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ABSTRACT

Refractories are enabling materials in that their primary function is to facilitate the
production of other materials such as metals, glasses, petrochemicals, and cements. They have
enabled the utilization of heat to make materials since the Bronze Age. Although, in recent
years, a number of studies concerning the many complex variables that determine the
rheologic, hydraulic and ceramic properties of Advanced Refractory Castables (ARC) have
been performed, the fundamentals of free-flow and of transition from a hydraulic to a ceramic
matrix are still only poorly understood.

The aim of this study is to provide a scientific base for understandihg the flow behavior
of ARC and its influence on the formation of ceramic. For this purpose the flow behavior of a
series of low, ultra-low and no cement ARC compositions was analyzed. A method for
measuring the viscosity of the binding system of ARC was developed. This method allowed for
the first time the study of a direct correlation between the rheology of the matrix and the flow of
a castable, and therefore a precise and scientific base for determining the influence of different
dispersant additives.

The rheological parametérs of' ARC compositions for different amounts of water, silica
fume purity, content and type of refractory aggregate were correlated with mechanical strength
at high temperatures.

Based on the experimental and theoretical work carried out in this study a thorough
characterization of the rheology of self-flowing castable refractories was performed. The
rheological conditions that allow the early formation of the hydraulic matrix were identified. A
new concept of interaction (Flash Flocculation) between the binding system and the spray
gunning admixtures was developed. This concept was materialized in a novel type of spray-
gunning admixture. Laboratory studies as well as a pilot scale experiment confirmed the
superiority of the flash flocculating admixture over the setting accelerators, which are currently

used as spray gunning admixtures.
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1. INTRODUCTION

Refractories are enébling materials in that their primary function is to facilitate the
production of other materials such as metals, glasses, petrochemicals, and cements. They have
enabled the utilization of heat to make materials since the Bronze Age. Like many other
industrial fields, the refractory industry has seen a tremendous technical progress in the 1990’s.
The steel industry, the major consumer of refractories (> 60% of all refractories used[1]), has
completely changed its outlook from production ratés to high quality focus. Other refractories
consumers such as the aluminum, copper, glass and cement industries have also improved the
level of the technology.

As a consequence of these technological changes, the refractories industry has been
forced to adapt itself to new operating conditions in those installations where refractories are
used. Historically, the driving force for change has been either improved process technology or
a desire by the materials producers for higher productivity via longer campaign lives, usually at
higher temperatures, achieved by improving the thermomechanical and corrosion-resisting
properties of the refractories. More recently factors related to refractories installation have
become significant. These factors include labor saving, reduced furnace downtime, alleviation
of heavy physical labor, and improvement of working environments in furnace lining
installations.

These technological changes are best reflected in the evolution of monolithic
refractories. From 1960 to the present there has been a steady increase in the use of
monolithic refractories by all refractory-consuming industries at the expense of pre-fired

refractories. At least one industry (refining and petrochemical) has moved almost exclusively

| towards the use of monolithics.




One of the most dramatic increases in the use of refractories occurred with the
introduction of Advanced Refractory Castables (ARC). Some of today's ARC represent the
most complex refractory formulations, consisting of high-quality precision-sized aggregates,
modifying fillers, binders, and a large variety of additives [2].

The versatility of these mixes has created many new applications for refractory products
[3-6]. Accordingly to the ASTM C401 definition, a low-cement castable contains between 1.5
and 2.5% CaQ, and an ultralow-cement castable, less than 1.5%. For no-cement castables, in
order to further reduce the content of CaO, calcium aluminate cement is replaced with a new
generation of hydraulic binders (high alumina binders). These refractories, based on the use of
a low amount of calcium aluminate cement, have replaced a variety of other monolithics, such
as conventional cement castables, plastics, ramming and gunning mixes, as well as many brick
compositions. Castable refractories are also widely used because they are easy to apply to any
kind of work by trowelling, ramming, casting, vibration casting, or gunning, [7-11].

Any castable refractory may be considered a mix of two components:

o refractory aggregate: the main component (60-85wt.%), consisting of a mixture of

refractory grains having sizes over 45 um;

e binding system (15-40wt%) which contains: the hydraulic binder (high alumina
cement or rehydratable alumina), ultrafine powders (microsilica and calcined or
reactive alumina), and proprietary mixtures of chemicals, which cumulatively do not
exceed 0.3% of the mix. They have different roles in the cement paste rheology and
setting process [12].

The essential feature which distinguishes low and ultra-low cement castables from other

type of castables, is the presence of the ultrafine components. These ultrafine materials replace

part of the cement used in conventional castables. When used with an appropriate dispersant,

the ultrafine particles fill the voids between larger particles which would otherwise be filled with




water [13]. Therefore, less water is needed to achieve the casting consistency resulting in a
decrease in porosity and increase in bulk density of the installed material. The use of low water
content is very important because the performance of a castable is strongly affected by
increasing the amount of water for casting. Over-watering by 0.5-1% can reduce strengths in
some cases by over 50 % and result in segregation and/or separation when vibrated into place.
Self-flowing capability of castables has to be achieved by a cohesive consistency sé that the
castable could be installed without separation of the fine material or the fluid phase from the
coarse aggregate [14].

Due to their nature, castable refractories are complex systems characterized by
chemical interactions (generated by the hydraulic binder), colloidal interactions (between the
fine particles of the binder system in the presence of water and additives), and solid state or
liquid assisted transformations during the firing stage, which generate the ceramic structure
[15].

Notwithstanding the excellent progress made in recent years with respect to
development of advanced refractory castables, the correlations between the chemical and
colloidal interactions og:curring during initial stages of processing and their role in development
of the ceramic structure are not yet fully understood.

This work was performed in order to examine the influence of the chemistry of hydraulic

bond on the development of a ceramic matrix in advanced refractory castables.




2. LITERATURE REVIEW

Conventional refractory castables (CRC) typically contain 15 to 30%* calcium aluminate
cement (equivalent to 3 to 11% CaO), which acts as a lubricant in water suspensions and as a
binder after hardening to give mechanical strength at room temperatures. The cured strength of
conventional castables is due to the formation of the various hydrated phases of the cement.
When heated, decomposition of the hydrates causes a decrease in strength between 600°C
and 1000°C. At temperatures above 1200°C, the calcium oxide will react with silica and alumina
to form low melting point anorthite, ahd respective gehlenite liquids. These liquids will decrease
the bond strength, and the corrosion and erosion resistance at high temperatures. The high
cement content in conventional castables also requires a relatively high water content (9-12%)
that limits the potential of achieving a low porosity. Practical means of reducing the cement and
the water levels consist of :
e proprietary mixtures of chemicals, which improve the rheological behavior of the
system and the setting process [12].

e ultrafine reactive powders which replace part of the cement of conventional
castables and, when used with an appropriate dispersant, fill the voids between
larger particles which would otherwise be filled with water [13].

Low cement casiables (LCC) have 4-8% calcium aluminate cement (1.5-2.5% CaO) and
similar amount of fume silica and alumina. At this low level of cement content the water for
casting ranges from 3.5 wt% (vibcasting) to 6.5 wt% (self flowing), which results in much lower
porosity (10-15%) for these products. Even at this lower cement content, though, these

castables still have too high a percentage of CaO for developing good hot strength, which

* Unless otherwise specified, % is equivalent to wt%.




rapidly decreases at 1200-1400°C. At 1500°C, the Al,O,-SiO,-CaO low cement castables have
a hot modulus of rupture near zero [38].

Ultra low cement castables (ULCC) have less than 4% calcium aluminate cement
(providing less than 1.5% CaO), and their binder system consists mainly of ultrafine powders
such as silica fume and reactive alumina. This type of binder system has the advantage of
reduced formation of low melting point liquid phases, resulting in high hot strength and an
increase in strength with firing temperature. ULCC’s have very good thermo-mechanical
properties, but because of the low cement content, the setting times are long, making
necessary the use of setting time accelerators. Also, the flow of these castables is very
sensitive to minor variations in composition pH, and to the presence of impurities.

No cement castables (NCC) are new materials that use special Hydraulic Alumina
Binders (HAB) instead of calcium aluminate cement (CAC). Hydraulic Alumina Binders
represent a new generation of hydraulic binders characterized by a very low content of calcium
oxide (<0.1%) that made possible the design of calcium-free binding systems. In addition, these
compositions have setting characteristics that are easier to adjust than for ULCC'’s.

The nature of the hydraulic binder (CAC or HAB) determines the evolution of the
hydraulic setting process and the nature of hydraulic products that are forrﬁed. The setting
process is also influenced by the amount of water in the systém and by the effect of proprietary
chemical admixtures which can have an accelerating or retarding action.

The challenge of designing a hydraulic binder system is to simultaneously control the
rheology of the mix and the hydraulic setting process, and to obtain a ceramic texture with good
mechanical strength at high temperatures. The obstacles of a successful design are generated

by insufficient understanding of the complex interactions between the hydraulic binder, the flow

and setting additives and their influence on the characteristics of ceramic obtained after firing.




2.1. Hydration

The thick slurry formed by thg mixing of a hydraulic cément with wafter and aggregate is
called a paste. Setting is the initial stiffening, usually occurring within several hours and
hardening is the development of strength over a longer period of time. Setting and hardening
occur due to chemical reactions, which are colléctively described as hydration, despite the fact
that these processes are more complicated than the formation of an insoluble hydrate from an

anhydrous salt [15].

2.1.1. Hydration of hydraulic binders

The most common hydraulic binders of castable refractories are calcium aluminate
cements with more than 70% alumina, having as mineral phases C;,A;, CA, CA, and a-Al,O,
(where C=CaO, A=Al,0;) [15-16]. The major phase in thése cements is the monocalcium
aluminate (CA) which imparts high mechanical strength and refractoriness to the cement:
whereas rapid setting is associated with the presence of C,,A; which dissolves rapidly in water.
The hydration of calcium aluminates in a refractory cement is a complex process, not yet fully

understood [17]. The main crystalline products of hydration are CAH,,, C,AH;, C;AH,, and AH;,

Table 2.1-1. Main hydration products of calcium aluminate cement pastes [19].

Temperature Hydration Products
<21°C CAH,,, aluminous gel
21-35°C C,AHs, aluminous gel + crystalline AH,
>35°C C;AH;g + crystalline AH;
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particles. When the hydration layer grows to reach a critical thickness, the stress caused by
intruding molecules of water rl.J‘ptures the layer. As a consequence, the diffusion barrier is
removed and the induction period ends. The reaction as a whole accelerates with the formation
of crystalline nuclei of metastable hexagonal hydrates that grow by a dissolution-crystallization
mechanism. Depending on the initial crystallinity of the calcium aluminate, CAH,, can be
detected after 6 to 24 hours and C,AH; after 24 hours [21]. The conversion of metastable
hexagonal hydrates to stable cubic hydrates results in a volume reduction of 53% for CAH,, to
C;AH;, transformation, and 16% for C,AH; to C;AH, transformation. This volume reduction is
responsible for an increase in open porosity and a subsequent decrease in strength [17, 22].

A similar hydration mechanism takes place during the hydration of Hydraulic Alumina
Binders (HAB). This new generation of hydraulic binders for advanced castables is based on
the amorphous meso-phase of transition of alumina (p-alumina) which reacts with water to form
a hydraulic bond. HAB can be produced either by dehydration of Gibbsite in vacuum at 600°C
or by a brief contact with hot air blast at 600 to 900°C. A commercially availabje HAB contains
about 60% p-alumina, a small content of x-alumina and residual aluminum hydroxide (Gibbsite)
and can be used as a direct replacement for calcium aluminate cement. p- Alumina reacts with
water at room temperature by the following process [23] : b
2 p-Al,O; +(4+x) H,0 — Al,053H,0 + AlL,O,¢(1+x) H,O (;<=0... 1) (4)

Bayerite Bohemite gel

There are several commercially available HAB produced by Alcan Chemicals Limited
(Actibond 101 and Actibond 102) and Alcoa Industrial Chemicals (Alphabond 100 and
Alphabond 200). Alcan Chemicals has announced the release of HAB products (XAA series)

having improved green strength whilst retaining other refractory properties [24]. One of the

characteristics of hydration of HAB is that the amorphous phase of hydration (bohemite gel) is




not prone to transformation into a final crystalline product [23]. Table 2.1-2 shows typical

chemical and physical properties of HAB developed by Alcan Chemicals (Actibond and XAA

series) and Alcoa Chemicals (Alphabond). Although the hydration behavior of the hydraulic

binders (CAC and HAB) for castable refractories is not yet fully understood there are some

essential features that may be highlighted:

e The dormant period that follows the initial hydration is due to the development of amorphous
phases and allows the self-flow behavior and the installation of the castable material.

e The setting occurs when the amorphous layer present on the surface of cement particle is
transformed by a dissolution-crystallization mechanism.

Compared to calcium silicate cements, whose hydraﬁon has been thoroughly studied,
very little or contradictory results are found for high alumina compounds. The results of
research concerning the role of the degree of crystallinity of calcium aluminates are more
scattered [21]. In order to fulfill the need for a better understanding ‘of the hydration process,
most of the research is directed to the analysis of hydration of synthetic high-purity calcium
aluminates with controlled properties [17,21,22]. The complexity of the hydration process and of
the subsequent transformations are the main obstacle in approaching the fundamental studies
on colloidal interactions occurring in the binding system of castable refractories, where besides

the hydraulic binder chemical additives and ultrafine reactive particles are also present.

Table 2.1-2. Typical chemical and physical properties of HAB [24,25].

HAB Products XAA2004 Actibond 101 {Alphabond 100
XAA2005 Actibond 102 |Alphabond 200

AlLO; ( %) 86 >86 90

Na,O ( total) ( %) 0.36 0.4 0.5

Na,O (soluble) ( %) 0.03 0.03

Fe,O5( %) 0.02 0.02

SiO, ( %) 0.02 0.02 0.2

CaO (%) 0.03 0.03 <0.1

L.O.I. (%) ~12 ~12 ~8

Specific surface area (m?/g) 190-260 190-261 271




2.1.2. Setting

A characteristic phenomenon of the hydration of calcium aluminates is the anomalous
setting behavior. As the temperature of hydration is increased, the setting time becomes longer
until it reaches a maximum value at around 28°C. Above this temperature the setting time
decreases rapidly with increasing temperature. This phénomenon has been proven for
commercial grades of calcium aluminate cement as well as for pure monocalcium aluminate
[26].

Studies of the effect of temperature on the hydration of commercial cements, and
synthetic samples containing CA and CA-CA, mixtures concluded that the cause for the
anomalous setting behavior is the difficult nucleation of calcium aluminate hydrates at around
28°C [27]. At much lower temperatures, formation of CAH,, occurs readily. As the temperature
increases, formation of this hydrate becomes less favorable on thermodynamic grounds.
Additional amorphous products are probably formed and the setting time becomes longer [28].
At around 28°C, nucleation of CAH,, becomes increasingly difficult, but the rate of formation of
the second metastable phase (C,AH,) is still sluggish, perhaps because of the slow growth of
the nuclei. The thermodynamically stable C;AH; can be formed at this temperature only by
conversion of the metastable hexagonal hydrates. Therefore, in the critical range from 25 to
30°C, precipitation of the hydrates takes mdch longer time than at other temperatures, because
none of the crystalline hydrates associated with calcium aluminate cement forms readily [28].
This mechanism was also supported by the investigations on calcium aluminate hydration iﬁ the
presence of admixtures of C,AH; and CAH,,. It was determined that addition of crystalline
hydrates as low as 10% eliminates the anomalous behavior [26].

Because of the peculiarities of the calcium aluminate cements hydration, and in order to

favorably modify the properties of freshly mixed or hardened refractory castables (to control the

10



flow properties and the working and setting time), different chemical admixtures are generally
used [29].

The effect of the setting additives can be followed by measurements on the hydraulic
binder pastes (Vicat method, electrical conductivity or microcalorimetry) or, in an indirect way,
by flow measurements of the whole castable in order to assess the influence of the admixture
on the working time. Typically, a chemical admixture may modify more than one property, e.g. a
specific additive may increase the working time as well as reduce the water requirement. In
practice, the placement of the refractory castable may involve the use of two or more
admixtures simultaneously, leading to complex interactions [30].

Setting retarders influence the kinetics of hydration by slowing down the dissolution of
anhydrous cement particles. The mechanism proceeds ‘by blocking the dissolution, by
adsorption onto the cement grain and/or generating combinations with calcium ions. Typically,
retarders are hydroxylated carboxylic acids (such as citric, gluconic or tartric acid) and their
derivative alkaline (most commonly sodium) salts [31]. Some of the plasticizer admixtures can
have a secondary effect, of retarding the setting time. A typical example is sodium hexa meta
phosphate (SHMP), that may react with calcium ions in solution to form a complex salt :

2Ca® + (Na,PeOp)* — 4Na* + (Ca,Pe01e)* (5)

This activity will not only modify the ratio of calcium to aluminate ions in solution, but will
also change the rate of dissolution of monocalcium aluminate [30]. The effect of a setting
retarder depends on the temperature, the level of admixture and the composition of the
castable (type of hydraulic binder, presence of other admixtures and presence of ultrafine
powders).

The variation of setting time of CAC CA-14M Alcoa with the temperature for different
levels of admixture of citric acid is shown in Figure 2.1-2. An increase in the amount of citric

acid does not always bring a greater retardation. The setting time is usually lower in the

11




presence of 0.75% citric acid than in the presence of 0.5%. The results for 0.25%, which have
been omitted in Figure 2.1-2 for clarity reasons, were very similar to 0.5%. Another interesting
aspect is that addition of 1% citric acid resulted in maximum setting time at 28°C, as in the
absence of any admixture, while additions in fhe range of 0.25-0.75% resulted in a maximum
setting time at around 20°C [30].

Experimental results show, Figure 2.1-3 [16], that even though sodiubm gluconate is the
most effective retardant (ten times more effective than 'boric acid and sodium citrate), the effect
of each admixture depends on the nature of the calcium aluminate phase. The temperature has
a very strong influence on the retardant effect of boric acid (compositions C1-C3 in Table 2.1-
3). Also the data for the explosion test show that even at a high level of addition of boric acid,
the temperature is the deciding factor in the structure of hydration products. By correlating the
mechanical strengths after curing and drying with the curing time of castables (C1, C4, C5, and
C6), it appears that even if the dissolution of aluminate cement is considered complete after 24
hours, the conversion reactions are not completed after 72 hours. It appears that by increasing
the content of alumina cement (from 5% to maximum 15%), there is no significant decrease in
setting time as a function of the content of alumina cement (C1, C7, C8 and C9). In this study
[16] no direct correlation between the flow values and level of admixture and level of calcium
aluminate cement has been observed.

In the case of ultra-low cement and no-cement castables, due to the low levels of
hydraulic binder and high content of ultrafine powders (such as microsilica and reactive
alumina), the hydration process is delayed and there is a need for the use of accelerator
admixtures [22, 32]. It is believed that accelerators influence the dormant period of hydration by
forming nuclei of crystallization which reduce the time necessary for homogeneous nucleation

from the amorphous phase of calcium aluminate [32, 33].
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Figure 2.1-2. Variation of setting time of calcium aluminate cement CA-14M, with
temperature for different levels of Citric Acid [30].
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Figure 2.1-3. Effect of setting time retarders on different calcium aluminates [16].



Table 2.1-3. Properties and composition of experimental CAC based castables [16].

Nusber of Castables C1 c2 C3 C4 cs C6 c7 c8 (o]
Alumina Cement(X) 5 - 5 | 5 H 5 2 10 15
Additives(%) :

Sodium Hexametaphosphate 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Boric acid(X) 0.02 0.01 0.03 0.02 0.02 0.02 0.02 0.02 0.02
Curing temperature(’C) 20 5 35 20 20 20 20 20 20
Curing time(h) 24 24 24 -1 16 72 24 24 24

Pro ertles 0 stable

ow value --g 202 180 197 - - - 183 202 158
Ha&dinlng ile(hr 1n)§(2 6:20 | 17:30 2:50 - - 9:20. 8:1§ 8:45
us of rupturezHPa
after Curlng 3.8 1.8 3.3 0.3 1.8 4.2 1.2 1.1 11.0
after Dring 8.8 4.1 7.1 5.2 4.2 1.8 3.0 17.8 23.3
Cru?hing strength(KPa)
ter Curing 13.8 13.8 11.7 1.8 1.0 17.8 4.5 34.5 62.1
after Dring 37.4 24.0 38.2 30.3 27.1 37.8 13.7 88.0 | 128.7
Explosion Test%3
600°C 000
800°C x X | XXX X X X
900°C X X X XXX [ XXX X X X X X X

1000°C XXX | XXX XXX | XXX X X X X X X

1108% XXX | XXX XXX | XXX ( XXX | XXX | XXX

120 X XX | XXX X I XXX | XXX | XXX | XXX ] XXX [XXX

%1 Vibration Flow(10sec) ' '

%2 Heat evolution Time

%3 X :Explosion,O:noa

The most common and most effective accelerator.for CAC is lithium carbonate. Other
lithium containing chemicals, such as lithium hydroxide and lithium chloride, are more soluble,
react more violently and are therefore more difficult to use [30, 33]. It is considered that, in
solution, the lithium ions interact with the amorphous Al(OH),” groups to precipitate insoluble
lithium aluminate thereby increasing the Ca*/AI(OH), ratio [31,33]. This conclusion is. also
supported by studies of hydration of pure monocalcium aluminate and CAC Alcoa CA-25 in the
presence of 0.7wt.%LiCl, which found the presence of C,AH; at 12°C and C,AH,, at 25°C.
Neither of these hydrates are normal reaction products at low temperatures in the absence of
lithium salts [30, 34].

All the alkaline salts have an acceleration effect on CAC, which decreases with the
atomic number of the cation (Table 2.1-4). The influence of the anion component on the setting
time is not yet understood [35]. As in the case of setting time retarders, the effect of the

accelerators is specific to each of the calcium aluminate phases (Figure 2.1-4).
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Table 2.1-4. Experimental values for setting time for CAC Ciment Fondu Lafarge with 0.01%

alkali salts admixtures [35].

Anions OH cr HCOO F CH,COO PO*
Cations Setting time (s) (16110 s for pure cement)
Lit 290 340 | 370 650 925 1260
Na* 5060 9240 10680 1720 9560~ 9300
K* 77120 9660 10950 4400 10560 10680.
Rb* 9010 10100 NA 5180 10830 10800
Cs* 10940 11150 11520 5780 11030 10950
Nigerals | Additives ::::::m Acceleration No afditive Retardation
IIO 210 3,0 4'0 5‘0 0'0 710 80 90 100 110 120 130 140 150
CA Ca{08)2 0.3 % ///f/% I
Na2C03 0.3 /// / ///// ;' - —~
Li2c03 0.01 ////// g —‘r —TT—J;'—r
! P
car | wene | 0y D /////% e

Figure 2.1-4. The relative individual effect on setting time of monocalcium aluminate (CA) and

dicalcium aluminate (CA,) phases [16].
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The effect of combination of accelerators and retarders may bé studied by
measurements of electric conductivity on fresh cement pastes. The electric conductivity is
proporﬁonal to the degree of hydration [36]. The combination of accelerators and retarders is
possible, in the same castable mix, and is recommended because the effects do not necessary
cancel each other out, but intervene at different stages of the hydration process (Figure 2.1-5).
By using lithium carbonate as an accelerator for CAC (for example Ciment Fondu Lafarge), the
setting time may be too short. Additional use of citric acid adjusts the setting without interfering

strongly with the total setting time [33].

(mS/cm)
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e 147 e 0,1%Li2CO3 +0,2% CT

o [+)

() 1.2 _.' A 0‘1 % CT 7

1.0 M 1 v 1 M L] A 1 M 1

0 40 80 120 160 200

Time (min)

Figure 2.1-5. The effect of lithium carbonate and sodium citrate mixtures on electric
conductivity of Ciment Fondu Lafarge pastes (CT= Sodium Citrate) [33].

Studies by Kondo et. al . [38] of the effect of six undisclosed setting additives on 50%
and 60% alumina castables resulted in the description of the setting time of the castable by the

following formula:

In(t,)= A(10%T) -B + &X (1)
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,where :

t, - setting time (hours);

A, B - constants depending castable characteristics ;
@ -constant depebnding on the type of admixture;

X -concentration of accelerator (wt%)

T —temperature (K)

The setting process of HAB is similar to that of CAC in the sense that hydration of p-
alumina markedly depends on curing temperature, being very slow at 5°C and rapid at 30°C. It
also depends on the water/alumina ratio, the formation of Bayerite being reduced at smaller
ratios [23,24]. It is possible to adjust the setting time of an ultra-low cement castable by
accelerating the cement hydration with hydraulic alumina or vice versa [38].

In the case of ULCC with high content of silica fume (higher than 6 wt%), sodium
tripolyphosphate (STPP) may have a dual role, acting both as a dispersing agent and as a
setting accelerator. It is thought that the sodium from the dispersant would combine in solution
with aluminate ions to form Na’Al(OH),. This reaction would increase th.e Al(OH),
concentration, and thus (applying Le Chatellier’s principle) would increase the rate of nucleation
of calcium aluminate hydrates [39]. In fact, sodium aluminate is a strong setting accelerator,
being very effective for ultra-low and no- cement castables [40].

At present, the mechanisms of hydraulic setting process ‘are not fully understood. The
setting behavior depends on: temperature, the nature and content of hydraulic binder, the
presehce of ultrafine powders, and the nature and content of admixtures. Because of the
complexity of the processes, and the large number of variables, the selection of type and

concentration of setting additive is made empirically by trial and error.
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2.1.3. Interaction between hydraulic binder and reacfive particles

In a colloidal system that contains a hydraulic binder, it can be usually assumed that the
aggregate undergoes oniy surface reactions with the cement [15]. In the case of ARC, there is
a h.igh content of ultrafine reactive powders which, due to their high specific surface, do not act
just as inert fillers but play a major role in the chemical and physical equilibria [13]. Materials
typically used as ultrafine ingredients in low, ultra-low and no-cement castables include:
reactive alumina, microsilica (silica fume), silicon carbide, chrome oxide and alumino-silicate
minerals [40].

The name “microsilica” was introduced by Elkem A/S as a term for the silicon dioxide
material obtained by the cleaning, classification, and homogenization of the silica fume
pfoduced by the smelting of silicon metal and ferrosilicon in an electric arc furnace [41]. Silica
fume is composed of very fine (average diameter ~0.1um ) spheres of amorphous silicon
dioxide having a wide particle size distribution and specific surface values around 10-20 m%/g
[42-43].

It is well known that in an aqueous suspension with cement, following the chemisorption
of Ca* ions on their surface, silica fume particles react at high pH with Ca(OH), to form a
hydrated layer of calcium silicate. The overall reaction may be expressed as:

SiO, + nCa(OH), + mH,0 —» nCa0+SiO,*(m+n)H,O (6)

Adsorption of OH" ions leads to an increase of the coordination number of silicon atoms
on the surface of silica fume particles, which consequently weakens the oxygen bonds to the
underlying silicon atoms and as a result silicon atoms go into solution as silicic acid [44]. The
dissolution of silica fume depends on the OH" concentration per unit surface, which is
determined by specific surface, quantity of silica fume, and the pH of the solution [45]. It is

possible that the formation of calcium silicate hydrates decreases the concentration of calcium
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ions and decreases the ratio of calcium to aluminate ions in solution. This may explain the
retardant effect of the silica fume particles on the hydration of CAC and HAB in castable
refractories.

Studies carried out on the hydration of CAC Secar 51 and Secar 80 (Lafarge) showed
that the main change in the hydration process is the formation of gehlenite hydrate (C,ASHy). In
contrast to C,AH; , the C,ASH; phase is stable after very long curing times and is therefore
expected to have a positive effect on the mechanical strength after curing. Although crystals of
gehlenite hydrate may form at temperatures as low as 20°C, they are the main phase formed
during hydration at 40-70°C according to the following reaction [46]:

C,AHg +S—C,ASH, (7)

In the microsilica-blended cement pastes hydrated at 40°C and fired at 1000°C the
gehlenite remains one of the major crystalline phases, together with cristoballite and anorthite
that is formed by direct reaction between calcium aluminates and silica [41]. The interaction
between silica fume and CAC is influenced by the presence of plasticizers such as sodium
tripolyphosphate (STPP). The precipitation of insoluble calcium tripolyphosphate at low
phosphate concentrations (up to 0.5wt%) gives a retardant effect while at high concentrations
(from 0.75wt% up to 3% ) there is an accelerating effect, increasing with the concentration of
the admixture and specific surface area of silica fume [39]. The behavior of the silica fume-CAC
-STPP system is further complicated by the fact that the reaction between silica fume and CAC
can also lead to an amorphous precipitate, much like the C-S-H product in Portland Cement
hydration [47].

In pastes of CAC (Secar 71 Lafarge) and silica fume hydrated at 20°C, C,ASH; is the
main crystalline phase (some CASH,, occurring for high surface area silica fume) formed at low
levels of STPP (0.2wt%). By increasing the level of STPP to 0.75 wt %, C,AH; may also be

observed [48].
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At 25°C, the hydration behavior of silica fume/monocalcium aluminate mixes depends on
the water/cement ratio. For binary mixes containing more than 25wt% silica fume, the
precipitation of calcium aluminate hydrates is delayed for up to 3 days. In mixes containing
75wt% silica fume and 25wt% monocalcium aluminate, at a water/cement ratio of 0.8, the
presence of C,ASH; was detected after 1 to 3 days of hydration. However, at water/cement
ratio of 2.0 the presence of C,ASH; bbuld not be detected [22].

Regarding the influence of alumina additions on hydration of calcium aluminate cement,
it was found that the specific surface and the Na,O content are determining factors. During
early hydration of monocalcium aluminate in the presence of reactive alumina, a significant
amount of Na* ions is released into solution, leading to high values of Al(OH),” concentration,
low CaO/Al,O; ratios (<0.1) in the liquid phases and, as a result, to an accelerated hydration
[32]. These changes in the composition of the solution are due to reorganization reactions in the
first reaction layer present on monocalcium aluminate and alumina particles [50].

The existence of an initial reaction layer, not only on the surface of CAC but also on the
surface of the particles of alumina, is substantiated by the behavior of alumina suspensions in
Ca(OH), saturated solutions. The proportion of the Ca(OH), adsorbed on this reaction layer
varies from 8% to 72% of the total Ca(OH), available in solution (20.9mmol/l) and increases
with the specific surface of alumina particles. Further evidence is provided by the formation of
C,AH; on the surface of alumina grains in saturated solutions of Ca(OH), [51].

At a constant content of Na,O, the specific surface area seems to control the hydration
process. By increasing the surface area of reactive alumina, fhe hydration is accelerated [32]. It
is not clear if this effect of the.high specific surface aluminas is produced only by an incfease of
Al(OH), concentration. At higher specific surface area of reactive aluminas, there is also
present a retarding effect probably generated by higher consumption (by superficial adsorption)

of the available water for hydration and a consequent decrease in water/cement ratio [51]. The
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increase in hydration speed of monocalcium aluminate in the presence of reactive alumina of
different surface areas may be studied by microcalorimetry and is presented in Figure 2.1-6.

[32].
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Figure 2.i-6. Evolution of heat of hydration in CA/alumina mixes with the specific surface
area of four different types of alumina [32].

