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ABSTRACT

This study was undertaken to determine and
compare the rates of oxygen consumption and carbon dioxide
elimination during normal and hyperventilated breathing at
progressive work rates.

Three subjects stepped at 18, 24, 30, 36 and 40
steps per minute on an eighteen inch bench for a duration
of ten minutes or until exhaustion.

All exercises were performed inside a 6,900 liter
closed circuit respirometer. The volume of each subject
obtained from hydrostatic weighings was subtracted frpm the
chamber volume as was the volume of the bench. Net volume
was corrected to STPD. The respirometer was eguipped with
Beckman oxygen and carbon dioxide analyzers, an internal
cooling system as well as wet and dry thermocouples on three
sides.

Oxygen and carbon dioxide concentrations were
continuously analyzed and automatically recorded against
time. A resting metabolic rate was eétablished prior to
each work task. Completion of the exercise was followed by
a fifteen minute recovery period. Curves of cumulative
oxygen consumption (V02) and carbon dioxide elimination (VCOz)
were plotted against time. By determining the gradients of
these curves at different points it was possible to plot the
corresponding velocity curves (602, ’\‘ICOZ)° The acceleration
curves (VOZ, VCOZ) were derived from the velocity curves.

An IBM computer program was used to determine the velocity

!
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and acceleration values.

When compared to normal breathing, hyperventi-
lating at the higher work loads increases the V02 and VCO2
during the early phase of exercise. This is generally
followed by decreased VO2 during the recovery period. There
are well defined differences in the derivative curves between
normal and hyperventilated breathing. Implications for
athletic performance are indicated. Derivative curves of
oxygen consumption and carbon dioxide elimination appear to
be highly individual. Their use as a fitness criterion is

indicated.
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CHAPTER I
STATEMENT OF THE PROBLEM

This study was undertaken to investigate, by
indirect calorimetry, oxygen consumption and carbon
dioxide elimination during normal and hyperventiiated
breathing at progressive work rates. The problem was to
determine whether it is possible to alter the course of
gaseous interchange and transport during exercise by the
voluntary control of respiration. Morehouse and Miller
(1) state, "Endurance for exhaustive work depends mainly
on the ability of the body to supply and use oxygen, to
endure and dispose of the rapidly mounting concentrations
of lactic acid and carbon dioxide and finally on the
functional capacity of the heart, lungs, kidneys and the
organs that sustain activity." The oxygen debt after
submaximal work is directly related to.the lag in the
oxygen uptake at the beginning of work before a steady
state is reached when the oxygen intake equals the require-
ment (2). Otis (3) states that the stress of muscular
exercise creates problems of oxygen supply to the tissues
of the body. The body responds by bringing into play
homeostatic mechanisms which augment this supply to meet
the increased demand, thereby minimizing the fall in
oxygen supply to the tissues. Numerous investigators
(4, 5, 6, 7, 8, 9) have reported increases in ventilation
occurring simultaneously with the onset of exercise thus

showing the importance of involuntary hyperventilation
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during exercise. The problem remains however whether the
spontaneous increase in ventiiation in response to exercise
is adequate in terms of oxygen supply to exercising tissue
or whether voluntary hyperventilation can increase the
velocity of oxygen uptake (VOZ) in the early phases of
exercise and decrease the initial lag in oxygen consumption
prior to attaining a steady state. Krustev (10) asserts
that oxygen uptake as well as carbon dioxide separation
can be increased by correct breathing.

The closed circuit chamber eliminates the
resistances of air passageways and therefore provides an
ideal environment for experiments on voluntary hyper-
ventilation during exercise.

Delimitations

1. Three subjects vcluntarily participated
in the experiment.,.

2. Hyperventilation was dependent on subject
control.

3. Respiratory frequencies and tidal wvolumes
were not recorded.

Limitations

l. The closed circuit chamber although used
extensively for research purposes on metabolic activities
of animals at rest had not been previously utilized for
studies on the exercise physiology of humans.

2. A limited work task was used i.e. a

stepping exercise involving no arm movements,



Assumptions

l. Any differences obtained in VO2 and VCO2
are due to the specific breathing technique adapted during
the exercise task.

Definitions

1. For purposes of this study hyperventilation
was defined as a controlled breathing technique with

emphasis on deep inhalations and forceful exhalations.
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CHAPTER II
JUSTIFICATION OF THE PROBLEM

According to Ramanathan (1), the primary
response to an increased rate of energy expenditure is an
increased oxygen uptake by the lungs. However, respiratory
changes during exercise : have not been extensively investi-
gated and Krumholz (2) states, "The mechanisms for the
ventilatory response to exercise are not well understood."

“Krotev (3) has shown that breathing is a vital
function, stroﬁgly activated in the course of sporting
activities. Maccagno (4) states:

For some reason athletes with exceptional physical
means cannot achieve particular goals. Frequently a reason
is a defective respiratory technique which prevents attain-
ment of perfect harmony in various systems used during effort.
Upon investigation, Krotev (5) discovered frequent conditions
in labouring activities and sports in which one or other
of the respiratory phases, inhalation and exhalation, was
found to be hindered or facilitated. This, he felt, showed
good reason to study the problem of voluntary regulating the
breathing cycle and methods specifically designed to improve
it. The oxygen demands of sedentary and common light -
labour occupations are usually met at the involuntary
reflex level, whereas in sports requiring a great output
of muscular effort or speed, or both, much attention is
given to breath control (6). Miles (7) suggests that data
on fhe specific problems of respiratory training exercises

would seem to be of research interest.



Christie (8) points out the feasability of
controlled experiments on respiratory movements. '"Re-
spiration ié one of the many rhythmic processes but it is
almost unique in that its rhythm can at any time be altered
by voluntary control" (9). otis (10) reports that most
of the best data regarding respiratory phenomena in
exercise have been obtained with subjects in a steady
state. ". . o more information about events occurring
during the transient period at the beginning of exercise
before the steady state is attained is needed." (11).
Continuous recording of the gaseous concentrations of the
respiratory gases‘as obtained in the closed circuit chamber

might enable observations during this transient period.
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CHAPTER III
REVIEW OF THE LITERATURE

The Ventilatory Response to Exercise

The stress of muscular exercise creates
problems of adequate oxygen éupply to the tissues of the
body. The body responds by bringing into play homeo-
static mechanisms one of which is increased pulmonary
ventilation (1, 2, 3, 4). Krumholz (5) asserts that the
mechanisms for the ventilatory response to exercise are
not well understood. Chemical factors cannot be re-
sponsible for the initial immediate increase in ventilation
and hence nervous factors are implied (6,7,8,9). Krogh
et. al. (10) found that values taken in the first few
seconds of exercise indicate that the increase in oxygen
absorption is not abrupt but\takes place gradually and
there would seem to be a latent period of a few seconds.
Hickam et. al. (1l1l) and Krumholz (12) have shown that the
immediate increase in ventilation 1is maintained approxi-
mately for one minute. After this a sharp increase in
ventilation occurred, referred to as the secondary
ventilatory response to exercise., This interval was found
to decrease as the level of exercise increased. Hickam
(13) hypothesized that the difference may reflect a lag
between arterial blood changes and ventilatory response.
Krogh (14) found large individual differences between
ventilatory response to work load depending on training.

Individuals trained to sudden exertions show large
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immediate increases in ventilation with the onset of heavy
work.

Despite the fact that considerable research has
dealt with the ventilatory response to exercise and its
regulation, little investigation has been concerned with
the adequacy of this response.

The Work of Breathing

The work of breathing, estimated from measure-
ments of oxygen consumption of the muscles of breathing
is defined as the oxygen cost of breathing (15, 16).

Work is done in overcoming the elastic recoil of the
lungs and chest as well as the airway resistances and
tissue viscosity involved (17, 18). Christie (19)
estimates that sixty percent of the work is involved in
overcoming elastic resistances and forty percent the
viscous nonelastic resistances. Christie (20) and Mead
(21) report large muscle forces needed to overcome the
elastic recoil of lungs and thorax when breathing at low
frequencies and large tidal volumes. Similarly with rapid
shallow breathing increased flow requires increased muscle
force and rate of work. Bartlett (22) concludes that the
optimal breathing frequency for any pulmonary ventilation
is determined by the elastic work, which decreases with
increased breathing rates and the nonelastic work, which
decreases with decreased breathing rate. It is clear
that in exercise as well as at rest the normal individual

selects the respiratory rate and depth which is most
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economical in terms of respiratory work (23, 24). It
has however been pointed out that these rates are not
optimal for sustaining activity. Krotev's (25) investi-
gation has shown that expiration is a true bottleneck of
gaseous exchange. For this reason its duration, intensity
and volume are only too relevant to the efficient function-
ing of the organism and it is unacceptable to assume that
it is realized simply by the mechanical elastic forces of
iungs and chest. These are anatomically and functionally
unfit for rapid adaptive change. Krustev (26) and Miles
(27) conclude that oxygen intake can be considerably
increased by regulated respiratory movements. Maccagno
(28) has shown that defective respiratory technigques will
prevent athletes with exceptional physical means from
achieving particular goals.

