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ABSTRACT

A common practicé in motor behavior research is to analyze
Variable Error data with a repeated measures analysis of -
variance. The purpose of this stﬁdy was to examine the degree to
which blocked (VE) data satisfies the assumptions underlying a-
repeated measures ANOVA., Of particular interest was whether the
assumption of <covariance homogeneity - both within and between
experimental groups - is satisfied in actual experimental data.
Monte Carlo procedures were used to study the effect of varying
degrees c¢f violations of these aésumptions on the Type 1 error
rate.

The means and ranges of the correlation matrices of eight
experimental data sets were studied for both raw and VE scores
based wupon different block sizes. In every situation where the
experimental groups were comprised of feedback and no feedback
conditions, the <correlation matrix for the no feedback group
displayed correlations of greater magnitudes and consistency
relative to those of the feedback condition. The next phase
involved using the underlying variance-covariance matrices for
three of these data sets to simulate raw and VE data based on
various block sizes. Raw data were simulated for each of ‘four
covariance heterogeneity "conditions: (1) equalit§ within and
between the variance-covariance matrices; (2) inequality within
the matrices but equality between the matrices; (3) equality
within each variance-covariance matrix but inequality between
the matrices; (4) inequality both within and between the two

variance-covariance matrices.
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Populations of 10,000 subjects for each of two gréups, the
underlying variance-covariance matrices being dependent upon the
homogeneity of covariance condition being studied, were
generated based on each of three actual experimental data sets.
The data were blocked in various ways depending on the originél
number of trials in the experiment (36, 24 or 18) with VE being
the dependent Variablé. Aﬁ experiment consisted of randomly
selecting 20 subjects for each of the two groups, blocking the
trials based on specific block sizes.and analyzing the raw and
VE data by a repeated measures ANOVA, The effect of’interest was
the Groups by Blocks interaction. The complete process was
replicated for the four covariance homogeneity conditions for
each of the three data sets, resulting in a total of 22,000
simulated experiments.

Results 1indicated that the Type I error rate increases as
the degree of ﬁeterogeneity within the variance-covariance
matrices increases when raw (unblocked) data is analyzed. With
VE, the effects of within-matrix heterogeneity on the Type I
error rate are inconclusive. However, block size does seem to
affect the probability of obtaining a significant 1interaction,
but the nature of this relationship is not clear as there does
not appear to be any consistent relationship between the size of
the block and the probability of obtaining significance. For
both raw and VE data there was no inflation in the number of
Type I errors when the covarignces within a given matrix were
homogeneous, regardless of the differences between the group

variance-covariance matrices.
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INTRODUCTION

. Motor performance data is.‘unique in, that a. subject is
‘measured over numerous tfialé under relativély' constant
conditions; This large number of trials is needed due to the
large intra-subject variability charactefistic» of most motor
performance tasks. The reduction .and statisticél analysis - of
these data poésesses problems not encountered in most fieids of
study (physiological and biological measures are usually highly
reliable and, therefore, often need only one or two trials;
social psychology test conditions can often not be repeated
without changingv the condition itself). Therefore, the purpose
of this study is to examine selected problems associated with
the analysis of the highly interdependent repeated measures
frequently encountered in motor behaviour research,

Typical motor learning experiments require ‘a subject to
perform a number (p) of trials on a motor task; the nature of
the investigation being to compare the subject's performance on
that task to a predetermined target score. The difference in
these two scores 1s called the subject's performance errof for
that trial. In most instances the subjects are divided into g
groups based on variables such as teaching method, experimental
condition, previous practice or some other factor, resulting in
a g X p factorial experiment with repeated measures on the
second factor. A technique known as "blocking” is often employed
in an attempt to: (a) obtain a measure of intra-subject
variability (VE). or; (b) smooth the data if the subjects’
intertrial Variability is large. Here, the p original trials are

divided 1into ¢ "blocks" with each block comprised of p/c



original trials. Any or all of three performance error scores

are- then calculated for each of the new blocks; Absolute'Errbr

(AE) - the mean absolute deviation from the target score over
the p/c trials; Constant Error (CE) - the subject's mean’
algebraic error over the trials and, Variable Error (VE) - the

square root of the within-subject variance over the trials. ThisA
blocking procedﬁre reduces the design to a g X c factbr;al
experiment with repeated measures on the second ~factor.
Statistical analyses, wusually analysis of variance, are then
performed on each of theée dependént variables with the result
of interest being the Groups by Blocks interaction.

The use of these three error scores and the characteristics
typical to most studies result in a number of possible problems.
Absolute. error, because it is an absolute value, probably has a
non-normal distribution and, therefore, there ‘may béA-problems
when wusing ANOVA since the assumption of nofmality may be
violated (Safrit, Spray & Diewert, 1980). This in itself may not
be}too serious since ANOVA is fobust to non-normality if the
number of subjects in each group is large and the population
variances are equal (Boneau, 1960). However, until the
distribution of AE scores, along with the underlying variance-
covariance structure, has been determined, and their effects on
the Type 1 error rate studied, the validity and interpretation
of research using AE is questionable.

One of the assumptions of ANOVA is that the trials have
equal variances and that all the covariances be equal to zero.
Failure to adhere to this assumption results in a probability of

falsely rejecting the null hypotheéis greater than the set level



of significance (Box, 19545. waever,,itAwas later shown.by‘Lana
and Lubin (1963) that the Type I error rate is not inflated if
‘the covariances are equal though not necessarily equal tb'zero.'
Constant error scores are assumed to héve the characteristic. of
adjacent trials being  highly correlated with the correlations
decreasing as the trials become farther apart (Gaito, 1973; Lana
& Lubin, 1963). Schutz and Gessaroli (1980), in a Monte Ccarlo
study using data based on such a variance-covariance matrix,
reported many more Type I errors than in similar studies in
which fewer trials were incorporated (Collier, Baker, Mandeville
& Hayes, 1967). This brings forth many questions, namely: (1)
Are the number of trials under which a subject is tested related
to the probability<9f making a Type I error? (2) How does the
range of covariances affect the Type 1 error rate? (3) Are the
- magnitudes of the covariances important -Qhen using ANOVA in
tesfing hypotheses with CE as the dependent variable? That is,
does a range of covariances from 0.6 to 0.1 result in the same
degree of Type I errors as covariances spanning 0.9 to 0.47?
Another potential problem also associated with blocking 1is
whether varying the block size differentially affects the Type I
error rate. It hasbbeen~shown that when using CE data the size
of the block is of no consequence in the degree of inflation of
Type I errors (Schutz & Gessaroli, 1980). |
Variable error 1s unlike either CE or AE because it is a

variance and, consequently, probably has | a non-normal
distribution (Safrit, Spray & Diewért, 1980). However, as with
AE, this may not be serious depending upon the sample sizes ‘and

the structure of the variance-covariance matrix. In their Monte



Carlo study Schutz and Gessaroli (1980)'ﬁound no,"inflation “in
the Type 1 error rate when VE scores were calculated from. raw
ééoré matrices with unequal covariances. Héwever,.'tﬁe_.daté
simulation procedures calculated VE scores. which. were
uncorrelated across blocks. Schutz and Gessaroli used raw score
bcovariances ~among trials which decreased in a iinear fashion as
the trials became farther apart. Mathematically, 'such"a raw
score covariance structure always will result in uncorrelated VE
scores, If, in real data, the VE scores are cofrelated and these
correlations are unedual, then problems arise when using ANOVA
since the assumption of homogeneous covariances has been
violated. The variance-covariance structure of empirical VE data
must be studied before it can be said with any certainty if
hete:ogeneous covariances in the raw data affect the Type i
errof rate.

A second part of the assumption of homogeneous covariances
deals with the structure of the covariance matrices between
experimental conditions. Not only do the covariances within each
group have to be equal, but the magnitudes of the covariances in
one matrix need to be equal to those of the variance-covariance
matrices for the other group. This is referred to as "compound
symmetry'. As of now it is not clear if raw experimentél data
have covariance matrices of this type. Extending this concept to
AE, CE and VE data it is also not known 1if their underlying
covariance matrices satisfy this assumption. It is obvious that
the results obtainéd when analyzing AE, CE or VE by an ANOVA
are, at best, inconclusive.

Over -the 1last eight years there has been extensive debate



as to the Validity_Of using these measures in the"analysis- and
interpretation of»motorbperformance (e.g., Laabs, 1973; Newell,
1976; Schmidt, 1975; Schutz, 1979). Schutz and Roy (1973)
initiated this debate when they ﬁfo&idea'a mathematical proof
that AE could be written as a composite score of CE and VE, but
in different - proportions depending upon the relative magnitude
of the CE and VE scores. Absolute error is‘therefore. reduhdant,
and furthermore, it it is used, it can be properly interpreted:
only when the CE and VE components are known. For this reason,
the problems associated with the analysis of AE data will not be
dealt with in ‘this study. When analyzing CE data no "absolute
answers" are available 1in dealing with all the potential
problems but, in.general; the most common difficulties have been
adequétély resolved by Schutz and Gessarcli (1980). Although
potential problems may exist with the statistical ‘analyses of
all +three error measures, AE, CE and VE, VE appears to be the
least understood. Thus, this study will focus primarily on the
analyses of raw and VE data.

Therefore, the purpose of this study is to: (a) discover
the structure of the variance-covariance matrices associated
with empirical raw and VE data; (b) determine the distributions
of the raw and VE data; (c) study the éffeét of the number of
trials on Type 1 errors when using VE as the dependent variable;
(d) study the effect of the block size on the Type I error rate
when VE is used as the measure of performance error; (e) study
the effect of the degree of heterogeneity of the covariances on
the probability of making a Type I error; (f) study the effect

of heterogeneity of the covariance matrices between the various



groups in the experimental désign on the Type I error rate.

METHODOLOGY

This study consisted of two phases - the first dealing with
the analysis of empirical data and the second being a Monte

Carlo study of VE data.:

Phase 1

The distribution and general pattern of the variance-
covariance matrices of raw and VE data were studied through the
following steps:
1. Letfers were sent to approximately 20 motor performance
researchers requesting that they supply =some of their actual
experimental data from which VE was eventually calculated and
analyzed (a copy of the covering letter is in Appendix A). The.
" experimental data desired could have been learning or
performance data but it had to satisfy two
conditions: (a) each subject had to perform a minimum of
twelve trials on a given task and; (b) each experimental
condition (group) had at least twelve subjects.

Upon receipt of the data sets (eight were received) they
were categorized by the type of experimental task (e.g.,
movement reproduction, reaction time), the level of task
familiarity (learning or performance) and the experimental
conditions involved (e.g., feedback, no feedback).

2. The next step involved studying the variance-covariance



stfuéture of the raw empiriéal-data;‘vCorrelation matrices for
each data set were.obtained via the statisticél computer paﬁkage
MIDAS (Michigan Interactive Data Analysis System). Séparate.
correlation and-covariance matrices were calculated fbr every
experimental condition within'a data set. The structure. of the-
correlation mafrices& was studied vin the  following.
ways: (a) the mean correlatiOn.coefficient in each matfix was
calculated; (b) the maximum énd- minimum correlation
coefficients in each ﬁatrix were noted and; (c¢) an inspection
was conducted to see if there was a difference 'in the magnitude
of the correlation coefficients of trials close togethef as
compared to thosevfarther apart. This was done by taking the
mean of all correlations one trial apart, three trials apart,
five trials apart, etc. In the~cases.wheré the number of trials
in the correlation matrix numbered greater than forty, the mean
of the cbrrelations one, six, eleven,  etc. trials apart .were
calculated.

