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ABSTRACT 

The rest p o t e n t i a l of sulphide electrodes was examined from both 

thermodynamic and k i n e t i c aspects. The k i n e t i c aspect has been 

found to be necessary for the i n t e r p r e t a t i o n of the establishment of the 

mixed p o t e n t i a l i n polyelectrode system, to which most sulphide systems 

belong. 

The p y r r h o t i t e electrode system was studied by measuring the rest 

p o t e n t i a l while changing the concentrations of ferrous ion, hydrogen 

ion and hydrogen sulphide i n the e l e c t r o l y t e , and the composition of 

py r r h o t i t e . 

A mixed p o t e n t i a l of p y r r h o t i t e consisting of the reaction 

S (in pyrrhotite) + 2H+ + 2e —*- H^S 

as a cathodic process and the reaction 

[ [ 

Fe (in pyrrhotite) —*• Fe + 2e 

as an anodic process accounts for the dependence of the rest p o t e n t i a l 

on those i o n i c species i n the e l e c t r o l y t e and the composition of 

py r r h o t i t e electrodes. 
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I. INTRODUCTION 

The electrochemical properties of sulphide minerals i n aqueous 

so l u t i o n , which were f i r s t examined i n the l a s t century, have been 

studied mainly by geologists who determined electrode p o t e n t i a l s of 

many sulphide minerals. From a p r a c t i c a l point of view these works 

succeeded i n arranging sulphides i n a serie s of p o t e n t i a l s analogous 

to the electrochemical series of metals. However, the po t e n t i a l s of 

sulphides measured were poorly reproducible and inconsistent with the 

values calculated from thermochemical data, and i n f a c t , the meaning 

of electrode p o t e n t i a l s of sulphides i s not p r e c i s e l y understood today. 

Meanwhile, these electrochemical properties of sulphides have been 

u t i l i z e d i n the study of various hydrometallurgical processes, e.g. 

e l e c t r o l y s i s , leaching and f l o t a t i o n . Anodic e l e c t r o l y s i s of 

sulphides y i e l d s metal ions and elementary sulphur or sulphate ions as 

products. The e l e c t r o l y s i s of n i c k e l matte i s already commercialized, 

and known as the Hybinette process. Galvanic action may occur between 

p a r t i c l e s of d i f f e r e n t sulphides i n a s l u r r y , analogous to galvanic 

corrosion between d i f f e r e n t metals; t h i s was f i r s t noticed during 

geologic studies of mineral deposits. 

Some attempts were made to int e r p r e t leaching reactions of 

sulphides as electrochemical processes, s i m i l a r to the corrosion process 
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of metals which i s now reasonably well understood. The a p p l i c a t i o n of 

pH-potential diagrams to the sulphide systems by various workers y i e l d s 

much information of a thermodynamic kind. However, a l l of the works 

undertaken to date f a i l e d to show the experimental v a l i d i t y of the 

pH-potential diagram. One of the p o s s i b i l i t i e s f o r t h i s i s that 

k i n e t i c considerations were l a r g e l y ignored. 

A f u l l understanding of the electrochemical k i n e t i c behaviour 

of sulphides i s necessary before the properties of systems studied 

over a short time i n t e r v a l (shorter than geol o g i c a l time ) can be 

completely understood for extractive metallurgy purposes. Thus some 

processes that come to equilibrium over a period of years, may be 

saf e l y ignored i n determining a useful diagram for extraction purposes, 

but then the diagram i s one which may contain metastable phases, 

thermodynamically speaking, which do not react appreciably i n allowed 

periods of time. 



I I . SIGNIFICANCE OF THE PRESENT WORK 

The present work was undertaken to o b t a i n the systematic 

measurement of the r e s t p o t e n t i a l s of sulphides which were i n t e r p r e t e d 

i n terms of e l e c t r o c h e m i c a l k i n e t i c s r a t h e r than f i n a l thermodynamic 

e q u i l i b r i a . 

In a d d i t i o n to these measurements, an attempt was made to o b t a i n 

thermodynamic data of sulphides which were necessary f o r the more 

q u a n t i t a t i v e i n t e r p r e t a t i o n of e l e c t r o c h e m i c a l data. 

P y r r h o t i t e , Fe^_^S (a << 1), was chosen as the sulphide i n which 

the present work was undertaken. Although p y r r h o t i t e i s not as 

important as p y r i t e f o r m e t a l l u r g i c a l purposes because of i t s r a r e r 

occurrence i n n a t u r a l ores, i t i s o f t e n accompanied by n i c k e l sulphide 

ores and the e l e c t r o c h e m i c a l behaviour seems to be c l o s e l y r e l a t e d to 

that of p y r i t e . Only a few works have been reported on e l e c t r o c h e m i c a l 

s t u d i e s of p y r r h o t i t e . P y r r h o t i t e appears i n a n o n - s t o i c h i o m e t r i c 

compound w i t h a wide range of Fe:S r a t i o forming an i r o n d e f i c i e n t 

l a t t i c e , t h i s non-stoichiometry of p y r r h o t i t e may be expected to have 

an e f f e c t on the e l e c t r o c h e m i c a l behaviour of the m i n e r a l s . 



I I I . A REVIEW OF THE LITERATURE 

(1) Description of Py r r h o t i t e 

1) The Fe-S phase diagram 

Although the Fe-S binary system has been studied i n f a i r d e t a i l 

from liquidus temperatures down to about 300°C, the low temperature 

phase r e l a t i o n s h i p s are le s s well understood because of d i f f i c u l t y 

with sluggish reaction rates. Nevertheless, i n F i g . 1 the phase 

re l a t i o n s h i p s of the system at low temperatures are shown based on 

phases observed i n nature and on a l i m i t e d number of laboratory 

studies."'" 

According to F i g . 1 i t can be seen that at low temperature the 

phase r e l a t i o n s h i p s are more complicated than those at high temperature. 

On cooling to 320 + 5°C, the high temperature hexagonal p y r r h o t i t e 

passes through an inversion to low temperature hexagonal p y r r h o t i t e . 

The temperature of t h i s inversion does not seem to be influenced by the 

composition of the p y r r h o t i t e . 

Further cooling near the FeS composition leads to a second 

inve r s i o n at 139°C and the t r o i l i t e phase becomes stable. I t i s noted 

i n F i g . 1 that the t r o i l i t e s t a b i l i t y i s very r e s t r i c t e d both i n regard 

to composition, which cannot deviate from the stoichiometric FeS 

and i n regard to temperature. In f a c t , a recent work done by R. Yund 
2 

and H. H a l l showed that t r o i l i t e appears to be r e s t r i c t e d to the 
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stoichiometric FeS, shown i n F i g . 2. 

The univariant f i e l d e x i s t i n g below 139°C between t r o i l i t e and 

the low temperature hexagonal p y r r h o t i t e increases s i g n i f i c a n t l y i n 

width with decreasing temperature. These two phases commonly co-exist 

i n many ores. 
a 

A monoclinic p y r r h o t i t e was f i r s t found i n a number of Swedish 

ores. I t has gradually become apparent that t h i s mineral i s quite 

common i n ore deposits. Monoclinic p y r r h o t i t e has been synthesized i n 

the pure Fe-S system, being stable below 310°C i n the presence of 

sulphur vapour. In Fi g . 1 i t i s t e n t a t i v e l y shown as a stable phase 

below 310°C. The compositions of numerous monoclinic p y r r h o t i t e s have 

been found to vary only s l i g h t l y ; the range i s 46.45 to 46.70 atomic 

percent Fe. Monoclinic p y r r h o t i t e and low-temperature hexagonal 

p y r r h o t i t e form a common assemblage i n natural ores as evidenced by 

X-ray powder d i f f r a c t i o n studies. Monoclinic pyrrhotite-marcasite 

assemblages are found to be quite common i n ores. A phase with 

Fe^S^ composition and rhombohedral structure was f i r s t reported and 

named smythite i n 1957. However, i t s s t a b i l i t y region i s not 

confirmed yet, so i n F i g . 1 a breakdown of the Fe^S^ compound i s 

indicated t e n t a t i v e l y at about 100°C. 

In natural ores p y r i t e as well as marcasite i s very common as the 

ir o n disulphide phase. However, the pyrite-marcasite r e l a t i o n has 

been a puzzle f o r many years. In composition there i s a difference 

between the two minerals, indicated by numerous experiments, i . e . the 

orthorhombic marcasite contains le s s sulphur than the cubic p y r i t e 

which i s e s s e n t i a l l y stoichiometric FeS.. This account for the fac t 
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that, when marcasite i s heated with elemental sulphur under confining 

pressure i t converts to p y r i t e i n a matter of days, at temperatures 

even as low as 150°C, forming a p y r i t e rim around i n d i v i d u a l marcasite 

grains. Several other studies on these minerals i n d i c a t e that hydrogen 

apparently plays an important r o l e i n the formation of marcasite 

because both marcasite and p y r i t e form i n Fe-S-O-H experiments but 

p y r i t e only forms i n Fe-S-0 experiments. Although more extensive studies 

need to be done, i t now appears that the H-S bond may s t a b i l i z e the 

marcasite structure. For these reasons marcasite i s not shown as a 

phase i n the pure Fe-S system. 

2) Thermodynamic diagrams 

Thermodynamic considerations y i e l d information on the stable 

phases i n the Fe-S system to appear i n selected environments. Because 

sulphur as one of components of the Fe-S system i s a very active element, 

i t s a c t i v i t y i n the environment determines the phase to be s t a b i l i z e d . 

To date, although many studies have been made on the thermodyanmic 

properties of the Fe-S system at high temperatures, studies at low 

temperatures are not a v a i l a b l e . However, the data at high temperature 

can be extrapolated to approximate the thermodynamic properties of 

sulphides at low temperature. 

The sulphur a c t i v i t i e s can be calculated as a function of composition 

across the composition ranges, shown i n the phase diagram of F i g . 1, by 
* 

using the e x i s t i n g thermodynamic data. In F i g , 3 the sulphur a c t i v i t i e s 

In t h i s work, unless otherwise state, a l l thermodynamic data were 
obtained from "Oxidation P o t e n t i a l s " by Latimer. 
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Figure 3. Schematic diagram of a c t i v i t y of sulphur i n the Fe-S system. 
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were calculated at 400°C, and are shown schematically f o r lower 

temperature regions corresponding to d i f f e r e n t phase r e l a t i o n s h i p s . 

3) pH-Potential diagrams f o r i r o n sulphide 

The pH-potential diagram shows a stable region of each phase i n 

the Fe-S system i n aqueous environments from a thermodynamic point of 

view. 

3-1) Equilibrium pH-potential diagram 

Fi g . 4 shows the pH-potential diagram i n acid regions made by 
4 -3 H. Majima. The ferrous ion concentration i s 1 M and 10 M to make 

the diagram more applicable to p r a c t i c a l considerations, concentrations 

of other solutes are 1 M. In t h i s f i g u r e , the p y r r h o t i t e domain i s a 

small region, compared with p y r i t e . 

