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. ABSTRACT

The contribution of plastic flow to overall densification of a
powder compact during hot-pressing has been analysed. The basis of
this analysis is the incorporation of hot—ﬁorking characteristics of
materials at elevated temperatures into an equation applicable to hot-
pressing conditions. The empirical equation relating steady state
strain rate to stress is ¢ = Ac' and for the densification of a
powder compact, the strain rate € = %-%% .
7 The particlés are assumed to be spheres and four different packing
gebﬁé&ric configurations: cubic; orthorhombic, rhombic dodecahedron and
b.c.c. are considered. Taking into consideration the effective stress

acting at the points of contact, the equations for the strain rate can

be combined and arranged into another equation which is shown below:

D t

max :
D—l{D2/382/3R2_l}ndD - A(Z_)n de

1

where ay and B are geometric constants and can be calculated from the
packing geometry. 'A' and 'n' are material constants. D is the relative
density of the compact, and 'R' is the radius of sphere at any stage of

deformation in arbitrary units.

Computerized plots of D vs t were obtained for lead-27% antimony,
nickel and alumina. Experimental verification of these plots was carried
out using hot;pressing data for lead-2% antimony, nickel and alumina
spheres. The hot-compaction experiments were carried out over a range
of tempefatures for each material and under different pressures.

“The'experimental data fitted well with the theoretical prediction

for the orthorhombic model. However, a deviation at the initial stage
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of compaction was encountered in most cases. This deviation was
explained on the basis of the contribution to deﬁsification by
particle mcvement or rearrangemept at the initial stage, which could
not be taken into account in the theoretical derivation.

The stress concentration factor i.e., the effective stress acting

at necks between particles has been calculated. This was found to be
very much higher than that previously used by other workers. The

theoretical equation for the effective stress is

a

eff al(D2/382/3R2—

1)

This equation predicts an effective stress, which is more than an
order of magnitude higher than that predicted by several empirical

equations used previously.
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CHAPTER I

INTRODUCTION

Hot-pressing refers to densification of a powder compact under
pressure at elevated temperatures. It is ﬁsually conducted at a tempera-
ture several hundred degrees below the temperature at which sintering
is carried out (without any exterﬁal pressufe). Hot-pressing has gained
importance as a commercial process since one can achieve greater
density at lower temperatures and shorter times than in conventional
sintering, and with much more microstructural control.

The densification of powder compacts during hot-pressing has been
generally studied as a function of temperature, pressure and time. For
kinetic analysis, the change of relative density (or bulk density) as a
function of time under isothermal'conditionsvand at a constant pressure
is usually determiﬁed. A typical densification curve is shown
schematically in Figure 1, where the relativé density vs time is plotted
at a constant tem@erature and pressure. Three distinct regions are
recognised on the curve. The extent of the contribution from each of
the three mechanisms of mass transport, i.e. particle rearrangement with
or without fragmeﬁtation, plastic flow, and diffusion, depends on the
type of material, the temperature and the stress level used during

hot-pressing. For example, brittle solids in a compact at relatively
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low temperature tend to fracture as soon as a load is applied during
hot-pressing. The densification is primarily achieved by fragmentation
and particle movement. This wil% be followed by plastic flow, only if
the temperature and stress are high enough that dislocations can move.
If no diffusional process occurs after this s;age; the compact will
reach an "end-point density" which is below its theoretical density.
Metal powder compacts can be expected to have a much greater contribution
to densification from plastic flow than ceramic oxides. Also, plastic
flow Qould in general be a significant contributing factor to densifica-
tion at high temperatures and high stresses.

The differeﬁt mechanisms of material tfansport which can be
expected to be predominant in various materials and in wide ranges of

temperature and pressure are summarized in Table 1.

I.1 Densification Due to Particle Rearrangement and Fragmentation

Felten6 carried out a number of hot-pressing investigations with
A1203 having three different average particle sizes (0;05 v, 0.3 u and
5-10 u). He conducted all his experiments at low temperatures (750-
1300°C) to minimize the contribution from plastic flow and diffusion to
densification. -His data fitted well with a plaétic flow equation,
developed by Murray, Livey and Williams,19 buf only at the later stages
of densificatioﬁ. There was a large deviétion at the initial stage of
densification ffom the theoretical prediction. He concluded that

that this ‘deviatioﬁ. .~ at the very early stage must be attributed

to another mode of densification which he called particle rearrangement.

This rearrangement may also be associated with fragmentation.



Table 1. Predominant Mechanisms of Densification under Given Hot-

Pressing Conditions.

Fracture : | Low temperature
High pressure

Plastic flow Large particle size

- Boundary diffusion ' High temperature
Low pressure

Lattice diffusion ' Small particle size



Similarly Chang and Rhodes,l who studied the microstructures of
vuranium—carbide powder compacts after hot-pressing in the temperature
range 500 to 1500°C under pressures varying from 10,000 to 46,000
étmospheres, concluded that particle sliding and fragmentation played

a significant role in the initial stage of densification.

1.2 Densification Due to Plastic Flow

Among the contributions to fhe theory of hot-pressing, the best
 known is perhaps that of Murray, Rodgef and Williams (also Murray,

Livey and Williams)19 who modified the sintering theory of Mackenzie

and Shuttleworth to expiain the oBserved behaviour in hot-pressing, of
various oxides aﬁd carbides. The final form of the equation, neglecting
the contributioﬁ from éintering,_is

dD

_ 3P
* - (1-D) | - (1a)

where D is the relative density at time t, P is the applied pressure and
n is the viscosity. It was assumed by Mackenzie and Shuttleworth8

that all solids can be divided into two groups - Newtonian and Bingham.
As metals and oxides can only flow above a critical stress, they

approximated the crystalline solids as the ''Bingham solid ™.

Hence,
equation (la) contains a viscosity term. Their plastic flow theory
succeeded in explaining the increased rate of densification with
pressure and the effect of pressure on end point density at a constant

temperature.

1 .
Mangsen, Lambertson and Best 6 studied the hot-pressing characteristics
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of aluminum-oxide to understand the mechanisms involved in the densifica-
tion process. They observed that their experimental data fitted
very well with the Murray, Livey and Williams19 equation. The viscosity
values were calculated from these data as a function of temperature which
closely agreed with the values reported in the literature.
v 19 . . 25

Murray's equation has also been employed by Vasilos to

interpret the data obtained during hot-pressing of fused silica. He

used the integrated form of equation la, as follows:
—1n(1-D) = wmttoe , (1b)

when t = 0; D = D0 (the initial~pressed'density). ‘So the integration
constant ¢ equals-ln(l—Do). He plotted~In(l-D) vs time, as shown in
Figure-2.A The linear relation between these two quantities is essentially
observed regardiess of differences in particle size, applied pressure,
or temperature. Viscosity values computed from the slopes of these
curves égreed reasonably well with fhose reported in the literature.
McClellaﬁd17 modified Mufray's equation to fit his hot-pressing

data for BeO and A1203, taking into account the change of effective
pressure thch accompanies closing the pores. Equation la can be

used to describe the variation of density with time only if

pressure, remains constant during'hot—pressing. The pressure which
is effectivé-in closing the pores, however, is not equal to the applied
pressure. Due to the presence of the voids, whosé size changes during

the hot-pressing operation, the area over which the applied load is

transmitted increases with increasing density. Thus, the pressure
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Figure 2(a). Plot of 1n(1-D) vs. time for fused silica at

1100°C and pressure of 1000 psi (after Vasiloszs).
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effective in closing the pores is a function of porosity. McClelland's17

final form of equation is as follows:

b 2/3,
(dp/x{In[1/(Q-x""7)] + a 1n x}) = Kt (1c)

where x is (1-D), D is the density at time t

DO =the initial density

a = & 1/pP
C.
T = vyield stress
= pressure
n = viscosity.

The lefthand side of equatién ic can be integrated grapically for
different values of D. McClellandl7 féund good agreement between the
theoretical curves and experimental data as 1is shown in Figure 3.

Kakar and Chaklader12 developed a mathematical model for interpreta-
tions of densification due to plastic flow. Knowing the geometry of
the particle and packing configuration in a die, they calculated the
change of aensity of a compact of spheres produced by deformation at
the points of contact of the spheres. For this calculation, several
configurations wére considered; cubic (z = 6), hexagonal prism (Z = 8),
rhombic dodecahédron (z - 12) and tetrakaidecahedron (Z = 14) where Z
is the coordination number. These are shown in Figure 5.

