o n a l f i e l d 

of force ( i . e . g r a v i t a t i o n a l f o r c e ) . However, the b.c.c. packing gives 

r i s e to a tetrakaidecahedron unit c e l l which has been extensively used 

i n the t h e o r e t i c a l models for s i n t e r i n g ^ \ grain growth etc.. For 

t h e o r e t i c a l purposes, i t i s assumed that each type of packing i s stable 

and maintains i t s symmetry on a p p l i c a t i o n of pressure, and that the 

material at the points of contact spreads symmetrically during deformation 

to maintain the s p h e r i c i t y of the p a r t i c l e . The d i f f e r e n t modes of 

packing are shown i n the Appendix. 
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II.3. GEOMETRIC RELATIONSHIPS 

a) Simple Cubic Packing 

Consider a cubic array of spheres, deformed under uniform 

hydrostatic pressure along the three mutually perpendicular d i r e c t i o n s . 

Each sphere w i l l have s i x f l a t faces formed as shown i n Figure 13. 
2 2 1/2 

The unit c e l l i n this case i s a cube of side 2y,where y = (R - a ) 

The number of current-paths through the unit c e l l = 1. 
2 

The area of current-flow = Tra and 

The path-length = 2y. = 2(R 2 - a 2 ) 1 / / 2 . 

The conductivity of the unit c e l l , l / (where R = r e s i s t i v i t y ) i s given 
Rm m 

by 
J L = L_ + i _ ( 8 ) 

m c i 

where 1_ _ c o n c j u c t i v i t y Qf s o l i d , v i z . sphere, 
C 

a n <^ -jL = conductivity of the i n s u l a t i n g phase f i l l i n g the 
1 

rest of the unit c e l l , which i s a i r i n the case 

. of porous compacts. 
Now, 

, A A. 
f = ̂  a c + ^ - a. (9) 
m c 1 

where A and A. are the areas of current-flow, L and L. are the path-lengths, 

and o c and are the s p e c i f i c c o n d u c t i v i t i e s . Subscripts c and i stand 

for conducting and i n s u l a t i n g phases, r e s p e c t i v e l y . 

As o, + o (for a i r ) , equation (9) reduces to 1 

i - = ̂  0 q (10) 
m c 
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1 9 

For the cubic c e l l , 

, 2 
1 _ ira 
R ~ 2y CTc • 

The s p e c i f i c conductivity of the unit c e l l a i s 

L 
a = ^ x i - (11) m A R s m 

where L g i s the length of the unit c e l l , 

and A g i s the area of the unit c e l l normal to current-flow. 

Substituting for _1__ i n equation (11) from equation (10), we get 
R 

L A s c 
a = — • -— • cr m A L c s c 

a L A m s c -, i . e . — = — • — _ _ _ _ _ _ _ _ _ _ _ _ ,12) a L A c c s 

2 
For the cubic c e l l , L g = 2y and A g = 4y . 

Hence the r e l a t i v e conductivity i s 

a 2 m _ _2y Tra 
"a 2y 4y 2 

c J 

a 2 m TT a 
a 4 R 2 - a 2 

c 
(13) 

b) Orthorhombic Packing 

Each sphere a f t e r deformation w i l l have eight faces. The 

deformed sphere for this model and i t s unit c e l l are shown i n Figure 14. 



F i g u r e 14. Geometric r e l a t i o n s h i p of orthorhombic model 
and current-path (x - x). 
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In this case, 

the number of current-paths = 1, 
2 

the area of current-flow = ira = A , 

and path-length = 2y = L . 

For the unit c e l l , L = 2y 
s 

A„ = 2/3y 2. 
s 

Hence, 

a L A m _ s , c 
o ~ TT ~A~ (equation 12) 
c c s 

9 2 

2y . Tra 
2y 2/3y 2 

a 2 m ti a 

a 
c 

2/3 (R - a 2) 
(H) 

c) Rhombohedral Packing* 

(F.C.C. and H.C.P Packing) 

Each sphere has twelve points of contact and forms twelve 

f l a t faces. The resultant unit c e l l i s a rhombic dodecahedron shown i n 

Figure 15. 

The number of current-paths through the unit c e l l = 3 -
2 

Therefore, the area of current-flow = 37ra x cos 0, 

where 6 i s the angle between the centre to centre l i n e of spheres i n two 

d i f f e r e n t planes and the d i r e c t i o n of current-flow. The distance between 
* Alternative annroach in r h p A n n p n r l i Y 



Figure 15. Geometric r e l a t i o n s h i p of rhombohedral model and 
current-paths 
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centres of any two spheres i n contact during deformation = 2y ; 

and cos 0 = /2 //I , from geometry. 
2 r - i— 

H e n c e , = 3ira x . /2 //3 . 

The length of current-flow through the sphere = AB = y = L 
/3 C 

For the unit c e l l , length of current-flow = y = L 
/3 

Area projected normal to current-flow = 2/Jy = A g . 

a L A 
m s c / . 1 1 \ — = -— . -— (equation 12) a L A 
c c s 

— y 
/3 /6~ T r a 2 

x 
/8 2/3 y 2 

~ y 
/3 

2 
JL_ _ ( 1 5 ) /— • 2 2 v 

/2 (R Z - a Z) 

d) ( i ) B.C.C. Packing^ 

The shape of the deformed sphere i s schematically represented 

i n Figure 16. There are eight points of contact during the i n i t i a l 

stages of deformation. 

The number of current-paths = 4. 
2 

Area of current-flow = 4Tra cos 0 , 

where 0 i s the angle between centre to centre l i n e of two spheres 

i n contact and the d i r e c t i o n of current-flow. 

a 
i . e . m 

a 
c 

* A l t e r n a t i v e approach i n the Appendix. 
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F i g u r e 16. G e o m e t r i c r e l a t i o n s h i p o f b . c . c . model and 
c u r r e n t - p a t h s . 



25 

cos 0 = , from geometry. 
/3 

The l e n g t h o f c u r r e n t - f l o w 

A = 4ira x _1_ . 
/3 

= AB = -2y- y = L 
/3 

F o r the u n i t c e l l , L = 
/3 

A r e a n o r m a l t o c u r r e n t -
f l o w 

16 2 A = — y s 3 J 

m 
L A s _ _ c 
L ' A 
c s 

( e q u a t i o n 12) 

2 1 3 4ira x — x — 
/3 1 6 v

2 

m /3 — ix 
2 

R - a 

(16) 

( i i ) T e t r a k a i d e c a h e d r o n P a c k i n g 

T h i s i s the same as b . c . c . p a c k i n g , w i t h s i x a d d i t i o n a l 

p o i n t s o f c o n t a c t g i v i n g r i s e t o f o u r t e e n f l a t f a c e s . The u n i t c e l l 

i s shown i n f i g u r e 17. There i s an a d d i t i o n a l c u r r e n t - p a t h t h r o u g h 

f a c e r a d i u s a^. 

