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Abstract 

There are four purposes to this study. The first is to introduce Latent Growth Models (LGM) to 

Human Kinetics researchers. The second is to examine the merits and practical problems of LGM in the 

analysis of longitudinal physical performance data. The third purpose is to examine the developmental 

patterns of children's physical performances. The fourth purpose is to compare the capacity of the two 

most widely used longitudinal factor models, L G M and a quasi-simplex model, to accurately estimate 

reliability for longitudinal data under various conditions. In study 1, the first, second and third purposes 

of the study were accomplished, and in study 2, the fourth purpose was accomplished. 

In study 1, two longitudinal data sets were obtained, however, only one set was deemed 

appropriate for subsequent analyses. The data included seven physical performance variables, measured 

at five time points, from 210 children aged eight to twelve years, and five predictor variables of physical 

performances. The univariate L G M analyses revealed that the children's individual development over a 

5-year period was adequately explained by either a Linear (jump-and-reach and sit-and-reach), 

Quadratic (flexed-arm hang), Cubic (standing long jump) or Unspecified Curve model (agility shuttle 

run, endurance shuttle run and 30-yard dash). The children improved in their physical performances 

between ages 8 and 12 except for flexibility, in which children's performance declined over time. 

Children showed considerable variations in the developmental rate and patterns of physical 

performances. Among the predictor variables, the test practice (the number of previous testing sessions) 

and age in months showed positive effects on the children's performance at the initial time point. A 

negative test practice effect on the development in physical performance was also found. The effect of 

other predictor variables varied for different performance variables. The multivariate analyses showed 

that the factor structure of three hypothesized factors, "Run", "Power" and "Motor Ability", holds at all 

five time points. However, only the change in the "Run" factor was adequately explained by the 

Unspecified Curve model. There were significant test practice, age, measured season and measured year 

effects on the performance at the initial time of testing, and significant test practice and measured year 

effects on the curve factor. The cross-validation procedure generally supported these findings. It was 

concluded that a L G M has several merits over traditional methods in the analysis of change in that a 

L G M provides an individual level of analysis, and thus allows one to test various research questions 

regarding the predictors of change, measurement error, and multivariate change. Additionally, it 

requires less strict statistical assumptions than traditional methods. Because of the merits of the LGM 

analysis used here, this study provided some interesting findings regarding children's development of 

physical performances— findings that were not detectable in previous studies because of the use of 

traditional statistical analyses. The difficulty in comparing non-nested models, and the unknown 

relationship between the change in indicator variables and the change in the factor in the analysis of 

multivariate "curve-of-factors" model were discussed as practical problems in the application of LGM. 

In study 2, several longimdinal developmental data sets with known parameters under various 



conditions were generated by computer. The conditions were varied by the magnitude of correlations 

between initial status and change, the magnitude of reliability, and the magnitude of correlated errors 

between time points. The data were analyzed using two models, a LGM and a simplex model, and the 

estimated reliability coefficients were compared. The simplex model overestimated the reliability in all 

conditions, while the L G M provided relatively accurate reliability estimates in almost all conditions. 

Neither the magnitude of correlation between the initial status and change nor the magnitude of 

reliability affected the reliability estimation, while the correlated errors leaded to an overestimation of 

reliability for both models. On the other hand, the magnitude of reliability showed a negative effect on 

the goodness-of-fit of the simplex model. It was concluded that a LGM, rather than the often used 

simplex model, be used for reliability analyses of longitudinal data. 



T A B L E OF CONTENTS 

Abstract 
Table of Contents 
List of Tables 
List of Figures 
Glossary of Abbreviations 
Acknowledgment 

CHAPTER I. INTRODUCTION 

Introduction 
The Purposes of the Study 

STUDY 1. THE ANALYSIS OF LONGITUDINAL PHYSICAL 
PERFORMANCE DATA 

STUDY 1-CHAPTER II. LITERATURE REVIEW 

Analysis of Change and Latent Growth Models 
Relative Methods and Limitations 
Latent Growth Model 

Development of Physical Performance 
Physical Performance Tests 
The Development of Children's Physical Performance 
The Factor Structure of Physical Performance 

STUDY 1-CHAPTER III. METHODOLOGY 

The Data 

Data Analyses 
Univariate L G M 

Descriptive statistics 
Identification of the best fitting growth curve 
Predictor effects 
Pseudo cross-validation 

Multivariate L G M 
Descriptive statistics 

Verification of the factor structure 
Identification of the best growth curve 
Predictor effects 
Pseudo cross-validation 

Estimation of LGMs 

Model Evaluation 



V 

STUDY 1-CHAPTER IV. RESULTS 42 

Univariate Latent Growth Models for Motor Performances 42 
Flexed-Arm Hang (FAH) 42 

Descriptive Statistics 42 
Identification of the Best Fitting Growth Curve 42 
Predictor Effects 46 

Six Other Physical Performance Variables 48 
Descriptive Statistics 48 
Identification of the Best Fitting Growth Curve 50 
Predictor Effects 54 

Pseudo Cross-validation 56 
Descriptive Statistics 56 
Identification of the Best Fitting Growth Curve 58 
Parameter Estimates of the Best Fitting Growth Models 60 
Predictor Effects 61 

Discussion of the Development of Physical Performance 63 

Multivariate Latent Growth Models for Physical Performances 65 
Run 65 

Descriptive Statistics 65 
Verification of the Factor Structure 65 
Identification of the Best Fitting Growth Curve 68 
Predictor Effects 70 

Power 72 
Descriptive Statistics 72 
Verification of the Factor Structure 72 
Identification of the Best Fitting Growth Curve 74 

Motor Ability 76 
Descriptive Statistics 76 
Verification of the Factor Structure 76 
Identification of the Best Fitting Growth Curve 79 

Pseudo Cross-validation 79 
Descriptive Statistics 79 
Verification of Factor Structure 79 
Identification of the Best Fitting Growth Curve 
and Predictor Effects 82 

Discussion of the Multivariate Development of Physical Performance 84 

STUDY 1-CHAPTER V. DISCUSSION 88 

Merits of Latent Growth Models 8 8 

Problems of Using Latent Growth Models 9 2 

STUDY 2. COMPARING THE LATENT GROWTH MODEL AND 
QUASI-SIMPLEX MODEL IN THE ESTIMATION OF 
LONGITUDINAL RELIABILITY 94 



STUDY 2-CHAPTERII. LITERATURE REVIEW 

Concepts of Reliability and Traditional Estimation Methods 

Estimation of Longitudinal Reliability 

Comparing the Quasi-simplex and Latent Growth Models 

STUDY 2-CHAPTER III. METHODOLOGY 

Data and Conditions 
Condition A: The Magnitude of the Correlation Between the 

Intercept and Change 
Condition B: The magnitude of reliability 
Condition C: The Correlation Between Errors 

Data Generation Procedure 
Generating Initial Status, Linear Change and Errors 
Computing True Scores at Each Time Point 
Changing the Variance of Errors 
Computing Observed Scores 

Model Fitting and Evaluation 

STUDY 2-CHAPTER IV. RESULTS 

The Effect of Correlation Between Initial Status and Linear Change 

The Effect of the Magnitude of Reliability 

The Effect of Correlated Errors 

STUDY 2-CHAPTER V. DISCUSSION 

CHAPTER VI. SUMMARY AND CONCLUSION 

REFERENCES 

APPENDICES 

Appendix A: Example Data Records for Five Selected Subjects 
(Michigan Data Set 1) 
Appendix B: Program Commands for Latent Growth Models 
Appendix C: Descriptive Statistics and Parameter Estimates of 
Latent Growth Models 
Appendix D: Descriptive Statistics and Parameter Estimates for 
Generated Data Sets 



Vll 

LIST OF TABLES 

Table 
1.3.1 Examples of unreliable measurement - Standing long jump 30 

1.3.2 Descriptions of variables that were used in the study (Michigan data) 32 

1.3.3 Factor loadings of intercept and change factors for four LGMs 35 

1.4.1 Correlation coefficients and descriptive statistics for flexed-arm hang 43 

1.4.2 Fit indices for latent growth models for flexed-arm hang 43 

1.4.3 Estimated parameters (standard errors) of the Quadratic model for 

flexed-arm hang 45 

1.4.4 Fit indices of the Quadratic models with predictors for flexed-arm hang 47 

1.4.5 Parameter estimates of predictor variables' effects on growth factors 47 

1.4.6 Means and standard deviations for six physical performance variables 49 

1.4.7 Best fitting growth curve models and goodness-of-fit indices for the six 

physical performance variables 51 

1.4.8 Predictors' effects on growth factors for six physical performance variables 55 

1.4.9 Means and standard deviations for seven physical performance variables 

of data set 2 57 

1.4.10 Identification of the best fitting model: The comparison between data set 1 

and cross-validation data (data set 2) 59 

1.4.11 Predictors' effects on growth factors for six physical performance variables 62 

1.4.12 Descriptive statistics for the ASR, ESR and DASH across all time points 66 

1.4.13 Fit indices of the 5-factor models for the verification of the factor structure 

of"Run" 67 

1.4.14 Fit indices of latent growth models for "Run" 69 

1.4.15 Fit indices of models for the verification of the factor structure of "Power" 73 

1.4.16 Parameter estimates of the 5-factor model with correlated errors and the 

equality of factor loadings over time for "Power" 75 

1.4.17 Fit indices of latent growth models for "Power" 75 

1.4.18 Fit indices of models for the verification of the factor structure of 

"Motor Ability" 77 

1.4.19 Parameter estimates of the 5-factor model with correlated errors and the 

equality of factor loadings over time for "Motor Ability" 78 

1.4.20 Fit indices of latent growth models for "Motor Ability" 80 

1.4.21 Comparison of multivariate analyses results between data set 1 and 

data set 2 81 



viii 

1.4.22 Fit indices of latent growth models for "Run" factor (data set 2) 83 

1.4.23 Goodness-of-fit indices of growth models for two factors 85 

1.5.1 The results of ANOVA analysis with polynomial contrasts for FAH, 

data set 1 89 

2.3.1 Summary of conditions of generated data 106 

2.3.2 Descriptive statistics of true and error scores for condition A1 108 

2.4.1 Fit indices and estimated reliability coefficients of models with various 

correlations between initial status and linear change 111 

2.4.2 The true and estimated parameters (standard errors) of the Linear model 

for condition A1 113 

2.4.3 Fit indices and estimated reliability coefficients of models with various 

magnitudes of reliability 114 

2.4.4. Fit indices and estimated reliability coefficients of models with various 

magnitudes of correlated errors 116 

2.4.5 The true and estimated variances of Linear model for condition Cs 118 



IX 

LIST OF FIGURES 

Figure 

1.2.1. Linear L G M 15 

1.2.2. Quadratic L G M 17 

1.2.3. Linear L G M with a time-invariant predictor 17 

1.2.4. A Factor-of-curves model: 3 variables and 4 time points with linear change 18 

1.2.5. A curve-of-factors model: A linear model with 3 variables and 4 time points 20 

1.3.1. Unspecified Curve L G M 34 

1.3.2. The procedure for the verification of factor structure 39 

1.3.3. 5-factor CFA model with a factor at each time point 40 

1.3.4. 5-factor CFA model with correlated errors 40 

1.4.1. Linear and quadratic components of change in FAH 45 

1.4.2. Curve-of-factors model for "Run" 71 

2.2.1. A quasi-simplex model with five time points 98 

2.2.2. Two-factor L G M 100 

2.4.1. Parameter estimates (standard errors) of the Simplex 2 model for 

condition A1 113 



GLOSSARY OF ABBREVIATIONS 

AAHPER: American Alliance for Health, Physical Education and Recreation 

AAHPERD: American Alliance for Health, Physical Education, Recreation and Dance 

AIC: Akaike's Information Criteria 

AN OVA: Analysis of Variance 

ANCOVA: Analysis of Covariance 

ASR: Agility Shuttle Run 

CFA: Confirmatory Factor Analysis 

DASH: 30-yard Dash 
D M MANOVA: Doubly Multivariate Analysis of Variance 

df: Degrees of Freedom 

ECVI: Expected Cross-Validation Index 

ESR: Endurance Shuttle Run 

FAH: Flexed-Arm Hang 

HLM: Hierarchical Linear Model 

JAR: Jump-And-Reach 

LGM: Latent Growth Model 

MANOVA: Multivariate Analysis of Variance 

ML: Maximum Likelihood 

NNFI: Non-Normed Fit Index 

p: probability 

PCPFS: President's Council on Physical Fitness and Sports 

PPMC: Pearson Product-Moment Correlation 

R M ANOVA: Repeated Measures Analysis of Variance 

RMSEA: Root Mean Square Error of Approximation 

SAR: Sit-And-Reach 

SD: Standard Deviation 

SEM: Structural Equation Modelling 

SLJ: Standing Long Jump 

SRMR: Standardized Root Mean Square Residual 



Acknowledgment 

XI 

My special appreciation should go to my supervisor, Dr. Robert Schutz. I learned not only a tremendous 

amount of knowledge but also the spirit of research and teaching from him. The spirit has made me 

confident in what I am doing. He is an ideal supervisor, teacher and researcher. I will certainly follow 

his steps, and will try my best to contribute my area, measurement and statistics in Human Kinetics. 

I appreciate the help and support from my committee members and university exarniners, Dr. Seong-

Soo Lee, Dr. Edward Rhodes, Dr. Bruno Zumbo and Dr. Heather McKay. Their comments and inputs 

were invaluable, and refined my research project in several ways. 

I would like to thank Dr. John Haubenstricker and Dr. Vern Seefeldt for providing their valuable data 

set. Without the data set, this research project could not be possible. 

I also would like to thank Dr. Jong Taek Kim, my former supervisor, who encouraged me to go to 

University of British Columbia (UBC) to continue studying in this area. 

I have many friends who deserve my appreciation. Among them, Dr. Terry Wood helped and 

encouraged me to come to UBC; Dr. Hanjoo Eom gave me a part of his research spirit; Dr. Yuanlong 

Liu supported my work a lot; and Jaehan In provided his computer programming expertise in managing 

irregularly structured data. 

During those years, my family were always with me. It is almost impossible to express my appreciation 

to my parents who have fully supported my education and work in every possible way. I will never be 

able to repay everything I owe them. My special thanks go to my parents-in-law who also fully 

supported my work. 

Finally, my wife, Hyun Kyoung Lee, deserves the half of the celebration for becoming a "doctor". She 

has been with me for all those years in Vancouver, has brought our two children, and has encouraged 

me to finish up this research project. 



CHAPTER I. INTRODUCTION 

1 

Introduction 

The development of physical performance during childhood and adolescence has been, and 

continues to be, one of the most researched domains in human kinetics. Examples include: (a) attempts 

to depict or identify the trajectory of change over time in various physical performances of children and 

adolescents (e.g., Cearley, 1957; Clarke & Wickens, 1962; Haubenstricker & Seefeldt, 1986; Malina & 

Bouchard, 1991; Mirward & Bailey, 1986; Montoye, 1984; Morrow, Jackson & Bell, 1978; Shuleva, 

Hunter, Hester, & Dunway, 1990; Thomas & French, 1985), (b) comparisons of the change in 

performance between groups such as males and females or athletes and nonathletes (e.g., Erbaugh, 

1984; Espenschade, 1947; Halverson & Williams, 1985; Pangrazi & Corbin, 1990; Smoll & Schutz, 

1990), and (c) investigations of the relationship between physical performance and anthropometrical 

growth (e.g., McCloy, 1935; Nelson, Thomas & Nelson, 1991; Rowe, 1933; Sellis, 1951; Solley, 1960; 

Teeple & Massey, 1976). Most of these researchers focused on describing how children's performance 

changes over time. However, quantitative descriptions of development in physical performance are 

limited because these studies used primarily group statistics while ignoring individual developmental 

patterns. In addition, attempts to explain the reason why children show inter-individual differences in 

development have not been adequately made, although there have been some studies in which the 

difference between groups in development or the relationship between different variables in 

development was examined. The lack of adequacy in the studies of children's performance development 

is due, in some part, to the lack of a valid statistical model that enables one to adequately describe and 

explain (predict) change. For a more adequate description and explanation of change, one needs to use a 

method that enables one to analyze the change at both the individual and the group level. Traditional 

approaches are based either only on individual level analysis, or only on group level analysis, and thus 

are limited in adequately describing and explaining change. 

The most widely used traditional method for analysis of change is based on the differences in 

mean scores. The simplest method may be the paired t-test in which the difference between two 

repeatedly measured mean scores is statistically tested. The more general form of this test is the 

repeated measures analysis of variance (RM ANOVA) that allows one to compare mean scores that are 

measured on more than two occasions. Additionally, in R M ANOVA, one can identify the shape of a 

variable's change by using preplanned orthogonal polynomials (Winer, Brown & Michels, 1991). The 

ANOVA procedure has some utility in describing change, but has limited utility in explaining change. 

At the most, the ANOVA procedure allows one to examine only the differences among groups in 

change. The ANOVA procedure can be misleading because it is mainly based on the group level 

statistics, and thus may not properly represent the individual level of change. In addition, this method is 

a univariate technique and requires the assumptions of "sphericity" that are frequently violated in 
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practice. Although multivariate analysis of variance (MANOVA) or doubly multivariate analysis of 

variance (DM MANOVA) for multiple indicator variables can be used under the violations of sphericity 

(Schutz & Gessaroli, 1987; Stevens, 1996), these methods also have limitations in that they are based 

solely on the comparisons of mean scores. In general, the covariances between repeated measurements, 

an important component of information, are not adequately accounted for in these statistical models 

(Labouvie, 1982). 

There have been other approaches to the analysis of change, such as the application of 

stochastic models, time series analysis and growth curve fitting (Bock & Tissen, 1976, 1980; Cromwell, 

Labys & Terraza, 1994; Crosbie, 1995; Frederiksen & Rotondo, 1979; Rogosa, Brandt & Zimowski, 

1982; Tissen & Bock, 1990). These methods are based on the individual level of change, thus have 

some merits in describing change. However, these approaches are limited in that they may include only 

one variable in an analysis, depend too much on approximations, or require large numbers of repeated 

measurements. In addition, these procedures require more than one step of analysis to obtain the group 

level of statistics in change as well as the individual level of statistics, and thus have limitations in 

explaining change. 

Recent developments in factor analytic solutions for repeated measures data have received a 

significant amount of interest. Based on the formative work of Rao (1958) and Tucker (1958), Meredith 

and Tisak (1984) proposed a 'latent growth model (LGM)' approach for repeated measures data analysis 

formulated within the framework of structural equation modelling (SEM). The basic idea of L G M is that 

change is an unobservable latent trait. Thus, in a LGM, initial status and change are represented by 

latent factors. For example, in the linear LGM, the intercept and the slope of a growth line form latent 

factors. The basic linear model can be extended to a curvilinear model by adjusting the loadings of the 

slope factor or by adding one or more change factors (McArdle, 1988; Meredith & Tisak, 1990). This 

statistical analysis method is especially useful when one has an a priori hypothesis about the change of 

measures over time. The unique feature of L G M that is distinguished from a usual SEM is that one takes 

into account both the means and covariances of repeatedly measured variables in the analysis (McArdle, 

1988; Meredith & Tisak, 1990; Stoolmiller, 1995). Thus, one may statistically examine the 

hypothesized change of means of variables and the covariances among variables at the same time in a 

L G M analysis, while one can examine only the hypothesized covariances among variables in the usual 

SEM. This eventually leads one to be able to examine the change at both individual and group level at 

the same time. The L G M approach offers several other important features. First, individual change can 

be represented by either a straight line or a curvilinear trajectory. Second, occasions of measurement 

need not be equally spaced. Third, measurement errors can be accounted for by the statistical model. 

Fourth, multiple predictors or correlates of change can be easily included in the model. Fifth, as in 

general SEM analysis, statistical models are very flexible, allowing one to extend the basic idea in 

several ways in order to test various hypotheses (Willett & Sayer, 1994). 
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McArdle (1988) extended the basic model and suggested two more complex models, which he 

called a 'factor-of-curves L G M ' and a 'curve-of-factors L G M ' , that are more appropriate for 

multivariate data. In a 'factor-of-curves L G M ' , several first-order intercept and change factors explain 

the trajectories of several variables over time, and the correlations among intercept and among change 

factors are explained by second-order intercept and change factors. In a 'curve-of-factors L G M ' , on the 

other hand, several measures at a single time point form a latent construct and the curve of this latent 

construct over time is represented by second-order intercept and change factors (McArdle, 1988). 

Duncan and Duncan (1996) applied these two models in a growth study of adolescent substance use 

over time, and recommended more use of these models in longitudinal research. Other extensions have 

also been made. Muthen (1994, 1997) and Mufhen and Curran (1997) extended and applied the LGM 

idea to clinical trial data and compared trajectories of change between groups. A number of studies have 

employed a cohort-sequential design with missing data (Duncan & Duncan, 1994, 1995; Duncan, 

Duncan & Li , 1998; McArdle & Hamagami, 1991). Autoregressive models and stability analyses are 

very closely related to L G M (Kenny & Campbell, 1989; Marsh & Grayson, 1994b; Meredith & Tisak, 

1990). 

Despite the many strengths of using L G M in a longitudinal study, there are problems that 

prevent practitioners from employing this approach in the study of development of physical 

performance. First, although there exist many introductory publications in which the merits of LGM are 

summarized, the specific strengths of L G M over traditional approaches have not been adequately shown, 

especially in the human kinetics field. For example, nowhere in the literature, to the current researcher's 

knowledge, is there a detailed discussion and comparison between an ANOVA procedure and LGM, 

with examples. Meredith and Tisak's (1990) presentation was too mathematically sophisticated for most 

practitioners, and Duncan, Duncan, Strycker, Li & Alpert's (1999) example was to show that the 

ANOVA model is a special case of LGM. There has been a lack of presentations that showed the 

specific strengths of a L G M approach over traditional procedures for the analysis of longitudinal data. 

Second, there may be practical problems in the application of L G M to the longitudinal analysis 

of physical performance data. One such problem is that choosing between the unspecified curve model 

and the specified curve model (e.g., quadratic or cubic model) is not clear in some situations because 

these models are not nested to each other, and thus a statistical test that compares these models is not 

available. Another problem is related to the application of multivariate L G M to physical performance 

data. In most applications, multivariate L G M has been used with psychological variables, variables that 

are different from physical performance variables. The developmental curve of each subtest in a 

physical performance test battery may be very different from all other subtests in terms of both the rate 

of change and the nature (linear or curvilinear) of change across measures and time. For example, in a 

physical fitness test battery, a person's level of strength generally improves until late adolescence while 

the level of flexibility starts to decrease at early adolescence (Haubenstricker & Seefeldt, 1986; 
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Haywood, 1993). In general, some potentially important multivariate characteristics of longitudinal 

physical performance data are not well known. Additionally, there may be other practical problems in 

the application of L G M to longitudinal physical performance data. 

In addition to the information of change, L G M provides estimates of reliability for a repeatedly 

measured variable (McArdle & Epstein, 1987; Tisak & Tisak, 1996). In a LGM, the variance of the 

observed variable is decomposed into two parts: the true score variance that is explained by the growth 

factors and the measurement error variance that is not explained by the growth factors. This way of 

estimating reliability is especially useful in a longitudinal study where the estimation of reliability is not 

feasible unless there is more than one measurement at each time point. Traditional methods that are 

based on the test-retest method and internal consistency have shortcomings in that these require more 

than one measurement at each time point. Another longitudinal path analytic model, a quasi-simplex 

model, has also been used for the estimation of reliability in a longitudinal study (e.g., Blalock, 1963; 

Heise, 1969; Siegel & Hodge, 1968). This model was initially suggested to separate the temporal 

instability of true scores from the measurement error. In this model, the true score at a certain time point 

is explained by the true score of the immediately preceding time point. The unexplained part of the 

observed variable at each time point is regarded as an error component. The basic idea has been 

extended and widely used by others (e.g., Joreskog, 1970; Werts, Joreskog & Linn, 1971; Wheaton, 

Muthen, Alwin & Summers, 1977; Wiley & Wiley, 1970). 

While these two models, L G M and a quasi-simplex model (more generally, an autoregressive 

model), are the most widely used factor models for the analysis of longitudinal data, which one of the 

two models provides more accurate reliability estimates for repeatedly measured variables is not known. 

Although the implications and underlying assumptions regarding change of these two models are 

different, choosing one model over the other is not feasible in practice, because these two models are 

empirically difficult to distinguish (McArdle & Epstein, 1987; Rogosa & Willett, 1985a). Although 

there have been a few studies in which these two models are compared (e.g., Kenny & Campbell, 1989; 

Mandys, Dolan & Molenaar, 1994; Rogosa & Willett, 1985a), most of these studies focused more on the 

rationales, strengths and weaknesses of applying these two models in the analysis of longitudinal data 

rather than on the accuracy of reliability estimation. The capability of these two longitudinal models in 

the estimation of longitudinal reliability needs to be examined. This is especially important in the 

longitudinal study of physical performance because the repeated testing of physical performance is 

costly in terms of time and money. If the estimation of reliability for longitudinal data can be achieved 

analytically, it will be of a considerable benefit in the study of longitudinal physical performance. 

The L G M method has seldom been utilized in human kinetics research. Duncan and Duncan 

(1991), in their introductory study, applied L G M to children's perception of physical competence. There 

have been other related works in which the SEM methodology was applied to repeated measures data. 

Marsh (1996) used confirmatory factor analysis with multitrait-multimethod data to examine the 
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stability of physical self-description, and Duncan and Stoolmiller (1993) used autoregressive models to 

examine social and exercise behaviour. However, all these studies used psychological variables that 

have different characteristics from physical performance variables. Schutz (1995, 1998) examined the 

stability of performances in sports, but focused more on the stability of professional players in terms of 

their relative positions on several performance records and the stability of factor structures. Although 

there are clear benefits of using L G M for longitudinal data, there has been an obvious lack of studies 

using L G M in physical performance research. This may be due to the lack of researchers' knowledge 

and the lack of proper guidance about LGM methodology, as well as the practical problems of applying 

L G M to longitudinal and multivariate physical performance data previously discussed. 

The Purposes of the Study 

There are four purposes of this study. First, there is an inadequate body of literature, especially 

in the Human Kinetics area, in which L G M is presented in sufficient detail to allow, practitioners to 

easily follow and apply this statistical model in a longitudinal study. Thus, the first purpose of the 

present study is to introduce L G M to Human Kinetics researchers. More specifically, by analyzing real 

data, the present study includes the examination and presentation of: (a) how an individual level of 

developmental change is examined, (b) how predictors of change are implemented in the L G M 

statistical model, and (c) how the change of a multivariate latent factor can be examined. 

The second purpose is to examine the merits and practical problems of L G M in the analysis of 

longitudinal physical performance data. Based upon the findings of the first purpose, the merits and 

practical problems of L G M are examined and compared with those of traditional analysis models such 

as ANOVA. In the present study, the examination of the merits and problems of L G M were made from 

a practical rather than a theoretical point of view. Many published LGM studies have shown the 

theoretical merits of LGM, but inadequate attention has been given to the practical problems of using 

this statistical model. 

The third purpose is to examine the developmental patterns of children's physical performances. 

Although developmental patterns of children's physical performance have been studied, most previous 

researchers based their conclusions solely on group statistics, and thus the children's development and 

the variations in development of physical performance were not adequately examined. By using LGM, 

the present study provided more informative results regarding the children's development in physical 

performances than previous studies. Specifically, the present study includes the investigations of: (a) the 

individual level of developmental patterns in physical performances in childhood (between ages 8 and 

12), (b) the variables that explain (predict) the between-person variations in the development of physical 

performance, and (c) the validity of multivariate latent factors as measures of longitudinal development 

in physical performances as well as the children's developmental patterns in multivariate latent physical 

performance factors. Because the current study had to use already existing data due to the difficulty of 



obtaining a new longimdinal data set, the research questions regarding the development of specific 

physical performances were established based on the available variables. 

The fourth purpose is to compare the capacity of the two most widely used longitudinal factor 

models, L G M and a quasi-simplex model, to accurately estimate reliability for longitudinal data under 

various conditions. This is important, especially with longitudinal studies of physical performance in 

which the measurements are costly. If valid reliability estimation for longimdinal data can be obtained 

by means of an analysis, it will be a benefit for the longitudinal study of physical performance. The 

conditions were varied to examine the effects of: (a) the magnitude of correlation between the initial 

status and change, (b) the magnitude of reliability, and (c) the magnitude of correlated errors on the 

estimation of reliability. The selected conditions of these three sub-purposes do not fully examine the 

effects of these variables on reliability estimation, but are expected to establish the basis for further 

research questions for future research on this topic. 

Although all the purposes of the present study are closely related to each other, the fourth 

purpose is somewhat distinctive in that it requires computer simulated data sets to accomplish the 

purpose. Consequently, the present research endeavour was structured as two studies. In study 1, the 

first, second and third purposes of the study were accomplished. Study 1 includes the analyses of a 

longitudinal data set, the interpretation of the results, a discussion of the development of children's 

physical performance, and an elucidation of the merits and practical problems of using L G M in the 

analysis of longitudinal physical performance data. In study 2, the fourth purpose was accomplished. 

Study 2 includes the computer simulation of longimdinal data sets with known parameters, the analyses 

of these data sets, and the comparison and evaluation of the L G M and quasi-simplex models in 

estimating reliability. 
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STUDY 1. THE ANALYSIS OF LONGITUDINAL PHYSICAL PERFORMANCE DATA 



STUDY 1-CHAPTER II. LITERATURE REVIEW 

8 

Analysis of Change and Latent Growth Models 

The term "analysis of change" encompasses a vast amount of analysis issues and methods, from 

analyzing a simple treatment effect in an experimental study to analyzing a complex developmental 

change of an attribute. It is almost impossible to discuss all the issues and models of the analysis of 

change. The discussion in this section is limited to the analysis methods that are particularly relevant to 

the analysis of development (growth) or longitudinal data. 

The analysis of change has long been an interest of researchers in almost all empirical sciences. 

Although systematic research about the analysis of change was initiated in the early 1900s, reports of 

research on growth can be dated back to the 18th century (Baltes & Nesselroade, 1979). However, it is 

believed that the study of change started much earlier in time. Recently, with the aid of computer 

development, a large number of research articles have been published on the statistical models and 

methods for the analysis of change (e.g., Collins & Horn, 1991; Gottman, 1995; Nesselroade & Baltes, 

1979; von Eye, 1990). Selecting an appropriate analysis method from among these many available 

methods requires considerations of the research question and the theory behind the change of the 

variable used in the research (Rogosa, Brandt & Zimowski, 1982). In general, a researcher considers 

two major objectives of analyzing change in selecting an analysis method, description and explanation 

(Baltes & Nesselroade, 1979; Burr & Nesselroade, 1990). Description includes the direction, shape and 

amount of change, while explanation pertains to the predictor(s) of change, relationship of changes 

between two or more variables and what makes the differences among individuals in the rate of change 

in relation with other variable(s). Various analysis methods have different merits and limitations in 

accomplishing these two objectives. 

Relative Methods and Limitations 

The simplest but most restricted design for the analysis of change is the pre-post test design. In 

this design, gain scores (G scores) are calculated to represent change (G score = Post test score - Pre test 

score), and then a statistical analysis is applied to these G scores (e.g., one sample t-test). However, the 

problems of the pre-post test design and G scores in analyzing change were detected early (e.g., 

Thorndike, 1924; Wilder, 1957; Zieve, 1940), and have been one of the major issues in the area of 

analysis of change (Schutz, 1989). The first problem is the ceiling-floor effect. Generally, the scores at 

the top end do not change upward and the scores at the bottom end do not change downward at post-test 

(Wilder, 1957). The ceiling-floor effect is related to the problem of "regression toward the mean", and 

causes a negative correlation between the initial score and the rate of change (Thorndike, 1924; Zieve, 

1940). Second, the G scores are inherently unreliable (Lord & Novic, 1968). This has been one of the 

major drawbacks to the use of G scores as measures of change (Burr & Nesselroade, 1990). Third, the G 



9 

scores that are based on only two points in time do not adequately describe any nonlinear change over 

time (Rogosa et al., 1982). This is an especially serious limitation in a developmental study where the 

trajectory of a variable is often a major interest. Although Rogosa (1995) argued that the ceiling-floor 

effect and unreliability of G scores may not be problems in certain situations, the pre-post design and G 

scores have limitations in accomplishing both objectives of analysis of change, description and 

explanation, due to the above mentioned problems. 

To overcome these problems of G scores, several alternatives have been proposed. Lord (1956) 

suggested a true change score, which is obtained after correcting for measurement errors in pre- and 

post-test scores. DuBois (1957) and Manning and DuBois (1962) suggested a residual gain score that is 

based on the difference between the predicted (via linear regression) post-test and raw post-test scores. 

There have been some other works on this issue (e.g., Tucker, Demarin & Messic, 1966). However, 

Cronbach and Furby (1970) pointed that none of these adjustments on G scores were satisfactory. 

Other suggestions have been made in the perspective of research design. One suggestion was to 

include a control group in the design, and compare the change between the treatment and control groups. 

The traditional analysis of variance (ANOVA) procedure is used to analyze this type of data. The 

analysis of covariance (ANCOVA) was also frequently used when there exist differences among groups 

in pre-test scores. This is, however, most suitable for experimental research. Another simple suggestion 

was employing multiple time points in the measurement (Nesselroade, Stigler & Baltes, 1980; Rogosa 

& Willet, 1985b). This is especially important in studying development or growth, because this allows 

one to examine a nonlinear change of an attribute over time. With more than two points in time, various 

types of analysis methods can be employed, but traditionally, the ANOVA procedure has been mostly 

used. The ANOVA with trend analysis (polynomial contrasts) is useful because it allows one to examine 

the change in mean scores, to decompose the variance into linear, quadratic, cubic etc. components, and 

to examine interaction effects where there are multiple groups in the design. The ANCOVA procedure 

also provides more valid tests of differential change among groups with multiple testing periods 

(Richards, 1975). 

Certainly, multiple time points of measurement provide a better opportunity in describing 

change in a longitudinal study. However, ANOVA has still limitations in the explanations of the change 

(i.e., in examining the causes of change, relationship of changes between two or more variables and 

what makes the differences among individuals in the rate of change in relation with other variables). 

Although a regression approach suggested by Hummel-Rossi and Weinberg (1975) may provide some 

insight into explaining change, at most, the ANOVA and ANCOVA procedures allow one to examine 

only the differences among groups in change. The ANOVA procedure can also be misleading. For 

example, Schutz and Park (in press) presented an example where ANOVA failed to detect important 

aspects of change (discussed in Study 1-Chapter V) if it is not properly used. The ANOVA and 

ANCOVA also suffer from quite restrictive assumptions underlying statistical models, such as 



sphericity and random assignment of subjects to groups. Although multivariate analysis of variance 

(MANOVA) or doubly multivariate analysis of variance (DM MANOVA) for multiple indicator 

variables can be used under the violations of sphericity (Schutz & Gessaroli, 1987), these methods also 

have limitations in that they are based solely on the comparisons of mean scores. Fundamentally, these 

traditional methods do not fully use the information that longitudinal data provide. Although in 

MANOVA the covariances between different variables within a time point are partially used in 

obtaining the best linear combination of variables, in general, the covariances between repeated 

measurements are not adequately employed in the analysis (Labouvie, 1982). This leads to inadequate 

description and explanation of change with these methods. 

Other approaches have been used for the analysis of change such as the application of stochastic 

models and time series analysis, growth curve fitting, qualitative analysis of change, the application of 

multi-level analysis (hierarchical linear model) and the application of factor analysis. The application of 

a stochastic model for the analysis of change is based on the probability of an individual achieving any 

one of a number of possible scores at some time in the future, given a current score (Schutz, 1970). A 

special case of the stochastic model approach is time series analysis. Time series analysis takes account 

of the change of each time interval of the data, and estimates a mathematical model that predicts the 

score at certain time point (Cromwell, Labys & Terraza, 1994; Crosbie, 1995; Frederiksen & Rotondo, 

1979). This approach is often applied to a single subject (or any single measurement unit) who is 

measured at several time points, and is used extensively by econometricians in predicting economic 

indices (e.g., stock price). This procedure requires a large number of time points (more than 50), and 

this is not feasible in a typical developmental study done with human subjects. Also, this approach 

focuses mainly on the shape of the change, thus may be useful for the description of the change, but has 

very limited utility in the explanation of the change. 

A similar method that has been used for a long time in biological and medical sciences is 

growth curve fitting. Some classify this method as a special case of time series analysis (von Eye, 1990). 

Essentially, this procedure involves finding the best fitting mathematical model and its parameters that 

explain the change of a variable as a function of time (Rogosa et al., 1982). The mathematical model 

ranges from a simple linear model or polynomial model that can be estimated by least squares method to 

a more complex triple-logistic model with marginal maximum likelihood estimation and multilevel 

statistical procedures (Bock & Tissen, 1976, 1980; Rogosa et al, 1982; Tissen & Bock, 1990). The 

measurement unit is often a single subject (or single measurement unit) as in other time series analysis, 

and the collection of parameters of the same curve model that are fitted to several subjects can be used 

in the second level of analysis to examine the relationship between change and other variable(s). This 

approach is different from traditional ANOVA procedure in that the change is described at an individual 

level. However, as Tissen and Bock (1990) noted, this approach requires approximations at many stages, 

thus leads to a questionable utility of this approach for the explanation of the change purpose. This area 
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still requires more development (Tissen & Bock, 1990). 

Qualitative change models have also been used in several areas. In general, a qualitative change 

model is employed when the variable of interest represents the change in a discrete state (measured on a 

nominal or categorical scale). Various statistical models have been used to analyze such data, including 

the longitudinal Guttman simplex model (Collins & Cliff, 1985), log linear model (Goodman, 1972, 

1978), logit or probit regression models (Goldberger, 1964), and hazards modeling (Allison, 1982). The 

regression models and hazards modeling have some merits in that these models may include both 

categorical and continuous independent variables that may explain the change (Burr & Nesselroade, 

1990). Although these methods have been mostly limited to the univariate case, these are powerful tools 

in describing and explaining change. Additionally, these models are very useful in a criterion-referenced 

assessment context (Schutz, 1989). 

