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Abstract

There are four purposes to this study. The first is to introduce Latent Growth Models (LGM) to
Human Kinetics researchers. The second is to examine the merits and practical problems of LGM in the
analysis of longitudinal physical performance data. The third purpose is to examine the developmental
patterns of children’s physical performances. The fourth purpose is to compare the capacity of the two
mést widely used longitudinal factor models, LGM and a quasi-simplex model, to éccurately estimate
reliability for longitudinal data under various conditions. In study 1, the first, second and third purposes
of the study were accomplished, and in study 2, the fourth purpose was accomplished.

In study 1, two longitudinal data sets were obtained, however, only one set was deemed
appropriate for subsequent analyses. The data included seven physical performance variables, measured
at five time points, from 210 children aged eight to twelve yéars, and five predictor variables of physical
performances. The univariate LGM analyses revealed that the children’s individual development over a
5-year period was adequately explained by either a Linear (jump-and-reach and .sit—and-reéch),
Quadratic (flexed-arm hang), Cubic (standing long jump) or Unspecified Curve model (agility shuttle
run, endurance shuttle run and 30-yard dash). The children improved in their physical performances
between ages 8 and 12 except for flexibility, in which children’s performance declined over time.
Children showed considerable variations in the developmental rate and patterns of physical
performances. Among the predictor variables, the test practice (the number of previous testing sessions)
and age in months showed positive effects on the children’s performance at the initial time point. A
negative test practice effect on the development in physical performance was also found. The effect of
other predictor variables varied for different perfbrmance variables. The multivariate analyses showed
that the factor structure of three hypothesized factors, “Run”, “Power” and “Motor Ability”, holds at all
five time points. However, only the change in the “Run” factor was adequately explained by the
Unspecified Curve model. There were significant test practice, age, measured season and measured year
effects on the performance at the initial time of testing, and significant test practice and measured year
effects on the curve factor. The cross-validation procedure generally supported these findings. It was
concluded that a LGM has several merits over traditional methods in the analysis of change in that a
LGM provides an individual level of analysis, and thus allows one to test various research questions
- regarding the predictors of change, measurement error, and multivariate change. Additionally, it
requires less strict statistical assumptions than traditional methods. Because of the merits of the LGM
analysis used here, this study provided some interesting findings regarding children’s developmient of
physical performances-- findings that were not detectable in previous studies because of the use of
traditional statistical analyses. The difficulty in compér'mg non-nested models, and the unknown
relationship between the change in indicator variables and the change in the factor in the analysis of
multivariate “curve-of-factors” model were discussed as practical problems in the application of LGM.

In study 2, several longitudinal developmental data sets with known parameters under various



conditions were generated by computer. The conditions were varied by the magnitude of correlations
between initial status and change, the magnitude of reliability, and the magnitude of correlated errors
between time points. The data were analyzed using two models, a LGM and a simplex model, and the
estimated reliability coefficients were compared. The simplex model overestimated the reliability in all
conditions, while the LGM provided relatively accurate reliability estimates in almost all conditions.
Néither the magnitude of correlation between the initial status and change nor the magnitude of
reliability affected the reliability estimation, while the correlated errors leaded to an overestimation of
reliability for both models. On the other hand, the magnitude of reliability showed a negative effect on
the goodness-of-fit of the simplex model. It was concluded that a LGM, rather than the often used

simplex model, be used for reliability analyses of longitudinal data.
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CHAPTER 1. INTRODUCTION

Introdt;ction

The development of physical performance during childhood and adolescence has been, and
continues to be, one of the most researched domains in human kinetics. Examples include: (a) attempts
to depict or identify the trajectory of change over time in various physical performances of children and
adolescents (e.g., Cearley, 1957, Clarke & Wickens, 1962; Haubenstricker & Seefeldt, 1986; Malina &
Bouchard, 1991; Mirward & Bailey, 1986; Montoye, 1984; Morrow, Jackson & Bell, 1978, Shuleva,
Hunter, Hester, & Dupway, 1990; Thomas & French, 1985), (b) comparisons of the change in
performance between groups such as males and females or athletes and nonathletes (e.g., Erbaugh,
1984; Espenschade, 1947; Halverson & Williams, 1985; Pangrazi & Corbin, 1990, Smoll & Schuiz,
1990), and (c) investigations of the relationship between physical performance and anthropometrical
growth (e.g., McCloy, 1935; Nelson, Thomaé & Nelson, 1991; Rowe, 1933; Seilis, 1951; Solley, 1960;
Teeple & Massey, 1976). Most of these researchers focused on describing how children’s performance '
changes over time. However, quantitative descriptions of development in physical performance are
limited because these studies used primarily group statistics while ignoring individual developmental
patterns. In addition, attempts to explain the reason why children show inter-individual differences in
development have not been adequately made, although there have been some studies in which the
difference between groups in development or the relationship between different variables in
development was examined. The lack of adequacy in the studies of children’s performance development
is due, in some part, to the lack of a valid statistiéal model that enables one to adequately describe and
explain (predict) change. For a more adequate description and explanation of change, one needs to use a
method that enables one to analyze the change at both the individual and the group level. Traditional
approaches are based either only on individual level analysis, or only on group level analysis, and thus
are limited in adequately déscribing and explaining change.

The most widely used traditional method for analysis of change is based on the differences in
mean scores. The simplest method may be the paired t-test in which the difference between two
repeatedly measured mean scores is statistically tested. The more general form of this test is the
repeated measures analysis of variance (RM ANOVA) that allows one to compare mean scores that are
measured on more than two occasions. Additionally, in RM ANOVA, one can identify the shape of a
variable’s change by using preplanned orthogonal polynomials (Winer, Brown & Michels, 1991). The
ANOVA procedure has some utility in describing change, but has limited utility in explaining change.
At the most, the ANOVA procedure allows one to examine only the differences among groups in
change. The ANOVA procedure can be misleading because it is mainly based on the group level

statistics, and thus may not properly represent the individual level of change. In addition, this method is

a univariate technique and requires the assumptions of “sphericity” that are frequently violated in




practice. Although multivariate analysis of variance (MANOVA) or doubly multivariate analysis of
variance (DM MANOVA) for multiple indicator variables can be used under the violations of sphericity
(Schutz & Gessaroli, 1987, Stevens, 1996), these methods also have limitations in that they are based
solely on the comparisons of mean scores. In general, the covariances between repeated measurements,
an important component of information, are not adequately accounted for in these statistical models
(Labouvie, 1982). |

There have been other approaches to the analysis of change, such as the application of
stochastic models, time series analysis and growth curve fitting (Bock & Tissen, 1976, 1980; Cromwell,
Labys & Terraza, 1994; Crosbie, 1995; Frederiksen & Rotondo, 1979; Rogosa, Brandt & Zimowski,
1982; Tissen & Bock, 1990). These methods are based on the individual level of change, thus have
some merits in describing change. However, these approaches are limited in that they may include only
one variable in an analysis, depend too much on approximations, or require large numbers of repeated
measurements. In addition, these procedures require more than one step of analyﬁis to obtain the group
level of statistics in change as well as the individual level of statistics, and thus have limitations in
explaining change.

Recent developments in factor analytic solutions for repeated measures data have received a
significant amount of interest. Based on the formative work of Rao (1958) and Tucker (1958), Meredith
and Tisak (1984) proposed a ‘latent growth model (LGM)’ approach for repeated measures data analysis
formulated within the framework of structural equation modelling (SEM). The basic idea of LGM is that
change is an unobservable latent trait. Thus, in a LGM, initial status and change are represented by
latent factors. For example, in the linear LGM, the intercept and the slope of a growth line form latent
factors. The basic linear model can be extended to a curvilinear model by adjusting the loadings of the
slope factor or by adding one or more change factors (McArdle, 1988; Meredith & Tisak, 1990). This
statistical analysis method is especially useful when one has an a priori hypothesis about the change of
measures over time. The unique feature of LGM that is distinguished from a usual SEM is that one takes
into account both the means and covariances of repeatedly measured variables in the analysis (McArdle,
1988; Meredith & Tisak, 1990; Stoolmiller, 1995). Thus, one may statistically examine the
hypothesized change of means of variables and the covariances among variables at the same time in a
LGM analysis, while one can examine only the hypothesized covariances among variables in the usual
SEM. This eventually leads one to be able to examine the change at both individual and group level at
the same time. The LGM approach offers several other important features. Fifst, individual change can
be represented by either a straight line or a curvilinear trajectory. Second, occasions of measurement
need not be equally spaced. Third, measurement errors can be accounted for by the statistical model.
Fourth, muitiple predictors or correlates of change can be easily included in the model. Fifth, as in

general SEM analysis, statistical models are very flexible, allowing one to extend the basic idea in

several ways in order to test various hypotheses (Willett & Sayer, 1994).




McArdle (1988) extended the basic model and suggested two more complex models, which he
called a “factor-of-curves LGM’ and a ‘curve-of-factors LGM’, that are more appropriate for
multivariate data. In a ‘factor-of-curves LGM’, several first-order intercept and change factors explain
the trajectories of several variables over time, and the correlétions among intercept and among change
factors are explained by second-order intercept and change factors. In a ‘curve-of-factors LGM’, on the
other hand, several measures at a single time point form a latent construct and the curve of this latent
construct over time is represented by second-order intercept and change factors (McArdle, 1988).
Duncan and Duncan (1996) applied these two models in a growth study of adolescent substance use
over time, and recommended more use of these models in longitudinal research. Other extensions have
also been made. Muthen (1994, 1997) and Muthen and Curran (1997) extended and applied the LGM
idea to clinical trial data and compared trajectories of change between groups. A number of studies have
employed a cohort-sequential design with missing data (Duncan & Duncan, 1994, 1995; Duncan,
Duncan & Li, 1998; McArdle & Hamagami, 1991). Autoregressive models andvstability analyses are
very closely related to LGM (Kenny & Campbell, 1989; Marsh & Grayson, 1994b; Meredith & Tisak,
1990). |

Despite the many strengths of using LGM in a longitudinal study, there are problems that
prevent practitioners from employing this approach in the study of development of physical
performance. First, although there exist many introductory publications in which the merits of LGM are
summarized, the specific strengths of LGM over traditional approaches have not been adequately shown,
especially in the human kinetics field. For example, nowhere in the literature, to the current researcher’s
knowledge, is there a detailed discussion and corﬁparison between an ANOVA procedure and LGM,

~with examples. Meredith and Tisak’s (1990) presentation was too mathematically sophisticated for most
practitioners, and Duncan, Duncan, Strycker, Li & Alpert’s (1999) example was to show that the
ANOVA model is a special case of LGM. There has been a lack of presentations that showed the
specific strengths of a LGM approach over traditional procedures for the analysis of longitudinal data.

Second, there may be practical problems in the application of LGM to the longitudinal analysis
of physical performance data. One such problem is that choosing between the unspecified curve model
and the specified curve model (e.g., quadratic or cubic model) is not clear in some situations because
these models are not nested to each other, and thus a statistical test that compares these models is not
available. Another problem is related to the application of multivariate LGM to physical performance
data. In most applications, multivariate LGM has been used with psychological variables, variables that
are different from physical performance variables. The developmental curve of each subtest in a
physical performance test battery may be very different from all other subtests in terms of both the rate
of change and the nature (linear or curvilinear) of change across measures and time. For example, in a

physical fitness test battery, a person’s level of strength generally improves until late adolescence while

the level of flexibility starts to decrease at early adolescence (Haubenstricker & Seefeldt, 1986; -




--Haywood, 1993). In general, some potentially important multivariate characteristics of longitudinal -
physical performance data are not well known. Additionally, there may be other practical problems in
the application of LGM to longitudinal physical performance data.

In addition to the information of change, LGM provides estimates of reliability for a repeatedly
measured variable (McArdle & Epstein, 1987; Tisak & Tisak, 1996). In a LGM, the variance of the
obéerv’ed variable is decomposed into two parts: the true score variance that is explained by the growth
factors and the measurement error variance that is not explained by the growth factors. This way of
estimating reliability is especially useful in a longitudinal study where the estimation of reliability is not
feasible unless there is more than one measurement at each time point. Traditional methods that are
based on the test-retest method and internal consistency have shortcomings in that these require more
than one measurement at each time point. Another longitudinal path analytic model, a quasi-simplex
model, has also been used for the estimation of reliability in a longitudinal study (e.g., Blalock, 1963;
Heise, 1969; Siegel & Hodge, 1968). This model was initially suggested to separate the temporal
instability of true scores from the measurement error. In this model, the true score at a certain time point
is explained by the true score of the immediately preceding time point. The unexplained part of the
observed variable at each time point is regarded as an error component. The basic idea has been
extended and widely used by others (e.g., Joreskog, 1970; Werts, Joreskog & Linn, 1971; Wheaton,
Muthen, Alwin & Summers, 1977; Wiley & Wiley, 1970).

While these two models, LGM and a quasi-simplex model (more generally, an autoregressive
model), are the most widely used factor models for the analysis of longitudinal data, which one of the
two models provides more accurate reliability estimates for repeatedly measured variables is not known. -
Although the implications and underlying assumptions regarding change of these two models are
different, choosing one model over the other is not feasible in practice, because these two models are
empirically difficult to distinguish (McArdle & Epstein, 1987; Rogosa & Willett, 1985a). Although
there have been a few studies in which these two models are compared (e.g., Kenny & Campbell, 1989;
Mandys, Dolan & Molenaar, 1994; Rogosa & Willett, 1985a), most of these studies focused more on the
rationales, Strengths and weaknesses of applying these two models in the analysis of longitudinal data
rather than on the accuracy of reliability estimation. The capability of these two longitudinal models in
the estimation of longitudinal reliability needs to be examined. This is especially important in the
longitudinal study of physical performance because the repeated testing of physical performance is
costly in terms of time and money. If the estimation of reliability for longitudinal data can be achieved
analytically, it will be of a considerable benefit in the study of longitudinal physical performance.

The LGM method has seldom been utilized in human kinetics research. Duncan and Duncan
(1991), in their introductory study, applied LGM to children’s perception of physical éompetence. There

have been other related works in which the SEM methodology was applied to repeated measures data.

Marsh (1996) used confirmatory factor analysis with multitrait-multimethod data to examine the




stability of physical self-description, and Duncan and Stoolmiller (1993) used autoregressive models to
examine social and exercise behaviour. However, all these studies used psychological variables that
have different characteristics from physical performance variables. Schutz (1995, 1998) examined the
stability of performances in sports, but focused more on the stability of professional players in terms of
their relative positions on several performance records and the stability of factor structures. Although
thére are clear benefits of using LGM for longitudinal data, there has been an obvious lack of studies
using LGM in physical performance research. This may be due to the lack of researchers’ knowledge
and the lack of proper guidance about LGM methodology, as well as the practical problems of applying
LGM to longitudinal and multivariate physical performance data previously discussed.

The Purposes of the Study

There are four purposes of this study. First, there is an inadequate body of literature, especially
in the Human Kinetics area, in which LGM is presented in sufficient detail to allow, practitioners to
easily follow and apply this statistical model in a longitudinal study. Thus, the first purpose of the
present study is to introduce LGM to Human Kinetics researchers. More specifically, by analyzing real
data, the present study includes the examination and presentation of: (a) how an individual level of
developmental change is examined, (b) how predictors of change are implemented in the LGM
statistical model, and (c) how the change of a multivariate latent factor can be examined.

The second purpose is to examine the merits and practical problems of LGM in the analysis of
longitudinal physical performance data. Based upon the findings of the first purpose, the merits and
practical problems of LGM are examined and coinpared with those of traditional analysis models such
as ANOVA. In the present study, the examination of the merits and problems of LGM were made from
a practical rather than a theoretical point of view. Many published LGM studies have shown the
theoretical merits of LGM, but inadequate attention has been given to the practical problems of using
this statistical model.

The third purpose is to examine the developmental patterns of children’s physical performances.
Although developmental patterns of children’s physical performance have been studied, most previous
researchers based their conclusions solely on group statistics, and thus the children’s development and
‘the variations in development of physical performance were not adequately examined. By using LGM,
the present study provided more informative results regarding the children’s development in physical
performances than previous studies. Specifically, the present study includes the investigations of: (a) the
individual level of developmental patterns in physical performances in childhood (between ages 8 and
12), (b) the variables that explain (predict) the between-person variations in the development of physical
performance, and (c) the validity of multivariate latent factors as measures of longitudinal development
in physical performances as well as the children’s developmental patterns in multivariate létent physical

performance factors. Because the current study had to use already existing data due to the difficulty of



obtaining a new longitudinal data set, the research questions regarding the development of specific
physical performances were established based on the available variables.

The fourth purpose is to compare the capacity of the two most widely used longitudinal factor
models, LGM and a quasi-simplex model, to accurately estimate reliability for longitudinal data under
various conditions. This is important, especially with longitudinal studies of physical performance in
which the measurements are costly. If valid reliability estimation for longitudinal data can be obtained
by means of an analysis, it will be a benefit for the longitudinal study of physical performance. The
conditions were varied to examine the effects of: (a) the magnitude of correlation between the initial
status and change, (b) the magnitude of reliability, and (c) the magnitude of correlated errors on the
estimation of reliability. The selected conditions of these three sub-purposes do not fully examine the
effects of these variables on reliability estimation, but are expected to establish the basis for further
research-questions for future research on this topic.

Although all the purposes of the present study are closely related to each other, the fourth
purpose is somewhat distinctive in that it requires computer simulated data sets to accomplish the
purpose. Consequently, the present research endeavour was structured as two studies. In study 1, the
first, second and third purposes of the study were accomplished. Study 1 includes the analyses of a
longitudinal data set, the interpretation of the results, a discussion of the development of children’s
physical performance, and an elucidation of the merits and practical problems of using LGM in the
analysis of longitudinal physical performance data. In study 2, the fourth purpose was accomplished.
Study 2 includes the computer simulation of longitudinal data sets with known parameters, the analyses
of these data sets, and the comparison and evaluation of the LGM and quasi-simplex models in

estimating reliability.




STUDY 1. THE ANALYSIS OF LONGITUDINAL PHYSICAL PERFORMANCE DATA



. STUDY 1-CHAPTER II. LITERATURE REVIEW

Analysis of Change and Latent Growth Models
The term “analysis of change” encompasses a vast amount of analysis issues and methods, from
analyzing a simple treatment effect in an experimental study to analyzing a complex developmental
change of an attribute. It is almost impossible to discuss all the issues and models of the analysis of
change. The discussion in this section is limited to the analysis methods that are particularly relevant to
the analysis of development (growth) or longitudinal data. ,

" The analysis of change has long been an interest of researchers in almost all empirical sciences.
Although systematic research about the analysis of change was initiated in the early 1900s, reports of
research on growth can be dated back to the 18th century (Baltes & Nesselroade, 1979). However, it is
believed that the study of change started much earlier in time. Recently, with the aid of computer
development, a large number of research articles have been published on the stati.stical models and
methods for the analysis of change (e.g., Collins & Horn, 1991; Gottman, 1995; Nesselroade & Baltes,
1979; von Eye, 1990). Selecting an appropriate analysis method from among these many available
methods requires considerations of the research question and the theory behind the change of the
variable used in the research (Rogosa, Brandt & Zimowski, 1982). In general, a researcher considers
two major objectives of analyzing change in selecting an analysis method, description and explanation
(Baltes & Nesselroade, 1979; Burr & Nesselroade, 1990). Description includes the direction, shape and
amount of change, while explanation pertains to the prediétor(s) of change, relationship of changes
between two or more variables and what makes the differences among individuals in the rate of change
in relation with other variable(s). Various analysis methods have different merts and limitations in

accomplishing these two objectives.

Relative Methods and Limitations

The simplest but most restricted deéign for the analysis of change is the pre-post test design. In
this design, gain scores (G scores) are calculated to represent change (G score = Post test score — Pre test
score), and then a statistical analysis is applied to these G scores (e.g., one sample t-test). However, the
problems of the pre-post fest design and G scores in analyzing change were detected early (e.g.,
Thorndike, 1924; Wilder, 1957; Zieve, 1940), and have been one of the major issues in the area of
analysis of change (Schutz, 1989). The first problem is the ceiling-floor effect. Generally, the scores at
the top end do not change upward and the scores at the bottom end do not change downward at post-test
(Wilder, 1957). The ceiling-floor effect is related to the problem of “regression toward the mean”, and
causes a negative correlation between the initial score and the rate of change (Thorndike, 1924; Zieve,

1940). Second, the G scores are inherently unreliable (Lord & Novic, 1968). This has been one of the

major drawbacks to the use of G scores as measures of change (Burr & Nesselroade, 1990). Third, the G




scores that are based on only two points in time do not adequately describe any nonlinear change over
time (Rogosa et al., 1982). This is an especially serious limitation in a developmental study where the
trajectory of a variable is often a major interest. Although Rogosa (1993) argued that the ceiling-floor
effect and unreliability of G scores may not be problems in certain situations, the pre-post design and G
scores have limitations in accomplishing both objectives of analysis of change, description and
expianation, due to the above mentioned problems.

To overcome these problems of G scores, several alternatives have been proposed. Lord (1956)
suggested a true change score, which is obtained after correcting for measurement errors in pre- and
post-test scores. DuBois (1957) and Manning and DuBois (1962) suggested a residual gain score that is
based on the difference between the predicted (via linear regression) post-test and raw post-test scores.
There have been some other works on this issue (e.g., Tucker, Demarin & Messic, 1966). However,
Cronbach and Furby (1970) pointed that none of these adjustments on G scores were satisfactory.

Other suggestions have been made in the perspective of research design.- One suggestion was to
include a control group in the design, and compare the change between the treatment and control groups.
The traditional analysis of variance (ANOVA) procedure is used to analyze this type of data. The
analysis of covariance (ANCOVA) was also frequently used when there exist differences among groups
in pre-test scores. This is, however, most suitable for experimental research. Another simple suggestion
was employing multiple time points in the measurement (Nesselroade, Stigler & Baltes, 1980; Rogosa
& Willet, 1985b). This is especially important in studying development or growth, because this allows
one to examine a nonlinear change of an attribute over time. With more than two points in time, various
types of analysis methods can be employed, but tfaditionally, the ANOVA procedure has-been mostly
used. The ANOVA with trend analysis (polynomial contrasts) is useful because it allows one to examine
the change in mean scores, to decompose the variance into linear, quadratic, cubic etc. components, and
to examine interaction effects where there are multiple groups in the design. The ANCOVA procedure
also provides more valid tests of differential change among groups with multiple testing periods
(Richards, 1975).

Certainly, multiple time points of measurement provide a better opportunity in describing
change in a longitudinal study. However, ANOVA has still limitations in the explanations of the change
(i.e., in examining the causes of change, relationship of changes between two or more variables and
what makes the differences among individuals in the rate of change in relation with other variables).
Although a regression approach suggested by Hummel-Rossi and Weinberg (1975) may provide some
insight into explaining change, at most, the ANOVA and ANCOVA procedures allow one to examine
only the differences among groups in change. The ANOVA procedure can also be misleading. For
example, Schutz and Park (in press) presented an example where ANOVA failed to detect important

aspects of change (discussed in Study 1-Chapter V) if it is not properly used. The ANOVA and

ANCOVA also suffer from quite restrictive assumptions underlying statistical models, such as
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sphericity and random assignment of subjects to groups. Although multivariate analysis of variance: -
(MANOVA) or doubly multivariate analysis of variance (DM MANOVA) for multiple indicator
variables can be used under the violations of sphericity (Schutz & Gessaroli, 1987), these methods also
have limitations in that they are based solely on the comparisons of mean scores. Fundaméntally, these
traditional methods do not fully use the information that longitudinal data provide. Although in
MANOVA the covariances between different variables within a time point are partially used in
obtaining the best linear combination of variables, in general, the covariances between repeated
measurements are not adequately employed in the analysis (Labouvie, 1982). This leads to inadequate
description and explanation of change with these methods. ,

Other approaches have been used for the analysis of change such as the application of stochastic
models and time series analysis, growth curve fitting, qualitative énalysis of change, the application of |
multi-level analysis (hierarchical linear model) and the application of factor analysis. The application of
a stochastic model for the analysis of change is baséd on the probability of an individual achieving any
one of a number of possible scores at some time in the future, given a current score (Schutz, 1970). A
special case of the stochastic model approach is time series analysis. Time series analysis takes account
of the change of each time interval of the data, and estimates a mathematical model that predicts the
score at certain time point (Cromwell, Labys & Terraza, 1994; Crosbie, 1995; Frederiksen & Rotondo,
1979). This approach is often applied to a single subject (or any single measurement unit) who is
measured at several time points, and is used extensively by econometricians in predicting economic
indices (e.g., stock price). This procedure requires a large number of time points (more than 50), and
this is not feasible in a typical developmental study done with human subjects. Also, this approach
focuses mainly on the shape of the change, thus may be useful for the description of the change, but has
very limited utility in the explanation of the change.

A similar method that has been used for a long time in biological and medical sciences is
growth curve fitting. Some classify this method as a special case of time series analysis (von Eye, 1990).
Essentially, this procedure involves finding the best fitting mathematical model and its parameters that
explain thé change of a variable as a function of time (Rogosa et al., 1982). The mathematical model
ranges from a simple linear model or polynomial model that can be estimated by least squares method to
a more complex triple-logistic model with marginal maximum likelihood estimation and multilevel
statistical procedures (Bock & Tissen, 1976, 1980; Rogosa et al, 1982; Tissen & Bock, 1990). The
measurement unit is often a single subject (or single measurement unit) as in other time series analysis,
and the collection of parameters of the same curve model that are fitted to several subjects can be used
in the second level of analysis to examine the relationship between change and other variable(s). This
approach is different from traditional AN OVA procedure in that the change is described at an individual
level. However, as Tiésen and Bock (1990) noted, this approach requires approximations at many stages,

thus leads to a questionable utility of this approach for the explanation of the change purpose. This area
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still requires more development (Tissen & Bock, 1990).

Qualitative change models have also been used in several areas. In general, a qualitative change
model is employed when the variable of interest represents the change in a discrete state (measured on a
nominal or categorical scale). Various statistical models have been used to analyze such déta, including
the longitudinal Guttman simplex model (Collins & CIiff, 1985), log linear model (Goodman, 1972,
1978),’ logit or probit regression models (Goldberger, 1964), and hazards modeling (Allisobn, 1982). The
regression models and hazards modeling have some merits in that these models may include both
categorical and continuous independent variables that may explain the change (Burr & Nesselroade,
1990). Although these methods have been mostly limited to the univariate case, these are powerful tools
in describing and explaining change. Additionally, these models are very useful in a criterion-referenced
assessment context (Schutz, 1989). 7

Recently, several new statistical models for the analysis of change have been suggested. The
application of a hierarchical linear model (HLM), suggested by Bryk and Raudénbush (1987), has some
merits in that it describes the change at the individual level and one may include predictors of change in
the model. In addition, this model does not require the same number of repeated measures for each
individual, and the measurement intervals need not be the same for all individuals. Although this model
is limited to the univariate case and lacks flexibility in modeling, it provides powerful methods to
describe and explain change.

Application of factor analysis techniques to longitudinal data is also a relatively new approach.
An auto-regressive model (quasi-simplex model) has been widely used (e.g., Joreskog, 1970; Rogos'a &
Willet, 1985a) since it was introduced in the 19505 (Guttman, 1954). However, this model concentrates
more on the stability, or change of relative positions of subjects within a group by using only the
covariance matrix as data (Rogosa & Willet, 1985b). A more detailed description of this model is
presented in Study 2-Chapter II, “Longitudinal Reliability” section. Another relatively new technique is
employing means as well as covariances in the factor analysis model (Meredith & Tisak, 1984, 1990).
This model has some merits in analyzing change over traditional methods. This model is called a
“Latent Growth Model”.

Latent Growth Model
Based on the formative work of Rao (1958) and Tucker (1958), latent growth model (LGM)

was first suggested by Meredith and Tisak (1984, 1990) within the framework of structural equation
modeling (SEM), and later extended by others (e.g., McArdle, 1988; McArdle & Epstein, 1987; Muthen,
1997). Although the name “Latent Growth Model” contains the term “growth”, this statistical model can
be applied to any repeated measures data. However, it may be most useful when one has an a priori

hypothesis regarding the pattern or shape of the change of a variable. LGM has several merits in

describing and explaining change. First, by using both the means and covariances of repeatedly
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measured variables as data, a LGM allows one to take into account the individual level of change as
well as the group level of change. Second, individual change can be represented by either a straight line
or a curvilinear trajectory. Third, occasions of measurement need not be equally spaced. Fourth,
measurement errors can be accounted for by the statistical model, and reliability estimates for the
variables at each time point are available. Fifth, multiple predictors or correlates of change can be easily
included in the model. Finally, as in general SEM analysis, statistical models are very flexible, allowing
one to extend the basic idea in several ways in order to test various hypotheses, such as multivariate
LGM, multi-group analysis and cohort sequential analysis (McArdle, 1988; McArdle & Epstein, 1987,
Meredith & Tisak, 1990, Muthen, 1997). ‘

The Basics of LGM _
The basic idea of a LGM (Tisak & Meredith, 1990) is that the growth (change) of an attribute is

an unobservable latent trait. Thus, in a LGM, change is described by one or more latent variables

(factors). We may express the observed score for the ith individual at time t, Yi(t), as
d
Y () =D Wi d (1) + E (1) (1.2.1)
k=1

where Ay(t) is the kth unspecified (or specified) longitudinal curve for all individuals and Wiy is the
weight that the ith individual attaches to the Ai(t) curve, 1=1, 2, . . ., N. Ei(t) is the error or residual of
the ith individual. Let m be the number of repeated measurements and A, be the factor loadings of dth

order curve factor, then we can express this in matrix form as follows;

yi=Xi(t), Yi(ta), - - - ., Yi(tn)) (1.2.2)
e’ = (Ei(t), Eita), . . . ., Ei(tw)) (1.2.3)

) L) Aa(t) ]

A L) A (,)
. . . . (1.2.4)

LZ'I (tm) AQ(tm) """" Z’d (tm )__
Then, equation (1.2.1) becomes,
y=Aw+e (1.2.3)

The subscripts were omitted in equation 1.2.5 for simplicity. There are assumptions that are imposed in
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the factor analysis model. The assumptions include the mean error scores to be zero (E[e] = 0), the
covariances between errors to be zero (E[ee’] = ©®, a diagonal matrix), and the covariance between the
factor and the error to be zero (E [we’] = 0), where E[.] is the expectation operator. In addition, let E[w]
= a, and E{ww’] = . Then the expected mean vector and the variance-covariance matrix can be

expressed as;

Elyl=Aa=p (1.2.6)
Elyy’ ] =AYAN +0=Q 1.2.7)

These look essentially the same as the general factor analytic form, the difference being that E[y] # 0
and E[w] # 0. Thus, these are the basic equations of factor analysis with means (Harman, 1976;
Meredith & Tisak, 1990; Mulaik, 1972; Tisak & Meredith, 1990).

With an additional assumption of joint multivariate normality of the y variables, maximum
likelihood estimation and hypothesis testing is possible. Let 1 and 0 denote column vectors of ones and
zeros, respectively, and « a vector of free parameters for the model. Then a partitioned matrix 2(w) is
defined as,

[Q #} {A OP aw o} [@ o}’ |
S(7) = = + (1.2.8)
g 10 |0 1{e 1]0 1] |0 0

and the partitioned matrix S consists of the covariance matrix and mean vector of y variables that are
obtained from the data:

S:[g} ‘A‘} (1.2.9)
Ho1

Maximum likelihood estimation minimizes the fitting function, Fyg,, where
k= long(iz)l+tr(.S'Z‘1 (ﬂ))—longl—t (1.2.10)

and “log” is the natural logarithm, | . | is a determinant of a matrix, tr(.) is a trace of a matrix, and t is the
number of measured variables (or the number of repeated measures of the same variable). Maximum
likelihood estimation procedures require a relatively large sample size (i.e., 200), and can be done using

any one of a number of commercially available SEM programs (e.g., LISREL, EQS, MPLUS or
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SEPATH). These programs also provide several goodness-of-fit indices for the fitted model. |

Another way of representing a LGM is through the use of a path diagram. This is common
practice in a SEM, and is a conceptually easier way to represent and understand these rather complex
relationships. Figure 1.2.1 shows the diagram for a linear LGM. Following the general rules of SEM,
bo_xés represent observed (measured) variables, and ovals represent unobserved latent variables (factors).
In Figure 1.2.1 there are five observed variables, labelled as “Timel to Time5” (instead of y variables as
used in the matrix equations), and two latent variables, named “Intercept” and “Slope” (these two latent
variables are included in the matrix W in the matrix equations). Arrows represent the relationships
among observed and latent variables. Single-headed arrows are used to show a causal relationship
between variables where the variable at the tail of the arrow is hypothesized to cause (or explain) the
variable at the head of the arrow. The magnitude of causal relationship between an observed variable
and a latent variable is represented by a path coefficient (or factor loading, As), and it is equivalent to a
B coefficient (non-standardized slope coefficient) in a regression analysis. The path coefficients in
Figure 1.2.1 are all fixed at 1s for the intercept factor and at 0, 1, 2, 3, and 4 for the slope factor. Thus,
in Figure 1.2.1, the Timel through Time5 variables are dependent (endogenous) variables, while the
intercept and slope factors are independent (exogenous) variables. The relationship between observed
and latent variables can be represented by a linear equation. For example, the Timel variable is
represented as; Timel = (1) x Intercept + (0) x Slope + el. The double-headed arrow shows the
covariances (correlations in standardized units) between two variables.

Unlike a regression analysis or a usual SEM, all path coefficients in Figure 1.2.1 are fixed at
certain values. Because of these fixed coefficients, the latent variables have specific meanings. The
“Intercept” factor represents a true score at the first time point (initial status), and the “Slope” factor
represents the true rate of linear change over time. Each subject has his or her own intercept and slope,
and it is expected that there will be between-subject variation in the intercept and in the slope. The mean
and the variance of the intercept factor are represented by o; and 7, respectively. The mean and the
variance of the slope factor are represented by as and s, respectively. The covariance between the
intercept and slope factor is represented by yis. An error (¢) represents that part of an observed variable
that is not explained by the intercept and slope factors. Thus according to Figure 1.2.1, the score of each

individual at each time point can be expressed as;

Timel = Intercept + (0) x (Slope) + el
Time2 = Intercept + (1) x (Slope) + €2
Time3 = Intercept + (2) x (Slope) + €3
Time4 = Intercept + (3) x (Slope) + e4
TimeS = Intercept + (4) x (Slope) + €5
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Timel Time2 Time3 Time4 TimeS5
I
el e2 e3 e4 e5

Figure 1.2.1. Linear LGM
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Thus apart from error, which is:unique at each time point, the difference between Timel and
Time2 is Slope, and the difference between Timel and Time3 1s 2 x Slope and so on, implying a linear
change over time. A score of an individual at any time point is a function of one’s own intercept and
slope. The means and variances of the observed variables and covariances between observed variables
are used as data for the statistical analysis. The means and variances of the latent variables and
covariance between the two latent variables are estimated by the model. The mean and the variance of
the intercept factor are the trie mean and the between-subject variance of the initial time point,
respectively. The mean of the slope factor is the average linear change between adjacent time points,
and the variance of the slope factor is the between-subject variation of the magnitude of the linear
change over time. The covariance between the two factors shows the magnitude and the direction
(positive or negative) of the relationship between the score at the initial time point (Time1) and the rate
of the change. The variances of the errors are also estimated by the model (Lawrence & Hancock, 1998).
Extensions of .GM

The basic model can be extended in several ways. First, by adjusting some of the path
coefficients of the slope factor, or by adding additional change factor(s), one can specify a model that
describes a curvilinear change. In Figure 1.2.1, if the last three path coefficients of the slope factor are
freely estimated rather than fixed at specific values, the model describes a less restricted type of change.
This model is often called an “unspecified curve model” (McArdle, 1988). In this model, the second
path coefficient should be still fixed at 1 to provide a scale to the change factor. On the other hand, if
one add a third factor to a linear model (Figure 1.2.2), it becomes a quadratic model that describes a
quadratic change over time. The higher order curvilinear model is formed in the same way. Another
kind of curvilinear model is possible. For example, Willet and Sayer (1996), in their introductory paper,
transformed the subjects’ ages (time point) using a logarithmic function and applied a linear LGM.

