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ABSTRACT 

This investigation was undertaken to examine the heat flow 

characteristics of a liquid metal system in which f l u i d flow is present 

due to buoyancy forces. Previous investigations of heat flow in liquids 

has been confined to transparent materials, which have very different 

flow characteristics compared to liquid metals. 

Measurements were made on liquid t i n contained in a thin square 

cavity which had a temperature difference imposed across the c e l l to 

produce natural convection. The heat flow across the c e l l was 

calculated from the measured temperature difference across the cold end 

plate and the thermal conductivity of the plate. Using the calculated 

heat flow and the measured temperature difference across the melt the 

effective thermal conductivity of the melt was calculated. Two c e l l 

sizes were studied. The thermal conductivity of the cold end plate was 

found to have a significant effect on the heat transfer through the 

c e l l . 

Radioactive tracers were used to observe the flow pattern in the 

melt and to measure the flow velocity as a function of the temperature 

difference across the c e l l . The technique involved insertion of 

radioactive Sn^^3 into the melt, then quenching the sample after a given 
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length of time. The sample was then autoradiographed to determine the 

path of the tracer after insertion into the melt. The flow was found to 

be very fast for the smaller of the two c e l l sizes which exhibited 

three-dimensional flow characteristics. The larger c e l l produced 

laminar, two-dimensional flow. A correlation was observed between the 

time per cycle and the temperature difference across the large c e l l . 

The study also includes a finite-difference model which was 

developed to provide further insight into the thermal and f l u i d flow 

behaviour of the melt. The model examines the effect of nonuniform 

temperatures along the ends and bottom of the c e l l on the temperature 

and velocity fields and is used to compare the response of liquid t i n 

and liquid steel to identical temperature differences. Results from the 

model indicate that either a temperature drop along the hot and cold 

ends of the c e l l or the presence of a linear gradient along the bottom 

of the c e l l would decrease the maximum fluid velocity In the c e l l . 

The present investigation shows that the enhancement of the 

thermal conductivity due to the presence of natural convection in the 

liquid metal can be as high as ten times the stagnant thermal 

conductivity. However the degree of enhancement is influenced by the 

thermal resistance at the boundaries. 
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1.INTRODUCTION 

An analysis of many m e t a l l u r g i c a l processes involves knowledge 

of the temperature d i s t r i b u t i o n i n the system. In recent years t h i s 

problem has been approached by using a heat transfer mathematical model 

analysis to estimate thermal p r o f i l e s . To do t h i s analysis requires 

data re l a t e d to boundary conditions and thermal properties of the 

materials involved. I f the system contains l i q u i d the task becomes more 

d i f f i c u l t since heat flow through a l i q u i d i s markedly influenced by 

f l u i d flow i n the l i q u i d . Such Is the case for s o l i d i f i c a t i o n 

processes i n large ingots, continuous casting and c r y s t a l growth as well 

as heat loss determinations i n ladles and tundishes. No quantitative 

information i s a v a i l a b l e for heat transfer i n a l i q u i d metal with f l u i d 

flow present. In p r a c t i s e , an estimated heat transfer c o e f f i c i e n t i s 

used which consists of the atomic thermal conductivity m u l t i p l i e d by an 

a r b i t r a r y number. 

The present i n v e s t i g a t i o n was undertaken to determine the heat 

transfer through a l i q u i d metal with known f l u i d flow i n the melt. 

1.1 FLUID FLOW 

F l u i d flow i n a l i q u i d metal can r e s u l t from natural convection 

or be induced by mechanical or e l e c t r i c a l means to produce forced 



2 

convect ion i n the l i q u i d . 

1.1.1 Natura l Convection 

Natura l convect ion i s caused by thermal or composit ional 

gradients which give r i s e to densi ty changes i n the f l u i d . The e f f ec t 

of the buoyancy force produces the f l u i d motion. Thermal convection can 

be present even at very low temperature d i f fe rences as shown by Cole and 

B o i l i n g 1 i n F igure 1.1. Composit ional d i f f e rences are almost always 

produced during s o l i d i f i c a t i o n as so lute segregates in to the melt . 

Convection from th i s cause i s most pronounced when the so lute and 

s o l v e n t a re s i g n i f i c a n t l y d i f f e r e n t i n d e n s i t y . Such d e n s i t y 

d i f f e rences cause complex flow patterns which change apprec iably with 

time and are therefore d i f f i c u l t to c l e a r l y de f ine . 

The geometry and phys i ca l proper t ies of the system great l y 

a f f e c t the f l u i d f low. The geometry re fe rs to the shape of the 

boundaries and the presence of any ba r r i e r i n the f l u i d . In many cases 

the boundaries can be very invo l ved , which i s e spec i a l l y true fo r 

s o l i d i f i c a t i o n where the s i z e and shape of the l i q u i d pool i s 

con t inua l l y changing with time. In add i t ion the boundary i t s e l f i s not 

c l e a r , cons i s t i ng of a p a r t i a l l y s o l i d and l i q u i d r eg ion . The system i s 

too complicated to inves t iga te d i r e c t l y and a simpler steady-state 

geometry i s r equ i red . 
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. 1 Fluid flow progression after start of casting. 1 
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Many of the studies on heat transfer and natural convection 

have been undertaken because of the interest in heat transfer in nuclear 

reactors, solar collectors and other industrial systems. Consequently 

the geometries studied have attempted to duplicate the pipes and ducts 

encountered in these applications. These geometries often cannot be 

directly related to those encountered in liquid pools in solidification 

or other applications where large volumes of liquid metal are contained 

in a vessel, which makes i t d i f f i c u l t to apply the heat transfer 

results. 

In addition, most studies have been made using transparent 

materials such as water, oils and gases. The physical properties of 

these fluids differ markedly from those of liquid metals, as shown in 

Table I. The disparity is particularly pronounced in the values of the 

density and thermal conductivity. 

To understand the significance of the differences in the 

physical properties i t is useful to look at the dimensionless 

parameters that are of importance to natural convection, namely the 

Grashof number and the Prandtl number. The Grashof number, Gr is the 

ratio of the buoyancy force times the inertia force over the shear force 

squared and is defined as follows: 

= B g L 3 AT 
v 2 

( 1 . 1 . 1 ) 



TABLE I COMPARISON OF FLUID PROPERTIES 

FLUID VISCOSITY 

(cp) 

SPECIFIC 
HEAT 

cal 
( \ 

THERMAL 
CONDUCTIVITY 

cal 
( 1 

DENSITY 

gm 
1 1 

THERMAL 
COEFFICIENT 
OF EXPANSION 

1 
( 1 

PRANDTL 
NUMBER 

GRASHOF 
NUMBER 

VISCOSITY 

(cp) 1 a ' cm-sec- C 
l ~ J 

cm \ ] 

Liquid t i n 8 1.88 0.054 8.0X10"2 6.953 1.02X10-^ 0.013 3.6X106 

lead 8 2.39 0.038 3.9X10"2 10.62 1.15X10" *» 0.024 5.8X106 

" s t e e l 8 6.5 0.12 7.0X10"2 6.95 2.0X10" *• 0.11 6.0X105 

Al 4.5 0.259 2.0X10"1 2.37 - 0.058 -

Water 1.38 1.0 1.4X10"3 1.00 I^XIO- 1* 10.0 1.3X106 

Alr(50°C) 0.019 0.25 2.11X10"11 0.0011 - 0.225 -

NHjCl 1 5 1.30 0.776 1.12X10"3 1.013 1.86X10-5 9.0 2.8X101' 

Oi l #1 2 1 2.5X101* 0.239 2.36X10"^ 1.54 1.98X10" *» 2.5X105 1.9X10"3 

O i l #2 2 1 1.9X103 0.45 4.92X10"11 1.06 7.6X10-1* 1.7X101* 6.1X10" 1 
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where 8 = Coefficient of thermal expansion 

g = Acceleration due to gravity 

L = Characteristic length of the system 

AT = Temperature difference 

v = Kinematic viscosity 

The Prandtl number, Pr is the ratio of the momentum to the thermal 

diffusivity and is defined as: 

Pr=J±-£2. (1.1.2) 
k 

where u = viscosity 

Cp = Specific heat 

k = Thermal conductivity 

Table I shows the difference in the Prandtl number between the 

transparent and metallic materials. Also given in Table I is the 

Grashof number which has been calculated for a one degree temperature 

difference and an arbitrary characteristic length. 

The Grashof number and the Prandtl number are very important to 

the heat transfer characteristics of the system. The temperature 

distribution is related to the Rayleigh number which is the product of 

these numbers. In natural convection the Nusselt number is usually a 

function of the Grashof number and the Prandtl number. The Nusselt 
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number, Nu is a dimensionless parameter which is defined as: 

Nu = — (1.1.3) 
k 

where h is the heat transfer coefficient. 

1.1.2 Forced Convection 

Forced convection refers to fl u i d motion which is caused by 

external forces rather than by buoyancy forces. Many examples of forced 

convection can be found in metallurgical systems. Figure 1.2 shows the 

range of flow patterns that can be produced by electromagnetic stirrers 

used in the continuous casting of steel. The exact extent and velocity 

of the fl u i d flow is not clear at present. 

In continuous casting the input stream of molten metal 

represents a considerable source of momentum to the liquid pool. The 

flow pattern produced and the extent of i t s effect is determined by the 

manner in which the stream enters the liquid pool, as shown in Figure 

1.3. Below the mould as the momentum from the input stream is 

dissipated, i t Is unclear to what degree the flow is caused by the input 

stream or by natural convection. The flow region represents a situation 

where there is combined forced and free convection. 



FIGURE 1 . 2 Flow patterns induced by electromagnetic s t i r r i n g . 



FIGURE 1.3 Effect of input stream on f l u i d flow i n liquid pool 
(a) Flow patterns induced by different types of input 
streams 2 0 (b) Example of how input stream Induces flow 
below the mould. 2 0 
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1.2 CONVECTION IN INDUSTRIAL PROCESSES 

The interest in convective flow is best understood by looking at 

some of the applications where such flow is present. The behaviour of 

convecting liquid metal is of particular interest in the solidification 

of castings. The convecting f l u i d is a major determinant of the f i n a l 

cast structure due to i t s effect on heat and mass transfer. Figure 1.4 

shows the pattern of fl u i d flow believed to be present at the sol i d -

liquid interface. Natural convection produces counter current flow 

in the bottom end of large steel ingots which is thought to be 

responsible for the segregation pattern observed in these castings (see 

Figure 1.5). 

In continuous casting, the flow in the liquid pool is more 

complex than that in ingots. Work with radioactive tracers 2 has shown 

that mixing is most pronounced in and near the mould but in regions 

below the mould the behaviour of the f l u i d i s not clear. In 

mathematical models of the solidification profile in continuous casting, 

the liquid pool is assumed to be completely mixed everywhere. To 

account for the enhancement in the heat transfer due to convection in 

the liquid, the liquid is assumed to act as a conducting solid with an 

e f f e c t i v e thermal conductivity, k g f f The value of kg^^ has been taken 

i n the l i t e r a t u r e 3 ' 1 * ' 5 to be seven to ten times the stagnant thermal 

conductivity. 



FIGURE 1.5 Convection currents in a solidifying ingot. 
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Convection is also of concern in crystal growth where the 

uniformity of the crystal composition is directly related to product 

quality. Experiments 6 have shown that f l u i d flow due to convection is 

faster than the growth of the advancing interface therefore i t cannot be 

ignored. 

1.3 EXAMINATION OF PREVIOUS INVESTIGATIONS 

A good review of recent work on natural convection can be found 

in reference 7. Before discussing previous investigations some of the 

theory concerning natural convection w i l l be introduced. Theoretical 

analysis of natural convection is based on the solution of the energy 

equation and the Navier-Stokes equations. The energy equation for a 

two-dimensional system is as follows: 

o 2! 5% 9T oT ST 
-k( + ) + pCp (u — + v — ) = pCp — (1.3.1) 

ox 2 oy 2 ox dy ot 

where u and v are the x- and y-components of velocity, respectively. 

The f i r s t term in the equation represents the heat from conductive 

input. The second term is the convective transport contribution. 

Assuming no heat generation these two quantities are equal to the heat 

accumulation which is the term on the right-hand side of the equation. 