Investigations on the influence of reactive alumina on the setting time of CAC, based on
conductivity measurements, showed that by incfeasing the specific surface the early
precipitation of hexagonal hydrates is delayed [52]. This finding suggests that an increase in
specific surface of alumina results in slowing of the hydration process. Neither the calorimetric
results (sustaining an accelerating effect of reactive alumina), nor the conductivimetric results
(sustaining a retarding effect) are confirmed by experimental studies on LCCs and ULCCs,
which showed that the specific surface of alumina and its soda content have no measurable

_influence on the setting time [40]. This apparent contradiction is resolved if considered that in
the presence of reactive alumina, even if the dissolution rate of the anhydrous CAC may be
increased, the products of reaction contain large amounts of amorphous material, as confirmed

by microstructural studies [32] .
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2.2. Rheology

An important rheological feature of ARC is the self-flow property, i.e. flow taking place
under the action of gravity without any external energy input such as vibration, pressure etc. It is
generally desired to improve thé flow properties with a simultaneous increase in refractoriness and
hot strength. There are two basic criteria that have to be fulfilled in order to obtain a self-flowing
refractory castable:

* the system has to be well dispersed without compromising the hydraulic setting characteristics,
¢ the “geometric” interaction or friction between particles has to be minimized [53].

The first criterion is necessary and may be accomplished by using good quality superfine
powders and proper additives. The second criterion is satisfied by increasing the volume of the
fluid phase to amounts exceeding the porosity of the coarse refractory aggregate structure, so that
large particles are being forced apart and self-flow may occur. However, unless the liquid phase
has a density and viscosity that prevents settlihg of coarse particles, self flow may be obstructed
even at high amounts of viscous phase [54].

Rheological properties of cement and castables are generally studied by empirical methods
and which are closely related to the application procedures [52]. Despité the research effort, a
complete characterization of the rheological behavior of refractory castables has yet to be
achieved. Inconsistencies exist in the data obtained by various investigators due to variances in
structure, composition, and preparation of experimental materials as well as differences in test
conditions and methods [55]. Refractory castables contain particles that are too coarse to allow
measurement in laboratory viscometres under controlied shear rate, making it impossible to make
true scientific measurements of the rheological characteristics of these materials. Moreover, the
understanding of the phenomena involved in determining the cement paste rheology has not yet
reached a sufficient level for analysis of the more complex “suspension” formed by fresh concrete

[56]
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2.2.1. Zeta potential

Measurements of zeta potential of pure clinker phases and technical cements generally
provide additional information on the formation of calcium silicate and aluminate hydrates [56].
The formation of the double layer on cement particles may be illustrated by the Bokris-
Devanatahan-Muler model [67]. According to this model, the cement particle surface, when
contacted with water, begins to react and thereby generates surface charges and ions which,
may be released into solution in considerable quantities. These ions, in the first step, stay near
the charged surface and form an electric double layer. Both thermal movement and generation
of new ions of the same charge, displace these ions from the surface in the second step, thus
establishing a double layer which may be described with a common Stern-Graham model,
though it is entirely different in its nature and the structure of its inner part. Hence, the
composition of the electrical double layer on cement should be significantly affected by the
- hydration reaction. The zeta potential in this model represents the potential between the gel-
layer developed on cement particles and the surrounding electrolyte [58]. It is not possible to
measure zeta potential of cements during the first minutes of hydration, regardless of the
method used. If the pH value is high (pH>12), it is possible to measure it as early as two
minutes after the cement/elebctrolyte suspension has been prepared. Under these conditions,
data obtained for Portland cement lead to the conclusion that a layer of Ca(OH), is precipitated
around the particles, and hence the measured zeta potential is that of calcium hydroxide [59].

The zero point of charge of cement in aqueous suspension depends on the type of
cement and the ionic strength the of solution. Na* and K* are potential determining ions for
cement particles and fine silica ultrafine powders [60].

The presence of surfactant agents produces a stabilization of the double layer by

inducing a zeta potential on cement particles in the early stages of the hydration, and can also

contribute to minimize the effect of flocculating agents such as CaSO, [61-62].




Superplasticizers . and air entraining agents are responsible for a partial
hydrophobization of cement particles which may explain their setting timé retarding influence
[63]. There are also reported correlations between zeta potential, fracture toughness, and
flexural strength of hardened Portland cement paste, indicating the importance of colloidal
properties on the étructure of hardened concrete [64].

Studies on synthetic C,AH,; and C;AH; in lime water, ethanol, and dimethylsulfoxide
suspensions, in the presénce ‘of sodium lignosulfonate, sodium naphtalene sulfonate
formaldehyde condensate, and sodium melamine sulphonate condensate, showed that the
evolution of the zeta potential of hydration products depends on the adsorption level of the
admixture. C,AH,; has a negative zeta potential in lime water (-9.1mV) and a weak positive
potential in ethanol (+2.3mV). Minimal adsorption of admixtures causes a sharp potential
decrease in both media. As the adsorption increases, the potential remains practically constant
between -18 and -20 mV. C;AHg; has a similar zeta potential .in lime water (-8.7mV) that can
reach values of -12 to -18 mV in the presence of plasticizers [65].

For Portland cement pastes, Ca®* determines not only the zeta potential of the cement
particles, but also the potential of the amorphous hydration products (C-S-H phase) [66].
Although the fluidity of fresh cement paste containing admixtures correlates with the repuisive
force of cement particles (Figure 2.2-1), there is no consistent relationship between the fluidity
and zeta potential. This suggests that a force, other than electrostatic repulsion acts on the
dispersion of cement particles [67].

There is currently no data on the zeta pbtential of hydrating CAC or HAB particles of
colloidal systems with characteristics similar to ARC (i.e. low w/s, high content of ultrafines,

presence of plasticizers)
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Figure 2.2-1. Variation of flow (measured according to JIS R 5201) with zeta potential of
cement particles in the presence of: naphtalene condensate (NS), acrylic acid-ester copolymer
(PC-A) and olefin-maleic acid copolymer [67].

2.2.2. Rheology of cement pastes

- Most of the work on the rhedlogy'of fresh cement pastes has been done on Portland
cement, with only a few studies being done bn CAC pastes. Even for the well studied case of
Portland cement, a thorough definition of the shear and time-dependent properties of this
material is not yet possible. The reason for this is that the rheological behavior of fresh cement
pastes depends on several factors [68] of different nature, such as:

o ph)}sical factors (the water/cement ratio, the cement grain size and’shape, etc.);
e chemical and mineralogical factors (the cement composition and its structural modifications
due to hydration processes);
" e mixing conditions (type of mixér, mixing rate and time);
o measurement conditions (the characteristics of measuring instrument, experimental

procedures, etc.).
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Cement pastes are non-Newtonian dispersed systems and the most suitable instrument
for determining their rheological properties is the rotational viscometer because it permits
measurements in controlled flow conditions. Since cement pastes are dispersed systems,
coaxial viscometers are preferred, as friction phenomena among particles are avoided and flow
conditions are closer to the viscometric ones [69].
The use of coaxial viscometers is hindered by several factors. Particle settling dqring
measurement may account for an anomalous shear thinning that may be misinterpreted to be a
part of the structure buildup or breakdown. Also, if the gap of the measuring cell is too large, an
uneven flow distribution across the annulus may be observed due to yield values inherent in the
fluid system [70]. In order to avoid the probiems encountered with rotational viscometers there
are several guidelines that should be obseryed [71]:
¢ the minimum dimension of the annular gap width should be 10 to 100 times that of the
particles;

e the gap should be as narrow as possible to allow for uniform flow condition within the
annular space;

e apparent slippage should be avoided, if possible, through the use of grooved cylindrical

surfaces.

During viscometric measurements of cement pastes, a hysteresfs (thixotropic or
antithixotropic) behavior is commonly observed. It is suggested that this effect may be the result
of the development and breakdown of a “secondary structure”. This structure is related to gel
formation and is not to be confused with the floc structure of the paste existing before the

application of a shear stress [72].
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The shear strain rate versus shear stress curves obtained with viscometers depends
strongly on the flow history, on the colloidal stru.cture of the cement pastes, and also on the
apparatus used [73].

According to Chappuis [74], in order to simulate the shearing conditions of the cement
paste during concrete placing, rheological measurements in viscometers must be carried at
very low speeds. Also, in order to avoid any possible interference of the measurements with the
hydration process the measuring time has to be very short. These aspects are essential in
order to obtain reliable data from viscometric measurements using concentric coaxial
viscometers. Viscometric measurements were carried out, during the dormant period of two
alumina cements (fast setting and a normal cement one) at different water to cement ratios in
order to further investigate the rheological behavior of cement pastes. The results of these
measurements are presented in Figures 2.2-2 and 2.2-3 [74], in logarithmic scale for shear
stress. Several conclusions can be drawn from these figures:

e During the dormant period all pastes exhibit a continuous thickening with time;

e For each cement, when the scale of the shear stress is Io_garithmic, the experimental points
seem to be on parallel straight lines, the slope of these lines being a measure of the relative
thickening of the cement paste with the time;

e For a given cement, the relative thickening of the cement paste is independent of the water
to cement .ratio;

¢ For both cements, but more visible for cement N (normal cement), there is a certain ratio of
water to cement above which no further important decrease in viscosity is recorded. This
may be related to hydration characteristics of alumina cements; in particular, to the fact that,
after the initial moments of mixing with water during the whole dormant period the quantity of

hydrated cement is quasiconstant.
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Figure 2.2-2. Variation of shear stress with time, at different water/cement ratios for a fast
setting aluminous cement [74].
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Figure 2.2-3. Variation of shear stress with time at different water/cement ratios for a normal
aluminous cement [74].
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In order to establish the influence of the initial mixing on rheological behavior of alumina
cements, the same test procedure as above was applied for fast setting at a water/cement ratio
of 0.5 for two different periods of initial mixing (3 minutes and 30 seconds). The results are
shown in Figure 2.2-4. It can be seen that these two cement pastes have a completely different
behavior, although they have been prepared at the same water to cement ratio and from the
same cement.

The studies made by Chappuis are in agreement with the work done by A. Papo and B.
Caufin [75], who studied the hydration of Portland cements by means of oscillatory rheological

techniques and obtained a the following relation for the variation of viscosity with time:
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Figure 2.2-4. Variation of shear stress with time for a fast setting cement for different mixing
time [74].
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where: n-the viscosity of paste
ne-initial value of viscosity
t-current time
tr -the time at which the material has a very high characteristic viscosity (7 )
N-parameter describing the kinetics of the cement hydration process

Therefore it was established that, even though the volume fraction of the binder in a
compact castable mixture is only equal to 25-35%, the behavior of the molding system is
determined by the binder [76].

Cement pastes in the presence of silica fume and plasticizers display all known types of
flow, from typical Newton to pseudoplastic with a well defined yield stress value. The attempt to
characterize the more complex systems such as binary mixes of silica fume and cement
resulted in a great variety of flow curves presented by different researchers. These
inconsistencies are believed to be the result of a specific effect of silica fume on the formation
of the primary aggregate structure of such systems. A characteristic feature of this effect seems
to be a well defined thixotropic behavior [77]. Even in the case of sinﬁple systems such as
refractory mortars, an accurate correlation between rheological characteristics and flow could
not be obtained [78]. The explanation for this lack of knowledge is due not only to the difficulty
of setting up accurate and significant measurement techniques [71] or to the complex structure
of fresh cement pastes, but also to the complex chemical and physical interactions that result in
a continuously evolving microstructure [73].

Simultaneous viscosity and calorimetry measurements of fresh cement pastes
containing reactive powders (Figure 2.2-5) showed that there are two exothermic effects
occurring: a long term and a short term one. The long term effect corresponds to the massive
precipitation of hydrates and its kinetic influences the kinetic of strength development and

hardening of castables [79]. The nature of the short term effect is not known. The exothermic
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reaction corresponding to the short term effect leads to the stiffening of the binder and it is

associated with flow decay in castables [80].

Mineral system = CAC(25)RA(75) Mineral system = CAC(25)SF(25)RA(50)
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Figure 2.2-5, Variation.of viscosity and short term exothermic effect, in time for pastes
containing calcium aluminate cement (CAC), reactive alumina (RA) and silica fume (SF) [80].

At present, the study of the rheology of fresh cement pastes can offer qualitative
information regarding the influence of reactive powders and admixtures on flow and setting
behavior of ARC systems. Although significant progress has been made in recent years in
refining of the experimental measurement methods, it is not yet possible to obtain precise
information regarding the optimization of admixtures, or the influence of reactive powders.

Because it is impossible to correlate viscosity of simple suspensions of hydraulic binders
components with flow of castable the study of rheology cement pastes is not a reliable tool in

the design of ARC systems.
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2.2.3. Flow

The determining factor in obtaining a self-flow ARC is the particle size distribution. While
the addition of plasticizers and selection of hydraulic binder-setting admixture systems may
bring substantial improvement, no self-flow behavior is possible without a proper particle size

distribution (Figure 2.2-6) [81].
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Figure 2.2-6. The influence of particle size composition in determining the flow characteristics
of a castable [81]

It was demonstrated that a gap sized distribution gives poor workability and flow while a
continuous one gives imbroved workability, low water requirement and good compactness
resulting in low shrinkage and high strength [53]. |

Although a number of packing models for continuous distributions have developed over
the last century, only Furnas and Andreassen distributions have been used in the design of
castables [84]. Furnas type distributions for castable refractories are based on the aséumption

that the particle packing factor of narrow sized fraction of any material is constant at 50% voids.
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The Furnas model is however cumbersome and difficult to use. The Andreassen model is much
simpler but it has been criticized for its empirical nature. The Andreassen particle size
distribution is expressed by the following equation:
CPFT=(d/D)"x100 (3)
where,
CPFT - cumulative (volume) percent of particles finer than the current dimension d (%);
d - current particle size (um);
D - maximum particle size in the system (um);
g - Andreassen exponent that characterizes the distribution.

Computer simulations have shown an upper limit for the g value if a dense packing is
desired. Values of g below 0.37 may give 100% density for infinite distributions, whereas q
above 0.37 will give a packing with porosity no matter how wide the distribution [82].

The main objections raised against the Andreassen model are due to the fact that the
equation assumes the existence of infinitely small particles and does not require any shape
factor [83]. In spité of these imperfections the Andreassen model works better for refractory
castables than the Furnas model [84]. Experimental results based on the behavior of fused
alumina castables have shown that in order to get good flow for castables the g-value should
not exceed 0.3 . For high g~0.3, the castables are vibratables, and for lower g< 0.25 the self-
flow behavior is dominant [85]. The experimental evaluation.of self-flow behavior of refractory
castables still lacks enough fundamental basis, which results in the absence of a universally
accepted standard. Presently, the most used laboratory test for self flowing is the use of
truncated conical mold [86]. In this method, the mold (described by ASTM C230) is filled with
refractory castable then rapidly lifted and the castable is allowed to spread freely under its own

weight. The relative increase in diameter of the castable is considered to be the flow value. The
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cone itself was arbitrarily chosen, without any consideration neither to its relative dimensions, or
to the volume that it generates [87].

This test is purely empirical but is the only type of test widely accépted, due to its
simplicity and the fact that it can accurately describe the flow behavior of castables in the field
applications. It is considered that the 50% self-flow is the minimum value needed for reasonable
pumping/pouring consistency, and that the110%. self-flow is the maximum value above which
the segregation occurs [86].

Fine reactive powders are important in determining the self flow behavior because they
represent the fine end of the Andreassen distribution and their amount is closely related to the
Andreassen exponent value. Silica fume is the key component for the manufécturing of ARC
because it has small particle size and a good dispersibility, features that combined bring a flow
improvement for reduced water levels, Figure 2.2-7 [88]. The experimental observations
revealed that the quality of silica fume is an important factor for a good self-flow behavior. Still
there is controversy regarding the definition of a good quality silica fume. The following factors

are most often cited in literature as characteristics of a good quality silica fume: high specific
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Figure 2.2-7. Influence of microsilica additions on flow and water levels of a ARC [88].




surface (usually above 20 m?g measured by BET method) [47, 48], high chemical purity (over
98% SiO,) [42, 84], and low level of soluble soda (less than 0.05%) [40]. Figure 2.2-8 shows a
comparison between four different types of silica fume that have the chemical composition
presented in Table 2.2-1 [84].

Comparing the flow behavior of castables prepared with silica fume type D, E, F, and G
and taking into account their chemical composition, it may be considered that the most
detrimental impurities are Na,O and K,O, but influence of the content of CaO, Fe,O;, MgO and

Al,O; is unknown and cannot be identified from the presented data.
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Figure 2.2-8. Comparison between different types of silica fume on flow behavior of a
tabular alumina based castable composition [84].

Table 2.2-1. Chemical composition of the silica fume types used in flow measurements in
Figures 2.2-3 and 2.2-4 [84].

Component SiO, AlL,O,4 CaO Fe, O, MgO Na,O K,O
A 96 0.6 0.15 0.1 0.4 0.3 0.4
B 99 0.06 0.14 0.01 0.04 <0.01 0.1
C 97 0.4 0.15 0.1 0.3 0.1 0.2
D 95 0.4 0.2 0.08 0.2 0.05 0.5
E 95 0.3 0.3 0.08 0.2 0.09 0.5
F 98 0.4 0.2 0.05 0.1 0.02 0.2
G 98 0.3 0.2 0.07 0.1 0.02 0.3
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Figure 2.2-9 shows the effect of variation of the CAC content on the flow behavior of
tabular alumina based castables having 8% silica fume with compositions presented in Table
2.2-1 [84]. It is clear that the flow decreases sharply with increasing the CAC content. In order
to maintain a similar flow level, an increase of 1.5% CAC requires an increase of 0.5% water. In
all cases, the low purity silica fume type A gives low values of flow. The purity of silica fume is
critical especially for castables having an ultra low cement content. It is not clear why the silica
fume type C gives a better flow at 1.5% CAC even though it is less pure than silica fume type B.

The addition of HAB has a strong effect on the flow of the castable. Both the free-flow
and the vibra-flow decrease significantly with the HAB content (as shown in Figure 2.2-10) [85].
If the pattern of variation of free-flow and flow under vibration are compared, it results that for a
self-flowing castable (g~0.25) having a high percent of silica fume, a large addition of HAB will

not bring a dilatant behavior, due to the thixotropic effect of silica fume.
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Figure 2.2-9. The effect of CAC content variation on the flow of tabular alumina based
castables at 8% silica fume [84].
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Figure 2.2-10. Variation of flow with HAB Alphabond 200 addition for a no cement fused
alumina castable containing 8% silica fume (g=0.26) [85].
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Figure 2.2-10. The effect of replacement of silica fume with calcined alumina in fused alumina
based NCC and LCC for Andreassen exponent g=0.22-0.28 [89].
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It is generally accepted that good quality silica fume has a much better effect on flow
than a reactive alumina even when the particle size distribution of the two superfine powders
are similar [88].

The effect of mixtures of silica fume and reactive alumina on flow have not yet been
thoroughly investigated. Figure 2.2-10 shows the effect of replacement of silica fume type F
(Table 2.2-1) with calcined alumina (CT 300SG) in fused alumina based NCC and LCC (6%
CAC) for Andreassen exponent g=0.22-0.28 [89].

Several conclusions may be drawn from the data presented in Figure 2.2-10:

e for high cement content (6%) and high g-value (0.28) there is no self-flow for any silica
fume/reactive alumina ratio;

o the flow decreases with the increase of the reactive alumina content for all self-flowing
compositions, the decrease being stroﬁger at low g-value;

e the content of CAC has no influence on flow at lower g-values (<0.25) and reactive alumina
content in the ultrafine fraction less than 25%;

¢ the role of reactive alumina and silica fume on flow is intimately related to the hydration
process.

Recently Alcoa Industrial Chemicals announced the release of a group of alumina based
raw materials called Matrix Advantage System (MAS), intended to be used as a total
replacement in self-flowing castables [90]. MAS consists in a set of reactive alumina powders
having a bimodal particle size distribution with an average particle size of 1-1.7um and a
specific surface of 3.8-4.7 m?g (BET) and a set of dispersing powders that are obtained by
premixing different chemical admixture of undisclosed composition with bimodal reactive
alumina. MAS is claimed to give a self-flow behavior for castables at very low water levels (4-

4.2%). According to the data presented, the self-flowing castable compositions seem to have a
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gap sized distribution [91] and their flow behavior cannot be described by the Andreassen
model.

The MAS is very important for the design of spinel or high alumina based self-flowing
castables intended to work at high temperatures and in severe corrosion conditions (or reducing

atmosphere), when the absence of silicon oxide from their compositions is a necessity.
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Figure 2.2-11. Particle size distribution for CTC reactive aluminas [90].

An other interesting aspect is that the self flow behavior is obtained ‘by the additions of
reactive alumina powders in a proportion of around 17% and 0.5-2% dispersing alumina
powders, which are more than ten times coarser than silica fume. It seems that the bimodal

(Figure 2.2-11) distribution is a key factor in obtaining the self-flow behavior in the case of MAS

[90,91].




2.2.4. Plasticizers

Plasticizers allow a given degree of workability to be achieved at lower water levels.
They act by adsorption at the solid liquid interface, in this respect resembling sétting time
retarders. There is a wide overlap between the two properties, many plasticizers acting as
setting time retarders and vice versa.

Three principal types of plasticizers are in common use, consisting in salts of:
Sulfonated Melamyneformaldehyde Polymers (PMS), Sulfonated Naphtaleneformaldehyde
Polymers (PNS) and modified Ligno-Sulfonate materials (LS). Commercial formulations often
contain other substances added to alter the setting behavior or for other reasons [92].

In the case of ARC, due to their low content in hydraulic binder and to their high content
of fine reactive powders, the term is extended also to inorganic materials (usually phosphates)
that act as dispersants for silica fume and reactive alumina. It seems that the inorganic
(phosphate) plasticizers act by removing the hydrophobic impurities (residual carbon) from the
surface of silica fume particles while organic macromblecular plasticizers act mainly by steric
repulsion [563]. There are only a few studies concerning the effect of plasticizers on flow
because their mechanism of action is not yet well understood and because the self-flow
behavior is extremely sensitive to plasticizers admixture. At the present stage the levels of
plasticizer admixture for self-flowing castables are established only by experimental means. |

The difference in action between organic and inorganic plasticizers is reflected by the
fact that even though the organic plasticizers have a lower effect on the zeta potential of
reactive alumina and CAC, they may be more effective in enhancing the flow. The use of
organic dispersant proves to be more effective as shown in Figure 2.2-12. Also the flow is more

sensitive to changes of the organic dispersant concentration than for the inorganic [93].
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Figure 2.2-12. Variation of flow with water addition for different levels of melamine polymer
plasticizer (O) and sodium hexametaphosphate (l) [93].
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Figure 2.2-13. Flow of a fused alumina castable as a function of water content for different
concentrations of sodium hexametaphosphate (SHMP) and an ammonium polyacrylate (APA)
[94].
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As shown in Figure 2.2-12 [94] an organic dispersant proves to give a better flow if used
at the proper level. Minor changes in the concentration of the organic dispersant result in a
dramatic change in flow. Also, the castables made with different concentrations of ammonium
polyacrylate had to be analyzed in different ranges of water contents in order to characterize
their self-flowing behavior. The flow is less sensitive to the addition of SHMP. It is shown that
viscosity measurements on the suspension of the fine fractions could not be correlated with
data resulted from flow measurements [94]. The effect of plasticizers on flow depends strongly
on the castable composition and on the nature and content of hydraulic binder and reactive
powders.

The interaction between plasticizers and the hydraulic binder should not be analyzed
only from the flow enhancement or water reduction standpoint. Due to their influence on the
setting process, plasticizers can also improve the castable workability, i.e. the time period in
which the flow behavior is maintained. Figure 2.2-14 shows the decay of flow with time for three
castable compositions having 10% reactive alumina 5% silica fume (Elkem 971) and 5% HAB
(Actibond 101, Actibond 102 and XAA2005) with an admixture of sodium tripolyphosphate or
sodium polyacrylate [95].

Even though all three types of HAB have the same chemical composition (Table 2.1-2
[24]), there are important differences in the effect of plasticizer admixtures with time. In all
cases, it seems that sodium polyacrylate is more efficient than sodium tripolyphosphate with
respect to the initial flow value and workability.

The castable that contains Actibond 101 and STPP has a similar flow behavior to the
one containing Actibond 102 and SPA. Moreover, the action of plasticizers extends also after
the hydraulic setting process.

For the type of castables presented in Figure 2.2-14, it is reported that while for

compositions made with Actibond 101 there is no effect of plasticizers on green strength, for
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compositions containing Actibond 102 and XAA2005 the green strength of specimen with STPP

addition was 20-25% higher than that of specimens prepared with SPA [95, 96].

160 —— Actibond 101-STPP

140

120 —m— Actibond 101-SPA
100 ] —a— Actibond 102-STPP
*
3 80
o —a— Actibond 102-SPA
L 60

20 ¢ —e— XAA2005-SPA
0

0 20 40 60

Time (minutes)

Figure 2.2-14. Variation of flow with time for NCC having different types of hydraulic binder
and different plasticizer admixtures: sodium tripolyphosphate (STPP) and sodium
polyacrylate (SPA) [95].
At the present stage, due to insufficient understanding of hydration mechanisms, of the
self-flow behavior fundamentals, and the action of plasticizers, there is not yet a scientific

approach to the study and optimization of plasticizer admixtures for ARC, all the current studies

being carried out by experimental means.
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2.3. Non-crystalline hydration phases

Studies on cement pastes with microsilica [97], show that a certain fraction of the
microsilica reacts with calcium aluminate cement and water to form the so called CASH phases
in addition to the CAH and AH normally found in hydrated cement. The CASH phases are of
zeolithic nature and the amount of these products of hydration depends on the quality (purity) of
silica fume. In spite of the fact that, at temperatures higher than 40°C [46] or after long term
hydration at room temperature and at low water/cement ratios [22], crystallized forms of CASH .
(C,ASH;) were detected in pastes containing calcium aluminate cements and silica fume, there
is no evidénce of any crystalline compound that may devel'op during the induction period of

hydration at room temperature.

2.3.1. Structure and composition of CSH phase

- The amorphous CASH phase is similar to the CSH phase developed during hydration of
Portland cement, and may be regarded as a CSH phase with a high degree of AI** substitution
[98]. CSH is believed to have layered structure. However, a precise structural determination has
not been performed because of the lack of long range c‘rystallinity [92]. The structure of CSH is
nearly amorphbus (i.e. gel-like), in which the degree of crystallinity is significantly reduced
through the omission of bridging tetrahedra from silicate chains and disorder in the attachment
of silicate anions of various sizes and hydroxyl anions to CaO sheets. Although structurally in a
single phase form, the only XRb effects definitely attributable to CSH are a diffuse peak
between d=0.27 and 0.31 nm, and a sharper peak near 0.182 nm [92]. The broad peak
demonstrates the presence of wide distributions of d-spacing, suggesting a structure that could

be highly variable locally. The periodicity in the diffuse peak relates to Ca-Ca distance in CaO
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planes. The periodicity in the sharper peak near 0.182nm is found in any material containing
silicate dreierketten but also may include contributions from CaO structure [99].

It is currently unknown whether the strong compositional fluctuations of the CSH gel
phase are statistically randoﬁ or there might be correlations in the Ca:Si occupancy over small
distances (i.e. clustering). Attempts in obtaining Selected Area Electron Diffraction (SAED)
patterns have generally failed. Part of the difficulty in the reliability of SAED investigations may
relate to sample amorphization by the ion beam milling process and/or beam damage in the
microscope [100]. It is supposed that the thermal damage during the preparation of specimens
is more important than beam damage in the microscope [101].

Many models have been proposed to explain the crystalline and chemical observations
that have been reported for CSH. The “solid solution model” considers CSH as a solid solution
between tobermorite and calcium hydroxide. In this model, the CH phase is incorporated
between tobermorite layers [102] or the whole CSH phase is considered to be a continuous
sequence of defective tobermorite-like layers [103]. The “nanophasic model” considers CSH to
be a mixture of tobermorite and jenite structural elements ét the nanometer scale. Although
subcrystalline regions may be present, according to this model, they are confined to small
fragments of Ca-O layers with attached silicate fragments that are several nanometers long
[104]. The “buckled-sheet” model is similar to the nanophasic model in that it assumes fhat
CSH structure is a result of the hydration kinetics. CSH is supposed to form in narrow ribbon-
like sheets, which can buckle and curve as a result of the local ionic concentration when they
formed. These sheets are linked in localized nanocrystalline regions that represent nucleation
sites for the new structures. This model can account for a very wide range of compositions as
well as for the presence of an amorphous phase [105]. CSH layered type structures were

observed also in the case of magnesite based ARC, where an MSH gel is formed in the binding
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phase [106]. Crystalline MSH may form probably via dissolution-precipitation of an amorphous
phase that becomes more crystalline during aging [107].

TEM studies revealed the presence of a mesoscale (1-10nm) structure in CSH gels,
structure that consists of a multitude of nanocrystalline regions on the scale of <5nm, each with
homogeneous composition, short range ordered regions on the scale of 1nm with a variable
composition and structure, and an amorphous matrix with a strongly variable composition [100].

Much controversy exists related to the composition of CSH due to variances in
experimental conditions, difficulty in- acquiring reliable data, and due to its compositional
variance. Generally it is considered that the Ca/Si ratio fluctuates between 0.6 and 2 [104].
Some researchers have shown however, that Ca/Si ratio can vary more widely, up to 2.8 [99].
EDX studies of CSH gel using a 1nm size spot showed the Ca/Si ratio to fluctuate between 0.5
and 5.9 [100].

Regarding the Al/Si ratio there is much dispute not only regarding the degree of
substitution but also for the morphological characteristics of the substitution process. It has
been reported [108] that AP** is not incorporated directly into the CSH phase but into other
phases such as (Ca,(Al,Fe)(OH)e)*X*xH,O(AF,). This type of substitution leads to maximum
Al/Si ratios of 0.12-0.18 [98]. TEM analysis of CSH single phase [101] in mature cement phases
showed that the Al/Ca ratio increased linearly with the Si/Ca ratio according to the equation:

Si/Ca = 0.444 + 2.25 Al/Ca (4)

This equation was also applied to the analyses of CSH in a range of slag cements pastes, with
a wide range of Ca/Si ratios [109]. The behavior described by Equation 4 it is not consistent
with the hypothesis that aluminum is present in substituted AF,, phase but is consistent with a
fixed Al/Si ratio in a series of CSH particles of varying Si/Ca ratios. Additional information may

be obtained if we analyze the solubility surfaces in the Ca0O-SiO,-Al,0,-H,0 system (Figure 2.3-
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1). C,ASH, (stratlingite) cannot coexist with calcium hydroxide but can coexist with calcium
aluminate hydrates or with CSH having low calcium and high éluminum compositions [92].
These findings may explain the fact that during hydration of CAC in the presence of silica fume
an initial amorphous phasé is replaced after three days of hydration at room temperature, by

C,ASH;, [22].

Al70;. .~ >0,

x H20 = Al203

Figure 2.3-1. Metastable equilibria in the Ca0-SiO,-Al,0,-H,0 system (solubility curves) [92].

In order to identify if there is a clear solubility limit of Al in CSH and if there is a solid
solution of CSH and Al rich compatible phases, Magic Angle Spinning Nuclear Magnetic
Resonance was employed to study the structure of stratlingite and CSH gels containing up to
13 mol% Al,O, [111]. It resulted that as a function of Ca/Si ratio, two CSH phases can coexist,
being separated from each other by a small invariant field in the vicinity of compositions having
Cal/(Al + Si) =1. This ratio suggests that stratlingite is the coexistent phase. This is also

sustained by finding C,ASH, as a coexisting phase in high alumina content compositions [112].
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Although most of the researchers consider that the maximum degree of aluminum
substitution in CSH can not exceed Al/Si=0.2 there is reported experimental data of amorphous
material having the composition C7.998/A037.04251Hx that was in equilibrium with stratlingite.
The amorphous material maintained its composition after curing for 90 days at 20-55°C [113].

Unfortunately, no NMR studies were performed in order to determine the type of
aluminum substitution in these amorphous compositions. However, for CSH gels with lower
level of substitution, NMR studies have been shown that AP’* substitutes for Si** in bridging
tetrahedra and that other phases may occur with CSH in which AP* exists in octahedral
coordination [111]. In addition it has been shown that the structure of Al containing CSH

consists of dimers and short chains for Ca/Si >1 and long chains for Ca/Si <1 [112].