Predictor(s) of the intercept and change can be easily included in a LGM. Figure 1.2.3 shows a
linear LGM with a time-invariant predictor. The ys represent the path coefficients from the predictor
variable to the intercept and slope factors, and the.magnitude of these coefficients shows the strength of
the predictor variable in explaining these two factors. In addition, incorporation of time-varying
predictor(s) in the model is also possible (Kaplan, 2000).

Tisak and Meredith (1986), based on the work of Tucker (1966), showed a multivariate
generalization of the LGM. A multivariate LGM includes several variables that are repeatedly measured
at multiple time points. McArdle (1988) described two types of multivariate LGM and named these two
models a “factor-of-curves” model and a “curve-of-factors” model. In a “factor-of-curves LGM” (Figure
1.2.4), several first-order intercept and change-factors explain the trajectories of several variables over
time, and the correlations among intercepts and among change factors are explained by the second-order

intercept and slope factors. This model is more parsimonious than the model in which the second-order
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Figure 1.2.2. Quadratic LGM (covariances between latent factors are omitted)
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Figure 1.2.3. Linear LGM with a time-invariant predictor .
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‘factors are not specified, and the correlations between the first-order factors are estimated; however,
when two or more variables show different types of change, it is unclear how to specify the model.

In a ‘curve-of-factors LGM’ (Figure 1.2.5), on the other hand, several measures at a single time
point form a latent construct, and the change of this latent construct over time is explained by second-
order intercept and change factors (McArdle, 1988; Tisak & Meredith, 1990). A ‘curve-of-factors LGM’
requires a few extra steps in the analysis because before a ‘curve-of-factors LGM” is applied to a data
set, several conditions have to be satisfied. First, one has to examine if the hypothesized factor structure
holds at each time point. That is, one has to test if the measured variables form a factor at each time
point (i.e., examination of a measurement model). Second, once a factor is believed to be formed at all
time points, one has to examine if the factor loadings for the same variable are equal over time. In other
words, one should tést if the same attribute (factor) is measured err time. Thus a ‘curve-of-factors
LGM’ analysis includes the following steps: (a) test of a measurement mbdel, (b) test of equality of
factor loadings over time, (c) selecting the best growth model (i.e., linear, quadratic, .cubic or curve etc.
model), and (d) test of predictor effects, if necessary.

- Other types of extensions and applications have also been made. One may employ a multi-
group analysis model when the examination of the differences among groups in the change of an
attribute is a main concern. Willet and Sayer (1996) applied this model to compare healthy children and
non-healthy children in the growth of reading and mathematics ability. Muthen and Curran (1997)
further extended this application to an experimental clinical trial and examined the treatment effect by
comparing the treatment and control groups. They also included the interaction effect in the model and
developed a procedure to obtain a statistical power to detect a significant treatment effect. Another
extension of the LGM is the application to the cohort sequential design (Meredith & Tisak, 1990). As a
matter of fact, this is another application of multi-group analysis of LGM to sequential data. In this
model, several cohort groups are included (and treated as different groups), but the time (age) is
specified as continuous across cohort groups. The extension of LGM to a binary outcome (dependent)
variable has been also made (Muthen, 1996); however, as Muthen (1996) noted, this method requires a

weighted least squares estimation that is computationally heavy and requires a large sample size.

Development of Physical Performance
The term “physical performance” encompasses a broad range of systematic human body
movement. As well, there exist a huge number of tests that were developed to measure several types of
physical performance. In this section, only the physical performance tests and corresponding physical

performances that were employed in the data sets used in the present study are discussed.




20

: -JO-3AIND Y *¢° | 2B
(panwo a1e s1ojowresed) syutod swn ¢ pue SA[QRLIBA € YIIm [9POLI JBIUI] Y :[9POW $I0J0BJ-JO-2AIND ¥ °CT]

v




21

Physical Performance Tests

Flexed-arm-Hang (FAH)

The FAH is used to measure upper arm and shoulder girdle muscular strength and endurance
(Corbin & Pangrazi, 1992). Upper body muscular strength and endurance are considered to be an
important component of health-related physical fitness (AAHPERD, 1988; President’s Council on
Physical Fitness and Sports [PCPFS], 1987). Consequently, the FAH test is included in health-related
physical fitness test batteries such as The Chrysler Fund-AAU Fitness Test (1987) and FITNESSGRAM
Test (Institute for Aerobics Research, 1987). This test-is often used instead of a pull-up test for females
and younger boys. The FAH test has shown good reliability, but questionable validity (Cotton &
Marwitz, 1971; Pate, Burgess, Woods, Ross & Baumgartner, 1993). Pate et al. (1993) reported that the
cdncurrent validity of this test is relatively low (.50); however, they showed evidence of construct
validity of the test. Pate et al. (1993) also noted that the subject’s perforrhance is confounded by body
weight. Because the body Weight of a subject affects the performance of this test significantly, this test
should be regarded as a measure of strength and endurance relative to one’s body weight. Another
problem of the FAH is the frequent occurrence of a relatively large percentage of zero or near-zero
scores, particularly among girls and young boys (Reiff, Dixon, Jacoby, Ye, Spain & Hunsicker, 1986;
Ross & Gilbert, 1985).

Jump-and-Reach (JAR)
The JAR test is used to measure explosive power of the leg extensors (Safrit & Wood, 1995).

Jumping tests such as JAR and “Standing Long Jump (SLJ)” have been described as tests of power and
of explosive strength (Baumgartner & Jackson, 1999; Fleishman, 1964; McCloy & Young, 1954). The
JAR test, first developed by Sargent (1921), is also referred to as the “Sargent Jump Test” or *Vertical
Jump Test”. This test is one of the most widely used tests to measure jumping ability and power, and is
especially relevant for testing athletes such as volleyball and basketball players because jumping is an
important part of those games (Baumgartner & Jackson, 1999). The reported validity (.78) is in an
acceptable range and the reliability (.93) is relatively high (Safrit & Wood, 1995); however, others
reported low correlations between jumping tests and mechanical measures of power (Barlow, 1970;
Considine, 1970). Another concern is the negative correlation between jumping tests and body weight
(Baumgartner & Jackson, 1999). Consequently, the JAR should be regarded as a test of lower leg power
relative to body weight rather than as a test of absolute power.
Sit-and-Reach (SAR)

The SAR test is used to measure flexibility of the low back and posterior thigh, and has been

applied to all age groups (Safrit & Wood, 1993). This test is often included as a test item in health-
related physical fitness test batteries such as the AAHPERD Physical Best Test Battery (AAHPERD,
1988), Chrysler Fund-AAU Fitness Test (1987), Fit Youth Today Test (Américan Health and Fitness
Foundation, 1986), FITNESSGRAM Test (Institute for Aerobics Research, 1987) and the Presidential
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Physical Fitness Test Battery (PCPFS, 1987). Reported validity estimates of this test are varied, ranging |
from .60 to .90 (Jackson & Baker, 1986; Safrit & Wood, 1995). Jackson and Baker (1986) found that
the SAR test had moderate validity (.60 to .73) in measuring hamstring flexibility; but low validity (.27
to .30) in measuring low back flexibility. The reliability of this test is relatively high: reported reliability
coefficients ranged from .70 to .99 (Jackson & Baker, 1986; Safrit & Wood, 1995). Performance on the
test, however, is somewhat dependent on the ratio of trunk length to lower body length (Safrit & Wood,
1995). ‘
Agility Shuttle Run (ASR)

The ASR test is used to measure agility, running speed and change of direction (Corbin &
Pangrazi, 1992). Agility is an attribute that is more strongly relate_d to a specific sport (Safrit & Wood,
1993), thus, the ASR test is often included in performance-related physical fitness test batteries such as
the AAHPER Youth Fitness Test (AAHPER, 1976) and Manitoba Physical Fitness Performance Test
(Manitoba Department of Education, 1977). Interestingly this test has also been included in health-
related physical fitness test batteries such as the FITNESSGRAM (Institute for Aerobics Research,
1987) and the Presidential Physical Fitness Test Battery (PCPFES, 1987). The ASR test has been widely
used in various school settings and applied to all age groups from age 6 through adult. Although there
have been a few studies that revealed an evidence of construct validity (e.g., Hilsendager, Stow &
Ackerman, 1969), no studies that are directly related to the validity of the ASR test have been conducted.
In relation to this, Safrit and Wood (1995) noted that “Agility” is highly specific to a task; thus there is
no valid measure of overall agility. A task-specific measure of agility might be used as a measure of
performance-related physical fitness. The reported reliability coefficients (.68 to .75) were in an
acceptable range (Klesius, 1968). Several studies have shown that there exists a practice effect on ASR
performance, and recommended several practice trials before the éctual measurement or more than two
trials in a measurement occasion (Baumgartner & Jackson, 1970; Hilsendager, Stow & Ackerman,
1969; Marmis, Montoye, Cunningham & Kozar, 1969).

Endurancg Shuttle Run (ESR)

This test measures leg muscular endurance. Muscular endurance is defined as “the ability of the
muscle to maintain submaximal force levels for extended periods” (Heyward, 1984), or “the ability to
persist in physical activity or to resist muscular fatigue” (Baumgartner & Jackson, 1999). Muscular
endurance is often measured by repetitions of a movement of a specific muscle group. Because the
different muscle groups may show different levels of endurance, a specific muscle group must be
selected and tested, giveﬂ the purpose of the measurement (Safrit & Wood, 1995). Most field tests were
developed to measure the endurance of the arms and shoulder girdle, (e.g., FAH), the endurance of
abdominal muscles (e.g., sit-ups) and cardiorespiratory endurance (e.g., distance run). There are a few
tests that measure the endurance of the leg muscle group (e.g., leg press). These tests generally require

one to perform a movement to exhaustion or to perform as fast as one can during a specific time period
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(usually the length’._of time is 1 min). The ESR test has seldom been used as a test of endurance, and to
* this researcher’s knowledge no published studies on this test are available. This test, however, was an
integral component of the test battery used in the longitudinal study that generated the data used in this
study. The ESR test requires repetitions of leg movement, and the mean of the test scores found in the
current study ranged from 43.93 to 37.64 seconds at age 8 to 12.5 (see Table 4.6 and Table 4.9 in
chapter 4), indicating that this test measures leg muscular endurance (or anaerobic capacity of the leg
muscle group). Because of the relatively short distance of running and completion time, this test may
include the elements of speed and running efficiency as well. This test should also be regarded as a
measure of relative endurance rather than absolute endurance because the body weight affects the
performance. Information regarding the validity and reliability of this test 1s not available.

30-Yard Dash (DASH) |

The DASH is used to measure running speed (Corbin & Pangrazi, 1992). Running speed is
regarded as a performance-related attribute, and measured by the elapsed time required to run a
specified distance or the distance the subject can run during a specified time period. Various running
distances or time periods have been used depending on.the purpose of the test and the subjects’ ages:
ranging from 10 to 60 yards or from 4 to 8 seconds, respectively (Baumgartner & Jackson, 1999;
Fleishman, 1964; Haubenstricker & Seefeldt, 1986, Jackson, 1971; Jackson & Baumgartner, 1969; Seils,
1951). A fifty-yard dash test is most widely used, and this test is included in the AAHPER Youth
Fitness Test battery (AAHPER, 1976). This test has been applied mainly to children and adolescents.
Construct validity has been established for this test (Hastad & Lacy, 1994), but there has been lack of
studies in which other types of validity of the DASH test were examined. Safrit and Wood (1995) noted
that the 50-yard dash is a function of running efficiency as well as pure speed. In addition, this test has
an element of explosive power, thus it shows a relatively high correlation with the performance of the
JAR and SLIJ tests (Costill, Miller, Myers, Kehoe & Hoffman, 1968; Marsh, 1993). The reported
reliability coefficients of the 50-yard dash test are relatively high, ranging from .86 to .94 (Fleishman,
1964; Jackson & Baumgartner, 1969), and the reliability of the 30-yard dash test was also relatively
high (Seils, 1951).

Standing Long Jump (SLJ)

The SLJ is used to measure explosive power of the lower limb extensors (Corbin & Pangrazi,
1992). The nature of this test is very similar to that of JAR test. Because of the ease of administration of
the test, it has been widely used in school and nonschool settings, and included in several perforinance-
related fitness test batteries such as the AAHPER Youth Fitness Test (AAHPER, 1976). The SLJ is
generally accepted as an adequate measure of explosive power, although an element of timing (skill)
exists in executing the jump that does not exist to the same extent for JAR (Safrit & Wood, 1995). The
reported reliability coefficients are high, ranging from .83 to .99 (Klesius, 1968; Safrit & Wood,. 1993).

However, like the JAR test, the SLJ test has shown low correlations with mechanical measures of power
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(Barlow, 1970; Considine, 1970), and a negative correlation with body weight (Baumgartner & Jackson,
1999).

The Development of Children’s Physical Performance

_ The discussion about the development of children’s physical performance in this section is
limited mostly to the age range 8 to 13 years, which Haubenstricker and Seefelt (1986) recognized as
“middle and late childhood”. In addition, only the development of males is discussed because the
present study includes only males as subjects. The specific interests of the present study are the pattern
(shape) of development. Although an important issue in the pre'sént study is the identification of
individual levels of change as well as the group level of change, the discussion in this section is based
largely on group level statistics, as this was the only available information in the literature.

Many studies concerning the development of physical performance have been conducted since
the early 1900s. These studies focused on issues such as the developmental process of motor skill
acquisition (e.g., Halverson, 1931; Haubenstricker & Seefeldt, 1986; Vilchkovsky, 1972), the impact of
training and other environmental factors on the acquisition of motor performance (e.g., Dusenberry,
1952; Halverson, Roberton, Safrit & Roberts, 1977; Wemer, 1974), the relationship between physical
performance and physical growth (e.g., Cearley, 1957; Clarke & Wickens, 1962; Selis, 1951), and
comparisons between males and females in development (e.g., Morris, Williams, Atwater & Wilmore,
1982; Smoll & Schutz, 1990). These studies provide limited information regarding the development of
.children because the majority of these studies are cross-sectional rather than longitudinal. The lack of
10dgitudina1 studies is due to the difficulties of conducting a longitudinal study.

Muscular Endurance (FAH and ESR)

Different studies employed different tests and different age groups in examining the
‘development of children’s muscular endurance. Many studies indicated that children’s muscular
endurance improves linearly at an early age, but the rate of the improvement may decrease or increase
after age 11 or 12. Montoye and Lamphiear (1977), in their cross-sectional study, found that children
improved linearly in their arm strength between the ages of 10 and 12, and the improvement was larger
between age 12 and 13. Bischoff and Lewis (1987) used a sit-ups test in their cross-sectional study, and
reported similar findings in a little different age range. They showed that children’s improvement was
approximately linear between age 7 and 11, and the improvement was accelerated between age 11 and
12. Jones (1946) also reported similar results. On the contrary, Baumgartner, East, Frye, Hensley, Knox
and Norton (1984) showed children’s upber arm muscular endurance improved rapidly and then the rate
of the improvement decreased between ages 7 and 9. Milne, Seefeldt and Reuschlein (1976) obtained
similar results using a 400-ﬂ shuttle run test on children aged between 6 and 8. Conflicting results were

also found in Smoll and Schutz (1990). In their cross-sectional study, children showed larger

improvements in the measure of FAH between age 13 and 17 than between age 9 and 13, while sit-ups
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showed opposite results. Although the Canada Fitness Survey (1985) revealed a little more complex
change (e.g., cubic change) in muscular endurance measured by push-ups and sit-ups tests between age
8 and 12, in general, the improvement of children was approximately linear or quadratic with larger
change at an early age. Different results. that were reported from various studies may be due to the
inclusion of different muscle groups, different tests, and the subjects with different characteristics.

Power (JAR and SLJ)

The development of explosive power of the lower leg muscle group or of jumping ability is
similar to that of muscular endurance. Many studies have reported a linear change between ages 5 and
12 in jumping ability as measured by the JAR and SLJ (Bayley, 1935; Clarke & Wickens, 1962;
Herkowitz, 1978; Milne et al., 1976). Hauebnstricker and Seefeldt’s (1986) summary of several
longitudinal studies also showed a linear change of jumping ability until the age of 16. A few different
findings have been also reported. The cross-sectional study by Marmis, Montoye, Cunningham and
Kozar (1969) showed a cubic change of SLJ between ages 9 and 13. They reported a faster
improvement between ages 10 and 12 than between ages 9 and 10, and slower improvement between
ages 12 and 13. Nonlinear changes were also reported by Caskey (1968), Selis (1951), and Smoll and
Schutz (1990).

Flexibility (SAR)

Unlike other children’s physical performances, flexibility declines with age. The rate of
decrement in childhood is very small: many studies showed that flexibility remains at the same level or
slightly declines between ages 8 and 12. In studies by Bischoff and Lewis (1987) and Gallahue (1982),
the decrement in children’s flexibility becomes evident from age 10 for males. However, in a large norm
establishment study by Hastad, Marett and Plowman (1983), the level of flexibility remains about the
same between ages 8 and 12. The fiftieth percentile norms that were suggested by PCPFS (President’s
Council on Physical Fitness and Sports, 1987) and National Children and Youth Fitness Studies
[NCYFS] (Ross & Gilbert, 1985; Ross, Pate, Delpy, Gold & Svilar, 1987) also supported these findings.
Because of the small rate of decrement within this age range, it is difficult to observe the general shape
of the change. Although Bischoff and Lewis’s (1987) study implied a cubic change, this study was
based on a very small sample size. Because flexibility showed two types of change, no change and

decrement, within the age range from 8 to 12, it is possible to infer that the change occurs in a quadratic

form.
Agility (ASR)

Although there is some disagreement on the rate of change (e.g., Marmis et al., 1969, Milne et
al., 1976), generally, studies indicated that agility improves constantly in childhood. Selis (1951)
reported a linear improvement in children aged from 7 to 9 in the ASR test. AAHPER’s youth fitness
test norm (AAHPER, 1976) also implied a linear improvement from age 10 to 13. In addition, Clarke
and Wickens (1962) and Marmis et al. (1969) showed that the level of children’s agility improved
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linearly form age 10 to 12, but they found that there was no change in children’s agility from age 9 to 10.
Thus, the possibility of a quadratic change should be considered within this age range.
Running Speed (DASH)

The development of running speed appears to be similar to that of explosive power (jumping
ability) and agility. Haubenstricker and Seefeldt (1986) reported that children improved constantly in
running speed up to age 17. Marmis et al. (1969) and Morris et al. (1982) also supported this for the age
range of 3 to 12 years. There were some other reports that showed a nonlinear development of running
speed within this age range. Cearley (1957) concluded that children’s development in running ability is
nonlinear from age 9 to 13. Although Selis (1951) noted that children’s running ability improved
constantly, his results implied a faster improvement before school age. Milne et al. (1976) also
supported this finding. The tendency of faster developmént in running speed may exist in an early age
range. .

In summary, children improve rapidly in their physical performance between ages 8 and 12.5,
except for flexibility which generally declines over time. However, there has been lack of agreement
regarding the pattern of change. Two notable patterns were a constant (linear) change, and a faster
change at an earlier age. The different results among studies miglit be due to the fact that they included
different age groups and different performance variables. In addition, most of the previous studies
employed cross-sectional research designs and small samples. There has been lack of physical

performance development studies that employ a longitudinal design with large samples.

The Factor Structure of Physical Performance

Attempts to identify an underlying factor structure of physical performance have been made
since the 1930s (e.g., Buxton, 1938; Coleman, 1937; Metheny, 1938; Rarick, 1937). The purpose of
early studies was to determine the existénce of a general motor ability factor or to extract a number of
underlying latent factors given various performance variables. Most of these studies showed that the
earlier concept of general motor ability does not exist, but rather physical performance is specific to
particular muscle groups or particular types of movement (Coleman, 1937; Cumbee, 1954; Fleishman,
1964; Rarick, 1937; Seashore, 1942). Various studies identified somewhat different factors because
different studies employed different physical performance variables. However, there exists some
agreement about the factors that may encompass the domain of physical fitness of motor performance in
identified factors. In general, these factors can be categorized as strength, explosive power, speed,
endurance (muscular and cadiorespiratory), coordination, balance, and flexibility.

Strength, muscular endurance and explosive power are among the most dominant factors that
have been identified in numerous studies (e.g., Barry & Cureton, 1961; Fleishman, 1964; Larson, 1941;
Rarick & Dobbins, 1975). In these studies, the three factors were recognized as different elements of

strength. Fleishman (1964) conducted an extensive study of the factor structure of physical performance,




27

and reported three primary strength factors, named dynamic strength, static strength and explosive
strength (power). In his study, dynamic strength included several muscular endurance test items (e.g.,
pull-ups, FAH), and explosive strength included several explosive power test items (e.g., JAR, SLJ).
Others (e.g., Larson, 1941; Marsh, 1993) supported these findings. Fleishman further showed some
evidence of separate components that are specific to a particular muscle group (e.g., upper arm strength)
or a particular type of movement (e.g., running).

Others disputed Fleishman’s earlier categorization, and supported his latter notes that physical
performance is specific to particular muscle groups or particular types of movement. Studies by Cousins
(1955), Liba (1967) and Start, Gray, Glencross and Walsh (1966) suggested that dynamic, static and
explosi-ve strength are not unidimensional factors and that separate factors of arm and leg involvement
exist in each of these three elements. Jackson (1971) also supportéd this and further showed that there
exist distinctive factors of running, jumping and throwing. The specificity of physical performance to
particular muscle groups is also evident in endurance. Baumgartner and Zuidema (1972), in their factor
analysis of physical fitness tests, identified three main factors: Lipper body strength and endurance, leg
strength and endurance and cardiorespiratory endurance.

One of the notable results from factor analytic studies of physical performance is that a spéed
run variable is included as an element of explosive power, and regarded as a measure similar to the JAR
and SLJ. Start et al. (1966) found a high correlation between explosive power and speed, and concluded
that explosive power is linked with speed rather than strength. Costill, Miller, Kehoe and Hoffman
(1968) also reported relatively high correlations between JAR, SLJ and DASH (40-yards). Costill et al.
(1968) described this factor that includes speed \}ariables (c.g., DASH) as well as jumping ability
variables as “explosive leg strength and power”. These findings imply that a speed variable may share
the same underlying construct with JAR and SLJ. On the contrary, studies by Fleishman (1964),
Metheney (1938), and Phillips (1949) suggested that speed and explosive power are two distinctive
factors. Overall, there is a lack of evidence that confirms whether speed and explosive power are two
distinctive constructs or aspects of the same underlying construct.

Only a few studies included the measure(s) of agility (e.g., ASR) in a factor analysis. In studies
in which an agility test is included, it often showed a high degree of relationship with gross body
coordination, explosive power or running ability (Fleishman, 1964; Larson, 1941; Phillips, 1949;
Ponthieux & Barker, 1963). Most notably, Phillips (1949) employed three agility tests in his factor
analysis and concluded that there is no common factor to the three agility tests other than speed. These
findings may be due to the fact that a typical agility test (e.g., ASR) involves running ability and speed,
and/or coordination.

Unlike the literature on other factors, most studies are in agreement that there is a distinctive

construct of flexibility (Fleishman, 1964; Harris, 1969; Hilsendager, Kames & Spiritoso, 1969; Marsh,

1993). In these studies, a distinctive flexibility factor was extracted in factor analyses and/or flexibility
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showed relatively low correlations with other performance factors. The SAR test has been most
frequently involved in these studies. Other distinctive performance factors, such as cardiovascular
endurance, balance and coordination, have been identified in many studies, but these are not the main
interest of the present study. . |

' Most of findings described above were based on samples of college students, but the degree of
specificity is less clear for young children. Young children tend to show general motor ability, that is, a
child who shows high level of performance in one type of physical task generally shows high level of
performance in other types of task as well. However, Rarick’s (1980) note that “it is in the early
childhood and preschool years that there occurs a gradual transition from generality to gradually
increasing specificity of motor functioning” (p. 179), implies that the specificity of physical
performance may be achieved from age 6 or 7 years. Barry and Cﬁreton (1961) employed children aged
between 7 and 11 years in their study, and extracted factors that are speéiﬁc to particular body parts and
particular types of movement. Studies by Ismail and Cowell (1961) and Rarick and Dobbins (1975) used
different performance variables but generally supported the specificity of children’s physical
performance. In addition, Marsh (1993) showed that the structure of physical fitness factors (i.e., the
relationship between a factor and a test, and the relationship between factors) is invariant across age
groups of 9, 12 and 15 vyears.

According to the literature, there seem to exist distinctive latent factors, such as strength and
endurance, explosive power, speed, flexibility and agility. Further, these latent factors may be specific
to particular muscle groups, such as the lower leg muscle group and upper arm muscle group, and/or to
particular types of movement such as running and jumping. However, for young children, there is a
possibility that there exists a general motor ability. More studies are required to determine if the

specificity of latent physical performance depends on particular muscle groups or on particular types of

movement, and if a general motor ability exist in early childhood.
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STUDY 1-CHAPTER III. METHODOLOGY

The Data
Initially, two longitudinal data sets were obtained. The first data set was obtained.from Korea
(Korean data), and the second data set was obtained from Michigan State, US (Michigan data). For both
data sets, initial data screening was conducted to examine the reliability of the data and to identify

extreme values.

Korean Data

The Korean data set was obtained from four high schools that are located in metropolitan Seoul,
Korea. The measurements were taken as a part of the annual repoﬁ of students’ physical growth and
fitness level. These annual measurements are mandatory in Korea for allbstudent_s, aged from 11 to 18
(grade 5 to grade 12). The obtained data set includes four body size variables and six performance
variables that were measured from 706 cohort male students, aged from 13 to 17 (grade 7 to grade 11).
The variables are weight, height, sit-height, chest girth, 100-m dash, standing long jump, pull-ups, sit-
ups, softball throw and 1000-m endurance run. The measurements were taken from 1993 to 1997, once
a year with approximately the same time intervals between assessments.

A close examination of the data set revealed that this data set was highly unreliable. A few
examples of unreliable cases of standing long jump are presented in Table 1.3.1. In Table 1.3.1, for
example, the record of the subject 245 (the second row) showed a decrease of 98 cm between age 14
and 15 and an increase of 100 cm between age 15 aﬁd 16. Considering that this subject did not show a
considerable change (other than normal growth) in his height (163, 167 and 169 cm at age 14, 15 and 16,
respectively) and weight (50, 54 and 59 kg at age 14, 15 and 16, respectively) during this period, this
record is not reasonable. This kind of unreliable record was found in all six performance variables and
throughout the data set. This may be due to different test procedures/criteria caused by different
administrators, and insincere participation of the subjects on the measurements. This has been a problem
in the measurement of physical and fitness growth in Korea. Because the extent of the unreliability of

this data set was difficult to be determined, further analyses on this data set were not conducted.

Michigan Data
The Michigan data set was provided by Haubenstricker and Seefelt from Michigan State
University. The data were collected as a part of a large research project, “The Motor Performance
Study”, and the original data set included seven demographic variables and nine motor performance
variables that were repeatedly measured on 583 male children. The initial measurement was started in

1968 with 30 subjects, and approximately 30 subjects were recruited and repeatedly measured twice

every year until they were dropped out of the study. The most recent measurements were taken in 1997.
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Table 1.3.1
Examples of unreliable measurement — Standing long jump (cm)

SubjectID  Age 13 Age 14 Age 15 Age 16 Age 17

28 140 117 210 170 195
245 235 248 150 250 240
531 215 210 253 242 170
550 165 270 270 236 262
598 198 170 264 195 238
664 196 200 235 130 190
690 167 167 157 241 1205

707 264 177 190 260 210




31
The age at the initial measurement varied from 3 years old to 15 years old, and most of the subjects
were measured between age 8 and 13 years. On average, each subject was measured every six months
for about five years. Age was categorized by month, and the size of a category is six months. For the
purpose of this latent growth model (LGM) application, subjects were matched based on this 6-month
age category and then the data were analyzed as if these subjects were a cohort group. Thus, for
example, one subject’s age was 8 in 1970 while another’s age was 8 in 1990, but they were treated as if
they were a cohort group. The differences between subjects in measurement year were accounted for by
means of a covariate (or predictor) in all statistical models, thus the effect of measurement year was
controlled for in the LGM analyses. The usage of this variable, measurement year, as a predictor
variable is explained later in this chapter. '

A LGM requires a relatively large sample size with no missing values. To satisfy these
conditions, only parts of the whole data set were selected based on listwise deletion (no missing value in
all used variables), sample size, and the number of repeated measures (i.e., > 4). As a result of this
procedure, two different data sets were obtained from the same pool of subjects (i.e., N = 585) with
sample sizes of 218 (data set 1) and 212 (data set 2). These data sets have five time points, and the
intervals between two adjacent time points were approximately one year. The subjects’ ages in data set
I and data set 2 were different. The subjects’ ages at initial measurement were 8 years in data set 1, and
8.5 years in data set 2. Many of the subjects were included in both data set 1 and 2, but provided
different performance records due to the differences in measurement time (age) between the two data
sets. Thus, the two data sets were not completely mutually exclusive from each other; that is the same
168 subjects were included in both data sets, while the data set 1 had additional 50 subjects and the data
set 2 had 44 additional subjects. The data set 1 was used as the main data for the analyses, and the data
set 2 was used for a pseudo cross-validation.

Some of the demographic variables were excluded because there were too little between-person
variations within a variable. For example, the variable “race” was not included in this study because
more than 95% of the subjects were Caucasian. Some of the motor performance variables were also
excluded because the measurement was stopped at the initial stage of the project. The resultant data sets
include five demographic variables (used as predictor variables) and seven motor performance variables.
These variables are not representative of the all the important physical performance and predictor
variables, since already existing data were used in the present study. The descriptions of the included
variables in this study are presented in Table 1.3.2.

Both data sets, data set 1 and 2, were examined for extreme values because means and
covariances that are used as data in a LGM analysis are highly sensitive to extreme values. In data set 1,
eight subjects showed extreme values in ASR and ESR. These values were more than 4.00 standard

deviation (SD) away from the mean of the variable, and more than 1.25 SD away from the adjacent

values. These 8 subjects were excluded from the analyses. In data set 2, eight subjects showed extreme




Table 1.3.2

Descriptions of variables that were used in the studv (Michigan data)

Variable name

Description

The number of pre-
measurements

The number of measurements that were taken before the initial time point
(age 8 and 8.5 in data set 1 and 2, respectively). This variable was used as a
predictor variable.

Age

The subjects’ age in months at the initial time point (age 8 and 8.5). Although
the subjects were matched by age category, there still exist variations of age
in months, and these variations may affect the level of the motor performance
of young children. The maximum difference between any two subjects on this
variable was 6 months within a data set. This variable was used as a predictor
variable.

Grade

The subjects’ grade at the initial time point (at age 8 and 8.5). The maximum
difference between any two subjects was 2. This variable was used as a
predictor variable.

Measurement
season

The season that the measurement was taken. This variable has only two
values, summer (coded as 0) and winter (coded as 1). This variable was used
as a predictor variable.

Measurement year

The year when the subject’s age was 8 and 8.5 in data set 1 and 2,
respectively. The values ranged from 1968 to 1992. This variable was used as
a predictor variable.

Flexed-arm-hang

(FAH)

Measured in seconds. A larger score represents a better performance. This
variable measures the muscular endurance of upper arm. A detailed test
procedure and the characteristics of the test are given in Safrit and Wood
(1995).

Jump-and-reach
(JAR)

Measured in inches to the nearest half inch. A larger score represents a better
performance. This variable measures dynamic leg power. A detailed test
procedure and the characteristics of the test are given in Safrit and Wood
(1995: Vertical jump test).

Sit-and-reach

Measured in inches to the nearest half inch. A postitive larger value represents

(SAR) a better flexibility of the hamstring and lower back. A detailed test procedure
and the characteristics of the test are given in Safrit and Wood (1995).

Agility shuttle run Measured in seconds to the nearest one-tenth of a second. A smaller score

(ASR) represents a better performance. This variable measures agility and running

ability. A detailed test procedure and the characteristics of the test are given
in Safrit and Wood (1993).

Endurance shuttle

Measured in seconds to the nearest one-tenth of a second. A smaller score

| run (ESR) represents a better performance. Two laps of 300 feet each. This variable
measures the muscular endurance of leg and running ability.
30-yard dash Measured in seconds to the nearest one-tenth of second. A smaller score
(DASH) represents a better performance. This variable measures power and running
ability.
Standing long jump | Measured in inches to the nearest half inch. A larger score represents a better
(SL)) performance. This variable measures lower leg power. A detailed test

procedure and the characteristics of the test are given in Safrit and Wood
(1995).
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values in ASR, ESR and DASH. These values were more than 3.90 SD away from the mean of the
variable, and more than .66 SD away from the adjacent values. These eight subjects were also excluded
from the analyses. The resulted sample sizes were 210 for the data set 1, and 204 for the data set 2. The

full data records for five selected subjects are presented in Appendix A as an example.

Data Analyses
Data set 1 was used as the main data for all the analyses, and data set 2 was used for a cross-

validation. Both data sets were analyzed by the following procedures.

Univariate LGM

Descriptive Statistics

Descriptive statistics for each variable at each time point were obtained using the SPSS
windows program (SPSS Inc., 1997: Version 8.0). The descriptive statistics include mean, standard
deviation, skewness and kurtosis. The Pearson product-moment correlation (PPMC) coefficients
between time points within a variable were also calculated.