Due to indentation at the point of contact between two spheres
as shown in Figure 5a, material will be transferred to fill the void

space and this will increase the density of the compact. The final
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Figure 3. Temperature dependence of density of BeO while hot-pressing
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at 4000 psi (after McClelland™ ').
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density due to these indentations at several points of contact (depending

upon Z) is given as follows:

<
I

o)
]

3/2 Do(-%)2 (at 2 < 0.3) (2a)

or

v}
|
)
)1

101.5 log Z (%)2 ' (2b)

where Z = 6, 8 and 12; D and Dolare the relative densities of the
compact at a > 0 and at a ; 0 respectively, a is the radius of the

flat face produced by indentation, and R is the radius of the sphere at
any stége of densification. Kakér and Chaklader12 tested this equatién

using hot-compaction data for lead, K-monel and Al spheres and they

2%3
obtained a very good fit with the theoretically predicted values of
the hexagonal prismatic model.

They introduced pressure and temperature dependent terms into
equations' 2a and 2b by considering that deformation at the points of
contact between two particles is essentially a self-indentation pfocess.
Using the yieiding criterion of Hencky9 and Ishlinskylo for indentation
i.e., the stress (oY) necessary for yielding during indentation is
three times the yield stress (Y) of the material, the effective stress
acting on each face (oe) and the coordination number 8 (correspondiﬁg

to 0.60 relative density of green compact), equation (2a) was transformed

to give

D-D = ' (2¢)
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An exponential temperature dependence of the yield strength modifies
equation 2c¢ into

Do 0 exp(Q/RT)

D-D = =2 : (24)

In this equation ¢ is the applied pressure, A is a pre-exponential
constant and Q is the activation energy for yielding.

Rummler and Palmour22 studied.the densification kinetics of
magnesium-aiuminate spinel during vacuum hot-pressing. Theyobserved
that below 1350°C, the densification kinetigs of the spinel compacts
were in agreement with Murray's éxpression which in its integral form
predicts a linear relation between log porosity and time. Hence they
concluded thaf the densification of magnesium-aluminate spinel below

1350°C was mainly due to plastic flow.

I.3 Densification Due to Diffusional Mass Transport

Koval'Chenko and Samsonov14 proposed‘a hot-pressing equation based
on the Nabarro—Herringzo creep mechanism; which was verified by studies
on tungsten~-carbide and chromiuﬁ—carbide. Scholz and Lersmacher23
simplified Koval'Chenko and Samsonov'slA-equation and showed that it

took a form similar to the equation developed By Murray et al.19 viz

dq 3P
de 4mQ

where Q = porosity.
: . 2 . . . .
Coble and Ellis™ carried out hot-pressing experiments on aluminum

single crystal spheres at 1530°C. They measured the effect of load on
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initial neck‘growth between single crystal spheres and observed that
the neck areas were larger than those of sintered spheres and that they
were. constant for all times between 10 and 480 minutes. They calculated
the plastic flow contribution to the densification during hot-pressing.
‘'This calculation was based on the hydrostatic nature of stress and
the geometric relations between particles. From this they found that
for aluminum oxide the contribution of plastic flow to dénsification at
the pressures normally used in hot—pfessing was small. Hence they
concluded that the final stage’of deﬁsifiéation of alumina occurs by
enhanced diffusion under the influence of streés.

Rossi andiF‘ulrathzl also studied the kinetics of the final stage
of densificatiég of alumina under vacuum hot-pressing cbnditions. Théy
suggested that ﬁiastic flow may_be.operative at an intermediate stagé but
definitely nottduring the final stage where diffusion-controlled creep
was proposed to be the mechanism responsible for demsification.

| Vasilos aﬁd Sprigg326 calculated the apparent bulk diffusion

coefficients from the densification data for alumina aﬁd magnesia
during hot—preésing and obtained an order of magnifude higher
values for pféssureless sintering. When the pressure correction
term due to changing porosity was introduced into their calculations,
their calculatéd diffusion-coefficients were in better agreement with those
obtainéd from the'sintering data. From these observations they concluded
tHat the densification of a hot-pressed compact, beyond the initial
stage is a diffﬁsion controlled process.

A new tréatment,proposed by Fryer7'for the final densification

step during hot-pressing was based on a model involving the bulk diffusion
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Figure 4(a) Shrinkage plots of alumina pressed at 1300°C, 2000’ and

3000 psi (after Fryer7).
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Table II. Densification Equations Based on Diffusional Mass Transport.

2
Q =
LLy572 80 DL o =1Ll/mx Coble and Ellis’
LO 2nd4 KT x -= neck radius
40 D.Qbo
92~= ———~l;—-(1-D) N-H creep model Rossi and Fulrath2l
dt 2 v
KT d
D = éBEEZ_ G T Vasilos and Spri 526
T oo, 40 - _ dp asi prigg
dt
l_.iz§.= -7 S Elf(£§5/3 Fryer7
Vg dt d2- KT D
40 D. Q -
-]15-3—]3- - — LS4 %Y-) lattice diffusion Coble”
3d” KT
7.5 D, W
Ldb b (g + 2y boundary diffusion Coble4
D dt 3 D r
d” KT
where L = load R = grain radius
D = relative density K = Boltzmann constant
Dl = bulk diffusion coefficient T = temperature in °Kelvin
Db = boundary diffusion coefficient Vs = volume of solid
= vacancy volume Z = a numerical constant
o] = applied stress . P = porosity = (1 - D)
GC = effective stress ¢ = strain rate
b = a stress-intensity factor y = surface energy
d = grain diameter

W = grain boundary width
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of vacancies. The final form of his equation is shown in Table II.
He tested his equation with hot-pressing data for alumina powder at
1300°C. The experimental data fitted well with the theoretical
prediction, as shown in Figurelea&4b'

Coble4 has also developed a model for the final stage of densifica-
tion of a powder compact, thch explicitly includes both the surface
energy and applied pressure as the driving force. This model is based
on a steady state diffusive flow of material between concentric

spherical shells. The driving force is expressed as follows

where Pa = applied force
vy = surface energy
D = rélative density
r = vradius of closed pore.

The resulting equations are also shown in Table II. Coble4 concluded
that this new épproach should be able to predict demsification up to the

theoretical density of a powder compact.

I.4 Objectives of the Present Work

- The contribution of plastic flow to densification during hot-
pressing has‘been a subject of controversy. Although it has been
accepted that plastic flow occurs at a certain stage during hot-pressing,
which primariiy depends on the temperature used, the extent of densifica-
tion arising from any plastic flow mechenism has not been unambiguously

determined.
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The aim of this work was to study quantitatively the extent of
densification by plastic flow during hot-pressing. Generally hot-~
pressing is carried out ~ 0.6 Tm (where Tm is the melting point in °K)
of the material concerned. This is also apprpximately the hot-working
temperature of the material. With this observation, an attempt has
been made to derive an equation based on steady-state hot-deformation
and subéequently test the equatibn with hot~compaction data for both

metallic and non-metallic materials.



CHAPTER II

THEORETICAL FORMULATIONS

. 1
It has been found experimentally 1 that for a large number of
materials, the steadyQState strain rate is related to stress by a

power law as follows
€ = Ao (3)

and the strain rate during densification of a powder compact (in a

die) is approximately given by

;: ='—dh - 1 db . (4)

where '"D" is the relative density, "h" is the instantaneous compact
height; "A" is.a constant at constant temperature; ''n' is a material
constant and 01 is the stress. TFor a compact this stress changes with
densification during hot-pressing.

In the development of the theory, it is assumed that the particles
in a compact afe monosized spheres aﬁd thaﬁ they are arranged in a
regular three-dimensional array. During hot-pressing, they deform

plastically, at the points of contact (necks) and form flat faces.

The compacté density change, as a result of this deformation, with
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fespect to neck radius, has been derived‘by Kakar and Chaklader12 and
is given by
1

D = ————rrerreaee (5)
B(Rz—a2)3/2

D is the relative density of compact at neck radius "a", "R" is the
instantaneous radius of the particle at neck radius "a" and B is a
geometric constant which depends on the packing configuration. The

effective stress acting on a.compact will be affected by the packing

geometry.