Recently, several new statistical models for the analysis of change have been suggested. The 

application of a hierarchical linear model (HLM), suggested by Bryk and Raudenbush (1987), has some 

merits in that it describes the change at the individual level and one may include predictors of change in 

the model. In addition, this model does not require the same number of repeated measures for each 

individual, and the measurement intervals need not be the same for all individuals. Although this model 

is limited to the univariate case and lacks flexibility in modeling, it provides powerful methods to 

describe and explain change. 

Application of factor analysis techniques to longitudinal data is also a relatively new approach. 

An auto-regressive model (quasi-simplex model) has been widely used (e.g., Joreskog, 1970; Rogosa & 

Willet, 1985a) since it was introduced in the 1950s (Guttman, 1954). However, this model concentrates 

more on the stability, or change of relative positions of subjects within a group by using only the 

covariance matrix as data (Rogosa & Willet, 1985b). A more detailed description of this model is 

presented in Study 2-Chapter II, "Longitudinal Reliability" section. Another relatively new technique is 

employing means as well as covariances in the factor analysis model (Meredith & Tisak, 1984, 1990). 

This model has some merits in analyzing change over traditional methods. This model is called a 

"Latent Growth Model". 

Latent Growth Model 

Based on the formative work of Rao (1958) and Tucker (1958), latent growth model (LGM) 

was first suggested by Meredith and Tisak (1984, 1990) within the framework of structural equation 

modeling (SEM), and later extended by others (e.g., McArdle, 1988; McArdle & Epstein, 1987; Muthen, 

1997). Although the name "Latent Growth Model" contains the term "growth", this statistical model can 

be applied to any repeated measures data. However, it may be most useful when one has an a priori 

hypothesis regarding the pattern or shape of the change of a variable. L G M has several merits in 

describing and explaining change. First, by using both the means and covariances of repeatedly 
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measured variables as data, a L G M allows one to take into account the individual level of change as 

well as the group level of change. Second, individual change can be represented by either a straight line 

or a curvilinear trajectory. Third, occasions of measurement need not be equally spaced. Fourth, 

measurement errors can be accounted for by the statistical model, and reliability estimates for the 

variables at each time point are available. Fifth, multiple predictors or correlates of change can be easily 

included in the model. Finally, as in general SEM analysis, statistical models are very flexible, allowing 

one to extend the basic idea in several ways in order to test various hypotheses, such as multivariate 

LGM, multi-group analysis and cohort sequential analysis (McArdle, 1988; McArdle & Epstein, 1987; 

Meredith & Tisak, 1990; Muthen, 1997). 

The Basics of LGM 

The basic idea of a L G M (Tisak & Meredith, 1990) is that the growth (change) of an attribute is 

an unobservable latent trait. Thus, in a LGM, change is described by one or more latent variables 

(factors). We may express the observed score for the z'th individual at time t, Y;(t), as 

where Xk(t) is the &th unspecified (or specified) longitudinal curve for all individuals and W& is the 

weight that the z'th individual attaches to the A,k(t) curve, i = l , 2 , . . . , N . E,(t) is the error or residual of 

the z'th individual. Let m be the number of repeated measurements and Xd be the factor loadings of dih 

order curve factor, then we can express this in matrix form as follows; 

d 
(1.2.1) 

(Yi(t,), Y ( t 2 ) , . . . ., Y i ( U ) 

(Eid,), Ei(t 2 ), . . . ., E ; (t m )) 

(1.2.2) 

(1.2.3) 

A 

4(0 
\(t2) 

4 / ( 0 

(1.2.4) 

.4(0 4,(0. 

Then, equation (1.2.1) becomes, 

y = Aw + e (1.2.5) 

The subscripts were omitted in equation 1.2.5 for simplicity. There are assumptions that are imposed in 
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the factor analysis model. The assumptions include the mean error scores to be zero (E[e] = 0), the 

covariances between errors to be zero (E[ee'] = 0, a diagonal matrix), and the covariance between the 

factor and the error to be zero (E[we'] = 0), where E[.] is the expectation operator. In addition, let E[w] 

= a, and E[ww'] = Then the expected mean vector and the variance-covariance matrix can be 

expressed as; 

E[y] = Act = u 

E[yy'] = A ^ A ' + 0 = Q 

(1.2.6) 

(1.2.7) 

These look essentially the same as the general factor analytic form, the difference being that E[y] ^0 

and E[w] 0. Thus, these are the basic equations of factor analysis with means (Harman, 1976; 

Meredith & Tisak, 1990; Mulaik, 1972; Tisak & Meredith, 1990). 

With an additional assumption of joint multivariate normality of the y variables, maximum 

likelihood estimation and hypothesis testing is possible. Let 1 and 0 denote column vectors of ones and 

zeros, respectively, and % a vector of free parameters for the model. Then a partitioned matrix Z(7r) is 

defined as, 

A 0 a A 0' 0 0" 
= + 

1 0' 1 a' 1 0 1 0' 0 
(1.2.8) 

and the partitioned matrix S consists of the covariance matrix and mean vector of y variables that are 

obtained from the data: 

s = 
Q ju 

P 1 
(1.2.9) 

Maximum likelihood estimation minimizes the fitting function, FML, where 

FML = log|E0O| + * O ^ - 1 (*)) - log|S| - t (1.2.10) 

and "log" is the natural logarithm, | . | is a determinant of a matrix, tr(.) is a trace of a matrix, and t is the 

number of measured variables (or the number of repeated measures of the same variable). Maximum 

likelihood estimation procedures require a relatively large sample size (i.e., 200), and can be done using 

any one of a number of commercially available SEM programs (e.g., LISREL, EQS, MPLUS or 
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SEPATH). These programs also provide several goodness-of-fit indices for the fitted model. 

Another way of representing a L G M is through the use of a path diagram. This is common 

practice in a SEM, and is a conceptually easier way to represent and understand these rather complex 

relationships. Figure 1.2.1 shows the diagram for a linear LGM. Following the general rules of SEM, 

boxes represent observed (measured) variables, and ovals represent unobserved latent variables (factors). 

In Figure 1.2.1 there are five observed variables, labelled as "Timel to Time5" (instead of y variables as 

used in the matrix equations), and two latent variables, named "Intercept" and "Slope" (these two latent 

variables are included in the matrix W in the matrix equations). Arrows represent the relationships 

among observed and latent variables. Single-headed arrows are used to show a causal relationship 

between variables where the variable at the tail of the arrow is hypothesized to cause (or explain) the 

variable at the head of the arrow. The magnitude of causal relationship between an observed variable 

and a latent variable is represented by a path coefficient (or factor loading, ^s), and it is equivalent to a 

B coefficient (non-standardized slope coefficient) in a regression analysis. The path coefficients in 

Figure 1.2.1 are all fixed at Is for the intercept factor and at 0, 1, 2, 3, and 4 for the slope factor. Thus, 

in Figure 1.2.1, the Timel through Time5 variables are dependent (endogenous) variables, while the 

intercept and slope factors are independent (exogenous) variables. The relationship between observed 

and latent variables can be represented by a linear equation. For example, the Timel variable is 

represented as; Timel = (1) x Intercept + (0) x Slope + el. The double-headed arrow shows the 

covariances (correlations in standardized units) between two variables. 

Unlike a regression analysis or a usual SEM, all path coefficients in Figure 1.2.1 are fixed at 

certain values. Because of these fixed coefficients, the latent variables have specific meanings. The 

"Intercept" factor represents a true score at the first time point (initial status), and the "Slope" factor 

represents the true rate of linear change over time. Each subject has his or her own intercept and slope, 

and it is expected that there will be between-subject variation in the intercept and in the slope. The mean 

and the variance of the intercept factor are represented by a i and y/n, respectively. The mean and the 

variance of the slope factor are represented by a s and ^ S s , respectively. The covariance between the 

intercept and slope factor is represented by y/\%. An error (e) represents that part of an observed variable 

that is not explained by the intercept and slope factors. Thus according to Figure 1.2.1, the score of each 

individual at each time point can be expressed as; 

Time2 

Timel Intercept + (0) x (Slope) + el 

Intercept + (1) x (Slope) + e2 

Time3 Intercept + (2) x (Slope) + e3 

Intercept + (3) x (Slope) + e4 

Intercept + (4) x (Slope) + e5 

Time4 

Time5 



Figure 1.2.1. Linear L G M 
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Thus apart from error, which is unique at each time point, the difference between Timel and 

Time2 is Slope, and the difference between Timel and Time3 is 2 x Slope and so on, implying a linear 

change over time. A score of an individual at any time point is a function of one's own intercept and 

slope. The means and variances of the observed variables and covariances between observed variables 

are used as data for the statistical analysis. The means and variances of the latent variables and 

covariance between the two latent variables are estimated by the model. The mean and the variance of 

the intercept factor are the true mean and the between-subject variance of the initial time point, 

respectively. The mean of the slope factor is the average linear change between adjacent time points, 

and the variance of the slope factor is the between-subject variation of the magnitude of the linear 

change over time. The covariance between the two factors shows the magnitude and the direction 

(positive or negative) of the relationship between the score at the initial time point (Timel) and the rate 

of the change. The variances of the errors are also estimated by the model (Lawrence & Hancock, 1998). 

Extensions of LGM 

The basic model can be extended in several ways. First, by adjusting some of the path 

coefficients of the slope factor, or by adding additional change factor(s), one can specify a model that 

describes a curvilinear change. In Figure 1.2.1, if the last three path coefficients of the slope factor are 

freely estimated rather than fixed at specific values, the model describes a less restricted type of change. 

This model is often called an "unspecified curve model" (McArdle, 1988). In this model, the second 

path coefficient should be still fixed at 1 to provide a scale to the change factor. On the other hand, if 

one add a third factor to a linear model (Figure 1.2.2), it becomes a quadratic model that describes a 

quadratic change over time. The higher order curvilinear model is formed in the same way. Another 

kind of curvilinear model is possible. For example, Willet and Sayer (1996), in their introductory paper, 

transformed the subjects' ages (time point) using a logarithmic function and applied a linear LGM. 

Predictor(s) of the intercept and change can be easily included in a LGM. Figure 1.2.3 shows a 

linear LGM with a time-invariant predictor. The ys represent the path coefficients from the predictor 

variable to the intercept and slope factors, and the magnitude of these coefficients shows the strength of 

the predictor variable in explaining these two factors. In addition, incorporation of time-varying 

predictor(s) in the model is also possible (Kaplan, 2000). 

Tisak and Meredith (1986), based on the work of Tucker (1966), showed a multivariate 

generalization of the LGM. A multivariate L G M includes several variables that are repeatedly measured 

at multiple time points. McArdle (1988) described two types of multivariate L G M and named these two 

models a "factor-of-curves" model and a "curve-of-factors" model. In a 'factor-of-curves L G M ' (Figure 

1.2.4), several first-order intercept and change factors explain the trajectories of several variables over 

time, and the correlations among intercepts and among change factors are explained by the second-order 

intercept and slope factors. This model is more parsimonious than the model in which the second-order 
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Figure 1.2.3. Linear L G M with a time-invariant predictor 
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factors are not specified, and the correlations between the first-order factors are estimated; however, 

when two or more variables show different types of change, it is unclear how to specify the model. 

In a 'curve-of-factors L G M ' (Figure 1.2.5), on the other hand, several measures at a single time 

point form a latent construct, and the change of this latent construct over time is explained by second-

order intercept and change factors (McArdle, 1988; Tisak & Meredith, 1990). A 'curve-of-factors L G M ' 

requires a few extra steps in the analysis because before a 'curve-of-factors L G M ' is applied to a data 

set, several conditions have to be satisfied. First, one has to examine if the hypothesized factor structure 

holds at each time point. That is, one has to test if the measured variables form a factor at each time 

point (i.e., examination of a measurement model). Second, once a factor is believed to be formed at all 

time points, one has to examine if the factor loadings for the same variable are equal over time. In other 

words, one should test if the same attribute (factor) is measured over time. Thus a 'curve-of-factors 

L G M ' analysis includes the following steps: (a) test of a measurement model, (b) test of equality of 

factor loadings over time, (c) selecting the best growth model (i.e., linear, quadratic, cubic or curve etc. 

model), and (d) test of predictor effects, if necessary. 

Other types of extensions and applications have also been made. One may employ a multi-

group analysis model when the examination of the differences among groups in the change of an 

attribute is a main concern. Willet and Sayer (1996) applied this model to compare healthy children and 

non-healthy children in the growth of reading and mathematics ability. Muthen and Curran (1997) 

further extended this application to an experimental clinical trial and examined the treatment effect by 

comparing the treatment and control groups. They also included the interaction effect in the model and 

developed a procedure to obtain a statistical power to detect a significant treatment effect. Another 

extension of the L G M is the application to the cohort sequential design (Meredith & Tisak, 1990). As a 

matter of fact, this is another application of multi-group analysis of L G M to sequential data. In this 

model, several cohort groups are included (and treated as different groups), but the time (age) is 

specified as continuous across cohort groups. The extension of L G M to a binary outcome (dependent) 

variable has been also made (Muthen, 1996); however, as Muthen (1996) noted, this method requires a 

weighted least squares estimation that is computationally heavy and requires a large sample size. 

Development of Physical Performance 

The term "physical performance" encompasses a broad range of systematic human body 

movement. As well, there exist a huge number of tests that were developed to measure several types of 

physical performance. In this section, only the physical performance tests and corresponding physical 

performances that were employed in the data sets used in the present study are discussed. 



20 



21 

Physical Performance Tests 

Flexed-arm-Hang (FAH) 

The FAH is used to measure upper arm and shoulder girdle muscular strength and endurance 

(Corbin & Pangrazi, 1992). Upper body muscular strength and endurance are considered to be an 

important component of health-related physical fitness (AAHPERD, 1988; President's Council on 

Physical Fitness and Sports [PCPFS], 1987). Consequently, the FAH test is included in health-related 

physical fitness test batteries such as The Chrysler Fund-AAU Fitness Test (1987) and FITNESSGRAM 

Test (Institute for Aerobics Research, 1987). This testis often used instead of a pull-up test for females 

and younger boys. The FAH test has shown good reliability, but questionable validity (Cotton & 

Marwitz, 1971; Pate, Burgess, Woods, Ross & Baumgartner, 1993). Pate et al. (1993) reported that the 

concurrent validity of this test is relatively low (.50); however, they showed evidence of construct 

validity of the test. Pate et al. (1993) also noted that the subject's performance is confounded by body 

weight. Because the body weight of a subject affects the performance of this test significantly, this test 

should be regarded as a measure of strength and endurance relative to one's body weight. Another 

problem of the FAH is the frequent occurrence of a relatively large percentage of zero or near-zero 

scores, particularly among girls and young boys (Reiff, Dixon, Jacoby, Ye, Spain & Hunsicker, 1986; 

Ross & Gilbert, 1985). 

Jump-and-Reach (JAR) 

The JAR test is used to measure explosive power of the leg extensors (Safrit & Wood, 1995). 

Jumping tests such as JAR and "Standing Long Jump (SLJ)" have been described as tests of power and 

of explosive strength (Baumgartner & Jackson, 1999; Fleishman, 1964; McCloy & Young, 1954). The 

JAR test, first developed by Sargent (1921), is also referred to as the "Sargent Jump Test" or "Vertical 

Jump Test". This test is one of the most widely used tests to measure jumping ability and power, and is 

especially relevant for testing athletes such as volleyball and basketball players because jumping is an 

important part of those games (Baumgartner & Jackson, 1999). The reported validity (.78) is in an 

acceptable range and the reliability (.93) is relatively high (Safrit & Wood, 1995); however, others 

reported low correlations between jumping tests and mechanical measures of power (Barlow, 1970; 

Considine, 1970). Another concern is the negative correlation between jumping tests and body weight 

(Baumgartner & Jackson, 1999). Consequently, the JAR should be regarded as a test of lower leg power 

relative to body weight rather than as a test of absolute power. 

Sit-and-Reach (SAR) 

The SAR test is used to measure flexibility of the low back and posterior thigh, and has been 

applied to all age groups (Safrit & Wood, 1995). This test is often included as a test item in health-

related physical fitness test batteries such as the AAHPERD Physical Best Test Battery (AAHPERD, 

1988), Chrysler Fund-AAU Fitness Test (1987), Fit Youth Today Test (American Health and Fitness 

Foundation, 1986), FITNESSGRAM Test (Institute for Aerobics Research, 1987) and the Presidential 
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Physical Fitness Test Battery (PCPFS, 1987). Reported validity estimates of this test are varied, ranging 

from .60 to .90 (Jackson & Baker, 1986; Safrit & Wood, 1995). Jackson and Baker (1986) found that 

the SAR test had moderate validity (.60 to .73) in measuring hamstring flexibility, but low validity (.27 

to .30) in measuring low back flexibility. The reliability of this test is relatively high: reported reliability 

coefficients ranged from .70 to .99 (Jackson & Baker, 1986; Safrit & Wood, 1995). Performance on the 

test, however, is somewhat dependent on the ratio of trunk length to lower body length (Safrit & Wood, 

1995). 

Agility Shuttle Run (ASR) 

The ASR test is used to measure agility, running speed and change of direction (Corbin & 

Pangrazi, 1992). Agility is an attribute that is more strongly related to a specific sport (Safrit & Wood, 

1995), thus, the ASR test is often included in performance-related physical fitness test batteries such as 

the AAHPER Youth Fitness Test (AAHPER 1976) and Manitoba Physical Fitness Performance Test 

(Manitoba Department of Education, 1977). Interestingly this test has also been included in health-

related physical fitness test batteries such as the FITNESSGRAM (Institute for Aerobics Research, 

1987) and the Presidential Physical Fitness Test Battery (PCPFS, 1987). The ASR test has been widely 

used in various school settings and applied to all age groups from age 6 through adult. Although there 

have been a few studies that revealed an evidence of construct validity (e.g., Hilsendager, Stow & 

Ackerman, 1969), no studies that are directly related to the validity of the ASR test have been conducted. 

In relation to this, Safrit and Wood (1995) noted that "Agility" is highly specific to a task; thus there is 

no valid measure of overall agility. A task-specific measure of agility might be used as a measure of 

performance-related physical fitness. The reported reliability coefficients (.68 to .75) were in an 

acceptable range (Klesius, 1968). Several studies have shown that there exists a practice effect on ASR 

performance, and recommended several practice trials before the actual measurement or more than two 

trials in a measurement occasion (Baumgartner & Jackson, 1970; Ffilsendager, Stow & Ackerman, 

1969; Marmis, Montoye, Cunningham & Kozar, 1969). 

Endurance Shuttle Run (ESR) 

This test measures leg muscular endurance. Muscular endurance is defined as "the ability of the 

muscle to maintain submaximal force levels for extended periods" (Heyward, 1984), or "the ability to 

persist in physical activity or to resist muscular fatigue" (Baumgartner & Jackson, 1999). Muscular 

endurance is often measured by repetitions of a movement of a specific muscle group. Because the 

different muscle groups may show different levels of endurance, a specific muscle group must be 

selected and tested, given the purpose of the measurement (Safrit & Wood, 1995). Most field tests were 

developed to measure the endurance of the arms and shoulder girdle, (e.g., FAH), the endurance of 

abdominal muscles (e.g., sit-ups) and cardiorespiratory endurance (e.g., distance run). There are a few 

tests that measure the endurance of the leg muscle group (e.g., leg press). These tests generally require 

one to perform a movement to exhaustion or to perform as fast as one can during a specific time period 
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(usually the length of time is 1 min). The ESR test has seldom been used as a test of endurance, and to 

this researcher's knowledge no published studies on this test are available. This test, however, was an 

integral component of the test battery used in the longitudinal study that generated the data used in this 

study. The ESR test requires repetitions of leg movement, and the mean of the test scores found in the 

current study ranged from 43.93 to 37.64 seconds at age 8 to 12.5 (see Table 4.6 and Table 4.9 in 

chapter 4), indicating that this test measures leg muscular endurance (or anaerobic capacity of the leg 

muscle group). Because of the relatively short distance of running and completion time, this test may 

include the elements of speed and running efficiency as well. This test should also be regarded as a 

measure of relative endurance rather than absolute endurance because the body weight affects the 

performance. Information regarding the validity and reliability of this test is not available. 

30-Yard Dash (DASH) 

The DASH is used to measure running speed (Corbin & Pangrazi, 1992). Running speed is 

regarded as a performance-related attribute, and measured by the elapsed time required to run a 

specified distance or the distance the subject can run during a specified time period. Various mnning 

distances or time periods have been used depending onthe purpose of the test and the subjects' ages: 

ranging from 10 to 60 yards or from 4 to 8 seconds, respectively (Baumgartner & Jackson, 1999; 

Fleishman, 1964; Haubenstricker & Seefeldt, 1986; Jackson, 1971; Jackson & Baumgartner, 1969; Seils, 

1951). A fifty-yard dash test is most widely used, and this test is included in the AAHPER Youth 

Fitness Test battery (AAHPER, 1976). This test has been applied mainly to children and adolescents. 

Construct validity has been established for this test (Hastad & Lacy, 1994), but there has been lack of 

studies in which other types of validity of the DASH test were examined. Safrit and Wood (1995) noted 

that the 50-yard dash is a function of running efficiency as well as pure speed. In addition, this test has 

an element of explosive power, thus it shows a relatively high correlation with the performance of the 

JAR and SLJ tests (Costill, Miller, Myers, Kehoe & Hoffman, 1968; Marsh, 1993). The reported 

reliability coefficients of the 50-yard dash test are relatively high, ranging from .86 to .94 (Fleishman, 

1964; Jackson & Baumgartner, 1969), and the reliability of the 30-yard dash test was also relatively 

high (Seils, 1951). 

Standing Long Jump (SLJ) 

The SLJ is used to measure explosive power of the lower limb extensors (Corbin & Pangrazi, 

1992). The nature of this test is very similar to that of JAR test. Because of the ease of administration of 

the test, it has been widely used in school and nonschool settings, and included in several performance-

related fitness test batteries such as the AAHPER Youth Fitness Test (AAHPER, 1976). The SLJ is 

generally accepted as an adequate measure of explosive power, although an element of timing (skill) 

exists in executing the jump that does not exist to the same extent for JAR (Safrit & Wood, 1995). The 

reported reliability coefficients are high, ranging from .83 to .99 (Klesius, 1968; Safrit & Wood, 1995). 

However, like the JAR test, the SLJ test has shown low correlations with mechanical measures of power 
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(Barlow, 1970; Considine, 1970), and a negative correlation with body weight (Baumgartner & Jackson, 

1999). 

The Development of Children's Physical Performance 

The discussion about the development of children's physical performance in this section is 

limited mostly to the age range 8 to 13 years, which Haubenstricker and Seefelt (1986) recognized as 

"middle and late childhood". In addition, only the development of males is discussed because the 

present study includes only males as subjects. The specific interests of the present study are the pattern 

(shape) of development. Although an important issue in the present study is the identification of 

individual levels of change as well as the group level of change, the discussion in this section is based 

largely on group level statistics, as this was the only available information in the literature. 

Many studies concerning the development of physical performance have been conducted since 

the early 1900s. These studies focused on issues such as the developmental process of motor skill 

acquisition (e.g., Halverson, 1931; Haubenstricker & Seefeldt, 1986; Vilchkovsky, 1972), the impact of 

training and other environmental factors on the acquisition of motor performance (e.g., Dusenberry, 

1952; Halverson, Roberton, Safrit & Roberts, 1977; Werner, 1974), the relationship between physical 

performance and physical growth (e.g., Cearley, 1957; Clarke & Wickens, 1962; Selis, 1951), and 

comparisons between males and females in development (e.g., Morris, Williams, Atwater & Wilmore, 

1982; Smoll & Schutz, 1990). These studies provide limited information regarding the development of 

children because the majority of these studies are cross-sectional rather than longitudinal. The lack of 

longitudinal studies is due to the difficulties of conducting a longitudinal study. 

Muscular Endurance (FAH and ESR) 

Different studies employed different tests and different age groups in examining the 

development of children's muscular endurance. Many studies indicated that children's muscular 

endurance improves linearly at an early age, but the rate of the improvement may decrease or increase 

after age 11 or 12. Montoye and Lamphiear (1977), in their cross-sectional study, found that children 

improved linearly in their arm strength between the ages of 10 and 12, and the improvement was larger 

between age 12 and 13. Bischoff and Lewis (1987) used a sit-ups test in their cross-sectional study, and 

reported similar fmdings in a little different age range. They showed that children's improvement was 

approximately linear between age 7 and 11, and the improvement was accelerated between age 11 and 

12. Jones (1946) also reported similar results. On the contrary, Baumgartner, East, Frye, Hensley, Knox 

and Norton (1984) showed children's upper arm muscular endurance improved rapidly and then the rate 

of the improvement decreased between ages 7 and 9. Milne, Seefeldt and Reuschlein (1976) obtained 

similar results using a 400-ft shuttle run test on children aged between 6 and 8. Conflicting results were 

also found in Smoll and Schutz (1990). In their cross-sectional study, children showed larger 

improvements in the measure of FAH between age 13 and 17 than between age 9 and 13, while sit-ups 
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showed opposite results. Although the Canada Fitness Survey (1985) revealed a little more complex 

change (e.g., cubic change) in muscular endurance measured by push-ups and sit-ups tests between age 

8 and 12, in general, the improvement of children was approximately linear or quadratic with larger 

change at an early age. Different results that were reported from various studies may be due to the 

inclusion of different muscle groups, different tests, and the subjects with different characteristics. 

Power (JAR and SLJ) 

The development of explosive power of the lower leg muscle group or of jumping ability is 

similar to that of muscular endurance. Many studies have reported a linear change between ages 5 and 

12 in jumping ability as measured by the JAR and SLJ (Bayley, 1935; Clarke & Wickens, 1962; 

Herkowitz, 1978; Milne et al., 1976). Hauebnstricker and Seefeldt's (1986) summary of several 

longitudinal studies also showed a linear change of jumping ability until the age of 16. A few different 

findings have been also reported. The cross-sectional study by Marmis, Montoye, Cunningham and 

Kozar (1969) showed a cubic change of SLJ between ages 9 and 13. They reported a faster 

improvement between ages 10 and 12 than between ages 9 and 10, and slower improvement between 

ages 12 and 13. Nonlinear changes were also reported by Caskey (1968), Selis (1951), and Smoll and 

Schutz (1990). 

Flexibility (SAR) 

Unlike other children's physical performances, flexibility declines with age. The rate of 

decrement in childhood is very small: many studies showed that flexibility remains at the same level or 

slightly declines between ages 8 and 12. In studies by Bischoff and Lewis (1987) and Gallahue (1982), 

the decrement in children's flexibility becomes evident from age 10 for males. However, in a large norm 

establishment study by Hastad, Marett and Plowman (1983), the level of flexibility remains about the 

same between ages 8 and 12. The fiftieth percentile norms that were suggested by PCPFS (President's 

Council on Physical Fitness and Sports, 1987) and National Children and Youth Fitness Studies 

[NCYFS] (Ross & Gilbert, 1985; Ross, Pate, Delpy, Gold & Svilar, 1987) also supported these findings. 

Because of the small rate of decrement within this age range, it is difficult to observe the general shape 

of the change. Although Bischoff and Lewis's (1987) study implied a cubic change, this study was 

based on a very small sample size. Because flexibility showed two types of change, no change and 

decrement, within the age range from 8 to 12, it is possible to infer that the change occurs in a quadratic 

form. 

Agility (ASR) 

Although there is some disagreement on the rate of change (e.g., Marmis et al., 1969; Milne et 

al., 1976), generally, studies indicated that agility improves constantly in childhood. Selis (1951) 

reported a linear improvement in children aged from 7 to 9 in the ASR test. AAHPER's youth fitness 

test norm (AAHPER, 1976) also implied a linear improvement from age 10 to 15. In addition, Clarke 

and Wickens (1962) and Marmis et al. (1969) showed that the level of children's agility improved 
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linearly form age 10 to 12, but they found that there was no change in children's agility from age 9 to 10. 

Thus, the possibility of a quadratic change should be considered vvithin this age range. 

Running Speed (DASH) 

The development of running speed appears to be similar to that of explosive power (jumping 

ability) and agility. Haubenstricker and Seefeldt (1986) reported that children improved constantly in 

running speed up to age 17. Marmis et al. (1969) and Morris et al. (1982) also supported this for the age 

range of 3 to 12 years. There were some other reports that showed a nonlinear development of running 

speed vvithin this age range. Cearley (1957) concluded that children's development in running ability is 

nonlinear from age 9 to 13. Although Selis (1951) noted that children's running ability improved 

constantly, his results implied a faster improvement before school age. Milne et al. (1976) also 

supported this finding. The tendency of faster development in mnning speed may exist in an early age 

range. 

In summary, children improve rapidly in their physical performance between ages 8 and 12.5, 

except for flexibility which generally declines over time. However, there has been lack of agreement 

regarding the pattern of change. Two notable patterns were a constant (linear) change, and a faster 

change at an earlier age. The different results among studies might be due to the fact that they included 

different age groups and different performance variables. In addition, most of the previous studies 

employed cross-sectional research designs and small samples. There has been lack of physical 

performance development studies that employ a longitudinal design with large samples. 

The Factor Structure of Physical Performance 

Attempts to identify an underlying factor structure of physical performance have been made 

since the 1930s (e.g., Buxton, 1938; Coleman, 1937; Metheny, 1938; Rarick, 1937). The purpose of 

early studies was to deterrnine the existence of a general motor ability factor or to extract a number of 

underlying latent factors given various performance variables. Most of these studies showed that the 

earlier concept of general motor ability does not exist, but rather physical performance is specific to 

particular muscle groups or particular types of movement (Coleman, 1937; Cumbee, 1954; Fleishman, 

1964; Rarick, 1937; Seashore, 1942). Various studies identified somewhat different factors because 

different studies employed different physical performance variables. However, there exists some 

agreement about the factors that may encompass the domain of physical fitness of motor performance in 

identified factors. In general, these factors can be categorized as strength, explosive power, speed, 

endurance (muscular and cadiorespiratory), coordination, balance, and flexibility. 

Strength, muscular endurance and explosive power are among the most dominant factors that 

have been identified in numerous studies (e.g., Barry & Cureton, 1961; Fleishman, 1964; Larson, 1941; 

Rarick & Dobbins, 1975). In these studies, the three factors were recognized as different elements of 

strength. Fleishman (1964) conducted an extensive study of the factor structure of physical performance, 
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and reported three primary strength factors, named dynamic strength, static strength and explosive 

strength (power). In his study, dynamic strength included several muscular endurance test items (e.g., 

pull-ups, FAH), and explosive strength included several explosive power test items (e.g., JAR, SLJ). 

Others (e.g., Larson, 1941; Marsh, 1993) supported these findings. Fleishman further showed some 

evidence of separate components that are specific to a particular muscle group (e.g., upper arm strength) 

or a particular type of movement (e.g., running). 

Others disputed Fleishman's earlier categorization, and supported his latter notes that physical 

performance is specific to particular muscle groups or particular types of movement. Studies by Cousins 

(1955), Liba (1967) and Start, Gray, Glencross and Walsh (1966) suggested that dynamic, static and 

explosive strength are not unidimensional factors and that separate factors of arm and leg involvement 

exist in each of these three elements. Jackson (1971) also supported this and further showed that there 

exist distinctive factors of running, jumping and throwing. The specificity of physical performance to 

particular muscle groups is also evident in endurance. Baumgartner and Zuidema (1972), in their factor 

analysis of physical fitness tests, identified three main factors: upper body strength and endurance, leg 

strength and endurance and cardiorespiratory endurance. 

One of the notable results from factor analytic studies of physical performance is that a speed 

run variable is included as an element of explosive power, and regarded as a measure similar to the JAR 

and SLJ. Start et al. (1966) found a high correlation between explosive power and speed, and concluded 

that explosive power is linked with speed rather than strength. Costill, Miller, Kehoe and Hoffman 

(1968) also reported relatively high correlations between JAR, SLJ and DASH (40-yards). Costill et al. 

(1968) described this factor that includes speed variables (e.g., DASH) as well as jumping ability 

variables as "explosive leg strength and power". These findings imply that a speed variable may share 

the same underlying construct with JAR and SLJ. On the contrary, studies by Fleishman (1964), 

Metheney (1938), and Phillips (1949) suggested that speed and explosive power are two distinctive 

factors. Overall, there is a lack of evidence that confirms whether speed and explosive power are two 

distinctive constructs or aspects of the same underlying construct. 

Only a few studies included the measure(s) of agility (e.g., ASR) in a factor analysis. In studies 

in which an agility test is included, it often showed a high degree of relationship with gross body 

coordination, explosive power or mnning ability (Fleishman, 1964; Larson, 1941; Phillips, 1949; 

Ponthieux & Barker, 1963). Most notably, Phillips (1949) employed three agility tests in his factor 

analysis and concluded that there is no common factor to the three agility tests other than speed. These 

findings may be due to the fact that a typical agility test (e.g., ASR) involves running ability and speed, 

and/or coordination. 

Unlike the literature on other factors, most studies are in agreement that there is a distinctive 

construct of flexibility (Fleishman, 1964; Harris, 1969; Hilsendager, Karnes & Spiritoso, 1969; Marsh, 

1993). In these studies, a distinctive flexibility factor was extracted in factor analyses and/or flexibility 
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showed relatively low correlations with other performance factors. The SAR test has been most 

frequently involved in these studies. Other distinctive performance factors, such as cardiovascular 

endurance, balance and coordination, have been identified in many studies, but these are not the main 

interest of the present study. 

Most of findings described above were based on samples of college students, but the degree of 

specificity is less clear for young children. Young children tend to show general motor ability, that is, a 

child who shows high level of performance in one type of physical task generally shows high level of 

performance in other types of task as well. However, Rarick's (1980) note that "it is in the early 

childhood and preschool years that there occurs a gradual transition from generality to gradually 

increasing specificity of motor functioning" (p. 179), implies that the specificity of physical 

performance may be achieved from age 6 or 7 years. Barry and Cureton (1961) employed children aged 

between 7 and 11 years in their study, and extracted factors that are specific to particular body parts and 

particular types of movement. Studies by Ismail and Cowell (1961) and Rarick and Dobbins (1975) used 

different performance variables but generally supported the specificity of children's physical 

performance. In addition, Marsh (1993) showed that the structure of physical fitness factors (i.e., the 

relationship between a factor and a test, and the relationship between factors) is invariant across age 

groups of 9, 12 and 15 years. 

According to the literature, there seem to exist distinctive latent factors, such as strength and 

endurance, explosive power, speed, flexibility and agility. Further, these latent factors may be specific 

to particular muscle groups, such as the lower leg muscle group and upper arm muscle group, and/or to 

particular types of movement such as running and jumping. However, for young children, there is a 

possibility that there exists a general motor ability. More studies are required to determine if the 

specificity of latent physical performance depends on particular muscle groups or on particular types of 

movement, and if a general motor ability exist in early childhood. 
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The Data 

Initially, two longitudinal data sets were obtained. The first data set was obtained from Korea 

(Korean data), and the second data set was obtained from Michigan State, US (Michigan data). For both 

data sets, initial data screening was conducted to examine the reliability of the data and to identify 

extreme values. 

Korean Data 

The Korean data set was obtained from four high schools that are located in metropolitan Seoul, 

Korea. The measurements were taken as a part of the annual report of students' physical growth and 

fitness level. These annual measurements are mandatory in Korea for all students, aged from 11 to 18 

(grade 5 to grade 12). The obtained data set includes four body size variables and six performance 

variables that were measured from 706 cohort male students, aged from 13 to 17 (grade 7 to grade 11). 

The variables are weight, height, sit-height, chest girth, 100-m dash, standing long jump, pull-ups, sit-

ups, Softball throw and 1000-m endurance run. The measurements were taken from 1993 to 1997, once 

a year with approximately the same time intervals between assessments. 

A close examination of the data set revealed that this data set was highly unreliable. A few 

examples of unreliable cases of standing long jump are presented in Table 1.3.1. In Table 1.3.1, for 

example, the record of the subject 245 (the second row) showed a decrease of 98 cm between age 14 

and 15 and an increase of 100 cm between age 15 and 16. Considering that this subject did not show a 

considerable change (other than normal growth) in his height (163, 167 and 169 cm at age 14, 15 and 16, 

respectively) and weight (50, 54 and 59 kg at age 14, 15 and 16, respectively) during this period, this 

record is not reasonable. This kind of unreliable record was found in all six performance variables and 

throughout the data set. This may be due to different test procedures/criteria caused by different 

administrators, and insincere participation of the subjects on the measurements. This has been a problem 

in the measurement of physical and fitness growth in Korea. Because the extent of the unreliability of 

this data set was difficult to be determined, further analyses on this data set were not conducted. 

Michigan Data 

The Michigan data set was provided by Haubenstricker and Seefelt from Michigan State 

University. The data were collected as a part of a large research project, "The Motor Performance 

Study", and the original data set included seven demographic variables and nine motor performance 

variables that were repeatedly measured on 585 male children. The initial measurement was started in 

1968 with 30 subjects, and approximately 30 subjects were recruited and repeatedly measured twice 

every year until they were dropped out of the study. The most recent measurements were taken in 1997. 



Table 1.3.1 

Examples of unreliable measurement - Standing long jump (cm) 

Subject ID Age 13 Age 14 Age 15 Age 16 Age 17 

28 140 117 210 170 195 

245 235 248 150 250 240 

531 215 210 253 242 170 

550 165 270 270 236 262 

598 198 170 264 195 238 

664 196 200 235 130 190 

690 167 167 157 241 205 

707 264 177 190 260 210 
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The age at the initial measurement varied from 3 years old to 15 years old, and most of the subjects 

were measured between age 8 and 13 years. On average, each subject was measured every six months 

for about five years. Age was categorized by month, and the size of a category is six months. For the 

purpose of this latent growth model (LGM) application, subjects were matched based on this 6-month 

age category and then the data were analyzed as if these subjects were a cohort group. Thus, for 

example, one subject's age was 8 in 1970 while another's age was 8 in 1990, but they were treated as if 

they were a cohort group. The differences between subjects in measurement year were accounted for by 

means of a covariate (or predictor) in all statistical models, thus the effect of measurement year was 

controlled for in the L G M analyses. The usage of this variable, measurement year, as a predictor 

variable is explained later in this chapter. 