The Oxygen Cost of Voluntary Hyperventilation

Differences between oxygen uptake during normal
and hyperventilated breathing are considered to be the
oxygen cost of voluntary hyperventilation (29). Such
values have been generally obtained with a subject in
sitting position and at rest (30, 31). The oxygen cost
of voluntary hyperventilation 1n this manner has been
found to be very high. McKerrow et. al. (32) report the
cost of maximum voluntary hyperventilation as high as two
liters oxygen per minute. Murray (33) found the cost of
voluntary hyperventilation ranging from 3.1 to 3.3 ml

oxygen per liter of ventilation increase. The
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relationship between the energy requirement for ventilation
and ventilation itself it not linear but increases
exponentially and thus theoretically the ventilation rate
will have a limiting value since further increases in
ventilation will make no more oxygen available for this
task except by lowering PO, in the alveoli (34, 35),
McKerrow (36) explains these observations by stating that
the mechanical work required per unit ventilation is not
constant but increases with increasing ventilation.
Furthermore, it is also related to muscular efforts not
directly associated with respiratory movements.

One cannot assume that such estimates are valid
for the oxygen cost of hyperventilation during exercise.
Christie (37) discovered that normal individuals required
less respiratory work to double ventilation during exercise
than at rest. He concluded that in health lungs become
more distensible during exercise. Milic-Emili et. al.
(39) report small energy expenditures of the respiratory
muscles during exercise in both trained and untrained
subjects. Liljestrand (38) believed voluntary hyper-
ventilation needed more oxygen because it involved
inefficient muscular action. The cost of voluntary
hyperventilation was found to be much higher than that
induced by increasing carbon dioxide concentration of the
alveoli. Margaria et. al. (40) report the work of breath-
ing during exercise to be relatively small: no more than

three percent of the total energy consumed by the subject.
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CHAPTER IV
METHODS AND PROCEDURE

Introduction

Direct or indirect célorimetry is used to
measure the production of heat or energy by the human
body. Indirect calorimetry measures energy expenditure
from determined amounts of oxygen consumed and is studied
by either open or closed circuit methods.

Apparatus

The apparatus used in this study was a closed
circuit chamber, (8' X 8' X 4'), with a gross volume of
6,900 litres, equipped with adequate lighting and viewing
windows on two sides.l‘ An air conditioning unit and high
velocity fan controlled chamber temperature and humidity
and assured uniform composition of air circulating in the
chamber. Wet and dry temperatures were recorded ét
regular intervals. Air was continuously withdrawn from
the chamber at a flow rate of 250 ml per minute, dried and
passed through Beckman oxygen and carbon dioxide
analyzers which constantly recorded gaseous concentrations
against time.

Subjects

Experiments were made on three normal subjects
whose physical characteristics are presented in Table I.
Two subjects were Faculty members, the other a graduate

student of the School of Physical Education at the

1. Designed and built by Dr. H. R. Nordan of the Department
of Zoology, University of British Columbia.
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University of British Columbia. The boay volume of each
subject was obtained by hydrostatic weighing according to
Behnke (1).
TABLE T

Body Characteristics

Subject Age Weight Height Volume
(1b) - (kg) (in) (cm) (1)
- EB 32 190 86.2 71 180 82,0
SB 41 184.5 83.6 74 188 79.7
HL 25 164.5 74,7 72 183 703

Step Exercise

The work task was a step exercise on an eighteen
inch bench which was performed at rates of eighteen, twenty-
four, thirty, thirty-six and forty steps per minute for ten
minutes or until exhaustion. All subjects had considerable
experience with step exercises hence learning was not a
considered factor (2). Subjects exercised at each work
level on each of two separate occasions with only the manner
of breathing being altered each time. The breathing
technique was randomly assigned to experimental occasions
in order to eliminate any systematic error due to order of
performance. During hyperventilated breathing, deep in-
halations and forceful exhalations were emphasized while
unregulated choices of combinations of breathing rate and
tidal volume were made by the subjects during normal
breathing. Attempts were made to exercise under equitable
conditions at each experiment. Experiments were carried

out between 2:30 and 5:30 p. me Chamber temperature and
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humidity were kept constant from day to daye.

Experimental Procedure

Prior to each exercise, a ten minute resting
metabolic rate was recorded with the subject in the
'sitting position. This was followed by a ten minute step
test, the given rate being goverhed by a metronome. On
completion of the exercise the subject sat for a fifteen
minute recovery peried. All pertinent data was recorded
on the Chamber Data Sheet (Appehdix A).

Analysis of Data

The air volume of the chamber was calculated
from the gross chamber volume minus the volume of the
subject and of the step. Carpenter's Tables (3) were used
to correct ﬁhe air volume to STPD. Decrements of oxygen
in the chamber air were obtained minute by minute from
linear measures made on the record of the continuous graphe.
These were converted to percentages of chamber air volume
and finaily to the volume of oxygen used by the subject
in performing the work task. The Beckman analyzer recorded
carbon dioxide concentration in milliamps. A calibration
curve (Appendix B) was used to obtain the increment of
carbon dioxide expressed as a percentage of chamber air’
volume, which was then converted to the‘volume of carbon
dioxide produced by the subjects in performing the work
task. All linear measures were made with calipers and

measured to an accuracy of one tenth of a millimeter.

Procedures for calculating’oxygen consumption and carbon
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dioxide elimination are illustrated in Appendixes C and D.

The Nature of Differentiation

Differentiation of the gross gaseous uptake curves
determines the rate of gaseous interchange at any moment
during the experiment. Thus the first derivative curves
determine the velocity of oxygen uptake and carbon dioxide
elimination and the second derivative curves determine the
acceleration or rate of velocity in gaseous uptake. These
derived curves are highly sensitive to changes in the
primary curve and thus highlight even the slightest in-
flections in this curve (4). The time derivative curves
based on gross values of oxygen consumption and carbon
dioxide elimination were obtained from an IBM computer
programe

Variability of Measures: Standard Deviation

of Measures

An estimate of the standard deviation of the
measures was made from repeated experiments on one subject
at similar work loads to those used in the experiment.
Because of the several individual errors compounded into
the vafiability of the final oxygen consumption and carbon
dioxide production values, due in part to human variability
as well as to instrumentation and measurement error, this

was the only feasible method of including them all.
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CHAPTER V
RESULTS
Comparisons of gaseous exchange during normal
and hyperventilated breathing are illustrated in
individual graphs (Figures one to four) and summarized
for three subjects in Table II.
Figure 1l: 18 steps per minute
Neither the volume or the time course of
oxygen consumption are altered by hyperventilated breath-
ing. Maximal ﬁoz is 2.5 1/min and occurs between minutes
seven and elight. Hyperventilated breathing results in
slightly higher cumulative consumption at the end of the
recovery period. Individual subjects show characteris£i—
cally patterned curves.
Figure 1l: 24 steps per minute
Subjects SRB and HL show rapid increases in
oxygen consumption with the onset of exercise while hyper-—

ventilating. All subjects show earlier peaking of VO, with

2

an early onset in its decrement. The maximal VO, is 3.5

2
1/min. Subject HL consumed slightly more oxygen during the
hyperventilated exercise.
Figure 1l: 30 steps per minute
Hyperventilated breathing results in a rapid
increase of Voz; the maximal VOZ attaiﬁed during exercise

is diminished. Gross oxygen consumption at the end of

exercise is greater during hyperventilated breathinge.
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Figure 2: 18 steps per minute
Hyperventilation does not modify carbon dioxide
elimination in subjects EWB and SRB. HL shows increased
carbon dioxide elimination with hyperventilated breathing.
The maximal \'/’CO2 is 1 litre per minute for all subjects.
The course of carbon dioxide elimination appears to be
highly individual.
Figure 2: 24 steps per minute
HyperventilationAresults in increased carbon
dioxide elimination for all subjects. Derivative curves
follow comparable time courses irrespective of breathing
technique. The technique of hyperventilation results in
a greater elimination of carbon dioxide after ten minutes
of exercise.
Figure 2: 30 steps per minute
Subjects show an earlier rise in 0C02. The
individual maximal \7CO2 are similar in magnitude and time
of occurrencee.
Figure 3: O,, 36 steps per minute
The individual oxygen uptake patterns appear
to be unaltered by the experimental variable. Cumulative

VO, values for each subject at the end of the experiment

2
are ildentical. Maximal 002 values (5 1 per min) indicate
a maximal work task. However the time course of oxygen

consumption does not indicate the attainment of a steady

stateo.
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Figure 3: COZ’ 36 steps per minute
The \}CO2 increases with greater rapidity at the
onset of exercise while hyperventilating. The time course
of the derivative curves appear similar, irrespective of
breathing technique. A maximal \'/'CO2 of 4 1/min was attained
during exercise. Subjects EWB and HL eliminated more Co,
during experiments involving hyperventilation.
Figure 4: 02, 40 steps per minute
Both subjects show an earlier increase of 002
with the onset of exercise while hyperventilatinge.
Maximal VOZ attained is greater and occurs later during

normal breathing. The decrement of VO. occurs earlier

2
when utilizing hyperventilating techniques.
Figure 4: COZ’ 40 steps per minute
Hyperventilated breathing results in a greater
elimination of carbon dioxide during exercise. The course

of \'/'CO2 during normal breathing appears delayed when

compared to the results attained during hyperventilation.
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TABLE IT
Total Litres of Oxygen Consumed and Carbon

Dioxide Produced by Three Subjects during the
First Four Minutes of Exercise.