I1.1 Theoretical Models

The deformation geometries of two spheres in contact and other
simple geometric coﬁfigurations are shown in Figure 5. Only four deforma-
tion models were considered — (1) simple cubic (Z = 6), (2) orthdrhombic
z = 8), (3)‘body—centred cubic (Z = 85, and (4) rhombohedral (z = 12),
where Z is the coordination number. The b.c.c. packing is an unstable
arrangement in a unidirectional field of force (i.e. gravitational
force). TFor theoretical purposes, it is assumed that each type df
packing is stable and maintains its symmetry on the application of
pressure, and that the material at the points of contact spreads
symmetrically during deformation to maintain the sphericity of the
particie.

The applied load can be considered to be acting on the whole unit
cell where the unit cell is defined és a space-filling polyhedron with

a deformed sphere situated inside the polyhedron (alternatively, the
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unit cell is composed of the deformed sphere with its associated void

space).

IT.1.a. Simple Cubic Packing

Consider a cubic array of spheres deformed under hydrostatic pressure.

Each sphere will have six flat faces formed as shown in Figures Sbland

2
sz. The unit cell in this case is a cube of side 2y where v = (Rz—a“)l/z.

The cross-sectional area of the unit cell is 4y2. If there is a
load "' on each face, then the stress on each face is 2/4y2 and the
64

total pressure acting on each sphere is-—~§ . This has to be equal to

the total load orn the system under hydrostatic conditions. In conventional

hot-pressing generally a unidirectionél load is applied, tut because of
the existence of back stréss‘from the die-wall and other plunger, the
stress at the ceﬁtral core of a die is approximately isotropic. This
was experimentally observed by Kakar,13 while measuring the contact face
radii of hot-pressed lead spheres.

The load acting on each face of the unit cell can be divided into
two components; one part.acting on the sphere through its indented

flat face and the other part on the void space, i.e.
(6)

where ¢, is the stress on ‘the neck, ¢, is the stress on the void space

1 2

(= 0), o is the applied stress, c is the cross-section area of porosity

and a is the radius of the neck.
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4y2
o; = 5 O
Ta
or
2 2
1 m 2
a
From equation (5)
1
D = —————
2 2
B(R"-a )3/2

where 8 = 8 for the simple cubic packing and this equation can be

rewritten as

p2/352/3g2 1 o 2 , (8)
R -a

Substituting equation (8) in equation (7)

a SRR
o; = y o} )

02327321

Substituting equation (9) in equation (3)

. . 1 g n
e = Af{ } (10)
n/4 (D2/382/3R2-l)
Combining equations (10) and (4)
1 dp ! o "
=22 - A } (11)
D dt “/4 (D2/382/3R2_1)
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This on integration yields

D

m n t n

ax
D_l{D2/382/3R2—1} dp = AL dt (12)
o /4
(o]

I1.1.b. Orthorhombic Packing

Each sphere after deformation will have eight faces. The model

for the deformed sphere and the unit cell are shown in Figures 5cl and

5c,. The cross-sectional area of the unit cell is 2/3 y2 where y =

2
1/2

(Rz—az) . Computing the load for the top face of the unit cell,

2/§'y20 = nazol + co, {(13)
o = applied stress
oy = stress on the neck
o, = stress on porosity = 0
2/3 5
gy = o (14)
1 T 2
a ,
or
: 2V/3" Rz—az' ' ' (15)
%1 T a2 ©

o 1 . (16)
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where 8 = 4/3 for the orthorhombic packing.

Combining equations (3), (4) and (16)

1 dp 1 o n
D dt n/2/§ (D2/382/3R2—l)
The integral form of equation (17) is
Dmax ’ n t n
. p~ L (023527382 1y 4 - ATy de (18)

o . - Jo ‘ w/2/3

II.1l.c. Rhombohedral Packing

Each sphere has twelve points of contact and the resultant unit

cell is a rhombic dodecahedron as shown in Figures 5d, and 5d2.

1
The cross—sectional area of the unit cell is 2/§'y2 where y =

(R2~a2)l/2. Computing the loads for the top face of the unit cell,

2Y3 yzo = 3na2cos eol + co, (19)
o = applies stress
0 = stress on the neck
o, = stress on porosity = 0
From geometry cos 6 = V2/3
- 2/3 1;2_
o = 5 0 (20)
: vér a
or,
2V3 Rz-—a2

o = o (21)
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Substituting equation (8) in equation (21)

1 o '
g. = (22)
1 ) VT [D2/382/3R2—l]

where B = 42 for the rhombohedral packing.

Combining equations (3), (4) and (22)

n
1 dp 1 g
== = A{ } (23)
D dt YA (D2/382/3R2—1)
This, on integration, yields
D . t
max n _ n
D’l{D2/332/3R2-1} dp = ACE—)  dt (24)
D o n/vV2
o

II.1.d. B.C.C. Packing

The shape of deformed sphere is schematically represented in

Figures Sel and 5e2. There are eight points of contact during the

initial stage of deformation.

The cross—sectional area of the unit cell is lg—yz where y =

3
(R2_62)1/2_

Computing the loads for the top face of the unit cell

l%yzo = 4na2 cos 0o, + co (25)

1 2
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o = applied stress
0y = stress on neck
0y = stress on porosity = 0
From geometry, cosf = 1
/3
L. 18 Byt
a
or
4 R2_a%
g, = — o

Substituting equétion (8) in equation (27)

_ 1 g
1 w/3/4 [D2/382/3R2—l]

o

Combining equations (3), (4) and (28)

ldp _ o1 o -
D dt w374 (D2/382/3R2—1)

This, on integration gives

D t
.m n n

ax
0 0?3623y ap- A—Z—) dt
mv3/4

(26)

(27)

(28)

(29)

(30)
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I1.2 General Equations

From the above, it appears one can write general equations both
for the stress concentration factor and for the densification as
follows:

g. = g (31)

p?/32/32y)

1¢
where g and B are constants which vary with packing geometry, and

hence

D t

max '
D-l{D2/362/3R2

D o

-1}%dp = A 3‘1)“ dt (32)

1

It should be noted that the derivation is based on a condition where
the stress is hydrostatic in nature. It is also assumed that the strain
rate at the points of contact and in the whole system approaches a steady-

state condition as soon as a load is applied.

II.3 Application of the Equation

The analytical solution of the above equation in a closed form is
not bossible. The limits of integration Dmax have values varying from
.835 for the hexagonal prismatic model to 0.995 for the tetrakaidecahedron
model., In equation (32) 8, and @, are geometric constants and they are
calculable. The values of these constants are shown in Table III. A and
n are material constants and can be determined from steady-state hot-
working data. Knowing all the constants, the change of D, the relative .

density of a compact, as a function of time (t) at a constant temperature
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and pressure caﬁ be obtained by solving the equation in a computer. The
computer programme is given in Appendix 5.

For each of the theoretical deformation models, R changes as de-
formation proceeds; i.e.;R is a function of D, However, the change
in R at various stages of deformation can be calcuiated from the constant
volume equation as described‘by KakarlB. Tables of R vs D are given.in

Appendix 1,



" Table III. Geometric
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Constants of Different Models

Model oy "B D0 Dmax
cubic /4 8 .523 0.965
hexagonal prism w/2/3 4v/3 .604 0.835
rhombic dodecahedron m/2 4v2 740 0.964
tetrakaidecahedron w/3/4 32/3 .680 0.995




CHAPTER III

EXPERIMENTAL VERIFICATION OF THEORY

IIT.1 Material Selection and-Théoretical Plots

To compare the compaction data_for hot-pressing with that of
theoretically predicted behaviour, both‘metallic and non;metallic
materials were chosen. The selection of lead-27 antimony, nickel and
alumina for experimental work was based upon the availability of
spherical particles for hot-pressing.

As discussed previously, the theoretical equation can only be tested
if the values of the material constants A and n for ény material are known
or, are experiméntally determined by hot-working data. The values of
these constants for a large number of metallic and non-metallic materials
have been reported in the literature.. The purities of the metals
(spheres of Pb-2% Sb and Ni) used in this investigation are not the
same for which'the values of A and n are AQailable in the literature.