Identification of the Best Fitting Growth Curve (LGM)

To identify the best growth curve, four LGMs were fitted and compared for each of seven
performance variables. These four LGMs were the “Linear”, “Quadratic”, “Cubic™ and “Unspecified
Curve” (Curve hereafter) models. The Linear model and the Quadratic model are shown in Figure 1.2.1
and Figure 1.2.2, respectively. The Cubic model has four factors, intercept, linear, quadratic and cubic
factors, and describes a cubic change. The cubic factor has fixed factor loadings (coefficients) of 0, 1, 8,
27, and 64 (0°, 13, 2, 3% and 4*). The Quartic model was not fitted because this model is under-identified
unless some constraints are imposed in the model. The Curve model is a two-factor model with both an
intercept and a curve factor (Figure 1.3.1). In a Curve model, the factor loadings for the last three time
points of the curve factor were freely estimated (denoted by *). Thus, in this model, the different rates of
change at each time interval are estimated. This model is similar to a Quartic model (with five time
points) in that it estimates the changes of each interval, but is different from a Quartic model in that the
only one change factor explains a between-subject variation in change, while in a Quartic model four
change factors (linear, quadratic,' cubic and quartic) explain a between-subjects variation in change. The
factor loadings of factors for each model are presented in Table 1.3.3. The estimation of parameters and
the model evaluation procedure are presented later in this chapter. Fit indices and parameter estimates
were compared for the four models, and once the best model was selected, the validity of equality of
error variances over time was examined. The model with equality of error variances over time provides |

a more parsimonious model, and thus would be the final model of choice should this equality

assumption hold.
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Figure 1.3.1. Unspecified Curve LGM
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Table 1.3.3

Factor loadings of intercept and change factors for four LGMs

Model B Factors Factor loadings
Timel Time2 Time3 Time4 TimeS

Linear Intercept 1 1 1 1 1
Linear 0 1 2 3 4
Intercept 1 1 1 1 1
Quadratic Linear 0 1 2 3 4
Quadratic 0 1 4 9 16 .
Intercept 1 1 1 1 1
Cubic Linear 0 1 2 3 4
Quadratic 0 1 4 9 16
Cubic 0 1 8 27 64
Unspecified Intercept 1 1 1 1 1
Curve Curve 0 1 * * *

Note. * = free estimates.
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Predictor Effects

Once the best growth model was selected, five predictors were sequentially included in the
selected model to examine the effect of these predictors on the initial status and the change (the word
“effect” is used as a statistical term implying a predictability, and does not necessarily imply a causal
effect). The selection of the five predictors was largely dependent on the availability of the variables
from the data. Other possibly important predictor variables such as activity level, injury, participation in
a specific activity program, height, weight etc. were not available. The five predictors were the number
of pre-measurements, age, grade, measurement season and measurement year. These predictor variables
were expected to have effects on physical performance to some extent. The number of pre-
measurements is the number of measurements taken before age 8. The children who were measured
more frequently might show better performance than the children who were measured less frequently
because of the practice effect. The age variable is the age in months at initial time point (at age 8 and 8.5
for data set 1 and 2, respectively). Children showed differences up to seven months in their age at the
initial time point. The children who were older (within the same age group) might show better
performance than the children who were younger. As well, the children who were within the same age
group but were in a higher grade might show a better performance. The measurement season may affect
the children’s performance because the level of activity is generally lower during winter, and the
temperature may also affect the physical conditions of children in performing a test. The measurement
year might have an effect on the performance because the living environments that are related to the
level of physical activity had been considerably changed from the 1970s to the 1990s.

The effects of these five predictor variables on the initial status and the development of physical
performances were examined hierarchically. The order of variable input was as follows; (a) the number
of pre-measurements, (b) age, (c) grade, (d) measurement season, and (¢) measurement year. These
predictor variables were included additively in the model one by one. If the effect of the predictor
variable was not significant at a level of .05, this effect was fixed at zero in the examination of the next
predictor effect. If a predictor variable was significant, the effect of the next predictor variable was
examined after controlling for the previously examined predictor variable. For example, the age effect
was examined after controlling for the test practice effect (the number of pre-measurement), the grade
effect was examined after controlling for the test practice and age effects, and so on. The order of
variable input was determined based on the rationale that the effect of a certain predictor variable should
be examined after controlling for other variables. For example, the grade effect should be examined
after controlling for the age effect because older (by a few months) children tend to be in a higher grade
and show a higher level of physical performance than younger children. In this case, the better
performance of older children is more likely to be an age effect rather than a grade effect. If the

previously significant effect of a predictor became nonsignificant at an a level of .10 after including the
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next predictor in the model, the previous variable was dropped out of the model. One exception was the
effects of age and grade. If the effect of age became nonsignificant after grade was included in the
model, the effect of grade was dropped out of the model because a significant grade éffect is meaningful
only aftér controlling for age effect. |

Pseudo Cross-validation

The analyses for the cross-validation were conducted with data set 2 following the same
procedure described above. The best growth model that was selected in data set 1 for each variable was
fitted to data set 2, and compared with the results of data set 1. As well, the best growth models for data
set 2 were also identified. The examination of the predictor effects was conducted with the same

sequence, and the results were compared with those of data set 1.

Multivariate LGM

Two types of LGM, a curve-of-factors model and a factor-of-curves model, could be applied for
the multivariate longitudinal data. In the present study, however, only the curve-of-factors model
(Figure 1.2.5) was employed for the hypothesized factors. The factor-of-curves model (Figure 1.2.4)
was not used because it was not appropriate for the physical performance data for two reasons. First, the
observed variables showed different types of change over time. This resulted in a different number of
the first-order change factors between variables. In this case, how to model the second-order change
factors is not clear. Second, there is a lack of theoretical background that supports the common cause for
the development of performance variables (i.e., endurance, power, flexibility, agility). Thus the factor-
of-curves model that explains the change of sevefal variables by the common (second-order) change
factor(s) is not appropriate for the physical performance variables that were used in the present study.

For the applications of the curve-of-factors model, three sets of variables were hypothesized to
form factors at each time point. These three sets of variables (factors) were (a) Run: ASR, ESR, DASH,
(b) Power: JAR, SLJ, DASH, and (c) Motor Ability: FAH, SLJ, SAR, DASH, ESR. The “Run” factor
represents a running ability and includes the same type of movement (e.g., Jackson, 1971). The “Power”
factor includes performance variables that measures the explosive power of lower leg and involves the
same muscle group (e.g., Cousins, 1955; Liba, 1967, Start, Gray, Glencross & Walsh, 1966). Although
the DASH variable is a measure of a speed, many studies reported that the DASH might be included as
a measure of explosive power (e.g., Millc;r et al., 1968; Start et. al., 1966). The “Motor Ability” factor
represents a general motor—ability, thus includes the variables that measure the muscular endurance of
the upper arms, explosive power, flexibility, speed and the muscular endurance of the legs. Although a
general motor ability factor has not been documented by the literature, most studies supporting the
specificity of motor perfonnanée were based on a college student sample. The existence of a general
motor ability can be demonstrated with young children, as noted by Rarick (1980). For each

hypothesized factor, the following analyses were sequentially conducted.
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Descriptive Statistics
~ In addition to the descriptive statistics that were obtained in the univariate analyses, the PPMC
coefficients between different variables within a time point and between different variables between
different time points were calculated and examined for each hypothesized factors.

V_eriﬁcation of the Factor Structure

Before LGMs are fitted to the hypothesized factors, the factor structure at each time point
should be verified. Verification of the factor structure involved the sequential examination of several
models. This procedure is.summarized in the Figure 1.3.2. First, a 5-factor confirmatory factor analysis
(CFA) model with one factor at each time point was fitted to each of the three hypothesized physical
performance factors, Run, Powér and Motor Ability (Figure 1.3.3). In this model, the factor loadings of
the first observed variable were fixed at 1 to provide a scale to the factor at each time point, and the
covariance of the factors between the time points were freely estimated. However, the correlations of
errors bétween time points were fixed at zero. When the absolute goodness-of-fit of this model was not
satisfied (i.e., when this model was rejected), the correlated errors of the same variable between the time
points were included in the next model (correlated-errors model: Figure 1.3.4). This is a common
practice in a multivariate longitudinal factor model (Marsh & Hau, 1996; Schutz, 1998). When one of
these two models, the 5-factor CFA models without correlated errors and with correlated errors, fits the
data well, the equality of factor loadings over time was examined in the next model. This model
examines if the same construct was measured over time. When both models were statistically rejected,
further analyses were not conducted because the existence of a factor (latent trait) at each time point was
not verified. When the model with the equality of factor loadings over all five time points fit the data
. well, the LGMs were fitted to the verified factor. When the equality of factor loadings model was
rejected, the equality of factor loadings between each time points was examined to determine at which
interval the factor structure changed.

Identification of the Best Fitting Growth Curve

If a 5-factor model or correlated errors model with equality of factor loadings was acceptable,
four rhultivariate LGMs (curve-of-factors models) were fitted to each hypothesized factor. These
models were “Linear”, “Quadratic”, “Cubic” and “Curve” models as in the univariate LGM analyses.
These four models are merely the extensions of the univariate LGMs. The linear “curve-of-factors
model” is shown in Figure 1.2.5.

Predictor Effects

Once the best growth model was determined, predictors were included in the model to examine
the effects of the predictors. The procedure and the sequence of the variable input were the same as in
the univariate analyses.

Pseudo Cross-validation

Data set 2 was used for a cross-validation of all multivariate LGMs. All above-mentioned
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5-factor CFA model without correlated errors

Good fit ad fit

S-factor CFA model with correlated errors

Good fit _ Bad fit
Equality of factor loadings over five time points Stop
Good fit Bad fit

Equality of factor loadings between each time point

Figure 1.3.2. The procedure for the verification of factor structure
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Figure 1.3.4. 5-factor CFA model with correlated errors (only the correlations between the error
of variable A are shown)
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procedures were equally applied and the results were compared with those of the data set 1.

Estimation of LGMs
Maximum Likelihood (ML) procedures were used for the estimation of parameters for all
growth models. The LISREL (Joreskog & Sorbom, 1999: Version 8.3) program was used in the
esﬁmation of parameters and the calculations of goodness-of-fit indices for most LGMs. In addition, the
MPLUS (Muthen & Muthen, 1998: Version 1.04) program was used for the curve-of-factors models
with predictors, because the LISREL program (and LISREL model) does not allow one to estimate these

models.

Model Evaluation

The evaluation of fitted models was conducted using several pieces of information from the
analyses results. First, the results were examined for unacceptable parameter esfhnates (e.g., negative
variance). If all estimated parameters were within acceptable ranges, several goodness-of-fit indices
were used to evaluate a model. The absolute fit of a model was evaluated by the x” statistic with the
associated degrees of freedom (df), Root Mean Square Error of Approximation (RMSEA), Standardized
Root Mean Square Residual (SRMR) and Non-normed Fit Index (NNFI). For the comparisons of two
nested models, the % difference test was used. For the comparisons of non-nested models, RMSEA and
the Expected Cross Validation Index (ECVI) were used as well as other fit indices. In general, criteria
for evaluating a model using absolute fit indices (i.e., RMSEA, SRMR and NNFI) were based on Hu
and Bentler’s (1999) suggestions. They suggested that one accepts a model when the RMSEA is smaller
than .06, the SRMR is smaller than .08, or the NNFI is larger than .95. The ECIV is meaningful only
when it is compared to the ECVI of another model. A smaller absolute value of ECIV indicates a better
fitting model to the data. More weight was given to the x? statistic than other fit indices in the evaluation
of a relatively small model (i.e., univariate LGM) than in the evaluation of a relatively large model (i.e.,

all multivariate models). In addition, if a model was accepted, residuals of the fitted covariance matrix

and mean vector were examined for any extreme values.
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STUDY 1-CHAPTER IV. RESULTS -

Univariate Latent Growth Models for Motor Performances
Univariate Latent Growth Model (LGM) analyses results are presented in the follbxving sections.
The analyses results for only flexed-arm-hang, among seven physical performance variables, are
présented in detail, because the results for flexed-arm-hang showed most of major aspects of LGM. The

analyses results for six other variables are presented briefly.

Flexed-Arm Hang (FAH)

Descriptive Statistics

Table 1.4.1 shows the correlation coefficients between time poinfs and other descriptive
statistics for the FAH measure at each time point (histograms fér FAH scores at each time point are
presented in Appendix C, Figure C.1). As expected, the data were positively skewed, but the degrees of
skewnesses were moderate té small (all less than 2.0: Cuttance, 1987, Muthen & Kaplan, 1985).
Kurtosis values at ages 8, 9 and 10 were relatively high. However, these levels of skewness and kurtosis
are regarded as a low to medium level of departure from a normal distribution, and have a relatively low
impact on the maximum likelihood estimation in a structural equation modelling analysis (Cuttance, °
1987; Muthen & Kaplan, 1985). Thus maximum likelihood estimation methods were used 1n the
estimation of all latent growth models. _

The mean of the 210 children’s FAH scores increased over the 5-year period, indicating an
improvement in their upper arm muscular endurahce, relative to their body weight. The largest rate of
increase occurred between ages 8 and 9, and generally, the rate of the change decreased in subsequent
years. Relatively large magnitudes of standard deviations are partially due to a few extreme scofes.

The correlation coefficients between adjacent time points were high, indicating year-to-year consistency
of relative positions of children in their FAH scores. However, the correlation matrix approximated a
simplex pattern, with the correlation coefficients becoming smaller as a coefficient gets further away
from the main diagonal. This pattern implies that the children changed over time at different rates. That
is, there was a considerable betweeﬁ-péfson variation in both the rate and the year of maximum
development rate of their muscular strength.

Identification of the Best Fitting Growth Curve

Four growth models were fitted and compared to identify the best growth curve model. Table
1.4.2 shows the goodness-of-fit indices of these four fitted latent growth models. Although the non-
normed fit indices were high, the %* and root mean square error of approximation statistics indicated that

the Linear and the Unspecified Curve (Curve in Table 1.4.2) models should be rejected. The Quadratic

model (model 2), however, showed a very good fit to the data with six degrees of freedom. A test for the




Table 1.4.1
Correlation coefficients and descriptive statistics for flexed-arm hang (FAH)
Age 8 Age 9 Age 10 Age 11 Age 12
Age 9 .780
Age 10 696 .840
Age 11 626 768 785
Age 12 652 724 711 797
Mean (sec.) 16.64 19.29 21.35 22.45 2391
SD 13.40 14.61 15.97 15.22 15.73
Skewness 1.87 1.51 1.63 1.14 i.12
Kurtosis 4.08 2.35 3.20 1.27 1.64
Range 0-72 1-77 2-92 1-76 1-88
Table 1.4.2
Fit indices for latent growth models for flexed-arm hang (FAH)
yXdfy  p-value RMSEA ECVI SRMR NNFI
1. Linear 4691 (10) <.001 138 335 .084 .96
2. Quadratic 8.96 (6) 176 .048 177 .039 1.00
3. Quadratic, equal error variance  19.43 (10) .035 .069 192 .036 1.00
4. Curve 38.43(7)  <.001 152 319 064 95

43

Note. Curve = Unspecified Curve model, df = degrees of freedom, RMSEA = root mean square error of

approximation, ECVI = expected cross-validation index, SRMR = standardized root mean square

residual, NNFI = non-normed fit index.
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equality of error variances across time points (model 3) revealed that the error variances could not be
considered equal at all five time points (x” difference = 10.47, df = 4, p = .033).

The ECVI statistic was also smallest for the Quadratic model with unequal error variances. Thus, the
Quadratic model with different magnitudes of error variances (model 2) is most favorable in explaining
individual changes in FAH test scores over a 5-year period. The Cubic model was not fitted because
given the difference in the degrees of freedom between the Quadratic and Cubic models, the Cubic
model could not be significantly better than the Quadratic model (requires a x* difference of 11.07 or
larger with df = 5 at p < .03). Individual children’s FAH developed in a quadratic fashion over time.

Parameter estimates for the Quadratic model are presented in Table 1.4.3. The mean of the
intercept factor was very close to the actual mean of FAH (16.64) at age 8, while the variance of the
intercept factor was considerably smaller than the actual variance (179.56). The mean and the variance
of the intercept factor represent the true (error free) initial status and variation of FAH performance at
age of 8 that were explained by the Quadratic growth model.

The mean of the linear factor was 2.75 (p < .001), indicating an average linear increase of 2.75
seconds between ages 8 and 9. The dotted line in Figure 1.4.1 shows the trajectory of mean scores if this
linear increase had continued for the rest of the time period (i.e., between ages 9 and 12). However, the
actual average improvement was smaller due to the negative mean of the quadratic factor. The score of
the linear factor represents the linear component of the individual change over time. The significant
variance of the linear factor implies that there were differences in this change rate among children in the
population. The magnitude of this variance (SD = 7.04) suggests that some of these children may have
actually declined in their FAH scores over the five testing periods. The raw data showed that 20% of the
children actually declined in their FAH score. However, this does not necessarily mean that their
muscular endurance declined over time because FAH measures relative strength and endurance (relative
to their body weight).

The mean of the quadratic factor was - .241 (p = .118) meaning, on the average, the rate of
improvement decelerated over 5 years. However, this nonsignificant quadratic factor mean but
significant variance (p < .001) indicate that some of the children decelerated and some accelerated in
their development, but averaging those decelerations and accelerations produced a mean value close to
zero. As well, it is possible that sdme children showed zero scores for the quadratic factor, and changed
linearly over time. The significant variance of the quadratic factor resulted in the much better model fit
obtained for the Quadratic model than that for the Linear model. This means that the inter-individual
variation of the development in FAH among children is not adequately explained by the linear factor
only. The curved line in Figure 1.4.1 shows the change described by the model. The difference between
the dotted straight line and the curved line become larger as age increases, and this difference reflects

the quadratic component of FAH score change over time.




Table 1.4.3

Estimated parameters (standard errors) of the Quadratic model for flexed-arm hang (FAH)

Intercept Linear Quadratic
factor factor factor Error Vanance
Mean 16.69 2.75 -.241 Age 8 25.92
(.930) (.655) (.154) (11.20)
p <.001 p <.001 p=.118 p=.021
Variance 157.36 49.57 2.72 Age 9 28.70
(19.93) (11.81) (.599) (4.84)
p <.001 p <.001 p <.001 p <.001
Age 10 44.09
(6.46)
Covariance p <.001
Linear -5.57 Age 11 47.55
factor . (12.47) (6.58)
p=.655 p <.001
Quadratic 158 -10.85 Age 12 24.26
factor (2.648) (2.53) (13.39)
p=.952 p <.001 p=.070
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Figure 1.4.1. Linear and quadratic components of change in FAH
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The covariances between the intercept and the linear and quadratic factors were not significant
(p = .655 and .952, respectively). In standardized units these values were - .063 and .008, respectively.
These small correlations were not expected because, in general, initial status and change show a low to
medium level of negative correlation (Schutz, 1989). The covariance between the linear and quadratic
factor was significant, the standardized value was - .94, indicating a very high negative correlation. This
implies that the higher the linear development rate (the larger the change between ages 8 and 9), the
faster the deceleration in development.

Error variances at the first four time points were significantly different from zero, while the
error variance at the last time point was not. These error variances are the variances that were not
explained by the quadratic growth model. The error variances at ages 10 and 11 were larger than those
at other time points. Although four of five error variances were significantly different from zero, these
were relatively small compared to the estimated total variances at each time point (i.e., 183.28, 205.82,
248,61, 254.79, and 242.55 at time 1, 2, 3, 4 and 5, respectively). This resulted in the relatively high
estimated reliabilities for each time point of .86, .86, .82, .81 and .90, respectively.

Predictor Effects

Five predictors were sequentially included in the Quadratic model (model 2 in Table 1.4.2) in
the next series of analyses (see Figure 1.2.3). The correlations between predictor variables and
descriptive statistics are presented in Appendix C, Table C.1. The sequence of predictor models and
goodness-of-fit indices of each model are presented in Table 1.4.4. All five models fit the data very
well; the ¥ statistics for all models were not significant, RMSEAs and SRMRs were low, and NNFIs
are all close to 1.00, indicating a very good fit fof all models.

The parameter estimates of the predictor variables’ effects on the intercept, linear and quadratic
factors for each model are presented in Table 1.4.5. The test practice effects (the number of pre-
measurements) on the intercept, linear and quadratic factors were not significant (p = .523, .719
and .604, respectively). Thus, this predictor variable was excluded in subsequent analyses.

The next predictor, age, had a positive effect on the intercept (p = .022) but no significant
effects on the linear and quadratic factors (p = .936 and .617, respectively). This means that although
there was only a small degree of variation in the age variable (maximum difference among children was
seven months), older children had higher levels of muscular endurance. However, the standardized
coefficient was very small (.167), and the variance of age at the initial time point explained only about
3 % of the variance of the initial status. As indicated by nonsignificant effects on both change factors,
the rate of change was not influenced by age at the initial time point. Thus the age effects on the linear
and quadratic factors were excluded in the following analyses while the age effect on the intercept factor
was included. '

After controlling for age (on the intercept only), none of grade, measurement season or
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Table 1.4.4
Fit indices of the Quadratic models with predictors for flexed-arm hang (FAH)

Predictors y*(df) p-value RMSEA ECVI SRMR NNFI
5. The number of pre-measurements 9.52 (8) .300 029 227 034 1.00
6. Age 10.28 (8) 246 . 036 230 .034 1.00
7. Grade 14.77 (12) 255 035 292 .035 1.00
8. Measurement season 14.18 (12) 289 .032 290 .035 1.00
9. Measurement year 13.90 (12) 307 .030 288 .035 1.00

Note. df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index.

Table 1.4.5
Parameter estimates of predictor variables’ effects on growth factors
Predictors Intercept Linear Quadratic
5. The number of 297 118 -.040
pre-measurements (.463) (.328) (.077)
p=.523 =719 p=.604 -
6. Age 1.086 ' -.027 -.040
(.475) (.339) (.080)
p=.022 p=.936 p=.617
7. Grade 688 -204 074
(1.904) (1.308) (.308)
p=.718 p=.876 p=.810
8. Measurement season - -1.863 646 - 213
' (1.832) (1.307) - (.308)
p=.309 p=.621 p = .489
9. Measurement year -.134 115 024
' (167 ‘ (.119) '(.028)

p=.935 p=.334 = 391
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measurement year was significantly related to any of the three model parameters, intercept, linear or
quadratic. The nonsignificant grade effect was due partly to a positive correlation between age and |
grade (.28). In general, measurement season (winter or summer) did not affect the performance on the
muscular endurance test, and children’s muscular endurance did not show differences across years,
1970s through 1990s.

| In summary, the children’s individual development in their relative upper arm muscular
endurance and strength over a 5-year period was explained well by a Quadratic model with unequal
error variances. On the average, their FAH scores increased, but the rate of the increase declined over
the 5-year period. There were considerable inter-individual variations among children in the initial
status (the FAH score at age 8), the linear development rate and the deceleration (acceleration) of the
development. Five predictors were included in the Quadratic model to predict these variations, but only
age had a significant positive effect on the initial status. The magnitude of the age effect on the initial
status was very small, with only 3 % of the variance of the FAH initial status béing explained by the
variance in age. This was not unexpected, given the very small variance in age (a maximum difference

between children of seven months).

Six Other Physical Performance Variables

Following is a summary of the results of the analyses for the remaining six physical
performance variables; Jump-and-Reach (JAR), Sit-and-Reach (SAR), Agility Shuttle Run (ASR), 300-
foot Endurance Shuttle Run (ESR), 30-yard Dash (DA‘SH) and Standing-Long-Jump (SLJ). Detailed
descriptive statistics and parameter estimates for each variable are presented in Appendix C, Table C.2

to Table C.13.

Descriptive Statistics

Means and standard deviations of all six physical performance tests at five time points are
presented in Table 1.4.6. Children’s physical performances improved over a 5-year period (from 8 to 12
years old) except for the SAR. The mean scores for JAR and SLJ, measured in inches, increased over
time, and the mean scores for ASR, ESR and DASH, measured in seconds, decreased over time.
However, children‘s flexibility measured by SAR (in inches) decreased over time. Children showed
relatively large changes (in percent) on JAR (42.3%) and SLJ (22.9%) between ages & and 12. The other
four variables showed an average change of 13.2% over a 3-year period. In general, the rates of
improvements measured by mean scores were largest between ages 8 and 9, and the rate decreased in
subsequent years, except for JAR and SAR. The JAR and SAR showed the largest change between ages
9 and 10. The standard deviations of SAR were relatively large compared to the magnitude of the mean
scores, indicating large between-person variability in hamstring flexibility.

All six variables showed skewness and kurtosis values close to zero, indicating a small

departure from a normal distribution. The largest absolute skewness value among all six variables across
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. all time points was .907 on ASR at age 10. The largest absolute kurtosis value was 1.418 on ESR at age
10. Thus, maximum likelihood estimation methods were used in the estimation of all latent growth
models.

The correlation coefficients between time points for JAR (r = .49 to .69), ASR (r = 46to .64),
ESR (r = .52 to .67) and DASH (r = .55 to .69) indicate that there were moderately high levels of year-
to;year consistency of relative positions among children in these measures. The SAR (r = .74 to .86) and
SLJ (r = .66 to .83) showed high levels of year-to-year-consistency. Similar to the Flexed-arm Hang
(FAH) test, however, the correlation coefficients between time points approximated simplex patterns for
all six variables. This implies that there were considerable between-person variations in the
development rates for each of the six physical performances.

Identification of the Best Fitting Growth Curve

Best fitting growth models and goodness-of-fit indices for the six physical performance
variables are presented in Table 1.4.7. '

Jump-and-reach. A Linear model with equal error variances at each time point described the

individual changes of JAR very well. The x? statistic was not significant (x’(14) = 17.31, p = .240), and

all other fit indices indicated that the Linear model with equal error variances fit the data very well.

These results imply that individuals improved linearly in jumping ability between ages 8 and 12. The

true mean score at age 8 was 9.43 inches (p < .001), and on the average, the children improved .99

inches (p < .001) per year. The variances of the intercept (1.94, p <.001) and linear (.08, p < .001)

factors were significantly different from zero, indicating that there was a considerable inter-individual

variation in the rate of improvement as well as 1n the initial status. This implies that children improved

in jumping ability at different rates. The covariance between the intercept and linear factors was not

significant, as indicated by a standardized covariance (i.e., correlation r) of - .06 (p = .656). The initial

status and the rate of change did not show a significant relationship, similar to the FAH results.
Sit-and-reach. The analyses results for SAR were very similar to those of JAR except that

children showed decreasing scores in SAR over time. A Linear model with unequal error variances

among time points described the individual changes of SAR very well. The x’ statistic was not

significant (x*(10) = 10.54, p = .395), and all other fit indices indicated a good model fit. Individuals

linearly declined in lower back and hamstring flexibility between ages 8 and 12. The true mean score at

age 8 was 7.91 inches (p < .001), and on the average, the children declined .26 inches (p < .001) per

year. The variances of the intercept (4.127, p < .001) and linear (.05, p = .006) factors were significantly -

different from zero, but the covariance between these two factors was not significant (r = - .03, p = .816).

Thus, as in JAR, there was a considerable variation in the rate of decrease in flexibility, but the

relationship between the initial status and the rate of decrease was not significant.

Agility shuttle run. For ASR, both an Unspecified Curve (Curve hereafter) model (X 7)) =178,
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Table 1.4.7

Best fitting erowth curve models and goodness-of-fit indices for the six physical performance variables

Identified Error _

Variable  model  variances | y*(df) = p-value RMSEA ECVI SRMR NNFI
JAR Linear Equal 17.31 (14) 240 .030 137 038 1.00
SAR Linear Unequal | 10.54 (10) 395 019 147 016 1.00
ASR Curve Unequal 7.78(7) 333 018 .160 030 - 1.00
ESR Curve Unequal 3.18(7) .868 <.001 134 .023 1.01

DASH Curve Unequal 18.73 (7) .009 - .085 208 037 97
SLJ Cubic Equal 4.04 (3) 544 <.001 144 .020 1.00

Note. Curve = Unspecified Curve model, JAR = jump-and-reach (inches), SAR = sit-and-reach (inches),

ASR = agility shuttle run (seconds), ESR = 300-feet endurance shuttle run (seconds), SLJ = standing
long jump (inches), DASH = 30-yard dash (seconds).
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p = .353) and a Quadratic model (x*(6) = 4.75, p = .577) fit the data very well, but the Quadratic model

produced an improper solution (the correlation between the linear and quadratic factor was high (- .92),
but was not significant (p = .066)). Thus, the Curve model with unequal error variances over time was
selected as the best fitting model for ASR. The % statistic was not significant (x*(7) = 7.78, p = .353),
and all other indices indicated a good model fit. Thus, the individual changes in ASR scores and the
variation in change was adequately explained by the curve factor. The true mean of the ASR at age 8
was 12.45 (p <.001) seconds, and on the average, the children improved in agility (decreasing means
imply an improvement because this test was measured in time) over a 5-year period. The parameter
estimates of the Curve model (more specifically, the factor loadings of the curve factor) provided the
average improvement at each time interval. The improvement in agility was largest between ages 8 and
9 (.54) and the rate of the improvement decreased in subsequent years (.52, .34, and .29 seconds
between ages 9 and 10, 10 and 11, and 11 and 12, respectively). The sigrﬁﬁcant variances of the
mtercept (637, p <.001) and curve (.03, p = .016) factors implied that children showed inter-individual
differences in the rate of improvement as well as in the initial status. The negative correlation (r = - .67,
p = .002) between the intercept and curve factors indicated that the children with higher performance
levels at age 8 showed smaller rates of improvement.

Endurance shuttle run. The analyses results for ESR were very similar to those of ASR. A

Curve model with unequal error variances described the individual changes of ESR very well. The x
statistic was not significant (x*(7) = 3.18, p = .868), and all other fit indices indicated a good model fit.
The true mean at age 8 was 43.93 seconds (p < .001), and in general, the children’s performance
improved over time. As in ASR, the improvement in ESR was largest between ages 8 and 9 (1.92), and
the rate of the improvement decreased in subsequent years (1.47, 1.09 and 1.12 seconds between ages 9
and 10, 10 and 11, and 11 and 12, respectively). The significant variances of the intercept (7.65, p
<.001) and curve (.36 p = .009) factors implied that the children showed inter-individual variations in
the initial status and the rate of improvement in endurance. The negative correlation (r = - .62, p = .002)
between the intercept and curve factors indicate that children with higher performance levels at age 8
showed smaller rates of improvement.

30-vard dash. None of the four growth curve models, the Linear, Quadratic, Curve or Cubic
model, adequately described the individual changes of DASH. The Linear model (x*(10) = 55.45, p
<.001; RMSEA = .144) and the Quadratic model (x* (6) = 18.199, p = .006; RMSEA = .095; ECVI
= 217) were rejected. Although the Cubic model showed a very good model fit (x*(1) = 1.54, p = .215;
RMSEA = .050), this model produced an improper solution (the standardized variances of both the
slope and the quadratic factors were greater than 1.00). The Curve model with unequal error variances
among time points was selected as the best fitting model, although the model fit was not satisfactory.

The model fit was slightly better than that of the Quadratic model, and produced a proper solution. The
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x? statistic was significant (x*(7) = 18.73, p = .009) and the RMSEA (.085) was greater than .06, but the
SRMR (.037) and NNFI (.97) indicated a good model fit. Thus, the subsequent analyses for the
predictors’ effect that are presented in the next section were conducted based on this model. The true
mean at age 8 was 5.21 seconds (p < .001), and on the average, children’s performance in DASH
improved over time. The average improvement was largest between ages 8 and 9 (.275), and the rate of
thé improvement decreased until the fourth time point (.188 and .097 seconds between ages 9 and 10,
and 10 and 11, respectively). The rate of improvement became larger between ages 11 and 12 (.142).
Although estimated mean scores implied a cubic change over time, the variation in the rate of change
was explained moderately well by the only one change factor, the curve factor. The significant variances
of the intercept and curve factors (.125, p <.001 and .003, p = .038, respectively) indicated that there
was a considerable inter-individual variation in the initial status and in the rate of change. However, the
inter-individual variation of change was relatively small (standard deviation of the curve factor = .07).
The negative correlation (- .66, p = .003) between the intercept and curve factors indicated that the

children with higher performance levels at age 8 showed lower rates of improvement.

Standing long jump. For SLJ , a Cubic model with equal error vgriances among time points
described the individual changes very well. The % statistic was not significant (x*(5) = 4.04, p = .544),
and all other fit indices indicated a good model fit. The mean of the intercept (53.36, p <.001) and
linear (4.52, p < .001) factors were significant, while the mean of the quadratic (- .34, p = .385) and
cubic (028, p = .659) factors were not. In general, children improved in SLJ score over time. The very
small magnitude of the cubic factor mean resulted in the average improvement that is close to a
quadratic change. The estimated true mean at agé 8 was 53.36 inches and the improvement was highest
between ages 8 and 9 (4.20), and the rate of the improvement decreased in-subsequent years (3.68, 3.33
and 3.15 inches between ages 9 and 10, 10 and 11, and 11 and 12, respectively). The variances of the
intercept (48.79, p < .001) and the linear (37.56, p < .001) factors were significant. The variances of the
quadratic (12.44, p = .001) and the cubic (.30, p = .002) factors were also sigﬁiﬁcant although the means
of these two factors were not significant. This implies that there were considerable inter-individual
variations in each component of the change, the linear, quadratic and cubic. The significant variances of
the quadratic and cubic factors resulted in the very .good model fit of the Cubic model. The correlation
between the linear and quadratic factors was negative (- .94, p < .001), while the correlation between the
linear and cubi;: factor was positive (.87, p = .002). The correlation between the quadratic and cubic
factors was negative (- .98, p = .002). These pieces of information (i.¢., large positive mean of the linear
factor, negative mean of the quadratic factor, very small positive mean of the cubic factor, high negative
correlations between the linear and quadratic factors, and between the quadratic and cubic factors and
high positive correlation between the linear and the cubic factors) imply that the children who showed

larger improvement at the first time interval showed larger decrease in the rate of the improvement in a
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subsequent interval, and the rate of deceleration in the improvement decreased faster in subsequent
years. It is possible that some showed decrease in the rate of the improvement at the beginning of the
time period and then the rate of improvement accelerated in later years, or some accelerated in the rate
of improvement at the beginning and then decelerated in later years. None of the change factors showed
a significant correlation with the intercept factor.

Predictor Effects

The effects of the five predictors on the intercept and change factors for the six physical
performance variables are summarized in Table 1.4.8. For simplicity, only the significant (p < .05)
effects are presented, and the estimated values are reported in standardized units.

Jump-and-reach. There were positive test practice and age effects on the intercept, and a
negative measurement year effect on the linear factor. This indicates that the children who were
measured more frequently before age 8, and who were older (within the group) showed better
performances at age 8. In addition, the children who were measured in the 1970s showed faster
improvements than the children who were measured in 1990s. However, the magnitudes of these
predictors’ effects were small, each explained less than 12% of the variance of the intercept or linear
factor. Although the grade effect on the intercept was significant, the age effect on the intercept became
nonsignificant with the inclusion of a grade effect, due to the positive correlation between age and grade
(.28). Thus, the grade was excluded in the subsequent analyses.

Sit-and-reach. There was a positive test practice effect on the intercept factor, and a negative
test practice effect on the linear factor. This indicates that children who had been measured more
frequently before age 8 showed higher levels of ﬂexibility at the age of 8 but declined faster (or
improved less) over a 5-year period. However, the magnitudes of the test practice effects on both factors
were small, explaining only 4% and 10% of the variances of the intercept and the linear factors,

respectively.

Agility shuttle run. There were negative test practice, age and measurement year effects on the

intercept factor, indicating that the children who were measured more frequently before age 8 and were
older, showed better performances at age 8. As well, the children who were measured in the 1990s
showed better performances than children who were measured in the 1970s. The positive measurement
season effect on the intercept factor indicates that the children who were measured during a winter
season showed a lower level of performance. There was also a positive test practice effect on the curve
factor, indicating that the children who were measured more frequently before age 8 showed lower rates
of improvement in agility.