2.3.2. Formation of CASH phases

The mechanism of formation of CASH phases in ARC is not yet well understood. The
only phase identified as crystalline CASH phase is Stratlingite. In mixes of 30-50% silica fume
and 50-70% CAC, [46] crystalline C,ASH; may be detected after 1 day at 40-70°C or after 1
week at 20-70°C. Because in these experiments the conversion of hexagonal to cubic hydrates
was inhibited, it is assumed that starlingite was formed by direct interaction of silicic acid with
C,AH;.

At room temperature C,ASH; may form from mixes containing 75% silica fume and
25%CAC at low water/solid ratios, after 3 days of hydration. It is interesting that in this case,
prior to crystallization of C,ASHg, the main hydration proddct is an amorphous phase. It is
considered that in ARC the formation of Stratlingite is not induced by the process of conversion
of metastable hydrates [22).

It is not known if the CASH phase in ARC is formed just by interaction between calcium

aluminate hydrates and silicic acid dissolved from silica fume particles or whether a direct
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interaction between the basic components of CaO-SiO,-Al,0,-H,0 system is possible. Mixes of
reactive alumina calcium oxide and silica fume were allowed to react in solution (water/solid
ratio =15) for two years before poorly crystallized Stratlingite was observed. By hydrothermal
treatment at 150°C, a very well crystallized and almost pure phase was obtained.

Mixtures of CAC Secar 71, metakaoline (AS,), and lime as freshly calcined CaCQO;, after
3 days contained only traces of stratlingite the main crystalline phases being CH and C,AH;.
The same mixtures if allowed to react in a 0.2N NaOH solution, contained a well crystallized
strallingite after.3 days [111]. These experiments show that for compositions close to stratligite
(Ca/Si=2 and Al/Si=1) the material formed by direct reaction is a stable amorphous gel.
Crystallizatioh occurs only by hydrot_ﬁermal treatment or in the presence of alkaline ions.

Investigations of interactions between metakaoline and calcium hydroxide at
temperatures of 20-55°C, for compositions in the range of C/AS,=0.4-6 revealed that for
C/AS,<1, a characteristic product of reaction is an amorphous material. After 180 days of
hydration at 20°C these mixes contained only stratlingite and an amorphous material.

After 90 days of hydration at 55°C (Figure 2.3-2), the hydration products of composition
C (C/IAS,=1.5) éfe stratlingite, a hydrogarnet phase (C;AS,sHs), and an amorphous material
having the composition C.415SAg 12.016Hx [113]. It is interesfing that in this case the previous
conclusions regarding stratlingite as a coexistent phase with CSH having maximum level of
substitution Al/Si=0.2, are confirmed. The only products of hydration, for compositions D and E
(having C/AS,=0.75 and respectively 0.4), at 55°C were stratlingite an amorphous material

having the same composition (C 7.0651A037-042Hx ) In both cases.
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Figure 2.3-2. Phase equilibrium in CaO-SiO,-Al,0;-H,0 system at 55°C [113].

For composition E, the amorphous material had the same composition for both
temperatures of hydration (20 and 55°C). An other aspect that has to be mentioned is the
presence of KOH in solution during hydration (the metakaolin used in these experiments
contained 2% K,0) [113]. The presence of K* ions may be responsible for the formation of
stratlingite at these temperatures. It results that in the presence of alkali stratlingite may
crystallize in equilibrium with an amorphous CASH phase having Ca/Si <1 and Al/Si=0.37-0.42.
The amorphous material is very stable, a gel having the composition. C, 5S:A, 3sH, being present
even after 90 days of hydration at 85°C.

Although during hydration of pastes CAC and silica fume, stratlingite crystallized from an
amorphous material coﬁld be identified, there is no data regarding the compositjon of the

amorphous CASH material formed during hydration of ARC.
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2.4. Formation of ceramic matrix

An advanced refractory castable may be considered as a mix of refractory aggregate
which acts as an inert filler at temperatures below 1000°C, and a binding system which is a mix
of reactive ceramic powders, hydraulic binder, chemical admixtures, and water.

After casting, the components of the binding system achieve a very intimate
relationship, and the initial fluid suspension of binding system transforms into a rigid hydraulic
matrix after setting, and finally into a ceramic matrix after firihg. When fired the hydraulic bond
is replaced by a ceramic bond as a result of solid state reactions, with or without the presence

of a liquid phase [12].

2.4.1. Transition from hydraulic to a ceramic matrix

Each stage of processing of ARC (casting, setting and firing) is characterized by a
succession of physical and chemical transformations and complex interactions between
components. The physical and chemical interactions present in the initial stage after mixing with
water include the following:
¢ The hydraulic binder enters an initial stage of hydration. The anhydrous calcium aluminate

cement grains react with water and release Ca** and AIOf* into solution until saturation. The
initial hydration slows down, probably because of formation of a dense coating of Al(OH); gel
on the surface of the particles [20].

e Chemical admixtures dissolve in the binding system suspension, undertaking an active role in
complex ionic equilibrium. Adsorption of plasticizers on the surface of cement and fine
ceramic powders (reactive alumina and silica fume) modifies the zeta potential and the
consequent fluidizing action is due to electric or electrosteric repulsion forces [65,115]. This |

repulsion effect is present even if, due to high ionic strength, the double layer is compressed
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[60]. Accelerators influence the dormant period_of hydration by forming crystallization nuclea,
which reduces the time necessary for homogeneous nucleation from the dense gel coating
around the cement particles, therefore, accelerating the hydration [33, 36, 67]. Retarders
influence the kinetics of hydration by slowing down the dissolutipn of the anhydrous cement
‘particles. The mechanism consists of blocking dissolution by adsorption on the cement grain

and/or combination with calcium ions [17, 33, 36,115].

e Ceramic reactive fine particles (reactive alumina and silica etc.) have multiple roles in the

suspension of the binder system. Due to their small particle size (0.1-1um), they fill the voids
between larger particles which would otherwise filled with water [13]. When used with
appropriate plasticizers, they contribute towards an increase in the electrostatic repulsion
between particles fluidizing the binding system [65,114]. Another aspect less studied is the
chemical interaction of these particles with the hydraulic binder in suspension, although the
long term, slow pozzolanic reactions in the hardened matérial are well documented. Within
the first minutes of hydration the co»ncentration of Ca?*", Na*, K*, and OH " increases, and, due
to OH"™ adsorption, silicon atoms diffuse into solution [114,116] according to the reaction:
SiO, +2H,0 — Si(OH),

Further reactions of silicic acid with Ca®* ions, which result in an xCaO.ySiO, mH,O phase, are
dependant on the water to cement ratio as well as on the cement to silica fume ratio [44,116].
There is no information available on the possible interactions between silicic acid, calcium

ions and alumina gel on the surface of cement particles.

After hydraulic setting of the cement, the binding system transforms to a hydraulic

matrix containing crystalline hydrates, unhydrated ceramic pérticles and amorphous phases of
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hydration based on silica and alumina gel. The crystalline hydrated products have three main

sources:

. Primary‘hydration of calcium aluminates results in a mixture of metastable hydrates, CAH,,,
C,AHs, and C,;AH,, developed in a pattern of hexagonal plates 0.25-2um thick. Also, traces
of C;AHg in its characteristic morphology of icositetrahedron are present [19, 22].

o Interaction between the hydroxilated surface of reactive alumina grains and Ca?" ions
resulting in development of hexagonal C,AH; crystals [51].

¢ Interaction between hydration phases generating crystalline gehlenite hydrate (C,ASH,)
[22]. This hydrate is present at room temperature only in binding systems containing a high
concentration of silica fume, and can be identified 1-3 days after casting. It is not clear if this
crystalline product is formed by crystallization of amorphous CASH phases [100] or duriﬁg

conversion of metastable hexagonal hydrates in the presence of silica gel [46].

When heated up, the hydraulic matrix transforms to a ceramic matrix by a sequence of
reactions with or without the presence of a liquid phase:

e Conversion and decomposition of hydration products. Conversion is complete at 54°C
resulting in a mixture of stable, cubic hydrates. In ultra low cement ARC having high content
of silica fume, the conversion may be completely inhibited due to formation of Stratlingite
[46]. Amorphous CASH phase dehydrates at 100-220°C. At 750°C, decomposition of
hydrated phases is complete resulting in solid reaction products: a mixture of calcium
aluminates and transition alumina phases [117];

e Decomposition of natural alumino-silicate components (as Kyanite and Andalusite) starts at

1100°C, resulting in the formation of mullite and cristoballite:

3(Al,0,-Si0,) —» 3 Al,0;-2 SiO, + SiO,
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e Formation of low melting point feldspar phases and crystallization of mullite. Low
temperature melting eutectic points (1300-1400°C) appear in the CaO rich part of the phase
diagram of the system CaO-SiO,-Al,O; corresponding to anorthite and gehlenite. Depending
on the amount of CaO present in system, this process will result in a mixture of low melting
temperature glassy phase and mullite crys_.tals [118].

The binding system starts to generate a ceramic matrix at about 800°C that is

"physically" completed at about 1100°C, although the mullite formation process is at an incipient

level. The further increase in temperature will bring the system closer to the equilibrium

conditions, with a secondary mullite crystallized in this ceramic matrix [12].

2.4.2. Mechanical strength

Conversion of aluminous cement hydration products has a negative effect on
mechanical strength of refractory castables. The first step which decreases the mechanical
strength, after the setting of the calcium aluminate cement, occurs after the conversion of
metastable hexagonal phases into cubic phases, which are stable at room temperature. it has
been reported that some castable installations have started to dust and peel in the air due to
this process [117].

The presence of aluminous cement is also detrimental to the mechanical properties of a
refractory castable at high temperatures. Therefore, the most important issue is to lower the
quantity of aluminous cement while maintaining the strength of the lining [115]. The mechanical
strength of the green refractory castable may be increased by:

e reducing the content of alumina cement by partial replacement with reactive ceramic
powders;

¢ decreasing the water to cement ratio that inhibits the formation of CAH,;
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¢ obtaining a uniform distribution of the hydraulic binder in the castable matrix by use of

deflocculants [119];

¢ elimination of flaws by optimization of flow.
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Figure 2.4-1. Variation of CCS of low-moisture castables with alumina content after firing [120].

The average chemical composition may be an important factor for improving the
mechanical properties at room temperature, as shown in Figure 2.4-1, for Cold Compression
Strength (CCS) and Figure 2.4-2, for Modulus of Rupture (MOR). 1t is interesting to mark that

for both MOR and CCS at room temperature, the highest values are obtained for the 90%

alumina castables while the lowest values are obtained for the 50% alumina one [120, 121}
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Figure 2.4-2. Variation of MOR of low-moisture castables after firing [120].

The amount of water used for casting has an important effect on mechanical properties
(Figure 2.4-3). The effect of water reduction is more important for ‘-s}amples fired at high
temperatures (1550°C). At these temperatures, there is a non linear behavior below 5.5% of
casting water. A similar situation is indicated by MOR results, shown in Figure 2.4-4, but the
nonlinearity for the case of high temperature curing is stronger.

If the water used for casting is further reduced, there is a maximum of CCS for samples
containing 70% alumina, but for temperatures over 1375°C the highest CCS is obtained again
by the sample having the highest content of alumina (90%), as shown in Figure 2.4-5, for uLcc

in the firing temperature range 260-1375°C.
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Figure 2.4-4. Variation of MOR with the water used for casting for different firing
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Cold crushing strength [MPa]

This phenomenon may be related to a nonlinear variation of Young’'s modulus of ULCC
with the alumina content (Figure 2.4-6). In the 1260°C temperature region, ULCC has a more
plastic-like type behavior as small amounts of liquid phase begins to develop in the matrix of the
castable. This liquid causes the marked reduction in the modulus of elasticity, but by increasing
the alumina content, an increase of Young’'s modulus also occurs [121].

Figure 2.4-7 (a) shows the variation of CCS after drying, with the content of silica fume,
for different levels of CAC in self-flowing tabular alumina castables. It is interesting to note that
even if the strength after drying generally increases with cement content, this is only valid for
compositions with a silica fume content of 6% or less. With 8-10% of silica fume there does not
seem to be substantial differences in strength for the different cement contents. The reason is
probably the combined effect of reduced water demand together with the reactivity of silica
fume [122].

The reactivity of silica fume becomes pronounced after firing at 1000°C where there is a
strong increase in strength with silica fume content up to about 4-6%. In this case, the higher

strengths were obtained with the lowest cement content, as showed in Figure 2.4-7 (b).
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Figure 2.4-7 Variation of CCS with the content of silica fume after drying (a) and firing at
1000°C (b) for tabular alumina based castables with different content of CAC [122].
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2.4.3. High temperature mechanical strength

The high temperature mechénical strength of refractory castables is a function of the

equilibrium in the ceramic microstructure that is developed at fi.ring or in service. The ceramic

microstructure depends on the composition of the castable and on the serviceffiring

temperature. The most common compositional domain for ARC is the CaO-SiO,-Al,0O, system,

Figure 2.4-8 [124]. Despite their low cement content, the low and ultra-low cement castables

have a high crushing strength and a high modulus of rupture at high temperatures when mullite

phase develops. On firing, the formation of low melting point phases is reduced, and increased

refractoriness is observed [123]. The only reason for introducing calcium aluminate cement

(and consequently CaO) is to obtain the setting and hardening of the castable.
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Figure 2.4-9. Evolution of HMOR of an ULCC, at 1500°C as a function of mullite content
formed in the system [125].

The composition of the ceramic bond must be carefully selected from the Al,O;-SiO,-
Ca0 phase diagram in order to develop the maximum mullite contént at high temperatures,
while keeping good setting and hardening properties. Figure 2.4-9 shows the evolution of the
Hot Modulus of Rupture (HMOR) of aﬁ ultralow cement éastable at 1500°C with the proportion
of mullite formed in the system [125].

The HMOR at 1370°C for different alumina-containing LCC is presented in Figure 2.4-
10. It is interesting to note that HMOR of 75% alumina castable is higher than that of the 90%
alumina composition. The 75% alumina castables had mullite both in grains and in the matrix.
This provided a much better bonding than between the corundum aggregates and the matrix in
the 90% alumina composition [126].

The high temperature strength of refractory castables can be improved by:
ereducing the CaO content by using low levels of CAC or by using HAB as a hydraulic binder;
eincreasing the content of silica fume and reactive alumina in order to provide reactive ultrafine
components for formation of mullite;

eaddition of fine alumino-silicate powders.

61




A comparative study of the influence of alumino-silicate additions on the properties of
bauxite based castables [127] shows that kyanite gi\}es the highest strengths at 1200, 1300,
and 1400°C. Andalusite also performs well at 1200 and 1300°C but produces a decrease in
strength at 1400°C. Mullite addition has the least effect in strength, giving the lowest strength at
1400°C. All castables tested had a low strength below 1200°C which increased significantly

when heated to 1300°C.
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Figure 2.4-10. Variation of HMOR at 1370°C for different alumina content of LCC [126].

B\oth andalusite and kyanite transform to mullite and Si'O2 when fired at approximately
1300°C. The transformation is accompanied by a volume increase of 3-6% and 15%,
respectively. The increase in strength due to addition of the alumino-silicates may be caused by
a combination of two mechanisms. Firstly the decomposition of alumino-silicates which, under
influence of impurities may well start belbw 1300°C, creates the mullite nuclea for further mullite
formation. Sepondly, the volume increase of kyanite and andalusite which, when transformed

may cause the movement of liquid phase and as a result, more pores of the castable may
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become filled with a liquid and the volume fraction in which mullite can develop increases. With
mullite as dopant, the reaction formed mullite tends to grow as needle-like shape particles
instead of rounded shaped particles. The formation of mullite in the castable matrix and the

compositional particularities of the refractory aggregate are factors that determine high

temperature strengths of refractory castables [128].
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Figure 2.4-11. Variation of HMOR of tabular alumina based castables having: (a) constant
content of CAC (1.5%) and different content of silica fume and (b) constant content of silica

fume (8%) and different content of CAC [129].

Figure 2.4-11 shows the variation of HMOR of tabular alumina based castables for
compositions having different content of silica fume (a) and different content of CAC (b).
According to experimental results [129], an increase in microsilica content has a very strong

influence on strength at temperatures above 1300°C. For a castable with 1.5% cement content,

an increase in microsilica content from 4 to 6% more than doubles the HMOR at 1400°C and




has even a strénger effect at 15600°C. Furthermore, increasing the microsilica content from 6%
to 8% resLJIts in almost doubling of strength at 14OQ°C. However at 1500°C the effect is less
pronounced. Up to 1300°C there is no important difference in HMOR of samples with different
microsilica content.

The increase in HMOR at 1400°C is caused by the growth of mullite from a liquid phasé
of a composition in the triangle anorthite-mullite-silica. During the first heat-up to 1400°C, the
bond phase of the castable reacts and produces a viscous liquid consisting mainly of cement
and microsilica. Within a few hours, alumina is dissolved with a subsequent mullite precipitation
that strengthens the castable. The composition of the liquid is thereby changed as the silica
content is reduced, and the total volume of the liquid is simultaneously 'reduced, This liquid
phase contéining silica explains the observed need for'a minimum améunt of -microsilica in
order to get mullite formation [129, 130].

fhere is a strong correlation between the content of CAC, silica fume, temperature and

the amount of mullite formed in a castable, Figure 2.4-12. The apparently linear dependence
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] O 1400°C, 10% microsilica

. B 1500°C, 8% microsilica

A 1500°C, 10% microsilica

Mullite content [%, XRD]
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Figure 2.4-12. Variation of mullite content with CaO content for tabular alumina castables [129].
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could indicate the existence of a liquid/glassy composition with fixed Ca/Si ratio [129].

At temperatures above 1400°C, the HMOR of refractory castables having HAB as a
hydraulic binder, is about four times higher than that of the conventional LCC, as it is shown in
Figure 2.4-13. However the HMOR of NCC castables below 1400°C is usually inferior or slightly
lower than that of LCC. The effect of silica fume addition on strength of NCC is more important

for temperatures below 1400°C
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Figure 2.4-13. Variation of HMOR of NCC with temperature for different amounts of microsilica
[25].

In samples consisting of only hydraulic alumina and silica fume, which were exposed to
humidity, traces of mullite have been detected from 1085°C. However similar powder mixtures
require higher temperatures for the initial mullite formation. This indicates a reaction between
hydraulic alumina and silica during setting of a castable. Even though mullite is formed at low
temperatures, probably due to diffusional hindrance, significant amounts are rarely found below

1300-1400°C.

In NCC samples, after firing at 1500°C, the fracture surface reveals a network of
interlocked and elongated crystals (Figure 2.4-14). EDX analyses confirmed that the elongated

crystals have a composition close to mullite. Between the crystals there is a liquid or
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amorphous phase bonding the crystals together. Efforts were made to analyze these phase but

only mullite and alumina were detected [38].
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Figure 2.4-14. SEM of the fracture surface of a fused alumina NCC after firing 24 h at 1500°C [38]

The high mechanical strength of ARC at temperatures above 1300°C can be explained
by the formation of mullite in the ceramic matrix. Even if traces of mullite can be detected at
temperatures above 1100°C, there is not yet any satisfactory explanation of the fact that ARC
can exhibit a continuous increase in strength at temperatures below 1000°C. This behavior is
not characteristic only to ULCC and NCC. Also, LCC may show no strength degradation up to
1000°C. It is possible that in the presence of silica fume, the formation of metastable hexagonal
hydrates is inhibited. Therefore, the conversion process, and its negative effect on mechanical
strength, is limited.

Figure 2.4-15 shows the development of crystalline structure in an LCC with and without
silica fume. It is seen that in the presence of silica fume the hydration process is inhibited
(resulting in higher content of unhydrated CA and CA,), the amount of crystalline hydrates is

reduced, and Strallingite is formed in quantities comparable to C,AH, [126].
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Figure 2.4-15. Content of crystalline structures in a hydrated LCC with and without silica fume
addition [126].

For high temperature applications (>1500°C), or for the design of self-flowing magnesia
spinel based castables, the presence of silicon dioxide in the castable is detrimental. Therefore,
it is not possible to use silica fume as a flow enhancer and a reactive powder. For these
applications, the only fine reactive component that generates flow and promotes the formation
of ceramic matrix is reactive alumina or reactive magnesia spinel. These self-flowing castables
are known as Silica Fume Free (SFF) castables.

The HMOR at 1500°C of tabular alumina SFF LCC (5% CAC Alcoa CA-270) based on
reactive alumina (CTC 50) can reach 20MPa. For the same composition, if reactive alumina is
replaced with reactive spinel (CTC 55), the HMOR can increase to 23MPa [90,91]. For tabular
alumina based castables, the HMOR of Silica Fume Free LCC at 1500°C are similar to those of
NCC with high amounts (8-10%) of silica fume. In the case of magnesia spinel based castables,
any addition of silicon oxide results in total decay of high temperature properties. There is no

available data discussing the evolution of hot strength with temperature for SFF castables.
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2.5. Spray gunning

Refractory castables can be installed by vibrating, casting, gunning, and spray gunning.
Spray gunning, Figure 2.5-1, is qui'ckly becoming the preferred method of installing monolithics,
due to developments in materials, equipment technology, and cost benefits.

The advantages of gunned installation of refractory castables are as follows [130]:

\
| _
\ e easy, efficient, and fast installation;

formless installation, i.e. no forms for casting/vibrating are necessary;

material and man labor saving process;

can easily meet emergency needs.

Spray gunning has all the above advantages, plus virtually no dusting, low rebound,
giving better properties to the installed material. The water content of the spray gunned
castable is precisely controlled during premixing, and the whole process of installation is also

easier to control by the nozzle operators [131].

Air hose
'
Gunning nozzle
> Hardener tank7i| _ Mixer .
Furnace wall ‘
W ‘ , Y_’ﬁ
Water inlet A

A
\ \
Forced hose / \ Forced pump \_Compressor

Figure 2.5-1. Spray gunning equipment.
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In the spray gunning process, refractory castable is premixed with water in order to
achieve a pumpable consistency, and then poured into the hopper of a concrete pump. The wet
castable is transported under pressure through a hose, and ejected through a nozzle onto the
wall or area of operation. At (or before) the nozzle, a setting accelerator admixture is injected
into the wet castable. In the short time of traveling between the nozzle and the spraying target,
due to the action of the setting accelerator agent, the castable changes from a pumpable mix to
a plastic consistency. Because of the need for rapid stiffening, and the ability to be uniformly
injected at the nozzle, a liquid accelerator system with a soluble accelerator is normally used.

The physical properties of the refractory material installed by spray gunning have slightly
lower values than when similar materials are vibrated or cast, but superior to the properties
obtained by conventional dry gunning. Figure 2.5.-2 shows a comparison of properties of

gunned, spray gunned and vibratable mixes.
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Figure 2.5-2. Comparison between dry gunning, spray gunning and vibcasting for LCC [132].
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Spray gunning, as compared to dry gunning, offers a more efficient solution for
installation of the castables. The porosity of the castable is reduced to half and the cold bending
strength at relatively low temperatures of spray gunned LCC is almost three times higher than
that of dry gunned mixes [132].

The main criterion that has to be fulfilled to obtain a successful spray gunning mix is a
self-flowing and pumpable refractory castable. Besides self-flowing behavior, a castable should
have a minimum dilatancy, high cohesivness and a low tendency to segregation [133].

Ideally the castable after acceleration should remain in a thickened but plastic state for a
reasonable length of time. This facilitates troweling, finishing and checking for proper
installation. For safety reasons, particularly for overhead installations, the material needs to
stiffen quickly. Accelerators that cause rapid setting of stiffening or the castable are not
acceptable as they cause laminations and nozzle clogging. It is impor’;ant to minimize the
amount of accelerator regardless of its type. Excessive acceleration leads to lower strength
linings, due to extra water applied. Also, because many accelerators contain al_kaline or alkaline
earth cations, the refractoriness of the lining suffers with excessive amounts of the accelerator
[(134].

It is believed that the effect of an accelerator depends on the composition of a castable
(CAC, silica fume and reactive alumina content, level of water for casting, and dispersant
system). The mechanism of acceleration of self-flowing castables for spray gunning
applications is not yet well understood, and at the present stage the selection of accelerator
admixtures is made only on trial and error basis.

Figure 2.5-3 (a) shows the effect of different accejerator admixtures on the green
strength of a fused alumina based LCC (4% CAC Secér 71) containing 2.5% siliba fume Elkem
971 and 10% reactive alumina MA95 at 7% water addition. The experiments were done using

STPP and PMS as dispersants. Figure 2.5-3 (b) shows the efficiency of accelerator admixtures

70




for the same compositions. The efficiency was determined indirectly by measuring the residual

slump after adding accelerator admixture. A lower slump is considered to correspond to a high

effectiveness.
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Figure 2.5-3. Green strength (a) and accelerator effectiveness (b) for tabular alumina based
LCC for spray gunning dispersed with organic (PMS) and inorganic (STPP) [135].

It is shown that in the system presented above, the organic plasticizer (PMS) gives
better results (green strength and effectiveness) than the inorganic one (STPP). The authors of
this study also concluded that for the chemical admixture system that was studied the silica
fume content should be maintained at levels below 4% in order to obtain a castable suitable for
spray gunning.

Other chemicals considered to be efficient admixtures for spray gunning of refractory
castables are: sodium silicate [133], alkaline earth carbonates and nitrates [134], sodium

aluminate, and various phosphate agents.
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3. Scope and objectives

Although, in recent years, a number of studies concerning the many complex variables
that determine the rheologic, hydraulic and ceramic prépertieé of Advanced Refractory
Castables (ARC) have been performed, the fundamentals of free-flow and of transition from
hydraulic bond to ceramic matrix are still only poorly underétood. Most of the technical
information regarding ARC is fragmentary, empirical and sometimes contradictory. This is
mainly due to the following three factors:

e ARC are the most complex refractory formulations, involving hydraulic, colloidal and solid
state interactions that are closely interrelated.

e There is a lack of methods for the precise characterization of the hydraulic and rheological
properties of these materials.

e It is not possible to make a separate analysis of the rheological, hydraulic and ceramic
properties of ARC because, most often, a single compohent may have multiple roles (e.qg.

microsilica has effects on hydraulic setting, flow and on the formation of ceramic matrix).

The primary scope of this work is to bring a better understanding of the phenomena
involved in ARC processing by performing an integrated analysis of their hydraulic, rheological
and solid sate (ceramic) properties, with a focus on the free flow behavior and on the role of
hydraulic bond on the ceramic matrix formation. The results of this investigation are utilized for
developing novel concepts for ARC processing, with a focus on spray-gunning, which is the

newest, most demanding and most efficient application technique.

In view of the scope of the present work, the proposed investigation path includes the

following objectives:
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1. To develop an accurate viscometric method for determining the rheological properties of the
suspension of fine fraction of the binding system of ARC. The currently used flow
measurement methods are empirical and unable to obtain accurate information oh the
effects of the binding system components on the rheological properties of ARC.

2. To perform a thorough rheological investigation on ARC with the particular focus on:

o effect of plasticizers and setting time admixtures on the rheology and hydraulic
setting process;

o effect of water content on the viscometric properties of binding systems

e correlation between the viscometric properties of. the binding system and the flow
behavior of ARC;

¢ role of particle size distribution on flow.

3. To investigate the effects of hydraulic binders and the rheological properties of ARC on the
development of the ceramic matrix, including:

e study of the effect of hydraulic binders and rheology on the evolution of mechanical
properties with heat treatment temperature;

e microstructural study of the transition from a hydraulic bond to a ceramic matrix in
ARC.

4. To use the knowledge generated during the laboratory investigation to improve the spray-
gunning technology of ARC and to validate the laboratory results on a pilot plant scale. The
goals of this part of the work are as follows:

e a significant improvement in plasticity and suppression of the premature setting of
the freshly spray-gunned ARC material,
e enhancement of the mechanical properties of the spray-gunned ARC installations

by optimizing the nature and content of spray-gunning additives.

73




4. Experimental results and discussions

4.1. Experimental procedures and apparatae

The aim of the present research was to study the correlation between the parameters of
colloidal processing and the properties of the ceramic matrix of ARC. For this purpose, in the
first step of research, different test formulations of self-flowing ARC were designed. In order to
establish a covrrelation between the rheology of the binding system and flow, a new method of
measuring the viscosity of the binding system was déveloped. The setup of the method
included the design of the concentric-cylinder measuring cell and the novel measurement
procedure (i.e. sample preparation, shear stress levels, and measurement timing).

Additional characterization of the experimental ARC compositions was done by strength
measurements (CCS, CMOR and HMOR), microstructural analysis by XRD, SEM, EDX and

open porosity measurements.

4.1.1. Experimental compositions

For the experimental ARC compositions the following raw materials were used:

1. Refractory aggregate (45-4750pum):

e Mullite based calcines containing 60 and 70% AI,_Oa. (Mulcoa 60 and Mulcoa 70, CE
Minerals Ltd.), fraction: -4+8 mesh (2360-4750 pum), -8+20 mesh (850-2360 um) , -35 mesh
(<425 um) , and -100 mesh (<150um);

e Calcined bauxite Alphastar, CE Minerals Ltd., -100 mesh (<150um);

e Mulcoa 90 (90% Al,O,), CE Minerals Ltd., -100 mesh (<150um);

74




e Tabular alumina, La Roche Chemicals Ltd. (99% Al,O,) fractions: -4+14 mesh (1180-
4750um), -14+28 mesh (600-1180 pum), -28+40 mesh (425-600um), -50 mesh (<300um), -
100 mesh (<150um), -325 mesh (<45um).

2. Fine fraction:

e Calcined alumina RGA -325 mesh (<45um);

e Calcined Kyanite -325 mesh (<45um), Virginia Kyanite Mining Corporation

e Calcined alumina AC34B5, Pechiney, Aluchem

e Reactive alumina: A-3000, Alcoa and C90, C94, Alcan Chemicals Ltd.

¢ Hydraulic binders:

- Calcium Aluminate Cement: Secar 71, Lafarge;
- High Alumina Binder: Alphabond 100, 200 and 300, Alcoa.
¢ Silica fume:- Elkem 971U, Elkem Norway (SF1);
- Globe Metallurgical, Globe (SF2);
- Duralum AB, Washington Mills Ltd (SF3).

3. Plasticizers:

e phosphate plasticizers: sodium hexametaphosphate (SHMP), sodium tripolyphosphate
(STPP)

e organic plasticizers: sodium naphtalenesulfonate formaldehyde polycondensate Daxad 19
(NSFC), sodium polmetayacrilate Daxad 30 (SPMA), sodium polyacrilate Darvan 811
(SPA). |

4. Setting time regulators: citric acid, lithium carbonate and sodium aluminate

The experimental compositions were designed in order to obtain very good self-flow
properties at low water levels (i.e. 100% flow for water contents lower than 6wt.%). Low and

ultra- low cement castable formulations were made based on mullite refractory aggregate
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(Mulcoa 60 and Mulcoa 70) having the fnedium fraction (-100 mesh) based on Mulcoa 90 or
calcined baﬁxite Alphastar. The ceramic components of the binding system of low and ultra-low
cement castable formulations included: calcined alumina, calcined kyanite, silica fume and
calcium aluminate cement Secar 71 (4% for low cement and 2% for ultra-low cement
compositions). No cement self-flowing castables were made based on tabular alumina
refractory aggregate. The ceramic components of the binding system include: HAB (Alphabond

100, 200 and 300), calcined alumina, reactive alumina and silica fume see (Table 6).

Table 4.1-1. Characteristics of the experimental castable compositions.

