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Abstract

A mathematical model is formulated which describes the
interaction between a baroclinic current and order Rossby number
topography along a coastline. The lead term solution, 1in an
asymptotic expansion in the Rossby number, is obtained for the
pressure, density, velocity and mass transport fields. The lead
term solution is found wusing a normal mode analysis and a
Green's function technique. The solution 1is applied to the
possible topographic generation of the Sitka eddy in the north
east Pacific Ocean. The numerical calculations of the model and
the observed location, dimensions, velocities and transports of

the Sitka eddy are in very good agreement.
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I. INTRODUCTION

In the upper north east of the Pacific Ocean, a few hundred
kilometres offshore from Sitka, Alaska, there exists a mesoscale
baroclinic anticyclonic eddy (Tabata; 1982). This eddy, with
radius about 150 km and extending about 1000 metres into the
water column, seems to occur annually during the Northern
Hemisphere summer. The eddy seems to dissipate during the
winter months. Tabata(1982) has definitely documented 1its
existence during 1958, 1960 and 1961, and has provided
compelling evidence for 1its existence in other years. This
eddy, referred to as the Sitka eddy, reoccurs 1in the same
geographic location during the years it has been observed.

Analysis of the wind stress data for this region showed
that the spectral energy of the annual frequency was an order of
magnitude larger than all other frequencies bands (Bakun; 1978).
This fact, coupled to the observation that the curl of the wind
stress should generate anticyclonic motions 1in the region,
naturally lead to the attempt to correlate the Sitka eddy to
atmospheric forcing. However, it was not possible to correlate
the occurance of the Sitka eddy with the annual change 1in the
curl of the wind stress (Tabata; 1982).

Willmott and Mysak(1980) showed that a six year periodic
atmospheric forcing of the north east Pacific Ocean will
generate eddies situated, more or less, along the Alaskan
panhandle. These eddies were the result of reflections of

baroclinic Rossby waves, created by the atmospheric forcing of



the ocean, off the Alaskan-British Columbian coastline.

The Willmott and Mysak(1980) treatment was unable to
resolve two key features of the Sitka eddy. First, the Sitka
eddy occurs along that part of the Alaskan coastline which is
adjacent to British Columbia and not along the panhandle.
Second, their treatment produced many eddies whereas the
available data ‘suggested there were few. Therefore even
supposing that the Sitka eddy is atmospherically induced some
other forcing mechanism is operating to select out the observed
eddy. One obvious candidate is an interaction process between
the regional topography and the local mean flow.

This thesis .examines the possibility that the local mean
summertime current field can interact with the prominent
regional topography to produce mesoscale anticyclonic baroclinic
eddies. In order to investigate this conjecture a mathematical
model is developed for the topographic forcing of a baroclinic
current along a coastline.

The model is formulated in Chapter II. Prior to discussing
the details of the mathematical derivation, a brief description
of the oceanographic and bathymetric data for the north east
Pacific Ocean 1is given. The structure and origins of the
region's currents is described as are the principle topographic
features. A qualitaﬁive description of the Sitka eddy is also
given.

Based on this examination of the avialible data the
inviscid, stratified, steady, incompressible, Boussinesg and f-

plane equations of motion are scaled via geostrophy to ascertain



the qualitative nature of the fluid dynamics. The relevant
parameter 1is the Rossby number. The smallness of the Rossby
number is exploited by constructing the lead order solutions for
the pressure, density, velocity and mass transport fields in an
asymptotic expansion in the Rossby number. The order one
pressure field, which acts as a stream function, must conserve
potential wvorticity. Chapter II concludes with the formulation
of the appropiate boundary conditions which the solution of the
potential vorticity equation must satisfy.

Chapter II1 contains the analytical solution of the
problem. A solution is sought in which the order one pressure
field is given as the sum of the upstream stream function and a
pressure field representing the topographic mean flow
interaction. This interaction pressure field is obtained by
using a normal mode analysis described by Chao et al.; (1980).
The normal modes are found to be given by Bessel functions of
order one, with the solution found via a methqd described in
Bryan and Ripa(1978). The horizontal amplitude functions are
found using a Green's function techingue. Chapter III concludes
with the explicit formulae given for the order one pressure,
velocity, density and mass transport fields.

Chapter IV has two functions. The solution is described
when evaluated for the set of parameters that were obtained as
estimates from the data for the north east Pacific Ocean. The
results of wvarying the parameters 1is also described. In
addition *to describing the numerical changes resulting from

parameter variations, physical explanations are also given,



based on vorticity arguments.
Chapter V discusses the application of the model to

generation of the Sitka eddy. Chapter VI summarizes the work

contained in this thesis.



II. FORMULATION OF THE MATHEMATICAL MODEL

2.1 Currents And Geometry Of The North East Pacific Ocean

The motivation for creating a mathematical model for
topographically induced eddies along a coastline is the possible
application of the model in understanding the dynamics of the
Sitka eddy. It is therefore essential to have at least a
qualitative appreciation of the oceanography and bathymetry of
this region. In this section a brief survey of the physical
oceanography and geometry of the north east Pacific Ocean is
presented. Specifically, that region which is bounded by the
lines of longitude 130°W and 145°W, and the lines of latitude
53°N and 59°N. In the subsequent discussion this 1is the
geographical area referred to as 'the region'. This summary 1is
largely drawn from the work of Tabata(1982) and Bennett(1959).

Figure 1 is a bathymetric map of the north east Pacific
Ocean. 1In the region of interest, the ocean floor. can be
described as a slightly sloping abyssal plain with several
irregularly spaced seamounts. Of particular note is the
collection of seamounts in the immediate vicinity of the Pratt
seamount, located at 142°W 56°N. These seamounts have heights
on the order of 2500 metres in about 3500+ metres of water.
Toward the southeast the bottom profile becomes highly irregular
with many topographic protrusions. Their sizes however are
somewhat smaller than the collection near the Pratt seamount.

The Alaskan-British Columbian coastline, in the above
region, is more or less straight, inclined about 45° to the west

of a line of constant longitude. Northward of the region the



Alaskan coastline turns 90° to the west, giving the impression
of forming a boundary of a quarter plane region. Southeastward
of the region, the gross features of the British Columbian
coastline remain qualitatively straight.

The continental slope in this area has an interesting
characterization. In the north the shelf break occurs within
50 km and parallel to the coast. However near the 1location of
the Sitka eddy the slope region broadens giving the impression
of a horizontal protrusion of the shelf out into the deeper
ocean. Southeast of the continental slope bump, the shelf break
resumes its northern pattern. This 'bump' along the shelf break
is roughly symmetric about the normal to the coastline taken at
latitude 56°N and longitude 135°W. 1In Figure 1 the 1600 fathom
(3000 metre) contour is marked, providing a bench mark for the
extent of the continental slope bump, out to about 140°W 55°N.

Thus in the region in which the Sitka eddy occurs the
topography forms the following 1idealized picture. First the
coastline is more or less straight falling off quickly to an
abyssal. plain of about 3500 metres depth. Near Sitka, Alaska
there is a limited protrusion of the continental slope which
falls off somewhat more slowly to the abyssal plain below than
the surrounding continental shelf. 1If the 3000 metre contour is
taken as the extent of the horizontal protrusion then the
maximum extent of this topographic feature is nearly out to the
Pratt seamont. The second bronounced topographic feature is the
collection of seamounts in the immediate area of the Pratt

seamount with the surrounding terrain in comparison appearing



relatively flat.

The circulation along the British Columbian and Alaskan
coast near the south of the above region consists of a broad
weak poléward current with a speed on the order of 10 cm s-'.
This current has its origins in the eastward flowing Sub-Arctic
Polar current of the Pacific Ocean situated on about the ©50°N
line of latitude. Upon reaching the continental shelf of North
America this current bifurcates into a poleward and equatorward
component. The poleward flowing current being the coastal
current mentioned above. |

This northward flow continues until it is directed
southwestward by the Alaskan shelf where it forms itself into a
narrow coastal jet known as the Alaskan Stream. Thomson(1972)
has sthn that this streaming is dynamically similiar to the
intensification of western boundary currents.

The vertical structure of the northward flowing coastal
current varies as the distance from the coastline increases.
Bennett(1959) classified the velocity profiles into four
categories. Figure 2, taken from Bennett's paper, shows that
the near coastal current (group 4) 1is strongly attenuated by
depth, with a maximum surface speed of about 10 cm s-'. Group 2
currehts, situated to the immediate west of the group 4 currents
also montonically decay with depth although the attenuation is
not as severe as with the group 4 currents. Typically, group 2
currents have speeds on the order of 5 cm s-1'.

Group 3 currents, located more or less westward of the

group 2 currents have smaller speeds than either group 4 or



group 3 currents. Typically they have magnitudes on the order
of 3 cm s, One interesting feature of the contour between
group 2 and group 3 currents is the suggestion of a tongue of
group 2 currents which protrudes northward into a nominally
group 3 regime. This protrusion lies precisely over the Pratt
seamount, a significant orographic feature of the regional
bathymetry.

Figure 2 also gives the qualitative impression that most of
the trangport occurs in the wupper layers of the ocean.
Calculations by Tabata(1982) confirm this by reporting that
about 75 percent Qf the transport occurs in the first 500 metres
of ocean.

Tabata's(1982) analysis of geopotential anomaly data for
this region for the years 1954 to 1967 has shown the existence
of a mesoscale baroclinic anticyclonic eddy, situated at about
57°N 138°W, referred to as the Sitka eddy. This location would
place the Sitka eddy slightly to the east and north of the Pratt
.seamount, and slightly to the west and north of the continental
shelf bump. This location is shown in Figure 1.

The Sitka eddy is observed to have a typical radius of
between 200 and 300 km. Obseved surface speeds range from
15 cm s°' to 37 cms -' at 50 km from the centre of the eddy.
Estimates of the surface speed, based on drifting-buoy
trajectories, go as high as 110 cm s°' 70 km from the eddy
centre. The depth to which the eddy occurs is typically about
1000 metres, although evidence supports estimates up to 2000

metres.



The Sitka eddy seems to be most detectable during the
Northern Hemisphere sunmer and 1less so in the winter,
Tabata(1982) has identified it during the late spring through
late summer of the years 1958, 1960 and 1961. 1In other years,
during the same season, Tabata's analysis has shown that there
is some ambiguity in attempting to resolve the Sitka eddy.
However, within some of these years, Tabata's. maps of the
geopotential anomaly show a marked clockwise flow at the
location of the Sitka eddy. Even still, significant variability
has been observed in the region's currents. Interestingly,
Bennett(1959) has a figure of the transport for 1955 which
clearly igdicates a strong cyclonic eddy in the region where the
Sitka eddy normally occurs. On balance, the evidence 1indicates
that the Sitka eddy is a more or less annual event occuring in
the late spring through to late summer.

The relatively stable geographical location of thé Sitka
eddy naturally suggests that topography may be an important
forcing mechanism in its generation and maintainance. With this
possibility in mind this thesis examines the following
conjecture: that the mean flow typically observed in this region
during the spring and summer can interact with the prominent
regional topography to produce mesoscale anticyclonic eddies.

2.2 The Basic Equations Of Motion And Mass

This section is concerned with formulating the appropriate
mathematical model for topographically induced baroclinic
eddies. The basic equations for momentum and mass are

nondimensionalized with macro scales in order to ascertain the
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gualitative nature of the fluid dynamicé.

The subseqguent analysis occurs on a f-plane. In other
words a right-handed wuniformly rotating cartesian coordinate
system. If the ordered triple (x*,y*,z*) is a point 1in this
space, then positive x* points northward, positive y* points
westward and positive z* points upward. The 1location of the
origin of this coordinate sytem is motivated by the geometry of
the problem discussed in the last section. The plane y* = 0 |is
taken to be the coastline. The plane z* = 0 is taken as the
abyssal plain described last section. The origin 1is taken as
the point on the intersection of the above two planes
corresponding to latitude 55°N. The angular velocity of the f-
plane is given by (0,0,f/2) where £=2|2|sin(6) is the Coriolos
parameter, |Q| the magnitude of the angular velocity of the
Earth's rotation and 6 the latitude.

Let (u*,v*,w*), p*, p* be the velocity, preésure and
density fields respectively. The steady, inviscid,
incompressible, stratified, Boussinesg and f-plane
dimensionalized equations of motion can be written (LeBlond and

Mysak; 1978) as:

u*a*u* + V*a*u* + w*a*u* - fv* = _po-1a*p*
1 2 3 1
u*a*v* + v*a*v* + w*a*v* + fu* = —po' 1a*p*
1 2 3 2
po(u*a*w* -+ v*a*w* + w*a*v*) -+ gp* = —a*p*
1 2 3 3
o*u* + 9*v* + J*w* = 0

1 2 3
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UkBXpR + VRBXpR + wrI¥pY = 0.

The above equations have been written with the following
conventions. The superscript '*' 1implies that the wvariable

immediately preceeding it is dimensional. The quantities 9*, 8%
. 1 2

and 09* are the first partial derivatives with respect to the
3

dimensionalized variables x*, y* and z* respectively. The
Boussinesq approximation has been implemented through defining
po as a constant reference density. However p* is defined as a
dimensionalized variable density.

The first three equations are the momentum equations in the
x*, y* and =z* directions respectively. The fourth and fifth
equations express the fact the flow is incompressible. Since
the flow is inhomogeneous but incompressible the usual
requirement that the velocity field 'is solenoidél (the fourth
eguation) 1is supplemented by the fifth equétion which expresses
the fact that the density of a fluid particle remains constant
following its motion,

In order to assess the importance of each term in the above
eqguations it 1is appropriate to nondimensionalize each variable
utilizing qualitative geophysical fluid dynamic balances. For
example, the ocean to lowest order is at rest and in hydrostatic
balance. .Therefore the mean pressure and density fields are in
hydrostatic equilibrium, which suggests an appropriate scaling

for them. Large scale motions, such as baroclinic eddies, are
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primarily in geostrophic balance. It follows that the dynamic
pressure field associated with fluid motion should be
nondimensionalized using geostrophic scaling. Associated with
the dynamic pressure field is a dynamic density field which is
scaled so that these two fields are in hydrostatic balance.

The horizontal coordinates x* and y* are scaled by L, a
characteristic length obtained from geometrical considerations,
discussed later in this section. The vertical coordinate z* is
scaled by the mean ocean depth, say H. The horizontal velocity
field u* and v* is scaled with a characteristic speed U which is
obtained from upstream flow conditions.

The scaling for the vertical velocity is deduced from the
fact that the velocity field is nondivergent. Suppose for the
moment that all three terms in V*.(u*,v*,w*)=0 are the same
order of magnitude. (Here V* is the dimensionalized Laplacian.)
It follows that w* should be scaled with UHL-'. However it
turns out that this is an over estimate of the order of
magnitude of the vertical velocity. Since the horizontal
velocity field is scaled via geostrophy the resulting flow is
essentially horizontally nondivergent. This implies to a first
approximation that there is no vertical shear in the vertical
velocity. So that if ever w*=0 then throughout the water column
w*=0, For guasi-geostrophic dynamics a better estimate of w* is
U2H(fL2)- ',

The nondimensional (unasterisked) variables are defined as

follows:
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(x*,y*) = L(x,y), z* = Hz

(u*,v*) = U(u,v), w* = eUHL 'w
p* = polp(z) + eFp(x,y,z)]

P* = pogHp(z) + pofULP(x,y,z) ,

with e defined as the Rossby number U(fL)-' and F the squared

ratio of the 1length scale to the external Rossby deformation

radius, ie. LZ?f2/(gH). The terms p(z) and p(z) are the mean
density and pressure fields respectively, which depend only the
vertical coordinate. These two fields are 1in hydrostatic
balance, are flow independent and must be obtained from
observation. When the above scaled variables are substituted

into the eqguations of motion, they result in:

I
o

e(udqu + vd,u + ewdzu) - v + 3,p =

e(ud,v + vd,v + ewd,v) + u + 3,p = 0

€262(ud,w + vO,w + ewdsw) + 9;p =0

1 +
(= B <}

311) + azv + €a3w =

Ua1p + Vazp + ewa3p = S(Z)w '

with the quantities 8,, 9, and 3; defined as the first partials
with respect to x, y and z respectively.