Work Normal Hyperventilated Percent
Level Breathing Breathing Difference
O2 (1) CO2 (1) O2 (1) CO2 (1) 02 CO2
18 21.10 16.24 19.17 19.35 90 119
24 23.72 19.93 28,77 24.47 122 122
30 19.93 23.81 33.97 28.78 171 120
36 31.77 28.01 34,80 33.70 109 121
40+ 24,13 14.07 28.15 19.69 116 139
TABLE IITI
Total Litres of Oxygen Consumed and Carbon
Dioxide Produced by Three Subjects during
Fifteen Minute Recovery Period.
Work Normal Hyperventilated Percent
Level Breathing Breathing Difference
0, (1) co, (1) o, (1) co, (1) o0, co,
18 28,33 16,45 31.58 17.35 111 106
24 30.43 17.97 29.38 18.72 96 104
30 44,06 28,10 41.76 26.33 94 93
36 42 .66 27.32 43,91 30.65 102 113
40» 37.26 32.14 32,93 27.66 88 86

* result based on two subjects with duration of exercise
5 min during normal breathing and 5.5 min during hyper-
ventilated breathing,.

Table II
Gaseous exchange during the first four minutes

of exercise is summarized in Table II. Hyperventilation

increases oxygen consumption at all work tasks except 18



steps per minute. The greatest increase (71%) occurs
at 30 steps per minuteo. Carbon dioxide elimination is
increased at all work tasks during hyperventilated
breathing.

Table IIT

A summary of gaseous interchange during
fifteen minutes of recovery 1s presented in Table IITI,.
Hyperventilation tends to decrease oxygen consumption
during recovery after exercise frequencies above 18
steps per minute. Stepping frequencies of 18, 24 and
36 steps per minute show increased carbon dioxide
elimination during recovery following hyperventilation

exercisese.

28
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CHAPTER VI
DISCUSSION

Results clearly indicate that hyperventilation
does not alter the course of gaseous interchange at the
lowest work level. It did however increase oxygen con-—
sumption and carbon dioxide elimination during recovery
indicating that hyperventilation at low work levels serves
no beneficial function. Rather it appears to be a useless
circulation of air demanding increased work of the re-
spiratory musculature, hence the increased oxygen con-
sumption during recovery. At all other work levels the
time derivative curves of oxygen uptake and carbon dioxide
production emphasize that greater values of both parameters
are obtained earlier during exercise with hyperventilated
breathing. The oxygen consumption during the recovery
period is decreased in almost all cases when the exercise
was accompanied with hyperventilation. Krustev (1)
utilizing a three minute workout followed by a minute's
rest reported considerable increases in the oxygen intake
both during the workout and the period of rest. This, he
felt, reduced the oxygen debt and increased working
capacity. Similar results were reported for carbon dioxide
separatione.

Andersen (2) has shown that the oxidative
processes are slow to enter into play at the beginning
of muscular exercise. Consequently a very short exercise

is accomplished only or substantially at the expense of
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the high energy phosphate breakdown with the accompanying
alactacid component. Morehouse (3) has found that the
circulatory and respiratory adjustments that make possible
a greater oxygen intake come into play gradually and in
heavy work several minutes may be required for the oxygen
intake to reach the level of the steady state. The
greater 002 attained during the early phases of exercise
in these experiments may indicate an earlier onset of the
oxidative processes during hyperventilated breathing. The
oxygen consumption dufing recovery is a measure of the
anaerobic activity during the exercise. The decreased
oxygen consumption during recovery following hyperventilated
exercises indicates increased oxidative processes during
exercise. The exercise at 30 steps per minute resulted
in the greatest increase of oxygen consumption during the
first four minutes and was accompanied by the least amount
of oxygen consumed during the recovery period.

Donevan (4) has shown that the effect of hyper-
ventilation during exercise 1s one of increasing the
cardiac output. This increase was more the result of an
increase in heart rate rather than stroke volumeﬁ Oxygen
uptake is considered to be influenced by two factors; the
diffusing capacity of the lungs which 1s not considered
to be significant at sea level, and the cardiac output.
Thus the possibility of an earliler onset of the oxidative
processes due to increased cardiac output does exist.

Margaria (5) reports that cardiac output is the most
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likely limiting factor on maximum oxygen consumption. It
is dependent on stroke volume and heart frequency. To
substantiate these hypothesis, further hyperventilation
experiments taking continuous pulse counts should be
conducted,

If oxidative processes come into play earlier
during hyperventilated exercise it would seem logical to
assume that the activity could be sustained for a longer
period of time. It is noteworthy that the two subjects
who exercised at the exhaustive work rate of 4b steps /
min subjectively felt more comfortable during the work
task and one stepped for a full minute longer using the
hyperventilation method.

No observations could be made on the effect of
hyperventilation upon the individuals maximal oxygen
consumption° The nature of the exercise did not allow
a demonstration of this factor. Rovelli (6) and Andersen
(7) state that the muscle mass used in this type of
exercise intensity is limited by the amount of oxygen
which may be carried from the heart to the exercising
muscle méss° For this reason the step exercise 1s not
suitable for the determination of maximal oxygen uptake,
In none of the experiments was there any indication of the
attainment of a steady state.

ExXpiration is the bottleneck of gaseous exchange
(8)s It is unacceptable to assume that the optimal

duration, intensity and volume of respiration is brought
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about by the mechanical elastic force of the lungs and
éhest unassisted. Expiration is an active physiological
process and can therefore be deliberately modified.

The gross curves and their derivatives clearly
illustrate that individuals show charactefistic curves of
oxygen uptake and carbon dioxide elimination. Changing
the breathing technique does.not appear to alter the basic
pattern of these curves. The possibility of utilizing
individual curves to differentiate between various degrees

of physical fitness is indicated.
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CHAPTER VII
SUMMARY AND CONCLUSIONS

Summary. This study was undertaken to determine
and compare the rates of oxygen consumption and carbon
dioxide elimination during normal and hyperventilated
breathing at progressive work rates.

Three subjects performed step tests on an
eighteen inch bench at 18, 24, 30, 36 and 40 steps per
minute for a duration of ten minutes or until exhaustion.
All exercises were performed inside a closed circuit
respilrometer equipped with Beckman oxygen and carbon
dioxide analyzers as well as wet and dry thermocouples.
Completion of the exercise was followed by a fifteen
minute recovery period.

The chamber oxygen and carbon dioxide concen-
trations were continuously analyzed and recorded against
time. Concentration values were converted to volumes of
oxygen consumed (VOZ) and carbon dioxide elimated (VCOZ).
An IBM computer program was used tp determine the velocity
(002, vcoz) and acceleration (VOZ, VCOZ) values. These
values were plotted on graphs comparing the gaseous
exchange during normal and hyperventilated breathing.

Conclusions. Hyperventilation increased the

002 and ﬁco& during the early phase of exercise at the

higher werk levels. This was followed by a decreased V02

during the recovery period. The possibility of an

earlier onset of the oxidative processes during
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hyperventilated breathing is indicated. This possibility
appears to be substantiated by related research. Hyper-
ventilation during exercise has been shown to increase
heart rate and hence cardiac output. This could result
in an earlier onset of the oxidative processes.

Individuals showed characteristic curves of oxygen uptake
and carbon dioxide elimination. The possibility of
utilizing individual curves as a physical fitness criterion

is indicated.
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APPENDIX C
PROCEDURE FOR CALCULATION OF OXYGEN CONSUMPTICN

Correction of chamber volume to STPD.

Vinitial = Chamber volume - (subject volume + volume of step)
Vcorrected = Vinitial x Patm - Pwater vapor x EZE__E?__
Temp (°K)

760

Conversion of linear distance to percentage oxygen consumed.

—
N
O,
o
£
»
3

A RTEN
©

B

ress O | 2 3 4 5 6 7 8 9 10

Time
feasure AB in mm with Vernier calipers

1 division ,represents ,O4%AVOZ*

" 10 divisions = x mm
1l mm = 10 divisions
X

K =10 x .04%A Vo0,
X

linear measure X K = %AVO2 ‘

%ZXVOZAX:Vcorrected = V02 consumed

*A\Kkzrepresents decrement in oxygen concentration.



APPENDIX D
PROCEDURE FOR CALCULATICN OF CARBON DIOXIDE
ELIMINATION

Conversion of linear measure to milliamps.

milliamps —=

\

0 987 6 5§ 43 2 | O rest
Time
Measure AB in mm-with Vernier calipers
1l division = .1 ma

10 divisions = X mm

1l mm = 10 x .1 ma
X
K =10 x <1 ma

K x linear. measure = ma
Use calibration curve (APPENDIX B) for conversion of
milliamps to % co,

%A CO,* x V = VCO, eliminated

2 corrected

* A CO, represents increment in carbon dioxide
concentration.



