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ABSTRACT 

A Sn - 1% Bi a l l o y has been studied to determine the 

e f f e c t s of superplastic deformation on the g r a i n growth k i n e t i c s . 

Using both constant crosshead speed and creep t e s t s , the g r a i n s i z e 

was measured as a function of deformation time and s t r a i n over a 

wide range of s t r a i n rates. 

It was found that during deformation, considerable i n ­

creases i n the grain growth rates occurred when compared to s t a t i c 

annealing. The e f f e c t was most pronounced at intermediate s t r a i n 
_2 

rates (»=10 /minute) i n the high s t r a i n rate s e n s i t i v i t y region. 

However, the grain growth rates on annealing a f t e r deformation were 

found to be le s s than s t a t i c rates. 

To a i d i n understanding the mechanism of the enhanced growth, 

a l t e r n a t i n g tension-compression tests were performed. The amount of 

grain elongation and the changes i n preferred o r i e n t a t i o n with de­

formation were also measured. 

Grain type and g r a i n s i z e d i s t r i b u t i o n s a f t e r deformation 

and a f t e r annealing were established and analyzed i n terms of a grain 

coalescence mechanism. However, the most favourable mechanism appears 

to involve the production of excess vacancies i n the g r a i n boundary 

region leading to increased boundary mobi l i t y . 
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INTRODUCTION 

1.1 - S u p e r p l a s t l c i t y 

Superplastic materials are characterized by large amounts 

of neck-free elongation i n tension and by a high value of the s t r a i n 

rate s e n s i t i v i t y parameter, "m", defined as ^ ? . The log a 

- log £ r e l a t i o n s h i p i n su p e r p l a s t i c a l l o y s i s us u a l l y an "S" shaped 

curve which can be divided into three stages. ( F i g . l ) . 

^ S T A G E HI 

LOG 

CT . / S T A G E U 

- ^ S T A G E T 

L O G € 

F i g . l . T y p i c a l S t r e s s - S t r a i n Rate Relationship 
i n Superplastic M a t e r i a l s . 

Although t h i s type of curve i s t y p i c a l , not a l l a l l o y s display a 

Stage I region within the range of experimentally obtainable s t r a i n 

rates ̂ \ The largest elongations occur i n the region of highest 

s t r a i n rate s e n s i t i v i t y , Stage I I . The amount of extension appears 
(2) 

to increase with the value of "m" . This r e l a t i o n s h i p has been 
(3) 

explained phenomenologically by Backofen et a l . The formation 
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of an i n c i p i e n t neck i n a deforming sample causes a l o c a l increase 

i n s t r a i n rate. When the s t r a i n rate s e n s i t i v i t y i s high, t h i s i n ­

creased s t a i n rate causes the necked region to harden so that de­

formation w i l l tend to continue i n the s o f t e r region away from the 

neck. 

If c e r t a i n conditions are f u l f i l l e d , s u p e r p l a s t i c i t y w i l l 

occur i n a wide range of a l l o y s including two phase e u t e c t i c or 

eutectoid systems such as P b - S n ^ and Z n - A l ^ as w e l l as phase pure 

systems; S n - B i ^ 5 \ N i ^ and Pb-Th^ 7\ For most a l l o y s these con­

d i t i o n s are: 1) an homologous temperature greater than .5 Tm, 

2) a f i n e grain s i z e and 3) phases of s i m i l a r hardness. For the 

purpose of forming operations i t i s necessary that the s u p e r p l a s t i c 

properties be displayed at high s t r a i n rates. The major requirement 

for such behaviour i s a f i n e grain s i z e . An increase i n grain s i z e 

s h i f t s the "S" curve h o r i z o n t a l l y to the l e f t so that the high "m" 

region occurs at lower e . 

During a constant s t r a i n rate or constant crosshead speed 

(Instron) test above 0.5 Tm, the grain s i z e may increase i n some mater­

i a l s . In t h i s case the o r i g i n a l value of "m" w i l l gradually change 

as the s t r e s s - s t r a i n rate r e l a t i o n s h i p s h i f t s on the e axis. A 

sample that was o r i g i n a l l y deforming i n Stage II could, a f t e r g r a i n 

growth occurs, be deforming i n Stage I I I . The amount of elongation 

obtained would then be decreased. Experimental r e s u l t s i n d i c a t e , 

i n f a c t , that the highest elongations are obtained i n a l l o y s with 

s u b s t a n t i a l amounts of second phase which anchor the grain boundaries 

and retard grain coarsening. 

The microstructure of s up er pl as ti c a l l o y s and the changes 
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which occur during deformation have been w e l l studied. Deformation 

i n Stage II i s accompanied by l a r g e r amounts of g r a i n boundary 
(27) s l i d i n g and grain r o t a t i o n than i s observed i n the Stage I I I region 

The grains r e t a i n t h e i r equiaxed shape even a f t e r large amounts of 

elongation. No d i s l o c a t i o n substructure i s formed by the deformatio 

Grain boundary migration i s observed on the specimen surface and i s 

associated with grain s l i d i n g . 

1.2 - Deformation Induced Grain Growth 

A s t r u c t u r a l change, associated with s u p e r p l a s t i c i t y , 

which has not received d e t a i l e d attention i s an apparent enhancement 
(8) 

of grain growth during the deformation. In the Pb-Sn e u t e c t i c , 

the g r a i n s i z e a f t e r 600% elongation was considerably l a r g e r (4.4 u) 

compared to the grain s i z e (3 p) of a sample held at the t e s t i n g 

temperature for an equivalent length of time. The grain s i z e i n ­

creased l i n e a r l y with % elongation, with larger changes occurring at 
(9) 

lower s t r a i n rates. Morrison , also studied the Pb-Sn e u t e c t i c and 

produced micrographs displaying an increasing grain s i z e with s t r a i n . 

On creep t e s t i n g of the Pb-Sn e u t e c t i c , S u r g e s f o u n d a s t e a d i l y 

decreasing creep rate i n Stage I deformation which was t e n t a t i v e l y 

a t t r i b u t e d to e i t h e r d i f f u s i o n a l creep or grain growth. Other 

s t u d i e s ^ ' " ^ on Pb-Sn made no s p e c i f i c mention of grain growth 

e f f e c t s however. 
(14) 

In the eutectoid Zn-Al system, Alden and Schadler 

found that s i g n i f i c a n t grain growth occurred a f t e r large s t r a i n s . 

They deformed two samples of d i f f e r e n t i n i t i a l grain s i z e at the 

same s t r a i n rate i n Stage II u n t i l a neck began to form, then 
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sectioned the samples at various places along the neck and measured 

the g r a i n s i z e . In t h i s way specimens were obtained which had been 

deformed f or the same length of time but to d i f f e r e n t s t r a i n l e v e l s . 

The r e l a t i o n s h i p between g r a i n s i z e and s t r a i n appeared to be l i n e a r 

i n i t i a l l y (Fig.2). In the time taken f o r deformation the gr a i n s i z e 

would not have changed s i g n i f i c a n t l y with annealing only . Alden 

and Schadler reported no gr a i n elongation but noted increased boundary 

curvature with deformation which disappeared upon annealing. 

I 2 3 4 5 
TRUE STRAIN 

Fig.2. Grain Size versus True S t r a i n f o r Two 
I n i t i a l Grain Sizes (from data by Alden 
and Schadler(14)), 

Kassawsky and B e c h t o l d a l s o studied the Zn-Al eutectoid 

system and t h e i r micrographs showed that growth of the z i n c - r i c h phase 

was occurring. Less growth appeared to take place at the lower s t r a i n 

rates. Micrographs and X-ray patterns revealed grain growth i n the 
(16) Zn-Al eutectoid i n a study by Chaudhari On the other hand, 

Packer and Sherby ̂ 7 >^8) r e p 0 r t e ( j l i t t l e change i n grain s i z e up to 

1280% elongation although rounding of the grain boundaries did occur. 



(19) 
N u t a l l and Nicholson also reported l i t t l e g r a i n growth up to 

500% elongation. In a study of the Zn-Al e u t e c t i c (95 wt.% Zn) , 

Packer, Johnson and S h e r b y ^ ^ found that the A l second phase l o s t 

i t s d i r e c t i o n a l nature produced on r o l l i n g and coarsened with super­

p l a s t i c deformation. 

With a d i l u t e a l l o y of Zn-Al (.2 wt.% Al) C o o k ( 2 1 ) found 

a log-log r e l a t i o n s h i p between g r a i n s i z e and true s t r a i n up to 

elongations of 1000 %. In other words, growth i s rapid during the 

i n i t i a l stages of deformation but decreases as s t r a i n continues. 
(22) 

These r e s u l t s have been confirmed by Turner i n the 1 wt.% A l 
(23) 

a l l o y and by N a z i r i , Pearce and Williams i n the .4 wt.% A l a l l o y . 
(24) 

N a z i r i and Pearce investigated commercial p u r i t y zinc 

which had been r o l l e d to 90% reduction to produce a 1 to 2 micron 

grain s i z e . The s t r a i n rate s e n s i t i v i t y was only .2 and the maximum 

elongation obtained was only 200% so that the material was not con­

sidered s u p e r p l a s t i c . However, a f t e r 100% elongation, the grains 

doubled i n s i z e , remained equiaxed and showed no evidence of s l i p , 

i . e . r e s u l t s s i m i l a r to those i n superplastic materials. 

S u p e r p l a s t i c i t y has been studied extensively i n a 45% 
(1 25 26) 

Ni, 38% Cr. 14% Fe two phase a l l o y by Brophy and co-workers ' ' 

In t h e i r f i r s t paper an increase i n grain s i z e with deformation was 
/ o c Of.) 

noted and then studied more completely i n the two l a t e r papers ' 

They found that the matrix grain s i z e was dependent on 

the average s i z e and volume f r a c t i o n of the second phase p a r t i c l e s . 

The r e s u l t s were i n agreement with the Zener-McLean equation which 

predicts a l i m i t i n g g rain s i z e by considering the e f f e c t of second 



phase p a r t i c l e s on the grain boundary energy; 

Grain Size = ~ — 
V f 

where d i s the average p a r t i c l e diameter and i s the volume f r a c t i o n 

of second phase. With su p e r p l a s t i c deformation the diameter of the se­

cond phase p a r t i c l e s increased roughly proportional to the power of 

the deformation time. The matrix grain s i z e increased accordingly so 

that the Zener-McLean equation was s t i l l obeyed. Lower s t r a i n rates 

produced a larger change i n grain s i z e f o r the same amount of s t r a i n . 

No theory was proposed to explain the coarsening of the second phase. 

Other superplastic a l l o y systems also display enhanced 
(27) 

grain growth with deformation. Alden noted that i n a Sn - 5% B i 

sample elongated 1000% the grain s i z e had increased to 4 microns 

whereas i t would have increased to only 1.6 microns on annealing 
(28) 

without deformation. In an Al-Cu e u t e c t i c a l l o y Stowell et a l 

found coarsening of the i n t e r m e t a l l i c CuAJ^ phase taking place with 

deformation. Their micrographs show evidence of s i n t e r i n g or coales­

cence of some of the CuA^ p a r t i c l e s . They proposed that the coales­

cence occurred as a consequence of grain boundary s l i d i n g which tended 
to sweep the p a r t i c l e s together. Grain growth during deformation has 

iport< 
(33) 

also been reported i n M g - A l , ( 2 9 ' 3 0 ) , T i ( 3 1 \ Mg-6Zn-.5Zr ( 3 2 ), and low 

a l l o y s t e e l s 

Some contradicatory r e s u l t s have been obtained by other work­

ers however. G i f k i n s ^ observed no grain growth i n Pb-Th a l l o y s . The 

i n i t i a l grain s i z e was 100 u however, which i s much larger than most 

superplastic materials. The a l l o y s did display large elongations 

and a high "m" value. 

Despite being apparently inherent to superplastic creep, 

the enhancement of grain s i z e e f f e c t has been studied i n d e t a i l only 
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by Brophy et a l * . Few attempts to explain the e f f e c t have 
(21) 

been made i n the l i t e r a t u r e . Cook t e n t a t i v e l y suggested that 

i n d i l u t e Zn a l l o y s boundary s l i d i n g caused a differ e n c e of d i s ­

l o c a t i o n density on eit h e r side of the shearing boundary. The 

boundary would then tend to move to eliminate the areas of highest 

d i s l o c a t i o n density . 

1.3 - Purpose of Present Investigation 

In view of the almost u n i v e r s a l occurrence of enhanced 

grain growth i n superplastic a l l o y s and i t s importance i n l i m i t i n g 

the amount of elongation, i t was decided to study the phenomenon i n 

more d e t a i l and attempt to understand the mechanism promoting the 

growth. 