3-2) Meta-stable pH-potential diagram 

In p r a c t i c e the py r r h o t i t e phase p e r s i s t s at pot e n t i a l s and pH's 

where p y r i t e i s stable because of the extremely slow formation of p y r i t e 

from p y r r h o t i t e . Sulphur that i s l e f t on p y r r h o t i t e during oxidation 

does not react i n laboratory times with unreacted p y r r h o t i t e to form 

p y r i t e . In F i g . 5 with t h i s consideration the meta-stable pH-potential 
4 

diagram for p y r r h o t i t e i n acid regions i s shown by H. Majima. This 

diagram i s applicable only to iron-saturated p y r r h o t i t e , which i s 

stoichiometric p y r r h o t i t e , because the free enthalpy value used i s of 

pyrr h o t i t e saturated with i r o n . For non-stoichiometric p y r r h o t i t e , i f 

thermodynamic data are a v a i l a b l e , the'same metal-stable diagrams 

can be drawn. The domain for p y r r h o t i t e of composition Fe^ g^S i s 

drawn to indicate the change i n s t a b i l i t y due to compositional changes 
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of t h i s non-stoichiometric compound. The composition Fe. Q^S i s near 

that which corresponds to equilibrium with p y r i t e , i . e . , monoclinic 

p y r r h o t i t e , Fe^S 0. 
/ o 

(2) Electrochemical Study of Pyr r h o t i t e 

An early electrochemical study i n p y r r h o t i t e was made by K.E. 

Wrabetz,"* as a part of extensive contributions to electrochemical studies 

of sulphides by both himself and his co-workers. In t h i s study the 

synthesized p y r r h o t i t e was used to investigate the e f f e c t of ferrous 

ion concentration on the electrode p o t e n t i a l . The data are shown- i n 

Table I. 

Table I. Measured p o t e n t i a l of the c e l l (-)FeS/FeS0. 
4 
•XM/KCl/Calomel R.E 

at 18°C. 

[Fe"1"1"] M E (mV) vs S.H.E. [Fe"1"1"] M E (mV) vs S.H.E. 

0.358 396 0.0075 394 

0.138 387 0.0020 402 

0.042 394 0.00046 399 

0.020 406 <average> 397 

As seen i n Table I, i t was concluded that the p o t e n t i a l did not depend 

on ferrous ion concentration i n range of 0.0004 ^ 0.3 M. Further, using 

the c e l l (-)FeS/FeS0 4, 0.1 M. H 2S0 4, 0.1 M/KCl/Calomel R.E. (+) the 

po t e n t i a l measured showed -0.40 ̂  -0.45 V(S.H.E.) for the synthesized 
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py r r h o t i t e and +0.51 V(S.H.E.) for the natural p y r r h o t i t e . There was 

a large d i f f e r e n c e i n p o t e n t i a l between those p y r r h o t i t e s . This 

diff e r e n c e i n p o t e n t i a l was not interpreted i n his work. 

Then, M. Sato published a systematic work i n several sulphides 

that was undertaken to measure the rest p o t e n t i a l of sulphides i n 

changing the pH, and the concentrations of corresponding metal ions and 

sulphide ions i n the e l e c t r o l y t e . Unfortunately the p o t e n t i a l 

measurement of p y r r h o t i t e i n the acid region f a i l e d because of i t s 

poor r e p r o d u c i b i l i t y caused by the formation of hydrogen sulphide 

and ferrous ions through the action of acids. Nevertheless, the data 

i n basic regions showed that the p o t e n t i a l f o r the natural p y r r h o t i t e 

was about 600 mV higher than that f o r the synthesized p y r r h o t i t e . 

Recently S. Venkatachalam and R. Mallikarjunan'' showed the 

independence of the p o t e n t i a l of the p r e c i p i t a t e d ferrous sulphide on 

ferrous ion concentration i n the range of 0.001 ^ 0.5 M i n ferrous 

ammonium sulphate s o l u t i o n . 

For the general electrochemical behaviour of p y r r h o t i t e i n acid 

regions i t can be described that the rest p o t e n t i a l i s not influenced 

by ferrous ion concentration i n the e l e c t r o l y t e and the rest p o t e n t i a l 

of natural p y r r h o t i t e i s more noble than that of synthesized p y r r h o t i t e . 

(3) Leaching of Py r r h o t i t e 

It i s well known that p y r r h o t i t e e a s i l y dissolves into acid 

s o l u t i o n forming ferrous ions and hydrogen sulphide as reaction products 

according to the following equation, 
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FeS + 2H + --—* Fe"1"4" + H 2S (+) ( I I I - l ) 

This occurs i n Kipp's generators to produce hydrogen sulphide i n standard 

chemical laboratories. 
g 

H.A. Pohl proposed the following mechanism of hydrogen sulphide 

evolution from the p r e c i p i t a t e d ferrous sulphide i n a c i d , 

FeS + H + • Fe4"*" + HS (III-2) 

HS + H + • H 2S (+) (III-3) 

accounting for the fact that FeS, CdS and ZnS dissolve i n k i n e t i c a l l y 

f i r s t order reactions with respect to the concentration of hydrogen 

ion, which suggests the step of (III-2) as a rate-determining reaction. 

In industry the hydrogen sulphide formed from p y r r h o t i t e can be 

of i n t e r e s t to produce elemental sulphur as a commercially valuable 

product by the oxidation process, i . e . 

H 2S + l / 2 0 2 y H 20 + S° (III-4) 

When py r r h o t i t e i s d i r e c t l y oxidized i n aqueous media by oxygen, the 

following stoichiometry of reaction i s established, 

4FeS + 30 2 > 2 F e 2 ° 3 + 4 ? (IH-5) 

The mechanism of the oxidation process of p y r r h o t i t e i s not f u l l y 
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understood yet. 
9 

K.W. Downes and R.W. Bruce c a r r i e d out the oxidation of py r r h o t i t e 

at 110-125°C under high oxygen pressure. In autoclave experiments 

no elemental sulphur was observed except when the pH of the s o l u t i o n 

reached about 1.5. The evolution of hydrogen sulphide, when py r r h o t i t e 

i s added to autoclave l i q u o r at room temperature, has been noticed. 

These facts lead to the postulation of the following mechanism of 

reaction; water and pyr r h o t i t e i n the autoclave react f i r s t forming 

ferrous sulphate, 

FeS + 20„ y FeSO. (III-6) 
2 4 

This sulphate i s oxidized to f e r r i c sulphate, 

6FeS0 4 + 1 l / 2 0 2 > lle^SO^^ + ^2°3 (III-7) 

This f e r r i c sulphate being unstable i n neutral water hydrolyses to 

f e r r i c oxide and sulphuric a c i d , 

F e 2 ( S 0 4 ) 3 + 3H20 • ?e2°3 + 3 H 2 S ° 4 CIH-8) 

The sulphuric acid then dissolves p y r r h o t i t e to form H^S and ferrous 

sulphate, 

FeS •+ H oS0. v FeSO. + H„S CUI - 9 ) 
2 4 4 2 



As a following step, H^S is oxidized by f e r r i c sulphate or oxygen to 

form elemental sulphur, 

H 2S + F e 2 ( S 0 4 ) 3 • 2FeS0 4 + ^SO^ + S° (111-10) 

H 2S + l / 2 0 2 y H 20 + S° (III-4) 

J. Gerlach, H. Hahne and F. Pawlek"^ studied the k i n e t i c s of the 

oxygen pressure leaching of p y r r h o t i t e . Sulphur, hydrogen sulphide 

and sulphate were detected as reaction products of sulphur during 

leaching, then, as a mechanism of reaction the following steps were 

proposed. 

FeS + 2H + H 2S + Fe"^1" ( I I I - l ) 

H 2S + l / 2 0 2 • S° + H 20 (III-4) 

H 2S + 20 2 • S0 4 + 2H + ( I I I - l l ) 

H 2S + 2Fe y S + 2Fe + 2H (111-12) 

H2S + 8 F e + + + + 4H 20 y S0 4 + ZYtt* + 10H + (111-13) 

Also, elemental sulphur reacts with oxygen to form sulphate ion, 

S° + 3/202 + H 20 y S0 4 + 2H + (111-14) 



- 18 -

The oxidation of ferrous to f e r r i c ion by oxygen occurs r e l a t i v e l y 

slowly i n sulphuric acid media, so the reactions (111-12) and (111-13) 

seem les s s i g n i f i c a n t , but the reaction ( I I I - l ) i s predominant because 

most of the sulphur was found as elemental sulphur (more than 70%). 



IV. THE METAL SULPHIDE ELECTRODE 

(1) Thermodynamic Aspect 

A metal sulphide electrode consists of two components and therefore 

i t s equilibrium p o t e n t i a l can be described i n terms of eit h e r of i t s 

components, i . e . according to the Nernst equation f o r equilibrium 

between metal i n the sulphide and metal cation i n the e l e c t r o l y t e , 

M^aq) + ne ^—»• M° ( i n sulphide) 

v v° ^ 2 . 3 R T V**" ,_„ E = E + — - — log (IV-1) M M nF B a M O 

and f o r equilibrium between sulphur i n the sulphide and hydrogen sulphide, 

S° ( i n sulphide) + 2H + + 2e H 2S (aq) 
2 

v T 7 O , 2.3RT a H+ * a S ° 
ES - ES + "IF— l o g I^T ( I V " 2 ) 

where E° and E° are the standard electrode p o t e n t i a l s . M S 

When equilibrium i s reached between the electrode and the e l e c t r o l y t e , 

i . e . the sulphide i s i n a t o t a l s o l u b i l i t y equilibrium with the e l e c t r o l y t e , 

the value of the p o t e n t i a l i s the same i n both cases, because the 

electrode can exert only one p o t e n t i a l . Therefore, according to 

equations (IV-1) and (IV-2), 
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2 
* w ° 4 . 2-3RT , V * F o . 2.3RT _ V ' a S ° 
E = E M + "nT" l o g 7 ~ = ES + ~~2F l o g ( I V _ 3 ) 

N L ? A M O b Z i aH 2S 

i s obtained. 

A basic thermodynamic property of the metal sulphide, ^2/n^l+ 

( a << 1), i s that the free enthalpy of formation of the sulphide phase 

defines the r e l a t i o n s h i p between metal and sulphur a c t i v i t i e s , i . e . 

2/nM° + (1 + <x)S° ^ M 2 / nS 1 - + a (IV-4) 

A F ( 4 ) = -2.3RT l o g [ a M s 7 ^ - - g o 

2/n l+a 

- 2.3RT log a ^ n . a ^ (IV-5) 

a,. 

W h e r e X/ s 1 +
 = 1 

2/n l + a 

For a s o l u b i l i t y equilibrium 

M 0 / S-, + 2H + >- 2/nM n + + H_S + a S ° (IV-6) 
z/n l+a •« z . 