Endurance shuttle run. There were negative test practice, age, grade and measurement year

effects on the intercept, and a positive test practice effect on the curve factor. Thus, the children who

were measured more frequently before age 8, were older, and in a higher grade showed better endurance

at age 8. As well, the children who were measured in the 1990s showed better performance at age 8 than
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Table 1.4.8

Predictors’ effects on growth factors for six phvsical performance variables

Predictors
Variable  Factor Test practice Age Grade Season Year
JAR Intercept 339 193 118
| Linear -.290
SAR Intercept .200
Linear -.318
ASR Intercept -.392 -.188 - 317% 312 -.226
Curve 389 ‘
ESK Tntercept ~ 383 L) - 218 - 130
Curve 297
DASH _ Intorcept 7320 260 215 “194
Curve 438 287 428
SLJ Intercept 356 144 228
Linear
Quadratic
Cubic

Note. Only significant effects (p < .05) are shown in a standardized unit.

JAR = jump-and-reach (inches), SAR = sit-and-reach (inches), ASR = agility shuttle run (seconds), ESR
= 300-feet endurance shuttle run (seconds), DASH = 30-yard dash (seconds), SLJ = standing long jump
(inches), Test practice = the number of pre-measurements, Season = measurement season, Year =

measurement year.

* = Grade variable was excluded in the subsequent analyses because the age effect became

nonsignificant with the presence of this variable.
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children who were measured in the 1970s. The children who were measured more frequently before age:
8 showed slower improvement in endurance performance.

30-yard dash. There were negative test practice, age and measurement year effects and a
positive measurement season effect on the intercept factor. The children who were measured more
frequently before age 8, were older, and were measured in the summer season showed better
pefformance in DASH at age 8. As well, the children who were measured in the 1990s showed better
performances at age 8 than the children who were measured in the 1970s. There were positive test
practice, age and measurement year effects on the curve factor. The children who were measured more
frequently, were older and were measured in the 1990s Showed smaller rates of improvement than the
children who were measured less frequently, were younger and were measured in the 1970s.

Standing long jump. There were positive test practice, age and measurement year effects on
the intercept factor. The children who were measured more frequently before age 8, were older, and
were measured in the 1990s showed better jumping ability than the children whd were measured less
frequently before age 8, were younger and were measured in the 1970s.

In summary, the children improved in their motor performance in all variables over a 5-year
period, except for the SAR where children’s flexibility declined over time. The patterns of children’s
development were different across performance measures. The children showed linear development in
JAR and SAR. For ASR, ESR, SLJ and DASH, the change was largest between ages 8 and 9, and in
general, the rate of the change decreased in the subsequent years. A positive test practice effect on all
performance measures at age 8 was observed, while the grade effect after controlling for age was
observed in ESR only. There was also a positive ége effect on all performance measures at age 8 ‘except
for SAR. A significant measurement season effect on the ASR and DASH at age 8 revealed that the
children who were measured in the summer performed better than the children who were measured in
the winter in agility and speed. Children who were measured in the 1990s showed better performance in
ASR, ESR, SLJ and DASH at age 8 than the children who were measured in 1970s.

Pseudo Cross-validation

The analyses results for data set 2 are summarized and cbmpared to those for data set 1 in this
section. On the average, the children’s age at each time point was six months older than that of data set
1. Thus, the age at each time point was 8.5, 9.5, 10.5, 11.5 and 12.5 years. Detailed descriptive statistics
and parameter estimates are presented in Appendix C (Table C.14 to Table C.28).

Descriptive Statistics

Means and standard deviations of seven motor performance tests at five time points for data set
2 are presented in Table 1.4.9. In general, the descriptive statistics that were obtained from data set 2

- were within the expected range. Children’s physical performances at time 1 were slightly better (worse

for SAR) in data set 2 than the performances in data set 1 due to the fact that they were six months older,
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on the average. The maghitude of the change over a 5-year period was smaller than that of data set 1 for
all the variables except for JAR -- an expected finding, given the observed deceleration in development
after age 9 in data set 1. The children showed a slightly larger change in JAR in data set 2. However,
differences in change between data sets 1 'and 2 were small (average difference was 1.9%)‘. The pattern
of the change was also similar to that of the data set 1. In general, the change was largest between the
ﬁr.st two time points, and the rate of the change decreased in subsequent years. As in data set 1, the
standard deviations of FAH and SAR were relatively large compare to the magnitude of means,
indicating large between-person variability on these performances.

The FAH showed relatively large kurtosis values at first two time points (3.82 and 2.98).
However, the kurtosis at other time points and skewness at all time points of FAH were close to zero
(smaller than 2.00), indicating small or medium departure from a normal distribution. For other
variables, skewness and kurtosis at all time points were close to zero as in data set 1. The largest
absolute skewness and kurtosis values across these six variables and all time points were 1.07 and 1.95
on ASR at age 8.5, respectively. Thus, the maximum likelihood estimation was also used for all LGMs
for data set 2.

The correlation coefficients between time points of each variable showed a very similar pattern
with that of data set 1. In general, correlation coefficients of data set 2 were larger than those of data set
1 except for SAR, although the difference between the two data sets was small. The range of correlation
coefficients between time points across all six variables (excluding SAR) was .52 to .86 in data set 2,
while it was .46 to .83 in data set 1. This indicated that for these six performance variables, children
showed higher consistency over time in their relaﬁve positions in data set 2 where children were six
months older. For SAR, the range of correlation coefficients among time points was .70 to .84 in data
set 2 while it was .74 to .86 in data set 1. As in data set 1, the correlation coefficients between time
points approximated simplex patterns for all seven variables. This implies that there were inter-
individual variations in'the rates of change in performances among children.

Identification of the Best Fitting Growth Curve

Table 1.4.10 shows the comparison between the two data sets in the goodness-of-fit of the
selected best fitting models for each variable. In the first vertical column block, a summary of the results
of the best fitting models for data set 1 are presented, and in the second column block, two goodness-of-
fit indices for the best fitting models of data set 1 that were fitted to data set 2 (cross-validation models)
are presented. For example, the quadratic model with unequal error variances that was selected as the
best model for the FAH in data set 1 was fitted to FAH for data set 2, and the x> and RMSEA statistics
of this model are presented in the second column block. The third column block shows the selected best
fitting models, and fit indices for data set 2.

In general, the results of the two data sets were comparable. The goodness-of-fits of the cross-
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validation models for data set 2 were worse in five variables, JAR, SAR, ASR, ESR and SLJ , but all of
these five variables showed RMSEA statistics smaller than .10 which means an acceptable fit (Browne
& Cudeck, 1993), except for ASR. The cross-validation models showed a better fit for the FAH and
DASH. In terms of the best fitting models for data set 2 (third column block), the same growth curve
models described the children’s individual changes well for the FAH, JAR and SAR, but the equality of
error variances over time were different between the two data sets. The error variances over time were
equal for JAR and SLJ in data set 1, and for FAH, SAR and SLJ in data set 2. The more parsimonious
models fitted the data well for the ESR, DASH and SLJ . Linear models fit the data well for these three
variables in data set 2, while a Curve or Cubic model was the best fitting model for data set 1. For ASR,
none of the Linear, Quadratic, Cubic or Curve models fit the data well in data set 2.

Parameter Estimates of the Best Fitting Growth Models

In the following comparisons, ASR is excluded because none of the growth models were
selected as the best fitting model for this measure. The direct compan'sons of parameter estimates of the
best fitting models between two data sets were not possible because of the differences in the selected
growth models. However, in general, the parameter estimates of the growth models for data set 2 were
within the expected range considering the developmental trend and age differences between data se 1
and 2. For all variables, the mean of the intercept factor reflected slightly better performances except for
SAR. For example, the estimated mean of the intercept factor of the FAH (Table B.16: 17.53, Standard
Error (SE) = .96, p < .001) was slightly larger than that of data set 1 (Table 1.4.3: 16.69, SE = .93, p
<.001), indicating a better performance at age 8.5 than at age 8. For SAR, the estimated mean of the
intercept factor (Table B.20: 7.86, SE = .15, p <. .001) was smaller than that of data set 1 (Table B.5:
791, SE = .15, p < .001), reflecting a slightly worse performance in flexibility at age 8.5 than at age 8.
The estimated variances of the intercept factors for all the variables were similar to those of data set 1.

The estimated means of the change factors (linear, quadratic and/or curve factors) were also
within the expected range. The mean of the growth factors showed that there were smaller changes in
the performances over a 5-year period in data set 2, as compared to data set 1 for all the variables except
for JAR. For example, the absolute magnitude of the estimated mean of the linear factor (Table B.24: -
1.27, SE = .05, p < .001) for the ESR was smaller than the estimated average change of the four time
intervals (- 1.40) of data set 1. This reflects the decreasing rate of the change in the physical
performances over years (two data sets combined, between ages 8 and 12.5). The JAR showed a slightly
larger estimated linear factor mean (Table B.18: 1.02, SE = .03, p <.001) than that of data set 1 (Table
B.3: .99, SE = .03, p <.001). All of the estimated variances of the growth factors were significant,
implying that there were considerable between-person variations in children’s development of physical
performances, as in data set 1.

Unlike in data set 1, the correlation between the intercept and the linear factors was significant

(- .27, p = .049) for FAH, indicating that children who showed better performance at age 8.5 showed
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lower rate of improvement. However, the magnitude of the correlation was small. As well, the
correlation between the intercept and the linear factors was significant (- .43, p = .001) for SLJ, while
none of the correlations between the intercept and growth factors of the Cubic model was significant in
data set 1. Other parameter estimates for the covariances among factors were similar to those in data set
L. '
Pfedic'tor Effects

The effects of the predictors on the intercept and change factors for six physical performance
variables of data set 2 are summarized in Table 1.4.11. As noted earlier, ASR is excluded from the
analyses because none of the.growth models were selected as the best fitting model for this measure. For
simplicity, only the significant (p < .05) effects are presented and done so in standardized units. The
statistical test of predictor effects for ASR was not conducted because there was no best fitting growth
model for this variable. There were similarities and differences between the two data sets in the effect of
the predictors. Where there was an agreement in the significance of an effect, the magnitude of the
effect was similar and the direction (positive or negative) of the effect was the same.

The test practice and age effects on the intercept factor were similar between the two data sets.
As in data set 1, a positive test practice effect on the performance at the first time point (intercept factor)
was found for all variables except for FAH. As well, a positive age effect on the performance at the first
time point was found for all the variables except for the SAR in both data sets. The significance of other
predictor effects varied between the two data sets. A test practice effect on the change factor was found
for the ESR, DASH and SLJ in data set 2, while it was found for the SAR, ASR, ESR and DASH in data
set 1. The age effect on the change factor was foﬁnd for the ESR and DASH in data set 2, while it was
found for the DASH only in data set 1. The grade effect was significant on the intercept factor for FAH
and DASH and on the change factor for DASH in data set 2, while the grade effect on only the intercept
for ESR was significant in data set 1. There was no measurement season effect in data set 2, but there
were on the intercept factor for ASR and DASH in data set 1. The measurement year effect was found
only for JAR in data set 2, while it was found for the JAR, ASR, ESR, DASH and SLJ in data set 1.

In summary, children’s development in physical performance was comparable between data set
1 and data set 2, except for ASR. The same growth models described the individual changes well for the
FAH, JAR and SAR in both data sets. More parsimonious models described the change for the ESR,
DASH and SLJ in data set'2 than in data set 1. However, for ASR, none of the growth models fit the
data well in data set 2, while a Curve model fit the data very well in data set 1. Although the difference
was small, the changes in the performances over a 5-year period were smaller for all variables in data
set 2, whe;e the children’s ages at five time points ranged from 8.5 to 12.5 than in data set 1, where the
children’s ages at five time points ranged from 8 to 12. This implies that the change was larger at
younger ages and the rate of the change decreased at subsequent years. As in data set 1, the test practice

and age effects on the intercept and change factors were dominant in most of the variables. The effect of
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Table 1.4.11

Predictors’ effects on erowth factors for six physical performance variables

Predictors
Variable Féctor Test practice Age Grade Season Year
FAH' Intercept 154 -.198
Linear
Quadratic
JAR Intercept 394 159 ' _ 170
Linear -.360
. SAR Intercept - 132 .
Linear
ASR Intercept Not  conducted
Curve |
ESR Intercept- - 435 -.199
Linear 274 247
DASH Intercept - .256 -.233 181
Linear 262% 316 -.307
SLJ Intercept .354 155
Linear -.237

Note. Only significant effects (p < .05) are shown in a standardized unit.

FAH = flexed-arm hang (seconds), JAR = jump-and-reach (inches), SAR = sit-and-reach (inches), ASR
= agility shuttle run (seconds), ESR = 300-feet endurance shuttle run (seconds), DASH = 30-yard dash
(seconds), SLJ = standing long jump (inches), Leaning = the number of bre-measurements, Season =
measurement seéson, Year: measurement year.

* = Test practice effect on the linear factor was excluded after the Grade variable was included because

this effect became nonsignificant (p > .10).
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other predictor variables varied by vanable between the two data sets.

Discussion of the Development of Physical Performance

As mentioned in Chapter 1-1II, the variables that were used in the present study are not
representatives of the all important physical performance and predictor variables. More important
physical performance variables such as the variables that measure cardiovascular endurance and/or
strength of various body parts were not included since already existing data were used in the present
study. As well, more important predictor variables such as height, weight, percent body fat and/or the
level of physical activity were not included in the present study.

Children showed two dominant patterns of individual development in physical performances
between ages 8 and 12.5 (data sets 1 and 2 combined). These weré a constant (linear) change and a
deceleration of the change (similar to a quadratic change) over time. Children showed linear changes in
two of the seven performance variables, (JAR and SAR), and decelerations in change in the rest of the
variables (FAH, ASR, ESR, DASH and SLJ) in data set 1. These t§vo dominant patterns of change were
generally supported by the cross-validation procedure. Thus, it is concluded that in early childhood an
individual child shows a constant rate of development in physical performance or a faster development
during early years aﬁd a subsequent decrease in developmental rate. Although the results were not
directly comparable to those of previous studies because only group level statistics were available from
previous studies, these two dominant patterns of development in physical performance variables during
this age range generally agreed with the findings by Baumgartner, East, Frye, Hensley, Knox and
Norton (1984), Bayley (1935), Clarke and Wickens (1962), Haubenstricker and Seefeldt (1986),
Herkowitz (1978), Marmis, Montoye, Cunningham and Kozar (1969), Milne, Seefeldt and Reuschlein
(1976), Morris, Williams, Atwater and Wilmore (1982), and Selis (1951).

The comparisons of overall change in physical performance measures between data set 1 and
» the cross-validation data (data set 2) indicated that the rate of the development in physical performances
decreased between ages 8 and 12.5. Although differences were very small, the rate of change of all
performance variables, except JAR, is larger in data set 1 where the children’s age ranged from 8 to 12
than in the cross-validation data where the children’s age ranged from 8.5 to 12.5. The percentages of
change over a 5-year period were larger in data set 1 for all the variables except for JAR (see Table
1.4.9), and tﬁe average changes estimated by LGMs were also larger for data set 1. The JAR showed
slightly larger average change in the cross-validation data than in data set 1. This implies that the
deceleration in the development rate of physical performances started within this age range, from age 8
to age 12.5. The deceleration in the development rate of physical performances within this age range
was reported in many studies (e.g., Baumgartner et al., 1984; Milne et al., 1976; Selis, 1951). However,

these results do not agree with the aforementioned results for some variables that showed linear changes
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within a data set (i.e., SAR in data set 1, and SAR, ESR, DASH and SLJ in data set 2).

The éigniﬁcance and the magnitude of the correlation between the initial status (performance at
the first time point) and the rate of change varied by variable. The correlations between the initial status
and the rate of change were not significant for FAH, JAR, SAR and SLJ in data set 1. Thése results
disagreed with the general belief that the initial status negatively correlated with the rate of change, but
supported Rogosa’s (1995) arguments that the correlation between the initial status and the rate of
change is not always present, but depends on the specific time interval that is selected in a study. For the
variables that showed significant correlations between the initial status and the rate of change (ASR,
ESR and DASH), the correlations were negative as noted in previous studies (e.g., Schutz, 1989). It is
interesting to note that all the variables that involve running (ASR, ESR and DASH) showed significant
correlations between the initial status and the rate of change, and the magnitudes of the correlations
were similar across variables (ranged from - .67 to - .62). This implies that the correlation between the
initial status and the rate of change depends not only on the specific time interval. that 1s selected in a
study but also on the specific performance measures. The analysis results of the cross-validation data
generally supported these findings.

The effects of predictors on the initial status and change were varied by variables. Most notable
predictors were the number of pre-measurement (test practice effect) and age in months within the same
age group. The test practice effect on the intercept factor (initial status) was significant for all the
variables except for FAH. Children who were measured more frequently before the initial time poiht
(age 8) showed better performances at initial time point. This effect is a long-term test practice effect
rather than a short-term test (memory or practice). effect, because the interval between any two
measurements was six months on the average. The test practice effect was not significant on the
performance level of FAH, because the element of skill is relatively small for this test. The effect of age
on the intercept was significant for all the variables except for SAR. Children who were older than
others (within the same age group) by the length of up to seven months showed higher level of
performances at the initial time point. The magnitudes of these test practice and age effects were small
to medium, each explained 2% to 15% of variation of the initial status. These effects of the number of
pre-measurement and age on the initial status were also evident in the cross-validation procedure,
showing similar effects on the performance variables. The effects of other predictors were varied by

variables (and also by the data sets). The negative test practice effect on the change rate of a few

variables was partially due to the negative relationship between the initial status and the rate of growth.
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Multivariate Latent Growth Models for Physical Performances

The results of multivariate LGMs are presented in this section. As explained in Study 1-Chapter
111, the models that examine the factor structure at each time point (Figure 1.3.3 and Figure 1.3.4) and
the curve-of-factors models (Figure 1.2.5) were fitted to three hypothesized factors, “Run” (ASR, ESR,
DASH), “Power” (JAR, SLJ, DASH) and “Motor Ability” (FAH, SLJ, SAR, DASH, ESR). Descriptive
and related statistics for “Power” and “Motor Ability” factors for data set 1 and 2 are presented in
Appendix C, Table C.29 to Table C.35. |

Run (ASR, ESR, DASH)

Descriptive Statistics
Descriptive statistics for the ASR, ESR and DASH are presented in Table 1.4.12. The change in

mean and standard deviation of each variable, and the correlations between time points within the same

variable were discussed in previous sections. The magnitudes of correlations between different variables
within a time point were medium to high (.54 to .80). Generally, the correlations between ASR and ESR
were relatively high at all time points (.68 to .80), while other correlations were lower (.54 to .67). This
indicates that there was a considerable amount of variation that was shared by these three variables at
each time point, and the variation that was shared by ASR and ESR was larger than the variation that
was shared by DASH and other variables. The magnitudes of correlations between different variables
between different time points were medium, with the smallest coefficient (.37) being between ESR at
age 8 and DASH at age 11, and the largest coefficient (.65) being between ESR at age 11 and ASR at
age 12. A ’

Verification of the Factor Structure

As explained in Study 1-Chapter III, the factor structure of “Run” should be verified before the
multivariate LGM is examined. This requires sequential testing of several models. The goodness-of-fit
indices of these sequential tests for the verification of the factor structure are presented in Table 1.4.13.

The first step was the confirmation of the factor struct:ufe at each time point. This was done
using a 5-factor measurement model with one factor (representing the three performance measures, ASR,
ESR and DASH) at each time point. The LISREL computer program commands for the analyses are
shown in Appendix B. The 5-factor model (model 1) was rejected. Although the SRMR was in an
acceptable range (< .08), the y* statistic was almost four times the degrees of freedom, the RMSEA was
unacceptably high (> .06), and the NNFI was low (< .90). In the next model (model 2), the errors of the
same variable between time points were allowed to be correlated. This model, the 5-factor model with
correlated errors, was not rejected. The RMSEA (< .06) and SRMR (< .08) were small and the NNFI
was large (> .95). The ECVI was also much smaller than that of model 1. Thus, there were significant

correlations of errors of the same variable between time points. This implies that there was an element
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Table 1.4.13
Fit indices of the 5-factor models for the verification of the factor structure of “Run”
Models x*(df) p-valie RMSEA ECVI SRMR  NNFI
1. 5-factor model 313.60(80) <.001 140 233 .063 .87
2. 5-factor model with 67.82(50) 048 037 98 032 98
correlated errors
3. Equal factor loadings 77.66(58) .043 .037 95 039 .99
over time

Note. df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index.
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in the variance of each observed variable that was not explained by the “Run” factor but that was lasting
over time. However, these correlations between errors were relatively small, ranging from - .02 to .21,
indicating the lasting part of the each variable’s variance that was not explained by the “Run” factor was
relatively small. In the next step, the equality of factor loadings over time was examined (model 3). In
this model, the factor loadings across éll five time points within the same variable were constrained to
be quual, and the variance of the factor was allowed to change over time. The ¥’ difference test of this
model against model 2 (y* difference = 9.84, df = 8, p > .05) revealed that the fit of this model was not
significantly worse than model 2. The RMSEA, SRMR and NNFI indices also revealed that this model
fit the data very well, and the ECIV was smallest among three models (see Table 1.4.13). Thus, it was
concluded that the factor structure of the latent variable “Run” did not change over time. The relative
magnitudes of explanatory power of the “Run” factor for each observed variable.djd not change over a
5-year period. This means that conceptually the same latent construct, ‘Run”, was measured over time.

The estimated factor loadings are discussed in the next section. The estimated correlations of
factors between time points ranged from .70 to .85, indicating that children showed a relatively high
year-to-year stability in the performance of the factor “Run”.

Identification of the Best Fitting Growth Curve

Four different growth models (curve-of-factors models), the Linear, Quadratic, Cubic and
Unspecified Curve (the Curve hereafter) models, were fitted and compared to examine the children’s
development in the “Run” performance over time. The factor loading of each variable was constrained
to be equal over time, and errors of the same variable between time points were allowed to be correlated
in these models. Once the best growth model was' selected, the equality of error variances ovef time for
each variable was examined. _

The results of the model fit are presented in Table 1.4.14. In terms of the x° statistic, RMSEA
and SRMR, the Cubic model (model 6) fit the data best among three growth models, the Linear (model
4), Quadratic (model 5) and Cubic models. The x” difference tests showed that the Cubic model was
significantly better than both the Linear (y” difference = 50.99, df = 9, p <.001) and the Quadratic o’
difference = 12.6, df = 5, p < .05) models. However, the Cubic model showed very little differences
from the Curve model (model 7(a)) in terms of the RMSEA, SRMR, NNFI and ECVI. In addition, the
Curve model was more parsimonious (larger degrees of freedom) than the Cubic model. Thus, the Curve
model was selected as the best fitting model in describing the children’s development in the “Run”
performance. Children’s development in “Run” performance was well explained by one latent éhange
factor, curve (see Figure 4.2). The test of the equality of error variances over time showed that only
model 7(d) was not significantly worse than model 7(a) (x* difference = 7.87, df = 4, p > .035). Thus, it is

concluded that the error variances were equal over time only for the variable DASH.

The parameter estimates of model 7(d), the Curve model with equal error variances over time




Table 1.4.14
Fit indices of latent growth models for “Run”
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Models x*(df) p-value RMSEA ECVI SRMR NNFI

4. Linear 157.37(78)  <.001 067 1.27 .066 .95
5. Quadratic 118.98(74) <.001 051 1.13 .063 97
6. Cubic 106.38(69) .003 .049 1.13 .062 .98
7(a) Curve 117.24(75) .001 .050 1.12 065 .98
Equal error variance over time for:

(b) ASR 148.40(79) <.001 .062 1.22 067 .96

(¢) ESR 152.30(79) <.001 063 1.23 .064 .96

(d) DASH 125.11(79) <.001 030 1.11 .066 97

Note. df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index.
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for DASH, are presented in Figure 1.4.2. In this figure, the path showing correlated errors are omitted
for simplicity. Factor loadings for each observed variable at each time point and the correlation between
the intercept and curve factors are standardized values (represented in italic).

Because the presented factor loadings are standardized values, the magnitudes of the loadings for a
variable across time points are not identical although these factor loadings were constrained to be equal
in raw values (in its own scale). All other estimates are raw values. All presented estimates were
significant at p <.05.

The standardized factor loadings for the observed variables were relatively high (.71 to .89),
indicating that these variables were well explained by one underlying latent factor “Run” at each time
point. Among the three variables, the DASH showed the lowest standardized loadings at all time points.
This indicates that the proportion of variance that was explained by the “Run” factor was smaller for
DASH than those of ASR and ESR. The mean of the intercept factor was 12.44 (seconds). This was very
close to the mean of ASR at age 8 because the “Run” factor was scaled by ﬁxing the factor loading of
this variable at 1.0 at each time point. This means that the scale of the “Run” factor was same as that of
the ASR, and thus the interpretation of this factor may be based on this scale. The variance of the
intercept factor was .57 (p < .001), indicating that there was a significant inter-individual variation
among children in the performance of “Run” at age 8. The mean of the curve factor was - .58 (p <.001),
implying that on average, children improved (by .58 seconds) in the “Run” performance between ages 8
and 9. By multiplying factor loading of each time point (i.e., 1.0, 1.81, 2.31 and 2.87) to this mean of the
curve factor, one obtains the amount of change between the first time point and the specific time point.
Thus, by age 10, the average score on the “Run” had decreased 1.05 seconds (1.81 x - .58), indicating
an improvement of .47 seconds (1.05 - .58 or .81x .58) from age 9 to 10. In general, the rate of the
improvement decreased until age 11 (an improvement of .29 seconds between 10 and 11), and slightly
increased between age 11 and 12 (.32 seconds). The significant variance of the curve factor (p = .013)
indicated that there was a significant inter-individual variation in the development of “Run”
performance. The correlation between the intercept and the curve factors was negative and relatively
high (r = - .66, p < .001). This implies that the children who showed better performance at age 8 showed
a slower improvement.

Predictor Effects

As in the univariate LGM, five predictors were sequentially included in the selected Curve
model. All models with predictors showed a good model fit (RMSEA < .06). There were significant test
practice (- .410, p <.001), age (- 230, p=.001), measurement season (274, p < .001) and measurement
year (- .234, p = .003) effects on the intercept factor. The children who were measured more frequently

before age 8, older (by up to seven months), measured during a summer season (compared to a winter

season) and measured in the 1990s (compared to the children who were measured in the 1970s) showed
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better performances in “Run” at age 8. The significant test practice (491, p <.001) and measurement
year (.327, p = .011) effects on the curve factor indicated that the children who were measured more

frequently and measured in the 1990s showed slower improvement in “Run” performance over time.

Power (JAR, SLJ, DASH)

Descriptive Statistics

The means and standard deviations of JAR, SLJ and DASH were presented and discussed in the
univariate LGM sections. The correlations among these three variables across five time points are
presented in Appendix C, Table C.29. The magnitudes (in absolute values) of correlations between
different variables within a time point were of medium magnitude (.49 to .72). In general, the
correlations between JAR and SLJ showed higher absolute values (.63 to .72) than other correlations
(.49 to .67). These two variables that have the element of jumping have a relatively large amount of
shared variance. The magnitudes of correlations between different variables between different time
points were small to medium with the smallest (in an absolute value) coefficient of - .34 between JAR at
age 8 and DASH at age 9, and the largest coefficient of .66 between JAR at age 9 and SLJ at age 10.

Verification of the Factor Structure

The goodness-of-fit indices of models for the verification of the factor structure for the “Power”
factor are presented in Table 1.4.15. As in the “Run” factor the 5-factor model with correlated errors
(model 2) showed a good model fit. All fit indices indicate a close fit of this model to the data. Thus,
errors of each variable over time were significantly correlated. There was a part in the variance of cach
variable that was not explained by the “Power” factor and was lastihg over time. The magnitudes of
correlations between errors were relatively small, and ranged from .06 to .24.

In the next step, a 5-factor model with the equality of factor loadings across all time points as
well as the correlated errors (model 3(a)) was examined. In this model, the variance of the factor was
allowed to change over time (the factor loadings of JAR was fixed at 1.0 at each time point). This model
showed a significantly worse model fit as compared to model 2 (x* difference = 34.43, df = 8, p < .03).
Although the absolute fit of this model was good (RMESA < .06 and NNFI > .95), it is concluded that
the factor structure changed over a 5-year period. To examine when the factor structure changed, four
additional models were fitted and compared to model 2 using the x* difference test. Model 3(b), in
which the factor loadings between time 1 and 2 (age 8 and 9) were constrained to be equal, was
significantly worse than model 2 (x? difference = 15.38, df = 2, p < .05). However, model 3(c) o
difference = .42, df = 2, p > .05), model 3(d) (x* difference = 3.32, df = 4, p > .05), and model 3(¢) o
difference = 7.34, df = 6, p > .05) were not significantly worse than model 2. Thus, it is concluded that

the factor structure changed between ages 8 and 9 (time 1 and 2), and then remained relatively stable
through to age 12.




Table 1.4.15

Fit indices of models for the verification of the factor structure of “Power”
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Models ()  pvalue RMSEA ECVI SRMR  NNFI
1. 5-factor model 368.24(80) <.001 1352 2.62 .061 83
2. 5-factor model with 44.09(50) 708 <.001 91 .020 1.00
correlated errors |
3. Equal factor loadings over time
(@) Time 1 =2=3=4=5 78.52(58) .038 .039 .96 .066 .99
(b) Time 1 =2 59.47(52) 222 .022 | .92 .048 .99
() Time2=3 44.51(52) .760 <.001 .90 .022 1.01
(d)Time2=3=4 47.41(54) 125 <.001 .89 027 1.01
() Time2=3=4=5 51.43(56) 648 <.001 .88 .034 1.00

Note. df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index.
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According to the parameter estimates of model 2 in which the factor loading of the JAR was

fixed at 1.0 at each time point, and the variance of the “Power” factor was allowed to change over time,
the absolute magnitudes of the factor loadings of the SLJ (5.13) and DASH (- .26) at the first time point
were considerably larger than those of other time points (the average factor loadings at the other four
time points were 4.02 and - .16, respectively; these raw factor loadings are not presented, instead
stahdardized factor loadings are shown in Table 1.4.16). Thus, the amount of variance that was
explained by the “Power” factor for the SLJ and DASH, relative to that of JAR, was larger at the first
time point than at the other time points. |

The standardized parameter estimates of model 3(a), instead of model 3(€), are presented in
Table 1.4.16 because this model was used as the base model for the subsequent LGM analyses. This
model, in which the equality of factor loadings over all time points was imposed,. showed an acceptable
absolute fit (i.e. RMSEA < .06). The correlated errors are omitted in Table 1.4.16. Because the presented
factor loadings are standardized values, these were not identical over time. The absolute magnitudes of
the factor loadings were moderate té large (.62 to .89). The factor loading for SLJ was largest while the
factor loading for DASH was smallest among three observed variables at each time point. This implies
that the latent factor “Power” explained smaller proportion of the variance of DASH than those of the
other two variables. The correlations of factors between time points were high (.80 to 96), indicating
that children showed a relatively high level of year-to-year stability in the “Power” performance. In
general, these correlations approximate a simplex pattern, with the correlation coefficients becoming
smaller as a coefficient gets further away from the main diagonal. This indicates that there was an inter-
individual variation in the development of the “Power” performance.

1dentification of the Best Fitting Growth Curve

Although it is concluded that the factor structure changed between ages 8 and 9, the factor
loadings of each observed variable across all time points were constrained to be equal for the
multivariate LGM analysis because the multivariate latent growth model (a curve-of-factors model)
requires the equality of factor structure (loadings) over time. Four growth models were fitted, and the
results of the model fit are presented in Table 1.4.17. _

The goodness-of-fit indices indicate that all four growth models were rejected. The x? statistic
was large, and the RMSEA, SRMR and NNFI were in unacceptable ranges. In addition, maximum
likelihood estimation produced improper solutions (i.e., negative variances). Attempts to resolve this by
using several different sets of starting values resulted in the convergence to the same solution. It is
concluded that none of the growth models adequately explain the change in the “Power” factor. Thus,

the interpretation of parameter estimates and further analyses for the predictors’ effects were not

conducted.
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Table 1.4.16

Parameter estimates of the 5-factor model with correlated errors and the equalitv of factor loadings over

time for “Power”

Standardized factor loading Correlations of factors between time points
Time  Variable  Loading Age8  Age9 Agel0 Agell Agel2
JAR 79
Age 8 SLJ 87 1.00 91 87 78 .80
DASH - .66
JAR 81
Age 9 SLJ 81 1.00 92 .86 .86
DASH -.62
JAR 74 :
Age 10 SL) 83 1.00 .96 91
DASH -.67
JAR 79 ‘
Age 11 SLJ .89 1.00 .89
DASH - .69
» JAR 74
Age 12 SLJ .89 1.00
’ DASH -.74

Note. Correlated errors are omitted. All estimates were significant at an alpha level of .01.

Table 1.4.17

Fit indices of latent growth models for “Power”

Models Y2(df) pvalue RMSEA ECVI SRMR NNFI
4. Linear 1285.11(78)  <.001 ..181. 349 286 35
5. Quadratic  1273.10(74)  <.001 190 361 337 32
6. Cubic 1265.03(69) < .001 197 363 337 27
7. Curve 1274.43(75)  <.001 182 341 294 32

Note. df = degrees of freedom, RMSEA = root mean square error of apprqximation, ECVI = expected

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index.
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‘Motor Ability (FAH, SLJ, SAR, DASH, ESR)

Descriptive Statistics

The means and standard deviations of each variable at each time point were presented and
discussed in previous sections. The correlations between variables across five time points are presented
in Appendix C, Table C.30. The magnitudes (in absolute values) of correlations between different
variables within a time point range from small to medium (.19 to .67). Generally, correlations between
SLJ and DASH (.51 to .67), between SLJ and ESR (.56 to .66) and between DASH and ESR (.54 to .65)
showed larger values than correlations between other variables at each time point. This indicates that the
amount of shared variation among the SLIJ, DASH and ESR was relatively large while the FAH and
SAR had smaller amount of shared variation with other variables. The magnitudes of correlations
between different variables between different time points range frorh also small to medium (.11 to .59).

Verification of the Factor Structure

The results of the model fit for the verification of the factor structure for the “Motor Ability”
(Table 1.4.18) factor were very similar to those of the “Power” factor. The 5-factor model with
correlated errors showed a good model fit (model 2). The model with the equality of factor loadings
over five time points (model 3) was rejected compared to model 2 (x* difference = 41.11, df = 16, p
< .05). Further analyses revealed that the factor structure changed between ages 8 and 9 (only model
3(a) was significantly worse than model 2 at an a level of .03).

According to the parameter estimates of model 2, the absolute magnitudes of factor loadings for
all the variables except for the FAH, which was used as a scaling variable (factor loading of this variable
was fixed at 1.0), were considerably larger at the first time point (1.15, .17, - .07 and - .53 for the SLJ,
SAR, DASH and ESR, respectively) than those of the other time points (average factor loadings of four
time points were .80, .10, - .04 and .31, respectively). For these variables, the amount of variation that
was explained by the “Motor Ability” factor, relative to that of the FAH, was considerably larger at the
first time point than at the other four time points. As was done for the “Power” factor, the standardized
parameter estimates of model 3(a) are presented in Table 1.4.19. The absolute fit of this model was
acceptable in terms of the +* statistic, RMSEA, and NNFL |

The display of correlated errors is omitted in Table 1.4.19. The absolute magnitudes of factor
loadings were small to large (.29 to .82). The factor loadings for SLJ (.76 to .80), DASH (.72 to .78) and
ESR (.73 to .82) were relatively large, while the factor loadings for FAH (.36 to .47) and SAR (.29
to .38) were relatively small. This indicates that the factor “Motor Ability” was highly characterized by
three variables, the SLJ, DASH and ESR. The amount of variance that was explained by the “Motor
Ability” factor was relatively small for the FAH and SAR. The correlations of factors between time
points were high (.81 to .93), indicating that children showed a high level of year-to-year stability in
“Motor Ability” performance.