For r e l a t i v e s i m p l i c i t y , a s i n g l e phase a l l o y was chosen, 

namely Sn - 1% B i which had been shown to be superplastic by Alden 

This a l l o y system offered several advantages: 

1) The melting point i s low so that annealing at room temperature 

corresponded to an homologous temperature of .6 Tm. 

2) Casting and extrusion could be done e a s i l y at,or near, room temper­

ature, and 

3) Normal grain growth i n d i l u t e Sn - B i a l l o y s had been extensively 
(34) 

studied and t h e o r e t i c a l l y discussed by Holmes and Winegard , and by 
(35) (27) Gordon . The two phase Sn - 5% B i a l l o y i s also superplastic 

and could provide a good comparison i f time permitted. 
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EXPERIMENTAL 

2.1- Specimen Preparation 

The a l l o y was prepared from high p u r i t y t i n (99.999%) and 

bismuth (99.999%). Melting was done i n graphite c r u c i b l e s , e i t h e r 

i n a i r with a molten s a l t cover to lessen oxidation or i n vacuum. 

The melts were held at a temperature between 300 and 350°C with 

intermittent s t i r r i n g for at le a s t 10 minutes a f t e r a l l o y i n g was com­

pleted. Casting was performed by bottom pouring into copper molds 

producing c y l i n d r i c a l b i l l e t s approximately 5" long and 1" i n d i a ­

meter. 

A f t e r casting a l l b i l l e t s were homogenized i n an a i r oven 

at 130°C ± 7°C for seven days. The ends of each b i l l e t were re- . 

moved and the diameter machined down. 

To produce a f i n e g rain s i z e s u p e r p l a s t i c material, the 

b i l l e t s were back extruded into rod form using high extrusion r a t i o s . 

Two f i n i s h e d s i z e s were produced; .150" diameter (extrusion r a t i o 

40:1) and .083" diameter (extrusion r a t i o 130:1). The extrusion speed 

was approximately 12"/minute at 70,000 to 80,000 p s i f o r the .150" 

diameter rod. Speed control with the .083" diameter rod was d i f f i c u l t 

to a t t a i n and wide f l u c t u a t i o n s of rate were unavoidable. The 

mechanical properties were not affected by t h i s v a r i a t i o n . Two ex­

tru s i o n temperatures were used; room temperature (22°C) and 0°C. To 

obtain the 0°C extrusion temperature, the b i l l e t , die blocks, ram 

and container were assembled and placed i n a freezer f o r 24 hours. 

The whole assembly was immediately transferred to the extrusion press 

and immersed i n an ice-water mixture during the extrusion process. 

For a l l extrusions, a die lubric a n t was used, ei t h e r a powdered 
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g r a p h i t e - o i l mixture or polyethylene g l y c o l . Immediately a f t e r 

leaving the d i e , the rod was cut into short lengths and quenched 

into l i q u i d nitrogen. A l l material was stored i n l i q u i d nitrogen 

i n a Union Carbide LD-17 container which maintained a temperature of 

-184°C above the l i q u i d nitrogen l e v e l so that the rods were main­

tained below t h i s temperature at a l l times. 

For t e n s i l e or creep t e s t i n g most specimens were used 

"as-extruded" with no reduction i n the c r o s s - s e c t i o n a l area. To ob­

t a i n high elongations i n Stage II deformation and for a l l t e s t i n g i n 

Stage I I I , a reduced cross-section specimen was produced. The gauge 

length was machined on a jewellers' lathe using a cold machining 
(21) 

technique i n which cold nitrogen gas was blown on to the s p e c i ­

men c o n t i n u a l l y . To ensure that no grain growth or excessive damage 

was introduced by t h i s procedure, a specimen was machined and ex­

amined i n the o p t i c a l microscope. The o v e r a l l g r a i n s i z e was the 

same as i n samples annealed f o r the same length of time. The da­

maged surface layer appeared to extend to a depth of only 10 y. 

. 2.2 - T e n s i l e Testing 

T e n s i l e . t e s t i n g was done on Instron floor model machines 

using constant crosshead speeds. The specimen was gripped using 

threaded s p l i t g r i p s . During tightening of the g r i p s , overloading 

of the specimen was prevented by automatic load c y c l i n g of the cross-

head. The gauge length was taken as the distance between the grips 

f o r a uniform cross-section specimen and as the length having constant 

.diameter with the machined specimens. 

The s t r e s s - s t r a i n rate r e l a t i o n s h i p s were determined on 

s i n g l e samplesby a v a r i a b l e crosshead speed technique. A f t e r a 
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steady load was obtained at each crosshead speed the speed was 

changed by a factor of 2. or 2.5. True stress and s t r a i n rate values 

were computed using values f o r instantaneous area and length. In 

most cases steady stress values were obtained a f t e r approximately 1% 

s t r a i n at each crosshead speed. T o t a l s t r a i n during t e s t i n g through 

the complete speed range normally amounted to l e s s than 25%. A l ­

though some grain growth occurred during these tests i t s e f f e c t on 

the shape of the a - & curve was s l i g h t since the values obtained i n 

i n d i v i d u a l tests at constant crosshead speed agreed with the s t r a i n 

rate change t e s t s . (Results section, F i g s . 6 and 7). 

For grain s i z e versus s t r a i n measurements, the true s t r a i n 

of the specimen a f t e r testing was determined by measuring the f i n a l 

diameter at the section where the grain s i z e was measured. 

Alter n a t i n g tension-compression tests were also c a r r i e d 

out on an Instron. A s p e c i a l grip arrangement was made (Fig.3) to 

hold the specimen to minimize slack i n the linkages. Specimen ex­

tension was measured with an Instron s t r a i n gauge extensometer attached 

to the aluminum mounts. The gauge length of the specimen was kept 

below .3" to minimize bending i n compression. 

2.3 - Creep Testing 

Creep t e s t i n g was performed to obtain lower s t r a i n rates 

than the Instron t e s t s . The specimens were mounted i n threaded grips 

with the load hung d i r e c t l y on to the bottom g r i p . The stress was 

kept constant w i t h i n ± 5% by removing p e r i o d i c a l l y a small p o r t i o n of 

the load. Creep s t r a i n was measured with a t r a v e l l i n g microscope by 

following the movement of two marks scribed on the specimen. The error 
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Fig. 3 . Grip Arrangement for Tension-Compression 
Testing on Instron. 
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i n the true s t r a i n was estimated as ± 1%. For comparison with the 

t e n s i l e r e s u l t s , s t r a i n rate was measured from the slope of the s t r a i n 

versus time curve at 2% true s t r a i n . A l l creep and t e n s i l e t e s t i n g 

was c a r r i e d out at room temperature. 

2.4 - X-ray Analysis 

To determine the preferred o r i e n t a t i o n of grains i n the 

material,back r e f l e c t i o n photographs were taken using monochromatic 

(Cu-Ka) r a d i a t i o n . Since the grain s i z e was too large to produce com­

ple t e Debye rings with a s t a t i c exposure, the samples were rotated i n 

the X-ray beam around the rod or t e n s i l e axis at a speed of 4 rpm. 

In t h i s way many more grains were exposed to the X-ray beam and com­

plete Debye rings were produced. The o r i e n t a t i o n of the f i b e r axis 

was determined from the photographs 

To eliminate any surface e f f e c t s , a l l specimens immediately 

before X-raying were electropolished with a s t a i n l e s s s t e e l cathode 

and a voltage of 50-60 v o l t s i n a s o l u t i o n of the following composi-
„. (37) t i o n : 

ethyl alcohol - 144 ml., 

water - 32 ml., 

n-butyl alcohol - 16 ml., 

aluznlr.r-a chloride - l u gn.., 

zinc chloride - 45 gm., 

In order to obtain an estimate of the degree of texture, a 

microdensitometer was used to scan the X-ray f i l m and measure the re­

l a t i v e i n t e n s i t y around the Debye arc. 
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2.5 - Metallography 

Surfaces were prepared f o r etching and examination with a 

Porter Blum diamond kn i f e ultramicrotome, following the procedure of 
(38) 

R u s s e l l and Alden . The method i s f a s t , p a r t i c u l a r l y f o r soft 

metals, and can produce an extremely smooth almost d i s t o r t i o n free 

surface. However, only a small area, ^ x 2 mm., can be prepared. 

Thus, a wedge t i p of t h i s area had to be shaped on each sample with 

a f i n e jewellers' f i l e . Kerosene was used as a lubri c a n t to mini­

mize k n i f e wear. I n i t i a l cuts were about .5 microns thick and were 

progressively reduced i n steps of 250A° u n t i l f i n a l s l i c e s of 500A° 

were taken. At each step, at l e a s t 7 s l i c e s were taken to remove 

the d i s t o r t e d layer from the previous cuts. A l l specimens were 

etched to reveal the grain boundaries i n eit h e r a 2% HC1 i n ethyl 

alcohol s o l u t i o n or a s o l u t i o n containing 5 c c HC1, 2 gm. f e r r i c 

c h l o r i d e , 30 c c . water and 60 c c . eth y l a l c o h o l . Photomicro­

graphs were taken i n at le a s t three separate areas of each surface. 

Grain s i z e was measured on the micrographs using the i n t e r -
(39) 

cept method with a 10 cm.circumference c i r c l e . The average 
— — 10 A lineal i n t e r c e p t , D, was computed from the formula: D = — — — 

where A = number of app l i c a t i o n s of the c i r c l e 

N = t o t a l number of boundary i n t e r s e c t i o n s 

M = magnification of the photomicrograph 

At l e a s t 320 in t e r s e c t i o n s were counted f o r an error i n D of better 

than ± 7% at the 95% confidence l e v e l . In the remainder of the text 

the l i n e a l intercept D w i l l be re f e r r e d to as the grain s i z e unless 

otherwise indicated. To determine the amount of grain elongation pro-
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duced by deformation, some specimens were sectioned l o n g i t u d i n a l l y 

and the average l i n e a l intercept determined p a r a l l e l and perpendicular 

to the t e n s i l e axis. 

To determine the d i s t r i b u t i o n of grain "types" the number of 

sides per grain were counted f o r each g r a i n within a designated area. 

Grain s i z e d i s t r i b u t i o n s were determined using the method of Johnson . 

(41) 

However, the Swedish grouping method was adopted rather than the 

method of Johnson which i s based on the ASTM gr a i n s i z e number. If 

A i s the mean planar grain area i n square microns of a g r a i n class 

P then : 

A = 2. P - (1) 

where P takes integer values - 0. The area l i m i t s of each class are 
P±3̂  

given by 2 2. Thus, grains having an area between 0 and 1.4 p 
2 

f a l l i n t o class 0,. between 1.4 and 2.8 y into class 1, between 2.8 
2 

and 5.8 M into class 2 etc. A serie s of squares having areas 
i 

equivalent to the cla s s l i m i t s times the photomicrograph magnifi­

cation were scribed on to a sheet of clear p l a s t i c . The sheet was applied 

to each grain i n turn to estimate i t s c l a s s . Approximately 1000 grains 

were counted f or each sample. 
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RESULTS 

3.1 - Superplastic Properties 

3.1.1 - Log a - log e Curves 

Incremental s t r a i n rate change tests were performed to study 

the e f f e c t s of processing v a r i a b l e s on the s t r e s s - s t r a i n rate re­

l a t i o n s h i p s (Fig.4). A l l tests were performed a f t e r a 20 minute anneal 

at room temperature. Three v a r i a b l e s are compared: 1) casting method, 

2) extrusion r a t i o and 3) extrusion temperature. The reasons for 

studying these v a r i a b l e s were to attempt to produce agreement with 

published r e s u l t s and to s h i f t the high "m" region toward higher 

s t r a i n rates. 

A l l samples show at l e a s t a two stage curve with low and 

high "m" regions t y p i c a l of s u p e r p l a s t i c materials. A s l i g h t i n ­

d i c a t i o n of Stage I region i s shown by the high extrusion r a t i o 

material (curve 4). The e f f e c t of both a lower extrusion temperature 

(curve 2) and higher extrusion r a t i o (curve 4) i s to s h i f t the 

high "m" region to higher s t r a i n rates with extrusion r a t i o having the 

more powerful e f f e c t . By comparing curves 2 and 3 i t i s seen that 

the melting and casting conditions have no e f f e c t on the s t r e s s - s t r a i n 

rate curve i . e . any oxidation or contamination produced by a i r cast­

ing had l i t t l e e f f e c t on the deformation c h a r a c t e r i s t i c s . 

The "m" values (Fig.5) of the samples of Fig.4 were ob­

tained g r a p h i c a l l y by measuring the slopes on the log a - log t p l o t . 