2/n a 2/n a 
V+ ' S ' as° V+ ' *H S " as° 

K ( 6 ) - 2 — - 2 ( I V " 7 ) 

\ , S 1 + * V - a H + 

2/n l+a 

i s obtained, where i s the equilibrium constant for (IV-6) and 

a^ = 1 as mentioned before. According to (IV-2) and (IV-7), the 
M2/n bl+a 

following equation can be obtained: 

I? w ° _L 2.3RT 1 r 2/n l+a ,„ , , T T 7 O N 

ES = ES + I f - l o g [aMn+ * V / K ( 6 ) J ( I V " 8 ) 
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From t h i s equation and (IV-5) 

v y° 2.3RT 2.3RT 2/n , 1 , _o 0 . 2/n 
Es = ES " ~^2F~ 1 0 8 K ( 6 ) + - 2 F ~ l o g V + + 2F ( F ( 4 ) _ 2 ' 3 R T l o g V > 

„o 2.3RT . „ " ( 4 ) , 2.3RT . 2/n 2.3RT 1 2/n 
= ES ' ~2F l o g K ( 6 ) + —W + ~2T- l o g *U*+ ~ ~2F l o g V 

AF° 
_,o 2.3RT (4) , 2.3RT . , . . , T T 7 n N 

= ES " ~ 2 F — l o g K ( 6 ) + " 2 F — + " n F - L O 8 ( V + / a
M o ) ( I V _ 9 ) 

i s obtained. In (IV-9) 

AF° 
_o 2.3RT . _ . a (4) n 
ES " -JT- l 0 g K ( 6 ) + ~~2F - M 

therefore, 

E S = ;
E M + — l 0 g i ^ 

This equation shows the v a l i d i t y of (IV-3). 

(2) K i n e t i c Aspect 

The r e v e r s i b l e p o t e n t i a l of sulphide electrodes which can be 

calculated from thermochemical data using the Nernst equation does not 

always agree with that obtained i n measurements. This arises because 

most sulphide electrode systems belong to a polyelectrode system where 

a k i n e t i c consideration i s necessary to i n t e r p r e t the p o t e n t i a l of the 

sulphide electrode. In the acid region the possible electrochemical 

reactions i n t h i s polyelectrode system include; 

1. Oxidation of metal i n the sulphide to metal cations 

M°(in sulphide) • M n + + ne; i 

al 
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2. Oxidation of sulphur i n the sulphide to sulphate ions, 

S° ( i n sulphide) + 4 H 2 0 • S0 4 + 8H + + 6e; i a 2 

3. Reduction of sulphur i n the sulphide to hydrogen sulphide, 

S° (in sulphide) + 2H + + 2e *• H 2S; i c 3 

4. Reduction of hydrogen ions into hydrogen molecules, 

2H + + 2e y H„; i . 
2 c4 

5. Reduction of corresponding metal ions, which are added to 

e l e c t r o l y t e , into metal, 

M n + + 2e • M°; i _ 
c5 

6. Oxidation of hydrogen sulphide which i s dissolved i n the 

e l e c t r o l y t e , into elemental sulphur, 

H.S y S° + 2H + + 2e; i , 
2 ab 

These reduction and oxidation, i . e . cathodic and anodic processes can 

occur simultaneously but s t a t i s t i c a l l y independent of one another. 

The rate of each reaction, i . e . current density, i or i , can 
c a 

be described by the following equations, according to electrochemical 

k i n e t i c s . 
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Table IV. Equilibrium constants of + 2H + = H 2S(aq) + 2/-n^+ 

for various sulphides at 25°C 
2/n . 2 

= V + • aH 2S / aH+ 

Sulphide log K Sulphide log K 

MnS 8.0 CdS - 6.14 

FeS . 2.55 PbS - 7.10 

CoS -0.33 CuS -15.0 

NiS (y) -6.69 Cu 2S -18.9 

ZnS (Spal) -4.12 Ag 2S -15.58 

(Wurt) -1.80 HgS -32.3 

According to t h i s equation, although g(aq') l s dependent on ap e++ 
-2 2 

i n the case when ape-H- i s 10 or less than i t , the a c t i v i t y of 
-2 

aqueous hydrogen sulphide at equilibrium i s more than 3.55 x 10 

which suggests the continuous evolution of hydrogen sulphide into the 

He gas atmosphere which i s used i n t h i s work. On the other hand, 

Table IV states that CuS, Cu 2S, Ag 2S and PbS have extremely small 

values of K. This i s associated with n e g l i g i b l e H 2S evolution and 

therefore promises the p o s s i b i l i t y of measuring the r e v e r s i b l e p o t e n t i a l 

of the respective sulphides,and indeed these have been experimentally 
1 ,1. • A 6 > 1 6 obtained. 

When the rest p o t e n t i a l of pyr r h o t i t e i s co n t r o l l e d by the reactions 
++ + of [Fe] -y Fe + 2e as an anodic process and [S] + 2H + 2e •+ R^S 

as a cathodic process,the current density of each reaction can be 

equated according to Equations (IV-10) and (IV-11); for the anodic process 
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for anodic current density, 

n r r . a_ ... a exp {• 
2 P 

Za.F 
RT e } (IV-10) 

for cathodic current density, 

i =-ZFk a" c c 1 
V w 

• • • • 3. 6 X p 
-ZBF 
RT (IV-11) 

where k k are reaction rate constants f o r anodic and cathodic 

reactions, r e s p e c t i v e l y : a , a are a c t i v i t i e s of reactants of anodic 
P q 

and cathodic reactions, r e s p e c t i v e l y ; m, n, r, u, v, w, are orders of 

anodic and cathodic reactions with respect to each reactant; Z i s the 

number of electrons involved i n each reaction; a, 0 are t r a n s f e r 

c o e f f i c i e n t s for anodic and cathodic reactions, r e s p e c t i v e l y ; F i s " t h e 

Faraday constant; and e i s the p o t e n t i a l of the sulphide electrode. 

According to these equations, the rate of each reaction w i l l be 

governed by the e l e c t r i c a l p o t e n t i a l at the sulphide electrode, rate 

constant, a c t i v i t i e s of reactants and the transfer c o e f f i c i e n t . I f a 

steady state i s established and there i s no external disturbance, the 

sum of cathodic reaction rates w i l l be equal to the sum of anodic 

reaction rates; 

Z i = c Z i a (IV-12) 

Considering the topography of the electrode surface i n the poly-

electrode system, i t i s not necessary to have separate macroscopic areas 
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which are e x c l u s i v e l y cathodic or anodic on a sulphide electrode, 

e i t h e r operationally or conceptually. Any one s i t e may be anodic 

during one instant of time and cathodic during another instant, and 

anodic and cathodic processes can occur simultaneously on atomically . 

adjacent s i t e s . This homogeneous surface condition w i l l become 

e s p e c i a l l y important when we consider current density instead of 

current i n a quantitative understanding of the electrochemical 

behaviour of the electrode. 

Here, i t i s h e l p f u l to use a current-density p o t e n t i a l diagram 

i n order to understand better the current-density p o t e n t i a l r e l a t i o n s h i p 

i n the polyelectrode system. In F i g . 6 the possible reactions, l ) - 6 ) 

are schematically p l o t t e d . The locations of each l i n e depends on the 

parameters such as k , k , a , a . Also the slope of each l i n e depends r a c p q 

on the value of a or 0 and Z. The e f f e c t of concentration p o l a r i z a t i o n 

which w i l l be s i g n i f i c a n t at high current-density i n t h i s diagram 

i s not accounted for i n order to s i m p l i f y the discussion. In t h i s 

sulphide polyelectrode system where each possible reaction i s independent 

and a l t e r n a t i v e , the p o t e n t i a l of the electrode i s l a r g e l y determined by 

the coupled reactions which have the highest current-density. The 

highest possible current d e n s i t i e s , i ^ ^ and i ^ a r e shown i n F i g . 6, 

as the i n t e r s e c t i o n s of cathodic and anodic l i n e s coordinated with the 

potentials of the electrode E^^ and E ^ - S t r i c t l y speaking, t h i s 

i n t e r p r e t a t i o n f or the p o t e n t i a l from the i n t e r s e c t i o n of both l i n e s 

i s not correct, because equation (IV-12) can not be s a t i s f i e d at the 

i n t e r s e c t i o n . However, i f the other minute current densities at the 

p o t e n t i a l E m or E n 9 were neglected, equation (IV-12) y i e l d s 
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i = i (IV-13) a c 

When both of the coupled reactions determining the p o t e n t i a l of 

the sulphide are i d e n t i c a l , as the example shown i n F i g . 6, the p o t e n t i a l 

i s c a l l e d the r e v e r s i b l e or equilibrium p o t e n t i a l . In eit h e r of these 

cases, the r e v e r s i b l e p o t e n t i a l f o r the metal-metal cation equilibrium, 

from (IV-10), (IV-11), (IV-13) and Z = n 

m rnaF _ , • , n£F _ , 
x01 = xa = _ 1 c = n F k a V 6 X P {~RT E 0 1 } = n F k c V + e x p { " "RT E 0 1 } 

(IV-14) 

i s obtained. Equation (IV-14) y i e l d s 

RT „ k c aMn+ 
J01 (a+B)nF k a * a M O 

Here, a+g = 1 i n the case when anodic and cathodic processes are 

i d e n t i c a l and k /k = K which i s the equilibrium constant for M n + + 
C SL 

ne -—>- M°. Therefore, -«-

RT „ v . RT „ E n i = — An K + — In 01 nF nF a M O 

„o . 2.3RT . ,T_. . „ 
= EM + ~~~o~F~ ~^yp~ ( I V _ 1 5 ) 

This equation i s i d e n t i c a l with the Nernst equation derived i n the 

section on thermodynamic considerations. In the same manner for the 

sulphur-hydrogen sulphide equilibrium the r e v e r s i b l e p o t e n t i a l 
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02 = E, + 2.3RT 
2F log 

3 H+ (IV-16) 

is derived. 



V. EXPERIMENTAL 

(1) Materials 

Natural and synthesized py r r h o t i t e s were used i n t h i s experiment. 

Natural minerals were obtained from the S u l l i v a n Mine i n Kimberley, B.C. 

and the Chichibu Mine i n Japan. Microscopic observations did not show 

any other phase except p y r r h o t i t e . Natural py r r h o t i t e s are i n a more 

stable state thermodynamically than synthesized p y r r h o t i t e s . However, 

they i n v a r i a b l y contain impurity elements such as N i , Co, Cu, As etc. 

For experimental purposes i t i s very d i f f i c u l t to obtain py r r h o t i t e s 

having a systematically varying range of composition. The synthesized 

pyrrhotites are required e s p e c i a l l y to examine the Fe:S composition 

r a t i o . Three methods were used i n t h i s work to synthesize p y r r h o t i t e s . 

Method I. 