Time

Lo~gouphwhF O

VO

O.
1.01
3.01
4,90
7.14
8.47
10.70
12.82
15.94
18,73
21.29
23.75
25.42
26475
27.42
27.98
28.53
29,05
29.51
29.96
30.31
30.65
30,94
31.19
31.39
31.54

APPENDIX E
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TABLE IV

Derivative Values for -Subject EB
at 18 steps per min

VCO
0.34
0.97
1,50
1.62
1.81
1.75
1,56
1.62
1.69
1.62
1.28
0.94
0.69
0.44
0.31
0.25
0.25
0.25
0,25
0.25
0.26
0.26
0.26
0.26
0.26
0.34

Vco
O,
0.58
0.33
0.16
0.06
-0.12
-0,06
0,06
-0.00
-0.20
-0.34
-0.30
-0.25
-0.19
~0.09
-0.03
0,00
0.00
0,00
0,00
0,00
0.00
0.00
0,00
0.03
0.,

Vo

0.
0.87
2.28
4.55
6.40
8.25
9.87
12.15
15.08
17.57
20.72
22.88
24,18
25.48
26.67
27.65
28,19
28,72
29.23
29.74
30.23
30.71
31.18
31.64
32.09
32.52

2

Hyperventilated Breathing

V02

0.29
1.14
1.84
2.06
1.84
1.74
1.95
2.60
2,71
2.82
2.65
1.73
1.30
1.24
1.08
0.76
0.53
0.52
0.51
0.50
0.49
0.48
0.46
0045
0.44
0.29

VO
0.
0.77
0.46
0.00
-0.16
0.05
0.43
0.38
0.11
-0,03
~-0.54
-0.68
-0.24
-0.11
-0.24
-0.27
-0.12
-0.01
-0.01
-0.01
-0,01
-0.01
-0,.01
-0.01
"O 008
O.

2

VCO

0.
1.40
3,40
5.16
6.56
8.19
9.51
11.03
12.43
13.82
15.58
16.98
17.95
18.68
19.29
19.67
20.02
20633
20,61
20.86
21.08
21.26
21.41
21.52
21,61
21.65

2

VC02

0.32
1.70
1.88
1.58
1.52
1.48
1.42
1.46
1.40
1.58
1.58
1.18
0.85
0.67
0.49
0.36
0.33
0.30
0.26
0.23
0.20
0.17
0.13
0.10
0.07
0.31

Vco
OO
0.78
-0.06
-0.18
-0,05
-0.05
-0,01
-0,01
0,06
0.09
-0.20
-0,36
-0.26
-0.18
-0,15
-0.08
-0,03
-0,03
-0,03
-0,03
-0,03
-0,03
-0.03
~0,03
0.11
Oo

2

=
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Time

VoONoOoOubdwWNOHO

N N N e
MEWNHOOVRIOUDBWNHO

VO

. O o

0.67
2.01
4.46
7.14
9.15

12.04

14.50
16.95
19.20
21.75
23.65
25,32
26,55
26.88
27,33
27.88
28.41
28.91
29. 39
29.84
30.26
30.65
31.02
31.36
31.67

TABLE V

Gross and Derivative Values for Subject SB

at 18 steps per min

Normal Breathing

VO,
0.34
1.00
1.90
2,57
2.34
2.45
2.68
2.46
2,40
2,40
2.18
1.79
1.45
0.78
0.39
0.50
0.54
0.52
0.49
0.46
0.43
0.41
0.38
0,35
0.32
0.34

VO
0.
0,78
0.78
0.22
20.06
0.17
0.00
-0.14
-0.03
—0.11
~0.31
-0.36
-0.50
-0.53
~0.14
0,07
0.01
-0.03
-0.03
—0.03
-0.03
-0.03
~0.03
-0.03
-0.01
0.

2

VCO2

O.
0.87
2.69
4.62
6.68
8.49
10.05
11.30
12.86
14.11
15.80
16.92
17.55
18.17
18.62
19.04
19.43
19.80
20.13
20.45
20.73
20.99
21.22
21.42
21.60
21.74

VCO
0.39
1.34
1.87
1.00
1.94
1.69
1.41
l.41
1.41
1.47
l.41
0.87
0.62
0.54
0.43
0.41
0.38
0,35
0.32
0.20
0.27
0.24
0.21
0.19
0.16
0.38

vco,
0.
0.74
0.33
0.03
~0.16
~0.27
~0.14
1 0.00
0.03
-0.
-0.30
~0.39
~0.17
~0.09
-0.06
~0.03
-0.03
-0.03
-0.03
~0.03
-0.03
~0.03
-0.03
-0.03
0.10
OO

VO

O,
0.75
2.48
4.31
6.58
9.27
11.20
13.47
16.91
19.60
22040
24.67
25.96
27.04
27.90
28.32
28,76
29.19
29.63
30.07
30.52
30,98
31.44
31.91
32.38
32.85

Hyperventilated Breathing

Vo,
0.36
1.24
1.78
2,05
2.48
2.31
2,10
2.85
3.07
2.74
2.53
1.77
1.18
0.97
0.65
0.43
0.43
0.44
0.44
0.45
0.45
0.45
0.46
0.47
0.47
0.36

Vo
O
0,71
0.40
0.35
0.13
-0.19
0,27
0,48
-0.05
—0.27
-0.48
—0.67
~0.40
—0.27
-0.27
-0.10
0.00
0,01
0,01
0,01
0,01
0,01
0,01
0.01
-0.06
0.00

2

VCO

O,
1.21
2.96
4.70
6.22
7.97
9.17
10.92
12.55
14.30
16.17
27,26
17.98
18.59
19.07
19.52
19.94
20.33
20.69
21,02
21,31
21.58
21.81
22,01
22.19
22.33

2

VCO2

0.32
1.47
1.75
1.63
1.63
1.47
1.47
1.69
1.69
1.61
1.47
0.91
0.66
0.54
0.47
0.44
0.41
0.37
0.34
0.31
0.28
0.25
0.22
0.19
0.16
0.33

VCo,
0.
0.71
0.08
-0.06
-0.08
-0.08
0.10
0.11
0.06
-0.11
~0.45
-0.41
-0.18
-0.10
-0.05
~-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
0.07
O
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Time

e
NHOWOVWONOUBWN O

N e e T
MHOWO~IOUDdW

NN
Ut b W

VO

0.
0.78
2.46
4.47
6.82
9.28
11.40
14.20
16.77
18,78
20.68
22,69
23.92
24.93
25.37
25.71
26.05
26,38
26.71
27.03
27.35
27.66
27.96
28426
28,55
28,84

TABLE VI

Gross and Derivative Values for Subject HL

at 18 steps per min

Normal Breathing

Vo,
0.29
1.23
1.84
2.18
2.40
2.29
2.46
2.68
2.29
1.96
1.96
1.62
1.12
0.73
0.39
0.34
0.34
0.33
0.32
0.32
0.31
0.31
0.30
0.30
0.29%
0.29

VO
0.
0.78
0.47
0.28
0,06
0,03
0.20
-0.08
-0.36
~0.17
~0.17
-0.42
-0.45
-0.36
~0.19
-0.03
-0.00
-0.01
-0.01
-0.01
-0.01
0,01
~0.01
20,01
-0.00
0.

2

VC02

O.
0.75
2,00
3.13
4.38
6.32
7.58
8,70
10.14
11.58
13.14
14.28
15.03
15.28
15,53
15.77
16,02
16.26
16.50
16.73
16.97
17.20
17.43
17.65
17.87
18.09

VCO 5 VCO

2

0.42 0.

1.00 0.38
1.18 0.09
1.19 0.20
1.60 0.20
1.60 -0.20
1.19 -0.16
1.28 0013
1.44 0.11
1.50 ~0.05
1.35 -0.28
0.94, -0.42
0.50 -0.35
0.25 -0.13
0.25 -0.00
0.25 ~0.00
0.24 -0.00
0.24 -0.00
0.24 -0.00
0.23 -0.00
0.23 -0,00
0.23 -0.00
0.23 -0.00
0.22 -0.00
0.22 0.10
0.43 O.