Values taken from the creep data (see Fig.7) have been added to curve 

4. Higher extrusion r a t i o and lower extrusion temperature have pro­

duced higher peak "m" values than i n the room temperature 40:1 r a t i o 
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material. The extrusion r a t i o increase produced the more pronounced 

e f f e c t . The peak "m" values have been s h i f t e d to higher s t r a i n rates 

by both v a r i a b l e s . The value of "m" i n the Stage I region of curve 

4 i s approximately the same as the peak "m" of the other curves.' 

During the course of the incremental s t r a i n - r a t e change te s t s 

some grain growth occurred which could have affected the shape of the 

a — E curves. To e s t a b l i s h a log a - log e curve free from growth 

e f f e c t s , i n d i v i d u a l specimens with the same i n i t i a l grain s i z e were 

tested at each s t r a i n rate. Instantaneous s t r e s s - s t r a i n rate values 

were taken a f t e r approximately 2% s t r a i n f o r both the Instron and 

creep t e s t s . The p l o t t e d points (Figs.6 and 7) are a c t u a l l y the 

average of at l e a s t four i n d i v i d u a l t e s t s at each s t r a i n rate or stress 

l e v e l . Agreement between i n d i v i d u a l t e s t s and the s t r a i n rate change 

tests i s good i n d i c a t i n g that grain growth had l i t t l e e f f e c t i n the 

s t r a i n rate change t e s t . 

One sample of a i r cast, 40:1 extrusion r a t i o , 0°C extrusion 

temperature mat e r i a l , annealed to a gr a i n s i z e of 5.8 y, was used f o r 

an incremental s t r a i n rate change t e s t . The resultant log a - log e 

curve (Fig.8) could then be compared with previously published r e s u l t s ^ 

on s i m i l a r l y processed Sn - H B i of 5 p gr a i n s i z e . The agreement i s 

good considering the s l i g h t d i f f e r e n c e i n grain s i z e between the two 

samples. 

3.1.2 - St r e s s - S t r a i n Relationships 

The true stress-true s t r a i n curves of the Sn - 1% B i a l l o y 

appear to be t y p i c a l of superplastic materials (Fig.9). At the highest 

s t r a i n rate (1.0"/min.), a "steady s t a t e " stress i s not maintained, but 
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instead the flow stress c o n t i n u a l l y decreases u n t i l f a i l u r e . As the 

s t r a i n rate i s decreased into the s u p e r p l a s t i c region the flow stress 

i s maintained r e l a t i v e l y constant. At the two lower s t r a i n rates i n 

the Stage I I region, following an i n i t i a l decrease, the stress r i s e s 

with increasing s t r a i n , despite the fa c t that the s t r a i n rate i s 

co n t i n u a l l y decreasing during a constant crosshead speed t e s t . This 

increase i s l i k e l y the r e s u l t of grain growth during the t e s t . 

During the low stress l e v e l creep tests the s t r a i n rate 

usually decreases c o n t i n u a l l y with time (Figs.10 and 11). A decreas­

ing s t r a i n rate with time can be i n d i c a t i v e of either primary creep 

or increasing g r a i n s i z e . However, i n the curves at stresses of 350 

and 500 p s i a steady state creep rate p r e v a i l s a f t e r very low s t r a i n s . 

At these stresses then, the transient or primary creep s t r a i n i s small. 
(42) 

Usually transient s t r a i n decreases with decreasing stress , therefore, 

a primary region would not be expected also f o r the lower stress 

(< 250 p s i ) curves. The decreasing s t r a i n rate i n these curves must be 

due to g r a i n growth during the deformation. This e f f e c t i s s i m i l a r to 

the r i s i n g stress with s t r a i n i n the constant extension rate t e s t s . 

3.2 - Grain Growth During Annealing 

The grain growth k i n e t i c s during annealing at room temperature 

were studied by measuring the grain s i z e on a plane perpendicular to 

the wire axis of the extruded rod. If the same sample was used f o r 

several determinations at d i f f e r e n t times i t was remicrotomed before 

each measurement to eliminate any surface e f f e c t s which could have 

affected the rate of grain growth. Grain s i z e versus time curves were 

determined f o r three types of material; the low r a t i o material, ex­

truded at room temperature and at 0°C and the high r a t i o material ex-
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truded at room temperature (Figs. 12 - 1 5 ) . On the log - log scale 

the grain s i z e - time curves are S-shapedwith an approximately s t r a i g h t 

l i n e c e n t r a l p o r t ion. 

The points i n the c e n t r a l region between the v e r t i c a l l i n e s 

were used to determine the constants, k and n, i n a power law equation; 

D = k t n , by a le a s t squares f i t t i n g program. The curved portions of 

the curves at short and long times were estimated v i s u a l l y . The con­

stants, k and n, are presented i n Table 1 along with the corresponding 

values of r , the c o r r e l a t i o n c o e f f i c i e n t , an indication of the goodness 

of f i t of the data. When r = 0 there i s no c o r r e l a t i o n . When r = ± 1 

there i s perfect c o r r e l a t i o n or a perfect f i t . 

TABLE 1 - Power Law Constants f o r Grain Size Versus Time Curves 

Ma t e r i a l k n r 

Low Ratio R.T. Extrusion .0481 .546 .981 

Low Ratio 0°C Extrusion .1208 .455 .998 

High Ratio R.T. Extrusion .1207 . .480 .879 

In Fig.12, a " t h e o r e t i c a l " curve (dashed l i n e ) of the form 
— 2 — 2 2 

D - Do = k t i s plo t t e d . Several values of Do and k were chosen 

and curves p l o t t e d u n t i l the best coincidence between the t h e o r e t i c a l 

and experimental curves was obtained. The best f i t was obtained f o r 

Do = 1.8 u and k ='.067. This t h e o r e t i c a l equation seems to represent 

the growth k i n e t i c s reasonably w e l l except at long times and a small 

portion around 1000 minutes. 

In Fig.15, where a l l three curves are compared without the 
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experimental points i t i s seen that the processing v a r i a b l e s had some 

ef f e c t on the grain growth k i n e t i c s . The higher extrusion r a t i o had 

a small e f f e c t causing a s l i g h t l y lower n value and higher k. The lower 

extrusion temperature had a la r g e r e f f e c t producing a higher D than the 

other curves at the same time despite the f a c t that i t would be expected 

to have a smaller r e c r y s t a l l i z e d g r a i n s i z e (Do). 

3.3 - Grain Growth-During Deformation. 

3.3.1 f E f f e c t of Deformation Time 

The grain s i z e , as determined immediately a f t e r deformation 

w i l l subsequently be referred to as "deformed g r a i n s i z e " and w i l l be 

compared to the "annealed grain s i z e " taken from the curves i n Fig s . 

12 to 14 at the time required f o r the deformation. 

One serie s of tests was performed on the room temperature ex­

truded low r a t i o material using Instron tests at four d i f f e r e n t s t r a i n 

rates. A second s e r i e s was c a r r i e d out on the high r a t i o material using 

creep te s t s at several stress l e v e l s . In both s e r i e s , at each stress 

l e v e l or s t r a i n rate, samples were tested to d i f f e r e n t amounts of s t r a i n 

and the grain s i z e measured immediately a f t e r t e s t i n g . In F i g s . 16 and 

17 the deformation grain s i z e i s p l o t t e d against the t e s t i n g time f o r 

both s e r i e s of tests along with the annealed grain s i z e curves. A l l 

curves through the experimental points were drawn using regression 

analysis to the power law equation, except f o r the two lowest s t r a i n 

rates i n Fig.17. The constants, k and n, and the c o r r e l a t i o n c o e f f i c i ­

ent r are presented i n Table 2. 
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TABLE 2 - Power Law Constants f o r Grain Size Versus Time  
Curves During Deformation 

S t r a i n Rate 
/min. n 

1.0 2.127 -.0162 -.211 

.0 2.82 .0196 .152 

10~ 2 .640 .433 .985 

2 x 10~ 3 .677 .308 .967 

7 x 10~ 4 .353 .386 .868 

2 x 10~ 4 .296 .374 .987 

1 x 10~ 4 .108 .496 .998 

2.7 x 10~ 5 .138 .454 .998 

A l l s t r a i n rates.produced an increase i n the grain s i z e . Except f o r 

the two highest s t r a i n rates, the "n" values remain between.3 and .5 
-4 

regardless of s t r a i n rate. At s t r a i n rates below 10 /min., the de­

formation causes an upward s h i f t of the annealed curve independent of the 

s t r a i n rate and "k" remains constant. At the higher rates (> 2x10 4/min.) 

the value of "k" increases with s t r a i n rate. 

3.3.2. E f f e c t of S t r a i n 

The change i n grain s i z e with s t r a i n was also studied using 

these t e s t s . In order to eliminate the e f f e c t of d i f f e r e n t amounts of 

annealed grain growth occurring at the d i f f e r e n t s t r a i n rates a value 

was defined and plotted against true s t r a i n (Figs.18 and 19). 
DA 



Fig.18. Relative Grain Size Change versus S t r a i n During 
Instron Deformation. 



Fig.19. Relative Grain Size Change versus S t r a i n During 
Creep Deformation. 



AD i s defined as the difference between the deformation grain s i z e , 

Dp, and the annealed grain s i z e ^ D ^ a f t e r the time required f o r deform­

ation. In other words i s the r e l a t i v e a d d i t i o n a l increase i n 
D A 

grain s i z e due to the deformation. 

Regression analysis was used to determine the best f i t 

s t r a i g h t l i n e s at each s t r a i n rate. The constants, M and b, i n the 

equation: 
# = M E + b 

and the c o r r e l a t i o n c o e f f i c i e n t , r, are given i n Table 3. 

TABLE 3 - Straight Line Constants f o r Relative Grain Size  
Change Versus S t r a i n Curves 

• f . -1» 
E (mm ) 

M(% _ 1) b r 

1.0 .004 .086 .537 

.1 .0094 .100 .946 

IO" 2 .020 .015 .992 

2 x 10" 3 .021 .012 .994 
-4 

7 x 10 .028 -.059 .959 
-4 

2 x 10 .015 .020 .879 
-4 

1 x 10 4 .009 .035 .944 

2.8 x 1 0 - 5 .007 .032 .876 

The amount of grain s i z e enhancement at a given value of s t r a i n (25%) 

f i r s t increases, then decreases with continually decreasing s t r a i n rate 

(Fig,20). The error bars i n Fig.20 i n d i c a t e the standard error of 



Fig.20. Relative Grain Size Change A f t e r 25% 
Strain versus S t r a i n Rate. 



estimate of the regression l i n e s at the 95% confidence l e v e l . There 

i s l i t t l e c o r r e l a t i o n between the degree of g r a i n s i z e enhancement and 

"m" value, (Fig.21) i n the high "m" regions. However, AD/D^ does 

increase with "m" i n the t r a n s i t i o n region between Stage II and Stage 

I I I . 

3.3.3. - Grain Elongation 

The grain s i z e i n the l o n g i t u d i n a l d i r e c t i o n (D^) and the 

transverse d i r e c t i o n (D^) were determined for a serie s of specimen's 

deformed approximately 35% at d i f f e r e n t s t r a i n rates. Using 
(43) 

Rachinger's a n a l y s i s , the amount of s t r a i n due to s l i p (or other 

grain elongation processes) can be calculated from the rate D-̂ /D̂  by 

the formula: 

e s l i p = ( ̂  ) 3 - 1 
D T 

The percentage of the deformation due to elongation pro­

cesses can then be calculated (Fig.22). The contribution of grain 

elongation to the s t r a i n appears to increase with decreasing s t r a i n 
-2 

rate from the high m region (e = 10 /min.) to the lower m Stage I 

region. At the higher s t r a i n rates (Stage II - Stage III t r a n s i t i o n 

region) the contribution may also increase s l i g h t l y . 

3.3.4. - Al t e r n a t i n g Tension - Compression 

Tension-compression t e s t s were c a r r i e d out on the low extrusion 

r a t i o , 0°C extrusion temperature material. The specimens were annealed 

for 4 hours before t e s t i n g while the epoxy used f o r gripping hardened. 

The s t r e s s - s t r a i n cycle used f o r the test i s i l l u s t r a t e d i n Fig.23. The 

stress at 2% s t r a i n on each h a l f cycle (Fig.23) remained f a i r l y constant 



m 

Fig.21. Relative Grain Size Change A f t e r 25% 
S t r a i n versus "m". 



Fig.22. Degree of Grain Elongation After 35% 
Strain at Various S t r a i n Rates. 
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with the accumulated s t r a i n u n t i l the l a s t cycle when the specimen 

seemed to s t a r t s l i p p i n g from the g r i p s . The t e s t was then terminated, 

grain s i z e measured and X-rays taken. 