Sulphur lump c r y s t a l s (chemical pure) and i r o n wire (99.9%, 

0.022 cm diameter) r e s p e c t i v e l y were weighed out to correspond to an 

appropriate composition of p y r r h o t i t e , then placed together into a 96% 

s i l i c a glass ("Vycor") tube, 0.8 cm outer-diameter, which was 

evacuated and sealed. The Vycor tube was placed i n the furnace, 

heated to 500°C for one day and to 700°C for two days, then furnace 

cooled to room temperature. In each Vycor tube about one gram pyrrhot i t e 

was produced. At 700°C the sulphur decomposition pressure e q u i l i b r a t e d 
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with p y r r h o t i t e was n e g l i g i b l y small up to the composition of the 

p y r r h o t i t e of 48 atomic percent Fe, i . e . less than 0.1 atm, so i t was 

assumed that a l l sulphur put into the Vycor tube reacted with i r o n . 

However, below about 48 atomic percent Fe the sulphur decomposition 

pressure of p y r r h o t i t e can not be neglected i n the material balance of 

sulphur. Therefore t h i s method was not used for preparing p y r r h o t i t e 

material of le s s than 48 atomic percent Fe. 

Method I I . 

The "Dew point method"; the apparatus for t h i s method consisted of 

a Vycor tube, 1.5 cm outer-diameter and 30 cm length, i n which sheet 

i r o n (99.99%) and sulphur were placed at each end, then t h i s tube was 

evacuated, sealed and placed i n furnace system which consists of 

two separately heated zones. On the i r o n side the temperature was 

kept constant at 700°C, while on the sulphur side the temperature was 

adjusted i n the range 110°C to 450°C to e s t a b l i s h a chosen p a r t i a l 

pressure of sulphur. In t h i s method, by weighing the i r o n samples 

before and a f t e r each run the i r o n content i n sulphide can be calculated. 

Thus the determination of Fe content i n the p y r r h o t i t e does not contain 

any error due to incomplete reaction of sulphur. However, when the i r o n 

being sulphidized was kept at 700°C, a sulphur temperature between 110°C 

to 450°C was too high to synthesize the p y r r h o t i t e containing more 

than 48 atomic percent Fe. Thus methods I and II i n combination permitted 

the synthesis of pyrrhotites with wide range of composition. 

In t h i s method each run took 4 days to complete s u l p h i d i z a t i o n of 

sheet i r o n (0.04 cm thickness) and to homogenize the r e s u l t i n g p y r r h o t i t e . 
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The vapour pressure of sulphur i s known from the work of W. West and 
13 

A; Menzies, shown i n F i g . 7. I t was assumed that by steady state 

conditions the t o t a l sulphur pressures at both ends i n the Vycor 

tube were equal but not the p a r t i a l pressures of the d i f f e r e n t molecular 

species. The vapour density of the gas increased markedly from the 

hot zone at 700°C, where the gas consisted of mainly molecules, to 

the colder part held i n the range 110-450°C, where i t consisted of 

Sg, S^, S^, S,., S^, S^ and molecules. In F i g . 8 the v a r i a t i o n i n 

Fe content with d i f f e r e n t sulphur bath temperatures i s shown. 

Pyrrhotite made at 700°C was f a i r l y massive and could be used f o r 

electrodes i n electrochemical studies. 

Method I I I . 

This method can be c a l l e d the "Melt method". Iron powder, 99% 

pu r i t y , and sulphur powder were mixed i n a weight r a t i o of 1:1; then 

th i s mixture was gradually heated i n a graphite c r u c i b l e to 700°C at 

which temperature i t was held f or 5 hours. A f t e r that the temperature 

was increased to 1250°C, above the melting point (1190°C) of FeS, 

where molten FeS was kept for a ha l f an hour, then cooled to 750°C, 

from t h i s temperature the sample was cooled to room temperature over 

a period of 10 days. A l l processes of heating, melting and cooling 

were undertaken i n an i n e r t atmosphere of He flow. This p y r r h o t i t e was 

supposed to be i r o n saturated or le s s excess sulphur p y r r h o t i t e . This 

technique was e s s e n t i a l for the production of lumps of p y r r h o t i t e . 

Besides p y r r h o t i t e s , other materials occasionally used were p y r i t e , 

i r o n powder and cha l c o c i t e . The source of p y r i t e was not known, chalcocite 

was from Montana, U.S.A. Iron powder used was of 99% p u r i t y . 
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Figure 7. To t a l vapour pressure of sulphur between 120 and 450 CC. 
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Figure 8. V a r i a t i o n i n Fe content with d i f f e r e n t sulphur bath temperatures. 
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(2) X-Ray Analysis of Pyrrhotites 

Pyrrhotites used i n t h i s study were examined by X-ray d i f f r a c t i o n 

to i d e n t i f y the phases present. A Debye-Scherrer camera was used to 

take the powder d i f f r a c t i o n patterns with a CoK X-ray tube. In F i g . 9 
a 

the X-ray d i f f r a c t i o n patterns are presented. ASTM cards for p y r r h o t i t e , 

p y r i t e , and marcasite are included on l i n e s 1, 10 and 11, r e s p e c t i v e l y 

for comparison with r e s u l t s obtained. According to these data, i t can 

be concluded that pyrrhotites synthesized by methods described 

corresponded to p y r r h o t i t e , while neither p y r i t e nor marcasite were 

present. The d i f f r a c t i o n l i n e represented by (102), which has the 

highest i n t e n s i t y , changed s l i g h t l y i n p o s i t i o n due to the extent 
14 

of non-stoichiometry of p y r r h o t i t e as reported by M. Haraldsen. 

However, data obtained i n t h i s work were too scattered to e s t a b l i s h a 

r e l i a b l e r e l a t i o n s h i p . In patterns 12 and 13, the powder pyrr h o t i t e s 

before and a f t e r the rest p o t e n t i a l measurement were examined to check 

the p o s s i b i l i t y of a phase change; however, X-ray pictures indicated 

that no such phase change occurred, because both X-ray patterns were 

e s s e n t i a l l y i d e n t i c a l . The phase r e l a t i o n s h i p s described e a r l i e r was 

not apparent i n t h i s X-ray study. 

(3) Sulphide Electrodes 

In t h i s study two kinds of sulphide electrodes were used. One of 

them was made i n the following way; a mineral plaque was mounted i n s e l f -

s e t t i n g p l a s t i c r e s i n , "Koldmount", with the two f l a t sides free from 

r e s i n . A mercury contacting column containing a copper lead wire was 

formed i n a r e s i n mount on one of the free sides of the electrode, which 
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remained i s o l a t e d from the s o l u t i o n . The other free side then became the 

active electrode surface i n contact with the e l e c t r o l y t e . A drawing of 

t h i s "mounted electrode" i s shown i n F i g . 10(a). 

The other electrode consisted of sulphide powder f l o a t i n g on a 

mercury pool. A glass U-tube was f i l l e d with mercury on one side of 

which the sulphide powder was f l o a t e d . A copper lead wire entered the 

mercury from the other side for an e l e c t r i c a l connection. This electrode, 

c a l l e d a "powder electrode", i s shown i n F i g . 10(b). Mercury i s known 

as a thermodynamically noble metal whose standard s i n g l e electrode 

p o t e n t i a l i s +0.789 v o l t s and has a very high hydrogen overyoltage 
: -13 -11 associated with a very low exchange current density, i = 10 -10 

2 15 

A/cm . In addition, p y r r h o t i t e w i l l not react with mercury because 

of more negative standard free enthalpy of formation of sulphides for 

FeS, -23.32 Kcal/mole, than that for HgS, -11.05 Kcal/mole. These 

factors were considered i n the experiments comparing the rest p o t e n t i a l s 

when measured with the mounted electrodes as compared to the powder 

electrode. In Table II the r e s u l t s for both natural p y r r h o t i t e and 

chalcocite are shown. 

Table I I . Comparison of the r e s t p o t e n t i a l measured with the mounted 

electrode and the powder electrode. 

Chichibu p y r r h o t i t e , 25°C 
pH = 2.85, [Fe*4-] = 0.01 M 

Chalcocite, 25°C 
pH = 1.35 [Cu"4"1"] = 0.1 M 

mounted electrode mounted electrode 
+161 mV (S.H.E.) 
+143 

+433 mV (S.H.E.) 

powder electrode 
+186 mV (S.H.E.) 
+124 

powder electrode 
+439 mA (S.H.E.) 



- 36 -

•Copper 
lead wire 

—Glass tube 

Mercury 

rResin 
Sulphide 

pSulphide 
powder 

Mercury 

(a) 

Figure 10. Iron sulphide electrodes 

Ca) mounted; (b) powder. 



According to these data, the powder electrode i s s u i t a b l e f o r the 

sulphide electrode, although the values appear more scattered with the 

powder electrode. 

(4) E l e c t r o l y t i c C e l l 

The rubber bung acting as the top of the c e l l contained a gas 

disperser, the sulphide electrode, a Pt-counter electrode, a Luggin 

c a p i l l a r y with reference electrode, and a gas outlet tube, and was 

f i t t e d to a 400-ml ( t a l l style) beaker. Usually 250 ml of e l e c t r o l y t e 

was placed i n the beaker and agitated m i l d l y with a magnetic s t i r r e r . 

In F i g . 11 the sketch f o r the c e l l i s shown. P o t e n t i a l measurements 

were made with the KC1 saturated calomel electrode as a reference 

associated with a Luggin c a p i l l a r y . The end of the gas outlet tube 

was water sealed, so the small p o s i t i v e pressure i n the c e l l caused 

by the water seal resulted i n an improved contact of the sulphide with 

mercury on which the sulphide powder was f l o a t e d . 

(5) Reagents 

The e l e c t r o l y t e s o l u t i o n consisted of 1 M Na_S0, as a buffer, H„S0 
2 4 2 • 

for pH control of the s o l u t i o n and FeSO^ of the desired ferrous ion 

concentration s o l u t i o n . 

Helium and hydrogen sulphide gas used were d i r e c t l y passed from 

both gas cylinders without p u r i f i c a t i o n . 

(6) Experimental Procedure 

Before each run the e l e c t r o l y t e was deoxygenated by bubbling helium 
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I- Gas out-let tube 

2. Pt counter electrode 
3. Gas disperser 
4. Sulphide electrode 
5. Luggin capillary 

6. Stirrer magnet 

Figure 11. Sketch of electrolytic c e l l . 
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gas through i t for at l e a s t two hours. Then an electrode, e i t h e r the 

mounted electrode, which was f i r s t polished on emery paper, or the powder 

electrode, which was f i r s t ground i n a ceramic mortar under methanol, 

was immersed into the e l e c t r o l y t e . After a c e r t a i n period both 

electrodes were cathodized for 30 minutes at around -400 mV. This 

cathodic excursion could not be expected to change the composition of 

p y r r h o t i t e , because the current d i d not exceed about 1 coulomb. 