3. It was imperative to discover the empirical distribution of
the raw scores as this distribution would dictate the type of
data. to be simulated in Part 2. Histograms of the frequency
distributions of every trial were obtained wusing the MIDAS
statistical package. The main problem was to discover if thé
data were distributed as multivariate normal. As there is
presently no easy method of testing for multivariate normality,
an examination of the marginal distributions was done. Although
-the distributions of the marginals would not 1indicate
multivariate normality, a departure from univériate normality

would clearly make the assumption of multivariate normality .



tenuous. For the purpose_of this papef, data whose ymérginal
distributions exhibiteafunivariate,nprmélity were coﬁsidered:to
be muitivariately normally distributed. |

4. The raw data were then reduced to VE scores (the'size'of the
blocks dependent upon the number of original trials) wusing the
Fortran computer program DATASNIFF (Goodman & Schutz, 1975). Tﬁe
'datav received from‘ the researchers vconsisted of experiments
having 12, 18, 20, 24, 30, 36 and 50 trials. These trials were
blocked. in the following manners (3 X 6 defines three blocks of
six trials/block):

(a) Data set 1 - 50 trials: 10.X 5, 5 X 10

(b) Data set 2 24 trials: 8 X 3, 6 X 4, 3 X 8

(c) Data set 3 - 20 trials: 5 X 4, 4 X5

(d) Data set 4 - 12 trials: 4 X 3, 3 X 4

(e) Data set 5 - 18 trials: 6 X 3, 3 X 6

(f) Data set 6 —.30 trials: 10 X 3, 6 X 5, 5X 6, 3 X 10

(g) Data set 7 - 36 trials: 9 X 4, 6 X 6, 3 X 12

(h) Data set 8 20 trials: 5 X 4, 4 X 5
5. The structure of the VE variance-covariance matrices were
studied-for each group as outlined in step 2 above.
6. The empirical distribution of VE scores was also examined by
the use of histograms as explained in step 3 above.
Phase 2

This part of the study dealt with the actual Monte Carlo
procedures used to investigate the characteristics of VE and
their effects on the Type I error rate. This phgse consisted of

generating data representing 500 experiments (two groups, 20

subjects/group; variable number of trials) for each of four



variance-covariance conditions, deriving VE scores for wvarious .
block sizes, and examining Type 1 error rates for the Groups by
Blocks interaction..

Preliminary analyses. There were two primary concerns

before simuléting the data. Firstly, as a computer program .to
simulate multivariately normal data was readily available,. iﬁ_
was necessary to discover if the data were normally distributed.
After studying the histograms of the marginal distributions of
the raw scores and VE scores it was céncluded that both sets of
scores exhibited wunivariate normality based on-their samplé
sizes. That is, from the shapes of the histograms any test of
significance for normality of;the.marginals clearly would have
failed to reject the null hypothesis.

The next step involved determining the prdcedure bfor
simulating VE scores. It was essential to determine if the
" correlations amohg VE scores for the generated data would mirror
those of the original experimental.VE data. Thét is, it was
essential to determine that the generated raw data be based on
covariance matrices depicting actual exberimental data and have
correlations between blocks of VE scores similar to the actual
correlation matrices of VE scores. To examine this, the
variance-covariance matrix and vector of means for the raw data
were specified to be exactly equal to those of an original data
set (Data set 3) having 20 trials. Raw data for 20 subjects were
generated. One hundred of these data sets, each having the same
covariance matrix, were genéréted. Each data set had different

raw scores due to a different "starting point" being used to

initialize the data generation. The resultant data sets were
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' blocked and VE scdfes calculated in two ways: five blocks of
four trials/block and four blocks of five trials/biock. The net
result was 100 four-by-four and five-by-five matrices of(VE
scores. To compare the correlation coefficients of Data set 3
with thé-correlatioh coefficients of the generated.data, a "mean
correlation matrix" was calculated. This matrix was obtained by
calculaiing the mean (across the 100 ‘matrices) of every
correlation coefficient in the same position in the correlation
matrix. The "mean correlation matrix" displayed cbefficiénts of
the same maénitude and range as the actual correlation matrix
under both blocking conditions. Tests for differences between
correlation coefficients in equivalent locations in the two
matrices .failed to produce significance at the .05 level. Based
on these resplts it was concluded that generation of raw data
(exhibiting multivariate normality) using an empirical
-correlation matrix produces correlations among VE scores which
adequately reflect those in the original data.

Homogeneity conditions. The question remained as to which

variance-covariance matrices to use for each group as the basis
for the data generation. As these matrices are user specified,
well-chosen matrices could simulate data whiéh satisfied or
violated the various assumptions involved in analyzing-repeated
measures data by an ANOVA, |

The assumptions of ANOVA require both homogeneity of the
covariances within a wvariance-covariance matrix as  well as
equality between the variance-covariance matrices depicfing the
different experimental conditions in the design. By épecifying

the nature of the matrix for each of two groups it was - hoped:



that 'the‘<effect:.of viplating nohe, one. of~ both ofbthesei
conditions could be determined . when VE was . the ‘débéndenﬁi
variable. Theféfére, fouf statistical conditions which span all
possibilities of adherence or violation of the two variance-
covariance assumptions were used as bases for theygenération of
raw data. The nature of the'"within—group", and - "between-group"
covariances in each of the statistical conaitions follow: .

1. Condition 1 (equality within; equality between).

The magnitude of the covariances within each group were equal .-

and the magnitude of the coyariances between each group were
also equal. In order to obtain a variance-covariance matrix
satisfying the assumption of symmetry -yet reflecting the
magnitude of the variances and covariances of thé_actualb matrix
fhe following prbcedures were employed: (a) ‘the mean of the
variances (diagonals) in the actﬁal vafiance—covariance matrix
was calculated. This value was used for all the variances in the
new homogeneous mafrix and; (b) the mean of the covariances
(off-diagonal values) .in the actual variance-covariance matrix
was calculated and was used as the value to which all the new
covariances were equal.

Homogeneous matrices of this type were calculated based on
both Group 1 and Group 2 actual variance—covariénce matrices.
They were used as needed to test the effect of the violation of

the two assumptions. Generated data for the two groups in

Condition 1 resulted in the following variance-covariance
matrices:
Group 1: The homogeneous matrix derived from the actual

variance-covariance matrix of Group 1.
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Group 2: Same~matrix,as-G:OUp 15

2. Condition 2 (inequality Qithin;;equality<:between).
The 'magnitﬁdé< of the covariances ‘wiﬁhin each group were
heterogeneous and the magnitude of the covariances between each
group were. equal. The variance-covariahce matrices uéed to
‘generate such data were:

Group 1: The original variance—covériance matrix of Group 1.
Group 2: Same matrix as Group 1.A

3. Condition 3 (equality within;'inequality' between).
The magnitude of the covariances within eéch group were
homogeneous and the magnitude of the covariances between. each
group were hetérogeneous. The variance-covariance matrices used
to generate such data were:

Group 1: The homogeneous matrix derived from the actual
variance-covariance matrix of Group 1 (i.e., as wused in
Condition 1), |

Group 2: The homogeneous matrix based on the actual variance-
covariance matrix of Group 2. _

4, Condition 4 (inequality within; 1inequality
between). The magnitude of the covariances within éach group
were heterogeneous and the magnitude of the covariances between
‘each group were heterogeneous. Genérated data for the two groups
resulted in the following variance-covariance matrices:

Group 1: The original variance-covariance matrix of Group 1.
Group 2: The original variance-covariance matrix of Group 2.

Selection Criteria. The primary concern of this study was

to investigate the Type I error rate (using VE as the dependent

variable) when the raw data had varying degrees of heterogeneity
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within and between the -grohps in tﬁe design‘; It was also-
desirable to study the effectsgof,thé-number of trials 'before
blqcking occurred én the subsequent numbér.of,Type I er:brs when
VE was calculated. Theréfore, three sets of actual experimental
data (Data sets 2, 5 and 7) &ere used vés the bases  of Vthe
simulation procedures. Specificaliy, they were chosen,based on
the following design and data characteristics: (a) the range‘of
the correlation coefficients; (b) the mean of ~the correlation
coefficients; (c¢) differences in the correlation matrices
between the two groups; (d) the number of trials 1in the
experiment. All data were from learning experiments. The
specific attribﬁtes of these three data sets are shown in Table
I.

Simulation procedures. Five hundred two-way experiments

were simulated for each of the three data sets.- The number of
Type I errors for the Group by Block interaction, when using réw
scores and VE scores as the dependent variables, were analyzed
via 500 ANOVAs for each of a number of different blocking
conditions in each case. Specific procedures for each of these
processes follow. |

Raw scores for a population of 10000 observations having a
variance-éovariance matrix and vector of trial means exactly as
specified by the user were generated for each group. The data
were produced using the computer program UBC NORMAL (Halm,
1970). The net result was 10000 observations in each of two
groups having raw scores .for a specific number of trials.
Samples of size 20 per group were subsequently drawn from this

population. Thus the sampling was not based on an infinite



Table I
Characteristics of the Raw Experimental
Data Sets Received from Motor

Behaviour Researchers

Raw VE

Data Set No. of trials No. of S/Group mean r range of r's mean r range of r's

KR 50 30 .10 -.65 to .90 .78 .44 to .94

» .
KR 24 29 .00 -.62 to .67 .20 -.21 to .41
No KR 24 29 .83 -.46 to .95 .20 -.26 to .58
3

KR 20 13 .05 -.57 to .78 .14 -.11 to .29
No KR 20 13 .50 -.32 to .85 .20 -.54 to .77
No KR 20 13 .20 -.54 to .77 .25 .05 to .53
4

No KR 12 24 .20 -.66 to .70 .20 -.50 to .50
5

KR 18 40 .00 -.57 to .60 .20 -.12 to .31
No KR 18 40 .45 -.25 to .86 .25 .02 to .44
6

KR 30 40 .10 -.50 to .60 .10 -.50 to .60
7

No KR 36 48 .30 -.22 to .50 .20 -.19 to .54
No KR 36 48 .15 -.36 to .48 .20 -.21 to .52
8

KR 20 10 .35 -.65 to .88 .00 -.53 to .80
KR 20 10 .55 -.06 to .92 .70 .23 to .92
No KR 20 10 .30 -.67 to .91 .45 -.21 to .90

vl
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population. However, the sampleftOfpopulétién ratio (20:10000).
is sufficiently small. to negate Athe' need to ,incofporate"any
finite population correction factors into the analyses.

The data were blocked and the VE scores wéfe calculated by
a Fortran computer program (see Appendix B); ﬁhe siée of ‘the
block being dependent upon the number of original trials and as
defined in step 4 of Phase 1 of the previous sectién. Thé
validity of the calculations was tésted by comparing the
calcuiated VE scores with those produced by a .program known to
calculate accurate VE scorés, DATASNIFF (Goodman & Schutz,
1975). The scores were accurate to the fourth decimal place.

Each experiment Qas analyzed'by an analysis of variance on
the data of twenty subjects in each of two groups. A computer
pfogram‘(Appendix B) read 40 subjects at a-time (20 fom Group 1
.and 20 from Group 2) and calculated the Sum of Squares and Mean
Square Error terms for all the effects, and the subsequent F
value for the Groups by Blocks interaction. This calculated F
value was compared to the critical F value at the .10, .05 and
.01 levels of significance. The critical F values were obtained
via the function subroutine UBC FVALUE which gives the F value
of a user-specified level of significance based on user-
specified degress ‘of freedom. The results weré stored by the
computer where, after all 500 experiments had been analyzed, a
table showing the number of significant interactions at the .10,
.05 and .01 levels of significance was printed. The table also
displayed the mean F value calculated in the 500 ANOVAs and the
average Mean Square Error for each of the Groups, Subjects.

within Groups, Trials, Groups by Trials and Subjects within
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Groups by Trials effects.- The.factual Type I error .rate was -
compared to the nominal level of significénqe by - the standard
error of a proportion as given by.[p(14p)/SQO] . A differeqce 
of more than two standard errors of a proportion .between. the
actual number of Type I errors committed and the nominal levei
of significance was considered significant. The net result was.
faw,and VE scores being generated for 1000d observations in each-
of two groups for each of four sets of underlying variance;
covariance matrices. This was done separately for each of the
three data sets for each blocking condition resulting in a total
of twenty-two thousand experiments being analyzed.

Effect of the number of trials. In order to study the

effect of the number of initial trials on the Type I error -raﬁe’
when VE scéres are eventually calculated, additional simulations
were performed on Data set 7. Conditions 1 and 3 were studied
using 12 and 24 trials as well as the actual 36 trials. It was
possible to -use only these two conditions since they both.
exhibited homogeneity of the covariances within a wvariance-
covariance matrix. When using a specific heterogeneous variance-
covariance matrix as the base it 1is difficult to obtain an
eguivalent heterogeneous matrix ‘having fewer trials. The
magnitude of the covariances were equal to those in the "mean
covariance matrix" based on 36 trials. The first 12 and 24 trial
means of the original data were used as the trial means for both
groups in the 12 and 24 trial conditions, réspectively.

The twelve trials had VE calculated based upon three blocks
of four trials/block and four blocks of three trials/block while

‘the 24 trials were collapsed into data sets of three, six and
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eight blocks. Five hundred ANOVAs were performed on each of the .
blocking conditions as well as the original (unblocked) number

of‘trials.