VO

O,
0.87
2.06

2

- 4.23

6.19

8.58
10.31
13.03
15.64
18.03
20,20
22015
23,34
24,21
24.97
25.62
26,05
26.48
26,89
27,29
27.69
28,08
28.45
28,82
29.18
29.53

Hyperventilated Breathing

VO,
0.30
1.03
1.68
2.06
2,17
2,06
2.23
2.66
2.50
2.28
2.06
1.57
1.03
0.82
0.71
0.54
0.43
0.42
0.41
0.40
0.40
0.38
0.37
0.36
0.35
0.30

VO

0.
0.69
0.52
0.24
0,00
0.03
0,30
0.14
-0.19
~0.22
-0.35
-0.52
-0.38
-0.16
-0.14
-0.14
~-0.06
-0.,01
-0.01
-0,01
-0.01
-0.01

2

_O ool

—O..Ol
_O 003
0.

vVCO

2
0.
1.40
3.04
4.44
657
8,57
9.98

11.37

13.62

14.72

15.69

17.09

17.82

18.19

18.53

18.85

19.15

19.42

19.67

19.90

20.11

20,30

20.45

20.59

20,71

20.80

vCo,
0.30
1.52
1.52
1.76
2.06
1.70
1.40
1,82
1.67
1.03
1.19
1.06
0.56
0.35
0.33
0.31
0.29
0.26
0.24
0.22
0.20
0.17
0.15
0.13
0.10
0.30

vVCo

O.
0.61
0.12
0.27
-0,03
-0.33
0.06
0.14
-0.40
-0.24
0.02
-0.32
-0.36
-0.11
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
0.09
O,

LYy



TABLE VII

Gross and Derivative values for subject EB
at 24 steps per min

Time Normal Breathing Hyperventilated Breathing
VO2 V02 V02 VC02 VC02 VCO2 VO2 VO2 V02 VCO2 VC02 VCO2
0 O. 0.28 O. O. 0.29 0. 0. 0.28 0. 0. 0.34 0.
1 l.22 1.84 0.98 1.00 1.59 0.85 1.20 1.75 1.04 1.11 1.44 0.90
2 3,68 2,23 0.22 3.18 2.00 0.08 3.51 2.36 0.36 2,89 2,15 0.46
3 5.68 2.29 0.14 5.00 1.75 -0.03 5.92 2.47 0.15 5.41 2.33 0.06
4 8.25 2,51 0.14 6.68 1.94 0.22 8.45 2.63 0.16 756 2,27 0,03
5 ‘10.70 2.57 0.03 8.87 2,19 -0.03 11.19 2.80 0.27 9.95 2.40 0.06
6 13.38 2.57 0.39 11.05 1.87 -0.31 14,04 3.18 0,33 12.35 2.40 -0.09
7 15.84 3.35 0.61 12,61 1.56 -0.09 17,55 3.46 =0.19 14.75 2.21 -0.28
8 20.08 3,79 =0.14 14.17 1.69 0.16 20,95 2.80 -0.60 16.77 1.84 -0.22
9 23,42 3,07 -0.53 15.98 1.87 -0.05 23.14 2.25 -0.16 18.43 1.78 -0.09
10 26.21 2.73 -0.50 17.92 1.59 -0.44 25.45 2.47 -0.11 20.34 1.66 -0.23
11 28,89 2.06 -0.78 19.17 1,00 -0.48 28.08 2.03 -0.63 21.75 1l.32 -0.31
12 30.34 1.17 =0.67 19.92 0.62 -0.28 29,51 1.21 -0.58 22,98 1.04 -0.32
13 31.23 0.72 -0.34 20.42 0.44 -0.12 30.50 0.88 -0.27 23.84 0.68 -0.28
14 31.78 0,50 =0.17 20,79 0.39 -0.02 31,27 0.66 -0.17 24.33 0.48 -0.12
15 32.23 0.39 -0.18 21.20 0.40 -0.01 31.81 0.55 -=0.06 24,79 0.44 -0.03
16 32.56 0.34 -0.02 21.59 0.37 -0.02 32.36 0.53 -0.02 25.22 0.41 -0.03
17 32.92 0.36 0.01 21,95 0.35 -0.02 32.88 0.51 -=0.02 25.62 0.38 -0.03
18 33.28 0.37 0.01 22,29 0.33 -0.02 33.38 9.49 -0.02 25.98 0.50 -0.03
19 33.66 0.39 0.01 22.60 0.30 -0.02 33.36 0.46 -=0.02 26.31 0.31 -0.03
20 34,06 0.40 0.01 22,90 0.28 -0.02 34,31 0.44 -0.02 26.62 0,29 -0.03
21 34.46 0.42 0.01 23,17 0.26 -0.02 34.73 0.41 -0.02 26.89 0.25 -0.03
22 34,89 0.43 0.01 23.42 0.24 -0.02 35.14 0.39 =0.02 27.12 0,22 -0.03
23 35.32 0.44 0,01 23.64 0.21 -0.02 35.52 0.37 -=0.02 27.33 0.19 -0.03
24 35.78 0.46 -0.08 23.84 0.19 0.04 35.87 0.34 -=0.04 27.51 0.16 0.08
25 36.24 0.28 0. 24,02 0.29 0. 36,20 0.28 0. 27.65 0.34 0.

8¥



Time

VWOUONdWNHO

VO

OO
0.67
2,69
4.82
7.84
11.10
14.58
17.94
21.98
25,12
28,60
31.51
33.64
34.65
35.56
36.37
37.07
37.67
38.17
38.57
38,87
39,06
39.15
39,14
39.02
38.80

TABLE VITII

Gross and Derivative values for subject SB
at 24 steps per min

Normal Breathing

VO,

0.34
1.34
2.07
2.58
3.14
3.37
3.42
3.70
3.59
3.30
3.20
2.52
1.57
0.96
0.86
0.76
0.65
0.55
0.45
0.35
0.24
0.14
0.04
0.06
0.17
0.34

VO

O.
0.87
0.62
0.53
0.39
0.14
0.17
0.08
-0.10
-0.20
-0.39
-0.81
-0.78
-0.36
-0.10
-0.10

2

: "'Oolo

-0.10
-0.10
-0,10
-0.10
-0.10
-0.10
-0.10
0.20
0.

VCO

O.
1.13
3.45
5,53
7,60
9.92
12.37
14.19
16.01
18.34
20,28
21.29
22.29
22.55
22,80
23.04
23.29
23.53
2377
24.01
24,24
T 24.47
24,70
24.93
25.15
25,37

2

vCo,
0.34
1.73
2,20
2.07
2,20
2,39
2.14
1.82
2,07
2.14
1.48
1.01
0.62
0.25
0.25
0.25
0.24
0.24
0.24
0.24
0.23
0.23
0.23
0.22
0.22
0.34

vCO
O.
0.93
0.17
-0
0.16
-0.03
-0.28
-0.03
0.16
-0.20
-0.57
-0.42
-0,38
-0,.19
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0,.00
-0.00
0.06
O.

2

VO

O°

0.99
3.07
6.26

2

10.10-

13.83
16.79
20.30
23.49
26,45
28.98
31.28
32.71
33.81
34.47
35.12
35.56
35.99

36,41

36.83
37.24
37.64
38.03
38.42
38,81
39.18

Hyperventilated Breathing

VO,
0.33
1.54
2,63
3.51
3.79
3.35
3.24
3,35
3.07
2,74
2.42
1.87
1.26
0.88
0.66
0.55
0.43
0.43
0.41
0.41
0.41
0.40
0.39
0,39
0.38
0.33

VO

Oo
1.15
0.99
0.58
-0.08
-0.,28
-0.00
-0.08
-0.30
-~0,.33
-0.44
-0,.58
-0.49
-0,30
-0,17
-0.11
-0.06
-0.01
-0.01
-0,01
-0,.01
-0.01
~-0.01
-0,01
-0,03
O.

2

VCO

O.
1.41
3.69
5.96
8.36
10.88
13.40
15.43
17.70
19.98
21.88
22,87
23.73
24.59
25.20
25.70
26,16
26.57
26.93
27,25
27,52
27.75
27.98
28.06
28.15
28.19

2

VC02
0.34
1.84

2,27

2034
2.46
2,52
2.27
2.15
2,27
2.09
1.45
0.92
0.86
0.74
0.56
0.48
0.43
0.39
0.34
0.29
0.25
0.20
0.16
0,11
0.06
0.34

vCO
0.
0.97
0.25
0.09
0.09
-0.09
-0.18
-0.00
~-0.03
-0.41
-0.58
-0.29
-0.09
-0.15
-0.13
-0.06
-0.05
-0.05
-0.05
-0.05
-0.05
-0.05
-0.05
-0.05
0.12
0.

2
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Time

Voo dhwPHO

VO

O,
0.79
3.14
5.05
7.63
10.10
12.45
15.37
18.62
21.88
25.46
28.38
29.95
31.18
31.74
32.07
32.52
32,95
33.35
33.74
34.11
34.46
34.79
35.10
35.39
35.66

Gross and

Normal Breathing

VO,

0.34
1.57
2.13
2,25
2.52
2,41
2.63
3.08
3.25
3.42
3.25
2.24
1.40
0.90
0.45
0.39
0.44
0.42
0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.34

VO

O.
0.90
0.34
0.20
0.08
0.06
0.34
0.31
0.17
-0.00
-0.59
-0.92
-0.67
-0.48
-0.25
-0.01
0.01
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
0.02
O.

2

VvCo

O,
0.63
1.88
3.71
5.65
7e47
9.17
11.24
12.69
14.76
16.46
18.15
19.60
20035
20.85
21.21
21,54
21.85
22.12
22 .37
22.58
22,77
22,93
23.06

2

23.17 .

23024

TABLE IX

Derivative Values for Subject HL
at 24 steps per min

VCo,
0.31
0.94
1.54
1.88
1.88
1.76
1.88
1.76
1.76
1.88
1.79
1.57
1.10
0.63
0.43
0.35
0.32
0.29
0.26
0.23
0,20
0.17
0.15
0.12
0.09
0.31

VCO

O.
0.61
0.47
0.17
-0.06
0.00
0.00
-0.06
0.06
-0.03
-0.16
-0.30
-0.47
-0.33
-0.14
-0.06
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
0.10
O.