A LGM requires a relatively large sample size with no missing values. To satisfy these 

conditions, only parts of the whole data set were selected based on listwise deletion (no missing value in 

all used variables), sample size, and the number of repeated measures (i.e., > 4). As a result of this 

procedure, two different data sets were obtained from the same pool of subjects (i.e., N = 585) with 

sample sizes of 218 (data set 1) and 212 (data set 2). These data sets have five time points, and the 

intervals between two adjacent time points were approximately one year. The subjects' ages in data set 

1 and data set 2 were different. The subjects' ages at initial measurement were 8 years in data set 1, and 

8.5 years in data set 2. Many of the subjects were included in both data set 1 and 2, but provided 

different performance records due to the differences in measurement time (age) between the two data 

sets. Thus, the two data sets were not completely mutually exclusive from each other; that is the same 

168 subjects were included in both data sets, while the data set 1 had additional 50 subjects and the data 

set 2 had 44 additional subjects. The data set 1 was used as the main data for the analyses, and the data 

set 2 was used for a pseudo cross-validation. 

Some of the demographic variables were excluded because there were too little between-person 

variations within a variable. For example, the variable "race" was not included in this study because 

more than 95% of the subjects were Caucasian. Some of the motor performance variables were also 

excluded because the measurement was stopped at the initial stage of the project. The resultant data sets 

include five demographic variables (used as predictor variables) and seven motor performance variables. 

These variables are not representative of the all the important physical performance and predictor 

variables, since already existing data were used in the present study. The descriptions of the included 

variables in this study are presented in Table 1.3.2. 

Both data sets, data set 1 and 2, were examined for extreme values because means and 

covariances that are used as data in a L G M analysis are highly sensitive to extreme values. In data set 1, 

eight subjects showed extreme values in ASR and ESR. These values were more than 4.00 standard 

deviation (SD) away from the mean of the variable, and more than 1.25 SD away from the adjacent 

values. These 8 subjects were excluded from the analyses. In data set 2, eight subjects showed extreme 
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Table 1.3.2 

Descriptions of variables that were used in the study (Michigan data) 

Variable name Description 
The number of pre-
measurements 

The number of measurements that were taken before the initial time point 
(age 8 and 8.5 in data set 1 and 2, respectively). This variable was used as a 
predictor variable. 

Age The subjects' age in months at the initial time point (age 8 and 8.5). Although 
the subjects were matched by age category, there still exist variations of age 
in months, and these variations may affect the level of the motor performance 
of young children. The maximum difference between any two subjects on this 
variable was 6 months within a data set. This variable was used as a predictor 
variable. 

Grade The subjects' grade at the initial time point (at age 8 and 8.5). The maximum 
difference between any two subjects was 2. This variable was used as a 
predictor variable. 

Measurement 
season 

The season that the measurement was taken. This variable has only two 
values, summer (coded as 0) and winter (coded as 1). This variable was used 
as a predictor variable. 

Measurement year The year when the subject's age was 8 and 8.5 in data set 1 and 2, 
respectively. The values ranged from 1968 to 1992. This variable was used as 
a predictor variable. 

Flexed-arm-hang 
(FAH) 

Measured in seconds. A larger score represents a better performance. This 
variable measures the muscular endurance of upper arm. A detailed test 
procedure and the characteristics of the test are given in Safrit and Wood 
(1995). 

Jump-and-reach 
(JAR) 

Measured in inches to the nearest half inch. A larger score represents a better 
performance. This variable measures dynamic leg power. A detailed test 
procedure and the characteristics of the test are given in Safrit and Wood 
(1995: Vertical jump test). 

Sit-and-reach 
(SAR) 

Measured in inches to the nearest half inch. A positive larger value represents 
a better flexibility of the hamstring and lower back. A detailed test procedure 
and the characteristics of the test are given in Safrit and Wood (1995). 

Agility shuttle run 
(ASR) 

Measured in seconds to the nearest one-tenth of a second. A smaller score 
represents a better performance. This variable measures agility and running 
ability. A detailed test procedure and the characteristics of the test are given 
in Safrit and Wood (1995). 

Endurance shuttle 
run (ESR) 

Measured in seconds to the nearest one-tenth of a second. A smaller score 
represents a better performance. Two laps of 300 feet each. This variable 
measures the muscular endurance of leg and niririing ability. 

30-yard dash 
(DASH) 

Measured in seconds to the nearest one-tenth of second. A smaller score 
represents a better performance. This variable measures power and running 
ability. 

Standing long jump 
(SLJ) 

Measured in inches to the nearest half inch. A larger score represents a better 
performance. This variable measures lower leg power. A detailed test 
procedure and the characteristics of the test are given in Safrit and Wood 
(1995). 
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values in ASR, ESR and DASH. These values were more than 3.90 SD away from the mean of the 

variable, and more than .66 SD away from the adjacent values. These eight subjects were also excluded 

from the analyses. The resulted sample sizes were 210 for the data set 1, and 204 for the data set 2. The 

full data records for five selected subjects are presented in Appendix A as an example. 

Data Analyses 

Data set 1 was used as the main data for all the analyses, and data set 2 was used for a cross-

validation. Both data sets were analyzed by the following procedures. 

Univariate LGM 

Descriptive Statistics 
Descriptive statistics for each variable at each time point were obtained using the SPSS 

windows program (SPSS Inc., 1997: Version 8.0). The descriptive statistics include mean, standard 

deviation, skewness and kurtosis. The Pearson product-moment correlation (PPMC) coefficients 

between time points within a variable were also calculated. 

Identification of the Best Fitting Growth Curve (LGM) 

To identify the best growth curve, four LGMs were fitted and compared for each of seven 

performance variables. These four LGMs were the "Linear", "Quadratic", "Cubic" and "Unspecified 

Curve" (Curve hereafter) models. The Linear model and the Quadratic model are shown in Figure 1.2.1 

and Figure 1.2.2, respectively. The Cubic model has four factors, intercept, linear, quadratic and cubic 

factors, and describes a cubic change. The cubic factor has fixed factor loadings (coefficients) of 0, 1, 8, 

27, and 64 (03, l 3 , 23, 33 and 43). The Quartic model was not fitted because this model is under-identified 

unless some constraints are imposed in the model. The Curve model is a two-factor model with both an 

intercept and a curve factor (Figure 1.3.1). In a Curve model, the factor loadings for the last three time 

points of the curve factor were freely estimated (denoted by *). Thus, in this model, the different rates of 

change at each time interval are estimated. This model is similar to a Quartic model (with five time 

points) in that it estimates the changes of each interval, but is different from a Quartic model in that the 

only one change factor explains a between-subject variation in change, while in a Quartic model four 

change factors (linear, quadratic, cubic and quartic) explain a between-subjects variation in change. The 

factor loadings of factors for each model are presented in Table 1.3.3. The estimation of parameters and 

the model evaluation procedure are presented later in this chapter. Fit indices and parameter estimates 

were compared for the four models, and once the best model was selected, the validity of equality of 

error variances over time was examined. The model with equality of error variances over time provides 

a more parsimonious model, and thus would be the final model of choice should this equality 

assumption hold. 
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Figure 1.3.1. Unspecified Curve LGM 



Table 1.3.3 

Factor loadings of intercept and change factors for four LGMs 

Model Factors Factor loadings 

Timel Time2 Time3 Time4 Time5 

Linear Intercept 1 1 1 1 1 

Linear 0 1 2 3 4 

Intercept 1 1 1 1 1 

Quadratic Linear 0 1 2 3 4 

Quadratic 0 1 4 9 16 

Intercept 1 1 1 1 1 

Cubic Linear 0 1 2 3 4 

Quadratic 0 1 4 9 16 

Cubic 0 1 8 27 64 

Unspecified Intercept 1 1 1 1 1 

Curve Curve 0 1 * * * 

Note. * = free estimates. 
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Predictor Effects 

Once the best growth model was selected, five predictors were sequentially included in the 

selected model to examine the effect of these predictors on the initial status and the change (the word 

"effect" is used as a statistical term implying a predictability, and does not necessarily imply a causal 

effect). The selection of the five predictors was largely dependent on the availability of the variables 

from the data. Other possibly important predictor variables such as activity level, injury, participation in 

a specific activity program, height, weight etc. were not available. The five predictors were the number 

of pre-measurements, age, grade, measurement season and measurement year. These predictor variables 

were expected to have effects on physical performance to some extent. The number of pre-

measurements is the number of measurements taken before age 8. The children who were measured 

more frequently might show better performance than the children who were measured less frequently 

because of the practice effect. The age variable is the age in months at initial time point (at age 8 and 8.5 

for data set 1 and 2, respectively). Children showed differences up to seven months in their age at the 

initial time point. The children who were older (vvithin the same age group) might show better 

performance than the children who were younger. As well, the children who were within the same age 

group but were in a higher grade might show a better performance. The measurement season may affect 

the children's performance because the level of activity is generally lower during winter, and the 

temperature may also affect the physical conditions of children in performing a test. The measurement 

year might have an effect on the performance because the living environments that are related to the 

level of physical activity had been considerably changed from the 1970s to the 1990s. 

The effects of these five predictor variables on the initial status and the development of physical 

performances were examined hierarchically. The order of variable input was as follows; (a) the number 

of pre-measurements, (b) age, (c) grade, (d) measurement season, and (e) measurement year. These 

predictor variables were included additively in the model one by one. If the effect of the predictor 

variable was not significant at a level of .05, this effect was fixed at zero in the examination of the next 

predictor effect. If a predictor variable was significant, the effect of the next predictor variable was 

examined after controlling for the previously examined predictor variable. For example, the age effect 

was examined after controlling for the test practice effect (the number of pre-measurement), the grade 

effect was examined after controlling for the test practice and age effects, and so on. The order of 

variable input was determined based on the rationale that the effect of a certain predictor variable should 

be examined after controlling for other variables. For example, the grade effect should be examined 

after controlling for the age effect because older (by a few months) children tend to be in a higher grade 

and show a higher level of physical performance than younger children. In this case, the better 

performance of older children is more likely to be an age effect rather than a grade effect. If the 

previously significant effect of a predictor became nonsignificant at an a level of. 10 after mcluding the 
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next predictor in the model, the previous variable was dropped out of the model. One exception was the 

effects of age and grade. If the effect of age became nonsignificant after grade was included in the 

model, the effect of grade was dropped out of the model because a significant grade effect is meaningful 

only after controlling for age effect. 

Pseudo Cross-validation 

The analyses for the cross-validation were conducted with data set 2 following the same 

procedure described above. The best growth model that was selected in data set 1 for each variable was 

fitted to data set 2, and compared with the results of data set 1. As well, the best growth models for data 

set 2 were also identified. The examination of the predictor effects was conducted with the same 

sequence, and the results were compared with those of data set 1. 

Multivariate LGM 

Two types of LGM, a curve-of-factors model and a factor-of-curves model, could be applied for 

the multivariate longitudinal data. In the present study, however, only the curve-of-factors model 

(Figure 1.2.5) was employed for the hypothesized factors. The factor-of-curves model (Figure 1.2.4) 

was not used because it was not appropriate for the physical performance data for two reasons. First, the 

observed variables showed different types of change over time. This resulted in a different number of 

the first-order change factors between variables. In this case, how to model the second-order change 

factors is not clear. Second, there is a lack of theoretical background that supports the common cause for 

the development of performance variables (i.e., endurance, power, flexibility, agility). Thus the factor-

of-curves model that explains the change of several variables by the common (second-order) change 

factor(s) is not appropriate for the physical performance variables that were used in the present study. 

For the applications of the curve-of-factors model, three sets of variables were hypothesized to 

form factors at each time point. These three sets of variables (factors) were (a) Run: ASR, ESR, DASH, 

(b) Power: JAR, SLJ, DASH, and (c) Motor Ability: FAH, SLJ, SAR, DASH, ESR. The "Run" factor 

represents a running ability and includes the same type of movement (e.g., Jackson, 1971). The "Power" 

factor includes performance variables that measures the explosive power of lower leg and involves the 

same muscle group (e.g., Cousins, 1955; Liba, 1967; Start, Gray, Glencross & Walsh, 1966). Although 

the DASH variable is a measure of a speed, many studies reported that the DASH might be included as 

a measure of explosive power (e.g., Miller et al., 1968; Start et. al., 1966). The "Motor Ability" factor 

represents a general motor ability, thus includes the variables that measure the muscular endurance of 

the upper arms, explosive power, flexibility, speed and the muscular endurance of the legs. Although a 

general motor ability factor has not been documented by the literature, most studies supporting the 

specificity of motor performance were based on a college student sample. The existence of a general 

motor ability can be demonstrated with young children, as noted by Rarick (1980). For each 

hypothesized factor, the following analyses were sequentially conducted. 
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Descriptive Statistics 

In addition to the descriptive statistics that were obtained in the univariate analyses, the PPMC 

coefficients between different variables within a time point and between different variables between 

different time points were calculated and examined for each hypothesized factors. 

Verification of the Factor Structure 

Before LGMs are fitted to the hypothesized factors, the factor structure at each time point 

should be verified. Verification of the factor structure involved the sequential examination of several 

models. This procedure is summarized in the Figure 1.3.2. First, a 5-factor confirmatory factor analysis 

(CFA) model with one factor at each time point was fitted to each of the three hypothesized physical 

performance factors, Run, Power and Motor Ability (Figure 1.3.3). In this model, the factor loadings of 

the first observed variable were fixed at 1 to provide a scale to the factor at each time point, and the 

covariance of the factors between the time points were freely estimated. However, the correlations of 

errors between time points were fixed at zero. When the absolute goodness-of-fit of this model was not 

satisfied (i.e., when this model was rejected), the correlated errors of the same variable between the time 

points were included in the next model (correlated-errors model: Figure 1.3.4). This is a common 

practice in a multivariate longitudinal factor model (Marsh & Hau, 1996; Schutz, 1998). When one of 

these two models, the 5-factor CFA models without correlated errors and with correlated errors, fits the 

data well, the equality of factor loadings over time was examined in the next model. This model 

examines if the same construct was measured over time. When both models were statistically rejected, 

further analyses were not conducted because the existence of a factor (latent trait) at each time point was 

not verified. When the model with the equality of factor loadings over all five time points fit the data 

well, the LGMs were fitted to the verified factor. When the equality of factor loadings model was 

rejected, the equality of factor loadings between each time points was examined to determine at which 

interval the factor structure changed. 

Identification of the Best Fitting Growth Curve 

If a 5-factor model or correlated errors model with equality of factor loadings was acceptable, 

four multivariate LGMs (curve-of-factors models) were fitted to each hypothesized factor. These 

models were "Linear", "Quadratic", "Cubic" and "Curve" models as in the univariate L G M analyses. 

These four models are merely the extensions of the univariate LGMs. The linear "curve-of-factors 

model" is shown in Figure 1.2.5. 

Predictor Effects 

Once the best growth model was determined, predictors were included in the model to examine 

the effects of the predictors. The procedure and the sequence of the variable input were the same as in 

the univariate analyses. 

Pseudo Cross-validation 

Data set 2 was used for a cross-validation of all multivariate LGMs. All above-mentioned 
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5-factor C F A model without correlated errors 

Jadfit 

5-factor CFA model with correlated errors 

Good fit vBad fit 

Equality of factor loadings over five time points Stop 

Good fit ,Bad fit 

Equality of factor loadings between each time point 

Latent Growth Models 

Figure 1.3.2. The procedure for the verification of factor structure 
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Figure 1.3.3. 5-factor C F A model with a factor at each time point (parameter estimates are 
omitted) 
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Figure 1.3.4. 5-factor CFA model with correlated errors (only the correlations between the error 
of variable A are shown) 



procedures were equally applied and the results were compared with those of the data set 1. 
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Estimation of LGMs 

Maximum Likelihood (ML) procedures were used for the estimation of parameters for all 

growth models. The LISREL (Joreskog & Sorbom, 1999: Version 8.3) program was used in the 

estimation of parameters and the calculations of goodness-of-fit indices for most LGMs. In addition, the 

MPLUS (Muthen & Muthen, 1998: Version 1.04) program was used for the curve-of-factors models 

with predictors, because the LISREL program (and LISREL model) does not allow one to estimate these 

models. 

Model Evaluation 

The evaluation of fitted models was conducted using several pieces of information from the 

analyses results. First, the results were examined for unacceptable parameter estimates (e.g., negative 

variance). If all estimated parameters were within acceptable ranges, several goodness-of-fit indices 

were used to evaluate a model. The absolute fit of a model was evaluated by the %2 statistic with the 

associated degrees of freedom (df), Root Mean Square Error of Approximation (RMSEA), Standardized 

Root Mean Square Residual (SRMR) and Non-normed Fit Index (NNFI). For the comparisons of two 

nested models, the %2 difference test was used. For the comparisons of non-nested models, RMSEA and 

the Expected Cross Validation Index (ECVI) were used as well as other fit indices. In general, criteria 

for evaluating a model using absolute fit indices (i.e., RMSEA, SRMR and NNFI) were based on Hu 

and Bender's (1999) suggestions. They suggested that one accepts a model when the RMSEA is smaller 

than .06, the SRMR is smaller than .08, or the NNFI is larger than .95. The ECIV is meaningful only 

when it is compared to the ECVI of another model. A smaller absolute value of ECIV indicates a better 

fitting model to the data. More weight was given to the %' statistic than other fit indices in the evaluation 

of a relatively small model (i.e., univariate LGM) than in the evaluation of a relatively large model (i.e., 

all multivariate models). In addition, if a model was accepted, residuals of the fitted covariance matrix 

and mean vector were examined for any extreme values. 
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Univariate Latent Growth Models for Motor Performances 

Univariate Latent Growth Model (LGM) analyses results are presented in the following sections. 

The analyses results for only flexed-arm-hang, among seven physical performance variables, are 

presented in detail, because the results for flexed-arm-hang showed most of major aspects of LGM. The 

analyses results for six other variables are presented briefly. 

Flexed-Arm Hang (FAH) 

Descriptive Statistics 
Table 1.4.1 shows the correlation coefficients between time points and other descriptive 

statistics for the FAH measure at each time point (histograms for FAH scores at each time point are 

presented in Appendix C, Figure C. 1). As expected, the data were positively skewed, but the degrees of 

skewnesses were moderate to small (all less than 2.0: Cuttance, 1987; Muthen & Kaplan, 1985). 

Kurtosis values at ages 8, 9 and 10 were relatively high. However, these levels of skewness and kurtosis 

are regarded as a low to medium level of departure from a normal distribution, and have a relatively low 

impact on the maximum likelihood estimation in a structural equation modelling analysis (Cuttance, 

1987; Muthen & Kaplan, 1985). Thus maximum likelihood estimation methods were used in the 

estimation of all latent growth models. 

The mean of the 210 children's FAH scores increased over the 5-year period, indicating an 

improvement in their upper arm muscular endurance, relative to their body weight. The largest rate of 

increase occurred between ages 8 and 9, and generally, the rate of the change decreased in subsequent 

years. Relatively large magnitudes of standard deviations are partially due to a few extreme scores. 

The correlation coefficients between adjacent time points were high, indicating year-to-year consistency 

of relative positions of children in their FAH scores. However, the correlation matrix approximated a 

simplex pattern, with the correlation coefficients becoming smaller as a coefficient gets further away 

from the main diagonal. This pattern implies that the children changed over time at different rates. That 

is, there was a considerable between-person variation in both the rate and the year of maximum 

development rate of their muscular strength. 

Identification of the Best Fitting Growth Curve 

Four growth models were fitted and compared to identify the best growth curve model. Table 

1.4.2 shows the goodness-of-fit indices of these four fitted latent growth models. Although the non-

normed fit indices were high, the %2 and root mean square error of approximation statistics indicated that 

the Linear and the Unspecified Curve (Curve in Table 1.4.2) models should be rejected. The Quadratic 

model (model 2), however, showed a very good fit to the data with six degrees of freedom. A test for the 
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Table 1.4.1 
Correlation coefficients and descriptive statistics for flexed-arm hang (FAH) 

Age 8 Age 9 Age 10 Age 11 Age 12 

Age 9 .780 

Age 10 .696 .840 

Age 11 .626 .768 .785 

Age 12 .652 .724 .711 .797 

Mean (sec.) 16.64 19.29 21.35 22.45 23.91 

SD 13.40 14.61 15.97 15.22 15.73 

Skewness 1.87 1.51 1.63 1.14 1.12 

Kurtosis 4.08 2.35 3.20 1.27 1.64 

Range 0-72 1-77 2-92 1 -76 1-88 

Table 1.4.2 
Fit indices for latent growth models for flexed-arm hang (FAH) 

Model X2(df) p-value RMSEA ECVI SRMR NNFI 

1. Linear 46.91 (10) < .001 .138 .335 .084 .96 

2. Quadratic 8.96 (6) .176 .048 .177 .039 1.00 

3. Quadratic, equal error variance 19.43 (10) .035 .069 .192 .036 1.00 

4. Curve 38.43 (7) <.001 .152 .319 .064 .95 

Note. Curve = Unspecified Curve model, df = degrees of freedom, RMSEA = root mean square error of 

approximation, ECVI = expected cross-validation index, SRMR = standardized root mean square 

residual, NNFI = non-normed fit index. 
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equality of error variances across time points (model 3) revealed that the error variances could not be 

considered equal at all five time points {yj difference = 10.47, df = 4, p = .033). 

The ECVI statistic was also smallest for the Quadratic model with unequal error variances. Thus, the 

Quadratic model with different magnitudes of error variances (model 2) is most favorable in explaining 

individual changes in FAH test scores over a 5-year period. The Cubic model was not fitted because 

given the difference in the degrees of freedom between the Quadratic and Cubic models, the Cubic 

model could not be significantly better than the Quadratic model (requires a %2 difference of 11.07 or 

larger with df = 5 at p < .05). Individual children's FAH developed in a quadratic fashion over time. 

Parameter estimates for the Quadratic model are presented in Table 1.4.3. The mean of the 

intercept factor was very close to the actual mean of FAH (16.64) at age 8, while the variance of the 

intercept factor was considerably smaller than the actual variance (179.56). The mean and the variance 

of the intercept factor represent the true (error free) initial status and variation of FAH performance at 

age of 8 that were explained by the Quadratic growth model. 

The mean of the linear factor was 2.75 (p < .001), indicating an average linear increase of 2.75 

seconds between ages 8 and 9. The dotted line in Figure 1.4.1 shows the trajectory of mean scores if this 

linear increase had continued for the rest of the time period (i.e., between ages 9 and 12). However, the 

actual average improvement was smaller due to the negative mean of the quadratic factor. The score of 

the linear factor represents the linear component of the individual change over time. The significant 

variance of the linear factor implies that there were differences in this change rate among children in the 

population. The magnitude of this variance (SD = 7.04) suggests that some of these children may have 

actually declined in their FAH scores over the five testing periods. The raw data showed that 20% of the 

children actually declined in their FAH score. However, this does not necessarily mean that their 

muscular endurance declined over time because FAH measures relative strength and endurance (relative 

to their body weight). 

The mean of the quadratic factor was - .241 (p = . 118) meaning, on the average, the rate of 

improvement decelerated over 5 years. However, this nonsignificant quadratic factor mean but 

significant variance (p < .001) indicate that some of the children decelerated and some accelerated in 

their development, but averaging those decelerations and accelerations produced a mean value close to 

zero. As well, it is possible that some children showed zero scores for the quadratic factor, and changed 

linearly over time. The significant variance of the quadratic factor resulted in the much better model fit 

obtained for the Quadratic model than that for the Linear model. This means that the inter-individual 

variation of the development in FAH among children is not adequately explained by the linear factor 

only. The curved line in Figure 1.4.1 shows the change described by the model. The difference between 

the dotted straight line and the curved line become larger as age increases, and this difference reflects 

the quadratic component of FAH score change over time. 



Table 1.4.3 

Estimated parameters (standard errors) of the Quadratic model for flexed-arm hang (FAH) 

Intercept 
factor 

Linear 
factor 

Quadratic 
factor Error Variance 

Mean 16.69 
(.930) 

p< .001 

2.75 
(.655) 

p<001 

- .241 
(.154) 

p = .118 

Age 8 25.92 
(11.20) 
p = .021 

Variance 157.36 
(19.93) 
p<.001 

49.57 
(11.81) 
p< .001 

2.72 
(.599) 

p<.001 

Age 9 28.70 
(4.84) 

p<.001 

Covariance 

Aee 10 44.09 
(6.46) 

p< .001 

Linear 
factor 

-5.57 
(12.47) 
p = .655 

Age 11 47.55 
(6.58) 

p<.001 

Quadratic 
factor 

.158 
(2.648) 

p = .952 

- 10.85 
(2.53) 

p< .001 

Aae 12 24.26 
(13.39) 

p = .070 

Figure 1.4.1. Linear and quadratic components of change in F A H 
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The covariances between the intercept and the linear and quadratic factors were not significant 

(p = .655 and .952, respectively). In standardized units these values were - .063 and .008, respectively. 

These small correlations were not expected because, in general, initial status and change show a low to 

medium level of negative correlation (Schutz, 1989). The covariance between the linear and quadratic 

factor was significant, the standardized value was - .94, indicating a very high negative correlation. This 

implies that the higher the linear development rate (the larger the change between ages 8 and 9), the 

faster the deceleration in development. 

Error variances at the first four time points were significantly different from zero, while the 

error variance at the last time point was not. These error variances are the variances that were not 

explained by the quadratic growth model. The error variances at ages 10 and 11 were larger than those 

at other time points. Although four of five error variances were significantly different from zero, these 

were relatively small compared to the estimated total variances at each time point (i.e., 183.28, 205.82, 

248.61, 254.79, and 242.55 at time 1, 2, 3, 4 and 5, respectively). This resulted in the relatively high 

estimated reliabilities for each time point of .86, .86, .82, .81 and .90, respectively. 

Predictor Effects 

Five predictors were sequentially included in the Quadratic model (model 2 in Table 1.4.2) in 

the next series of analyses (see Figure 1.2.3). The correlations between predictor variables and 

descriptive statistics are presented in Appendix C, Table C. 1. The sequence of predictor models and 

goodness-of-fit indices of each model are presented in Table 1.4.4. All five models fit the data very 

well; the x,2 statistics for all models were not significant, RMSEAs and SRMRs were low, and NNFIs 

are all close to 1.00, indicating a very good fit for all models. 

The parameter estimates of the predictor variables' effects on the intercept, linear and quadratic 

factors for each model are presented in Table 1.4.5. The test practice effects (the number of pre-

measurements) on the intercept, linear and quadratic factors were not significant (p = .523, .719 

and .604, respectively). Thus, this predictor variable was excluded in subsequent analyses. 

The next predictor, age, had a positive effect on the intercept (p = .022) but no significant 

effects on the linear and quadratic factors (p = .936 and .617, respectively). This means that although 

there was only a small degree of variation in the age variable (maximum difference among children was 

seven months), older children had higher levels of muscular endurance. However, the standardized 

coefficient was very small (.167), and the variance of age at the initial time point explained only about 

3 % of the variance of the initial status. As indicated by nonsignificant effects on both change factors, 

the rate of change was not influenced by age at the initial time point. Thus the age effects on the linear 

and quadratic factors were excluded in the following analyses while the age effect on the intercept factor 

was included. 

After controlling for age (on the intercept only), none of grade, measurement season or 
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Table 1.4.4 

Fit indices of the Quadratic models with predictors for flexed-arm hang (FAH) 

Predictors X2(df) p-value RMSEA ECVI SRMR NNFI 

5. The number of pre-measurements 9.52 (8) .300 .029 .227 .034 1.00 

6. Age 10.28 (8) .246 .036 .230 .034 1.00 

7. Grade 14.77(12) .255 .035 .292 .035 1.00 

8. Measurement season 14.18 (12) .289 .032 .290 .035 1.00 

9. Measurement year 13.90(12) .307 .030 .288 .035 1.00 

Note, df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected 

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index. 

Table 1.4.5 

Parameter estimates of predictor variables' effects on growth factors 

Predictors Intercept Linear Quadratic 
5. The number of .297 .118 - .040 

pre-measurements (.465) (.328) (.077) 
p= .523 p = .719 p = .604 

6. Age 1.086 - .027 -.040 
(-475) (.339) (.080) 

p - .022 p - .936 p = .617 

7. Grade .688 - .204 .074 
(1.904) (1.308) (.308) 
p = .718 p-,876 p = .810 

8. Measurement season - 1.863 .646 - .213 
(1.832) (1.307) (.308) 

p = .309 p = .621 p = .489 

9. Measurement year - .134 .115 .024 
(.167) (M9) (.028) 

p = .935 p = .334 p = .391 
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measurement year was significantly related to any of the three model parameters, intercept, linear or 

quadratic. The nonsignificant grade effect was due partly to a positive correlation between age and 

grade (.28). In general, measurement season (winter or summer) did not affect the performance on the 

muscular endurance test, and children's muscular endurance did not show differences across years, 

1970s through 1990s. 

In summary, the children's individual development in their relative upper arm muscular 

endurance and strength over a 5-year period was explained well by a Quadratic model with unequal 

error variances. On the average, their FAH scores increased, but the rate of the increase declined over 

the 5-year period. There were considerable inter-individual variations among children in the initial 

status (the FAH score at age 8), the linear development rate and the deceleration (acceleration) of the 

development. Five predictors were included in the Quadratic model to predict these variations, but only 

age had a significant positive effect on the initial status. The magnitude of the age effect on the initial 

status was very small, with only 3 % of the variance of the FAH initial status being explained by the 

variance in age. This was not unexpected, given the very small variance in age (a maximum difference 

between children of seven months). 

Six Other Physical Performance Variables 

Following is a summary of the results of the analyses for the remaining six physical 

performance variables; Jump-and-Reach (JAR), Sit-and-Reach (SAR), Agility Shuttle Run (ASR), 300-

foot Endurance Shuttle Run (ESR), 30-yard Dash (DASH) and Standing-Long-Jump (SLJ). Detailed 

descriptive statistics and parameter estimates for each variable are presented in Appendix C, Table C.2 

to Table C. 13. 

Descriptive Statistics 

Means and standard deviations of all six physical performance tests at five time points are 

presented in Table 1.4.6. Children's physical performances improved over a 5-year period (from 8 to 12 

years old) except for the SAR. The mean scores for JAR and SLJ, measured in inches, increased over 

time, and the mean scores for ASR, ESR and DASH, measured in seconds, decreased over time. 

However, children's flexibility measured by SAR (in inches) decreased over time. Children showed 

relatively large changes (in percent) on JAR (42.3%) and SLJ (22.9%) between ages 8 and 12. The other 

four variables showed an average change of 13.2% over a 5-year period. In general, the rates of 

improvements measured by mean scores were largest between ages 8 and 9, and the rate decreased in 

subsequent years, except for JAR and SAR. The JAR and SAR showed the largest change between ages 

9 and 10. The standard deviations of SAR were relatively large compared to the magnitude of the mean 

scores, indicating large between-person variability in hamstring flexibility. 

All six variables showed skewness and kurtosis values close to zero, indicating a small 

departure from a normal distribution. The largest absolute skewness value among all six variables across 
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all time points was .907 on ASR at age 10. The largest absolute kurtosis value was 1.418 on ESR at age 

10. Thus, maximum likelihood estimation methods were used in the estimation of all latent growth 

models. 

The correlation coefficients between time points for JAR (r = .49 to .69), ASR (r = .46 to .64), 

ESR (r = .52 to .67) and DASH (r = .55 to .69) indicate that there were moderately high levels of year-

to-year consistency of relative positions among children in these measures. The SAR (r = .74 to .86) and 

SLJ (r = .66 to .83) showed high levels of year-to-year-consistency. Similar to the Flexed-arm Hang 

(FAH) test, however, the correlation coefficients between time points approximated simplex patterns for 

all six variables. This implies that there were considerable between-person variations in the 

development rates for each of the six physical performances. 

Identification of the Best Fitting Growth Curve 

Best fitting growth models and goodness-of-fit indices for the six physical performance 

variables are presented in Table 1.4.7. 

Jump-and-reach. A Linear model with equal error variances at each time point described the 

individual changes of JAR very well. The %2 statistic was not significant (x2(14) = 17.31, p = .240), and 

all other fit indices indicated that the Linear model with equal error variances fit the data very well. 

These results imply that individuals improved linearly in jumping ability between ages 8 and 12. The 

true mean score at age 8 was 9.43 inches (p < .001), and on the average, the children improved .99 

inches (p < .001) per year. The variances of the intercept (1.94, p < .001) and linear (.08, p < .001) 

factors were significantly different from zero, indicating that there was a considerable inter-individual 

variation in the rate of improvement as well as in the initial status. This implies that children improved 

in jumping ability at different rates. The covariance between the intercept and linear factors was not 

significant, as indicated by a standardized covariance (i.e., correlation r) of - .06 (p = .656). The initial 

status and the rate of change did not show a significant relationship, similar to the FAH results. 

Sit-and-reach. The analyses results for SAR were very similar to those of JAR except that 

children showed decreasing scores in SAR over time. A Linear model with unequal error variances 

among time points described the individual changes of SAR very well. The %2 statistic was not 

significant (%2(10) = 10.54, p = .395), and all other fit indices indicated a good model fit. Individuals 

linearly declined in lower back and hamstring flexibility between ages 8 and 12. The true mean score at 

age 8 was 7.91 inches (p < .001), and on the average, the children declined .26 inches (p < .001) per 

year. The variances of the intercept (4.127, p < .001) and linear (.05, p = .006) factors were significantly 

different from zero, but the covariance between these two factors was not significant (r = - .03, p = .816). 

Thus, as in JAR, there was a considerable variation in the rate of decrease in flexibility, but the 

relationship between the initial status and the rate of decrease was not significant. 

Agility shuttle run. For ASR, both an Unspecified Curve (Curve hereafter) model (x.2(7) = 7.78, 
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Table 1.4.7 

Best fitting growth curve models and goodness-of-fit indices for the six physical performance variables 

Variable 

Identified 

model 

Error 

variances X2(di) p-value RMSEA ECVI SRMR NNFI 

JAR Linear Equal 17.31 (14) .240 .030 .137 .038 1.00 

SAR Linear Unequal 10.54(10) .395 .019 .147 .016 1.00 

ASR Curve Unequal 7.78(7) .353 .018 .160 .030 1.00 

ESR Curve Unequal 3.18(7) .868 < .001 .134 .023 1.01 

DASH Curve Unequal 18.73 (7) .009 .085 .208 .037 .97 

SLJ Cubic Equal 4.04 (5) .544 < .001 .144 .020 1.00 

Note. Curve = Unspecified Curve model, JAR = jump-and-reach (inches), SAR = sit-and-reach (inches), 

ASR = agility shuttle run (seconds), ESR = 300-feet endurance shuttle run (seconds), SLJ = standing 

long jump (inches), DASH = 30-yard dash (seconds). 
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p = .353) and a Quadratic model (x2(6) = 4.75, p = .577) fit the data very well, but the Quadratic model 

produced an improper solution (the correlation between the linear and quadratic factor was high (- .92), 

but was not significant (p = .066)). Thus, the Curve model with unequal error variances over time was 

selected as the best fitting model for ASR. The %~ statistic was not significant (x2(7) = 7.78, p = .353), 

and all other indices indicated a good model fit. Thus, the individual changes in ASR scores and the 

variation in change was adequately explained by the curve factor. The true mean of the ASR at age 8 

was 12.45 (p < .001) seconds, and on the average, the children improved in agility (decreasing means 

imply an improvement because this test was measured in time) over a 5-year period. The parameter 

estimates of the Curve model (more specifically, the factor loadings of the curve factor) provided the 

average improvement at each time interval. The improvement in agility was largest between ages 8 and 

9 (.54) and the rate of the improvement decreased in subsequent years (.52, .34, and .29 seconds 

between ages 9 and 10, 10 and 11, and 11 and 12, respectively). The significant variances of the 

intercept (.637, p < .001) and curve (.03, p = .016) factors implied that children showed inter-individual 

differences in the rate of improvement as well as in the initial status. The negative correlation (r = - .67, 

p = .002) between the intercept and curve factors indicated that the children with higher performance 

levels at age 8 showed smaller rates of improvement. 

Endurance shuttle run. The analyses results for ESR were very similar to those of ASR. A 

Curve model with unequal error variances described the individual changes of ESR very well. The x,2 

statistic was not significant (x2(7) = 3.18, p = .868), and all other fit indices indicated a good model fit. 

The true mean at age 8 was 43.93 seconds (p < .001), and in general, the children's performance 

improved over time. As in ASR, the improvement in ESR was largest between ages 8 and 9 (1.92), and 

the rate of the improvement decreased in subsequent years (1.47, 1.09 and 1.12 seconds between ages 9 

and 10, 10 and 11, and 11 and 12, respectively). The significant variances of the intercept (7.65, p 

< .001) and curve (.36 p = .009) factors implied that the children showed inter-individual variations in 

the initial status and the rate of improvement in endurance. The negative correlation (r = - .62, p = .002) 

between the intercept and curve factors indicate that children with higher performance levels at age 8 

showed smaller rates of improvement. 

30-yard dash. None of the four growth curve models, the Linear, Quadratic, Curve or Cubic 

model, adequately described the individual changes of DASH. The Linear model (x2(10) = 55.45, p 

< .001; RMSEA = .144) and the Quadratic model (x2 (6) = 18.199, p = .006; RMSEA = .095; ECVI 

= .217) were rejected. Although the Cubic model showed a very good model fit (x2(l) = 1 -54, p = .215; 

RMSEA = .050), this model produced an improper solution (the standardized variances of both the 

slope and the quadratic factors were greater than 1.00). The Curve model with unequal error variances 

among time points was selected as the best fitting model, although the model fit was not satisfactory. 

The model fit was slightly better than that of the Quadratic model, and produced a proper solution. The 
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X 2 statistic was significant (x2(7) = 18.73, p = .009) and the RMSEA (.085) was greater than .06, but the 

SRMR (.037) and NNFI (.97) indicated a good model fit. Thus, the subsequent analyses for the 

predictors' effect that are presented in the next section were conducted based on this model. The true 

mean at age 8 was 5.21 seconds (p < .001), and on the average, children's performance in DASH 

improved over time. The average improvement was largest between ages 8 and 9 (.275), and the rate of 

the improvement decreased until the fourth time point (.188 and .097 seconds between ages 9 and 10, 

and 10 and 11, respectively). The rate of improvement became larger between ages 11 and 12 (.142). 

Although estimated mean scores implied a cubic change over time, the variation in the rate of change 

was explained moderately well by the only one change factor, the curve factor. The significant variances 

of the intercept and curve factors (.125, p < .001 and .005, p = .038, respectively) indicated that there 

was a considerable inter-individual variation in the initial status and in the rate of change. However, the 

inter-individual variation of change was relatively small (standard deviation of the curve factor = .07). 