For this reason, the values of A and n for Pb-2% Sb and Ni were
determined frqﬁ steady-state hot~compression experiments in an Instron
machine. The details of the experimental procedure are given in a

later section;' The values of stress and strain rate are shown in
Appendix 2. fhe values of A and n for alumina are obtained from the
literature. Tﬁe value of the constants A and n for all the materials are

shown in Table IV.
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‘Using the values from the table and the theoretical equation
(equation 32), a series of plots of relative density (D) as a function
of time (t) were generated for different temperatures and -
pressures. These theoretical plots are shown in the following figures.

(a) For lead-2% antimony at lOO°C‘under 1500 psi in Fig. 6,
lead-27 antimony at 150°C under 918 psi in Fig. 7. |

(b) TFor nickel at 800°C under 2162 psi in Fig. 8, nickel at 900°C
under 2105 psi in Fig. 9.

(c) For alumina at 1600°C under 5000 psi in Fig. 10.'

For these plots all four geometric models were employed.

IT1T.2 Experimenﬁal Tests and Procedures

ITI.2.a. Apparatus

(i) Lead-2% antimony: For these hot-pressing experiments 1.5 mm
average diametef lead~-27% antimony shots were used. This material
was supplied by the Lead Shot Industries Limited. The apparatus used
for hot-pressing of lead-2% antimony shots is shown in Figure 11. A
uniaxial compressive load was applied to the system through a simple
bar. A stainless steel (316) rod activated by a lever arm was.placed
inside a stainless steel tube. The compact was positioned on top of
the steel rod in a die and the stress was applied to the specimen
between the rod andvé plug welded into the centre of the tube. To
ensure a uniforﬁ stress across the compact a hemispherical plunger and
cup were used to transmit the load to the éompact. A 400 watt tube |
furnace with a uniform hot zone 3 inches iéng was placed around the

stainless steel tube. The temperature of the furnace was raised and
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Constants for Different Materials

Temperature (°C)

1

Materials A (sec 7) n
. ) -21
Lead-2% antimony 100 4.11 x 10 4.2
150 3.519 x 10712 b.2
, -23
Nickel 800 4.6 x 10 4.6
900 3.4 x 10722 4.6
t "
1600 2.0 x 10722 4.0'

Alumina

Values obtained from Warshaw et al.

27
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maintained at the desired temperature. A chromel-alumel thermocouple
situated 1/2 inch from the specimen operated a proportional temperature
controller which maintained the specimen temperature within i_S°C.

The compaction was determined by the displacement of the extension
of the stainless steel rod, which was obtained by the output from an
electromagnetic transducer attached to the extension rod. The transducer
output was analysed by a Phillips PR 19300, direct reading bridge
which was connected to a "Heath Kit" Servo Récorder.

The loading system was calibrated by hanging weights at the point
of contact of the bar and the stainless steel rod. The load was very
close to the préduct of the weight on the bar and the ratio of the
arms. The weight of the bar was compensated for by loading a small

weight at the other end.

I1T1.2.a.ii Nickel (99% Ni and 0.7% Co): For hot-pressing of nickel,
0.65 mm average diameter nickel balls were used. These were supplied
by the Sherritt:Gerdon Mines Limited, Fort Saskatchewan, Alberta. " The
hot-pressing was carried out in a molybdenum die with an external-

graphite sleeve, using induction heating. Both the die and graphite

sleeve acted as susceptors. Thé_experimental set up is shown in

Figure 12. The temperature of the compact was recorded through the top
plunger at a distance 1/6 inch from the spééimen and was controlled by
the same thermocouple. A Pf—Pt—lO% Rh'thermocouple was used. The
measurement of the displacment of the moveable Bottom ram (the top ram
with the thermbgouple was rigidly attached to the press) was obtained
by the output from an electromagnetic transducer attached to the ram.

The transducer output was analysed by a Phillips direct reading measuring
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Figure 12. Hot-pressing apparatus used for Ni and A1703 spheres.
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bridge, which was connected to a "Heath Kit" servo-recorder, as used

previously for the compaction experiments with lead-2% antimony spheres.

(iii) Alumina: The same apparatus (hot-pressing induction
unit) which was used for nickel experiments was also used
for the compactioh studies of alumina. In this case, however, a graphite
die was used instead of a molybdenum die-graphite sleeve combination
as used previously. 1 mm sapphire spheres were used in this case and

these were supplied by A. Miller and Company, Libertyville, Illinois.

III.Z.b. Procedures

(i) Hot—préssing:’ A weighed amount of spheres was poured into a
die, tapped and well-shaken in order ﬁo obtain uniform packing and
maximum density. The initial height of the die with plungers was
measured and suﬁéequently the height of die, with plungers and specimen,
before hot-pressing was also measured. This gave the initial height of

the specimen. It took 15-20 minutes for the specimen to reach the

furnace temperature after the die assembly was introduced in the furnace.
During this heafing up period, the plunger displécement recording system
was connected. No appreciable shrinkage or expansion was recorded

during the heating up period. Once the specimen attained the equilibrium
temperature the pre-weighed load was placed onAthe lever arm for lead.

In the case of nickel . and alumina the load was applied through

a hydraulic jack, which activated the press. The press was calibrated

by an Instron machine using an 'F' cell. The calibration curve is

shown in Figure 13.

A hydrogeh atmosphere was used during hot-pressing of lead-2% antimony
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and nitrogen was used in the case of nickel and alumina. After the
application of pressure, the shrinkage was recorded as a function of

time. When the compaction rate was drastically_reduced and thé compaction
curve had levelled off, the power to the furnace was shut off and the
specimen was cooled in the furnace. The height of the specimen in

the die with plungers after hot-pressing was. measured. The experimental
test conditions used during hot-pressing are shown in Table V.

The volume of the compact wés calculated before and after hot-
‘pressing using the height of the compact and thé,diameter of the die,
which remained cénstant. The weight of the compact was known and also
remainéd constant. From these measureﬁeﬁts'thé initial and final bulk-
densities were calculated. from the recorder chart the compact height
at any instant during compaction couldvbe found. Using these cﬁarts,
the change in bulk-density as a function of time under isothermal
conditions was obtained. Afterwards the values of the bulk density
were conve%ted into relative density by dividing these values by the

theoretical density of the solid.

III1.2.b.1i1i Hot-compression of lead-2% antimony and nickel
1. Lead-2% antimdny: The Pb-2% Sb shots were melted and cast in
the form of small ingots (0.5 x 0.5 x 3 inches). Specimens were cut from
these ingots with a jewellers SAW, the majority of dimensions were 0.2 x
0.2 x 1 inch. The specimens were anpealed at 100°C for 5-6 hours.
Prior to testiﬁg, the ends of each specimen were ground perpendiéular_to
the longitudinal axis. All specimens were tested in a furnace attached

to an Instron tensile testing machine under conditions of constant strain



- 47 -

Table V. Test Conditions for Hot-Pressing
Material Sphere diameter  Temperature . Préssure in Atmosphere
in mm ~in °C psi
Lead- 1.5 100 918,1010,1285 hydrogen
2% antimony
1.5 150 918,1010 hydrogen
Nickel 0.65 800 2162,3208 nitrogen
0.65 900 1477,2105 nitrogen
Alumina 1.0 1600 3200,4000 nitrogen
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rates. For testing, the specimens were placed upright between alumina
buttons ( 0.7" dia., 0.2" thickness). When the load attained a
constant value the test was stopped. From this load and thé cross-
sectional area of the specimen, the stress was calculated. The experi-
ments were done at 100 and 150°C and aﬁ strain rates of 0.002, 0.005,

0.01 and 0.02 in/min. These results are shown in Appendix 2.

2. Nickel: Nickel balls wére melted by induction heating and cast
in the form of sméll ingots (0.5" dia., 3" length). Cylindrical
specimens (0.25" dia., 0.9" length) were prepared by turning these
ingotson a latﬁé. The specimens were annealed at 1000°C for 5 hours.
The ends of each specimen were ground perpendicular to the longitudinal
axis. Experimeﬁts were conducted at 800 and 900°C and 0.002, 0.005,
0.01, and 0.02 in/min strain rates. These results are shown in

Appendix 2.