The parameter 6 is the aspect ratio defined as HL" ', The
aspect ratio is thought of as estimating the ratio of the length
scale associated with vertical motions to the length scale

associated with horizontal motions. If the aspect ratio is
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small compared to unity then the flow is primarily horizontal.

The Rossby number ¢ measures the degree to which the
nonlinearity in the equations of motion force a departure from
strict geostrophy. The hydrostatic approximation requires that
€d << O0(1). Later in this section it is shown that & = 0O(e)
with € << 0(1).

The parameter F has the physical interpetation of measuring
the contribution to the total potential vorticity of the
vorticity associated with barotropic isobaric deflections
compared to the relative Vorticity 0,V - 9,u . Thus if
F << 0(1), then the sea surface can be approximated as a rigid
lid. However if F = O(1) then the vorticity associated with sea
surface deformation is not a negligible aspect of the potential
vorticity. Later in this section it shown that F = O(e).

The quantity S(z) is defined

S(z) = ‘F-1D3;

with D; the ordinary derivative with respect to z. Willmott and
Mysak(1980) calculated a least squares fit of a Brunt-Vaisala
frequency typically observed 1in the north east Pacific Ocean,

with an exponential of the form,
[N*(z*)]2 = Ny2exp[y*(2*-H)] .

This expression has been written in dimensional form, with z*=0

corresponding to the ocean floor in the absence of topography
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and z*=H to the ocean surface. The 1least sguares procedure
resulted in Ny = ,011045 s-' and v* = (254.51)-!' m-',
Since the definition of the Boussinesg Brunt-Vaisala

frequency is

[N*(z*)]2 = -g(Hpo) "D3lpop(2)]

it follows that

Dyp(z) = =No?Hg-'exply(z-1)]
where y = y*H, and consequently that

S(z) = [(NoH)/(fL)]2exply(z-1)] .

It is clear that S(z) can be interpeted as a nondimensional
Brunt-Vaisala freguency. The parameter (NoH) /(£fL) is a
stratification or Burger number. It measures the ratio of the
internal Rossby radius to the geometric length scale L. In the
situation where S << O(1) the motion is barotropic implying that
the effects of stratification are negligible. On the other hand
when S >> O(1) baroclinicity is a dominant feature of the fluid
dynamics.

In section one of this chapter a general discussion of the
bathymetric and oceanographic data in this region was presented.

Based on this discussion it is now possible to make a reasonable
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gualitative estimate of the parameters €, 6, F and
so = [(NoH)/(fL)]2.

The depth of the abssyal plain is on the order of 3500
metres. This is chosen to be H. The distance between the
coastline and the Pratt seamount is on the order of 400 knm.
This chosen to be L. The magnitude of Earth's rotation vector
is 7.292.10°% s-', so that at 55°N the Coriolos parameter is
1.2.10°% s- 1, Tébata(1982) reported currents as.high as 1 ms™ ',
so we take U= 1 ms" ', The value for N, is taken to be that
calculated by Willmott and Mysak(1980).

With this scaling the nondimensional parameters are:
F=0.07, €=0.02, 6=0.01 and s,=0.65. Consequently it is expected
that the dynamics of the region 1is governed by s, = 0(1),
6§ = 0(e), F = 0(e) and that € << 0(1).

This parameter regime implies that the effects of wvortex
tube stretching is an important source of vorticity in fhe water
column. However, the barotropic response of the ocean, which is
manifested in a sea surface slope is negligible. Therefore the
ocean surface can be approximated as a rigid 1id. The aspect
ratio appears to be at most the same order of magnitude as the
Rossby number. Conseguently a hydrostatic balance between the
pressure and density fields holds to a remarkably good
approximation.

Figure 3 is a graph of the nondimensional Brunt-Vaisala
frequency S(z) vs. z. The largest gradient in S(z) occurs in
the top 25% of ocean, implying that in the upper regions of the

water column the rest state density varies rapidly. 1In the



17

interior of the water column (2 = 0 to z = .5) s(z) = 0, S0
that the density is approximately uniform.

Figure 4 1is a graph of the nondimensional density field

p vs. z. The scale density p, is chosen to be an average

surface density, resulting in p(0) = 1. Typical values for the
surface density in the north east Pacific Ocean (Tabata; 1982)
place po = 1025 kg m- 3, |

The density profile in Figure 4 increases about .3% in the
top 25% of ocean, consistent with the observations contained in
Tabata(1982) and Bennett(1959). 'Below z = .75 (900 metres) the
density is uniform with a wvalue of about 1.0032 times its
surface value.

2.3 Quasi-Geostrophic Potential Vorticity Equation

The relative estimates of the parameters F, §, s, and e
suggests that the significant parameter is the Rossby .number.
The smallness of e is exploited by constructing the lead terms
of a naive asymptotic expansion for u, v, w, p and p 1in the
Rossby number.

Consider a solution of the form:

v o= vi0) 4+ evih) 4 e2y(2y
w = w(o) -+ ew(1) -+ ezw(Z) o e o

P.= PO + ept!) + e2pt2) |

p = plo + ept1) 4 g2p02)
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Substitution of the above expansions in to the scaled equations

of motion implies that the 0(1) field equations are:

2,p'® - v(® = 2.1
ul® + 3,p'° =0 2.2
plo + 3,pt%) = 0 2.3
3,uf®) + 3,vi% = ¢ 2.4
u‘°’a,p‘°’ + v‘°’82p‘°’ = S(z)wlo) , ' 2.5

The u‘®)’ and v‘®’ are 1in geostrophic balance with the p(?’
pressure field. However since the 0(1) pressure field trivially
satisfies (3,,9;)-(u‘®’,vt%) = 0, the above system of eqguations
is underdetermined, referred to as geostrophic degeneracy. The
field equations are closed by constructing the quasi-geostrophic
potential vorticity equation.

To begin with, the relevant O(e) equations are:
ul0l,ul®) + yt0rg o) - 1) = -3,p' "V 2.6

-azp(i) 2.7

B1U‘” + bzv‘” + 33W‘°’ = 0. 2.8
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Taking 3,(2.7) - 3,(2.6) and using 2.8 and 2.4 it follows that,
u(o)vzv(o) - V(O)Vzu'(o) = 33W‘°’, 2.9

where V? is the horizontal Laplacian given by 8,y + 3,,.

Rewriting 2.9 in terms of the pressure field yields
J[p(O),Vzp(O) + as(s-1aap(0))] = 0 ,

where J[A,B] is the Jacobiah qf A and B ie. 8,A3,B - 3,Ad,B.

The terms on the right in the Jacobian formalism form the
potential wvorticity. The first of these 1is the vorticity
associated with the angular momentum of the fluid and the second
is the vorticity associated with the stretching of vortex tubes.
Since the Jacobian between the stream function and the pqtential
vorticity is zero, the potential vorticity can be written in
terms of the pressure field. In qther words the potential
vorticity is conserved along streamlines. This implies that the
essential physical feature incorporated into the mathematical
model is that the conservation of angular momentum is primarily
a balance between the relative vorticity (ie. the z-component
of "the curl of the velocity field) and the angular momentum
induced by baroclinic vortex tube stretching.

In view of the above remarks the quasi-geostrophic

potential vorticity eqguation can be written as:
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where 'func' means function. Generally speaking the precise
functional form of func[p‘®’] is determined by the upstream flow
conditions. This thesis considers a function of the form
-kp‘®’, with k¥ a real number. It will become obvious that even
a linear function as this will give rise to a nontrivial
upstream vertical current shear. The real advantage of the
linearity is, of course, that it permits analytical solutions.

Therefore the conservation of potential vorticity reduces to

finding the stream function which satisfies
[VZ + 3;(8S"'3;) + «klp'® =0 2.10

subject to appropriate boundary conditions.

Ideally the domain in which the above eguation should be
solved is the semi~infinite domain which is bounded below by the
bottom, above by the surface and.to one side by the coéstline.
However assuming that the topography has compact suppert and
that any topographic mean flow inte:action must decay with
increasing distance from the source topograﬁhy it follows that a
suitably large channel parallel to the coastline can mimick the
ideal domain. Mathematically this assumption allows the «cross
stream current structure to be solved in terms of cross stream
orthogonal basis functions.

Suppose that the bottom of the ocean is given by z=h(x,y).
When there is no topography h{(x,y)=0. The potential vorticity

eguation 2,10 is scolved in the domain given by:
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{ (x,y,2): -w<x<+®, 0<y<2, h(x,y)<z<1 }.

The seaward channel wall has been chosen as y=2. Numerical
calculations, presented in chapter 1V, confirm this choice as
suitable.

The boundary conditions which the pressure field must
satisfy are now considered. Let the upstream or far field

current be given by

Uo .= expl-ay)z(z)

where 2(z) represents the vertical structure of the upstream
flow field. Since the far field current is assumed O(1) then as
x| => =, u'®’ —> u, and v¢®’ —> 0. In terms of the pressure

field the O(1) far field boundary condition is:

p‘° —> a '(expl-ayl - 1)2(z) as |x| —> = .

The upstream flow condition corresponds to a horizontally
and vertically sheared current. The horizontal shear is
exponential with an e-folding length‘of a”'. In dimensional
notation this would be a- 'L metres. The vertical shear must be
chosen so that the potential vorticity associated with this flow
is consistent with linearization done to the quasi-geostrophic

potential vorticity equation. Taking -3,(2.10) it follows that:
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D;(S8-'Dyz) + (a? + «k)Z = 0 .

Along the boundaries of the channel the normal component of
the velocity field must vanish. On y=0 and y=2 this means that
v(i®» must be identically =zero. On z=1, the sea surface,

w(%®) = 0, 1In terms of the pressure field:

3,p‘®’ = 0 on y=0 and y=2

J[p¢®’,8-13,p‘°’] = 0 on z=1. 2.11

The boundary conditions at z = 1 and z = 0 are cast into
the form suggested by Hogg(1880). The surface boundary
~condition implies that 3;p‘'°’ is conserved along streamlines on -
z=1, For those streamlines which originate upstream 2.11

integrates to

Z0;p'®) - p'®'D;Z = 0 on z=1.

The wupstream vertical current structure function trivially
satisfies this boundary condition. Consequently the boundary
value of Z at z=1 is a free parameter, chosen from observation.
Along the bottom of the channel the normal component of the
velocity field must vanish. 1In dimensional variables this can

be written:

w¥ = (u*,v*).V*h*(x*,y*) on z* = h*(x*,y*),
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Defining h*(x*,y*) = eHh(x,y), results in the nondimensional

bottom boundary condition:

E
L[}

(u,v)+Vh(x,y) on z = eh(x,y).

Let the maximum height of h*(x*,y*) be ho. For h(x,y) = 0(1) it
is required that e '(hy/H) = 0(1). This implies that the height
of the topography is at most O(e) with respect to the mean depth
of the ocean. This provides formal justification for expanding
the bottom boundary condition in a Taylor series about z=0 as

follows:

(w(O) + .'.) +ehaa(w(0) + ...) + L B = [(U(O) + LI ,v(O) +

_...) + ehd(ut®) + .., , vto + ) + ,,.]1-Vh on z=0.
The O(1) bottom boundary condition is therefore given by;
wio = (ut® v¢®)).vh on 2=0,
which in terms of the pressure field is written,
J[pt®), 3;p‘° + S(0)h(x,y)] = 0 on z = 0.
This can be integrated upstream to yield

29,p‘°’ - p'°'D;Z = -2(z)S(z)h(x,y) on z=0.
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Since h(x,y) has compact sﬁpport, as |x| —> «; h(x,y)=0
implying 2(z) trivially satisfies this boundary condition.
Therefore the boundary value of Z(z) for z=0 is a free parameter
obtained from observation.

The idealized topography h(x,y) has the form,

h(x,y)

h,cos(mx)cos(ny) for |x|<.5 O<y<.5 2.12

h,cos{4n(x-.6)]cos[4n(y-.75)]

for |x-.6|<.125 and |y-.75[<.125 2.13

0 for all other x and vy, 2.14

where h, and h, are the maximum heights of the continental slope
protrusion and the Pratt seamount respectively, scaled by the
quantity eH. Figure 5 is a contour map - of the idéalized
topography, with contouring intervals of 5 units (5éH metres).
The support of h(x,y) was obtained by examing Figure 1 and
estimating the relevant coordinate lengths.

The form of h(x,y) given by 2.12 corresponds to the
continental slope protrusion., The form of h(x,y) given by 2.13
models the the collection of seamounts in the immediate vincinty
of the Pratt seamount as a smooth orographic feature with the
nondimensional height of the Pratt seamount.. The form for
h(x,y) given by 2.14 correéponds to the abyssal plain.

Finally, the problem for the O(1) flow field reduces to
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finding the solution of the following inhomogeneous Helmoltz

boundary value problem:
[V + 38;(S-'3;) + k]lp‘© =0 2.15

subject to the boundary conditions

93,p'%’ = 0 on y=0 and y=2 - 2,16

23;p‘°%? - p‘®'D;Z = 0 on z=1 2.17

Z9;p'°’ - p'°’'D,;Z = -ZSh on z=0 2.18

' P'° —> a - '(expl-ayl - 1)Z(z) as |x| —> = 2.19

with Z(z) the solution of
D;(S-'D;3zZ) + (k + a?)Z =0 2.20
subject to the boundary conditions

Z(0) = b and z(1) = a. 2.21
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Figure 5 - Contour plot of modelled topography
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III. SOLUTION OF THE FIELD EQUATIONS

The linearity of the boundary value problem 2.15 through 2.21 is

exploited by constructing a solution in the form

p(O) = a"[exp(-ay) - 1]z(z) + p(erIZ)-

Substituting this expression into 2.15 through 2.19 implies that

p(x,y,z) must solve:

[VZ + 3,(8°'3;) + klp =0 3.1

subject to the boundary conditions,

o:.p =0 on y=0 and y=2 3.2
Z9;p - pD3Z =0 on z=1 | 3.3
Z03;p - pD,yZ = -ZSh on z=0 3.4
p—> 0 as |x| —> =, 3.5

with Z(z) the solution of 2.20 and 2.21.

The boundary conditions 3.2 and 3.5 imply that p=0 on y=0
and y=2. This is because the boundary planes y=0 and y=2 are
parallel to the x-axis and the boundary condition 3.2 implies

that the gradient of p in the x direction wvanishes on these
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planes. Since p —> 0 as |x| —> = then p=0 indentically on y=0
and y=2. The physical implication is that no net down channel
transport can be created from topographic mean flow interaction.
The function p is the O(1) effect of the topography on the far
field stream function. No restriction is made on the order of
magnitude of p(x,y,z). In fact p = O(a~'{expl-ay] - 1}2) if
flow reversal is to occur.

The function p(x,y,z) 1is solved for via the following

normal mode decomposition (Chao et al.; 1980)

P (x,y)G (z) 3.6
0 n n

p:
n

nMeg

with G (z) the 'n'th orthonormal eigenfunction solution of:
n

D,(S"'DyG ) + XA G =0 : 3.7
n n n

subject to the boundary conditions,

ZD,G - G D3Z =0 on z=0 and z=1 3.8
n n

1
J G (2)G (z)dz = & , 3.9
° n m nm

where § is the Kronecker delta function between n and m.
nm
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The governing equations for the cross stream functions

P (x,y) are obtained by multiplying 3.7 by p(x,y,z) and
n

integrating from 0 to 1 with respect to z ie.,

1 1
J D3[S"'D3G Jpdz + A [ G p dz = 0.
0 n n° n

Integrating the first integrand by parts twice and wutilizing

3.1, 3.3 and 3.4 it follows that:

(V2 + x = X)) } G pdz = -G (0)h(x,y).
n ° n n

Since the function p is a linear combination ©of the

eigenfunctions the above equation implies that for each n

(V2 + k - X )P = -G (0)h(x,y) 3.10
n n n

subject to the boundary conditions

i)
]
o

on y=0 and y=2 3.11

P —> 0 as |x|] —> =, 3.12
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The normal mode solution 3.6 has the property that 3,(p/zZ)
is discontinuous at z=0. The boundary condition 3.4 can be
rewritten in the form 3,(p/Z) = -S(z)h(x,y)/Z(z) on z=0 and

o

ZP (3.8) can be written in the form 23,(p/Z) = 0 on 2z=0.
n=0 n
Assuming that Z(z) assumes its boundary condition at 2=0
smoothly it follows that 3,p(z=0*) - 3;p(z=0) = -S(0)h(x,y).
Consequently u‘®’, v(% and p‘°’ are continuous at 2z=0 while
p'®’ and w'®’, which depend on 3;p are not. The order of
magnitude of the discontinuity in 3,p is about 30.e-'® resulting
in a numerically insignificant correction to the p‘°’ and w(©’
fields at z = 0.