Because several minutes were required to change the d i r e c t i o n 

of the stress due to slack i n the grips and t e s t i n g machine, a control 

sample was needed f o r comparison. A f t e r the 4 hour anneal, the con­

t r o l sample was strained to 2% s t r a i n , i n tension, unloaded to zero 

stress and annealed f o r the equivalent length of time needed to re­

verse the machine to the compression cycle. The 2% s t r a i n tension 

cycle was then repeated a number of times u n t i l the t o t a l time of 

t e s t i n g and the s t r a i n cycles were the same as i n the tension-compression 

te s t . The control sample had a t o t a l t e n s i l e s t r a i n of 38% whereas 

the, tension-compression sample had a net t e n s i l e s t r a i n of only 2%. 

The measured grain s i z e a f t e r t e s t i n g was 3.70 microns f o r the tension-

compression specimen compared to 3.30 microns f o r the co n t r o l sample. 

Thus, i t would appear that reversing the d i r e c t i o n of the s t r a i n has 

l i t t l e e f f e c t on the grain s i z e enhancement. 

3.3.5 - Grain Type D i s t r i b u t i o n 

The grain "type" was defined as the number of sides possessed 

by an i n d i v i d u a l grain i n the plane of examination. The d i s t r i b u t i o n of 

types was determined by counting the number of sides of each grain i n ­

side a c e r t a i n area. A sample was deformed i n creep at an i n i t i a l 

s t r a i n rate of 2.8 x 10 "Vmin. to a s t r a i n of 14% and micrographs taken 

of the deformed section and the undeformed g r i p section. The g r i p section 

represents a s t a t i c anneal of equivalent time (10,000 minutes). The 

grain s i z e s of the two sections were 9.34 u f o r the deformed and 7.9 u 
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fo r the undeformed. Both d i s t r i b u t i o n s are of s i m i l a r form (Fig.24) 

except f o r an increase i n r e l a t i v e frequency of 8, 9 and 10 sided 

grains i n the deformed specimen compared to the undeformed. Grains 

having le s s than 6 sides appeared s l i g h t l y l e s s frequently i n the de­

formed material. 

The cumulative frequency d i s t r i b u t i o n s (Fig.25) are plo t t e d 

with the grain type on a logarthmic s c a l e . Both curves are close to 

a s t r a i g h t l i n e p l o t t e d i n t h i s fashion, although the deformed d i s ­

t r i b u t i o n departs s l i g h t l y from the s t r a i g h t l i n e at the upper end. 

A s t r a i g h t l i n e r e l a t i o n s h i p on these scales indicates a "log-normal" 
(44) 

d i s t r i b u t i o n i n agreement with r e s u l t s of Feltham on annealed < 

aluminum. This form of the d i s t r i b u t i o n appears to be t y p i c a l of 

annealed materials where the dr i v i n g force f o r gr a i n growth i s surface 
(45) 

energy 

A Chi-square test f o r comparing d i s t r i b u t i o n s was performed 

on these two d i s t r i b u t i o n s and showed that they d i f f e r e d s i g n i f i c a n t l y 

at the 97.5% confidence l e v e l . A difference of means t e s t , performed 

on the two d i s t r i b u t i o n s showed that the d i s t r i b u t i o n means d i f f e r e d 

at only the 57% confidence l e v e l . 

3,3.6 - Grain Size D i s t r i b u t i o n s 

Grain s i z e d i s t r i b u t i o n s were performed on the same samples 

used i n Section 3.3.5 using the s i z e grouping previously defined. The 

r e l a t i v e frequency d i s t r i b u t i o n s , p l o t t e d i n Fig.26 show that the de­

formation has produced a s h i f t of the curve to the r i g h t and an increase 

i n the mean grain c l a s s . Calculations show a s l i g h t l y greater d i s ­

persion i n the d i s t r i b u t i o n a f t e r deformation. 
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Fig.24. Grain Type D i s t r i b u t i o n for 
Annealed and Deformed Structure. 



Fig.25. Cumulative Frequency Diagram f o r Grain 
Type D i s t r i b u t i o n of Eig.24. 
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ig.26. Grain Size D i s t r i b u t i o n f o r Annealed 
and Deformed Structures. 
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The means of these d i s t r i b u t i o n s can be rela t e d to the 

average l i n e a l intercept which has been used as a measure of the grain 

(41) 
s i z e previously. The mean grain area i n two dimensions , 

A, = exp [In A_ + ( l n S G A ) 2 ] (2) 
2~~ 

where A^ i s the geometric mean of the grain area and S ̂  i s the geometric 

standard deviation. Also 

l n A G = iii In 2 (3) 

and l n = Sm l n 2 (4) 

where m and Sm are the mean and standard deviation r e s p e c t i v e l y of 

the grain classes. Thus, a value of A can be calculated using the 

values of m and Sm computed for Fig.26. The square root of A can 

then be compared to D. The calculated values of /A were 10.1 and 

7.4 microns f o r the deformed and annealed samples compared to 9.34 

and 7.9 f o r D. Agreement between the two grain s i z e measuring methods 

i s thus s a t i s f a c t o r y . 

The cumulative frequency d i s t r i b u t i o n s (Fig.27) f o r two samples 

again show that the s i z e d i s t r i b u t i o n s are e s s e n t i a l l y log-normal. In 

order to see i f the shapes of the s i z e d i s t r i b u t i o n s had been changed 

by the deformation, d i s t r i b u t i o n s of an annealed and deformed sample 

of equivalent mean grain s i z e should be compared. By s h i f t i n g the 

annealed curve to the ri g h t to a p o s i t i o n where i t produced an average 

grain area or l i n e a l intercept equivalent to the deformed sample such 

a comparison could be made. Although the disp e r s i o n of gr a i n sizes i s 

thought to increase somewhat with annealing t i t w i l l be assumed that 

the standard deviation would not change appreciably f o r t h i s change i n 



Fig.27. Cumulative Frequency Diagram f o r Grain 
Size D i s t r i b u t i o n of Fig.26. 
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average grain s i z e ( 7 .4 to 10 .1 u ) . From e q u a t i o n 2 ! new value of m, 

the mean grain c l a s s , was calculated to give a /K of 10 .1 u . The 

di f f e r e n c e between t h i s new m of 5.76 and the o l d m f o r the annealed 

sample ( 4 ,88 ) was the amount that each point on the annealed cumulative 

frequency pl o t was s h i f t e d to the r i g h t . This procedure produced a 

new annealed d i s t r i b u t i o n with a mean grain class of 5.74 and a standard 

deviation of 1 .63 . From the points of t h i s s h i f t e d curve a r e l a t i v e 

frequency d i s t r i b u t i o n was c a l c u l a t e d and compared to the deformed 

frequency d i s t r i b u t i o n curve (Fig, 2 8 ) . These two curves then re­

present two samples with the same l i n e a l intercept of 10.1,one having 

been deformed and the other annealed. 

Although the deformed sample seems to possess a higher pro­

portion of class 6 sizes no other trends are evident and both curves 

are b a s i c a l l y the same shape. The grain s i z e d i s t r i b u t i o n appears to 

be unchanged by the deformation process. 

3.4 - X-Ray Analysis 

In the back r e f l e c t i o n photographs, a v a r i a t i o n i n i n t e n s i t y 

around the circumference of some of the Debye rings was observed 

(Fig.29 ) i n d i c a t i n g that a texture was present i n the as-extruded 

material. In order to determine the o r i e n t a t i o n of the f i b e r axis, 

the X-ray pattern was f i r s t indexed using Bunn charts. I t was found 

that the rings with the most prominent evidence of texture corresponded 

to r e f l e c t i o n s from the (442) and (640) planes. By measuring the angle 

a (Fig.29 ) at the centre of the arcs on these ri n g s , the angle p was 
(36) 

calculated from the formula : 

cos p = cos 0 cos a 
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Fig.28. Grain Size D i s t r i b u t i o n f or Annealed and 
Deformed Structures of Equivalent Mean Grain Size. 



Fig.29. Back Refle c t i o n Pattern for 
Extruded Rod. 
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where p i s the angle between the normal to the plane i n question, and 

the f i b e r axis. By a graphical method (Fig.30), the l o c a t i o n at the 

f i b e r axis was then found to be within 14° of a [110] pole of the 

c r y s t a l (Fig.30). In other words, a large proportion of the c r y s t a l s 

were aligned with a [110] pole almost p a r a l l e l to the d i r e c t i o n of the 

wire axis. 

A [110] pole f i g u r e was p l o t t e d i n Fig.31, with the s o l i d 

l i n e s representing the l o c a t i o n of two of the [110] poles calculated 

from the centre of the Debye arcs. The dotted l i n e s are the locations 

of the poles at the point where the i n t e n s i t y of the Debye arc f a l l s 

to one h a l f of the peak i n t e n s i t y . These dotted l i n e s then i n d i c a t e 

the strength or degree of p e r f e c t i o n of the texture. 

The strength of the texture was measured with the micro-

densitometer by determining the r e l a t i v e i n t e n s i t y of the arc of the 

(640) r e f l e c t i o n as a function of the angle a, with a = 0° at the 

peak i n t e n s i t y p o s i t i o n (Fig.32). 

The extrusion r a t i o had l i t t l e e f f e c t on the degree of the 

texture (Fig.32(a)). Annealing of the extruded rod also had l i t t l e 

e f f e c t (not shown). Deformation did appear to influence the texture 

however, (Fig.32(a)). Only the highest s t r a i n rate used (1.0/minute) 

produced a strengthening of the texture (Fig.32(b)). A l l other s t r a i n 

rates produced a weakening of the texture to about the same degree 

except for t = .1/minute which produced a s l i g h t l y greater e f f e c t . 

These r e s u l t s i n d i c a t e that during superplastic deformation random 

grain r o t a t i o n i s taking place as a r e s u l t of grain boundary s l i d i n g 

causing a decrease i n the texture. 
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Fig.30. Location of Fiber Axis on Standard 
Stereographic Projection of Tin. 
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Fig.31. (110) Pole Figure for Extruded Rod. 
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3.5 - Grain Growth A f t e r Deformation 

3.5.1 - Growth by Annealing 

To determine i f any fa c t o r s a f f e c t i n g g r a i n growth were 

changed by deformation, samples were deformed then annealed at room 

temperature. The grain s i z e v a r i a t i o n with time during and a f t e r 
-2 

deformation at a s t r a i n rate of 10 /min. i s plo t t e d i n Fig.33 along 

with the s t a t i c annealing curve f o r t h i s m a t e r i a l . Immediately 

a f t e r the stress i s removed, the growth rate i s lower. I t i s i n t e r e s t ­

ing to note that a f t e r deformation and considerable post deformation 

annealing, the grain s i z e i s a c t u a l l y less than that of a sample 

s t a t i c a l l y annealed f o r the equivalent length of time. Similar post 

deformation annealing curves (Fig.34) f o r d i f f e r e n t amounts of s t r a i n 

suggest that the rate of growth a f t e r deformation i s a function of 

s t r a i n ; small s t r a i n s are followed by a f a s t e r growth rate than large 

s t r a i n s , Further i l l u s t r a t i o n i s afforded by Figs.35 and 36 where 

two curves of Fig.34, f o r 70% s t r a i n and 6.9% s t r a i n are replotted 

along with sections of the s t a t i c annealing curve with the time axis 

s h i f t e d ; the time to reach an annealed grain s i z e equivalent to the 

deformation grain s i z e i s taken as zero time. In t h i s way, i t i s 

possible to compare growth rates of two samples having reached the same 

grain s i z e by two routes; annealing and deformation. These curves con­

fir m that the post deformation growth rate i s less than the s t a t i c 

annealing rate but only a f t e r large amounts of s t r a i n i n g . 

3.5.2 - Growth Enhanced by Deformation 

The deformation seemed to be producing some change i n the 

material structure which, i n turn, caused a reduction i n the grain 
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growth rate. To determine i f t h i s s t r u c t u r a l change aff e c t e d the 

s t r e s s - s t r a i n rate r e l a t i o n s h i p s , the following experiment was performed. 

A sample of the low r a t i o 0°C extrusion temperature material was de-

formed i n the Instron to 85% true s t r a i n at a s t r a i n rate of 10 /min. 

The grain s i z e a f t e r deformation was 5.5 microns. A piece of the same 

material was annealed to a grain s i z e of 5.8 microns and the two 

samples used to perform an incremental s t r a i n rate change te s t (Fig.37). 