Type LCC ULCC _ NCC

Aggregate | Mullite based calcines | Mullite based calcines | Tabular Alumina
Mulcoa 60, Mulcoa 70 | Mulcoa 60, Mulcoa 70

~Binding CAC Secar 71 (4%) CAC Secar 71 (2%) HAB Alphabond 200 (1.75%)

Silica Fume Silica Fume Silica Fume
System Raw Kyanite Raw Kyanite Tabular Alumina (-325 mesh)
Calcined Alumina Calcined Alumina Calcined Alumina

4.1.2. Viscosity measurements

Refractory castables contain particles that are too coarse to allow viscosity
measurements in laboratory viscometers under coﬁtrolled shear rate. It is thus impossible to
make true scientific measurements on the rheological characteristics of these materials.
Moreover, the understanding of the phenomena involved in estabiishing the cement paste
rheology has not yet reached a sufficient level to allow the characterization of the more complex
“suspension” formed by fresh concrete [56].

Assuming that the coarse refractory aggregate has an inert behavior in the fresh
castable suspension, and ignoring the effects of small quantities of water absorbed in the open

pores it may be hypothesized that it has no direct contribution to the dispersion process.
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Therefore, it is assumed that the rheology of the castable refractories may be described by the

rheology of a suspension that:

¢ includes all the fine powders of the binding system (i.e. hydraulic binder and fine reactive
powders) fine particles of aggregate and chemical admixtures;

e is prepared in conditions similar to those existing during mixing‘ of the castables (i.e. high
shear rate generated between particles qf refractory aggregate),

o has water content similar to that of the corresponding castable;

e is subjected to viscosity measurements at shear rates similar to those existing during the
installation of self-flowing castables (i.e. low shear rates).

Accordingly, the composition of mixes subjected to viscosity measurements consisted in
binding systems (i.e. hydraulic binder, ceramic reactive powders and chemical admixtures),
refractory aggregate fraction -100 mesh (<150um) and water.

The fine fraction of refractory aggregate -100 mesh was included in the mixes for
viscosity measurement due to the high water absorption capacity of this fraction and the shear
rates that are provided during mixing and measuring the viscosity of the binding system. The
refractory aggregate fraction -35 mesh was not considered because, although it has a high
porosity and a continuous particle size distribution, the largest particle size in the system is 425
um. Because the gap of the coaxial cylinder measuring cell has to be 10 to 100 times that of the
largest particle in suspension and because of the irregular shape of the -35 mesh particles, the
use of this fraction requires measuring gaps well above 5 mm. According to literature data,
[70,71] large measuring gaps do not allow for uniform flow cbnditions within the annular space
of the measuring cell and thus the use of the refractory aggregate fraction -35 mesh was not
considered fof viscometric measurements.

It is well known that castable refractories require an intensive mixing process in order to

acquire self-flowing behavior, but at the present stage there is no data or method for

77




assessment of the levels of shear stress developed during mixing. It is not possible to use the
mixer that is typically used for castables (i.e. planetary mixer) for mixing the samples for
viscosity measurements, because the absence of coarse aggregate particles results in
significantly lower shear rate levels applied during mixing.

When mixing a self-flowing castable refractory with water the material remains dry for a
certain period of time (usuaIIy. more than 20 seconds, depending on the castable composition,
water content, weight of the castable, mixing speed and mixer type). The mixing of the sample
was intended to reproduce as accurate as possible the mixing conditions of self-flowing
castable refractories. The wetting time. was used as a factor indicating the intensity of the
mixing process. In order to simulate the high shear rate levels at which the binding system of an
ARC is subjected when mixed in the presence of coarse aggregate particles, the samples were
placed in plastic cylindrical containers having 11 cm diameter and 15 cm height with 1kg of 1.25
cm diameter ceramic balls. After adding the right amount of water the containers were
homogenized for 10 minutes at 60 rpm. Figure 4.1-1 shows experimental data comparing the
wetting time for two ARC compositions mixed in a Hobart mixer and the wetting time for the
correspondent viscosity samples mixed at different weight ratios of ceramic balls to sample.

Although the mixing time for castable refractories in a planetary mixer was 5 minutes,
the samples for viscosity measurements were mixed for 10 minutes in order to assure
homogeneity. It was found that there is no difference between the viscosity of homogeneous
samples mixed for 5 or 10 minutes.

A Brookfield DV-Il viscometer was used for measurements of the viscosity of binder
systems. The measurements were taken with a set of spindles with concentric-cylinder
geometry, having a measurement gap of 4.5 mm. The custom-made spindle system had the
characteristic apparatus setting constants SRC=0.391 and SMC=4.51. The viscosity data was

collected using DVGATHER data acquisition software. The measurements were performed at
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three slow speeds: 0.5 rom ( 0.1905 s™ shear rate ), 1 rpm (0.391 s shear rate ), and 2.5 rpm (
0.9775 s™ shear rate ), within 10 minutes from the end of the mixing time in order to avoid an

interference from the hydration process in the case of fast setting samples.

250 | —m— ULCC binding system
- 200 —a— LCC binding system
'g 1994 LCC 6% water
o 100 R
£ 50 “ULCC 4.5% water
2 . . ]
0 2 4 6

Weight ratio ceramic balls to sample

Figure 4.1-1. Wetting time for two ARC compositions and as a function of the weight ratio
ceramic balls to sample, for experimental binding systems.

4.1.3. Flow measurements

For flow measurements the ASTM C230 standard, modified for self-flowing was used.
Samples of a 1 kg castable mix were mixed with water for 5 minutes in a Hobart mixer and the
resulting material was poured into the truncated cone and leveled. The cone was immediétely
pulled straight up and off the material, allowing it to flow across a smooth surface. After 2
minutes the final diameter of the castable was measured at four different locations and the
values obtained were averaged. The self-flow value was determined as a percentage of

increase in diameter as follows:

Self-Flow (%) = (Average Final Diameter - Initial Diameter) x100 /Initial Diameter (5)

4.1.4. pH measurements

The pH measurements were taken at room temperature (20°C) using a Corning 130 pH-

meter with a VWR Scientific 34105-023 pH vprobe. It is not possible to directly measure pH of
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the concentrated suspension of the binding system due to high diffusion gradients and potential
damage of the probe. The first approach was therefore to extract, by vacuum filtration of the
concentrated suspension of the binding system, enough interstitial solution in order to perform a
pH measurement. The process of filtration is however difficult and in order to obtain enough
sample for a measurement in the first 10 minutes after mixing, large quantities of material are
required (i.e. about 1kg of binding system).

A simplified approach was to dilute a small portion of the binding system (1-2g of péste)
at a 1/50 ratio and to stir it using a magnetic stirrer.. For all the samples, during the first 5
minutes after mixing, pH had decreased by 0.3- 0.5 pH units. It is therefore, not possible to
obtain any measurement in the first 1 to 3 minutes after diIluting a binder suspension due to a
continuous decrease of pH values in this interval. At about 4-5 minutes after dilution the pH
becomes more stable but it still has a constantly declining slope of about 0.003 pH units/minute.
The results of the dilution technique were compared with those of extraction technique. A
constant difference of about 0.510 between the pH of the solution extracted from concentrated
binder and the pH diluted suspension measured at 10 minutes after dilution was observed. The
pH of the samples prepared at 1/100 dilution, compared with the liquid filtered under vacuum
direct from concentrated suspensions of binding systems, was about 1.1-1.3 units lower. It was
considered that this pH variation was not allowing a precise measurement. At dilution levels of
1/10 and 1/25 there were . difficulties in cleaning and calibrating the pH probe af’;er each

measurement.

4.1.5. Particle size distribution and specific surface

The particle size distribution of binder system components was measured using a

Horiba Particle Size Distribution Analyzer CAPA 700. In order to obtain information on very fine,
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high surface active particles (such as silica fume and reactive alumina) nitrogen absorption

method in a BET QUANTA SORB apparatus was used.

4.1.6. Setting time measurements

There is no standard method for measuring the setting time of refractory castables.
The measurements of the setting time of binding system were made usinQ the Vicat apparatus
(described in ASTM C191-82). The setting time is considered to be the time interval between
casting and the moment in which the Vicat needle attached to the Vicat apparatus does not

leave any imprint on the surface of the cement.

4.1.7. Curing

After mixing and pouring in molds castable specimens and binding system samples were cured
using the following procedure:

e 24 hours in the molds, covered by a plastic sheet at room temperature;

o after demolding 24 hours at room temperature in air;

e 24 hours at 230°C;

e firing at specified temperature with a 200°C/hour heating rate and a 5 hours soaking time.

4.1.8. Cold crushing strength (CCS) and modulus of rupture (MOR)

Mechanical properties after drying and firing of the experimental castable compositions
were studied by measuring Cold Compression Strength, and Modulus of Rupture using an
Universal Testing Instrument INSTRON TTC. MOR was measured by three point bending test

on 17.5x2.5x2.5 cm bars at a 12.5 cm lower span using a crosshead speed of 0.125
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cm/minute. In a good-quality refractory lining the castable material should be free of macro-
defects and therefore, the fracture surface of each specimen that was subjected to mechanical
measurements was visually examined in order to identify if any macro-defect (such as large
pores or aggregate segregation) was present. In some cases, due to improper preparation of
the specimens, such macro-defects resulted in much lower MOR values and the results were
discarded for both MOR and CCS measurements. Each data point presented was reported as
an average of 3-5 defect free specimens for each test. This procedure of selection was applied
in order to avoid a large scattering of data due to human error in processing of the experimental
specimens or the use of a large number of large (non-standard) size specimens. By using only .
data resulted from sets of specimens that were free of macro-defects the standard error for all
experimental data points was below +10%. CCS was measured on 2.5x2.5x2.5 cm cubes out of

half bars resulted from MOR test, using a crosshead speed of 0.125 cm /minute.

4.1.9. Hot modulus of rupture (HMOR)

As a part of the research program, a Hot Modulus of Rupture Testing Apparatus was
constructed in the Ceramics Laboratory of Metals and Materials Engineering Department of the
University of British Columbia. The apparatus was designed to comply to the requirements of
ASTM C 583 for testing of HMOR of refractory castables, to utilize as much as possible the
resources already existent in the department, and to allow an easy and efficient operation.

The apparatus consists of an electric furnace placed inside the frame of an Instron
Universal Testing Machine. The main characteristics of operation are:

e maximum testing temperature: 1500°C.
¢ maximum heating rate: 400°C/h.

e maximum number of specimens (15x2.5x2.5 cm) ioaded in a single run: 12.
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e maximum force load: 15 kN.
e cross head speed 0.25 -0.0025 cm/min.

The Hot Modulus of Rupture Testing Apparatus is described in detail in the Appendix.

4.1.10. Microstructural analysis

Experimental castable refractories and binding systems are analyzed after different
thermal treatments in order to identify the microstructural changes.

The fracture surface of castable samples or binding systems, were analyzed by SEM
using a Hitachi S570 SEM microscope having a Kevex EDX detector. SEM with its high
resolutioh and depth of field at high magnifications was used to investigate ceramic structure
development. The specimens of castable refractory and binding system samples were carbon
coated and EDX elemental analysis was performed.

Individual components of the binding system (i.e. reactive ceramic powders and
hydraulic binders) were dispersed in iso-propanol and deposited in a thin layer on carbon stubs.
In order to obtain high-resolution SEM images, some of the silica fume samples were gold
coated and analyzed at low accelerating voltage (5kV).

The density of the castable specimens and binding system samples was measured by
hydrostatic method. Water infiltration was done by boiling the specimens in deionized water for
4 hours, under vacuum at room temperature.

Binding system samples of low, ultra low, and no cement castables was studied by X-
ray diffraction (using a Philips PW 1011 X-Ray diffractometer) in order to identify the crystalline

phases formed by reaction in the matrix of castable refractories.
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4.2. Rheology

The study of rheology of self-flowing ARC was focused on the following subjects:
¢ the effect of dispersant admixtures;
e influence of plasticizers on pH of binding systems (BS) and the possible correlation between
the pH and viscosity;
o effect of particle size distribution on self-flowing behavior;
 the correlation between the viscometric characteristics of the BS and the self-flow behavior.
This approach was undertaken because of the lack of knowledge on the self-flowing
behavior of ARC and the specific effect of plasticizer admixtures to the flowing characteristics.
The ‘aim of this research was to establish for the first time a direct correlation between the
rheological properties (such as viscosity, shear rate-shear stress characteristics) and flow, and

also to provide a tool for optimization and design of self-flowing ARC compositions.

4.2.1. Rheology of binding systems

4.2.1.1. Rheology of binding systems for LCC

These éxperiments were conducted in correlation with the study of flow behavior of
castable refractories. The initial experiments established the basic rheological characteristics
(viscosity levels, npn-Newtonian behavior and thixotropy) of concentrated suspensions of BS.
The first compositions included BS of LCC containing silica fume, calcined alumina and calcium

aluminate cement in equal proportions.
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Figure 4.2-1 shows the rheological behavior of compositions of the binding system as a
function of the water/solid ratio (w/s) and the hydration time. The principal factor controlling the
viscosity of the BS is the w/s ratio. The w/s ratio also determines the variation of viscosity with
time, especially for high w/s ratios. In order to obtain accurate data, it was therefore necessary
to insure a proper timing of the measurements. In order to minimize the effect of hydration, the

measurements were taken at the shortest possible time after mixing, which was 5 minutes.
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Figure 4.2-1. Rheological characteristics of a mix containing equal quantities of Secar 71
CAC, SF1, and Pechiney AC 34 B5 calcined alumina, with an admixture of 0.133% SHMP,
at 0.1905 s shear rate: a) viscosity as a function of w/s ratio for different times after mixing,
b) semi logarithmic dependence of viscosity versus time after mixing for different w/s ratio.

Another important aspect resulting from Figure 4.2-1b is that the BS suspensions have a
similar rheological behavior as concentrated suspensions of CAC. These results are in good
agreement With the data presented by Chappuis [74] related to the rheological characteristics of
CAC, i.e.:
¢ during the dormant period all pastes exhibit a continuous thickening with time;

e for each cement, when the scale of the shear stress is logarithmic the experimental points
seem to be on parallel straight lines and the slope of variation is a measure of the relative

thickening of the cement paste with time;
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o for a given cement type, the relative thickening of the cement paste is independent of the
water/cement ratio.
These results are also in agreement with Papo and Caufin [75], who studied the hydration of
Portland cements using oscillatory rheological techniques and obtained the following relation for
the variation of viscosity with time:
n=np + (Mg - No)(t/tz)" | @

where: 1 - the paste viscosity

Mo - initial value of the viscosity

t - current time

tz - the time at which the material has a very high viscosity (775 )

N - parameter describing the kinetics of the cement hydration process
Similar characteristics were observed at three different shear rates (0.391 s, 0.9775 s and
1.955 s™), for different concentration of plasticizer admixture and for different type of plasticizer:
STPP and/or SHMP.

For the BS presented above, by analyzing the dependence between the shear rate and
the shear stress using a 10 second step-wise cycling measurements, a hysteresis (thixotropic)
behavior was observed. This behavior demonstrates that the formation of the gel as a product
of hydration is also a determining factor for the rheblogy of BS for ARC. According to the
studies of the rheology of the hydraulic systems that is the result of the development and
breakdown of a “secondary structure” related to gel formation during initial hydration and is not

to be confused with the flocculated structure of the preexisting paste [72].
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Figure 4.2-2. Hysteresis thixotropic behavior of BS containing equal quantities of Secar 71
CAC, SF2 and Pechiney AC 34 B5 calcined alumina, with an admixture of 0.133% SHMP, for
a) 0.25 w/s ratio and b) 0.35 w/s ratio.

The data for BS of LCC are presented in Figure 4.2-2 for two different w/s ratios. By
increasing the w/s ratio, there is also a decrease in the hysteresis amplitude, indicating a lower
thixotropy besides the normal decrease of the shear stress levels.

The results on this preliminary set of experiments lead to the following conclusions:

the ULCC BS suspensions showed a rheological behavior similar to the hydraulic cement

suspensions, during dormant period;

e the hydration rate, during dormant period, was not affected by the water/solid and
water/cement ratios;

e it was not possible to identify a well defined yield stress of BS suspensions containing

calcined alumina and silica fume;

e the thixotropic behavior is dependent on the solid/water ratio.
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Based on the above data it was decided that in order to study the rheological behavior

of BS for ARC it is necessary to maintain the following parameters of viscometric

measurements:

s the lowest possible shear rate levels;

s the shortest possible time after mixing with water; |

e measuring times at low shear rate of minimum 30 secoénds in order to avoid any possible

misleading results due to insufficient torque strain at low angular velocity of the spindle.
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Figure 4.2-3. Variation of viscosity with the level of admixture of plasticizers (STPP and
SHMP) for a binding system containing equal quantities of Secar 71 CAC, SF2 and Pechiney
AC 34 B5 calcined alumina, at 0.275 w/s and 0.1905 s shear rate.

During this stage of the research, the initial measurements of the effects of dispersant
admixtures on the viscosity of BS for LCC were completed. STPP and SHMP were used as
dispersant admixtures. The measurements were taken at 0.1905s™ shear rate for a w/s=0.275
at 5, minutes after mixing with water. One example of such measurements is presented in

Figure 4.2-3.
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Because in the experimental compositions of BS for LCC both CAC and calcined
alumina have the specific surface lower than 1 m?%g, while silica fume (SF2) has a specific
surface of 12.4 m?/g, the concentration of dispersant admixture was expressed in Figure 4.2-3
as weight percentage of the silica fume content. Both dispersants proved to be effective in
dispersing the LCC binding system. STPP has produced the lowest viscosity (170-200 Pa-s) in
a narrow range around 1.25 wt%. SHMP produced the lowest viscosity of 400 Pa-s but the
variation of viscosity with concentration was less important. Although STPP gives lower
viscosity the use of SHMP is easier to control, i.e. it is more tolerant to errors of admixture.

Literature data indicate that organic plasticizers act differently than phosphate
(inorganic) plasticizers [93,94]. However there is no information regarding the possible
interaction effect between organic and inorganic plasticizers. The next stage of our research
study was conducted therefore to establish the interaction of o\rganic and inorganic plasticizers

on the rheology of BS of self-flowing ARC.

4.2.1.2. Rheology of binding systems for ULCC

Experimental compositions (Table 4.2-1) of BS were designed to correspond to self-
flowing ULCC'’s based on Mulcoa 60 refractory aggregate and having an Andreassen exponent
g=0.22. Although kyanite -325 mesh has a different particle size distribution compared to
-100 mesh Mulcoa 90, the latter was used to replace kyanite in the 3 component binding

system in order to study its influence as a suspension stabilizer.
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Table 4.2-1. Experimental compositions of BS for ULCC.

4 ceramic components
binding system

Component 3 ceramic components
binding system
silica fume (wt%) 23.8
kyanite -325 mesh (wt%) -
caicined alumina AC 34 B5 (wt%) 9.52
CAC Secar 71 (wt%) 4.76
Mulcoa 90 -100 mesh (wt%) 61.89

23.8
19.04

9.52
4.76
42.85

The effect of dispersant additives on the rheology of BS was studied using designed
experiments and response surfaces of two factor groups (Table 4.2-2). The type of silica fume

factor was included as a supplementary qualitative factor (4 ceramic component BS were

prepared using silica fume Elkem 971-SF1 and silica fume Globe Metallurgical-SF2).

Table 4.2-2. The experimental design actual factor levels for plasticizer admixtures.

Plasticizer Low level (wt%), -1 High Level (wt%), +1
STPP 0.05 0.15
SHMP 0.1 0.3
SNFC -(Daxad 19) 0.04 0.06
SPMA (Daxad 30) 0.04 0.06

The measurements were performed at three levels of shear rate: 0.1905 s, 0.391 s,
and 0.9775 s™'. A two level factorial central composite rotatable («=1.41) design was chosen.
The experimental design and the statistical analysis of the rheology data were performed using
Design-Expert 5.0.7 software produced by Stat-Ease Inc. In order to establish correlation with

the castable flow the concentrations of plasticizer and the levels of water were expressed in

values corresponding to the whole self-flowing castable compbsitions.




For organic plasticizers the levels of admixture were arbitrarily chosen based on values

employed in literature data, while in the case of STPP and SHMP the values were chosen

based on the viscometric measurements performed during the study of rheology of BS for LCC.

Figure 4.2-4 represents the experimental design layout in coded values (i.e. —1=low

level, 0=mid level and +1=high level). Combinations of phosphate-organic plasticizer (STPP-

SNFC and SHMP-SPMA) were used as factors of the design. The resulting response surfaces

were obtained through least square fit to experimental data. The design, fit and plotting routines

are parts of the Design Expert program.
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Figure 4.2-4. Experimental factorial design layup represented in coded values.
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Figure 4.2-5. Individual notation of experimental data points of the central composite design.

The notation of individual design points, in terms of concentration of organic and
inorganic dispersants, in the shear stress-shear rate graphs that are presented in this chapter is
shown in Figure 4.2-5. The coded values correspond to the concentration levels presented in
Table 4.2-2.

In parallel to the viscometric measurements the binding system compositions were also

subjected to pH measurements at 1/50 level of dilution.
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Figure 4.2-6. The effect of STPP-SNFC plasticizer admixture on rheological behavior of 4
component BS for ULCC containing SF2 at: a) 0.1905 s, b) 0.391s™, and c) 0.9775 s™ shear

rate. d) Shear stress-shear rate dependence for experimental data points indicated in Figure
4.2-5.

As shown in Figure 4.2-6, for a four component BS containing SF2, for all three shear
rates employed the profile of variation of shear stress with shear rate is similar indicating that

the amount of plasticizer has no direct effect on the thixotropic behavior.
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For STPP if employed in concentrations higher than 0.08% low levels of viscosity are
obtained. The optimum level of STPP admixtures is around 0.14% although there is no
important variation of its effect in the range of 0.09-0.15%. The model predicts also an increase
in the viscosity for STPP concentrations higher than 0.185%. Although the presence of SNFC
brings a certain positive contribution to the dispersion of the BS, its effect is more visible at low

concentration of STPP.

Shear Stress
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0.040
0.150
SNFC 135
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Figure 4.2-7. Variation of shear stress with concentration of STPP- SNFC admixture for a
4 ceramic component BS containing SF2, at 0.1905s™ shear rate.

Point prediction algorithm (Figure 4.2-7), indicated that the optimum concentration of
dispersant admixture is 0.137% STPP and 0.026% SNFC resulting in shear stress levels
between 36.2 and 41.3 Pa at 95% confidence interval. The actual value of shear stress at

0.1905s™ for the optimum level of admixture determined experimentally was 40.8 Pa.
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Figure 4.2-8. The effect of SHMP-SPMA plasticizer admixture on rheological behavior of 4
component BS for ULCC containing SF2 at: a) 0.1905 s™, b) 0.391s™ and c) 0.9775 s shear
rate. d) Shear stress-shear rate dependence for experimental data points.

As shown in Figure 4.2-8 the effect of SHMP-SPMA admixture on viscosity of the 4

component BS for ULCC containing SF2 has similar characteristics to that of STPP-NSFC



(Figure 4.2-6). For all the shear rate levels employed, the variation of shear stress indicates that
both SHMP and SPMA have no specific determining effect on thixotropy of the mix. Compared
to STPP the use of SHMP leads to higher shear stress and viscosity of the BS. The variation of
the shear stress with concentration of SHMP is weaker as compared to STPP. The optimum

level of plasticizer admixture is of about 0.2% SHMP and 0.028% SPMA.
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Figure 4.2-9. Variation of shear stress with concentration of SHMP-SPMA admixture for a 4
ceramic component BS containing SF2, at 0.1905s™ shear rate.

Point prediction algorithm (Figure 4.2-9) showed that, for the optimum concentration of
plasticizer admixture the shear stress level obtained for a 0.1905s™ shear rate is 250 Pa. This
value is 7 times higher than that obtained in the case of STPP-SNFC admixture. The actual
value of shear stress at 0.1905s™" for the optimum level of admixture determined experimentally
was 258 Pa.

The important effect, on shear stress values, is shown by the phosphate additive
(SHMP). SPMA has no significant effect in reducing viscosity, if used in concentrations below

0.04%
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Figure 4.2-10. The effect of STPP-SNFC plasticizer admixture on rheological behavior of 4

component BS for ULCC containing SF1 at: a) 0.1905 s, b) 0.391s™, and c) 0.9775 s™ shear
rate. d) Shear stress-shear rate dependence for experimental data points.

The data presented in Figure 4.2-10 suggest that, by using SF1, very low levels of shear
rate (and viscosity) are obtained. Compared to the BS containing SF2, for the same fluidity

levels, the use of SF1 allows for a reduction in the water for mixing of castable of about 25%
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(the equivalent water content was 5% for BS based on SF1, and 6% for BS based on SF2). For

a low water content (5%) and low concentration of STPP, the shear stress values are below

1560 Pa. This suggest that in the case of SF1 it is possible to obtain a self-flowing castable even

without plasticizer admixtures by increasing the water content to 6%.

From the data presented in Figure 4.2-10 is apparent that STPP has the most important
effect on the rheology of 4 component BS containing SF1, wHiIe SNFC has just a minor positive
influence. The shear stress levels increase at higher concentration of STPP (0.15%) and higher
concentration of SNFC (0.06%)

The optimum concentrations of plasticizer admixture, for all shear rate levels employed-
are at 0.078% STPP and 0.024% SNFC. The fact that, in the case of SF1, the optimum levels
of STPP are slightly lower than in the case of silica fume SF2, while there is no important
change in the concentration of SNFC, confirms the Iitérature data [53, 93] regarding the
following hypothesis of BS-plasticizer interactions:

e organic and phosphate plasticizers have different mechanisms of action: while organic
plasticizers act by steric repulsion and adsorption on cement particles, phosphate
plasticizers act by adsorption on high specific surface particles (in this case silica fume)
resulting in an increased electrostatic repulsion.

o the surface characteristics of silica fume particles (specific surface, level of impurities), are
determining factors for the self flow behavior of refractory castables and also determine the
optimum concentrations of plasticizer admixture.

Figure 4.2-11 shows the variation of shear stress with concentration of STPP-SNFC
admixture, at 0.1905s™ shear rate, for the 4 component BS for ULCC containing SF1, around
the optimum concentration of admixture. Similar optimum ranges for the concentration of

plasticizer admixture were found for shear rates of 0.391 s and 0.9775s™.
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As in the case of STPP-SNFC admixture, by using the SHMP-SPMA mix in the BS
based on SF1 (Figure 4.2-12) several aspects can be outlined by comparison with the

rheological behavior of the BS containing SF2 for ULCC:

Shear Stress
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SNFC %) 0.020 0.075 STPP (wt%)

Figure 4.2-11. Variation of shear stress with concentration of STPP-SNFC admixture for a 4
ceramic component BS containing SF1, at 0.1905s™" shear rate.

o the profile of variation of shear stress, for all shear rates employed, indicates maximum
values for low levels of plasticizer admixtures;

e there is a positive interaction between the organic and phosphate plasticizer;

e the organic and phosphate plasticizers have comparable effects both showing a relative
decrease in the shear stress of the BS;

e the use of the high purity silica fume (SF1) brings a decrease in the optimum concentration
of phosphate plasticizer while the optimum concentration of organic plasticizer remains

practically unchanged.
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Figure 4.2-12. The effect of SHMP-SPMA plasticizer admixture on rheological behavior of 4
component BS for ULCC containing SF1 at: a) 0.1905 s, b) 0.391s™ and ¢) 0.9775 s™ shear
rate. d) Shear stress-shear rate dependence for experimental data points.
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Comparing the rheological behavior of the 4 component BS containing SF1 dispersed

with SHMP-SPMA and STPP-SNFC the following observations could be made;

SHMP-SPMA is less effective in dispersing the BS for ULCC than STPP-SNFC, the minimum
values of shear stress experienced for all three shear rates being almost twice;

it is not possible to identify a well defined yield stress so it is not possible to describe the
rheological behavior of the BS as a typical Bingham fluid;

the shear stress-shear rate variation for all levels of admixture shows that these BS exhibit a
thixotropic behavior, and the thixotropy is not determined directly by the concentration of
plasticizer admixture but is clearly influenced by the relative level of shear stress.

For the 4 ceramic component BS for ULCC containing SF1, the optimum concentration of

SHMP-SPMA plasticizer admixture was found to be at 0.016% SHMP and 0.028% SPMA, for all

the three shear rates employed.

The variation of shear stress with concentration of SHMP and SPMA at 0.1905 s™' shear

rate, detailed near the optimum level of admixture is presented in Figure 4.2-13.
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Figure 4.2-13. Variation of shear stress with concentration of SHMP-SPMA admixture for a
4 ceramic component BS containing SF1, at 0.1905s™ shear rate.
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At the present stage there is no clear understanding of the effect of fine reactive powders
of natural aluminosilicates on the behavior of the BS of ARC. While it is generally agreed that
that aluminosilicate minerals such as kyanite have a positive contribution to the mullitization
process [127], there is doubt over their influence on the rheology.
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Figure 4.2-14. The effect of STPP-SNFC plasticizer admixture on rheological behavior of 3
component BS for ULCC containing SF2 at: a) 0.1905 s, b) 0.391s™, and c) 0.9775 s™ shear
rate. Shear stress-shear rate dependence for experimental data points d).
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In order to asses the influence of natural aluminosilicates on the rheology of BS,
experimental mixes in which the kyanite content was replaced by -100 mesh Mulcoa 90 were
prepared. Preliminary experiments showed that if kyanite is replaced with Mulcoa 90 an
important decrease in viscosity is experienced. For this reason it was decided that, even if these
compositions were made with SF2, the water level had to be lowered to 5% .The composition of
3 ceramic components BS ULCC is presented in Table 8. The data presented in Figure 4.2-14
suggests that by replacing kyanite with -100 mesh Mulcoa 90 several effects occur:

e the viscosity of the BS sharply decreases (i.e. the shear stress levels are three times lower
than those of the 4 components BS, for a equivalent water content reduced from 6 to 5 %);

¢ the region of optimum level of admixture is reduced, the graphs indicating a region of low
viscosity at high concentration of SNFC, but this region falls outside the limits of the
experimental layout (concentration of SNFC higher than 0.068%);

e the optimum range of plasticizer admixtures (Figure 4.2-15) is found to be at low level of

STPP (0.08 %) while for SNFC there is no important change (0.027%).
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Figure 4.2-15. Variation of shear stress with concentration of STPP-SNFC admixture for a 3
component BS, at 0.1905s™ shear rate.
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Figure 4.2-16. The effect of SHMP-SPMA plasticizer admixture on rheological behavior of 3
component BS for ULCC containing SF2 at: a) 0.1905 s™, b) 0.391s™ and c) 0.9775 s™ shear
rate. Shear stress-shear rate dependence for experimental data points d).

The variation profile of the shear stress with the composition of plasticizer admixture, for
the 3 component BS is very similar with that of 4 component BS, for the shear rates employed

(Figure 4.2-14 a), b), c) and Figure 4.2-16 a), b), c)). Despite the different level of shear stress
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the effect of SHMP-SPMA admixture is similar even with respect to the composition of the
optimum level of admixture in order to obtain a minimum viscosity. Contrary to the case of
STPP-SNFC admixture there is no indication of the existence of a low viscosity compositional
field at high concentration of organic plasticizer. As presented in Figure 4.2-17 the lowest shear
stress levels (and consequently lower viscosity) are obtained for a concentration of plasticizer
admixture of 0.185% SHMP and 0.035% SPMA. At 0.1905 s™ shear rate, the minimum shear
stress is 20.4 Pa, which is more than double than the minimum that can be obtained with STPP-

SNFC.

Shear Stress

0.028
0.030

SPMAt%)  0.032 0.200 SHMP (wt%)

Figure 4.2-17. Variation of shear stress with concentration of SHMP-SPMA admixture for a 3
ceramic component BS containing SF1, at 0.1905s™" shear rate.

By analyzing the rheological behavior of BS for ULCC several conclusions can be drawn
with regard to of these mixes and to the role of plasticizer admixtures:
e In order to obtain the lowest shear stress (i.e. higher fluidity), the optimum concentration of
plasticizer admixture was similar for different shear rates of all experimental compositions.
¢ For all the binding systems, the STPP-SNFC admixture is more effective than SHMP-SPMA.