The result of the convective terms in this equation is that the 

isotherms for convective heat transfer are not straight as for heat 

transfer by conduction. Instead they are bent as shown in Figure 1.6. 
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FIGURE 1.6 Temperature isotherms for (a) purely conductive heat 
flow and (b) convective heat flow ( T 2 > T ^ . 8 
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Since the x- and y-components of velocity appear in the energy 

equation the velocity f i e l d must be known to solve for the temperature 

f i e l d . For forced convection the velocity f i e l d can be solved 

independant of the thermal f i e l d . However for natural convection, the 

temperature appears in the equation for momentum transport in the x-

direction(note - the x-direction is taken to be vertical for this system 

of reference): 

du du du ldP d2u d2v 
— + u — +v -gB(T-T0) + v( + ) (1.3.2) 
dt dx dy pdx dx 2 dy 2 

This coupling of the thermal and velocity fields makes theoretical 

analysis d i f f i c u l t . 

Analytical solutions for these equations have been developed by 

B a t c h e l o r 9 ' 1 0 for steady-state natural convection i n a rectangular 

cavity. The velocity profile predicted by the solution of Batchelor is 

shown in Figure 1.7(a). More recently, numerical solutions have been 

developed by W i l k e s 1 1 , Vahl D a v i s 1 2 and others 8' 1 3' 1 1 5 . Results 

reported by Stewart are shown in Figure 1.7(b) for a range of Grashof 

numbers with a fixed Prandtl number. According to the numerical results 

of Stewart, the maximum in the velocity profile shifts toward the 

boundary with increasing Rayleigh number whereas the profile remains 

constant according to the solution of Batchelor. Since the analytical 

model of Batchelor breaks down at large Rayleigh numbers numerical 
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FIGURE 1.7 Vertical (x) velocity plotted versus horizontal position 
across mid-plane of cavity (x=0.5) according to (a) the 
analytical model of Batchelor and (b) the numerical 
model of Stewart which shows velocity profiles for Pr= 
0.0127 and various Grashof numbers. 
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models are more useful for the modelling of metal systems because the 

Rayleigh number for many liquid metal systems is greater than 10**. 

In addition to the numerical model, Stewart conducted one of the 

few studies which used liquid metal for the experiments. This work 

established a correlation between the time per cycle and the temperature 

difference across a thin square cavity, as shown in Figure 1.8. The 

relationship was valid for the type of two-dimensional flow shown in 

Figure 1.9(a). For large temperature differences across the c e l l , the 

flow pattern showed a vortex type motion (see Figure 1.9(b)) exhibiting 

three-dimensional rather than two-dimensional characteristics. Similar 

three-dimensional flow patterns were produced i f the c e l l thickness 

exceeded a certain value. For such flow i t is d i f f i c u l t to define the 

time per cycle and therefore d i f f i c u l t to relate i t to the temperature 

difference across the c e l l . 

1.4 HEAT TRANSFER ANALYSIS 

The work by Stewart established that the temperature difference 

across a rectangular cavity determines the flu i d velocity. Using such a 

c e l l , the temperature difference can be adjusted to study how the heat 

transfer across the c e l l is affected by the amount of flu i d flow. 
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FIGURE 1.8 Correlation observed by Stewart between the time to 
complete one cycle around c e l l and the temperature 
difference across the c e l l for average melt temperatures 
of 237 °C, 260^ and 305^ . 8 
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FIGURE 1.9 Radiographs from experiments of Stewart showing (a) two-
dimensional laminar flow and (b) three-dimensional 
vortex flow. 8 
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For this investigation, i t is necessary to characterize the heat 

flow across the c e l l . The idea of an effective thermal conductivity was 

adopted to describe the heat transfer across the c e l l . Assuming that no 

heat is lost from the top, bottom or side walls then 

4 i j = 4 (1.4.1) 
n c o l d nmelt v ' 

where q -, is the rate of heat flow out of the cold end of the c e l l and cold 
q , „is the rate of heat flow across the melt. Assigning an effective nraelt & 6 

thermal conductivity, k e ^ to the melt then 

q = k ,-VT (1.4.2) ^melt eff melt v ' 

Since 

q , . = k ,.71 , , (1.4.3) Hcold cold cold v ' 

then 

k T J V T u = k , C V T . (1.4.4) cold cold eff melt 

If we assume that the heat flow is primarily one-dimensional then, 

k n, '''cold = k ^melt (1.4.5) cold eff v ' 
cold melt 
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where d , , and d , ̂  are the widths of the cold end and the melt, cold melt ' 
respectively and T - . and T are the temperature differences J cold melt 

across the cold end and the melt, respectively. Rearranging equation 

1.4.5 yields 

T _ k e f f dcold (1.4.6a) 
cold k n , * d - " melt cold melt 

= k ... C . T _ (1.4.6b) 
eff melt v ' 

where C is a constant. Therefore the slope of the tangent to the curve 

of T ., versus T can be used to determine a value for k c,. cold melt eff 
Using this technique a value for kg^^ can be defined for any temperature 

difference across the melt. Once k CJ. is correlated to T , t h e n the 
eff melt 

relationship between the temperature difference across the c e l l and the 

flow velocity could be used to relate kg^^ to flow velocity. 

eff 
In the standard heat transfer notation the factor could be 

melt 

thought of as n
a v g , the average heat transfer coefficient for the melt. 

The average Nusselt number would then be, 

„ ,, v ^melt ^eff ^melt ^eff / n . ,v Nu = (h ) . = , . , = (1.4.7) avg avg' k d k k Sn melt Sn Sn 

where k g is the stagnant thermal conductivity of t i n . 



To summarize, this study looked at heat transfer across liquid 

metal that was flowing due to natural convection. Using the temperature 

difference across a thin square cavity to produce varying degrees of 

natural convection, the temperature differences across the cold end and 

the melt were measured to calculate a value for the effective thermal 

conductivity of the melt. This value when compared to the stagnant 

thermal conductivity indicated the magnitude of the enhancement in heat 

transfer due to the presence of convection. In addition to the 

experimental work a numerical model was developed to give insight into 

the thermal and flu i d flow behaviour of the c e l l . 
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2.0 EXPERIMENTAL DESIGN 

To study the problem of heat transfer with varying degrees of 

convective flow, the geometry of the flow c e l l was kept as simple as 

possible. The c e l l contained the liquid metal in a thin square 

enclosure which would produce laminar two-dimensional flow due to 

natural convection. The temperature of the ends of the c e l l were varied 

to change the convective flow velocity in the melt. The flow produced 

was measured by the flow techniques described in section 2.2. The 

temperature differences were measured across the melt and the cold end. 

These values could then be used to determine the heat flow across the 

melt. The liquid metal used in these experiments was 99.999% pure t i n . 

Table II gives the properties of liquid tin at various temperatures. 

2.1 DESIGN OF EXPERIMENTAL CELLS 

Three c e l l systems were developed over the course of this study. 

Certain design features were common to a l l three c e l l s . The thickness 

of the liquid c e l l was 0.32 cm which should have beeen small enough to 

ensure two-dimensional flow, according to Stewart. The heat transfer 

measurements required that heat flow occurred only through the end 

pieces therefore the bottom and side walls were made of insulating 

materials. 



TABLE II PROPERTIES OF LIQUID TIN 

TEMPERATURE VISCOSITY SPECIFIC 

HEAT 

THERMAL 

CONDUCTIVITY 

DENSITY COEFFICIENT 

OF THERMAL 

EXPANSION 

(°c) (c P) 
cal 

f ) 
cal 

f 1 
gm 
( } 

1 
r V (°c) (c P) 

gm- C 
1 o ' cm-sec-UC cm3 

237 2.02 0.0541 0.0798 6.9698 1.0215 

260 1.88 0.0543 0.0806 6.9538 1.0239 

305 1.68 0.0546 0.0809 6.9217 1.0287 
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2.1.1 Cell I 

To use the c o r r e l a t i o n between time per cycle and the 

temperature difference across the melt determined by Stewart, the c e l l 

geometry and dimensions which he used were adopted for this design, 

which is shown in Figure 2.1. The bottom and side walls were made from 

0.32 cm glass sheet. The cold end piece was made of stainless steel. 

The low thermal conductivity of the stainless would produce a 

significant gradient across the end piece even for low temperature 

differences across the melt. This a b i l i t y was considered desireable 

since the heat transfer behaviour for low temperature differences across 

the melt was of particular interest because the most rapid change in 

flow velocity occurs in this range. The cold end was cooled by argon 

gas jets located in the assembly attached to the end (see Fig 2.1). The 

hot end of the c e l l consisted of a copper block with a T-shaped cross-

section that had a hole to allow for the heating assembly. The heater 

consisted of chromel heating wire which was wrapped around a ceramic 

sheath. Power was supplied by a variac. 

Before assembling the c e l l the inside surfaces were coated with 

colloidal graphite to prevent liquid metal from attacking the c e l l walls 

and to seal any gaps between components. The walls of the c e l l were 

held together by bolts through the bottom piece and by the specially 

designed end pieces, as shown in Figure 2.1. The top of the c e l l was 

open to allow for the thermocouple wires coming out of the melt. The 



Pi 

FIGURE 2 . 1 Design of experimental c e l l I 
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mould was suspended in the furnace by a hangar attached to the ends of 

the c e l l . The furnace temperature was controlled by a Honeywell 

temperature controller (model 5500101). 

2.1.2 Cell II 

Since this c e l l was to be used for quench experiments the walls 

were made of 0.48 cm stainless steel instead of glass which would crack 

due to thermal shock i f quenched. Although the overall c e l l dimensions 

were the same as for c e l l I, new end pieces were designed due to 

problems with the end pieces in c e l l I. The cold end was made of copper 

instead of stainless steel. This copper piece had a U-shaped copper 

tube soldered to the back face. The tube was used to provide the Ar gas 

cooling instead of the jets used in c e l l I. Two thermocouples were 

soldered between the tube and the end piece. A thermocouple probe was 

used to measure temperatures near the hot and cold ends of the melt once 

the c e l l was operating. 

The bottom piece of the c e l l was made of teflon to minimize heat 

flow along the bottom. The c e l l was bolted through the bottom and 

clamps were used along the side edges. 
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2.1.3. CELL III 

Results from cells I and II lead to the design of the larger 

c e l l shown in Figure 2.2. A different furnace was necessary to 

accommodate the new c e l l . This c e l l design eliminated the need for 

bolts through the bottom of the c e l l . Instead, clamps were used along 

the bottom and sides of the c e l l , as shown in the figure. There was a 

special assembly at the cold end which incorporated the clamps and 

argon jets and provided a shield around the end to prevent argon from 

flowing into the furnace. 

To provide more reliable attachment of the thermocouples to the 

outside face of the cold end, the cold end piece was designed with three 

threaded holes which allowed the thermocouples to be held in place by 

screws. However the inside thermocouples were s t i l l spotwelded in place 

since the use of screws would distort the interface between the melt and 

the end piece. Due to the number of thermocouples, a thermocouple 

switch was used to monitor the output of the thermocouples. 

It was found that composite c e l l walls were best for quenching. 

The c e l l wall consisted of an inner wall, made from 0.08 cm aluminum 

sheet and an outer wall, made from 0.016 cm stainless steel sheet, which 

were seperated by 0.016 cm teflon spacers at the edges. The resulting 

air gap between the walls provided an insulating layer in the wall. To 



Argon Inlet Tube 

Design of experimental c e l l I I I . 
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quench the melt, water was forced into this air gap from a thin-walled 

stainless steel tube (o.d.«1.2 cm) with the end flattened to allow 

insertion into the gap. Since only the aluminum sheet separated the 

cooling water from the melt, the molten metal could be quenched in less 

than two seconds using this technique. 

2.2 FLUID FLOW MEASUREMENT 

Two methods were used to measure the flow velocities in the 

melt. The f i r s t method consisted of monitoring the activity of a small 

piece of radioactive copper added to the melt. The second procedure 

consisted of adding radioactive t i n (Sn 1 1 3) to the tin melt and then 

quenching the melt to establish the path of the radioactive tin in the 

melt. 

The general procedure for the copper particle experiment is as 

follows: 

i ) The temperature of the melt was monitored by a thermocouple 

probe. When the c e l l reached thermal equilibrium, a piece of 

radioactive copper (Cu 6 i +), less than 2 mm in diameter was 

inserted into the melt. 

i i ) Lead bricks were arranged so that the activity of the copper 
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particle could be monitored from the top or side of the c e l l by 

a fast-rate s c i n t i l l a t i o n counter. The position of the copper 

particle could be determined by estimating the absorption due to 

the t i n . The expected periodicity in the count rate would be 

directly related to the period of the fluid flow in the cavity. 

The general procedure which was followed for the experiments 

using the radioactive tin (Sn 1 1 3) as tracer was: 

i ) Before inserting the S n 1 1 3 into the melt, the temperature at 

end of the melt was measured using a thermocouple probe. 