Table 1.4.18

Fit indices of models for the verification of the factor structure of “Motor Ability”
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Models 2D

p-value RMSEA  ECVI SRMR  NNFI

1. 5-factor model
2. 5-factor model with

2307.67(265)
242.81(215)

correlated errors

3. Equal factor loadings over time
(@Timel=2=3=4=35  283.92(231)
(b) Time 1 =2 252.99(219)
(c) Time 2 =3 246.31(219)
(d) Time2=3=4 253.17(223)
() Time2=3=4=35 260.78(227)

<.001
.094

.010
.057
.099
.081
061

228
022

029
024
021
023
024

15.67
2.18

220
2.19
2.16

2.16

2.15

151
.060

.085
.069
.062
067
067

49
.99

99
.99
99
.99
.99

Note. df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI= expected

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index.
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Table 1.4.19

Parameter estimates of the 5-factor model with correlated errors and the equality of factor loadings over

time for “Motor Ability”

.Standardized factor loading Correlations of factors between time points
Time  Variables  Loading Age8  Age9 Agel0 Agell Agel2
FAH 47
SL) .82
Age 8 SAR .38 1.00 92 .91 81 .83
DASH 2T
ESR -.73
FAH 41
SLJ 76 .
Age9 SAR 35 1.00 91 87 .87
DASH -.72
ESR -7
FAH .36
SLJ 76
Age 10 SAR .33 1.00 92 87
DASH - 74
ESR -3
FAH 37
SLJ .80
Age 11 SAR 30 ‘ 1.00 .93
DASH -.74
ESR -.76
FAH .37
SLJ .80
Age 12 SAR .29 1.00
DASH -.78
ESR - .82

Note. Correlated errors are omitted. All estimates were significant at an alpha level of .01.
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Identification of the Best Fitting Growth Curve

The goodness-of-fit indices of the four multivariate LGMs for the “Motor Ability” factor are
presented in Table 1.4.20. As was shown for the “Power”, none of the four growth models fit the data
well. It is concluded that none of the four growth models adequately explained the chjldreﬁ’s
development in “Motor Ability” performance over a 5-year period. Further analyses for the predictors’
effects were not conducted.

In summary, although all hypothesized factors showed good model fits for the factor structure,
children’s development in the “Run” performance only, among three hypothesized factors, was
explained well by a multivariate LGM, a Curve model. In this Curve model for the “Run” factor, three
observed variables were well explained by one underlying latent factor at each time point. The
children’s performance represented by the “Run” factor improved overa 5-year period, and the change
was largest between ages 8 and 9. There were significant test practice, age, measurement season and
measurement year effects on the interéept factor, and significant test practice and measurement year
effects on the curve factor. Children showed change in factor structure in “Power” and “Motor Ability”
performances between ages 8 and 9. None of the multivariate LGMs for these two factors adequately

explained the children’s development in these latent traits.

Pseudo Cross-Validation

The series of all analyses and model testings presented in the previous sections dealing with
multivariate LGMs were replicated on data set 2. The results arc summarized and compared to those for
data set 1 in Table 1.4.21. As noted previously, o‘n average, the children’s age at each time point was six
months older than that of data set 1. Thus, the mean age at each time point was 8.5, 9.5, 10.5, 11.5 and
12.5 years. | | ‘ v
Descriptive Statistics

In general, the absolute magnitudes of correlations between variables within a time point and
between different variables between time points were slightly larger in data set 2 than in data set 1 for
all hypothesized factors with some exceptions (see the first column block in Table 1.4.21). The patterns
of the correlations were very similar to those of data set 1. For example, for the “Run factor, the
correlations between ASR and ESR showed the highest values among correlations between different
variables within a time point at each time point in both data set 1 (Table 1.4.12: .68 to'.80), and data set
2 (Table B.31: .75 to .82).

Verification of Factor Structure

As in data set 1, the 5-factor model with correlafed errors fit the data well in all three
hypothesized factors (RMSEA < .06). The test of the equality of factor loadings over time for the “Run”

factor also revealed that the factor structure of the “Run” factor did not change over time (y* difference




Table 1.4.20

Fit indices of latent growth models for “Motor Abilityv”

80

‘Models $*(df)

4. Linear 1578.75(261)
5. Quadratic 1545.33(257)
6. Cubic 1530.05(252)

7. Curve 1539.05(258)

SRMR  NNFI
294 .67
295 .67
296 .67
295 .67

Note. df = degrees of freedom, RMSEA = root mean-square error of approximation, ECV1 = expected

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index.
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=11.06, df = 8, p > .05, as compared to the model with free factor loadings) as in data set 1. However,
the other two factors (“Power”, and “Motor Ability””) showed that the factor structure changed between
time 4 and 5 (ages 11.5 and 12.5), while the factor structure changed between time 1 and 2 (ages 8 and
9) in data set 1 (see the second column block in Table 1.4.21).

Although the model with equality of factor loadings over all five time points was rejected
agé.inst’ the model with changing factor loadings in three hypothesized factors, the model with equality
constraints still showed a good fit to the data for all hypothesized factors (RMSEA < .06). Thus, the
range of factor loadings and factor correlations presented in Table 1.4.21 are based on this model with
equality constraints. The factor loadings were slightly larger in data set 2 than in data set 1 for all factors.
The average factor loading was .79 in data set 2 and it was .76 in data set 1.

Identification of the Best Fitting Growth Curve and Predictor Effects

As in data set 1, only the change of the “Run” factor was adequately explained by a multivariate
LGM (Table 1.4.22). In terms of the RMSEA, ECVI and NNFI, the Quadratic (model 5), Cubic (model
6) and Curve (model 7(a)) models showed very similar fits, with the Quadratic model showing a slightly
better fit than other models in terms of the RMSEA and ECIV. However, the Curve model was selected
because this model differed only slightly from the Quadratic model in terms of model fit but it had more
degrees of freedom. In addition, because a Curve model was selected as the best fitting modél for the
“Run” factor in data set 1, it provides easier comparisons between the two data sets. With this Curve
model, only the DASH variable showed equal error variances over time (model 7(d): x* difference =
4.67,df = 4, p > .05), as in data set 1.

The estimated mean of the intercept factér (12.06) was slightly smaller than that of the data set
1 (12.44), indicating a better average performance at age 8.5 than at age 8 in “Run”. The variance of the
intercept factor (.59, p < .001) was very close to that of data set 1 (.57). As in data set 1, the average
change was largest between the first two time points (- .46) and the rate of the change decreased in
subsequent years (- .38, - .34 and - .32 between time 2 and 3, 3 and 4, and 4 and 5, respectively). The
variance of the Curve factor (.02, p = .001) was very close to that of data set 1 (.02). The correlation
between the intercept and the curve factors (- .58) was negative and relatively high, as in data set 1 (-

.66).

All of the LGMs for the “Run” factor with the predictors fit the data very well (RMSEA < .06).
As in data set 1, there were significant test practice (- 426, p <.001) and age (- .207, p = .003) effects
on the intercept factor. However, unlike data set 1, the effects of measurement season and measurement
year on the intercept factor were not significant. There was a significant test practice effect (338, p
= .001) on the curve factor, as in data set 1, but unlike data set 1, the measurement year effect was not

significant. In addition, the age effect (.298, p = .003) on the curve factor was significant in data set 2,

while it was not significant in data set 1.
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Table 1.4.22
Fit indices of latent growth models for “Run’ factor (data set 2)

Models T @)  pvalue RMSEA ECVI SRMR NNFI
4. Linear 123.82(78) <.001 053 1.17 052 98
5. Quadratic 108.16(74) .006 .045 1.11 .047 .98
6. Cubic 105.59(69) .003 .048 1.15 .046 98

7(a) Curve 113.04(75) .003 .046 1.12 053 .98
Equal error variance over time ’

(Curve model)

(b) ASR 143.13(79) <.001 .061 1.23 .039 97
(c) ESR 153.19(79)  <.001 .064 1.27  .0533 .96
(d) DASH 117.71(79) .003 .045 1.10 .054 98

Note. df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected

cross-validation index, SRMR = standardized root mean square residual; NNFI = non-normed fit index.
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The % statistic and RMSEA of four growth models of the other two factors, “Power”, and
“Motor Ability” are presented in Table 1.4.23. The x* statistics and RMSEAs indicate that none of the
four growth models fit the data for these two hypothesized factors. In addition, the maximum likelihood
estimation produced improper solutions (negative variances), as in data set 1. Thus, further analyses
were not conducted for these factors.

In summary, the analysis results of data set 2 were very similar to those of data set 1. Children’s
development in the “Run” performance was adequately explained by the Curve model. There were some
similarities and differences between data sets 1 and 2 in the significance of the predictors’ effects on
initial status and the change. However, none of the growth models adequately explained the change in
the other two factors, “Power” and “Motor Ability”. For these two factors, the factor structure changed
between time 4 and 5 (ages 11.5 and 12.5) while it changed betweeh time 1 and 2 (ages 8 and 9) in data
set 1.

Discussion of the Multivariate Development of Physical Performance

Maultivariate analyses of the data included two main parts, an examination of the hypothesized
factor structure and an examination of growth curves of latent factors. The examination of the factor
structure for three hypothesized factors provided evidence that rejects the early concepts of general
motor ability, and partially supports the specificity of the physical performance factors to the particular
muscle groups or particular types of movement. The factor models for the examinétion of the factor
structure at each time point for all three hypothesized factors fit the data well. However, the
standardized factor loadings of the FAH and SAR for the “Motor Ability” factor that was hypothesized
based on the earlier concept of general motor ability, were relatively small (.29 to .47), while the factor
loadings of the other three observed variables (SLJ, DASH and ESR) were relatively large (.73 to .86).
This implies that the “Motor Ability” was largely characterized by the three variables, SLJ, DASH and
ESR, and did not explain well the variance of the FAH and SAR. Thus, the concept of general motor
ability was rejected in this study as in many earlier studies (e.g., Cousins, 1955; Baumgartner &
Zuidema, 1972; Jackson, 1971). It is unlikely that a single general motor ability factor explains all the
physical performances even for boys in early childhood. On the contrary, the factor loadings of all
observed variables for the “Run” (.71 to .92) and “Power” (.62 to .89) factors were relatively large,
indicating that these factors explained the performances of running and explosive leg power fairly well.
These two factors were characterized by a particular type of movement or by a particular muscle group.
Thus, the findings by Baumgartner and Zuidema (1972), Cousins (1955), Jackson (1971), Liba (1967),
and Start, Gray, Glencross and Walsh (1966) were not refuted. However, this. is not a strong support for-
the specificity notion of physical performance latent variable(s), because not all possible sets of physical

performance variables were included in the examination of factor structure in the present study. Because



Table 1.4.23
Goodness-of-fit indices of growth models for two factors
Power Motor ability

Model x*(df) RMSEA x*(df) RMSEA
Linear 1265.39(78) .190 1637.42(261) 137

© Quadratic  1262.43(74) 194 1561.21(257) 129
Cubic 1256.85(69) 200 1558.69(252) 131
Curve 1264.23(75) 193 1630.36(258) 137

Note. df: degrees of freedom, RMSEA: root mean square error of approximation.
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of this limitation in this study, the specificity of factor structure is not clearly supported for the
population of young children. Regarding the fact that most of the factor analytic studies were conducted
on a college population, more studies are needed to verify the factor structure of physical performance
for children.

~ The examination of the equality of factor loadings (the equality of relative contributions of
indicator variables) over time for “Power” and “Motor Ability” revealed that the factor structure
changed between ages 8 and 9 in data set 1 and between ages 11.5 and 12.5 in the cross-validation data
(data set 2). However, the magnitude of the change in factor structure was small for both data sets,
showing that the models with equality constraint between all time points fit the data fairly well.
Although these results were consistent within each data set, it is difficult to draw a general conclusion
regarding the time point of change in factor structure because of the disagreement between the two data
sets: In the present study, the time point of the change in factor structure was specific to selected sample
and time points. These results generally support the findings by Marsh (1993), 1n that factor structure is
not equal over time but the difference is small, although his conclusions were based on the comparisons
of independent age groups (ages of 9, 12 and 15) and different sets of performance variables. On the
contrary, the “Run” factor showed the equality of factor loadings over time in both data sets. This |
implies that while each indicator variable showed different variations in individual change rate among
children, the relationship among these three variables did not change over time. In other words, the
same underlying latent trait explained the variations in three running ability variables, ASR, ESR and
DASH, at each of five time points. Strictly speaking, the results of the present study indicate that only
the “Run” factor would be a valid latent trait to efnploy as a measure in a longitudinal analysis (Marsh,
1993). However, this may be an overly cautious conclusion because the other two hypothesized factors
showed only marginal differences in factor loadings over time. As noted by Marsh (1993), inadequate
attention has been given to the issue of factorial invariance over time for physical performance variables,
and thus more study is needed to investigate this iésue, especially for the populations of children and
youth.

The Curve model adequately explained the children’s development in the “Run” performance.

In general, the estimated parameters for development in “Run” performance over time were similar to
those for ASR, because ASR was used as the scaling variable. While the parameters for change facfors
(i.c., intercept and curve factors) were similar to those for ASR, these two change factors adequately
explained the changes in means and variances of “Run” factor that adequately explained the means and
variances of the other two indicator variables, ESR and DASH at five time points. On average, children
improved in “Run” performance over a 5-year period. The children’s average change in the “Run”
performance was largest between the first two time points and the rate of the change decreased in
subsequent years. Positive test practice and age effects on the intercept, and a negative test practice

effect on the curve factor were found in both data sets, but the effects of other predictors varied between
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the two data sets.

Unlike for the “Run”, none of the specified LGMs adequately explained the children’s
development in the other two factors, “Power” and “Motor Ability”. This, however, was not because of
the change in the factor structure over time of these two factors. The differences in factor lbadings were
marginal where the change in the factor structure occurred. Although the results are not presented,
additional LGM analyses were conducted excluding the time point that showed a different factor
structure from the rest of the time points (i.e., time 1 in data set 1, and time 5 in data set 2). These
analyses did not produce acceptable model fits. This implies that the specified growth models were not
adequate to explain the complex components of individual charge in the latent trait of ‘;Powver” or
“Motor Ability”. Thus, results of the present study indicated that only the “Run” factor was a valid
construct for the explanation of development in children’s performénce. The other two latent factors did
not adequately represent the children’s development in physical performance. It is noteworthy that the
change of all observed variables for the “Run” factor were adequately explained iby the Curve model in
univariate analyses, while the observed variables for the other two factors showed different patterns of
development (in terms of the selected best growth model). This issue can be viewed as a relationship

between univariate change and multivariate change rather than a specific problem of the multivariate

change of physical performance. This issue is discussed in Study 1-Chapter V.
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. STUDY 1-CHAPTER V. DISCUSSION

Merits of Latent Growth Models

In the present study, the latent growth model (LGM) approach was employed for the analyses of
longitudinal physical performance data. The application of this statistical model to the physical
performance data revealed several merits over traditional methods in describing and explaining the
development of children’s performance over time. One of the most notable merits of LGM in describing
change was the capability of modelling and analyzing change at the individual level. This does not mean
that a LGM estimates the change parameters of every subject, but rather that a LGM estimates the inter-
individual variation as well as the mean of individual change. For example, in the present study, the
Quadratic model adequately explained the children’s individual ch;inge in FAH performances, and
provided mean and variance estimates of linear and quadratic factors. That is, the Quadratic model
decomposed the variations of change in FAH performances into two componenté, the linear and
quadratic. The significant mean and variance of the linear factor indicated that children improved in
their FAH scores over time, and there was considerable inter-individual variation in the rate of
improvement among children. The significant variance but the non-significant mean of the quadratic
factor indicated that, on the average, there was no quadratic effect, but some children accelerated and
some children decelerated in the change rate of FAH performance. In addition, the variance and mean of
the change factors implied that the development of some children in FAH score might be linear (i.e., a
/5 () séore for the quadratic factor).

These kinds of inferences can be made bésed on only an individual level of analysis. This merit
has been emphasized by many (e.g., Meredith & Tisak, 1990; Willet & Sayer, 1994). In general,
traditional methods do not directly provide the information regarding the individual level of change. To
obtain a similar level of information, curve fitting methods and/or stochastic models require two steps of
analysis, one at the individual level and one at the group level. However, for these models the same
mathematical model has to be fitted to all the éubjects at the individual level analysis in order to conduct
the group level of analysis. This is a serious shortcoming of these approaches. Traditional ANOVA with
polynomial contrast (trend analysis) provides information that is similar to that of LGM in terms of
describing change. In an ANOVA procedure, the within-subjects variance is decomposed into linear,
quadratic, cubic, etc. components. .

An example of ANOVA results for FAH (data set 1) is presented in Table 1.5.1. The within-
subjects sum of squares indicated that most of the change in mean scores of FAH is explained by the
linear effect (97.1%). However, the within-subjects error sum of squares indicated that there is a
considerable between-subjects variation (29.8%) in quadratic change. These two pieces of information
together agreed with the results of the LGM analysis in that although individuals change in quadratic

fashions, the inter-individual differences cancelled each other out and produced a non-significant group
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Table 1.5.1
The results of ANOVA analysis with Dolvnomial contrasts for FAH. data set 1

Source - Sum of Squares % df Mean Square F p-value
Between-subject
Intercept 451157.36 1 451157.36
Error 185995.64 209 889.93
Within-subjects
Linear 6589.71 97.1% | 6589.71 72.41 <.001
Quadratic 168.58 2.5% 1 | 168.58 2.38 124
Cubic 18.11 0.3% 1 18.11 49 4385
4th order 8.57 0.1% 1 8.57 22 .640
Error
Linear 19020.09 | 38.3% 209 91.01
Quadratic 14789.28 29.8% 209 70.76
Cubic 7716.59 15.5% 209 36.92

4th order 8159.07 16.4% 209 39.04

89
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level quadratic effect. The information that is not available in ANOVA results, however, is the
significance test for this inter-individual variation in quadratic change, as well as other types of change
(e.g., linear, cubic). This is available in LGM by means of significance testing .for the variances of
change factors. In addition, in ANOVA, one is interested more in the mean scores and variances due to
the within-subjects factor, thus usually the error terms of ANOVA results are not interpreted. The
reqﬁirement of satisfying the sphericity assumption is another shortcomings of ANOVA procedure,
because generally one may anticipate that the variance of a measure changes over time in a longitudinal
study.

The LGM’s capability for an individual level of analysis for change further enables one to
extend the basic model for the description of change to various models for the explanation of change.
One such extension is examining the effect of predictor(s) on change. This is not possible in the
traditional ANOVA model. The inclusion of the predictor variables in a LGM is conceptually similar to
multiple regression analysis in that the effects of several variables on the change ¢an be examined, and
is similar to the analysis of covariance (AN COVA) in that the effects of several covariates (predictors)
are controlled for. However, using a regression or an ANCOVA model requires one to estimate the
individual change scores before the effect of a predictor is examined. Unlike traditional models, a LGM
estimates the parameters of the change and predictor effects at the same time. In the present study, the
effects of five predictor variables on the development of physical performance variables were examined.
The effects of these five predictors were hierarchically included in the model based on a priori
hypotheses, and the significance of a test as well as the magnitude of the effect was obtained. The
examination of the effect of a single predictor variable on the change and the examination of the effect
of a predictor variable after controlling for other predictor variables were made. Although the results
varied by variables and by data sets, and only a small part of variation in change was explained, this
analysis procedure for the examination of predictors’ effect provided useful information in explaining
inter-individual differences in children’s development. This capability of examining predictors’ effect
on change is a notable merit of LGM, and consequently, has been emphasized and employed in many
studies (e.g., Duncan & Duncan, 1995; Meredith & Tisak, 1990; Muthen & Curran, 1997; Willet &
Sayer, 1994). '

LGM, like the general structural equation modelling (SEM), allows one to decompose the
variance of an observed variable into two components, the true score variance and the error variance.
The intercept and change factors describe only the true score component of an observed variable, thus
represent the true score at the first time point and the true change. The error component is the
uniqueness that is not explained by the intercept and change factors. Thus, in a LGM, the error
component of a variable is taken into account in the analysis, while it is not in traditional methods. This

may lead one to make different conclusions regarding description and/or explanation of change. For

example, the LGM revealed that the age effect on the intercept factor of FAH in data set 1 was
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significant, while a randomized group ANOVA analysis showed a non-significant age effect (F = 1.329,
p = .238) on FAH at the first time point (age 3).

In addition to this, LGM allows one to examine various research questions regarding the error
component of observed variables. Generally, two types of research questions are examined. First, the
equality of error variances over time can be examined. This is used not only to test theoretically based
hypbtheses about the equality of the error variances over time, but also to obtain a more parsimonious
model. In this study, the equality of error variances over time was tested for the latter purpose. Two data
sets showed different results in the univariate LGM analyses. The JAR and SLJ showed equal error
variance over time in data set 1, while FAH, SAR and DASH showed equal error variance over time in
data set 2. There is no theoretical base that supports these findings. It is rather unreasonable to expect
the equality of error variances over time, because in a longitudinal study one expects that the observed
variance as well as the true score variance of a variable changes over time. In the multivariate analyses
with the “curve-of-factors” model, two data sets showed consistent results. Only‘ DASH, among three
variables that form the factor “Run” at each time point, showed equal error variances over time. The
implication of the error variance in this model is different from that of the univariate model. In the
““curve-of-factors” model, the error variance represents the component that is not explained by the
“Run” factor. The equality of error variance over time for DASH implies that the magnitude of
unexplained variance in DASH was the same over time.

The second type of research question that is related to the error component of observed variables
is the correlation of errors between time points. The examination of the correlation of errors between
time points has been a common practice in the factor analysis of repeated measures data especially in a
multivariate model (e.g., Marsh, 1993; Marsh & Hau, 1996, Schutz, 1998). In a univariate LGM, the
examination of correlated errors between all possible pairs of time points is not possible because of an
identification problem (i.e., the number of free parameters is larger than the number of means and
covariances that are used as data). Only some of the possible pairs of time points can be examined, and
the extent of how many correlated errors can be examined depends on the number of time points and the
model (e.g., linear, quadratic, cubic etc. and any constraints that are imposed in the model). Thus, one
should be cautious when including correlated errors in a univariate model because of the identification
problem. Including correlated errors in a univariate model should be done only when the reason for this
can be justified by theory or by a specific research condition (e.g., different testers over time). In the
present study, the correlation of errors between time points was not examined for the univariate LGM
because there was no theoretical base or other research condition that supports this. In the multivariate
LGM analyses (with “curve-of-factors” model), however, correlated errors were included in the model
for the same variable between time points in order to obtain a better fitting measurement model.
Significant correlated errors were found for all hypothesized factors in both data sets. This implies that

there exists a lasting compohent over time within a variable that was not explained by the hypothesized
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factor at each time point. This kind of correlated errors in a multivariate longitudinal model has been
found in several studies (¢.g., Marsh, 1993; Marsh & Grayson, 1994; Schutz, 1998).

There are other extensions that are based on the individual level of analysis for change. These
are models in which the relationship between changes in two or more variables are examined, multi-
group analysis models, cohort-sequential analysis models, etc. (Meredith & Tisak, 1990; Willet & Sayer,
1994). Although these models were not included in this study, the flexibility of LGM that allows one to
examine various research questions is a strength of LGM. These merits of LGM, based on the individual
level of analysis for change, are comparable to those of the hierarchical linear model (HLM) (Bryk &
Raudenbush, 1992). A comparison between these two statistical models was not made in this study.
HLM is also based on the individual level of analysis for change, thus allowing one to examine the
predictors’ effects on change, the relationship between intercept and change, the inter-individual
variation of change. HLM is more efficient than LGM in the parameter estimation procedure, and does
not require that all the subjects be measured at approximately the same time. HoWever, LGM s
generally more flexible in modelling and allows one to examine various research questions that are not
possible in HLM (Chou, Bentler & Pentz, 1998, Willet & Sayer, 1994). For example, hypothesis testing
with error variances, examining relationships between changes of different variables, cohort sequential
analysis, and multivariate extensions are available only in LGM. A few of these were examined and

presented in the present study.

Problems of Using Latent Growth Models

The application of LGM in the analysis of longitudinal data in this study not only showed
several merits as discussed above, but also raised a few practical issues. First, selecting one model over
another, such as between the Curve model and the Quadratic or Cubic models, was a somewhat arbitrary
process at times. This is due to the fact that the x* difference test is not available in the comparison of
these models because the Curve model and Quadratic or Cubic model are not nested to each other. For
the comparison of non-nested models, the usage of the expected cross-validation index (ECVI) and/or
Akaike’s information criteria (AIC) is recommended (Akaike, 1987; Browne & Cudeck, 1993; Cudeck
~ & Browne, 1983). For both of these indices, a lower absolute value indicates a better fitting model. In
the present study, the ESR in data set 1 produced results that revealed very small differences in model
fit between the Curve and Quadratic models. Both models were not rejected in terms of the 1 statistic,
and all other fit indices indicated that both models fit the data well (see Appendix B). Although the
ECVI and AIC indicated that the Curve model is better, the differences between two models in these
indices were very small (i.e., ECVI were .134 and .139 for the Curve and Quadratic models,

respectively). Because both models fit the data very well and showed very small differences in model fit,

it is difficult to select one model over another. In this study, the Curve-model was selected because the
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Curve model was more parsimonious than the Quadratic model. The degrees of freedom (df) was larger
for the Curve model (df = 7 and 6 for the Curve and Quadratic models, respectively), and the inter-
individual variation in change was explained by the only one change factor in the Curve model while it
was explained by two change factors, the linear and quadratic, in the Quadratic model. However, this
may not be the case in other situations. The parsimony of these models changes as the number of time
points increases. For example, with seven time points, the Quadratic model is more parsimonious than
the Curve model in terms of degrees of freedom (df = 18 and 19 for the Curve and Quadratic models,
respectively). The difference between two models in the degrees of freedom becomes larger as the
number of time points increases, and the Quadratic model becomes more and more parsimonious than
the Curve model as the number of time points increases. This is due to the fact that in the Curve model
the shape of change is not specified, thus the change parameter has to be estimated for each time
interval. For this reason, the Curve model can be regarded as an exploratory, rather than confirmatory,
way of finding the best-fitting curve compared to other models such as Quadratié and Cubic models.
Thus, in comparing these models, one has to consider if the model fitting should be confirmatory (based
on theory) or exploratory (unspecified curve) as well as the parsimony of the model.

The second praétical issue is the relationship between the change of éach indicator variable and
the change of the latent factor in the “curve-of-factors” model. The application of the “curve-of-factors™
model in this study revealed that the change in the “Run” factor was explained well by the Curve model
in both data sets. Interestingly in the univariate analyses, the Curve model fit the data well for all three
observed variables that were used as indicators of the “Run” factor (see Table 4.10). Thus, the change of
the latent factor that was well explained by the Curve model explained well the three observed variables
that were also well explained by the Curve model in the univariate analyses. The indicator variables for
other hypothesized factors showed growtfx curves that were different from each other. For example, for
“Power”, the best fitting models for three indicator variables (JAR, DASH and SLJ) were the Linear,
Curve and Cubic models. However, it is not conclusive if the different growth curves of indicator
variables causes the poor fit for the “curve-of-factors” model, because the Cubic model should be able
to take into account all the variance components that are based on the linear and the quadratic change.

More research with different approaches on this relationship between the change in each indicator

variable and the change in a latent factor is needed.
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STUDY 2. COMPARING THE LATENT GROWTH MODEL AND QUASI-SIMPLEX
MODEL IN THE ESTIMATION OF LONGITUDINAL RELIABILITY
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STUDY 2-CHAPTER II. LITERATURE REVIEW

Concepts of Reliability and Traditional Estimation Methods

Reliability is the extent to which a test or any measuring procedure yields the same results under
the same conditions (Carmines & Zeller, 1979). It is sometimes represented as the consistency or
reproducibility of measured scores. Ideally, a perfect measurement tool will produce the exact same
scores for a group of individuals if it is repeatedly administered under identical conditions, assuming
that there is no change in the subjects' true attribute. However, to a certain extent, all measurements that
are taken from human subjects are unreliable (Crocker & Algina, 1986). In other words, it 1s almost
impossible to perfectly measure an attribute even if there exists some true level of the attribute within a
person. '

An observed score resulting from the measurement of such an attribute includes two
components, a true attribute component and an unreliable component. The unreliable component is
called the measurement error, Based on classical test theory, the observed score is a composite of two
components, a true (theoretical) score and errbr score. That is, x = T + ¢, where, x is the observed score;
7 is the true score; and ¢ is random error. Given the assumptions that the correlation between the true
score and error score is zero and the mean of the error scores is zero, it can be shown that the variance
of observed scores is the sum of the true and error score variances, °x = 67; + o, where o7, o, and
o, are the variance of the observed scores, true scores and error scores, respectively (Crocker & Algina,

1986). Given this, the reliability of variable x, py, is defined by the following equation:

2
O O ¢

p, = Q2.1

==
ol ol +ol

Thus reliability is represented as the amount of true score variance relative to the observed score
variance. However, it is difficult to estimate the reliability since the true and error scores are
unobservable elements.

The most frequently used reliability estimation method for a single measure (variable) is the
test-retest method. The same test is administered to the same subjects twice, under the same conditions,
within a certain time period, and the Pearson product-moment correlation (PPMC) coefficient between
the two sets of scores is taken as an estimate of the test reliability. Since this coefficient is based on
measurement at two time points, it is often called a stability coefficient. The idea behind this is that only
true scores should be correlated between two time points because the error component is random and
not correlated with any other elements. Thus, the correlated part is due to only the true score element.

The important assumption that should be satisfied in using PPMC as a reliability estimate is that there is
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no change in true scores between the two time points. This assumption has been questioned by many
researchers (¢.g., Heise, 1969; Marsh & Grayson, 1994a) because there is inevitable temporal instability
of measures taken at multiple points in time. Another concern is the possibility of correlated errors
between two time points (Wiley & Wiley, 1974). Many statistical models have been suggested to -
overcome these problems (e.g., Heise, 1969; Werts, Joreskog & Linn, 1971; Wiley & Wiley, 1970,
1974). More recent techniques such as structural equation modeling provide methods to account for
these problems analytically in certain situations. |

A more general forrﬁ of the PPMC is the intraclass correlation coefficient (intraclass r). The
intraclass r is used when a single item is measured repeatedly, or several items are measured once, or
several items are measured repeatedly (Schutz, 1998). Like all reliability coefficients, it is
conceptualized as a ratio of true score variance to observed score variance, and in this case ANOVA is
used to estimate various sources of variance (mean squares). Depending on what assumptions a
researcher wishes to make about error variances and true score variances, different intraclass rs can be
calculated. One of the earliest attempts to use the intraclass r for reliability estimation can be attributed
to Hoyt (1941). He derived the equation using a "Persons by Items" ANOVA design, and related it to the
classical reliability definition by noting that the mean square due to the persons (MS,) represents the
variance of observed scores, and the mean square residual (MS.: the Persons x Items interaction effect)
represents the variance due to the error. The following two equations are most frequently used. The

intraclass t for the mean test score over all trials or observations can be estimated as follows;

Lo MS, - MS... 222)

MS,
and that for a single item score as;

MS -MS

r= £ e (2.2.3)

MS , + (k=1DMS,,
where
E(MS,) =ko% + 0%, (2.2.4)
E(Msx;es) = E(Mspexsonxitem) = 0_2e . (225)

MS, is the mean square due to persons, MS,, is the mean square due to error (the Persons x Items

interaction effect), k is the number of items or repeated measurements, 6, is population variance due to
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between persons and o’ is population variance due to error (Winer, 1971). The equation 2.2.3 yields
identical results to the internal consistency reliability, Cronbach’s alpha (Crocker & Algina, 1986;
Schutz, 1998).

When several items are used to measure an attribute, the degree of agreement among these
items is called internal consistency, and the most frequently used coefficient of internal consistency is
Cronbach’s alpha (Cronbach, 1951). Cronbach’s alpha can be considered as an index of reliability of the
composife score that is obtained by summing item scores. However, it is not equivalent to a reliability |
stability coefficient. A large alpha indicates that there is small item-specific variation. However,
although it suggests a strong possibility that all items represent a single factor, it is not sufficient
evidence to make such a conclusion. That is, a high alpha is a necessary, but not a sufficient cbndition
for unidimensionality. One should also note that with large number of items, Cronbach’s alpha could be

very high, overestimating the degree of agreement among items (Cortina, 1993). -

Estimation of Longitudinal Reliability

Traditional approaches of reliability estimation fall short when applied to longitudinal data
because these approaches were developed with static variables in mind. Much of the rationale behind
traditional approaches is based on the assumption of unchanging true scores, with any change in
observed scores directly attributable to measurement error (Blok & Saris, 1983; Collins, 1991; Werts,
Breland, Grandy, & Rock, 1980). The reliability of a measurement tool may also change over time, for -
several reasons; a change in the characteristics of the subjects (e.g., age), different measurement
administrators, etc. As noted in earlier sections, uéing PPMC or intraclass r for the estimation of
reliability requires the assumption that the true score does not change over time. Thus, in most situations
one may not use PPMC or intraclass r directly for longitudinal data in the estimation of reliability (Blok
& Saris, 1983; Werts et al., 1980).One simple solution for this is to measure the variable twice or more
at each time point, and estimate the reliability. However, this is not a very practical solution.

A few statistical models have been suggested to overcome this problem analytically. One of the
earliest works may be the path analytic solution that was suggested by Heise (1969). Based on the works
of Wright (1934), Blalock (1963), and Siegel and Hodge (1968), he employed an autoregressive model
in separating temporal instability of true scores from the measurement error. This basic idea has been
extended and widely used by others (e.g. Joreskog, 1970; Werts, Joreskog & Linn, 1971; Wheaton,
Muthen, Alwin & Summers, 1977, Wiley & Wiley, 1970). A general form of this autoregressive model
is depicted in Figure 2.2.1 which shows a model with a variable (X) that is measured repeatedly at five
time points. According to this model, the variable at each time point is explained by the immediately

preceding variable (time point). This model is called a quasi-simplex model, and is a special case of an

autoregressive model (Joreskog, 1970). The observed score at time t (X,) is a composite of two elements,
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Figure 2.2.1. A quasi-simplex model with five time points
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a true score () and an error score (e,), as in classical test theory, that is; X, =1, + e.. The successive 0,

are related by the linear equation, M1 = Bim. + 41, and the reliability of variable X, at time t is

calculated as follows (for t, <t, <t,);

r, = (2.2.6)

where 1y is the correlation between X, and X,, r, is the correlation between X, and X,, and r, is the
correlation between X, and X,.. Thus, this model takes account of the change in true score over time by
the regression coefficient (B, the stability coefficient), and the variance unexplained by this relationship
among variables (B.) is due to the error.