Number of c u r r e n t - p a t h s = 4 + 1 
2 L e n g t h s o f c u r r e n t - f l o w a r e L 

1 /3 
y 1 and L = 2y, 

where y = ( R 2 - a ^ ) 1 7 2 and y 2 = ( R 2 - a 2 V / 2 

L = AB 
c l 

2 
73 y l L = CD = 2y„ c 2

 y2 



Figure 17. Geometric r e l a t i o n s h i p of tetrakaidecahedron 
model and the a d d i t i o n a l current-path. 
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Areas of current-flow are A = 4Tra. x cos 9 and A = T r a 0 , 

c, 1 cn 2 

where cos 0 = — , from geometry. 
S3 

For the unit c e l l , = •— y^ ; = 2y 
'1 S3 s 2 ' 2 

16 2 Area of unit c e l l normal to current-flow i s A = --— y, . s 3 1 

a L 
S l C l ̂  S2 

C l S C2 

47ra T r a , 1 * S3 ""2 
16 2 16 2 
3 y l 3 y l 

Now, y x = ^ Y 2 

Substituting for y^ and s i m p l i f y i n g , 

m _ IT 

a 4 c 
/3 

l l + 
i , 2 2 2 2 R - a^ R - a 2 

I I . 4. DEDUCED RELATIONSHIPS 

a) When R = R n 

In a l l four cases, the f i n a l form of the equation can be 

represented by 

a 2 
m a 

a B 2 2 a R - a 
c 

(17) 



2 8 

where a i s a constant,dependent upon deformation geometry. 

The compact density change with respect to contact radius, 

as given i n equation ( 7 ) ^can be modified by using a = o when D = D Q , 

i . e . the i n i t i a l packing density before deformation. This gives 

D 

R 

R 2 - a 2 

3/ , 

( 1 8 ) 

o L 
Where R i s the i n i t i a l p a r t i c l e radius before deformation. As the o 

( 2 6 ) 

deformation proceeds, the value of R increases, as shown by Kakar 

(Figure 1 8 ) . I t can be seen from the figure that for a / R < 0 . 2 5 , 

i . e . for small deformations, R remains approximately constant (R - R ). 

Then, 

D 
o 

R 
TJ 2 2 R - a o 

72 
( 1 9 ) 

i . e . 

(r) 7 3 
- 1 = 

R 2 - a 2 

o 
( 2 0 ) 

Substituting equation ( 2 0 ) i n equation (L7)we get 

( 2 1 ) 

b) When R^ R p 

A more rigorous d e r i v a t i o n , taking into account the 

v a r i a t i o n of R, can be obtained as follows: 
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KR 2 - a 2 ) 3 / 2 
(equation 7) . 

3
2 / 3 D

2/ 3 = L _ 
R 2 - a 2 

M u l t i p l y i n g both sides by . R , we get 

D2/3 ,2/3 R 2 = 

R - a 

D
2 / 3 g 2 / 3 R 2 - 1 = 

2 2 R - a 
(22) 

Substituting equation (22)in equation Q.7)we obtain 

a< L 2/3 6
2 / 3 R 2 _ ! (23) 

The above geometry of deformation i s v a l i d only t i l l a 

c r i t i c a l stage i s reached when the f l a t faces formed on the spheres begin 

to touch each other. Table II shows the values of a, 8 , Do> and (a/R) 

c r i t i c a l for the d i f f e r e n t packing geometries.The r e l a t i v e conductivity 

values for d i f f e r e n t r e l a t i v e densities have been calculated using the 

re l a t i o n s h i p (23) for d i f f e r e n t packing geometries. The r e s u l t s are 

plotted i n Figure 19. Equations (21) and (23) are the same equation at 

the i n i t i a l stages of deformation. 
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R E L A T I V E DENSITY 

Figure 19. The o r e t i c a l r e l a t i o n s h i p of r e l a t i v e conductivity vs. Relative density 
for the proposed models. 
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TABLE II 

Type of a g D , . . 
Packing . ° ( a / R > • . , 

i n percent C r i t i c a l 

Simple cubic TT/4 8 52.36 1/V2 

Orthorhombic •n/2/3 4/3 60.46 1/2 

Rhombohedral TT//2 4/2 ' 74.05 1/2 

b.c.c. 32/3 
9 

68.02 X /2 

II.5. PRESENT VS. PREVIOUS CONDUCTIVITY EQUATIONS , 

(16 ) 
Figure 20 shows the t h e o r e t i c a l curves of Maxwell and 

(19) 
Torkar calculated for s p h e r i c a l pores i n a continuous matrix. A 

(19) 

value of 0.72, as suggested by Torkar i n h i s paper i s used f o r the 

s t r u c t u r a l constant K (equation D Table I ) . The t h e o r e t i c a l curves 

of the present i n v e s t i g a t i o n are superimposed f o r comparison. The present 

theory predicts much lower conductivity values for the compacts. 

This i s due to the fac t that equation (21)predicts zero conductivity when 

D = Dq, i . e . f o r the 'green compact'. This need not be so, as discussed 

i n a l a t e r chapter. The conductivity a' of. the green compact causes 

the zero point of the curves to be s h i f t e d upwards. Consequently, the 

th e o r e t i c a l curves l i e closer to the Torkar equation. The z e r o - s h i f t 

has to be experimentally determined by measuring the conductivity of the 

green compact, as the r e l a t i v e conductivity of the green compact may 

vary from almost zero for non-metallic materials to a value between 

0.2 to 0.3 for m e t a l l i c systems. 
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CHAPTER 3 

I I I . EXPERIMENTAL VERIFICATION OF THEORY 

To test the t h e o r e t i c a l equation (21), i t i s necessary to 

determine the e l e c t r i c a l r e s i s t i v i t y (or conductivity, a ) of a compact 

as a function of r e l a t i v e density. I n i t i a l attempts to test the models 

with porous oxide compacts were not successful, as the r e s i s t i v i t y of 

porous A^O^ or MgO compacts was found to be higher (>10^ ohm-cm below 

1000°C) than any die materials that can be used for hot-pressing. For 

this reason, the models are tested with spheres of s o d a - l i m e - s i l i c a 
4 2 

glass, having a r e s i s t i v i t y between 10 to 10 ohm-cm i n the temperature 

range 550 to 650°C. The glass spheres used are of two sizes - 0.70 mm 

and 0.42 mm average diameter (Figure 21, a & b), the nominal composition 

of which i s S i 0 2 70%, A l ^ 2%, CaO 12%, MgO 2%, and Na 20 10%. The 

glass spheres were supplied by the 3 M company, St. Paul, Minnesota. 

The model i s also tested on n i c k e l spheres of 0.65 mm average 

diameter (Figure 21c), supplied by the S h e r r i t t Gordon and Company, Fort 

Saskatchewan, Alberta. 