Temperatures were taken at approximately the middle of the 

inside face of each end. 

i i ) The radioactive t i n (Sn 1 1 3) was added near the cold end of 

the c e l l and after a given time the c e l l was quenched. 

i i i ) After quenching, the solid block of tin was removed from 

the c e l l and placed on a sheet of X-ray film. Another sheet of 

film was placed on top and a glass sheet put on top to ensure 

good contact between the film and the sample. The film was 

exposed for two to three days then developed. The resulting 

dark areas on the film indicated the location of the S n 1 1 3 and 

thus showed the extent of flui d flow in the melt between the 

moment the radioactive t i n was added and the moment when the 

sample was quenched. 
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2.3 TEMPERATURE MEASUREMENT 

Chrome-alumel thermocouples were used for the temperature 

measurements in this study. For c e l l I, 0.1 mm uncoated thermocouple 

wire inside ceramic sheaths was used. For cells II and III, 0.025 cm 

wire was used since the finer wire was easier to embrittle during the 

spot-welding and would often break near the weld. In addition, coated 

wire was used instead of the ceramic sheaths since the larger ceramic 

sheaths might obstruct the liquid metal from complete contact with the 

end piece. 

The locations of the thermocouples in each c e l l are shown in 

Figure 2.3. The use of spot-welded thermocouples instead of a 

thermocouple probe was preferred for the heat transfer measurements 

since the location of the probe could not be defined precisely and 

therefore i t would be d i f f i c u l t to reproduce i t s location for each 

measurement. However, for the quench tests, a thermocouple probe was 

used because i t would have been neccessary to replace spot-welded 

thermocouples after each sample was removed from the c e l l . 

The cold junctions of the thermocouples in cells I and II were 

maintained in an ice-water bath. The junctions in c e l l III were 

connected directly to the thermocouple switch. A thermometer attached 

to the thermocouple switch was used to determine the temperature of the 



(a) 

(b) 
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(c) 

FIGURE 2.3 Location of thermocouples in experimental cells a) c e l l 
I, b) c e l l II and c) c e l l III ( thermocouple location 
is marked by T). 
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cold junction. 

The output from the thermocouples was recorded on a Honeywell 

chart recorder (model no. 194). The range of the chart recorder was 

adjusted to be either one or two millivolts full-scale deflection, 

depending on the magnitude of the temperature differences between the 

thermocouples. 
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3.0 EXPERIMENTAL RESULTS 

3.1 RESULTS FROM FIRST EXPERIMENTAL CELL 

Several runs were made using the f i r s t c e l l with the top of the 

c e l l open and with i t partially covered. Sufficiently large temperature 

differences were produced without the use of the heater. Figure 3.1 

shows the results plotted as AT g g, the temperature difference across the 

stainless steel end versus AT ^ , the temperature difference across the 

melt. The experiments with the top of the c e l l covered and uncovered 

both showed linear relationships between the temperature difference 

across the cold end and that across the melt. The constant slope in 

Figure 3.1 indicates that kgff> the effective thermal conductivity, was 

constant. 

3.1.1 Calculation of the Effective Thermal Conductivity 

The value of k e f f can be calculated from m, the slope of the 

graph of AT versus AT . using equation 1.4.6(a). According to 
.1- d m »x* t • 

equation 1.4.6(a), 

^eff ^cold / 0 , i v m = ̂  . -j (3.1.1) 
cold melt 



Temperature Difference Across Cell (°C) 

FIGURE 3.1 Graph showing results from c e l l I with top of c e l l 
covered and uncovered. Slopes were calculated using 
linear regression of data points. The correlation 
coefficient is given in brackets. 
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Therefore, 

, , ̂ cold * ̂ melt x ,„ , „ v 
k e f f = m • ( — d — ; > ( 3- 1- 2) 

cold 

For c e l l I: 

k c o l d = T h e r m a l conductivity of stainless steel = 0.044 
cal/cm-sec-°C 

^melt = D * - S t a n c e across melt = 5.0 cm (3.1.3) 

^cold = D ^ - S t a n c e across cold end = 1.25 cm 

From figure 3.1: 

m (uncovered) = 2.069 (3.1.4a) 

m (covered) = 1.705 (3.1.4b) 

Calculating the values for k g f f using equation 3.1.2 yields: 

k e££ (uncovered) = 0.3641 cal/cm-sec-°C 
= 4.5 X k c Sn 

k e f f ( c o v e r e d ) = 0.3003 cal/cm-sec-°C (3.1.5) 

s 3.8 X k 0 

Sn 

k g n (stagnant) =0.08 cal/cm-sec-°C 
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3.1.2 Discussion of Results from Cell I 

There are several reasons why k^^ would be constant. It may 

have been constant because i t was independent of the degree of 

convection. This condition would be expected when the enhancement in 

heat transfer due to convective flow had reached i t s limit. Looking at 

the degree of convection produced, the largest temperature differences 

employed across the melt were big enough to ensure that the maximum flow 

was achieved, according to Figure 1.8. Therefore i t is possible that 

the heat transfer limit had been reached. Also according to Figure 1.8, 

the lowest temperature differences that were used would only produce 

flows that were marginally slower than the maximum flow. Therefore the 

reason k g^^ remained constant was probably because the change i n 

convective flow was too small to show an effect. 

The magnitude of the effective thermal conductivity is about 

four times the stagnant thermal conductivity of t i n . This factor is 

lower than the seven to ten times enhancement assumed i n the 

mathematical modelling of continuous casting. It is possible that this 

number represents the maximum enhancement acheivable with natural 

convection. However there may be another reason why kg^^ is low. 

The heat transfer through the c e l l is not completely determined 

by the characteristics of the molten bath. The rate of heat flow 
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through the c e l l i s affected by the thermal resistances of the 

boundaries as well as the thermal resistance of the melt. The thermal 

resistance of the hot end of the c e l l (Cu) was lower than that f o r 

l i q u i d t i n , as shown i n Table I I I . The thermal resistance of the cold 

end of the c e l l ( s t a i n l e s s s t e e l ) i s less than the thermal resistance of 

stagnent l i q u i d t i n but i s greater than that presented by the convecting 

melt. From t h i s analysis the heat transfer across the c e l l would appear 

to be l i m i t e d by the s t a i n l e s s s t e e l end piece rather than the behaviour 

of t h e m e l t . T h i s r e a s o n c o u l d a l s o e x p l a i n why k e f f remained 

constant. To avoid t h i s problem the next two c e l l designs employed 

copper for both ends of the c e l l . 

3.2 RESULTS FROM CELL II 

The next series of experiments were conducted with the second 

c e l l which duplicated the dimensions of the f i r s t c e l l but used 

d i f f e r e n t materials for i t s construction. The f i r s t experiments with 

t h i s c e l l attempted to measure the degree of convective flow using the 

copper p a r t i c l e method. This method was preferred since the technique 

would provide information about the flow at the temperature measurement 

conditions rather than i n f e r r i n g the flow from a quench. As well, the 

change i n convective flow could be observed when the temperature 

differ e n c e was adjusted, providing a look at the transient and steady 

state behaviour. 
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TABLE III COMPARISON OF THERMAL RESISTANCES 

MATERIAL THERMAL 
CONDUCTIVITY 

LENGTH THERMAL RESISTANCE* 

L 
k L R = 

k A 

cal 
( ) (cm) 

sec- °C 
( 1 (cm) I ) n 

gm-sec-°C 
cal 

Copper 0.928 1.27 1.37 

Stainless 0.044 1.27 28.97 
steel 

Liquid t i n , 0.080 5.08 63.50 
stagnant 

Liquid t i n , 
** 

0.30 5.08 16.93 
convecting 

For comparison purposes the area, A has been taken = 1 cm 
Approximate value from equation 3.1.5 



40 

When the counting rates from the copper particle experiments 

failed to produce the expected periodicity the quench technique was used 

to look at the flow pattern in the c e l l . The radiographs from these 

experiments showed nearly uniform greying across the sample indicating 

that the tracer was well mixed by the time the quench was finished (see 

Figure 3.2(a)). Some samples showed evidence of vortex-type flow (see 

Figure 3.2(b)) which would explain why the copper particle experiments 

failed to show any periodicity. Other samples appeared to be very 

turbulent, as shown in Figure 3.2(c), but i t is not certain whether the 

turbulence was present prior to the quench or whether i t was caused by 

the quench. These results imply much higher velocities than those 

expected from the results of Stewart. 

3.3 RESULTS FROM CELL III 

Since the previous c e l l size did not provide the range of 

convective flow that was expected i t was decided to conduct experiments 

on a larger c e l l and to establish the relationship between the 

convective flow and the temperature difference across the c e l l by 

quenching the c e l l . 



(c) 

Quenched samples from c e l l II (a) Tracer i s well mixed 
(AT=»6°C, time prior to quench = 30 sec), (b) Sample 
showing vortex motion ( A T ^ t , time prior to quench = 30 
sec), (c) Sample exhibiting turbulent flow (AT-5°C, time 
prior to quench = 25 sec). 
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3.3.1 Results of Quench Tests 

The f i r s t concern of the experiments on the new c e l l was the 

adequacy of the quench. The stainless steel walls of the previous c e l l 

were believed to have had too low thermal conductivity to provide a fast 

quench and i t was suspected that some flow had occurred after the 

in i t i a t i o n of the quench. To verify this suspicion the f i r s t quench 

tests with c e l l III were performed using stainless steel walls which 

were made of two pieces of 0.16 cm stainless steel sheet glued together. 

The sampled was quenched by rapidly f i l l i n g up the Inside can of the 

furnace with cooling water. The quench was very slow and the cooler 

liquid from the sides would f a l l to the bottom and produce the flow 

pattern shown in Figure 3.3(a). When quenched in the manner used for 

c e l l II by aiming jets of water at the walls the quench was much faster 

but the flow was s t i l l distorted during the quench producing the fork­

like pattern shown in Figure 3.3(b). Figure 3.4 shows a successful 

quench obtained using the composite c e l l wall design described in 

section 2.1.3. 

The radiographs of the quenched samples used to determine the 

time per cycle are shown in Figure 3.5. The resulting graph of the time 

per cycle versus the temperature difference across the melt is given in 

Figure 3.6 and is very similar to that observed by Stewart. 



FIGURE 3.3 Examples of inadequate quenchs from c e l l III (a) Sample 
quenched by rapidly f i l l i n g inside of furnace with water 
and (b) Sample quenched using water jets aimed at side 
walls. 
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FIGURE 3.5 (Continued) Quenched samples from c e l l III (c) AT-1.4 °C 
time prior to quench = 22 sec, (d) AT-4.4 °C , time 
prior to quench = 11 sec. 
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FIGURE 3.5 (Continued) Quenched samples from c e l l III (e) AT=2.4 °C 
time prior to quench • 18 sec. 
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100 

2 4 6 8 10 12 
Temperature Difference Across Melt (°C) 

FIGURE 3.6 Relationship between time required per cycle and the 
temperature d i f f e r e n c e across the melt (Temperatures i n 
melt were measured using a thermocouple probe). 
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3.3.2 Temperature Measurements 

Having established that the flow was laminar and behaved in a 

predictable manner, detailed temperature measurements were performed. 

The measured temperatures were accurate to + 0.3 °C. The temperature 

difference across the melt was measured from the mid-point of the hot 

face to the mid-point of the cold face. Temperatures were measured at 

three points along the outside face and at three points along the inside 

face of the cold end, as shown in Figure 2.3(c). These temperatures 

were used to calculate the temperature difference across the cold end. 

Rather than using the average temperature of the outside and inside 

faces of the cold end to calculate a single temperature difference for 

the cold end, a temperature difference was calculated for each pair of 

thermocouples. Temperature differences were calculated for the bottom 

and middle sections of the cold end but not for the top section due to 

problems with the thermocouple at the top of the inside face. 