RESULTS AND DISCUSSION

Structure of the Correlation Matrices

Raw scores. It was of interest to~study the patterns of

the correlation matrices of the raw data and ‘the subsequently
blocked VE data for each experimental data set received; Of
particular interest was whether the raw data exhibited
'decreésing magnitudes of the correlation coefficients as trials
- become farther apart as hypothesized by Gaito (1973), Lana and
Lﬁbin (1963) and othefs. |

This. pattern was common io only onelof the eight data setS
(Data Set 1) studied. This observation is further weakened by
noting that this decreasing pattern occurred ohly for
correlations among the first six of the fifty trials in total.
The remaining correlations seemed to be randomly variable in
their magnitudes. A more common occurrence (though clearly not
thé rule) was the magnitude of later trials being generally
greater than that of earlier trials (Data Sets 2 and 5). These
correlations, however, did not exhibit any particular pattern.

More striking 1is the difference 1in magnitudes of the
correlations between groups of subjects who received - feedback
and those who did not. In élmost every case where an experiment
consisted of two groups, KR:-and no-KR, the correlation among the

raw scores in the no-KR groups was much greater than for the
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subjects which obtained feedback (see Table I). The sole’

exception, Data»sef,B, was based on only 10 Subjects/group (less;

than the minimum criterion of 12 subjects/group) and, therefore,: = ..

any conclusions based on this Data set are tenuous. This is most
clearly exemplified by Data Set 2 ., Here the mean correlation in
the,feedﬁack group was approximately equal to zero while the no-

KR group had an éverage'éorrelation_oi about .83 (see Table 1I).
Although diffe;ences between the two groups were not as extreme
in the othef data sets, differences stiil existed and were
consistent regardless of the type of'task (linear slide, etc.)
performed. These differences can be logically explained.
Subjects given feedback alter their motor program after each
trial, resulting in relatively variable performances from trial
to trial. However, these .trial-to—trial fluctuations are not
constant across subjects, thus resulting in - very low
correlations between pairs of trials. The ~no KR subjects,
conversely, receive no information on which to change their
responses. This results in a more consistent performance over
the repeated measures.

Although the average correlation in the no KR groups 1is
greater than for KR groups, the upper limits of the correlations
are approximately egual (see Table I). In most cases, however,
the lower bound of the correlations in the no feedback
conditions is slightly greater than for feedback (Data Sets
2,3,5). It appears that one possible explanation for the
genérally higher correlations in the no KR groups is the greater
correlations between initial trials. Again, this is expected'

since response strategies vary little in this group. Subjects,
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during initial.trials, probably perfo:myﬁith a larger degfee“of'.:
error. The receipt of feedbaék may . drasticallyk‘alter: the
response strategiéS»and, theréfére, lafgévnegative correlations
between these trials result. N |

Variable error. When the raw data are blocked and VEs

calculated the nature of the correlation matrices change. Table
I displays the differences in the ranges and magnftudesv of . the
correlations when wusing VE instead »of the raw scores. It is
obvious that there is nd set patfern as to what happens to the
correlations 'when the féw scores are. blocked in different ways.
Data set 1 shows a large increase Iin the magnitude of the
correlations after VE is calculated while both Data set 5 (groupA
2) and Data set 3 (gféup 2) react oppositely. |

The 'calculation of VE seems-ﬁo increase the lower ‘bound of
the range of correlations when comparéd to the raw'.data; With
the excéption of Data set 3 (group 2), every data set analyzed
displayed this fact. However, the opposite cannot be said for
the upper limit of the correlations. Some data sets (2,3,4,5)
indicate a decrease in magnitude of the wupper 1limit of the
correlations while others (Data sets 6 and 8) remain unchanged.'
In general, though, the effect of calculating VE is to decrease
the degree of heterogeneity in the correlation matrix.

Study of the correlation matrices baged on VE data revealed
no specific pattern in the correlation coefficients. There
appeared to be no difference in the strength of the correlation
between adjacent trials compared to those farther apart. Data
sets 3 and 4 had lower adjacent trial ;orrelations than those a

greater distance apart, while Data set 7, displayed the opposite
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leffect,

Different block sizes resuited in wvarying degrees -of
heterogeneity in the correlation matrices. Table I displays the -
ranges of the correlatioﬁ matrices for those‘blocking cbnditions
which have the 1largest aégfee ‘offheterogeneity. Invariably,
those correlation matrices corresponded to the experimental
design ‘having the largest humber of,blpcks (i.e., the smallest
biock size). A general characteristic of VE data 1is that the
range of the éorrelations increased’inverseiy to the block size.
The effect of these heterogeneous matrices on the probability of

committing a Type I error is discussed in Condition 2 below.

Distribution of Raw and VE scores

Raw. scores. Histograms plotting the raw scores for each

trial in each data set suggested that raw data could be assumed
to be normally .distributed. That is, based on the relatively
small sample sizes in each experimental group it was obvious
that any test for normality (e.g.; Kolmogorov-Smirnov, Chi-
square Goodness of Fit) would have failed to reject the initial
assumption of normality. It is acknowledged that the small
sample sizes of these data sets would result in relatively low
power on any such distributional test. However, observations of
the histograms failed to reveal any obvious departures from
normality.

Variable error., Variable Error scores are variances and,

therefore, one would expect that they are distributed as Chi-
square with the appropriate degrees of freedom. Safrit et al.,

showed that the distribution of VE scores 1s dependent on
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different effects wunder various expefiméntal fdesigns.'Theéé:w
authors stated that a nén—normal,distributi0n4 may resﬁlt, 'bqfi
they fell short of saying that the distribution was Chi-square.
It is well known,vhowever, that one method of making a Chif
Square distribution more normal is byktéking the Squafe root ofr
the raw scores. The VE score used in ;his:study was the sduaré'
root of the intra-subject variability within a block. |
The histograms showed that VE was also distributed as
univariately normal. This is understandable considering the size
of the sample and the fact that the VE scores have been
transformed by the square root function. Safrit et al., may be
correct in stating that the theoretical distribution of VE is
non-normal. However, larger samples and untransformed VE scores
would be necessary to reflect fhis.

Violations of Covariance Homogeneity

Of major importance, statistically, is whether the analysis
of data via ANOVA is valid when VE is the dependent variable.
This question was studied under various degrees of violation of
the homogeneity of covariances assumptions.

Condition 1 (egquality within; equality between). In this

condition the covariance assumptions are adhered to and,
therefore, Type I error rates equal to the nominally set alphas
are expected when analyzing the raw data. Table II shows that
the éctual numbef of Type I errors did not significantly differ
from the nominal rate for any of the three alpha levels
-examined. This was consistent for all the data sets. Actual
alphas which differed by more than two standard errors of a

proportion from the nominal level of significance .were



Table II
Proportion of Significant G X B Interactions

for Unblocked (Raw) data

Homogeneity Data set 2 Data set 5 Data set 7
Condition Nominal « 24 trials 18 trials 36 trials
.10 .118 .100 L112
1
=within 05 .066 .058 .062
=between
.01 .014 .012 .010
.10 .200% .138* .190%
2 * * *
Fwithin .05 . 164 .076 . 144
=between N * .
.01 . 100 .026 .068
.10 .118 .102 .116
3
=within .05 .056 .058 .066
#between
.01 .014 T .010 .018
.10 .178* .110 176
4
Fwithin .05 . 136 .068 .118*
#between
.01 © 0767 .018 .050*

*actuaT number of significant interactions which differ'by more than
two standard errors of a proportion from the nominal level of
significance

éc
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classified as-biased. The cdrresponding confidence “intervals
are: for e=.10,  (.073<,10<.127); for ¢=.05, (.03ﬂ$.05$?069);
and lastly, for s=.01, (.001<.01<.019). . | |
The analyses of VE scores display similar results ' (see
Table 1I1I1I). Although, in several data sets, using VE as the
dependent variable seem to decrease the actual number of Type 1
errors, the differencés are not .significant. Theréoie‘exception
is in Data set 7 (12 trials) where the four blocks of three
trials/block displays highly inflated:Type'I errors (see Table
IV). No logical explanation for this is apparent. The effect of
the number of original trials on the probability of committing a
Type 1 error 1is explained in more detail in the discussion of
Condition 3.
Therefore, as a general rule, it éppears that the -analysis
"~ of VE data calculated from raw data'satisfying the covariance
assumptions does not cause a .greater number of false réjection
of the null hypothesis than is expected.

Condition 2 (ineguality within; equality between). Table

I1 shows that the violation of the assumption of symmetry has
the effect of increasing the probability of committing a Type I
error when raw data is used. Data set 2 exhibited the ‘Qreatest
| degree of 1inflation with the .01 level of significance having
the largest percentage difference from the nominal alpha. At the
.01 level of significance the actual proportion of Type I errors
was as high as .10, The increases in the Type I error rates were .
iOO% and 325% at nominal alphas of .10 and .05, respectively. It
was expected that the raw data based on the most heterogeneous .

variance-covariance matrix would.have the maximum level of



Table II1

Proportion of Significant G X B Interactions

for VE data
Homogeneity Data set 2 Data set 5 Data set 7
Condition Nominal o X8 6X4  8X3 3X6  6X3 X127 6X6  9X4
.10 .096 .078  .098 082 .096 .110 .100  .086
1 -
=within .05 .046  .038 .044 .048  .038 058  .036 .036
=between *
.01 .002 .006 .006 .006 .016 .014 .006 .000
.10 088 .080 .122 084 .094 .128% .140" .150"
2
#within .05 .040  .034  .054 .044  .048  .066 .084F .100"
=between . . %
.01 .006  .010 .012 002  .012 .026% .042° .034
.10 .098  .086 .096 .094 .082 .128% .092  .076
3
=within .05 .040  .036  .040 .042  .048 062 .036 .034
#between
.01 .008 .008 °.008 012 .006 .014 .008 .002?
.10 762" L922% 520 .252% 496"  1.000% 1.000% 1.000F
4
#within .05 .628°  .850% .400%  .154% .356 1.000™ 1.000% .998"
#between . . N . .
.01 3807 .658" .218 .048% 172 .998™ 1.000* .992*

*actual number of significant interactions which differ by more than two standard
errors of a proportion from the nominal level of significance

124



Table IV

Effect of the Number of Trials on the

Type I Error Rate for Raw and VE data

Based on Data set 7

36 trials

24 trials

12 trials

Blocked (VE)

Homogeneity Unblocked (Raw) Blocked (VE) Unblocked (Raw) Blocked (VE) Unblocked (Raw)
Condition Nominal o 3X12 6X6 9x4 3X8 6X4  8X3 ‘ 3X4 4x3
.10 .112 .110 .100 .086 .120 .096 .098 .094 .098 .092 .138"
1
=within .05 .062 .0568 .036 .036 .068 .054 .038 .044 .050 .046 076"
=between N N
.01 .010 .014 .006 .000 .014 .006 .008 .004 .010 .004 .024
.10 .116 .128% .092 .076 .120 . 108 .094 .092 .096 .082 .140%
3
=within .05 .066 .062 .036 .034 .060 .042 .046 .040 .048 .042 .070%
#between
.01 .018 .014 .008 .002 .014 .010 .008 .004 .010 .004 .022%

*actual number of significant interactions which differ by more than two standard errors of a proportion from the nominal

level of significance

™~
8]
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inflation, which, in fact; did occur. Tﬁe raw databwhich had‘the
'highest Type. 1 é;for raﬁe;(Data:set 2) was based upon a mean
correlation of about 0.0'and limits of -.62 to_.67. This matrix
was more heterogeﬁeous vthan those of both Data sets 5 and 7.
However, when comparing Data sets 5 and 7 this line of reasoningb
was not valid;' Data set 5. which resulted in  the smallest
incréase in Type I = errors ﬁad a mean correlation of
approximately zero and a range from -.57 to .60. A greater:
number of significant F values were obtained”from Data set 7,
where the mean r equalled .30 and whoée correlations lay between
-.22 and .50. Conventional thinking would assume that the
variance-covariance matrix underlying Data set 7 was less
heterogeneous than that for Déta set 5 and, theréfore, . greater
inflation would occur wusing Data set 5. In fact, the'oppoSite
was true. | |
Several researchers (Box, 1954b; Gaito, 1973) have
indicated that tﬁe degree of inflation increases as thé number
of repeated measures becomes larger. In comparing the number of
Type 1 errors committed when using raw scores as the dependent
variable for the different Data sets, it is clear that this did
not- always occur (Table II). However, _the degree of
heterogeneity of the variance-covariance matrices were not equal
either. It does seem very possible that the number of Type I
errors is related to the interaction of the number of trials and
the heterogeneity of the underlying matrix. For example, Data
set 2, which consisted of 24 trials, yielded a greater numbér'of
Type I errors than did Data set 7 which had 36 trials. However,

Table 1 indicates that the degree of heterogeneity of the
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covariances was greater in Data ' set 2. than in Data set 7. -

Therefore, it = appears - that - the ' increase 'in covariance :

heterogeneity in Data set Z-more than compensates for‘the fewer
number of repeéted meésures in the design and thus, more Type f'
errors were found with Data set 2. _' |

The number of Type I errors found for the 36 trials of the
‘raw scores in Data set 7 is. slightly higher than in the study by
Schutz and Gessaroli (1980) which employed an equal number of
trials. Using a correlation matrix ranging from .54 to .95 : they
found an empirical Type I error rate of about .16, .12 and .05
for the .10, .05 and .01 levels of significancé,, respectively,
as compared tb these results of .190, .144 and .068 for the same
nominal alphas. The increase 1s probably due to-thebgreatef
ﬁeterogeneity in the correlation matrix used as the basis for
the generation of raw data in this study.