The negative correlation (- .66, p = .003) between the intercept and curve factors indicated that the 

children with higher performance levels at age 8 showed lower rates of improvement. 

Standing long jump. For SLJ, a Cubic model with equal error variances among time points 

described the individual changes very well. The x 2 statistic was not significant (x2(5) = 4.04, p = .544), 

and all other fit indices indicated a good model fit. The mean of the intercept (53.36, p < .001) and 

linear (4.52, p < .001) factors were significant, while the mean of the quadratic (- .34, p = .385) and 

cubic (.028, p = .659) factors were not. In general, children improved in SLJ score over time. The very 

small magnitude of the cubic factor mean resulted in the average improvement that is close to a 

quadratic change. The estimated true mean at age 8 was 53.36 inches and the improvement was highest 

between ages 8 and 9 (4.20), and the rate of the improvement decreased in-subsequent years (3.68, 3.33 

and 3.15 inches between ages 9 and 10, 10 and 11, and 11 and 12, respectively). The variances of the 

intercept (48.79, p < .001) and the linear (37.56, p < .001) factors were significant. The variances of the 

quadratic (12.44, p = .001) and the cubic (.30, p = .002) factors were also significant although the means 

of these two factors were not significant. This implies that there were considerable inter-individual 

variations in each component of the change, the linear, quadratic and cubic. The significant variances of 

the quadratic and cubic factors resulted in the very good model fit of the Cubic model. The correlation 

between the linear and quadratic factors was negative (- .94, p < .001), while the correlation between the 

linear and cubic factor was positive (.87, p = .002). The correlation between the quadratic and cubic 

factors was negative (- .98, p = .002). These pieces of information (i.e., large positive mean of the linear 

factor, negative mean of the quadratic factor, very small positive mean of the cubic factor, high negative 

correlations between the linear and quadratic factors, and between the quadratic and cubic factors and 

high positive correlation between the linear and the cubic factors) imply that the children who showed 

larger improvement at the first time interval showed larger decrease in the rate of the improvement in a 
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subsequent interval, and the rate of deceleration in the improvement decreased faster in subsequent 

years. It is possible that some showed decrease in the rate of the improvement at the beginning of the 

time period and then the rate of improvement accelerated in later years, or some accelerated in the rate 

of improvement at the beginning and then decelerated in later years. None of the change factors showed 

a significant correlation with the intercept factor. 

Predictor Effects 

The effects of the five predictors on the intercept and change factors for the six physical 

performance variables are summarized in Table 1.4.8. For simplicity, only the significant (p < .05) 

effects are presented, and the estimated values are reported in standardized units. 

Jump-and-reach. There were positive test practice and age effects on the intercept, and a 

negative measurement year effect on the linear factor. This indicates that the children who were 

measured more frequently before age 8, and who were older (within the group) showed better 

performances at age 8. In addition, the children who were measured in the 1970s showed faster 

improvements than the children who were measured in 1990s. However, the magnitudes of these 

predictors' effects were small, each explained less than 12% of the variance of the intercept or linear 

factor. Although the grade effect on the intercept was significant, the age effect on the intercept became 

nonsignificant with the inclusion of a grade effect, due to the positive correlation between age and grade 

(.28). Thus, the grade was excluded in the subsequent analyses. 

Sit-and-reach. There was a positive test practice effect on the intercept factor, and a negative 

test practice effect on the linear factor. This indicates that children who had been measured more 

frequently before age 8 showed higher levels of flexibility at the age of 8 but declined faster (or 

improved less) over a 5-year period. However, the magnitudes of the test practice effects on both factors 

were small, explaining only 4% and 10% of the variances of the intercept and the linear factors, 

respectively. 

Agility shuttle run. There were negative test practice, age and measurement year effects on the 

intercept factor, indicating that the children who were measured more frequently before age 8 and were 

older, showed better performances at age 8. As well, the children who were measured in the 1990s 

showed better performances than children who were measured in the 1970s. The positive measurement 

season effect on the intercept factor indicates that the children who were measured during a winter 

season showed a lower level of performance. There was also a positive test practice effect on the curve 

factor, indicating that the children who were measured more frequently before age 8 showed lower rates 

of improvement in agility. 

Endurance shuttle run. There were negative test practice, age, grade and measurement year 

effects on the intercept, and a positive test practice effect on the curve factor. Thus, the children who 

were measured more frequently before age 8, were older, and in a higher grade showed better endurance 

at age 8. As well, the children who were measured in the 1990s showed better performance at age 8 than 
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Table 1.4.8 

Predictors' effects on growth factors for six physical performance variables 

Predictors 

Variable Factor Test practice Age Grade Season Year 

JAR Intercept 

Linear 

.339 .193 .118* 

-.290 

SAR Intercept 

Linear 

.200 

- .318 

ASR Intercept 

Curve 

-.392 

.389 

- .188 -.317* .312 - .226 

ESR Intercept 

Curve 

-.383 

.297 

-.172 - .218 - .130 

DASH Intercept - .320 -.260 .215 -.194 

Curve .438 .287 .428 

SLJ Intercept .356 .144 .228 

Linear 

Quadratic 

Cubic 

Note. Only significant effects (p < .05) are shown in a standardized unit. 

JAR = jump-and-reach (inches), SAR = sit-and-reach (inches), ASR = agility shuttle run (seconds), ESR 

= 300-feet endurance shuttle run (seconds), DASH = 30-yard dash (seconds), SLJ = standing long jump 

(inches), Test practice = the number of pre-measurements, Season = measurement season, Year = 

measurement year. 

* = Grade variable was excluded in the subsequent analyses because the age effect became 

nonsignificant with the presence of this variable. 
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children who were measured in the 1970s. The children who were measured more frequently before age 

8 showed slower improvement in endurance performance. 

30-yard dash. There were negative test practice, age and measurement year effects and a 

positive measurement season effect on the intercept factor. The children who were measured more 

frequently before age 8, were older, and were measured in the summer season showed better 

performance in DASH at age 8. As well, the children who were measured in the 1990s showed better 

performances at age 8 than the children who were measured in the 1970s. There were positive test 

practice, age and measurement year effects on the curve factor. The children who were measured more 

frequently, were older and were measured in the 1990s showed smaller rates of improvement than the 

children who were measured less frequently, were younger and were measured in the 1970s. 

Standing long jump. There were positive test practice, age and measurement year effects on 

the intercept factor. The children who were measured more frequently before age 8, were older, and 

were measured in the 1990s showed better jumping ability than the children who were measured less 

frequently before age 8, were younger and were measured in the 1970s. 

In summary, the children improved in their motor performance in all variables over a 5-year 

period, except for the SAR where children's flexibility declined over time. The patterns of children's 

development were different across performance measures. The children showed linear development in 

JAR and SAR. For ASR, ESR, SLJ and DASH, the change was largest between ages 8 and 9, and in 

general, the rate of the change decreased in the subsequent years. A positive test practice effect on all 

performance measures at age 8 was observed, while the grade effect after controlling for age was 

observed in ESR only. There was also a positive age effect on all performance measures at age 8 except 

for SAR. A significant measurement season effect on the ASR and DASH at age 8 revealed that the 

children who were measured in the summer performed better than the children who were measured in 

the winter in agility and speed. Children who were measured in the 1990s showed better performance in 

ASR, ESR, SLJ and DASH at age 8 than the children who were measured in 1970s. 

Pseudo Cross-validation 

The analyses results for data set 2 are summarized and compared to those for data set 1 in this 

section. On the average, the children's age at each time point was six months older than that of data set 

1. Thus, the age at each time point was 8.5, 9.5, 10.5, 11.5 and 12.5 years. Detailed descriptive statistics 

and parameter estimates are presented in Appendix C (Table C. 14 to Table C.28). 

Descriptive Statistics 

Means and standard deviations of seven motor performance tests at five time points for data set 

2 are presented in Table 1.4.9. In general, the descriptive statistics that were obtained from data set 2 

were within the expected range. Children's physical performances at time 1 were slightly better (worse 

for SAR) in data set 2 than the performances in data set 1 due to the fact that they were six months older, 
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on the average. The magnitude of the change over a 5-year period was smaller than that of data set 1 for 

all the variables except for JAR — an expected finding, given the observed deceleration in development 

after age 9 in data set 1. The children showed a slightly larger change in JAR in data set 2. However, 

differences in change between data sets 1 and 2 were small (average difference was 1.9%). The pattern 

of the change was also similar to that of the data set 1. In general, the change was largest between the 

first two time points, and the rate of the change decreased in subsequent years. As in data set 1, the 

standard deviations of FAH and SAR were relatively large compare to the magnitude of means, 

indicating large between-person variability on these performances. 

The FAH showed relatively large kurtosis values at first two time points (3.82 and 2.98). 

However, the kurtosis at other time points and skewness at all time points of FAH were close to zero 

(smaller than 2.00), indicating small or medium departure from a normal distribution. For other 

variables, skewness and kurtosis at all time points were close to zero as in data set 1. The largest 

absolute skewness and kurtosis values across these six variables and all time points were 1.07 and 1.95 

on ASR at age 8.5, respectively. Thus, the maximum likelihood estimation was also used for all LGMs 

for data set 2. 

The correlation coefficients between time points of each variable showed a very similar pattern 

with that of data set 1. In general, correlation coefficients of data set 2 were larger than those of data set 

1 except for SAR, although the difference between the two data sets was small. The range of correlation 

coefficients between time points across all six variables (excluding SAR) was .52 to .86 in data set 2, 

while it was .46 to .83 in data set 1. This indicated that for these six performance variables, children 

showed higher consistency over time in their relative positions in data set 2 where children were six 

months older. For SAR, the range of correlation coefficients among time points was .70 to .84 in data 

set 2 while it was .74 to .86 in data set 1. As in data set 1, the correlation coefficients between time 

points approximated simplex patterns for all seven variables. This implies that there were inter-

individual variations in the rates of change in performances among children. 

Identification of the Best Fitting Growth Curve 

Table 1.4.10 shows the comparison between the two data sets in the goodness-of-fit of the 

selected best fitting models for each variable. In the first vertical column block, a summary of the results 

of the best fitting models for data set 1 are presented, and in the second column block, two goodness-of-

fit indices for the best fitting models of data set 1 that were fitted to data set 2 (cross-validation models) 

are presented. For example, the quadratic model with unequal error variances that was selected as the 

best model for the FAH in data set 1 was fitted to FAH for data set 2, and the %2 and RMSEA statistics 

of this model are presented in the second column block. The third column block shows the selected best 

fitting models, and fit indices for data set 2. 

In general, the results of the two data sets were comparable. The goodness-of-fits of the cross-
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validation models for data set 2 were worse in five variables, JAR, SAR, ASR, ESR and SLJ, but all of 

these five variables showed RMSEA statistics smaller than .10 which means an acceptable fit (Browne 

& Cudeck, 1993), except for ASR. The cross-validation models showed a better fit for the FAH and 

DASH. In terms of the best fitting models for data set 2 (third column block), the same growth curve 

models described the children's individual changes well for the FAH, JAR and SAR, but the equality of 

error variances over time were different between the two data sets. The error variances over time were 

equal for JAR and SLJ in data set 1, and for FAH, SAR and SLJ in data set 2. The more parsimonious 

models fitted the data well for the ESR, DASH and SLJ. Linear models fit the data well for these three 

variables in data set 2, while a Curve or Cubic model was the best fitting model for data set 1. For ASR, 

none of the Linear, Quadratic, Cubic or Curve models fit the data well in data set 2. 

Parameter Estimates of the Best Fitting Growth Models 

In the following comparisons, ASR is excluded because none of the growth models were 

selected as the best fitting model for this measure. The direct comparisons of parameter estimates of the 

best fitting models between two data sets were not possible because of the differences in the selected 

growth models. However, in general, the parameter estimates of the growth models for data set 2 were 

within the expected range considering the developmental trend and age differences between data se 1 

and 2. For all variables, the mean of the intercept factor reflected slightly better performances except for 

SAR. For example, the estimated mean of the intercept factor of the FAH (Table B. 16: 17.53, Standard 

Error (SE) = .96, p < .001) was slightly larger than that of data set 1 (Table 1.4.3: 16.69, SE = .93, p 

< .001), indicating a better performance at age 8.5 than at age 8. For SAR, the estimated mean of the 

intercept factor (Table B.20: 7.86, SE = .15, p < .001) was smaller than that of data set 1 (Table B.5: 

7.91, SE = . 15, p < .001), reflecting a slightly worse performance in flexibility at age 8.5 than at age 8. 

The estimated variances of the intercept factors for all the variables were similar to those of data set 1. 

The estimated means of the change factors (linear, quadratic and/or curve factors) were also 

within the expected range. The mean of the growth factors showed that there were smaller changes in 

the performances over a 5-year period in data set 2, as compared to data set 1 for all the variables except 

for JAR. For example, the absolute magnitude of the estimated mean of the linear factor (Table B.24: -

1.27, SE = .05, p < .001) for the ESR was smaller than the estimated average change of the four time 

intervals (- 1.40) of data set 1. This reflects the decreasing rate of the change in the physical 

performances over years (two data sets combined, between ages 8 and 12.5). The JAR showed a slightly 

larger estimated linear factor mean (Table B. 18: 1.02, SE = .03, p < .001) than that of data set 1 (Table 

B.3: .99, SE = .03, p < .001). All of the estimated variances of the growth factors were significant, 

implying that there were considerable between-person variations in children's development of physical 

performances, as in data set 1. 

Unlike in data set 1, the correlation between the intercept and the linear factors was significant 

(- .27, p = .049) for FAH, indicating that children who showed better performance at age 8.5 showed 
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lower rate of improvement. However, the magnitude of the correlation was small. As well, the 

correlation between the intercept and the linear factors was significant (- .43, p = .001) for SLJ, while 

none of the correlations between the intercept and growth factors of the Cubic model was significant in 

data set 1. Other parameter estimates for the covariances among factors were similar to those in data set 

1. 

Predictor Effects 

The effects of the predictors on the intercept and change factors for six physical performance 

variables of data set 2 are summarized in Table 1.4.11. As noted earlier, ASR is excluded from the 

analyses because none of the growth models were selected as the best fitting model for this measure. For 

simplicity, only the significant (p < .05) effects are presented and done so in standardized units. The 

statistical test of predictor effects for ASR was not conducted because there was no best fitting growth 

model for this variable. There were similarities and differences between the two data sets in the effect of 

the predictors. Where there was an agreement in the significance of an effect, the magnitude of the 

effect was similar and the direction (positive or negative) of the effect was the same. 

The test practice and age effects on the intercept factor were similar between the two data sets. 

As in data set 1, a positive test practice effect on the performance at the first time point (intercept factor) 

was found for all variables except for FAH. As well, a positive age effect on the performance at the first 

time point was found for all the variables except for the SAR in both data sets. The significance of other 

predictor effects varied between the two data sets. A test practice effect on the change factor was found 

for the ESR DASH and SLJ in data set 2, while it was found for the SAR, ASR ESR and DASH in data 

set 1. The age effect on the change factor was found for the ESR and DASH in data set 2, while it was 

found for the DASH only in data set 1. The grade effect was significant on the intercept factor for FAH 

and DASH and on the change factor for DASH in data set 2, while the grade effect on only the intercept 

for ESR was significant in data set 1. There was no measurement season effect in data set 2, but there 

were on the intercept factor for ASR and DASH in data set 1. The measurement year effect was found 

only for JAR in data set 2, while it was found for the JAR, ASR, ESR, DASH and SLJ in data set 1. 

In summary, children's development in physical performance was comparable between data set 

1 and data set 2, except for ASR. The same growth models described the individual changes well for the 

FAH, JAR and SAR in both data sets. More parsimonious models described the change for the ESR 

DASH and SLJ in data set 2 than in data set 1. However, for ASR none of the growth models fit the 

data well in data set 2, while a Curve model fit the data very well in data set 1. Although the difference 

was small, the changes in the performances over a 5-year period were smaller for all variables in data 

set 2, where the children's ages at five time points ranged from 8.5 to 12.5 than in data set 1, where the 

children's ages at five time points ranged from 8 to 12. This implies that the change was larger at 

younger ages and the rate of the change decreased at subsequent years. As in data set 1, the test practice 

and age effects on the intercept and change factors were dominant in most of the variables. The effect of 
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Table 1.4.11 

Predictors' effects on growth factors for six physical performance variables 

Predictors 

Variable Factor Test practice Age Grade Season Year 

FAH Intercept 

Linear 

Quadratic 

.154 - .198 

JAR Intercept 

Linear 

.394 .159 .170 

-.360 

SAR Intercept 

Linear 

.152 

ASR Intercept 

Curve 

Not conducted 

ESR Intercept 

Linear 

- .435 

.274 

-.199 

.247 

DASH Intercept - .256 - .233 .181 

Linear .262* .316 - .307 

SLJ Intercept 

Linear 

.354 

-.237 

.155 

Note. Only significant effects (p < .05) are shown in a standardized unit. 

FAH = flexed-arm hang (seconds), JAR = jump-and-reach (inches), SAR = sit-and-reach (inches), ASR 

= agility shuttle run (seconds), ESR = 300-feet endurance shuttle run (seconds), DASH - 30-yard dash 

(seconds), SLJ = standing long jump (inches), Leaning = the number of pre-measurements, Season = 

measurement season, Year: measurement year. 

* = Test practice effect on the linear factor was excluded after the Grade variable was included because 

this effect became nonsignificant (p > . 10). 
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other predictor variables varied by variable between the two data sets. 

Discussion of the Development of Physical Performance 

As mentioned in Chapter 1 -III, the variables that were used in the present study are not 

representatives of the all important physical performance and predictor variables. More important 

physical performance variables such as the variables that measure cardiovascular endurance and/or 

strength of various body parts were not included since already existing data were used in the present 

study. As well, more important predictor variables such as height, weight, percent body fat and/or the 

level of physical activity were not included in the present study. 

Children showed two dominant patterns of individual development in physical performances 

between ages 8 and 12.5 (data sets 1 and 2 combined). These were a constant (linear) change and a 

deceleration of the change (similar to a quadratic change) over time. Children showed linear changes in 

two of the seven performance variables, (JAR and SAR), and decelerations in change in the rest of the 

variables (FAH, ASR, ESR, DASH and SLJ) in data set 1. These two dominant patterns of change were 

generally supported by the cross-validation procedure. Thus, it is concluded that in early childhood an 

individual child shows a constant rate of development in physical performance or a faster development 

during early years and a subsequent decrease in developmental rate. Although the results were not 

directly comparable to those of previous studies because only group level statistics were available from 

previous studies, these two dominant patterns of development in physical performance variables during 

this age range generally agreed with the findings by Baumgartner, East, Frye, Hensley, Knox and 

Norton (1984), Bayley (1935), Clarke and Wickens (1962), Haubenstricker and Seefeldt (1986), 

Herkowitz (1978), Marmis, Montoye, Cunningham and Kozar (1969), Milne, Seefeldt and Reuschlein 

(1976), Morris, Williams, Atwater and Wilmore (1982), and Selis (1951). 

The comparisons of overall change in physical performance measures between data set 1 and 

the cross-validation data (data set 2) indicated that the rate of the development in physical performances 

decreased between ages 8 and 12.5. Although differences were very small, the rate of change of all 

performance variables, except JAR, is larger in data set 1 where the children's age ranged from 8 to 12 

than in the cross-validation data where the children's age ranged from 8.5 to 12.5. The percentages of 

change over a 5-year period were larger in data set 1 for all the variables except for JAR (see Table 

1.4.9), and the average changes estimated by LGMs were also larger for data set 1. The JAR showed 

slightly larger average change in the cross-validation data than in data set 1. This implies that the 

deceleration in the development rate of physical performances started within this age range, from age 8 

to age 12.5. The deceleration in the development rate of physical performances within this age range 

was reported in many studies (e.g., Baumgartner et al., 1984; Milne et a l , 1976; Selis, 1951). However, 

these results do not agree with the aforementioned results for some variables that showed linear changes 



64 

vvithin a data set (i.e., SAR in data set 1, and SAR, ESR DASH and SLJ in data set 2). 

The significance and the magnitude of the correlation between the initial status (performance at 

the first time point) and the rate of change varied by variable. The correlations between the initial status 

and the rate of change were not significant for FAH, JAR, SAR and SLJ in data set 1. These results 

disagreed with the general belief that the initial status negatively correlated with the rate of change, but 

supported Rogosa's (1995) arguments that the correlation between the initial status and the rate of 

change is not always present, but depends on the specific time interval that is selected in a study. For the 

variables that showed significant correlations between the initial status and the rate of change (ASR, 

ESR and DASH), the correlations were negative as noted in previous studies (e.g., Schutz, 1989). It is 

interesting to note that all the variables that involve running (ASR ESR and DASH) showed significant 

correlations between the initial status and the rate of change, and the magnitudes of the correlations 

were similar across variables (ranged from - .67 to - .62). This implies that the correlation between the 

initial status and the rate of change depends not only on the specific time interval that is selected.in a 

study but also on the specific performance measures. The analysis results of the cross-validation data 

generally supported these findings. 

The effects of predictors on the initial status and change were varied by variables. Most notable 

predictors were the number of pre-measurement (test practice effect) and age in months within the same 

age group. The test practice effect on the intercept factor (initial status) was significant for all the 

variables except for FAH. Children who were measured more frequently before the initial time point 

(age 8) showed better performances at initial time point. This effect is a long-term test practice effect 

rather than a short-term test (memory or practice) effect, because the interval between any two 

measurements was six months on the average. The test practice effect was not significant on the 

performance level of FAH, because the element of skill is relatively small for this test. The effect of age 

on the intercept was significant for all the variables except for SAR. Children who were older than 

others (within the same age group) by the length of up to seven months showed higher level of 

performances at the initial time point. The magnitudes of these test practice and age effects were small 

to medium, each explained 2% to 15% of variation of the initial status. These effects of the number of 

pre-measurement and age on the initial status were also evident in the cross-validation procedure, 

showing similar effects on the performance variables. The effects of other predictors were varied by 

variables (and also by the data sets). The negative test practice effect on the change rate of a few 

variables was partially due to the negative relationship between the initial status and the rate of growth. 
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Multivariate Latent Growth Models for Physical Performances 

The results of multivariate LGMs are presented in this section. As explained in Study 1-Chapter 

III, the models that examine the factor structure at each time point (Figure 1.3.3 and Figure 1.3.4) and 

the curve-of-factors models (Figure 1.2.5) were fitted to three hypothesized factors, "Run" (ASR, ESR, 

DASH), "Power" (JAR, SLJ, DASH) and "Motor Ability" (FAH, SLJ, SAR, DASH, ESR). Descriptive 

and related statistics for "Power" and "Motor Ability" factors for data set 1 and 2 are presented in 

Appendix C, Table C.29 to Table C.35. 

Run (ASR, ESR, DASH) 

Descriptive Statistics 
Descriptive statistics for the ASR, ESR and DASH are presented in Table 1.4.12. The change in 

mean and standard deviation of each variable, and the correlations between time points within the same 

variable were discussed in previous sections. The magnitudes of correlations between different variables 

within a time point were medium to high (.54 to .80). Generally, the correlations between ASR and ESR 

were relatively high at all time points (.68 to .80), while other correlations were lower (.54 to .67). This 

indicates that there was a considerable amount of variation that was shared by these three variables at 

each time point, and the variation that was shared by ASR and ESR was larger than the variation that 

was shared by DASH and other variables. The magnitudes of correlations between different variables 

between different time points were medium, with the smallest coefficient (.37) being between ESR at 

age 8 and DASH at age 11, and the largest coefficient (.65) being between ESR at age 11 and ASR at 

age 12. 

Verification of the Factor Structure 

As explained in Study 1-Chapter III, the factor structure of "Run" should be verified before the 

multivariate L G M is examined. This requires sequential testing of several models. The goodness-of-fit 

indices of these sequential tests for the verification of the factor structure are presented in Table 1.4.13. 

The first step was the confirmation of the factor structure at each time point. This was done 

using a 5-factor measurement model with one factor (representing the three performance measures, ASR, 

ESR and DASH) at each time point. The LISREL computer program commands for the analyses are 

shown in Appendix B. The 5-factor model (model 1) was rejected. Although the SRMR was in an 

acceptable range (< .08), the %2 statistic was almost four times the degrees of freedom, the RMSEA was 

unacceptably high (> .06), and the NNFI was low (< .90). In the next model (model 2), the errors of the 

same variable between time points were allowed to be correlated. This model, the 5-factor model with 

correlated errors, was not rejected. The RMSEA (< .06) and SRMR (< .08) were small and the NNFI 

was large (> .95). The ECVI was also much smaller than that of model 1. Thus, there were significant 

correlations of errors of the same variable between time points. This implies that there was an element 
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Table 1.4.13 
Fit indices of the 5-factor models for the verification of the factor structure of "Run" 

Models x2(df) p-value RMSEA ECVI SRMR NNFI 

1.5-factor model 313.60(80) < .001 T40 2~33 

2.5-factor model with 67.82(50) .048 .037 .98 

correlated errors 

3. Equal factor loadings 77.66(58) .043 .037 .95 

over time 

Note, df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected 

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index. 

.063 .87 

.032 .98 
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in the variance of each observed variable that was not explained by the "Run" factor but that was lasting 

over time. However, these correlations between errors were relatively small, ranging from - .02 to .21, 

indicating the lasting part of the each variable's variance that was not explained by the "Run" factor was 

relatively small. In the next step, the equality of factor loadings over time was examined (model 3). In 

this model, the factor loadings across all five time points within the same variable were constrained to 

be equal, and the variance of the factor was allowed to change over time. The %2 difference test of this 

model against model 2 (x2 difference = 9.84, df = 8, p > .05) revealed that the fit of this model was not 

significantly worse than model 2. The RMSEA, SRMR and NNFI indices also revealed that this model 

fit the data very well, and the ECTV was smallest among three models (see Table 1.4.13). Thus, it was 

concluded that the factor structure of the latent variable "Run" did not change over time. The relative 

magnitudes of explanatory power of the "Run" factor for each observed variable did not change over a 

5-year period. This means that conceptually the same latent construct, 'Run", was measured over time. 

The estimated factor loadings are discussed in the next section. The estimated correlations of 

factors between time points ranged from .70 to .85, indicating that children showed a relatively high 

year-to-year stability in the performance of the factor "Run". 

Identification of the Best Fitting Growth Curve 

Four different growth models (curve-of-factors models), the Linear, Quadratic, Cubic and 

Unspecified Curve (the Curve hereafter) models, were fitted and compared to examine the children's 

development in the "Run" performance over time. The factor loading of each variable was constrained 

to be equal over time, and errors of the same variable between time points were allowed to be correlated 

in these models. Once the best growth model was selected, the equality of error variances over time for 

each variable was examined. 

The results of the model fit are presented in Table 1.4.14. In terms of the x 2 statistic, RMSEA 

and SRMR, the Cubic model (model 6) fit the data best among three growth models, the Linear (model 

4), Quadratic (model 5) and Cubic models. The x 2 difference tests showed that the Cubic model was 

significantly better than both the Linear (x2 difference = 50.99, df = 9, p < .001) and the Quadratic (x2 

difference = 12.6, df = 5, p < .05) models. However, the Cubic model showed very little differences 

from the Curve model (model 7(a)) in terms of the RMSEA, SRMR, NNFI and ECVI. In addition, the 

Curve model was more parsimonious (larger degrees of freedom) than the Cubic model. Thus, the Curve 

model was selected as the best fitting model in describing the children's development in the "Run" 

performance. Children's development in "Run" performance was well explained by one latent change 

factor, curve (see Figure 4.2). The test of the equality of error variances over time showed that only 

model 7(d) was not significantly worse than model 7(a) (x2 difference = 7.87, df = 4, p > .05). Thus, it is 

concluded that the error variances were equal over time only for the variable DASH. 

The parameter estimates of model 7(d), the Curve model with equal error variances over time 
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Table 1.4.14 

Fit indices of latent growth models for "Run" 

Models X2(df) p-value RMSEA ECVI SRMR NNFI 

4. Linear 157.37(78) < .001 .067 1.27 .066 .95 

5. Quadratic 118.98(74) < .001 .051 1.13 .063 .97 

6. Cubic 106.38(69) .003 .049 1.13 .062 .98 

7(a) Curve 117.24(75) .001 .050 1.12 .065 .98 

Equal error variance over time for: 

(b) ASR 148.40(79) < .001 .062 1.22 .067 .96 

(c) ESR 152.30(79) < .001 0̂63 1.23 .064 .96 

(d) DASH 125.11(79) < .001 .050 1.11 .066 .97 

Note, df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected 

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index. 
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for DASH, are presented in Figure 1.4.2. In this figure, the path showing correlated errors are omitted 

for simplicity. Factor loadings for each observed variable at each time point and the correlation between 

the intercept and curve factors are standardized values (represented in italic). 

Because the presented factor loadings are standardized values, the magnitudes of the loadings for a 

variable across time points are not identical although these factor loadings were constrained to be equal 

in raw values (in its own scale). All other estimates are raw values. All presented estimates were 

significant at p < .05. 

The standardized factor loadings for the observed variables were relatively high (.71 to .89), 

indicating that these variables were well explained by one underlying latent factor "Run" at each time 

point. Among the three variables, the DASH showed the lowest standardized loadings at all time points. 

This indicates that the proportion of variance that was explained by the "Run" factor was smaller for 

DASH than those of ASR and ESR. The mean of the intercept factor was 12.44 (seconds). This was very 

close to the mean of ASR at age 8 because the "Run" factor was scaled by fixing the factor loading of 

this variable at 1.0 at each time point. This means that the scale of the "Run" factor was same as that of 

the ASR, and thus the interpretation of this factor may be based on this scale. The variance of the 

intercept factor was .57 (p < .001), indicating that there was a significant inter-individual variation 

among children in the performance of "Run" at age 8. The mean of the curve factor was - .58 (p < .001), 

implying that on average, children improved (by .58 seconds) in the "Run" performance between ages 8 

and 9. By multiplying factor loading of each time point (i.e., 1.0, 1.81, 2.31 and 2.87) to this mean of the 

curve factor, one obtains the amount of change between the first time point and the specific time point. 

Thus, by age 10, the average score on the "Run" had decreased 1.05 seconds (1.81 x - .58), indicating 

an improvement of .47 seconds (1.05 - .58 or .81x .58) from age 9 to 10. In general, the rate of the 

improvement decreased until age 11 (an improvement of .29 seconds between 10 and 11), and slightly 

increased between age 11 and 12 (.32 seconds). The significant variance of the curve factor (p = .018) 

indicated that there was a significant inter-individual variation in the development of "Run" 

performance. The correlation between the intercept and the curve factors was negative and relatively 

high (r = - .66, p < .001). This implies that the children who showed better performance at age 8 showed 

a slower improvement. 

Predictor Effects 

As in the univariate LGM, five predictors were sequentially included in the selected Curve 

model. All models with predictors showed a good model fit (RMSEA < .06). There were significant test 

practice (- .410, p < .001), age (- .230, p = .001), measurement season (.274, p < .001) and measurement 

year (- .234, p = .003) effects on the intercept factor. The children who were measured more frequently 

before age 8, older (by up to seven months), measured during a summer season (compared to a winter 

season) and measured in the 1990s (compared to the children who were measured in the 1970s) showed 
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better performances in "Run" at age 8. The significant test practice (.491, p < .001) and measurement 

year (.327, p = .011) effects on the curve factor indicated that the children who were measured more 

frequently and measured in the 1990s showed slower improvement in "Run" performance over time. 

Power (JAR, SLJ, DASH) 

Descriptive Statistics 
The means and standard deviations of JAR, SLJ and DASH were presented and discussed in the 

univariate LGM sections. The correlations among these three variables across five time points are 

presented in Appendix C, Table C.29. The magnitudes (in absolute values) of correlations between 

different variables within a time point were of medium magnitude (.49 to .72). In general, the 

correlations between JAR and SLJ showed higher absolute values (.63 to .72) than other correlations 

(.49 to .67). These two variables that have the element of jumping have a relatively large amount of 

shared variance. The magnitudes of correlations between different variables between different time 

points were small to medium with the smallest (in an absolute value) coefficient of - .34 between JAR at 

age 8 and DASH at age 9, and the largest coefficient of .66 between JAR at age 9 and SLJ at age 10. 

Verification of the Factor Structure 

The goodness-of-fit indices of models for the verification of the factor structure for the "Power" 

factor are presented in Table 1.4.15. As in the "Run" factor the 5-factor model with correlated errors 

(model 2) showed a good model fit. All fit indices indicate a close fit of this model to the data. Thus, 

errors of each variable over time were significantly correlated. There was a part in the variance of each 

variable that was not explained by the "Power" factor and was lasting over time. The magnitudes of 

correlations between errors were relatively small, and ranged from .06 to .24. 

In the next step, a 5-factor model with the equality of factor loadings across all time points as 

well as the correlated errors (model 3(a)) was examined. In this model, the variance of the factor was 

allowed to change over time (the factor loadings of JAR was fixed at 1.0 at each time point). This model 

showed a significantly worse model fit as compared to model 2 (%2 difference = 34.43, df = 8, p < .05). 

Although the absolute fit of this model was good (RMESA < .06 and NNFI > .95), it is concluded that 

the factor structure changed over a 5-year period. To examine when the factor structure changed, four 

additional models were fitted and compared to model 2 using the %2 difference test. Model 3(b), in 

which the factor loadings between time 1 and 2 (age 8 and 9) were constrained to be equal, was 

significantly worse than model 2 (%2 difference = 15.38, df = 2, p < .05). However, model 3(c) (%2 

difference = .42, df = 2, p > .05), model 3(d) (%2 difference = 3.32, df = 4, p > .05), and model 3(e) (%2 

difference = 7.34, df = 6, p > .05) were not significantly worse than model 2. Thus, it is concluded that 

the factor structure changed between ages 8 and 9 (time 1 and 2), and then remained relatively stable 

through to age 12. 
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Table 1.4.15 
Fit indices of models for the verification of the factor structure of "Power" 

Models X2(df) p-value RMSEA ECVI SRMR NNFI 

1, 5-factor model 368.24(80) < .001 .152 2.62 .061 .85 

2. 5-factor model with 44.09(50) .708 < .001 .91 .020 1.00 

correlated errors 

3. Equal factor loadings over time 

(a) Time 1=2 = 3 = 4 = 5 78.52(58) .038 .039 .96 .066 .99 

(b) Time 1 = 2 59.47(52) .222 .022 .92 .048 .99 

(c) Time 2 = 3 44.51(52) .760 < .001 .90 .022 1.01 

(d) Time 2 = 3 = 4 47.41(54) .725 < .001 .89 .027 1.01 

(e) Time 2 = 3 = 4 = 5 51.43(56) .648 < .001 .88 .034 1.00 

Note, df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected 

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index. 
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According to the parameter estimates of model 2 in which the factor loading of the JAR was 

fixed at 1.0 at each time point, and the variance of the "Power" factor was allowed to change over time, 

the absolute magnitudes of the factor loadings of the SLJ (5.13) and DASH (- .26) at the first time point 

were considerably larger than those of other time points (the average factor loadings at the other four 

time points were 4.02 and - . 16, respectively; these raw factor loadings are not presented, instead 

standardized factor loadings are shown in Table 1.4.16). Thus, the amount of variance that was 

explained by the "Power" factor for the SLJ and DASH, relative to that of JAR, was larger at the first 

time point than at the other time points. 

The standardized parameter estimates of model 3(a), instead of model 3(e), are presented in 

Table 1.4.16 because this model was used as the base model for the subsequent LGM analyses. This 

model, in which the equality of factor loadings over all time points was imposed, showed an acceptable 

absolute fit (i.e. RMSEA < .06). The correlated errors are omitted in Table 1.4.16. Because the presented 

factor loadings are standardized values, these were not identical over time. The absolute magnitudes of 

the factor loadings were moderate to large (.62 to .89). The factor loading for SLJ was largest while the 

factor loading for DASH was smallest among three observed variables at each time point. This implies 

that the latent factor "Power" explained smaller proportion of the variance of DASH than those of the 

other two variables. The correlations of factors between time points were high (.80 to 96), indicating 

that children showed a relatively high level of year-to-year stability in the "Power" performance. In 

general, these correlations approximate a simplex pattern, with the correlation coefficients becoming 

smaller as a coefficient gets further away from the main diagonal. This indicates that there was an inter-

individual variation in the development of the "Power" performance. 

Identification of the Best Fitting Growth Curve 

Although it is concluded that the factor structure changed between ages 8 and 9, the factor 

loadings of each observed variable across all time points were constrained to be equal for the 

multivariate LGM analysis because the multivariate latent growth model (a curve-of-factors model) 

requires the equality of factor structure (loadings) over time. Four growth models were fitted, and the 

results of the model fit are presented in Table 1.4.17. 

The goodness-of-fit indices indicate that all four growth models were rejected. The %2 statistic 

was large, and the RMSEA, SRMR and NNFI were in unacceptable ranges. In addition, maximum 

likelihood estimation produced improper solutions (i.e., negative variances). Attempts to resolve this by 

using several different sets of starting values resulted in the convergence to the same solution. It is 

concluded that none of the growth models adequately explain the change in the "Power" factor. Thus, 

the interpretation of parameter estimates and further analyses for the predictors' effects were not 

conducted. 
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Table 1.4.16 

Parameter estimates of the 5-factor model with correlated errors and the equality of factor loadings over 

time for "Power" 

Standardized factor loading Correlations of factors between time points 

Time Variable Loading Age 8 Age 9 Age 10 Age 11 Age 12 

Age 8 
JAR 
SLJ 

DASH 

.79 

.87 
- .66 

1.00 .91 .87 .78 .80 

Age 9 
JAR 
SLJ 

DASH 

.81 

.81 
-.62 

1.00 .92 .86 .86 

Age 10 
JAR 
SLJ 

DASH 

.74 

.83 
-.67 

1.00 .96 .91 

Age 11 
JAR 
SLJ 

DASH 

.79 

.89 
- .69 

1.00 .89 

Age 12 
JAR 
SLJ 

DASH 

.74 

.89 
-.74 

1.00 

Note. Correlated errors are omitted. All estimates were significant at an alpha level of .01. 