I I I . l . EQUIPMENT 

It was necessary to measure the conductivity of glass at a 

s u f f i c i e n t l y elevated temperature(550 - 650°C),as the room temperature 

conductivity was greater than 1 0 ^ ohm ^ - c m
 1

> The equipment was b u i l t 

to measure the conductivity and the bulk density of the glass compacts 

simultaneously during hot-pressing. A schematic diagram of the 

equipment i s shown i n Figure 22. Stainless s t e e l plungers were used as 

electrodes. Small sections of transparent s i l i c a glass tubing of 17 mm 

diameter were used as the die material, as s i l i c a glass has a very high 
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(c) 
Figure 21. Photographs of a) glass spheres, 0.42 mm average d i a . , 

b) glass spheres, 0.70 mm average d i a . , 
c) n i c k e l spheres, 0.65 mm average dia. 

Magnification x 10. 



ure 22. Schematic diagram of the equipment used for 
r e s i s t i v i t y measurements of glass spheres. 
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e l e c t r i c a l r e s i s t i v i t y ' b e l o w 700°C (>IO 1 6 ohm-cm). The die and the 

electrodes were inserted into a r e c r y s t a l l i s e d alumina tube and held by 

a s t a i n l e s s s t e e l p in, which also served as an e l e c t r i c a l lead. The 

alumina tube was lowered into the furnace. Shrinkage was measured with 

a d i a l gauge having a s e n s i t i v i t y of 0.0002" per d i v i s i o n . This 

gauge was mounted on the alumina tube with i t s p i n r e s t i n g on a p o r c e l a i n 

rod f i t t e d into the upper electrode. 

E l e c t r i c a l resistance was measured with an Impedance bridge 
-3 7 

(range 10 to 10 ohms), operated at IK c/s and 6v. A simple loading 

device, made up of a lever arm and pans, was .used, as indicated i n 

the f i g u r e . A maximum of 25 lbs, could be loaded on the pans, which 

was s u f f i c i e n t to hot-press the glass compacts to a pressure of 50 p . s . i . , 

i n the temperature, range 550 - 650°C. 

III.2. PROCEDURE 

The glass spheres were cleaned with d i l u t e h y d r o f l u o r i c a c i d , 

washed and dried with isopropyl alcohol to eliminate adsorbed water. A 

weighed amount of the glass spheres was loaded into the die, tapped 

and well-shaken i n order to obtain a uniform packing. The as-compacted 

density was calculated from the i n i t i a l volume of the compact and true 

density of the glass which was determined by the pycnometric method. I t 

took 20 to 25 minutes for the specimen to reach the furnace temperature, 

a f t e r the assembly was introduced into the furnace. During this h e a t i n g -

up period no appreciable shrinkage was recorded on the d i a l gauge. The 

experiments were c a r r i e d out i n dry a i r , as presence of water vapour 

and low p a r t i a l pressures of oxygen have been known to a f f e c t the 
(28) 

e l e c t r i c a l conductivity of glass. A.C. r e s i s t i v i t y was measured i n 
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preference to D.C. to avoid electrode p o l a r i z a t i o n , as glass i s usually 

an i o n i c conductor. A c a l i b r a t i o n experiment was i n i t i a l l y performed 

(without the glass spheres) to standardize the shrinkage curves. 

111.3. MEASUREMENT ON NON-POROUS GLASS 

In order to test equation (21), i t was necessary to know 

the conductivity of the non-porous glass. For t h i s , the following 

procedure was adopted: a batch of glass spheres was melted i n a 

platinum c r u c i b l e at 1500°C and held at this temperature f o r 24 hours 

to eliminate pores. A f t e r 24 hours, the c r u c i b l e was r a p i d l y withdrawn 

from the furnace. The glass was cast into pre-heated s t a i n l e s s s t e e l 

moulds. I t was annealed i n a i r at 600°C for eight hours and furnace 

cooled. Thin specimens of 17 mm diameter and 5 mm thick were cut with 

an u l t r a s o n i c v i b r a t o r and s i l i c o n carbide suspension i n petroleum 

l i q u i d . Both faces of the specimens were ground f l a t and as p a r a l l e l as p o s s i b l e 

to each other on the diamond-polisher. To ensure good e l e c t r i c a l contact 

with the electrodes, gold was vapour deposited on the faces of the glass 

with a guard-ring on one side. The purpose of t h i s guard-ring i s to 

prevent surface leakage. The glass specimen was e q u i l i b r a t e d at d i f f e r e n t 

temperatures for d i f f e r e n t periods, for the conductivity determination. 

111.4. PROCEDURE FOR NICKEL SPHERES 

The n i c k e l spheres were i n i t i a l l y cleaned and then held i n 

a stream of cracked ammonia at 650°C for 4 hours to reduce surface oxide. 

The hot-pressing was c a r r i e d out i n a P h i l i p s 12 KW induction unit. 

An Inconel die with a graphite sleeve and Inconel plungers were used 



3 9 

for hot-pressing (Figure 23). A weighed amount of spheres was tapped 

into the die,with graphite spacers between the spheres and the rams to 

prevent adherence between n i c k e l and the Inconel. The die and plunger 

assembly was mounted on a hydraulic press and enclosed i n a quartz 

tube. An i n e r t atmosphere was maintained around the die during 

hot-pressing which was car r i e d out under 7200 p . s . i . and at 800°C. The 

shrinkage was measured with a d i a l gauge. The sample was cooled to 

room temperature i n the die and them removed. The apparent density 

was determined from the weight to volume r a t i o . True density was 

determined by the pycnometric method. Specimens of d i f f e r e n t r e l a t i v e 

densities were produced following the above procedure. 

D.C.- conductivity f o r the hot-pressed specimens was measured 

at room temperature using a Ke l v i n bridge (Pye Cat.no. 7415). As the 

change i n e l e c t r i c a l r e s i s t i v i t y of n i c k e l compacts i s i n the order of 

several micro-ohms, the following procedure was adopted. 

The compact was mounted ins i d e a v i s e made of l u c i t e . A 

steady current of 7 amps, was passed through the compact. To obtain 

uniform current d i s t r i b u t i o n across the cros s - s e c t i o n a l area, thin 

lead discs (reagent grade) were pressed against the sides of the compact; 

the current terminals were held against the lead discs by screws 

provided on eit h e r side of the v i s e . Two p o t e n t i a l probes were introduced 

as shown i n Figure 24 at a fixed distance apart. The probes were 

made of n i c k e l (to eliminate contact p o t e n t i a l s with the specimen). Their 

ends were narrowed to small hemispherical t i p s to ensure good e l e c t r i c a l 

contact. The n i c k e l probes were set i n two reamed holes to prevent any 

http://Cat.no
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Inconel plungers 

^Graphite 
susceptor 

« lncon-1 die 

— - G r a p h i t e 
sleeve 

Figure 23. Schematic diagram of the die used for hot-pressing 
n i c k e l spheres. 
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Figure 24. Photograph of the v i s e used to measure the 
e l e c t r i c a l conductivity of n i c k e l compacts. 
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sidex^ays movement. A number of measurements were made using the 

Kelvin bridge and a d e f l e c t i o n galvanometer (Tinsley Type S.R. 4/45 ). 