Analysis of the VE scores showed no significant inflation
in Type I errors for Data Sets 2 and 5, but did display an
inflated number of Type I errors for Data Set 7. While it is
obvious that the empirical Type I error rate for ‘all blocking
conditions 1is well within two standard errors of a proportion
for Data sets 2 and 5, certain blocking conditions in Data set 7
display actual o's outéide this range. All blocking conditions
displayed an increase 1in the number of significant Groups by
Blocks interactions with the degree of inflation being greatest
for the nine blocks case. The sole exception was the .05 level
of significance for the 3 X 12 case- where the actual Type 1I
error rate did not differ from the nominal rate by more than two

standard errors of a proportion. Table V shows the pattern of



Table V
The Mean and Ranges of the
Correlation Coefficients

for Various Block Sizes

Data Set Blocking Pattern mean r range of r's
3X8
Group 1 .35 .27 to .45
Group 2 .28 .14 to .40
6 X 4
2 Group 1 .15 -.14 to .41
Group 2 .20 -.16 to .44
8 X 3
~ Group 1 .18 -.21 to .41
Group 2 .18 -.26 to .58
3X6
Group 1 .27 .19 to .36
Group 2 .30 .24 to .40
5
6 X 3
Group 1 12 -.12 to .31
Group 2 20 -.02 to .44
3 X 12
Group 1 .26 .17 to .40
Group 2 .26 .15 to .41
6 X 6
7 Group 1 .20 -.11 to .44
Group 2 .17 -.06 to .51
9 X4
Group 1 .20 -.10 to .54
Group 2 .20 -.21 to .52
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the correlation matrices = of the‘VE'SCOrés for the three'bloék'
sizes of Data set 7. VE simﬁlatéd with i2 trials/block haa tﬁe 
lsmallest range of correlations. while the” VE based on four
trials/block displayed the greatest heterogeneity in: fhe
correlation matrix. These results agreé with previous research
(Rogan, Keselman & Mendoza, 1979) in that the Type I -eror rate

increases as the degree of heterogeneity within a matrix.:
increases. However, Table V shohs similar degrees of
heterogeneity for Data set 2, yet no inflation in the number of
'Tyﬁe I errors occurs. Also, as the degree of heterogeneity
increases as the size of the block decreases, a corresponding
inflation in the Type I error rate does not occur. No viable
rationale 1is apparent to expléin .these conflicting results
obtained for the different data sets.

Condition 3 (equality within; inequality between).

Similar to Condition 1, the covariances within each matrix are
equal, however they differ in théir magnitudes between the two -
groups.

| It seems that the assumption of -equality between the
covariance matrices of the different experimental conditions is
guite robust if the second assumption of homogeneity within "the
covariance matrices 1is satisfied. With one exception, the
empirical Type I error rate did not exceed the nominal value for
any_of the data sets. This held regardless whether raw scores or
VE was the dependent variable,

The differences in the magnitudes of the correlations

between the two groups also had no effect on the Type I error

rate. Small (.15 vs .30, Data Set 7), moderate(0 wvs .45, Data
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Set 5) and large (0 vs .83, Data Set 2) differences in the meani\e
correlations between groupS-were'used withlehe same net  result
in each case - no.bias in the empirical Type I error rate..

The fact that the covariances within the matrices were.
homogeneous allowed for en attempt to isolate the effect of the
number of repeated measures. and'subeequent‘block;si;e on the
probability of falsely rejecting the null.hypothesis. ‘This was
done by simulating raw data for designs having either 36, 24 or
12 repeated measures where the underlying variance-covariance
matrices were egqual 1in each case. The variance-covariance.
matrices satisfied the "within-group" homogeneity assumption but
failed to adhere to the "betweéh-group“ assumption. Differences
in the number of trials had no significant effect under.this
condition (Table V). Again, it seems as if the number of
repeated measures is only important when the aesumption.of
compound symmetry is violated.

The only case where the number of Type I errors committed
was greater than expected was when the 12 trials con@ition(of
Data set 7 produced VE scores based on three frials per block.
Here, the percentage of Type I errors found was .140 for e=.10,
.070 for a=;05 and .022 for o=.01. Calculating  VE wusing four
trials/biock found the number of corresponding errors to be
.082, .042 and .004 - all within two standard errors of a
proportion of the nominal 1level of significance. No logical
explanation for this is apparent.

Condition 4 (inequality within; inequality between). The

actual experimental variance-covariance matrices for each group

were used to simulate the data for this condition. When the raw
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data - was analyzed the results ranged fromlnq'inflation in‘ﬁhe
number of Type I‘errbrs (Data. Set 5);£o_sérious .déparfures.szr
the pre;set alpha (Data Set 2)f Numerous researchers, sfarting
with Box (1954b), have shown that the:probabilify of making a
Type 1 error increases whén the two covariance assumptioné are
no£ met. As expected,,Déta set 2, having the greatest degree of °
heterogeneity within the mafrices for the two .groups as well as
the largest desérepancy~between the matrices, has the -greatest
Type I error rate. However, with Data set 5, which has moderafe
heterogéneity both withih and between the correlation matrices, -
the empirical = level of significance failed to increases
appreciably. Data set 7, having the ‘fleast degree of .
heterogeneity both within and between the matrices, produced the
second highest empirical Type I error rate (see Table II). While_
the last two findings contradict previoﬁs_research, it must be
remembered that Data set 7 had twice the number of trigls (36)
as did Data set 5 (18). Therefore, it again appears that when
the raw data is analyzed, the degree of heterogeneity _combined
with the number of repeated measurements 1is related to the
probability of committing a Type I error.

The results of the analysis of the VE data initially appear
to Dbe overwhelming because of the number of significant
interactions obtained (Table 1III). However, this does not
necessarily imply that a number of Type 1 errors were committed,
but may reflect the fact that the VE scores between the two
groups ‘are,v in fact, different. This is quite possible since
subjects receiving feedback supposedly have different underlying

processes on which to base their responses than do subjects who
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‘receivev no information' fegérding their preyipds response. For
Data set 71bwhich,proddced almost iOO%-signifiCant intérac;ioné)
the actual experimental data was blocked‘inbthe same way as in
the simulation procedures. ‘Analyses :of variance conducted on
theée original VE scores show that the two groups did in fact
change differently . over the blocks of trials, The calculated F‘
for the Groups by Blocks intéractioné for the three blocks',waé.
16.67, 10.51 for the six. biocks and 6.60 for nine blocks.
Clearly, these are all significant valﬁes, The Monte Carlo
procedures produced correspondihé mean F values of 20.90, 13.01
and 7.50. Although the simulated data resulted in higher F
values it is quite conceivable that the actual experimental data
are samples from the population on which the simulated.data are

based.

Effect of Block Size

The rationale for the choice of the size of the block in
calculating VE  scores is commonly based on practical
considerations, not statistical ones. The results of this study
indicate, however, that the choice of the block size may be a
factor in the subsequent statistical analysis.

The'most lucid example of this is fof the 12 trials of Data
set 7 based on the variance-covariance matrices for‘Conditions 1
and 3. In Condition 1 the probability of committing a Type I
error differed significantly depending upon the block size
chosen. At the .10 level of significanée, 9.2% of the
experiments had significant interactions when VE was based on

four trials/block, but jumped to 13.8% when three trials/block
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were used. A .nomiﬁal alpha equal to .05 displayed an inérease
.from 4.6% to 7.6% while a six-fold increase occurred - (.40%. to
2.4%) at the .01 level of significance.7Similar changes'in the
number of Type I errors were found under Condition 3 for this
data. |

More interesting are the results of the simulations based
on the actual variance-covariancev matrices for each group
(Condition 4). This, of course, 1is the one which an actual
researcher would analyzé, Data sets 2 and 5 both show noticeable
differences in the number of Type I errors depending wupon the
block size used to calculate VE. In Data set 5, condition 4, the
three trials/block pattern resulted in almost double the number
of Type I errors found for six trials/block. The corresponding
probabilities are .496 vs .252 for ¢=.10, .356 vs .154'for'a=.05
and .172 vs .048 at the .01 level of significance. In looking at
Data Set 2 (Table IIi) it is obvious that wusing four
trials/block instead of three trials/block results in almost
twice the number of significant interactions.at the .10 level of
significance and more than three times at the .01 level.

The gquestion remains as to the nature of the relationship
between the size of the block and the probability of committing
a Type I error. The number of Type I errors increase inversely
to the size of the block for Data set 7 (12 trials) under
Conditions 1 and 3 and for Data set 7 under Condition 4. It
appeared that this also was true for Data set 2 (Condition 4)
~ since the percentage of significant interactions increased from
.762 to .922 (at o=.10) as the size of the block decreased from

eight trials/block to four trials/block. However, when the block
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size -was further reauced to three trials/block-the Typei1 error
rateadécfeased,to .520}.‘Thgrefore, the; Obtained ~results. areﬁ~
iﬁcdnclusive as to whether there is a direct relationship:
between bléck size and the probability of obtaining a sighficanf‘
interaction when analyzing VE data with an anaiysis.of vériance,

Although - block size is not . directly related to the:
probability of * obtaining significahce for VE data,iit-appears
that the proper choice of the size of the block may drastically
affect the researcher's probability of rejecting the knullfg
hypothesis. Examining the number of significant Groups by Blocks
interactions for Data set 5 under condition 4, it. is apparent'
that the probability of.obtaining significance was greater when
three trials/block were used in calculating VE (Table III). In
fact, at the .01 level of’signifiéanCe, the 6 X 3 case pfoduced
3.6 times as many significant interactions as did ‘the 3 X 6
blocking pattern. While the percent difference in the number of
significant interactions decreases as the level of significance
increasés, at o=.10, the six blocks case resulted in 1.97 times
the number of significant interactions as when three blocks of
VE were analyzed. Similar, though not as extreme, values are
apparent for the results of Data set 2, condition 4 (Table III).

The fact that the size of the blocks used to calculate VE
may differentially affect the probability of achieving a
significant interaction undermines the reliability of VE when it

is analyzed by an ANOVA.
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CONCLUSIONS -

Based on the analysis of. the’~strﬁctute- of cofrela;ioh 
matrices for ra& and VE data of eight abtuéi.experimehtai_data
sets, ‘and on Monte Carlo analyses of three of these experiments;
the following conclusions can be made: |
1. A "typical"” correlation pétternbdoeSanot‘ exist for"gither
the raw data or the VE scores. :
2. Correlations between réw scores for subjects receiving no
feedback are generally less variable and 'greater in magnitude
than for those subjects who weré given feedback.
3. The correlation matrix among VE scores is usually more
homogeneous than for unblocked data. |
4. Empirical performance error scores are ‘marginally normally
distributed. VE scores (the square root of thenwithin-subject
variance) also appear to have normal distributibﬁs. However,
these results are based on small sample sizes (max=48) and,
therefore, studies with larger samples are - needed to confirm
this.
5. Most empirical data sets violate both the within and Between
matrix homogeneity assumptions.
6. If the raw data satisfies the covariance homogeneity
assumptions, then the subsequent analyses of VE scores by an
analysis of variance does not inflate thé Type 1 error rate.
7. In analyzing experiments with repeated measurements by an
analysis of variance the within-group homogeneity of covariance
assumption 1s more important than the betweeh-éroup assumption.
Violation of the former assumption results in an increase in the

Type I error rate when raw data is analyzed but results are
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inconclusive - with VE data. However, when ﬁhe‘»within-group'
assuhption is satisfied  and the'Jbetween—group assumptioh is
violated no inflétionkin the number of Type I errors occurs.