In the remainder of this chapter the solutions for P (x,y),
n

G (z) and Z(z) are derived. In section one the solution of
n

3.10, 3.11 aﬁd 3.12 is obtained. In section two the. problem
2.20 and 2.21 is solved. 1In section three the problem 3.7, 3.8
and 3.9 is solved. 1In section four the formulae for the O0O(1)
pressure, velocity, mass transport and density fields are
computed.

3.1 Horizontal Amplitude Functions

In this section the 'n'th cross stream, or the horizontal

amplitude function P is obtained. These functions are the
n

solution of the two dimensional inhomogeneous Helmholtz problem
3.10, 3.11 and 3.12. The inhomogeneity or in other words the
forcing term, corresponds to the excitement of the 'n'th

eigenmode by the topography. 1In the absence of topography it is
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expected that the interaction pressure field p(x,y,z) vanishes,
Consider the follewing reformulation of 3.12., For every
e > 0 there exists § < = such that for every |x| > & the maximum

over ye[0,2] of [P (x,y)| satisfies |P (x,y)] < e. It is shown
n n

later in this section that Ay = a? + ¥k, hence A - k > 0 for all
n

n. In order to avoid difficulties with the semi-infinite domain
consider the problem of solving 3.10, with h(x,y) = 0, in the
domain given by {(x,y): |x] < 8 and 0 < y < 2}, subject to 3.11
and the reformulated 3.12 for a given e. Applying the maximum

principle to this problem it is clear that the maximum of [P |
- n

must occur on |x| = §. However this can be made arbitrérily
small, by ¢ —> 0 and § —> =,

Linearity and uniqueness therefore imply that the related
homogeneous problem has only the trivial solution. This fact in
turn implies that there exists a unigue Green's function for the
horizontal amplitude equations.

The solution of 3.10, 3.11 and 3.12 is constructed from the
Green's function, defined as g(x,y|x,,Y0). The Green's function

satisfies:

(V2 + k= XN )g = -G (0)8(x-x%x4)8(y-yo), 3.13
n n

with 8(x-x,) and 8(y-y,) the Dirac delta functions centered at
X = Xo and y = yo respectively.

Let F(g) be the Fourier transform with respect to x of
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g(le|x0'YO)r ie-'

F(g) g(x,y|x0,y0)exp(ikx)dx,

]
8§— 8

where i?=-1 and k is the transform variable. Taking the Fourier

transform of 3.13 and 3.11 with respect to x yields,

(022 *+ k = X =~ k2)[F(g)] = -G (0)68(y-yo)exp(ixok) 3.14
n _ n

subject to the boundary conditions:

F(g) = 0 on y=0 and y=2. 3.15

The Fourier transform of the Green's function 1is obtained

in the form:

F(q) A (%X0,Y0,k)sin(mny/2). 3.16

1 nm

]
ht™Msg

Modelling the domain as a channel finds its full expression in
3.16. Since 3.14 is defined on a bounded y interval, it is
possible to express the solution of 3.14 and 3.15 as a linear
combination of a complete set of basis functions. The
orthogonal basis functions sin(mny/2) are such a set which

trivially satisfy the boundary conditions.
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Substitution of 3.16 into 3.14 implies that:

Z {(k -1 -k% - (m/2)?)a sin(mry/2)} =
m=1 n nm

-G (O)GXP(ixok)a(y-Yo)-
n

The orthogonality of the cross stream basis functions implies

that the coefficient functions A (x,,y0,k) in 3.16 are given by
nm

A = 2G (0)sin(mmyo/2)exp(ixok)[(mm/2)2 + k2 + A = g]-'.
nm n n

The Green's function is related to 1its Fourier transform

via
‘ -}
g(x,y|x0,¥0) = (27)-' [ F(g)exp(-ixk)dk.
-5 ,
Substituting 3.16 into this expression yields,

g= I {n 'sin(mry/2)sin(mny,/2)G (0)-
=1 n

J [mn/2)% + k2 + N - k] 'exp[-i(x-x,)k]ldk}.
- n
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There are no poles in the above integral since Ay = a? + k.
To see this consider the following argument. Define a function

¢ (z) such that G (2) = & (2)2Z(z). Substituting this form of G
n n n n

into 3.7, 3.8 and 3.9, utilizing 2.20, results in

D,[2z2(D;® )/S] + 22[A (a2 + x)]® =0,

D;$¢ =0 onz =0 and z = 1,

—
N3
~
o
Ly
Q
N
]
(o]

nm nm

It follows that for each n

1 .
A =a?+ k+ [ 225 '(D,d )2dz.
n 0 n

The minimum eigenvalue A, is obtained by minimizing the

above integral over the set of ¢ 's for which D;d = 0on z = 0
n n

and z = 1. Since the integral is positive definite (S(z) > 0)
then its minimum 1is certainly achieved if it vanishes. It
vanishes for constant & . The only constant & that can satisfy

n n

1
the orthonormalization condition is [ [ z2dz]-1/2, It follows
o]
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1
therefore that Go(z) = 2Z(z2)[ [ 22dz]-'/2 and Ay, = a? + «.
0

Evaluating the above Green's function integral 1in the

absence of any poles therefore yields:

g= I {6 (0)[(mn/2)%2 + X\ =~ k] 'sin(mry/2)sin(mry,/2)-
m=1 n n

exp[-|x-xo|((m1r/2)2 + XN - k)'/2]}, 3.17
n

The 'n'th horizontal amplitude function is related to its

Green's function by,

® 9
P (x,y) = { g(x,y|%0,¥0)h(x0,y0)dyodx,. , 3.18
n -

Substituting into this eguation h(x,y) given by 2.12, 2.13 and
2.14 yields,

os 05

P (x,y) = hy J [ g(x,y[%x0,y0)cos(mxo)cos(ny,)dxody, -
n O «§

K2 ALY
hy [ f g(x,y|x0,¥0)cos[4n(x,-.6)]cos(4ny,)dx,dy,. 3.19
628 IS

Equation 3.19 is the horizontal amplitude function associated

with 'n'th vertical mode eigenfunction G (z). These functions
n

describe the cross channel structure of the topographically
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induced pressure field.

3.2 Far Field Vertical Current Structure

In this section the solution for the vertical structure of
the far field or upstream current is obtained. The method of
solution for 2.20 and 2.21 is similiar to that used by Bryan and
Ripa(1978) in their analysis of vertical temperature structure
in the north east Pacific Ocean.

Let V(z) be that function defined as D,V(z) = 2(z).
Substituting this definition into 2.20 for Z(z) allows that

equation to be integrated once to yield,
D3,V + (k + a?)8(z)V(z) = cS(z), 3.20

with ¢ a constant of integration. The solution of 3.20 is, of
course, the sum of the homogeneous solution and a particular
solution. The particular solution can be written as c/(kx + a2).
Since Z(z)=D3;V(z) there is no contribution from the particular
solution to the function 2(z). With no loss of generality the
constant in 3.20 can therefore be set identically equal to zero.
It turns out that the critical parameter in the qualitative
description of Z(z) is the sign of (k + a?).

Considered now is the case when (kx + a2?) > 0. A new

independent variable t 1is defined so that
t = 29" "[(k + a?)S(2)]/2

v(t) = viz(t)].
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This transformation results in 3.20 being recast into the form:
t2V'' o+ tV' + t?V = 0, 3.21
where V' and V'' are the first and second derivatives of V(t)

with respect to t , respectively. Equation 3.21 1is Bessel's

eguation of order zero. The general solution of 3.21 is

therefore given by
V(t) = C1Jo('t) + CzYo(t), 3.22
where J, and Y, are Bessel functions of the first and second
kind of order =zero respectively, and where c,; and c, are
constants of integration. Taking the derivative of 3.22 respect
to z implies that Z(z) can be written:
Z2(z) = exp(yz/2){C,J,[Nexp(y2/2)] + C,¥Y,[%exp(yz/2)1}, 3.23
where J, and Y, are Bessel functions of the first and second

kind of order one respectively, and C, and C, are constants

determined by boundary conditions, and finally where

A= (2/7)[so(k + a?)exp(-y)]'12, 3.24

Application of the boundary conditions 2.2t implies:

Cy = Co{b¥,[2exp(y/2)] - a¥,[Alexp(-v/2)} 3.25
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C, = Cofad,[A]exp(-y/2) - bd,[rexp(y/2)]} 3.26

where

Co = {J.[A]¥ [ nexp(y/2)] - J,[Nexp(y/2)]¥,[A]}-". 3.27

In the case when k¥ + a? < 0 then the solution is written in
terms I, and K;, the modified Bessel functions of the first and
second kind of order one respectively. Specifically, the
solutions are given by 3.23, 3.25, 3.26 and 3.27 with the

changes

J, —> I, and Y, —> K,

A= (2/7)[so|k + a?|exp(-y)]1/2,

In the case when k + a2 = 0 the baroclinic solution to 2.20

and 2.21 is easily computed to be:

z(z) = C exp(yz) + C, 3.28
C, = (b - a)Cy 3.29
C., = [a - bexp(y)]C, 3.30

Co = [1 - exp(y)]-1. 3.31
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The above solution has as a special case the situation where the
upstream current 1is barotropic. In such a situation, 2(z) = ¢
with a = b = ¢ will imply that C, = 0 and C, = c. In fact,
assuming the wupstream current to be barotropic implies that
k = =a?, This can be seen by examining 2.20. If Z(z) = ¢ then
D,;Z = 0; The only way 2.20 can be satisfied is if ¢ = 0 (which
is uninteresting) or if k + a2 = 0.

Numerical calculations show that the gqualitative shape of
Z2(z) changes little with either of the first two cases. Typical
parameter values for the north east Pacific Ocean suggest that
k + a? > 0. Consequently further analysis is restricted to that
case.

Figure 6 is a graph of 2(z) vs. z for the case x + a? > 0,
with a = .1 and b = .01, In the region where S(z) =0 it is
expected that Z(z) = constant because, roughly speaking, in this
regime V(z), the solution of 3.20, must be nearly linear in z
implying that Z(z) is constant. The physical interpetation for
Z(z) being approximately constant in this region is that in this
regime the fluid 1is virtually homogeneous implying that the
horizontal velocity field is nearly barotropic. Rapid changes
in z(z) are therefore constrained to a region of nonzero Brunt-
Vaisala frequency. Figure 6 illustrates this with the shapest

gradient in 2(z) occuring in the upper ocean.
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3.3 Vertical Mode Eigenfunctions And Eigenvalues

The orthonormal eigenfunctions are the solutions of 3.7,
3.8 and 3.9. These equations are solved using the same
technique used to obtain the upstream vertical current structure

functions. First the function V (z) 1is defined so that
n

D3V (z) = G (2). Substituting this definition into 3.7 implies
n n

that solving 3.7 reduces to solving,

D33V (2) + X 'S(z)Vv (z) = 0. 3.32
n n n

The transformation

t = (2/4)[N s(z)]'/2
n

V (t) =V [z(t)],
n n

allows 3.32 to be rewritten

t2(V )"+ t(V )+ t2v = 0,
n n n

where, as before, (V )'' and (V )' are the first and second
n n

derivatives of V (t) with respect to t, respectively. This is,
: n

of course, Bessel's equation of order =zero. Therefore the

general solution for V (t) is given by,
n
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A" (t) = C]Jo(t) + CzYo(t),
n

which in turn implies that G (z) is given by:
n

G (2) = exp(yz/2){A J,[c exp(yz/2)] + B Y,[{c exp(yz/2)]}, 3.33
n n n n n

c = (2/%)[X spexp(-y)11/2, 3.34
n n

Here Jo,J, and Y,,Y; are Bessel functions of the first and

second kind of order zero and one respectively.

The requirement that the G 's be orthonormal (ie. 3.9)
n

implies that

1 = (A )2 i exp(yz){Jolc exp(yz/2)]1}2dz +
n n

(B )? i exp(yz) {¥olc explyz/2)]1}%dz. 3.35
n n

These integrals are easily evaluated by introducing the change

of variable x = c exp(yz/2). Let a and b be the numbers
n n n

defined as

¢, txp(¥/2)

a = 2[(c )2y)-" 5 x{J,(x)}2%8x

n n
Cﬂ
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cngxP(XIZ)

b = 2[(c )%24]-"' [ x{¥,(x)}%dx
n n ¢,

which can be integrated exactly to give,

C,oxpl¥/2)

a = {(c )3y} "[{xJo(x)}2 - 23,(x)J,(x) + {xJ,(x)}2] 3.36
n n Cy

C, explyia)
b= {(c )2y} "[{x¥e(x)}2 - 2Y,(x)¥,(x) + {xJ,(x)}2] . 3.37

With the aid of 3.36 and 3.37 the orthonormal condition 3.35 can

be succinctly rewritten as

(A )?a + (B )b =1, 3.38
n n n n

The boundéry conditions 3.8 implies that at z=0

A {(c v/2)3e(c ) - [2'(0)/2(0)]J,(c )} +
n n n n

B {(c v/2)¥e(c ) - [2'(0)/2(0)]Y,(c )} = O, 3.39
n n n n

and that at z=1

A {{c v/2)exp(y/2)Jo[c exp(y/2)] -
n n n

[(2'(1)/2(1)]13,[c exp(y/2)]} +

n
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B {(c v/2)exp(y/2)¥olc exp(y/2)] -
n n n

[2'(1)/2(1)])Y,[c exp(y/2)]} = O. 3.40
n

Viewing 3.39 and 3.40 as a system of two equations in the

unknowns A and B , the condition that there exist nontrivial
n n

solutions for A and B is that the determinant of the
n n

coefficients must vanish ie.