2

VO

O.
1.69
4,49
7.52
10.22
13.14
15.72
18.42
22024
25.49
28.19
30.10
31.23
32,35
33,36
34.25
35.02
35.67
36.21
36.62
36.92
37.10
37.16
37.10
36.92
36.62

2

VO,

0.34
2.24
2.92
2.86
2,81
2.75
2.64
3.26
3.54
2,98
2.31
1.52
1.13
1.07
0.95
0.83
0.71
0.59
0.47
0.36
0.24
0.12
0.00
0.12
0.24
0.34

VO
Oe
1.29
0.31
-0.05
-0.06
-0.08
0.25
0.45
-0.14
-0.62
-0.73
-0.59
-0.23
-0.09
-0.12
-0.12
-0.12
-0.12
-0.12
-0.12
-0.12
-0.12
-0.12
-0.12
0.23
OO

2

VCO

OO
1.45
3.77
6.22
8.55
10.25
12.45
14.53
15.97
17.54
19.49
20.75
21.63
22,01
22436
22.69
22.99
23.27
23.52
23.75
23.95
24.13
24.28
24.41
24.51
24.59

2

Hyperventilated Breathing

vCO,
0.30
1.89
2.39
2039
2.01
1.95
2.14

. 1776

1.51
1.76
1.60
1.07
0.63
0.36
0.34
0.31
0.29
0.26
0.24
0.21
0.19
0.16
0.14
0.12
0.09
0.30

vVCo,
OD
1.05
0.25
-0.19
-0.22
0.06
~0.09
-0.31
—O°
0.05
-0.35
~0.49
-0.35
-0.14
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
~0.02
0.09
0.

0s



Time

WO uUdwNHO

VO

0.
0.64
1.71
4.06
6.09
9.83
12.83
16.57
20,95
26.61
32.06
35.10
38.05
39,22
40.08
40,93
41.47
42.30
43.08
43.82
44.54
45.18
45.74
46.21
46.60
46,91

Gross and

Normal Breathing

VO,

0.28
0.86
1.71
2,19
2.89
3.37
3.37
4,06
5.02
5.56
4.54
2.99
1.76
1.01
0.86
0.69
0.68
0.81
0.76
0.73
0.68
0.60
0.52
0.43
0.35

0.28

e

vC

0.
0.72
0.67
0.59
0.59
0.24
0.35
0.83
0.75
-0.24
-1.28

2

‘-1039'

-0.99
~0.45
-0.16
-0.09
0.06
0,04
-0.04
-0.04
-0.07
-0.08
-0.08
-0.08
-0.08
O.

VCO2

O,
0.84
2.93
5.39
8.74
11.43
13.77
16.48
18.91
21.37
23.70
26,16
28,13
28,97
29,93

TABLE X

Derivative Values for Subject EB
at 30 steps per min

VCo,
0.30
1.47
2,27
2.90
3.02
2.51
2.51
2.57
2,45
2.39
2.39
2,21
l.41
0.90
0.30

VCO,
0.
0.99
0.72
0.37
-0.19
-0.25
0.03
-0.03
-0.09
-0.03
-0.09
-0.49
-0.66
-0.55
O,

VO

O,
2.12
4.46
7.59
10.83
13.95
17.52
20.98
26,23
30.69
35.38
38.17
40.17
41.62
42,96
43.74
44.41
44.97
45.53
46.09
46.67
47.23
47.76
48.27
48.75
49.21

VO,

0.34
2.23
2.73
3.18
3.18
3.35
3.52
4.35
4,85
4.58
3.74
2,40
1.73
1.39
1.06
0.73
0.61
0.56
0.56
0.57
0.57
0.55
0.52
0.50
0.47
0.34

VO,
O,
1.20
0.48
0.22
0,08
0.17
0.50
0.67

Ooll’

-0.56
-1.09
-1.01
-0.50
-0.33
-0.33
-0.22
-0.08
-0.03

0.01

0.01
-0.01
-0.03
-0.03
-0.03
-0.09
-0.08

VCOZ

O,
2.06
4.37
7,06
10.00
12.69
15.00
17.43
19.87
21.68
24,12

126,31

27.56
28.31
29.18
29.70
30.18
30.63
31.04
31.41
31.74
32,04
32.30
32.53
32.72
32.87

Hyperventilated Breathing

VCo,
0.34
2.19
2.50
2.81
2.81
2.50
2,37
2.44
2.12
2,12
2.31
1.72
1.00
0.81

. 0.70

0.50
0.46
0.43
0.39
0.35
0.32
0.28
0.24
0.21
0.17
0.34

VCo,
O.
1.08
0.31
0.16
-0.16
-0.22
-0.03
~-0.13
-0.16
0.09
-0.20
-0.66
~0.45
-0.15
-9.16
-0.12
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
0.07
O.

s



Time

WoOoONOUIDd WK O

VO

0.
1.07
225
3.74
7.38

10.80

14.96

20,95

27,36

31.85

35,27

38.26

40.51

41.68

42,65

43.18

43.82

44,50

45,17

45,85

46,47

47.14

47.88

48.68

49.53

50.45

2

Gross and

Normal Breathing

VO,
0.27
1.12
1.34
2.57
3.53
3.79
5,08
6.20
5,45
3.95
3.21
2.62
1.71
1,07
0.75
0.59
0.66
0.68
0.68
0.65
0.65
0.71
0.77
0.83
0.89
0.27

VO,
O,
0.53
0.72
1.10
0.61
0.78
1,20
0.19

-1.12

-1.12

-0.67

-0.75

-0.78

-0.48

~-0.24

-0.04
0.04
0.01

-0.01

-0.01
0.03
0.06
0.06
0.06

-0.28
O,

VCO

O.
1.08
2.93
5.03
8,02
10.60
14.07
16,52
18.86
22,09
24,55
27.00
29.22
29,93
30.77
31.20
31.61
32.00
32,37
32.72
33.05
33.37
33.66°
33.93
34,19
34,42

2

TABLE XT

Derivative Values for Subject SB
at 30 steps per min

VCO,
0.27
1.47
1.98
2.54
2.78
3.02
2.96
2.40
2.78
2.84
2.46
2.34
1.47
0.78
0.63
0.41
0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.25
0.27

vCO
OO
0.85
0.54
0.40
0.24
0.09
-0.31
-0.09
0.22
~-0.16
-0.25
-0.49
-0.78
-0.42
-0.18
-0.12
-0.02
-0.02
-0.02
-0.02
-0.02
=0.02
-0.02
-0.02
0.00
O°

2

VO

OO
2.35
4,952
7.49
11.17
14.52
18.32
22,22
27,36
31.82
36,63
39.20
42.10
43.55
44,55
45,45
46,23
46 .39
47,52
48,13
48,65
49.21
49,81

2

. 50.44

51.11
51.81

Hyperventilated Breathing

Vo,

0.29
2.46
2.57
3.13
3.52
3.57
3.85
4,52
4.80
4.63
3.69
2.74
2.18
1.23
0.95
0.84
0.72
0.65
0.62
0.57
0.54
0.58
0.61
0,65
0.69
0.29

VO

OO
1.14
0.33
0.47
0.22
0.17
0.47
0.47
0.06
-0.56
~0.95
-0.76
~0.75
-0.61
-0.20
-0,12
-0.10
-0.05
-0.04
-0.04
0.01
0,04
0.04
0.04
-0.18
O.

2

VCO

O.
2,19
4.75
6.94
9.51
12,32
15.01
17.70
20,51
22,83
26,20
27.89
29,45
30,32
31,20
31.77
32.33
32,93
33.46
33.91
34,30
34.61
34,85
35.10
35.12
35.14

2

vCO,
0.29
2.38
2.38
2,38
2.69
2,75
2.69
2.75
2,56
2.85
2.53
1.68
l1.22
0.88
0.72
0.56
0.58
0.56
0.49
0.42
0.35
0.28
0.21
0.13
0.06
0.29

VCO,
O.
1.04
-0,
0.16
0.19
-0.00
0.00
-0.06
0.05
-0.02
-0.61
-0.66
~0.38
-0.25
-0.16
-0.07
-0.00
-0.04
-0.07
-0.07
-0.07
~0.07
-0.07
-0.07
0.08
0.

4



Time

N 2 e b
CYWONOUAWNHOOVOJOURWNHO

NN NN
mdwn =

O,
0.89
2.34
4,90
6.46
10.70
13.93
17.49
22,16
26,84

: 30085

33.85
36.86
38,53
39.64
40.54
41,20
41.71
42.19
42.65
43.08
43.49
43.87
44,23
44,56
44.88

Gross and

Normal Breathing

0.31
1.17
2,01
2.06
2.90
3.73
4.50
4,12
4,68
4.34
3.51
3.01
2.34
1.39
1.00
0.73
0.59
0.49
0.47
0.44
0.42
0.40
0.37
0.35
0.32
0.31

VO

O,
0.85
0.45
0.45
0.84
0.25
0.19
0.64
0.11
-0.58
-0.67
-0.58
-0.81
-0.67
-0.31
-0.21

2

'-0014

-0.06
-0.03
-0.02
-0.,02
-0.02
-0.02
-0.02
-0.01
O,

vCo,

0.
1.00
3.06
4.99
7.05
9.98

12.41
14.59
17.27
18.96
21.14
22.70
24.63
25.88
26,50
26.96
27.37
27.75
28.08
28.38
28.63
28.85
29,02
29.16
29.25
29.31

TABLE XIT

Derivative Values for Subject HL
at 30 steps per min

vCo,
0.36
1.53
2.00
2.00
2.49
2.68
2.31
2.43
2.18
1.93
1.87
1.75
1.59
0.94
0.54
0.44
0.40
0.36
0.32
0.28
0.23
0.19
0.15
0.11
0.07
0.36

VCO,
O.
0.82
0.23
0.25
0.34
-0.09
-0.12
-0.06
-0.25
-0.16
-0.0°
~-0.14
-0.41
-0.53
-0.25
-0.07
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
0.12
O.