8. The size of the bloék used to calculate VE affec£s the
probability of achieving significance. Such a finding-.quéstions
the reliability of using VE as a dependent measure in an ANOVA,
9. When analyzing raw data the numbef of frials in»fhe design.
does not differentially affect thevape 1 error rate 1if the
within-group correlation matriceé are homogeneous. If these °
matrices are heterogeneous thevdegree of inflation of Type 1I
errors appears to be related to an interactive effecﬁ between
the number of trials and the degree of hetefogeneity within the

matrices,
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‘Appehdix A

LETTER REQUESTING EXPERIMENTAL DATA

24 June, 1980

Dear

As a follow-up to our Trois-Rivieres paper on heterogeneity
of covariance and block size, Marc Gessaroli and I are embarking
on a research project on VE. Very briefly, our research purposes
are as follows: 1) determine the distribution of VE (as a
variance it is probably distributed as chi-square) and ascertain
how this affects the distribution of F in a typical repeated
measures - ANOVA: 2) examine ‘this effect under different
conditions of number of trials, blocking parameters, and
variance-covariance structures. To accomplish this we plan- on
collecting empirical data from researchers in the field in order
to determine the actual distribution of VE - under various
experimental conditions and for a variety of dependent
variables. Based on the findings, Monte Carlo procedures will be
followed to simulate reality while varying the parameters of
number of trials, block size and variance-covariance structure.

)

As you have probably summized by now, 1 would like to get
some of you data! We are primarily interested in learning data,
but may (if not enough learning data is available) also look at
performance data. What we would like is raw data (data sheets,
computer listing, cards, or whatever) which has been used to
reflect performance error, i.e., from linear positioning tasks,
temporal accuracy, etc. We are restricting our empirical samples
to data sets which meet the following reguirements: 1) at least
12 trials per experimental condition, and 2) at lease 12
subjects per group (one or more groups). If you have such data
set(s) available I would be most appreciative if you would send
it to wus. A description of the experimental design and data
format, an indication of what (if any) blocking was performed,
and, if possible, a copy of any published or unpublished reports
of the studies would be necessary in order for us to interpret
and analyze your data.

Please note - we are not conducting a review of the
appropriateness of statistical analyses done in our field, and
will not be re-analyzing your data (but just looking at  the
distribution of the raw data and the VE scores).
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Marc . will be using these -data sets in his Master's  thesis.
Included on his committee are Dr. Ralph Hakstian, a -noted
psychometrician, Dr. John Petkau, a brilliant young mathematical
statistician, and Dr. Gordon Diewert from Simon Fraser
University. They all view this study as a challenging and worthy
study. I believe that with their help we 'can make a valuable
contribution to an important measurement/statistical problem in
motor. behavior research. Your assistance will enable us to
accomplish this. We will be glad to send you a copy of our
findings, and reimburse you for any costs associated with
sending and duplicating materials, : ‘

Thank-you in anticipation.

Yours sincerely,

R.W. Schutz
Professor
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71

" DOUBLE

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

READ(S8,

Appendix B

PROGRAM-TO~CALCULATE VE AND ANOVA

PRECISION
PRECISION

.PRECISION
PRECISION:

PRECISION
PRECISION

PRECISION.

PRECISION
PRECISION

FORMAT(4(1X,I3)
NS=NSG*2
NTOT=NS*NREP

NB=NT/NTB

K=1
L=NSG
SX=0.
SX2=0,
XNB=NB

XNSG=NSG

XNT=NT
XNS=NS
L2=L/2
K2=
FTOT=0.

K+NSG

TDGXT=0.

TDSWGT=
TDTR=0.
TDGRPS=

0.
0.

TDSWG=0.

IT10=0.
IT5=0
IT1=0
DO 105
K=1
L=NSG

READ( 4,

NR=1

1) ((X(1

K=K+NSG
L=L+NSG

READ(S,

FORMAT( 12(1X,F10.5)/12(1X, F10

AX2(200

, NREP

,J),0=1

18) 'SUBSUM(200), SUBSMZ(ZOO) TR1(100) ..
100) TX2(200), BE(200) BE2(200) AE(200).

DSWGT(SOO) DTRIAL(SOO) DGRPS(SOO) DSWG(SOO) :
TRT2(100), VE(200,60), TR2(100) DGXT(SOO) AE2(200)

TRT(100), F(500) SX, sxz v(200, 60)

FTOT, TDGXT TDSWGT TDTR TDGRPS TDSWG, SUBJ"

TOTAL2 BE2G1 BE2G2 SSTR XGT, XGTB XTOTAL

SUBJCT, XTOT2, TOTAL, BETW, TRIALS SUBTR XGROUP - s

XGRTR, SWGT SWG :

X(200,

16) NT,NSG,NTB,NREP,IB,FVAL10,FVAL5,FVAL1
1K, TN

,3(1X,F5.3)) -

,NT),I=K,L)

1) ((x(1,J),J=1,NT),I=K,L)

5))

IF(IB.EQ.1) GO TO 71

NT=NB

GO TO 106

DO 11 I=1,NS

M=0

DO 10 J=1,NT,NTB

J2=J+(NTB-1)

DO .9 K=

J,J2

SX=SX+X(I,K)
SX2=SX2+(X(I ,K)**2)
CONTINUE
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198
199
201

98

99

88
89

78

79

M=M+1

VE(I,M)=((SX2- (SX**2)/NTB)/NTB)** 5

. SX=0.

SX2=0.

CONTINUE
CONTINUE

GO TO 201
DO 199 I=1,NS
DO 198 J=1,NT
VE(I,J)=x(1,3)
CONTINUE -
CONTINUE
XTOTAL=0.

K=1

L=NS

SUBJ=0.
TOTAL2=0.
BE2G1=0.
BE2G2=0.
SSTR=0.
XGT=0.

. XGTB=0.

2=K+NSG
L2=L/2
DO 99 1I=
SUBSUM(1I
TX2(I)=0.
DO 98 M=1,NB
XTOTAL=XTOTAL+VE(I ,h M)
SUBSUM(I)=SUBSUM(I)+VE(I, M)
TX2(I)=TX2(1)+(VE(I 6 M)**2)
CONTINUE

SUBJ=SUBJ+ (SUBSUM(I)**2)
TOTAL2=TOTAL2+TX2(1I)

CONTINUE

XTOT2= (XTOTAL**2) /(XNB*XNS)
SUBJCT= (SUBJ/XNB)-XTOT2
TOTAL=TOTAL2-XTOT2

DO 89 M=1,NB

TR1(M)=0.

BE(M)=0.

DO 88 I=K,L2
TR1(M)=TR1(M)+VE(I,6 M)

CONTINUE
BE2G1=BE2G1+(TR1(M)**2)
CONTINUE

DO 79 M=1,NB

AE(M)=0.

TR2(M)=0.

DO 78 I=K2,L

TR2(M)= TR2(M)+VE(I M)

CONTINUE

SSTR=SSTR+( (TR1(M)+TR2(M) )**2)
BE2G2=BE2G2+(TR2(M)**2)
CONTINUE

BETW=( (BE2G2+BE2G1) /XNSG)-XTOT2

K,L
)=0

’
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68
69

58
59

105

TRIALS=(SSTR/NS)-XTOT2
SUBTR=TOTAL-SUBJCT-TRIALS
DO 69 I=K,L2

DO 68 M=1,NB
XGT=XGT+VE(I,M)
CONTINUE

CONTINUE

DO 59 I=K2,L

DO 58 M=1,NB
XGTB=XGTB+VE(I ,M)
"CONTINUE

CONTINUE

XGROUP=( ( (XGT**2)+(XGTB**2) ) /(XNB*XNSG) ) -XTOT2

XGRTR=BETW-TRIALS-XGROUP
SWGT=TOTAL-SUBJCT-TRIALS-XGRTR
SWG=SUBJCT-XGROUP
DGXT(NR)=XGRTR/ (XNB-1)

DSWGT (NR) =SWGT/ ( (2* (XNSG-1) ) * (XNB-1) )

DTRIAL(NR)=TRIALS/(XNB-1)
DGRPS (NR) =XGROUP
"DSWG(NR)=SWG/(2* (XNSG-1))

F (NR)=DGXT(NR) /DSWGT (NR)
IF(F(NR).GE.FVAL10) IT10=IT10+1
IF(F(NR).GE.FVALS) ITS5=IT5+1
IF(F(NR).GE.FVAL1) IT1=IT1+1
FTOT=FTOT+F (NR) _
TDGXT=TDGXT+DGXT (NR)
TDSWGT=TDSWGT+DSWGT (NR)
TDTR=TDTR+DTRIAL (NR)
TDGRPS=TDGRPS+DGRPS (NR)
TDSWG=TDSWG+DSWG (NR)
CONTINUE .

FMEAN=FTOT/NREP
TDGXTM=TDGXT/NREP
TSWGTM=TDSWGT/NREP
TDTRM=TDTR/NREP
TDGRPM=TDGRPS/NREP
TDSWGM=TDSWG/NREP

45

WRITE(6,2) IT10,IT5, IT1, FMEAN, TDGRPM TDSWGM, TDTRM, TDGXTM, TSWGTM

FORMAT('THE # OF PS LESS THAN 10 =

*'THE NUMBER OF PS LESS THAN 05 = ' 13 /,,
*'THE NUMBER OF PS LESS THAN 01 =

*'THE MEAN F VALUE WAS = ',F10.5,/,

*'THE MEAN FOR MS GROUPS = ',F13.4,/,
*'THE MEAN FOR SUB WITHIN GROUPS =

*'THE MEAN FOR MS TRIALS = ',F12.4,/,
*'THE MEAN FOR MS GROUPS BY TRIALS =

STOP
- END

113,/

,F12.4,/,

',F10.4,/,
*'THE MEAN FOR MS SUB WITHIN GROUPS BY TRIALS

',F10.4)
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Appendix C -

REVIEW OF .LITERATURE

~Overview of Chapter

The most common experiment in motor behaviéur fesearcﬁ_
involves each subject performing several trials of a péfticuiar
tésk. Repeated measures designs are invariably used since it is
the researcher's goal to study how the sﬁbject performs over é
period of time. In this way, some knowledge as to how a subject
learns, forgets or retains may be examined. Usually, there are
at least two experimehtalv conditions 1in the design, thereby
allowing for comparisons between various éroups or treatment
conditions. The data are generally énalyzéd by an analysis of
variance.

The proper analysis of repeated measures data via ANOVA: is
dependent upon the data‘satisfying various assumptions. While
the assumptions of normality and equality of variances are
important and should be checked, the most common assumptions
~which are violated with motor learning data are those dealing
with the heterogeneity of covariénces. In fact, Lana and Lubin
(1963) ‘and others stated that correlations among trials closer
together are larger than for those farther apaft. Also,.because
the experimental groups are generally quite different, the
- covariance matrices between the wvarious groups are probably
uneqgual - a violation of an assumption of ANOVA. Therefore,

although previous research into the effects of violating the
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assumptions of normality and eqUality of variances wili be
summarized, the emphasis will be ,oﬁ -revieﬁing ‘literature
concerned with the assumption of compoﬁhd symmetry r(ﬁomoéeneity
of the covariances within each group and between.the variance-
covariance matrices of each group). The effects of violating
these assumptions .on the Type I error rate and methods. for
compensating for covariance heterogénéity’willlbe the main focus
of this literature review, ’ | |

There has been much debate in the literature over the - last
eleven years as to the proper choice of a dependent variable in
motor behaviour studies. Some of.thg arguements have been made
on a purely theoretical basis while others have considered the
statistical properties of the dependent measures. As this study
concerns itself with the analysis of one of these dependent
variables (VE) a review of the ensuing debate seems appropriate.