The deformed material behaved very s i m i l a r l y to the annealed 

material although the deformed material had a s l i g h t l y higher "m" 

value at the low s t r a i n rates. The s t r u c t u r a l changes produced by the 

p r i o r deformation had l i t t l e e f f e c t on the s t r e s s - s t r a i n rate r e l a t i o n ­

ships. 

To see i f the change had any e f f e c t on the growth k i n e t i c s 

during further deformation, another set of experiments was performed. 
_2 

Two samples were again deformed to 85% s t r a i n (at e = 10 /min.) and 

a grain s i z e of 5.5 microns. One of these was then annealed to a 

grain s i z e of 6.2 microns to see i f the s t r u c t u r a l changes might be 

alt e r e d by an annealing treatment. Two other samples were annealed 

to s i m i l a r grain sizes (5.8 and 6.5 microns) f o r comparison. A l l 

four samples were;then deformed at t = 6.7 x 10 ^/min. to a s t r a i n 

of approximately 15% and the grain s i z e s measured. 

The i n i t i a l and f i n a l g r ain sizes are presented i n Fig.38 

as a function of the deformation time at e = 6.7 x 10 Vmin. The 

annealed samples had a much greater increase i n gr a i n s i z e than the 

previously deformed samples; the annealed sample had a r e l a t i v e en­

hancement (^ ) of 60% compared to only 30% f o r the deformed sample. 

A 
The s t r u c t u r a l change produced by deformation had the same 
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e f f e c t i n t h i s case as i t d i d on post deformation annealing, i . e . i t 

reduced the grain growth k i n e t i c s as compared to undeformed material. 

In other words, deformation i n the su p e r p l a s t i c region 

causes a reduction i n subsequent grain growth rates exclusive of 

whether t h i s growth i s produced by annealing or by further deformation. 
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DISCUSSION 

4.1 - S u p e r p l a s t i c i t y 

Evidence has been presented to suggest that the Sn-1% B i a l l o y 

used i n t h i s study i s su p e r p l a s t i c . The phenomenological basis of 

s u p e r p l a s t i c i t y requires a strong dependence of the flow stress o n 

s t r a i n rate. The Sn-Bi a l l o y does posseses high "m" regions (Figs. 

4 and 5). The c h a r a c t e r i s t i c three-stage curve t y p i c a l of most super­

p l a s t i c a l l o y s was not obtained, despite the use of very low stress 

creep tests (Fig,7). A s l i g h t reduction i n "m" can be seen i n Fig.7 

but mainly i n the creep test region. The decreased "m" could be due to 

the change i n t e s t i n g procedure rather than a d i f f e r e n t mechanism 

c h a r a c t e r i s t i c of Stage I deformation. 

Elongation values from a l l o y s regarded as superplastic range 

from 300 to 2000%. The maximum value obtained f o r t h i s a l l o y was 

s l i g h t l y greater than 300%. Elongation values reported by Alden on the 

same a l l o y with s i m i l a r s t r a i n rates ranged from 450 to 500%. A 

possible reason f o r t h i s d i f f e r e n c e could be differences i n impurity 
(12) 

content . A higher maximum value of "m" was obtained by Alden 

(Fig.8), lending support to t h i s supposition. 

A f t e r large amounts of deformation the grains of the Sn-Bi a l l o y 

remained equiaxed, a prominent feature of superplastic a l l o y s . The 

r a t i o of the average l i n e a r intercepts measured i n the l o n g i t u d i n a l 

and transverse d i r e c t i o n s (D^/D^) was found to be 1.15 a f t e r 300% 

elongation. 

On the basis of these r e s u l t s i t i s concluded that the Sn - 1% 

Bi a l l o y under study i s supe r p l a s t i c . 
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4.2 - Grain Growth 

An equation can be derived f o r the growth of c e l l s i n a soap 

f r o t h where the surface energy of the f i l m i s the d r i v i n g f o r c e . A 

pressure d i f f e r e n c e e x i s t s across each curved c e l l w a l l , the pressure 

being greater on the concave side and proportional to the curvature of 

the w a l l . The pressure d i f f e r e n c e Causes d i f f u s i o n from the high to 

the low pressure side r e s u l t i n g i n movement of the walls toward the 

centre of curvature. The rate of motion of the walls and hence the 

rate of increase of the average c e l l diameter (—) w i l l be proportional 
dt 

to the curvature, C. 

In an equiaxed structure the curvature can be assumed pro­

p o r t i o n a l to the inverse of the average c e l l diameter so that: 

= K'C = ^ (5) 
dt D 

Integration of t h i s equation and evaluation of the constant of i n t e ­

g ration y i e l d s ; 

D 2 - D 2 = 2 Kt (6) 
o 

where D q i s the average c e l l s i z e at t = 0. 

Experimental observations have confirmed that t h i s equation 

(47) 

adequately describes the growth of c e l l s i n a soap f r o t h 

The growth of grains i n a metal can be represented by a s i m i l a r 

type of equation except that the exponent i s usually found to be greater 

than 2 and can change with temperature, p u r i t y of the metal, and the 

presence of impurities. I t was shown (Eig.12) that the room temperature 

grain growth of the Sn-Bi could be approximated by an equation s i m i l a r to 

(6). Therefore one may conclude that grain growth during s t a t i c annealing 
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i s driven by the reduction of surface energy of the grain boundaries. 

s i m i l a r atomistic theories to explain the migration rates of grain 

boundaries i n which the segregation of impurity atoms to the boundary 

control the movement. Both theories depend on the fac t that the 

equilibrium concentration of the impurity i n the region of the grain 

boundary w i l l be d i f f e r e n t from the concentration i n the bulk of the 

material. The l a t t i c e d i s t o r t i o n caused by the impurity atom i s less 

i f i t i s placed i n the already d i s t o r t e d boundary region instead of i n 

the i n t e r i o r c r y s t a l l a t t i c e . Thus, i f a force acts on the grain 

boundary tending to separate i t from the array of excess impurity atoms, 

the free energy of the system w i l l be increased. The boundary w i l l have 

to climb an energy h i l l which i s equivalent to a r e s t r a i n i n g force exerted 

by the impurities on the boundary. 

overcome the maximum r e s t r a i n i n g f o r c e , the boundary w i l l break away 

from the impurity array and migrate at a rate that depends only on the 

net rate of atom transfer across the boundary. If however, the d r i v i n g 

force i s not s u f f i c i e n t to cause t h i s breakway the boundary w i l l tend 

to move away from the impurity array a short distance u n t i l the r e s t r a i n i n g 

force j u s t equals.the d r i v i n g force. The boundary w i l l then move with a 

constant v e l o c i t y with the impurity array t r a i l i n g behind. The rate of 

migration w i l l then be controlled by the d i f f u s i o n of the impurity atoms 

i n the d i s t o r t e d region adjacent to the boundary. 

Lucke and Detert (48) and Gordon and Vandermeer (49) proposed 

I f the force acting to move the boundary i s large enough to 

The rate of grain boundary migration can be wri t t e n as: 

G = (7) 
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where M i s the mobility of the rate determining step. 

F i s the free energy per atom 

and x i s the distance co-ordinate i n the d i r e c t i o n of boundary mi­

gration. 

The m o b i l i t y i s r e l a t e d to a d i f f u s i o n c o e f f i c i e n t by the equation: 

M - £ (8) 

where i s the d i f f u s i o n c o e f f i c i e n t f o r the impurity atoms i n the re­

gion adj acent to the boundary when the rate i s impurity dependent. 

Lucke and Detert consider that the impurity atoms w i l l t r a i l so f a r 

behind the boundary that they can be considered as d i f f u s i n g i n the un-

d i s t o r t e d bulk material and D 1 w i l l be equal to that f o r l a t t i c e 

d i f f u s i o n of the impurity. In contrast Gordon and Vandermeer suggest 

that the impurity atoms w i l l be d i f f u s i n g c l o s e r to the boundary i n a 

much more d i s t o r t e d area. D 1 then could be s i g n i f i c a n t l y greater than 

that f o r l a t t i c e d i f f u s i o n . 
dF 

Vandermeer and Gordon developed an equation f o r by 

assuming that i n grain growth the surface energy i s the d r i v i n g f o r ce: 

(9) dF 2 ^ s Vm 
dx N X D C_ 

where Y g i s the s p e c i f i c g r a i n boundary energy 

V i s the molar volume of the parent material m r 

N i s Avogadro's number 

X i s the width of the grain boundary 

D i s the average grain diameter 

C_ i s the equilibrium concentration of impurity i n the grain 

boundary. 
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They also assumed that the boundary migration rate was equal to the 

rate of change of the average grain diameter. By combining equation 

7, 8 and 9 and s u b s t i t u t i n g f o r and D 1 the following equation was 

developed: 

2y V D 1 exp -( $ ~ ) dD _ f 's m o ^ RT , 1_ . 
dt _ 1 RT X A C J * - U U J 

o D 

where D 1 and Q 1 are the pre-exponential f a c t o r and a c t i v a t i o n energy 

per mole f o r d i f f u s i o n of solute i n the region near the boundary 

A i s a v i b r a t i o n a l entropy f a c t o r 
C i s the atomic f r a c t i o n of solute o 

E i s the i n t e r n a l energy gain per mole of solute atoms trans­

fe r r e d to the boundary from the bulk material. 

This equation i s i d e n t i c a l to equation (5): 

dD _ K 
dt D 

with the bracketed term equal to K. 
(45) 

Holmes and Winegard made estimates of the values of the 

terms i n equation (10) for d i l u t e Sn-Bi a l l o y s (Table 4). 

TABLE 4 - Estimated Values f o r Terms of Equation (10)v J 

Term Value 

Y„ I O - 5 cals/cm 2 

s 
V 
m 

3 
16.3 cm 

n 1 2 D

Q 72 cm /sec. 

5 x 10 ^ cm. 
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They were then able to c a l c u l a t e a value of 22,000 c a l f o r Q 1 + E 

from experimentally determined grain growth curves. 

Using the values of Table 4 c a l c u l a t i o n s f o r the three 

grain growth curves (Fig.15) yielded an average value f o r Q 1 + E of 

24,000 c a l . which compares favourably with Winegard's r e s u l t . Since 

Winegard's data was shown to be consistent with the impurity dependent 

(35) 

migration model , i t can be concluded that the boundary migration 

i n the Sn-1% B i a l l o y i s also c o n t r o l l e d by the d i f f u s i o n of the solute 

B i atoms. 

Various mechanisms by which deformation can increase the 

average g r a i n s i z e at a given time w i l l now be discussed. 

4.3 - Mechanisms of Deformation Enhanced Grain Growth 

4.3.1 - Grain Coalescence 

Grain boundaries i n a s i n g l e phase metal e x i s t because of 

d i f f e r e n t c r y s t a l l o g r a p h i c o r i e n t a t i o n s of the grains (Fig.39a). If 

one of the adjacent grains rotates (Fig.39b) i n a d i r e c t i o n so that the 

misorientation i s eliminated (Fig.39c)„then the boundary i t s e l f w i l l 

have been eliminated and the two o r i g i n a l grains w i l l have coalesced 

into one. A f t e r the coalescence some l o c a l migration of the surround­

ing boundaries w i l l probably occur (Fig.39d). I t i s obvious that 

operation of t h i s mechanism w i l l produce an increased grain s i z e . 

L i ^ " ^ proposed that a s i m i l a r phenomenon occurred with subgrains and 

used the mechanism as an explanation f o r the o r i g i n of r e c r y s t a l l i z a t i o n 

n u c l e i i . 

During superplastic or creep deformation grain boundary 

s l i d i n g i s accompanied by a r o t a t i o n of the grains with respect to 



\ 
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each other. The amount of r o t a t i o n can be quite large i . e . 25-30° 

a f t e r 45% e x t e n s i o n ^ ^ . Thus, stress-induced r o t a t i o n could produce 

coalescences i n a s i m i l a r fashion to L i ' s mechanism. 

In creep deformation i t i s generally f o u n d t h a t a 

l i n e a r r e l a t i o n s h i p e x i s t s between the amount of s l i d i n g and the t o t a l 

s t r a i n . The amount of g r a i n r o t a t i o n and the number of coalescence 

reactions should also increase c o n t i n u a l l y with s t r a i n . I f these r e ­

l a t i o n s h i p s are assumed true f o r superplasti c materials, the g r a i n 

coalescence mechanism predicts q u a l i t a t i v e l y the curves of Figs.18 

and 19 where the grain s i z e enhancement increaseswith s t r a i n . 

The e f f e c t s of s t r a i n rate are also consistent with the 

mechanism. The grain elongation measurements show that as the s t r a i n 

rate i s lowered from the high "m" region the percentage of the t o t a l 

deformation due to grain boundary s l i d i n g decreases. Thus, f o r a 

given amount of s t r a i n , the lower s t r a i n rates would have experienced 

less g r a i n r o t a t i o n and should show a smaller rate of grain growth. 