Afte r the cathodic excursion the rest p o t e n t i a l was read at 

i n t e r v a l s u n t i l a stable p o t e n t i a l value was obtained, i . e . , 1-5 days. 

To read p o t e n t i a l and to p o l a r i z e the electrode, a Wenking Standard 

Potentiostat Model 68 TS10 was used. F i g . 12 shows the r e l a t i o n s h i p s 

of p o t e n t i a l with time during the measurement. A l l p o t e n t i a l s were 

measured against the KCl-saturated calomel electrode, which was taken 

to be +0.241 v o l t s r e l a t i v e to the standard hydrogen electrode at room 

temperature, and the p o t e n t i a l s are reported on the standard p o t e n t i a l 

scale i n t h i s work. 

The temperature of the s o l u t i o n was not e s p e c i a l l y measured and 

con t r o l l e d i n room temperature experiments. Before and a f t e r each run 

the e l e c t r o l y t e was usually analysed to determine pH and ferrous ion 

concentration. However, i n most cases no s i g n i f i c a n t changes i n these 

values were observed. 
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VI. RESULTS AND DISCUSSION 

(1) E f f e c t of Ferrous Ion Concentration 

The ferrous ion e f f e c t on the rest p o t e n t i a l was investigated 

i n the range of concentration of 0.001-0.1 M obtained by addition of 

FeSO^.7H20 at approximate pH 2.8 with He bubbling. The ferrous 

ion concentration was checked before and a f t e r each run. However, i n 

most cases no s i g n i f i c a n t change was detected. F i g . 13 shows data 

obtained for four d i f f e r e n t stoichiometries of p y r r h o t i t e . The 

ferrous ion e f f e c t on the rest p o t e n t i a l i s obscure because of 

scattered data; nevertheless no e f f e c t of ferrous ion may be seen 

for the l i m i t i n g compositions of 46.2 and 50 atomic percent of 

p y r r h o t i t e s . The experiment i n which ferrous ion was increased to 

0.01 M from 0.001 M a f t e r the measurement of the rest p o t e n t i a l i n 

0.001 M showed no change i n the p o t e n t i a l , as indicated by arrows i n 

F i g . 13. It may be concluded that ferrous ion does not a f f e c t the 

rest p o t e n t i a l s i g n i f i c a n t l y . This i s supported by K.E. Wrabetz"* 

and S. Venkatachalam et a l . ^ who found no e f f e c t of ferrous ion on 

the rest p o t e n t i a l of the p y r r h o t i t e . At higher concentrations of 

ferrous ion than 0.1 M at about 2.8 of pH a p r e c i p i t a t e formed i n the 

e l e c t r o l y t e , so such concentrations were not used. 
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(2) E f f e c t of pH 

In changing pH by addition of sulphuric acid the rest p o t e n t i a l 

of pyrrhotites was measured i n the presence of ferrous ion i n the 

e l e c t r o l y t e . The measurements were made on four d i f f e r e n t s t o i c h i o ­

metrics of the py r r h o t i t e . F i g . 14(a)-(c) present the data obtained. 

It i s clear that the rest p o t e n t i a l decreases sharply as pH increases. 

The dependence of pH ranged from about -150 to -350 mV/pH. From these 

dependences of the rest p o t e n t i a l on ferrous ion and pH i t i s evident 

that equilibrium between i r o n i n sulphide and ferrous ion i n the 

elec t r o l y t e i s not established at le a s t i n these ranges. I f equilibrium 

were reached, the p o t e n t i a l would depend on the ferrous ion concentra­

t i o n and would not depend on pH, according to the Nernst equation 

(IV-1). 

(3) E f f e c t of Hydrogen Sulphide 

The next experiment was ca r r i e d out with hydrogen sulphide 

bubbled through the e l e c t r o l y t e . Since mercury reacts with hydrogen 

sulphide to form HgS, the powder electrode could not be used i n t h i s 

experiment, and only the mounted electrode was used. I n i t i a l l y 

the rest p o t e n t i a l was measured i n a helium atmosphere, then ^ S was 

introduced and the rest p o t e n t i a l was again measured at a sui t a b l e 

i n t e r v a l . Results are shown i n F i g . 15(a) and (b). These data were 

obtained at pH = 3.01 without ferrous ion i n the e l e c t r o l y t e . There 

are sharp drops i n the p o t e n t i a l f or the natural Chichibu p y r r h o t i t e 

and the synthesized 47.49 atomic percent Fe p y r r h o t i t e . However, 

no change i n p o t e n t i a l was found for the 50 atomic percent synthesized 
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Figure 14c. Dependence of the rest p o t e n t i a l on pH. 
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py r r h o t i t e even a f t e r l^S introduction. In these experiments before 

RyS bubbling the outlet gas from the c e l l f o r the 50 atomic percent 

Fe p y r r h o t i t e contained B^S (as detected by smell), but no E^S was 

detected from the c e l l s containing the other p y r r h o t i t e s . A l l exhaust 

gases were passed through a s o l u t i o n containing 1 M Cd ions or Ag 

ions, and i n a l l cases yellowish CdS or brown Ag^S p r e c i p i t a t e s formed, 

although the p r e c i p i t a t i o n rate was much greater for the 50 atomic 

percent synthesized p y r r h o t i t e . 

According to t h i s experiment, i t i s pos s i b l e to make the following 

conclusion; for the natural and 47.49 atomic percent Fe synthesized 

pyrrhotites the e f f e c t of hydrogen sulphide on the p o t e n t i a l i s large 

because of a low hydrogen sulphide evolution rate from the electrodes. 

On the other hand, for the 50 atomic percent Fe p y r r h o t i t e the e f f e c t 

of hydrogen sulphide i s not detectable because of a high i n i t i a l rate 

of hydrogen sulphide evolution from the electrode. 

(4). E f f e c t of Non-Stoichiometry of Py r r h o t i t e 

The a c t i v i t i e s of sulphur and i r o n i n the p y r r h o t i t e as w e l l as 

the a c t i v i t i e s of ions i n the e l e c t r o l y t e can a f f e c t the rest p o t e n t i a l , 

according to the Nernst equation (IV-1) and (IV-2). 

In t h i s work the rest p o t e n t i a l was measured with d i f f e r e n t 
I | 

compositions of p y r r h o t i t e at pH = 3 and [Fe ] = 0.01 M. The 

* 
The e f f e c t of a c t i v i t y of the components i n a sing l e phase-two 
component electrode has been ignored i n most published works on 
sulphide electrochemistry. These a c t i v i t i e s are very s e n s i t i v e 
to composition i n the s i n g l e phase region, and as a r e s u l t cause 
d r a s t i c changes i n the p o t e n t i a l when composition i s changed. 
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Figure 15a. Rest p o t e n t i a l changes i n d i f f e r e n t atmosphere. 
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Figure 15b. Rest potential changes i n different atmosphere. 
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r e s u l t s are shown i n F i g . 16. From these data, the rest p o t e n t i a l 

varies through a wide range between -350 and +150 mV as the Fe content 

changes from 50 to 46 atomic percent. In F i g . 16 the p o t e n t i a l 

measured for i r o n powder on a mercury pool was shown as point (A). 

Point (B) i n F i g . 16 shows the rest p o t e n t i a l of the p y r r h o t i t e of 

52.8, atomic percent Fe and containing two phases; Fe and FeS. Point 

(C) i n F i g . 16 shows the p o t e n t i a l for the mixture of i r o n powder and 

the i r o n saturated p y r r h o t i t e powder. Point (D) shows the r e s t 

p o t e n t i a l measured for p y r i t e and Points (E) show the rest p o t e n t i a l s 

of natural p y r r h o t i t e specimens from Chichibu. 

Generally natural sulphides have more p o s i t i v e p o t e n t i a l s than 

synthesized sulphides. P y r r h o t i t e conforms to t h i s generalization. 

Most sulphides tend towards a non-stoichiometry containing excess 

sulphur which i s more stable under an o x i d i z i n g atmosphere. Therefore, 

natural purrhotite which has been formed at high sulphur a c t i v i t i e s 

and l a t e r exposed to o x i d i z i n g atmospheres w i l l always show a more 

p o s i t i v e p o t e n t i a l than synthesized p y r r h o t i t e formed at high i r o n 

a c t i v i t i e s . 

If these rest p o t e n t i a l s measured corresponded to r e v e r s i b l e 

p o t e n t i a l s , the a c t i v i t y of each component, i . e . , sulphur and i r o n , 

could be calculated, according to the Nernst equation and the Gibbs-

Duhem r e l a t i o n s h i p . However, the p o s s i b i l i t y of measuring the 

r e v e r s i b l e p o t e n t i a l has already been shown to be poor, and so 

a c t i v i t i e s were not calculated from the rest p o t e n t i a l s . 
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(5) E f f e c t of Residual Impurity i n the E l e c t r o l y t e 

In electrochemical experiments i t i s known that the r e s i d u a l 

oxidant or reductant i n the e l e c t r o l y t e sometimes plays an important 

role to determine the p o t e n t i a l of the electrode even when very d i l u t e . 

In t h i s experiment, possible oxidants are f e r r i c ion and oxygen gas. 

The former can come from the ferrous sulphate reagent and the l a t t e r 

can scarcely be avoided from the atmosphere even with He gas bubbling. 

The experiment was ca r r i e d out i n the c e l l shown i n F i g . 17 i n 

order to check the e f f e c t of r e s i d u a l oxidants i n the e l e c t r o l y t e , i f 

they e x i s t , -on the rest p o t e n t i a l . I f oxidants e x i s t i n the e l e c t r o l y t e , 

they can be reduced on the Pt wire cathode during e l e c t r o l y s i s . An 

anode compartment i s i s o l a t e d from the e l e c t r o l y t e with a c a p i l l a r y 

tube to prevent the migration of oxidant species formed on the anode 

into the bulk of e l e c t r o l y t e . In Table III data obtained i n t h i s c e l l 

are compared with those measured i n the ordinary c e l l . The cathodization 

of e l e c t r o l y t e was continued during the rest p o t e n t i a l measurement. 

Table I I I . Comparison of the re s t p o t e n t i a l s measured with and 

without reduction of e l e c t r o l y t e 

reduction of e l e c t r o l y t e measured po t e n t i a l s (mV) 

with +101, +91 

without +139, +147, +91, +80, +150, 
+60, +50 

[Fe**] = 0.01 M, pH = 2.80 
cathode p o t e n t i a l = -259 mV for 
46.2 at % Fe py r r h o t i t e . 
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6. Stirrer magnet 

Figure 17. Sketch of the c e l l for reduction of the e l e c t r o l y t e . 
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Before and a f t e r the run, the pH was checked, but no change i n pH was 

detected. According to Table I I I , i t may be seen that there i s no 

s i g n i f i c a n t change i n the p o t e n t i a l . Therefore, i t may be concluded 

that either there i s no oxidant i n the e l e c t r o l y t e or such oxidants 

as e x i s t do not take part i n the p o t e n t i a l determing reaction. 