CHAPTER IV

RESULTS

IVv,1 Metals

IV.1l.a. Lead-27 Antimony

(i) Relative Density (D) vs. Time (t)

Initial experiments with Pb~-2% Sb were made to test which of
the four different geometrical mbdels fitted the experimental data.
For this, hot~pressing was done at 150°C under 918 psi and compaction
curve was obtained. Both theoretical plots and the experimental
data are shown in Figure 14. It is apparent-from the figure that the
data coincided with the orthorhombic model in the later stages of hot~
pressing, with a deviation at an early stage of compaction. The same
observation was made for nickel compacts at 800°C and 900°C under
2162 psi and 2105 psi pressures respectively, as shown in Figures 15

and 16,

An overall comparison of compaction data with the theoretical curves

indicated that the experimental data followed closely tﬁe theoretically
predicted curves for the orthorhombic model. ¥For this reason all the
theoretical plots in subsequent figures were compﬁted with geometric
constants for the orthorhombic model only, The reason for this
agreement between the data and the curves for the orthorhombic model
is discussed in a later section. In some cases, the experimental
compaction data obtained were beyond the upper limit of the density,

predicted by the theoretical orthorhombic model, However, these data

were excluded from the figures, as the theory of compaction is not valid

over ,835 relative density.



0 T T T T T T T T T
Pb-Sb 150°C
o 918 psi
O-9}~ ] _ RHOMB. . ————
. ' : B-CC
0
2
Ll
o S.CUBIC
W
>
!— -
<
4
W
@
. 1 1 ] 1 i
O | 2 3 4 5 3 7 8 5 10
TIME (min)

Figure 14, D vs. t plot for Pb-2% Sb at 150°C under 918 psi (solid lines represent

the theoretical curves for 4 different models).

_Og_



(4o, T T T
~ Ni 800°% ' X ' ' '
o 2I62 psi
09 -
> RHOM
= BCC -
n
2
W o ORTHD o o —o- =
&) ,
w .
= S - cUBIC S
-
q -
J
"
a
Q-f g
05 1 1 i i i 1 4 1 1 »
0] | 2 3 4 ) 6 7 8 9 10
TIME (min)
Figure 15. D vs. t plot for Ni at 800°C under 2162 psi (solid lines represent

the theoretical curves for 4 different models).

_'[g_



T T T T T T
N % RHOMR\\’_'—«
= - B-C-C 7 ]
%] ' '
2. S S, gmax_for_OBTHO _________________ —
(&) el
w
>
-
g
3 .
uw
o
-
1
9 10

‘ TIME (min)

Figure 16. D.vs. t plot for Ni at 900°C under 2105 psi (solid lines represent
g

the theoretical curves for 4 different models).

_Zg...



- 53 -

(ii) ‘D vs., t at a constant temperature and under varying pressures:
For this,hot—pressing experiments were carried out at 100 (3 stresses)
and 150°C (2 stresses) under 918, 1010 and 1285 psi. A series‘of
theoretical curves for the orthorhombic model only. were obtained from
the computer. The experimental data and the theoretical curves are
shown in Figures 17a and 17b. A good fit of experimental points with
the theoretical plots can be seen particularly-at the later stages of -

compaction.

(1ii) D vs. t at a constant stress and with varying temperatures:
For this, experiments were made atilOOoand:150°C at a stress of 918 psi.
In addition, other experiments were also carried out at 100 and 150°C
under 1010 psi stress. The eﬁperimental data and the theoretical plots
are cdmpared in Figures 18a and 18b for these two seté of experimenﬁs.
Again a good fit is apparent between experimental points and the

theoretical prediction.

IV.l.b. Nickel

(i) D vs.t ata constant temperature and varying pressures:
The experimental conditions used to follow the change of relative density
as a function_of time for nickel are 800°C at 2162 and 3208 psi. The
experimental compaction data and the theoretical plot using equation (32)
"are compared in Figure 19. Another set of hot-pressing experiments
were carried.out at 900°C under pressures of 1477 énd 2105 psi. These

results and the corresponding theoretical plots are shown in Figure 20.
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Figure 17(a). D vs. t plot for Pb-2% Sb at 100°C under different pressures

(solid line represents the theoretical curve for the orthorhombic

model only).

L= 4G -



> Pb-sb=150°¢

L | 1 T T T T T T -]
|

© =1010p.s.i. !
K o =918 p.s.i. J
- :.______..______-___-;_Qmax _____________
>— .
t -
[7p]
Z
]
o
uJ —
>
'_
<<
- |
u-’ —
o a
r—
06 1 1 | l A 1 1 I 1
0 ] 2 3 4 5 6 7 8 9 10
TIME (min)

Figure 17(b).

D vs. t plot for Pb-2% Sb at 150°C under different pressures
(solid line represents the theoretical curve for the orthorhombic

model only).
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model only).
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Figure 20. D vs. t plot for Ni at 900°C under different pressures (solid line
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(ii) D vs. t at a constant pressure and varying temperatures: To
study the effect of changing the temperature at a constant stress on
the compaction behaviour of nickel spheres, the curves in Figure 19 and
20 for the conditions 2105 psi at 900°C and 2165 psi at 800°C are
replotted in Figure 21. It shows that an increase in temperature of

hot-pressing by 100°C shifts the relative density curve by about 10%.

IV.2. Non-Metal
IV.2.a. Alumina

(i) D vs. tata constant temperature and varying stresses:
As only - very féw alumina spﬁeres (single crystal sapphire spheres)
were available fér the hot-compaction studies, experiments were done at
one temperature.(l600°C) and at two different stresses (3200 and.
4000 psi). The theoretical curves for D vs. t were also generated under
these experimenéal conditions using equatién (32). The experimental
data and the theoretical plots are shown iﬁ Figure 22. In this case a
good fit between fhe experimental points and the theoretical prediction
can be seen dufing the intermediaté stage of hot-pressing. A deviation
between the théqretical prediction and experimental results at the

very eary stage and during the last stage of compactibn was encountered.

IV¥.3. Strain-Rates During Hot-Pressing

For the calculation of strain-rates from the hot-pressing data, the

following equation was used

: - 14D
D dt

d
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From the knowledge of the relative density at any stage of compaction
and from the slope of the curve D vs. t at that point, the values of
strain-rates were calculated and these were tabulated in Appendix 4.
It can be seen that the strain rates used for hot compression
experiments of Pb-27 Sb and Ni‘are similar'té the values of strain
ratés at the intermediate stage of densification, although at the
initial stage of densification, the strain rates were very much higher
than that used for hot-working experiments. It is also at the initial
stage, a deviation between the experimental data and the theoretical

plots was encountered.



CHAPTER V

DISCUSSION

V.1l. Effective Stress During Hof—Pressing

Since the first theoretical work of Murray, Livey and Williams,19
on the plastic flow theory of hot-pressing, the proponents of stress-
enhanced diffusionalcn&m(&eNabafro—Herring creepzo) have contended
that any contribution by plastic flow to the overall densification
must be small since. the stress on the system during hot-pressing is
generally low. It has been récognized lately by most workefs,
that the effective stress in hot-pressing is different from.the applied
pressure and that this is a function of porosity. McClelland,17 the

first person to recognise this and to take into account porosity,

introduced the following form of effective stress

| 2
R S
eff 1—vp2/3

where Pa is the applied pressure and Vp is the volume fraction porosity.

Another form of effective stress was introduced by Vasilos et al.26 for

applying to crystalline materials.

Oefg = Pa 1+ ZVP)
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This was adopted from the change of elastic modulus with porosity as predicte
theoretically and observed experimentally. Rossi and Fulrath21 generalised
the form used by Vasilos et al.26 as follows

(%ff = Pa(l + b Vp)

where b is an empirical constant (= 2).
Subsequently a large number of workers (Fairnsworth and Coble,s,

Coble,3 Fryer,7 and Koval' Chenko and Samsono&a) used the following

form of effective stress equation

Ueff =

Pa
D
where D is the relative density.

Some -of these relations are plotted in Figure 23. It can be seen
from this figure that the maximum effective stress is no more than a
factor of two larger than the applied stress on a compact even at a
relative density of 0.5.