{(c v/2)exp(v/2)¥olc exp(v/2)] = [2'(1)/2(1)]1¥,[c exp(~y/2)]1}-
n n n

{(c v/2)3o(c ) = [2'(0)/2(0)1J,(c )} =

n n n

{(c v/2)exp(v/2)dolc exp(v/2)] - [2'(1)/2(1)13,[c exp(y/2)]1}-
n n n

{(c v/2)¥o(c ) - [2'(0)/2(0)]¥,(c )}. 3.4
n n n

Equation 3.41 forms a transcendental equation for the parameter

c . The allowed ¢ 's form a discrete denumerable set of real
n n

numbers, with the eigenvalue A related to ¢ by inverting 3,34
n n

to obtain

A = [yc /2]%(s,) 'exp(y). 3.42
n n

The constants A and B are obtained from the normalization
n n
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condition 3.38 and either 3.39 or 3.40. This calculation

implies that:

A = {(c v/2)Y¥e(c ) - [2'(0)/2(0)]¥,(c )}/C ' 3.43
n n n n n

B = -{(c 9/2)3o(c ) - [2'(0)/2(0)13,(c )}/C , 3.44
n n n n n

with

C = {b [(c 7v/2)Jolc ) - [2'(0)/2(0)]1J,(c )12 +
n n n n n

a [(c v/2)¥o(c ) - [2'(0)/2(8)]¥,(c )]2}'!2, 3.45
n n n n
To summarize, the vertical eigenfunctions are given by 3.33

where A and B are given by 3.43 and 3.44 respectively, and
n n

where the eigenvalues A are the solutions of 3.41 and 3.42.
n

Figures 7, 8 and 9 are graphs of Gg(z), G,(z) and
G,(z) vs. z, respectively for a = .1 and b = .01. The
qualitative comments made in the 1last section about the
structure of Z(z) are also valid for the eigenfunctions. In the

region where S(z) =0 it 1is expected that G (z) should vary
n

slowly. Consequently the zeros of the eigenfunctions
concomitant with oscillatory behaviour should occur in the upper
ocean. This can be seen in G,(z) with a zero at z = .9 and in
G,(z) with its two zeros at approximately .95 and .7. Graphs

computed of the higher modes also have this feature.
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3.4 Formulae For The Pressure, Velocity, Density And Mass

Transport Fields

With the solution for the interaction stream function
obtained in the previous sections, it is now possible to
describe the physical variables: pressure, velocity, density and
mass transport. Recall that the O(1) pressure field is given

by;

p‘° = a '[exp(-ay) - 1)2(z) + Z P (x,y)G (z), 3.46
n=0 n n

where the functions z(z), G (z) and P (x,y) have been obtained
n n

in the three previous sections. The remaining calculation
required for the stream function is the evaluation of the

integral 3.19, which yields:

P = h,6 (0)sin(ry)R (x)[27(72 + X - w)(2r2 + A = x)]-1 +

n n n2 n n
Z h,G6 (0)sin(mwmy/2)R (x)[m/2 - sin(mn/4)].
m=1 n nm
ai2

[7(m?/4 - 1) ({mn/2)2 + XA - k) ((mn/2)% + 72 + A = k)]-' -
n n

L 4h,G (0)sin(mny/2)S (x)[sin(7mm/16) + sin(5wm/16)]-
m=1 n nm
m$E2
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[#(m2/4 - 1)((mr/2)% + XA - k)(1672 + (mn/2)% + A - k)]-1,
n n

where the functions R and S are given by
: nm nm

R (x) = 2#exp[-|x|((mn/2)2 + XA - k)'/2].
nm n

cosh[ ((m7/2)2 + X\ - «)'12/2] if |x| > .5
n

R (x) = 2((mn/2)2 + N - k)'2 cos(nx) +
nm n

2mexp[-((mn/2)2 + XA - k)'/2/2].
n

cosh[x((mn/2)2 + XA - )1/ 2] if |x| < .5
n

S (x) = 8mexp[-|x-.6|((mn/2)2 + XA - k)'/2.
nm n

cosh[((mn/2)2 + X =~ k)'/2/8] if |x-.6] > 1/8
n

S (x) = 2((mn/4)2 + X - k)2 cos[4n(x-.6)] +
nm n

8rexp[-((mm/2)2 + N - k)'/2/8].
n

coshl (x-.6)((mn/2)2 + X - k)'/2] if |x-.6] < 1/8.
n

The O(1) alongshore velocity u‘®’ is given by 2.2 and 3.46,

implying;
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[--]
u'®) = z(z)exp(-ay) - Z 93,P G , 3.47
n=0 nn

where 3,P is given by:
n

0:P = h,G (O)cos(my)R [2(m2 + X = k)(272 + XA - «k)]-"' +
n n n2 n n

(=]

Z h,mG (0)cos(mmy/2)R [m/2 - sin(mn/4)]e
m= 1 n nm

m£2
[2((m7/2)%2 + X - k) (m%/4 - 1) ((mn/2)% + 72 + A - k)] ' -
n n

=]

Z 2h;mG (0)cos(mny/2)S [sin(77m/16) + sin(5mn/16)]-
m=1 n nm

mt2 !

[(m?2/4 - 16)((mn/2)%2 + X = x)((mw/2)2 + 1672 + XA = g)]-*'.
n n

~The 0(1) cross channel velocity v‘°®’ is given by 2.1 and

3.46, implying;
vi® = ¥ 3,PG, 3.48

where 09,P is given by:
n

0:P = h,G (0)sin(xy)D,R [27(a2 + XA - k)(27%2 + A - k)]-' +
n n n2 n n
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h,G (0)sin(mzy/2)D,R [m/2 - sin{mw/4)]-
1 n nm
2

#+ne

m
m

[#(m2/4 - 1) ((mn/2)%2 + X - k) ((mn/2)2%2 + 72 + X - k))-' -

n n
[~}
L 4h,G (0)sin(mny/2)D;S [sin(7am/16) + sin(5wm/16)].
m= 1 n nm
m#2

[r(m2/4 - 1) ((ma/2)2 + X - k)(1672 + (mn/2)2 + X\ - k)]-1,
n n

where the derivatives of R and S with respect to x are given
nm nm

by;

D;R (x) = -27((mm/2)%2 + X =~ k)12,
nm n

sgn(x)exp[-|x|((mn/2)2 + X - k)1'/2].
n

cosh[((mn/zf2 + N - k)12)2] if |x| > .5
0 .

DyR (x) = -272((mn/2)2 + X - k)" 2(sin(nx) -
nm n

exp[-((mn/2)2 + X\ - k)'12/2].

n
sinh[x((m7/2)% + A =~ x)1/2]) if [x| < .5
n
D,S (x) = -8a((mmn/2)2 + XA - k)'/2.
nm n

sgn(x-.6)expl-|x-.6|((mr/2)2 + X - x)1/2.
n
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cosh[({mn/2)2 + XA =~ k)'/2/8) if |x-.6] > 1/8
n

DS (x) = -8a((mn/4)%2 + X - k)" 2(sin[4n(x-.6)] -
nm n

exp[-((m7/2)2 + X - g)'12/8].
n

sinh[(x-.6) ((mr/2)2 + A - k)'42]) if |x-.6| < 1/8,
n

with sgn(x) being the sign of the variable x.
The 0(1) density field p‘°’ is obtained from 2.3 and 3.36,
implying that;

p‘® = a '[1 - exp(-ay)]lD;Z - I P D,G 3.49
n=0 n n

where D;Z(z) and D;G (z) are given by
n

D;G (z) = (c v/2)exp(yz) (A Jolc exp(yz/2)] + B Y,lc exp(vyz/2)1),
n- n n n n n :

Dyz(z) = (Ny/2)exp(yz)(C,Jo[Nexp(yz/2)] + C,Yo[hexp(yz/2) 1),

with the constants A , B , C, and C, defined by 3.43, 3.44, 3.25
n n

and 3.26 respectively.
The 0(1) vertical velocity w'°) given by 2.5 and 3.46, can

be rewritten in the form;
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wi® = [s(z)]-'a[p'®,p'°]

with p‘°) given by 3.49.

3.50

The vector valued nondimensional O0(1) mass transport is

defined as M = (m,,m;), with the components m, and m, given by;

1
m, = [ ul®3z
(o]

.
m, = f V(O)dz-
0

These integrals can be evaluated to yield

-

Cn
my; = (Ay/2) 'exp(-ay)[C Jo(x) + C,¥o(x)] -
Chexplyr2z)

T 3,P (c v/2) '[A Jo(x) + B ¥o(x)1°"

n=0  n n n n c,\ex%(UIZI
=) C"\
m, = I 0.P (c 7/2)-1[A Jo(x) + B YO(X)] r
n=0 n n n n Caexpl¥i2)

with x the dummy integration variable.

'5]

‘52



i

0.05

-0.05

—

I

0

0.R875

0.

Figure

1 1 1 1
15 0.62. 5 0.975 " 0.25
Z AXIS

6 - Far field vertical current structure

125

0

.0

°3°]



2.0

AXIS

0.0

G

-2.0
1

-4

0.875

0.

15

Figure

| T I
0.625 0.5 0.375
Z AXIS

7 - Graph of Go(z) vs. z

0

.25

0.125

0

0

9§



0.875

0.

15 0.625

[ 1 1

0.5 0.375
Z AXIS

Figure 8 - Graph of G,(z) vs. z

0

.25

0.125

0

.0

LS



BXI1S
0.0
1

GZ

-4

T T l T T
V. 0.875 0.75 0.625 J.5 0.375 0.25 0.125 0
Z RAXIS
Figure 9 - Graph of G,(z) vs. z

.0

8§



59

IV. PARAMETER SENSITIVITY ANALYSIS

The intent of this chapter is two fold. First, a description of
the solutions obtained last chapter is given based on parameter
values obtained from examining the avaliable data for the north
east Pacific Ocean. Second, this chapter discusses the effect
of wvariations in the parameters on the structure of the
previously obtained solutions. In particular five tables of
parameter calculations representing 97 numerical simulations of
the entire solution were preformed. These calculations were
preformed on the University of British Columbia's Amdol 470
using double precision Watfiv,

Numerical vélues for the nondimensional observables were
computed at grid locations denoted (i,j,k) located in the domain
at (-2+iéx,jéy,kéz) with (6&x,68y,82z) = (.2,.1,.1) and i,3,k
taking on the integer ranges 0 < i <20, 0 < j £ 20 and
0 < k £ 10. The number of cross channel modes used to compute
3.16 was 20 and the number of vertical eigenmodes used to
compute 3.6 was 6. Adding additional modes had absolutely no
effect on the computed observables to double precision accuracy.
In addition to numerical wvalues the 0(1) stream function and
density fields were contoured and stick diagrams of the 0(1)
velocity and mass transport fields were computed to provide a
graphical representation of the resulting flow field.

The five parameter pair groups examined, in order of their
discussion, are: the far field horizontal current shear and the

Rossby number (a,e), the topographic parameters (h,,h,), the
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Brunt-Vaisala frequency parameters (Ng,v*), the far field
horizontal current shear and the far field surface current (a,a)
and finally the far field horizontal current shear and the far
field bottom current (a,b).

In each parameter pair analysis the other parameters were
held fixed. The standard values assumed were based on the
topographic and oceanographic observations contained in
Bennett(1959), Tabata(1982), Emery et al. (1983) and Willmott
and Mysak(1980) of the north east Pacific Ocean, discussed in
section 2.1,

The scaling parameters H, L and U were held fixed at
3500 m, 400 km and 1 m s-' respectively, resulting in a Rossby
number e of 2.1.10°?, The standard set of wvalues for the
parameters N,, (y*)-', a, b, a, k¥, h, and h, were .011045 s-',
254.57" m, 0.1, 0.01, 5.0, 0.0, 10.9 and 34.1 respectively. This
set of parameters yield numerical wvalues of the fifst six
eigenvalues of: Ao = 25, A, = 382.86, A, = 2219.01,
A3 = 5584.99, A, = 10394.55 and A5 = 16642.86.

In the standard set of parameters the wupstream vorticity
constant K has been set identically equal to zero. A brief
comment is necessary to outline the reasons for this choice.

The parameter k cannot be set equal to zero if the upstream
current is barotropic. In Section 3.2 it was shown that k = -a?
if z(z) is given by a constant. However, examining Figure 2, it
is obvious that the current profiles in the north east Pacific

are baroclinic.

The parameter K effects a baroclinic upstream current
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through the quantity a? + k¥ in 2.20. Numerical values for a
based on the observations described in Tabata(1892) and
Bennett (1959) suggest that a =5, so that the e-folding
distance in the horizontally sheared far field current is about
80 km, Numerical calculations of the far field current show
that the vertical current structure varies little for different
values of &« provided |k| << a?.

The principle mechanism by which K effects the
topographically induced flow field is in the denominator of the
Green's function g(x,y|%0,Y0) given by 3.17. It was shown in

Chapter 111 that Ao = a? + g and that
1

Go(z) = 2(z)[ [ z2(z)dz]-'/2,
0

For a given (x,X,,Y,Yo) the magnitude of the Green's
function |g(x,y|x0,¥0)| will be maximized when the denominator
in 3.17 1is minimized, occuring for n = 0. This is cohsistent
with the physical intuition that the principle response of the
upstream flow to the topographic forcing will the gravest (n=0)
mode. When n = 0 the denominator of 3.17 will satisfy

(mm/2)2 + Ay - k 2 a?. Consequently the gravest mode response
of the ocean to the topography is virtually unaffected by K.
Rigorously speaking the parameter K does effect the n = 0
eigenmode.by way of its effect on the far field current and
consequently on Go(z).

The effect of K on the higher modes 1is equally
insignificant since the eigenvalues form an increasing segquence

and No/A; << 1, Typically this ratio is on the order of .07
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implying that X\, = 10A,. Therefore the parameter « has only
minor effect on the higher modes which themselves make a
progressively smaller contribution to the flow field. The lack
of any significant effect on the flow field for nonzero 0(1) «
provided |a? + k| >> 0 suggests that there is no loss of
applicability of the mathematical model to the north east
Pacific Ocean if «k = 0.

The highly non-trivial way that the parameters appear in
the solutions derived 1last chapter makes an analytical
investigation of the effect of their variation extremely
difficult. Indeed such an examination would not serve to
illuminate the essential dynamics in the problem. Of more
utility is to argue the effect of variations in the parameters
on the solution based on the physics and geometry of the
problem. However while the fﬁllowing discussion is qualitative
rather than gquantitative, it will be extensive consisting of
examining several vertical and horizontal sections in the
pressure, density and velocity fields. With this philosophy in
mind the exact numerical values of all the variables is not so
important as the orders of magnitudes and qualitative features
of the calculated flow field.

This chapter begins with a description of the flow field
for the standard set of parameters. This discussion will
concentrate on giving a qualitative but complete description of
the resulting flow field. The solution described 1in this
section will be the standard to which the solutions for the

varied parameters will be compared. In the sections concerned
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with the structure of the solution for the varied parameteré,
the discussion is two fold. First a qualitative analysis is
given describing the effect of variations based on vorticity
arguments, and second one or two examples are described
illustrating these arguments. |

4.1 The Solution For The Observed Parameters

Horizontal sections of solution for the observed parameters
were taken at depth intervals of .1 (350 metres). Vertical
profiles were computed at the ten locations given by (x,y)
coordinates (-2,.1), (-.75,.1), (-.4,.1), (0,.1), (0,.75),
(.4,.1), (.6,1.2), (.75,.1), (.75,.75) and (2,.1). These ten
locations are plotted 1in Figure 10 showing their location
relative to the topography. In addition vertical sections
parallel to the coastline were contoured of p‘°’ and p‘°®’ for

y ranging from 0 to 2 in increments of .2.

The discussion proceeds as follows. First, a desription is
given of the horizontal structure of the flow field for z = 1,
.9, .8, .7 and .6. The order of the discussion of the
observables is: p‘®’, (u'®’,v(®), (m,,m,), and p'°’., Following
the description of the horizontal variation the focus of this
section is shifted to describing the vertical variation of the
flow field at various fixed (x,y) coordinates.

Figures 11, 12, 13, 14 and 15 are contour plots of the
stream function p‘®’ at z =1, .9, .8, .7 and .6 respectively.
The contours were plotted at intervals of + or - .01, relative
to the zerc streamiine.

The zero streamline, in Figure 11, bifurcates at the
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upstream stagnation .point situated approximately at (-.6,0).
One branch remains on the coastline while the other turns into
the interior of the domain rejoining the coastline at the
downstream stagnation point at approximately (-.65,0). The
stagnation points are not symmetric about x = 0 because h(x,y)
is not symmetric about x = 0.

The zero streamline forms the outer boundary of a region of
closed streamlines. The interior region in Figure 11 forms the
surface expression of a baroclinic eddy, with an approximate
diamater of 1 (400 km). The stream function in the interior of
this region is positive, suggesting that the inward radial
gradient of the stream function is positive implying clockwise
or anticyclonic circulation,

The structure of the streamlines in the interior of the
eddy is somewhat complicated. Over the seamount and shelf
protrusion are two well developed anticyclonic eddies. 1In the
region between these two eddies, in the neighbourhood of
(.4,.4), it follows that a.strong current shear exists. Areas
of significant current shear are generally associated with
regions of high biological activity.

Figure 11 also pictures streamlines radially inward of the
zero streamline which encircle the two local anticyclonic
eddies. Thus in addition to the local eddies there is a larger
scale anticyclonic circulation. This flow corresponds to the
topographic steering of the wupstream coastal current by the
shelf protrusion out to a region where it can be topographically

steered by the seamount. The return coastal flow is
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concentrated in a narrow band of width approximately .15 (60 km)
near x = 0, In the immediate region of this return flow the
currents have the 1local appearance as bands of alternating
currents,

The maximum value of p‘®’ occurs on z = 1 over the seamount
with an approximate value of .1. This maximum occurs over the
seamount rathef than over the shelf protrusion because p!(°’ is
proportional to h; and h; and h, > h,. There is, however, a
local maximum over the continental shelf bump at about (0,.25)
with an. approximate value between .07 and .08. 1In addition
there must exist a saddle point in the stream function field in
the immediate wvincinty of (.4,.4), associated with the fluid
trajectories in that area.