I t was observed that any v a r i a t i o n i n the pressure of the probes against 

the specimen produced i n s i g n i f i c a n t changes i n the readings. The 

e l e c t r i c a l conductivity was calculated f or each specimen from the 

measured resistance values. 



CHAPTER 4 

IV. RESULTS AND DISCUSSION 

IV.1 . CONDUCTIVITY VS. DENSITY FOR GLASS 

The e l e c t r i c a l r e s i s t i v i t y of the compacts of glass spheres 

was measured continuously as a f u n c t i o n of d e n s i t y during h o t - p r e s s i n g 

under isothermal c o n d i t i o n s . The volume of the compact was c a l c u l a t e d 

using the height of the compact at any stage of d e n s i f i c a t i o n ( i n d i c a t e d 

by the d i a l gauge) and the diameter of the d i e , which remained constant. 

The e l e c t r i c a l c o n d u c t i v i t y a , was c a l c u l a t e d from the r e s i s t a n c e 
J m 

measurements. The cm values are p l o t t e d as a f u n c t i o n of r e l a t i v e 

density f o r three d i f f e r e n t temperatures as shown i n Figure 25a and b. The 

c o n d u c t i v i t y of the compact increased w i t h increase i n r e l a t i v e d e n s i t y . 

IV.2. CONDUCTIVITY VS. RELATIVE DENSITY FOR NICKEL 

Compacts of n i c k e l spheres were hot-pressed at 800°C under 

a pressure of 7200 p . s . i . f o r d i f f e r i n g periods to o b t a i n d i f f e r e n t 

r e l a t i v e d e n s i t i e s . These compacts were subsequently used f o r D.C. 

c o n d u c t i v i t y measurements at room temperature. The r e s u l t s are p l o t t e d 

as a f u n c t i o n of r e l a t i v e d e n s i t y , as shown i n Figure 26. 

IV.3. TEST OF THEORETICAL MODELS 

The t h e o r e t i c a l models were tested by comparing the r e s u l t s 

w i t h the general .equation 
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R E L A T I V E DENSITY 

Figure 25.a. Conductivity vs. Relative density f o r glass compacts 
at d i f f e r e n t temperatures. 
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Figure 25.b. Conductivity vs. Relative density for glass 
compacts at d i f f e r e n t temperatures. 
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R E L A T I V E DENSITY 

Figure 26. Conductivity vs. Relative density for n i c k e l compacts 
at room temperature. 
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Where and D are experimentally measured v a r i a b l e s ; 

a = a material constant and a = a geometric constant, c ° 

i s the i n i t i a l bulk density, which i s constant for a given experiment. 

Hence, log i s p l o t t e d vs. l o g ^ ^ — ^ ^ - l ^ j i n Figure 27, which 

shows that at every temperature the p l o t i s l i n e a r with a slope close 

to unity f o r most of the data. This agreement between the t h e o r e t i c a l 

p r e d i c t i o n and the experimental data confirms the v a l i d i t y of the above 

equation. The deviation from the predicted curve,in the i n i t i a l stages 

of d e n s i f i c a t i o n , i s due to p a r t i c l e rearrangement i n the density range 

60 to 66%. The density increase i n this range i s caused by p a r t i c l e 

s l i d i n g as w e l l as by p l a s t i c deformation, rather than by p l a s t i c 

deformation alone. This p a r t i c l e s l i d i n g changes the coordination 

number and establishes a greater number of current paths. Beyond 66%, 

the density increases mostly by neck growth at the points of contact 

and the t h e o r e t i c a l equation i s obeyed. 

IV.4. ELECTRICAL CONDUCTIVITY OF GLASS 

As the temparature i s r a i s e d , the conductivity of s o l i d 

glass r a p i d l y increases and over a considerable temperature range, the 

conductivity can be represented by an Arrhenius type of equation, 

-Q/RT 
a = a e ^ o 

where = a temperature independent constant 

Q = experimental a c t i v a t i o n energy for conduction. 

R and T have t h e i r usual meanings. 

(29) 
Terai has pointed out that i n sodium al u m i n o s i l i c a t e 

glasses of composition s i m i l a r to that used i n t h i s study, the e l e c t r i c a l 
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conductivity i s e l e c t r o l y t i c . The current i s mainly c a r r i e d by the 

sodium-ions moving through the 'holes' i n the structure, and the 

transport number of sodium ions i s close to unity for sodium 

alum i n o s i l i c a t e glasses. 

To study the temperature dependence of e l e c t r i c a l conductivity, 

the logarithm of the conductivity of the non-porous glass i s plotted 

against the r e c i p r o c a l of absolute temperature i n Figure 28. The 

conductivity of a glass reaches an equilibrium value at a given 
30 

temperature only a f t e r a long i n t e r v a l of time (Kaneko and Isard ). 

However, the conductivity values measured i n this work a f t e r a fixed 

time i n t e r v a l at d i f f e r e n t temperatures, l i e on a s t r a i g h t l i n e . 

Figure 28 shows that the log conductivity vs. 1/T r e l a t i o n s h i p s 

a f t e r constant i n t e r v a l s have nearly the same slope. In order to measure 

the equilibrium conductivity at 600°C, the specimen was held for 72 

hours at this temperature t i l l i t attained a steady value, which was 
-3 -1 -1 

3.5 x 10 ohm- cm . This value i s now substituted for o"c i n equation 

(21^. Thus the only unknown parameter a i n equation (21} can be 

calculated. The value of a was found to be 0.9. 
Equation (21)can be rewritten as, 

(24) log ac = log am - log a - log Jf|~) 3 - 1 

Using a = 0.9 and equation (24),log a c values at d i f f e r e n t 

temperatures were calculated and plotted i n Figure 29. This figure also 

includes the logarithmic conductivity values for a porous glass 
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Figure 28. Log a vs. — for the non-porous glass at d i f f e r e n t 
times. 
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Figure 29. Log (calculated) vs. — for non-porous 

glass and log a vs. 7 f f ° r porous glass. 
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( r e l a t i v e density = 0.7). For the porous glass, equation(21)can be 
-Q/RT. rewritten, replacing o £ by O q e 

a = a o m o Ik) 
- Q/RT 

e 

At a constant r e l a t i v e density, log o"m vs. 1/^ gives the 

experimental a c t i v a t i o n energy for porous glass, which has been found 

to be the same as for the non-porous glass. 

The l i n e s i n Figures 28 and 29 have a slope of (0.67 ± .05)x 10 

degrees Kelvin and the corresponding a c t i v a t i o n energy for e l e c t r i c a l 

conductivity i s 30 ± 3 kcal/mole. This value i s s i m i l a r to the values 

reported i n l i t e r a t u r e (25 to 30 kcal/mole) for sodium-aluminosilicate 

glasses. 

IV.5. RELATIVE CONDUCTIVITY VS. RELATIVE DENSITY 

Figure 30 shows the p l o t of r e l a t i v e conductivity vs. 

r e l a t i v e density for glass spheres of two d i f f e r e n t sizes at 550°C. 