Two experimental conditions were employed. For experiment A, 

both the heater in the hot end and argon gas cooling of the cold end 

were used to create the temperature difference across the melt. For 

experiment B, only argon gas cooling was used to produce the temperature 

difference. Figure 3.7 gives the plot of the temperature difference 

across the cold end versus the temperature difference across the melt 

for the two experiments. There are two distinct regimes in the results 

for experiment A, as shown i n Figure 3.7(a). I n i t i a l l y , the 
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FIGURE 3.7 Graph of temperature d i f f e rences across co ld end versus 
temperature d i f f e rence across melt for (a) experiment A 
which used a heater and argon coo l ing to produce the 
temperature d i f f e rence across mel t . Slopes ind i ca ted on 
graph were ca l cu l a ted using l i n ea r regress ion of data 
po ints• 
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Temperature Difference Across Melt ( ° C ) 

(b) 

FIGURE 3.7 (Continued) Graph of temperature differences across cold 
end versus temperature difference across melt for b) 
experiment B which only used argon cooling to produce 
the temperature difference across melt. Slopes 
indicated on graph were calculated using l i n e a r 
regression of data points. 
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temperature d i f f erence across the melt does not appear to be re la t ed to 

the temperature d i f f erence across the cold end then there i s an abrupt 

t r a n s i s t i o n in to the second regime where there i s a l i n e a r r e l a t i o n s h i p 

between the two temperature d i f f e r e n c e s . The r e s u l t s for experiment B 

showed a gradual t r a n s i s t i o n in to the l i n e a r region as Indicated i n 

F igure 3 .7 (b ) . 

I t was found that the l i n e a r behaviour i n F igure 3.7 was 

associated with large argon flow r a t e s . To inves t iga te the dependence 

on flow r a t e , the temperature d i f ferences i n the c e l l were p lo t t ed as a 

func t ion of the argon flow r a t e . The argon flow rate i s expressed as a 

dimensionless number corresponding to the sca le reading on the 

flowmeter. Appendix II contains a chart which can be used to convert a 

given flow rate to m i l l i l i t r e s per minute. F igure 3.8 shows these p lo t s 

for experiment A. At low flow rates ne i ther the temperature d i f f erence 

across the co ld end nor that across the melt increased uniformly with 

i n c r e a s i n g argon flow r a t e . At one p o i n t , the temperature d i f f erence 

across the melt decreased with increas ing flow r a t e , as shown i n F igure 

3 . 8 ( b ) . This behaviour appears to be associated with the use of the 

heater s ince i t d id not occur i n Figure 3.9 which shows the p lo t s for 

experiment B where only argon coo l ing was used to produce the 

temperature d i f f erence across the melt . 

F i g u r e 3 .10 shows the r e l a t i o n s h i p between the a c t u a l 

temperatures and the argon flow rate for the two experiments. Although 
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FIGURE 3.8 Graphs showing behaviour of temperature differences 
across (a) the cold end and (b) the melt versus argon 
flow rate for experiment A. 



54 

7 

0 10 20 30 4 0 50 
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A r g o n F l o w R a t e 

FIGURE 3.9 Graphs showing behaviour of temperature differences 
across (a) the cold end and (b) the melt versus argon 
flow rate for experiment B. 



FIGURE 3.10 Graphs of temperature at centre of outside face of cold 
end versus argon flow rate for (a) experiment A and (b) 
experiment B. 
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the curves are only given for one thermocouple they are typical of a l l 

temperatures throughout the c e l l for a given experiment. In experiment 

A, the temperature showed an i n i t i a l decrease (region I) which was 

followed by a large increase (region II) afterwhich the temperature 

decreased steadily, as shown in Figure 3.10(a). In experiment B, the 

temperature curve was similar except for a small increase which preceded 

the i n i t i a l decrease in temperature, as shown in Figure 3.10(b). 

The temperature curve in Figure 3.10(a) could be explained i f 

some argon gas had leaked into the furnace. Although the cold end was 

shielded to prevent argon gas from flowing into the furnace, some gas 

may have escaped. The forced convection produced in the furnace 

atmosphere by this flow of gas would increase the heat transfer rate 

between the furnace walls and the c e l l . This phenomena would explain 

the increase observed in region II. Beyond a certain argon gas flow 

rate the enhancement in the heat transfer in the furnace would reach 

some limit and the temperature would then decrease with increasing flow 

rate as observed in region III. It is interesting to note that the 

linearity observed in Figure 3.7(a) occurred for the temperature 

differences corresponding to the region III temperature data. 

One additional observation should be made before proceeding to 

the next section. The temperatures at the bottom and middle of the 

inside face of the cold end were always within 0.2 °C of each other and 

were often the same. Therefore the disparity in the observed values of 
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the temperature difference across the bottom and middle sections of the 

cold end is due to the difference in the temperatures at the outside 

face. The argon gas flow should have been approximately the same for 

both sections although i f some nonuniformity existed i t is likely that 

the flow was higher to the middle section than to the bottom section. 

Consequently there does seem to be any obvious explanation for the 

difference in heat flow rates that is implied by the difference in the 

temperatures. 

3.3.3 Calculation of the Effective Thermal Conductivity 

The values for k were calculated from the slopes in Figure 

3.7 using equation 3.1.2. The results are given in Table IV. The 

slopes for Figure 3.7(a) were calculated using linear regression of the 

data points corresponding to region III in Figure 3.10(a). The slopes 

in Figure 3.7(b) were calculated by using linear regression of the last 

three data points although only two actually l i e in region IV of Figure 

3.9(b). 

For both experimental cases, the value of k g j ^ calculated from 

the data for the bottom section of the cold end is much higher than that 

calculated for the middle section of the cold end. Looking at the ratio 

of k c , to k , the normal thermal conductivity of tin, the enhancement eff sn' 
i s seven to ten times k according to the data from the middle section 

sn 
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TABLE IV CALCULATION OF EFFECTIVE THERMAL CONDUCTIVITY 

EXPERIMENT LOCATION 

(COLD END) 

^melt m k '« eff 
k e f f EXPERIMENT LOCATION 

(COLD END) 

cold melt ^melt m k '« eff kSn 

cal 
f ] (cm) (cm) 

cal 
( V 1 o ' cm-sec- C (cm) (cm) 1 • -o J cm-sec- C 

A-Using heater & Middle 0.927 10.0 1.25 0.0733 0.5435 6.8 

Ar cooling 

Bottom 0.927 10.0 1.25 0.4625 3.430 ~ 43 

B-Only argon Middle 0.927 10.0 1.25 0.1036 0.7685 9.6 

cooling used 

Bottom 0.927 10.0 1.25 0.3472 2.575 ~ 32 



59 

and i s t h i r t y to forty times k g n according to data from the bottom 

section. Judging from these results, i t is not reasonable to use a plot 

of the temperature difference across the bottom section of the cold end 

versus the temperature difference across the mid-plane of the melt to 

calculate k e c . 
eff 
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4.0 MATHEMATICAL MODEL 

In previous mathematical models of fl u i d flow in a rectangular 

cavity, the hot and cold ends of the c e l l have been assumed to be 

isothermal. However in a real system i t is d i f f i c u l t to ensure uniform 

temperatures at the ends and there i s usually some temperature 

difference in the vertical direction. This model was developed to 

observe the effect of non-uniform boundary temperatures. In addition, 

the model was used to compare convective flow in liquid tin with that in 

liquid steel. 

4.1 GOVERNING EQUATIONS 

The energy equation, the Navier-Stokes equations and the 

continuity equation are needed to solve for the temperature and velocity 

f i e l d s . The following are the form of these equations for the two-

dimensional system shown in Figure 4.1: 

The energy equation: 

5T* L *9T* . *6T* k , o2T* . o2T* . (4.1.1) _ _ + u — — + v w = ( — * j + ) 
St ox oy pCp ox oy 



FIGURE 4.1 System of reference for mathematical model. 
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The Navier-Stokes equations: 

-for momentum transfer in the x-direction, 

* * * * ? * 2 * cu" * du' * ou 1 SP . , 8 u • 5 u N 

h U + V = + V( + ) 
* * * o * *2 *2 

St Sx Sy nm Sx Sx Sy 
-g8(T*- T*) (4.1.2) 

-for momentum transfer in the y-direction, 

* * * * 9 * 2 * 
Sv , * Sv • * Sv 1 SP , * S v , S v * . i . Q . 

r U r V = + V( + ) (4.1.3) 
* * * o * *2 *2 

St Sx Sy K i by Sx Sy 

The continuity equation: 

- ^ + ^ L . = 0 (4.1.4) 
* * 

Sx Sy 

made: 

In applying these equations the following assumptions have been 

1) Fluid properties have been assumed constant except for one 

term which accounts for the temperature dependence of 

the density 
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2) Viscous dissipation and compressibility effects have been 

neglected 

3) There is no heat generation in the f l u i d 

4) The applied temperature difference is small compared to 

1/(3 (where 8 is the coefficient of thermal expansion) 

4.1.1 Dimensionless Variables 

The asterisks used in equations 4.1.1 to 4.1.4 have been used to 

distinguish the marked variables from their dimensionless form. For 

computational purposes i t is easier to use the dimensionless variables 

in the governing equations therefore the following dimensionless 

variables were introduced: 

u = 
* u d * v d (4.1.5) 

T = 
T -T 

o 
* * » 

T -T h o 

* 2 
P.d 

P = 
P v m 
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H.Cp . g&d ( T -T ) 
P r = c r = — — 

k » v 2 

* 
where = Temperature of the hot end 

T q = Average temperature of the c e l l 
* * 

T , + T h c 

* 
T = Temperature of the cold end 

d = Width across c e l l 

The Grashof number as defined here is a modified version of the standard 

Grashof number since i t is calculated using one-half the temperature 

difference across the c e l l rather than the total temperature difference. 

The superscript (•) has been used to distinguish the modified Grashof 

number from the standard Grashof number. 

Substituting these dimensionless parameters into equations 4.1.1 

to 4.1.4. yields: 

oT dT oT 1 b 2! 
— + u — + v — = — ( + ) 
at ax ay Pr ax 2 a y 2 

(4.1.6) 
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ou du ou 5P d ^ 5^ 
— + u — + v — = - Gr .T - — + + (4.1.7) 
5t ox dy ox dx 2 dy 2 

av dv dv dP d ^ d ^ 
— + u — + v — = + + (4.1.8) 
dt dx dy dy dx 2 dy 2 

du dv 
— + — =0 (4.1.9) 
dx dy 

Equations 4.1.7 and 4.1.8 can be combined by differentiating equation 

4.1.7 with respect to y and equation 4.1.8. with respect to x, 

subtracting and using equation 4.1.9 to eliminate terms to give, 

3 du dv d V d ^ d ^ d ^ 
( ) + u + V u v 

d t d y d x dxdy dy dx"* dydx 

# dT d (V^) d ( v M 
- Gr . — + (4.1.10) 

dy dy dx 

4.1.2 Stream Function and Vorticity 

To simplify equation 4.1.10, the concepts of the stream function 

and the vorticity were Introduced. The vorticity, E, is defined as: 

dv du 

dx dy 
(4.1.11) 
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The stream function, 4> is defined by the following equations: 

o<|> 
u = (4.1.12) 

oy 

0(|» 
v = (4.1.13) 

o x 

Substituting the vorticity into equation 4.1.10 yields the vorticity 

equation: 

bi ac . ar 
— + u — +-v — = Gr — + V2C (4.1.14) 
9t 8x oy by 

Equation 4.1.9 is automatically satisfied by the definition of the 

stream function. To solve for the stream function, equations 4.1.12 and 

4.1.13 are substituted into equation 4.1.11 to give the stream function 

equation: 

a24» a2c|> 
5 = - ( + ) (4.1.15) 

ax 2 a y 2 

Equations 4.1.6, 4.1.12, 4.1.13, 4.1.14 and 4.1.15 form the set of 

equations used to solve the problem of natural convection in a square 

cavity. 
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4.2 INITIAL AND BOUNDARY CONDITIONS 

The temperature and velocity profiles calculated in this model 

are steady-state. However to reach a solution, the time-derivatives 

have been retained in the governing equations so that the computer w i l l 

produce a time-varying solution which converges to the steady-state 

solution. This technique requires the definition of i n i t i a l conditions 

for the temperature, stream function and vorticity. The i n i t i a l 

conditions used were, 

t=0 0 = x = 1.0 
} C = 0 , <|, = 0, T = 0 (4.2.1) 

0 = y = 1.0 

The solution of the system of equations also requires the 

definition of boundary conditions. Since the velocity must be zero at 

the boundaries the gradient of the stream function was taken to be zero 

at the the boundaries. The top and bottom surfaces were assumed to be 

either insulating or perfectly conducting. The ends were taken to be 

either isothermal or having a linear temperature drop. Expressed 

numerically the boundary conditions were, 

o<l> 
t>0 x = 0.0 ,1.0 (|/ = =0 

ox 



68 

i ) Insulated boundary 
oT 
— =0 
ox 

i i ) Perfectly conducting 

T = -1.0 + 2.0*(1 - y) 

y=0.0 • «J, = — =0 (4.2.2) 
by 

i ) Isothermal end 

T = -1.0 

i i ) With temperature drop 

T = -1.0 + (PCT/2)*x 

y = 1.0 (\> = — =0 
oy 

i) Isothermal end 

T = +1.0 

i i ) With temperature drop 

T = (1-PCT/2)*1.0 - (PCT/2)*x 

where PCT = temperature drop along end expressed as percentage of ^T m e^ t 

4.3 THE FINITE DIFFERENCE EQUATIONS 

The solution of the differential equations is achieved by using 

f i n i t e difference approximations to the governing equations. The 
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numerical technique used in this model was the implicit alternating 

technique, commonly referred to as the ADI method. The model used the 

ADI technique to solve for the temperature, vorticity and stream 

function equations. Other models 1 2' 1 5 have used a relaxation technique 

to solve for the stream function equation (equation 4.1.15). However 

these models were developed for use with much higher Prandtl numbers and 

lower Grashof numbers than those used for this model and had reported 

problems when using low Prandtl numbers. Since the model by Stewart was 

successful at the low Prandtl numbers and high Grashof numbers that 

would be needed for this model the same approach was adopted. 