Table 1.4.17 
Fit indices of latent growth models for "Power" 

Models X2(df) p-value RMSEA ECVI SRMR NNFI 

4. Linear 1285.11(78) <.001 .181 3.49 .286 .35 

5. Quadratic 1273.10(74) < .001 .190 3.61 .337 .32 

6. Cubic 1265.03(69) < .001 ,197 3.63 .337 .27 

7. Curve 1274.43(75) < .001 .182 3.41 .294 .32 ' 

Note, df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected 

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index. 
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Motor Ability (FAH, SLJ, SAR, DASH, ESR) 

Descriptive Statistics 

The means and standard deviations of each variable at each time point were presented and 

discussed in previous sections. The correlations between variables across five time points are presented 

in Appendix C, Table C.30. The magnitudes (in absolute values) of correlations between different 

variables within a time point range from small to medium (.19 to .67). Generally, correlations between 

SLJ and DASH (.51 to .67), between SLJ and ESR (.56 to .66) and between DASH and ESR (.54 to .65) 

showed larger values than correlations between other variables at each time point. This indicates that the 

amount of shared variation among the SLJ, DASH and ESR was relatively large while the FAH and 

SAR had smaller amount of shared variation with other variables. The magnitudes of correlations 

between different variables between different time points range from also small to medium (.11 to .59). 

Verification of the Factor Structure 

The results of the model fit for the verification of the factor structure for the "Motor Ability" 

(Table 1.4.18) factor were very similar to those of the "Power" factor. The 5-factor model with 

correlated errors showed a good model fit (model 2). The model with the equality of factor loadings 

over five time points (model 3) was rejected compared to model 2 (x2 difference = 41.11, df = 16, p 

< .05). Further analyses revealed that the factor structure changed between ages 8 and 9 (only model 

3(a) was significantly worse than model 2 at an a level of .05). 

According to the parameter estimates of model 2, the absolute magnitudes of factor loadings for 

all the variables except for the FAH, which was used as a scaling variable (factor loading of this variable 

was fixed at 1.0), were considerably larger at the first time point (1.15, . 17, - .07 and - .53 for the SLJ, 

SAR, DASH and ESR, respectively) than those of the other time points (average factor loadings of four 

time points were .80, . 10, - .04 and .31, respectively). For these variables, the amount of variation that 

was explained by the "Motor Ability" factor, relative to that of the FAH, was considerably larger at the 

first time point than at the other four time points. As was done for the "Power" factor, the standardized 

parameter estimates of model 3(a) are presented in Table 1.4.19. The absolute fit of this model was 

acceptable in terms of the %z statistic, RMSEA, and NNFI. 

The display of correlated errors is omitted in Table 1.4.19. The absolute magnitudes of factor 

loadings were small to large (.29 to .82). The factor loadings for SLJ (.76 to .80), DASH (.72 to .78) and 

ESR (.73 to .82) were relatively large, while the factor loadings for FAH (.36 to .47) and SAR (.29 

to .38) were relatively small. This indicates that the factor "Motor Ability" was highly characterized by 

three variables, the SLJ, DASH and ESR. The amount of variance that was explained by the "Motor 

Ability" factor was relatively small for the FAH and SAR. The correlations of factors between time 

points were high (.81 to .93), indicating that children showed a high level of year-to-year stability in 

"Motor Ability" performance. 
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Table 1.4.18 

Fit indices of models for the verification of the factor structure of "Motor Ability" 

Models x2(df) p-value RMSEA ECVI SRMR NNFI 

1.5-factor model 2307.67(265) < .001 128 15.67 A51 A9~ 

2.5-factor model with 242.81(215) .094 .022 2.18 .060 .99 

correlated errors 

3. Equal factor loadings over time 

(a) Time 1 = 2 =3=4=5 283.92(231) .010 .029 2.20 .085 .99 

(b) Time 1 = 2 252.99(219) .057 .024 2.19 .069 .99 

(c) Time 2 = 3 246.31(219) .099 .021 2.16 .062 .99 

(d) Time 2 = 3 = 4 253.17(223) .081 .023 2.16 .067 .99 

(e) Time 2 = 3 = 4 = 5 260.78(227) .061 .024 2.15 .067 .99 

Note, df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected 

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index. 
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Table 1.4.19 

Parameter estimates of the 5-factor model with correlated errors and the equality of factor loadings over 

time for "Motor Ability" 
Standardized factor loading 

Time Variables Loading 

FAH .47 
SLJ .82 

Age 8 SAR .38 
DASH -.77 

ESR - .73 

FAH .41 
SLJ .76 

Age 9 SAR .35 
DASH -.72 

ESR -.77 

FAH .36 
SLJ .76 

Age 10 SAR .33 
DASH - .74 

ESR - .73 

FAH .37 
SLJ .80 

Age 11 SAR .30 
DASH - .74 
ESR -.76 

FAH .37 
SLJ .80 

Age 12 SAR .29 
DASH -.78 

ESR -.82 

Correlations of factors between time points 

Age 8 Age 9 Age 10 Age 11 Age 12 

1.00 .92 .91 

1.00 .91 .87 

1.00 .92 

1.00 

.83 

.87 

.87 

.93 

1.00 

Note. Correlated errors are omitted. All estimates were significant at an alpha level of .01. 
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Identification of the Best Fitting Growth Curve 

The goodness-of-fit indices of the four multivariate LGMs for the "Motor Ability" factor are 

presented in Table 1.4.20. As was shown for the "Power", none of the four growth models fit the data 

well. It is concluded that none of the four growth models adequately explained the children's 

development in "Motor Ability" performance over a 5-year period. Further analyses for the predictors' 

effects were not conducted. 

In summary, although all hypothesized factors showed good model fits for the factor structure, 

children's development in the "Run" performance only, among three hypothesized factors, was 

explained well by a multivariate LGM, a Curve model. In this Curve model for the "Run" factor, three 

observed variables were well explained by one underlying latent factor at each time point. The 

children's performance represented by the "Run" factor improved over a 5-year period, and the change 

was largest between ages 8 and 9. There were significant test practice, age, measurement season and 

measurement year effects on the intercept factor, and significant test practice and measurement year 

effects on the curve factor. Children showed change in factor structure in "Power" and "Motor Ability" 

performances between ages 8 and 9. None of the multivariate LGMs for these two factors adequately 

explained the children's development in these latent traits. 

Pseudo Cross-Validation 

The series of all analyses and model testings presented in the previous sections dealing with 

multivariate LGMs were replicated on data set 2. The results are summarized and compared to those for 

data set 1 in Table 1.4.21. As noted previously, on average, the children's age at each time point was six 

months older than that of data set 1. Thus, the mean age at each time point was 8.5, 9.5, 10.5, 11.5 and 

12.5 years. 

Descriptive Statistics 

In general, the absolute magnitudes of correlations between variables within a time point and 

between different variables between time points were slightly larger in data set 2 than in data set 1 for 

all hypothesized factors with some exceptions (see the first column block in Table 1.4.21). The patterns 

of the correlations were very similar to those of data set 1. For example, for the "Run factor, the 

correlations between ASR and ESR showed the highest values among correlations between different 

variables within a time point at each time point in both data set 1 (Table 1.4.12: .68 to .80), and data set 

2 (Table B.31: .75 to .82). 

Verification of Factor Structure 

As in data set 1, the 5-factor model with correlated errors fit the data well in all three 

hypothesized factors (RMSEA < .06). The test of the equality of factor loadings over time for the "Run" 

factor also revealed that the factor structure of the "Run" factor did not change over time (%2 difference 
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Table 1.4.20 

Fit indices of latent growth models for "Motor Ability" 

Models x2(df) p-value RMSEA ECVI SRMR NNFI 

4. Linear 1578.75(261) < .001 T31 6060 294 6̂7 

5. Quadratic 1545.33(257) < .001 .126 6.18 .295 .67 

6. Cubic 1530.05(252) < .001 .125 6.10 .296 .67 

7. Curve 1539.05(258) < .001 .124 6.08 .295 .67 

Note, df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected 

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index. 
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= 11.06, df = 8, p > .05, as compared to the model with free factor loadings) as in data set 1. However, 

the other two factors ("Power", and "Motor Ability") showed that the factor structure changed between 

time 4 and 5 (ages 11.5 and 12.5), while the factor structure changed between time 1 and 2 (ages 8 and 

9) in data set 1 (see the second column block in Table 1.4.21). 

Although the model with equality of factor loadings over all five time points was rejected 

against the model with changing factor loadings in three hypothesized factors, the model with equality 

constraints still showed a good fit to the data for all hypothesized factors (RMSEA < .06). Thus, the 

range of factor loadings and factor correlations presented in Table 1.4.21 are based on this model with 

equality constraints. The factor loadings were slightly larger in data set 2 than in data set 1 for all factors. 

The average factor loading was .79 in data set 2 and it was .76 in data set 1. 

Identification of the Best Fitting Growth Curve and Predictor Effects 

As in data set 1, only the change of the "Run" factor was adequately explained by a multivariate 

L G M (Table 1.4.22). In terms of the RMSEA, ECVI and NNFI, the Quadratic (model 5), Cubic (model 

6) and Curve (model 7(a)) models showed very similar fits, with the Quadratic model showing a slightly 

better fit than other models in terms of the RMSEA and ECIV However, the Curve model was selected 

because this model differed only slightly from the Quadratic model in terms of model fit but it had more 

degrees of freedom. In addition, because a Curve model was selected as the best fitting model for the 

"Run" factor in data set 1, it provides easier comparisons between the two data sets. With this Curve 

model, only the DASH variable showed equal error variances over time (model 7(d): x 2 difference = 

4.67, df= 4, p > .05), as in data set 1. 

The estimated mean of the intercept factor (12.06) was slightly smaller than that of the data set 

1 (12.44), indicating a better average performance at age 8.5 than at age 8 in "Run". The variance of the 

intercept factor (.59, p < .001) was very close to that of data set 1 (.57). As in data set 1, the average 

change was largest between the first two time points (- .46) and the rate of the change decreased in 

subsequent years (- .38, - .34 and - .32 between time 2 and 3, 3 and 4, and 4 and 5, respectively). The 

variance of the Curve factor (.02, p = .001) was very close to that of data set 1 (.02). The correlation 

between the intercept and the curve factors (- .58) was negative and relatively high, as in data set 1 (-

.66). 

All of the LGMs for the "Run" factor with the predictors fit the data very well (RMSEA < .06). 

As in data set 1, there were significant test practice (- .426, p < .001) and age (- .207, p = .003) effects 

on the intercept factor. However, unlike data set 1, the effects of measurement season and measurement 

year on the intercept factor were not significant. There was a significant test practice effect (.338, p 

= .001) on the curve factor, as in data set 1, but unlike data set 1, the measurement year effect was not 

significant. In addition, the age effect (.298, p = .003) on the curve factor was significant in data set 2, 

while it was not significant in data set 1. 
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Table 1.4.22 

Fit indices of latent growth models for "Run" factor (data set 2) 

Models X2(df) p-value RMSEA ECVI SRMR NNFI 

4. Linear 123.82(78) < .001 .053 1.17 .052 .98 

5. Quadratic 108.16(74) .006 .045 1.11 .047 .98 

6. Cubic 105.59(69) .003 .048 1.15 .046 .98 

7(a) Curve 113.04(75) .003 .046 1.12 .053 .98 

Equal error variance over time 

(Curve model) 

(b) ASR 143.13(79) < .001 .061 1.23 .059 .97 

(c) ESR 153.19(79) < .001 .064 1.27 .053 .96 

(d) DASH 117.71(79) .003 .045 1.10 .054 .98 

Note, df = degrees of freedom, RMSEA = root mean square error of approximation, ECVI = expected 

cross-validation index, SRMR = standardized root mean square residual, NNFI = non-normed fit index. 



84 

The x 2 statistic and RMSEA of four growth models of the other two factors, "Power", and 

"Motor Ability" are presented in Table 1.4.23. The x 2 statistics and RMSEAs indicate that none of the 

four growth models fit the data for these two hypothesized factors. In addition, the maximum likelihood 

estimation produced improper solutions (negative variances), as in data set 1. Thus, further analyses 

were not conducted for these factors. 

In summary, the analysis results of data set 2 were very similar to those of data set 1. Children's 

development in the "Run" performance was adequately explained by the Curve model. There were some 

similarities and differences between data sets 1 and 2 in the significance of the predictors' effects on 

initial status and the change. However, none of the growth models adequately explained the change in 

the other two factors, "Power" and "Motor Ability". For these two factors, the factor structure changed 

between time 4 and 5 (ages 11.5 and 12.5) while it changed between time 1 and 2 (ages 8 and 9) in data 

set 1. 

Discussion of the Multivariate Development of Physical Performance 

Multivariate analyses of the data included two main parts, an examination of the hypothesized 

factor structure and an examination of growth curves of latent factors. The examination of the factor 

structure for three hypothesized factors provided evidence that rejects the early concepts of general 

motor ability, and partially supports the specificity of the physical performance factors to the particular 

muscle groups or particular types of movement. The factor models for the examination of the factor 

structure at each time point for all three hypothesized factors fit the data well. However, the 

standardized factor loadings of the FAH and SAR for the "Motor Ability" factor that was hypothesized 

based on the earlier concept of general motor ability, were relatively small (.29 to .47), while the factor 

loadings of the other three observed variables (SLJ, DASH and ESR) were relatively large (.73 to .86). 

This implies that the "Motor Ability" was largely characterized by the three variables, SLJ, DASH and 

ESR, and did not explain well the variance of the FAH and SAR. Thus, the concept of general motor 

ability was rejected in this study as in many earlier studies (e.g., Cousins, 1955; Baumgartner & 

Zuidema, 1972; Jackson, 1971). It is unlikely that a single general motor ability factor explains all the 

physical performances even for boys in early childhood. On the contrary, the factor loadings of all 

observed variables for the "Run" (.71 to .92) and "Power" (.62 to .89) factors were relatively large, 

indicating that these factors explained the performances of running and explosive leg power fairly well. 

These two factors were characterized by a particular type of movement or by a particular muscle group. 

Thus, the findings by Baumgartner and Zuidema (1972), Cousins (1955), Jackson (1971), Liba (1967), 

and Start, Gray, Glencross and Walsh (1966) were not refuted. However, this is not a strong support for 

the specificity notion of physical performance latent variable(s), because not all possible sets of physical 

performance variables were included in the examination of factor structure in the present study. Because 



Table 1.4.23 

Goodness-of-fit indices of growth models for two factors 

Power Motor abilitv 

Model X2(df) RMSEA X2(df) RMSEA 

Linear 1265.39(78) .190 1637.42(261) .137 

Quadratic 1262.43(74) .194 1561.21(257) .129 

Cubic 1256.85(69) .200 1558.69(252) .131 

Curve 1264.23(75) .193 1630.36(258) .137 

Note, df: degrees of freedom, RMSEA: root mean square error of approximation. 
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of this limitation in this study, the specificity of factor structure is not clearly supported for the 

population of young children. Regarding the fact that most of the factor analytic studies were conducted 

on a college population, more studies are needed to verify the factor structure of physical performance 

for children. 

The examination of the equality of factor loadings (the equality of relative contributions of 

indicator variables) over time for "Power" and "Motor Ability" revealed that the factor structure 

changed between ages 8 and 9 in data set 1 and between ages 11.5 and 12.5 in the cross-validation data 

(data set 2). However, the magnitude of the change in factor structure was small for both data sets, 

showing that the models with equality constraint between all time points fit the data fairly well. 

Although these results were consistent within each data set, it is difficult to draw a general conclusion 

regarding the time point of change in factor structure because of the disagreement between the two data 

sets. In the present study, the time point of the change in factor structure was specific to selected sample 

and time points. These results generally support the findings by Marsh (1993), in that factor structure is 

not equal over time but the difference is small, although his conclusions were based on the comparisons 

of independent age groups (ages of 9, 12 and 15) and different sets of performance variables. On the 

contrary, the "Run" factor showed the equality of factor loadings over time in both data sets. This 

implies that while each indicator variable showed different variations in individual change rate among 

children, the relationship among these three variables did not change over time. In other words, the 

same underlying latent trait explained the variations in three running ability variables, ASR, ESR and 

DASH, at each of five time points. Strictly speaking, the results of the present study indicate that only 

the "Run" factor would be a valid latent trait to employ as a measure in a longitudinal analysis (Marsh, 

1993). However, this may be an overly cautious conclusion because the other two hypothesized factors 

showed only marginal differences in factor loadings over time. As noted by Marsh (1993), inadequate 

attention has been given to the issue of factorial invariance over time for physical performance variables, 

and thus more study is needed to investigate this issue, especially for the populations of children and 

youth. 

The Curve model adequately explained the children's development in the "Run" performance. 

In general, the estimated parameters for development in "Run" performance over time were similar to 

those for ASR, because ASR was used as the scaling variable. While the parameters for change factors 

(i.e., intercept and curve factors) were similar to those for ASR, these two change factors adequately 

explained the changes in means and variances of "Run" factor that adequately explained the means and 

variances of the other two indicator variables, ESR and DASH at five time points. On average, children 

improved in "Run" performance over a 5-year period. The children's average change in the "Run" 

performance was largest between the first two time points and the rate of the change decreased in 

subsequent years. Positive test practice and age effects on the intercept, and a negative test practice 

effect on the curve factor were found in both data sets, but the effects of other predictors varied between 
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the two data sets. 
Unlike for the "Run", none of the specified LGMs adequately explained the children's 

development in the other two factors, "Power" and "Motor Ability". This, however, was not because of 

the change in the factor structure over time of these two factors. The differences in factor loadings were 

marginal where the change in the factor structure occurred. Although the results are not presented, 

additional L G M analyses were conducted excluding the time point that showed a different factor 

structure from the rest of the time points (i.e., time 1 in data set 1, and time 5 in data set 2). These 

analyses did not produce acceptable model fits. This implies that the specified growth models were not 

adequate to explain the complex components of individual change in the latent trait of "Power" or 

"Motor Ability". Thus, results of the present study indicated that only the "Run" factor was a valid 

construct for the explanation of development in children's performance. The other two latent factors did 

not adequately represent the children's development in physical performance. It is noteworthy that the 

change of all observed variables for the "Run" factor were adequately explained by the Curve model in 

univariate analyses, while the observed variables for the other two factors showed different patterns of 

development (in terms of the selected best growth model). This issue can be viewed as a relationship 

between univariate change and multivariate change rather than a specific problem of the multivariate 

change of physical performance. This issue is discussed in Study 1-Chapter V. 
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Merits of Latent Growth Models 

In the present study, the latent growth model (LGM) approach was employed for the analyses of 

longitudinal physical performance data. The application of this statistical model to the physical 

performance data revealed several merits over traditional methods in describing and explaining the 

development of children's performance over time. One of the most notable merits of LGM in describing 

change was the capability of modelling and analyzing change at the individual level. This does not mean 

that a L G M estimates the change parameters of every subject, but rather that a L G M estimates the inter-

individual variation as well as the mean of individual change. For example, in the present study, the 

Quadratic model adequately explained the children's individual change in FAH performances, and 

provided mean and variance estimates of linear and quadratic factors. That is, the Quadratic model 

decomposed the variations of change in FAH performances into two components, the linear and 

quadratic. The significant mean and variance of the linear factor indicated that children improved in 

their FAH scores over time, and there was considerable inter-individual variation in the rate of 

improvement among children. The significant variance but the non-significant mean of the quadratic 

factor indicated that, on the average, there was no quadratic effect, but some children accelerated and 

some children decelerated in the change rate of FAH performance. In addition, the variance and mean of 

the change factors implied that the development of some children in FAH score might be linear (i.e., a 

zero score for the quadratic factor). 

These kinds of inferences can be made based on only an individual level of analysis. This merit 

has been emphasized by many (e.g., Meredith & Tisak, 1990; Willet & Sayer, 1994). In general, 

traditional methods do not directly provide the information regarding the individual level of change. To 

obtain a similar level of information, curve fitting methods and/or stochastic models require two steps of 

analysis, one at the individual level and one at the group level. However, for these models the same 

mathematical model has to be fitted to all the subjects at the individual level analysis in order to conduct 

the group level of analysis. This is a serious shortcoming of these approaches. Traditional ANOVA with 

polynomial contrast (trend analysis) provides information that is similar to that of L G M in terms of 

describing change. In an ANOVA procedure, the wdthin-subjects variance is decomposed into linear, 

quadratic, cubic, etc. components. 

An example of ANOVA results for FAH (data set 1) is presented in Table 1.5.1. The \vithin-

subjects sum of squares indicated that most of the change in mean scores of FAH is explained by the 

linear effect (97.1%). However, the vvithin-subjects error sum of squares indicated that there is a 

considerable between-subjects variation (29.8%) in quadratic change. These two pieces of information 

together agreed with the results of the L G M analysis in that although individuals change in quadratic 

fashions, the inter-individual differences cancelled each other out and produced a non-significant group 
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Table 1.5.1 
The results of ANOVA analysis with polynomial contrasts for FAH. data set 1 

Source Sum of Squares % df Mean Square F p-value 

Between-subject 

Intercept 451157.36 1 451157.36 

Error 185995.64 209 889.93 

Within-subiects 

Linear 6589.71 97.1% 1 6589.71 72.41 < .001 

Quadratic 168.58 2.5% 1 168.58 2.38 .124 

Cubic 18.11 0.3% 1 18.11 .49 .485 

4th order 8.57 0.1% 1 8.57 .22 .640 

Error 

Linear 19020.09 38.3% 209 91.01 

Quadratic 14789.28 29.8% 209 70.76 

Cubic 7716.59 15.5% 209 36.92 

4th order 8159.07 16.4% 209 39.04 
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level quadratic effect. The information that is not available in ANOVA results, however, is the 

significance test for this inter-individual variation in quadratic change, as well as other types of change 

(e.g., linear, cubic). This is available in L G M by means of significance testing for the variances of 

change factors. In addition, in ANOVA, one is interested more in the mean scores and variances due to 

the within-subjects factor, thus usually the error terms of ANOVA results are not interpreted. The 

requirement of satisfying the sphericity assumption is another shortcomings of ANOVA procedure, 

because generally one may anticipate that the variance of a measure changes over time in a longitudinal 

study. 

The LGM's capability for an individual level of analysis for change further enables one to 

extend the basic model for the description of change to various models for the explanation of change. 

One such extension is examining the effect of predictor(s) on change. This is not possible in the 

traditional ANOVA model. The inclusion of the predictor variables in a LGM is conceptually similar to 

multiple regression analysis in that the effects of several variables on the change can be examined, and 

is similar to the analysis of covariance (ANCOVA) in that the effects of several covariates (predictors) 

are controlled for. However, using a regression or an ANCOVA model requires one to estimate the 

individual change scores before the effect of a predictor is examined. Unlike traditional models, a L G M 

estimates the parameters of the change and predictor effects at the same time. In the present study, the 

effects of five predictor variables on the development of physical performance variables were examined. 

The effects of these five predictors were hierarchically included in the model based on a priori 

hypotheses, and the significance of a test as well as the magnitude of the effect was obtained. The 

examination of the effect of a single predictor variable on the change and the examination of the effect 

of a predictor variable after controlling for other predictor variables were made. Although the results 

varied by variables and by data sets, and only a small part of variation in change was explained, this 

analysis procedure for the examination of predictors' effect provided useful information in explaining 

inter-individual differences in children's development. This capability of exarnining predictors' effect 

on change is a notable merit of LGM, and consequently, has been emphasized and employed in many 

studies (e.g., Duncan & Duncan, 1995; Meredith & Tisak, 1990; Muthen & Curran, 1997; Willet & 

Sayer, 1994). 

LGM, like the general structural equation modelling (SEM), allows one to decompose the 

variance of an observed variable into two components, the true score variance and the error variance. 

The intercept and change factors describe only the true score component of an observed variable, thus 

represent the true score at the first time point and the true change. The error component is the 

uniqueness that is not explained by the intercept and change factors. Thus, in a LGM, the error 

component of a variable is taken into account in the analysis, while it is not in traditional methods. This 

may lead one to make different conclusions regarding description and/or explanation of change. For 

example, the L G M revealed that the age effect on the intercept factor of FAH in data set 1 was 
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significant, while a randomized group ANOVA analysis showed a non-significant age effect (F = 1.329, 

p = .238) on FAH at the first time point (age 8). 

In addition to this, L G M allows one to examine various research questions regarding the error 

component of observed variables. Generally, two types of research questions are examined. First, the 

equality of error variances over time can be examined. This is used not only to test theoretically based 

hypotheses about the equality of the error variances over time, but also to obtain a more parsimonious 

model. In this study, the equality of error variances over time was tested for the latter purpose. Two data 

sets showed different results in the univariate L G M analyses. The JAR and SLJ showed equal error 

variance over time in data set 1, while FAH, SAR and DASH showed equal error variance over time in 

data set 2. There is no theoretical base that supports these findings. It is rather unreasonable to expect 

the equality of error variances over time, because in a longitudinal study one expects that the observed 

variance as well as the true score variance of a variable changes over time. In the multivariate analyses 

with the "curve-of-factors" model, two data sets showed consistent results. Only DASH, among three 

variables that form the factor "Run" at each time point, showed equal error variances over time. The 

implication of the error variance in this model is different from that of the univariate model. In the 

"curve-of-factors" model, the error variance represents the component that is not explained by the 

"Run" factor. The equality of error variance over time for DASH implies that the magnitude of 

unexplained variance in DASH was the same over time. 

The second type of research question that is related to the error component of observed variables 

is the correlation of errors between time points. The examination of the correlation of errors between 

time points has been a common practice in the factor analysis of repeated measures data especially in a 

multivariate model (e.g., Marsh, 1993; Marsh & Hau, 1996; Schutz, 1998). In a univariate LGM, the 

examination of correlated errors between all possible pairs of time points is not possible because of an 

identification problem (i.e., the number of free parameters is larger than the number of means and 

covariances that are used as data). Only some of the possible pairs of time points can be examined, and 

the extent of how many correlated errors can be examined depends on the number of time points and the 

model (e.g., linear, quadratic, cubic etc. and any constraints that are imposed in the model). Thus, one 

should be cautious when including correlated errors in a univariate model because of the identification 

problem. Including correlated errors in a univariate model should be done only when the reason for this 

can be justified by theory or by a specific research condition (e.g., different testers over time). In the 

present study, the correlation of errors between time points was not examined for the univariate LGM 

because there was no theoretical base or other research condition that supports this. In the multivariate 

L G M analyses (with "curve-of-factors" model), however, correlated errors were included in the model 

for the same variable between time points in order to obtain a better fitting measurement model. 

Significant correlated errors were found for all hypothesized factors in both data sets. This implies that 

there exists a lasting component over time \vithin a variable that was not explained by the hypothesized 
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factor at each time point. This kind of correlated errors in a multivariate longitudinal model has been 

found in several studies (e.g., Marsh, 1993; Marsh & Grayson, 1994; Schutz, 1998). 

There are other extensions that are based on the individual level of analysis for change. These 

are models in which the relationship between changes in two or more variables are examined, multi-

group analysis models, cohort-sequential analysis models, etc. (Meredith & Tisak, 1990; Willet & Sayer, 

1994). Although these models were not included in this study, the flexibility of LGM that allows one to 

examine various research questions is a strength of LGM. These merits of LGM, based on the individual 

level of analysis for change, are comparable to those of the hierarchical linear model (HLM) (Bryk & 

Raudenbush, 1992). A comparison between these two statistical models was not made in this study. 

H L M is also based on the individual level of analysis for change, thus allowing one to examine the 

predictors' effects on change, the relationship between intercept and change, the inter-individual 

variation of change. H L M is more efficient than L G M in the parameter estimation procedure, and does 

not require that all the subjects be measured at approximately the same time. However, L G M is 

generally more flexible in modelling and allows one to examine various research questions that are not 

possible in HLM (Chou, Bentler & Pentz, 1998; Willet & Sayer, 1994). For example, hypothesis testing 

with error variances, examining relationships between changes of different variables, cohort sequential 

analysis, and multivariate extensions are available only in LGM. A few of these were examined and 

presented in the present study. 

Problems of Using Latent Growth Models 

The application of L G M in the analysis of longitudinal data in this study not only showed 

several merits as discussed above, but also raised a few practical issues. First, selecting one model over 

another, such as between the Curve model and the Quadratic or Cubic models, was a somewhat arbitrary 

process at times. This is due to the fact that the %2 difference test is not available in the comparison of 

these models because the Curve model and Quadratic or Cubic model are not nested to each other. For 

the comparison of non-nested models, the usage of the expected cross-validation index (ECVI) and/or 

Akaike's information criteria (AIC) is recommended (Akaike, 1987; Browne & Cudeck, 1993; Cudeck 

& Browne, 1983). For both of these indices, a lower absolute value indicates a better fitting model. In 

the present study, the ESR in data set 1 produced results that revealed very small differences in model 

fit between the Curve and Quadratic models. Both models were not rejected in terms of the %2 statistic, 

and all other fit indices indicated that both models fit the data well (see Appendix B). Although the 

ECVI and AIC indicated that the Curve model is better, the differences between two models in these 

indices were very small (i.e., ECVI were .134 and .139 for the Curve and Quadratic models, 

respectively). Because both models fit the data very well and showed very small differences in model fit, 

it is difficult to select one model over another. In this study, the Curve model was selected because the 
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Curve model was more parsimonious than the Quadratic model. The degrees of freedom (df) was larger 

for the Curve model (df = 7 and 6 for the Curve and Quadratic models, respectively), and the inter-

individual variation in change was explained by the only one change factor in the Curve model while it 

was explained by two change factors, the linear and quadratic, in the Quadratic model. However, this 

may not be the case in other situations. The parsimony of these models changes as the number of time 

points increases. For example, with seven time points, the Quadratic model is more parsimonious than 

the Curve model in terms of degrees of freedom (df = 18 and 19 for the Curve and Quadratic models, 

respectively). The difference between two models in the degrees of freedom becomes larger as the 

number of time points increases, and the Quadratic model becomes more and more parsimonious than 

the Curve model as the number of time points increases. This is due to the fact that in the Curve model 

the shape of change is not specified, thus the change parameter has to be estimated for each time 

interval. For this reason, the Curve model can be regarded as an exploratory, rather than confirmatory, 

way of finding the best-fitting curve compared to other models such as Quadratic and Cubic models. 

Thus, in comparing these models, one has to consider if the model fitting should be confirmatory (based 

on theory) or exploratory (unspecified curve) as well as the parsimony of the model. 

The second practical issue is the relationship between the change of each indicator variable and 

the change of the latent factor in the "curve-of-factors" model. The application of the "curve-of-factors" 

model in this study revealed that the change in the "Run" factor was explained well by the Curve model 

in both data sets. Interestingly in the univariate analyses, the Curve model fit the data well for all three 

observed variables that were used as indicators of the "Run" factor (see Table 4.10). Thus, the change of 

the latent factor that was well explained by the Curve model explained well the three observed variables 

that were also well explained by the Curve model in the univariate analyses. The indicator variables for 

other hypothesized factors showed growth curves that were different from each other. For example, for 

"Power", the best fitting models for three indicator variables (JAR, DASH and SLJ) were the Linear, 

Curve and Cubic models. However, it is not conclusive if the different growth curves of indicator 

variables causes the poor fit for the "curve-of-factors" model, because the Cubic model should be able 

to take into account all the variance components that are based on the linear and the quadratic change. 

More research with different approaches on this relationship between the change in each indicator 

variable and the change in a latent factor is needed. 
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STUDY 2. COMPARING THE LATENT GROWTH MODEL AND QUASI-SIMPLEX 

MODEL IN THE ESTIMATION OF LONGITUDINAL RELIABILITY 



STUDY 2-CHAPTER II. LITERATURE REVIEW 
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Concepts of Reliability and Traditional Estimation Methods 

Reliability is the extent to which a test or any measuring procedure yields the same results under 

the same conditions (Carmines & Zeller, 1979). It is sometimes represented as the consistency or 

reproducibility of measured scores. Ideally, a perfect measurement tool will produce the exact same 

scores for a group of individuals if it is repeatedly administered under identical conditions, assuming 

that there is no change in the subjects' true attribute. However, to a certain extent, all measurements that 

are taken from human subjects are unreliable (Crocker & Algina, 1986). In other words, it is almost 

impossible to perfectly measure an attribute even if there exists some true level of the attribute within a 

person. 

An observed score resulting from the measurement of such an attribute includes two 

components, a true attribute component and an unreliable component. The unreliable component is 

called the measurement error. Based on classical test theory, the observed score is a composite of two 

components, a true (theoretical) score and error score. That is, x = T + e, where, x is the observed score; 

T is the true score; and e is random error. Given the assumptions that the correlation between the true 

score and error score is zero and the mean of the error scores is zero, it can be shown that the variance 

of observed scores is the sum of the true and error score variances, <J2

X = a2,; + a 2

e , where CT2

x, a 2

t , and 

a 2

e are the variance of the observed scores, true scores and error scores, respectively (Crocker & Algina, 

1986). Given this, the reliability of variable x, p x , is defined by the following equation: 

<J x & r + cr e 

Thus reliability is represented as the amount of true score variance relative to the observed score 

variance. However, it is difficult to estimate the reliability since the true and error scores are 

unobservable elements. 

The most frequently used reliability estimation method for a single measure (variable) is the 

test-retest method. The same test is administered to the same subjects twice, under the same conditions, 

within a certain time period, and the Pearson product-moment correlation (PPMC) coefficient between 

the two sets of scores is taken as an estimate of the test reliability. Since this coefficient is based on 

measurement at two time points, it is often called a stability coefficient. The idea behind this is that only 

true scores should be correlated between two time points because the error component is random and 

not correlated with any other elements. Thus, the correlated part is due to only the true score element. 

The important assumption that should be satisfied in using PPMC as a reliability estimate is that there is 
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no change in true scores between the two time points. This assumption has been questioned by many 

researchers (e.g., Heise, 1969; Marsh & Grayson, 1994a) because there is inevitable temporal instability 

of measures taken at multiple points in time. Another concern is the possibility of correlated errors 

between two time points (Wiley & Wiley, 1974). Many statistical models have been suggested to 

overcome these problems (e.g., Heise, 1969; Werts, Jdreskog & Linn, 1971; Wiley & Wiley, 1970, 

1974). More recent techniques such as structural equation modeling provide methods to account for 

these problems analytically in certain situations. 

A more general form of the PPMC is the intraclass correlation coefficient (intraclass r). The 

intraclass r is used when a single item is measured repeatedly, or several items are measured once, or 

several items are measured repeatedly (Schutz, 1998). Like all reliability coefficients, it is 

conceptualized as a ratio of true score variance to observed score variance, and in this case ANOVA is 

used to estimate various sources of variance (mean squares). Depending on what assumptions a 

researcher wishes to make about error variances and true score variances, different intraclass rs can be 

calculated. One of the earliest attempts to use the intraclass r for reliability estimation can be attributed 

to Hoyt (1941). He derived the equation using a "Persons by Items" ANOVA design, and related it to the 

classical reliability definition by noting that the mean square due to the persons (MSP) represents the 

variance of observed scores, and the mean square residual (MS r e s : the Persons x Items interaction effect) 

represents the variance due to the error. The following two equations are most frequently used. The 

intraclass r for the mean test score over all trials or observations can be estimated as follows; 

MS.-MSm. ( 2 2 2 ) r= p 

MSp 

and that for a single item score as; 

MS„ -MS 
R P 1 RES (2.2.3) 
' MSp + (k-l)MSres/ 

where 

E(MSp) = ka 2

p + o\ , (2.2.4) 

E(MS r e,) = E(MSpere0nxitem) = . (2-2.5) 

MS P is the mean square due to persons, MS r e s . is the mean square due to error (the Persons x Items 

interaction effect), k is the number of items or repeated measurements, c 2

p is population variance due 
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between persons and a 2

e is population variance due to error (Winer, 1971). The equation 2.2.3 yields 

identical results to the internal consistency reliability, Cronbach's alpha (Crocker & Algina, 1986; 

Schutz, 1998). 

When several items are used to measure an attribute, the degree of agreement among these 

items is called internal consistency, and the most frequently used coefficient of internal consistency is 

Cronbach's alpha (Cronbach, 1951). Cronbach's alpha can be considered as an index of reliability of the 

composite score that is obtained by summing item scores. However, it is not equivalent to a reliability 

stability coefficient. A large alpha indicates that there is small item-specific variation. However, 

although it suggests a strong possibility that all items represent a single factor, it is not sufficient 

evidence to make such a conclusion. That is, a high alpha is a necessary, but not a sufficient condition 

for unidimensionality. One should also note that with large number of items, Cronbach's alpha could be 

very high, overestimating the degree of agreement among items (Cortina, 1993). 

Estimation of Longitudinal Reliability 

Traditional approaches of reliability estimation fall short when applied to longimdinal data 

because these approaches were developed with static variables in mind. Much of the rationale behind 

traditional approaches is based on the assumption of unchanging true scores, with any change in 

observed scores directly attributable to measurement error (Blok & Saris, 1983; Collins, 1991; Werts, 

Breland, Grandy, & Rock, 1980). The reliability of a measurement tool may also change over time, for 

several reasons; a change in the characteristics of the subjects (e.g., age), different measurement 

administrators, etc. As noted in earlier sections, using PPMC or intraclass r for the estimation of 

reliability requires the assumption that the true score does not change over time. Thus, in most situations 

one may not use PPMC or intraclass r directly for longitudinal data in the estimation of reliability (Blok 

& Saris, 1983; Werts et al., 1980). One simple solution for this is to measure the variable twice or more 

at each time point, and estimate the reliability. However, this is not a very practical solution. 

A few statistical models have been suggested to overcome this problem analytically. One of the 

earliest works may be the path analytic solution that was suggested by Heise (1969). Based on the works 

of Wright (1934), Blalock (1963), and Siegel and Hodge (1968), he employed an autoregressive model 

in separating temporal instability of true scores from the measurement error. This basic idea has been 

extended and widely used by others (e.g. Joreskog, 1970; Werts, Joreskog & Linn, 1971; Wheaton, 

Muthen, Alwin & Summers, 1977; Wiley & Wiley, 1970). A general form of this autoregressive model 

is depicted in Figure 2.2.1 which shows a model with a variable (X) that is measured repeatedly at five 

time points. According to this model, the variable at each time point is explained by the immediately 

preceding variable (time point). This model is called a quasi-simplex model, and is a special case of an 

autoregressive model (Joreskog, 1970). The observed score at time t (X t) is a composite of two elements, 



Figure 2.2.1. A quasi-simplex model with five time points 
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a true score ( T | T ) and an error score (et), as in classical test theory, that is; X t = n t + et. The successive rjt 

are related by the linear equation, r)t+i = Pt̂ t + Q+i, and the reliability of variable X t at time t is 

calculated as follows (for t, < tt < tu); 

rtt = r s ' r , U (2.2.6) 

where rs t is the correlation between X s and X t , rm is the correlation between X t and X u , and r s u is the 

correlation between X s and X u . Thus, this model takes account of the change in true score over time by 

the regression coefficient (P, the stability coefficient), and the variance unexplained by this relationship 

among variables (9E) is due to the error. 