It is obvious from equation 2.2.6 that the reliability coefficients of the first and the last time
points cannot be obtained unless an additional restriction is imposed in the model. Heise (1969), in his
three-wave (three time poiﬁts) model, imposedia restriction of equal reliability over time. He suggested
that although the variances of the true and the error scores may vary over time, the ratio between them
can remain unchanged. Wiley and Wiley (1970) used a similar approach to reliability estimation, but '
based on the assumption that error variances afe constant over time. Another possible restriction is to
assume that the stability coefficient (B) is constant between adjacent waves (Kenny, 1979). Selecting
one of these restrictions depends on the theory behind the variable of interest. When there are more than
three time points, these restrictions-may be relaxed to only parts of the model, involving the parameters
of the first two and the last two time points (Jéreskog, 1970, 1974; Joreskog & Sorbom, 1988).
Although there are some limitations, this model has been widely used in the estimation of longitudinal
reliability (e.g., Werts, Linn & Joéreskog, 1977, 1978; Morera, Johnson, Freels, Parsons, Crittenden, Flay
& Warnecke, 1998).

Recently, McArdle and Epstein (1987), and Tisak and Tisak (1996) suggested another way to
estimate reliability with longitudinal data. They employed a Latent Growth Model (LGM) approach, and
showed how one can estimate the change parameters and reliability at the same time. The idea behind
this approach is that any part of the observed variance that is not explained by the growth (change)
parameters is due to error. In the two-factor model presented in Figure 2.2.2, the reliability of time t can

be calculated using following equation;

By, + Ay, + 24, .y, +6,

2.2.7)

t

where A represents a factor loading,  represents a factor variance, 6 represents error variance, t stands
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Figure 2.2.2. Two-factor LGM
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for time t, i stands for an intercept factor, and s stands for a slope factor. Basically this equation has the
same form as the definition of the reliability (equation 2.2.1). That is, the numerator represents the true
score variance and the denominator represents the observed score variance. A notable aspect of this
equation is that both true score variance and error 'variance mayv change over time.

| This model has several merits in estimating longitudinal reliability. First, multiple
measurements are not needed at each time point, as is required in the test-retest method. Second,
measurements are decomposed into separate sets of parameters that represent reliability and the function
of change. Third, parameters for both change and reliability are estimated at the same time. Fourth, the
model permits reliability to change as a function of time. Fifth, this model is a generalization of test-
retest reliability. Sixth, this model requires less strict statistical assumptions than classical methods
(Tisak & Tisak, 1996). The first three merits are shared by quasi—simplex model, but last three are
unique aspects of LGM approach. However, as noted by Tisak and Tisak'(l996)_, one has to first
determine an appropriate longitudinal model before interpreting estimated coefficients in the application
of this approach. Because it is relatively new, the LGM approach has seldom been used in practice for
the estimation of longitudinal reliability.

There have been some other suggestions regarding reliability estimation models in the situation
where several items are measured over time to represent an attribute at several occasions (€.g., Blalock,
1970; Marsh & Grayson, 1994a; Raffalovich & Bohmstedt, 1937, Wheaton et al., 1977, Wiley & Wiley,
1974). The models that Blalock (1970), Wheaton et al. (1977) and Wiley and Wiley (1974) employed
were multivariate extensions of a quasi-simplex model. A very similar approach is using a confirmatory
factor analysis (CFA) model. The CFA model haé been widely used for reliability estimation of
individual items within a scale. However, it has rarely been used for reliability estimation of multi-item-
multi-occasion situations. Basically, these models examine how much variance among the observed
item variance is due to the underlying latent trait (true score) at each time point. One notable merit of
these models is that one can take account of possible correlated errors between repeatedly measured
variables in the model (Blalock, 1970; Wheaton et al., 1977; Wiley & Wiley, 1974). The CFA model has
been extended so that the model takes into account the sources of systematic variance due to specific
items as well as specific times (Marsh & Grayson, 1994a; Raffalovich & Bohrnstedt, 1987). The form of
this model is same as tﬁat of a multi-trait multi-method (MTMM) model. This model can be regarded as
a variance decomposition model, decomposing the total variance (observed variance) into time-specific,
item-specific and residual (error) variance (Marsh & Grayson, 1994a). Although Raffalovich and
Bornstedt (1987) and others used a second-order factor model for extracting another component of the
variance, the common factor variance, the existence of the second-order factor does not affect the

reliability estimation of individual items.

Comparing the Latent Growth Model and Quasi-simplex Model
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In the case of estimating longitudinal reliability of a single variable, both longitudinal models, a
quasi-simplex model and LGM, may be used. Selecting one model over another on purely statistical
criteria is not feasible because empirically, these two models are hard to distinguish (Rogosa & Willett,
1985a). The two models differ in that a quasi-simplex model defines changes over time to be
independent of prior changes, while a LGM defines changes over time to be dependent upon prior
changes (McArdle & Epstein, 1987). In general, there are considerable discrepancies in reliability
estimates between these two models. Which of these two provide more accurate reliability estimates is
not known.

There have been some studies in which these two modéls were compared. However, none of
these studies focused on the accuracy of reliabilify estimation. Rogosa and Willett (1985a) showed that a
quasi-simplex model fits well to data that were generated based on a growth model. However, they
argued that automatic usage of a quasi-simplex model is not desirable because very different types of
individual growth curves may yield indistinguishable‘covariance or correlation sfructures. They also
found that the reliability was overestimated by the quasi-simplex model, and noted that if the partial
correlation between any two time points after controlling for any intervening time point is not zero, as in
a growth model, the reliability will be systematically overestimated. |

On the contrary, Kenny and Campbell (1989) argued that a simplex model is superior to LGM
in examining the stability of personality, for several reasons. First, a simplex model treats the random
component as a lasting part of the true score while a LGM treats it as an unreliable part. Second, a LGM
typically assumes that all scores of a person either steadily increase or steadily decrease over time, but
the true score of a person rarely exhibits this patfem of change. Third, a LGM requires equivalent
metrics at all time points while a simplex model does not. They also noted that one of the weaknesses
with a quasi-simplex model has been the exclusion of means in the model, but this problem can easily
be improved by including means in the model following Roskam’s (1976) suggestion. However, their
view was based mainly on the application of these statistical models to the examination of the stability
of personality where the individual growth (i.., directional change) is not a main interest. Bast and
Reitsma (1997) supported this view in favour of a quasi-simplex model.

Mandys, Dolan and Molenaar (1994) made a more detailed comparison between a quasi-
simplex model and LGM, and showed several differences between the two models in analyzing
longitudinal data. Contrary to Rogosa and Willett’s (1985a) findings, they showed that a quasi-simplex
model does not fit data that are based on a growth curve when there are eight or more time points. They

“also showed that decreasing the variance of the errors and increasing the variance of the individual
growth rates resulted in deterioration of the fit of the quasi-simplex model to the data. They concluded
that one has to be careful in rejecting a quasi-simplex model in favour of LGM on the basis of a single

analysis.

Although some discussions of reliability estimates have been made (e.g., Mandys et al., 1994,




Rogosa & Willett, 1985a), these studies focused more on the rationales, strengths and weaknesses of
applying two models in the analysis of longitudinal data rather than the accuracy of reliability
estimation. The capability of these two longitudinal models to accurately estimate longitudinal
reliability needs to be examined. |

103
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STUDY 2-CHAPTER III. METHODOLOGY

The purpose of study 2 was to compare the latent growth model (LGM) and the simplex model
in estimating longitudinal reliability under various conditions. Several longitudinal data sets
representing various conditions were generated and analyzed by a LGM and a simplex model. The data
generation was necessary because the true reliability of the data should be known to examine the
accuracy of reliability that is estimated by the two models. The results were compared in terms of the

accuracy of reliability estimation.

Data and Conditions

Several longitudinal data sets were generated with known parameters. As in practice, it was
assumed that each individual subject has his/her own initial status and rate of change. This also means
that there is considerable between-person variation in both initial status and change. However, for
simplicity, it was assumed that each individual subject changes linearly over time. Thus the difference in
true scores between any two adjacent time points was constant within a subject. The number of repeated -
measurements was fixed at five in all generated data sets, and the sample size was fixed at 5000 for all
conditions. This relatively large sample size was used so that each generated data set would yield more
accurate parameters (i.¢., closely approximate true parameter values).

The means and the variances. of both the initial status and change were based on the analysis
results of the Jump-and-Reach (JAR) variable frqm the Michigan data (data set 1). The true mean and
variance of the initial status were 9.426 and 2.057, respectively. The true mean and the variance of the
linear change were .994 and .082, respectively. These values were used in all generated data sets. Other
parameters, the magnitude of the correlation between the initial status and change and the magnitude of
error variances at each time point, were varied depending on the conditions that are explained below.

The conditions of the data sets were varied based on three factors that may affect the estimation
of the reliability. These three factors were; (a) the magnitude of correlations between the intercept
(initial status) and change (growth), (b) the magnitude of true reliability, and (c) the magnitude of
correlated errors between repeated measurements. Population data sets rather than samples were used in
all analyses to isolate the effect of each condition on the estimation of the reliability from the sampling

variation.

Condition A: The Magnitude of the Correlation Between the Intercept and Change (r;.)

Three different magnitudes of correlation between the initial status and the change were used in
the generation of the data. These three correlations represent no relationship (r;. = 0, condition Al),
medium relationship (r, = - .3, condition A2) and relatively large relationship (ric = - .6, condition A3)

between initial status and change. The reliability coefficients at each time point were fixed
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at .65, .75, .75, .75, and .75 at time 1, 2, 3, 4 and 3, respectively. These magnitudes of reliability reflect
the reliability of a physical performance field test, such as the JAR. The reliability of the measure at the
first time point was fixed at a lower value (i.e., .65) than those of other time points to reflect a changing
reliability in longitudinal measurements. Following the assumptions of classical test theory, the
correlations between the true scores (initial status and change) and errors, and the correlations of errors
between different time points, were fixed at zero. The procedures of the data generation are presented in

a following section.

Condition B: The magnitude of reliability

Three different sets of magnitudes of reliability were used. These are relatively small (condition
Bl: .40, .50, .50, .50, and .50 at time 1, 2, 3, 4, and 5, respectively), medium (condition
B2: .65, .75, .75, .75, and .75) and relatively large (condition B3: .90, .95, .95, .95, and .95) reliabilities.
In general, these magnitudes reflect the reliability ofa questionnéire, a physical performance field test
and a laboratory test, respectively. The correlation between the initial status and change (r;;) was fixed at
- 3 in all three conditions to isolate the effect of the magnitude of reliability from the magnitude of
correlation between the initial status and change. Other parameters regarding assumptions of classical
test theory were same as in condition A2. Thus, condition A2 and condition B2 are identical (i.e., the

same data set was used for these two conditions).

Condition C: The Correlation Between Errors (re_e');

Five different conditions were examined regarding correlated errors. These are no correlated
errors (condition C1), relatively small correlated errors (r.: = .1) between all time points (cohdition C2),
relatively small correlated errors (r.: = .1) between the last two time points only (condition C3),
relatively large correlated errors (re: = .3) between all time points (condition C4), and relatively large
correlated errors (r. = .3) between the last two time points only (condition C5). Thus in condition C2,
correlations of errors between all time points were set at .1 while in condition C3, correlation of errors
between only last two time points was set at .1. The purpose of employing conditions C3 and C3
(correlated errors between last two time points only) was to examine if the correlated errors between
specific time points affect the estimation of reliability at other time points. Parameters regarding the
initial status and change (means, variances and correlation between two) were the same as condition A2.
As well, the true reliabilities at each time point were set at .65, .75, .75, .75 and .73, as in condition A2.
Thus, condition C1 is identical to condition A2 (and B2). The conditions of the generated data are

summarized in Table 2.3.1.

Data Generation Procedure

The data generation involved the following five steps; (a) generating initial status, linear change
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and errors at each time point, (b) computing true scores at each time point, (c) changing variance of
errors, (d) computing observed scores. The size of the data (sample size) was 5000. Although this size
may not reflect what is used in most research projects, this magnitude of sample size was required to

satisfy restrictions (conditions) on each data set.

Generating Initial Status, Linear Change and Errors
First, seven normally distributed variables with a mean of zero and a variance of 1.0 were

generated using PRELIS (J6reskog & Sorbom, 1999: Version 2.30) program. The correlations between
these seven variables were varied by conditions. These seven variables are initial status, linear change
and errorl to error5. Errorl to error3 denote the errors at timel to time3, respectively. The initial status
and linear change variables were then transformed so as to have the specified means and variances. The
descriptive statistics of initial status, change and errors of condition Al are presented in Table 2.3.2 as
an example. Variances of errors are the values that were obtained after step (c). Although all the

correlations between variables and means of errors were fixed at zero, the generated data showed values
that are slightly different from zero. However, these correlations as well as means were very close to the

specified values. The descriptive statistics of the data for other conditions are presented in Appendix D.

Computing True Scores at Each Time Point

In the next step, for each subject true scores at each time point were computed. This required a
simple linear transformation of initial status and lincar change. True scores at each time point were
calculated using following equations. Truel to True5 denote the true score at timel to timeS,
respectively. _

Truel = initial status + (0) linear change
True2 = initial status + (1) linear change
True3 = initial status + (2) linear change
True4 = initial status + (3) linear change

True3 = initial status + (4) linear change

Changing the Variance of Errors
To obtain the specified magnitudes of reliability at each time point, the variances of errorl to
error5 were transformed. To accomplish this, the variances of true scores at each time point were
calculated first, and the variance of the errors were transformed accordingly. Note that this kind of linear

transformation does not affect the correlations between variables.

Computing Observed Scores

Finally, the observed score at each time point was calculated by adding the two components,



Table 2.3.2

Descriptive statistics of true and error scores for condition A1 (An example)
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Initial status.  Change Error 1 Error 2 Error 3 Error 4 Error 3
Change 016
Error 1 .020 .009
Error 2 012 010 -.017
Error 3 007 .010 -.009 005
Error 4 -.004 -.003 .001 -.011 .008
Error 5 -.021 -.019 -.017 -.002 .006 -.001
Mean 9.426 994 -3.0E-06 -3.8E-05 -14E-17 2.8E-06 2.1E-18
SD 1.434 286 1.052 .847 .897 972 1.068
Variance 2.057 .082 1.107 717 .804 .945 1.140
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true score and error, at each time point. Thus, it is calculated as follows:

Timel = truel + errorl
Time2 = true2 + error2
Time3 = true3 + error3
Time4 = true4 + error4

Time5 = true5 + error5

Model Fitting and Evaluation
Two longitudinal models, a linear LGM (Figure 1.2.1) and a simplex model (Figure 2.2.1), were

fitted to each generated data set. The results were compared in terms of goodness-of-model fit,

parameter estimates, and the accuracy of reliability estimates.
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STUDY 2-CHAPTER 1V. RESULTS

In the following sections the results of using a latent growth model and two simplex models to
estimate longitudinal reliability are presented and compared. As explained in Study 2-Chapter III,

computer simulated data sets were used for this component of the dissertation.

The Effect of Correlation Between Initial Status and Linear Change

Goodness-of-fit indices and estimated reliability coefficients of three longitudinal models under
the various magnitudes of correlations between initial status (scores at tirhe 1) and linear change are
presented in Table 2.4.1. The term “Linear” indicates the two-factor linear latent growth model (Figure
2.1), “Simplex 17 indicates a quasi-simplex model with equal error variances for all five time points,
and “Simplex 2” indicates a quasi-simplex model with equal error variances between the first two time
points and between the last two time points (Figure 2.6).

The Linear model fit the data very well in ail three conditions, while the Simplex models
showed some conflicting goodness-of-ﬁt results. In terms of % statistics, all Simplex models should be
rejected, however, SRMR and NNFI indicated that the Simplex models fit the data very well. The large
x* value was due to the large sample size of the analyzed data (N = 5000). For example, if the sample
size were 200, the ” for the Simplex 1 model in condition Al in Table 2.4.1 (r; - 0) would be 3.43, and
all other fit indices would show a better fit. All RMSEA values indicated a good (< .06) or an acceptable
(< .08) model fit, except for the Simplex 2 model of condition A3 where the correlation between the
initial status and linear change is - .6 (see Table 2.3.1). Overall, the model fit of the Linear model was
much better than that of the Simplex models in all conditions.

Reliability coefficients estimated by the Linear model were very accurate in all three conditions.
The average discrepancies were .0014 (.2%), .0028 (.4%) and .0032 (.5%) for conditions of r;, = 0
(condition Al), ric = - .3 (condition A2), and r;. = - .6 (condition A3), respectively. The largest
discrepancy was .009 (1.2%) and most of the estimates showed discrepancies smaller than .003 (.4%).
Contrary to the Linear model, Simplex models overestimated the reliability at all time points in all three
conditions. The largest overestimation was associated with the first time point whére the true reliability
is .65. This was due to the model constraints that force the error variances to be equal between time
points (for the purpose of identification). The magnitude of overestimation ranged from .013 (1.7%)
to .241 (37.1%) for the Simplex 1 model and from .026 (3.5%) to .210 (32.3%) for the Simplex 2 model.

The parameter estimates of the Linear model for condition Al are presented in Table 2.4.2. In
general, parameter estimates of the Linear model were very accurate, and there was no tendency of

overestimation or underestimation where there is a discrepancy between the true and estimated

parameter. There was no discrepancy between the estimated and true factor means up to three decimal




111

Table 2.4.1

Fit indices and estimated reliability coefficients of models with various correlations between initial

status and linear change (r,.)

Condition Estimated Reliability
Model x*(df) p-value RMSEA SRMR NNFI | TI T2 T3 T4 T3

True reliability — | .650 .750 .750 .750 .750
Condition Al: ri,=0

Linear 2.39(10) . 992 <.001 .005 1.00 |.651 751 .752 748 749
Simplex 1 ~ 86.26(5) <.001 .057 011 .99 785 763 787 814 844
Simplex2  40.66(3) <.001 . .'050 . 008 99 | 816 795 .797 776 .81l

Condition A2: rie=-.3

Linear 3.30(10) - 974 <.001 005 100 |.648 759 .750 751 752
Simplex 1  83.58(5) <.001 055 013 99 | .845 803 806 .821 .343
Simplex 2~ 74.45(3) <.001 .068 012 99 | 855 816 .814 .802 826

Condition A3: ri,=-.6

Linear 4.33(10) 929 <.001 .003 1.00 | .652 .746 .748 755 .733
Simplex 1 139.6(5) <.001 072 . .017 .98 891 .842 815 .803 .818
Simplex2  109.8(3) <.001 .083 .016 .99 .860 .799 824 825 839

Note. df = degrees of freedom; RMSEA = root mean square error of approximation, SRMR =

standardized root mean square residual, NNFI = non-normed fit index; T1 to T5 = Timel to Time5.
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places for both the intercept and the linear factor. The variance of the intercept factor was slightly
overestimated (.051, 2.5%), and the variance of slope factor was slightly underestimated (.004, 4.9%).
Error variances of time 1, 2 and 4 were overestimated and the error variances of time 3 and 5 were
underestimated, but the magnitudes of overestimation or underestimation were small. Theiaverage
discrepancy between the true and estimated error variances was .011 (1.1%). The parameter estimates of
the Linear model for conditions A2 and A3 were also relatively accurate. The parameter estimates for
conditions A2 and A3 are pfesented in Appendix D, Table D.3 and Table D.6.

The parameter estimates of the Simplex models showed similar results in all conditions. The
parameter estimates of only the Simplex 2 model for condition Al are presented in Figure 2.4.1 as an
example. Because the data were generated based on the growth of a certain attribute over time, the true
parameters (i.e., path coefficients, factor mean and factor variancés) for the Simplex models are not
available except for error variances. The true error variances of observed variances are available, and
presented in bolded numbers. The error variances were underestimated at all time points, and the
magnitude of underestimation was relatively large. The average underestimation was .236 (23.6%), and

it is largest at the first time point (.512, 46.3%). This implies that the true score variances were

overestimated by the model, and resulted in the overestimation for the reliability coefficients. The

standardized path coefficients (B) were relatively high, indicating that there was a year-to-year stability
of relative positions of subjects (cases) in their true scores. The path coefficient predicting time 2 factor
from time 1 factor was smaller than other path coefficients due to the low reliability (.65) of the first
time point. The mean of the time 1 factor was identical to the mean of the observed variable at the first

time point. The factor mean of each time point is calculated as follows;

Time 1 =943

Time 2 = (9.43 x .80) + 2.91 = 10.45

Time 3 = (mean of time 2 x .99) + 1.09 = 11.44
' Time 4 = (mean of time 3 x 1.01) + .86 = 12.41

Time 5 = (mean of time 4 x 1.04) + .54 = 13.45.

These means are slightly different from the means of X1 to X5 (Appendix D, Table D.1) due to the
estimation error. The parameter estimates of the Simplex models for other conditions are presented in

the Appendix D, Table D.4 to Table D.7.

The Effect of the Magnitude of Reliability
The goodness-of-fit indices and estimated reliability coefficients of three models under the

various magnitudes of reliability coefficients are presented in Table 2.4.3. Although the medium-level




Table 2.4.2
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The true and estimated parameters (standard errors) of the Linear model for condition Al

Intercept  Linear Error variances
Factor Factor Time 1 Time 2 Time 3 Time 4 Time 5
) 9.426 .994 1.107 717 .804 945 1.140
Mean 9.426 .994 1.130 724 795 .948 1.126
(.023) (.006) (.033) (.020) (.020) (.025) (.036)
2.057 082
Variance 2.108 .078
(.05%) (.004)
0
Covariance -.001
(.011)

Note. Bolded numbers are true values. All parameter estimates were significant at p <.001 except for

the covariance between two factors that was not significant (p = .899).

mean: 9.43
/ var.: 2.63
'

X1

? f
.60 .60
1.107 17

mean 291

mean .86
var 28

mean 1.09
var 32

mean 54

.80 .99 1.01 1 04
. ( 94) ( 95) ( 93)

i i T

.66 .84 .84
.804 945 1.140

Figure 2.4.1. Parameter estimates of the Simplex 2 model for condition Al

Note. The numbers in brackets are standardized path coefficients. Bolded numbers are true error

variances. All parameter estimates were significant at a = .05.



Table 2.4.3

Fit indices and estimated reliability coefficients of models with various magnitudes of reliability
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Condition Estimated Reliability
Model x¥dfy  p-value RMSEA SRMR NNFI | TI T2 T3 T4 T5
Condition B1: Rel.=.40~.50 True reliability —» | .400 .500 .500 .500 .500
Linear 3.81(10) 955 <.001 .007 1.00 | 408 511 499 499 504
Simplex 1 16.52(5) .006 021 .009 1.00 | .666 .542 .547 578 .633
Simplex 2 9.861(3) .020 021 007 1.00 |.683 .561 .556 550 .604
Condition B2: Rel.=.65~.75 True reliability — | .650 .750 .750 .750 .750
Linear 3.30(10) 974 <.001 .005 1.00 | .648 759 750 .751 .752
Simplex 1 ~ 83.58(5) <.001 055 013 99 |.845 803 .806 .821 .843
Simplex2  74.45(3) <.001 .068 012 99 | 855 816 .814 .802 .826
Condition B3: Rel.=.90~.95 True reliability — | .900 .950 .950 .950 .950
Linear 4.15(10) 940 <.001 .002 1.00 | .897 953 -950 .951 .950
Simplex 1~ 1103(5)  <.001 199 028 95 1.995 994 994 994 995
Simplex2  1091(3)  <.001 259 028 91 [.997 997 997 988 989

Note. df = degrees of freedom; RMSEA = root mean square error of approximation; SRMR =

standardized root mean square residual, NNFI = non-normed fit index; T1 to T5 = Timel to Time5; Rel.

= reliability.
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reliability condition (condition B2) is identical to condition A2 in Table 2.4.1, the results are presented
again for comparison purposes.

The Linear model fit the data very well under all three conditions, B1, B2, and B3. The 2
statistics were lower than the degrees of freedoms, and all other fit indices indicated that the Linear
model fit the data very well under all conditions. Simplex models showed interesting results regarding
model fit. Under condition B1 where the reliability is relatively low (.40 to .50), the fit indices indicated
that the Simplex models fit the data very well (e.g., RMSEA = .021). In condition B2 where the
magnitude of reliability is medium (.65 to .75), the model fit was worse than condition B1, but within an
acceptable range. However, in condition B3 where the reliability is relatively high (.90 to .95), the
Simplex models did not fit the data well. Although SRMR and NNFI were within an acceptable range,
x* and RMSEA indicated that the Simplex models should be rejected in condition B3. Certainly the
Simplex models fit the data well when the reliability is low, but as reliability becomes larger the model
fit of Simplex models becomes worse. Overall, the Linear model showed much better model fit
compared to the Simplex models in all conditions.

The reliability coefficients estimated by the Linear model were very accurate in all conditions.
The largest discrepancy between the estimated and the true value was .011 (2.2%). However, Simplex
models, regardless of the magnitude of the true reliability, overestimated reliability. The overestimation
ranged from .042 (8.4%) to .266 (66.5%), and the largest overestimation within a model was associated
with the first time point where the true reliability is lowest among time points. In general, other

_parameter estimates of the Linear model were relatively accurate. The parameter estimates for the
Simplex models showed similar results with those of the Simplex 2 model in condition Al (Figure
2.4.1). These parameter estimates for the Linear and the Simplex models are presented in Appendix D,
Table D.9to D.13.

The Effect of Correlated Errors (r..)

The goodness-of fit indices and estimated reliability coefficients of three models under various
magnitudes of correlations among errors are shown in Table 2.4.4. Although condition C1 in which ree
=0, is identical to condition A2 of Table 2.4.1, it is represented for comparison purposes.

The Linear model fit the data very well in all conditions except for condition C5 where the
errors of only the last two time points are correlated with a magnitude of .3. The x? statistic of this
model was obviously much larger as compared to those of the Linear model in other conditions.
However, in terms of other fit indices, this model also fit the data very well. Simplex models showed
similar patterns in the model fit with conditions A and B. The x? statistic was not satisfactory, but other

indices indicated that these models could be considered acceptable, except for the Simplex 2 model in

condition C4 (RMSEA > .08) where the magnitude of correlations among errors are .3 between all time
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Table 2.4.4

Fit indices and estimated reliability coefficients of models with various magnitudes of correlated errors

(Tee)

Condition Estimated Reliability
Model x? p-value RMSEA SRMR NNFI TI T2 T3 T4 TS

True reliability —» | .650 .750 .750 .750 .750
Condition C1: r..=0

Linear 3.30(10) 974 <.001 005 100 |.648 759 750 751 752
Simplex 1~ 83.58(5) <.001 055 013 .99 845 803 806 .821 .843
Simplex 2 74.45(3) <.001 .068 012 .99 855 816 814 .802 .826

Condition C2: r.-= .1 between all time points

Linear 7.39(10) .688 <.001 .010 1.00 | .675 771 775 772 776
Simplex 1 - 113.3(5) <.001 .064 .013 .99 856 816 .821 .832 855
Simplex2  100.0(3) <.001 .080 013 98 854 813 840 .813 .838

Condition C3: r..=.1 between last two time points

Linear 5.34(10) .868 <.001 005  1.00 |.660 753 749 .773 777
Simplex 1  75.46(5) <.001 .053 012 .99 850 814 815 .830 .854
Simplex 2 75.39(3) <.001 .069 012 .99 851 816 .814 .830 .854

Condition C4: r. = .3 between all time points

Linear 10.64(10)  .386 004 011 1.00 |.738 .825 .828 .823 831
Simplex 1 ~ 131.7¢5) <.001 .069 012 .99 .897 871 870 879 .895
Simplex2  118.1(3) <.001 .087 012 98 .894 868 885 865 .882

Condition C5: r.=.3 between last two time points

Linear 78.26(10) <.001 .038 021 - 1.00 | .656 .746 .734 802 .832
Simplex 1 123.5(5) <.001 068 .014 .99 .864 823 823 .838 .860
Simplex2  81.62(3) <.001 072 012 .99 841 794 805 875 .893

Note. df = degrees of freedom; RMSEA = root mean square error of approximation; SRMR =

standardized root mean square residual; NNFI = non-normed fit index; T1 to T5 = Timel to Time3.
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points.

The Linear model overestimated reliability coefficients when correlated errors were present (i.€.,
fee > 0). In condition C2 where errors between all time points are correlated with a magnitude of .1, the
reliability coefficients were overestimated in all time points. The average overestimation was .024
(3.26%). In condition C3 where only the errors between the last two time points are correlated with a
mégnitude of .1, the reliability coefficients of only the last two time points were overestimated. The
average overestimation of these two reliability cocfficients was .025 (3.3%). In conditions C4 and C5
where the magnitude of correlated errors is .3, the magnitude of overestimations for the reliability
coefficients was larger than that of conditions C2 and C3. The average overestimations were .079
(10.9%) and .067 (8.9%) in conditions C4 and C5, respectively. In condition C3 where the errors of
between last two time points are correl%xtéd with the magnitude of .3, the reliability coefficients for these
last two time points were overestimated. Reliability coefficients for other time points (other than last
two time points) in conditions C3 and C5 were either slightly overestimated or underestimated. The
largest discrepancy was .016 (2.1%) at time 3 in condition C5.

The Simplex models overestimated reliability coefficients at all time points under all conditions.
The overestimations were not limited in the last two time points in conditions C3 and C5 where errors
between only the last two time points are correlated. The magnitude of overestimation was larger than
that of the Linear model. The average overestimation was .117 (16.5%) across all conditions and two
Simplex models. The largest overestimation waé associated with the first time point where the true
reliability is .65. The average overestimation of the reliability for the first time point across all
conditions and across two Simplex models was 213 (32.8%), while the average overestimation of all
other time points was .093 (12.4%). In addition, the overestimation was larger in condition C4 than that
of other conditions. The average overestimation across all time points and across two Simplex models
for condition C4 was .151 (21.1%), while the average overestimation for other conditions was .106
(15.0%). Overall, the Simplex models overestimated reliability at all time points regardless of the
condition, and the magnitude of the overestimation was much larger than that of the Linear model.

The parameter estimates of the Linear model are presented in Table 2.4.5. Because the
magnitude of reliability coefficients is a function of the factor variances and error variances, parameter
estimates of variances only are presented. As shown in Table 2.4.5, the overestimation of reliability
coefficients for the Linear model was due to both the underestimation of the error variances and the
overestimation of the factor variances. For condition C2 and C4 where the errors between all time points
were correlated, the error variances at all time points were underestimated, and the magnitude of the
underestimation was larger in condition C4 (r.e= .3 between all time points) than in condition C2
(ree= .1 between all time points). The average underestimations were .071 (9.4%) and .222 (29.4%) for

condition C2 and C4, respectively. This indicated that a larger correlation between errors resulted in a

larger underestimation of error variances. This was also evident in conditions C3 and C5 where the




Table 2.4.5

The true and estimated variances of Linear model for condition Cs
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Factor variance Error variance
Condition Intercept  Linear | Timel Time2 Time3 Timed4 Time3
Clitee=0 2.057 .082 1.107 17 804 945 1.140
2.108 078 1.130 724 795 948 1.126
C2: r.e=".1 between 2.057 082 1.107 627 .624 675 781
all time points 2.096 082 1.010 574 561 617 697
C3: r.e= .1 between 2.057 .082 | 1.107 .630 .630 .684 .793
last two time points 2.077 093 1.070 626 .644 623 720
C4: r.o= .3 between 2.057 .082 1.107 .626 622 672 77
all time points 2.287 .082 812 448 443 481 S19
C5: re= .3 between 2.057 .082 1.107 .629 .626 .679 7186
last two time points 2.070 108 1.084 637 682 522 S16

Note. Bolded numbers are true values. Standard errors are omitted. All parameter estimates were

significant at p <.001.
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errors of only the last two time points were correlated. For condition C3 and C35, the error variances at -
the last two time points were underestimated, and the magnitude of the underestimation was also larger
in condition C5 (r..= .3 between last two time points) than in condition C3 (r..= .1 between last two
time points). The average underestimations of last two time points were .067 (9.1%) and 214 (28.8%)
for condition C3 and C5, respectively. Some of the factor variances were overestimated (this also
resulted in an overestimated reliability). The variance of the intercept factor was overestimated in all
conditions, but the magnitude of overestimation was relatively small except for condition C4 (.23,
11.2%). The variance of the linear factor was overestimated in condition C3 (.0 11, 13.4%) and C5 (.026,
31.7%), and the magnitude of the o;/erestimation was relatively large. The estimated variancé of the
linear factor in condition C2 and C4 were accurate (no discrepancy was found up to 3 decimal places).
Thus, especially under conditions C3 and C5, where the errors of only the last two time points were
correlated, the variance of the linear factor was overestimated. The parameter estimates of the Simplex

models showed similar results with those of Simplex 2 model in condition Al (Figure 2.4.1). These

results are presented in Appendix D, Table D.16 to Table D.25.
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STUDY 2-CHAPTER V. DISCUSSION

The LGM and the Simplex models were compared in the estimation of longitudinal reliability.
Longitudinal data sets with known parameters and reliabilities were generated, through a computer
simulation, based on several stipulated conditions, and used in the examination of two models.
Conditions were varied by the magnitude of correlation between the initial status and the rate of change,
the magnitude of reliability, and the magnitude of correlated errors.

The goodness-of-fit indices indicated that the LGM fit the data very well in all conditions while
Simplex models showed a questionable model fit. In general, the goodness-of-fit of the Simplex models
was worse than that of LGM, and the % statistics of the Simplex models were very large in most
conditions. The RMSEA, SRMR, ECVI and NNFI also indicated a worse fit for the Simplex models
than the LGM. This was expected, as the data sets were generated based on the linear growth of
individuals over time. These results partially agree with the conclusion by Mandys, Dolan and Molenaar
(1994). They found poor model fits with the Simplex models on growth data with eight or more time
points. » |

Although the model fit of the Simplex models was worse than that of LGM, the model still
showed a fairly good fit to the data. The RMSEAs were within an acceptable range in many conditions,
and the SRMR and NNFI indicated an excellent model fit for all conditions. Thus, in practice, one may
conclude that the Simplex model fit the growth data well. These results agree with the findings by
Rogosa and Willet (1985). They argued that this is a problem because the data from a growth model
violate the assumption of a Simplex model that the change between any two time points is not affected
by the change between previous time points. As they concluded, a caution is needed when employing é
Simplex model for the analysis of longitudinal data, especially where a change over time is expected. In
terms of the x° and RMSEA statistics, however, the results supported Mandys et al.’s (1994) findings.
As noted above, they found that the model fit of the Simplex models on growth data start to deteriorate
when there are eight or more time points. In the present study, the ¥ statistics and RMSEA showed that
the deterioration was partially evident with five time points as well.

The reliability coefficients estimated by LGM (Linear model) were very accurate except in
conditions where there existed correlated errors between time points. The largest discrepancy between
the estimated and true reliability was 2.2%, excluding the conditions with correlated errors. Thus, when
the errors were not correlated, LGM accurately decomposed the observed variance into the two
components that are due to error and true change. However, the Simplex models overestimated
reliability in all the conditions. The magnitude of the overestimation ranged from 1.7% to 66.5%,
depending on the time point and conditions. The overestimation of reliability by a Simplex model was

observed and discussed by Rogosa and Willet (1983). They argued that in growth data, the partial .
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correlation between any two time points after controlling for any intervening time point is not zero, thus
the reliability estimation by a Simplex model is overestimated. This implies that growth data violate the
assumption that is required in a Simplex model. Thus, when one expects growth in a performance
vanable over time, LGM provides a more accurate reliability estimation. On the other harid, Kenny and
Campbell (1989) contend that a stmplex model treats the random component of a measure as a lasting
paft of the true score while a LGM treats it as an unreliable part. However, Kenney and Campbell’s view
was under the circumstances where one is interested more in the stability of a measure over time rather
than in the change.