The ADI technique divides the time step, A T into two parts. For 

the f i r s t half of the time step a l l the x-derivatives are implicit and 

a l l the y-derivatives are explicit. Implicit derivatives are evaluated 

at t=t 2 and explicit derivatives are evaluated at t=t^, where 

1 2=t]+AT/2' The values for t=t ̂  represent the values at the previous 

half of the time step and are known at t=t 2. The values at t=t 2 are 

unknown and must be solved before proceeding to the second half of the 

time step. For the second half of the time step, the y-derivatives are 

implicit and the x-derivatives are explicit. 

The f i n i t e difference approximations were generated from 

expansions based on the square grid system of points as shown in Figure 

4.2. The subscripts I and j indicate the position of the node in the x 

and y directions respectively. The following equations use an asterisk 



FIGURE 4.2 Grid system used in mathematical model. 
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superscript (*) to denote variables that are evaluated at t=(n+l/2)AT, 

and the apostrophe superscript (') to denote variables that are 

evaluated at t=(n+l)Ax. Variables without superscripts are evaluated at 

t=nAx. The f i n i t e difference approximation to the temperature equation 

for the f i r s t half of the time step i s , 

* * * 
rp ^m rn fjt rn rn rj\ 

t>j i , j + u . t i + i ; j ' j - t , j + v
 x i , j + i - * i , j - i = 

Ax/2 i , J 2 Ax ± ' i 2 Ay 

1 . T* .... ~ 2T* . + T* ., I T . , . . - 2T, , + T. ... 
1-1,3 1,3 1+1,3 + l . j - l l , j '1,3+1 (4.3.!) 

Pr (Ax) 2 Pr (Ay) 2 

For the second half of the time step, 

' * * * » » 
rn rn ^n rn 

1,3 1,3 H u 1+1,3 '1-1,3 , T 1,3+1 ' i , j - l _ 
Ax/2 i , J 2 Ax i , J 2 Ay 

* * * » » » 1 T . - 2T . + T - . 1 I... . -2T....+ T. ... _ i - l , j i,3 1+1,3 + _ i . J - l i,3 1,3+1 (4. 3. 2) 
Pr (Ax) 2 Pr (Ay) 2 

The f i n i t e difference equation for the vorticity for the f i r s t half of 

the time step, 

* * * 
C l , 3 "  L±,3 + u

 C i + l , j " C i - l , j + v
 Ci,j+1 ~ C l , j - 1 

Ax/2 x » j 2 Ax ^ 2Ay 



72 

« 75 75 

j+1 " T - 1 , +
 g i - l , j " 2 g l , j + ^i+l,j + 

2 Ay (Ax) 2 

S j . j - l - ^ i . j +-£1,3+1 ( 4 > 3 > 3 ) 

(Ay) 2 

For the second half of the time step, 

' * * * » » 
" ^ i , J + u

 C i + l , j " C i - l , j ,h y " C i , j - I = 

AT/2 l , i 2 Ax 2Ay 

» • * * * T - T E - 2E + E 
C r«/i,j+l ' i . j - l , 4 H , j - 4+l.j + 

2 Ay (Ax) 2 

t » i 
g i , - j - l 2 C i , : j 1 - 5 t , j + l (4.3.4) 

( A y ) 2 

To solve the stream function equation, a time derivative is 

introduced to equation 4.1.15 to produce an unsteady state solution 

which converges to the steady state problem. Using this approach the 

f i n i t e difference equation for the stream function for the f i r s t half of 

the time step, i s , 

A T /2 i , j (Ax) 2 
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(Ay) : 

For the second half of the time step, 

* * ic is 
<k ,--.<k., V i - - I ~ - 2 V - I - +

 * i>3 i>3 _ g + 1-1,3 i » 3 i+l»3 ( 

AT/2  ±>i ( A x ) 2 

(Ay) 2 

(4.3.5) 

( 4 . 3 . 6 ) 

To solve the temperature, vorticity and stream function 

equations, the above equations are rearranged to collect a l l the unknown 

terms on one side of the equation and the known terms on the right hand 

side of the equation. A complete l i s t of the rearranged equations can 

be found in appendix II of reference 8. The resulting coefficient 

matrix for the unknown variables is a tridiagonal matrix which can be 

easily inverted for solution. Once the temperature, vorticity and 

stream function have been calculated for each node, the new velocities 

are calculated. Using equations 4.1.12 and 4.1.13, the following 

expansions were generated to solve for the velocities: 

, = A - *i.J-2 ~ 8 ( p i , j - l + 8 4 , i , j + l " +1,1+2 (4.3.7) 
1 , 3 dy , J 12Ay 
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*1 j • " M l 
^ _ ^-2,3- - ^ i - y ^ k . j - V l . j (4.3.8) 
ox j 12 Ax 

For points near the boundary a different expansion was used which was of 

the form: 

_ ~ 3»1,2 + H i , 3 " *1,4 (4.3.9) 
U i 2 

X ' 6Ay 

v„ . =^ ^ (4.3.10) 
6Ax 

Expansions of a similar form were used for the other boundaries. 

An additional calculation was performed to determine the 

boundary vo r t i c i t i e s since no boundary condition was defined for the 

vorticity. Equation 4.1.15 was used to solve for the boundary 

v o r t i c i t i e s . To satisfy the condition that the velocity must be zero 

normal to the boundary, 

b 2<\> § 2<\> 
at x=0,l = 0 and at y=0,l = 0 (4.3.11) 

by2 ox 2 

Therefore at the boundary, equation 4.1.15 becomes, 

d2c|> a2<j> 
at x=0,l E = and at y=0,l E = (4.3.12) 

dx 2 dy 2 
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The expansions used for the boundaries were of the form, 

2h 2 

hi <4'3'13> 
(Ay) 2 

4.4 RESULTS OF COMPUTER RUNS 

During the development of the model i t was found that a separate 

time step was needed for the solution of the stream function which was 

kept constant for a l l runs. This time step was larger than the time 

step used for the temperature and vorticity equations. In addition, 

convergence was much more rapid i f the latter time step was changed as 

the program progressed. For Grashof numbers > 1 0 5 even small changes in 

the temperature-vorticity time step would markedly affect the number of 

iterations that were required for convergence. No convergent solution 

was found for Grashof numbers >̂  1 0 7 . From the results obtained, i t 

would appear that adjusting the value of the stream function time step 

might increase model sta b i l i t y at the higher Grashof numbers. Close 

examination of the data used by Stewart did not reveal the time step 

used but i t did show that a finer mesh size was used for Grashof number 

equal to 1 0 7 . The region of instability seems to occur for Ra > 1 0 5 . 

This limit would seem to concur with the stability limit observed in 

other models of conv e c t i o n i n a r e c t a n g u l a r c a v i t y 1 2 ' 2 1 . The 

Instability in the numerical model seems to associated with the onset of 

secondary flows in the c a v i t y . 2 1 



To test the computer program, isotherm, streamline and Nusselt 

number plots were generated for a square cavity with isothermal ends and 

insulated top and bottom boundaries using the Prandtl number for tin (Pr 

= 0.0127) and various Grashof numbers. Figures 4.3, 4.4 and 4.5 show 

the computer plots that were produced. The results were in excellent 

agreement with the plots generated by the numerical model of Stewart for 

similar Prandtl and Grashof values. In addition, velocity plots were 

generated which show the velocity distribution in the c e l l . The 

results, given in Figure 4.6, show the development of small secondary 

flows in the upper l e f t and lower right corners of the velocity plot for 

Gr = 10 6. 

The temperatures of the .ends were adjusted so that there was a 

linear temperature drop from the top to the bottom of the ends. In the 

experiments, i t was found that the temperatures at the top of the c e l l 

were usually cooler than at the bottom therefore the gradient in the 

model had the coolest temperatures at the top boundary. The temperature 

drop was expressed as a percentage of the temperature difference across 

the melt. For example, a 5% temperature drop at the end boundary would 

mean a difference of 0.1 °C between top and bottom i f the temperature 

difference across the c e l l was 2.0 °C. Figure 4.7 shows the effect of a 

5% and 10% temperature drop for Pr=0.0127 and Gr=1.0X105. Figure 4.8 

shows the effect of the same temperature drops for Pr=0.0127 and 

Gr=1.0X106. The effect on the isotherms is particularly pronounced near 

the ends. The presence of the temperature gradients in the ends also 



FIGURE 4.3 Isotherm distribution for Pr=0.0127 and (a) Gr^L.OXlO4 

(b) Gr=1.0X105 and (c) Gr=1.0X106. 
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FIGURE A.5 Nusselt number versus vertical (x) position along cold 
wall for Pr=0.0127 and Gr-l.OXlO11, 1.0X105 and 1.0X106. 
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FIGURE 4.6 Normalized velocity f i e l d for Pr=0.0127 and (a) Gr=105 

(maximum velocity =487.44) and (b) Gr=106 (maximum 
velocity = 1185.09). Velocities given are dimensionless 
velocities. 



(a) 

(b) 

FIGURE 4.7 Isotherm plots with Pr=0.0127 and Gr=1.0X105. Solid 
line indicates profiles for isothermal ends and dashed 
line indicates those for (a) a 5% drop along ends and 
(b) a 10% drop along ends. 



FIGURE 4.8 Isotherm plots with Pr=0.0127 and Gr=1.0X106. Solid 
line indicates profiles for isothermal ends and dashed 
line indicates those for (a) a 5% drop along ends and 
(b) a 10% drop along ends. 
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FIGURE 4.9 Streamline plot with Pr=0.0127 and Gr=1.0X106 with (a) 
isothermal ends and (b) 10% drop along both ends (with 
coldest temperature at top). 
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affects the streamline distribution as shown in Figure 4.9. There is a 

slight effect on the shape of the streamlines. The maximum value of the 

stream function is lower when the gradients are present indicating 

slower velocities in the cavity. However the maximum velocity only 

decreased by about eight percent with a ten percent drop in the end 

temperatures. 

The velocities that were measured for c e l l II appeared to be 

much higher than the velocities measured by Stewart. One major 

difference in the c e l l design between c e l l II and the c e l l used by 

Stewart was the fact that Stewart used a U-shaped piece inside the c e l l 

which connected the cold end to the hot end. This design avoided the 

problem of liquid t i n leaking from the junction between the end piece 

and the bottom piece of the c e l l but i t also provided a thermal link 

between the end pieces through which heat could flow. For such a 

situation It is conceivable that a temperature gradient would exist 

along the bottom of the c e l l . To investigate the effect of a 

temperature gradient along the bottom of the c e l l computer runs were 

performed with a linear gradient imposed along the bottom of the c e l l . 

For the results shown in Figures 4.10 and 4.11 the ends were taken to be 

isothermal and the top surface was insulating. The effect on the 

isotherms seems to be limited to the bottom of the c e l l . The values of 

the stream function are lower than when the bottom was taken to be 

insulating, especially for the higher Grashof number, indicating that 

the velocities would be slower. Computer runs were also performed for 

the case when there was linear temperature drops in both ends combined 



FIGURE 4.10 Isotherm plot with linear temperature gradient along 
bottom (isothermal ends and insulated top surface) with 
Pr=0.0127 and (a) Gr=1.0X105 and (b) Gr=1.0X106. 
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FIGURE 4.11 Streamline plots with linear temperature gradient along 
bottom (isothermal ends and insulated top surface) with 
Pr=0.0127 and (a) Gr=1.0X105 and (b) Gr=1.0X106. 
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FIGURE 4.12 Isotherm plots with linear temperature gradient along 
bottom and 10% temperature drop along ends with Pr= 
0.0127 and (a) Gr=1.0X105 and (b) Gr=1.0X106. 
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with the linear temperature gradient along the bottom. The results do 

not differ greatly from those produced when assuming isothermal end 

temperatures with the linear gradient along the bottom, as shown in 

Figure 4.12. 