The calculated a values from Figure 29 were used for c a l c u l a t i n g the 

r e l a t i v e conductivity (0 m/cj ) at d i f f e r e n t temperatures. The r e l a t i v e 

conductivity values follow the general trend of the t h e o r e t i c a l curves, 

which are superimposed i n the figure for comparison. Figures 31 and 

32 show s i m i l a r plots for the r e s u l t s obtained at 600°C and 650°C. The 

deviation i n the range .60 to .66 r e l a t i v e density i s again i n d i c a t i v e 

of the contribution from p a r t i c l e rearrangement. 

IV.6. ELECTRICAL CONDUCTIVITY OF THE 'GREEN COMPACT' 

-4 

The t h e o r e t i c a l l y derived equation(21)has the boundary 

condition that when D = D„, a = o, i . e . the e l e c t r i c a l conductivity of 
o» m ' J 
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igure 30. Relative conductivity vs. r e l a t i v e density for glass at 550°O 
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Figure 31. Relative conductivity vs. Relative density for glass at 600°C. 



RELATIVE CONDUCTIVITY 



56 

the compact before deformation i s zero. However, the p a r t i c l e s i n 

contact with each other,before hot-pressing*do have a c e r t a i n 

conductivity. As a r e s u l t equation(2l)should be modified as 

a = a + ao m c [ i y - •] 
(25) 

where a' i s the e l e c t r i c a l conductivity of the compact before deformation. 

Equation (25) can be rewritten as, 

a • m a' = a / 
a a 1 c c 

-

- 1 (26) 

Thus, the experimental r e s u l t s have to be corrected for a zero-error 

along the ordinate. For glass t h i s error i s n e g l i g i b l e , as the r e l a t i v e 
o' 

conductivity o f the green compact, — i s < .005, below .63 r e l a t i v e 
°c 

density. 

The r e s u l t s for compacts of n i c k e l spheres demonstrate the 

e f f e c t , when o'/oQ i s rather large (Figure 33). The r e l a t i v e 

conductivity of the green compact ( .60 r e l a t i v e density) was found to 

be 0.18. The r e s u l t s were corrected f o r this error and re p l o t t e d i n 

Figure 34. This corrected data f i t the t h e o r e t i c a l models more c l o s e l y . 

IV.7. VERIFICATION OF THEORETICAL MODELS WITH PREVIOUS RESISTIVITY DATA 

As discussed previously, a large amount of data are a v a i l a b l e 

on the r e s i s t i v i t y of metal powder compacts. Although most of these 

compacts were made-up of random-shaped p a r t i c l e s , i t would be i n t e r e s t i n g 

to see i f any of these data f i t the equation derived i n t h i s work. In 





RELATIVE DENSITY 
Figure 34. Corrected values of r e l a t i v e conductivity vs. r e l a t i v e density for n i c k e l compacts. 
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order to do t h i s , the work of Grootenhuis appears to be the l o g i c a l 

choice, as both density and r e s i s t i v i t y values were reported i n his 

work. Other r e s i s t i v i t y data were mostly reported as a function of 

temperature and pressure and thus could not be tested with the 

th e o r e t i c a l equation. Some of the re s u l t s of Grootenhuis shown e a r l i e r 

i n Figures 4 to 6 are replotted i n Figure 35 and compared with the 

curves drawn from the present theory. The curve for orthorhombic 

packing i s corrected for the zero-error and s h i f t e d upwards. A 

reasonable agreement with the experimental data can be seen, which 

again confirms the v a l i d i t y of the derived equation. 

IV.8. PACKING GEOMETRY INSIDE THE DIE 

It i s evident from the Figures 30 to 34, that the experimental 

data follow closely the t h e o r e t i c a l l y derived equation for the 

hexagonal prism model i n the i n i t i a l stages of d e n s i f i c a t i o n . This 

agreement indicates that the o v e r a l l packing geometry of spheres i n s i d e 

the die may be s i m i l a r to the orthorhombic packing. 

When a die i s randomly f i l l e d with a number of monosized 

spheres, with intermittent shaking and tapping i n order to achieve a 

uniform packing, the spheres tend to spread l a t e r a l l y to achieve the 

most stable configuration. However, the die-wall o f f e r s resistance to 

l a t e r a l spreading. As a r e s u l t , a c e r t a i n degree of s t a b i l i t y of 
(31) 

packing i s maintained i n s p i t e of an unstable configuration. McGeary 

studied the various modes of f i l l i n g the die and the e f f e c t of container 

s i z e on the packing density. His re s u l t s are shown i n Figure 36. At 

I) values greater than 10, the packing density of the compact reaches 
d 
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Figure 36. E f f e c t of container si z e on the e f f i c i e n c y of 
packing one-size spheres (After McG e a r y 3 ^ ) . 
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a maximum of 62.5% of the t h e o r e t i c a l density. This value i s close to 

the as-compacted density f or orthorhombic packing. 

(32) 
Smith, Foote and Busang studied the coordination 

number of spheres i n a die r e s u l t i n g a f t e r shaking and tapping. Their 

r e s u l t s showed a Gaussian d i s t r i b u t i o n of the number of spheres with a 

given coordination number. The average coordination number of the 

spheres was close to 8. Thus these r e s u l t s confirm that the i n i t i a l 

packing of the spheres inside a die i s close to orthorhombic, as was 

observed i n this study. 

IV.9. DEFORMATION GEOMETRY INSIDE THE DIE 

The width of the die does not permit an i n t e g r a l number of 

spheres across the diameter; hence the four i d e a l modes of packing 

discussed i n section II do not e x i s t across the diameter of the die, 

since a c e r t a i n number of spheres are l i g h t l y held against the die-wall 

(due to the die-wall e f f e c t ) . On i n i t i a l a p p l i c a t i o n of the load, the 

loosely held spheres rearrange, giving r i s e to a higher r e l a t i v e density, 
(33) ( 34) D u f f i e l d and Grootenhuis , and Kakar and Chaklader reported a 

volume change of 1 to 4% for glass spheres of 0.5 mm average diameter, 

xrtien a load of 1000 p . s . i . was applied at room temperature. As no 

p a r t i c l e (sphere) fragmentation was observed, t h i s volume change was 

att r i b u t e d to the p a r t i c l e rearrangement discussed above. 

On further loading, the p a r t i c l e s begin to deform. Kakar 

(34) 
and Chaklader studied the deformation geometry of spheres i n 

randomly f i l l e d dies. Although i n d i v i d u a l colonies of rhombohedral or 

tetragonal deformation were observed, the majority of the spheres showed 
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a hexagonal prism mode of deformation. The mean coordination number of 

spheres during deformation was between 8 and 9. This indicates that 

the orthorhombic packing configuration i s maintained during the i n i t i a l 

stages of deformation, as was observed i n the present study. 