The Statistical Model

As mentioned previously, the common motor learning
experiment consists of each subject performing sevefal trials
(g) of a .specific task. Usually the subjects are divided into p
experimental groups, the resultant design being a ‘p Xq
experimental design with repeated measures on the last factor.
This data is subsequently analyzed by an analysis of variance. |

The model underlying a repeated measures ANOVA of this type
is linear in nature and defined by:

Rijk =wros ToTMi(5) TPk TATKi(5) Teijk
where X4k defines the score for the ith subject-in.the jth
group on the kth trial; sis the overal population mean; oj_and

gk are the effécts of the jth treatment and the kth occasion,
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respectively; "i(3) is a conétant_relating the ith subject with
‘the jth ‘treatment group;-apjk is the interaction of the jth
group with the kth occasion; pﬁﬁ(j) is the ‘interaction’ of

occasion k and subject i within j; and €55k is the random error

in the system. Furthermore, these parameters are subject to the

following constraints:

fa, = Lg Lag Tag. 0,

= L = = Ipm ., .
PRI S R LI aae LS )
where i=1,...,N; j=1,...,P; k=1,...,0Q

Assumptions of Repeated Measures ANOVA

The specific assumptions underlying the analysis of
repeated measures data by analysis of variance are as follows:
1. The populations must be multivariately normally distfibuted.
2. The populatioh variances must be equal.

3. (a) The magnitudes of the covariances within a group must be
equal. ‘

(b) The ﬁagnitudes of the covariances between each grouping
factor must be equal.

Assumption of normality. The first assumption underlying

an analysis of wvariance 1is that the populations must be
distributed as multivariately normal. However, as tests for
multivariate normality are few and'somewhat complex 1in nature
(see Gnanadesikan, p. 151-195), the less stringent assumption of
univariate normality between the marginal distributions has been
accepted as a satisfactory condition for a valid F test. Several
early pieces of research have been done studying the effects of
non-normality on the probability of committing a Type 1 error.
Although a multitude of research regarding the effects of .non-

normality exists, only a summary of the conclusions will be
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. presented here.
Boneau- (1960), using equal sample sizes and eéual variahcesj
~found that an ANOVA is quite'rqbuét to varying levels of non-
normality. In fact, inflation in the number of Type I errors was

found only when one or more of the populations were non-normal

(i.e., exponential or rectangular) and the sample sizes were .

very small (five subjects/group). As the sampie sizes increases
to 15 subjects/group, the actual number of Type I errors was
only slightly higher than the nominal value. Scheffe (1959) has
pfoven mathematically that the robustness of the ANOVA F<test"
increases as N becomes large with F tests being perfectly robust
with infinite sample sizes. Therefore, it appears that if the
sample sizes and variances are equal, the F test is quite. robust
to violations of the normality assumption with the robustness
.increasing és N increases.

When non-normality is combined with other factors ‘such as
uneqgual variances and/or covariances the resﬁlts are different.
Several investigators have stated that ANOVA is fairly robust to
departures from normality and equality of wvariances (e.g.,
Gaito, 1973; Wilson & Lange, 1972), but Bradley (1980)'showed.
that the combination of these two factors severely affects the
Type 1 error rate. Bradley, attempting to simulate real-life
data, found that under varying levels of unequal sample sizes,
non-normality and variance ratios, 25% of the situations failed
to produce a reasonable F level when N was 1less than 100. He
found that the sample size needed for robustness increased as
the level of significance decreases. More specific conditions

and their effects on the robustness of the test are discussed in
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the article.

Nonfnormaiity- when combined-withYCOVariance heterogeneity
has the effect of inflating the‘Type I error rate of the withinf
subjects main effect, especially when‘using multivariate tesfs
-(Mendoza, Toothaker & Nicewander, 1974; Rogan, Keselman &
Mendoza, 1979). However, when the effect of interest  was- the"
within-subjects 1interaction, the- actuél‘ Type I érror rate
underestimated the nominal level of significance. Thus, when
analyzing within-subjects effects from non-normal . data
displaying heterogeneous covariances, the effect ‘being tested
must be considered.

Homogeneity of variances. An early study by Hsu (1938)

showed that the t-test is robust to inequality of variance if
the  sample sizes are equal. However, the actual probability of
committing a Type I error moves away from the nominal 1level of
significance as the ratio between the variances and/or the
degree of inequality between sample sizes increase (Hsu, 1938;
Scheffe, 1959). More specifically, when the smaller variance is
associated with the larger population, an inflation in the Type
I error rate occurs while in the situation where the larger
population has the larger variance, the actual - alpha
underestimates the nominal level. Collier, Baker, Mandeville and
Hayes (1967), in a Monte Carlo study, found that there were no
extreme departures from the nominal alpha 1levels if the
covariances and sample sizes were equal and any inflation which
did occur decreased as the sample size increased. |

As with the assumption of normélity, the F test 1is quite

robust to violations of the homogeneous variances assumption
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with the degree of robustness increasing-with increases_;in-‘the
sample . size. However, as Bradley ”(1980).,displayéd, the
interaétive effects of the violatidns.of the‘various.assumpfions*
can have -severe effects on thebType I error rate,:and the fact
that the Sample sizes are equal is not suffiqient reason to
assume robustness of the ANOVA;

Homogeneity of covariances. The final two -assumptions can

be represented by the Q X Q population varfance—covariance

matrix of the form:

B 0‘2 po‘z . . . po" p . p

po‘z 02 L] . . poz p 1 . . L] p
A R RO
002 po2 + + + o2 op -+ 1]

Defining the population variance-covariance matrix for each
level of P as Zj, the above matrix must be common to all levels

of P (i.e., £j= £, j=1,...,P) in the p x q design. A matrix of
the above form is said to have the properties: of "compound
symmetry" or "uniformity" (Geisser, 1963) or M"multisample
sphericity"” (Huynh, 1978). Studies in motor learning in which a
subject 1is tested on many trials over time on a task, in most
cases, do not adhere to the equality of covariance assumptions.
It 1is not unlikely to have higher correlations between adjacent
trials with thé magnitude of the correlations decreasing as the
trials become farther apart (Davidson, 1972; Greenwald, 1976;
Lana & Lubin, 1963; Wilson, 1975). The guestion remains . as to
the effect on the validity of the ANOVA when one or mofe of the

above assumptions are violated. This study is primarily

concerned with the effect of the the violations of these
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assumptions .and, therefore, the remainder of. the literature
review .deals almost. . exclusively with variance-covariance

heterogeneity problems.

Heterogenity of Covariances: Definition and Measurement.

A measure of covariance heterogeneity. Box (1954b)- in.

studying, the effects of unéqual covariances on a -one-way test
for differences in treatments found that the ratio, SST/S%IﬂHN'
has an approximate F distribution with degrees of freedom equal. -

to (g-1)e and (g-1)(p-1)e, where e is defined as
- 2 (=" - 2 -— A 2 - 2 2 .2
€ = g (dtt ¢..)%2/(qg ‘1)[%:%61:] Zk%:di. +k ot I

and Ett is the meén of the column variances, o5 is~the‘meén of
“the ith row and ¢,, 1s the mean of all the elémenté in - the
population covariance matrix.

Geisser and Greenhouse (1958), in extending Box's findings,
showed that e must 1lie between 1/(g-1) and 1. If the variances
aré homogeneous and the covariances are homogéneous, e=1.
Extreme degrees of heterogeneity result in ¢ having a value of
1/(g-1). Under the condition of complete hombgeneity.amongSt the
variances and covariances (e=1) the degrée of freedom for the
critical F are (g-1),(n-1)(g-1), while when e=1/(g-1) the test
statistic for significance is F[1,(n-1)]. As 1is obvious, the
former F value is less stringent than the latter, therefore, it
is called a "liberal" test. while the latter critical F value is

greater resulting in a "conservative" test.

Applying Box's results from a one-way classification to the
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two—wéy classification (i.e;, a grouping factOr’exists)'Geiéser
and Greenhouse (1958) found that the adjusted’degrees of freedom
corresponding to the test for significance between tréatments :
(MST/MS ) and for interactions (MS /MS ) to be (g-1)e,

SwGT \ GxT SwGT
p(n-1)(g-1)e and (p-1)(g-1)e, p(n-1)(g-1)e, respectively. The-

upper and lower bounds - for e in‘ the two'Way classification . -

remain at 1 and 1/(g-1), thus facilitating the calculation of
the liberal and conservative critical F values.

Compound symmetry and circularity. In a Groups by Trials

.repeated mesures design three test statistics (F ratios) .are
calculated by the ANOVA: §5=M§3/MSSWG, a test for differences
in groups; FT=MST/MSSWGP a test for differences between trials;
and FGT=MSGXT/MSSWGT , a test for interaction. All thesé.ratios‘
are distributed as F with appropriate degrees of freedom if
compound symmetry exists in the variance-covariance matrix (with

the exception of MSG/MS which is not dependent upon such a

SwG
restriction). Similarly, if there is no grouping factor (i.e., a
one-way classification), the test statistic for differences 1in

treatments is given by F =MST/MS F has an F distribution

WITHIN °
if the compund symmetry assumption is satisfied.

Work by Rouanet and Lepine (1970) and Huynh and Feldt
(1970) has shown that the assumption of uniformity or symmetry
of the variance-covariance matrices need not necessarily be met
for the F ratio to be legitimate. Given g trials 1in a one-way
classification, a sufficient condition for an exact F test is
when C'£C=az%q_1) , where Z.is the population variance-

covariance matrix, I 1is the identity matrix and C is a (g-1)-

dimensional orthonormal contrast matrix (Huynh & Feldt, 1970;
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ROuéheﬁ and ﬁepine, 1970). Both sets ofvauthors, by diffegent
methods, show that if this condition is métl (the condition is
definéd és "circularity") the«Box—Geisser—Greenhouéé correctioﬁ
factor € is eqgual to one;-Extending this idea, it_ follows that
if the symmetry assumption is satisfied then so. is the
circularity assumption. However, it doesvnot'necessarily foll¢w
that circularity implies symmetry of the Qariance—covariance
matrix (Rouanet & Lepine, 1970). It is obvious that éircularity
is a viess stringent‘ requirement necessary to obtéin valid F
ratios by analysis of variance.

In a two-way classification (a between-groups factor

exists) the condition which must be satisfied is: C't C=¢?I,

p
p=1,...P (Huynh & Feldt, 1970). This implies that the condition
of circularity, as described above, exists.for each of the P
groups and that the value of C'IC results in the same value of
the scalar, ¢? , for each group;

The primary difference between the results of'Huynh and
Feldt and those of Rouanet and Lepine is that the first set of
authors deal only Qith the circularity conditions for the
overall F test while Rouanet and Lepine consider both overall
and partial F tests. Rouanet and Lepine showed that certain
partial comparisons are valid even if the overall circularity
condition 1is not satisfied. The example given by Rouanet and
Lepine is based upon a four by two classification with repeated
measures on both factors (i.e., eight treatments). They define
the o§erail.comparison (7 df) as well as three possible partial
comparisons based upon the two factors (3 and 1 df) and the

interaction (3 df).
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Two methods .have been suggested_‘fér ‘testing ,,partiél
comparisons: (1) using an error term . based upon the 
corresponding éum of Squares‘as,the‘.effect being tested. Fbrv
example, the denominator for the test of a éompariSOn based on
factor A wouid be Subjects within A. The corresponding F . ratio .
is designated as F'. (2) Using an error term based upon the
overall sum. of sqﬁares (i,e., ‘the sum of the three sﬁm. of
squares, SSg,pn, SSgyg » SSsyap ). This ratio is called F".

Authors differ in their,opinion as,tolwhiqh is the proper
error term to use. Many texts favor the wus of ‘F"‘ only while
others state that F' should be used in all cases (e.g., Gaito &
Turner; 1963). Since the degrees of freedom are-71arger in the
error term for F" than'fdr F', it would seem that F" yields a
more powerful test. However, ~satisfying the circularity
assumptioh for F" is more difficplt than for F'. If the overall
circularity assumption is satisfied (F" is valid), then any of
the partial comparisons (F') are also valid. However, the
opposite does not apply. The assumption for F' is less stringent
than for F" and becomes weaker as the degrees of freedom in the
error term decrease. Furthermore, even the stricter condition of
overgll circularity is less rigorous than the classical symmetry
assumption, |

As the F test is not valid if circularity assumptions are
not met, it is necessary to be able to test for <circularity.
Huynh and Feldt (1970) provide a test for overall circularity
based on the Box test (1950) and Mauchly's criterion W (1940).
The statistics calculated are similar to those in testing for

symmetry in the variance-covariance matrices. Rouanet and Lepine
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(1970) adopt a multidimensional approach"in_ 'testing_ for
ciréularity based  upon an adaptation ofqude;son's }sphericitij
test' (1958, p.263). Although Rouanéﬁ and Lepine do not give a
test when there are p between-level factors 6r groups, Box's
(1950) test could be used to tesf C'ZpC=3’I, p=1,...,P. If the
null hypothesis is not rejected, Andersons's test (1958) could

subSequently be employed.