The most important effect in reducing the viscosity of BS was shown by the phosphate
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plasticizers. Although the organ‘ic plasticizers have a positive influence on concentrated
suspensions of BS, they are not as effective as phosphates.

Comparing the phosphate additives, STPP proves to be more effective than SHMP for all
studied BS. For the same shear rate and composition of BS, at optimum concentration, the
use of STPP leads to shear stress levels less than half of those obtained by using optimum
concentration of SHMP. The biggest difference was shown in the case of the fdur component
BS with for which the minimum shear stress levels given by SHMP-SPMA combination was
more than seven times higher than that given by STPP-SNFC.

Although STPP was more effe'ctive than SHMP in providing low viscosity BS, its effect was -
more sensitive to concentration variations, éomposition of the BS and quality of silica fume. A
good dispersing effect can be obtained for STPP only for a precise and narrow range of
concentration and that may explain the fact that SHMP is preferred by some researchers.
The quality of silica fume (i.e. its purity and spécific surface) is an important not only for
obtaining a low viscosity BS, but also in determining the requirement of the phosphate
plasticizer. If compared to the high purity SF1, the low quality SF2 not only requires larger
water contents, in order to achieve similar shear stress levels, but also requires higher
concentration of the phosphate plasticizer.

There is no influence of the quality of silica fume on the optimum requirement of organic
plasticizer admixture. This confirms the theory that the organic plasticizers act by adsorption
on the surface of CAC particles and by steric repulsion.

Kyanite has a strong effect on the rheology of BS by significantly increasing the viscosity.
Due to this effect it was impossible to measure the shear stress variation with concentration
of plasticizer admixture of three- and four-component BS, at the same water level. By

replacing the kyanite with an inert fraction of Mulcoa 90 the optimum requirement of STPP
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was decreased from 0.137% to 0.080%, while in the case of SHMP there was no noticeable
influence (0.187% respectively 0.193%).

Kyanite has no visible influence on the requirement of organic plasticizer. The pattern of
variation of shear stress with concentration of STPP-SNFC admixture indicates that a field of
low viscosity may exist at high concentration of SNFC. This effect may be due to the fact that
the SNFC is also a very effective dispersant for alumina slurries. Because the three
component binding systems have a high concentration of-high 'alumina particles (i.e. 61.89%
Mulcoa 90) a higher concentration of SNFC can reéult in a better dispersion of Mulcoa 90
particles.

Similar to BS for LCC (Figure 4.2-2) all ULCC mixes show a shear thinning behavior (Figures
4.2-6d, 8d, 10d, 12d, 14d a.nd 16d). In the range of shear rate employed in our experiments
(0.1905-0.9775 s™) the shear thinning is independent of the concentration of plasticizer
admixture, but there is a clear pattern of variation with the shear stress. While the plasticizers
have no specific effect on establishing the non-Newtonian behavior of the BS, by providing a
better dispersion of the concentrated suspension, they can modify the variation of the sheaf
stress with shear rate.

None of these suspensions can be described as a typical Bingham fluid, being impossible to
identify a well defined yield stress. While in some cases (Figures 4.2-10d and 4.2-12d) it may
be considered that there is a convergence to a common value of the yield stress, for the
majority of binding system compositions (Figures 4.2-6d, 8d, 14d and 16d) the shear thinning

behavior seems to depend on the overali level of shear stress at a given shear rate.
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In order to study the effect of SNFC on the viscosity of three component BS at high
concentration of organic plasticizers, measurements at 0.9775 s'1/shear rate were performed on
the mixes cont_aining an equivalent concentration of STPP of 6.1% and 5% water.

As shown in Figure 4.2-18, the field of low viscosity at high concentration of organic
plasticizer, (as predicted by the response surface model), exists in the range of 0.2-0.4% SNFC.
Above 1.2% SNFC there is an important increase in viscosity. That means that the rheological
behavior of BS although, governed by complex interactions, that can be successfully studied by
adequate viscometric techniques supported Design of Experiment models. The minimum
viscosity in the range of concentrations of 0.8-0.1% SNFC is 45.3 Pa, while the minimum
viscosity in the range of 0.012-0.068% SNFC (that was employed in the response surface
model) was 31 Pa. These variations are significant as the standard error of measurement is +
1.2 Pa. Because the viscosity levels at high concentration of organic plasticizer are higher than

those existing in the compositional field studied by responsé surfaces, further investigation of

this domain was not considered.
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Figure 4.2-18. Variation of viscosity with concentration of SNFC for a three component binding
system containing SF2, at 5% water and 0.1% STPP.
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4.2.1.3. The influence of water content

The next step of research was directed towards establishing the influence of water
content on the rheological behavior of BS suspensions. Preliminary experiments on the viscosity
of BS for LCC, in the presence of phosphate plasticizers admixture showed that there is a good
correlation between the viscosity, at a given shear rate, and the water/solid ratio, as shown in

Figure 4.2-19.
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Figure 4.2-19. Semi-logarithmic variation of viscosity with w/s ratio for a BS for LCC containing
equal quantities of CAC, SF2, and calcined alumina, with an admixture of 0.133% SHMP, at
0.1905 s™' shear rate and at different times after adding water.

The data shown in Figure 4.2-19, can be correlated with the experimental results of the
rheology study of BS for ULCC, It is thus possible to describe the rheology of a given BS of a
castable refractory as a function of water level and shear rate employed. It was necessary to
obtain evidence if this type of dependence exists also in the case of more complex BS of ULCC,
in the presence of organic-inorganic plasticizer admixture. The data presented in Figure 4.2-20
show a clear pattern of variation of shear stress with the water content. The shear stress may be

defined by an empirical equation of the following type:
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o =Axw? (6)
, Where
A, B - constants
c- shear stress,

w- water content

A shearrate 0.1995s" ¢=3.41E+05w>"® R?=0.986
X shearrate 0.3910 s’ &=3.80E+05w>% R?=0.992
® shearrate 0.9775s"' o=5.13E+05w>*? R?=0.981
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Figure 4.2-20. Variation of shear stress with water content, at different shear rates, for a 4
component BS for ULCC using SF1 and a plasticizer admixture with 0.1% STPP and 0.012%
SNFC.

The parameters A and B could be considered as functions of the shear rate (y). For
example Figure 4.2-21 shows a good Iihear correlation of the parameters A and B with the shear
rate, for the binding system presented in Figure 4.2-20. The parameters A and B can be
therefore expressed as a function of the shear rate as follows:

A=(m+ny) (7)

B=w ) | (8)
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where m, n, p and r are constant parameters.
From Eq.(7) and (8) it results that at high shear rates (;>>p), B—1 and the variation of
shear stress with shear rate is described by the Bingham model. Therefore, the terms mw and

nw may be considered as the apparent yield stress and the apparent Bingham plastic viscosity

constant:

o =mwHmnw (9)

When =0 the yield stress g, ,of the binding system can be also derived from Eq.(7-9) :

o, =mw”" (10)
a) b)

A =225E+06y + 2.87E+06 R?=0.982 1/B=-0.0145y-0.1705 R?=0.971
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Figure 4.2-21. Correlation of the parameters A and B with shear rate, for a 4 component BS for
ULCC using SF1 and a plasticizer admixture with 0.1% STPP and 0.012% SNFC.

For the binding system presented in Figure 4.2-20, based on Eq. (6), (7) and (8), the
variation of the shear stress with the shear rate and the water content may therefore be

expressed by the following empirical formula:
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O'=(m+ny) wPArn ‘ (1 1)
A similar correlation was found for a ULCC binding based on SF1 containing 0.15%

STPP and 0.04% SNFC (Figure 4.2-22).

A shearrate 0.1995s' o=5.62E+05w°>"® R?=0.986
X shear rate 0.3910 s' o=6.68E+05w>*" R?=0.992
® shearrate 0.9775s* ¢=8.59E+05w°** R?=0.981
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Figure 4.2-22. Variation of shear stress with water content, at different shear rates, for a 4

component BS for ULCC using SF1 and a plasticizer admixture with 0.15% STPP and 0.04%
SNFC.

Figure 4.2-23 shows a good linear correlation of the parameters A and B with the shear
rate, for the binding system presented in Figure 4.2-22. The binding systems presented in Figure
4.2-20 and 4.2-22 differ just by the concentration of the plasticizer admixture. The main
difference induced by changing the concentration of plasicizer admixture is a proportional

increase (i.e. 69% change) of parameters m and n (see Figures 4.2-21 and 4.2-23). -
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Figure 4.2-23. Correlation of the parameters A and B with shear rate, for a 4 component BS for
ULCC using SF1 and a plasticizer admixture with 0.15% STPP and 0.04% SNFC.
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Figure 4.2-24. Variation of shear stress with water content, at different shear rates, for a 4
component BS for ULCC containing SF1 and a plasticizer admixture with 0.15% SHMP and
0.06% SPMA.
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The ULCC binding system based on SF1 (Figure 4.2-24) is dispersed with 0.15% SHMP
and 0.06% SPMA. The use of SHMP-SPMA admixture results in significantly increaséd shear
stress levels. Due to a good correlation of the parameters A and B with the shear rate (Figure

4.2-25), the rheological behavior of this binding system can be also described by the Eq. (11).

a) b)
A = 5.08E+06y + 3.82E+05 R? = 0.991 1/B= -0.0045y - 0.1805 R? = 0.952
5.60E+06 - -0.174 -
A 1/8
5.30E+06 - -0.182 - \
5.00E+06 . . -0.19 ' —
0 05 1 0 05 1
shear rate (s ™) shear rate (s™)

Figure 4.2-25. Correlation of the parameters A and B with shear rate, for a 4 component BS
for ULCC containing SF1 and a plasticizer admixture with 0.15% SHMP and 0.06% SPMA.

Much lower shear rates were obtained for a ULCC binding system based on SF1, with a
plasticizer admixture consisting of 0.15% SHMP and 0.06% SPMA (Figure 4.2-26). However
there is still a good correlation of the parameters A and B with the shear rate (Figure 4.2-27). By
comparing the rheology of the ULLC binding system dispersed with SHMP-SPMA admixture it
results that the variation of the shear rate is induced mainly by a proportional change (92.4%) of
parameters m and n (Figures 4.2-25 and 4.2-27). This finding is consistent with the observation,
made in previous experiments, that the plasticizers have no specific effect on establishing the

non-Newtonian behavior of binding systems.
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Figure 4.2-26. Variation of shear stress with water content, at different shear rates, for a 4
component BS for ULCC containing SF1 and a plasticizer admixture with 0.1% SHMP and
0.02% SPMA. t
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Figure 4.2-27. Correlation of the parameters A and B with shear rate, for a 4 component BS for
ULCC containing SF1 and a plasticizer admixture with 0.1% SHMP and 0.02% SPMA.

The ULCC binding systems containing SF2 showed a pattern of variation of the shear

stress with the water content similar to the binding systems containing SF1 (Figure 4.2-28).
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Figure 4.2-28. Variation of shear stress with water content, at different shear rates, for a 4

component BS for ULCC containing SF2 and a plasticizer admixture with 0.1% SHMP and
0.04% SPMA and correlation of the parameters A and B with shear rate.

It is appropriate to comment at this point on the general concept of yield stress in viscous

suspensions. Strong but contradictory views about the nature of the yield stress have been held
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in the past, partly because the importance of the characteristics of the measuring instrument
were not fully appreciated. The use of relatively new controlled stress rheometers, which allow
for the application of a constant small stress to a sample for an indefinite time, has resulted in
understanding of the subject. Barnes and Walters [137] studied a PVA latex adhesive and an
aqueous solution of “Carbool”’, a thickening agent. In tests with a controlled strain rate
instrument, using an 8:1 range of strain rates, they obtained graphs that suggested the existence
of a well defined yield stress. However, a similar test with a much lower mean strain rate
produces a graph of similar shape but with a much smaller intercept. In measurements at very
low strain rates, using a controlled-stress rheometer these materials were found to behave as
Newtonian fluids, The “apparent yield stress” found earlier was considered as a result of
extremely high Newtonian viscosities at the low shear rates that were employed. This facts
determined Barnes and Walters to conclude that the concept df a yield stress is a myth.
However other researches disagree. Cheng [138] found that there are some materials for which,
as the shear rate is reduced progressively from a high level, the stress falls initially, but at very
low shear rates, the stress goes through a minimum and begins to raise.

At the present time there are no theoretical models for describing the non-Newtonian
behavior of such complex systems as the concentrated suspensions of binding systemé. The
difficulties in analyzing these rheological systems are related to the high volume fraction of solid
particles (>0.8) and to their wide particle size distribution (0.1-300u). The empirical model
derived in this work from the analysis of experimental data, offers a new perspective for studies
of a transitional feature between the Bingham flow and non-Newtonian shear thinning behavior
in refractory binding systems, with no discontinuity with regard to shear rate or water

concentrations.
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4.2.2. Setting

Another important benefit of the study of the rheology of binding systems is related to the
hydraulic setting. As previously mentioned, plasticizers have an influence on the hydration
process, the most well known case being that of SHMP, which, depending on its concentration,
may act as a setting retardant or accelerator of the calcium aluminate cement.

In the present study, the rheology study of BS for ULCC focused on the shear stress-
shear rate dependence at different concentration of plasticizer admixture. Setting time
experiments were performed in order to verify the influence of the inorganic and organic salts on

the reaction of hydration.
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Figure 4.2-28. Variation of the setting time a) and viscosity b) at 0.1955 s™ as a function of the
setting accelerator content for the 4 component BS based on SF2 at 0.1% STPP and 0.04%
SNFC.

Since all initial experimental binding systems had setting times longer than 24 hours, the
use of accelerators such as lithium carbonate and sodium aluminate was necessary. As
presented in Figure 4.2-28 a) for a four components BS with 0.1%STPP, 0.05% SNFC and SF2,

the most effective accelerator was lithium carbonate, which increased the viscosity. Sodium

118




aluminate was less effective as a setting accelerator and had only a small negative effect on the
viscosity.

Because neither accelerator produced a required short setting time (i.e. less than 24
hours) and both had a negative effect on viscosity, it was considered that the BS presented in
Figure 4.2-28 was not suitable for a seif-flowing ULCC. In order to study the effectiveness of
accelerators on the setting time, more experiments were performed with .different concentrations
of plasticizer admixture. The study was focused on the mix of STPP and SNFC, due to the low

viscosity level induced by this admixture.

a) b)
0m i
—@— Na Aluminate 800 -
45 | —m— LiCarbonate
[ ]
40 1
z 7
g 351 u e
S 2 500 -+
o "]
E 304 9
25 1 "
@ |
20 | o«
\ 200 !// : | |
15 ; : L4 0 0.01 0.02 0.03
0 0.01 0.02 0.03

. Concentration of accelerator (wt%)
Concentration of accelerator (wt%)

Figure 4.2-29. Variation of setting time a), and viscosity at 0.1955 s b), as a function of setting
time accelerator concentration for a 4 ceramic components BS based on SF2 at 0.1% STPP
and 0.02% SNFC.

For the BS based on SF2 the experimental compositions of plasticizer admixture were
based on the low viscosity fields presented in Figure 4.2-6. Comparing the data presented in
Figures 4.2-28 and 4.2-29 it resulted that a low concentration of SNFC (below 0.02%) is an
important factor in achieving a good setting time. Further examination of the variation of setting
time and viscosity with the level of accelerator (Figure 4.2-30) showed that both accelerators

were more effective while having a limited effect on the viscosity, at lower concentration of
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SNFC (0.012%). More importantly, for low concentrations of sodium aluminate and
concentrations of SNFC of 0.012%, it was possible to obtain a simultaneous effect of reducing
the setting time and the viscosity. This result confirms a dual role of SNFC as a plasticizer and
setting retarder. For low concentration of SNFC, sodium aluminate may act as a dispersant,
further enhancing the fluidity of the BS, while lithium carbonate has no dispersant effect.
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Figure 4.2-30. Setting time a) and viscosity at 0.1955 s™' b), versus concentration of accelerator
for a 4 ceramic component BS based on SF2 at 0.1% STPP and 0.012% SNFC.

It was also found that SNFC forms a viscous precipitate in water, in a solution of sodium
aluminate. This may account for the increase in viscosity caused by the sodium aluminate in BS
containing high concentrations of SNFC, but does not explain the similar effect obtained by the
addition of lithium carbonate. This behavior can be considered a result of complex chemical and
physical interactions within the binding system suspension. Therefore, it may be incorrect to
define certain chemical additives as being only plasticizers or setting agents. It would be more

correct to define a system of chemicals as a plasticizer-setting time admixture. The analysis of
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the system is further complicated by the fact that the same plasticizer (as in the case of SHMP)

may exhibit both a retarding or accelerating effect, depending on its concentration.
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Figure 4.2-31. Setting time a) and viscosity at 0.1955 s™ b) versus concentration of accelerator
for the 4 component BS based on SF1 at 0.1% STPP and 0.012% SNFC.

According to the data presented in Figure 4.2-29 and 4.2-30, sodium aluminate can be

used in order to simultaneously obtain a low viscosity and an acceptable setting time of a BS for

ULCC, if the concentration of SNFC is below 0.02%. Similar results were obtained for BS based

on SF1. In this case the effect of the accelerators was more significant, while the negative effect

of increasing the viscosity was less significant (Figure 4.2-31).

Experiments on BS based on SF1 at relatively high concentration of STPP (0.15%)

showed (Figure 4.2-32) that higher concentrations of STPP minimize the negative effect

produced by SNFC on the setting time, also increasing the viscosity, especially with the addition

of lithium carbonate. This was probably due to a weak accelerating effect of STPP in the 0.1-

0.15% range of concentrations.
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Figure 4.2-32. Setting time a) and viscosity at 0.1955 s™ b) versus setting concentration of
accelerator for the 4 component BS based on SF1 at 0.15% STPP and 0.012% SNFC.

By correlating the setting time results with the rheology of binding systems, several
conclusions can be made:
 the properties of silica fume (i.e. specific surface and impurities) have an important role in the
rheology of the BS and their hydraulic setting behavior;
o the difficult hydraulic setting of BS of ULCC can be avoided by using a proper accelerator-
plasticizer admixture;
¢ the organic plasticizers (such as SNFC and SPA) may have an important set retardant effect
at high concentrations, that makes their use impracticable;
e STPP proved to have a weak accelerating effect in the range of 0.1-0.2 % and although high
concentrations of STPP are beneficial for obtaining a good setting time, a significant increase
in viscosity occurred for concentrations above 0.15%;
e there is a clear interaction between the accelerators and plasticizers, the viscosity of the BS
being the result of the setting-plasticizer admixture.
As shown above, the most efficient plasticizer admixture is not necessarily suitable for a

hydraulic setting process, while a high level of accelerator can completely compromise the flow
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characteristics of the binding system. As different grades of silica fume have different
requirements of plasticizer, it is necessary to choose a standard plasticizer admixture, which
simultaneously achieves a low viscosity level and allows for a proper hydraulic setting. In our
experiments, the standard plasticizer admixture was established thorough numerical
optimization, selecting as a design criterion the minimum viscosity (for BS with both SF1 and
SF2) and the minimum increase of viscosity (for concentrations of sodium aluminate up to
0.02%), as shown in Figure 4.2-33. The concentration of SNFC, which should be below 0.02%,
was considered an absolute criterion. Lithium carbonate was not considered for further
investigation due to its detrimental effect on the fluidity and a difficult to control effect on the
setting time. The desirability function provided by the optimization routine of Design Expert
software indicated that the optimum plasticizer admixture was at 0.10201% STPP and 0.01185%
SNFC. For simplicity, 0.1% STPP and 0.012% SNFC values were adopted as standard content

of plasticizer admixture for BS of ULCC.

Desirability o

0.7917
0.593
0.396
0.198
0.000

0.000 0.050
Figure 4.2-33. The optimum content of STPP-SNFC plasticizer admixture for the BS of ULCC.
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4.2.3. pH of binding systems

The pH of binding systems was analyzed simultaneously with the viscosity
measurements in order to establish a correlation between the chemical and physical interactions
induced by the dispersants. In the case of 4 components BS based on SF2, both STPP-SNFC

and SHMP-SPMA admixture systems have a noticeable effect on pH (Figure 4.2-34).
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Figure 4.2-34. Variation of pH and viscosity (at 0.1955 s™' shear rate) with concentration of

admixture for a 4 component BS based on SF2: a) , ¢) pH, and b), d) viscosity for SHMP-
SPMA (a and b) and STPP-SNFC (c and d).
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In both cases the maximum of pH was at high concentrations of phosphate plasticizer and no

apparent correlation existed between viscosity and pH. For SHMP-SPMA admixture there is a

maximum of pH in a region of high viscosity, which may be attributed to a higher degree of

hydration. For the STPP-SNFC admixture the
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Figure 4.2-35. Variation of pH and viscosity (at 0.1955 s™ shear rate) with concentration of
admixture for a 4 component BS based on SF1: a) , ¢) pH, and b), d) viscosity for SHMP-SPMA

(aand b) and STPP-SNFC (c and d).
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modest increase in viscosity. This behavior suggests that for a low concentration of dispersant,
there is no important influence of the reaction of hydration on the variation of viscosity, the
dispersion of the concentrated suspension being just a result of adsorption equilibria. This
finding is consistent with the results of setting time experiments with respect to the difficult
hydration at low levels of phosphate additive, but does not explain the presence of a pH
maximum for relatively high concentrations of organic plasticizer. it may be considered that
during the initial contact with the water and chemical admixtures, the CAC particles participate in
a high rate adsorption-ion exchange process with the organic plasticizers and the initial (first 10
minutes after contact with water) hydro-electrolytic effect is not determinant for the length of the
dormant period.

In the case of 4 component BS based on SF1 with SHMP-SPMA admixture, there is a
minimum of pH in a region of low viscosity, which is clearly due to a low degree of initial
hydration (Figure 4.2-35). For both pH and viscosity, the STPP-SNFC effect seems to be
determined mainly by the concentration of STPP, but high viscosity and pH levels can be
correlated only at high concentrations of STPP.

For the three component binding system based on SF2, the study of variation of pH and
viscosity with the cbncentration of plasticizer admixture shows similar patterns to those of four
components BS, but there are some noticeable differences (Figure 4.2-36):

o the low levels of pH are higher than for the four component BS, due to the absence of
kyanite, which has a weak acid reaction in solution;
o the SHMP does not affect the pH and viscosity at the level SPMA does;

¢ the organic dispersant has a more important influence in establishing the pH level.
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It may be hypothesized that for low concentrations of dispersant, the pH is a result of the
equilibrium pH of ceramic components. At higher concentration of dispersants, a higher degree
of initial hydration may be responsible for the increase of both pH and viscosity. However, this

initial hydration could not be directly related to the length of the dormant period or to the final

hydraulic setting.
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Figure 4.2-36. Variation of pH and viscosity (at 0.1955 s™' shear rate) with concentration of

admixture for a 4 component BS based on SF2: a) , c¢) pH, and b), d) viscosity for SHMP-SPMA
(aand b) and STPP-SNFC (c and d).
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4.2.4. Flow

The self-flowing of refractory castables is a phenomenon not yet well understood. The
experimental methods for evaluating the self-flow behavior still lack fundamentals, which results
in the absence of an accepted standard method of testing. In our experimental work the
truncated cone method (ASTM C230 adapted for self-flow measurements) was used. It
basically consist of a modified slump test for measuring the yield stress.

Although there have been studies regarding the measurement of sélf-flow of castables
using the truncated cone method, most of the literature data is focused on the flow behavior of
different castable compositions and only a few analyze the method itself. The truncated flow
cone method measures only the relative increase in diameter of the castable under its own
weight without any regard to the flow pattern. During the present experimental work it was
considered that if only the relative increase in diameter is considered, the result of the
measurements can be misleading. Therefore for clarity reasons, it was necessary to make
some considerations regarding the flow pattern of the castables.

A uniform plastic and stable flow pattern is characterized by a uniform and circular
spread of the castable on the flow table, considered to be the behavior of a true self-flowing

castable (Figure 4.2-37)
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Figure 4.2-37. Uniform plastic and stable flow pattern.

If the particle size distribution contains too much of the coarse fraction (0.2-10 mm) and
medium fraction (0.045-0.2 mm), an increased flow and the segregation of the coarse particles

occurs, due to a more fluid suspension of the fine fraction. Even though strong segregation is
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easily identifiable, slight segregation may be identified only by an asymmetric and non circular

flow pattern (Figure 4.2-38).

’-.--*

Figure 4.2-38. Segregation, asymmetric flow pattern.

An excess of medium fraction (although it will produce initially an increase in flow),
translates to an increase in the mechanical interaction between the refractory aggregate
particles. A low viscosity suspension and the mechanical interlocking between the aggregate
particles can produce pump and hose clogging during castable pumping. The first sign of
aggregate particle interaction is the persistence of a ring shape trace on the upper surface of

the castable, originated by the circular upper edge of the truncated cone (Figure 4.2-40).
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Figure 4.2-40. Particle interaction flow pattern.

If the coarse aggregate fraction (4-8 mm) is in excess, even if the binder phase is more
fluid there is not enough material to fill all the voids between the coarse particles and an
increase in the flow results, with the largest aggregate particles expelled to the surface of the
castable (Figure 4.2-41). This unwanted flow pattern is difficult to distinguish. It is particularly
difficult to identify for low flow values, when the binder is viscous and the air entrapped during
mixing may account for some of the intergranular volume. Coarse particle separation can

usually be identified for flow values of 90-110%. In the present work, if not explicitly stated, all
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the self-flow measurements should be assumed to be performed for a stable, plastic and

regular flow.

Figure 4.2-41. Coarse particle separation, flow pattern

The self-flow phenomenon is considered to be due to a fluid binder and a carefully
designed particle size distribution of the refractory aggregate. Regarding the particle size of the
refractory aggregate, as mentioned in Chapter 2.2.3 there are two main theories related to the
packing characteristics of the castables. A flow model [81] considers that in order to obtain the
self flow it is necessary to achieve an equal proportion between the coarse (+1mm), medium
(0.045-1mm), and fine (-0.045mm) fractions. No clear indication on the particle size distribution
is given. Another model [82-85] states that in order to obtain self-flow behavior, the particle size
distribution of the castable has to be a continuous one and it is suggested that the empirical
Andreassen distribution gives the best results for the g exponent in the range of 0.20-0.30.
There is no scientific background for choosing a certain value for the Andreassen exponent, all
the conclusions being based on experimental observations. There is also no information
regarding the influence of the deviations from the Andreassen distribution on self-flow behavior.

None of the above mentioned models take into account the influence of the surface
characteristics and porosity of individual particle size fractions on the flow. In the present study

the influence of the factors mentioned above was also studied.
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4.24.1. LCC and ULCC

In the initial experiments, a Mulcoa type of aggregate (consisting of mullitic and bauxitic
calcines) was used. The experimental castable compositions conformed to the Andreassen
model using g=0.22. The cumulative particle size distributions of the individual components are

presented in Figure 4.2-41.
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Figure 4.2-41. Particle size distribution of individual componénts of the refractory castables.

The best fit to an Andreassen distribution, showing 5% flow at 6.5% water content ,is
presented in Table 4.2-4. Attention must be given to the composition of the medium fraction
(Mulcoa 60 -35 mesh and Mulcoa 90 -100 mesh). The two components forming this fraction are
different not only in their particle size distribution but also in their porosity, 7.9% and 2.9%
respectively. If the water for casting can be divided into water for the dispersion of the binder
and water absorbed in the porosity of refractory aggregate, the use of a refractory aggregate
with lower porosity would result in more water available for the binder and consequently a more

fluid binder and higher flow.
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Table 4.2-4. Experimental seIf—rowing ULCC composition (g=0.24).

Component Composition (wt%)
Mulcoa 60 -4+8 mesh 18
Mulcoa 60 -8+20 mesh 25
Mulcoa 60 -35 mesh ’ 19
Mulcoa 90 -100 mesh 14
Kyanite - 325 mesh 8
CAC Secar 71 2
Calcined alumina AC 34 B5 4
SF2 10

In order to increase the flow of the castable by increasing the fluidity of the fine fraction the
replacement of the -35 mesh Mulcoa 60 fraction with corresponding amounts -of the lower
- porosity -100 mesh Mulcoa 90 fraction was therefore necessary. The increase in flow is

significant while the deviation from an Andreassen distribution is almost negligible (Figure 4.2-

42 a, b).
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Figure 4.2-42. Variation of flow with the content of -100 mesh Mulcoa 90 fraction for 6 and
6.5% water a), and particle size distribution for ULCC compositions with different content of -
100 mesh Mulcoa 90 b).
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Another ihteresting aspect shown in Figure 4.2-42a, is the fact that a particle interaction
flow pattern (Figure 4.2-40) may also occur at a constant content of medium fraction. The
inclusion of 35 mesh Mulcoa 60 - in the medium fraction was not entirely correct, because while
its fine grains belong to the medium fraction, its coarse grains could be considered to belong to
the coarse fraction of the castable. The fact that, for almost the same Andreassen distribution,
there is a large variation of the flow values and a change of the flow pattern demonstrates that
the Andreassen model is not very reliable if applied to real polydisperse systems. One
possibility is that the porosity and the shape factors can have a major influence on flow.
Nevertheless the Andreassen distribution is a useful tool in establishing the starting point for the
design of a self-flowing castable.

The influence of the Andreassen exponent on flow is not very clear. For a system
composed of ideal particles (i.e. spherical with no porosity and no active surfaces) by
decreasing the g value for any given particle size distribution, the ratio between the volume of
particles finer than the given size and the free volume of the particles larger than the given size
is increased. That reduces the interaction between particles of similar size and consequently
increases the probability of displacement of a particle for a given value of stress. For real
systems, besides the influence of the porosity, there exists another effect due to different
surface activity (l.e. capabi|ity for adsorption of additives) of the individual components. Coarse
and medium fractions of refractory aggregate can be regarded as inert particles due to their low
specific surface (below 0.1 m?/g). The fine fraction of the castable (silica fume and fine ceramic
powders) is responsible for more than 95% of the specific surface of the total (silica fume
grades used for castables have a specific surface of 13-24m?/g)

The study of the rheology of BS showed that there is a power law dependency between
the viscosity (and consequently of the yield stress)b and the amount of water in the suspension.

For a given level of water in the castable, if the value of the Andreassen exponent decreases,
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the mechanical interaction between aggregate'particles decreases. At the same time when the
proportion of fine components in the BS increases, the ratio between the available water and
the solid load in the BS decreases, the viscosity of the BS increases, and therefore the flow
decreases.

For a set of castable components thé Andreassen exponent that insures the maximum
free flow is the result of two opposite effects: the decrease of mechanical interaction between
particles, which is favored by a low g value, and the decrease of the viscosity of the binder
suspension, which is favored by a high g value. While the mechanical interaction between the
coarse parti‘cles of the refractory aggregate is just a result of the volumetric particle size
distribution, the variation of the viscosity of the BS depends on the nature and content of the
fine reactive ceramic components. Therefore it is not possible to define a unique Andreassen
exponent for any self-flowing castable, because its value strongly depends on the nature
(specific surface, composition and porosity) and the content of the BS. This may explain the
relétively large dispersion (0.21-0.26) of the values of the Andreassen exponent considered
optimum by different authors, or the concept of using different Andreassen exponents for the
particle size distributions for the fine and coarse fractions of the castable [137].