IV.10. EFFECTS OF OTHER PARAMETERS ON CONDUCTIVITY MEASUREMENTS 

a) Surface E f f e c t 

Surface conduction has been known to a f f e c t the e l e c t r i c a l 

conductivity measurements of d i e l e c t r i c materials. At temperatures 

below 300°C, the e l c t r i c a l conductivity of glass i s greatly influenced 

by i t s surface condition. Traces of water on the surface d r a s t i c a l l y 

increases the conductivity of glass , Above 300°C, the contribution 

of the surface conductivity to the t o t a l conductivity becomes less s i g n i f i c a n t , 

as the i o n i c conductivity of glass increases markedly. The surface to 

volume r a t i o also a f f e c t s the surface conductivity, but for spheres t h i s 

r a t i o has the minimum value and hence, the surface conductivity can 

be expected to be minimum for the compacts of s p h e r i c a l p a r t i c l e s . The 
2 

s p e c i f i c surface area ( i . e . Cm /gm) of a p a r t i c u l a t e compact has the 

most s i g n i f i c a n t e f f e c t on the surface conductivity., as compacts of very 

fin e p a r t i c l e s w i l l have a large surface area a v a i l a b l e f o r conduction. 

In order to minimize the contribution from surface conduction on the 

o v e r a l l conductivity, large spheres (0.4 to 0.6 mm diameter) of glass 

were used for conductivity measurements. 

b) Orientation E f f e c t 

As previously discussed i n the t h e o r e t i c a l models, 
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.0 A . L 
f - t - f <"> 

C S C 

This equation reduces to 

a A m _ _ c , 
a " A c s 

since i n a l l four models, L = L . The d i r e c t i o n of current-flow i n 
c s 

the models discussed has been considered to be perpendicular to the face 

of the unit c e l l s . In p r a c t i c e , however, one has to consider cases when 

the current-flow i s p a r a l l e l to the face-diagonal or the cube-diagonal 

of the unit c e l l s . When the orientations of the unit c e l l s are varied 

with respect to the d i r e c t i o n of current-flow, the number of paths 

through the unit c e l l changes, but so do the e f f e c t i v e area of current-

flow and the area of the unit c e l l normal to current-flow. The t o t a l 

e f f e c t of the change of o r i e n t a t i o n with respect to the d i r e c t i o n of 

current-flow i s such,that the conductivity of the unit c e l l i s unaltered 

regardless of i t s o r i e n t a t i o n , as shown i n the appendices. Hence, 

the r e s i s t i v i t y of systematically packed spheres does not change with 

the d i r e c t i o n of current-flow. However, the packing of spheres in s i d e 

a die i s not systematic, and t h i s could cause large v a r i a t i o n s i n 

conductivity depending on the d i r e c t i o n of current-flow. Any change 

i n the p o s i t i o n of neighbours of a given sphere from the i d e a l configuration 

could increase or decrease the number of current-paths and the e f f e c t i v e 

area of current-flow. The conductivity i s a very s e n s i t i v e function 

of packing geometry. The r e s u l t s obtained i n the present-work on glass 

and n i c k e l only i n d i c a t e that any such deviations due to random f i l l i n g 
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apparently n u l l i f y one another. Thus, the o v e r a l l conductivity-density 

r e l a t i o n s h i p follows the orthorhombic model reasonably w e l l . 
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V. SUMMARY AND CONCLUSIONS 

The e l e c t r i c a l r e s i s t i v i t y of a powder-compact during 

hot-pressing i s calculated using the geometry of deformation of p a r t i c l e s 

under load. The p a r t i c l e s are assumed to be monosized spheres. An 

equation r e l a t i n g the e l e c t r i c a l conductivity to the r e l a t i v e density 

for d i f f e r e n t i d e a l packing arrangements has been derived, which i s 
2/o 2/T 2 

a /°" = ct (D 3 J R - 1 ) . The t h e o r e t i c a l equation was compared 

with hot-pressing data on glass and n i c k e l spheres. The following 

conclusions can be made. 

1) The general t h e o r e t i c a l equation proposed i s found to be 

obeyed by the p a r t i c l e s during the i n i t i a l stages of hot-

pressing (in the range 0.65 to 0.75 r e l a t i v e density). 

2) A deviation i n the range 0.6 to 0.65 r e l a t i v e density was 

encountered, which could be due to p a r t i c l e rearrangement 

at the beginning of hot-pressing. 

3) The r e l a t i v e conductivity vs. r e l a t i v e density p l o t s showed 

that the o v e r a l l packing of spheres inside the die i s close 

to orthorhombic, i n agreement with the observations of 

previous studies. 

4) The t h e o r e t i c a l equation has been modified i n order to take 

into account the r e l a t i v e conductivity 'of the green compact. 

The modified equation f i t s the data on metal-compacts obtained 

i n the present study and i n previous i n v e s t i g a t i o n s . 
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VI. SUGGESTIONS FOR FUTURE WORK 

1) I t would be i n t e r e s t i n g to derive the resistance of a 

sphere i n terms of the contact areas from p o t e n t i a l theory and La Place's 

equation i n three-dimensions. This w i l l give an equation which would 

predict the resistance of the green-compact as w e l l as the resistance 

during deformation. 

2) The coordination change i n the i n i t i a l stages of hot-pressing 

could be c l o s e l y followed by evaluating any change i n the parameter 'a' 

i n this range. 

3) The t h e o r e t i c a l equation could be tested with more r e s i s t i v i t y 

data of random-shaped p a r t i c l e s . S i m i l a r l y , the p a r t i c l e s i z e e f f e c t on 

the r e l a t i v e conductivity should be experimentally determined and i t s 

e f f e c t on the t h e o r e t i c a l predictions should be evaluated. 
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There a r e f i v e s i m p l e and s y s t e m a t i c modes o f p a c k i n g o f 
(35) 

u n i f o r m s p h e r e s . These a r e shown i n F i g u r e 37 (from Morgan ) and 

can be d e s c r i b e d as f o l l o w s . 

1 . C u b i c P a c k i n g 

T h i s p a c k i n g i s c o n s t r u c t e d by p l a c i n g s p h e r e s i n s q u a r e 

f o r m a t i o n ( f i g u r e 37a). Spheres i n second and subsequent l a y e r s a r e 

p l a c e d v e r t i c a l l y o v e r t h o s e i n p r e c e d i n g l a y e r s . Such an arrangement 

makes t h i s p a c k i n g most open and l e a s t s t a b l e . 

2. O r t h o r h o m b i c P a c k i n g 

F i g u r e 37 c and d shows t h a t t h i s t y p e o f p a c k i n g can be 

o b t a i n e d e i t h e r be s t a c k i n g s p h e r e s i n second l a y e r h o r i z o n t a l l y , o f f s e t 

w i t h r e s p e c t t o t h o s e i n the f i r s t l a y e r by a d i s t a n c e R ( s p h e r e r a d i u s ) 

a l o n g t h e d i r e c t i o n of one s e t o f rows, o r by s t a c k i n g v e r t i c a l l y o v e r t h o s e 

i n f i r s t s i m p l e rhombic l a y e r . I t t u r n s out t h a t t h e s e two ways o f p a c k i n g 

a r e i d e n t i c a l i n n a t u r e , though o f d i f f e r e n t o r i e n t a t i o n i n s p a c e . 