In f a c t , the r e s u l t s show that, i n the superplas ti c region, the lower 

the s t r a i n rate the lower the r e l a t i v e enhancement f o r a given 

amount of s t r a i n (Fig.19). 

However, the r e s u l t s of the a l t e r n a t i n g tension-compression 

tests are not explained. The a l t e r n a t i n g s t r e s s - s t r a i n cycles would be 

expected to approximately reverse the d i r e c t i o n of the grain rotations 

so that the large net rotations needed to produce a s i g n i f i c a n t number 

of coalescences would not occur. Thus, t h i s type of deformation should 

produce very l i t t l e g r a in enhancement. In f a c t , the a l t e r n a t i n g de­

formation produced s l i g h t l y more gr a i n growth than the corresponding 

tension only control sample. 
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In order to attempt to t h e o r e t i c a l l y predict the e f f e c t s of 

the coalescence mechanism on the grain type and s i z e d i s t r i b u t i o n s the 

analysis of Appendix I was c a r r i e d out. The c a l c u l a t i o n s show that the 

s l i g h t changes i n the grain type d i s t r i b u t i o n curves can be accomplished 

i f 6% of the o r i g i n a l grains coalesced during deformation. However, 

t h i s 6% coalescence was not s u f f i c i e n t to account for the observed 

changes i n the grain s i z e d i s t r i b u t i o n . 

I t i s therefore concluded that the d i s t r i b u t i o n c a l c u l a t i o n s 

and the tension-compression experiements show that the grain coalescence 

mechanism cannot be the cause of the grain s i z e enhancement during 

deformation. 

4.3.2 - Increased Driving Force 

It appears more l i k e l y that the g r a i n s i z e enhancement i s 

a r e s u l t of a "speeding up" of the normal g r a i n growth processes 

caused by increased boundary migration rates. Deformation could i n ­

crease e i t h e r the mobility or the d r i v i n g f o r c e . Mechanisms a f f e c t i n g 

the d r i v i n g force w i l l be considered i n t h i s section. 

4.3.2.1 - R e c r y s t a l l i z a t i o n 

R e c r y s t a l l i z a t i o n taking place continuously during the de­

formation could produce an increased g r a i n s i z e . Continuous re-
, , _ , , (17,18,20,26,52) „ c r y s t a l l i z a t i o n has been suggested by some authors to 

be associated with superplastic deformation. The r e c r y s t a l l i z e d grains 

would be equiaxed thus explaining the observed lack of d i r e c t i o n a l i t y 

i n g r ain shape a f t e r deformation. R e c r y s t a l l i z a t i o n would be i n i t i a t e d 

by stress concentrations at t r i p l e l i n e s or at l o c a l d i s t o r t i o n s around 
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s l i d i n g grain boundaries. 

However, i t does not seem l i k e l y that r e c r y s t a l l i z a t i o n during 

deformation could be the cause of the increased grain s i z e i n super­

p l a s t i c metals. Studies of r e c r y s t a l l i z a t i o n during creep deformation 

of large grained metals ( P b ^ 3 ' " ^ , N i ^ ~ ^ and Mg^~^) show that the 

grain s i z e a f t e r r e c r y s t a l l i z a t i o n occurs can be e i t h e r l a r g e r or 

smaller than the o r i g i n a l s i z e . Theories(53,55) q ^ t ^ e o r i g i n Q f re­

c r y s t a l l i z a t i o n during creep require a d i s l o c a t i o n or subboundary net­

work to provide the n u c l e i i and the d r i v i n g force f o r growth. However, 

one of the main c h a r a c t e r i s t i c s of superplastic deformation i s the 

lack of d i s l o c a t i o n networks during deformation. R e c r y s t a l l i z a t i o n 

i s also d i f f u c l t to imagine i n a two phase superplastic system since 

simultaneous r e c r y s t a l l i z a t i o n and growth of both phases would be r e ­

quired. 

4.3.2.2 - Grain Boundary S l i d i n g 

Since grain boundary s l i d i n g i s observed i n a l l superplastic 

a l l o y s i t s e f f e c t s on grain boundary migration must be considered. 

Studies of grain boundary s l i d i n g i n p o l y c r y s t a l s and b i c r y s t a l s have 

shown that boundary migration i s often connected with s l i d i n g . However, 

an important conclusion of the b i and t r i c r y s t a l studies (57-59) 

i s that migration does not necess a r i l y accompany s l i d i n g . 

Migration depends on the configuration of the sample (^0,61) a n ( j t ^ e 

f 62 ) 

r e l a t i o n s h i p between the surface examined and the d i r e c t i o n of 

s l i d i n g . There appear to be two types of migration associated with 

b i c r y s t a l s l i d i n g . The f i r s t t y p e ^ 2 ' * ^ occurs when s l i d i n g produces 

a step onthe c r y s t a l surface and the boundary migrates to the low 
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energy p o s i t i o n with respect to t h i s new surface (Fig.40). The second 

type appears to be caused by the b u i l d up of d i s l o c a t i o n s at the 

boundary as a r e s u l t of the s l i d i n g p r o c e s s ^ 2 ' . 

S U R F A C E 

I N I T I A L G R A I N B O U N D A R Y 

B O U N D A R Y A F T E R S L I D I N G A N D 

M I G R A T I O N 

Fig.40 Surface Grain Boundary Migration 
Associated with Internal Boundary 
S l i d i n g . 

( 63—67 ^ 

Studies on p o l y c r y s t a l s also suggest that migration 

i s not a necessary r e s u l t of g r a i n boundary s l i d i n g . Almost a l l ob­

servations were made on the surface of the specimens so that the mi­

gration may be a t t r i b u t e d to the surface step e f f e c t or to another 

surface e f f e c t investigated by B e l l and Langdon and G i t t i n s and 

G i f k i n s ^ 4 \ They observed that g r a i n boundaries i n t e r s e c t i n g the 

surface tended to orient themselves at 90° to the surface during 

annealing and during creep. If samples were annealed p r i o r to creep so 

that most of the angles approached 90° the amount of migration during 

the deformation was greatly reduced. Surface observations also do not 

suggest a mechanism f o r a grain s i z e increase since the migration occurs 

both away from and toward the centre of curvature of the b o u n d a r i e s ^ 1 



However, Ishida, et a l , using an i n t e r n a l marker 

method, found simultaneous migration and s l i d i n g i n the i n t e r i o r of 

samples and concluded that some migration could be driven by s t r a i n 

energy. The s t r a i n energy could be present i n two forms; as d i s l o c a t i o n 

arrays adjacent to the s l i d i n g boundary and produced d i r e c t l y by 

the shearing process^or as arrays at t r i p l e points ̂ "^'^^ produced by 

l o c a l deformation to r e l i e v e stress concentrations. 

A model of stress induced grain growth based on the f i r s t 
( 2 1 ) 

type of array was suggested by Cook . A di f f e r e n c e i n d i s l o c a t i o n 

density across a shearing boundary was postulated with the larger grains 

containing the higher density. The boundaries would then migrate i n 

such a way as to decrease the s i z e of the la r g e r grains and increase 

the s i z e of the smaller. In normal g r a i n growth the l a r g e r grains 

grow at the expense of the smaller. The operation of t h i s model i s 

thus i n d i r e c t opposition to the normal growth process and would only 

decrease the s i z e dispersion of the grain structure and not produce 

an increase i n average grain s i z e . Changes i n the grain s i z e dispersion 

were not observed experimentally i n the Sn-1% B i a l l o y . 

If the d i s l o c a t i o n structure was arranged so that migration 

toward the centre of curvature tended to decrease the stored s t r a i n 

energy, the normal growth process could be enhanced. The r e s u l t s of the 

alt e r n a t i n g tension-compression test appear to disprove t h i s type of 

model. The d i s l o c a t i o n pile-ups produced i n the tension cycle would 

probably be counteracted by s i m i l a r pile-ups on the opposite side of 

the boundary when the stress reverses i n the compression c y c l e . Thus, 

a large net b u i l d up of d i s l o c a t i o n s on one side of a shearing 

boundary would be u n l i k e l y i n th i s type of experiment. Hence, a large 
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net increase i n the grain growth rate would not be expected, contrary 

to experiment. 

The l o c a l deformation structure at t r i p l e points also 

seems an u n l i k e l y mechanism to promote growth since the induced mi­

gration i s equally l i k e l y to be toward or away from the centre of 

curvature of the blocking grain 

4.3.2.3 - Grain Elongation 

An elongated g r a i n must possess greater boundary curvature 

than one of equivalent volume but with an equiaxed shape. An increase 

i n l o c a l curvature should produce an increase i n boundary migration. 

Some grain elongation did take place i n the a l l o y studied and could have 

been caused by e i t h e r s l i p processes or Nabarro-Herring d i f f u s i o n . 

However, i t i s d i f f i c u l t to see how g r a i n elongation can 

lead to a net increase i n grain s i z e . The increased curvature causes 

migration i n a d i r e c t i o n to restore the o r i g i n a l equiaxed shape without 

an increase i n g r a i n volume. Also, i f an elongated grain structure was 

responsible f o r the grain s i z e enhancement, the accelerated rate of 

growth during deformation would be expected to continue a f t e r the de­

formation ceased u n t i l the elongation was removed. Measurements re ­

vealed that very long post deformation annealing times were required 

before the equiaxed shape was restored. Figure 32, however, reveals 

a sharp decrease i n growth rate as the deformation ends. 

4.3.2.4 - Grain Boundary Width 

An increase i n the d r i v i n g force term could be effected by 

a decrease i n the boundary width (Equation (9)). Since accurate 



measurements of grain boundary width are not a v a i l a b l e and con­

troversy s t i l l e x i s t s as to the exact nature of the high angle bound­

ary i t i s d i f f i c u l t to assess the e f f e c t s of deformation on the boundary 

width. If grain boundary s l i d i n g tended to smooth the boundary, the 

width could be reduced, However, some experimental evidence ' 

suggests that s l i d i n g boundaries become corrugated. 

4.3.3 - M o b i l i t y Enhancement 

The only way the m o b i l i t y of the g r a i n boundaries can be 

increased by deformation i s through the d i f f u s i o n c o e f f i c i e n t (Equation 

(8)). 

S t r a i n enhanced d i f f u s i o n has been a subject of considerable 

controversy i n the l i t e r a t u r e . Most experimental work has been con­

cerned with e i t h e r s e l f d i f f u s i o n c o e f f i c i e n t s or bulk c o e f f i c i e n t s of 

a major a l l o y i n g element. Several i n v e s t i g a t o r s ^ ^ have reported 

large increases i n the s e l f d i f f u s i v i t y of Ag a f t e r deformation. In-
(7273) (7A) creases by factors of 10 to 15 were found i n Ag, Fe ' and Cu 

These r e s u l t s have been questioned however, on t h e o r e t i c a l and ex­

perimental grounds by a number of w r i t e r s C o n t r a d i c t o r y ex-
(78) 

perimental evidence has also been presented f o r Ag , i n which maximum 

enhancements of only 2 times were obtained. Other systems, such as 

Z n - A l ^ 7 9 \ S - N i ^ 8 ° \ Cu-Ag^ 8 2^ and N i - F e ^ 8 1 ^ showed l i t t l e increase 

with deformation. 

Excess vacancies produced by the motion of d i s l o c a t i o n s 

during deformation have been used to explain the apparent enhancement. 

However, t h e o r e t i c a l arguments showed that t h i s mechanism was i n ­

s u f f i c i e n t to account f o r the larger enhancements. A d i s l o c a t i o n pipe 

model appeared more p l a u s i b l e , the increased d i s l o c a t i o n density pro-



v i d i n g f a s t e r paths f o r the d i f f u s i n g atoms. Despite the contro­

v e r s i a l nature of t h i s subject, i t seems reasonable to conclude that 

some increase i n the bulk d i f f u s i o n c o e f f i c i e n t i s p o s s i b l e . The 

e f f e c t i s highly dependent on conditions of temperature, and s t r a i n 

r a t e. 

The e f f e c t s cf deformation on the grain boundary d i f f u s i v i t y 
( 83) 

have not received widespread atte n t i o n . Bhat and Vitovec studied 

the d i f f u s i o n of zinc i n copper with superimposed fatigue s t r a i n i n g and 

found no s i g n i f i c a n t enhancement of the volume d i f f u s i o n c o e f f i c i e n t . 