Figures 12, 13, 14 and 15 are horizontal sections of the
stream function field at z = .9, .8, .7 and .6. This sequence
of figures shows that the eddy decays rapidly with depth. The
decay 1is most rapidvbetween z = 1'and z = .9 with the pressure
field over the seamount decaying from its maximﬁm of .1t on 2z =1
to about .035 on z = .9. The vertical decay continues until
about 2 = .6 where the decay becomes negligible and the
remaining eddy structure continues more or less uniformly down
to the bottom at 2z = 0. The vertical structure of the decay
will be completely described later in this section.

The horizontal gradients in the pressure field on z = 1 are
the largest in the return coastal flow. Consequently, the
particle velocities will be 1largest in that region. The

relatively large speeds in this area are the result of the
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crowding of the coastal streamlines together by the existence of
the anticyclonic eddy over the shelf protrusion and the coastal
boundary.

The horizontal gradients in the pressure field are larger
in the local eddy over the seamount than in the local eddy over
the shelf protrusion. The reason is that in this region the
velocity field 1is related to the pressure field through the
gradients of p‘®’, and these in turn will be proportional to
Vh(x,y). Figure 5 which is a contour map of the function h(x,y)
clearly shows that Vh(x,y) is largest over the seamont. The
weakening of the gradients in the p‘°’ field with depth is
illustrated in Figures 11 through 15 by the fact that as the
depth increases the number of contours decrease. Consequently,
the angular speed of the eddy decreases with depth.

Figures 16, 17, 18, 19 and 20 are vertical sections of p!©’
taken at y = .2, .4, .6, .8 and 1 parallel to the coastline. On
each section the pressure field was contoured at intervals of
+ or - .01 relative to the 0 pressure contour. For this series
of graphs the function pf°%’ 1is best described as the 0(1)
pressure than as the stream function. The latter terminology
suggests that the fluid trajectories lie along lines of constant
pressure. In the vertical sections described here this
interpetation is incorrect, whereas for the horizontal sections
previously described it is correct.

Comparing Figure 16 with Figure 11, the vertical section
along y = .2 is seen to pass through the seaward region of the

return coastal flow and through the interior of the local eddy
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produced by the shelf protrusion. The horizontal boundaries of
the large scale anticyclonic circulation 1is formed by the 0
pressure contour. Along y = .2 this occurs at x = -,6 and
x = ,7,

Figure 16 through 20 show this contour to be vertically
straight, which is a consequence of the fact that to lead order
there 1is no‘ vertical velocity. 1In the interior of the region
bounded by the 0 pressure contour the pressure 1is everywhere
postive, Calculations show that for every z the inward radial
gradient of p‘®’ in the interior is positive, implying that the
entire interior region rotates anticyclonically.

In line with the observation made for the horizontal
sections, Figures 16 through 20 show that the large scale
anticylonic «circulation is. essentially surface trapped. 1In
Figure 16, the flow field 1is only slightly effected by the
seamount since the pressure contours are roughly symmetric about
x = 0.

The vertical section taken on y = .4 passes just seaward of
the local eddy formed over the shelf protrusion and cuts through
the coastward extreme of the 1local eddy produced by the
seamount. The increasing influence of the seamount is seen in
Figure 17 with the pressure contours becoming somewhat
asymmetric about x = 0. In this intermediate region the
vertical extent of the eddy, as manifested in p‘°’, has
shallowed. Along y = .2 the .01 contour reaches a maximum depth
of about .7 (1000 metres), wheras along y = .4 this is reduced

to about .2 (800 metres). Examining Figure 5 shows that along
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Yy = .4 the slope height is about 1 (70 metres) resulting in
slight topographic forcing at this point.

In the Figures 18 and 19 the influence of the seamount
becomes the denominate feature in the forcing of the flow. In
Figure 18, taken along y = .6 the vertical extent has increased
back down to a depth of 0f .25 (900 metres). The horizontal
boundaries of the eddy has shifted toward positive x with the
circulation contained between x = -,4 and x = 1. The vertical
extent of the eddy 1is substantially increased along y = .8,
shown in Figure 19. For the first time the .01 pressure contour
is not closed and in fact reaches the bottom. Conseqguently the
horizontal gradients for p‘°’ are much stronger and extend
deeper down over the seamount than elsewhere. As argued earlier
this is a conseqguence of the increased Aheight and larger
gradients associated with the seamount compared to the slope
protrusion. The final vertical section shown of p‘°’,r Figufe
20, along y = 1 shows the rapid decay of the pressure field as
the distance to the support of h(x,y) increases.

Figures 21, 22, 23, 24 and 25 are stick plots of the
horizontal velocity field on z =1, .9, .8, .7 and .6
respectively. Each stick represents a horizontal velocity
vector. The velocity was calculated at (x,y) coordinates (-
2+i6x,3jéy) with i, j, 6x and 8y given earlier in this chapter.
The tail of each stick or velocity vector sits on one of these
points. The scaling of the vectors is done. so that a stick
length of one inch equals fifty centimetres per second. By

comparing the stick plots to the associated stream function plot
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the direction of flow becomes clear.

In the far field upstream region, say along the line x = -
2, the current is unaffected by the topography and is given by
u‘®)’ = exp(-ay)z(z) v'°) = 0 as described in Chapter 1II. On
the surface (z=1) the current along x = -2, shown in Figure 21
is a maximum at the coast with a magnitude of .1 (10 cm s-'),
The current exponentially decays away from the coast with an e-
folding length of a-' (80 km). Figure 21 shows that the
particle speeds increase as the upstream current interacts with
the topography. It is possible to see the two interior
anticyclonic eddies 1in Figure 21 by comparing that figure with
Figure 11,

Numerical calculations show that typical speeds at the
exterior of the eddy in Figure 21 (corresponding to the offshore
0 streamline in Figure 11) are about .2 (20 cm s-'),
representing about a 700% increase in particle épeeds.
Immediately over the seamount the typical surface speeds are on
the order of .4 (40 cm s-') . Typical speeds calculated over
the continental shelf bump are on the order of .2 (20 cm s~ '),
consistent with those speeds calculated for the larger
encircling anticyclonic circulation. The narrow coastal band of
return flow has.the largest speeds with the calculations showing
that at on the surface at (x,y) coordinate (0,0) the speeds are
in excess of .50 (50 cm s~ ') decaying to about .3 (30 cm s~ ') at
(0,.1).

Figure 21 also clearly shows that the topographically

induced flow decays rapidly as the horizontal distance from the
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support of h(x,y)vincreases. If the center of the eddy is.
chosen as (x,y) coordinate (.25,.5) then at the center the
surface speeds are typically on the order of .2 (20 cm s-'),.
Further out from the center say at (.2,.6) the speed is about
.15 (15 cm s-')., The distance between these two points is about
40 km. At (.2,1), about 250 km from the center, the surface
speed 1is on the order of .05 (5 cm s-'). However as Figure 21
illustrates the eddy produced from the combined interaction of
the coastal topography and the seamount does not produce a
symmetric eddy. Consequently from the view point of an observer
moving Northwestward, toward the seamount, from the center
(.2,.6) the particle speeds would seem to increase as the
seamount induced flow is encountered.

Figures 22, 23, 24 and 25 are stick plots of the horizontal
velocity field at z = .9, .8, .7 and .6 respectively. These
figures show the vertical decay of the horizontal velocity as
the depth increases. The most significént decay occurs between
the surface z = 1 and z = .9. 1In general the particle speeds at
z = .9 are half those at the surface. For example in the near
coastal return flow associated with the large anticyclonic
circulation the speeds at 2z = .9 are on the order of .2
(20 cm s-') compared to the 50 cm s-' computed for the surface.
Over the seamount current speeds are reduced from 40 cm s-' on
z=1 to about 2t ¢cm s-' on z = .9, The speeds over the
continental shelf protrusion are reduced from a surface maximum
of about 25 cm s-' to about 12 cm s-' on z = .9.

The horizontal decay of the velocity field is independent
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of depth as a consequence of the vertical mode solution
technique. The vertical decay of the velocity field continues
until about z = .6 where the horizontal velocity field becomes
virtually depth indgpendent.

The depth associated with 2z = .6 is about 1400 metres.
Below this depth the flow appears depth independent and
therefore barotropic. Basea on the computations of this
section, using a level of no motion on the order of 1500 to 2500
metres, the vertiﬁal extent of the eddy would be on the order of
1000+ metres.

Typical speeds computed for the deep interior of the water
column (z<.5) over the seamount are about .01 (1 cm s-'), Over
the continental shelf bump, typical speeds are on the order of
.02 (2 cm s-'). The coastal return flow has speeds on the order
of .1 (10 cm s-'). Currents in the seaward exterior region of
the eddy, associated with the 0 streamline, have magnifudes on
fhe_ order of .005 (.5 cms-'). Thus while the eddy decays
rapidly in the vertical direction the model calculations predict
continued anticyclonic flow even in the deep interior of the
water column.

Figure 26 1is a stick plot of the mass transport vector
(m,,m,) given by 3.51 and 3.52. The scaling of the stick
lengths is such that 1 inch of stick length corresponds to about
7-10% kg m~' s-', based on an average density of 1025 kg m-3.
To convert to volume transport units (ie. Sverdrups;
1 Sv = 10 m?® s-') m; and m, are integrated over a horizontal

distance of .25 (100 km). Thus a constant nondimensional
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transport of one corresponds to a volume transport of 350 Sv
which in turn would be represented by a stick length of 2
inches.

In the far field the transport is parallel to the coast,
decaying exponentially away from the coast with the
nondimensional e-folding length of a-'. On y=0 m, = .02 (7 Sv)
and m, = 0.

The transport increases as the flow interacts with the
topography. Over the seamount the magnitude of the transport is
about .06 (20 Sv). The near coastal return flow has a transport
on the order of .06 (20 Sv). The continental shelf bump induces
a typical transport of .04 (14 Sv). The outer exterior of the
eddy has a typical traﬁsport-_magnitude of .01 (4 Sv). The
horizontal decay of the transport field is qualitatively the
same as the the horizontal decay of the velocity field.
Consequently the topographically induced mass transport‘ guickly
decays away to zero as the distance increases from the support
of.h(x,y).

Figures 27, 28 and 29 are contoured plots of horizontal
sections of the 0(1) density field p'°’ for z =1, .9, .8
respectively. The contouring increment is + or - .1 relative to
the 0 density contour.

Figure 27, in which p‘°’ is contoured for =z = 1, clearly
shows that the density contours closely follow the stream
function contours of Figure 11, In the far field, say along
X = -2 or +2, the O0(1) density increases as the distance from

the coast increases. Along the coastline p‘®’ = (0, owing to the

14
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fact that p‘®’ = 0 along y = 0 and that p¢® = -3,p'°’, It
follows from the thermal wind relation 3,u‘®’ = 3,p¢‘°’ that
the 0(1) far field density should increase as y increases
since the magnitude of the O0(1) alongshore velocity u!®’
decreases with increasing depth.

The topography begins to effect the density field around

X = -1, There 1is a bifurcation of the 0 density contour at
about x = -.6, similiar to the bifurcation 1in the 0 pressure
contour, rejoining the coastline downstream at about x = ,65.

This 0 density contour is another indicator of the horizontal
extent of the eddy circulation on =z = 1, The 0(1) density
radially inward of this contour is negative, indicative of the
downward deflection of the isopycnals associated with an
anticyclonic circulation that decays with increasing depth.

In the interior of the region bounded by the 0 density
contour, the density contours clearly mark out the two smaller
anticyclonic eddies over the seamount and continental shelf
protrusion. The minimum in the 0(1) density field occurs over
the seamount with a value of about =-1.2 . Recall that the flow
related density field was scaled by ¢€eFp, = 2 kg m-?, hence the
minimum in the surface 0(1) density field corresponds to a
change in the total density of about -2.5 kg m-3, There is
another 1local minimum in the 0(1) surface density field located
over the continental slope protrusion at about (x,y) coordinate
(0,.25), with value approximately -.9 (-1.8 kg m~3%).
Corresponding to the saddle point in the stream function field

in the neighbourhood of (.4,.4) there is a local maximum in the
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0(1) surface density field of about -.4 (-.8 kg m~3).

Concomitant with the increasing uniformity

function as

horizontal variation in p¢©9?

flatting out.

of the stream

the depth increases, Figures 28 and 29 picture the

Figure 29 which maps

the contours p‘°’ on z = .8 (700 m depth) shows that the density
gradients decay rapidly with depth. 1In fact at this depth the
density wvariations are bounded by + or - .1 (.2 kg m~3), since
only the 0 contour is mapped.

The vertical deflection of the 1isopcynals 1is shown in
Figures 30, 31, 32, 33 and 34. These figures are vertical
sections of the 0(1) density field taken parallel to the
coastline at y = .2, .4, .6, .8 and t, respectively. By
comparing Figure 30 to Figure 27, the vertical slice along

Y = .2

the flow associated with

continental shelf bump. Thus
are largely due to the slope
rather than the seamount.

The external boundary of

the 0 density contour. It

the anticyclonic circulation does so as well,

deep interior

isopycnals, related to the vertical shear in the, pressure

becomes quite small

the

(<.2 kg m~3)

is seen to pass through both the return coastal flow and

anticyclonic eddy over the
the deflections shown in Figure 30

topography and coastal return flow

the eddy circulation is marked by
extends down to the bottom because
the

However 1in

of the water column (z<.6) the deflection of the

field

due to the uniformity with

respect to depth of the stream function p‘°’,

Figures 31, 32 and 33 show the progressive influence of the

seamount on the vertical deflection of

the 1isopcynals. Along
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y = .8, shown in Figure 33, there is only a minimal contribution
of the slope protrusion to the flow as manifested in the 0(1)
density field. Figure 34, taken on y = 1, shows the gradual
decay of the deflections of the ispcynals as the distance from
the support of h(x,y) increases. Computations for y > 1.2

contain virtually no isopycnal deflection.

The series of Figures 30 through to 34 support the
concluéion that the anticyclonic circulation produced by the the
topography is essentially surface trapped. The maximum downward
penetration of the eddy takes place over the seamount,
consistent with the extrema observed in the 0(1) pressure,
density, velocity and mass transport fields over this region.
Based on Figure 33 the sharpest vertical gradients in the
density field take place in approximately the top 30% of ocean.
Roughly speaking the vertical extént of the eddy can be
associated with sharpest vertical gradients, resulting in the
depth to which the anticyclonic circulation occurs on the order
of 1000 metres.

Described now is the change in the vertical profile of the
upstream flow field as it interacts with the support of h(x,y).
The previously given has shown that the flow field along x = -2
is wunaffected by the topography. Figures 35, 36, 37, 38 and 39
are the vertical profiles at (x,y) = (-2,.1) of p‘°, pto),
ul®’, vi® and w'°%) resgpectively.

The lack of any interaction between the topography and the
upstream flow at this location implies that v(9 = w(%) = 0

throughout the water column as shown in Figures 38 and 39. The
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upstream down channel velocity u‘®’, shown in Figure 37, decays
with increasing depth. At (x,y,z) = (-2,.1,1), u'% = exp(-
.2)/10 = .06 (6 cm s-'). The upstream current 1is essentially
surface trapped with wvirtually no current (< .1 cm s ') for
z < .85 (deeper than about 500 metres).

The pressure field profile shown in Figure 35 is a minimum
at the surface and increases with increasing depth. At the
surface p‘®’ = -,01, increasing to approximately -.001 at the
bottom, This is a consequence of the fact that the current
decays with increasing depth implying that the crosschannel
gradient in p'®’ decays with depth, which in turn implies that
p‘®’ increases with increasing depth.

The 0(1) density p¢‘°’, shown in Figure 36, satisfies
9;p¢% > 0. This is a consequence of the thermal wind relation

d;ul®’ = 9,p'%> , Since the vertical gradient 1in the along
channel velocity component is positve it follows that ﬁhe cross
channel gradient in p‘®’ 1is also positive. The vertical
gradient in u'®’ decreases with increasing depth so that p!°’ is
more positive at the surface than deeper in the water column and

hence the shape of p‘®’ in Figure 36.
This fact does not imply that the water 1is unstably

stratified. From Chapter II the nondimensional in situ density
field will be given by o + eFp‘®) + 0(e?). Numerical

calculations confirm that 8,(p + €Fp‘®’) < 0 so that the water
column is stably stratified.