The reduction in velocity due to the presence of the gradient 

along the bottom does not appear to be large enough to account for the 

difference in the results from c e l l II and the results of Stewart. 

Another factor which may have influenced the flow velocity is the heat 

flow out the side walls. The walls of the c e l l used by Stewart were 

made of 0.0625 inch aluminum sheet whereas the side wall for c e l l II was 

made of 0.1875 inch stainless steel. Therefore the walls for c e l l II 

were less conductive. A three-dimensional mathematical model would be 

necessary to estimate the effect on the velocities but such a model is 

beyond the scope of this study. 

Finally, computer runs were performed to compare the differences 

in the responses of liquid t i n and liquid steel to temperature 

differences of 0.5 °C and 0.01 °C. The results are shown in Figures 

4.13 to 4.19. The isotherm plots do not differ greatly although there 

is more curvature in the isotherms for liquid steel. The difference in 

the streamline distribution i s more noticeable for the 0.5 °C 

temperature difference. The velocity gradients in steel are much 

steeper near the edges of the c e l l at this temperature difference, as 

shown in Figure 4.18. However looking at the vertical scale, the 
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0-75 

(b) 

FIGURE 4.13 Isotherm distribution for a temperature difference of 
0.01 °C across c e l l for (a) liquid t i n (Pr=0.0127 and Gr 
=3.6X10'*) and (b) liquid steel (Pr=0.11 and Gr=6.0X103). 
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FIGURE 4.14 Isotherm distribution for a temperature difference of 
0.5 °C across c e l l for (a) liquid t i n (Pr=0.0127 and 
Gr=1.8X 10 6) and (b) liquid steel (Pr=0.0127 and 
Gr=3.0X105). 
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(b) 

FIGURE 4.15 Streamline distribution for a temperature difference of 
0.01 °C across c e l l for (a) liquid t in (Pr=0.0127 and Gr 
=3.6X101*) and (b) liquid steel (Pr=0.11 and Gr=6.0X103). 
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FIGURE 4.16 Streamline distribution for a temperature difference of 
0.5 °C across c e l l for (a) liquid t i n (Pr=0.0127 and Gr 
=1.8X106) and (b) liquid steel (Pr=0.11 and Gr=3.0X105). 
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FIGURE 4.17 Vertical (x) velocity versus horizontal (y) position at 
x=0.5 for a temperature difference of 0.01 °C across 
c e l l in (a) liquid t i n (Pr=0.0127 and Gr=3.6X101*) and 
(b) liquid steel (Pr=0.11 and Gr=6.0X103). 
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FIGURE 4.18 Vertical (x) velocity versus horizontal (y) position at 
x=0.5 for a temperature difference of 0.5 °C across c e l l 
in (a) liquid t i n (Pr=0.0127 and Gr=1.8X106) and (b) 
liquid steel (Pr=0.11 and Gr=3.0X105). 
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FIGURE 4.19 Plot of local Nusselt number versus position along cold 
wall for tin and steel at temperature differences of 
0.01 °C and 0.5 °C. 
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velocities in liquid t i n are much higher than those in liquid steel. 

The velocity scale for liquid tin is five times that for steel in Figure 

4.17 and six times in Figure 4.18. 
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5.0 SUMMARY REMARKS 

One of the aims of this study was to observe how the heat 

transfer changed with increasing convective flow in a liquid metal. The 

interest was in determining at what convective flow rate the heat 

transfer across the c e l l became independent of the degree of convection. 

As long as the heat transfer was related to the flow velocity then the 

degree of flow could not be ignored in mathematical models which 

estimate a value for the effective thermal conductivity. However once 

the linear limit was reached then i t would only be important to know 

that fl u i d flow is present not the actual flow velocity. 

Looking at the data from c e l l I, the heat transfer rate appeared 

to be linear over the entire range of temperature differences employed. 

However the linearity observed was probably due to the fact that the 

thermal resistance of the stainless steel end was higher than that for 

the convecting melt. In fact, the thermal conductivity of stainless is 

about one-half the thermal conductivity of stagnant liquid t i n . This 

situation is opposite to the situation encountered in liquid-solid heat 

transfer in s o l i d i f i c a t i o n . For most metals, the thermal conductivity 

of the solid state is higher that the thermal conductivity of the liquid 

state therefore the results from c e l l I were not representative of the 

behaviour during so l i d i f i c a t i o n . 
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The results from c e l l I raise some questions about a recent 

study which examined natural convective heat transfer across a 

parallelogrammic enclosure. In this study water and silicone o i l were 

used as the experimental media. The cold end of the c e l l consisted of a 

copper plate immediately adjacent to the convecting f l u i d followed by a 

series of four glass plates which were the same thickness as the copper 

plate afterwhich there was another copper plate. Thermocouples were 

positioned between the glass plates to measure the temperature 

differences across the plates. Knowing the thermal conductivity of the 

glass, the plates served as a heat flux meter. Since the thermal 

conductivity of glass is much lower than that for copper, the thermal 

resistance of the glass heat flux meter would be much higher than 

thermal resistance of the copper. In fact the thermal conductivity of 

glass is comparable to the stagnant thermal conductivity of water so 

that the thermal resistance of the glass plates was probably the same 

order of magnitude as the convecting f l u i d . Based on the results from 

c e l l I i t seems likely that the heat transfer across the parallelogram 

was influenced by the heat flux meter. 

To calculate a value for the effective thermal conductivity i t 

is assumed that a l l heat flow is through the cold end. The difference 

in the slopes for the covered and uncovered c e l l indicate that the heat 

l o s t from the top of the c e l l cannot be ignored. The value of k^^ is 

approximately twenty percent lower using data from the covered c e l l than 

when using data from the uncovered c e l l . However the effect of the 

heat loss appears to a constant fraction of the heat transfer across the 
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c e l l so that the shape of the AT versus AT . ̂  curve i s not 
r cold melt 

affected. 

In the results from c e l l III, the behaviour at low flow rates 

was not clear. Using both argon cooling and the heater i t was d i f f i c u l t 

to achieve temperature differences across the c e l l that were less than 

3.5 °C. Using only argon cooling, the data at the lower temperature 

differences i s hard to interpret because the temperature difference 

across the bottom section of the cold end was negative. The negative 

sign means that heat should have been flowing into the cold end of the 

c e l l instead of out of the c e l l . Once the linear limit was reached, the 

magnitude of the effective thermal conductivity was calculated to be 

seven to ten times the thermal conductivity of stagnant liquid t i n . 

According to Figure 3.7, the temperature difference across the 

bottom section was higher than the temperature difference across the 

middle section implying higher heat transfer rates across the bottom of 

the c e l l . This situation is in direct conflict with the predictions of 

the computer model as reflected in the Nusselt number plots shown in 

Figures 4.5 and 4.19. According to these plots, the heat transfer rate 

at the bottom of the cold end should be less than that across the centre 

of the cold end. The highest heat transfer rates should be encountered 

at the top of the c e l l . Unfortunately data was not available for the 

upper section of the cold end but further experimention is necessary to 

resolve the disagreement in the heat flow distribution. 
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APPENDIX I 

LIST OF SYMBOLS 

Specific heat 

Distance across c e l l 

Acceleration due to gravity 

Grashof number 

Modified Grashof number 

Heat transfer coefficient 

Thermal conductivity 

Effective thermal conductivity 

Thermal conductivity of t i n 

Characteristic length 

Nusselt number 

Pressure 

Dimensionless pressure 

Prandtl number 

Heat flow rate 

Rayleigh number 

Time 

Dimensionless time 

Temperature 

Dimensionless temperature 



Velocity in x-direction 

Dimensionless velocity in x-direction 

Velocity in y-direction 

Dimensionless velocity in y-direction 

Coordinate in vertical direction 

Dimensionless coordinate In vertical direction 

Coordinate in horizontal direction 

Dimensionless coordinate in horizontal direction 

Greek symbols 

Thermal coefficient of expansion 

Temperature difference 

Time step (computer program) 

Vorticity 

Viscosity 

Kinematic viscosity 

Density 

Mean density 

Stream function 



APPENDIX II 
104 

Chart for Argon Flow Rate Conversion 

NO. 2 

STD. 
A/R 

ML./ 

I200-

tooo-

800-

600-

400-

200-

CAL/BRAT/ON CHART 
^ FLOWMETER CATALOG NO. F 12.00 

SERIAL NO. G277-G487-G4& 
Df = O. / £ 5 " = CM. pf=Z.53 GM./ML. 

*STD.= /ATM. AHO 70°F 

STD* 
WATER 
ML 

25 
: i. . .i 

:_.J.... .• -i • —1 -:r 

1 1
 1 

1 1
 M

 |
 1

II 
1 

• 1
11

1 

: i. . .i 
:_.J.... .• -i • —1 -:r 

1 1
 1 

1 1
 M

 |
 1

II 
1 

• 1
11

1 

:: i : •ii! . i . 
.: j - . ' 'i 

• ' I - i * i ....I..:. •-T- . . . -

1 1
 1 

1 1
 M

 |
 1

II 
1 

• 1
11

1 

: i ! : 

. i . 
.: j - . ' 'i 

• ' I - i * i ....I..:. •-T- . . . -

1 1
 1 

1 1
 M

 |
 1

II 
1 

• 1
11

1 

:•:: 
:::: 
:::: :: i: :t:: 

E Li!!::: _ _ L : ! 
1 ! ' •:.:!••: 

•1 . j . ; . • 1 • -; — 

1 1
 1 

1 1
 M

 |
 1

II 
1 

• 1
11

1 

iiiiiip: i : ; : E Li!!::: _ _ L : ! 
1 ! ' •:.:!••: 

•1 . j . ; . • 1 • -; — 

1 1
 1 

1 1
 M

 |
 1

II 
1 

• 1
11

1 

i;;:ji:;: :!!; 

! 

•!»• •• 
1 ' 
r • 

— — --j-- 1 1
 1 

1 1
 M

 |
 1

II 
1 

• 1
11

1 

::::|:::: i;:: ! 

•!»• •• 
1 ' 
r • 

— — --j-- 1 1
 1 

1 1
 M

 |
 1

II 
1 

• 1
11

1 

:i:iji ; ;i i : :iji:ii - •-;•:'-.:....... • •! ' 

i 1
1 i 1

1 i 1 

: i i i i ; i: • - •-;•:'-.:....... 
•• • •! ' :"J "• 

i 1
1 i 1

1 i 1 

iii! • 1 ! : 
. . . 

i 1
1 i 1

1 i 1 

iii! • 1 ! : 
. . . 

i 1
1 i 1

1 i 1 ..:] 
::4:T . . 

•. !::•: ::4:T . . 
•. !::•: 

:. i i • • :i: ;i- :• ; i :• j i : : j " : 
....;.:. 

i - • 
•: -
• • /o 

:. i i • • :i: ;i- :• ; i :• j i : : j " : 
....;.:. - • 

•: -" : : 

I: .: .:.-t-
J r -

. : . . L : - ... L.. - . . . . . . . . . •:hl— :-:— 

. i : . _.: .. .:rni: 

. i : . _.: .. 
1 .:rni: 

-- — j ii 
.:.:L... .... . . . . . . . . . 

-::-— ~i— -- — j ii 
.:.:L... .... . . . . . . . . . 

-::-— ~i— .ii-!-' 
: • • i. . 

:̂ n 
:::|-"--!:•-
-.'.-[•: 

..!.. 
i ;- .j. -±" • : : ! : : : : 

• i - : -
——: ~1~ 

to eo 30 <o so eo 70 eo so 
SCALE READ/MG AT CEA/TEA OP BAS-L. 