However, they did f i n d increased d i f f u s i o n along grain boundaries which, 

they postulated, might be due to damage r e s u l t i n g from grain boundary 

s l i d i n g . Blackburn and Brown measured the grain boundary d i f f u s i o n 

c o e f f i c i e n t s of Ag d i f f u s i n g i n copper b i c r y s t a l s . Tests on s t a t i c 

and s l i d i n g boundaries showed a s l i g h t increase (30%) i n grain 

boundary d i f f u s i v i t y when the boundaries were s l i d i n g . The r e s u l t s 

cannot be taken as conclusive since the number of measurements was 

small and the observed increase was w i t h i n the experimental e r r o r . 

Thus, there i s some suggestion that grain boundary d i f f u s i o n 

c o e f f i c i e n t s can also be increased by deformation and i n p a r t i c u l a r 

by grain boundary s l i d i n g . Processes of grain boundary s l i d i n g , such 

as climb-glide of d i s l o c a t i o n s or Nabarro-Herring migration of grain 

boundary bumps, which involve motion of vacancies, could conceivably 

produce an excess of vacancies i n the grain boundary region and i n ­

crease the d i f f u s i o n c o e f f i c i e n t . Since the c o n t r o l l i n g f a c t o r i n 

grain boundary migration i s the d i f f u s i o n of the B i atoms i n a d i s ­

torted region close to the boundary a l o c a l increase i n the vacancy 

concentration i n t h i s region would lead to f a s t e r grain boundary mi­

gration. 



If the production rate of vacancies i s proportional to 

the s t r a i n rate and the annealing rate of vacancies i s proportional to 

the excess vacancy concentration, then the equation governing the 

vacancy concentration i s : 

dn = Ki e dt - n K 0 dt (11) 
X -L X 2 

where n = atomic f r a c t i o n s of vacancies due to s t r a i n x 

= constant such that e i s the rate of vacancy production 

e = s t r a i n rate 

K2 = constant equal to — where x i s the average l i f e t i m e of a 

vacancy. 

Integration of t h i s equation y i e l d s : 

K e 
n x = ^ — (1 - exp (-K 2t)) (12) 

where t i s the time to reach a value of s t r a i n at the given s t r a i n rate. 

If d i f f u s i o n takes place by a vacancy mechanism, the d i f f u s i v i t y i s pro­

p o r t i o n a l to the t o t a l atomic f r a c t i o n of vacancies. Thus, the d i f f u s i ­

v i t y i n a strained system w i l l be proportional to ( n x + n v) where n v 

i s the equilibrium vacancy concentration (mole f r a c t i o n ) . 

In preceding sections i t was shown that during annealing: 

dD _ ^ dF 
dt ix 

dF 
where M was proportional to the d i f f u s i v i t y and - j ^ was proportional 

to — . Combining these f a c t o r s y i e l d s : 
D 

k' n 
^ - (13) 
dt D 
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when the vacancy concentration i s i n thermal equilibrium and: 

,- k' (n + n ) 
^ = — - 5 2 - (14) 
dt D 

when excess vacancies are generated. Substituting f o r n from 
x 

equation (12) gives: 

- k' ( KT~ (1 - exp (-K t ) ) + n ) 
— = (15) 
dt D 

Integration of t h i s equation gives the grain s i z e v a r i a t i o n with time 

during deformation: 

-2 2 / K 1 \ K l f 1 ~ exp (-K t) \ 
D 2 - D o

2 = 2k' [ ( ^ + n v ) t - ) ] (16) 

This equation can be compared to the integrated form of equation (13): 

D 2 - D 2 = 2 k ' n t (17) o v 

If the values of the various constants can be estimated, 

t h e o r e t i c a l grain s i z e versus time curves during deformation can be 

calculated. An approximate value of n^ of 10 9 was obtained from^^^ : 

n v = exp - AH f/ R T (18) 

where AH^, the a c t i v a t i o n energy f o r formation of vacancy, = 11.8 k c a l / 
(87) 

mole . Then k' was determined from the k value f o r the t h e o r e t i c a l 

unstrained grain growth curve (Fig.12). 

The constant w i l l depend upon the nature of the vacancy 

sinks i n the material. The most e f f e c t i v e sink i n t h i s case w i l l pro-
(85) 

bably be the grain boundary. G i r i f a l c o and Grimes have shown that 
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for a p l a t e - l i k e sink: 

2D 2D 
K 2 = ~~ = ~2~ e X p (~ A V R T ) ( 1 9 ) 

L L 

where D^ i s the vacancy d i f f u s i o n c o e f f i c i e n t 
(OJ) 

AH^ i s the a c t i v a t i o n energy for vacancy motion = 15.7 kcal/mole 
2 (88) 

D q i s the frequency f a c t o r f o r vacancy d i f f u s i o n = 9.7 cm /sec. 

and L i s the perpendicular distance from the sink. 

An accurate value for the distance L cannot be determined since i t 

depends on the boundary shear process that produces the vacancies. A 

value of L = 100A° :was taken as a reasonable estimate which yi e l d e d 

K 2 ^ 10 3/min. 

To determine K^, values of D, t and t f o r one experimental 

point were inserted i n equation (16) along with the values of the other 

constants. The t h e o r e t i c a l curves were thus constraindd to pass 

through only t h i s one point and could be used f o r comparison with 

experimental points at other s t r a i n rates. The point chosen was: 
— _2 
D = 4 . 7 p a t t = 100 minutes and i = 10 /min. 

—3 (89) —3 which gave = 4.1 x 10 . Barry and Buown estimated = 10 f o r 

s t r a i n enhanced bulk d i f f u s i o n . 

Equation (16) was now used to c a l c u l a t e a s e r i e s of g r a i n 

s i z e versus time curves f o r d i f f e r e n t s t r a i n rates (Fig.41). The 

experimental points from F i g s . 16 and 17 and the unstrained annealing 

curve are shown i n Fig.41 f o r comparison. Agreement of the experimental 

points with the t h e o r e t i c a l curves i s s a t i s f a c t o r y from s t r a i n rates 

from 1.0/minute to 7 x 10 ^/minute. The lower s t r a i n rate curves do 

not agree quite so w e l l . I t should be remembered that the points for 

these low s t r a i n rates were determined by creep t e s t i n g the high ex-
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trusion r a t i o material which seemed to possess s l i g h t l y d i f f e r e n t 

grain growth c h a r a c t e r i s t i c s from the lower extrusion r a t i o material 

(Fig.15). 

The same equation (16) can be used to c a l c u l a t e t h e o r e t i c a l 
AD . , 
— versus s t r a i n curves by computing the time required to reach a 
\ 
c e r t a i n value of s t r a i n and i n s e r t i n g i t i n the equation (Fig.42). 

Again agreement i s good f o r the high s t c a i n rates shown. The trend 

to lower ^p- values with decreasing s t r a i n rate i n the superplastic 

region i s also predicted. T h e o r e t i c a l ^ values at 25% true s t r a i n 
DA 

f o r a l l s t r a i n rates were calculated and compared to the experimental 

points from Fig.21 (Fig.43). The experimental trend i s again pre­

dicted by the theory. 

Predictions of the ainealing behaviour a f t e r deformation 

can also be made. When excess vacancies are no longer produced 

equals zero. The excess vacancies that were present at the end of the 

deformation w i l l continue to influence the grain growth u n t i l they 

anneal out. I f the deformation ends at time t ^ , the excess vacancies 
present , n^ , w i l l be given by: 

K. 
X l 

n x = ^ e (1 - exp (- K 2 t ^ ) (20) 

The loss rate of the excess vacancies i s given by: 

d n 

dt 

Integration of t h i s equation y i e l d s 

^ = - n x K 2 (21) 

K2 ( t l ~ t ) 

n = n e (22) x x^ 
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Fig.43. Comparison of Theory and Experiment f o r the Relative 
Grain Size Change Aft e r 25% S t r a i n . 
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where n i s the atomic f r a c t i o n of excess vacancies at time t a f t e r x 

deformation ceases. 

Substituting equation(20)into equation (14) gives: 

k' (n e K 2 ( t l _ ° + n ) 
ft

 X l V (23) 
D 

If i s the grain s i z e at time t ^ i n t e g r a t i o n of t h i s 

equation gives the time dependence of the grain s i z e a f t e r deformation: 

2k' n 

D 2 - S^2 = 2k' n v (t - t 1 ) + - i r (1 - exp (K 2 ( t ^ t ) ) 

(24) 

A curve was calculated from t h i s equation with t ^ = 120(min.) and 

= 4.6 u and compared to the corresponding experimental curve (Fig. 

44). The theory c o r r e c t l y p redicts the sharp t r a n s i t i o n i n the curve 

a f t e r deformation, but does not predict the actual grain s i z e a f t e r 

long periods of post deformation annealing. The t h e o r e t i c a l curve 

coincides with the s t a t i c annealing curve of Fig.35 rather than the 

actual post deformation curve. These decreased growth rates a f t e r 

deformation can be explained by a mechanism involving the e f f e c t s of de­

formation on texture. 

N e i l s e n ^ ^ has discussed a coalescence-type mechanism which 

occurs as a consequence of g r a i n "encounters" during normal grain 

growth. Normal grain growth occurs by the disappearance of the small 

grains of few sides. In a t y p i c a l sequence a four, sided g r a i n (Fig.45a 

No.5) shrinks u n t i l the upper two t r i p l e points meet (b) 
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(a) (b) (c) 
Fig.45. Illustration of Grain "Encounter" During 

Grain Growth. 

This unstable configuration changes to the more stable one (c) and 

grain 5 has lost a side. In the process grains 2 and 4 have "encountered" 

or formed a new boundary between them. Nielsen proposed that i f grains 

2 and 4 were of like orientation or slightly misoriented a grain bound­

ary would not form between them. They would have coalesced to form a 

larger grain and increased the average grain size. 

The frequency of encounters that lead to a coalescence will 

depend on the relative number of like-oriented grains present in the 

structure. Compared to a random structure, a textured material will 

have a higher proportion of these like orientations and consequently 

a higher grain growth rate. Since superplastic deformation causes a 

randomization of the original texture the growth rate after deformation 

should be less than a statically annealed sample as is observed. 

The grain size distribution analysis and the tension-com-

p»Ession experiment are also consistent with the diffusivity enhancement 

model. Since the deformation ceases only a speeding up of the normal 

growth processes, equivalent grain size samples should possess the same 

size distributions regardless of the path taken to reach that grain 



s i z e . The curves of Fig.28 show that the g r a i n s i z e d i s t r i b u t i o n s 

are indeed i d e n t i c a l . In the tension-compression experiment r e ­

v e r s a l of the stress d i r e c t i o n should s t i l l produce a vacancy ex­

cess i n the grain boundary region. As long as the boundaries are 

s l i d i n g , vacancies w i l l be generated and the mobility increased r e ­

gardless of the s l i d i n g d i r e c t i o n . Experimentally the stress 

d i r e c t i o n had l i t t l e e f f e c t on the grain s i z e enhancement produced. 

Since a l l of the experimental r e s u l t s are consistent 

with the d i f f u s i v i t y enhancement model, i t seems the most l i k e l y 

cause of the deformation induced grain growth. 



SUMMARY AND CONCLUSIONS 

1) Superplastic deformation of Sn - 1% B i was found to pro­

duce considerable increases i n grain growth rates. During annealing 

the g r a i n s i z e k i n e t i c s could be described by an equation of the 

—2 2 2 
form D - D = k t. The e f f e c t of deformation was to increase the o 

value of the constant k. 

2) The gr a i n growth enhancement was most pronounced at high 

s t r a i n rates i n the superplastic region. Reduction of s t r a i n rate 

produced a lessening of the growth ra t e s . 

3) The r e l a t i v e grain s i z e change, ̂ p- , was found to depend 

l i n e a r l y on s t r a i n . 

4) The grain growth rates on annealing a f t e r deformation 

were les s than s t a t i c rates. 

5) Grain type and grain s i z e d i s t r i b u t i o n s were s i m i l a r i n 

deformed and annealed structures. 

6 ) A mechanism involving the production of excess vacancies 

i n the grain boundary region leading to increased boundary mobility 

was found to be consistent with a l l experimental observations. 
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APPENDIX A 

E f f e c t of Coalescence Mechanism on Grain Type  
and Size D i s t r i b u t i o n s 

If the coalescence mechanism i s responsible f o r the grain 

s i z e increase during deformation, changes i n the grain type and s i z e 

d i s t r i b u t i o n s would be expected. In t h i s section an attempt w i l l be 

made to c a l c u l a t e the expected d i s t r i b u t i o n s a f t e r deformation from 

the s t a t i c annealing d i s t r i b u t i o n s . 