The requirement of constraints that should be imposed for the purpose of identification is one of
major weaknesses of Simplex models in the estimation of reliability. The constraints that were imposed
to the Simplex model in the present study were the equality of error variances between the first two and
between the last two time points, or across all five time points. This resulted in a larger overestimation
of the reliability at the first time point, where the true reliability was lower than other time points.
Because of the equality constraints, the magnitude of estimated error variance at the first time point was
forced to be equal to that of other time points, although the true error variance is larger than that of other
time points. This means that using Simplex models, one may not adequately take into account the nature
of longitudinal data, in which the true and error variances (and hence the reliability) may change over
time. The constraints of equal error variance over time that were suggested and used by Joreskog (1970)
and Wiley and Wiley (1970), are difficult to justify in many longitudinal studies. Other types of
constraints have been also used in the literatures such as equal reliability over time (Heise, 1969) and
equal stability over time (Kenny, 1979). Howevef, as with the constraints of equal error variances over
time, these types of equality constraints of Simplex models are rarely justified in most of longitudinal
studies.

The magnitude of the correlation between the initial status and the rate of linear change (slope)
did not affect the estimation of longitudinal reliability. The estimated reliability coefficients by LGM
were accurate under all conditions. The reliability coefficients were overestimated by the Simplex
models, but the magnitude of the overestimation was not systematically affected by the magnitude of the
correlation between the initial status and the rate of the linear change. However, it is not conclusive that
these results can be generalized to correlation between change factors (e.g., between the linear and
quadratic factors in a Quadratic model). The present study employed only a linear change, thus
examined only the effect of correlation between the initial status and the rate of linear change. Ina
quadratic or higher order models, the correlation between the change factors may affect the estimation
of change parameters and hence, the reliability.

The magnitude of the true reliability did not show any systematic effect on the estimation of
reliability. The LGM accurately estimated reliability and the Simplex models overestimated the

reliability under all the conditions with various magnitudes of reliability. However, the magnitude of
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reliability showed an effect on the goodness-of-fit of the Simplex models. When the magnitude of the
true reliability was relatively low (.40 to .50), the Simplex models fit the data very well. As the
magnitude of true reliability became larger the goodness-of-fit of the Simplex model became worse.
Conditions with relatively high reliability produced an unacceptable model fit for the Simplex models.
On the contrary, LGM fit the data well regardless of the magnitude of the true reliability. These results
hﬁply that as the magnitude of true reliability becomes smaller, there is a higher chance of accepting a
Simplex model as a good fitting model in the analysis of longitudinal data. This eventually may lead one
to make an erroneous conclusion regarding the reliability of a measure because the Simple‘i models
provide overestimated reliability for the growth data. As Rogosa and Willett (1985) noted, selecting one
model over another between a LGM and a Simplex model is not feasible because, empirically, these two
models are difficult to distinguish. The results of the present study supported this view, especially where
the true reliability is relatively low. Because the magnitudes of reliability coefficients that were
employed in this study are common in psychological measures, one should be cautious when a low
reliability is expected.

As expected, the LGM overestimated reliability in the presence of correlated errors. When the
errors were correlated between the last two time points only, the reliability estimation of other time
points were not affected. The magnitude of overestimation was dependent on the magnitude of the
correlation between errors. In the conditions where the magnitude of correlation between errors was .10,
the average magnitude of overestimation was 3.3%, and in the condition where the magnitude of
correlation between errors was .30 the average overestimation was 10.3%. Thus, when there exist
correlated errors and one fails to take it into account in the model, a LGM provides overestimated
reliability coefficients. In addition, the magnitude of overestimation was dependent on the magnitude of
correlation between errors, resulting in larger overestimation with larger correlation between errors.
Further analyses revealed that both the overestimation in the factor variance (true score variance) and
the underestimation in the error variance resulted in the overestimation of the reliability. The model
treats the component of correlated errors as a lasting true score component. Thus, the variances of the
change factors were overestimated, and hence the reliability was overestimated.

These results agreed with the notes by Werts, Breland, Grandy and Rock (1980), and Wiley ana
Wiley (1974). Although Wiley and Wiley (1974) explained this in the situation of obtaining the true
correlation between variables, they showed that the magnitude of overestimation is directly proportional
to the magnitude of correlation between errors. There have been other studies in which correlated errors
were used in a longitudinal model (e.g., Blalock, 1970; Marsh & Grayson, 1994; Wheaton, Muthen,
Alwin & Summers, 1977), but most of these studies used a multivariate longitudinal mode! or did not
focus on the reliability estimation. When one anticipates that errors are correlated between time points,
one should include the correlated errors in the model to obtain accurate parameter estimatés. However,

including correlations between all possible pairs of time points in a univariate LGM is not possible
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because of the identification problem. Thus, one has to limit the number of correlations between errors
in a model, depending on the available degrees of freedom of the model. In many cases, it is difficult to
justify the inclusion of correlated errors between specific time points. This should be done only when
there is a strong theoretical or empirical background that supports the inclusion of correlated errors. The

Simplex models overestimated reliability regardless of the correlated errors.
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CHAPTER VI. SUMMARY AND CONCLUSIONS

Summary

The present study is presented as two components. In study 1, (a) the latent growth model
(LGM) was introduced, (b) the merits and the problems of using LGM were examined, and (c) the
development of children’s physical performances was examined. These phases of the investigation were
accomplished by analyzing a longitudinal data set which includes seven physical performance variables
that were measured at five time points, and five predictor variables. In study 2, the validity of the two
widely used longitudinal factor analysis models, the LGM and the quasi-simplex model, were compared
in estimating longitudinal reliability. For this purpose, data sets with known parameters (e.g., reliability)
under various conditions were computer simulated and analyzed. The conditions of the data sets were
varied in terms of the magnitude of correlations between initial status and change, the magnitude of
reliability, and the magnitude of correlated errors between time points.

In study 1, the univariate LGM analyses revealed that the children’s individual development
over a 3-year period was adequately explained by variable specific trends. Specifically, the Linear
growth model provided a good fit for the jump-and-reach and sit-and-reach, Quadratic for flexed-arm
hang, Cubic for standing long jump, and Unspecified Curve models for agility shuttle run, endurance
shuttle run and 30-yard dash. The children improved in their physical performances between ages 8 and
12 except for flexibility, in which children’s performance declined over time. Among the predictor
variables, test practice (the number of previous testing sessions) and age in months showed positive
effects on the children’s performance at the initial time point. A negative test practice effect on
development in physical performances was also found. The effect of other predictor variables varied for
different performance variables.

The multivariate analyses showed that the factor structure of three hypothesized factors, “Run”,
“Power” and “Motor Ability”, holds at all five time points. However, only the change in the “Run”
factor was adequately explained by any of the latent growth models, with the Unspecified Curve model
providing the best fit. There were significant test practice, age, measurement season and measurement
year effects on the intercept factor, and significant test practice and measurement year effects on the
curve factor. The cross-validation procedure generally supported these findings.

In study 2, the results showed that the simplex model overestimated the reliability in all
conditions, while the LGM provided relatively accurate reliability estimates in almost all conditions.
The magnitude of correlation between the initial status and change, and the magnitude of reliability did
not affect the reliability estimation, while the correlated errors lead to an overestimation of reliability for

both models. On the other hand, the magnitude of reliability showed a negative effect on the goodness-

of-fit of the simplex model.
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Conclusions

Some conclusive statements can be made on the basis of study 1, as follows;

1. Latent growth modelling is a very useful and informative statistical procedure for the analysis of
longitudinal physical performance data. Specifically, following conclusions are made with respect fo the
merits of LGM.

(2) The capability of modelling change at the individual level is one of the most notable merits of
LGM. This further enables one to include the predictors of change in‘a model, and to estimate
the relationship between the initial status and change. -

(b) LGM takes into account the error component of variables in the analysis, and thus it represents
the true developmental change in an attribute. In addition, LGM allows one to examine a
hypothesis regarding error variances (e.g., equality of error variances over time).

(c) LGM is a useful statistical model for the analysis of change in a multivaﬁate latent factor.

2. The application of LGM to physical performance longitudinal data produced several unique findings
regarding the children’s development in physical performances that were not available in previous
studies. The conclusions that were drawn from these findings are;

(a) Individual children show approximately quadratic developmental patterns in upper arm and
shoulder girdle muscular strength and endurance, leg muscular endurance, running speed, and
agility.

(b) There are considerable inter-individual variations in the linear, quadratic and cubic components
of children’s developmental change in physical performances. For some physical performance
variables (e.g., the flexed-arm hang and standing long jump in the present study) the positive and
negative quadratic and cubic components of individual children’s development cancel each other
out and produce an approximately linear group level of development (as also indicated by
ANOVA results for flexed-arm hang), while the true developmental pattern of individual
children is quadratic or cubic. The conclusions regarding children’s developmental patterns in
physical performances from previous studies in which traditional methods and group statistics
were used need to be reexamined.

(c) The relationship between the level of physical performance at the mitial time of testing and the
rate of development is not always negative, but depends on a specific performance as well as a
selected time interval.

(d) The “Run” factor which is characterized by a particular type of movement, was the only valid

multivariate factor in representing the longitudinal development of latent physical performance.

Other conclusions include;
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(e) Test practice and age in months have positive effects on the physical performances.
(f) Such construct as “general motor ability” does not exist even for young children. Latent physical

performance variables are specific to a particular type of movement or a particular muscle group.

3. The practical problems of using LGM in the analysis of longitudinal physical performances need to
be attended. Specifically; ,
(a) Choosing the best fitting latent growth model based solely on statistical criteria is not always
straight forward (e.g., comparing between the Unspecified Curve model and the Quadratic or
Cubic model). In such a case, researchers should make decision based on a conceptual and a
theoretical basis of physical performance development.
(b) The complex relationship between performance variables, and between time points may result in
the case where none of the multivariate LGMs (e.g., Linear, Quadratic, Cubic or Unspecified
Curve models) fits the data in the curve-of-factors model, while all indicator variables in the

model separately fit one of the LGMs well.

The main conclusion from study 2 is;
1. The LGM accurately estimates reliability, while the quasi-simplex model overestimates the reliability
of longitudinal developmental variables. The availability of this valid statistical model for the estimation
of longitudinal reliability is beneficial especially in Human Kinetics research, since the measurement of
physical performance variables is often costly. '

Some other conclusive statements from study 2 as well can be made, as follows;

2. The reliability estimations by the LGM and quasi-simplex models were not affected by the correlation

between the initial status and the rate of change, or by magnitude of reliability.

3. The correlated errors result in an overestimation of reliability, and the overestimation is isolated at

correlated time points.

4. The magnitude of reliability of developmental variables has a negative effect on the goodness of

model fit of the quasi-simplex model.
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APPENDICES

Appendix A: Example Data Records for Five Selected Subjects (Michigan Data Set 1)

Predictor Variables . Flexed-Arm Hang (seconds)
Subject# | Practice | Age Grade | Season | Year Age8 | Age9 | Age10 | Agell | Age 12
1 5 97 0 1 1970 22 17 22 27 29
2 1 94 1 0 1975 8 7 18 16 22
3 7 99 0 1 1978 . 6 8 8 12 9
4 6 96 1 0 1982 23 21 16 13 13
5 6 95 1 0 1987 22 17 17 22 28
Jump-and-Reach (inches) Sit-and-reach (inches)
Subject# | Age8 | Age9 | Agel0 | Agell | Age12 | Age8 | Age9 | Agel0 | Agell | Age 12
1 8.0 10.5 12.0 13.0 14.5 8.5 7.5 8.5 9.0 7.0
2 10.5 11.0 12.0 11.0 13.0 8.0 7.5 6.0 4.0 7.0
3 10.5 13.5 13.5 15.0 17.0 8.5 8.0 7.0 5.0 . 5.0
4 7.0 105 10.5 11.0 11.5 8.0 7.0 8.0 9.0 8.5
5 8.5 11.5 14.0 13.0 16.0 9.0 10.5 8.5 9.0 7.0
Agility Shuttle Run (seconds) Endurance Shuttle Run (seconds)
Subject# | Age8 | Age9 | Agel0 | Agell | Age12 | Age8 | Age9 | Agel0 | Agell | Age 12
1 12.3 12.2 11.7 11.3 10.8 44.8 43.8 43.0 40.8 40.9
2 12.0 12.9 11.4 11.1 12.0 40.2 43.0 45.6 40.4 42.5
3 13.2 13.6 11.6 11.0 10.0 45.6 45.4 416 |. 394 36.7
4 11.7 11.0 10.9 11.4 10.9 46.0 42.9 38.9 40.9 39.5
5 11.2 11.3 10.8 10.4 10.0 39.9 41.2 39.8 382 36.3
30-yard Dash (seconds) Standing Long Jump (inches)
Subject# | Age8 | Age9 | Age10 | Age 1l | Age12 | Age8 | Age9 | Age 10 | Age 1l | Age 12
1 5.4 5.2 4.9 4.6 4.6 58.0 62.0 67.5 66.0 67.5
2 5.8 5.0 4.3 5.3 4.5 55.0 65.0 62.0 64.5 73.0
3 5.2 4.9 4.3 4.4 4.3 65.0 70.0 75.0 77.0 81.0
4 5.6 5.2 4.7 4.9 4.9 47.0 52.0 55.0 62.0 66.0
5 5.0 5.3 4.8 4.8 4.7 58.5 62.0 68.5 72.0 68.5

Note. Practice = the number of measurement taken before age 8, Age = age in months at the first time
point (age 8), Grade = grade at age 8 (0 = grade 2, 1 = grade 3), Season = measured season (0 = summer,

1 = winter), Year = measurement year at age 8.
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Appendix B: Program Commands for Latent Growth Models

LISREL Commands for Univariate Models

Linear Model (flexed-arm-hang)

RO~ WwhKH
(@] .

e
N

13
14
15
16
17
18
19
20
21

22

23
24
25
26

27

28
29

DA NI=63 NO=210 o

RA FI=C:\THESIS\DATA\MOTOR\MOTOR1.DAT FO

(41F8.2)

LABEL .

ID, PR_ME NO, AGE, GRADE, ME SESN, ME YR,

FAH8, JARS8, ASR8, SLJ8, DASHS8, SAR8, ESRS,

FAH9, JAR9, ASR9, SLJ9, DASHS, SAR9, ESR9,

FAH10, JAR10, ASR10, SLJ10, DASH10, SAR10, ESRI1O0,
FAH11l, JAR11l, ASR11l, SLJ11, DASH11, SAR1l1l, ESR11,
FAH12, JAR12, ASR12, SLJ12, DASH12, SAR12, ESR12

SE
7 14 21 28 35 /

MO NY=5 TY=ZE NE=2 TE=SY, FI AL=FR BE=ZE PS=SY,FR

LE
INTERCEPT SLOPE

e e e S =
S WN P o

FRTE 1 1 TE 2 2 TE 3 3 TE 4 4 TE 5 5

OU RS SE SC TV ND=3 IT=1000 AD=OFF

Note. Line numbers are added for a presentation purpose. ID = subjects’ ID; PR_ME_NO = the number

of measurement before age 8 (initial time point); GRADE = grade at age 8; AGE = age in months at age

8; ME_SESN = measurement season; ME_YR = measurement year at age 8; FAHS8 = flexed-arm-hang

at age 8; JAR = jump-and-reach; ASR = agility shuttle run, SLJ = standing long jump, DASH = 30-yard

dash, SAR = sit-and-reach, ESR = endurance shuttle run.

For an equal error variance model, add following commands between lines 27 and 29.

EQTE 11 TE 2 2 TE 3 3 TE 4 4 TE 5 5



file:///THESIS/DATA/MOTOR/MOTORl.DAT

Quadratic Model (flexed-arm-hang)

Replace lines from 15 to 25 with following commands.

MO NY=5 TY=ZE NE=3 TE=SY,FI AL=FR BE=ZE PS=SY,FR

LE
INTERCEPT SLOPE QUADRATC

MA LY

0
1
4
S

i
B WN PO

16

Cubic Model (flexed-arm-hang)

Replace lines from 15 to 25 with following commands.

MO NY=5 TY=ZE NE=4 TE=SY,FI AL=FR BE=ZE PS=SY,FR

LE
INTERCEPT SLOPE QUADRATC CUBIC

MA LY

10 0 O
i1 1 1
12 4 8
13 8 27
1 4 16 64

Unspecified Curve Model (flexed-arm-hang)
Add following commands between lines 25 and 27.

FR LY 32 1LY 4 2 LY 5 2

Linear Model With One Predictor (PR ME NO)

Replace lines from 12 to 15 with following commands.

SE
7 14 21 28 35 2 /

141

MO NY=5 NX=1 TX=ZE TY=ZE NE=2 NK=1 TD=FI TE=S8Y,FI KA=FR AL=FR BE=ZE
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PS=38Y, FR

LK
LEARNING

VA 1 1LX 11

Linear Model With Three Predictors, PR ME NO,AGE and ME YR (the Effect of
“PR ME NO?” on the Slope Factor is Fixed at Zero)

Replace lines from 13 to 16 with following commands.

SE
7 14 21 28 35 2 3 6/

MO NY=5 NX=1 TX=ZE TY=ZE NE=2 NK=3 TD=FI TE=3Y,FI KA=FR AL=FR BE=ZE
PS=8Y, FR ‘

LK
LEARNING AGE ME YR

MA LX

O O
(o @]
P O O

FI GA 2 1

Program Commands for Multivariate Models (Curve-of-Factors Model)

LISREL Commands for the S-factor Measurement Model (“Run” Factor: Equal Factor Loadings

and Correlated Errofs Over Time)

DA NI=63 NO=210

RA FI=C:\THESIS\DATA\MOTOR\MOTOR1.DAT FO

(41F8.2)

LABEL

ID, PR ME NO, AGE, GRADE, ME SESN, ME YR,

FAHS, JARS, ASRS8, SLJ8, DASH8, SAR8, ESRS,

FAH9, JAR9, ASRY9, SLJ9, DASHY9, SARY9, ESRY,

FAH10, JAR10, ASR10, SLJ10, DASH10, SAR10, ESR1O0,
FAH11, JAR11, ASR11, SLJ11, DASH11l, SAR1l, ESR11,
FAH12, JAR12, ASR12, SLJ12, DASH12, SAR12, ESR12

SE
9 11 13 16 18 20 23 25 27 30 32 34 37 39 41 /

MO NX=15 NK=5 PH=3SY,FR TD=FU,FI
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LK
RUN1 RUN2 RUN3 RUN4 RUNS

PA LX _ '
3(1 0000) 3(01000) 3(00100) 3(00010) 3(00001)

FIX ILXx 1 1 LX 4 2 LX 7 3 LX 10 4 LX 13 5
VA 1 I1LX 111X 421X 7 3 LX 10 4 LX 13 5

EQ LX 2 1 LX 5 2 1LX 8 3 LX 11 4 LX 14 5
EQ LX 3 1 LX 62 LX 9 3 LX 12 4 1LX 15 5

FR TD1 1 Th 22T 3 3 Tbh4 4TDS55TD 6 6 TD7 7 TD 8 8
FR TD 9 9 TD 10 10 TD 11 11 TD 12 12 TD 13 13 TD 14 14 TD 15 15

FR TD 1 4 TD 1 7 TD 1 1C TD 1 13 TD 4 7 TD 4 10 TD 4 13 Tb 7 10 FR TD
7 13 Tb 10 13 7D 2 5 TD 2 8 TDh 2 11 Th 2 14 TD 5 8 TD 5 11 FR TD 5 14
TD 8 11 TD 8 14 TD 11 14 TD 3 6 TD 3 9 TD 3 12

FR TD 3 15 TD 6 9 TD 6 12 TD 6 15 TD 9 12 TD 9 15 TD 12 15

OU RS SE SC TV ND=3 IT=1000 AD=OFF

LISREL Commands for the Linear Model (“Run” factor)

1 DA NI=63 NO=210

2 RA FI=C:\THESIS\DATA\MOTOR\MOTOR1.DAT FO

3 (41F8.2) ‘

4 LABEL

5 ID, PR_ME NO, AGE, GRADE, ME SESN, ME_YR,

6 FAHS, JARS, ASRS8, SLJ8, DASH8, SAR8, ESRS,

7 FAHO9, JAR9, ASR9, SLJ9, DASH9, SAR9, ESRY,

8 FAH10, JAR10, ASR10, SLJ10, DASH10, SAR10, ESR10,
9 FAH11, JAR11l, ASR11l, SLJ11, DASH11l, SAR11l, ESR11,
10 FAH12, JAR12, ASR12, SLJ12, DASH12, SAR12, ESRI12
11

12 SE

13 9 11 13 16 18 20 23 25 27 30 32 34 37 39 41 /
14

15 MO NY=15 TY=ZE NE=5 NK=2 TE=FU,FI AL=ZE KA=FR BE=ZE
16 PS=DI, FR GA=FU, FI PH=FU, FR

17

18 LE

19 RUN1 RUN2 RUN3 RUN4 RUNS

20

21 LK

22 INTERCEPT SLOPE

23

24 PATTERN LY

25 3(1 0 00 0) 3(01 0.00) 3(001O0CO0O) 3(00O0C1 0
26 3(0 0 00 1) :
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27 .

28 FI LY 1 1 LY 4 2 LY 7.3 LY 10 4 LY 13 5

29 vaA 1 LYy 1 1LY 421y 7 3 LY 10 4 LY 13 5

30

31 EQ LY 2 1 LY 52 LY 8 3 LY 11 4 LY 14 5

32 " EQ LY 3 1LYy 6 2 LY 9 3 LY 12 4 LY 15 5

33

34 MA GA

35 10

36 11

37 12

38 13

39 14

40

41 FRTE 1 1 TE 2 2 TE 3 3 TE 4 4 TE 5 5 TE 6 6 TE 7 7
42 TE 8 8 FRTE 9 9 TE 10 10 TE 11 11 TE 12 12 TE 13 13
43 TE 14 14 TE 15 15

44

45 OU RS SE SC TV ND=3 IT=1000 AD=OFF

For a correlated errors model, add following commands between the lines 43 and 45.

FRTE 1 4 TE 1 7 TE 1 10TE 1 13 TE 4 7 TE 4 10 TE 4 13 TE 7 10 FR TE
7 13 TE 10 13 TE 2 5 TE 2 8 TE 2 11 TE 2 14 TE 5 8 TE 5 11 FR TE 5 14
TE 8 11 TE 8 14 TE 11 14 TE 3 6 TE 3 9 TE 3 12

FRTE 3 15 TE 6 9 TE 6 12 TE 6 15 TE 9 12 TE 9 15 TE 12 15

LISREL Commands for the Quadratic Model (“Run” factor)

Replace lines from 15 to 39 with the following commands.
MO NY=15 TY=ZE NE=5 NK=3 TE=FU,FI AL=ZE KA=FR BE=ZE
PS=DI,FR GA=FU, FI PH=FU,FR

LE
RUN1 RUN2 RUN3 RUN4 RUNS

LK
INTERCEPT LINEAR QUADRATIC

PATTERN LY 3(1 0 0 0 0) 3(0 1 0 0 0) 3(0-0 1 00) 3(00010)
3(0 0 0.0 1)

FI LY 1 1 LYy 4 2 LY 7 3 LY 10 4 LY 13 5
vA 1 LYy 1 1 LY 4 2 LY 7 3 Ly 10 4 LY 13 5

EQ LY 2 1 LY 5 2 LY 8 3 LY 11 4 LY 14 5
EQ LY 3 1 LY 6 2 LY 9 3 LY 12 4 LY 15 5

MA GA
100




e
W N e
Howo e e

LISREL Commands for the Cubic Model (“Run” factor)

Replace lines from 15 to 39 with the following commands.
MO NY=15 TY=ZE NE=5 NK=4 TE=FU,FI AL=ZE KA=FR BE=ZE
PS=DI,FR GA=FU,FI PH=FU, FR :

LE
RUN1 RUNZ2 RUN3 RUN4 RUNS

LK
INTERCEPT LINEAR QUADRATIC Cubic

PATTERN LY 3(1 0 0 0 0) 3(0 1 0 0 0) 3(0 01 00) 3(00CO010)
3(0 000 1)

FI LY 1 1 LY 4 2 LY 7 3 LY 10 4 LY 13 5
vA 1 LYy 1 1 LY 4 2 1Y 7 3 LY 10 4 LY 13 5

3 LY 11 4 LY 14 5
3 1LYy 12 4 LY 15 5

MA GA

100 O
r11 1
12 4 8
139 27
1 4 16 64

LISREL Commands for the Unspecified Curve Model (“Run” factor)
Add following commands between lines 39 and 41.

FR GA 3 2 GA 4 2 GA 5 2

MPLUS Commands for the Unspecified Curve Model With One Predictor, PR ME NO (“Run”

145

factor) .

TITLE: MPLUS RUN FOR MULTIVARIATE LGM (UNSPECIFIED CURVE MODEL)
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DATA: FILE IS C:\THESIS\DATA\MOTOR\MOTORI.DAT;
FORMAT IS 41F8.2;

VARIABLE: NAMES ARE ID, PR_ME NO, AGE, GRADE, ME_SESN, ME YR,
FAH8, JAR8, ASR8, SLJ8, DASHS8, SARS8, ESRS,
FAH9, JAR9, ASR9, SLJ9, DASH9, SAR9, ESRY,
'FAH10, JAR10, ASR10, SLJ10, DASH10, SAR10, ESR1O0,
FAH11l, JAR11l, ASR11l, SLJ11, DASH11l, SAR11l, ESR11,
FAH12, JAR12, ASR12, SLJ12, DASH12, SAR12, ESR12;

USEVARIABLES ARE PR ME NO, ASR8, DASH8, ESR8, ASRY9, DASH9, ESRY,

ASR10, DASH10, ESR10, ASR11l, DASH1l, ESR11l, ASR12,
DASH12, ESR12;

ANALYSIS: TYPE IS MEANSTRUCTURE;
ITERATIONS=1000;

MODEL: RUN1 BY ASR8; RUN1 BY DASH8*.5(1); RUN1 BY ESR8(2)*3.5;
RUN2 BY ASR9; RUN2 BY DASHS(1); RUNZ BY ESRS(2);
RUN3 BY ASR10; RUN3 BY DASH10(1); RUN3 BY ESR10(2);
RUN4 BY ASR11; RUN4 BY DASH11(1l); RUN4 BY ESR11(2):;
RUNS BY ASR12; RUNS BY DASH12(1l); RUNS BY ESE12(2);
I BY RUN1-RUNS @1;

C BY RUN1@O RUN2@1 RUN3*1.8 RUN4*2.3 RUNS5*2.9;
[ASR8-ESR12Q0];

[RUN1-RUNS5@0 I*12.5 C];

DASHS8 DASHS DASH10 DASH11 DASH12(3);

ASR8 WITH ASRO9*0 ASR10*0 ASR11*0 ASR12*0;

ASRY9 WITH ASR10*0 ASR11*0 ASR12*0;

ASR10 WITH ASR11*0 ASR1Z2*0;

ASR11 WITH ASR12*0;

DASH8 WITH DASHS9*0 DASH10*0 DASH11*0 DASH12*0;
DASHS WITH DASH10*0 DASH11*0 DASH12*0;

DASH10 WITH DASH11*0 DASH12*0;

DASH11 WITH DASH12*0;

ESR8 WITH ESR9*.7 ESR10*.2 ESR11*.3 ESR12*0;
ESR9 WITH ESR10*0 ESR11i*.1 ESR12*0;

ESR10 WITH ESR11*.3 ESR12*.5;

ESR11 WITH ESR12*.2;

I C ON PR_ME NO

OUTPUT: SAMPSTAT; STANDARDIZED; RESIDUAL; TECH4;

LISREL Commands for the Simplex Model With Mean Structure

(Equal Error Variance Between the First and Last Two Time Points)

DA NI=5 NO=200
CMATRIX FI=DAT11.COV
MEANS FI=DAT11.MEA

LABEL
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*

Yi, Y2, Y3, Y4, ¥5
MO NY=5 NE=5 LY=ID TE=SY,FI BE=FU PS=DI TY=ZE AL=FR

LE
TIME1l TIME2 TIME3 TIME4 TIMES

FR BE 2 1 BE 3 2 BE 4 3 BE 5 4

FRTE 11 TE 2 2 TE 3 3 TE 4 4 TE 5 5
EQ TE 1 1 TE 2 2

EQ TE 4 4 TE 5 5

OU RS SE SC TV ND=3 IT=1000 AD=OFF



Appendix C: Descriptive Statistics and Parameter Estimates of Latent Growth Models

Univariate Results

Data Set 1
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Figure C.1. Histograms for FAH scores at five time points
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Table C.1
Correlation coéfﬁcients and distributional statistics for predictor variables
PR_ME NO AGE GRADE ME_SESN ME_YRb
AGE 058
GRADE -.103 279
ME-SESN 157 -.055 -.657
ME-YR 444 -.022 -140 .004
Mean 4.84 96.33 51 .50 1976.5
SD 2.00 1.93 .50 50 5.50
Minimum 0 93 0 0 1968
Maximum 11 100 ' 1 1 1992

Note. PR ME_NO = the number of measurement before age 8 (initial time point); GRADE = grade at

age 8; AGE = age in months at age 8; ME_SESN = measurement season; ME_YR = measurement year

at age 8.




Jump-and-reach.

Table C.2.

150

Correlation coefficients and distributional statistics for jump-and-reach

Age 8 Age 9 Age 10 Age 11 Age 12
Age 9 .586
Age 10 519 .659
Age 11 524 619 693 _
Age 12 488 599 636 .698
Mean (inch) 9.42 10.34 11.58 12.33 13.40
SD 1.78 1.81 1.89 1.85 2.07
Skewness -.23 -.01 11 -.12 31
Kurtosis 70 81 22 .09 54
Table C.3

Parameter estimates (standard errors) of the best fitting growth model for jump-and-reach: Linear, equal

eITor variances

Intercept Linear factor Error
factor . variance

Mean 0.43** 994 ** Age 8 1.22%*

(.113) (.031) (.069)

Variance 1.94%* .082%* Age 9 1.22%*
(.265) (.021) (.069) -

" Covariance -.025 Age 10 1.22%*
between factors (.056) (.069)
Age 11 1.22%*

(.069)

Age 12 1.22%*

‘ (.069)

Note. *significant at alpha level of .05; **significant at alpha level of .01.



Sit-and-reach.

Table C.4
Correlation coefficients and dis_tributional statistics for sit-and-reach
| | Age 8 Age9  Agel0  Agell Age 12
Age 9 821
Age 10 799 .857
Age 11 769 .802 .826
| Age 12 742 766 770 812
Mean (inch) 7.89 7.70 7.37 7.12 6.89
1 SD 229 2.20 222 2.34 251
} Skewness - .40 -.29 -.53 -.39 -.11

Kurtosis .05 Sl .60 .08 - .05

Table C.5

Parameter estimates (standard errors) of the best fitting growth model for sit-and-reach: Linear, unequal

eITor variances

Intercept Linear factor : Error
factor variance

Mean 7.91%* - .260%* Age 8 1.05%*
(.150) (.028) (.154)

Variance 4. 13%* 050%* Age 9 T20%*
(.462) (.018) (.099)

Covariance -.015 Age 10 T82**
between factors (.065) (.101)
Age 11 970**

(.126)

Age 12 1.44%*

(.199)

‘Note. *significant at alpha level of .03; **significant at alpha level of .01.
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Agility shuttle run.

Table C.6
Correlation coefficients and distributional statistics for agility shuttle run
Age 8 Age 9 Age 10 - Age 11 Age 12
Age 9 585
Age 10 .560 634
Age 11 461 581 599
Age 12 516 547 577 644
Mean (sec.) 12.46 11.92 11.39 11.06 10.76
SD 1.05 90 82 74 75
Skewness .19 .65 91 67 .65
Kurtosis 1.03 46 1.37 .83 68

Table C.7

Parameter estimates (standard errors) of the best fitting srowth model for agility shuttle run;

Unspecified Curve. unequal error variances

Intercept Curve Factor Error
factor factor loading variance
Mean 12.45*%* - .536%* Age 8 - A81%*
(.073) (.062) (fixed) (.070)
Variance 637** .025% Age 9 1.00 297**
(.092) (.010) (fixed) (.039)
~ Covariance - .084** Age 10 1.97*+* 263%*
between factors (.027) (.175) (.032)
Age 11 2.61%* 208**
(.239) (.027)
Age 12 3.15%* 203%*
(.297) (.031)

Note. *significant at alpha level of .035; **significant at alpha level of .01.
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Endurance shuttle run.

Table C.8
Correlation coefficients and distributional statistics for endurance shuttle run
Age 8 Age9 Age 10 Age 11 Age 12
Age 9 631
Age 10 560 631
Age il 522 647 623
Age 12 521 .609 655 668
Mean (sec.) 43.93 42.00 40.55 39.46 38.32
SD 3.64 3.04 3.03 2.68 2.67
Skewness .89 .59 .86 .85 .66
Kurtosis 1.25 30 142 121 22

Table C.9

Parameter estimates (standard errors) of the best fitting growth model for endurance shuttle run:

Unspecified Curve. unequal error variances

Intercept Curve Factor Error
factor factor loading variance

Mean 43,93** - 1.92%* Age 8 - 5.40%*
(.253) (.203) (fixed) (.787)

Variance 7.95%* 350%* Age 9 1.00 2.91**
(1.10) (.138) (fixed) (.391)

Covarniance - 1.04** Age 10 1.77%% - 3.53%*
between factors (.328) ' (.142) (.409)
Age 11 2.33%+* 2.49%+*

(-189) (.317)

Age 12 2.92%% 2.07**

(.245) (351)

Note. *significant at alpha level of .05; **significant at alpha level of .01.
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30-yard dash.

Table C.10
Correlation coefficients and distributional statistics for 30-yard dash
Age 8 Age 9 Age 10 Age 11 Age 12
Age 9 635
Age 10 599 577
Agell 563 365 679
Age 12 617 .550 579 685
Mean (sec.) 521 493 475 465 4.50
SD 44 40 36 35 33
Skewness 59 .82 40 - .52 47
Kurtosis .90 1.21 21 .50 .03
Table C.11

Parameter estimates (standard errors) of the best fitting growth model for 30-yard dash: Unspecified

Curve. unequal error variances

Intercept Curve Factor Error

factor factor loading variance
Mean 5.21** - 275%+* Age 8 - 063**
(.030) (.026) (fixed) (.012)
Variance J125%* .005* Age9 1.00 069**
(.018) (.003) (fixed) (.008)
Covariance - .017** Age 10 1.68%* 051**
between factors (.006) (.13D) (.006)
Age 11 2.04%* 042%*
(.157) (.005)
Age 12 2.59*+* 035%*
(.202) (.006)

Note. *significant at alpha level of .05; **significant at alpha level of .01.
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Standing long jump.