Figures 40, 41, 42, 43 and 44 are the vertical profiles of



77

p'°’, pt°, u'®), vt® and w'% computed at (x,y) = (-.4,.1).
This point is about .4 wunits (64 km) away from the centre
(.2,.6) of the entire anticyclonic circulation. Examining
Figure 10 the coordinates (-.4,.1) are seen to be located
slightly downstream from the upstream edge of the coastal
protrusion. The height of the slope protrusion at this location
is about 2.5 (175 metres). Figure 11 shows that this vertical
profile 1is situated in the boundary region between the coastal
return flow and the local anticyclonic eddy produced by the
slope protrusion.

Figure 40 of the 0(1) pressure field is an typical example
of p‘®’ in the interior of the region bounded by the 0
streamline. At the surface the 0(1) pressure is positive which
decays as the depth increases. The surface pressure is
approximately .02 at this 1location decaying to about .004 at
z = .8, |

The 0(1) density is negative throughout the water column
with its minimum at z = 1 of about -;27 increasing as the depth
increases. As argued earlier the interior density field must be
negative as consequence of the thermal wind relation which has
that the density must increase as the distance to the centre of
the eddy increases because the vertical gradient in the velocity
field is positive.

Figures 42 and 43 are the vertical profiles of the
horizontal velocity components u‘°®’ and v‘°’ respectively.
Consistent with Figure 11 these figures show u'°)’ < 0 and

vio)r 5> 0 at this location, At the surface the speed
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[(ut©2)2 + (v(®)2]1/2 g about .2 (20 cm s°') decaying to
about .04 (4 cm s~ ') at z = .8 (700 metres deep).

The vertical profile of the vertical velocity w¢°) at (-
.4,.1) is shown in Figure 44. The vertical velocity is negative
everywhere in the water column because the horizontal
coordinates are situated in a region where the flow is down the
coastal slope protrusion. The velocity is zero at the surface
as a conseqguence of the rigid lid approximation. The minimum in
w'%) occurs at approximately .75 (900 metres deep).

The extremav in w(®» is expected to occur in the upper
region of the water column since 1in this region the Brunt-
Vaisala frequency has its largest gradients. In the deep
interior of the water column S(z) = 0 meaning that the water
column is approximately homogeneous. In this region the
vertical velocity is therefore quite small. Figure 44 suggests
a value of about .005 (10-%* cm s ') at z = .25
(2600 metres deep). . Futhermore: in the déep interior where
S(z) =0, w'®) 1is approximately 1linear, consistent with the

remarks made in Chapter III about Z(z) and G (z) in this region.
'n

Figure 44 confirms the qualitative assertion that the
dicontinuity in 3,;p‘°’ at z = 0 is not significant numerically.
The vertical velocity is given by w!®) = J[p(©°),p(%)/s(z)] .
In Chapter III it was shown that the vertical mode decomposition
of the interaction pressure field induces a discontinuity in
9;p'®’ of order 30.e-'* =~ 2.10-% at z = 0 for (x,y) coordinates
in the support of h(x,y). Since p‘°’ = -3,p'®’, it follows that

wi%) will be discontinuous at z = 0 with a discontinuity
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0(10-%). However since w(®) = 0(10-2), then the discontinuity
is three orders of magnitude smaller than the typical values
wt9) assumes in the water column. Therefore a continuously
differentiable stream function would probably only marginally
differ from the solution obtained here, and then only so near
the bottom, Since one objective of this thesis is to
characterize the middle to upper ocean predictions of this
model, in a desire to understand a portion of the dynamics of
the Sitka eddy, this mathematical property is only a formal
difficulty and is not an essential weakness in the mathematical
model.

Figures 45, 46, 47, 48 and 49 are the vertical profiles of
p‘®’, pt®), ut®, vi® and w!(° taken at (x,y) = (0,.1). These
profiles are representative of Ithe outer region flow of the
larger anticyclonic circulation that encloses the two smaller
eddies. Examining Figure 11 it is seen that in this region the
horizontal gradients in the stream function are smaller than in
the narrow coastal return flow. It follows that since the
vertical shear in the observables is independent of horizontal
position the vertical profiles will be flatter at this location.
Figures 45 through 49 have this property.

The relatively weak horizontal gradients in p‘°’ at this
location result in a surface speed of about .1 (10 cm s-'). The
speed decays quickly to about .02 (2 cm s ') at z = .8
(700 metres deep). There 1is a negligible vertical velocity in
the water column at this point because this horizontal 1location

is not 1in the support of h(x,y). This fact also implies that
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w(®) and p‘®’ are continuous at z = 0.

The final set of vertical profiles examined are those for
(x,y) = (.75,.75). Figures 50, 51, 52, 53 and 54 are the graphs
of the wvertical profiles of p!°), pt®) yto yto zpgd wt o
respectively computed at (.75,.75). This 1location 1is on the
upstream edge of the seamount, as can be seen in Figure 10. The
height of the seamount at this location is about 5 (350 metres).

Figure 50, of p'°’ shows over the seamount a region of
intense high pressure is formed, on account of the fact that
h, > h,. The fact that the vertical extent of the eddy is
deeper here than over the slope protrusion can be seen by
comparing Figure 50 to Figure 40. Associated with the higher
pressure is a corresponding increases in the vertical deflection
of the isopycnals. This is deduced by comparing Figure 51 with
Figure 41 and Figure 46. The increase in the magnitude of p(%’
means that the density observed at a particular in Figures 41
ahd 46 will occur at a deeper location in Figure 51.

- Figure 52 of u'®’ shows that there is virtually no down
channel flow at this location. Comparing Figure 11 to Figure 10
it is seen that at this location the streamlines appear to be
parallel to the topographic contours, which are oriented in the
cross channel direction. At the surface u'®’ = ,02 (2 cm s-')
and v'°%? ~ -.4 (-40 cm s-'). The vertical extent of the eddy in
this location can be observed in the vertical profile of v(©9’
which increases from its surface minimum of -40 cm s-' to -
5cms-!' at z = .25 (900 metres deep).

Figure 54 of w!°®’ shows that the vertical velocity is small
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at this location. Throughout the water column w!©°’ = 0(2.10"3)
(4:10°% cm s~ '). The extrema in w'®’ occurs at about 350 metres
with magnitude about 10-% cm s-', The vertical velocity is
negative since at this location the flow is passed the maximum
height and is now flowing down the back of the seamount.

The four sets of vertical profiles just examined
effectively characterize the flow field. The flow field at
(.4,.1) is similiar to that at (-.4,.1). 1In this region however
the currents are not as strong as those computed at (-.4,.1),
with a surface current on the order of 18 cm s-'. The flow
field at (.75,1.2) is similiar that that of (0,.75), howevér
here aga;n the flow 1is weaker with a surface speed about
2 cms-',

In summary the following physical description emerges of
the interaction between the topography and the upstream current.
The baroclinic coastal current begins to interact with the
topography in the vinicity of x = -,75, The topography forces
the current to upwell. The upwelling is constrained by the
rigid lid so that the vortex tubes are then compressed. The
compression of the vortex tubes coupled with the conservation of
potental wvorticity implies that the angular momentum of the
vortex tube must decrease.

This 1is accomplished with an increased anticyclonic
circulation, since for clockwise circulation d,vi0) -

9,u‘®’ < 0. Hence the fluid trajectories are forced out into
the channel. For some of the streamlines the strong gradients

in the coastal protrusion topographically trap them so a local
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anticyclonic eddy 1is set up.. For streamlines outside of some
critical gradient of h(x,y) the slope protrusion cannot trap
them and they continue out into the channel where some of them
are trapped by the seamount and others outside some <critical
radius continue down stream.

The seamouﬁt again induces an upwelling of the water column
with the concomitant increased anticyclonic rotation of the
vortex tubes. Thus the flow 1is directed back toward the
coastline where it is either trapped by the slope protrusion or
is forced by the coastline in the downstream direction. The
return flow trapped by the slope protrusion is again upwelled,
decreasing its angular momentum where upon it turns clockwise
and proceeds on the above circuit again.

The surface intensification of the flow has a similiar
simple explanation in the conservation of potential vorticity.
In the absence of any stratification the topography wouid induce
a vertically uniform decrease in the angular momentum of the
vortex tubes. This is the situation in the lower region of the
water column.

In the deep interior of the water column the relative
homogeneity of the mean density field implies that the fluid
cannot sustain significant vertical gradients. Thus in this
region of the water column there is, practically speaking, no
baroclinic vortex tube compression. The absence of any
significant stratification in the lower water column has the
mathematical implication that the topography forces the

vorticity term 8;(S-'9,p‘°’) to be positive but small. The
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conservation of potentiai vorticity implies that in the lower
water column there will be a corresponding decrease in the
angular velocity of the vortex tubes.

Near the surface, where the mean density gradient is the
largest, the upwelling of the water column results in a larger
baroclinic- compression of the vortex tubes than in the interior
of the water column. Consequently the angular momentum of the
vortex tubes is strongly reduced in this region resulting in an
increased clockwise circulation of the fluid particles, relative
to the interior.

4.2 Horizontal Current Shear And Rossby Number

The Rossby number [e = U(fL)-') and the parameter governing
the far field current shear a are two of the more important
parameters controlling the gqualitative structure of the flow
field. The solutions obtained in Chapter III were computed for

a taking on the range of wvalues 10, 5, 2, 1 and .1,
corresponding to e-folding lengths - of 40, 80; 200, 400 and
4000 km, respectively. The Rossby number assumed the values
.01, .05, .1 and .5. For each value of the Rossby number the
effect of the five different e-folding lengths was examined.
Thus, in total 20 numerical experiments were preformed testing
the effect of variations in a and e.

The Rossby number has two main effects on the flow field.
Obviously, without 0(e) << 1 the entire asymptotic analysis has
no validity. The property which . is most germain to our
discussion, however, is the relationship befween € and the

topographic parameters h, and h,. The nondimensional heights of
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the slope protrusion h, and the seamount h, have been
obtained as hy(He)-!' with the term h, defined as the maximum
height of the slope protrusion for h, and as the maximum height
of the Pratt seamount for h,.

Increasing the Rossby number will therefore have the effect
of reducing the magnitude of h, and h,. The reduction of these
two parameters will result in reducing the order of magnitude of
the topographic forcing term in 3.10 and conéequently will

affect the horizontal amplitude functions P (x,y).
n

The affect of increasihg the Rossby number on the flow
field is not, however, uniform. Huppert(1975) has provided a
necessary condition for the formation of a stratified Taylor
column over an order Rossby number topography. Simply stated,
Huppert's condition 1is that the parameter hy(He)-' must be
greater than some critical 0(1) value based on the topographic
geometry, flow and domain geometry.

The critical value is obtained by examining the conditions
under which a stagnation point can occur in the flow, ie. under
what conditions can Vp‘°’ = (0,0) somwhere in the domain. This
analysis was attempted for the present problem, however the
topography, domain and upstream flow conspired to make this an
unproductive exercise. Huppert's analysis assumed an
axisymmetric topography in a horizontally unbounded fluid with a
barotropic upstream current.

Nevertheless, one qualitative fact remains clear. The
continental slope protrusion and the seamount would have

critical values for h; and h,, respectively for which local
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eddies would form. Since there is no reason to assume that the
critical values would be the <came for each 1individual
topographic feature, it follows that 1increasing the Rossby
number will result in a nonuniform change in the flow as one or
the other of h, and h, nears its critical value.

Consequently, there could be physically realistic Rossby
numbers for which an eddy forms over one of the topographic
features but not the other. 1In fact, depending on the value of
the other parameters, 1increasing the Rossby number to about

0.1 prevents an eddy from forming over the slope protrusion,
but allows an eddy to form over the seamount. In the situation
where € decreases the topographic parameters increase so that
the interaction between the flow and the support of h(x,y)
should intensify.

The effect of the Rossby number on the interaction between
the wupstream current and the support of h(x,y) has a simple
" physical interpetation. For a fixed length scale and latitude
increasing € is equivalent to increasing the speed scale of
the flow. Intuitively, if the upstream flow is sped up it 1is
possible to think of the upstream current has having a reduced
sense of the bottom topography. 1In other words, by the time a
fluid parcel can respond to variations in the bottom its speed
has forced it to shoot past the support of h(x,y).

The Rossby number can also be increased for fixed speed
scale and latitude by decreasing the length scale. (Recall that
the length scale is chosen as the distance from the coastline to

the Pratt seamount.) Decreasing the length scale intuitively
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leads to the expectation that the upstream current experiences
topographic changes over too short an interval to induce closed
streamline circulation.

The parameter a determines thé upstream horizontal
current shear. If a increases than the current assumes the
shape of a narrow coastal baroclinic jet. Decreasing a
creates a broader coastal flow. The dimensional equivalent of

a 1is given by aL-' m-', Choosing L = 400 km implies that
a = 5 corresponds to a current with a horizontal e-folding
distance of La~' = 80 km.

The main mathematical mechanism by which a effects the
flow is its existence in the denominator of the Green's function
g(x,y|%x0,¥0) in 3.17. Since Ao = a? + k the denominator of

3.17 satisfies (mn/2)2 + XA - k 2 (mn/2)% + a2, Therefore
n

reducing a should result in intensifying the interaction
between the upstream flow and the topography. Increasing a
will decrease the denominator and consequently reduce the order
of magnitﬁde of the interaction‘stream function p(x,y,z). The
increased interaction, 1ie. greater anticyclonic motion in the
water column, for decreased a has the following physical
interpétation.

| The physics behind the response of the eddy flow field to
variations in a 1is obtained by examining .the potential

vorticity. The relative vorticity of the upstream current is

given by -3,u, aexp(-ay)z(z), which is positive for the a and
z2(z) considered in this thesis. The portion of the far field

current which 1is within an e-folding distance (y<a-') of the
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coastline (y=0) experiences decreasing relative vorticity for
decreasing a. The far field current outside this region
(ie. y>a~') experiences increased relative vorticity for
decreasing a.

Variations 1in a, however have no effect on the mean state
density profile. Hence the change in vorticity associated with
the compression of the mean state 1isopcynals, as the flow
encounters the topography, can be viewed as a fixed positive
number.

For those upstream streamlines for which y < a ',
conservation of potential vorticity therefore implies that the
relative vorticity of the eddy field decreases for decreasing a:
In the region y > a-' the relative vorticity of the eddy field
will increase as a decreases. In other words, decreasing a
forces the along coastline current to increase its anticyclonic
motion but forces the more horizontally interior flow to
decrease its anticyclonic motion during interaction with h(x,y).

The decrease of the relative wvorticity of the near
coastline current 1is achieved by the turing of the streamlines
further out into the horizontal interior of the domain. This
tendency is mitigated against by the reduced tendency of the
more interior streamlines to change their relative wvorticity.
The subseguent crowding together of streamlines increases the
horizontal gradients in the pressure field resulting in the
increased anticyclonic rotation of the eddy interior.

Figures 55, 56, 57 and 658 are contour plots of p‘°’ on

z =1 for the (a,e) pairs (10,.1), (10,.01), (1,.1) and (1,.01)
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respectively. Figures 55 and 56 illustrate the effect of

increasing a from its standard value of 5 to 10, for an

increased e of .1 and a decreased ¢ of .01 from its standard

value of .02. Figures 57 and 58 depict the effect of decreasing
a from 4 to 1 for the same set of Rossby numbers.

In this series of calculations the order of magnitude of

p‘®’ varied substantially. Therefore the contouring intervals

have been altered for each particular case. In Figure 55 the

contouring intervals are + or - .001 relative to the 0 contour.
In Figures 56 and 58 the intervals are + or - .01 relative to
the 0 contour. 1In Figure 57 the contour intervals are + or - .1

relative to the 0 pressure contour.