It w i l l be assumed that the d i s t r i b u t i o n curves (Figs. 24 

and 26) f o r s t a t i c annealing are representative of the actual d i s ­

t r i b u t i o n s at any time during annealing. This assumption i s usually 

(44) 

made i n t h e o r e t i c a l considerations of grain growth although some 

changes i n the s i z e d i s t r i b u t i o n may occur on extended annealing 

Since i t has been shown that the d i s t r i b u t i o n curves taken from a 

random 2 dimensional section and the actual s p a t i a l d i s t r i b u t i o n are 
(41 44) 

s i m i l a r i n form ' the analysis w i l l be done i n 2 dimensions. 

When a boundary coalesces, the l o c a l d i s t r i b u t i o n of g r a i n 

types i s a f f e c t e d . In a perfect 6 sided network (Fig.46), when grains 

1 and 2 undergo a coalescence so that the indicated boundary disappears, 

the combined 1-2 grain w i l l have 8 sides. The adjacent grains (5 and 9) 

have become 5 sided. 
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Fig.46. E f f e c t of a Grain Boundary Coalescence. 

In general when a boundary separating grains having m and 

n sides disappears, a combined grain i s produced with sides numbering 

(m + n) - 4 and the two adjacent grains have each l o s t a side. In 

addi t i o n , the total number of grains has been reduced by one. 

The p r o b a b i l i t y of any one grain taking part i n a coalescence 

w i l l depend on i t s number of sides (m) and also on i t s r e l a t i v e 

frequency i n the structure (f ). The frequency f ^ w i l l be defined as 

X_/Xi. where X i s the number of m sided grains i n a given area and m t m 

X t i s the t o t a l number of grains i n the same area. The p r o b a b i l i t y 

of an (m + n) coalescence taking place w i l l vary as i . n f^. The 

p r o b a b i l i t y of producing an adjacent grain having p-1 sides w i l l equal 

the p r o b a b i l i t y of fin d i n g a p sided grain i n an adjacent s i t e . The 
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p r o b a b i l i t y of f i n d i n g a p sided g r a i n i n any s i t e i n the structure w i l l 

vary as i t s r e l a t i v e frequency ( f ^ ) . Therefore,for each coalescence 

that occurs there w i l l be produced i n the adjacent p o s i t i o n s : 

2 f grains of p-1 sides 

+ 2 f grains of m-1 sides m 

+ 2 f grains of n-1 sides n 

To s i m p l i f y the c a l c u l a t i o n s , coalescences w i l l be res­

t r i c t e d to the most frequently occurring grains, the 4, 5, 6 and 7 sided 

grains. In addi t i o n m w i l l be r e s t r i c t e d to values from 3 to 13. 

If a number of coalesced grains are produced by a 

given amount of s t r a i n , the t o t a l w i l l be composed of the number 

formed from each combination i . e . 

X c = a + b + c + d + e + f + g + h + i + j (25) 

a - number of 4-4 coalescence 

b = I I I I 4-5 I I 

c I I I I 4-6 I I 

d I I I I 4-7 I I 

e = I I I I 5-5 I I 

f - n: I I 5-6 I I 

g - I I I I 5-7 I I 

h — I I . I I 6-6 I I 

i 5 
". I I 6-7 i t 

3 = I I it 7-7 M 

The r a t i o a:b:c: ... w i l l be proportional to the p r o b a b i l i t y of occurrence 

of each combination (m f . n f ) i . e . 
m n 
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a:b:c: ... = 4 i^.h ; 4 tfy 5 . f 5 ; 4 6 . f g : ... (26) 

If i s known and i s small compared to Xfc then values of 

a, b, c .... can be calculated from the o r i g i n a l frequency d i s t r i b u t i o n . 

The number of grains of side m a f t e r a number of coalescences have 

occurred w i l l be defined as X'm. 

For one (4-4) coalescence X^ w i l l be reduced by two 

X'. = X. - 2 4 4 

However, a coalesced grain has been produced having sides equal to 

m + n - 4 (=4) 

X'. = X. - 2 + 1 4 4 
Also 2 f j . , 4 sided grains have been produced i n the adjacent p o s i t i o n 

X 
X' = X. - 2 + 1 + 2 ^r-

4 4 X. 

F i n a l l y , 2 f^»4 sided grains have l o s t a side i n the adjacent p o s i t i o n 

X X, 
X' 4 = X 4 - 2 + 1 + 2 ^ - 2 ̂  (27) 

This equation w i l l apply f o r every 4-4 coalescence that 

occurs, therefore, f o r "a" 4-4 coalescences: 

X' = X. - a + 4 4 
/ X X. K 

(2irt ~ 2rt ) \ <28> 
The frequency of the other grains w i l l be affected only by the adjacent 

grain reactions: 

X' - X. + [ 2 ^ - 2 ̂  1 a 

X ' 6 - X 6 , + ( 2 ^ - a 
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The 13 sided grains w i l l only loae by the adjacent grains since 14 

sided grains were not permitted o r i g i n a l l y : 

X13 
X ' l 3 = X13 ~ 2 7~ 3  

X t 

A 2 sided grain i s possible by the adjacent mechanism but i s unstable 

and w i l l disappear very quickly. I t w i l l be included i n the c a l ­

culations however: 
X 3 

X' 2 = 2 ^ a 

For each of these "a" coalescences the t o t a l number of grains has been 

reduced by one: 

X - t - X t " 3 

This analysis can be extended to the other combinations. 

For example for "a" 4-4 and "b" 4-5 coalescences the equations w i l l be: 

X 3 
X' 2 = 2 ^ (a + b) 

X' 3 = X 3 + ( 2 ^ - 2 ̂  ) (a + b) 

0 X' 4 = X 4 + ^ 2 j ~ - 2 Y- \ (a + b) - (a + b) 

x ' : c = x r + ^ ~ 2 ) (a + b) + b - b 

( 2 T t ~ 2 T t ) ( a + b ) 

•5 5 

X ' 6 = X 6 + 

X ' l 3 = X13 + ( 2 If »(a + b ) 



X» + = Xfc - (a + b) 

The equations obtained after a l l possible combinations are considered 

are: 

X'2 = + \ 2 ^ ) (a + b + c ...) 

X t / 
X'3 = X 3 + ( 2 Y~ - 2 ) (a + b + c...) 

X'4 = X 4 + ( 2 ^ - 2 ^ J (a + b + c ...) - (a + b + c + d) 

X'5 = X 5 + ( 2 ^ - 2 ^ ) (a + b + c ...) - (2e + f + g) 

X'6 = X & + ^2 Y~ - 2 Y~ j (a + b + c .. .) - (f + 2h + i ) + e 
x, x 6 

x„ x. 
X', = X, + 12 ~ - 2 ̂ - J (a + b + c . . . . ) - (g + i + 2j) + f 7 - 7 r x t - x t 

/ X X \ 
X ' 8 = X g + ( 2 ^ - 2 ^ 1 ( a + b + c . . . ) + g + h 

X'9 = X 9 + [2 - 2 ^ ) (a + b + c...) + !' 

' I _ Y 
L 10 10 

X10 
x t 2 x t i 

x l l 
2 — — 

x t t 

L X12 
<\ X t 

f 2
X 1 3 

I X t 

( 7 

\ 

" 2 x f ' 

(a + b + c ...) + j 

X ' u = X n + ( 2 ^ - 2 ^ ) (a + b + c...) 

X » 1 2 = X 1 2 + (2 ̂  - 2 ̂  J (a + b + c...) ) 
X ' l 3 = X13 + ( " 2 F ^ l (a+-b + c...) 

X' = X t - (a + b + c + ...) 
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By taking successive increments f o r X £ and knowing the 

o r i g i n a l d i s t r i b u t i o n , the new d i s t r i b u t i o n can be c a l c u l a t e d from 

the equations. Three increments of.X .were taken, each increment 

being 2% of the t o t a l number of grains (X f c). The c a l c u l a t e d d i s ­

t r i b u t i o n a f t e r the 6% coalscence could then be compared with the 

deformed d i s t r i b u t i o n (Fig.4 7 ) . The theory p r e d i c t s the observed 

decrease i n the frequency of the 4, 5 and 6 sided grains as compared 

to the annealed s t a t e . I t also p r e d i c t s the observed frequency increase 

i n the 8, 9 and 10 sided grains. However, disagreement i s not ob­

tained f o r the 2, 3 , 7, 11, 12 and 13 sided grains. I t seems reason­

able to conclude however, that the theory predicts the general trend 

of the d i s t r i b u t i o n changes and that only approximately 6% of the 

grains need coalesce to produce the degree of change observed. 

In order to determine i f t h i s 6% coalescence could also 

produce the observed changes i n the grain s i z e d i s t r i b u t i o n a s i m i l a r 

analysis can be performed. F i r s t , i t i s necessary to estimate the 
(44) 

most probable area of each type of gr a i n . Feltham has shown that 

a one-one r e l a t i o n s h i p e x i s t s between the type and s i z e d i s t r i b u t i o n s 

i . e . the smaller grains would, i n general, be those with few sides and 

the l a r g e r grains those with many sides. This r e l a t i o n s h i p was 

suggested by the log-normal d i s t r i b u t i o n s of the grain s i z e s and 

types. To prove the r e l a t i o n s h i p , the actual s i z e d i s t r i b u t i o n s f o r 

each type of grain were measured. The mean diameter of each type 

varied l i n e a r l y with the number of sides. ,It has been shown that 

the s i z e and type d i s t r i b u t i o n s of the Sn - 1% B i are also log-normal 

so i t w i l l be assumed that the same l i n e a r r e l a t i o n s h i p i s v a l i d . 

By oomparing the two d i s t r i b u t i o n curves f o r the annealed 
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Fig.47. Comparison of Calculated and Experimental 
Grain Type D i s t r i b u t i o n s . 
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material i t seemed that the three sided grains should have mean 

diameters corresponding to grain classes 1 and 2, 4 sided grains to 

3 and 4 classes, 5 sided grains to cl a s s 5, 6 sided to cl a s s 6 and 7 

sided to class 7. The most probable diameters of the 3, 4, 5, 6 and 

7 sided grains were thus taken to be 1.9, 3.8, 6.4, 9, and 12.8 u 

r e s p e c t i v e l y . The areas corresponding to these diameters are 2.8, 11, 
2 

32, 64 and 128 (u ) r e s p e c t i v e l y . 

Again only the coalescences between the 4, 5, 6 and 7 

sided grains w i l l be considered. For one m + n coalescence a new 

grain i s formed having an area which i s the sum of the areas of the 

combining grains. At the same time the number of grains i n the m 

sided g r a i n class has been reduced by one. S i m i l a r l y the number of 

grains i n the class of the n-sided g r a i n has been depleted by one. 

The possible combinations are l i s t e d i n Table 5, along 

with the area of the coalesced grains. 

TABLE 5 - Areas of Coalesced Grains 

Combination No. of Area of the Grain Class 
Combinations Coalesced to which 

Grain (ji ) Coalesced Grain 
belongs 

4 - 4 a 22 4 
4 - 5 b 43 5 
4 - 6 c 75 6 
4 - 7 d 139 7 
5 - 5 e 64 6 
.5 - 6 f 96 7 
5 - 7 8 160 7 
6 - 6 h 128 7 
6 - 7 i 192 8 -

7 - 7 j 256 8 
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When a l l these combinations take place the number of gr a i n i n clas s 

6 has been increased by c + e but at the same time has been decreased 

by a l l those reactions i n v o l v i n g a 6 sided grain i . e . c, f , 2h and i 

grains have been l o s t . I f Np i s the number of grains o r i g i n a l l y i n 

grain c l a s s p and N' p i s the number a f t e r (a + b + c ....) coalescences 

have occurred then the following equation can be written: 

g + b 

i + c + e 

2 j + d + f + g + h 

It w i l l be assumed that the grains l o s t from grain classes 3 and 4 by 

the reactions involving 4 sided grains w i l l be equally divided between 

the two clas s e s : 

N.. 4 = N 4 _ ( 2 a _ £ W _ c _ t ^ ) + a 

N ' = N (2a + b + c + d) 
3 3 2 

Using the experimental values f o r N^, etc. (Fig.26) and taking X c i n 

steps of 2% of the t o t a l number of grains the s i z e d i s t r i b u t i o n s a f t e r 

coalescence can be calculated. When the r e s u l t s f o r a t o t a l of 6% 

coalescence are compared to the actual as deformed distribution (Fig.48), 

i t i s seen that the predicted changes are very small compared to the 

actual measured r e s u l t s . 

N' = N c - 2 - b - f -
5 5 e 

N * = N , - c - f - 2 h -
6 6 

N'7 = N ? - d - g - i -

N' = N '+ i + j 
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Fig.48. Comparison of Calculated and Experimental 
Grain Size D i s t r i b u t i o n s . 
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