3. B o d y - C e n t r e d - C u b i c P a c k i n g 

F i g u r e 37 b shows t h i s t y p e o f p a c k i n g . I t can be seen t h a t 

i f the s p h e r e s i n the t h i r d l a y e r have t o l i e v e r t i c a l l y o v e r t h o s e i n 

the f i r s t , i t forms a v e r y u n s t a b l e arrangement i n a u n i d i r e c t i o n a l 

f o r c e f i e l d . 

4 . T e t r a g o n a l P a c k i n g 

T h i s i s c o n s t r u c t e d by p l a c i n g s p h e r e s i n second l a y e r h o r i z o n t a l l y , 

o f f s e t w i t h r e s p e c t t o t h o s e o f the f i r s t l a y e r by a d i s t a n c e R, a l o n g the 
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d i r e c t i o n of one of the sets of rows. A l l the layers are simple rhombic 

i n this case. 

5. Rhombohedral Packing. 

As i n the case of orthorhombic packing, this can be 

constructed either from square-layer type base, or from simple rhombic-

layer type base. But i n this case, the spheres i n second layer are 

h o r i z o n t a l l y o f f s e t with respect to those i n the f i r s t l ayer. This 

o f f s e t i s i n a d i r e c t i o n b i s e c t i n g the angle between two sets of rows 

by a distance of R/2~ i n the case of square layer formation, and of 

2R//S i n the case of simple rhombic layer formation. These two ways 

of packing are i d e n t i c a l i n nature, though of d i f f e r e n t o r i e n t a t i o n i n 

space. 

Table III summarises the basic methods of simple and 

systematic packing of uniform spheres. 

TABLE III 

Basic Methods of Packing and th e i r Construction 

Method of Coordination Density 
Packing Number % 

Simple Cubic 6 52.36 

Orthorhombic 8 60.46 

Body-Centred-Cubic 8 68.02 

Tetragonal 10 69.81 

Rhombohedral 12 74.05 



7 1 

iff T 'Ĵ ^^^B 

^ 4 

(a) Cubic 

(c) Orthorhombic 
(from cubic base). 

(e) Rhombohedral 
(from cubic base; 
face-centred cubic). 

(g) Rhombohedral 
(from rhombic base; 
face-centred cubic). 

(b) Body-centered cubic 

(d) Orthorhombic 
(from rhombic base). 

(f) Tetragonal. 

(h) Rhombohedral 
(from rhombic base; 
close-packed hexagonal) 

Figure 3 7 . Basic systems of s p h e r i c a l packings (After Morgan ) 
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APPENDIX II 

A. Theoretical Calacuations 

The t h e o r e t i c a l values are calculated using equation(23)for 

d i f f e r e n t packing arrangements. 

m ( D 2 /3 B
2/3 R 2 _ i) (23) 

Equation(21) i s the same equation as above f or < 0.25. 
K 

m = a (21) 

Values of R and D for d i f f e r e n t — r a t i o s are read from Figure 18 
R 

(which gives R values) and Figure 38 (which gives D values), respectively. 

(Ref. 26). R has a r b i t r a r y u nits. 

Values of a , 3, and D for d i f f e r e n t packings are given i n 

Table II (Chapter II) 





1. Simple Cubic Packing 
74 

it 
R 

0 

0.05 

0.10 

0.15 

0.20 

0.25 

0 .30 

0 .35 

0 .40 

0 .45 

0 .50 

0.55 

0 .60 

0 .65 

0 .70 

R 

0.620 

0.620 

0.620 

0.620 

0.620 

0.621 

0.622 

0.624 

0.627 

0.631 

0.637 

0.646 

0.660 

0.679 

0.710 

/a 

52.36 

52.56 

53.15 

54.15 

55.57 

57.42 

59.75 

62.58 

65.94 

69.87 

74.39 

79.59 

85.09 

90.84 

95.94 

a 
m 

a 
c 

0 

0.002 

0.008 

0.018 

0.033 

0.052 

0.078 

0.110 

0.150 

0.199 

0.262 

0.341 

0.442 

0.575 

0.755 
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2. Orthorhombic Packing 

R / O 

0 0.620 60.46 0 

0.15 0.620 62.51 0.021 

0.20 0.620 64.12 0.038 

0.25 0.622 66.21 0.061 

0.30 0.623 68.77 0.090 

0.35 0.625 71.82 0.127 

0.40 0.629 75.34 0.173 

0.45 0.635 79.27 0.230 

0.5 0.643 83.51 0.302 

a 
m 

a 
c 



3. Rhombohedral Packing 

R D % _m 
a 
c 

0 0.620 74.05 0 

0.15 0.620 76.53 0.051 

0.2 0.621 78.44 0.093 

0.25 0.622 80.84 0.148 

0.30 0.624 83.70 0.220 

0.35 0.628 86.91 0.310 

0.40 0.633 90.32 0.432 

0.45 0.642 93.65 0.564 

0.50 0.656 96.41 0.741 

•a 
R 
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4. B.C.C. Packing 

•a 
R 

m 

0 0.620 68.02 0 
0.15 0.620 70.33 0.031 
0.2 0.620 72.14 0.057 
0.25 0.622 74.48 0.091 
0.30 0.623 77.37 0.135 
0.35 0.625 80.80 0.190 
0.40 0.629 84.76 0.259 
0.45 0.635 89.18 0.345 
0.50 0.643 93.95 0.454 
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B. EXPERIMENTAL RESULTS 