In order to study the influence of the Andreassen exponent on the flow, it was necessary
to minimize the effect of the individual components. Therefore, the particle size distributions of
the experimental compositions were designed by keeping the composition of the BS (including
silica fume, CAC, kyanite and alumina) constant and by maintaining the same ratio between the
-35 and -100 mesh fractions of the refractory aggregate. The experiments were performed for
ULCC compositions based on SF1 and SF2 for different water levels. The basic castable
corhposition contained 18% of the-100 mesh fraction (refer to Figure 4.2-42 a). According to the
data in Figure 4.2-42 b the deviations from the ideal Andreassen distribution produced by this

procedure of design are negligible.
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All compositions with the Andreassen exponent in the range g=0.19-0.26 (Figure 4.2-43)

showed a self flow behavior, the best results being for the castables based on SF1.
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Figure 4.2-43. Variation of flow with Andreassen exponent for castables based on SF1 and
SF2.

For both castable compositions the highest flow was obtained for g <0.24 (g=0.22 for
SF1 and ¢g=0.23 for SF2). For the castable made with SF2 not only was the water requirement
higher, but the material was also more sensitive to the viscosity variations and less able to
withstand a higher degree of particle interactions than the castable based on SF1 (particle
interaction flow pattern was present for ¢>0.24). The results demonstrate that the rheological
parameters of the BS are determining factors in establishing the optimum particle size
distribution for s.elf-flowing castables.

It is to be mentioned that in all experimental castables, the composition of the binding
system was maintained constant, resulting in constant ratios between CAC and other ceramic
components. It is known that during the hydraulic setting, the initial hydration of CAC decreases
the fluidity of the BS. In order to establish the influence of CAC content, a set of castables
compositions based on SF1 having constant contents of silica fume and variable contents of
CAC (at the expense of calcined alumina and kyanite, which were maintained at a constant
relative ratio) was designed. Two castables having different particle size distributions and the

same concentration of plasticizer admixture (STPP-SNFC) were used.
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As shown in Figure 4.2-44a, the increase of CAC has a negative effect on the flow
values and this effect is stronger at higher g values. Considering that by increasing the CAC
content and simultaneously decreasing kyanite and alumina cbntent the particle size distribution
remains practically unchanged, it results that the flow decrease can be attributed exclusively to
a viscosity increase. If the flow is represented versus CAC/SF ratio (SF1=12.7% for g=0.22 and
SF1=8.5% for q=0.26), the similar behavior of two compositions is obvious (Figure 4.2-44b).
The almost identical flow. levels for similér CAC/SF ratio show that for a given particle size
distribution, the flow depends only on the rheology of the binding system.

The water level was chosen so that the flow for the samples containing 1% CAC was
130% for both series of compositions. As a result the water/BS ratio was different (0.163 for
g=0.22, and 0.262 for g=0.26), which translates to an important difference in the viscosity, but
the relative variation of viscosity of the BS was practically independent on the water content.
This fact was in accordance with the data resulted from the rheology study on the binding

systems (Chapter 4.2.1).
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Figure 4.2-44. Variation of flow with a) CAC content, b) CAC/SF ratio.
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The above data demonstrate that the use of the Andreassen model allows for
adjustment of the medium fraction in order to minimize the effect of porosity. Also, a proper
plasticizer-setting additive admixture makes it possible to design a series of castable
compositions with optimized flow properties. The data presented in Figure 4.2-44 represent in

fact a family of self-flowing low and ultra-low cement castables.

4.2.2.2. NCC

The preliminary studies demonstrated that concentrations of silica fume above 10 wt%
can have a negative effect on the thermomechanical properties of the castables, and high
SF/CAC ratios result in a difficult hydraulic setting. Owing to that, subsequent experiments were
limited to compositions with a silica fume content in the range of 8-10%. In the design of self-
flowing NCC compositions, several considerations were taken into account:

e As NCC are materials intended for special, demanding applications (high temperature and
high corrosion resistance), tabular alumina was chosen as an aggregate;

e In order to minimize the thermal expansion mismatch between the aggregate and the
binding system, kyanite was replaced with the corresponding particle size fraction of tabular
alumina,

e CAC was replaced with HAB in order to maintain the CaO content below 0.1%;

e Low purity SF2 was considered improper, due to its high water requirement and high level
of impurities.

Compared to CAC, the HAB manifests two important differences for its use as a
hydraulic binder: it has a lower hydraulic activity (consequently a slower setting and low
mechanical strength) and it induces a strong increase of viscosity. Also at HAB/SF ratio above

0.4 a dilatant behavior of the castable occurs.
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Figure 4.2-45. Particle size distribution of experimental NCC compositions.

Due to the high density of tabular alumina aggregate (3.5 g/cm®) and to the fact that
Andreassen distribution is volumetric,c a 10% by mass silica fume corresponds to an
Andreassen exponent of 0.22 (Figure 4.2-45). Also because of the low porosity of tabular
alumina aggregate no adjustment of the medium fraction was'necessary.

Based on the previous experimental results on the rheology of binding systems, the

composition of the dispersant-setting additive admixture contained 0.1% STPP, 0.012% NFSC
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Figure 4.2-46. Variation of a) flow, and b) setting time with HAB content of NCC having g=
0.22 and 10wt% SF1.
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and 0.02% sodium aluminate. As shown in Figure 4.2-46, it was impossible to obtain a self
flowing NCC at low water levels (below 5%) because the hydraulic setting was longer than 24h.
By increasing the concentration of sodium aluminate above 0.04% the flow is totally
compromised, with no significant effect on the setting time (Figure 4.2-47). It appears that the
sodium aluminate is not an effective accelerator below 0.04%, the hydraulic setting being

determined by the HAB/SF ratio
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Figure 4.2-47. Variation of a) flow, and b) setting time concentration of accelerator for
different HAB content NCC.

It is well known that CAC is an effective hydration accelerator for Portland cement and
vice versa, and when mixed together many hydraulic bihders have a reciprocal interaction
during hydration. In order to explore the possible setting acceleration of HAB by CAC,
experimental compositions of NCC were prepared at low coﬁtent of HAB and low substitution
ratios of CAC. These mixes also contained 0.02% sodium aluminate.

CAC has shown to be a very effective accelerator for HAB. If used in small
concentrations (CAC/HAB < 0.33) it had almost no effect on flow, while the setting time was

maintained below 24 hours. As shown in Figure 4.2-48, the CAC/HAB ratio has an effect more

important even than (CAC+HAB)/SF ratio, for low concentration of hydraulic binder (<3wt%).
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Figure 4.2-48. Variation of a) setting time and b) flow with CAC/HAB for NCC mixes with
different (HAB+CAC)/SF ratio, at 5% water. y

As it is shown in Figure 4.2-48 there is no unique solution to obtaining a good setting

time and good self flow values. However, the properties of the system can be tailored in order

to

satisfy different design requirements as a function of the CAC/HAB and (CAC+HAB)/SF

ratios. For further experiments it was considered that a ratio CAC/HAB=0.15 and a ratio

(CAC+HAB)/SF=0.2 would provide simultaneously:

good flow values (i.e. at least 100% at 5% water);

setting time of maximum 15 h;

low content of CaO brought by hydraulic binder (0.075%);
acceptable green strengths.

All castables presented above have silica fume in their compositions. It is known that

silica fume is the key component in achieving self flow behavior due to its small particle size

(d,,=0.1um), spherical shape of the particles, and high specific surface area (up to 24 m%g).

Although silica fume represents the ideal choice for self-flowing alumino-silicate castables, its

presence in high alumina or in magnesia spinel castables has a detrimental effect on the
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corrosion resistance and mechanical properties at high temperature. The replacement of silica

fume with reactivé alumina is a key factor in designing self flowing castables with high corrosion

resistance to basic slags, but the currently available reactive aluminas are not suitable for
providing self flow behavior comparable to silica fume [89]. There are several reasons behind
the inferior flow properties due to reactive alumina replacement of silica fume:

e concentrated suspension of fine alumina particles exhibit a shear thickening as opposed to
concentrated suspensions of silica fume, which showed shear thinning in our experiments;

o fine alumina particles are most often non spherical, i.e. have a hexagonal platelet shape
with high aspect ratio, as opposed to the perfect spherical particles of silica fume, and this
results in an increased particle interaction,;

o the porosity of fine alumina particles depends strongly on the amount of alkalis and while for
silica fume a content up to 2% can be considered negligible, for low porosity reactive
aluminas it has to be maintained below 0.05%:;

o fine alumina powders, with particle size comparable to that of silica fume (0.1um) have a
high water demand in order to produce low viscosity suspensions.

It is thus not possible to make self flowing castables at low water content by a total
replacement of silica fume with fine alumina, using the Andreassen particle size distribution. For
example Figure 4.2-49 shows the effect of alumina substitution for SF1 in a mullite-type

calcines based ULCC (g=0.24) on the flow, for different average particle sizes of alumina.
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Figure 4.2-49 . Variation of flow with the content of various aluminas (of different particle
size) that substitute SF1 in a binding system for ULCC (g=0.24).
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With the exception of the samples prepared using the C90LSB alumina it may be said
that the flow decreased with for a small particle size alumina, due to a higher water demand of
the finer particles. The difference between CA2 and all the other aluminas presented in Figure
4.2-49 is that it has a bimodal particle size distribution (where d,=1pum and d,=4um). Based on
the data presented above it was hypothesized that it may bev possible to obtain a castable with
self flow behavior without particle size distribution of self flowing silica fume free (SFF) NCC if:
¢ the medium and coarse fractions have an self-flowing Andreassen distribution, i.e. minimum
particle interaction (low q);

¢ silica fume is replaced by a fraction of alumina with small amount of particles smaller than
1um (and a high value of the Andreassen exponent) in order to lower the water demand;

o the amount of HAB is minimized in order to decrease the viscosity of the binder.

Particular attention was paid to the design of the fine fraction of the castable, in order to
assemble the desired particle size distribution. Because special reactive alumina products with
narrow particle size distribution for the whole range of 1-5um are not available, the equivalent
effect was obtained by blending a reactive alumina with bimodal distribution, a narrow particle
size distribution alumina and a relatively wide particle size distribution alumina with a very low
content of particles below 1um (Figure 4.2-50). Considering that alumina powders having

particle size over 10um are not essential for the formation of the BS suspension, the SFF-NCC
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Figure 4.2-50. Differential particle size distribution for components and fine fraction of SFF NCC.
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particle size distribution was designed for an Andreassen exponent g=0.22 for particles larger

than 10um and g=0.56 for particles smaller than 10 um (Figure 4.2-51).
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Figure 4.2-51. Particle size distribution of tabular alumina based SFF NCC.

The resulting SFF-NCC have a difficult hydraulic setting. Compared to the NCC
containing silica fume, the process of hydrolysis is more difficult to be obtained simultaneously
with the self flow behavior at low water levels, due to some additional impending factors, i.e.:

e phosphate dispersants have a negative effect on flow , the only effective dispersants being
the organic acrylates (Figure 4.2-52) at relatively high range of admixture (0.6% for SMA),
this resulting in a general retarding effect of the plasticizer agent;

« the increase of the content of HAB has a strong negative effect on the flow (Fig. 4.2-53 a);
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Figure 4.2-52. Variation of flow with concentration of dispersant for a SFF-NCC (1% HAB, 5.5%
water).
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e sodium aluminate has no dispersant effect on the fine fracfion of reactive alumina, and a
limited effect on the setting time at concentrations that insure self-flowing behavior (Figure
4.2-53 b),

e the use of CAC as an accelerator for HAB severely reduces the flow at any effective range
of the admixture (Figure 4.2-53 c).

A setting time below 24 hours and a self-flowing behavior can be simultaneously

achieved for SFF-NCC, by using a proper combination of plasticizer accelerator admixture. For
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Figure 4.2-53. Variation of flow and setting time of a SFF-NCC at 5.5% water with: a) content of
HAB , b)concentration of sodium aluminate, and concentration of CAC c).

144




example, a solution giving 18 h setting time and 70% flow at 5.5% water, was found for 0.5%
SMA, 2% HAB, 1% CAC, and 0.03% sodium aluminate. The green strength of these castable
was however found to be low (MOR~ 2MPa), because of the low hydraulic activity and high
water demand of the HAB, and the high porosity of the fine fraction of these castables (¢g=0.56).
It is concluded that further improvement of SFF-NCC technology depends on the development
of enhanced hydraulic activity HAB with low water demand, and the development of precision

designed particle size distribution reactive alumina powders.

4.2.4.3. Correlation of viscosity and flow

If considered that for a given particle size distribution of the refractory aggregate (i.e.
g=const.) the level of mechanical or geometrical interaction between refractory aggregate
particles is constant ,the flow may be expressed as a function of the rheological characteristics
of the BS. It means that the flow of a castable depends on the water level, the nature and
content of fine reactive ceramic components and hydraulic binder, and the nature and
concentration of dispersant admixture. The compositions presented in Figure 4.2-54 differ just
by different type of silica fume. In both cases there is a good correlation between flow and
viscosity of BS. For a given castable and a given shear rate the flow of a castable can be
described as a function of the viscosity of the binding system.

For the data presented in Figure 4.2-54 the variation of flow of the castable and viscosity
of the binding system was obtained by changing the water content. While for compositions
based on SF1 the self-flowing behavior was obtained in the range of 4.25-5.5% water, for

compositions based on SF2 the self-flowing behavior was obtained in the range of 5.5-6.75%

water.
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Figure 4.2-54. Correlation between the flow of ULCC (g=0.24) and the viscosity of BS for
compositions based on: a) SF1 and b) SF2 at three different shear rates.

The pattern of correlation between flow and viscosity of BS differs for the two
compositions. Even though the compositions based on SF2 have a significantly larger content
of water their viscosities are almost double those of the compositions based on SF1 for a
similar flow level. This behavior suggests a more complex correlation between flow of the

castables and the rheology of its binding system. Due to the strong variation of viscosity with
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the concentration of dispersants most of the experimental compositions based on SF2 had no
self flow behavior, but for compositions based on SF1 flow measurements were performed for

different concentration of plasticizer admixture.
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Figure 4.2-55. Correlation between the flow of ULCC and the viscosity (at shear rate of 0.1955
s') of BS based on SF1 and dispersed with SHMP-SPMA and STPP-NSFC admixtures at 4.5%
water

It was found that the flow correlates well with viscosity of the BS, regardless of the
differences in the composition of dispersant admixture (Figure 4.2-55.). This type of correlation
suggests that both viscosity of the BS and flow of the castable are controlled by the same factor
that is embedded in the shear rate-shear stress dependence of these systems. The effect of
water on the flow cannot be directly determined by measurements of viscosity of binding
systems, as the variation of viscosity (énd yield stress) with water content ie ﬁonlinear.

For data presented in Figure 4.2-55 the admixture systems that result in a viscosityb
higher than 1400 Pa's cannot be evaluated by flow measurements. Viscosity measurements,
with a proper apparatus setting, can be done well beyond thet limit (in this case of up to 12000

Pa-s). This is why the study of viscosity of binding systems may prove useful. However,

measurements of viscosity of BS cannot be a substitute of flow measurements due to the
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- complexity of involved factors (i.e. maximum particle size, particle size distribution, porosity and
water absorption of different aggregate fractions). Viscosity data for BS constitute a

complementary instrument for the design and optimization of self-flowing castables.

4.2.2.4. Self-flowing compositions for industrial applications

From the experiments performed during this stage of research it is concluded that the
flow behavior is determined by a complex system of interacting parameters. Due to the multiple
variables involved it was not possible to define a clear optimum for the design, but rather a

group of castable compositions that can satisfy a certain range of design criteria. Additional

Table 4.2-5. ULCC compositions for g=0.24.

Component (wt%) Mulcoa 47 Mulcoa 60 Mulcoa 70 Mulcoa 90
. aggregate aggregate aggregate aggregate
-4+8 mesh 18 18 18 19
-8+20 mesh 24 25 25 26
-35 mesh 15 15 15 16
Mulcoa 90 -100mesh 18 18 18 16
Kyanite -325 mesh 8 8 7 7
Calcined alumina (d,, =5um) 4 4 5 5
CAC (70% Al,O,) 2 2 2 2
SF 11 10 10 9
STPP 0.11 0.1 0.1 0.09
NFSC 0.0132 0.012 0.012 0.0108
NAI 0.02 0.02 0.02 0.02
Table 4.2-6. ULCC composition for g=0.26.
Component (wt%) Mulcoa 47 Mulcoa 60 Mulcoa 70 Mulcoa 90
aggregate aggregate aggregate aggregate
-4+8 mesh 19 19 20 20
-8+20 mesh 25 26 26 28
-35 mesh 14.5 15 15 16
Mulcoa 90 -100mesh 17.5 17 16.5 15
Kyanite -325 mesh 9 8.5 8 7
Calcined alumina (d,, =5um) 5 45 45 5
CAC (70% AlL,O,) 2 2 2 2
SF 8 8 8 7
STPP 0.08 0.08 0.08 0.07
NFSC 0.0096 0.0096 0.0096 0.0084
NAI 0.02 0.02 0.02 0.02




constraints related to the desired thermomechanical behavior, ceramic structure, and
compositional chafacteristics necessary to achieve corrosion resistance properties are also
imposed, not considering the constraints related to the cost of different components. Therefore,
in order to design a set of optimum castable compositions, it is rather important to define the
dependencies in the system, that would allow for optimum results in any given set of
requirements.

Based on the knowledge accumulated during this stage of research, a set of self-flowing

castable compositions are recommended (Tables 4.2-5 - 4.2-8).

Table 4.2-7. LCC compositions for g=0.26.

Component (wt%) Mulcoa 47 Mulcoa 60 Mulcoa 70 Mulcoa 90
aggregate aggregate aggregate aggregate
-4+8 mesh 15 16 16.5 17
-8+20 mesh 23 24 24 26
-35 mesh 15 15 15 16
Mulcoa 90 -100mesh 18.5 18 17.5 15
Kyanite -325 mesh 8.5 8 7 6
Calcined alumina (d,, =5um) 8 8 9 9
CAC (70% ALLO,) 4 4 4 4
SF 8 8 8 7
STPP 0.08 0.08 0.08 0.07
NFSC 0.04 0.0096 0.0096 0.0084
Table 4.2-8. NCC compositions for g=0.22.
Component (wt%) Tabular alumina Calcined bauxite SiC
-1/4+8mesh 16 16 16
-8+14 mesh 20 19.5 19
-14+28 mesh 7 7 7
-28 mesh 15 14.5 14.5
Tabular alumina -100mesh 18 18.5 19
Tabular alumina -325mesh 8 8.5 8.5
Calcined alumina (d,, =5um) 4 4 4
HAB (Alphabond 200) 1.75 1.75 1.75
CAC (Secar 71) 0.25 0.25 0.25
SF 10 10 10
STPP 0.1 0.1 0.1
NSFC 0.012 0.012 0.012
NAI 0.02 0.02 0.02
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4.3. Mechanical properties

-~

The formation of the ceramic matrix in sélf-flowing castables was studied by
measurements of mechanical properties on specimens fired at relatively low temperatures (110-
1370°C) when the hydraulic matrix is destroyed by the dehydration reactions, and the
components of the stable ceramic matrix are not yet formed [12].

According to the phase diagram in the CaO-SiO,-Al,O,; system for compositions
containing less than 10% CaO, the lowest invariant point is the peritectic at 1345°C, which is
surrounded by crystallization fields of mullite, anorthite, and tridymite (Figure 2.4-8). While the
hydraulic matrix disappears at temperatures above 750°C (when decomposition of hydrated
phases of CAC is complete [117]), the new crystalline ceramic structures do not form up to
1345°C.

The experiments presented in this section were focused on studying the transition from a
hydraulic to a ceramic matrix for the self-flowing castables in the Ca0O-SiO,-Al,O; system.

The specimens subjected to mechanical testing were prepared in the self-flow range
(50-140% flow) and molded by casting. Only SF1 and SF3 silica fume were used in our
experiments, the SF2 being eliminated due to quality inconsistency. The experimental castable
compositions were the ULCC based on Mulcoa 60 refractory aggregate (Table 4.2-5) and NCC

based on tabular alumina aggregate (Table 4.2-8).

4.3.1. CCS and MOR

As shown in Figure 4.3-1, the CCS after drying and up to 540°C has no important

variation with temperature. There is a small variation of CCS with water content, which can be
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attributed to a small increase in porosity and to the negative effect of the water increase on the
mechanical strength of the hydraulic matrix. After firing at 816°C, at water contents below
4.75%, there is an increase in CCS. In fact, for both compositions, a small increase in CCS can
be detected even after firing at 540°C, for water contents below 4.75%. After firing at 1093°C,
there is an important increase in strength for both compositions that results in CCS values of

53-67 MPa. The strength increase in the range of 816-1093°C depends on the water content,

a) b)
7
0 1 70
\X\X —X _m—110C
g s —e—540C
£ 354 £ 35 —a—816C
3 \ 8 —se1093C
(8] '\.‘ - (8]
————g
0 ; ’ ! 0 : : !
475 5.00 5.25 5.50 450 475 500 525 550
Water (wt%)

Water (%)

Figure 4.3-1. Variation of CCS with water content for ULCC based on: a) SF3 and b) SF1, after
drying and firing at different temperatures.
being more significant at low water content.

Taking into account that the hydraulic matrix of ULCC undergoes a thermal
decomposition at temperatures up to 750°C, the CCS increase, that can be detected for firing
temperatures as low as 540°C, can be attributed only to an early development of the ceramic
matrix. Moreover the influence of water content on the strengfh increase cannot be explained
by the differences in homogeneity of the specimens, because both compositions were molded

at similar flow values (compare with Figure 4.3-2).
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If the flow is considered a measure of the amount of physical water existent in the
binding system, the linear decrease of CCS obtained after firing at 1093°C can be considered a
result of the increased interparticle distances. The CCS increase in the temperature range of
540-816°C cannot be explained by the effect of the smaller interparticle distances, because in

this temperature range the two ULCC compositions have a different pattern of variation of CCS

with the flow.
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Figure 4.3-2. Variation of CCS with flow for ULCC based on: a) SF3 and b) SF1, after drying and
firing at different temperatures.

In the case of NCC compositions the main hydraulic phase is HAB and the product of
hydration consists of a mixture of bayerite and bohemite gel. The presence of aluminum
hydroxide phases in NCC results in lower mechanical strength of the hydraulic matrix if
compared to ULCC. Also, due to the fact that the hydraulic matrix generated by HAB is
completely decomposed at 550°C, above this temperature the mechanical strength may be
attributed only to the formation of a new bond of ceramic nature.

As it results from Figure 4.3-3 the CCS of specimens fired at 540°C is lower than that of

dried samples where the mechanical strength is provided by the hydraulic bond. An exception is
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presented by NCC compositions based on SF1 prepared at 4.25% water where the CCS after
firing at 540°C equals the CCS after drying.

For NCC based on SF3 only after firing at 816°C the CCS equals that of the dried
samples. For both compositions, the fastest CCS (by almost six times) increase is found in the
range of 816-1093°C, for any water level that was employed. This strenéth increase represents
evidence that the formation of the ceramic matrix in NCC starts at temperatures below 1093°C.
For NCC based on SF1, at low water levels (<4.5%) the formation of the ceramic matrix starts
below 816°C. It is difficult to sustain this hypothesis by othevr techniques (SEM, XRD) as any

new phases are still amorphous.
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Figure 4.3-3. Variation of CCS with water content for NCC based on: a) SF3 and b) SF1, after
drying and firing at different temperatures.

If the CCS is analyzed as a function of flow (Figure 4.3-4), for NCC compositions based
on SF1, there is a linear correlation between flow and CCS after firing at 816°C and 1093°C.

For compositions based on SF3 the linear correlation exists only at 1093°C.
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Figure 4.3-4. Variation of CCS with flow for a NCC based on: a) SF3 and b) SF1after drying
and firing at different temperatures. '

From the above data experimental observations may be outlined:
for all experimental compositions fired at 1093°C there is a linear decrease of CCS with

flow;

no direct correlation can be established between CCS and water content after drying or
firing at temperatures up to 540°C;

the quality of silica fume is not only essential in obtaining high CCS after firing at high
temperatures, but also is a key factor in determining early development of the ceramic

bond;

low water contents have a positive influence on CCSbof NCC and ULCC by promoting an
early development of the new ceramic bond and by minimizing the decrease in strength

produced by the decomposition of hydrated phases. -

It may be further concluded that, for firing temperatures up to 1093°C, the CCS of self

flowing castables is determined by two superimposing opposite trends:
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e a strength decrease generated by the thermal decomposition of the hydraulic matrix;

e astrength increase generated by the early development of the ceramic matrix.
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Figure 4.3-5. Variation of MOR with water content for ULCC based on: a) SF3 and b) SF1,
after drying and firing at different temperatures.

The variation of MOR of ULCC with water content (Figure 4.3-5) demonstrates that after
firing at 816°C, the ULCC compositions based on SF3 at water levels below 4.75%, show a
significant increase in MOR. For ULCC compositions based on SF1 the MOR increase is clearly
detectable already after firing at 540°. After firing at 816°C all ULCC based on SF1 have almost
double increase in MOR, compared to the level obtained after drying.

For ULCC based on SF3, fired at 540°C, a decrease in MOR takes place for all water

levels employed, if compared to the MOR of dried specimens. This decrease in MOR is

attributed to the decomposition of CAC hydration products.
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Figure 4.3-6. Variation of MOR with water content for ULCC based on: a) SF3 and b) SF1,
after drying and firing at different temperatures.

For ULCC compositions after firing at 1093°C, there is a linear correlation between flow
and MOR (Figure 4.3-6). This behavior is consistent to the fact that the strength of the ceramic
bond depends on the interparticle distances. For ULCC based on SF1, the linear correlation
exists also after firing at 816°C indicating that.

Analysis of the variation of MOR with temperature f.or the experimental self-flowing
ULCC compositions (Figure 4.3-7) reveals that the purity of silica fume is the determining factor
the early development of ceramic 'bond. Low water levels are also necessary for strength
development below 540°C. Although both ULCC compositions, fired at 1093°C, show an
increase of MOR from 6-12 MPa to 30-32 MPa, for specimens containing SF1, there is a
constant increase in strength above 540°C. For the specimens containing SF3, the high values

of MOR are achieved only at temperatures above 816°C, and initially decrease in strength is

observed (especially for high flow).
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Figure 4.3-7. Variation of MOR with temperature, for self-flowing ULCC for different flow and
different type of silica fume.

For NCC compositions, the variation of MOR with water and flow (Figures 4.3-9 and 4.3-
10) shows a pattern consistent with the CCS data, characteriz_ed by the following:
¢ low MOR (6-8MPa) after drying, due to a weak hydraulic bond,;
e a decrease in strength after firing at 540°C, due to decomposition of aluminum hydroxide
phases;
e a significant increase in strength in the range of 816-1093°C that leads to MOR values up to

38MPa.
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Figure 4.3-8. Variation of MOR with water content for NCC based on: a) SF3 and b) SF1, after
drying and firing at different temperatures.
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Figure 4.3-9. Variation of MOR with flow content for NCC based on: a) SF3 and b) SF1, after
drying and firing at different temperatures

For both NCC compositions, there is a linear correlation between MOR and flow after

firing at 1093°C. For NCC based on SF1 the linear correlation also exists after firing at 816°C.
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Analysis of the variation of MOR with temperature for the experimental self-flowing NCC
compositions (Figure 4.3-10), demonstrates that all the compositions based on SF3 experience
a loss of MOR in the temperature range of 110-800°C. For firing temperatures around 700°C,
there is a minimum of MOR regardless the flow value. Above 800°C there is a sudden increase
in MOR which at 1093°C may be even higher than that of NCC based on SF1 at similar flow.
However all the NCC based on SF1 have a continuous incréase in MOR in the range of 540-
1093°C and the effect of the high water contents in delaying the strength development plays a

secondary role.
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Figure 4.3-10. Variation of MOR with temperature, for self-flowing NCC for different flow and
types of silica fume.
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4.3.2. Correlation of MOR with open porosity

While the decomposition of hydraulic phases (including calcium aluminate hydrates,
calcium alumino-silicate hydrates and aluminum hydroxide) implies an increase in open
porosity, the possible formation of a liquid phase during sintering implies a decrease in open
porosity. For ULCC based on SF3 the variation of MOR with open porosity (Figure 4.3-11 a)
shows that, after firing at 540°C, the decrease in MOR is due to an increase in open porosity,
as a result of decomposition of the hydraulic bond. At 816°C, for specimens with low water
content, there is a ndticeable increase in MOR, which cannot be justified by the decrease in
open porosity. For fiﬁng temperatures above 540°C, the decrease in porosity of ULCC based on
SF1 (4.3-11 b) takes place simultaneously with an increase in MOR, but no direct correlation
may be established between the two properties. It may be concluded that for both ULCC
compositions, the variation of MOR with the firing temperature is not determined by variations

of the open porosity.
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Figure 4.3-11. Variation of MOR with open porosity for a ULCC based on: a) SF3 and b) SF1 for
different firing temperatures.
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Figure 4.3-12. Correlation MOR-open porosity for a NCC based on: a) SF3 and b) SF1 for
different firing temperatures.

The pattern of variation of MOR with open porosity for NCC (Figure 4.3-12) is similar to
that of ULCC, but the effects induced by the purity of silica fume are more significant. For NCC
based on SF3 the decrease or increase in open porosity in the 110-816°C range takes place
without significant changes in MOR, while the increase in MOR above 816°C takes place with
no significant change in open porosity. For NCC based on SF1 a direct correlation between
MOR and open porosity may be assumed only in the 540-816°C range.

The study of the variation of MOR and open porosity of ULCC and NCC, at different
temperatures, showed that the early development of the ceramic matrix in self-flowing castables
is determined primarily by the purity of silica fume and secondary by the water contents and the
type of the hydraulic binder. Also, as resulted from the experimental data, it is unlikely that the
formation of the ceramic matrix, at temperatures below 1093°C, is triggered by the formation of
a liquid phase. The following reasons should be considered:

¢ the decrease in porosity occurs especially at temperatures below 816°C when the formation
of a liquid phase in CaO-Al,0;-SiO, system is not expected;
e the important increase of MOR in the 816-1093°C temperature range takes place without a

significant decrease in open porosity.
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4.3.3. HMOR

The HMOR of a refractory castable is a measure of the development of ceramic
microstructure at equilibrium. For castables in the CaO-SiO,-Al,O; system this equilibrium is
reached at temperatures above 1345°C through liquid assisted diffusion processes [129-130].
The low HMOR, combined with a “soft fractufe”, that is often observed in the first heat-up of
castables in CaO-SiO,-Al,O; system at temperatures around 1300°C, has not been yet

satisfactorily explained and it has been attributed to a “metastable liquid formation” [138].
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Figure 4.3-13. Variation of HMOR with temperature for LCC ULCC compositions based on SF1
and SF3, and for si.lica fume free NCC (SFF-NCC) at 80% flow.

As presénted in Figure 4.3-13, the HMOR values at 540°C, for all experimental

compositions, are in accordance with the corresponding MOR values. For both ULCC and
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NCC, the HMOR at 1370°C does not depend on the type of silica fume and it is a result of the
chemical composition of the castable. This demonstrates that at 1370°C, in both ULCC and
NCC compositions, the amount of liquid phase is determined by their position in the CaO-SiO,-
Al,O; system. The most important feature is given by the evolution of HMOR in the range of
540-1370°C. The HMOR values for specimens prepared with high purity silica fume SF1 are, at
any temperature, higher than those containing SF3.

Regardless of the type of silica fume, the ULCC compositions have a maximum HMOR
around 850°C (20-30MPa). At 1093°C a decrease in HMOR by 24-33% occurs, and at 1370°C
HMOR further decreases to 2.2-2.6 MPa. As previously shown, for low flow and water levels,
the transformation of the bond starts below 816°C and, according to HMOR data, the presence
of the liquid phases at those temperatures is highly improbable. It is difficult to believe that the
level of water for casting may influence the format‘ion of any “metastable liquid” at temperatures
above 800°C.

For self-flowing NCC, regardless of the type of silica fume, there is a continuous
increase of HMOR in the range of 540-1093°C. It is not possible to attribute the strength
increase of the NCC compositions based on SF1 to the formation of low melting point, rich in
calcia liquids, at temperatures below 816°C. Even for NCC compositions based on a low purity
silica fume (SF3), the sudden transformation of the matrix in the range of 850-1100°C may not
be attributed to the formation of large amounts of a “metastable liquid” in the binding system.