VO

O.
2.46
5.59
8.72
11.97
14.99
17.78
21,13
25,83
30,30
34,66
37.90
39,70
41,04
41,71
42.49
43.590
43,92
44.33
44,72
45.05
45,42
45.84
46.32
46.84
47.41

2

Hyperventilated Breathing

VO2

0.30
2,80
3.13
3.19
3.13
2.91
3.07
4,03
4.58
4.41
3.80
2.52
1.57
1.01
0.73
0.90
0.71
0.41
0.40
0.36
0.35
0.40
0.45
0,50
0.55
0,30

O,
1.41
0.20
0.00
-0.14
-0.03
0.56
0.75
0.19
-0.39
-0.95
-1l.12
-0.76
-0.41
~0.05
-0.01
-0.24
-0.16
-0.03
-0.02
0.02
0.05
0,05
0.05
~0,.10
O.

VC02

OO
2.32
4.50
6.95
9.27
11.59
14.03
16.09
19.04
21.23
23.42
25,49
26,74
27,87
28.74
29.10
29.62
30,01
36.37
30.71
31.01
31.28
31.52
31.73

" 31.91

32.06

VCO2

0.36
2.25
2.32
2,38
2.32
2.38
2.25
2.50
2.57
2.19
2,13
1.64
1.19
1.00
0.67
O0.41
0.41
0.38
0.35
0.32
0.29
0.26
0.23
0.10
0.16
0.36

€S



Time

OO0 UL LNOEHO

VO

O,
0.89
3.21
6.31
10.07
14.50
18.59
22.69
28.22
32.54
37.85
41.83
44.16
46.04
47637
48.36
49.47
50.44
51.28
51.97
52,53
52.94
53.22
53.37
53.37
53.23

TABLE XITT

Gross and Derivative Values for Subject EB
at 36 steps per min

Normal Breathing

Vo,
0.40
l.61
2.71
3.43
4.09
4,26
4.10
4,82
4,92
4.81
4.65
3.15
2.10
l1.61
1.16
1.05
1.04
0190
0.76
0.63
0.49
0.35
0.21
0.07
-0.07
0.40

Vo
O°
1.16
0.91
0.69
0.42
0.00
0.28

2

- 0.41

-0.00
-0.14
-0.83
-1.27
-0.77
-0.47
-0.28
-0.06
-0.08
-0.14
~-0.14
-0.14
-0.14
-0.14
-0.14
-0.14
0.16
0.

VCO

O.
1.24
3.16
5.95
9.42
12.77
15.43
18.90
22,25
24.79
27,33
29,50
31.67
32.53
33.28
33.80
34.27
34.70
35.09
35.43
35.73
35.98
36,19
36.36
36.48
36,56

2

vCo,
0.36
1.58
2.36
3.13
3.41
3.11
3.07
3.41
2.94
2.54
2.36
2.17
1.52
0.81
0.63
0.50
0.45
0.41
0.36
0.32
0.28
0.23
0.19
0.15
0,10
0.36

VCO,
0.
1.00
0.77
0.53
-0.06
-0.17
0.20
-0.06
-0.43
-0.29
-0.19
-0.42
-0.68
-0.44
-0.16
-0.0¢9
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
0.11
Os

VO

O,
1.55
4.64
773
11.60
15.35
19,10
23,52
30.04
34.67
38.98
41.96
43,50
45.05
46,26
47,04
47,92
48.85
49.66
50.35
50.75
51.19
51.67
52.19
52.74
53.33

Vo,

0.43
2.32
3.09
3.48
3.81
3.75
4,08
5.47
5.58
4.47
3.64
2.26
1.55
1.38
0.99
0.283
0.91
0.87
0.75
0.55
0.42
0.46
0.50
0.53
0.57

1 0.43

VO,
0.
1.33
0.538
0.36
0.14
C.14
0.86
0,75
-0.50
~0.97
-1.10
-1.05
-0.44
-0.28
-0.28
-0.04

- 0.02

-0.08
-1.16
-0.16
-0.04
0.04
0.04
0.04
-0.05
O.

VCo

O,
2.41
4,70
8.16
11.07
14.78
18.24
21,15
23.81
26.34
29.25
31.29
33.08
34,10
34.94
35.31
35.68
36.03
36.38
36.71
37.03
37.34
37.64
37,92
38.10
38.46

2

Hyperventilated Breathing

vCo,
0.37
2.35
2.88
3.18
3.31
3.59
3.18
2.78
2.60
2,72
2.47
1.92
1.45
0.93
0.56
0.37
0.36
0.35
0.34
0.33
0.31
0.30
0.29
0.28
0.27
0.37

vCOo,
O,
1.25
0.42
0.22
0.20
-0.06
-0.40
-0.29
-0.03
-0.06
-0.40
-0.51
-0.49
-0.45
-0.28
-0.10
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
0.04
O°

7S



Time

WoOoOgoudwHO

VO

1.22
4.21
7.87

12,10

16.86

21.96

27,73

32.28

36,50

38,03

40.49

41.60

42.16

42,49

42.90

43,30

43,71

44,14

44,55

44,93

45,29

45.62

45,93

TABLE XIV

Gross and Derivative Values for Subject SB
at 36 steps per min

Normal Breathing

VO,

0.30
2.10
3.33
3.99
4.49
4.88
5.44
5.16
4,38
2.87
2.00
1.7¢
0.83
0.44
0.37
0.41
0.41
0.42
0.42
0.39
0.37
0.35
0.32
0.30

VO
OO
1.51
0.94
0.58
0.44
0.47
0.14
~0.53
-1.14
-1.19
-0.54
-0.58

2

._0967

-0.23
-0.02
0,02
0.01

° Oool

-0.01
-0.02
-0.02
-0.02
-0.02
O,

VCO2

O.
0.87
3.29
5.72
8.14
11.37
15.22
18,70
2255
24.98
26.90
28,33
28.95
29.57
30,07
30.52
30.94
31.31
31.63
31.92
32.16
32,36
32.52
32.64

vCo,
0.34
1,65
2.42
2.42
2.83
3.54
3.67
3.67
3.14
2.17
1.68
1.03
0.62
0.56
0.48
0.43
0.39
0.35
0.31
0.26
0.22
0.18
0.14
0.09

VCO
OO
1.04
0.39
0.20
0.56
0.42
0.06
-0.26
-0.75
-0.73
-0.57
~0653
-0.23
-0.07
-0.06
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04

2

VO

O,

1.74

4.36

7.95
11.65
15.67
22020
26.66
31.34
35.48
37.54
39,96
39.94
40,70
41,57
42.41
43.14
43.74
44,11
44,48
44.84
45,20
45.57
45.93

VO,

0.33
2.18
3.10
3.64
3.86
5.28
5.49
4,57
4.41
3.10
1.74
1.10
0.87
0.82
0.86
0.79
0.67
0.48
0.36
0.36
0.36
0.36
0.36
0.34

Vo
0.
1,38
0.73
0.38
0.82
0.82
~0.35
~0.54
0,73
~1.33
-0.95
—0.43
—0.19
0,01
-0.02
~0.10
~0.15
-0.15
~0.06
0,00
~0,00
~0.
0,01
Oo

2

VCO2

Oo. .
1.77
4.39
7,68
10.42
13.59
16.21
19.38
22,24
24,98
27.36
28.46
29.43
29,92
30.41
30.79
31.14
31.47
31.78
32.06
32.32
32.56
32,77
32.96

Hyperventilated Breathing

VCO,
0.33
2,19
2.96
3.01
2.96
2.89
2.89
3.01
2.80
2.56
1.74
1.04
0.73
0.49
0.43
0.37
0.34
0.32
0,30
0.27
0.25
0.23
0.20
O0.18

vCo,
O.
1.31
0.41
0.00
-0.06
-0.03
0.06
-0.05
-0.23
-0.53
-0.76
-0.50
-0.27
-0.15
-0.06
-0.05
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02

SS



Time

WOJIOUVTdWN O

VO

0.78

2,79

5.36

92,50
13.96
17.32
21.78
27037
32,17
36.52
39.99
42.45
43.12
43.90
44,79
45,69
46.58
47,36
48,03
48.54
48.99
49,37
49,69
49,95
50.15