Table C.12
Correlation coefficients and distributional statistics for standing long jump
Age 8 Age 9 Age 10 Age 11 Age 12
Age 9 751
Age 10 - 723 .826
Age 11 655 719 .800
Age 12 657 723 153 770
Mean (inch) 53.38 57.46 61.40 64.48 67.76
SD 7.56 7.61 7.21 6.49 6.91
Skewness -.76 -.62 -.58 -.39 -.25
Kurtosis 65 45 31 -.21 19

Table C.13

Parameter estimates (standard errors) of the best fitting growth model for standing long jump: Cubic,

equal error variances

Intercept Linear Quadratic Cubic Error
factor factor factor factor variance
Mean  53.36%* 4.52%%* - 344 .028 Age 8 7.89%
(.520) (.648) (.396) (.064) : (.772)
Variance = 48.79** 37.55%* 12 .44** 300** Age 9 7.89%*
(5.59) (9.91) 3.77 (.099) (.772)
- Age 10 7.89**
Covariance (.772)
between factors
Linear -2.49 Age 11 7.89%*
factor (5.11) (.772)
Quadratic = -2.76  -20.28%* Age12  7.89%*
factor (3.02) (5.92) (.772)
Cubic 613 2.91** - 1.90**
factor (483) (.920) (.604)

Note. *significant at alpha level of .05; **significant at alpha level of .01.
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Data Set 2
Table C.14
Correlation coefficients and distributional statistics for predictor variables
PR_ME NO AGE GRADE ME SESN ME_YR
AGE .065
GRADE - 112 391
ME-SESN -.003 -.176 -.433-
ME-YR 474 -.113 -.208 029
Mean 5.81 102.47 3.03 46 1977.5
SD 2.18 1.95 43 .50 5.89
Minimum 0 99 2 0 1968
Maximum 11 106 4 1 1992

Note. PR_ME_NO = the number of measurement before age 8.5 (initial time point), GRADE = grade at
age 8.5; AGE = age in months at age 8.5; ME_SESN = measurement season; ME_YR = measurement

year at age 8.3.




Flexed-arm-hang.

Table C.15

Correlation coefficients and distributional statistics for flexed-arm-hang
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Age 8.5 Age 9.5 Age 105 Age 11.5 Age 12.5
Age 9.5 815
Age 105 .746 .829
Age 11.5 721 .790 856
Age 125 623 .686 778 .856
Mean (sec.) 17.60 20.09 22.46 2371 2431
SD 13.85 14.86 15.69 16.42 16.71
‘Skewness 1.83 1.58 1.21 1.08 1.11
Kurtosis 3.82 2.98 1.25 .76 .95
Table C.16

Parameter estimates (standard errors) of the best fitting growth model for flexed-arm-hang: Quadratic,

equal error varnances

Intercept Linear Quadratic Error

factor factor factor variance

Mean 17.53%%* 3.10** - .349%* Age 8.5 32.74%*
(.963) (.558) (.130) (2.30)

Variance 159.09** 22.58%* 1.12%* Age 9.5 32.74%**
(18.78) (6.90) (.380) (2.30)

Age 10.5 32.74%%*
Covanance (2.30)

between factors

Linear 10.35 Age 11.5 32.74%*
factor (7.93) (2.30)

Quadratic -3.50% -4 08** Age 12.5 32.74%%*
factor (1.82) (1.53) (2.30)

Note. *significant at alpha level of .05; **significant at alpha level of .01.




Jump-and-reach.

Table C.17

Correlation coefficients and distributional statistics for jump-and-reach

Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 125
Age 9.5 .636
Age 10.5 614 715
Age 11.5 527 .649 755
Age 125 S18 587 631 691
Mean (inch) 9.80 10.90 11.98 12.81 14.01
SD 1.90 1.83 1.85 1.88 2.31
Skewness 02 - 01 - 20 - 23 10
Kurtosis 17 -.20 01 -.12 .02

Table C.18

Parameter estimates. (standard errors) of the best fitting growth model for jump-and-reach: Linear,

unequal error variances

Intercept Linear factor Error

factor variance
Mean 0 85** 1.02%* Age 8.5 1.48%*
(.122) (.034) (214)
Variance 2.23%* 087** Age 9.5 1.04%+*
(.308) (.026) (.136)
Covariance -.038 Age 10.5 860**
between factors (.068) (.114)
Age11.5 .886**
(.132)
Age 125 2.01**
(.269)

Note. *significant at alpha level of .05; **significant at alpha level of .01.
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Sit-and-reach.

Table C.19
Correlation coefficients and distributional statistics for sit-and-reach
Age 8.5 Age9.5 Age 10.5 Age 11.5 Age 12.5
Age 9.5 797
Age 10.5 780 .836
Age 115 760 .790 828 .
Age 12.5 704 764 775 .844
Mean (inch) 7.96 7.59 7.38 7.24 7.18
SD 2.17 2.26 2.33 248 2.52
Skewness -.30 -.34 - 43 -.45 - .29
Kurtosis 10 -.03 .52 -.10 .00

Table C.20

Parameter estimates (standard errors) of the best fitting growth model for sit-and-reach: Linear, equal

€ITOr variances

Intercept Linear factor Error

factor variance
Mean 7.86%* - 192** Age 8.5 972%*
(.149) (.030) (.056)
Variance 3.93** 09]** Age 9.5 972%*
(.449) (.020) (.056)
Covariance .027 Age 10.5 972**
between factors (.067) (.056)
Age 1l.5 972%*
(.056)
Age 125 972%*
(.056)

Note. *significant at alpha level of .05; **significant at alpha level of .01.
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Agility shuttle run.

Table C.21
Correlation coefficients and distributional statistics for agility shuttle run
Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 12.5
Age 9.5 .603
Age 10.5 599 .654
Age 11.5 .650 615 701 .
Age 12.5 526 596 590 753
Mean (sec.) 12.14 11.59 11.19 10.88 '10.56
SD 1.00 .80 .86 76 72
Skewness 1.07 41 .66 .80 47
Kurtosis 1.95 -.07 78 18 .06
Table C.22

Parameter estimates (standard errors) of the best fitting growth model for agility shuttle run:

Unspecified Curve, unequal error vanances

Intercept Curve Factor Error
factor factor loading variance

Mean 12.14%* - 552%%* Age 8.5 - 368**
(.069) (.056) (fixed) (.057)

Variance 601%* .029%* Age 9.5 1.00 249%*
(.084) (.011) (fixed) (.032)

Covariance -.075 Age 10.5 1.70%* 278**
between factors (.025) (.137) (.032)
Age 11.5 2.28%* 131

(.180) - (.019)

Age 125 2.86** 143%*

(.236) (.024)

Note. *significant at alpha level of .03; **significant at alpha level of .01.
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Endurance shuttle run.

Table C.23

Correlation coefficients and distributional statistics for endurance shuttle run

Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 125
Age 9.5 710
Age 10.5 .685 127
Age 11.5 590 579 .686 -
Age 125 550 537 678 720
Mean (sec.) 42.86 41.26 39.97 38.94 37.64
SD 3.35 3.22 2.90 281 2.54
Skewness .99 57 75 .93 .62
Kurtosis 1.47 02 28 1.34 47

Table C.24

Parameter estimates (standard errors) of the best fitting growth model for endurance shuttle run; Linear,

unequal error variances

Intercept Linear factor - Error
factor variance

Mean 42.67** - 1.27** Age 8.5 2.97**
(.227) (.050) (.520)

Variance 8.74%* 293%* Age 9.5 3.33%*
(1.05) (.057) (.422)

Covariance - 1.03*#* Age 105 2.24%%,
between factors (.203) (.280)
Age 11.5 2.61**

(.319)

Age 125 1.33%*

(.319)

Note. *significant at alpha level of .05; **significant at alpha level of .01.




30-yard dash.

Table C.25

Correlation coefficients and distributional statistics for 30-vard dash

Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 125
Age 95 120 -
Age 10.5 693 719
Age 11.5 649 664 668
Age 125 620 579 376 : 651
Mean (sec.) 5.06 4.88 473 456 4.44
SD 41 41 37 35 34
Skewness .84 .80 57 .68 .30
Kurtosis 1.13 74 82 .47 -.13

Table C.26

Parameter estimates (standard errors) of the best fitting growth model for 30-yard dash: Linear, equal

eITor variances

Intercept Linear factor Error
factor variance

Mean 5.05%* - 156%* Age 8.5 045%*
(.028) (.006) (.003)

Variance 132%* .002** Age 9.5 045%*

: (.016) (.001) (.003)
Covariance - .011%* Age 10.5 045%*
between factors (.003) (.003)
Age 115 045%*

(.003)

Age 12.5 045%*

(.003)

Note. *significant at alpha level of .05; **significant at alpha level of .01.
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Standing long jump.

Table C.27
Correlation coefficients and distributional statistics for standing long jump
Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 125
Age 9.5 833
Age 10.5 77 .836
Age 11.5 692 716 749
Age 125 .634 .684 681 694
Mean (inch) 55.44 59.29 62.47 66.01 69.42
SD 7.10 7.33 7.16 730 7.17
Skewness -.51 -.35 -.13 - .47 -.21
Kurtosis 27 -.21 -.33 .39 - .42

Table C.28

Parameter estimates (standard errors) of the best fitting growth model for standing long jump: Linear,

unequal error variances

Intercept Linear factor Error
factor variance
Mean 55 50+ 3.47%* Age 8.5 8.44%*
(.503) (.100) (1.60)
Variance 45.96%* 838** . Age 9.5 8.51**
(5.14) (.236) (1.20)
Covariance -2.66%* Age 10.5 10.30%*
between factors (.826) (1.30)
Age 11.5 15.93**
(1.95)
Age 125 16.53**
(2.47)

Note. *significant at alpha level of .05; **significant at alpha level of .01.

163



164

ysep paed-o¢ = SV ‘dwinf uoy Sutpuess = 1§ ‘yorar-pue-dwinf = Yy 30N

€€’ 169 80C |s¢ 6v'9  S8'1 [9¢ 1L 681 [ob 9L 181 | 9¢'L  8L'1 as
0S¥ 9L'LY OV'El | S9Y 8Y'p9 EETI |SLY  Ov19 S8SII | €6b 9b’LS PEO1 | 1TS 8€°ES W6 uBoN
001 9°- 65 - [69 bS - 96 - [g¢ IS- 1s- [s¢§ 1S- 8- (79 6v' - 9v'- HSVA
001 1L 6S - LL v9° 8¢ - L 9 6y’ - L $9° LS - 99 IS (1S ZI 9V
001 |¥S - 6% oL 8 - 09 v9° or - 5 09’ 8y’ - €< 6t VI
00'1 09°- 8S - |89 §¢'- 0§ - |LS 8y’ - 6b - |9¢ Lv'- 1¥'- HSVd
001 T |9sT- 0% 9 9 - L 99’ €S- 99 s 1S [193V
001 [8'- 89 69° €y - S¢ 9 Ly - S s uvI
001 LS - 6 - |8S v - vS - (09 9¢'- €b' - HSVd
001 €9 - £8° S9° vs - W £’ 1S 0193y
001 |6 -  ¥¢ 99’ 0s -  <¢ s v
001 1S- 6 - [ vy 6V’ -  vg-  HSVA:
00T LY 6S - SL g6 1S 6 38V
001 |[#S - b9 65 Ve
001 L9 - ¢S -  HSvd
001 €9 (1S g3y
00’1 VI
HSVA (1S ¥V |HSVA [1S ¥V( |[HSVA [1S VI |HSVA (1S 4Vl |HSVA [1S  uvr
71 93y 1198V 01 93V 6 93V § 98y

syurod swiny [[e SS010® HSVA PUC [[1S A VI 943 J0F SONSTIEIS 9ANdII05p PUE SUSIOIJ300 UONTE[31I07)

6C D 2IqeL

THSVA T'TS AVL) 390, 10] SINSHTIS 9ABALISa(Q

SINSoY 9IBLICAN N

RENLEG



165

"UNU S[1INYS OUBINPUD = YST ‘Ysep pIed-0¢ = HSV{ ‘yoral-pue-iis = Yy'S ‘dwnl Suof Suipuess = {7 Buey-uLre-poxay - HV 910N

9T €€ 15T 169 ELSt | 89T € ver 69 €Il | g0 oF wr 1L st | kot o orT 19t vt | vt e 62T 9L Ol as
weE o5 689 SULy  16EL | oveL  s9v e vy oIl | ssop sew €L o1 ST | 00Ty €6 oL ovis  6L6l | t6tr 1T 68L  8CES  vool ool
01 €9 €- 9. W |19 o FU- 8- 8¢ | 99 w5 [ZARTINE < <O AR I I st 9. w- | 8¢ 8T-  Ig- og- usa
001 s - o | oo 3 P AT TR - s 8¢ we- - o s e e et | 23 €. er-  0g- HSVa
01 v 14 sT- o8- 18 $C w 6U- U oW S L w- e wooe w or-  si- v v o yvs T8V
0% - 68 Ve LW o ¢ 8- W w© 5 b wow I W s w9y i 1S
o0t |- - 0C_ S¥ 08’ s€- e A w e - 6T iy w 8- SU- be be 59" 1nvi
001 ’s st 0 o | st g g | sy € sve 15 see |2 s oe- - ow- us3
001 st- 0y - | 89 8- s 8- |y s 6. w-  oU- | e 9§’ 6l'- - ST- Hsvd
0w o €. - g s¢ w AT 3 4 08 0f v 8- L W oF w Vs TIEEV
01t 1§ 9 € 0% ¢ w- oo o w 8¢ 6 - €S- w 99" o€’ s
) o0l | e ge- 1w o 6 o - - € 60 w €. su- 9T s £ Hvd
001 % T- - see | €9 o R TR Lo I s sT- - 0f- usa
001 6t-  Ls- see |08 86" we ok 0g- | 09" €- 9+ lge-. Hsva
01 L€ s8I ©w- s 98 € sl w- o o8 w© i §vs  Or3EY
T o R 8 €« $¢- vge w w ot 1S
00t - el- € €€ vs W 8- v £ o Hv4
001 68 st 9. w- | vs' 6T- €5~ ov- ¥sa
00t or-  is- €6 | o vy’ BU- - 8T fisva
00T $C w - or- W ve w avs 638V
001 € 9 65 WS e 1S
001 |ov- - o 6T 8 HVA
0l sy sr-  0y-  IC- ¥sa
001 AR SR ' A Hsva
001 w 14 uvs g3y
Tl 18
001 HVd
¥Sd HSVd YVS 1S Hvd | ¥s3  Hsva  ¥vs 1S Hv4 | ¥s3  HSVQ  WVS IS Hvd | ¥S3  HSVYA  WYS (1§ Hv4 | ¥s3  HSVAd  ¥VS (1S HVd
sy T8y K 538V §Y

Sjutod SUIT [[E SSOIDOE S pue HSVA 0VS IS V. 90 10] SONSTIEIs ATIISsaD PUE SJUSII]ja09 UOE[a110))
0€' D °IqeL

TUST "HSVA UVS TS "HVA) LAY 10J0IAL, 10J S3Us1E)s 2AndLIsaq




166

ysep pred-g¢ = HSV SUTU S[1nys 20UBINpUD = YSH ‘Uit opInys L[13e = YSV 910N

143 14X 35 18 9L LY 06T 98 84 e 0% 84 gee 001 as
vy v9'LE 9§01 | 95V b6'8€ 8801 | ELY L6'6E 6111 |88V 9’1y 6511 [ 90°S 98'Ty 1Tl UBIN
001 89’ Ly 123 123 09 8¢S’ 59 ov 8s’ 8y 4 9 4 0s’ HSVd
001 ¥ S9 (4% 172 99 89’ 122 £s 129 99 39 99 99 ASH ST 93V
001 | bS 12 SL 143 9 6s 9¢ 124 09 13 54 €S ASY
00T 6% (2 LY LS 9¢ 99 0s 9¢ §9’ ov 8y’ HSVd
001 SL 139 69 19 5% 8¢ 9¢ 9¢ 6S 6S dsd SIT98Y
00’1 165 vL oL 0S5 £9 9 9 09 s9 ASV
00°1 sy 89’ 6 3% 9¢ 6y 8S 0s’ HSVA
001 0% 29 €L oL (4 69’ v9 ASH §0T93V
001 {65 2] S9 143 65 09 ASY
001 . 99 I L 123 (4% HSVd
: 001 6L 65 I 99 ST $698Y
00T |9¢ 19° 09 ASY
00'1 99’ §9 HSVd
00T 9L ASH T8V
001 ASY
HSVAd dSd YSV |HSvVA ¥ST USY |[HSVA ¥USH USY [HSVA dSd  ASY |HSVA dUSd  ASV
¢C193Y ¢TI 93V ¢01 9%V $'6 99V ¢33y

STITOd 3T [[€ SSOIOE SV PUE [11S "dV[ 94} 10§ SONSTES 9ATIAIIOSIP PUE SJUSIOLFI0d UOLE[ILIO)

1€ °1q9eL

THSVJ USH USY) Uiy, 10) sojpwiysa 19)uitaed pus so1sne)s 9ANdLIdSI(Q

s erd




167

‘PANILIO 3l SIOLII PAJL[ALIO]) "SanjRA PIzZIplepue)s ale Saljeyl ul slaquinu Y J, "9lON

umy,, 10J [2pou $10308j-J0-2AINY) “T°0) dINTI ]

o't or 00 89T ' 0 1571 8 N rd 0 vl'e

kk&kgg [ L PFF

HSVA AUSd USV  HSVA YUSd USV HSVA dSd ASV  HSVA YSd ™SV HSVA YSd USV

EQ / | \m%. me xw /a " \N.Q. ./z . \z

0 ”oo:mca>\v< C 44// 6S° 10UBLIBA
9p" - UBIN , 90°Z1 UBdN

8¢ -




168

‘ysep piek-o¢ = HSv -dwnf Juoy Suipuels = [7]S ‘yoeor-pue-dun( = Yy "N

127 LT'L 18T | SY 0¢'L 881 |LE 91'L 81 |1V €eL €81 | I 01'L 06’1 as
144 w69 10v1 | 9SY 1099 18°T1 | €LY LY'T9 8611 |88 6265 0601 [ 90°¢ py'sS 086 UBIN
00'1 69°- 89 - |9 9¢" - 719 - | 8¢ ¢ - £S5 - | 8¢ LS - 8V - | TY vs' - Ly - HSVA
00t LU IS oL ) LS - 89 (4 Is - 89’ 9% 0s - €9 99 [1S STI93Y
00l [0S - 53 69 16 - €S . €9 eV - 143 8¢ Sy - oy 43 AVI
00'l €9 - 19 - | LY LS - £S5 - |99 09'- S - |59 ¢s'- - HSVd .
001 ¥9 v9 - SL 99 65 - [4A 09 LS - 69 9¢ s ST193Y
00t 129 - [ 9L €S - 19 §9 bs - 143 £ AUVI
00'T oL - 9 - |TL 9 - 86 - |69 €9'- 1$°- HSVd
00T LY 8¢ - 12:3 19’ 6$ - 8L 9¢’ 1S SO19%V
001 TS - v9 L §¢ - 09 19° - ™AVl
001 9 - SS - (T 8¢’ - 8y’ - HSvd
00t LY 122 €8 6s 1S $693Y
001 | ¢S - 59 v9 VS
001 ¢9'- ¢ - -HSvd
00T €9 1S S8V
001 vl
HSVd 1S 4Vl |HSvd (1S dYf |HSVA . (1S ¥Vl |HSVA [1IS ¥Vl | HSVd IR\ 4
g1 98y ¢1199Y $01 93V ¢6 93V g8 3%y

STaTod BT []¢ SSOIOE S VA PUB 1S d VI 243 10J SONSTIEIS 9ATIAIIISIP PUE SJU9IO1}J300 UOLLILIO)

(4RO RLAY

THSVA 'T'1S U VL) «19M0J,, 10§ S3jeUIlIsy Tajoweied pue sasye)s aAndLseq




Table C.33
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Parameter estimates of the 5-factor model with correlated errors and the equality of factor loadings over

time for “Power”

Standardized factor loading Correlations of factors between time points
Time Variables Loading Age85 Age95 Agel05 Agell5S Agel2s

JAR 7

Age 8.5 SLJ .84 1.00 92 90 .84 77
DASH - .68
JAR .81

Age 9.5 SLJ .84 1.00 .93 .93 78
DASH - .68
JAR .82

Age 10.5 SLJ .84 1.00 .94 .80
DASH -7
JAR .80

Age 11.5 SLJ .82 1.00 .85
DASH -.75
JAR - 78

Age 12.5 SLJ .90 1.00
DASH - .81

Note. Correlated errors are omitted. All estimates were significant at an alpha level of .01.
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Table C.35

Parameter estimatés of the 5-factor model with correlated errors and the equalitv of factor loadings over

time for “Motor Ability”

Standardized factor loading Correlations of factors between time points

Time Variables Loading Age85 Age95 Agel05 AgellS Agel2s

" FAH A7
SLJ .86

Age 8.5 SAR 43 1.00 94 .90 87 .76
DASH - 77
ESR -73
FAH .46

SLJ .85 .

Age 9.5 SAR 41 1.00 93 92 .80
: DASH -.76
ESR -.74
FAH 44
SLJ 86

Age 10.5 SAR .39 1.00 92 79
DASH -.82
ESR -.79
FAH .39
SLJ .80

Age 115 SAR 34 1.00 .88
DASH -.78
ESR - 74
FAH 40
SLJ 82

Age 12.5 SAR 34 1.00
DASH -84
ESR -.83

Note. Correlated errors are omitted. All estimates were significant at an alpha level of .01.
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Appendix D: Descriptive Statistics and Parameter Estimates for Generated Data Sets

Table D.1

Condition Al: rj; = 0, true reliability = .65 ~ .75

Correlation coefficients and distributional statistics for the data set of condition Al

_ Time 1 Time 2 Time 3 Time 4 Time 5
Time 2 686
Time 3 651 741
Time 4 1606 707 744
Time 5 547 668 719 740
Mean 9426 10.420 11414 12.408 13.402
SD 1.796 1.704 1.800 1.940 2.110
Condition A2: r;, = - .30, true reliability = .65 ~ .75
Table D.2

Correlation coefficients and distributional statistics for the data set of condition A2

Time 1 Time 2 Time 3 Time 4 Time 5
Time 2 686
Time 3 .638 137
Time 4 564 691 139
Time 5 485 623 .693 138
Mean 9.426 10.420 11.414 12.408 13.402
SD 1.787 1.583 1.593 1.662

1775
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Table D.3
Parameter estimates (standard errors) of the Linear model for the data set of condition A2
Intercept Linear factor Error
factor variance
Mean 0.426** 994 ** Age 8 1.128%*
(.023) (:006) (.033)
Variance 2.08]1** 085%* Age9 605%*
: (.053) (.004) . (.018)
Covariance - .132%* Age10  .631%*
between factors (12.158) - (.016)
Age 11 .683%%*
(.019)
Age 12 780%*
(.027)

Note. *significant at alpha level of .05; **significant at alpha level of .01.

Table D4

Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition A2

Parameter Time 1 Time 2 Time 3 Time 4 Time 5
B : T10%* 916** 954%+* 984 **
(.011) (014) (.013) (014)
Standardized B 821 911 921 907
Factor mean 9.426** 3.725%* 1.866** 1.523** 1.198**
(.025) (.109) (.147) (.152) (.171)
Error variance of the 2.732%%* 665** 350** 336%* A45Q%*
factor (.068) (.033) (.023) (.023) (.039)
Error variance of the A462%* A462** AT3** 548** 548%**
observed variable (.023) (.023) (.019) (.022) (.022)

Note. All parameter estimates were significant at an alpha level of .05. B = regression coefficient

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on.
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Condition A3: r;; = - .60, true reliability = .65 ~ .75

Correlation coefficients and distributional statistics for the data set of condition A3

Time 1 Time 2 Time 3 Time 4 Time 5
Time 2 690
Time 3 644 .726
Time 4 553 .669 727
Time 5 447 .570 .664 734
Mean 9426 10.420 11.414 12.408 13.402
SD 1.779 1.484 1.366 1.323 1.379
Table D.6

Parameter estimates (standard errors) of the Linear model for the data set of condition A3 -

Intercept Linear factor Error

factor variance

Mean 0.426** 994 ** Age 8 1.095**
(.022) (.005) (.031)

Variance 2.048** 083** Age 9 558%*
(.051) (.003) (.016)

Covariance - 245%* Age 10 473%*
between factors (01D (.012)
Age 11 A43]1%*
(.012)

Age 12 466%*
(.018)

Note. *significant at alpha level of .035; **significant at alpha level of .01.
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Table D.7

Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition A3

Parameter Time 1 Time 2 Time 3 Time 4 Time 5
B 669** 843** 862*+* 927**
(.010) (.013) (.013) (014)
Standardized 8 .832 902 .889 .882
Factor mean 9.426** 4.1]12%* 2.635%* 2.570%* 1.901**
(.025) (.100) (.137) (.144) (.169)
Error variance of the 2.722%* 541%** 287** .303** . 353%*
factor (.067) (.028) (.018) (.017) (.026)
Error variance of the 443** - 443%* 320%* 307* 307%*
observed variable (.021) (.021) (015) -(.015) (.015)

Note. All parameter estimates were significant at an alpha level of .05. B = regression coefficient

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on.

Condition B1: r;; = 0, true reliability = .40 ~ .50

Table D.8

Correlation coefficients and distributional statistics for the data set of condition Bl

Time 1 Time 2 Time 3 Time 4 Time 5
Time 2 443
Time 3 409 495
Time 4 353 462 498
Time 5 302 406 454 491
Mean 9.426 10.420 11.414 12.408 13.402

SD 2278 1.937 1.952 2.036 2171
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Table D.9
Parameter estimates (standard errors) of the Linear model for the data set of condition Bl
Intercept Linear factor Error
factor . variance
"~ Mean 9.426** 994 ** Age 8 3.095%*
' (.027) (.008) (.083)
Variance 2.129%** .093** Age9 1.833**
(.077) (.008) (.049)
Covanance -.153%* Age 10 1.896%*
between factors (.020) (.047)
Age 11 2.057**
(.052)
Age 12 2.363%*
(.072)

Note. *significant at alpha level of .05; **significant at alpha level of .01.

Table D.10

Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition Bl

Parameter Time 1 Time 2 Time 3 Time 4 Time 5
B 552%+* 901 ** 042** J952**
(.016) (.029) (.025) (.026)
Standardized 3 117 .898 .908 832
Factor mean 9 426%* 5.213%* 2.023%%* 1.653** 1.584**
(.032) (157 (.301) (.292) (.320)
Error vanance of the 3.543** 1.023** 409%* 300%* 770**
factor (.122) (.069) (.055) (.057) (.100)
Error variance of the 1.648** 1.648** 1.691** 1.865%* 1.865%*
observed variable (.064) (.064) (.035) (.064) - (.064)

Note. All parameter estimates were significant at an alpha level of .05. B = regression coefficient

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on.

Note. The statistics for Condition B2 are not presented because it is identical to those of Condition A2.
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|
|
\
|
Condition B3: r;; = 0, true reliability = .90 ~ .95

Table D.11
Correlation coefficients and distributional statistics for the data set of condition B3
Time 1 Time 2 Time 3 Time 4 Time 5
Time 2 .906
Time 3 846 931
Time 4 755 374 932
Time 5 650 794 .883 935
Mean 9.426 10.420 11.414 12.408 13.402
SD 1.52 1.41 1.42 1.48 1.58

Table D.12
Parameter estimates (standard errors) of the Linear model for the data set of condition B3
Intercept Linear factor Error
factor variance
Mean 9.426** 994 ** Age 8 236%*
(.021) (.004) (.008)
Variance 2.061** 082 Age9 094**
(.043) (.002) (.003)
Covariance - ]23%* Age 10 . 100**
between factors (.007) (.003)
Age 11 107**
(.003)
Age 12~ 127**
(.006)

Note. *significant at alpha level of .03; **significant at alpha level of .01.




Table D.13 ,
Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition B3

Parameter Time 1 Time 2 Time 3 Time 4 Time 5

B 844%* 937** 975+ 1.016**
(.006) (.006) (.006) (.006)
Standardized 3 .908 .933 939 946
Factor mean 9 426** 2.462%* 1.647** 1.278** 799%*
(.021) (.056) (.060) (.066) (.072)
Error variance of the 2.292%** .346%* 257** 254%* 260%*
factor (.046) (.011) (.008) - (.008) (.010).
Error variance of the .006 .006 .005 L027** 027**
observed variable (.005) (.005) (.004) (.004) (.004)

Note. All parameter estimates were significant at an alpha level of .05. B = regression coefficient

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on.
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Note. The statistics for Condition C1 are not presented because it is identical to those of Condition A2.

Condition C2: r;, = 0, r. = .10 between all time points, true reliability = .65 ~ .75

Table D.14

Correlation coefficients and distributional statistics for the data set of condition C2

Time 1 Time 2 Time 3 Time 4 Time 5
Time 2 708
Time 3 671 154
Time 4 .600 106 759
Time 5 520 .640 126 761
Mean 9.426 10.420 11.414 12.408 13.402

SD 1.773 1.567 1.588 1.643 1.767




Table D.15
Parameter estimates (standard errors) of the Linear model for the data set of condition C2
Intercept Linear factor Error
factor variance
Mean 9.426** 994 %* Age 8 1.010%+*
(.023) (.006) (.030)
Variance 2.096%* 082%* Age 9 574%+
(.052) (.003) (.017)
Covariance - 124%** : Age 10 561**
between factors (.010) (.015)
Age 11 - .617**
(.017)
Age 12 69T7**
(.023)

Note. *significant at alpha level of .05; **significant at alpha level of .01.

Table D.16

Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition C2

Parameter Time 1 Time 2 Time 3 Time 4 Time 5
B J733%* 945%* 942%%* | 1.008**

(.011) (.013) (.012) (.013)

Standardized B .830 918 925 922
Factor mean 9.426%** 3.5]2%%* 1.570** 1.659%* .900**
(.025) (.105) (.140) (.141) (.162)
Error variance of the 2.686** 556** 335%# 315** 301%**
factor (.066) (.030) (.022) (.021) (.035)
Error variance of the 458** A58%* 404** 504%* 504**
observed variable (.021) (.021) (.018) (.020) (.020)

Note. All parameter estimates were significant at an alpha level of .05. B = regression coefficient

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on.

179




Condition C3: r;, = 0, r. =.10 between last two time points, true reliability = .65 ~ .75

Table D.17

Correlation coefficients and distributional statistics for the data set of condition C3

Time 1 Time 2 Time 3 Time 4 Time 5
Time 2 .690
Time 3 .635 735
Time 4 575 691 745
Time 5 488 .624 .700 765
Mean 9.426 10.420 11.414 12.408 13.402
SD 1.772 1.593 1.595 1.667 1.795

Table D.18
Parameter estimates (standard errors) of the Linear model for the data set of condition C3
Intercept Linear factor Error
factor variance
Mean 9.426%* 904 ** - Age 8 1.070%*
(.023) (.006) (.032)
Variance 2.077** 093** Age 9 .626**
(.052) (.004) (.018)
Covariance - 132%* Age 10 .644%*
between factors (.011) (.016)
Age 11 623**
(.018)
Age 12 J120%*
(.026)

Note. *significant at alpha level of .05; **significant at alpha level of .01.
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Table D.19

Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition C3

Parameter Time 1 Time 2 Time 3 Time 4 Time 5
B 129+ 906+ .963*# .092%*
(.012) (014) (.013) (.013)
Standardized B 828 .906 913 908
Factor mean 9.426** 3.552%%* 1.972%* 1.416** 1.095%*
(.025) (.112) (.146) (.162)
Error variance of the 2.674%** 653%* 369** 385%* A480%*
factor (.067) (.034) (.024) (.038)
Error variance of the A466** 466** AT4** A4T2** AT2¥*
observed variable (.023) (.023) (.019) (.021)

Note. All parameter estimates were significant at an alpha level of .05. B = regression coefficient

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on.

Condition C4: r;; =0, r... = .30 between all time points, true reliability = .65 ~ .75

Table D.20

Correlation coefficients and distributional statistics for the data set of condition C4

Time 1 Time 2 Time 3 Time 4 Time 5
Time 2 170
Time 3 129 .809
Time 4 - .657 157 .806
Time 5 .583 698 174 818
Mean 9.426 10.420 11.414 12.408 13.402
SD 1.776 1.592 1.579 1.645 1.764
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Table D.21
Parameter estimates (standard errors) of the Linear model for the data set of condition C4
Intercept Linear factor Error
factor : variance
Mean 9.426%* 994 %* Age 8 B12%*
(.023) (.005) (.024)
Variance 2.287%+ 082%x Age 9 A448**
(.034) (.003) (.013)
Covariance - 131%% Age 10 A433%*
between factors (.010) ' - (01D
Age 11 A8 1**
(.013)
Age 12 S519%*
(.020)

Note. *significant at alpha level of .05; **significant at alpha level of .01.

Table D.22
Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition C4
Parameter © Timel Time 2 Time 3 Time 4 Time 5
B TT2%% 928%** 954** 1.015**
(.010) (.011) (.010) (.011)
Standardized 3 874 . 927 927 937
Factor mean 9.426%* 3.147** 1.743%* 1.518%% S13%*
(.025) (.092) (.113) (.121) (.135)
Error variance of the 2.822%* S510%#* 312** 330** 338**
factor (.063) (.026) (.018) (.018) (.028)
Error variance of the 333%* 333%% 287** 366%** 366**
observed variable (.017) (.017) (.014) (.015) (.015)

Note. All parameter estimates were significant at an alpha level of .05. B = regression coefficient

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on.




Condition C5: rj; = 0, r.. = .30 between last two time points, true reliability = .65 ~ .75

Table D.23

Correlation coefficients and distributional statistics for the data set of condition C5

Time 1 Time 2 Time 3 Time 4 Time 5
Time 2 684
Time 3 .640 729
Time 4 572 681 729
Time 5 496 612 .693 - 812
Mean 9426 10.420 11.414 12.408 13.402
SD 1.789 1.574 1.572 1.635 1.762
Table D.24

Parameter estimates (standard errors) of the Linear model for the data set of condition C5

Intercept Linear factor Error

factor variance

Mean 9.426%* 994 ** Age 8 1.084%*
(.023) (.006) (.032)

Variance 2.070%* .108** Age9 637**
(.052) (.004) (.018)

Covariance - . 155%% Age 10 - .682%*
between factors (.01D) (.017)
Age 11 520k
. (015)

Age 12 Sl6**
(.022)

Note. *significant at alpha level of .05; **significant at alpha level of .01.
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Table D.25
Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition C3
Parameter Time 1 Time 2 Time 3 Time 4 " Time 5
B T16** 922 %* .948** 1.000**
' (.012) (.014) (.014) (.012)
Standardized 837 916 875 918
Factor mean . 9.426%+ 3.674** 1.807** 1.583%* 994 **
(.025) (.110) (.150) (.156) (.149)
Error variance of the 2.691** 588** 319%* 548%* A434%*
factor (.068) (.032) (.023) (.025) (.036)
Error variance of the S510** S510** 481%* 334%** 334%*
observed variable (.023) (.023) (.020) (.019) (.019)

Note. All parameter estimates were significant at an alpha level of .05. B = regression coefficient

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on.
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