On the basis of this evidence it has been suggested that the contri~
bution to densification by plastic flow during hot-pressing is quite
small, as the contact stress is not large enough to cause the material
to deform. Moreover, from the theory and experiments of self-
indentation, it is well-known that a material can only deform if the
contact stress is about 3 times the yield stress of the material ("yield
criterion'). For this reason, workers in this field tend to assume

that any contribution by plastic flow has to be very small.
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However, all the eQuaﬁions for the effective stress, referred to
above, have not been rigorously derived. All of them are either empirical
or obtained from fit;ing experimental data into an argitrary eduation.
~ Attempts to formulate a rigorous equation havé not been very successful
as the localised streéses will vary both with resﬁect to the volume
fraction of porosity and to the pore shape, which is not known. The
whole problem will be further complicated if the particles in a single
system are random-shaped and véry in size.

On the other hand, the problem can be simplified by assuming the
particles are monosized spheres and if their geometry of packing is
known. The stress is hydrbstatic‘in nature and each shpere is being
déformed at itétpoints of contact uﬁiformly. ‘Under these conditions, the
effective stresél(oeff) with reépect to the relative density of the

compact is given by equation (31)

S [e) .
0 =
eff al(D2/3BZ/3R2—1

)

1 and B (geometric constants) have already been given in

The values of g
Table III for four different geometric models. The relationship between
D and R was calculated using the constant volume equation and is
tabulated in Appendix 1. From these the effective stress with respect

. .
to the applied stress ( =

gf) as a function of relative density (D) has
been calculated. The values are given in Appendix 3 and are plotted in
Figure 23. It is quite aﬁparent from this figure that the stress
effective at the points of contact is very much larger than that

assumed by previous workers. For example,below 0.79 relative density the
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effective stress is more than 3 times the applied stress for all the
geometric models. The instantaneous stress at the contact points of
spheres is extremely high and drops very rapidly to about 10 times with
an increase in relatiQe density of less than 0.10.

From above, it is apparent.that the contact stresses with respect
to the applied stress in a compact are more than an order of magnitude
larger than originally thought._ This implies that depending upon the
magnitude of the applied stress,ithe effective stress is reasonably
high,upto. a compact density of 0.85 to 0.90 (depending upon the packing
geometry). If it is accepted that the packing configuration of spheres
in a die approximates>to the orthorhombic packing, then the effective
stress is more fhan three times the applied stress up to 0.85 relative
density of a coﬁpact.

It will be informative at this stage to analyse thebmagnifude and
effect of contact stress in an oxide compact. Compacts of alumina are
generally hot—bressed in the temperature range 1400-1700°C under a
pressure of 2060 to 6000 psi. The yield stress of alumina as a function
of temperature-has been reported by Kronberg15 and is shown in Table VI.

It if is éonsidered that the hot-pressing of alumina spheres was
done at . 1600°C under 4000 psi and if it is considered that the packing
geometry is théf of the orthorhombic model, the contact stress will be
in the order of l6,000.psi at 0.80 relative density of the compact,
which is much more than three times the yield stress for basal slip in
alumina; In thé present investigation hoﬁever, an end-point relativé
density of O.7slwas obtained at 1600°C under 4000 psi.- This

" discrepancy méyAbe explained from the fact that the resolved yield stress
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Table VI ‘Yield Stress of Single Crystal Sapphire (Basal Slip)15

Temperature (°C) Strain Rate (in/in/min) Yield Stress (psi)
1400 ' 0.05 .. 8500
1500 | 0.05 6000
1600 ~0.05 4500

1700 ©0.05 3000
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for the rhombohedral slip and the rﬁombohedral fwinning are much higher than

the resolved yield stress for basal slip and only 3 basal slip systems are

available for the deformation of alumina under these experimenﬁal conditions.
It shouldlbe mentioned here that the effective stress calculated

theoretically using equation (31) is most likely the upper limit of

the stress acting on the contacf faces. . ;fhpractice; some of the

applied'stress.will be lost in die-wall friction and also in creating

the large flat face (indentation) on the top and bottom layer of spheres

immediately after thé application of load, as has been observed by

Kakar.lB' Thus, it.is possible that the effective stress in any

particular system may not be as high as that pfedicted by equation (31).

V.2. Activation Energy Study
An Arrhenius type of equation can be written for the constants A in

equation (32) as follows
A = A' exp(-Q/RT)

where A' is a temperature indeéendent constant and Q is the activation
energy for the process, R and T have theif usual meaning.

From the slope of a 1n A vs. 1/T plot, the activation energy
for the process. can be obtained. These plots for lead and nickel are
shown in Figures 24 and 25, respectively. For these plofs, the value
'A' for lead at 200°C and that of nickel at 700°C were obtained from
the experimentai densification curve. As can be seen from these
figures, these values of 'A' (back calculated from the densification

data) lie on the straight line drawn through the other points. The
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activation energy obgained from Figure 24 for lead was 28.7 Kcal/molé
“which is close to the activation energy for self-diffusion of lead (26.9
Kcal/mole). Similarly the activation energy calculated from Figure 25
for nickel was 57.5 Kcal/mole. This value is also close to the

activation enefgy for hot-working of nickel (71 Kcal/mole).11

V.3. Packing and Deformation Geometry Inside a Die

V.3.a. Packing Geometry

It is seen from all the Figures 14, 15 and 163that the experi-
mental data follows closely the theoretically derived equation for
the hexagonal prism model. This'agreement indicates that the overall
packing-geometgy of monosized spheres in a Qie may be similar to the
orthgrhombic pééking.

When a dié is randomly filled with monosized épheres, with
intermittent shaking and tapping in order to achieve a uniform packing.
the spheres tend fo spread laterally to achieve the most stable
configuraﬁion."However, the die-wall offers resistance to lateral
spreading. As a result, a certain degree of stability in packing is
maintained in #ﬁnaof anunstable configuration. McGearyl8 studied the
various modes:of filling the die and the effect of container size on
packing densif&, His results are shown in Figure 26. When fhe ratio of
the die diameﬁer to the sphere diameter is greater than 10, the packing
density of the compact reaches a maximﬁm of 62.5% of the theoretical
density. Thié value is close to the as—compacted density for the
orthorhombic pécking.

Smith, Foote and Busang24 studied the coordination number of spheres
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in a die after shaking and tapping. Their results showed a Gaussian
distribution of the number of sphere with a'given coordination number.
Tﬁe average coordination number of the sphere was close to 8. These
results further confirm that the overall packing geometry in a die

approximates to that of the orthorhombic model.

V.3.b. Deformation Geometry

The width of the die does ndt permit an integral number of spheres
across the diameter; hence the ideal packing discussed in the above
section does not exist across the diameter of the die since a
certain number df spheres are ligﬁtly heldvégainst the die-wall. The
loosely held spheres wuld rearrange as soon as a load is applied,
resulting in a higher relative density. As no fragmentation was
observed in metal compacts this increase in density can be attributed
to particle rearrangement. However,.in the case of sapphire (A1203)
some fragmentation was noted after the experiments. This fragmentation
associated witﬁ rearrangement might have contributed to densification
at the initial stage. In addition, Kakar13 observed an increase in the
average coordinétion number of deformed sﬁheres of lead, as the bulk
density of a compact of lead spheres was increased during hot-pressing
as shown in Figure 27. This indicates that particle rearrangement
occurs as densification of a powder—compact proceeds, especially at
the initial stage of compaction.

On furthér loading, the particles begin to deform. Although individual
cqlonies of rhombohedral or tetragonal deformation were observed, the

majority of the spheres showed a hexagonal prism model of deformation.
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.This is reavealed in Figures 28 and 29 which represent nipkel spheres
deformed a% 800»and‘900°C. As can be seen frbm the figures, the
coordination in oﬁe,plane during déformation is 6 and the deformed
sphere took the form\qf'a hexagonal prism.

It has already been noted in the density vs. time curves that
there is a disagfeement.between fhe theorecical curves and experimental
data, particularly at the initial stége of compaction, This disagree-
ment can be explained from the érguments above.

In the theo;etical derivation, no consideraﬁion was given to
account for aﬁy increase in density due'fo the change of coordination
number. Thére is experimental eviagncé.in'ﬁhis study and: Valéo
reported by.Kakéf and Chaklade;,;z that particle rearrangement and
fragmentation (for oXides)'are sigﬁiﬁicant contributing facﬁors to
densification a£ the iﬁitial stage of hot-pressing. This is especially

true immediately after the application of load when the effective

stress at the points of contact may be very higH.
The experimentally observed increase in density, in the first

few minutes of compactibﬁ which was always greater than the theoretically

predicted increase,may be explained as follows: In the initial stage of
hot—ﬁressing, the increase invdensity is due to two factors (i) indentation
at the points of contact and (ii) particle rearrangement leading to a
higher average coordination numbér per sphere. It has not been possible
at present to:ihcorporate the increase in &ensity due to the second
- effect, into the theoretical equations. In addition, to account for the
deviation, the effect of the existenge of very high strain rates, at the
initial stage of hot pressing, (as seen éxperimentally), should be taken

into consideration.