TABLE XV

Gross and Derivative Values for Subject HL
at 36 steps per min

Normal Breathing

VO,

0.24
1.40
2.29
3.35
4,30
3.91
3.91
5.03
5.20
4.58
3,91
2496
1.56
0.73
0.84
0.89
0,89
0.84
0.73
0.59
0.48
0.43
0.35
0.29
0.23
0.24

VO,
Oa
1.03
0.98
1.01
0.28
-0.20
0.56
0.64
-0.22
-0.64
-0:81"
-1.17
-1.12
-0.36
0.08
0.03
-0.03
-0,08
-0.12
-0.12
-0.09
-0.06
-0.06
-0.06
-0.03
OO

VCO

O.
1.94
4.13
7,07
10.45
13.95
16.39
20,02
22.83
25.717
28.34
30,03
31.15
31,90
32.78
33.23
33.65
34,05
34,43
34,78
35,10
35.40
35.67
35.92
36.15
36.34

2

VCo,
0.36
2.06
2.56
3.16
3.44
2.97
3.03
3.22
2.88
2.75
2.13
1.41
0.94
0.81
0.66
0.44
0.41
0.39
0.36
0.34
0.31
0.29
0.26
0.24
0.21
0.36

vVco
0.
1.10
0.55
0.44
~0.09
~0.20
0.13
-0.08
0,23
-0.38
—0.67
~0.59
-0.30
-0.14
0,19
~0.13
-0.03
~0.03
0,03
~0.03
0,03
-0.03
-0.03
~0.03
0.06
OQ

2

Hyperventilated Breathing

VO2

O°
1.43
4.62
8.14
11.56
15.41
19.26
22.89
27.84
31.03
34.55
36.64
39.28
41.48
42,69
43.68
44.45
45.03
45.62
46.22
46,89
47,51
48,09
48.61
49,09
49.52

VO,

0.28
2,31
3.36
3.47
3,63
3.85
3.74
4,29
4.07
3.36
2.80
2,37
2.42
1.70
1.10
0.88
0.67
0.58

0.59

0.64
0.65
0.60
0.55
0.50
0.45
0.28

VO,
O.
1.54
0.58
0.14
0.19
0.05
0.22
0.17
-0.47
-0.63
-0.49
-0.19
-0.33
-0.66
-0.41
-0.21
-0.15
-0.04
0.03
0,03
-0.02
-0.05
-0.05
-0.05
~-0.11
O.

VCO2

0.

2,53
4.68
1 8.88
12.21
15,10
17.87
20,77
23.54
26,07
28,23
30.14
31.37
33.28
34.39
34.89
35.37
35.84
36.29
36,72
37.14
37.53
37.91
38.27
38.62
38.95

VCo,
0.36
2.34
3.18
3.76
3.11
2.83
2,83
2.83
2.65
2.34
2,03

"1.57

1.57
1.51
0.81
0.49
0.48
0.46
0.44
0.42
0.41
0.39
0.37
035
0.34
0.36

VCO,
OO
1.41
0.71
-0.03
~-0.46
-0.14
-0,
-0,09
-0.25
-0.31
-0.39
-0.23
~-0.03
-0.38
~0.51
~0.16
-0.02
~0.02
-0.02
-0.02
-0.02
~-0.02
-0.02
-0.02
0.00
O,

9§



Time

CogoubdbwmnrE O

N T e R T Rl
HOWONOUIPWNHO

1.22

3.44

7.00
11.22
16.67
22.78
26.00
27.90
29.12
30.45
31.34
32.23
32.89
33,56
34,18
34.77
35.31
35.80
36,26
36.67

TABLE XVI

Gross and Derivative Values for Subject EB
at 40 steps per min

Normal Breathing

2

0.37
1.72
2.89
3.89
4.84
5.78
4.67
2.56
1.56
1.28
1.11
0.89
0.78
0.67
0.64
0.60
0.56
0.52
0.48
0.43
0.37

VO,
O,
1.26
1.08
0,97
0.94

-0.08

-1.61

-1.56

-0.64

-0.22

-0.19

-0,.17

-0.11

-0.07

~-0.03

-0.04

-0.04

-0.04

~-0.04

-0.05
O,

VC02

O.
1.00
2,43
4.98
7.91
11.52
15.13
18.24
20.29
21.72
22.53
23.28
23.98
24,64
25.25
25.81
26.32
26.79
27,20
2757
2789

VCo
0.31
1.21
1.99
2,74
3.27
3.61
3.36
2.58
1.74
1.12
0.78
0,73
0.68
0.63
0.58
0.54
0.49
0.44
0.39
0.34
0.31

VCO
Oe
0.84
0.76
0.64
0.44
0,05
-0,.51
~0.81
-0.73
-0.48
-0.19
-0,05
~-0.05
-0.05
-0.05
-0.05
-0.05
~0.05
-0.05
~0.04
O,

VO

O,
2.00
5.00
9.22
15.34
15.11
23.56
26,67
29.34
31.12
32.34
33.34
34.34
35.23
36.01
36.79
37.51
38.17
38.78
39.32
39.381
40.24

Hyperventilated Breathing

VO,

0.38
2.50
3.61
5,17
4,95
4.11
3.78
2,89
2.23
1.50
1.11
1.00
0,95
0.83
0.78
0.75
0.69
0.63
0.57
0.52
0.46

0.38

\49)
O,
1.62
1.34
0.67
-0.53
~-0.58
-0.61
-0.78
-0,.70
-0.56
-0.23
-0.08
-0.08
-0.08
-0.04
-0.04
-0.06
-0.06
-0.06
-0.06
-0.07
0.

2

vCo

O.
1.43
3.74
747
10.15
13.88
17.49
19.79
21.97
23.78
24,77
25.62
26.33
26 .84
27632
27.78
28.22
28.62
29,01
29.36
29.69
30.00

2

vCo,
0.31
1.87
3.02
3.21
3.21
3.67
2,96
2,24
1.99
1.40
0.92
0.78
O0.61
0.50
0.47
0.45
0.42
0.40
0,37
0.34
0.32
0.31

vco

1.35
0.67
0.09
0.23
-0.12
-0.71
-0.48
-0.42
-0.53
-0.31
~-0.16
-0.14
-0.07
-0.03
-0.03
~0.03
-0.03
-0.03
-0.,03
-0.02
O.

LS



Time

VONOUMDdWNHE O

VO

OG
1.56
4,34
8.90
12.91
18.03
22.27
25.05
26.83
28,16
29.06
29.84
30.73
31.51
32.29
32.98
33.60
34,15
34.61
34,99
35.29

TABLE XVII

Gross and Derivative Values for Subject HL
at 40 steps per min

Normal Breathing

VO,

0.31
2,17
3.67
4,29
4,56
4.68
3.51
2.28
1.56
l1.11
0.84
0.84
0.84
0.79
0.74
0.66
0.58
0.50
0.42
0.34
0.31

Vo
O
1.68
1.06
0.45
0.10
~0.53
-1.20
-0.,97
-0.58
-0.36

2

—0014 )

-0.00
-0.03
-0.05
~-0.06
-0.07
-0.08
-0.08
-0.08
-0.05
OO

VCO2

O.
0.87
2.31
4,24
6.17
10.29
14.15
16,96
19.39
20.27
20,95
21,70
22,59
23.38
24,07
24,66
25.14
254,53
25,81
25,99
26,06

VCOo
0.35
1.15
1.68
1.93
3.02
3,99
3.34
2.62
1.65
0.78
0.72
0,82
0.84
0.74
0.64
0.54
0.43
0.33
0.23
0.13
0.35

VCO
OO
0.67
0.39
0.67
1.03
0.16
-0.69
-0.84
-0.92
-0.47
0.02
0.06
-0.04
-0.10
-0.10
-0.10
-0,10
-0.10
-0.10
0.06
OO

2

VO

O.
1.56
4.01
8.80
12.81
16.93
20.49
23.05
25.28
26,72
27.84
28,73
29.40
29.95
30.40
30.84
31.30
31.76
32.23
32.70
33.18

2

Hyperventilated Breathing

Vo,

0.33
2,00
3.62
4.40
4,07
3.84
3.06
2.39
1.84
1.28
1.00
0.78
O0.61
0,50
0.45
0.45
0.46
0.46
0.47
0.48
0.33

VO

2
O.
l1.64
1.20
0.22

-0.28

-0.50

-0.72

-0.61

~-0.56

-0.42

-0.25

-0.20

-0.14

~0.08

-0.02
0.01
0.01
0.01
0.01

~0.07
0.

VCO

O.
1.68
3,74
6,05
9.54
12.91
15.84
17.65
19.83
21.51
22,85
23.94
24,70
25.38
25.98
26.51
26,97
27035
27.66
27.90
28,06

2

VCO2

0.35
1.87
2.18
2.90
3.43
3.15
2,37
2.00
1.93
1.51
1.22
0.92
0.72
0.64
0.57
0.49
0.42
0.35
0.27
0.10
0.35

VCO
0.
0.92
0,51
0.62
0.12
-0,53
-0,58
-0.,22
-0.24
-0.36
~0,29
~0,25
-0,14
~0,07
-0.07
-0.07
-0,07
-0,07
-0.07
0.04
0.

8%