It is obvious from equation 2.2.6 that the reliability coefficients of the first and the last time 

points cannot be obtained unless an additional restriction is imposed in the model. Heise (1969), in his 

three-wave (three time points) model, imposed a restriction of equal reliability over time. He suggested 

that although the variances of the true and the error scores may vary over time, the ratio between them 

can remain unchanged. Wiley and Wiley (1970) used a similar approach to reliability estimation, but 

based on the assumption that error variances are constant over time. Another possible restriction is to 

assume that the stability coefficient (P) is constant between adjacent waves (Kenny, 1979). Selecting 

one of these restrictions depends on the theory behind the variable of interest. When there are more than 

three time points, these restrictions may be relaxed to only parts of the model, involving the parameters 

of the first two and the last two time points (Joreskog, 1970, 1974; Joreskog & Sorbom, 1988). 

Although there are some limitations, this model has been widely used in the estimation of longitudinal 

reliability (e.g., Werts, Linn & Joreskog, 1977, 1978; Morera, Johnson, Freels, Parsons, Crittenden, Flay 

&Warnecke, 1998). 

Recently, McArdle and Epstein (1987), and Tisak and Tisak (1996) suggested another way to 

estimate reliability with longitudinal data. They employed a Latent Growth Model (LGM) approach, and 

showed how one can estimate the change parameters and reliability at the same time. The idea behind 

this approach is that any part of the observed variance that is not explained by the growth (change) 

parameters is due to error. In the two-factor model presented in Figure 2.2.2, the reliability of time t can 

be calculated using following equation; 

r = tiWi + %>V> + lk*X«V* ( 2 2 7) 

where X represents a factor loading, ^represents a factor variance, 9 represents error variance, t stands 
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Figure 2.2.2. Two-factor LGM 
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for time t, i stands for an intercept factor, and s stands for a slope factor. Basically this equation has the 

same form as the definition of the reliability (equation 2.2.1). That is, the numerator represents the true 

score variance and the denominator represents the observed score variance. A notable aspect of this 

equation is that both true score variance and error variance may change over time. 

This model has several merits in estimating longitudinal reliability. First, multiple 

measurements are not needed at each time point, as is required in the test-retest method. Second, 

measurements are decomposed into separate sets of parameters that represent reliability and the function 

of change. Third, parameters for both change and reliability are estimated at the same time. Fourth, the 

model permits reliability to change as a function of time. Fifth, this model is a generalization of test-

retest reliability. Sixth, this model requires less strict statistical assumptions than classical methods 

(Tisak & Tisak, 1996). The first three merits are shared by quasi-simplex model, but last three are 

unique aspects of L G M approach. However, as noted by Tisak and Tisak (1996), one has to first 

determine an appropriate longitudinal model before interpreting estimated coefficients in the application 

of this approach. Because it is relatively new, the L G M approach has seldom been used in practice for 

the estimation of longitudinal reliability. 

There have been some other suggestions regarding reliability estimation models in the situation 

where several items are measured over time to represent an attribute at several occasions (e.g., Blalock, 

1970; Marsh & Grayson, 1994a; Raffalovich & Bohrnstedt, 1987; Wheaton et al., 1977; Wiley & Wiley, 

1974). The models that Blalock (1970), Wheaton et al. (1977) and Wiley and Wiley (1974) employed 

were multivariate extensions of a quasi-simplex model. A very similar approach is using a confirmatory 

factor analysis (CFA) model. The CFA model has been widely used for reliability estimation of 

individual items within a scale. However, it has rarely been used for reliability estimation of multi-item-

multi-occasion situations. Basically, these models examine how much variance among the observed 

item variance is due to the underlying latent trait (true score) at each time point. One notable merit of 

these models is that one can take account of possible correlated errors between repeatedly measured 

variables in the model (Blalock, 1970; Wheaton et al., 1977; Wiley & Wiley, 1974). The CFA model has 

been extended so that the model takes into account the sources of systematic variance due to specific 

items as well as specific times (Marsh & Grayson, 1994a; Raffalovich & Bohrnstedt, 1987). The form of 

this model is same as that of a multi-trait multi-method (MTMM) model. This model can be regarded as 

a variance decomposition model, decomposing the total variance (observed variance) into time-specific, 

item-specific and residual (error) variance (Marsh & Grayson, 1994a). Although Raffalovich and 

Bomstedt (1987) and others used a second-order factor model for extracting another component of the 

variance, the common factor variance, the existence of the second-order factor does not affect the 

reliability estimation of individual items. 

Comparing the Latent Growth Model and Quasi-simplex Model 
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In the case of estimating longitudinal reliability of a single variable, both longitudinal models, a 

quasi-simplex model and LGM, may be used. Selecting one model over another on purely statistical 

criteria is not feasible because empirically, these two models are hard to distinguish (Rogosa & Willett, 

1985a). The two models differ in that a quasi-simplex model defines changes over time to be 

independent of prior changes, while a L G M defines changes over time to be dependent upon prior 

changes (McArdle & Epstein, 1987). In general, there are considerable discrepancies in reliability 

estimates between these two models. Which of these two provide more accurate reliability estimates is 

not known. 

There have been some studies in which these two models were compared. However, none of 

these studies focused on the accuracy of reliability estimation. Rogosa and Willett (1985a) showed that a 

quasi-simplex model fits well to data that were generated based on a growth model. However, they 

argued that automatic usage of a quasi-simplex model is not desirable because very different types of 

individual growth curves may yield indistinguishable covariance or correlation structures. They also 

found that the reliability was overestimated by the quasi-simplex model, and noted that if the partial 

correlation between any two time points after controlling for any intervening time point is not zero, as in 

a growth model, the reliability will be systematically overestimated. 

On the contrary, Kenny and Campbell (1989) argued that a simplex model is superior to L G M 

in exarnining the stability of personality, for several reasons. First, a simplex model treats the random 

component as a lasting part of the true score while a L G M treats it as an unreliable part. Second, a LGM 

typically assumes that all scores of a person either steadily increase or steadily decrease over time, but 

the true score of a person rarely exhibits this pattern of change. Third, a LGM requires equivalent 

metrics at all time points while a simplex model does not. They also noted that one of the weaknesses 

with a quasi-simplex model has been the exclusion of means in the model, but this problem can easily 

be improved by including means in the model following Roskam's (1976) suggestion. However, their 

view was based mainly on the application of these statistical models to the examination of the stability 

of personality where the individual growth (i.e., directional change) is not a main interest. Bast and 

Reitsma (1997) supported this view in favour of a quasi-simplex model. 

Mandys, Dolan and Molenaar (1994) made a more detailed comparison between a quasi-

simplex model and LGM, and showed several differences between the two models in analyzing 

longitudinal data. Contrary to Rogosa and Willett's (1985a) findings, they showed that a quasi-simplex 

model does not fit data that are based on a growth curve when there are eight or more time points. They 

also showed that decreasing the variance of the errors and increasing the variance of the individual 

growth rates resulted in deterioration of the fit of the quasi-simplex model to the data. They concluded 

that one has to be careful in rejecting a quasi-simplex model in favour of L G M on the basis of a single 

analysis. 

Although some discussions of reliability estimates have been made (e.g., Mandys et al., 1994; 



Rogosa & Willett, 1985a), these studies focused more on the rationales, strengths and weaknesses of 

applying two models in the analysis of longitudinal data rather than the accuracy of reliability 

estimation. The capability of these two longitudinal models to accurately estimate longitudinal 

reliability needs to be examined. 
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The purpose of study 2 was to compare the latent growth model (LGM) and the simplex model 

in estimating longitudinal reliability under various conditions. Several longitudinal data sets 

representing various conditions were generated and analyzed by a LGM and a simplex model. The data 

generation was necessary because the true reliability of the data should be known to examine the 

accuracy of reliability that is estimated by the two models. The results were compared in terms of the 

accuracy of reliability estimation. 

Data and Conditions 

Several longitudinal data sets were generated with known parameters. As in practice, it was 

assumed that each individual subject has his/her own initial status and rate of change. This also means 

that there is considerable between-person variation in both initial status and change. However, for 

simplicity, it was assumed that each individual subject changes linearly over time. Thus the difference in 

true scores between any two adjacent time points was constant within a subject. The number of repeated 

measurements was fixed at five in all generated data sets, and the sample size was fixed at 5000 for all 

conditions. This relatively large sample size was used so that each generated data set would yield more 

accurate parameters (i.e., closely approximate true parameter values). 

The means and the variances of both the initial status and change were based on the analysis 

results of the Jump-and-Reach (JAR) variable from the Michigan data (data set 1). The true mean and 

variance of the initial status were 9.426 and 2.057, respectively. The true mean and the variance of the 

linear change were .994 and .082, respectively. These values were used in all generated data sets. Other 

parameters, the magnitude of the correlation between the initial status and change and the magnitude of 

error variances at each time point, were varied depending on the conditions that are explained below. 

The conditions of the data sets were varied based on three factors that may affect the estimation 

of the reliability. These three factors were; (a) the magnitude of correlations between the intercept 

(initial status) and change (growth), (b) the magnitude of true reliability, and (c) the magnitude of 

correlated errors between repeated measurements. Population data sets rather than samples were used in 

all analyses to isolate the effect of each condition on the estimation of the reliability from the sampling 

variation. 

Condition A: The Magnitude of the Correlation Between the Intercept and Change (r̂ ) 

Three different magnitudes of correlation between the initial status and the change were used in 

the generation of the data. These three correlations represent no relationship (ric = 0, condition Al) , 

medium relationship (r,c = - .3, condition A2) and relatively large relationship (ric = - .6, condition A3) 

between initial status and change. The reliability coefficients at each time point were fixed 



105 

at .65, .75, .75, .75, and .75 at time 1, 2, 3, 4 and 5, respectively. These magnitudes of reliability reflect 

the reliability of a physical performance field test, such as the JAR. The reliability of the measure at the 

first time point was fixed at a lower value (i.e., .65) than those of other time points to reflect a changing 

reliability in longitudinal measurements. Following the assumptions of classical test theory, the 

correlations between the true scores (initial status and change) and errors, and the correlations of errors 

between different time points, were fixed at zero. The procedures of the data generation are presented in 

a following section. 

Condition B: The magnitude of reliability 

Three different sets of magnitudes of reliability were used. These are relatively small (condition 

B l : .40, .50, .50, .50, and .50 at time 1, 2, 3, 4, and 5, respectively), medium (condition 

B2: .65, .75, .75, .75, and .75) and relatively large (condition B3: .90, .95, .95, .95, and .95) reliabilities. 

In general, these magnitudes reflect the reliability of a questionnaire, a physical performance field test 

and a laboratory test, respectively. The correlation between the initial status and change (rlc) was fixed at 

- .3 in all three conditions to isolate the effect of the magnitude of reliability from the magnitude of 

correlation between the initial status and change. Other parameters regarding assumptions of classical 

test theory were same as in condition A2. Thus, condition A2 and condition B2 are identical (i.e., the 

same data set was used for these two conditions). 

Condition C: The Correlation Between Errors (r«,0 

Five different conditions were examined regarding correlated errors. These are no correlated 

errors (condition CI), relatively small correlated errors (ree- = . 1) between all time points (condition C2), 

relatively small correlated errors (ree- = . 1) between the last two time points only (condition C3), 

relatively large correlated errors (ree- = .3) between all time points (condition C4), and relatively large 

correlated errors (ree- = .3) between the last two time points only (condition C5). Thus in condition C2, 

correlations of errors between all time points were set at. 1 while in condition C3, correlation of errors 

between only last two time points was set at. 1. The purpose of employing conditions C3 and C5 

(correlated errors between last two time points only) was to examine if the correlated errors between 

specific time points affect the estimation of reliability at other time points. Parameters regarding the 

initial status and change (means, variances and correlation between two) were the same as condition A2. 

As well, the true reliabilities at each time point were set at .65, .75, .75, .75 and .75, as in condition A2. 

Thus, condition CI is identical to condition A2 (and B2). The conditions of the generated data are 

summarized in Table 2.3.1. 

Data Generation Procedure 

The data generation involved the following five steps; (a) generating initial status, linear change 
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and errors at each time point, (b) computing true scores at each time point, (c) changing variance of 

errors, (d) computing observed scores. The size of the data (sample size) was 5000. Although this size 

may not reflect what is used in most research projects, this magnitude of sample size was required to 

satisfy restrictions (conditions) on each data set. 

Generating Initial Status, Linear Change and Errors 

First, seven normally distributed variables with a mean of zero and a variance of 1.0 were 

generated using PRELIS (Joreskog & Sorbom, 1999: Version 2.30) program. The correlations between 

these seven variables were varied by conditions. These seven variables are initial status, linear change 

and error 1 to error5. Error 1 to error5 denote the errors at timel to time5, respectively. The initial status 

and linear change variables were then transformed so as to have the specified means and variances. The 

descriptive statistics of initial status, change and errors of condition A l are presented in Table 2.3.2 as 

an example. Variances of errors are the values that were obtained after step (c). Although all the 

correlations between variables and means of errors were fixed at zero, the generated data showed values 

that are slightly different from zero. However, these correlations as well as means were very close to the 

specified values. The descriptive statistics of the data for other conditions are presented in Appendix D. 

Computing True Scores at Each Time Point 

In the next step, for each subject true scores at each time point were computed. This required a 

simple linear transformation of initial status and linear change. True scores at each time point were 

calculated using following equations. Truel to True5 denote the true score at timel to time5, 

respectively. 

Truel = initial status + (0) linear change 

True2 = initial status + (1) linear change 

True3 = initial status + (2) linear change 

True4 = initial status + (3) linear change 

True5 = initial status + (4) linear change 

Changing the Variance of Errors 

To obtain the specified magnitudes of reliability at each time point, the variances of error 1 to 

error5 were transformed. To accomplish this, the variances of true scores at each time point were 

calculated first, and the variance of the errors were transformed accordingly. Note that this kind of linear 

transformation does not affect the correlations between variables. 

Computing Observed Scores 

Finally, the observed score at each time point was calculated by adding the two components, 
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Table 2.3.2 
Descriptive statistics of true and error scores for condition A1 (An example) 

Initial status Change Error 1 Error 2 Error 3 Error 4 Error 5 

Change .016 

Error 1 .020 .009 

Error 2 .012 .010 - .017 

Error 3 .007 .010 -.009 .005 

Error 4 - .004 -.003 .001 -.011 .008 

Error 5 - .021 - .019 - .017 - .002 .006 -.001 

Mean 9.426 .994 -3.0E-06 -3.8E-05 -1.4E-17 2.8E-06 2.1E-18 

SD 1.434 .286 1.052 .847 .897 .972 1.068 

Variance 2.057 .082 1.107 .717 .804 .945 1.140 



true score and error, at each time point. Thus, it is calculated as follows: 
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Timel - truel + error 1 

Time2 = true2 + error2 

Time3 = true3 + error3 

Time4 = true4 + error4 

Time5 = true5 + error5 

Model Fitting and Evaluation 

Two longitudinal models, a linear L G M (Figure 1.2.1) and a simplex model (Figure 2.2.1), were 

fitted to each generated data set. The results were compared in terms of goodness-of-model fit, 

parameter estimates, and the accuracy of reliability estimates. 
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In the following sections the results of using a latent growth model and two simplex models to 

estimate longitudinal reliability are presented and compared. As explained in Study 2-Chapter III, 

computer simulated data sets were used for this component of the dissertation. 

The Effect of Correlation Between Initial Status and Linear Change 

Goodness-of-fit indices and estimated reliability coefficients of three longitudinal models under 

the various magnitudes of correlations between initial status (scores at time 1) and linear change are 

presented in Table 2.4.1. The term "Linear" indicates the two-factor linear latent growth model (Figure 

2.1), "Simplex 1" indicates a quasi-simplex model with equal error variances for all five time points, 

and "Simplex 2" indicates a quasi-simplex model with equal error variances between the first two time 

points and between the last two time points (Figure 2.6). 

The Linear model fit the data very well in all three conditions, while the Simplex models 

showed some conflicting goodness-of-fit results. In terms of x 2 statistics, all Simplex models should be 

rejected, however, SRMR and NNFI indicated that the Simplex models fit the data very well. The large 

X 2 value was due to the large sample size of the analyzed data (N = 5000). For example, if the sample 

size were 200, the x 2 for the Simplex 1 model in condition A l in Table 2.4.1 (rlc = 0) would be 3.43, and 

all other fit indices would show a better fit. All RMSEA values indicated a good (< .06) or an acceptable 

(< .08) model fit, except for the Simplex 2 model of condition A3 where the correlation between the 

initial status and linear change is - .6 (see Table 2.3.1). Overall, the model fit of the Linear model was 

much better than that of the Simplex models in all conditions. 

Reliability coefficients estimated by the Linear model were very accurate in all three conditions. 

The average discrepancies were .0014 (.2%), .0028 (.4%) and .0032 (.5%) for conditions of r ic = 0 

(condition Al) , r i c = - .3 (condition A2), and r ic = - .6 (condition A3), respectively. The largest 

discrepancy was .009 (1.2%) and most of the estimates showed discrepancies smaller than .003 (.4%). 

Contrary to the Linear model, Simplex models overestimated the reliability at all time points in all three 

conditions. The largest overestimation was associated with the first time point where the true reliability 

is .65. This was due to the model constraints that force the error variances to be equal between time 

points (for the purpose of identification). The magnitude of overestimation ranged from .013 (1.7%) 

to .241 (37.1%) for the Simplex 1 model and from .026 (3.5%) to .210 (32.3%) for the Simplex 2 model. 

The parameter estimates of the Linear model for condition A l are presented in Table 2.4.2. In 

general, parameter estimates of the Linear model were very accurate, and there was no tendency of 

overestimation or underestimation where there is a discrepancy between the true and estimated 

parameter. There was no discrepancy between the estimated and true factor means up to three decimal 
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Table 2.4.1 

Fit indices and estimated reliability coefficients of models with various correlations between initial 

status and linear change (rtr) 

Condition 

Model X2(df) p-value RMSEA SRMR NNFI T l 

Estimated Reliability 

T2 T3 T4 T5 

True reliability —> .650 .750 .750 .750 .750 

Condition Al : r i c = 0 

Linear 2.39(10) .992 < .001 .005 1.00 .651 .751 .752 .748 .749 

Simplex 1 86.26(5) < .001 .057 .011 .99 .785 .763 .787 .814 .844 

Simplex 2 40.66(3) < .001 .050 .008 .99 .816 .795 .797 .776 .811 

Condition A2: r i c = - .3 

Linear 3.30(10) .974 <.001 .005 •1.00 .648 .759 .750 .751 .752 

Simplex 1 83.58(5) < .001 .055 .013 .99 .845 .803 .806 .821 .843 

Simplex 2 74.45(3) < .001 .068 .012 .99 .855 .816 .814 .802 .826 

Condition A3: r i c = - .6 

Linear 4.38(10) .929 < .001 .005 1.00 .652 .746 .748 .755 .753 

Simplex 1 139.6(5) < .001 .072 .017 .98 .891 .842 .815 .803 .818 

Simplex 2 109.8(3) < .001 .083 .016 .99 .860 .799 .824 .825 .839 

Note, df = degrees of freedom; RMSEA = root mean square error of approximation; SRMR = 

standardized root mean square residual; NNFI = non-normed fit index; T l to T5 = Timel to Time5. 
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places for both the intercept and the linear factor. The variance of the intercept factor was slightly 

overestimated (.051, 2.5%), and the variance of slope factor was slightly underestimated (.004, 4.9%). 

Error variances of time 1, 2 and 4 were overestimated and the error variances of time 3 and 5 were 

underestimated, but the magnitudes of overestimation or underestimation were small. The average 

discrepancy between the true and estimated error variances was .011 (1.1%). The parameter estimates of 

the Linear model for conditions A2 and A3 were also relatively accurate. The parameter estimates for 

conditions A2 and A3 are presented in Appendix D, Table D.3 and Table D.6. 

The parameter estimates of the Simplex models showed similar results in all conditions. The 

parameter estimates of only the Simplex 2 model for condition A l are presented in Figure 2.4.1 as an 

example. Because the data were generated based on the growth of a certain attribute over time, the true 

parameters (i.e., path coefficients, factor mean and factor variances) for the Simplex models are not 

available except for error variances. The true error variances of observed variances are available, and 

presented in bolded numbers. The error variances were underestimated at all time points, and the 

magnitude of underestimation was relatively large. The average underestimation was .236 (23.6%), and 

it is largest at the.first time point (.512, 46.3%). This implies that the true score variances were 

overestimated by the model, and resulted in the overestimation for the reliability coefficients. The 

standardized path coefficients ((3) were relatively high, indicating that there was a year-to-year stability 

of relative positions of subjects (cases) in their true scores. The path coefficient predicting time 2 factor 

from time 1 factor was smaller than other path coefficients due to the low reliability (.65) of the first 

time point. The mean of the time 1 factor was identical to the mean of the observed variable at the first 

time point. The factor mean of each time point is calculated as follows; 

Time 1 = 9.43 

Time 2 - (9.43 x .80) + 2.91 = 10.45 

Time 3 = (mean of time 2 x .99) + 1.09 = 11.44 

Time 4 = (mean of time 3 x 1.01) + .86 = 12.41 

Time 5 = (mean of time 4 x 1.04) + .54 = 13.45. 

These means are slightly different from the means of XI to X5 (Appendix D, Table D.l) due to the 

estimation error. The parameter estimates of the Simplex models for other conditions are presented in 

the Appendix D, Table D.4 to Table D.7. 

The Effect of the Magnitude of Reliability 

The goodness-of-fit indices and estimated reliability coefficients of three models under the 

various magnitudes of reliability coefficients are presented in Table 2.4.3. Although the medium-level 
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Table 2.4.2 

The true and estimated parameters (standard errors) of the Linear model for condition A l 

Intercept Linear Error variances 

Factor Factor Time 1 Time 2 Time 3 Time 4 Time 5 

Mean 
9.426 
9.426 
(.023) 

.994 

.994 
(.006) 

1.107 
1.130 
(.033) 

.717 

.724 
(.020) 

.804 

.795 
(.020) 

.945 

.948 
(.025) 

1.140 
1.126 
(.036) 

Variance 
2.057 
2.108 
(.055) 

.082 

.078 
(.004) 

Covariance 
0 

-.001 
(.011) 

Note. Bolded numbers are true values. A l l parameter estimates were significant at p < .001 except for 

the covariance between two factors that was not significant (p = .899). 

/

m i mean: 9.43 
var.: 2.63 

/

mean: 2.91 
var.: .64 

/

/mean: 1.09 . 
va,:.32 / 

mean: .86 
var.: .28 I 

mean: .54 
var.: .47 

X I 

T 
.60 

1.107 

(.85) (.94) 

X2 

T 
.60 
.717 

(.95) 

X3 

T 
.66 
.804 

(.93) 

X4 

T 
.84 
.945 

X5 

T 
.84 
1.140 

Figure 2.4.1. Parameter estimates of the Simplex 2 model for condition A l 

Note. The numbers in brackets are standardized path coefficients. Bolded numbers are true error 

variances. A l l parameter estimates were significant at a = .05. 
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Table 2.4.3 

Fit indices and estimated reliability coefficients of models with various magnitudes of reliability 

Condition Estimated Reliability 

Model X2(di) p-value RMSEA SRMR NNFI T l T2 T3 T4 T5 

Condition Bl: Rel.=.40~.50 True reliability -» .400 .500 .500 .500 .500 

Linear 3.81(10) .955 < .001 .007 1.00 .408 .511 .499 .499 .504 

Simplex 1 16.52(5) .006 .021 .009 1.00 .666 .542 .547 .578 .633 

Simplex 2 9.861(3) .020 .021 .007 1.00 .683 .561 .556 .550 .604 

Condition B2: Rel.=.65~ .75 True reliability —> .650 .750 .750 .750 .750 

Linear 3.30(10) .974 < .001 .005 1.00 .648 .759 .750 .751 .752 

Simplex 1 83.58(5) <.001 .055 .013 .99 .845 .803 .806 .821 .843 

Simplex 2 74.45(3) < .001 .068 .012 .99 .855 .816 .814 .802 .826 

Condition B3: Rel.=.90~.95 True reliability —» .900 .950 .950 .950 .950 

Linear 4.15(10) .940 <.001 .002 1.00 .897 .953 .950 .951 .950 

Simplex 1 1103(5) < .001 .199 .028 .95 .995 .994 .994 .994 .995 

Simplex 2 1091(3) < .001 .259 .028 .91 .997 .997 .997 .988 .989 

Note, df = degrees of freedom; RMSEA = root mean square error of approximation; SRMR = 

standardized root mean square residual; NNFI = non-normed fit index; T l to T5 = Timel to Time5; Rel. 

= reliability. 
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reliability condition (condition B2) is identical to condition A2 in Table 2.4.1, the results are presented 

again for comparison purposes. 

The Linear model fit the data very well under all three conditions, BI, B2, and B3. The x 2 

statistics were lower than the degrees of freedoms, and all other fit indices indicated that the Linear 

model fit the data very well under all conditions. Simplex models showed interesting results regarding 

model fit. Under condition BI where the reliability is relatively low (.40 to .50), the fit indices indicated 

that the Simplex models fit the data very well (e.g., RMSEA = .021). In condition B2 where the 

magnitude of reliability is medium (.65 to .75), the model fit was worse than condition BI, but \vithin an 

acceptable range. However, in condition B3 where the reliability is relatively high (.90 to .95), the 

Simplex models did not fit the data well. Although SRMR and NNFI were within an acceptable range, 

X 2 and RMSEA indicated that the Simplex models should be rejected in condition B3. Certainly the 

Simplex models fit the data well when the reliability is low, but as reliability becomes larger the model 

fit of Simplex models becomes worse. Overall, the Linear model showed much better model fit 

compared to the Simplex models in all conditions. 

The reliability coefficients estimated by the Linear model were very accurate in all conditions. 

The largest discrepancy between the estimated and the true value was .011 (2.2%). However, Simplex 

models, regardless of the magnitude of the true reliability, overestimated reliability. The overestimation 

ranged from .042 (8.4%) to .266 (66.5%), and the largest overestimation within a model was associated 

with the first time point where the true reliability is lowest among time points. In general, other 

parameter estimates of the Linear model were relatively accurate. The parameter estimates for the 

Simplex models showed similar results with those of the Simplex 2 model in condition A l (Figure 

2.4.1). These parameter estimates for the Linear and the Simplex models are presented in Appendix D, 

Table D.9 to D.13. 

The Effect of Correlated Errors (r e e) 

The goodness-of fit indices and estimated reliability coefficients of three models under various 

magnitudes of correlations among errors are shown in Table 2.4.4. Although condition C l in which ree-

= 0, is identical to condition A2 of Table 2.4.1, it is represented for comparison purposes. 

The Linear model fit the data very well in all conditions except for condition C5 where the 

errors of only the last two time points are correlated with a magnitude of .3. The x 2 statistic of this 

model was obviously much larger as compared to those of the Linear model in other conditions. 

However, in terms of other fit indices, this model also fit the data very well. Simplex models showed 

similar patterns in the model fit with conditions A and B. The x 2 statistic was not satisfactory, but other 

indices indicated that these models could be considered acceptable, except for the Simplex 2 model in 

condition C4 (RMSEA > .08) where the magnitude of correlations among errors are .3 between all time 

file:///vithin
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Table"2.4.4 

Fit indices and estimated reliability coefficients of models with various magnitudes of correlated errors 

Condition Estimated Reliability 

Model X 2 p-value RMSEA SRMR NNFI T l T2 T3 T4 T5 

True reliability —> .650 .750 .750 .750 .750 

Condition CI: Tee = 0 
Linear 3.30(10) .974 < .001 .005 1.00 .648 .759 .750 .751 .752 

Simplex 1 83.58(5) < .001 .055 .013 .99 .845 .803 .806 .821 .843 

Simplex 2 74.45(3) < .001 .068 .012 .99 .855 .816 .814 .802 .826 

Condition C2: ree.= .1 between all time points 

Linear 7.39(10) .688 < .001 .010 1.00 .675 .771 .775 .772 .776 

Simplex 1 113.3(5) <.001 .064 .013 .99 .856 .816 .821 .832 .855 

Simplex 2 100.0(3) < .001 .080 .013 .98 .854 .813 .840 .813 .838 

Condition C3: ree-= .1 between last two time points 

Linear 5.34(10) .868 < .001 .005 1.00 .660 .753 .749 .773 .777 

Simplex 1 75.46(5) < .001 .053 .012 .99 .850 .814 .815 .830 .854 

Simplex 2 75.39(3) < .001 .069 .012 .99 .851 .816 .814 .830 .854 

Condition C4: ree'= .3 between all time points 

Linear 10.64(10) .386 .004 .011 1.00 .738 .825 .828 .823 .831 

Simplex 1 131.7(5) < .001 .069 .012 .99 .897 .871 .870 .879 .895 

Simplex 2 118.1(3) <.001 .087 .012 .98 .894 .868 .885 .865 .882 

Condition C5: ree'= .3 between last two time points 

Linear 78.26(10) < .001 .038 .021 1.00 .656 .746 .734 .802 .832 

Simplex 1 123.5(5) < .001 .068 .014 .99 .864 .823 .823 .838 .860 

Simplex 2 81.62(3) <.001 .072 .012 .99 .841 .794 .805 .875 .893 

Note, df = degrees of freedom; RMSEA = root mean square error of approximation; SRMR = 

standardized root mean square residual; NNFI = non-normed fit index; T l to T5 = Timel to Time5. 
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points. 
The Linear model overestimated reliability coefficients when correlated errors were present (i.e., 

ree- > 0). In condition C2 where errors between all time points are correlated with a magnitude of. 1, the 

reliability coefficients were overestimated in all time points. The average overestimation was .024 

(3.26%). In condition C3 where only the errors between the last two time points are correlated with a 

magnitude of. 1, the reliability coefficients of only the last two time points were overestimated. The 

average overestimation of these two reliability coefficients was .025 (3.3%). In conditions C4 and C5 

where the magnitude of correlated errors is .3, the magnitude of overestimations for the reliability 

coefficients was larger than that of conditions C2 and C3. The average overestimations were .079 

(10.9%) and .067 (8.9%) in conditions C4 and C5, respectively. In condition C5 where the errors of 

between last two time points are correlated with the magnitude of .3, the reliability coefficients for these 

last two time points were overestimated. Reliability coefficients for other time points (other than last 

two time points) in conditions C3 and C5 were either slightly overestimated or underestimated. The 

largest discrepancy was .016 (2.1%) at time 3 in condition C5. 

The Simplex models overestimated reliability coefficients at all time points under all conditions. 

The overestimations were not limited in the last two time points in conditions C3 and C5 where errors 

between only the last two time points are correlated. The magnitude of overestimation was larger than 

that of the Linear model. The average overestimation was .117 (16.5%) across all conditions and two 

Simplex models. The largest overestimation was associated with the first time point where the true 

reliability is .65. The average overestimation of the reliability for the first time point across all 

conditions and across two Simplex models was .213 (32.8%), while the average overestimation of all 

other time points was .093 (12.4%). In addition, the overestimation was larger in condition C4 than that 

of other conditions. The average overestimation across all time points and across two Simplex models 

for condition C4 was .151 (21.1%), while the average overestimation for other conditions was .106 

(15.0%). Overall, the Simplex models overestimated reliability at all time points regardless of the 

condition, and the magnitude of the overestimation was much larger than that of the Linear model. 

The parameter estimates of the Linear model are presented in Table 2.4.5. Because the 

magnitude of reliability coefficients is a function of the factor variances and error variances, parameter 

estimates of variances only are presented. As shown in Table 2.4.5, the overestimation of reliability 

coefficients for the Linear model was due to both the underestimation of the error variances and the 

overestimation of the factor variances. For condition C2 and C4 where the errors between all time points 

were correlated, the error variances at all time points were underestimated, and the magnitude of the 

underestimation was larger in condition C4 ( r e e - 3 between all time points) than in condition C2 

(ree = .1 between all time points). The average underestimations were .071 (9.4%) and .222 (29.4%) for 

condition C2 and C4, respectively. This indicated that a larger correlation between errors resulted in a 

larger underestimation of error variances. This was also evident in conditions C3 and C5 where the 
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Table 2.4.5 
The true and estimated variances of Linear model for condition Cs 

Condition 

Factor variance 

Intercept Linear Time 1 Time 2 

Error variance 

Time 3 Time 4 Time 5 

Cl:r e e .= 0 2.057 .082 1.107 .717 .804 .945 1.140 

2.108 .078 1.130 .724 .795 .948 1.126 

C2: r e e = .1 between 2.057 .082 1.107 .627 .624 .675 .781 

all time points 2.096 .082 1.010 .574 .561 .617 .697 

C3: r e e = .1 between 2.057 .082 1.107 .630 .630 .684 .793 

last two time points 2.077 .093 1.070 .626 .644 .623 .720 

C4: ree-= .3 between 2.057 .082 1.107 .626 .622 .672 .777 

all time points 2.287 .082 .812 .448 .443 .481 .519 

C5: ree'= .3 between 2.057 .082 1.107 .629 .626 .679 .786 

last two time points 2.070 .108 1.084 .637 .682 .522 .516 

Note. Bolded numbers are true values. Standard errors are omitted. All parameter estimates were 

significant at p < .001. 
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errors of only the last two time points were correlated. For condition C3 and C5, the error variances at 

the last two time points were underestimated, and the magnitude of the underestimation was also larger 

in condition C5 (r̂ — .3 between last two time points) than in condition C3 (r̂ — . 1 between last two 

time points). The average underestimations of last two time points were .067 (9.1%) and .214 (28.8%) 

for condition C3 and C5, respectively. Some of the factor variances were overestimated (this also 

resulted in an overestimated reliability). The variance of the intercept factor was overestimated in all 

conditions, but the magnitude of overestimation was relatively small except for condition C4 (.23, 

11.2%). The variance of the linear factor was overestimated in condition C3 (.011, 13.4%) and C5 (.026, 

31.7%), and the magnitude of the overestimation was relatively large. The estimated variance of the 

linear factor in condition C2 and C4 were accurate (no discrepancy was found up to 3 decimal places). 

Thus, especially under conditions C3 and C5, where the errors of only the last two time points were 

correlated, the variance of the linear factor was overestimated. The parameter estimates of the Simplex 

models showed similar results with those of Simplex 2 model in condition A l (Figure 2.4.1). These 

results are presented in Appendix D, Table D. 16 to Table D.25. 



STUDY 2-CHAPTER V. DISCUSSION 
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The LGM and the Simplex models were compared in the estimation of longitudinal reliability. 

Longitudinal data sets with known parameters and reliabilities were generated, through a computer 

simulation, based on several stipulated conditions, and used in the examination of two models. 

Conditions were varied by the magnitude of correlation between the initial status and the rate of change, 

the magnitude of reliability, and the magnitude of correlated errors. 

The goodness-of-fit indices indicated that the LGM fit the data very well in all conditions while 

Simplex models showed a questionable model fit. In general, the goodness-of-fit of the Simplex models 

was worse than that of LGM, and the x 2 statistics of the Simplex models were very large in most 

conditions. The RMSEA, SRMR, ECVI and NNFI also indicated a worse fit for the Simplex models 

than the LGM. This was expected, as the data sets were generated based on the linear growth of 

individuals over time. These results partially agree with the conclusion by Mandys, Dolan and Molenaar 

(1994). They found poor model fits with the Simplex models on growth data with eight or more time 

points. 

Although the model fit of the Simplex models was worse than that of LGM, the model still 

showed a fairly good fit to the data. The RMSEAs were within an acceptable range in many conditions, 

and the SRMR and NNFI indicated an excellent model fit for all conditions. Thus, in practice, one may 

conclude that the Simplex model fit the growth data well. These results agree with the findings by 

Rogosa and Willet (1985). They argued that this is a problem because the data from a growth model 

violate the assumption of a Simplex model that the change between any two time points is not affected 

by the change between previous time points. As they concluded, a caution is needed when employing a 

Simplex model for the analysis of longitudinal data, especially where a change over time is expected. In 

terms of the %2 and RMSEA statistics, however, the results supported Mandys et al.'s (1994) findings. 

As noted above, they found that the model fit of the Simplex models on growth data start to deteriorate 

when there are eight or more time points. In the present study, the x 2 statistics and RMSEA showed that 

the deterioration was partially evident with five time points as well. 

The reliability coefficients estimated by L G M (Linear model) were very accurate except in 

conditions where there existed correlated errors between time points. The largest discrepancy between 

the estimated and true reliability was 2.2%, excluding the conditions with correlated errors. Thus, when 

the errors were not correlated, L G M accurately decomposed the observed variance into the two 

components that are due to error and true change. However, the Simplex models overestimated 

reliability in all the conditions. The magnitude of the overestimation ranged from 1.7% to 66.5%, 

depending on the time point and conditions. The overestimation of reliability by a Simplex model was 

observed and discussed by Rogosa and Willet (1985). They argued that in growth data, the partial 
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correlation between any two time points after controlling for any intervening time point is not zero, thus 

the reliability estimation by a Simplex model is overestimated. This implies that growth data violate the 

assumption that is required in a Simplex model. Thus, when one expects growth in a performance 

variable over time, LGM provides a more accurate reliability estimation. On the other hand, Kenny and 

Campbell (1989) contend that a simplex model treats the random component of a measure as a lasting 

part of the true score while a LGM treats it as an unreliable part. However, Kenney and Campbell's view 

was under the circumstances where one is interested more in the stability of a measure over time rather 

than in the change. 

The requirement of constraints that should be imposed for the purpose of identification is one of 

major weaknesses of Simplex models in the estimation of reliability. The constraints that were imposed 

to the Simplex model in the present study were the equality of error variances between the first two and 

between the last two time points, or across all five time points. This resulted in a larger overestimation 

of the reliability at the first time point, where the true reliability was lower than other time points. 