Covariance Heterogeneity and Type 1 Error Rates

Evidence of Type I error inflation. Several investigators

(e.g., Box, 1954a,b; Collier; Baker, Mandeville & AHayes, 1967;
Gaito, 1961; Geisser and Greenhouse, 1958; Lana & Lubin, 1963)
have discussed the effect of covariance heterogeneity upon the
Type I error rate. Kogan (1948) was the first to postulate that
when the trials were positively intercorrelated the subsequent F
test for differences in the trials would be liberal. Box (1954b)
ihvestigated the situation where adjacent trials had
correlations egqual to zero. He found that the probability of
obtaining a significant»p-value increased as the correlations
increased from 0 to #.40. As the magnitude of the correlation
increases the value of ¢ decreases. When r=0, ¢=1: with 1little
correlation (r=.20), €=.9507 and a correlation of .40 resulted
in ¢ equalling .8033., The «corresponding negative correlations
resulted in epsilon values of .9640 and .8862. Negative
correlations have less‘of an effect on the Type 1 error rate
than do their positive counterparts. Box concluded that as the
value of ¢ decreased the probability of falsely rejecting the

null‘ hypothesis increased. Gaito (1973) calculated epsilon
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values for correlations gréater " than .40 for a covarianée
structure similar to that of Box (1954b)gahd.found that epsilon .
' decreased quite rapidly as the correlation Aincreased '(e.g.,'
r=.60, ¢=.5977; r=.80, ¢=.4009; r=.90, ¢=.3189). He found the
‘Type I.errbr raté incfeased similarly, with a correlation of
+.90 resulting in an actual probability of'making a Type 'I error
of .16 at the .05 level of significance.

Collier, Baker, Mandevillevand Hayes (1967)'studied<several
very simple covariance matrices having high adjacent frial
correlations with the magnitudes of the,cbrrélatiohé ‘decreasing
as - the vtrials become .farther apart. Using only four trials and
correlations ranging from .80 to .20, they found the p-levels to
be about twice as large as the expected .05 and three to five
times as large at the .01 level of significance. It is quite
possible that many studies have more than four trials and the
subseguent error rate could be much higher than those reported
by Collier et al., (1967). Schutz and Gessaroli (1980) wused a
correlation matrix with a similar magnitude and pattern of
correlations but had data for each of 36 trials. ‘Their Monte
Carlo study resulted 1in a Type I error rate of .17 at the .10
-level, .12 at an alpha of .05 and .05 at the .01 level - a
degree of inflation greater than that of Collier et al., (13967).
This is consistent with results of Box (1954b) who discovered
that the value of epsilon decreases inversely with the number of
trials.

Wilson (1975), in a simulation study based on each
"subject" having 10 trials, used an arbitrary correlation matrix

with the correlations ranging from 0 to 0.98. The Type I -error



rate was consistent with the.ihigh: degréev of covarianée_
" heterogeneity and moderate number of frials. At the 5% level of .
significance the actual Type I error~fate was over 20% and at’
the 1% level it was about 13%. |

Traditional adjustments in the degrees of freedom.

Several methods have -beén.suggested to deal with the p;oblehs
produced by covariance hetefogenéity: éome~‘are methodoiigical;
some focus on the choice of statistical tést, and others try and
réduce the bias in the F ratio by altering the degrees of"
freedom. | :
Greenhouse and Geisser (1959) based on the previous work of
Geiéser and Greenhouse (1958) and Box (1954b5 proposed a ﬁhree
step procedure in analyzing repeated measufes experiments. They
‘suggested first doing a conservative F-tést. This involves‘using
the lower bound of epsilon, 1/(g-1), where q is the number of
trials, thereby making the adjusted degrees‘bf freedom 1 and (N-
1) d.f. for the test of a trials effect. In the groups by trials
design the conservative test for an interaction effect would be
distributed as F with 1 and p(n-1) degrees of freedom, where P
is the number of groups and n is the humber of subjects under
each level of p. If this proved significant, the test would be. .
finished. 1If, however, the null hypothesis was not rejected,
then an F test based on the conventional degrees of freedom
(e=1) should be done. Here the degrees of freedom cofresponding
to the tests for a trials effect and group by trials interaction
would be (q-1),(q-1)(n-1) and (q-1),p(q-1)(n-1), respectively.
If the F ratio is non-significant the testing is finished. If

the situation arises where the conservative test proves non-
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'significant and. the  conventional test significant, then.an
attempt must be made to estimate e. The exact wvalue of ¢ would

give the actual distribution of the F ratio.

Studies usinge . As is ob§ious from the earlier equation
defining epsilon, e can be calculated_ only if the pépulation
vériance—covariance matrix is known. In actual expebimental.daté\
the.Apopulation values are never known.'GeiSéer and Greenhouse .
calculated the sample estimate (&) of ¢ in the same manner. as
the original eqguation, with . the  population variances and
covariances being substituted by theb-corresponding 'sample
statistics. The degreeé of freedom of the critical F are then
reduced using 2 rather than e.

Several studies have investigated the effect of
using & instead of ¢ in controlling for Type I errors. Collier
et al., (1967) found that, in general, e.was a good estimate of
-epsilon. However, ¢ is a conservative estimate of ¢ when the
population wvalue 1is near one resulting iﬁ a somewhat
conservative test of the null hypothesis. ‘The sampling
distribution of ¢ is negatively skewed at its upper 1limit but:
becomes 1less variable and less biased as the populatioﬁ value
" decreases (Collier, Baker, Mandeville & Hayes, 1967; Mendoza,
Toothaker & Nicewander, 1974; Rogan, Keselman and Mendoza, 1979;
Stoloff, 1970; Wilson, 1975). Stoloff (1970) reported data which
indicated that, as the sample size increases, the test
using &€ to adjust the degrees of freedom results in the
empirical Type 1 error rate 1is <closer to the nominal rate
when ¢ is approximately one. The difference in Type 1 errors

using ¢ and ¢ decreases as the sample size increases and
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‘as evdecreases (Coliier et gl.,' 1967; Stoloff,. 1970).. An.
'ihteresting aspect of Stoloff's study is how ¢ and é react when
the number of trials increased. He found that as the‘.tfials
increased, the magnitude of, the Type I errors ‘increased
when ¢ was used as the correction factor. HerVer, when the
dégfees of freedom were reduced by @ , the probability of making
Type 1 errors decreased. This was cpnsistent under varying'
levels of e. It éppears that the sample estimate of epsilén
controls the Type I error rate better than the population wvalue
as the number of trials increase. As the maximum nuﬁber of
trials used was five, further investigation should be undertaken
to see how conservative the test using ¢ becomes as the levels
of the repeated factor increase to a much higher degree.

Modifications of ¢ : € _and ¢ . The fact that the value of

epsilon based upon sample data 1is negatively biased at high
levels of e caused.Huynh and Feldt (1976) to develop a new
 statistic to édjust the degrees of freedom in the F ratio. This
estimator, € , eliminates most of the negative bias in the test
for significance when e.is used. They define ¢ as:
¢ = [n(k-1)e-21/(k=1)[n-1-(k=1)¢]

for the one-way classification with k trials and, for the groups
by trials design:

¢ = [N(k-1)é-2]1/(k=-1)[N-g-(k-1)e],
where N 1is the total number of subjects and g is the number of
groups. In the latter design, ¢ is calculated by using the
pocled estimates of the sample variance-covariance matrices for
each of the g groups. This, of course, assumes that all the

individual population variance-covariance matrices are equal for
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all the _groupé. bHuynh-(1978) dgals with the case when this is
not true. Huynh and Feldt (1976) note that for any values of n
énd k, ¢ is always greater than e, with this difference
decreasing as n increéses. This formula for ¢ allows it to have
a value greater than one when theré is a high degree of
homogeneity in the matrix.‘In this cése, the upper limit‘ is
exceeded. Therefore, ¢ is eguated b'to one - if thé .actual
calculation of ¢ is greater than one. Huynh and Feldt (1976), in
a Monte Carlo study comparing ¢ and ¢ in controlling for Type I
errors under varying levels of ¢ (.363<¢<1.000) . found that, in
general, ¢ is the better estimator when e is greater  than 0.75
while ¢ is - superior at higher degrees of heterogeheity. They
also discovered that both tests behave differently depending
upon the number of groups'and éubjects. They state, "It can be
seeh that the test based on ¢ is more satisfactory "when the
parameter is relatively low or when the number of blocks or
subjecté is fairly large. The test based on ¢, on the other
.hand, behaves very well at the nominal ten or five per cent
levels in all of the situations considered. At the nominal 2.5
and 1 percent levels it gives somewhat more relaxed, but
reasonably adeguate, control over Type 1 error whenever the
covariance matrix 1is not extremely heterogeneous. This test 1is
less dependent on the number of blocks, and is fairly good even
with a block size as small as twice the number of treatment

levels." (p. 80)

GA and IGA tests. Huynh (1978) extended the work of Huynh

and Feldt (1876) to consider the case when the various

population matrices -are heterogeneous. Two tests, the General
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Approximate test (GA test) ‘and the Improvéd General - Appfoximate.
test (IGA test) were developed to deai with this‘situation.‘The‘
GA and IGA also have tﬁeiadded flexibility of being suitable for
tests with unequal sample sizes. 'Huynh (1978), comparing ali
four tests (e, ¢, GA and IGA) in a situation where the matrices
almost exhibited multisample sphericity . found. that the GA
and € approximate tests always err on the liberal side. However,'
the IGA and e tests yielded better overall control of the Type 1
error rate. Huynh then compared the IGA and ¢ tests under éleven
different haterogeneity conditions‘with the result that the IGA
test tended to function better than the approximatioh,
altHough both were slightly liberal. However, most difﬁerences”
were at smaller levels of significance or when the sample sizes
were gquite large (N=30). Huynh concludes that althouéh the IGA
test is more accurate and flaxible, it 1s computationally more
complex and, 1in many situations, the & approximate procedure
functions as well as the IGA test and, thereforé is more
desirable.

Multivariate technigues. An alternative to the various

correction techniques applied when repeated measures data 1is
anlayzed by an analysis of variance is a multivariate analysis
of variance (MANOVA). Multivariate analysis of variance, which
reguires no assumptions‘of within-group variance or covariance
“homogeneity, has been frequently recommended as the appropriate
technique for all repeated measures designs (Davidson, 1972;
Morrow & Frankiewicz, 1979; Schutz, 1978).

Among the basic assumptions in multivariate analysis of

variance are: - (a) the data are distributed as multivariate
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normal, and . (b) the group covariahcevmat;ices all.come . from. a.
Single lpopulation covariance matrix. However, while MANOVA has
less stringent assumptions,' vination$ may | have ’serious
conseguences on‘the Type I error rate,.

The  effects of 'violating the assumption of normality are
generally not severe. Mardia (1971) and Ito (1969) found ‘that -
the multivariate tests are- guite robust‘ to depaftures from
multivariate normality, especially if the sample ' sizes ~are
equal. Studies investigating the assumption of equél covariance:
matrices between groups found that the Type I error rate is
controlled under moderate degrees of heterogeneity if the sample
sizes are equal (Holloway & Dunn, 1967; Hakstian, ﬁoed & Lind,
1979; Ito & Schull, 1964; Rogan, .Keselman & 'Mendoza, 1979).
Holloway 'and Dunn, however, found that sample size equality does
nbt necessarily ensure control of the number .of Type I errors
committed as the ratio of thg sémple size to the number of
dependent variables -and the degree of covariance heterogeneity
are also important. Using a ratio of 10:1 betweeh the wvariances
in the two covariance matrices, Holloway and Dunn discovered
that equal sample sizes of 25 were sufficient when only two or
three variates were used but, for 10 variates, the multivariate
test, Hotelling's T?, was not robust until the sample reached
100. In relating these results to actual behavioral data, it
must be remembered that a realistic extreme for the ratio
between population variances is only 2.5 (Hakstian, Roed & Lind,
1979). Hakstian et al., (1979), using variance scale factors Up-
‘to 2.5 showed that the T? procedure was relatively robust to

violations in the <covariance assumption, even when the ratio
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between'subjects and dependent variables  was ‘as . low - és 3:1.
While the test of main effects abpear’to be'félatiQély robust,
other ~multivariate procedures testing for significant .
interactions did not show the séme results.