(6) Interpretation of the Measured Rest P o t e n t i a l 

The behaviour of the rest p o t e n t i a l of p y r r h o t i t e can be 

described as follows: 

1) The p o t e n t i a l does not depend on the ferrous ion concentration. 

2) In the presence of ferrous ion i n the e l e c t r o l y t e the 

p o t e n t i a l decreases as pH increases. 

3) The H^S e f f e c t on the r e s t p o t e n t i a l i s not consistent for 

pyrrhotites of a l l compositions, that i s , H^S a f f e c t s the p o t e n t i a l 

for the pyrrhotites containing excess sulphur, but has no e f f e c t on 

the stoichiometric p y r r h o t i t e . 

4) The e f f e c t of non-stoichiometry of pyrrhotites on the 

p o t e n t i a l i s s u b s t a n t i a l , i . e . as the excess sulphur content i n 

pyrrhotites increases the p o t e n t i a l s h i f t s towards more noble values. 

In this respect, the p y r r h o t i t e electrode i s d i f f e r e n t i n 

character i n the f i r s t three points mentioned above from sulphide 

electrodes, i . e . for Cu-S, Pb-S and Ag-S systems a metal ion concentra­

t i o n dependence was always obtained and the observed p o t e n t i a l was con­

s i s t e n t with an equilibrium between metal ions i n the e l e c t r o l y t e and 

metal i n the sulphide phase; also H^S i n the e l e c t r o l y t e was apparently 

i n equilibrium with sulphur i n the sulphide. The fourth point 
16 

above i s s i m i l a r to observations by J. Brodie. His measurements are 





reproduced i n Fi g . 18. The curve i n F i g . 18 was obtained by the 

following method; a galena electrode was cathodized with a current 
2 

density 1 mA/cm i n 1 M HCIO^ so l u t i o n for 1 hr, then anodized i n 
2 

fr e s h l y deoxygenated 1 M HCTO^ s o l u t i o n with a current density 1 mA/cm . 

During anodization the current was interrupted for the measurement 

of the rest p o t e n t i a l a f t e r successive short periods. Meanwhile, 

the e l e c t r o l y t e was sampled f o r Pb ion analysis. The curve 

s i g n i f i e s that galena saturated with Pb metal by cathodization was 

gradually changed i n composition from metal-rich to sulphur-rich by 

anodization, equilibrium between the electrode and the e l e c t r o l y t e 

being reached to e s t a b l i s h the p o t e n t i a l of the galena electrode. 

From t h i s curve the e f f e c t of composition of galena on the rest 

p o t e n t i a l i s seen, although a quantitative r e l a t i o n s h i p showing the 

precise stoichiometry range could not be obtained. 

The behaviour of the py r r h o t i t e electrode w i l l be interpreted 

schematically on the current-density p o t e n t i a l diagram introduced 

e a r l i e r . During the following i n t e r p r e t a t i o n i t i s assumed that 

concentration p o l a r i z a t i o n w i l l not appear and the k i n e t i c parameters, 

i.e.. ka, kc, a and g, remain constant as p o t e n t i a l changed. In 

other words l i n e a r r e l a t i o n s h i p s of logarithm-current-density vs 

po t e n t i a l are maintained. Although these conditions seem to be 

over s i m p l i f i e d , i t i s easier to understand the sulphide electrode 

when these assumptions are made. 

(6-1) I n i t i a l l y , l e t us consider the e f f e c t s of ferrous ion and 

hydrogen ion. In F i g . 19(a) the current-density p o t e n t i a l r e l a t i o n s h i p s 

for [Fe] -> Fe4"1" + 2e,* [S] + 2H + + 2e -> H2S,* and Fe*4" + 2e •+ Fe are 
From here on, iro n and sulphur i n sulphide phase are expressed as 
[Fe] and [S;] , respectively. 



POTENTIAL : Volts (SHE) 

Figure 19. Current-density p o t e n t i a l r e l a t i o n s h i p s f o r the c e l l 

Ca) p y r r h o t i t e |X-FeS04> y-H^SO^|S.H.E. C25°C) 

(b) pyrrhotites |H O S0 / | } He or H0S|s.H.E. (25°C). 
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schematically described. In F i g . 19(a), the l i n e of the cathodic 

reaction of ferrous ion which i s added 0.1 M as a maximum to the 

e l e c t r o l y t e i n order to obtain the r e v e r s i b l e p o t e n t i a l of Fe + 2e 

[Fe] i s located below the l i n e for the cathodic reaction of [S] + 2H + + 

2e -*- H^S. Therefore, the p o t e n t i a l determining coupled reactions 

consist of the anodic reaction of [Fe] ->• Fe + 2e and the cathodic 

reaction of [S] + 2H + + 2e R^S i n the region where the experiment 

was undertaken. In th i s case the re s t p o t e n t i a l of p y r r h o t i t e does 

not depend on the ferrous ion concentration but i t depends on pH 

because the l i n e for the cathodic process i s a function of hydrogen 

ion concentration. When the pH i s decreased, i . e . hydrogen ion 

concentration i s increased, the l i n e f or the cathodic reaction s h i f t s 

upwards l i f t i n g the i n t e r s e c t i o n with the anodic l i n e as a r e s u l t . 

This causes the increase i n p o t e n t i a l as pH decreases. The detection 

of hydrogen sulphide evolution from the c e l l supports the p o s s i b i l i t y 

of [S] + 2H + + 2e -> Yl^S as a cathodic process of the potential-determining 

reactions. 

A thermodynamic consideration for the reaction of FeS + 2H~*~ —»• 

Fe + H2S suggests the p o s s i b i l i t y of [S] + 2H + 2e -> H 2S as a 

cathodic process i n the potential-determining reactions of p y r r h o t i t e . 

In Table IV the equilibrium constants of + 2H + = H 2S(aq) + 2/nM n + 

3 

which are calculated from the free enthalpy data from the Latimer 

are presented.. Using the value K for p y r r h o t i t e , when pH i s 3, 

a . . can be calculated i n the following way; 

= 3.55 x 10 -4 1 (VI-1) 3H 2S(aq) x 
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a n d for the cathodic process 

*c " ~ 2 F k c a s V *** <" ^ <VI"3> 

At the equipotential on the pyr r h o t i t e electrode and i n the assumption 

of a steady state, from (VI-2) and (VI-3) the equation 

\ " - c = 2 F k a a F e *** ̂  - 2 F k c a s V ^ { ~ ^ < V I" 4 ) 

i s obtained, where E i s the p o t e n t i a l of p y r r h o t i t e . 

Equation (VI-4) y i e l d s for the pH-dependence of the p o t e n t i a l , 

E = - ^ 0.059(PH) - | ^ f _ l o g ^ (VI-5) 
c s 

According to data of the dependence of the res t p o t e n t i a l on pH 

i n t h i s work, i . e . (-150) to (-350) mV/pH, the sum of the transfer 

c o e f f i c i e n t s f o r the cathodic and anodic reactions w i l l be predicted 

to be less than unity. 

(6-2) Secondly, the e f f e c t of H^S on the res t p o t e n t i a l i s 

discussed i n the same manner using the current-density p o t e n t i a l 

diagram shown i n F i g . 19(b). In F i g . 19(b), the possible electrochemical 
I j i _ I 

processes are; [Fe] -> Fe + 2e, [S] + 2H + 2e H 2S and H2S -> 2H + S + 2e. 
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Before H^S bubbling, the rest p o t e n t i a l f or the 5 0 atomic percent 

Fe p y r r h o t i t e and natural or 4 7 . 4 9 atomic percent Fe py r r h o t i t e s are 

shown E Q ^ and E Q 2 (EQ2 > ^ 0 1 ^ ' w k i c n a r e determined by the coupled 
++ + reactions of [Fe] -*- Fe + 2e as an anodic process and [ S ] + 2H + 2e ->• 

H^S as a cathodic process. Then, by H^S bubbling through the e l e c t r o l y t e 

the l i n e of the anodic reaction of H^S -»• 2H + + S + 2e appears on the 

diagram. As a r e s u l t , when t h i s new anodic l i n e i s lower than the 

anodic l i n e of [Fe] -> Fe + 2e, as i s the case for the 5 0 atomic 

percent Fe p y r r h o t i t e , the coupled reactions determining the rest 

p o t e n t i a l are s t i l l [Fe] -> Fe + 2e and [ S ] + 2H + 2e -> H 2 S . However, 

for the natural and 4 7 . 4 9 atomic percent Fe p y r r h o t i t e s , the anodic 

l i n e of the reaction H2S-»- 2H + S + 2e i s over the [Fe] Fe + 2e 

anodic reaction l i n e , so a new p o t e n t i a l i s established, as determined 

by the coupled reactions of H 2 S -> 2H + + S + 2e and [ S ] + 2H + + 2e 

UyS. This new p o t e n t i a l E Q 3 > shown i n F i g . 1 9 ( b ) , must be more 

negative than E Q 2 , having a higher current density i ^ ^ than 1 Q 2 > 

If equilibrium between sulphur i n sulphide and sulphur deposited from 

the anodic reaction of hydrogen sulphide i s established, the equilibrium 

p o t e n t i a l for [S] + 2H + + 2e t R^S can be obtained. 

( 6 - 3 ) T h i r d l y , the behaviour of the non-stoichiometry of 

pyrrhotites w i l l be interpreted using the current-density p o t e n t i a l 

diagram. The observations on the e f f e c t of the non-stoichiometry are 

these; when the excess sulphur i n the p y r r h o t i t e increases, the rest 

p o t e n t i a l increases and the rate of the hydrogen sulphide evolution 

decreases. In consideration of these f a c t s , the current-density 
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p o t e n t i a l r e l a t i o n s h i p i s shown i n F i g . 20, as a function of the non-

stoichiometry of p y r r h o t i t e . When the content of excess sulphur i n the 

pyrrhotite increases, the l i n e s f o r the cathodic reaction of [S] + 2H + + 

2e -»• H^S and the anodic reaction of [Fe] -> Fe + 2e s h i f t towards 

more noble values, because the a c t i v i t y of sulphur increases, while 

the a c t i v i t y of i r o n decreases with increase i n excess sulphur i n the 

pyrr h o t i t e . As a r e s u l t the rest p o t e n t i a l shown as an i n t e r s e c t i o n 

of the cathodic and anodic l i n e s moves towards more noble p o t e n t i a l s 

and the value of the exchange current density decreases when the 

excess sulphur content increases. 

(7) Galvanic and P o l a r i z a t i o n E f f e c t on the Hydrogen Sulphide Evolution 

The current-density p o t e n t i a l r e l a t i o n s h i p for the cathodic reaction 

of [S]+2H + + 2e -> H 2S predicts that the rate of the hydrogen sulphide 

evolution must be affected i n the following manner; a) anodic 

p o l a r i z a t i o n of the p y r r h o t i t e electrode should reduce the rate of 

hydrogen sulphide evolution, b) cathodic p o l a r i z a t i o n should accelerate 

hydrogen sulphide evolution. In consequence, when py r r h o t i t e e l e c t r i c a l l y 

contacts a material which i s lower i n p o t e n t i a l than the p y r r h o t i t e , 

H2S evolution from the p y r r h o t i t e should be accelerated. 