Figure 28. Microstructure of Ni spheres hot-pressed at 800°C and

2162 psi. (80%)
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Figure 29. Microstructure of Ni spheres hot-pressed at 900°¢C

and 1477 psi. (95x%)
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1. In the theoretical consideration, thé stress is considered to be
hydrostatic, but in practice a uniaxial stress is applied in hot-
pressing. However, due to the existence of back stress from the die-
vwall and the other plunger, the stress may be assumed to be isotropic

However, this assumption may not be a good one in practice.

2. Although the same heat-treatments were given for the balls used
in hot-pressing and the specimens used in hot-compression, the structure
of these may not be the same. Since the constant 'A' is a function of

structure, the values are subjected to unknown error.

3. In the hot-compression of Pb-Sb and Ni specimens, the friction
between specimen and the alumina buttons was not taken into consideration.
This may give rise to some errors in evaluating the value of steady-

state stress and hence the values of 'A' and 'n'.

4. The compostion of the Pb-Sb alloy was originally considered to be
Pb-2% Sb (manufacturer's composition) but it was found later that it was
actually Pb-15% Sb. Since this is a hyper-eutectic alloy,the power law
dependence of steady-state strain rate on stress, giving the values of
*A' and 'n' shown in Table IV may not be complefely valid. However, in
the temperature and strain rate range used in this investigation, super-
plastic behaviour would not be expected, and it has been assumed the values

of 'A' and 'n' are reltable from the compression tests.

5. In the theory, the bulk strain-rate within the compact is used,

based on the instaneous density. It would be more correct to consider
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the strain-rate localised in the contact areas, 1f it were possible to
characterise it. The error introduced in this way is unknown, but is

not believed to be appreciable beyond the early stages of densification.



CHAPTER VI

SUMMARY AND CONCLUSIONS

Isothermal densification curves of a powder compact during hot-
pressing have been theoretically éalculated using the geometry of
deformation of particles and hot;compression data. The particles
are assumed to be monosized spheres. Four different deformation
models were considered: Cubic (Z = 6), orthorhombic (Z = 8), b.c.c.
(Z = 8), and rhombohedral (Z = 12) where Z is the coordination of
the sphere. For hot-compression an'equation of type £ = Acn was
used. The final densification equation relating the relative density
and time for different ideal packing arrangements has been derived

which is

D ' t
max n n
p1p?/3 2321y ap - ACD at

D 0 1

The equation was solved in a computer to obtain the theoretical plots.
Howeﬁer, in order to use this equation the values for material constants (A
and n) were necessary and were determined by hot-compression tests in
an Instron machine. Three different materials were used for this
purpose - these are Pb-2% Sb, Ni and A1203. Theoretical curves for

all four different geometric models were generated by the computer.



These theoretical curves were compared with hot—bressing data of
spheres of thé same materials at different temperatures and pressures.

The following conclusions can be made

(1) The general theoretical equation proposed is found to be
obeyed by the spherical particles during the intermediate stage of
hot-pressing.

(2) The experimental points follow closely the theoretically
predicted curve for the hexagonal prismatic deformation model.

(3) This indicates the overall packing geometry of sphere
inside the die coincides with the orthorhombic packing in agreement with
the observation of previous workers.

(4) A deviation was encountered at the initial stage of densifica-
tion, which could be explained from particle rearrangement at the
beginning of hot-pressing as was observed in this study and by other
workers previously. |

A theoretical equation for calculating the effective stress
acting on the contact faces in a compact of spheres has been derived.

This is:

Theoretical plots of relative effective stress as a function
relative density were computed for 4 different geometric models.
When these are compared with the effective stress plots
used by previous workers, it was observed that the actual effective

stress 1is very much higher than that considered so far.
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From above, it is concluded that the contribution to densification
during hot-pressing by plastic flow is more than that considered

by previous invastigators.



CHAPTER VII

SUGGESTIONS FOR FUTURE WORK

1. Metallographic study of hot-pressed compacts should be done for
checking the change of R with respect to change in D in a die as R is
a very critical function for effective stress. The experimentally
determined R should be compared with the theoretical R and necessary
correction to the densification equation should be made for better

understanding.

2, The values of effective stress at different stages of densification
should also be evaluated experimentally. This can be done by using

hemispherical specimens.

3. From the above experiment the yield criterion at an elevated
temperature should be checked.(Yield criterion refers to "Stress

required to deform by self-indentation is 3 times the yield stress'.)

4, If strain rate dependence .On ., stress is given by
g = A{Sin h(uzcl)}n, one can write a densification equation by following

the same treatment as done in Chapter 11, as follows



. =86~

-n

1 dD
p2/3g2/3x% 1)

A dt
1«

A computer programme for this is given in Appendix 5. By knowing

the constants A, o, and n for different materials, the validity of

2

this equation should be determined.
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APPENDIX 1
A. Théoretical Calcula#ions
1. Cubic Model
R Bulk Density

%)
0.620350 52.360
0.620352 52.556
0.620374 . 53.149
0.620469 54.145
0.620728 55.565
0.621282. - 57.423
0.622307 59.749
0.624038 62.576
0.626787 65.937
0.630972 69.869
0.637180 74.393
0.646268 79.498
0.659573 85.085
0.679356 90.843
:0.709891 95.936

0.715532 96.506
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2. Hexagonal Prismatic and Tetrakaidecahedron Models

R ‘ Bulk Density Bulk Density
(%) (%)

Hex. Prism. b.c.c. model
0.620350 60. 460 | 68.017
0.620352 60.687 68.273
0.620382 61.369 69.040
0.620509 62.511 70.325
0.620854 | 64.121 . 72.137
0.621593 66.207 | 74.483
0.622964 | 68.774. 77.371
0.625287 71.824 80.802
0.628993 75.340 84.757
0.634679 79.272 89.181
0.643213 83.507 93.946

R Bulk Density

(Z)[Z = 14]

0.669404 99.450
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3. Rhombic Dodecahedron Model

R Bulk Density
%
0.620350 74.048
0.620353 74.325
0.620397 75.156
0.620588 76.531
0.621107 ‘ 78.437
0.622218  80.842
0.624288 83.697
0.627815 86.908
0.633499 90.317

0.642361 . 93.646

0.655600 96.410
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APPENDIX 2

A, Hot-Compression Data

1.

2.

Lead-2% Antimony - 100°C

e (sec ) o (psi)
3.9401 x 1072 5257
9.8502 x 107> 6507
1.9700 x 10~ 7646
3.9401 x 10°% 8986

Lead-2%Z Antimony - 150°C

£ (sec—l) o (psi)
3.4972 x 107° 1934
8.7443 x 107 2398
1.6666 x 10°* 2797
‘ 4

2.9682 x 10 3195




3. Nickel -~ 800°

C
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e (sec_l) _o'(psi)
3.4904 x 107° 6387
7.4904 x 1072 7461
1.5873 x 10'4 ‘ 8817
2.9629 x 10’4 10070

4. Nickel - 900°C

e (sec ™) o (psi)

2.6666 x 10"5, 3914
19.8619 x 107° 5171
1.7543 x 1074 5845
2.7777 x 10°% 6446
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APPENDIX 3

A, Effective Stress for Different Models

1. Cubic Model

5 - Ysffactive
Oapplied
0.52 2666
0.53 120
0.55 30.22
0.59 12.80
0.62 9.08
0.65 6.66
0.69 5.0
0.74 3.81
0.79 2.93

0.85 2.25
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2. Hexagonal Prism Model

5 ‘:effeCtiVe .
applied
0.60 2414
0.61 : | 104.3
0.62 46.9
0.64 26.1
0.66 16.41
0.68 - 11.68
0.71 7.8
1 0.75 5.769
0.79 . 4.33