30 

25 

20 

15 

too 



APPENDIX I I I - COMPUTER PROGRAM 
1 C 
2 C 
3 C * * ****** * * * ** * THIS IS M0DEL5 *********************** 
4 C 
5 C THIS PROGRAM IS A MODIFICATION OF M0DEL4 
6 C THIS VERSION ALLOWS THE TIME STEP TO BE CHANGED 
7 C AT ANY ARBITRARY ITERATION NUMBER(S) 
8 C 
9 INTEGER FL.FLAG,IFLAG,IERR 
10 C 
1 1 REAL *8 TA,TB.GR,PR,DT,DX,DY,DIF,DIFF,CHECK,SFC 
12 REAL*8 C1,C2,C3,C4.C5,C6,C7,C8,C9,C10.C11.C12.C13.C14 
13 REAL PCTHOT.PCTCOL 
14 C 
15 C INPUT PRANDTL NUMBER (PR) ; GRASHOFF NUMBER (GR) ; 
16 C DELTA T (DT) 
17 c 
18 READ(6,20)PR,GR,DTA,DTB.DTC.0T2 
19 20 F0RMAT(6F10.3) 
20 c 
21 SFC=0.08D0 
22 LIM=21 
23 DX=0.05D0 
24 DY=0.05D0 
25 TA = - 1.ODO 
26 TB= 1.0D0 
27 N = 441 
28 REAL*8 T1(21.21).T2(21.21).X1(21.21).X2(21.21).S1(21.21 
29 REAL*8 A ( 1 9 ) , B ( 1 9 ) , C ( 1 9 ) , R ( 1 9 ) , D ( 2 1 ) , E ( 2 1 ) . F ( 2 1 ) , T ( 2 1 ) 
30 REAL +8 U(21.21 ) .V (2 1 .2 1 ) 
31 c 
32 K1=2/DT2 + 2/DX* k2 
33 K2=2/DT2 - 2/DX**2 
34 K3=2/DT2 + 2/DY**2 
35 K4=2/DT2 - 2/DY**2 
36 LI 1=LIM-1 
37 LI2=LIM-2 
38 FLAG=0 
39 c 
40 c INITIALIZE MATRICES 
4 1 c 
42 DO 50 0=1 ,LIM 
43 DO 50 1=1.LIM 
44 T1(I,d)=0.0 
45 T2 ( I . J ) = 0 . 0 
46 X 1 ( I , <J ) =o. 0 
47 X 2 ( I . J ) =0.0 
48 S1(I,J)=0.0 
49 S2(I.J)=0.0 
50 U ( I . J ) =0.0 
51 50 V ( I , J ) =0.0 
52 c 
53 DO 54 1=1,19 
54 A(I)=0.O 
55 B(I)=0.0 
56 C(I)=0.0 
57 54 R(I)=0.0 
58 DO 58 1=1.21 



1 0 6 

59 D(I ) =0.0 
60 E ( I ) = 0 . 0 
61 F ( I ) = 0 . 0 
62 58 T ( I ) = 0 . 0 
63 C 
64 C 
65 C LOADING FIXED TEMPERATURES 
66 C 
67 PCTHOT=0.0 
68 PCTCOL=0.0 
69 C 
70 DO 60 1=1.LIM 
7 1 T 1 (I , 1 ) = TA + PCTCOL*I/L IM 
72 T2( I . 1 )=TA+PCTCOL*I/LIM 
73 T1 ( I , L IM)=(1-PCTH0T)*TB+PCTH0T* I/L IM 
74 60 T2 ( I . L IM)=(1-PCTH0T)*TB+PCTH0T* I/L IM 
75 C 
76 C SOLVING FOR THE TEMPERATURES 
77 C 
78 C FIRST HALF OF TIME STEP 
79 C 
80 90 FLAG = F LAG +1 
8 1 C 
82 OT=DTA 
83 IF ( F L A G . G T . 4 ) DT =DTB 
84 IF ( F LAG .GT .40 ) DT = DTC 
85 C1=1/(2*DX) 
86 C2=1/(2*DY) 
87 C3=1/(PR*DX**2) 
88 C4=1/(PR*DY**2) 
89 C5=2/DT +2*C3 
90 C6=2/DT -2*C3 
91 C7=2/DT +2*C4 
92 C8=2/DT -2*C4 
93 C9= 1/DX**2 
94 C10=1/DY**2 
95 C1 1=2/DT + 2*C9 
96 C12=2/DT - 2*C9 
97 C13=2/DT + 2*C10 
98 C14=2/DT - 2*C10 
99 WRITE(6, 93 )FLAG 