1. Glass at 550 C 

a = 0.70 mm average diameter; b = = 0.42 mm average diameter 

D = o 0.632 ; a = 1.27 X 10 2 ohm - 1 - Cm"1 

CT X 
m 

io" 5 

1 -1 
cm 

D 1 n r-- 1 x 10 -2 ! m 
ohm-

io" 5 

1 -1 
cm . ° - CT c 

a b a b a b a b 

1.54 1.60 0.658 0.645 2.94 1. 58 0.012 0.013 

2.76 3.57 0.661 0.650 3.25 2. 11 0.022 0.028 

3.71 7.34 0.664 0.662 3.57 3. 36 0.029 0.058 

5.80 9.31 0.670 0.671 4.19 4. 29 0.046 0.073 

7.33 10.70 0.673 0.677 4.50 4. 91 0.058 0.084 

8.67 11.88 0.679 0.687 5.12 5. 94 0.068 0.094 

13.41 14.80 0.701 0.703 7.38 7. 58 0.106 0.117 

14.09 15.89 0.712 0.707 8.50 7. 99 0.111 0.125 

16.76 17.34 0.725 0.721 9.82 9. 41 0.132 0.137 

18.04 21.47 0.733 0.75 10.06 12. 33 0.142 0.169 

18.53 24.13 0.74 0.765 11.33 13.52 0.146 0.189 

20.23 27.09 0.751 0.78 12.43 14. 31 0.16 0,213 



I "1 

2. Glass at 600 C 

D = o 0.64 a = 3. 
c 

5 x 10" ohm ^-cm 

a x m 
ohm 

i o " 4 

1 -1 
cm 

D l j x 10~ 2 

a 
m 

c 
c 

a b a b a b a b 

0.40 0.19 0.657 0.644 1.71 0.46 0.011 0.005 

1.13 0.81 0.660 0.661 2.07 2.21 0.031 0.023 

2.56 1.76 0.678 0.67 3.92 3.1 0.071 0.049 

3.03 2.20 0.687 0.675 4.84 3.56 0.084 0.062 

3.81 3.09 0.692 0.690 5.35 5.16 0.106 0.087 

4.79 4.81 0.724 0.728 8.57 8.97 0.133 0.136 

5.44 5.28 0.737 0.738 9.87 9.91 0.151 0.15 
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3. Glass at 650°C 

D Q = 0 . 6 3 a c = 6 . 4 5 x 1 0 3 o h m " 1 - ™ " 1 

a x 1 0 4 

m 
ohm-1cm 1 

2 / 3 
- 1 x 1 0 

- 2 m 

2 . 4 3 

3 . 6 5 

4 . 8 5 

6 . 4 2 

7 . 7 1 

8 . 6 5 

9 . 2 6 

1 0 . 7 5 

b 

1 . 6 2 

3 . 4 7 

5 . 9 5 

6 . 7 2 

7 . 7 4 

8 . 3 4 

1 2 . 3 5 

1 2 . 6 1 

0 . 6 6 7 

0 . 6 7 6 

0 . 6 8 4 

0 . 6 9 5 

0 . 7 1 4 

0 . 7 2 4 

0 . 7 3 1 

0 . 7 5 2 

b 

0 . 6 6 5 

0 . 6 7 8 

0 . 6 9 1 

0 . 7 0 0 

0 . 7 1 2 

0 . 7 2 2 

0 . 7 7 8 

0 . 7 9 

3 . 8 8 

4 . 8 1 

5 . 6 4 

6 . 7 7 

8 . 7 0 

9 . 7 2 

1 0 . 4 2 

1 2 . 5 3 

b 

3 . 6 7 

5 . 0 2 

6 . 3 6 

7 . 2 8 

8 . 5 0 

9 . 5 1 

1 5 . 1 1 

1 6 . 2 9 

0 . 0 3 7 

0 . 0 5 6 

0 . 0 7 4 

0 . 0 9 8 

0 . 1 1 8 

0 . 1 3 2 

0 . 1 4 1 

0 . 1 6 4 

b 

0 . 0 2 6 

0 . 0 5 5 

0 . 0 9 5 

0 . 1 0 7 

0 . 1 2 3 

0 . 1 3 3 

0 . 1 9 6 

0 . 2 0 0 
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4. Nickel at Room Temperature 

ac = 14.62 x 10 4 ohm-1 cm 1 

a 
m -1 -1 
ohm _cm ° 4 D 

x 10 cr 

2.63 0.602 

3.79 0.646 

4.87 0.688 

4.95 0.692 

0.180 

0.259 

0.333 

0.339 

5.34 0.715 0.365 

5 - 9 5 0.720 0.407 

9 - 8 0.877 0.67 
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APPENDIX I I I 

THEORETICAL MODELS FOR DIFFERENT ORIENTATIONS OF THE UNIT CELL 

1) Simple Cubic Packing 

Consider the current-flow along a face-diagonal (Figure 39a), 

Number of current-paths = 2 . 

2 1 
Area of current-flow = 2iTa x — = A„ 

ST 
2 

Area of the unit c e l l normal to current flow = 4 / 2 v 

a A m _ c 
V - A~ c s 

/ 2 i r a 2 

4/2 2 

2 
a 

2 2 4 R - a 

2) Orthorhombic Packing 

Consider the current-flow normal to a prism-face (Figure 39b) 

Number of current-paths through the unit c e l l = 3; 

one path l i e s completely in s i d e the unit c e l l and the other two are 

shared by three unit c e l l s a-piece. 
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Hence e f f e c t i v e area of current-flow through the unit c e l l 

2 2 2 
= Tra + — -na cos 0 , where 

cos 6; - ig,from geometry. 

2 1 2 
Hence A = ua + — ira 

c 3 
4 2 - 3 Tra . 

A = ^ x 2y 
s /3 

a A m _ c 
a ~ A c s 

2 2 
4 Tra TT a 
3 W 2/3 R 2 - a 2 

/3 

3) Rhombohedral Packing 

Consider an F.C.C. unit c e l l . Let the current-flow be 

p a r a l l e l to the edge (Figure 39c). 

E f f e c t i v e number of current-paths = 8 . 

Area of current-flow i s 
2 

= 8Tra cos 6 , where 

cos Q = — }from geometry. 
Si 

A = 8y 2 

s ' . 



39 (c) 

39 (d) 

Figure 39. (c & d).Geometric relationships for the u n i t - c e l l s i n 
d i f f e r e n t orientations with respect to current path 



Hence a A 
m c 
a - A c s 

a 
m Q 2 1 1 

OTra x — x x.e. ~ ,- 2 
a Si 8y c 

2 
a 

/2 R 2 - a 2 

4) A l t e r n a t i v e Approach for H.C.P. Packing 

From Figure 39d, 

Number of current-paths = 9.. 

2 
A = 9ua cos G , where 

_ /2 ^ cos 6 = — , from geometry ; 
/3 

2 
and A = 6/3 y . 

s J • 

a A m c Q 2 /2 1 
9Tra — 

a A /3 6/3 y 2 

c s 

* a 2 

/2 R 2 - a 2 
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A l t e r n a t i v e Approach for B.C.C. Packing 

Consider the current-flow along the edge (Figure 39e) 

Number of current-raaths = 4 . 

2 A = 4ira x cos 0 , where c 

1 _ 
cos 0 = — from geometry; 

/3 

and A = -~y-s 3 

a A 2 , m _ _ c _ 4-rra 3 
a A /3 16y' c s ^ 

/3 a 2 

= — Tf 2 2 R - a Z 

Consider current-flow along the face diagonal (Figure 39f), 

Number of paths through the unit c e l l = 2 

2 /2 A^ = 2ira cos 0 , and cos 0 = — , from geometry. 
/3 

_ 4y_ /2 2y • 8/2 y 2 

S /3 /3 3 
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39 (e) 

39 ( f ) 

F i g u r e 39. (e & f ) . G e o m e t r i c r e l a t i o n s h i p s f o r the u n i t - c e l l s i n 
d i f f e r e n t o r i e n t a t i o n s w i t h r e s p e c t t o c u r r e n t p a t h . 



A 

9 2 /2 
Z T r a x — 

/3 8/2 

/3 a* 
— TT — 
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