Because of the equality constraints, the magnitude of estimated error variance at the first time point was 

forced to be equal to that of other time points, although the true error variance is larger than that of other 

time points. This means that using Simplex models, one may not adequately take into account the nature 

of longitudinal data, in which the true and error variances (and hence the reliability) may change over 

time. The constraints of equal error variance over time that were suggested and used by Joreskog (1970) 

and Wiley and Wiley (1970), are difficult to justify in many longitudinal studies. Other types of 

constraints have been also used in the literatures such as equal reliability over time (Heise, 1969) and 

equal stability over time (Kenny, 1979). However, as with the constraints of equal error variances over 

time, these types of equality constraints of Simplex models are rarely justified in most of longitudinal 

studies. 

The magnitude of the correlation between the initial status and the rate of linear change (slope) 

did not affect the estimation of longitudinal reliability. The estimated reliability coefficients by L G M 

were accurate under all conditions. The reliability coefficients were overestimated by the Simplex 

models, but the magnitude of the overestimation was not systematically affected by the magnitude of the 

correlation between the initial status and the rate of the linear change. However, it is not conclusive that 

these results can be generalized to correlation between change factors (e.g., between the linear and 

quadratic factors in a Quadratic model). The present study employed only a linear change, thus 

examined only the effect of correlation between the initial status and the rate of linear change. In a 

quadratic or higher order models, the correlation between the change factors may affect the estimation 

of change parameters and hence, the reliability. 

The magnitude of the true reliability did not show any systematic effect on the estimation of 

reliability. The LGM accurately estimated reliability and the Simplex models overestimated the 

reliability under all the conditions with various magnitudes of reliability. However, the magnitude of 
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reliability showed an effect on the goodness-of-fit of the Simplex models. When the magnitude of the 

true reliability was relatively low (.40 to .50), the Simplex models fit the data very well. As the 

magnitude of true reliability became larger the goodness-of-fit of the Simplex model became worse. 

Conditions with relatively high reliability produced an unacceptable model fit for the Simplex models. 

On the contrary, L G M fit the data well regardless of the magnitude of the true reliability. These results 

imply that as the magnitude of true reliability becomes smaller, there is a higher chance of accepting a 

Simplex model as a good fitting model in the analysis of longitudinal data. This eventually may lead one 

to make an erroneous conclusion regarding the reliability of a measure because the Simplex models 

provide overestimated reliability for the growth data. As Rogosa and Willett (1985) noted, selecting one 

model over another between a L G M and a Simplex model is not feasible because, empirically, these two 

models are difficult to distinguish. The results of the present study supported this view, especially where 

the true reliability is relatively low. Because the magnitudes of reliability coefficients that were 

employed in this study are common in psychological measures, one should be cautious when a low 

reliability is expected. 

As expected, the L G M overestimated reliability in the presence of correlated errors. When the 

errors were correlated between the last two time points only, the reliability estimation of other time 

points were not affected. The magnitude of overestimation was dependent on the magnitude of the 

correlation between errors. In the conditions where the magnitude of correlation between errors was .10, 

the average magnitude of overestimation was 3.3%, and in the condition where the magnitude of 

correlation between errors was .30 the average overestimation was 10.3%. Thus, when there exist 

correlated errors and one fails to take it into account in the model, a L G M provides overestimated 

reliability coefficients. In addition, the magnitude of overestimation was dependent on the magnitude of 

correlation between errors, resulting in larger overestimation with larger correlation between errors. 

Further analyses revealed that both the overestimation in the factor variance (true score variance) and 

the underestimation in the error variance resulted in the overestimation of the reliability. The model 

treats the component of correlated errors as a lasting true score component. Thus, the variances of the 

change factors were overestimated, and hence the reliability was overestimated. 

These results agreed with the notes by Werts, Breland, Grandy and Rock (1980), and Wiley and 

Wiley (1974). Although Wiley and Wiley (1974) explained this in the situation of obtaining the true 

correlation between variables, they showed that the magnitude of overestimation is directly proportional 

to the magnitude of correlation between errors. There have been other studies in which correlated errors 

were used in a longitudinal model (e.g., Blalock, 1970; Marsh & Grayson, 1994; Wheaton, Muthen, 

Alwin & Summers, 1977), but most of these studies used a multivariate longitudinal model or did not 

focus on the reliability estimation. When one anticipates that errors are correlated between time points, 

one should include the correlated errors in the model to obtain accurate parameter estimates. However, 

including correlations between all possible pairs of time points in a univariate L G M is not possible 
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because of the identification problem. Thus, one has to limit the number of correlations between errors 

in a model, depending on the available degrees of freedom of the model. In many cases, it is difficult to 

justify the inclusion of correlated errors between specific time points. This should be done only when 

there is a strong theoretical or empirical background that supports the inclusion of correlated errors. The 

Simplex models overestimated reliability regardless of the correlated errors. 



CHAPTER VI. SUMMARY AND CONCLUSIONS 
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Summary 

The present study is presented as two components. In study 1, (a) the latent growth model 

(LGM) was introduced, (b) the merits and the problems of using LGM were examined, and (c) the 

development of children's physical performances was examined. These phases of the investigation were 

accomplished by analyzing a longitudinal data set which includes seven physical performance variables 

that were measured at five time points, and five predictor variables. In study 2, the validity of the two 

widely used longitudinal factor analysis models, the L G M and the quasi-simplex model, were compared 

in estimating longimdinal reliability. For this purpose, data sets with known parameters (e.g., reliability) 

under various conditions were computer simulated and analyzed. The conditions of the data sets were 

varied in terms of the magnitude of correlations between initial status and change, the magnitude of 

reliability, and the magnitude of correlated errors between time points. 

In study 1, the univariate L G M analyses revealed that the children's individual development 

over a 5-year period was adequately explained by variable specific trends. Specifically, the Linear 

growth model provided a good fit for the jump-and-reach and sit-and-reach, Quadratic for flexed-arm 

hang, Cubic for standing long jump, and Unspecified Curve models for agility shuttle run, endurance 

shuttle run and 30-yard dash. The children improved in their physical performances between ages 8 and 

12 except for flexibility, in which children's performance declined over time. Among the predictor 

variables, test practice (the number of previous testing sessions) and age in months showed positive 

effects on the children's performance at the initial time point. A negative test practice effect on 

development in physical performances was also found. The effect of other predictor variables varied for 

different performance variables. 

The multivariate analyses showed that the factor structure of three hypothesized factors, "Run", 

"Power" and "Motor Ability", holds at all five time points. However, only the change in the "Run" 

factor was adequately explained by any of the latent growth models, with the Unspecified Curve model 

providing the best fit. There were significant test practice, age, measurement season and measurement 

year effects on the intercept factor, and significant test practice and measurement year effects on the 

curve factor. The cross-validation procedure generally supported these findings. 

In study 2, the results showed that the simplex model overestimated the reliability in all 

conditions, while the L G M provided relatively accurate reliability estimates in almost all conditions. 

The magnitude of correlation between the initial status and change, and the magnitude of reliability did 

not affect the reliability estimation, while the correlated errors lead to an overestimation of reliability for 

both models. On the other hand, the magnitude of reliability showed a negative effect on the goodness-

of-fit of the simplex model. 



Conclusions 

Some conclusive statements can be made on the basis of study 1, as follows; 
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1. Latent growth modelling is a very useful and informative statistical procedure for the analysis of 

longitudinal physical performance data. Specifically, following conclusions are made with respect to the 

merits of LGM. 

(a) The capability of modelling change at the individual level is one of the most notable merits of 

LGM. This further enables one to include the predictors of change in a model, and to estimate 

the relationship between the initial status and change. 

(b) LGM takes into account the error component of variables in the analysis, and thus it represents 

the true developmental change in an attribute. In addition, L G M allows one to examine a 

hypothesis regarding error variances (e.g., equality of error variances over time). 

(c) L G M is a useful statistical model for the analysis of change in a multivariate latent factor. 

2. The application of L G M to physical performance longitudinal data produced several unique findings 

regarding the children's development in physical performances that were not available in previous 

studies. The conclusions that were drawn from these findings are; 

(a) Individual children show approximately quadratic developmental patterns in upper arm and 

shoulder girdle muscular strength and endurance, leg muscular endurance, running speed, and 

agility. 

(b) There are considerable inter-individual variations in the linear, quadratic and cubic components 

of children's developmental change in physical performances. For some physical performance 

variables (e.g., the flexed-arm hang and standing long jump in the present study) the positive and 

negative quadratic and cubic components of individual children's development cancel each other 

out and produce an approximately linear group level of development (as also indicated by 

ANOVA results for flexed-arm hang), while the true developmental pattern of individual 

children is quadratic or cubic. The conclusions regarding children's developmental patterns in 

physical performances from previous studies in which traditional methods and group statistics 

were used need to be reexamined. 

(c) The relationship between the level of physical performance at the initial time of testing and the 

rate of development is not always negative, but depends on a specific performance as well as a 

selected time interval. 

(d) The "Run" factor which is characterized by a particular type of movement, was the only valid 

multivariate factor in representing the longitudinal development of latent physical performance. 

Other conclusions include; 
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(e) Test practice and age in months have positive effects on the physical performances. 

(f) Such construct as "general motor ability" does not exist even for young children. Latent physical 

performance variables are specific to a particular type of movement or a particular muscle group. 

3. The practical problems of using L G M in the analysis of longitudinal physical performances need to 

be attended. Specifically; 

(a) Choosing the best fitting latent growth model based solely on statistical criteria is not always 

straight forward (e.g., comparing between the Unspecified Curve model and the Quadratic or 

Cubic model). In such a case, researchers should make decision based on a conceptual and a 

theoretical basis of physical performance development. 

(b) The complex relationship between performance variables, and between time points may result in 

the case where none of the multivariate LGMs (e.g., Linear, Quadratic, Cubic or Unspecified 

Curve models) fits the data in the curve-of-factors model, while all indicator variables in the 

model separately fit one of the LGMs well. 

The main conclusion from study 2 is; 

1. The L G M accurately estimates reliability, while the quasi-simplex model overestimates the reliability 

of longitudinal developmental variables. The availability of this valid statistical model for the estimation 

of longitudinal reliability is beneficial especially in Human Kinetics research, since the measurement of 

physical performance variables is often costly. 

Some other conclusive statements from study 2 as well can be made, as follows; 

2. The reliability estimations by the L G M and quasi-simplex models were not affected by the correlation 

between the initial status and the rate of change, or by magnitude of reliability. 

3. The correlated errors result in an overestimation of reliability, and the overestimation is isolated at 

correlated time points. 

4. The magnitude of reliability of developmental variables has a negative effect on the goodness of 

model fit of the quasi-simplex model. 
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APPENDICES 

Appendix A: Example Data Records for Five Selected Subjects (Michigan Data Set 1) 

Predictor Variables Flexed-Arm Hang (seconds) 
Subject* Practice Age Grade Season Year Age 8 Age 9 Age 10 Age 11 Age 12 

1 5 97 0 1 1970 22 17 22 27 29 
2 1 94 1 0 1975 8 7 18 16 22 
3 7 99 0 1 1978 6 8 8 12 9 
4 6 96 1 0 1982 23 21 16 13 13 
5 6 95 1 0 1987 22 17 17 22 28 

Subject* 
Jump-and-Reach (inches) Sit-and-reach (inches) 

Subject* Age 8 Age 9 Age 10 Age 11 Age 12 Age 8 Age 9 Age 10 Age 11 Age 12 
1 8.0 10.5 12.0 13.0 14.5 8.5 7.5 8.5 9.0 7.0 
2 10.5 11.0 12.0 11.0 13.0 8.0 7.5 6.0 4.0 7.0 
3 10.5 13.5 13.5 15.0 17.0 8.5 8.0 7.0 5.0 5.0 
4 7.0 105 10.5 11.0 11.5 8.0 7.0 8.0 9.0 8.5 
5 8.5 11.5 14.0 13.0 16.0 9.0 10.5 8.5 9.0 7.0 

Subject* 
Agility Shuttle Run (seconds) Endurance Shutde Run (seconc s) 

Subject* Age 8 Age 9 Age 10 Age 11 Age 12 Age 8 Age 9 Age 10 Age 11 Age 12 
1 12.3 12.2 11.7 11.3 10.8 44.8 43.8 43.0 40.8 40.9 
2 12.0 12.9 11.4 11.1 12.0 40.2 43.0 45.6 40.4 42.5 
3 13.2 13.6 11.6 11.0 10.0 45.6 45.4 41.6 39.4 36.7 
4 11.7 11.0 10.9 11.4 10.9 46.0 42.9 38.9 40.9 39.5 
5 11.2 11.3 10.8 10.4 10.0 39.9 41.2 39.8 38.2 36.3 

Subject* 
30-yard Dash (seconds) Standing Long Jump (inches) 

Subject* Age 8 Age 9 Age 10 Age 11 Age 12 Age 8 Age 9 Age 10 Age 11 Age 12 
1 5.4 5.2 4.9 4.6 4.6 58.0 62.0 67.5 66.0 67.5 
2 5.8 5.0 4.8 5.3 4.5 55.0 65.0 62.0 64.5 73.0 
3 5.2 4.9 4.3 4.4 4.3 65:0 70.0 75.0 77.0 81.0 
4 5.6 5.2 4.7 4.9 4.9 47.0 52.0 55.0 62.0 66.0 
5 5.0 5.3 4.8 4.8 4.7 58.5 62.0 68.5 72.0 68.5 

Note. Practice = the number of measurement taken before age 8, Age = age in months at the first time 

point (age 8), Grade = grade at age 8 (0 = grade 2, 1 = grade 3), Season = measured season (0 = summer, 

1 = winter), Year = measurement year at age 8. 



140 

Appendix B: Program Commands for Latent Growth Models 

LISREL Commands for Univariate Models 

Linear Model (flexed-arm-hang) 

1 D A N I = 6 3 N O = 2 1 0 . . 

2 R A F I = C : \ T H E S I S \ D A T A \ M O T O R \ M O T O R l . D A T F O 

3 ( 4 1 F 8 . 2 ) 

4 L A B E L 

5 I D , P R _ M E _ N O , A G E , G R A D E , M E _ S E S N , M E _ Y R , 

6 F A H 8 , J A R 8 , A S R 8 , S L J 8 , D A S H 8 , S A R 8 , E S R 8 , 

7 F A H 9 , J A R 9 , A S R 9 , S L J 9 , D A S H 9 , S A R 9 , E S R 9 , 

8 F A H 1 0 , J A R 1 0 , A S R 1 0 , S L J 1 0 , D A S H 1 0 , S A R 1 0 , 

9 F A H 1 1 , J A R 1 1 , A S R 1 1 , S L J 1 1 , D A S H 1 1 , S A R 1 1 , 

10 F A H 1 2 , J A R 1 2 , A S R 1 2 , S L J 1 2 , D A S H 1 2 , . S A R I 2 , 

11 
12 S E 

13 7 14 2 1 2 8 3 5 / 

14 
15 MO N Y = 5 T Y = Z E N E = 2 T E = S Y , F I A L = F R B E = Z E P S = S Y , F R 

16 
17 L E 

18 I N T E R C E P T S L O P E 

19 
20 M A L Y 

21 1 0 

22 1 1 

23 1 2 

24 1 3 

25 1 4 

26 
27 F R T E 1 1 T E 2 2 T E 3 3 T E 4 4 T E 5 5 

28 
29 O U R S S E S C T V N D = 3 I T = 1 0 0 0 A D = O F F 

Note. Line numbers are added for a presentation purpose. ID = subjects' ID; PR_ME_NO = the number 

of measurement before age 8 (initial time point); GRADE = grade at age 8; AGE = age in months at age 

8; ME_SESN = measurement season; ME_YR = measurement year at age 8; FAH8 = flexed-arm-hang 

at age 8; JAR = jump-and-reach; ASR = agility shuttle run, SLJ = standing long jump, DASH = 30-yard 

dash, SAR = sit-and-reach, ESR = endurance shuttle run. 

For an equal error variance model, add following commands between lines 27 and 29. 

E S R 1 0 , 

E S R 1 1 , 

E S R 1 2 

E Q T E 1 1 T E 2 2 T E 3 3 T E 4 4 T E 5 5 

file:///THESIS/DATA/MOTOR/MOTORl.DAT
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Quadratic Model (flexed-arm-hang) 

Replace lines from 15 to 25 with following commands. 

MO N Y = 5 T Y = Z E N E = 3 T E = S Y , F I A L = F R B E = Z E P S = S Y , F R 

L E 

I N T E R C E P T S L O P E Q U A D R A T C 

M A L Y 

1 0 0 . 

I l l 

1 2 4 

1 3 9 

1 4 1 6 

Cubic Model (flexed-arm-hang) 
Replace lines from 15 to 25 with following commands. 

MO N Y = 5 T Y = Z E N E = 4 T E = S Y , F I A L = F R B E = Z E P S = S Y , F R 

L E 

I N T E R C E P T S L O P E Q U A D R A T C C U B I C 

M A L Y 

1 0 0 0 

1 1 1 1 

1 2 4 8 

1 3 9 2 7 

1 4 1 6 64 

Unspecified Curve Model (flexed-arm-hang) 
Add following commands between lines 25 and 27. 

F R L Y 3 2 L Y 4 2 L Y 5 2 

Linear Model With One Predictor (PR ME NO) 

Replace lines from 12 to 15 with following commands. 

S E 

7 14 2 1 2 8 3 5 2 / 

MO N Y = 5 N X = 1 T X = Z E T Y = Z E N E = 2 N K = 1 T D = F I T E = S Y , F I K A = F R A L = F R B E = Z E 
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P S = S Y , F R 

L K 

L E A R N I N G 

V A 1 L X 1 1 

Linear Model With Three Predictors, PR ME NO. AGE and ME YR (the Effect of 

"PR ME NO" on the Slope Factor is Fixed at Zero) 
Replace lines from 13 to 16 with following commands. 

S E 

7 14 2 1 2 8 3 5 2 3 6 / 

MO N Y = 5 N X = 1 T X = Z E T Y = Z E N E = 2 N K = 3 T D = F I T E = S Y , F I K A = F R A L = F R B E = Z E 

P S = S Y , F R 

L K 

L E A R N I N G A G E M E _ Y R 

M A L X 

1 0 0 

0 1 0 

0 0 1 

F I G A 2 1 

Program Commands for Multivariate Models (Curve-of-Factors Model) 

LISREL Commands for the 5-factor Measurement Model ("Run" Factor; Equal Factor Loadings 

and Correlated Errors Over Time) 

D A N I = 6 3 N O = 2 1 0 

R A F I = C : \ T H E S I S \ D A T A \ M O T O R \ M O T O R l . D A T F O 

( 4 1 F 8 . 2 ) 

L A B E L 

I D , P R _ M E _ N O , A G E , G R A D E , M E _ S E S N , M E _ Y R , 

F A H 8 , J A R 8 , A S R 8 , S L J 8 , D A S H 8 , S A R 8 , E S R 8 , 

F A H 9 , J A R 9 , A S R 9 , S L J 9 , D A S H 9 , S A R 9 , E S R 9 , 

F A H 1 0 , J A R 1 0 , A S R 1 0 , S L J 1 0 , D A S H 1 0 , S A R 1 0 , E S R 1 0 , 

F A H 1 1 , J A R 1 1 , A S R 1 1 , S L J 1 1 , D A S H 1 1 , S A R 1 1 , E S R 1 1 , 

F A H 1 2 , J A R 1 2 , A S R 1 2 , S L J 1 2 , D A S H 1 2 , S A R I 2 , E S R 1 2 

S E 

9 1 1 1 3 1 6 1 8 2 0 2 3 2 5 2 7 3 0 3 2 34 3 7 3 9 4 1 / 

M O N X = 1 5 N K = 5 P H = S Y , F R T D = F U , F I 

file:///THESIS/DATA/MOTOR/MOTORl


143 

L K 

R U N 1 R U N 2 R U N 3 R U N 4 R U N 5 

P A L X 
3 ( 1 0 0 0 0) 3 ( 0 1 0 0 0 ) 3 ( 0 0 1 0 0 ) 3 ( 0 0 0 1 0 ) 3 ( 0 0 0 0 1 ) 

F I X L X 1 1 L X 4 2 L X 7 3 L X 1 0 4 L X 1 3 5 

V A 1 L X 1 1 L X 4 2 L X 7 3 L X 1 0 4 L X 1 3 5 

E Q L X 2 1 L X 5 2 L X 8 3 L X 1 1 4 L X 14 5 

E Q L X 3 1 L X 6 2 L X 9 3 L X 1 2 4 L X 1 5 5 

F R T D 1 1 T D 2 2 T D 3 3 T D 4 4 T D 5 5 T D 6 6 T D 7 7 T D 8 8 

F R T D 9 9 T D 1 0 1 0 T D 1 1 1 1 T D 1 2 1 2 T D 1 3 1 3 T D 14 14 T D 1 5 1 5 

F R T D 1 4 T D 1 7 T D 1 1 0 T D 1 1 3 T D 4 7 T D 4 1 0 T D 4 1 3 T D 7 1 0 F R T D 

7 1 3 T D 1 0 1 3 T D 2 5 T D 2 8 T D 2 1 1 T D 2 14 T D 5 8 T D 5 1 1 F R T D 5 14 

T D 8 1 1 T D 8 14 T D 1 1 14 T D 3 6 T D 3 9 T D 3 12 

F R T D 3 15 T D 6 9 T D 6 1 2 T D 6 1 5 T D 9 1 2 T D 9 1 5 T D 1 2 1 5 

O U R S S E S C T V N D = 3 I T = 1 0 0 0 A D = O F F 

LISREL Commands for the Linear Model ("Run" factor) 

1 D A N I = 6 3 N O = 2 1 0 
2 R A F I = C : \ T H E S I S \ D A T A \ M O T O R \ M O T O R l . D A T F O 

3 ( 4 1 F 8 . 2 ) 

4 L A B E L 

5 I D , P R _ M E _ N O , A G E , G R A D E , M E _ S E S N , M E _ Y R , 

6 F A H 8 , J A R 8 , A S R 8 , S L J 8 , D A S H 8 , S A R 8 , E S R 8 , 

7 F A H 9 , J A R 9 , A S R 9 , S L J 9 , D A S H 9 , S A R 9 , E S R 9 , 

8 F A H 1 0 , J A R 1 0 , A S R 1 0 , S L J 1 0 , D A S H 1 0 , S A R 1 0 , E S R 1 0 , 

9 F A H 1 1 , J A R 1 1 , A S R 1 1 , S L J 1 1 , D A S H 1 1 , S A R 1 1 , E S R 1 1 , 

10 F A H 1 2 , J A R 1 2 , A S R 1 2 , S L J 1 2 , D A S H 1 2 , S A R I 2 , E S R 1 2 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

MO N Y = 1 5 T Y = Z E N E = 5 N K = 2 T E = F U , F I A L = Z E K A = F R B E = Z E 

P S = D I , F R G A = F U , F I P H = F U , F R 

S E 

9 1 1 1 3 

L E 

R U N 1 R U N 2 R U N 3 R U N 4 R U N 5 

L K 

I N T E R C E P T S L O P E 

P A T T E R N L Y 

3 ( 1 0 0 0 0 ) 3 ( 0 1 0 0 0 ) 3 ( 0 0 1 0 0 ) 3 ( 0 0 0 1 0 ) 

3 ( 0 0 0 0 1 ) 

1 6 1 8 2 0 2 3 2 5 2 7 3 0 3 2 3 4 3 7 3 9 4 1 / 

file:///THESIS/DATA/MOTOR/MOTORl
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27 
28 F I L Y 1 1 L Y 4 2 L Y 7 .3 L Y 10 4 L Y 13 5 
29 V A 1 L Y 1 1 L Y 4 2 L Y 7 3 L Y 10 4 L Y 13 5 
30 
31 EQ L Y 2 1 L Y 5 2 L Y 8 3 L Y 11 4 L Y 14 5 
32 EQ L Y 3 1 L Y 6 2 L Y 9 3 L Y 12 4 L Y 15 5 
33 
34 MA G A 
35 1 0 
36 1 1 
37 1 2 
38 1 3 
39 1 4 
40 
41 FR T E 1 1 T E 2 2 T E 3 3 T E 4 4 T E 5 5 T E 6 6 T E 7 7 
42 T E 8 8 FR T E 9 9 T E 10 10 T E 11 11 T E 12 12 T E 13 13 
43 T E 14 14 T E 15 15 
44 
45 OU RS S E SC T V ND=3 I T = 1 0 0 0 A D = O F F 

For a correlated errors model, add following commands between the lines 43 and 45. 

FR T E 1 4 T E 1 7 T E 1 10 T E 1 13 T E 4 7 T E 4 10 T E 4 13 T E 7 10 FR T E 
7 13 T E 10 13 T E 2 5 T E 2 8 T E 2 11 T E 2 14 T E 5 8 T E 5 11 FR T E 5 14 
T E 8 11 T E 8 14 T E 11 14 T E 3 6 T E 3 9 T E 3 12 
FR T E 3 15 T E 6 9 T E 6 12 T E 6 15 T E 9 12 T E 9 15 T E 12 15 

LISREL Commands for the Quadratic Model ("Run" factor) 

Replace lines from 15 to 39 with the following commands. 

MO NY=15 T Y = Z E NE=5 NK=3 T E = F U , F I A L = Z E KA=FR B E = Z E 
P S = D I , F R G A = F U , F I P H = F U , F R 

L E 

RUN1 RUN2 RUN3 RUN4 RUN5 

L K 
I N T E R C E P T L I N E A R Q U A D R A T I C 

P A T T E R N L Y 3 ( 1 0 0 0 0 ) 3 ( 0 1 0 0 0 ) 3 ( 0 0 1 0 0 ) 3 ( 0 0 0 1 0 ) 
3 ( 0 0 0 . 0 1) 

F I L Y 1 1 L Y 4 2 L Y 7 3 L Y 10 4 L Y 13 5 
V A 1 L Y 1 1 L Y 4 2 L Y 7 3 L Y 10 4 L Y 13 5 

EQ L Y 2 1 L Y 5 2 L Y 8 3 L Y 11 4 L Y 14 5 
EQ L Y 3 1 L Y 6 2 L Y 9 3 L Y 12 4 L Y 15 5 

MA GA 
1 0 0 
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1 1 1 

1 2 4 

1 3 9 

1 4 1 6 

LISREL Commands for the Cubic Model ("Run" factor) 

Replace lines from 15 to 39 with the following commands. 

MO N Y = 1 5 T Y = Z E N E = 5 N K = 4 T E = F U , F I A L = Z E K A = F R B E = Z E 

P S = D I , F R G A = F U , F I P H = F U , F R 

L E 

R U N 1 R U N 2 R U N 3 R U N 4 R U N 5 

L K 
I N T E R C E P T L I N E A R Q U A D R A T I C C u b i c 

P A T T E R N L Y 3 ( 1 0 0 0 0 ) 3 ( 0 1 0 0 0 ) 3 ( 0 0 1 0 0 ) 3 ( 0 0 0 1 0 ) 

3 ( 0 0 0 0 1 ) 

F I L Y 1 1 L Y 4 2 L Y 7 3 L Y 1 0 4 L Y 1 3 5 

V A 1 L Y 1 1 L Y 4 2 L Y 7 3 L Y 1 0 4 L Y 1 3 5 

E Q L Y 2 1 L Y 5 2 L Y 8 3 L Y 1 1 4 L Y 14 5 

E Q L Y 3 1 L Y 6 2 L Y 9 3 L Y 1 2 4 L Y 1 5 5 

M A G A 

1 0 0 0 

1 1 1 1 

1 2 4 8 

1 3 9 2 7 

1 4 1 6 64 

LISREL Commands for the Unspecified Curve Model ("Run" factor) 

Add following commands between lines 39 and 41. 

F R G A 3 2 G A 4 2 G A 5 2 

MPLUS Commands for the Unspecified Curve Model With One Predictor, PR ME NO ("Run" 

factor) 

T I T L E : M P L U S R U N F O R M U L T I V A R I A T E L G M ( U N S P E C I F I E D C U R V E M O D E L ) 



D A T A : F I L E I S C : \ T H E S I S \ D A T A \ M 0 T 0 R \ M 0 T 0 R 1 . D A T ; 

F O R M A T I S 4 1 F 8 . 2 ; 

V A R I A B L E : N A M E S A R E I D , P R _ M E _ N O , A G E , G R A D E , M E _ S E S N , M E _ Y R , 

F A H 8 , J A R 8 , A S R 8 , S L J 8 , D A S H 8 , S A R 8 , E S R 8 , 

F A H 9 , J A R 9 , A S R 9 , S L J 9 , D A S H 9 , S A R 9 , E S R 9 , 

F A H 1 0 , J A R 1 0 , A S R 1 0 , S L J 1 0 , D A S H 1 0 , S A R I O , E S R I O , 

F A H 1 1 , J A R 1 1 , A S R 1 1 , S L J 1 1 , D A S H 1 1 , S A R 1 1 , E S R 1 1 , 

F A H 1 2 , J A R 1 2 , A S R 1 2 , S L J 1 2 , D A S H 1 2 , S A R I 2 , E S R 1 2 ; 

U S E V A R I A B L E S A R E P R _ M E _ N O , A S R 8 , D A S H 8 , E S R 8 , A S R 9 , D A S H 9 , E S R 9 , 

A S R I O , D A S H I O , E S R I O , A S R 1 1 , D A S H 1 1 , E S R 1 1 , A S R 1 2 , 

D A S H 1 2 , E S R 1 2 ; 

A N A L Y S I S : T Y P E I S M E A N S T R U C T U R E ; 

I T E R A T I O N S = 1 0 0 0 ; 

M O D E L : R U N 1 B Y A S R 8 ; R U N 1 B Y D A S H 8 * . 5 ( 1 ) ; R U N 1 B Y E S R 8 ( 2 ) * 3 . 5 ; 

R U N 2 B Y A S R 9 ; R U N 2 B Y D A S H 9 ( 1 ) ; R U N 2 B Y E S R 9 ( 2 ) ; 

R U N 3 B Y A S R I O ; R U N 3 B Y D A S H 1 0 ( 1 ) ; R U N 3 B Y E S R 1 0 ( 2 ) ; 

R U N 4 B Y A S R 1 1 ; R U N 4 B Y D A S H l l ( l ) ; R U N 4 B Y E S R 1 1 ( 2 ) ; 

R U N 5 B Y A S R 1 2 ; R U N 5 B Y D A S H 1 2 ( 1 ) ; R U N 5 B Y E S E 1 2 ( 2 ) ; 

I B Y R U N 1 - R U N 5 0 1 ; 

C B Y R U N 1 0 O R U N 2 0 1 R U N 3 * 1 . 8 R U N 4 * 2 . 3 R U N 5 * 2 . 9 ; 

[ A S R 8 - E S R 1 2 0 O ] ; 

[ R U N 1 - R U N 5 @ 0 1 * 1 2 . 5 C ] ; 

D A S H 8 D A S H 9 D A S H I O D A S H 1 1 D A S H 1 2 ( 3 ) ; 

A S R 8 W I T H A S R 9 * 0 A S R 1 0 * 0 A S R 1 1 * 0 A S R 1 2 * 0 ; 

A S R 9 W I T H A S R 1 0 * 0 A S R 1 1 * 0 A S R 1 2 * 0 ; 

A S R I O W I T H A S R 1 1 * 0 A S R 1 2 * 0 ; . 

A S R 1 1 W I T H A S R 1 2 * 0 ; 

D A S H 8 W I T H D A S H 9 * 0 D A S H 1 0 * 0 D A S H 1 1 * 0 D A S H 1 2 * 0 ; 

D A S H 9 W I T H D A S H 1 0 * 0 D A S H 1 1 * 0 D A S H 1 2 * 0 ; 

D A S H I O W I T H D A S H 1 1 * 0 D A S H 1 2 * 0 ; 

D A S H 1 1 W I T H D A S H 1 2 * 0 ; 

E S R 8 W I T H E S R 9 * . 7 E S R I O * . 2 E S R 1 1 * . 3 E S R 1 2 * 0 ; 

E S R 9 W I T H E S R 1 0 * 0 E S R l l * . l E S R 1 2 * 0 ; 

E S R I O W I T H E S R 1 1 * . 3 E S R 1 2 * . 5 ; 

E S R 1 1 W I T H E S R 1 2 * . 2 ; 

I C O N P R _ M E _ N O 

O U T P U T : S A M P S T A T ; S T A N D A R D I Z E D ; R E S I D U A L ; T E C H 4 ; 

LISREL Commands for the Simplex Model With Mean Structure 

(Equal Error Variance Between the First and Last Two Time Points) 

D A N I = 5 N O = 2 0 0 

C M A T R I X F I = D A T 1 1 . C 0 V 

M E A N S F I = D A T 1 1 . M E A 

L A B E L 

file://C:/THESIS/DATA/M0T0R/M0T0R1.DAT
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Y l , Y 2 , Y 3 , Y 4 , Y5 

MO NY=5 NE=5 L Y = I D T E = S Y , F I B E = F U PS=DI T Y = Z E A L = F R 

L E 
T I M E 1 T I M E 2 T I M E 3 T I M E 4 T I M E 5 

FR B E 2 1 B E 3 2 B E 4 3 B E 5 4 

FR T E 1 1 T E 2 2 T E 3 3 T E 4 4 T E 5 5 
EQ T E 1 1 T E 2 2 
EQ T E 4 4 T E 5 5 

OU RS S E SC T V ND=3 I T = 1 0 0 0 A D = O F F 
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Appendix C: Descriptive Statistics and Parameter Estimates of Latent Growth Models 

Univariate Results 

Data Set 1 

AGE 8 AGE 9 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 SS.O 60.0 65.0 70.0 

Flexd-Arm Hang (sec.) 

0.0 10.0 20.0 X . O 40.0 50.0 60.0 70.0 
5.0 15.0 25.0 3S.0 45.0 55.0 65.0 75.0 

Flexed-arm Hang (sec.) 

AGE 10 AGE 11 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 
5.0 15.0 25.0 35.0 45.0 55.0 65.0 75.0 85.0 

Fiexed-Arm Hang (sec.) 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 
S.O 15.0 25.0 35.0 4S.0 55.0 65.0 75.0 

Flexed-Arm Hang (sec.) 

AGE 12 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 BO.O 90.0 
5.0 15.0 25.0 35.0 45.0 55.0 65.0 75.0 85.0 

Flexed-Arm Hang (sec.) 

Figure C . l . Histograms for F A H scores at five time points 
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T a b l e d 

Correlation coefficients and distributional statistics for predictor variables 

PR_ME_NO AGE GRADE ME_SESN M E Y R 

AGE .058 

GRADE -.103 .279 

ME-SESN .157 -.055 -.657 

ME-YR .444 -.022 -.140 .004 

Mean 4.84 96.33 .51 .50 1976.5 

SD 2.00 1.93 .50 .50 5.50 

Minimum 0 93 0 0 1968 

Maximum 11 100 1 1 1992 

Note. PR_ME_NO = the number of measurement before age 8 (initial time point); GRADE = grade at 

age 8; AGE = age in months at age 8; ME_SESN = measurement season; ME_YR = measurement year 

at age 8. 
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Jump-and-reach. 

Table C.2 

Correlation coefficients and distributional statistics for jump-and-reach 

Age 8 Age 9 Age 10 Age 11 Age 12 

Age 9 .586 

Age 10 .519 .659 

Age 11 .524 .619 .693 

Age 12 .488 .599 .636 .698 

Mean (inch) 9.42 10.34 11.58 12.33 13.40 

SD 1.78 1.81 1.89 1.85 2.07 

Skewness - .23 -.01 .11 - .12 .31 

Kurtosis .70 .81 .22 .09 .54 

Table C.3 

Parameter estimates (standard errors) of the best fitting growth model for jump-and-reach: Linear, equal 

error variances 

Intercept 
factor 

Linear factor Error 
variance 

Mean 9.43** .994** Age 8 1.22** 
(.113) (.031) (.069) 

Variance I 9 4 * * .082** Age 9 1.22** 
(.265) (.021) (.069) 

Covariance - .025 Age 10 1.22** 
between factors (.056) (.069) 

Age 11 1.22** 
(.069) 

Age 12 1:22** 
(.069) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 
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Sit-and-reach. 

Table C.4 

Correlation coefficients and distributional statistics for sit-and-reach 

Age 8 Age 9 Age 10 Age 11 Age 12 

Age 9 .821 

Age 10 .799 .857 

Age 11 .769 .802 .826 

Age 12 .742 .766 .770 .812 

Mean (inch) 7.89 7.70 7.37 7.12 6.89 

SD 2.29 2.20 2.22 2.34 2.51 

Skewness -.40 -.29 -.53 -.39 -.11 

Kurtosis .05 .51 .60 .08 -.05 

Table C.5 
Parameter estimates (standard errors) of the best fitting growth model for sit-and-reach: Linear, unequal 

error variances 

Intercept 
factor 

Linear factor Error 
variance 

Mean 7.91** - .260** Age 8 1.05** 
(.150) (.028) (.154) 

Variance 4 13** .050** Age 9 .720** 
(.462) (.018) (.099) 

Covariance -.015 Age 10 .782** 
between factors (.065) (.101) 

Age 11 .970** 
(.126) 

Age 12 1.44** 
(.199) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 



Agility shuttle run 

Table C.6 

Correlation coefficients and distributional statistics for agilitv shuttle run 

Age 8 Age 9 Age 10 Age 11 Age 12 

Age 9 .585 

Age 10 .560 .634 

Age 11 .461 .581 .599 

Age 12 .516 .547 .577 .644 

Mean (sec.) 12.46 11.92 11.39 11.06 10.76 

SD 1.05 .90 .82 .74 .75 

Skewness .79 .65 .91 .67 .65 

Kurtosis 1.03 .46 1.37 .83 .68 

Table C.7 

Parameter estimates (standard errors) of the best fitting growth model for agilitv shuttle run: 

Unspecified Curve, unequal error variances 

Intercept 
factor 

Curve 
factor 

Factor 
loading 

Error 
variance 

Mean 12.45** - .536** Age 8 - .481** 
(.073) (.062) (fixed) (.070) 

Variance .637** .025* Age 9 1.00 2 9 7 * * 

(.092) (.010) (fixed) (.039) 

Covariance - .084** Age 10 \ 9 7 * * .263** 
between factors (.027) (.175) (.032) 

Age 11 2.61** .208** 
(.239) (.027) 

Age 12 3.15** .203** 
(.297) (.031) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 



Endurance shuttle run. 