Two attempts were ca r r i e d out to test these p r e d i c t i o n s . To test 

for a galvanic e f f e c t two kinds of p y r r h o t i t e , one of stoichiometric 

composition and the other containing excess sulphur were immersed i n 

a c e l l and the e l e c t r i c a l lead wires from both specimens were shorted. 

The p o l a r i z a t i o n e f f e c t on the hydrogen sulphide evolution was studied 

with an electrode of stoichiometric composition. The rate of hydrogen 
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(S)+2H+2e-^H 2S 

i 1 

- 0 . 5 0 
P O T E N T I A L : Volts (SHE) 

Figure 20. Current-density p o t e n t i a l r e l a t i o n s h i p s f o r the c e l l 

d i f f e r e n t pyrrhotites , | FeSO,., H SOjS.H.E. (25°C). 
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sulphide evolution was measured i n the following way; He c a r r i e r gas 

from the c e l l was bubbled through the s o l u t i o n contained 1 M of 

CdCNO^)^ to c o l l e c t H^S gas i n the form of CdS p r e c i p i t a t e . At 1 or 

1/2 hour i n t e r v a l s the CdS p r e c i p i t a t e was f i l t e r e d i n a Gooch c r u c i b l e , 

washed, dissolved into 1:1 hydrochloric a c i d , and analysed f o r Cd with 

an atomic adsorption spectrometer. 

In F i g . 21 and 22, the r e s u l t s are shown. A galvanic e f f e c t on 

the H^S evolution i s obvious, and the anodization of p y r r h o t i t e 

decreases the ̂ S evolution and the cathodization increases the ^ S 

evolution rate. Using an H^S evolution rate of 2.7 x 10 ^ mol/hr 

under open c i r c u i t conditions i n a s o l u t i o n of pH = 2.65 and an 
2 

electrode surface area of 2.92 cm , the d i s s o l u t i o n equivalent current 
-4 2 

density was calculated to be 5.0 x 10 A/cm . This value i s much 
—8 2 

larger than the value of 10 A/cm for an i r o n electrode i n 1 M 

FeSO^ s o l u t i o n obtained by Roiter et al.'*"'' This supports the view that 
[ | 

the r e v e r s i b l e reaction for Fe + 2e -*• [Fe] i n the stoichiometric 

p y r r h o t i t e , where a ^ = 1, can not be a p o t e n t i a l determining reaction 

at t h i s pH. 

(8) Electrochemical Mechanism of Leaching Reactions 

When the leaching process proceeds i n an o x i d i z i n g atmosphere, 

the cathodic reduction of oxidants becomes part of the sulphide electrode 

system. For example, when p y r r h o t i t e i s leached with oxygen as a 

oxidant, the possible electrochemical reactions include the following; 

1) oxidation of i r o n i n py r r h o t i t e into ferrous ion 

[Fe] ->- Fe 4 4" + 2e 



• e-FH*—G *-FM<—A—^-R 

i i » i i i i i i i i < i i * 

5 10 15 
TIME : Hrs 

Figure 21. Variation in Ĥ S evolution rate with a galvanic contact and 
anodization of pyrrhotite. 
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2) oxidation of sulphur i n py r r h o t i t e i n t o sulphate ion 

[S] + 4H.0 + S0. = + 8H + + 6e 2 4 
3) reduction of sulphur i n pyr r h o t i t e into hydrogen sulphide 

[S] + 2H + + 2e -y 

4) reduction of oxygen gas on the sulphide surface, 

0 2 + 4H + + 4e -y 2H20 

5) oxidation of ferrous ion i n so l u t i o n into f e r r i c ion on the 

sulphide surface 
_ ++ ^ 4-H- , Fe -> Fe + e 

6) reduction of f e r r i c ion i n so l u t i o n into ferrous ion on the 

sulphide surface 

Fe + e -> Fe 

7) oxidation of hydrogen sulphide i n s o l u t i o n i n t o elemental 

sulphur on the sulphide surface 

H2S -y 2H + + S + 2e 

These a l l possible reactions must be considered, and some of these 

reactions, i . e . 4), 5), 6) and 7) can combine as homogeneous electron 

transfer reactions occurring remote from the sulphide surface, which 

complicates the ;system s t i l l more. However, the reaction p o t e n t i a l 

on the sulphide surface i s determined by coupling of the p a r t i c u l a r 

cathodic and anodic reactions which lead to a maximum exchange current 

density i n the system. As a r e s u l t the reaction rates, i . e . the 

current d e n s i t i e s , for the slower reactions must be con t r o l l e d by 

thi s p o t e n t i a l . In a p r a c t i c a l case the concentration p o l a r i z a t i o n e f f e c t 

must also be considered. I f t h i s e f f e c t e x i s t s , the rates of effected 
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reactions are determined by d i f f u s i o n a l parameters rather than by the 

electrode p o t e n t i a l . Therefore, the analysis of the process of 

leaching becomes very complicated. 

Besides t h i s , an electrochemical study of oxidants must encounter 

experimental d i f f i c u l t i e s , because these oxidants often react with 

the electrode changing i t s surface condition and, leading to data 

that are poorly reproducible. 

Nevertheless, i n the a p p l i c a t i o n of electrochemical mechanisms to 

leaching processes, the form of sulphur as a reaction product can be 

anticipated; 

a) If the p o t e n t i a l on the sulphide surface during the leaching 

i s so low that the hydrogen sulphide evolution may occur, the sulphur 

product i s hydrogen sulphide, or when hydrogen sulphide can be 

oxidized i n the s o l u t i o n homogeneously as a sequential process i t 

causes the formation of elemental sulphur or sulphate ion. 

b) If the p o t e n t i a l on the sulphide i s between that of hydrogen 

sulphide evolution and that of oxidation to sulphate ion, elemental 

sulphur w i l l remain l i k e an anode slime a f t e r the d i s s o l u t i o n of 

metal from the sulphide l a t t i c e . This sulphur i s p a r t i c u l a r l y r e s i s t a n t 

to further oxidation, once i t has r e c r y s t a l l i z e d from the i n i t i a l 

skeleton form representing the sulphur l a t t i c e of the mineral. 

c) If the p o t e n t i a l at the sulphide surface i s so high that 

sulphate can be formed, sulphur i n the sulphide may dissolve i n the 

form of sulphate ion, accompanying metal d i s s o l u t i o n . 

* ' 18 16 These p o t e n t i a l s , 0.81 V for p y r i t e and about 1 V for galena 
were found. 
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In t h i s case sulphur i s obtained as sulphate or a mixture of 

elemental sulphur and sulphate. This behaviour of sulphur from 

sulphides i n an o x i d i z i n g leaching process i s i l l u s t r a t e d i n F i g . 23. 



S u l p h u r i n S u l p h i d e 

I 
I 

i 

o 

^Reaction at the sulphide surface 

>• Reaction remote from the 
sulphide surface 

Figure 23. I l l u s t r a t i o n of the form of sulphur during o x i d i z i n g leaching 

of sulphide minerals. 



VII. CONCLUSIONS 

(1) The rest p o t e n t i a l of py r r h o t i t e was independent of the 

ferrous ion concentration i n the e l e c t r o l y t e i n the range of 0.001 M -

0.1 M. 

(2) The rest p o t e n t i a l of pyr r h o t i t e was dependent on pH i n the 

range 2 to 4 even i n the presence of ferrous ion i n the e l e c t r o l y t e . 

(3) The H^S i n the e l e c t r o l y t e affected the rest p o t e n t i a l of 

pyrr h o t i t e containing excess sulphur by reducing the p o t e n t i a l , but 

did not have an e f f e c t on the rest p o t e n t i a l of stoichiometric 

p y r r h o t i t e . 

(4) The e f f e c t of non-stoichiometry of py r r h o t i t e on the rest 

p o t e n t i a l was s u b s t a n t i a l . Excess sulphur i n pyr r h o t i t e increased 

the rest p o t e n t i a l . 

(5) A mixed p o t e n t i a l of pyr r h o t i t e consisting of the reaction 

S° i n py r r h o t i t e + 2H+ + 2e —»- H 2S 

as a cathodic process and the reaction 
o -H-Fe i n pyr r h o t i t e —*• Fe + 2e 

as an anodic process accounts f o r the character of py r r h o t i t e electrodes 

described above. 
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(6) The h y d r o g e n s u l p h i d e e v o l u t i o n f r o m p y r r h o t i t e by a c i d i f i ­

c a t i o n may be e x p l a i n e d as an e l e c t r o c h e m i c a l e f f e c t , i . e . , a g a l v a n i c 

c o n t a c t o f p y r r h o t i t e w i t h a s u b s t a n c e o f d i f f e r e n t p o t e n t i a l imposes 

a p o l a r i z a t i o n on p y r r h o t i t e t h a t e i t h e r a c c e n t u a t e s o r s u p p r e s s e s 

H-S e v o l u t i o n . 



VIII. SUGGESTIONS FOR FUTURE WORK 

(1) The rest p o t e n t i a l s measured were very scattered. This 

scatter must be corrected or accounted for so as to i n t e r p r e t the 

data q u a n t i t a t i v e l y . 

(2) The p o l a r i z a t i o n studies of p y r r h o t i t e electrodes are 

necessary for discussion i n more d e t a i l . However, i t must be 

considered that the system of sulphide electrodes i s more complicated 

than that of metal electrodes, so the p o l a r i z a t i o n curves obtained may 

involve those of more than one reaction. In addition, during the 

p o l a r i z a t i o n of a sulphide such as p y r r h o t i t e which e x i s t i n large 

non-stoichiometric ranges, the composition can change, and t h i s i s an 

e s s e n t i a l problem. Composition changes must be avoided f o r meaningful 

measurements. 

(3) The study of n i c k e l - i r o n sulphide minerals, i . e . pentlandite, 

can be undertaken i n a meaningful way, only when the p y r r h o t i t e 

mineral i s w e l l understood. 
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APPENDIX 

A. Measurement of the Equilibrium Pressure of ^ S on P y r r h o t i t e 

(1) Introduction 

When there i s no net current, because of a balance between anodic 

and cathodic processes, the o v e r a l l reaction can also be considered as 

i f i t were a straightforward chemical reaction with c h a r a c t e r i s t i c 

k i n e t i c s and equilibrium. 