For silica fume free no cement castable (SFF-NCC) compositions there is no significant
strength development up to 816°C. Due to their high purity (99 % Al,Q,), there is no liquid
phase formation at temperatures below 1500°C and this is reflected in the increase in HMOR
only above 1093°C. Although NCC and SFF-NCC have the same type of refractory aggregate

and the same type of hydraulic binder (HAB), their behavior with regard the early strength
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development is completely different. It results that the early strength development in any self-
flowing castable is a direct consequence of the presence of silica fume.

These results lead to the following conclusions:

a ceramic bond forms in the binding system of castables containing silica fume, at

temperatures below the formation of liquid bhases;

o the formation of the ceramic bond in the binding systems of self flowing castables depends
also on the nature of the hydraulic binder and water contents;

» in favorable conditions (high reactivity silica fume, and low water contents) the ceramic bond
may be formed well before the total decomposition of the hydraulic bond takes place;

e the early formation of the new ceramic bond is not triggered by the formation of a liquid

phase.

The fact that the ceramic bond may be formed at temperatures below 540°C, before the
complete thermal decomposition of the hydraulic bond, and well below the formatibn of quuid
phases (1170°C, in CaO-SiO,-Al,O; system), raises questions on the exact nature of this
ceramic bond and the characteristics of the sintering process occurring in the binding system of
a self-flowing castable. It was therefore necessary to study the evolution of the microstructure
of the binding system and to obtain additional information on the process of formation of this

non-equilibrium ceramic bond.
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4.4. Microstructure

For a better understanding of the initial stages of formation of the ceramic bond in self-
flowing castable refractories, it is necessary to correlate the evolution of the thermomechanical
properties of the castables with the microstructural evolution of the binding system.

The binding system of self-flowing castables contains fine ceramic reactive components
that interact during the hydraulic setting and the first firing. Due to insufficient and sometimes
contradictory literature data regarding the microstructural changes occurring at temperatures
below 1345°C it was necessary to investigate the microstructural changes of individual
components of the binding system. The fracture surfaces of castable specimens subjected to
HMOR testing at different temperatures were analyzed by SEM and the chemical composition

of specific fields was determined by EDS.

4.4.1. Microstructure of binding system components

The most important component of the binding system of self-flowing castable
refractories is silica fume. SEM analysis shows that SF1 is composed of spherical particles
having a diameter in the range of 0.05-1um with no impurity inclusions (Figure 4.4-1 a) with a
chemical composition, determined by EDS of more than 98%_ SiO,. X-ray diffraction shows that
SF1 is completely amorphous.

SF2 is composed of spherical particles of 0.1-0.5um diarheter (Figure 4.4-1 b). The
average chemical compqsition is 94-95% SiO, 2-2.5% Na,0, 1-1.5% K,0O 1.2-1.8% CaO, 0.8-
1,6% FeO. A characteristic of SF2 is that filamentary impurities are present. Also there are
present agglomerates of particles formed by coalescence of fine (0.5-1um) particles around

larger particles (Figure 4.4-2).
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Figure 4.4-1. SEM of: a) SF1 and b) SF2.
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Figure 4.4-2. Agglomeration of SF2 particles.

The filamentary regions and coalescent regions have a low concentration of SiO, (84-
89%) and high concentration of impurities, especially iron and alkali (8-10% Na,O+K,0O and 4-
6% FeO). The X-ray diffraction of SF2 shows that traces of quartz are present.

Silica fume SF3 consist of a mixture of high purity (99.5%) amorphous SiO, spheres
having the diameter in the range of 0.1-0.005um and some large diameter (5-40um) spheres
containing 20-40% ZrO, 5-12 Al,O; and 50-65% SiO,. Even in the case of the large impure
spheres of SF3 the cumulative content of alkali and iron oxide is below 1%. Silica fume SF3
does not contain any filamentary impurities or agglomerations.

The two components of SF3 were separated by sedimentation and by X-ray diffraction
analysis it was found that the fine spheres of SF3 are completely amorphous, while the large
spheres contain only traces of quartz and no other crystalline compound in the system SiO,-

ALLO,-ZrO,.
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With the exception of HAB (Alphabond) all the other components (CAC, calcined
alumina and kyanite) of the experimental binding systems have a homogeneous chemical
composition and are well crystallized. Calcined alumina AC 34 B4 is composed of 1-20um
corundum platelets with an average diameter of 5um. CAC Secar 71 consist in particles of
monocalcium aluminate (with traces of dicalcium aluminate) having the average diameter of
5um. Raw kyanite consists of prismatic particles having particle sizes in the range of 5-50um.
Alphabond consists of completely amorphous non-spherical particles having a particle size

below 1um.

4.4.2. Microstructure of binding systems

Specimens were prepared by casting concentrated pastes of binding system with
chemical admixtures and water levels similar to those of the corresponding castables. After
drying the specimens were fired at temperatures up to 1100°C. The fracture surface of the
specimens fractured at room temperatures was then analyzed by SEM.

The microstructure of the fracture surfaces of ULCC and NCC binding systems fired at
540°C, is represented only by silica fume agglomerate as shown in Figure 4.4-3 for an ULCC
BS based on SF1. At this temperature regardless of the grade of silica fume and the nature of
hydraulic binder that is used, the weakest bond in the system is in between the silica fume

particles.
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Figure 4.4-3. Microstructure of the fracture surface of a ULCC BS based on SF1.

The microstructure of BS specimens of ULCC based on SF3 after firing at 816°C shows
that the fracture evolves through the silica fume matrix. There are also present interfaces between
the silica fume matrix and the kyanite grains (Figure 4.4-4). The fracture at the interface of kyanite
with silica fume particles is considered to be the result of the thermal expansion mismatch
combined with a weak adhesion at the interface.

The presence of the interface between silica fume matrix and kyanite at the fracture
surface of BS of ULCC based on SF1 after firing at 816°C is less visible than for the specimens
based on SF3. A characteristic of the microstructure is the presence of zones with a molten or
glassy appearance having a porous structure (Figure 4.4-5), and a chemical composition
determined by EDS in the range of 20-35% SiO,, 1.2-2.3% Na,0, 2.1-3.6% P,0s, 17- 23% CaO,
39-54% Al,O;. Even if the composition of these molten zones is not constant, their ratio CaO:Al,O,

is in the range of 0.38-0.4 which corresponds to the CaO:Al,O; ratio existing in CAC.
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Figure 4.4-4. Fracture surface of a ULCC BS based on SF3 after firing at 816°C.
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Figure 4.4-5. Fracture surface of a ULCC BS based on SF1 after firing at 816°C.
Taking into account that during initial hydration of the high silica fume:CAC ratio mixes
only 25-30% of CAC reacts with water, and that the molten zones contain numerous pores,

the following mechanism of formation of these zones is proposed:
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e during the final stage of hydration, the initiallvy unhydrated CAC particles react with the silicic
acid dissolved from silica fume particles forming localized zones of calcium aluminum silicate
hydrate phases. The presence of dispersént admixtures in the interstitial solution of the binding
system paste brings a high concentration of aikali and phosphate ions that induce the
formation of low melting point liquid;

e the melting temperature of these phases is below the temperature of decomposition of
hydrated phases (750°C) and the closed pores formed are a result of the final stages of

dehydration in the presence of liquid phases;

Even if small amounts of nonequilibrium liquid phases may be formed before the total
decomposition of the hydraulic bond, they are confined to the space previously occupied by initially
unhydrated CAC particles. Because the ULCC compositions under study contains only 2% CAC,
and the molten zones have an isolated topology, the metastable liquids formed below 816°C are
not determinant for the formation of ceramic bond or strength development.

The fracture surface of BS of NCC, regardless of the type of silica fume that is used, is
covered by the silica fume matrix. Isolated zones of fracture at the interface of the silica fume
matrix and tabular alumina -325 mesh grains are present. There are no zones with glassy
appearance (Figure 4.4-6).

The SEM of the fracture surface of BS of ULCC based on SF3 after firing at 1093°C shows
the presence of isolated zones with molten or glassy appearance, but the fracture propagates
mainly through the silica fume matrix. Interfaces between silica fume matrix and calcined alumina
and kyanite grains are visible. The presence of delaminations at the interface of kyanite with the
silica fume matrix demonstrates that at this temperature the process of thermal decomposition of

kyanite had already started (Figure 4.4-7).
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Figure 4.4-7. Fracture surface of a ULCC BS based on SF3 after firing at 1093°C.

172



Moltenzone

Kyanite de \

!

10 um

Figure 4.4-8. Fracture surface of a ULCC BS based on SF1 after firing at 1093°C.

The SEM of the fracture surface of BS of ULCC based on SF3 after firing at 1093°C is
somehow similar to that of the specimens based on SF1(Figure 4.4-8).The zones with molten or
glassy appearance, and interfaces between the silica fume matrix and the kyanite grains are
visible. The most important difference is the presence of the silica fume matrix. It is not possible
to identify individual particles of silica fume in the fracture surface of the SF1 matrix after firing
at 1093°C, but at the same time the fracture surface cannot be described as having a molten
material appearance. Similar differences in silica fume matrix were found for NCC specimens.

In order to clarify this issue, experiments were performed to establish the influence of
heat treatment on the microstructure of silica fume particles. SEM specimens of silica fume
were prepared by casting from concentrated pastes prepared with additives, followed by drying

and firing.
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Figure 4.4-9. Microstructure of fracture surface of: a) SF1 and b) SF3 after firing at 1093°C.

After firing at 816°C the microstructure of the fracture surface of SF1 and SF3
specimens was very similar to that of the silica fume matrix present in the corresponding BS at
the same temperature. An important difference occurred however after firing at 1093°C
(Figure4.4-9). While for SF3 (Figure 4.4-9 b) the microstructure at 1093°C is virtually
unchanged if compared to 816°C, for SF1 the spherical particle aggregate is transformed to a
monolithic body. The roughness of the fracture surface suggests that the transformation takes
place by the coalescence of the outer layer of SF1 particles (Figure 4.4-9 a). At 1371°C the
SEM of SF1 shows a completely fused material (Figure 4.4-10 a), while for lower grade impure
SF3 a porous matrix is obtained by superficial coalescence of fine silica fume particles (Figure

4.4-10 b).
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Figure 4.4-10. Microstructure of fracture surface of: a) SF1 and b) SF3 after firing at 1371°C.

If the fusion of silica fume particles was due to the presence of impurities, which may
form low melting point eutectics, the first to transform should have been the low purity SF3.
Although most of the impurities of SF3 are concentrated in the large size particles (5-30um)
after firing at 1371°C the large impure particles of SF3 are not transformed, and do not have a
good adhesion with the aggregate of fine particles (Figure 4.4-10 b).

After firing at 1371°C the fracture surface of ULCC BS is composed, for both SF1 and
SF3, of a silica fume matrix with glassy appearance. X-ray diffraction showed that mullite is
already formed at this temperature, a fact that is confirmed by the presence of needle-shape
structures with aluminosilicate composition (Figure 4.4-11 a). It is not possible to accurately
determine the chemical composition of these structures because of the background interference

given by the film that covers them.
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Figure 4.4-11. SEM of fracture surface of ULCC BS based on :a) SF1 and b) SF3, after firing at
1370°C.

The fracture surface binding systems of ULCC based on SF3 had some spherical
structures having a rough surface and a 10-30um diameter (Figure 4.4-11 b). EDS analysis
showed that their chemical composition contains more than 50% ZrO, and 10-15% Al,O,, 20-
40% SiO, and 2-7% CaO. X-ray diffraction showed the presence of traces of monoclinic
zirconia. Based on their aspect and content of ZrO, it is concluded that these structures
represent the large impure particles of SF3 that reacted with the surrounding matrix.

After firing at 1370°C the fracture surface of the BS of NCC based on SF1 shows the
presence of a glassy matrix covering all the particles of the BS. Although the presence of
mullite has been detected by X-ray diffraction, no mullite could be identified on the fracture

surface of the BS (Figure 4.4-12 a)
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The microstructure of the fracture surface of the ULCC BS based on SF3, after firing at
1370°C, consists of large particles of SF3 surrounded by a porous matrix (Figure 4.4-12 b). The
fracture at the interface of large impure SF3 particles with the surrounding porous matrix is
clearly visible. No interaction or attack of the BS matrix on these large particles, as in the ULCC

specimens, was detected.

- 10 pum

Figure 4.4-12. SEM of fracture surface of NCC BS based on :a) SF1 and b) SF3, after firing at
1370°C.
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4.4.2. Microstructure of experimental castable compositions

HMOR of experimental castable compositions was measured according to ASTM C 583,
using an apparatus designed and constructéd in UBC that has a strain control capability. By
interrupting the crosshead advance immediately after the measurement, but before the
breaking of the specimen, it was possible to obtain fracture specimens with minimum damage
due to subsequent handling. After cooling to room temperatures the fracture surface obtained
during the HMOR measurements was analyzed by SEM.

The microstructure of both, ULCC and NCC speciméns subjected to HMOR testing at
540°C is represented only by silica fume agglomerate. At this temperature, regardless of the
grade of silica fume, the weakest bond in the system is between the silica fume particles. The
fracture surface of experimental compositions is very similar to that of the corresponding BS
fractured after firing at 540°C

At 816°C the fracture surfaces are significantly different for all self flowing castable
compositions (Figure 4.4-13). For the uLcc w’ith SF3 the fracture propagates through the silica
fume matrix, and refractory aggregate grains. Based on chemical composition, détermined by
EDS analysis of individual components of the binding systems and of the fracture surféce the
following phases were identified:

o silica fume matrix;
¢ calcined alumina-silica fume matrix interface;
e kyanite-silica fume matrix interface.
As in the case of the fracture surfaces of the BS, there are also present isolated zones

of glassy material with the approximate composition of 22-36% SiO,, 1.3-2.5% Na,0, 2.1-3.6%

P,0s, 17- 23% Ca0, 39-54% Al,O; .




While the fracture at the interface of the silica fume matrix with calcined alumina was to
be expected (due to the high strength of alumina and a low interaction with the silica fume
matrix at 816°C), the fracture at the interface of the silica fume matrix with kyanite (Figure 4.4-

13 b) can be explained only as a result of thermal expansion tensions.
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Figure 4.4-13. SEM of ULCC specimens based on: a) SF1, and b) SF3, fractured at 816°C.

The fracture of self flowing ULCC based on SF1 at 816°C has similar characteristics as
described above, but the fracture at the interface with kyanite particles is more definite, and
there is also a clear delineation between the silica fume matrix and the molten zones (Figure
mic4.4-13 a).

The chemical composition of molten zones is characterized by a SiO, concentration of
28-39%, that is higher than for mixes based on SF3. This may be explained by a higher
reactivity of SF1, and consequently a higher concentration of silicic acid in the interstitial

solution of the binding system.
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For both ULCC compositions, the evolution of the fracture through the refractory
aggregate grains, although it is not a characteristic feature, indicates a significant strength
development of the binding system.

The SEM study on NCC fractured at 816°C shows that the fracture is present at the
boundary between silica fume particles. In NCC with SF3, there are also present isolated zones
of fracture at the interface of the silica fume matrix with the tabular alumina aggregate (as in
NCC binding system specimens) (Figure 4.4-14 b). In NCC based on SF1 the fracture is

exclusively at the interface of silica fume particles (Figure 4.4-14 b).

Figure 4.4-14. SEM of NCC specimens based on: a) SF1, and b) SF3, fractured at 816°C.

SEM analysis of self-flowing ULCC fractured at 1093°C shows some important evolution

if compared to 816°C:
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e there is a general development of the fracture through refractory aggregate grains (Figure
4.4-15 a) ;

o there are present isolated zones of refractory aggregate covered by a film of molten phase
(4.4-15b) ;

e there are present interlocking needle like structures having a chemical composition,

determined by EDS, in the range of 56-62% SiO,, 31-38% Al,O; , 6-8% Ca0, 1-4%Na,0.

Figure 4.4-15. SEM of ULCC specimens based on: a) SF1, and b) SF3, fractured at 816°C.

The development of the fracture path through refractory aggregate grains reveals that at
1093°C the toughness of the binding system is higher than that of the mullite calcines, and
there is a strong bond formed between the aggregate grains and the binding system.

The presence of zones of refractory aggregate covered by a molten film demonstrates
that at 1093°C a metastable liquid starts to form by interaction between the agglomerations with

high calcia and alkali content (resulted from the final stage of hydration of calcium aluminate
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cement) and the rest of the matrix. At 1093°C the molten zones extended on the surface
refractory grains still have a isolated topology and there is a clear delimitation between the
molten zones and silica fume matrix.

X-ray diffraction performed on ULCC compositions and on their binding systems showed
that no mullite or other aluminosilicate crystalline phase is formed up to 1093°C. It is well known
that, due to the hydraulic interaction within the binding system, traces of mullite may develop at
temperatures as low as 1085°C but probably due to diffusional hindrances significant amounts
are rarely found below 1300-1400°C.

The interlocking needle shape structures that were found at the fracture surface at
1093°C (Figure 4.4-16) could not be attributed to any new formed crystalline phase. Due to their
non-parallel orientation this structures cannot be identified as a low crystallinity phase formed

by thermal decomposition of kyanite. It is more likely that the needle structures that were

Figure 4.4-16. Aluminosilicate interlocking needle shaped structures in ULCC based on SF1
fractured at 1093°C.
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background interference of the film that covers all the crystals. For ULCC specimens the EDS
analysis of these needle shape structures were in the range of 40-75% Al,O; , 30-60% SiO,
0.5-2.2% CaO (Figure 4.4-17).

According to SEM analysis of the ULCC specimens fractured at 1371°C the process
governing the fracture is represented by the pull-out of mullite crystals from the binding system
matrix. There is no important difference in the size-aspect ratio characteristics of mullite crystals
developed in ULCC based on SF1 and SF3.

Only in the case of NCC compositions fractured at 1370°C is there still present a
fracture path through refractory aggregate particles. Mullite is present at the fracture surface,
but no pull-out mechanism could be identified (Figure 4.4-18 a). This may be explained by a

higher viscosity of the molten film surrounding the component particles of NCC. At the fracture

o 10 um

Figure 4.4-18 Mullite crystals in the fracture surface of specimens based on SF1 a), and b) large
particle of SF3 transformed by interaction with the matrix, in NCC fractured at 1370°C.
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governing the fracture is represented by the pull-out of mullite crystals from the binding system
matrix. There is no important difference in the size-aspect ratio characteristics of mullite crystals
developed in ULCC based on SF1 and SF3.

Only in the case of NCC compositions fractured at 1370°C is there still present a
fracture path through refractory aggregate particles. Mullite is present at the fracture surface,
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Figure 4.4-18 Mullite crystals in the fracture surface of specimens based on SF1 a), and b) large
particle of SF3 transformed by interaction with the matrix, in NCC fractured at 1370°C.
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surface of NCC specimens based on SF3, large particles of silica fume may be observed
(Figure 4.4-18 b). The éspect of their surface and thé EDS analysis (62-72% ZrO,) indicate an
interaction with the surrounding matrix |
The different behavior of large particles of SF3 in BS and castable specimens of NCC
demonstrates that at 1371°C there is a significant interaction of large particles of tabular
alumina refractory aggregate grains with the SiO, containing layer. The interaction of 'Iarge
particles of SF3 with the surrounding matrix in NCC specimens is due to a higher concentration
of AlLO; in the molten or glassy matrix and not to the presence of a rich calcia low viscosity

liquid as in the case of ULCC BS based on SF3.

4.4.3. Correlation of microstructure with mechanical strength

The increase in strength at the first heat up of self-flowing castables in the temperature
range of 540-1093°C can be attributed to a process of “inter-particle bonding” of the high purity
silica fume particles, rather than liquid phase formation. In order to explain the nature of thié
apparent sintering process and the influence of water for casting on strength development, a
few experiments were performed to determine the compositions of the interstitial solution of
concentrated pastes of binding systerﬁ (during the dormant period). This solution was
separated by vacuum filtration of binding system water suspensions. After drying at 110°C the
solid residue was analyzed by SEM and EDST The results showed (taking ULCC as an
example) that crystals 6f calcium-aluminum-alkali phosphate grow from an amorphous material
containing more than 97% SiO,. No crystalline form of SiO, was found up to 1093°C. This result
demonstrates that during the dormant period, thevre is an interaction between the fume silica
and the water solution of dispersants, causing the superficial hydration of silica fume particles

and release of silicic acid. At the end of the hydraulic setting, silica fume particles are covered
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by a partially hydrated amorphous layer, onto which the calcium ions and the dispersant are
adsorbed. These particles interact physically and chemically with each other and all the other
solid species present in the binding system, through this hydroxylated layer. Being
predominantly chemical, this inter-particle bonding will exist as long as the hydroxylated layer
exists on silica fume particles and probably to a lower extent on alumina particles.

During the first heat up the chemical bonds will disappear, while thé de-hydroxylation
advances, but the inter-particle bond does not weaken, as proven by retention of strength with
temperature. A reactivity increase of the particle surface during the de-hydroxylation process
could be the only factor to determine the inter-particle bonding, up to the temperature where the
hydraulic bond is completely destroyed. If the inter-particle distances are somehow increased,
or the number of particles with good contacts with each other is decreased (i.e. at higher
amounts of water for casting), strength at a certain temperature shows a proportional decrease.
However, variation of strength with the temperature follows the same continuous increase in
strength pattern.

Although this inter-particle evolution can successfully explain the influence of water
content and disperéant admixturés on early strength development and the strength increase
and densification at temperatures below 816°C, it cannot explain the strength increase in the
temperature range of 816-1093°C when no chemically bonded water is present. The theory
developed by Chaklader [140, 141] suggests “super-plasticity of oxidic amorphous phases”, in
the range of temperatures where the de-hydroxylation or de-carbonation takes place. It is
hypothesized that similar behavior could be found in binding systems of refractory castables,
having all the silica fume partiCIes covered with an amorphous layer of silicic acid. According to
this theory, it is possible to use the high reactivity of a solid, during a decomposition reaction or
a phase transformation, in order to enhance the densification and inter-particle bonding. The

broken bonds re-link across the reactive interface without necessarily producing significant

186




elimination of pores or voids from the matrix. Transient instability of the atom positions during
the decomposition reaction would also produce a super-plastic state that cduld be used for
densification. Experiments on deformation under load of silica fume specimens, prepared by
drying concentrated pastes of silica fume and dispersant admixture, showed plastic deformation
at 870°C for SF1 and 900°C for SF3. Also the coalescence of silica fume particles to. form a
“glassy” looking phase, identified by SEM on binding systems, cannot be attributed to a
diffusion process but rather to a plastic deformation of the amorphous silica gel deposited on
the silica fume particles at the end of the de-hydroxylation process. The significant deformation
under load experimentally evident at temperatures between 816-1093°C should be attributed
only to the super-plastic amorphous phase surrounding the silica fume particles. Due to the fact
that at these temperatures there is no significant crystalline development, it can be assumed
that the strength development is due to an amorphous to glassy phase transition rather than

amorphous to crystalline transition.
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4.5. Pilot scale experiment : pumping and spray-gunning of advanced

castable refractories

One of the objectives of the research program was to verify the laboratory r‘esults with a
spray gunning pilot scale experiment performed using a self-flowing LCC composition based on
mullitic refractory aggregate. Prior to this, laboratory work was necessary to select the castable
formulation and to design the accelerator admixture. The main difficulty encountered during
preparation of the pilot scale experiment was related to the design of the accelerator admixture.
As presented in Chapter 2.5, the mechanism of setting acceleration of self-flowing castables for
spray gunning applications is not yet well understood, and the selection of accelerator
admixtures is made only on trial and error basis.

Taking into account that a spray-gunning trial requires at least several hundred
kilograms of material for one run, it is understandable that laboratory experiments should allow
the selection of the proper accelerator admixture without room for error. Therefore, it was
necessary to setup of a laboratory method to allow for an accurate evaluation of the accelerator
admixture and the assessment of the properties of the spray-gunned castable.

Two pilot scale experiments were performed. During the first experiment (performed
using sodium aluminate accelerator), an accidental clogging of the spray nozzle occurred and
only half of the required quantity of the castable was instélled. While preparing the second
experiment, both the castable formulation and the laboratory evaluation method were refined.
This resulted in the deéign of a new class of chemical admixtures for spray-gunning and made

possible a successful pilot scale experiment. A new Flash Flocculation (FF) process was

discovered, which allowed to preserve the mix plasticity during spray gunning




4.5.1. Experimental castable compositions

The following details were considered in the design of the experimental LCC
compositions:

o the use of mullite refractory aggregate (Mulcoa 60 or Mulcoa 70),
¢ maximum content of silica fume, set at 8%,

e 50-100% flow at 5.5% water,

¢ maximum content of CAC (Secar 71), set at 5%.

For the first pilot scale experiment the use of Mulcoa 60 refractory aggregate and a |
maximum setting time of 4 hours was required. At the time of the second experiment the
Mulcoa 70 refractory aggregate (with a large content of a continuous -4 mesh fraction) was
used and the -100 mesh Mulcoa 90 fraction was replaced with a similar fraction of calcined
bauxite. A minimum working time of 2 hours and a maximum setting time of 12 hours were
required.

The knowledge accumulated during the study of the rheology of binding systems of

Table 4.5-1. Composition of LCC 34. Table 4.5-2. Composition of LCC 83.
Component wt% Component wt%
Kyanite-325 mesh 8 Kyanite-325 mesh 4
CA Aluchem 8 CA Aluchem 10
Silica Fume Elkem 971 8 Silica Fume Duralum AB 8
CAC SECAR 71 4 _ CAC SECAR 71 4
Mulcoa 60, -4+8 mesh 16 Mulcoa 70, -4 mesh 45
Mulcoa 60, -8+20 mesh 24 Mulcoa 70, -8+20 mesh 9
Mulcoa 60, -35 mesh 14 Mulcoa 70, -35 mesh 14
Mulcoa 90, -100 mesh 18 Alphastar, -100F 16
Sodium Aluminate 0.01 Sodium Aluminate 0.005
Sodium Tripolyphosphate 0.08 Sodium Tripolyphosphate | 0.08
Sodium Lignosulphonate | 0.0096 Sodium Lignosulphonate | 0.0096
Water 5/5.5 Citric Acid 0.01
Flow (%) 55/100 Water 5/5.5
Flow (%) 45/70
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refractory castables and its correlation with flow facilitated the composition design. Table 4.5-1
shows the experimental composition LCC 34 used for the first plant trial and Table 4.5-2 the
experimental composition LCC 83 used for the second plant trial. Both composition are
characterized by very good self flowing values. If compared to the early LCC 34, the latter
composition LCC 83 has the following features:

¢ The main refractory aggregate fraction is of a continuous particle size distribution, -4 mesh.
All the other fractions of refractory aggregate were needed to adjust the particle size
distribution to an Andreassen distribution;

¢ It has higher content of CA and lower content of kyanite in order to improve the fiow;

e Contains a lower purity (cheaper) silica fume SF3;

e Contains a mixture of sodium aluminate and citric acid in order to obtain the desired working
and setting characteristics (LCC 83, at 5.5% water has a flow of 70% at 2 hours after mixing
and a setting time of 8 hours).

Table 4.5-3 presents some of the properties of LCC 34 and, for comparison, the
properties of Versaflow 60, a commercial LCC produced by Harbison Walker Refractories.

Table 4.5-3. Properties of LCC 34 and Versaflow 60

Property LCC 34 Versaflow 60 ADTECH

! Self Flow at 5.5% water (%) 100 no self flow @ 6.5% water
CAC content (wt.%) 4.00 ’ 7.00
MOR after drying 230°F (MPa) 14.0 10.7*

) MOR after firing 1500°F (MPa) 22.0 17.7*

) MOR after firing 2000°F (MPa) 25.1 12.6*
CCS after drying 230°F (MPa) 48.3 113.7*
CCS after firing 1500°F (MPa) 76.0 ' 63.2*
HMOR @ 1500°F 26.7 8.31
Permanent Linear Change (%)
after drying (230°F) -0.05 negligible*
after firing (1500°F) -0.056 -0.200*
Apparent Porosity after 1500°F 10.48 18.5

* catalog data
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Mechanical properties are shown for 5.5% water for LCC 34 (self-flowing) and for 6.5% water
for Versaflow 60 ADTECH (vibcasting). Except the CCS after drying, LCC 34 is superior to
Versaflow 60 in every aspect, but the most important difference is the self-flowing valué and

HMOR.

4.5.2. Design of the spray gunning admixture

A simple method for laboratory assessment of the properties of spray gunned castables
was developed. After mixing in a Hobart mixer for 5 minutes, the chemical admixture for spray-
gunning was added, the castable was mixed again for 30 seconds and a slump test was
performed by turning the mixer bowl upside down. The slump was considered satisfactory if no
flow occurred. The plasticity of the mix was evaluated visually. If the castable had no slump and
maintafned a plastic consistency the material was molded and the resulting specimens were
cured and subjected to mechanical testing (CCS, MOR and HMOR).

During spray—gunning, due to the turbulence in the spraying hose, and due to the fact
that the admixture is injected through a high pressure nozzle, the mixing is almost
instantaneous. These conditions cannot be fully reproduced in the laboratory by mixing the
castable in.a planetary mixer. The value of 30 seconds, for mixing the castable with spray-
gunning admixture, was chosen because it is the minimum time that allows for homogenization
of the matefial in t-he mixing bowl. Shorter mixing time (i.e. 20 seconds) results in the
coexistence of non-slumping and self-flowing material. The plasticity of the mix was evaluated

qualitatively. Four levels of plasticity were defined:

0. self-flowing (highest plasticity and cohesiveness);




1. high plasticity (the castable has no slump, it is cohesive and can be subjected to plastic
deformation without cracking or separation surfaces);

2. low plasticity (the castable has no slump and if subjected to plastic deformation,
cracking or separation surfaces are observed);

3. no plasticity (the material has no cohesiveness, and has the appearance of a dry gravel
and there is a separation between the binding system and the refractory aggregate).

Material with high plasticity (level 1 and 2) could be molded by hand ramming in molds, and

mechanical test specimens were obtained.

During preliminary laboratory experiments several observation were made:

e some admixture solutions triggered strong flash setting even at low levels of admixture, and
the resulting material had no plasticity. These mixtures included calcium chloride and lithium
chloride solutions.

« some admixture solutions produced a flash setting effect at a certain level of addition but an
over dosage of solution resulted in regaining the self-flowing behavior. This indicates that
flash setting depends not only on the amount of solid active substance added to the
castable, but also on the total amount of additional water brought by the solution of the
admixture. These admixtures included potassium aluminum phosphate and aluminum
sulfate.

As in the field applications a precise control of the flow of spray-gunned mix is difficult to
achieve the process has to ‘be robust; i.e. tolerant to dosage variations. Several possible
scenarios may occur:

a) an under-dosage of the admixture solution would translate to insufficient quantity of active

solid substance and flow or slump of the lining;

b) an over-dosage of the admixture solution would result in :

- loss of plasticity (due to over-dosage of the active solid substance in the accelerator mix)
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- return to self-flow behavior regime (due to over-dosage of water)

Accordingly, an optimum accelerator admixture should have the following properties:

¢ high solubility, to minimize the supplementary amount of water introduced to the castable;

o suppress self-flowing behavior, at low levels of addition, to minimize both the supplementary
amount of water and unwanted impurities (such as alkalis, chlorine, etc.);

e produce, after addition to the castable, a high plasticity non flowing material, in order to
avoid delaminations or other macrodefects in the refractory lining;

¢ have a stable effect over a wide range addition levels, in order to be tolerant to the variable
field conditions.