Figure 55, the contour plot of p‘°’ for (a,e) = (10,.1) on
z = 1, shows the effects of increasing the shear in the upstream
current and the Rossby number. Based on the‘ physics of the
problem it 1is expected that for this parameter regime the size
and strength of the eddy produced should be smaller than the
that calculated for the standard parameters. Comparing Figure
55 to Figure 11 this is clearly seen to be the case.

Several changes to the flow field are apparent. Increasing
the Rossby number to 0.1 has decreased the topographic
parameters h, and h, to 2.2 and 7.1, respectively. For this set
of (a,e) the parameter h, is less than its (Huppert) critical
value since no eddy has formed over the slope protrusion. The
failure to generate closed streamlines over the slope protrusion
results in the eddy (centered over the seamount) having a small

regional extent, with an radius of order .25 (100 km).
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The magnitude of the interaction pressure field p(x,y,z)
has been sharply reduced for (a,e) = (10,.1). In fact the
interaction is weakened to the degree that p'°’ < 0 everywhere
in the domain in Figure 55. Typical values for the magnitude of
p‘®’ over the seamount are -.003 in Figure 55, whereas in Figure
11 p‘®’ was typically +.1 in the same region.

Corresponding to the sharp decline in the horizontal
gradients in p‘®’ for (a,e) = (10,.1), the magnitudes of the
topographically induced velocities have been reduced. Over the
slope protrusion the speeds are on the order of .05 (5 cm s ')
compared to 20 cm s-' in Figure 11. The seamount induces speeds
on the order of .02 (2 cm s-') in Figure 55 compared to
40 cm s ' for (a,e) = (10,.1).

The transports have similiarly decreased for this choice of

a and €. Defining the transport magnitude as
M| = [(m,)2 + (m,)2]'/2, typical transports in Figure 55 are
about .006 (2 Sv) at (x,y) = (0,.1) compared to 20 Sv for
(a,e) = (5,.02). Over the seamount the transport magnitude
|[M| = .007 (2.5 Sv) compared to 20 Sv  for the standard
parameters.

In Figure 56 (a,e) = (10,.01), reducing the Rossby number
for fixed current shear has intensified the interaction between
- the flow and the topography. The topographic parameters h, and
h, have been increased to 22.8 and 71.4, respectively. The
parameter h, 1is close to becoming 0(e-') implying that the
seamount for e = .01 is not 0(eH).

Examining Figqure 56 the local anticyclonic eddy over the
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slope protrusion has reappeared. Associated with the slope eddy
is the reappearance of the upstream and downstream stagnation
points. Although the contours in Figure 56 do not indicate it,
there 1is an anticyclonic flow which encompasses both local
eddies, located just radially inward of the 0 streamline.

The magnitude of the interaction between the topograpghy
and the wupstream flow has intensified. Over the seamount
pt®’ = ,05 and over the slope protrusion p‘°’ = ,04.
Concomitant with the 1increased interaction are the larger
horizontal gradients in p!®’ as manifested in the computed
velocity field.

Current speeds over the seamount are on the order of .3
(30 cm s '). The surface speeds over the slope protrusion have
increased to about .25 (25 cm s-'). Typical transports over the
seamount are on the order of .07 (25 Sv) and over the slope
protrusion .01 (3.5 Sv). |

The vertical structure of the eddies in Figures 55 and 56
is consistent with the wvertical structure of the standard
parameter solution described last section. By this it is meant
that the qualitative properties of the decay of the eddies with
increasing depth remains more or less invariant for the (a,e¢)
parameter pairs of Figures 56 and 57. That being the case it
suffices to say that the eddies are surface trapped, with the
horizontal velocity field decaying to about half its surface
value at z = .9 (350 metres depth).

Comparing Figure 55 to 56 a couple of points should be

made. For a = 10, increasing the Rossby number from .01 to .1
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decreases h; to below its (Huppert) critical value and thus an
eddy failé to form over the slope protrusion. Second for a
relatively narrow coastal current (a=10 implies an e-folding
length of 40 km) the qualitative appearance of the induced flow
over the support of h(x,y) looks more like two separate eddies,
than the large scale flow interaction seen in Figure 11. It is
not surprising to conclude, therefore, that as the current
becomes broader the disturbances produced by the slope
protrusion and the seamount progressively interact with each
other and produce a more cbherent large scale eddy circulation.

In Figures 57 and 58 the parameter a = 1 and € takes on the

~values .1 and .0t respectively. Having a 1 implies that the
upstream current has a horizontal e-folding length of 400 km.
These two figures clearly illustrate that decreasing a increases
the size and strength of the eddy.

Caution must be applied though when arguing any application
of these two figures to the north east Pacific Ocean. Numerical
calculations suggest that in Figure 57 the no normal flow
boundary condition along y = 2 1is begining to affect the
structure of the flow field over the support of h(x,y).
Calculations show that in Figure 58 the interior flow has been
definitely altered by the seaward channel wall.

In both Figures 57 and 58 there is no local eddy production
over the slope protrusion. Numerical experiments were unable to
distingush between whether the increased interaction of the

seamount on the flow simply dominated any local effect of the

slope protrusion, or whether the for this choice of a the
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(Huppert) critical value of h, was so large that no reasonably
small values of the Rossby number could generate a local eddy
over the slope protrusion.

The maximum value of p‘°’ occured over the seamount in both
calculations. 1In Figure 57, p‘®’ = .1 and in Figure 58 p'%’ = 1
over the seamount. Typical speeds for (a,e) = (1,.1) were on
the order .2 (20 cm s-') over the seamount. 1In the return
coastal flow the speeds increased to about .25 (25 cm s-'). For
the parameter pair (a,e) = (1,.01) typical speeds were about 2
(2 ms-') over the seamount and about 4 (4 m s~ ') in the return
coastal flow.

The computed transports varied substantially as well. For
(a,e) = (1,.1) the transport magnitude was about .1 (35 Sv) over
the seamount and about .3 (100 Sv) in the return coastal flow.
With (a,e) = (1,.01) the transport magnitude increased to about
1.2 (400 Sv) over the seamount and to about 2 (700 SQ) in the
return coastal flow.

Decreasing the shear in the upstream current increases the
horizontal extent of the eddy. While Fiqures 55 and 56 almost
gives the impression of two separate flow distortions over the
seamount and the slope protrusion. Figures 57 and 58 suggest a
single large scale eddy. In Figure 57 the eddy has a typical
radius of about 300 km and in Figure 58 a radius of 400 km.

It was argued earlier the calculations for Figures 57 and
58 suggest that for this a the seaward boundary is significantly
affecting the structure of the interior flow field. This means

that as the size of the eddy increases and the affects of the
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boundary become important to the interior, the eddy must
elongate itself and begin to penetrate deeper in the water
column. This elongation begins to occur in Figure 57 and is
guite apparent in Figure 58.
Associated with the broadening of the eddy for decreasing

a 1s a related deeping in the vertical extent of the eddy.
Figures 59 and 60 are along coastline vertical sections of p¢©9’
at y = .6 for (a,e) = (1,.1) and . (1,.01), respectively.
Comparing these two figures with Figure 18, the corresponding
figure for the standard set of parameters, a couple of
observations can be made.

The deepening of the eddy is apparent from the fact that in
Figure 18 the .01 p‘°’ does not reach the bottom, whereas in
Figure 59 it does. 1In Figure 60 the contouring intervals are
+ or - .1, with the .1 contour reaching the bottom, implying
that the .01 does as well. Thus the horizontal gradients of the
p'°®’ field remain higher deeper, indicating that the vertical
structure protrudes further 1into the water column. Finally,
Figures 539 and 60 show the increased horizontal extent of the
eddy corresponding to the 0 pressure contour displaced outward
from x = 0.

4,3 Topographic Parameters

Varying the topographic parameters h, and h, directly is
the simplest way to investigate the contribution to the total
eddy field of each individual topographic feature. From Chapter
II and last section, the topographic parameters h,, h, are given

by the maximum height of the slope protrusion and the Pratt
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seamount height respectively, divided by eH. The topographic
parameters are requifed to be 0(1) if the Taylor expansion of
the boundary condition w = (u,v)-Vh(x,y) on z= eh(x,y) about
z = 0 is to be formally justified.

The maximum heights of the Pratt seamount and the slope
protrusion are estimated to be 2500 metres and B00 metres
respectively from Figure 1. With e = .02 and H = 3500 this
means that h; and h, are approximately 11 and 34, respectively.
This calculation implies that h,; and h, are situated in the
intermediate region between 0(1) and 0(e-1). Thus the Taylor
expansion is appropiate, if only marginally justified.

Numerical simulations of the solutions were computed for h,
- taking on the range of values 0, 5, 10 and 15 and h, taking on
the range of values 0, 10, 20, 30, 35. This means 20 different
numerical experiments were preformed varying the topographic
parameters.

Figures 61 and 62 are contour plot of _p‘°’ for
(h,,h,) = (10.9,0) and (0,34.1), respectively. The contouring
interval was + or - ,01 relative to the 0 stream line. These
two simulations correspond to computing the flow field for the
standard set of parameters in the absence of the seamount
(Figure 61) or in the absence of the slope protrusion
(Figure 62).

Comparing Figures 61 and 62 with Figure 11 the relative
contribution of each topographic feature to the total
topographic mean flow interaction can be seen. The interior

structure of the 1local eddy (contours of value greater than
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+.03) over the slope protrusion is 1laregly unaffected by the
existence of the seamount. The exterior region, given by those
contours of value less than about +.03 are significantly
affected by the seamount since the fluid parcels associated with
with these streamlines are topographically steered out to the
seamount.

The effect of the slope protrusion on the local eddy formed
over the seamount is more intense. Figures 11 and 62 suggest
that the size and intensity of the local seamount eddy are
decreased by the slope protrusion. This makes sense since most
of the near coastal flow is directed into an eddy by the slope
protrusion., Since the far wupstream flow decreases as the
distance to the coastline increases it follows that the slope
protrusion interacts with the component of the flow which
accounts for the most significant interaction.

The magnitude of p‘°’ over the seamount in Figufe 62 is
about .11 compared to about .1 in Figure 11, Thus the pressure
field over the seamount is about 10% to 20% higher in Figure 62
than it is in Figure 11. The change in surface speeds over the
seamount 1is similiar. In Figure 11 the speeds are are about
30 cm s at (x,y) - (.6,.6) and in Figure 62 typical speeds are
about 34 cm s,

All the numerical experiments performed suggest that if a
local eddy is to occur over the slope protrusion the stagnation
points associated with eddy must occur on the x - axis, implying
that stagnation streamline is the 0 pressure contour. This is a

consequence of the conservation of potential vorticity.
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Suppose that a 1local eddy is produced over the slope
prctrusion but that its stagnation points are in the interior of
the domain. For all those streamlines coastward of the
stagnation streamline the following two facts are most relevant,
First, they are bounded seaward by the stagnation streamline,
and second h(x,y) monotonically decreases with increasiﬁg
distance to the <coastline. The second fact implies that
compression of the 1isopcynals 1is increased coastward of the
stagnation streamline, where upon the first fact will imply that
the fluid parcels cannot sufficiently decrease their relative
vorticity in order to conserve potential vorticity. This
contradiction of the basic physics of the model therefore
implies that 1if a local eddy exists over the slope protrusion
the stagnation points must occur on the 0 pressure contour lying
on the coastline.

This is not necessarily the case for the local eddy' formed
over the seamount since the support of h(x,y) does not e#tend to
the coastline for h, =0. Thus in- the absence.of the slope
protrusion the stagnation points for the eddy over the seamount
can occur in the interior of the domain, as it does in Figure
62. Numerical experiments varying the values of h, with h,; =0
and h, with h, = 0 suggest that the (Huppert) critical value of

h, is about 4 and for h, is about 9.
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4.4 Brunt-Vaisala Frequency

The parameters No2 and (y*)-' correspond to the maximum
value (at z=1) and the vertical attenuation of the
dimensionalized Brunt-Vaisala frequency [N*(z*)]? given in
section 2.1. Their physical importance resides in controlling
the contribution to the potential vorticity of the angular
momentum associated with baroclinic vortex tube stretching.

Recall that the nondimensional Brunt-Vaisala frequency was
given by S(z) = spexply(z-1)] with the  Burger number
So = [NoH/(fL)]? and v = y*H.  Holding v fixed and decreasing
No will decrease the Burger number s,, the maximum amplitude of
s(z). Physically, decreasing Ny is equivalent to reducing the
vertical shear in the mean state density field, thereby assuming
a more homogeneous ocean.

Consider the consequences of reducing Ng. The 1increased
homogeneity of the ocean results in reducing the dégree of
compression that can occur to the isopcynals. Thus, as the
ubstream flow encounters the support of h(x,y), baroclinic
vortex tube compression 1is reduced. The conservation of
potential wvorticity will 1imply that the magnitude of the
associated change in the relative vorticity will be equivalently
reduced. However, since isopcynal compression occure primarily
near the surface the principle effect of decreasing N, will be
to decrease the degree of surface intensification in the eddy
flow field.

Increasing Nj shéuld have the opposite effect. The surface

intensification will increase as the vertical gradients in the



98

mean state density field surface sharpen. Increasing N, also as
the possibility of deepening the depth to which the eddy
penetrates, since changeé in Ny wuniformily effect S(z)
throughout the water column. If N, 1is sufficiently increased
then appreciable baroclinic vortex tube compression can occur in
intermediate regions of the water column. This will result in a
decreased relative vorticity in this region and consequently in
an apparent deepening of the eddy motion.

In the extreme case in which N, = 0 the interaction stream
function p(x,y,z) is independent of z and a Taylor column will
form over the region where h(x,y) # 0. The circulation around
the Taylor column will be anticyclonic and will extend uniformly
to the surface. However 1if Ny, # 0 then a stratified Taylor
column will appear over the region h(x,y) # 0, with a more
complicated vertical structure than in the homogeneous case.

The vertical shear 1in S(z) is governed by +«y = v*H.
Increasing y* will result in decreasing the e-folding distance
required for S(z) to decay to sge-'. Thus increasing y* will
imply that the most significant vertical changes in the mean
state density field occur closer to the surface. Near the
surface, therefore, the compression of the isopcynals increases
as = ~w* increases. This results in an increased surface
intensification of the eddy trapped closer to the surface.
Decreasing +* should have the opposite effect. The surface
intensification should decrease somewhat as the gradients in the
mean state density field are smoothed out.

The compilation by Emery et al. (1983) of typically
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observed North Pacific Ocean Brunt-Vaisala frequencies suggests
that the parameter N, lies between 10-' s-' and 2:10-' s-', The
data presented in Emery et al. (19835 also suggests that the
attenuation of the Brunt-Vaisala frequency with depth is more or
less geographically invariant in the Northeast Pacific. 1It
remains, however, desirable to 1investigate the effects of
variable vertical shear of the Brunt-Vaisala frequency on the
flow field.

The least squares fit of the parameter (4*)-' by Willmott
and Mysak(1980) gave a value of 254.51 m, so this parameter was
varied between 225 and 300 metres. Varying (v*)-' outside this
range was numerically impossible since at certain stages in the
calculations some of the variables exceeded the ability of the
computer to handle, ie. they were too large.

The parameter N, was varied between 0.01 s-' and 0.02 s~ ',
Specifically, the solutions obtained in Chapter I1I were éomputed
for N, taking on the values 0.01 s-', 0.015 s-' and 0.02 s-' and
(y*)-' taking on 225 m, 250 m, 275 m and 300 m, giving 12
parameter pair calculations.

Figure 63 is a contour plot of a vertical section of p!9’
computed along y = .8 for (4*,No) = (300-'m-',.01 s-'). This
value of (y*)-' corresponds to a change of about +12% from its
standard wvalue. The contour intervals are + or - .01 relative
to the 0 pressure contour. Comparing Figure 63 with Figure 19
illustrates the main features argued previously that are
associated with decreasing 9* from its standard value.

In Figure 19 the p'®’ field has a surface maximum of about
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+.1 over the seamount. In Figure 63, p!'°’ =~ .08 on z = 1 over
the seamount, representing about a 20% decrease. It is also
possible to see that the eddy flow field in Figure 63 is less
intense than in Figure 19 by the fact that the width of the eddy
(in this section) is about 1 (400 km) in Figure 19 and about .75
(350 km) in Figure 63.