In studying the effects of covariance heterogéneity»(with
equal sample size, ratio of subjects to YVariates approximately
4:1) on the tests fér significént'interactions, Rogan,:Keselmén
and Mendoza (1979) discovered an inflation in the number of Type
I errors. Theée increases were slight for the Pillai—Bartiett
trace'ériterion, and Wilk's likelihood_ratio'criteribn,_but wéré
much larger (as high as .070 at alpha equal to .05) when Roy's
largest root criterion was used.

When unequal sample sizes exist, the Type I . error rate
fluctuates greatly, with the .Type I error rates increasing
quickly to very unacceptable levels as the degree of
heterogeneity increases, even at small sample size ratios as low
as 2:1. In the most extreme case studied, with 10 variates, 50
subjects in one group compared to 10 in the other, and the
variances in one group scaled at 2.5 times the magnitude of the
other group, the Type I error rates were: for o=.01,
.152; for o=.05, .337 and; for o=.10, .473 (Hakstian et al.,
1979). Clearly, as the authors point out, "the T? procedurébvis
not robust in the féce of covariance matrix heterogeneity
coupled with unequal n's, even for relatively minor departures
from equality of the covariance matrices, sample sizes or both."
(p. 1261)

Overview of univariate vs multivariate tests on power. In

general, when the univariate assumptions regarding the
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covariance matrices are met; the'coﬁVentional_ univariate lANOVA‘
is more powerful thanb multivariate vtechniques (Mendozé}
Toothaker & Nicewander, 1974; Rogan et al., 1979). Of interest
is thé comparison between the power of the adjﬁsted‘ﬁnivariate
tests (e.g., €, €), the conventional univariate test and
multivariate tests under various levels of within-group and
between-group covariance matrix heterogeneity.  When all
covariance assumptions are met the conventional univariate test
is more powerful than either the adjusted univariate tests or
the multivariaﬁe tests. However, as the degree of within-group
matrix heterogeneity increases the_ multivariate tests become
more powerful 1in detecting significancé for differences .in the
main effects. Rogan et al., (1979), found that . as the wvalue
of ¢ decreased the power tof all thg feéts decreased, but the
multivariate tests decreased at a slower rate. As the dégree of
lcovariance heterogeneity 1increases the power of the adjusted
univariate tests are of concern since they are the test of
significance. It appears that when epsilon dips below .75 the
multivariate tests more often detect the differences in ‘the
means (Mendoza et al., 1974; Rogan et al., 1979). When ¢2.75 the
adjusted univariate tests are more powerful théh their
multivariate counterparts. |

Mendoza et al., (1974), found that the power of ‘detecting
small interactions was greatest for Roy's largest root criterion
but in detecting large differences, the adjusted univariate
tests were more powerful (for e<.75). Rogan et al., examined the
power of three multivariate tests for interaction and feportea

similar results as in the test for main effects, that being that
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the multivariate tests were more’powerfui that ﬁhe uniVariatew
testé. It shouid be noted, however, - that ﬁoy'svvlargest root
criterion had the greatest Type I}errof rate'undef covariance
heterogeneity and, caution must be émployed if it is to be used.

Summarizing, if all the covariance assumptions are met, the
cqnventional univariate test is the best to use in testihg for
both interactions or main effects. With moderate levels of
heterogeneity. in the covariance matrices (e2.75) the adjusted
univariate tests afe best and, generally, when e<.75 the
multivariate tests are the most powerful.

Summary. When . dealing with data - which exhibits
heterogeneity of covariances (as is common in repeated measures
behavioral data) the easiest, 'and often sufficient method of
correcting for this hetefogeneity ‘is to use the three-step
procedure as outlined by Geisser and Greenhouse (1959). However,
if a sample estimate of ¢ need be calculated to adjust the
degrees of freedom there are several choices. If ¢ is less than
.75 the best univariate statistic 1is ¢ , but if epsilon 1is
greater than .75 either ¢ or IGA approximate tests are the most
powerful yet control for the Type I error rate. Of the latter
two, the ¢ is much easier to calculate and is quite often as
good in controlling for Type I errors as the IGA test.
Multivariate tests do not depend upon the assumption of within-
group covariance homogeneity and, as such, may often be the
preferred method of analysis. They prove to be more powerful
than their univariate counterparts whep €<.75 but are weaker
above this level. Multivariate tests, however, do require that

the covariance matrices between groups come from a common



68

population matrix, an >éssumption which may not be often-
satisfied in motor behavior research.

AE-CE-VE Debate

A considerable controversy has developed in. the past tenL
years regarding which statistics (AE, CE or VE) should be used
as mesures of a subject's performance on some motor performance
task. The debate has been primarily between;those researchers
who are <concerned with the statistical and mathematical

properties of AE, CE and VE and those investigators who are moré
interested 1in the conceptual interpretation of these scores. An .
excellent review of fhis debate 1s given by Schutz (1979). While
several | researchers had previously commented on the

appropriateness of these performance measures (Burdick, 1972;
Laabs, 1973; Schmidt, 1970; Underwood, 1957; Woodworth, 1938)
the problem received serious consideration after a paper by
Schutz and Roy (1973) proved mathematically that AE is directly
related to CE and VE and, as such, can only be interpreted in
light of the latter two measures. They stated that all the
information of AE 1is found.in CE when the ratio of CE//VE is
greater than 2.0 or is in VE when CE is approximately egual to
zero. AE is a weighted combination of CE and VE
when 0<CE//VE<2.0., As the mathematical .derivatiqns, discussed
above, were based on the assumption that the raw performance
scores are normally distributed, the validity of their
conclusions decreases as the departure frém normality increases.

The use of Variable error as the optimél measure of within-
subject wvariablity was guestioned by Burdick (1972) and Schutz,

Roy and Goodman (1973) because it did not reflect the temporal
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dimension of performance errors. An alternate choice of measures
such - as the Mean  Square Successive ;_Difference,- ﬁhe‘:
Autocorrelation and the Coefficient of Temporél Variablity have’
been suggested by Burdick (1972). Schﬁtz et él., (1973)
suggestedfthat the non-normal distribution of a variance results
in a loss of power when VE is analyzed by an;ANOVA_and indicatgd,
that the autocorrelation coefficient be used és an additional
measure of intra-subject variablity. Safrit, Spray and Diewert
- (1980), in examining the theoretical distribution of VE, stated
that VE may not be normally distributed,Abut tailed to conclude
that the dist;ibution was definitely non-normal. One of the
purposes of this study is to determine if the distribution of &E
scores vcalculated frém actuai raw scores 1is non-normally
distributed. If the empirical distribution is normal, 'many of
the concerns of Schutz et al., (1973) and Safrit et al., (1980)
will not be vital in analyzing VE data by an ANOVA.

| Henry (1974) agreed with Schutz and Réy (1973) ‘on the
inadequacy of AE. While stating that CE and VE must always be
looked at when interpreting performance error, he said that, at
times, it may be necessary to use a composite écore.-Henry
suggested using E? (where E?=CE?+VE?) tto which Schutz (1974)
replied thét E? is-'still a composite score and must be
interpreted from CE and VE scores. Henry (1975), using multiple
correlations, showed that E? was better than AE since the effect
of VE 1is never excluded in E? while it may be in AE
(when CE/YVE>2.0). Schutz (1979) conceded that, if a composité
measure had to be used, .then E? is preferable to AE but it still

must be interpreted with respect to CE and VE.
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Jones (1974) suggested that AE, dot_VE,is the appropriate‘«:
error score when the criterion is changedvfor each trial of :a;
similar = task. Roy (1974), replied that gincewKR is not givén on*
every trial, the typicai movement reproduction experiment is>not-

a learning situation but a fbrgetting one.;Réy argued that VE is - .
a measure of forgetting and lack of consistency in performance
which does not require the criterion. for each trial to be
similar in order to be interpreted.

Schmidt (1975) favored the use of AE claiming that for
motor recall studies it is the preferéble dependent measure for
the following reasons: (a) the use of two dependent variables
(CE and VE) may yield different results, thereby confusing. any
interpretation of results; (b) AE is the~'traaitional heasure,
and (c) since the subject is required to minimize his error on
each trial, AE 1is what should be measured. Schutz - (1979)
responded to each of these arguements, respectively, as
such: (a) any theory should satisfy both performance dimensions
as suggested by the CE and VE scores; (b) the fact that AE has
been the traditional measure is sufficient reason to continue
using it; and (c) since the purpose of the researcher 1is to
explain performance, - not only to measure it, CE and VE must be
used in the interpretation.

In 1976, Newell stated that when one half of the subjects
have positive CE's while the other half have negative CE's, the
use of an average CE is inappropriate and AE should be used. 1In
this situation Schutz (1979) agreed with Henry (1975) in that
the absolute value of CE, |CE|, is the best measure.

The AE-CE-VE controversy then shifted from the theoretical
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-interpretations of these measures -to more statistical'éhes.;Roy'

(1976) stated that a-goqd‘mgthod of repofting- ali -three ef;orif
terms. (AE' or E, CE and VE) in studies is to analfze»all_thrée{

measures by a MANOVA éince it controls for ‘the Type IA errof”

rate. Roy provided a footnote which-indiqated that,.based on
work by Schutz and Roy, AE may be a linear composite~of.,CE aﬁd'
VE and, theréfore,-a MANOVA éould not be calculated. However, he
stated thaﬁ this rarely occurs across all subjects. Thomas :
(1977) replied that even though an absolute linear' relationship
between the three dependent variables may not exist, the préﬁlem
of multicollinearity does. Multicollinearity has the effect of

increaéing the Type I error rate (Press, 1972). Thomas suggested
analyzing VE and CE with a MANOVA and doing a separate ANOVA for
'AE or E. In replying to Thomas (1977),‘Roy (1977)'.agreed Qith
the véoncept of multicollinearity but further complicated the
issue by indicating that a high correlation may exist between CE
and VE, thereby making a test of these wvariables by a MANOVA
subject to the effects of multicollinearity. Safrit, Spray and
Diewert (1980) caution against the use of all AE, CE and VE in a
MANOVA for different reasons. An assumption in MANOVA designs is
that the joint probability vector of the random vector be
multivariately normally distributed. Safrit et gl;, showed that
CE is marginally normai, but both VE and AE may be marginally
non-normal, and concluded that until future empirical work shows
that the wviolations of these assumptions are not serious,

analyzing AE, CE ana VE by a MANOVA should be avoided. Earlier
work, however, has shown that the T? procedure is relatively

robust to multivariate non-normality (Mardia, 1971).



72

Earlier, Thomas énd'Moon'(1976) found AE'.scores‘ to have
higher reliabilities than VE and a éreater ﬁumber of significant
differences were obtained with'AE.'Thesé facts along with £héir
finding that AE appeared to be more normally distributed about
the target than VE allowed fhem to conclude that AE 'is the.best
dependent measure when conducting motor rhythm experiments.

Safrit et gi,,~(1980) in stating that.the'distributionév of
AE and VE may be non-normal caution investigators in analyzing
these dependent measures by.an ANOVA. However, the violation of
the normality assumption by itself |is no£ serious KBoneau,
1960), but when interactive with violations of other
assumptions, the Type I error rate is affected (Bradley, 1980).
Therefore, if the researcher hesitates in using an ANOVA due
solely to non-normality, he should check the other assumptions
to see 1f they are satisfied.

While the area of which dependent measure is prober to use
and report is obviously confusing, the following rule of thumb
is generally accepted. Any 1investigator who <can provide a
logical explanation as to what information AE provides is
justified in reporting it (Safrit et al., 1980).

Summary. As the wealth of literature has indicated,. the
choice o0f the dependent measure to be analyzed and interpreted
is a subject of great controversy. Much of the debate deals with
the conceptual interpretation of these measures, and thus is out
of the range of the statistician, but a great deal of
uncertainty 'surrouﬁds the distributions and effects of using
these dependent variables in an analysis of variance. Although

many of the present problems will still exist, hopefully, the
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question of the empirical distribution of VE«and‘its~ subsequent -~ . -
effect on the Type I error rate will be adeguately resolvedfat_‘

the conclusion of this study.
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