0.83 3.3
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3. B.C.C. Model

D ‘ 0effective
0applied
0.68 : 1557
0.69 | 69
0.70 31.2
0.72 17.42
0.74 10.93
0.77 7.39
0.80 5.2
0.84 3.8
0.89 ‘ 2.8
0.93 2.2
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4, Rhombic Dodecahedron Model

5 Teffective
0applied
0.74 959.5
0.75 42
0.76 ' 19.14
.0.78 | 9.882
0.80 6.69
0.83 4,52
0.86 3.210
0.90 2.355
0.93 . 1.774

0.96 ' 1.354
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APPENDIX 4

STRAIN RATES AT DIFFERENT STAGES OF DENSIFICATION

1. (a) Lead-27 Antimony - 100°C, 918 psi

Relative Density Strain Rate
(D) ' (sec™ )
0.64 1.017 x 10

0.66 1.449 x 1073

0.68 2.785 x 10°%

0.71 6.376 x 10>

0.75 '1.796 x 1072

(b) Lead-27% Antimony - 150°C, 918 psi

Relative Density Strain Rate
(D) | | (sec™h)

. ' -1
0.66 1.241 x 10

0.68 2.384 x 1072

0.71 5.459 x 102

0.75 1.538 x 107

0.79 4.609 x 10~

-4

0.83 1.472 x 10




2.
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(a) Nickel - 800°C, 2162 psi

Relative Density

Strain Rate

(D) . (sec™h) |
0.66 3.913 x 1072
0.68 0.426 x 1073
0.71 1.278 x 107>
0.75 3.192 x 107
0.79 8.59 x 107°
0.83 2,444 x 107°

(b) Nickel - 900°C, 2105 psi

Relative Density

'Strain Rate

(D) (sec—l)

0.66 2.551 x 107"
0.68 4.206 x 1072
0.71 8.357 x 1073
0.75 2.086 x 107>
0.79 5.575 x 107
0.83 1.598 x 107°°
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Alumina - 1600°C, 4000 psi

Relative Density Strain Rate

(D) : (sec™h)
0.64 2375 x 107
0.66 3.703 x 107>
0.68 | 7.716 x 1074
0.71 1.895 x 107°
0.75 5.635 x 107>
0.79 0 1.799 x 107°

0.83 6.071 x 10°°




APPENDIX 5 .
CCMPUTER PROGRAMME



RFS NU. 010678 UNIVERSITY QF 8 C COMPUTING CENTRE MIS{AN120) 11:32:01 08=18=71
e It ; < A A
FakdRkEVRRFIHEERREFRE PLEASE RETURN T} ELECTRICAL ENGTINEERING %% sk dok 3 s geoiodomsgn
$SIG XRSA P=8 T=1M PRIU=V
**%LAST SIGNOUN WAS: 11:33:35 07=13-71 :
USER "XRSA" SIGNED ON AT 11:32:07 UN 08-18~71
}""""""5GFT’TI‘FEI T T T T T T T e e e e
READY W
$LIS FILEL
1 INTEGER STORE), STORE2, CASE
2 REAL N
2.26
T T 3T T T T T T T T T DATA T TARE L TAREZy TARES T TAREGZ T GENEY y YRAL Yy YSPECY y VTR v/~ T T e e e
4 READ(54+1) Ny BETA, Ay, SIGMA, ALPHA, DELTAT, ALPHAZ2
5 1 FORMAT (2F10444F1045,4,4F10,4) B
6 WRITE(6y1IN, BETAy A, SIGMA, ALPHA, DELTAT, ALPHA2
7 CASE=2 :
8 IFLABStALPHAZ)«GT.0.00005) CAsE=1
9 VALUEI =SQUESTI(TAREL TAKE3,CASET
1u VALUEZ2 =QUEST2(TAKE2, TAKE4,CASE)
10.1
lU.2
11 WRITE(6,102) VALUEl, VALUE2
12 102 FORMAT(///40X'THIS CORRESPONDS TO THE ',2A4, 'FORMULA CASE?!)
[~ I3 U NUW REAU THE TABLE OF R7VS 0 VALUES - T T
14 DIMENSION X(16)},Y(16)
15 DATA XY /16%0.0516%0.0 /
le WRITE(6,32)
17 32 FORMAT(5X, ' TABLE UF D VERSUS R VALUES')
18 DO 2 12=1,16
T9 REAUTS s 3T UsRe <l g D
20 3 FORMATI(3F10.4) ’
21 WRITE(64+31)DR
22 31 FORMAT(5X9E14eT95X9ELl4aT)
23 . X{I2})=D
24 Y{I2)=R
— 25 TF1Z 6T 00Ty GO TO & ; - - ’ﬂ
26 2 CONTINUE
27 4 I2MINS=12=]
28 JTIMES=I2MINS*2
29 ISumM=12
30 OMAX=0
|- 3T DNOT=XTT) -
32 DELTAD={DMAX-DNOT) /JT IMES
33 WRITE(645) DMAX,DELTAD,ISUM .
34 5 FORMAT(/5X,'DMAX =%, F10.4,5Xs'DELTAD =',F10.5,5X,*TOTAL NUM3ER OF
35 1CARDS UF D VS R READ =',14)
36 SUM1=0.0
37 D=DNOUT -
38 JTIMES=JTIMES~1
39 DO 6 16=1,JTIMES
40 FACT3=D*BETA
41 FACT4=FACLT3%%0.667
42 FACT1=((D*BETA) **0,667) *R*¥R-1,0
T T T T T T T T FACT ZE U FACTIRENT /D T T T T T D ] "
43.1
44 IF{CASE.EQ.2) GO TO 150
45 VALUE=10/(SINR({ ALPHAZ/ALPHA)*S IGMA/ FACTL) ) %x%N
46 FACT2=VALUE /D
L 4641
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= 20T =

END UF FILE

e 6 2
47 150 CONT INUE
48 SUM1=SUM1+FACT2*DELTAD
49 D=D+DELTAD
50 STORE1=1
\ 51 M=0
o 52 DO 7T TT=15TSUM
53 IF(ABS(X{IT)-D).LE.DO.0002) M=]7
54 IF{X(I7)sLT.D) STORE1l=17
55 IF(X(1I7).6T.0) GO YO 9
56 7 CONTINUE
57 GO TO 10
58 g STUREZ=T7
59 10 IF(M.EW.0) GO TO 11
60 R=Y (M)
61 GO TO 12
62 11 DELT = D=X(STOREL)
63 R=Y(STOREL)+(Y(STORE2)-Y{STORE1))*DELT /{X{STOREZ2)})-X(STURELl))
6 WRTTE 6y TO9TDyR
65 109 FORMAT(/'D="F10.7,5X4'R=2',F10.7)
66 12 WRITE(6+13) SUM1
67 6 CONT INUE
68 13 FORMAT(SUMLI='E16.9)
69 CONS=A%( {SIGMA/ALPHA)®%N)*{ 10, %%(=-20))
—1 T CASETEQ D) CONS=AT (IO t=87T
71 SUM2=0,0 .
72 FACT = SUML1/(CONS*DELTAT)
73 NCOUNT=0
T4 00 152 1152=1,100
75 IF(FACT.LT.(1000.0}) GO TO 151
16~ FACT—=FACT# 100
77 NCOUNT=NCOUNT+ 1
78 152 CONTINUE
79 151 NLIM =FACT
80 IF(NLIMJLT«4) NLIM=4
81 NL1 =NLIM/4
82 TFINCT . TT . 2T NCI=T
83 DO 14 114=1yNLIM,NL1
84 TIME=T14%0DELTAT *(10.**NCOUNT)
85 SUM2=T IME*CONS
86 WRITE (6416} TIME,SUM2
87 16 FORMAT{ /Y TIME=VE12.5,5X,'5UM2=",E12.5)
88 T CONTINUE ‘ ~—
8Y SToP
90 END
91 FUNCTIUN QUESTI{TAKELl, TAKE3,CASE)
9lel INTEGER CASE
92 QUESTI=TAKEL
93 TR CASETEQe2IQUESTI=TAKES
94 RETURN
95 END
96 FUNCTION QUEST2(TAKEZ, TAKE 4, CASE])
96.1 INTEGER CASE
97 QUESTZ2=TAKE?2
o 9 T T T T T TR C N SE S EQ L 2T QUES T2 TAKE S - T
99 RETURN
100 END
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15.

16.
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