Ideally, after spray gunning, the castable should remain in a thickened but plastic state
for a reasonable length of time. This facilitates troweling, finishing and checking for proper
installation. Accelerators which cause rapid setting or stiffening of the castable are not
acceptable, as they cause laminations and in some cases nozzle clogging. The initial focus of
the laboratory experiments was to identify spray-gunning admixtures that could suppress the
slump at low levels of admixture. As initial target, the maximum level of admixture was fixed at
0.8%. This is because; for a generic case of 50% solid load (of solid active substance in
solutidn), the amount of water inducing segregation in the LCC 34 castable is 5.5%.

The investigation was performed among the chemicals that are well known to have an
accelerating effect on CAC. Some of the chemicals, which could not suppress the flow at an
addition level of 0.8%, were not considered for further examination. In this category were:
magnesium hydroxide, potassium silicofluoride, calcium hydroxide, potassium chloride, lithium
carbonate, and cupric sulphate. Although having a strong accelerating effect (confirmed by
laboratory tests), lithium chioride was not considered for pilot scale experiments due to its high

toxicity.
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The chemicals which proved to be effective for admixture levels equal or less than 0.8%, were
used as saturated solutions with the exception of calcium chloride. CaCl, having solubility of

74.5g in 100 cm® water at room temperature, produced a total loss of plasticity at almost any

concentration.

CaCl(33%)  LCC 45% flow

3 T .
Sodium
Silicate \
CaCl,(20%)
21
2 Aluminum
:'g Sulfate
[}
=
a /
1 T N
Sodium / KAl _
Aluminate Phosphate
0 \ . . _ '

T 3

0 0.2 04 0.6 0.8
Concentration of admixture (%)

LCC 100% flow

3
CaCl, (33%)C
5 | \\ CaCl, (20%) Sodium odium
> Silicate Aluminate
S & D
@
3 /
&
Aluminum
Sulfate >
0 ‘ . |
0 0.2 0.4 06 0.8

Concentration of admixture (%)

Figure 4.5-1. The effect of accelerator admixtures for LCC 34, at 45% and 100% flow,
on mix plasticity.
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In order to study the influence of castable composition and water content, a group of
experiments was performed for LCC and ULCC compositions, at flow values corresponding to

consistencies for pumping (45-50% flow) and self-leveling (80-100% flow). The experimental
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Figure 4.5-2. The effect of accelerator admixtures on plasticity for ULCC composition based
on Mulcoa 60 (Table 4.2-5), at 45% and 100% flow.




results (Figure 4.5-1 and 4.5-2) showed that the use of strong setting accelerators, such as
CaCl, solution, results in a rapid loss of plasticity. Weak accelerators, such as aluminum sulfate
and potassium phosphate, may loose their effect at certain water levels or some compositional
characteristics of the castable. The best options seemed to be the use of sodium aluminate and
sodium silicate. However, during molding, the specimens prepared from the castable mixes
accelerated with sodium aluminate and sodium silicate, it was found that sodium silicate
induces a rapid setting for both LCC and ULCC formulations, making its use disadvantageous.
Also, during the hand molding of the castables with these accelerators, it was found that sodium
silicate induces a rapid setting for both LCC and ULCC formulations, making its use
disadvantageous. It was considered that none of the admixtures mentioned represents a

perfect solution for spray-gunning of refractory castables.

4.5.3. The Flash Flocculation (FF) concept

It may be considered, that a typical setting accelerator suppresses the flow due to a
sudden release of Ca®" ions through CAC hydration. If the accelerator system is too effective,
an excess of Ca?* ions results and a loss of plasticity occurs through flocculation of the matrix.

This proposed mechanism for flash setting is schematically presented in Figure 4.5-3.
The main impediment in obtaining an effective acceleration combined with a good plasticity was
identified in the autocatalytic character of the hydration reaction of calcium aluminate cement.
An increased concentration of Ca® ions in the binding system removes the amorphous layer of
calcium aluminates, and produces a sudden termination of the induction period. Accelerated

hydration results in a massive release of Ca®" ions, which triggers the flocculation of the binding

system. The hydration completion causes the consumption of the interstitial water from the




binding system, which is producing the loss of plasticity. This mechanism explains the
sensitivity flash setting accelerators to the water levels, and the content and type of hydraulic
binder 6f the castable.

In order to avoid the sudden release of Ca?* ions and thé consumption of the interstitial
water, it was necessary to use an admixtufe that suppresses the flow (by flocculation of the
binding system) and simultaneously suppresses the flash setting of CAC. The effect of such a
system consists just of a ‘Flash Flocculation’ of the binding system without triggering an
accelerated hydration process and, subsequently, the loss of plasticity that is associated with
the consumption of interstitiai water.

The proposed mechanism for Flash Flocculation (FF) is presented in Figure 4.5-4. The
initial experiments were conducted using binary mixtures of CaCl, and citric acid. The action of
these admixtures proved to be difficult to control resulting in complete loss of plasticity or in low
plasticity at levels of addition above 1%. Analysis of the correlation between viscosity of
binding systems, setting time and content of plasticizer admixture, allowed to retard the setting
time by using excess levels of plasficizers. Also by using an excess of plaéticizer, the ionic
strength of the interstitial solution increases, the double layer of fine reactive ceramic powders
is compressed, zeta potential decreases and a supplementary flocculation effect occurs.

Additional experiments showed that SNFC cannot be used in the presence of sodium

aluminate, calcium hydroxide, or sodium silicate because at high pH it transforms to an

amorphous and viscous precipitate, but it can be used with calcium chloride.
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Figure 4.5-3. Flash setting mechanism.
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Figure 4.5-4. Flash Flocculation mechanism.
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Two flash-flocculating admixture solutions (FFAS) were designed. One was a mixture of
calcium chloride, STPP and SNFC, and the other one is a mixture of calcium chloride and

SNFC. The compositions of the two solutions are presented in Table 4.5-4.

Table 4.5-4. Compositions of FF solutions.

Component (g/ml) A1 A2
Calcium Chloride 0.25 0.25
STPP 0.1 0
SNFC 0.25 0.25

The first experiments were performed on LCC 34 compositions. Both FFAS proved to be
very effective and very stable in suppressing the slump while maintaining the plasticity for a
large range of concentration and for different initial amounts of water used for casting (Table
4.5-5). Composition A2 was more effective that A1 and this could be due to the fact that STPP

is not an essential component for setting time retardation and its excess does not provide a

major decrease in flow.

Table 4.5-5. Flash Flocculation tests using A1 and A2 solutions.

FFAS Concentration ( wt.%) |LCC 34 LCC 34
5% water 5.5% water

A1 0.2 flow flow

A1l 0.3 no flow / plastic |flow

A1 0.4 no flow / plastic  |no flow / plastic
A1 0.6 no flow / plastic |no flow / plastic
A1l 0.8 no flow / plastic |noflow / plastic
A2 0.2 no flow / plastic  |no flow / plastic
A2 0.3 no flow / plastic  |no flow / plastic
A2 0.4 no flow / plastic |no flow / plastic
A2 0.6 no flow / plastic  [no flow / plastic
A2 0.8 no flow / plastic  |no flow / plastic
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FFAS agents do not induce fast setting and stiffening and, as a result, after mixing the
castable remained plastic and trimming was possible. The plasticity of the fresh mixed material
was in fact better that the one given by sodiQm silicate solution. From the results presented in
Table 4.5-5 it may be concluded that the use of Flash Flocculants and in particular A2 solution
bring the following advantages :

e it has a stable effect over a very large range of addition ( 0:2-0.8%);
e it is effective at very low levels of addition ( 0.2%);

e it gives good plasticity of the castable mix;

e it prevents immediate hardening/apparent drying of the castable ;

e it is not sensitive to the level of water used for preparing the self-flowing castable mix.
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Figure 4.5-5. Plasticity rating versus concentration of A2 as FF admixture.
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Further experiments tested the composition A2 with LCC (LCC 34), ULCC, NCC and
SFF-NCC compositions (Figure 4.5-5). Fér all these compositions the experiments indicated
that, if compared to flash setting, the Flash Flocculation offers not only a better solution for
spray-gunning of self-flowing castables, but élso has the advantage of acting independently of
the hydraulic setting and therefore it can be used with the same effect for LCC, ULCC, NCC

and NCC-SFF.

a) b)
120 1093°C 50 _ 1093°C

100 L \ 40 L L) \

30 L

60 | A— \ \
— T . 0| 816C_ = . -
a0 | oe —7 —, —,
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20 L 110°C =

0 t t 1 : { 0 } } } 1
0 0.2 0.4 0.6 0.8 0 0.2 04 0.6 0.8
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CCS (MPa)
MOR (MPa)

Figure 4.5-5. Laboratory testing of: a) MOR, and b) CCS, of LCC 34 formulation, for different
levels of admixture of FF agent (0% FF corresponds to casting without vibration).

Further experiments were performed in order to study the influence of the FF admixture
on the mechanical properties of refractory castables. Figure 4.5-6 shows the iaboratory testing
of MOR and CCS of LCC SFR 34 formulation, for different levels of FF admixture solutions.

The strength of LCC specimens molded at minimum level of admixture (0.2% FF) was
higher than in the case of specimens without addition of FF. This is explained by the fact that at
this level of admixture, the Flash Flocculated castable has a high plasticity and the compaction
during molding translates into a better homogeneity. Even for a 0.8% admixture level, when the
mix has a low plasticity, the strengths of Flash Flocculated castable represented 60-80% of the

castable strength, molded by casting (i.e. at 0%FF).

201




Even for high concentration of FF agent, there is no negative effect on mechanical
properties of the castable, due to formation of low meltiﬁg point phases. This aspect is better
presented by the HMOR data. The trend of variation of HMOR is similar to that of MOR. Figure
4.5-7 presents a comparison between the HMOR of LCC without admixture and LCC with
admixtures of FF agent, sodium silicate and sodium aluminate. For the same level of admixture
and the same level of plasticity, the Flash Flocculation is superior to the flash setting process.
The lower HMOR values obtained for flash setting admixtures, and the higher relative difference
between the HMOR at 816°C and 1093°C, indicate that even at the minimum concentration,
these agents have a negative effect on strengfh of the castable because they induce a lower

plasticity and consequently structural defects in the castable.
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Figure 4.5-7. Variation of HMOR of LCC a) with concentration of FF , and b) for different
spray gunning admixtures. -
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4.5.4. Pilot scale experiment

The first spray gunning pilot scale experiment was performed with LCC 34 accelerated
with sodium aluminate. However, a short time after beginning spraying the accelerator nozzie
was clogged, and only half of the required quantity of castable was installed. Although the
castable showed a good flow in the hose and the material that was installed on the spraying
target showed no slump, the experiment was only partially successful. The main cause for the
accelerator nozzle clog was identified to be the fast stiffening and setting produced by sodium
aluminate and insufficient pressure in the accelerator line. This resulted. in the reflux of the
castable from high pressure sprayiné hose into the accelerator line.

For the second pilot scale experiment (Figure 4.5-8), several im‘provements were made:
¢ the injection system of the spray-gunning admixture was redesigned in order to avoid nozzle

clogging;
e an FF agent was used, in order to avoid clogging and fast setting of the castable;
o the castable formulation, LCC 83, had improved setting characteristics (i.e. the same flow

value for 2 hours after mixing, for a setting time of 8 hours).

Before the pilot scale experiment, the composition LCC 83 was subjected to laboratory
testing in order to asses its flow mechanical properties. Because LCC 83 was made with a low
grade silica fume SF3 (Duralum AB, Washington Mills), more test specimens containing high
purity silica fume (Elkem 971, Elkem, Norway) were prepared. The results of the laboratory
testing made on LCC 83 and on similar compositions, LCC 83E, based on high purity silica

fume, are presented in Table 4.5-6. The data presented in Table 4.5-6 demonstrates that both
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Table 4.5-6. Mechanical properties of Flash Flocculated specimens (laboratory data).

MOR(MPa) LCC83 | LCC83 LCC83 |LCCB83E |LCC83E+|LCCS83E+
+0.2% FF | +0.8% FF 0.2% FF 0.8% FF

after 5H at 110°C 10.34 13.44 5.69 12.93 11.89 10.86

after 5H at 1093°C | 27.66 26.12 16.22 31.22 34.03 14.97

HMOR (MPa)

at 1093°C 24.3 25.86 15.51 28.44 33.09 14.48

LCC compositions have high mechanical strengths, and are compatible with the Flash
Flocculating agent.

An Aliva Ill machine was used for the gunniting plént trial (Figure 4.5-8). This machine is
a revolving pump, consisting in a drum with six cells, that are filled one by one with the wet
castable and then the cylinders are discharged on a stream of compressed air (5 atm in the
secondary circuit, and 7 atm in the primary circuit), and pushed through a special designed
nozzle, into the gunning hose. While one cylinder is discharging, the next cylinder is filled with
fresh material from the hopper above it. A swing tube valve automatically positions in front of
the discharging cylinder, to avoid the air pressure to enter through the cylinder and the hopper.
With proper cylinder filling, this allows an almost continuous flow of material to the outlet.
Because an admixture dosing pump was not available in UBC, the injection unit was built in
house, using a gas pressured tank containing the liquid éolution of FFAS. This designed
assured a maximum reliability of the system, and flexibility for handling the possible pressure
transients at the spraying nozzle.

After mixing, the castable was poured into the vibrating hopper of the Aliva pump. The
existence of the.vibrator hopper allows the feeding of the pump with the castable, which has no
free flow or very low flow values. The material fills the cylinder cells of the revolving drum, and
arrives in a jet of compressed (secondary) air. The mixture of high velocity compressed air and

castable is injected through the hose. On the main hose, the secondary air and FFAS is
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Figure 4.5-8. The design of the spray-gunning experimental setup.

injected through the main accelerator nozzle and forms a fine mist that is mixed with the
castable. The castable is finally ejected through the spraying nozzle to the target panel. The
admixture solution was stored in the pressurized tank. The pressure above the liquid was
provided by the compressed air tank, which was equipped with a pressure regulator. A needle
valve allowed the solution of Flash Flocculating agent to be injected through the carrier nozzle
into the secondary air stream.
This setting had the following advantages:

e The feeding of the admixture solution from the pressure vessel avoided any overflow

problems that might occurred in the case of the high pressure liquid pumps. Also due to the

buffer effect of the gas pressure, a stable and easy flow control of admixture was possible;
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e The use of the secondary air carrier allowed for the injection of a fine mist of admixture. Due
to its relatively high pressure (5 at.) and constant flow it prevented the clogging of the main
FFAS nozzle, at the start-up or at the end of the gunning process.

e The injection of the admixture at 5 meters before the spraying nozzle allowed for a better

mixing and a longer reaction time between the castable and the FF agent.

A quantity of 240 kg of LCC 83 mix, prepared at Clayburn Reffactories, was divided into
two equal batches and sprayed on the vertical wooden target panels. The first batch of 120kg of
castable, was sprayed without any addition of accelerator, in order to test the pumping
capability of the mix. The pumping experiment was successful, the mix SFR 83 at 5.5% water
showed a stable high flow rate of 240kg/min, even for secondary air pressures 40% lower than
the nominal value (3 atm instead of 5 atm).

The second batch was sprayed with the addition of FF agent (A2). Due to an operating
mistake the spraying started with a high excess of admixture. By reducing the FFAS flow, the
material adhered to the target panel, proving no siump and a very good plasticity that remained
at the same level for more than 2 hours. Also due to the high plasticity provided by A2 there
was no rebound during the gunning process.

After demolding and drying, the test specimens were cut from the gunned pannels,

using a diamond saw. The specimens were subjected to mechanical testing (CCS, MOR and

HMOR) and to open porosity and permanent linear change measurements.




Table 4.5-7 presents a summary of the properties of self-flowing LCC 83 and LCC 34
compositions, and also the properties of the material resulted from pilot scale experiments. Both
castable compositions are characterized by self flow behavior at low watér levels. With the
exception of the MOR after drying LCC 83 has better properties than LCC 34. The results of the
pilot plant experiments confirmed the fact if compared to casting the Flash Flocculation does is
not produce an important decrease in the strength of the spray gunned castable. Both LCC

compositions show a continuous increase in strength in the 110-1093°C temperature range.

The plant trial showed that:

Table 4.5-7. Properties of SFR 83 and SFR 34 compositions.

Property LCC 83 LCC 34
Dry weight required for installing, (tm?) 2.88 2.72
Amount of water required for pumping/casting, (%) 5.25-5.75 5.25-5.75
Bulk density, (t/m°) 3.03* 2.86
Cold Modulus of Rupture (MOR) after ' :
Drying at 110°C, (MPa) 11.4* (10.34) 14.04
Heating at 816 °C, (MPa) 39.9* 22.08
Heating at 1093 °C, (MPa) 26.89* (27.66) 25.18
Cold Crushing Strength (CCS) after :
Drying at 110°C, (MPa) 60.21* 48.32
Heating at 816 °C, (MPa) 94.92* 76.05
Heating at 1093°C, (MPa) 105.26* 98.02
0
Hot Modulus of Rupture (HMOR)
at 816 °C, (MPa) 41.88* 26.72
at 1093°C, (MPa) 38.52* (24.3) | 17.16** (28.43)
Permanent linear change after 0
Heating at 816°C, (%) -0.07* -0.056
Heating at 1093 °C, (%) -0.1* -0.1

* gunned with A2
. ** gunned with sodium aluminate




e The composition LCC 83 is suitable for gunning applications at 5.0 to 5,5 wt% water. There
was no segregation or dilatant behavior during the transport of the castable through the
hoses;

e Spray-gunning of self-flowing refractory castables can be successfully performed using
FFAS;

e By gunniting LCC 83 with FFAS, a highly homogeneous material was obtained, any
segregation or laminations were avoided;

o The material resulted from the spray-gunning pilot scale experiment showed exceptional

mechanical properties, similar to the materials installed by casting.

Based on the laboratory experiments and on the results of the pilot scale experiments it
may be concluded that both compositions LCC 83 and LCC 34, are suitable for pumping and

spray-gunning applications, using the newly developed Flash Flocculating admixture, containing

calcium chloride and sodium naftalene-sulphonate formaldehyde-condensate (SNFC).




5. Conclusions

Based on the experimental and theoretical work carried out in this study, the following
conclusions are drawn:

1. The flow properties of low, ultra low and no cement castables are determined by the
rheological properties of the binding system and the. particle size distribution of the
refractory aggregate:

e For castable compositions containing silica fume, the Andreassen model (with the
Andreassen exponent g=0.21-0.25) provides particle size distributions characterized by
goof self-flow properties. For silica fume free castable compositions the self-flow
behavior was achieved using a particle size distribution characterized by an
Andreassen exponent having a low value (g=0.22) for particles above 10um and a high
value (g=0.56) for particles below 10um. It results that the Andreassen model is not the
only solution for designing self-flowing compositions because the colloidal interactions
between the ultrafine particles cannot be treated by a simple geometrical (mechanical)
approach;

e The binding system is a complex fluid for which the rheological and hydraulic properties
are closely interconnected, and each individual component of the binding system has
multiple effects on rheological and hydraulic interactions.

2. The viscometric study of the binding system is an important tool for a scientific and
accurate investigation of hydraulic and rheological properties of self-flowing castables
during the dormant period for the following reasons:

e it is able to reproduce the shear conditions to which the hydraulic binder is subjected

during the processing and application of Advanced Refractory Castables;




e compared to the flow measurement (which is a single point empirical measurement) it is
more accurate, has a wider measuring range (often more than ten times), and provides
a full rheological characterization with respects to the non-Newtonian aspects of flow;

e allows for the study of the hydraulic bond evolution during the dormant period and
therefore, allows for the study of both rheological and hydraulic effects of chemical
admixtures;

e provides a complete information on the effect of ultrafine reactive particles on the
evolution of the hydraulic bond;

o for a given particle size distribution of the refractory aggregate, the viscosity of the
binding system has a good correlation with the flow of the corresponding castable
composition and, as a result, it provides a new and unique capability of correlating a
macroproperty of a non-homogeneous fluid-solid mixture (the flow of the castable) with
the fundamental rheological hydraulic properties of the binding system;

¢ from a technical point of view it has and unmatched capability for the multifactorial study
and optimization of the content and nature of chemical admixtures.

The evolution of the hydraulic bond during the dormant period determines the early stages
of the ceramic bond development. Solid experimental evidence showed. that in favorable
hydraulic and rheological conditions (such as low content of water and hydraulic binder and
high reactivity of ultrafine particles), the ceramic matrix development occurs at
temperatures as low as 500°C, which are well below the temperatures corresponding to the
thermodynamic equilibrium solid-state reactions. In comparison with the existing concepts
on the ceramic matrix formation in Advanced Refractory Castables, this new identified type
of ceramic matrix development has several distinctive features:

e it is determined by the reactivity and quality of the uitrafine components of the binding

system;




o the early strength development associated with the formation of the ceramic matrix
takes place with no new crystalline phase development, as proved by the
microstructural study and mechanical properties measurements for ultra low and no
cement castables;

¢ the evolution of mechanical strength and open porosity with temperature, as well as the
microstructural evolution with temperature, demonstrates that the early strength
development cannot be attributed to a sintering process assisted by the formation of a
metastable liquid, but rather to mechanism similar to that postulated by the
“Superplasticity Theory”;

e a proper compositional design of the binding system (high reactivity of ultrafine fraction
and an optimized content of chemical admixtures) can trigger the development of the
ceramic matrix before the total decomposition of the hydraulic bond and this is reflected
in a significant increase in the mechanical strength of Advanced Refractory Castables.

The control of the hydraulic and colloidal interactions existing in the binding system is a key

factor for the improvement of the application technology of Advanced Refractory Castables.

A novel concept for spray-gunning, the Flash Flocculation concept, was developed using

the knowledge generated by the present work. Compared to the existing technology of

Flash Setting that relies 6n an uncontrolled accelerated hydration, in the Flash Flocculation

process the colloidal suspension of the binding system losses its fluidity without interfering

with the hydraulic setting. The novelty of the Flash Flocculation concept relies on the
possibility of obtaining a colloidal flocculation of the binding system without triggering an
accelerated hydration. The possibility of separation of hydraulic and colloidal interactions
within the binding system was demonstrated for the first time, being the most important
technical application generated during the present work, with an exceptional impact on the

development of spray-gunning technology. From a scientific point of view the Flash
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Flocculation concept represents the first approach of phenomenological design and

optimization for Advanced Refractory Castables. As demonstrated by laboratory

experiments and pilot plant trial, the Flash Flocculation concept brings a major

improvement over the current spray-gunning technology based on Flash Setting, for the

following reasons:

The sprayed-gunned material using Flash Flocculation is characterized by an
unprecedented plasticity as demonstrated by the pilot plant experiment. After the spray-
gunning, the refractory installation maintained a hi‘gh plasticity, that allowed trimming
and indentation without cracking, for more than 30 minutes. This exceptional plasticity
also resulted in the total absence of defects such as voids and laminations.

Due to the fact that the Flash Flocculation does not depend on the hydraulic
interactions and acts only on the repulsive interactions in the colloidal suspension of the
binding system, it is effective for the spray-gunning of self-flowing castables regardless
of their nature and content of hydraulic binder, ultrafine powders or chemical
admixtures.

By acting at colloidal level only on the rheology of the binding system the Flash
Flocculation is very tolerant to processing errors. It is known that small variations in the
dosage of Flash Setting agents can completely compromise the spray-gunning process.
The experimental results showed that up to 200% overdosage of Flash Flocculation
agent has no major impact on the spray gunning process or on the mechanical

properties of the installed castable.

Due to the low amount of Flash-Flocculation agents required for spray-gunning and the

exceptional plasticity of the installed material, the Flash Flocculation process produces
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high quality refractory installations, having similar properties to those obtained by

casting.

Based on the results of the laboratoryvexperiments and pilot plant trial it may be concluded
that the Flash Flocculation agents are superior in every aspect to any Flash Setting agents that
are currently in industrial use.

Due to the complexity of the Advanced Refractory Castables, most of the current research
efforts in this field are hindered by the employment of an empirical and *“trial-and-error”
approach. During the present work, it was demonstrated that the development of scientific and
accurate measurement methods, combined with a better understanding of the correlation of
colloidal, chemical and solid-state phenomena are the key issue for achieving further significant

advances.
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6. Future work

As a result of the present study several direction for further investigation on the self-

flowing castables are recommended:

1.

In order to improve the performance of no cement castables the design of new hydraulic
alumina binders with enhanced setting and flow properties is required. Particular attention
should be focused on the hydration behavior of high alumina binders and the compatibility
of these binders with plasticizer and accelerator admixtures.

The development of new binding systems based on magnesia spinel fine powders should
result in further improvement of silica fume free no cement castables. The use of magnesia
spinel as major constituent of the silica fume free no cement castables should result in
increased thermal shock resistance, HMOR and corrosion resistance to basic slags.

The investigation of the possibilities of hydraulic activation of silica fume particles is of
particular importance. This research is important to better understand the colloidal
interactions existing in the binding systems.

The study of the effects of alﬁminum non-wetting additives (such as CaF, , BaSO, ,
metakaolin etc.) on flow and mechanical properties of low cement castables would bring an
opportunity for improving corrosion resistance of self-flowing refractory castables used in
the aluminum industry.

Pilot scale experiments of spray gunning of no cement castables and silica fume free no
cement castables with flash flocculating admixtures would validate the conclusions of the
laboratory experiments. Also further refinement of the Flash Flocculation concept by the
design of Flash Flocculation Admixture Systems for specific use in castables containing

high alumina binders is recommended.
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APPENDIX

Hot modulus of rupture (HMOR) Testing Appératus

As é part of the research program, a Hot Modulus of Rupture Testing Apparatus was
constructed in the Ceramics Laboratory of Metals and Materials Engineering Department of
University of British Columbia. The apparatus was designed to comply to the reqLiirements of
ASTM C 583 for testing of HMOR of refractory castables, to utilize as much as possible the
resources already existent in the department, and to allow an easy and efficient operation.

The apparatus consists of an electric furnace placed inside the frame of an Instron
Universal Testing Machine. The main characteristics of operation are:

e maximum testing temperature: 1500°C.

e maximum heating rate: 400°C/h.

e maximum number of specimens (15x2.5x2.5 cm) loaded in a single run: 12.
e maximum force load: 15 kN.

e cross head speed 0.25 -0.0025 cm/min.

There are three major constituent parts of the Hot Modulus of Rupture Testing Apparatus:
1. High temperature furnace .

2. Force loading system.

3. Power supply, heating elements and temperature controller

Hig.h temperature furnace

The high temperature furnace is a light insulation board furnace placed inside the frame
of an Instron Universal Testing Instrument. The thermal insulation consist of: a 2.5 cm inner
layer of fiberboard Rath KVS 184 and a 5 cm outer layer of fiberboard Fiberfrax Duraboard

3000.
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There are two doors to the furnace :

e main front door for loading the test specimens. This door has a quartz window protected by
a refractory shield in order to allow the operator to view and correct, if necessary, the
position of the samples in the furnace. There are also two alumina positioning rods that
allows the correction any possible misalignment or blockage of the test specimens.

e bottom swinging door that allows the removal of the specimens immediately after testing.

Up to 12 test specimens may be loaded in the furnace in one run. The specimens are
placed on two horizontal alumina tube rods (1.25 cm diameter) and pushed one by one under
the load bearings, after testing, evacuated from the furnace through the bottom swinging door.

The components of the high temperature furnace are presented in Table 5-1.

Table 5-1. The characteristics of the components of the high temperature furnace.

ltem Type
Inner lining 1" refractory fiberboard Rath KVS 184
Outer lining 2" refractory fiberboard Fiberfrax Duraboard 3000
Lining support hanger rods Zircar HR-2 with stainless steel shaft collars
Zircar SC-1
Bottom door lining 2" refractory fiberboard Rath KVS 184 (two layers)

Insulating element holders |Zircar Type H-2

Strapping element holders |Zircar Type K-3

Guiding rods 1/2 " diameter 99.9% alumina rod
Pusher rod 1/2 " diameter 99.9% alumina rods
Pusher head Part made using castable N1

The specimens are positioned ohe by one on the guiding rods under the load system. In
between two specimens there are placed two refractory “T’-shaped spacers, to maintain a
distance of about 1cm between specimens, and between the first specimen and the pusher
head. The swinging door has a counterbalance that allows opening with a load corresponding to

a half of the specimen weight (<0.12 kgf).
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Flgure 5-1. Front view of the high temperature furnace

The specimens, after testing, are pushed one by one by the new specimens, off the
bottom load plate, and together with the two corresponding spacers, are evacuated through the
swinging door out of the furnace (Figure 5-1). This design allows the evacuation of each
specimen to be done by opening the swinging door for less than 1 second, and this translates to |

a stable thermal environment during testing.
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Force loading system

The force loading system (Figure 5-2) vis composed of:
¢ Instron Universal Testing Instrument (model FCL).
¢ load cell Omega LCCB-3K.
e upper cooling part.
e convection shield.
o force applying alumina rod (5cm diameter).
e upper load bearing (1.25 cm alumina rod).
¢ |ower load bearings (1.25 cm alumina rods).
s bottom load plate (N1 castable).
e insulating bricks (Thermal Ceramics K-26).
¢ bottom cooling part. |

The load cell is attached direcﬂy on the cross head of the Instron Testing Instrument, in a
compressive fixture, and is continued by the upper cooling part. The upper cooling part consists
of a brass cylinder (5 cm diameter) having copper cooling coils. Between the upper cooling part
and the metallic fixture of the force applying rod, there is a convection cooling shield, directing
the air flow generated by two cooling fans. This design is necessary in order to maintain the
temperature of the load cell below 50°C degrees, and to allow a better cooling of the heating
element ends. The bottom part of the force applying rod is grooved horizontally and the upper
bearing rod is inserted. The lower load bearing rods, having a 12.5 cm span, sit on the bottom
load plate, that sustains the ends of the guiding rods. Under the bottom load plate there are two
insulating bricks (Thermal Ceramics K-26), sitting on the bottom water cooling system.

After testing more than 100 specimens, none of the parts of the force loading system had

a breakdown or misalignment.
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During measurements at temperatures above 1093°C and at high flow rate of water in the
upper cooling system, water droplets may condense. This condensation should be avoided by

reducing the flow rate of the water for cooling.

cross head load cell upper cooling
\ / system

\ /[ S

¥
convection / /
shicld - force

~ d Lapplying
cooling \\ / _~Talumina
fans d
\\ I | ro
heating
elements Thermo-
~ ~ /’couple
specimen . 9 O
AN upper .
lowgr s U rbearing
bearings .
bottom insulating
load plate rbricks
- bottom
cooling

Figure 4.1-4. Design of the force loading system.

Power supply, heating elements, and temperature controller
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The high temperature furnace is heated by eight MoSi, heating elements type Super
Kantal 17-6/12-5-5-2. The elements have the maximum service temperature of 1700°C and the
maximum power of 1000W. The eight elements (as shown in Figure 5-3) are connected in two
parallel series, with 250A aluminum straps.

The temperature control unit consist of a Pt/Pt-13%Rh thermocouple connected to a
programmable temperature controller (type Omega CN2011J-DCIl) which commands a solid
state relay (type SSR240DC75).

The variable power source consists of a high voltage variable tension source (220V 75A
VARIAC) that allows the continuous variation of voltage in the range of 0-220V. The secondary
coil of the VARIAC is connected through the solid state relay to the primary circuit of a low
voltage transformer. As a result, at the secondary circuit the low can be continuously adjusted in
the range of 0-40V for maximum currents up to 500A. This design was necessary because the
resistivity of MoSi, elements varies with temperature, while the maximum power density remains
constant. For safe operation of the furnace, the maximum current through the heating elements
should be below 125A.

After several runs of the furnace it resulted that the thermal steady state in ramp up to
temperatures of 1500°C is obtained for intensities of 80-100A. Currents of about 80A are

recommended during the soaking time or specimen testing.
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Figuré 5-3. Electric design of the high HMOR furnace.
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