100 93 FORMAT( ' ' , ' START OF LOOP ' ,G6) 
101 C 
102 C 
103 IF LAG =1 .0 
104 C 
105 C SOLVING FOR COLUMNS 2 TO LIM-1 
106 C 
107 DO 110 J = 2.L I 1 
108 DO 100 1=2,LI1 
109 96 D(I ) = -C1*U ( I . J ) -C3 
1 10 E( I ) =C5 
1 1 1 F ( I )= C1*U ( I , J ) -C3 
1 12 100 T ( I ) = ( C 4 + V ( I , J ) * C 2 ) * T 1 ( I , J - 1 ) + (C4-V( I 
1 13 1+C8*T1 ( I . d ) 
1 14 D(1)=0 
1 15 E(1)=C5 
1 16 F( 1) = -2*C3 
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1 17 T( 1 )=C4*T1 ( 1 ,J- 1 )+C8*T 1 ( 1 ,d)+C4*T1( 1. d+1 ) 
1 18 D(LIM)=-2*C3 
119 E(LIM)=C5 
120 F(L IM)=0 
12 1 T (L IM )=C4*T1 (L IM .d-1 )+C8*T1 (L IM ,d )+C4 *T1(L IM, d+1 ) 
122 CALL T R I S L V ( 2 1 . D , E , F . T , 0 , 9 0 0 ) 
123 DO 105 1 = 1,LIM 
124 105 T 2 ( I , d ) = T ( I ) 
125 110 CONTINUE 
126 C 
127 C 
128 IFLAG=IFLAG+1 
129 C 
130 C 
131 C SECOND HALF OF TIME STEP (TEMPERATURES) 
132 C 
133 C SOLVING FOR ROWS 2 TO LIM-1 
134 C 
135 DO 200 1=2.LI 1 
136 DO 175 d=3.L I2 
137 K = d- 1 
138 A (K )=-V ( I , d ) *C2-C4 
139 B(K)=C7 
140 C(K)= V ( I . d ) * C 2 - C 4 
141 175 R (K )= (C3+U ( I , d ) *C1 ) *T2 ( I -1 ,d )+ (C3-U ( I , d ) * C 1 ) * T2(1+1 ,d) 
142 1+C6*T2 ( I . d ) 
143 A( 1 )=0 
144 B(1)=C7 
145 C (1 )= V ( I , 2 ) * C 2 - C 4 
146 R ( 1 ) = ( C 3 + U ( I , 2 ) * C 1 ) * T 2 ( I - 1 , 2 ) + ( C 3 - U ( I ,2 )*C1 ) * T2(1+1 .2) 
147 1+C6*T2 ( I .2 ) + ( V ( I , 2 )*C2+C4)*T1 (1 , 1 ) 
148 A ( L I 2 ) = -V( I , L I 1)*C2-C4 
149 B (L I2 )=C7 
150 C ( L I2 )=0 
151 L1=LI1 
152 R ( L I2 ) = (C3+U ( I , L1 ) *C 1 )*T2( I - 1 ,L1 ) + (C3 -U( I , L1 ) *C1 )-*T2( 1+1 
153 1+C6*T2 ( I , L I 1) + (C4-V ( I , L I 1 )*C2)*T1 ( I . L IM) 
154 CALL T R I S L V ( 1 9 , A . B . C . R . 0 , 9 0 0 ) 
155 DO 180 d = 2 . LI 1 
156 K = d- 1 
157 180 T 1 ( I , d ) = R ( K ) 
158 200 CONTINUE 
159 c 
160 c TOP ROW 
161 c 
162 DO 220 d = 2.L I 1 
163 K = d- 1 
164 A(K)=-C4 
165 B(K)=C7 
166 C(K)=-C4 
167 220 R ( K ) = C 6 * T 2 ( 1 . d ) + 2 * C 3 * T 2 ( 2 , d ) 
168 A( 1 )=0 
169 B(1)=C7 
170 C(1)=-C4 
171 R( 1)=C6*T2( 1 ,2 )+2*C3*T2 (2 ,2 ) +C4 + T1( 1 . D 
172 A(L I2 )=-C4 
173 B (L I2 )=C7 
174 C ( L I2 )=0 
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175 R ( L I2 )=C6*T2 (1 , L I 1) + 2*C3*T2(2 . LI 1 ) +C4*T1(1 .L IM) 
176 CALL TRISLV( 1 9 . A , B . C . R , 0 , 9 0 0 ) 
177 DO 240 J=2,L I1 
178 K=J-1 
179 240 T1 (1 ,d )=R (K ) 
180 C 
181 C BOTTOM ROW 
182 C 
183 DO 250 J = 2.LI 1 
184 K=J-1 
185 A(K)=-C4 
186 B(K)=C7 
187 C(K)=-C4 
188 250 R (K )=C6*T2(L IM,d )+ 2*C3*T2 (L I 1,d) 
189 A(1)=0 
190 B(1)=C7 
191 C(1)=-C4 » 
192 R( 1 )=C6*T2(L IM.2 ) + 2*C3*T2(L I 1,2 ) +C4*T1(L IM . 1) 
193 A(L I2)=-C4 
194 B (L I2 )=C7 
195 C (L I2 )=0 
196 R(L I2 )=C6*T2(L IM.L I 1 ) + 2*C3*T2(L I 1 ,LI 1 ) +C4*T1(L IM .L IM ) 
197 CALL T R I S L V ( 1 9 , A , B . C , R , 0 . 9 0 0 ) 
198 DO 260 <J = 2. LI 1 
199 K=J-1 
200 260 T1(L IM,d )=R(K ) 
201 C 
202 C 
203 C 
204 IFLAG=IFLAG+1 
205 C 
206 C INTERIOR VORTICITIES 
207 C FIRST HALF OF TIME STEP 
208 C 
209 C SOLVING FOR COLUMNS 2 TO LIM-1 
210 C 
211 DO 310 J=2.L I1 
212 DO 300 I=3,L I2 
213 K=I-1 
214 A (K )=-U ( I , J ) *C1-C9 
215 B(K)=C11 
2 16 C(K)= U ( I , d ) * C 1 - C 9 
217 300 R (K )= (C10+V ( I , J )+C2 ) *X1 ( I . J -1 )+ ( -V ( I . d ) *C2+C10 ) *X1 ( I . J+1 ) 
218 1+C14*X1 ( I , d ) + G R * C 1 * ( T 1 ( I , J + 1 ) - T 1 ( I , d - 1 ) ) 
219 A(1)=0 
220 B( 1 ) =C 1 1 
221 C( 1 )= U ( 2 . d ) * C 1 - C 9 
222 R(1) = (C10+V(2 , J ) *C2 )+X1 (2 , J -1 ) + ( -V (2 ,d ) *C2+C10 ) *X1 (2 ,d+1 ) 
223 1+C14*X1(2 ,d ) 
224 1+GR*C1*(T 1 (2 ,d+1 ) -T1 (2 ,d-1 ) ) + (C9+U(2 .d ) *C1 ) *X2 ( 1 , d l 
225 A (L I2 ) = -U(LI 1 .d ) *C1-C9 
226 B(L I2)=C11 
227 C ( L I 2 )=0 
228 R ( L I 2 ) = C 1 4 * X 1 ( L I 1 . d ) + ( C 9 - U ( L I 1 . d ) * C 1 ) * X 2 ( L I M . d ) 
229 1 + ( C 1 0 + V ( L 1 . d ) * C 2 ) * X 1 ( L 1 , d - 1 ) + (- V(L1 ,d ) *C2+C10)*X1(L1 .d+1 ) 
230 1+GR*C1* (T1 ( L I 1 . d+1 )-T1 ( L I 1 , d-1 ) ) 
231 CALL T R I S L V ( 1 9 . A . B . C , R , 0 . 9 0 0 ) 
232 DO 305 1=2,LI1 
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233 K=I-1 
234 305 X 2 ( I , J ) = R ( K ) 
235 310 CONTINUE 
236 C 
237 C 
238 C 
239 IFLAG =IFLAG+1 
240 C 
241 C SECOND HALF OF TIME STEP (VORT IC IT l ES ) 
242 C 
243 C SOLVING FOR ROWS 2 TO LIM-1 
244 C 
245 DO 350 1=2.LI1 
246 DO 340 d=3.L I2 
247 K = d- 1 
248 > ( K ) = - V ( I , d ) * C 2 ~ C 1 0 
249 B (K)=C13 
250 C (K )= V ( I . J ) * C 2 - C 1 0 
251 340 R ( K ) = ( C 9 + U ( I , d ) * C D * X 2 ( I - 1 . d ) + ( C 9 - U ( I , J ) * C D * X2(1+ 1 ,d) 
252 1+GR*C1*(T1 ( I ,0+1 )-T1 ( I . d - 1 ) )+C12*X2 ( I . d ) 
253 A(1 )=0 
254 B (1 )=C13 
255 C (1 )= V(I.2)*C2-C10 
256 R ( 1 ) = ( C 9 + U ( I . 2 ) * C 1 ) * X 2 ( I - 1 , 2 ) + ( C 9 - U ( I , 2 ) * C D * X2(1 + 1 . .2) 
257 1+C12*X2<1.2) 
258 1 + G R * C 1 * ( T 1 ( I , 3 ) - T 1 ( I , 1 ) ) + ( V ( I , 2 ) * C 2 + C 1 0 ) * X 1 ( I • 1 > 
259 A ( L I 2 ) = - V ( I , L I 1 ) * C 2 - C 1 0 
260 B ( L I2 )=C13 
261 C ( L I 2 ) = 0 
262 L1=LI 1 
263 R(L I 2) = (C9+U( I ,L1 )*C 1 )*X2(I - 1 ,L1 ) + (C9-U(I . L1 ) *C1 ) * X 2 ( 1 + 1 
264 1 + C 1 2 * X 2 ( I , L I 1 ) + ( - V ( I , L I 1 ) * C 2 + C 1 0 ) * X 1 ( I , L I M ) 
265 1+GR*C 1 * ( T 1 ( I , L I M ) - T 1 ( I . L I 2 ) ) 
266 CALL T R I S L V ( 1 9 . A , B , C , R , 0 , 9 0 0 ) 
267 DO 345 d=2.L I1 
268 K = d- 1 
269 345 X 1 ( I . d )=R(K) 
270 C 
27 1 350 CONTINUE 
272 C 
273 C 
274 C 
275 IFLAG=IFLAG+1 
276 C 
277 C STREAM FUNCTION 
278 C F IRST HALF OF TIME STEP 
279 C 
280 FL=0 
281 360 FL = FL+ 1 
282 DO 400 d = 2 .L I 1 
283 DO 375 1=3 ,L I2 
284 K=I-1 
285 A(K ) = -C9 
286 B(K)=K1 
287 C (K )=-C9 
288 375 R(K)=X 1 ( I . d )+C10*S1 ( I , d-1 )+K4*S1 ( I , d)+C 10 * S1 ( I . d+1 ) 
289 A(1 )=0 
290 B(1)=K1 
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291 C( 1 ) = -C9 
292 R( 1 )=X1(2 ,d )+C10*S1 (2 ,d-1 )+K4*S1(2, d ).+C 10*S 1 ( 2 , J+1) 
293 A (L I2 )=-C9 
294 B(LI2)=K1 
295 C (L I2 )=0 
296 R ( L I2 )=X1 (L I1 ,d )+C10*S1 ( L I1 , J -1 )+K4*S1 ( L I 1,d)+C10*S1(LI 1 .d+1 ) 
297 CALL T R I S L V ( 1 9 , A , B , C . R , 0 , 9 0 0 ) 
298 DO 380 1=2,LI1 
299 K = I-1 
300 380 S2 ( I , d )=R (K ) 
301 C 
302 400 CONTINUE 
303 C 
304 C 
305 IFLAG=IFLAG+1 -(FL-1) 
306 C 
307 C SECOND HALF OF TIME STEP (STREAM FUNCTION) 
308 DO 475 1=2,LI1 
309 DO 450 d=3,L I2 
310 K = d- 1 
31 1 A(K)=-C10 
312 B(K)=K3 
313 C(K)=-C10 
314 450 R (K )=X1 ( I ,d )+C9*S2 ( I - 1 ,d )+K2*S2 ( I . d)+C9*S2(1 + 1,d) 
315 A( 1 )=0 
316 B(1)=K3 
317 C (1 )=-C10 
318 R (1 )=X1 ( I . 2 )+C9*S2 (1-1 ,2 )+K2*S2( I ,2 )+C9* S2(I + 1,2) 
319 A (L I2 )=-C10 
320 B (L I2 )=K3 
321 C ( L I 2 )=0 
322 R ( L I2 )=X1 ( I , L I 1 )+C9*S2(I - 1 ,LI 1 )+K2*S2( I ,L I 1)+C9*S2( 1+1 , LI 1 ) 
323 CALL T R I S L V ( 1 9 . A , B , C , R , 0 , 9 0 0 ) 
324 DO 460 d = 2,L I 1 
325 K = d- 1 
326 460 S K I , d)=R(K) 
327 C 
328 475 CONTINUE 
329 C 
330 IFLAG=IFLAG+1 - (FL-1) 
331 C 
332 C CHECK FOR CONVERGENCE OF STREAM FUNCTION 
333 C 
334 IF ( F L . G T . 5 0 ) GO TO 1000 
335 T E S T = C 9 * ( 4 * S 1 ( 2 , 2 ) - S 1 ( 2 , 3 ) - S 1 ( 3 . 2 ) ) 
336 IF ( X 1 ( 2 , 2 ) .EQ.O) GO TO 520 
337 CHECK= (TEST-X1 (2 .2 ) ) /X1 (2 .2 ) 
338 IF ( F L A G . G T . 1 0 ) SFC=0.05 
339 IF ( F L A G . G T . 2 2 ) SFC=0.02 
340 IF (CHECK .GT .SFC ) GO TO 360 
341 C 
342 520 CONTINUE 
343 C 
344 C CALCULATION OF VELOCITIES 
345 C 
346 DO 550 1=2,LI1 
347 DO 525 d=3,L I2 
348 525 U ( I , d ) = ( S1 ( I ,d-2 )-8*S1 ( I , d-1 )+8*S1 ( I ,d+1 )-S1 ( I ,d+2) )/ ( 12 + DY ) 
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349 U ( I , 2 ) = ( - 3 * S 1 ( I , 2 ) + 6 * S 1 ( I , 3 ) - S 1 ( I , 4 ) ) / ( 6 * D Y ) 
350 550 U ( I . L I 1 ) = - ( - 3 * S 1 ( I . L I 1 ) + 6 * S 1 ( I . L I 1 - 1 ) - S 1 ( I . L I 1 - 2 ) ) / ( 6 * D Y ) 
351 DO 600 J=2.L I1 
352 DO 575 1=3,LI2 
353 575 V ( I . J ) = ( - S 1 ( I - 2 . d ) + 8 * S 1 ( I - 1 . J ) - 8 * S 1 ( 1 + 1 . d ) + S 1 ( I + 2 . J ) ) / ( 1 2 ' 
354 V ( 2 . d ) = ( 3 * S 1 ( 2 . d ) - 6 * S 1 ( 3 . d ) + S 1 ( 4 . d ) ) / ( 6 * D X ) 
355 6O0 V ( L I 1 . d ) = - ( 3 * S M L I 1 . d ) - 6 * S 1 ( L 11 - 1 . d ) + S 1 ( L I 1 - 2 . d ) )/(6*DX ) 
356 C 
357 C 
358 C 
359 C 
360 C 
361 C CALCULATION OF BOUNDARY VORTICITIES 
362 DO 625 d = 2.L I 1 
363 X 2 ( 1 , d ) = - 2 * S 1 ( 2 . d ) * C 9 
364 X1( 1 ,d )=X2 (1 .d ) 
365 X 2 ( L I M . d ) = - 2 * S 1 ( L I 1 . d ) * C 9 
366 625 X1 ( L IM .d )=X2 ( L IM .d ) 
367 DO 650 1=2.L11 
368 X2( I , 1 ) = -2 + S K I , 2 ) * C 1 0 
369 X 1 ( I , 1 )=X2( I . 1) 
370 X 2 ( I , L I M ) = - 2 * S 1 ( I , L I 1 ) * C 1 0 
371 650 X 1 ( I . L I M ) = X 2 ( I . L I M ) 
372 C 
373 C 
374 C 
375 C CONVERGENCE CHECK OF TEMPERATURES 
376 C 
377 DIF=0 
378 IF ( F L A G . G T . 7 0 0 ) GO TO 720 
379 DO 700 d=2.20 
380 DO 700 1=2,20 
381 IF ( T K I . d ) . N E . O ) D I F F = ( T 1 ( I . d ) - T 2 ( I . d ) ) / T 1 ( I . d ) 
382 IF (0ABS(DIFF ) .GT .DIF) DIF=DABS(DIFF) 
383 70O CONTINUE 
384 IF ( D I F . G T . 0 . 0 0 5 ) GO TO 90 
385 C 
386 GO TO 725 
387 720 WRITE(6,721 ) 
388 721 FORMAT ( ' ' . ' * * * * * * * * * * * * * * INTERRUPT IN EFFECT ' ) 
389 c 
390 c 
391 725 CONTINUE 
392 c 
393 c 
394 c OUTPUT TEMPERATURES AND VELOCITIES 
395 c 
396 DO 880 1 = 1 .LIM 
397 WRITE (6 .850)1 
398 850 FORMAT( ' ' . ' D A T A FOR ROW NUMBER ' . G 5 ) 
399 W R I T E ( 6 . 8 6 0 ) ( T 1 ( I . d ) , d = 1 . L I M ) 
400 W R I T E ( 6 , 8 6 5 ) ( U ( I , d ) , d = 1 , L I M ) 
401 W R I T E ( 6 . 8 7 0 ) ( V ( I , d ) , d = 1 , L I M ) 
402 860 FORMAT( ' ' . ' T E M P E R A T U R E S : ' . 2 1 F 9 . 6 ) 
403 865 FORMAT( ' ' . ' X-VELOCITY : ' .2 IF 10 .3 ) 
404 870 FORMAT( ' ' , ' Y-VELOCITY : ' .2 IF 10 .3 ) 
405 880 CONTINUE 
406 c 
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407 GO TO 3000 
408 C 
409 C * * * * * * * * * * * * * * * * * * * * * * * * ^ * * * * * * * * + * * * * * * * * * ^ * * * * * * * * * * * * 
410 C 
41.1 C ERROR STATEMENTS ASSOCIATED WITH TRISLV 
412 C 
4^3 £ * + * * * * * * * * * * * # * * * * * + * * * + * * * * * * * * * * * * + * * * # * * * * * + + + * • * + * * * * 
414 C 
415 900 WRITE(6 .960) IFLAG 
416 960 FORMAT(' ' . ' SOLVE COULD NOT FIND A SOLUTION, FLAG = ' . 1 6 ) 
417 GO TO 3000 
418 C 
419 1000 CONTINUE 
420 C INSERT WRITE STATEMENT WHICH SAYS STREAM FUNCTION NOT 
421 C CONVERGING AFTER 10 ITERATIONS 
422 C 
423 WRITE (6 ,1200) 
424 1200 FORMATC ' . ' S T R E A M FCN NOT CONVERGING') 
425 C 
426 DO 1600 J=1.L IM 
427 W R I T E ( 6 , 1 5 0 0 ) S 1 ( 2 . J ) , S 2 ( 2 . J ) 
428 1500 FORMAT(' ' . ' S 1 = ' . F 1 6 . 4 . ' S2= ' . F 1 6 . 4 ) 
429 1600 CONTINUE 
430 C 
431 C 
432 WRITE(6 ,1610)FLAG.CHECK 
433 1610 FORMAT(' ' , ' NO. OF LOOPS RUN = ' . G 8 , ' CHECK = ' . F 1 6 . 5 ) 
434 C 
435 C 
436 GO TO 3000 
437 C 
438 2000 CONTINUE 
439 C INSERT WRITE STATEMENT WHICH SAYS TEMPERATURES NOT CONVERGING 
440 C 
441 WRITE ( 6 , 2 2 0 0 ) 
442 2200 FORMAT(' ' . 'TEMPERATURES NOT CONVERGING') 
443 C 
444 C 
445 DO 2300 1=1.21 
446 W R I T E ( 6 . 2 2 5 0 ) ( T 2 ( I , d ) . J = 1 , 5 ) 
447 2250 FORMATC ' . 5 F 1 6 . 5 ) 
448 2300 CONTINUE 
449 C 
450 WRITE(6 .2325) 
451 2325 FORMAT(' ' , ' S T R E A M FUNCTION' ) 
452 C 
453 DO 2400 1=2,20 
454 W R I T E ( 6 , 2 3 5 0 ) ( S 1 ( I . J ) . J = 1 , 5 ) 
455 2350 FORMAT( ' ' . 5 F 1 6 . 5 ) 
456 2400 CONTINUE 
457 C 
458 GO TO 3000 
459 C 
460 3000 CONTINUE 
461 C 
462 STOP 
463 END 