Table C.8 
Correlation coefficients and distributional statistics for endurance shuttle run 

Age 8 Age 9 Age 10 Age 11 Age 12 

Age 9 .631 

Age 10 .560 .631 

Age 11 .522 .647 .623 

Age 12 .521 .609 .655 .668 

Mean (sec.) 43.93 42.00 40.55 39.46 38.32 

SD 3.64 3.04 3.03 2.68 2.67 

Skewness .89 .59 .86 .85 .66 

Kurtosis 1.25 .30 1.42 1.21 .22 

Table C.9 
Parameter estimates (standard errors) of the best fitting growth model for endurance shuttle run: 

Unspecified Curve, unequal error variances 

Intercept 
factor 

Curve 
factor 

Factor 
loading 

Error 
variance 

Mean 43.93** - 1.92** Age 8 - 5.40** 
(.253) (.203) (fixed) (.787) 

Variance 7.95** .359** Age 9 1.00 2.91** 
(1.10) (.138) (fixed) (.391) 

Covariance - 1.04** Age 10 1.77** 3.53** 
between factors (.328) (.142) (.409) 

Age 11 2.33** 2.49** 
(.189) (.317) 

Age 12 2.92** 2.07** 
(.245) (.351) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 
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30-yard dash. 

Table C. 10 

Correlation coefficients and distributional statistics for 30-vard dash 

Age 8 Age 9 Age 10 Age 11 Age 12 

Age 9 .635 

Age 10 .599 .577 

Age 11 .563 .565 .679 

Age 12 .617 .550 .579 .685 

Mean (sec.) 5.21 4.93 4.75 4.65 4.50 

SD .44 .40 .36 .35 .33 

Skewness .59 .82 .40 .52 .47 

Kurtosis .90 1.21 .21 .50 .03 

Table C. 11 

Parameter estimates (standard errors) of the best fitting growth model for 30-yard dash: Unspecified 

Curve, unequal error variances 

Intercept 
factor 

Curve 
factor 

Factor 
loading 

Error 
variance 

Mean 5.21** - .275** Age 8 - .063** 
(.030) (.026) (fixed) (.012) 

Variance .125** .005* Age 9 1.00 .069** 
(.018) (.003) (fixed) (.008) 

Covariance -.017** Age 10 1.68** .051** 
between factors (.006) (.131) (.006) 

Age 11 2.04** .042** 
(.157) (.005) 

Age 12 2.59** .035** 
(.202) (.006) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 
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Standing long jump. 

Table C. 12 

Correlation coefficients and distributional statistics for standing long jump 

Age 8 Age 9 Age 10 Age 11 Age 12 

Age 9 .751 

Age 10 .723 .826 

Age 11 .655 .719 .800 

Age 12 .657 .723 .753 .770 

Mean (inch) 53.38 57.46 61.40 64.48 67.76 

SD 7.56 7.61 7.21 6.49 6.91 

Skewness -.76 -.62 -.58 -.39 -.25 

Kurtosis .65 .45 .31 - .21 .19 

T a b l e d 3 
Parameter estimates (standard errors) of the best fitting growth model for standing long iump: Cubic. 

equal error variances 

Intercept 
factor 

Linear 
factor 

Quadratic 
factor 

Cubic 
factor 

Error 
variance 

Mean 53.36** 
(.520) 

4.52** 
(.648) 

- .344 
(.396) 

.028 
(.064) 

Age 8 7.89** 
(.772) 

Variance 48.79** 
(5.59) 

37.55** 
(9.91) 

12.44** 
(3.77) 

.300** 
(.099) 

Age 9 7.89** 
(.772) 

Covariance 
between factors 

Linear 
factor 

-2.49 
(5.11) 

Age 10 

Age 11 

7.89** 
(.772) 

7.89** 
(.772) 

Quadratic 
factor 

-2.76 
(3.02) 

-20.28** 
(5.92) 

Age 12 7.89** 
(.772) 

Cubic 
factor 

.613 
(.483) 

2 9i** 
(.920) 

- 1.90** 
(.604) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 
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Data Set 2 

Table C. 14 

Correlation coefficients and distributional statistics for predictor variables 

PR_ME_NO AGE GRADE ME_SESN ME_YR 

AGE .065 

GRADE -.112 .391 

ME-SESN -.003 - .176 - .433 

ME-YR .474 -.113 - .208 .029 

Mean 5.81 102.47 3.03 .46 1977.5 

SD 2.18 1.95 .43 .50 5.89 

Minimum 0 99 2 0 1968 

Maximum 11 106 4 1 1992 

Note. PR_ME_NO = the number of measurement before age 8.5 (initial time point); GRADE = grade at 

age 8.5; AGE = age in months at age 8.5; ME_SESN = measurement season; M E Y R = measurement 

year at age 8.5. 
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Flexed-arm-hang. 

T a b l e d 5 

Correlation coefficients and distributional statistics for flexed-arm-hang 

Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 12.5 

Age 9.5 .815 

Age 10.5 .746 .829 

Age 11.5 .721 .790 .856 

Age 12.5 .623 .686 .778 .856 

Mean (sec.) 17.60 20.09 22.46 23.71 24.31 

SD 13.85 14.86 15.69 16.42 16.71 

Skewness 1.83 1.58 1.21 1.08 1.11 

Kurtosis 3.82 2.98 1.25 .76 .95 

Table C. 16 
Parameter estimates (standard errors) of the best fitting growth model for flexed-arm-hang: Quadratic. 

equal error variances 

Intercept 
factor 

Linear 
factor 

Quadratic 
factor 

Error 
variance 

Mean 17.53** 
(.963) 

3.10** 
(.558) 

- .349** 
(.130) 

Age 8.5 32.74** 
(2.30) 

Variance 159.09** 
(18.78) 

22.58** 
(6.90) 

1.12** 
(.380) 

Age 9.5 32.74** 
(2.30) 

Covariance 
between factors 

Linear 
factor 

10.35 
(7.93) 

Age 10.5 

Age 11.5 

32.74** 
(2.30) 

32.74** 
(2.30) 

Quadratic 
factor 

-3.59* 
(1.82) 

-4.08** 
(1.55) 

Age 12.5 32.74** 
(2.30) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 
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Jump-and-reach. 

Table C. 17 

Correlation coefficients and distributional statistics for jump-and-reach 

Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 12.5 

Age 9.5 .636 

Age 10.5 .614 .715 

Age 11.5 .527 .649 .755 

Age 12.5 .518 .587 .631 .691 

Mean (inch) 9.80 10.90 11.98 12.81 14.01 

SD 1.90 1.83 1.85 1.88 2.31 

Skewness .02 - .01 - .20 -.23 .10 

Kurtosis .17 -.20 .01 - .12 .02 

T a b l e d 8 
Parameter estimates (standard errors) of the best fitting growth model for jump-and-reach: Linear. 

unequal error variances 

Intercept 
factor 

Linear factor Error 
variance 

Mean 9.85** 1.02** Age 8.5 1.48** 
(.122) (.034) (.214) 

Variance 2.23** .087** Age 9.5 1.04** 
(.308) (.026) (.136) 

Covariance -.038 Age 10.5 .860** 
between factors (.068) (.114) 

Age 11.5 .886** 
(.132) 

Age 12.5 2.01** 
(.269) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 
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Sit-and-reach. 

Table C. 19 
Correlation coefficients and distributional statistics for sit-and-reach 

Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 12.5 

Age 9.5 .797 

Age 10.5 .780 .836 

Age 11.5 .760 .790 .828 

Age 12.5 .704 .764 ' .775 .844 

Mean (inch) 7.96 7.59 7.38 7.24 7.18 

SD 2.17 2.26 2.33 2.48 2.52 

Skewness -.30 - .34 - .43 -.45 - .29 

Kurtosis .10 -.03 .52 -.10 .00 

Table C.20 
Parameter estimates (standard errors) of the best fitting growth model for sit-and-reach: Linear, equal 

error variances 

Intercept 
factor 

Linear factor Error 
variance 

Mean 7.86** -.192** Age 8.5 .972** 
(.149) (.030) (.056) 

Variance 3 9 3 * * .091** Age 9.5 .972** 
(.449) (.020) (.056) 

Covariance .027 Age 10.5 972** 
between factors (.067) (.056) 

Age 11.5 .972** 
(.056) 

Age 12.5 972** 
(.056) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 



Agilitv shuttle run. 

Table C.21 

Correlation coefficients and distributional statistics for agilitv shuttle run 

Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 12.5 

Age 9.5 .603 

Age 10.5 .599 .654 

Age 11.5 .650 .615 .701 

Age 12.5 .526 .596 .590 .753 

Mean (sec.) 12.14 11.59 11.19 10.88 10.56 

SD 1.00 .80 .86 .76 .72 

Skewness 1.07 .41 .66 .80 .47 

Kurtosis 1.95 -.07 .78 .78 .06 

Table C.22 
Parameter estimates (standard errors) of the best fitting growth model for agilitv shuttle run: 

Unspecified Curve, unequal error variances 

Intercept 
factor 

Curve 
factor 

Factor 
loading 

Error 
variance 

Mean 12.14** - .552** Age 8.5 - .368** 
(.069) (.056) (fixed) (.057) 

Variance .601** .029** Age 9.5 1.00 .249** 
(.084) (.011) (fixed) (.032) 

Covariance -.075 Age 10.5 1.70** .278** 
between factors (.025) (.137) (.032) 

Age 11.5 2.28** .131** 
(.180) (.019) 

Age 12.5 2.86** .143** 
(.236) (.024) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 
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Endurance shuttle run. 

Table C.23 

Correlation coefficients and distributional statistics for endurance shuttle run 

Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 12.5 

Age 9.5 .710 

Age 10.5 .685 .727 

Age 11.5 .590 .579 .686 

Age 12.5 .550 .537 .678 .720 

Mean (sec.) 42.86 41.26 39.97 38.94 37.64 

SD 3.35 3.22 2.90 2.81 2.54 

Skewness .99 .57 .75 .93 .62 

Kurtosis 1.47 .02 .28 1.34 .47 

Table C.24 
Parameter estimates (standard errors) of the best fitting growth model for endurance shuttle run: Linear. 

unequal error variances 

Intercept 
factor 

Linear factor Error 
variance 

Mean 42.67** - 1.27** Aae 8.5 2.97** 
(.227) (.050) (.520) 

Variance 8.74** .293** Aee 9.5 3.33** 
(1.05) (.057) (.422) 

Covariance - 1.03** Aae 10.5 2.24** 
between factors (.203) (.280) 

Aae 11.5 2.61** 
(.319) 

Aae 12.5 1.33** 
(.319) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 



30-yard dash. 

Table C.25 

Correlation coefficients and distributional statistics for 30-vard dash 

Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 12.5 

Age 9.5 .720 

Age 10.5 .693 .719 

Age 11.5 .649 .664 .668 

Age 12.5 .620 .579 .576 .651 

Mean (sec.) 5.06 4.88 4.73 4.56 4.44 

SD .41 .41 .37 .35 .34 

Skewness .84 .80 .57 .68 .30 

Kurtosis 1.13 .74 .82 .47 -.13 

Table C.26 
Parameter estimates (standard errors) of the best fitting growth model for 30-vard dash: Linear, equal 

error variances 

Intercept 
factor 

Linear factor Error 
variance 

Mean 5.05** -.156** Age 8.5 .045** 
(.028) (.006) (.003) 

Variance .132** .002** Age 9.5 .045** 
(.016) (.001) (.003) 

Covariance -.011** Age 10.5 .045** 
between factors (.003) (.003) 

Age 11.5 .045** 
(.003) 

Age 12.5 .045** 
(.003) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 
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Standing long jump. 

Table C.27 

Correlation coefficients and distributional statistics for standing long jump 

Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 12.5 

Age 9.5 .833 

Age 10.5 .777 .836 

Age 11.5 .692 .716 .749 

Age 12.5 .634 .684 .681 .694 

Mean (inch) 55.44 59.29 62.47 66.01 69.42 

SD 7.10 7.33 7.16 7.30 7.17 

Skewness -.51 - .35 - .13 -.47 - .21 

Kurtosis .27 - .21 - .33 .39 -.42 

Table C.28 
Parameter estimates (standard errors) of the best fitting growth model for standing long jump: Linear, 

unequal error variances 

Intercept 
factor 

Linear factor Error 
variance 

Mean 55.59** 3.47** Age 8.5 8.44** 
(.503) (.100) (1.60) 

Variance 45.96** .838** . Age 9.5 8.51** 
(5.14) (.236) (1.20) 

Covariance -2.66** Age 10.5 10.30** 
between factors (.826) (1.30) 

Age 11.5 15.93** 
(1.95) 

Age 12.5 16.53** 
(2.47) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 



164 

CS 

E 
CO < 
G 
>-i 
—; 
co 

< 
1-5 

o ft. 
. o 

CI co 

> 

C N 
C N 

c 
' o 
Q 

o 
OS 

E 
CO 
< 
a 

C 
C3 

CO 

< 

o 

0 0 

- a 
T 3 

C 
C3 

C 

' o 

(D 
O 
O 

c 
o 

fc 
o H CJI 

E 
CO < 
Q 

EHco 

E 
co 
< 
Q 

aco 
< 

erf 

E 
co < 
a 

ca co 

Crf 

E 
CO 
Q 

ON 

E 
co < 
Q 

a)co 
<,i 

erf 

o 
o 

O —' 
o i n 

O h * 
O « %t 

o 
o 

o r -
O NO 

O cn i n 
O NO </"> 

E 

co Q 

* O r f 

O t-. 
o i n 

O cn CN 
O NO T 

C N C N oo 
m ^i- <n 

-3- cn ^ 
i o oo i n 

NO i n 
NO NO m 

O 
O 

O O 
O NO 

o C N oo 
o r~ m 

OO NO OO 
i n NO 

oo O i n 
NO OO i n 

C N CN O 
NO NO >/-) 

m NO r~ 
-3- i n 

i n C N oo 
• n r--

CN NO ON 
NO NO T j -

O t O 
• n i n NO 

m ON i n C N NO 
NO r - i n c-~ i n 

ON i n 
i n m cn 

< J ^ 

CN cn cn 
m i n 

E 
* *7 3 
< J s 
~> co Q 

3 

h n \o 
•3- i n m 

o 
o 

O C N 
O NO 

O —- C N 
o r - i n 

C N ON 
• n i n vo 

C N r -
« n r -

O NO 
r— NO i n 

OO OO 0 0 
m m 

o i n —• 
NO r-~ i n 

C N —i 
NO NO i n 

o C N i n 

C N C N — ' 
m r - i n 

o m oo 
NO NO TJ-

oo r - C N 
m NO 

NO r~-
i n NO T 

CN — — i 
i f i \ t 

E 
* ^ % < J 5 >—> co Q 

O-) NO C N 
m NO 

ON ~ NO 
^ J - m T}-

E 
* *7 2 
>—> co Q 

CNI 

o m 
i n cn 

NO — ' 

r-. ON 

t - NO' 
NO 

O oo 
^ o 
cn C N 

<n i n 
NO cn 

0 0 C N 

NO 

NO 

cn m 
cn oo 

i n NO 
c— cn 

o —i 
CN 

— t - -
NO 

O C ON 
i n oo 

cn 
ON 

NO —< 
NO 

r-' r-' 
• n 

•<*• —< 
cn oo 
o —' 

C N 

O 0 NO 

cn i n 
cn r~-
i n 

CN OO 

C N —<" 

£ Q 
^. CO 

03 

-o 
C3 
>^ 
i 

O 
cn 

E 
co 
< 
Q 
c £ 
E 

CO c o 
CO 

c •a c 

• J 
co 

a, 
S 

< 
a i l 

o 





X GO 
< 
Q 
ai 
oo 
M 

erf 
CO 

o T T T i ­

o T f ro 

— ' 
T T 

o oc T T T T 
o so SO m 

r - CN 
co 

o C N p -
o oo vo 

SO CN 
vo p~ 

X 
oo 
< 
Q 

erf 
oo 
W 

Crf 
oo 

o 
o 

O Cs 
O i n 

o m C N 
O P - so 

1 « st 
i n so i n 

T l " C N T f 

so P - m 

• n T i - o 
r - so 

so >n 
<n co 

T f — i 
Cs OO 
OO* C N 
C O 

oo so 
oo P-

X oo 
< 
a 

ai 
oo 
w 

00 

o 
o 

o o oc 
O 0 0 so 

Cs C O 
i n i n so 

T f C P~ 
p» so m 

O —i SO 
r - so i n 

T f m oc 
m i n i n 

C N O O ~ 
so so m 

Cs T l " Cs 
i n so T I -

C O r -
p - co 

r - o 
Cs Cs 
Cs C N 
C O 

Cs SO 
O O 

•a 

cs 
• 

o 
C O 

X 
00 
< 
Q 
e 
s 
4) 

5 
3 

JS 
cn 
1) o c 
cd -o c 
u 
II 
erf 
00 
W 
c" 
s 
45 

00 
< 
a 

ai 
00 

ai 
00 

O Cs CN CN 
O m so Cs 

O SO 
O SO 

O Cs —' 
O P~ P~ 

cs m so 
m <n so 

C N co m 
so P~ m 

m o so 
so p~ m 

C O oc o 
so i n i n 

CN so SO 
so m m 

SO C O oo 
m m m 

T f T f 0 0 
m m T f 

o m Cs 
so m T f 

oo ~ * 
0 0 T f 

TT 

so CN 
CN CN 
—i C O 
TI ­

CS o 
m oo 

X 
00 < 
a 

0 0 ; 

SI w 

o 
o 

S O Cs C N 
m m p~ 

T l - CN Cs 
m so so 

C N so m 
so m so 

m co C N 
m m so 

O so 
O so 

Pi OO 
o so m 
o p - so 

X 
erf crf ^ 
00 00 <-
< w a 

m 
oc 

— ' T f 

so P- m 
Cs Cs 0 C 
i n so i n 

O Cs Cs 
so m TT 

m m Cs 
TT m TT 

O so CN O TT O 
so so m so so m 

X 
crf erf ^ 
oo oo <• 
< w Q 

m 
Cs 
1) 

m Cs oc 
so m T f 

crf ai <2 
00 00 < 
< w O 

m 
o 

X 
erf crf ^ 
00 00 < 
< W Q 

3 

co m o 
m m m 

* % 
OO 00 < 
< W Q 

i n 
CN 

3 

S O — • 
O T f 

so m 
oo co 
C N C O 
T f 

T l - O 
— o 

4> 
oo 

oo 
ci 
II 

Crf 
oo 
< 
4> +-» 
o 
Z 





X 
CO 
< 
Q 
1-5 
—I 
CO 

Crf 
1-5 

U 

o 

.o 

03 

E 
« 
C 

C 
C5 

Si 
u 
CO 

C 

' o 
D 

im
e 

IS 

ac
ro

ss
 

D
A

SH
 

an
d 

SL
J 

JA
R

, 

o 
*-< 

fo
r 

ics
 

•*-» 
CO 

CO 

iv
e 

o 

de
sc

ri 
an

d 

CO 

ien
l 

co
ef

fic
i 

C N 
cn io

n 

U tjj 
o oj 

Ta
b!

 
Co

n 

X 
CO 

< Q 
i n 
CN >—> 

_ ) 
u CO 

< 

co < 
Q 

erf 

X 
CO 

< 

erf 

CO 

erf 
< 

X 
CO 

Q 

erf < 

o 
o 

o i n 
O NO 

o cn co 
O if l 

e ' i _ 0 0 

od 
(D 
CI 

O 
O 

O 
O 

O wo 
O NO 

O TT —< 
O NO NO 

o o 
O r— 

o r - i n 
O NO NO 

o 
o 

O C N 
O N O 

C N oo C N 

in « r-

••a- -sr 
NO 0 0 NO 

C N 
NO NO NO 

o 
o 

o 
o 

o ON CN 
o NO TT _' 1 C N r-' 

NO 

0 0 _ 
NO o cn 

o m i n 
i n m NO 

O NO 
r-~ i n 

ON i n C N 
NO NO NO 

— r - oo 
m m i n 

CN m t-~-1 cn oo m 
NO r - i n | i n NO i n 

NO NO m 
r - NO i n 

co ON NO 
m i n NO 

— CN O 
NO r-~ NO 

o r ^ i n c N — ' o o m o m 
O N o m r - N O i n N O N o m 

CN 'd- CN 
m NO r-~ 

i n cn oo 
i n oo m 

rf C N oo 
NO m 

erf - 2 
S co Q 

m 
ON 

i n C N C N 
• n m NO 

c oo m 
NO r - NO 

— NO —i 
NO i n i n 

X 
J < 
co Q 

i n l 

o 

r~- m 
i n i n NO 

co CN cn 
NO NO <n 

cn —> oo 
TJ- m m 

oe h 
>n NO i n 

oo m oo 
i n m T}-

i n o C N 
•n- i n NO 

T T C N C N C N cn T t * 

m NO >n NO i n 

cn NO CN 
m m TI-

X 

< J s co Q 

C N i n r-
i n m n-

X _ °̂  
co Q 

<n| 
CN 

T f T J -

T T cn 

TT C N 

NO m 
i n cn 

-— o 
O cn 
NO r-° 
NO 

—< oo oo 0 0 

cn 
r~ cn 

r - NO 

T T — ; 

CN r~ 
NO 

oo m 
C N 0 0 

oo .—i 
OO T f 

C N cn 
C N cn 
C N 
i n 

O cn 
C N OO 

NO —> 
O TT 

T t O 
TT —« 
• n r~-
m 

o o 
oo C N 

CO 
d 

-a 

i 
o 
cn 
II 
X 
CO 

E 

00 
c o 
to c 
•3 

CO 

CO 

j=r 
o 

I 

i 
E 
3 

crf 
< 

I 



169 

Table C.33 

Parameter estimates of the 5-factor model with correlated errors and the equality of factor loadings over 

time for "Power" 

Standardized factor loading Correlations of factors between time points 

Time Variables Loading Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 12.5 

Age 8.5 
JAR 
SLJ 

DASH 

.77 

.84 
- .68 

1.00 .92 .90 .84 .77 

Age 9.5 
JAR 
SLJ 

DASH 

.81 

.84 
-.68 

1.00 .93 .93 .78 

Age 10.5 
JAR 
SLJ 

DASH 

.82 

.84 
- .77 

1.00 .94 .80 

Age 11.5 
JAR 
SLJ 

DASH 

.80 

.82 
- .75 

1.00 .85 

Age 12.5 
JAR 
SLJ 

DASH 

.78 

.90 
-.81 

1.00 

Note. Correlated errors are omitted. All estimates were significant at an alpha level of .01. 
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Table C.35 

Parameter estimates of the 5-factor model with correlated errors and the equality of factor loadings over 

time for "Motor Abilitv" 

Standardized factor loading Correlations of factors between time points 

Time Variables Loading Age 8.5 Age 9.5 Age 10.5 Age 11.5 Age 12.5 

Age 8.5 

FAH 
SLJ 
SAR 

DASH 
ESR 

.47 

.86 

.43 
- .77 
- .73 

1.00 .94 .90 .87 .76 

Age 9.5 

FAH 
SLJ 
SAR 

DASH 
ESR 

.46 

.85 

.41 
-.76 
- .74 

1.00 .93 .92 .80 

Age 10.5 

FAH 
SLJ 
SAR 

DASH 
ESR 

.44 

.86 

.39 
- .82 
-.79 

1.00 .92 .79 

Age 11.5 

FAH 
SLJ 
SAR 

DASH 
ESR 

.39 

.80 

.34 
-.78 
- .74 

1.00 .88 

Age 12.5 

FAH 
SLJ 
SAR 

DASH 
ESR 

.40 

.82 

.34 
- .84 
- .83 

1.00 

Note. Correlated errors are omitted. All estimates were significant at an alpha level of .01. 



Appendix D: Descriptive Statistics and Parameter Estimates for Generated Data Sets 

Condition A l : r i g = 0, true reliability - .65 ~ .75 

Table D.l 

Correlation coefficients and distributional statistics for the data set of condition A l 

Time 1 Time 2 Time 3 Time 4 Time 5 

Time 2 .686 

Time 3 .651 .741 

Time 4 .606 .707 .744 

Time 5 .547 .668 .719 .740 

Mean 9.426 10.420 11.414 12.408 13.402 

SD 1.796 1.704 1.800 1.940 2.110 

Condition A2: r i p = - .30, true reliability = .65 ~ .75 

Table D.2 

Correlation coefficients and distributional statistics for the data set of condition A2 

Time 1 Time 2 Time 3 Time 4 Time 5 

Time 2 .686 

Time 3 .638 .737 

Time 4 .564 .691 .739 

Time 5 .485 .623 .693 .738 

Mean 9.426 10.420 11.414 12.408 13.402 

SD 1.787 1.583 1.593 1.662 1.775 
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Table D.3 

Parameter estimates (standard errors) of the Linear model for the data set of condition A2 

Intercept Linear factor Error 
factor variance 

Mean 9.426** 9 9 4 * * Age 8 1.128** 
(.023) (.006) (.033) 

Variance 2.081** .085** Age 9 .605** 
(.053) (.004) (.018) 

Covariance -.132** Age 10 .631** 
between factors (12.158) (.016) 

Age 11 .683** 
(.019) 

Age 12 .789** 
(.027) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 

Table D.4 

Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition A2 

Parameter Time 1 Time 2 Time 3 Time 4 Time 5 

P .710** .916** .954** 984** 
(.011) (.014) (.013) (.014) 

Standardized p .821 .911 .921 .907 

Factor mean 9.426** 3.725** 1.866** 1.523** 1.198** 
(.025) (.109) (.147) (.152) (.171) 

Error variance of the 2.732** .665** .350** .336** .459** 
factor (.068) (.033) (.023) (.023) (.039) 

Error variance of the .462** .462** .473** .548** .548** 
observed variable (.023) (.023) (.019) (.022) (.022) 

Note. All parameter estimates were significant at an alpha level of .05. p = regression coefficient 

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on. 
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Condition A3: r i g - - .60, true reliability = .65 ~ .75 

Table D.5 

Correlation coefficients and distributional statistics for the data set of condition A3 

Time 1 Time 2 Time 3 Time 4 Time 5 

Time 2 .690 

Time 3 .644 .726 

Time 4 .553 .669 .727 

Time 5 .447 .570 .664 .734 

Mean 9.426 10.420 11.414 12.408 13.402 

SD 1.779 1.484 1.366 1.323 1.379 

Table D.6 

Parameter estimates (standard errors) of the Linear model for the data set of condition A3 

Intercept 
factor 

Linear factor Error 
variance 

Mean 9.426** 9 9 4 * * Age 8 1.095** 
(.022) (.005) (.031) 

Variance 2.048** .083** Age 9 .558** 
(.051) (.003) (.016) 

Covariance - .245** Age 10 4 7 3 * * 

between factors (.011) (.012) 

Age 11 .431** 
(.012) 

Age 12 .466** 
(.018) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 
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Table D.7 

Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition A3 

Parameter Time 1 Time 2 Time 3 Time 4 Time 5 

P .669** 
(.010) 

.843** 
(.013) 

.862** 
(.013) 

.927** 
(.014) 

Standardized p .832 .902 .889 .882 

Factor mean 9.426** 
(.025) 

4.112** 
(.100) 

2.635** 
(.137) 

2.570** 
(.144) 

1.901** 
(.169) 

Error variance of the 
factor 

2.722** 
(.067) 

.541** 
(.028) 

.287** 
(.018) 

.303** 
(.017) 

.353** 
(.026) 

Error variance of the 
observed variable 

.443** 
(.021) 

.443** 
(.021) 

.329** 
(.015) 

.307** 
(.015) 

.307** 
(.015) 

Note. All parameter estimates were significant at an alpha level of .05. p = regression coefficient 

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on. 

Condition Bl: r^ = 0, true reliability = .40 ~ .50 

Table D.8 

Correlation coefficients and distributional statistics for the data set of condition B1 

Time 1 Time 2 Time 3 Time 4 Time 5 

Time 2 .443 

Time 3 .409 .495 

Time 4 .353 .462 .498 

Time 5 .302 .406 .454 .491 

Mean 9.426 10.420 11.414 12.408 13.402 

SD 2.278 1.937 1.952 2.036 2.171 
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Table D.9 
Parameter estimates (standard errors) of the Linear model for the data set of condition BI 

Intercept 
factor 

Linear factor Error 
variance 

Mean 9.426** .994** Age 8 3.095** 
(.027) (.008) (.083) 

Variance 2.129** .093** Age 9 1.833** 
(.077) (.008) (.049) 

Covariance - .153** Age 10 1.896** 
between factors (.020) (.047) 

Age 11 2.057** 
(.052) 

Age 12 2.363** 
(.072) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 

Table D. 10 
Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition BI 

Parameter Time 1 Time 2 Time 3 Time 4 Time 5 

~~p .552** .901** .942** .952** 
(.016) (.029) (.025) (.026) 

Standardized p .717 .898 .908 .852 

Factor mean 9.426** 5.213** 2.023** 1.653** 1.584** 
(.032) (.157) (.301) (.292) (.320) 

Error variance of the 3.543** 1.023** .409** .399** 7 7 9 * * 

factor (.122) (.069) (.055) (.057) (.100) 

Error variance of the 1.648** 1.648** 1.691** 1.865** 1.865** 
observed variable (.064) (.064) (.055) (.064) (.064) 

Note. All parameter estimates were significant at an alpha level of .05. p = regression coefficient 

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on. 

Note. The statistics for Condition B2 are not presented because it is identical to those of Condition A2. 
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Condition B3: ri? = 0, true reliability = .90 ~ .95 

Table D. 11 

Correlation coefficients and distributional statistics for the data set of condition B3 

Time 1 Time 2 Time 3 Time 4 Time 5 

Time 2 .906 

Time 3 .846 .931 

Time 4 .755 .874 .932 

Time 5 .650 .794 .883 .935 

Mean 9.426 10.420 11.414 12.408 13.402 

SD 1.52 1.41 1.42 1.48 1.58 

Table D. 12 

Parameter estimates (standard errors) of the Linear model for the data set of condition B3 

Intercept 
factor 

Linear factor Error 
variance 

Mean 9.426** 9 9 4 * * Age 8 .236** 
(.021) (.004) (.008) 

Variance 2.061** .082** Age 9 .094** 
(.043) (.002) (.003) 

Covariance - .123** Ase 10 .100** 
between factors (.007) (.003) 

Aae 11 .107** 
(.003) 

Age 12 .127** 
(.006) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 
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Table D. 13 

Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition B3 

Parameter Time 1 Time 2 Time 3 Time 4 Time 5 

P .844** 
(.006) 

.937** 
(.006) 

.975** 
(.006) 

1.016** 
(.006) 

Standardized P .908 .933 .939 .946 

Factor mean 9.426** 
(.021) 

2.462** 
(.056) 

1.647** 
(.060) 

1.278** 
(.066) 

.799** 
(.072) 

Error variance of the 
factor 

2.292** 
(.046) 

.346** 
(.oil) 

.257** 
(.008) 

.254** 
(.008) 

.260** 
(.010) 

Error variance of the 
observed variable 

.006 
(.005) 

.006 
(.005) 

.005 
(.004) 

.027** 
(.004) 

.027** 
(.004) 

Note. All parameter estimates were significant at an alpha level of .05. p = regression coefficient 

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on. 

Note. The statistics for Condition C l are not presented because it is identical to those of Condition A2. 

Condition C2: r i p = 0, r̂ - = .10 between all time points, true reliability = .65 ~ .75 

Table D. 14 
Correlation coefficients and distributional statistics for the data set of condition C2 

Time 1 Time 2 Time 3 Time 4 Time 5 

Time 2 .708 

Time 3 .671 .754 

Time 4 .600 .706 .759 

Tune 5 .520 .640 .726 .761 

Mean 9.426 10.420 11.414 12.408 13.402 

SD 1.773 1.567 1.588 1.643 1.767 



Table D. 15 

Parameter estimates (standard errors) of the Linear model for the data set of condition C2 

Intercept 
factor 

Linear factor Error 
variance 

Mean 9.426** .994** Age 8 1.010** 
(.023) (.006) (.030) 

Variance 2.096** .082** Age 9 .574** 
(.052) (.003) (.017) 

Covariance -.124** Aae 10 .561** 
between factors (.010) (.015) 

Aae 11 .617** 
(.017) 

Age 12 .697** 
(.025) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 

Table D. 16 

Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition C2 

Parameter Time 1 Time 2 Time 3 Time 4 Time 5 

J3 .733** .945** .942** 1.008** 
(.011) (.013) (.012) (.013) 

Standardized P .850 .918 .925 .922 

Factor mean 9.426** 3.512** 1.570** 1.659** .900** 
(.025) (.105) (.140) (.141) (.162) 

Error variance of the 2.686** .556** .335** .315** .391** 
factor (.066) (.030) (.022) (.021) (.035) 

Error variance of the .458** .458** .404** .504** .504** 
observed variable (.021) (.021) (.018) (.020) (.020) 

Note. All parameter estimates were significant at an alpha level of .05. p - regression coefficient 

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on. 
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Condition C3: = 0, r„_- = .10 between last two time points, true reliability = .65 ~ .75 

Table D. 17 

Correlation coefficients and distributional statistics for the data set of condition C3 

Time 1 Time 2 Time 3 Time 4 Time 5 

Time 2 .690 

Time 3 .635 .735 

Time 4 .575 .691 .745 

Time 5 .488 .624 .700 .765 

Mean 9.426 10.420 11.414 12.408 13.402 

SD 1.772 1.593 1.595 1.667 1.795 

Table D. 18 
Parameter estimates (standard errors) of the Linear model for the data set of condition C3 

Intercept 
factor 

Linear factor Error 
variance 

Mean 9.426** 9 9 4 * * Age 8 1.070** 
(.023) (.006) (.032) 

Variance 2.077** .093** Age 9 .626** 
(.052) (.004) (.018) 

Covariance -.132** Age 10 .644** 
between factors (.011) (.016) 

Age 11 .623** 
(.018) 

Age 12 .720** 
(.026) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 



Table D. 19 

Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition C3 

Parameter Time 1 Time 2 Time 3 Time 4 Time 5 

~~ p .729** .906** .963** .992** 
(.012) (.014) (.013) (.013) 

Standardized P .828 .906 .913 .908 

Factor mean 9.426** 3.552** 1.972** 1.416** 1.095** 
(.025) (.112) (.146) (.152) (.162) 

Error variance of the 2.674** .653** .369** .385** .480** 
factor (.067) (.034) (.024) (.024) (.038) 

Error variance of the .466** .466** .474** .472** 472** 
observed variable (.023) (.023) (.019) (-021) (.021) 

Note. All parameter estimates were significant at an alpha level of .05. p = regression coefficient 

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on. 

Condition C4: r̂  = 0, r^ = .30 between all time points, true reliability = .65 ~ .75 

Table D.20 

Correlation coefficients and distributional statistics for the data set of condition C4 

Time 1 Time 2 Time 3 Time 4 Time 5 

Time 2 .770 

Time 3 .729 .809 

Time 4 .657 .757 .806 

Time 5 .583 .698 .774 .818 

Mean 9.426 10.420 11.414 12.408 13.402 

SD 1.776 1.592 1.579 1.645 1.764 



Table D.21 

Parameter estimates (standard errors') of the Linear model for the data set of condition C4 

Intercept 
factor 

Linear factor Error 
variance 

Mean 9.426** 9 9 4 * * Age 8 .812** 
(.023) (.005) (.024) 

Variance 2.287** .082** Age 9 .448** 
(.054) (.003) (.013) 

Covariance -.131** Age 10 .433** 
between factors (.010) (.oil) 

Age 11 .481** 
(.013) 

Age 12 .519** 
(.020) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 

Table D.22 
Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition C4 

Parameter Time 1 Time 2 Time 3 Time 4 Time 5 

J3 .772** .928** .954** 1.015** 
(.010) (.011) (.010) (.011) 

Standardized p .874 .927 .927 .937 

Factor mean 9.426** 3.147** 1.743** 1.518** .813** 
(.025) (.092) (.113) (.121) (.135) 

Error variance of the 2.822** .519** .312** .330** .338** 
factor (.065) (.026) (.018) (.018) (.028) 

Error variance of the .333** .333** .287** .366** .366** 
observed variable (.017) (.017) (.014) (.015) (.015) 

Note. All parameter estimates were significant at an alpha level of .05. P = regression coefficient 

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on. 
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Condition C5: = 0, iv- = .30 between last two time points, true reliability = .65 ~ .75 

Table D.23 

Correlation coefficients and distributional statistics for the data set of condition C5 

Time 1 Time 2 Time 3 Time 4 Time 5 

Time 2 .684 

Time 3 .640 .729 

Time 4 .572 .681 .729 

Time 5 .496 .612 .693 .812 

Mean 9.426 10.420 11.414 12.408 13.402 

SD 1.789 1.574 1.572 1.635 1.762 

Table D.24 

Parameter estimates (standard errors) of the Linear model for the data set of condition C5 

Intercept 
factor 

Linear factor Error 
variance 

Mean 9.426** 9 9 4 * * Age 8 1.084** 
(.023) (.006) (.032) 

Variance 2.070** .108** Age 9 .637** 
(.052) (.004) (-018) 

Covariance -.155** Age 10 .682** 
between factors (.011) (.017) 

Age 11 .522** 
(.015) 

Age 12 .516** 
(.022) 

Note. *significant at alpha level of .05; **significant at alpha level of .01. 



Table D.25 

Parameter estimates (standard errors) of the Simplex 2 model for the data set of condition C5 

Parameter Time 1 Time 2 Time 3 Time 4 Time 5 

P .716** .922** .948** 1.000** 
(.012) (.014) (.014) (.012) 

Standardized p .837 .916 .875 .918 

Factor mean 9.426** 3.674** 1.807** 1.583** 9 9 4 * * 

(.025) (.110) (.150) (.156) (.149) 

Error variance of the 2.691** .588** 319** .548** 4 3 4 * * 

factor (.068) (.032) (.023) (.025) (.036) 

Error variance of the .510** .510** .481** .334** 3 3 4 * * 

observed variable (.023) (.023) (.020) (.019) (.019) 
Note. All parameter estimates were significant at an alpha level of .05. p = regression coefficient 

predicting time 2 factor from time 1 factor, predicting time 3 factor from time 2 factor and so on. 