In the following experiments a measurement of the a c t i v i t y of 

FeS i n py r r h o t i t e was attempted on the basis of chemical equilibrium 

with acid s o l u t i o n s . The data on a c t i v i t i e s of FeS i n the non-

stoichiometric sulphide are useful f o r describing thermodynamic 

functions across the composition range. For the measurement of the 

a c t i v i t y i n sulphides a conventional method i s to measure the e q u i l i ­

brium sulphur vapour pressure over the sulphide,• e i t h e r with hydrogen-

hydrogen sulphide gas mixtures or with sulphur gas i n an i n e r t c a r r i e r 

gas. However, t h i s method can not be applied at low temperatures 

because of unmeasurably small equilibrium pressures of sulphur over 

sulphides and probably very slow e q u i l i b r a t i o n rates. Therefore, i n 

t h i s work a measurement of a c t i v i t y was attempted u t i l i z i n g a reaction 

of the sulphide with an aqueous so l u t i o n . 

P y r r h o t i t e may be considered as a binary compound of the components 

FeS and S. The component of FeS w i l l react with hydrogen ion i n the 

so l u t i o n according to the following equation: 

FeS ( i n pyrrhotite) + 2H Fe + H 2S(aq) (1) 



forming ferrous ion and hydrogen sulphide. For t h i s equation, the 

equilibrium constant can be expressed i n the following manner; 

" W " " ^ ( a q ) 
K = ^ (2) 

aFeS aH+ 

The hydrogen sulphide i n the s o l u t i o n w i l l e q u i l i b r a t e with hydrogen 

sulphide i n gaseous phase; 

H 2S(aq) = H 2S (gas) (3) 

K

( 3 ) = 2 

3H 2S(aq) 

So, f i n a l l y Equation (2) y i e l d s 

[ F e + + ] P H g 

K K / O N • = K- = K ' (5) 
( 3 ) • « w ! 

where a-p£-H- a n d a
H + are assumed to be equivalent to concentrations of 

each ion. 

According to Equation (5), when [Fe ] and [H ] are known, the 

a c t i v i t y of FeS can be determined i n measuring the pressure of H 2S 

eq u i l i b r a t e d with the system a f t e r f i x i n g a standard state. Consequently, 

the a c t i v i t y of S i n the FeS-S binary system can be calculated from 

the a c t i v i t y data of FeS and the composition of p y r r h o t i t e , using the 

Gibbs-Duhem i n t e g r a t i o n method for the binary system; 
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£n a_ = /. 
N. FeS d£n a. FeS (6) 

where N„ and N FeS are mole f r a c t i o n of S and FeS, r e s p e c t i v e l y . 

(2) Experimental 

Most thermodynamic studies of sulphides done i n aqueous systems 

at low temperatures have encountered experimental d i f f i c u l t i e s because 

of sluggish reaction rates and very small d i f f u s i v i t i e s i n s o l i d 

state. In t h i s work, a s p e c i a l l y designed b a l l m i l l was used so as to 

obtain an equilibrium as soon as possible and avoid a heterogenity i n 

composition of p y r r h o t i t e from the surface to the bulk. 

The b a l l m i l l was f i l l e d to 2/3 of i t s capacity with s o l u t i o n 

containing ^SO^ and FeSO^, (100 ml volume). 10 gms of powdered 

py r r h o t i t e was sealed into a pyrex glass tube and put i n the b a l l m i l l 

to avoid a reaction before the system was deoxygenated. Af t e r the 

whole system was deoxygenated by depressurizing and f i l l e d with 

nitrogen gas at atmospheric pressure, a h o r i z o n t a l shaking action of 

the b a l l m i l l was started. 

The pressure of H^S was measured with an Hg or o i l manometer at 

c e r t a i n i n t e r v a l s . After a stable H^S pressure was measured, which 

usually took 5-10 hrs, the s o l u t i o n was analysed for ferrous ion and 

pH. The experimental system i s i l l u s t r a t e d i n F i g . 24. 

S u l l i v a n p y r r h o t i t e . 



Porcelain ball mill 
Sampling tube. 

Shaking table 

To air To air 

V T o vac. 

p-To qas 
cylinder 

Water trap 
Hg Manometer Oil Manometer 

Figure 24. Schematic i l l u s t r a t i o n of the equipment for H^S pressure measurement. 
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(3) Results and Discussion 

In F i g . 25, the v a r i a t i o n i n R^S pressure with time i s plo t t e d . 

In t h i s experiment the i n i t i a l s o l u t i o n contained only 3 cc/1 R^SO^. 

According to these curves, the increases i n H^S pressure are fa s t at 

the beginning of each run and gradually decreased to a stable pressure. 

Table V shows the data on H^S pressure, ferrous ion concentration and 

pH at equilibrium f o r i n i t i a l solutions free of ferrous ion and 

containing 3 cc/1 H^SO^, and for 1 M of ferrous ion and 6 cc/1 H^SO^, 

respe c t i v e l y . In the same table, from these data the values of K" = 
++ + 2 

K'a_ n = [Fe ]P T T „/[H ] are calculated and presented. FeS H.S ^ 
3 6 

The K" values obtained are scattered i n the range from 10 to 10 . 

Table V. Values of P u _, [Fe ], pH and K". S u l l i v a n powder p y r r h o t i t e 

at 25°C. 

I n i t i a l 
s o l u t i o n 

PH 2S < C I " H g > [ F e " ] gr/1 : pH K" 
atm/M 

3 cc/1 H 2S0 4 10.55 4.18 3.05 1.33 X i o 4 

4 no FeSO. 
4 

8.45 3.30 3.25 2.08 X 10 
7.15 5.64 4.32 4.27 X i o 6 

6.85 4.70 3.06 1.02 X 10 4 

6.35 57.00 2.45 6.77 X i o 3 

6 cc/1 H 2S0 4 17.40 53.74 2.10 3.50 X i o 3 

8.62 58.17 2.76 4.55 X i o 4 

1 M FeSO. 
4 

27.25 58.22 2.87 2.06 X i o 5 

24.36 56.84 3.08 4.72 X i o 5 

18.54 57.22 3.06 1.89 X i o 5 

27.06 59.22 2.91 2.50 X i o 5 

22.42 58.06 2.95 2.44 X i o 5 

•' 27.74 59.28 2.78 1.34 X i o 5 

15.30 57.67 2.41 1.13 X i o 4 
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In F i g . 26 these values of K" are plotted as a function of pH. 

According to F i g . 26, i t i s seen that the values of K" depend on pH 

and vary with the i n i t i a l s o l u t i o n used. The K" values obtained i n 

the i n i t i a l s o l u t i o n of 1 M FeSO. and 6 cc/1 H„S0, are larger than 
4 2 4 

those obtained i n the i n i t i a l s o l u t i o n of 3 cc/1 ^SO^ and no-FeSO^. 

The dependence of K" on pH was not expected. Also the wide v a r i a t i o n 

i n pH of the f i n a l solutions was not reasonable when the same i n i t i a l 

solutions were used. 

The reason for these unexpected r e s u l t s may be that there i s a 

problem i n sampling the f i n a l s o l u t i o n . Usually the f i n a l s o l u t i o n 

was drained through the sampling tube a f t e r leading nitrogen gas into 

the b a l l m i l l , then the s o l u t i o n was f i l t e r e d i n a Gooch c r u c i b l e , 

with an asbestos f i l t e r base. During t h i s f i l t e r i n g process of 

2-5 minutes the reaction between acid and p y r r h o t i t e suspended i n the 

s o l u t i o n sampled would be possible, because t h i s f i l t e r a t i o n was 

conducted under a hydrogen sulphide-free atmosphere with evacuation. 

If t h i s reaction occurred, the concentrations of hydrogen ion 

and ferrous ion i n the f i l t r a t e s o l u t i o n would d i f f e r from those i n 

the s o l u t i o n sampled, and vary with d i f f e r e n t periods i n which the 

sampled sol u t i o n was exposed to a free-hydrogen sulphide atmosphere. 
g 

Furthermore, high d i s s o l u t i o n rates of ferrous sulphide and zinc 
19 

sulphide i n acid solutions are reported. The more accurate r e s u l t s 

to be obtained,•the avoidance of possible reaction between py r r h o t i t e 

and acid during .the sampling process i s necessary. 



Figure 26. Dependence of K" on pH. 
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B. 

Table VI. Dependence of the re s t p o t e n t i a l on ferrous ion concentration 

at pH = 2.8 at 25°C (for F i g . 13). 

[Fe 4 4"] M 
Fe content 0.001 M 
i n p y r r h o t i t e 

0.01 M 0.1 M 

mV mV mV 

46.2 at % Fe +055 , +046 +060 , +150 +151 

+053 , +046 +050 , +147 +135 

+139 +120 

+091 +095 

+080 +035 

49.26 at % Fe -045 +016 

-055 +009 

-059 

49.86 at % Fe -159 -099 -029 

-129 -069 

-179 

-189 

50. at % Fe no [Fe**] 

-411 

-420 

-425 

-440 
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Table VII. Dependence of the rest p o t e n t i a l on pH, at 25°C, 

[Fe"1"1"] = 0.01 M (for F i g . 14) 

Fe content pH the p o t e n t i a l Fe content pH the p o t e n t i a l 
i n p y r r h o t i t e (mV) i n p y r r h o t i t e (mV) 
at % Fe at % Fe 

46.2 2.8 +150 
+147 
+139 
+091 
+080 
+060 
+050 

49.86 2.8 

3.8 

-099 
-129 
-179 
-189 

-339 
-429 

49.26 

3.8 

1.8 

2.0 

2.8 

-109 
-259 

+041 

000 

-045 
-055 
-059 

50.24 2.0 

2.8 

+051 
+041 
+021 

-130 
-279 
-285 

3.8 -239 
-274 



D. 
Table VIII. 
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Variation in the rest potential with change in composition 
of pyrrhotite at 25°C, pH ̂  3 and [Fe"1-1"] = 0.01 M 
(for Fig. 16) 

Fe content the potential Fe content the potential Fe content the potential 
at % Fe ' mV at % Fe mV at % Fe mV 

46.02 

46.20 

46.43 

46.80 

46.95 

50.24 

+116 
+111 
+091 
+071 
+061 

+150 
+147 
+139 
+091 
+080. 
+060 
+050 

+116 
+071 

+116 
+060 
+038 
+033 
+126 
+121 
-139 
-279 
-285 

47.26 

47.30 

47.48 

47.57 

47.72 

48.41 

+ 75 
+ 70 
+ 60 
+ 43 
+ 41 

+ 91 
+ 41 

+ 91 
+ 61 
+ 51 

+ 41 

+ 36 
+ 33 

-005 
-010 
-040 
-139 

48.72 

49.16 

49.26 

49.39 

49.67 

+015 
-027 
-035 

-025 
-030 
-035 
-038 

-215 
-279 

-045 
-055 
-059 

-010 
-030 

-099 
-129 
-179 
-189 

(A) iron -434 
powder 
(B) 52.8 -354 
at % Fe 
(C) (A) + (B) -419. 
(D) prite +347 
(E) Chichibu +186 
pyrrhotite +161 
(natural) +143 

+124 
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