The surface speeds in Figure 63 at (x,y) = (.8,.8) are
about 26 cm s-' compared to about 29 cm s-' in Figure 19, so
that there is slightly more than a 10% reduction in the speeds.
The transports at this (x,y) coordinate in Figure 63 1is about
.05 (18 Sv) which is about 5% smaller than the 19 Sv calculated
~in Figure 19,

Figures 64 and 65 are contoured vertical sections of p(®’
along y = .2 and y = .8 respectively for
(y*,No) = (225-'m~',.02 s-), Based on previously made
arguments, increasing N, should result in an increased surface
intensification and an increased vertical penetration of the
eddy. Decreasing (y*)-' from its standard value to 225 metres
should increase the surface response and decrease the depth to
which the eddy extends. It is not surprising, however, that
Figures 64 and 65 show, in addition to an intensified surface
response, an increased depth penetration of the eddy. The
changes in (4*)-' and N, from their standard values for these
figures are 12% and 90% respectively. Therefore effect of
variations in N, can be reasonably expected to dominate those
created by varying 7*,

Comparing Figure 64 to Figure 16 the dramatic increase in
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the vertical extent in the eddy can be seen. In Figure 16 the
+.,01 contour extends to about z = .6 (1400 metres deep), whereas
in Figure 64 this contour extends to the bottom. Interestingly
the magnitude of p‘®’ is only slightly increased in Figure 64
compared to Figure 16. The most significant change occurs in
the transports. In Figure 64, at (x,y) = (.2,.2) the transport
has magnitude about .015 (4 Sv). This represents about a 25%
change in the transport (5 Sv) calculated in Figure 16.

The increased vertical extent of the eddy is also seen by
comparing Fiéure 65 with Figures 63 and 19. 1In Figure 65 the
upstream 0 pressure contour occurs at about x = -,1 for y = .8,
whereas 1in Figure 63 it occurs for x = 0. The +.02 contour
extends down to about 900 metres in Figure 65 and down to about
600 metres in Figure 63,

The intensity of the eddy 1is increased in figure 65
compared to Figure 63. In Figure 65, p'°® == +,09 on z = 1
compared to about +.08 in Figure 63. The magnitude of p'°’ in
Figure 65 is about the same as in Figure 19. The surface speeds
are increased from about 26 cm s-' in Figure 63 to about 28 cm-'
in Figure 65, consistent with those in Figure 19, The
transports have increased as well, in line with the deepening of
the eddy. In Figure 65 at (x,y) = (.8,.8) the transport is
about 21 Sv compared to about 17 Sv in Figures 63 and 19,
representing a 20% increase.

Figure 66 is a contour plot of a vertical section for p‘®’
along y = .8 in which both (4*)-' and N, have been increased

from their standard values to 300 m and .02 s-' respectively.
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The contour intervals are + or - .01 relative to the 0 pressure
contour. Figure 66 has the resulting eddy flow extending deeper
into the water column and at the same time has the near surface
motion decreased.

The magnitude of p‘®’ on z = 1 is about +.06 in Figure 66
compared to about +.08 in Figure 65, about +.08 in Figure 63 and
+.1 for the standard set of parameters in Figure 19. The

increased spacing between the surface <contours in Figure 66

suggests that the horizontal velocities are reduced. At
(x,y) = (.8,.8) the surface speed is about .3 cm s-' 1in Figure
66 compared to surface speeds in excess of 20 cm s-' in Figures

65, 63 and 19.

The transport is not significantly decreased in Figure 66
compared to Figure 65. In Figure 66 the transport is about
21 Sv which is about the same as in Figure 65. Thus while the
surface intensity has decreased due to larger N, and sméller v*,
the larger N, has also deepened the eddy so that the integrated
effect is to increase the trénsport.

4.5 Horizontal Current Shear And Surface Current

The principle concern of this section is to describe the
effect of wvariations of the boundary condition 2Z(1) = a on the
gualitative structure of the eddy flow field. Attention is
given to the parameter a only in so far as it effects the role
played by z(1). A complete discussion of the response of the
flow field to variations in a 1s given in Section 4.2,

The effect of variations in Z(1) is again best understood

within the frame work of wvorticity arguments. The upstream
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vorticity 1is given by -9,Up = aexp(-ay)z(z). Consequently
increasing 2Z(1), holding a fixed, will increase the relative
vorticity of the surface flow. Moreover, since 2Z(z) smoothly
assumes its boundary value at z = 1, increasing 2(1) will also
tend to increase the vorticity of the near surface flow.
Decreasing Z(1) will obviously decrease the relative vorticity
of the near surface upstream current.

Consider the effect of increasing Z(1) on the 1interaction
between the upstream current and the topography. The
conservation of potential vorticity and the fixed change in the
compression of the isopcynals implies that increasing 2(1) will
increase the relative vorticity of the eddy field. Consequently
the anticyclonic motion in the eddy is reduced.

In fact, for,a sufficiently large surface current noe eddy
is produced. 1If all other parameters are held to their standard
values, numerical experiments suggest that this so-called cutoff
speed is | about 30 cm s° ', Increasing (decreasing) the
horizontal current shear parameter a, decreases (increases) the
necessary cutoff speed.

In the extreme situation with Z(1) = 0 there is no surface
expression of any interaction between the upstream current and
the topography. This can be seen by examining the boundary
condition 3.3, If 2(1) = 0 then 3.3 requires that pD;Z = 0 on
z = 1. If D32 = 0 on 2z =1 then (providing 2(z) is analytic)
Z2(z) = 0 everywhere in the water column. Therefore 2(1) =0
must imply that p =0 on z = 1, which has the physical

implication that no interaction occurs on the surface.
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The existence of a cutoff surface speed and the fact that
2(1) = 0 leads to p'®’ = 0 on z =1 implies the existence of a
value of Z(1) for which the surface interaction is maximized.
For the standard set of parameters this value is about 5 cm s-'.

Decreasing (increasing) Z(1) below this extremal value will
tend to decrease (increase) the surface eddy circulation,
Decreasing (increasing) Z(1) above this wvalue will tend to
increase (decrease) the surface response.

The solutions obtained in Chapter III were computed for
a = Z(y) taking on the range 6f values 0, .1, .25, .5, and 1.0
corresponding to O cms-', 10 cm s-', 25 cm s-', 50 cm s-! and
1 ms-', The horizontal current shear was varied as in Section
4.2, thus 25 numerical experiments were preformed varying a and
z(1).

Figure 67 is a contour plot of p‘®°’ on =z =1 for the
extremal case where 2(1) = ,05 (5 c¢m s-'). All other parameters
are held to their standard wvalues. Figurgs - 68 and 69 are
contour plots of vertical sections of p‘°’ along y = .2 and
y = .8, respectively. In all three figures the contouring
interval is + or - .01 relative to the zero pressure contour.

Comparing Figure 67 with Figure 11 the increased eddy flow
features can be seen. The coastal stagnation points in Figure
67 are displaced outward from x = 0 compared to Figure 11,
implying that the interaction between the topography and the
upstream current begins further upstream for 2Z(1) = .05, The
area of eddy circulation is also larger in Figure 67 than in

Figure 11.
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The value of p'°®’ has increased in the interior of the
eddy. Over the seamount, p‘®’> is on the order of .13 in Figure
67. This represents an increase of about 30% from p'° = .1
calculated in Figure 11, Similiar increases are observed over
the slope protrusion with p'®’ increasing from about .08 in
Figure 11 to about .1 in Figure 67.

The reduced spacing between the streamline contours in
Figure 67 compared to Figure 11 manifests itself in an increased
clockwise circulation. Over the seamount, the surface speeds
computed 1in Figure 67 are -typically on the order of .5
(50 cm s-'). This represents an increase of about 25% over the
.4 (40 cm s~ ') computed 1in Figure 11, There is a similiar
increase over the slope protrusion. at (x,y) = (0,0), the
speeds in Figure 67 are about .75 (75 cm s~ ') compared to the .5
(50 cm s~ ') in Figure 11. Further out, say at (x,y) = (0,.1),
the speeds are about .45 (45 cm s-') in Figure 67 compared to
about .3 (30 cm s~ ') in Figure 11,

Comparing Figures 68 and. 69 with Figures 16 and 19
respectively, the increased vertical penetration of the eddy
flow field can be seen. In Figure 68, the slope protrusion
induces a typical current speed of about .05 (5 cm s-') in the
deep interior of the water column, compared to a negligible flow
in Figure 16. A similiar situation is found in the section
along y = .8. 1In Figure 69, the deep interior speeds are on the
order of .1 (10 cm s ') compared to about .01 cm s-' in Figure

19.

The increase in the magnitude of the velocity throughout
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the water column results in ihcreasing the transports 1in the
eddy. Over the seamount, the transport is about .12 (40 Sy)
compared to about the 20 Sv computed for the standard set of
parameters. In the return coastal flow the transport has
increased from 20 Sv, for the standard parameters, to about
70 Sv with z(1) = ,05.

Figure 70 is a contour plot of p‘®’ on z = 1 for z(1) = 1.
The contour intefvals are + or - .02 relative to the zero
pressure contour. - This value of 2(1) 1is well above the
numerically determined cutoff value of .3. Consequently, no
surface expression of an eddy is expected to occur. There is a
seaward deflection of the streamlines over the seamount. Over
the slope protrusion there 1is a 1less noticeable seaward
deflection of the streamlines. Vertical sections of p‘°’ show
that there is no submerged eddy over the slope protrusion or
over the seamount.

Figure 71 is a contour map of p‘°’ on 'z =1 with
z(1) = .01, The contour intervals are + or - .01 relative to
the zero p‘°’ contour.

This value of 2Z(1) is smaller than the extremal value of
.05, conseqguently the eddy circulation shown 1in Figure 71 is
weaker than in Figure 67. Over the seamount, p‘°’ = ,04
corresponding to about 70% decrease from that in Figure 67. The
p‘°®’ field over the slope protrusion is similiarly reduced, with
p‘®’ = .03 in Figure 71 compared to p‘®’ = .1 in Fiqure 67.

The surface speeds have been reduced as well, Typical

speeds over the seamount are about .12 (12 cm s-') and over the
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slope protrusion are about .2 (20 cm s-'), corresponding to
about a 75% compared to those in Figure 67.

Figures 72 and 73 are vertical sections of p‘®’ along
y = .2 and y = .8 respectively, for Z(1) = ,01. The contouring
interval is + or - .01 relative to the zero P‘°’ contour. These
two figures show that, except near the surface, the response is
nearly depth independent. Numerical experiments show that this
is the case whenever Z(1) = Z(0).

If the boundary conditions on 2(z) are equal then the form
of S(z) will imply that Z(z) will only slightly deviate from the
constant value 2(0) (=z(1)). Since Gy(z) 1is proportional to
z(z), the principle response of the flow to topographic
excitment will be only marginally depth dependent. However if
Z2(z) 1is truly barotropic then form of the solution shown in
Figures 71, 72 and 73 is incorrect. In Section 3.2 it was shown
that if Z(z) is barotropic then « = -a? implying that Ao = 0
which in turn implies that the form of the solution used to
compute Figures 71, 72 and 73 is invalid.

4.6 Horizontal Current Shear And Bottom Current

Variations in the bottom boundary condition Z(0) = b have a
significant effect on the eddy flow field. Vofticity arguments
are again the most physically relevant way to understand the
effect of the parameter 2(0).

Figure 6 shows that from z =0 to z = .5 Z(z) is
approximately depth independent. This 1is a conseqguence of a
Brunt-Vaisala frequency which 1is approximately zero at this

depth. Variations in Z(0) will lead to more or less uniform
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changes in the value of 2Z(z) in the lower water column.
Conseguently, increasing Z(0) will increase the relative
vorticity of the upstream current throughout the lower half of
the water column. The conservation of potential wvorticity and
the compression of the mean state 1isopcynals as the flow
encounters the support of h(x,y) will 1imply that that the
anticyclonic motion over the topography will be reduced for
increased z(0). 1In fact, for sufficiently large Z(0) no eddy is
produced at all. This cutoff wvalue for the bottom boundary
current was numerically determined to be about 50 cm s !,
assuming all other parameters are held to their standard values.
The above vorticity argument implies that decreasing 2(0) will
tend to increase the anticyclonic motion over the topography.
This scenario must be modified by the fact that 2(0) = 0
will resu1£ no interaction occuring at all. From 3.18 and 3,19

it is clear that each P (x,y) 1is proportional to G (0).
n n

However, from 3.8 it follows that if 2(0) = 0 then G (0) = 0 for
n

each mode. Therefore no bottom current will imply no
interaction.

The preceding argument and the previous vorticity argument
are compatible if there exists some value of Z(0) for which the
interaction field 1is maximized. For the standard set of
parameters this value is Z(0) = .02. Numerical experiments seem
to indicate that the eddy circulation is maximized if
5.2(0) = z(1), provided the other parameters are held to their

standard values. Increasing (decreasing) Z(0) or 2(1) above
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this equilibrium relationship will decréase (increase) the
magnitude of the interaction flow field. Increasing
(decreasing) Z(0) or Z(1) below this equilibrium relationship
will increase (decrease) the magnitude of the interaction flow
field.

Figure 74 is a contour plot of p‘®’ on z =1 for
2(0) = .001. This value of 12(0) corresponds to a upstream
coastal bottom current of .1t cm s-'., All other parameters are
held at their standard values. The contour interval 1is + or -

.002 relative to the zero streamline.

For this value of Z(0) there is no surface expression of an
eddy over the slope protrusion. However, closed streamline
circulation does occur over the seamount. The reduction of Z(0)
to .001 from its standard value of .01 has a significant effect
on the properties of the flow field.

Over the slope protrusion typical velocities were computed
to be about .02 (2 cm s-'). Over the seamount the velocities
are about .03 (3 cm s-'). Transports are about .001 Sv and
.002 Sv over the slope protrusion and seamount respectively.

Figure 75 is a contour plot of a vertical section of p‘'®’
along y = .2. The contour interval is + or - .002 relative to
the zero p‘°’ contour.

The most interesting feature of Figure 75 is the region of
positive p‘®’ bounded by the =zero contour and z = 0. This
region corresponds to an anticyclonic eddy extending from the
ocean floor to about =z = ,75. The magnitude of the velocity

field in its interior is very weak, on the order of .005 cm s~ ',
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The near surface contours turn upward toward the surface over
the submerged eddy as a consequence of the turning of the

coastal flow seaward as it encounters the slope protrusion.
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Figure 11 - Horizontal contour plot of the stream function
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Figure 12 - Horizontal contour plot of the stream function
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Figure 13 - Horizontal contour plot of the stream function
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Figure 14 - Horizontal contour plot of the stream function
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Figure 15 - Horizontal contour plot of the stream function
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Figure 16 - Vertical contour plot of p‘®’ on y =
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Figure 19 - Vertical contour plot of p‘°’ ony = .8
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Figure 20 - Vertical contour plot of p‘®’ on y = 1

0°¢

1

SIXY X
5" g 00

S0~ 0 f{- S [- 0z~

1.0

0cG 0=0Y

-.c.al

L' pE=C¢H &6 00=H

.
n.v
\\//s..)o/ o

b.00

a0t e

{0'0-

00 | =A HO04 (01314 3FdNSS53dd

110 0=0N _[S'pSZ =D 01 0=l7 010°0=0Z 00 0=dddvA 00 S=BHd1Y

g'o

0

e

50
SIXY Z

SL°

1



122

Figure 21 - Stick plot of the horizontal velocity field on
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Figure 22 - Stick plot of the horizontal velocity field on
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Figure 23 - Stick plot of the horizontal velocity field on
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Figure 24 - Stick plot of the horizontal velocity field on
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Figuré 25 - Stick plot of the horizontal velocity field on
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Figure 26 - Stick plot of the mass transport field

o)
™~

1

50

‘0

020" 009

["pE=CH 6 0(=lH

c

!
|
¢
SIXY A

1

g

L

o

1HO0dSNEE L SSBW

100°0=0N _[5'pSZ~HULED 00 0=lZ 016 0=0Z oo.owammax 06" G=bHdlu



128

0 §' 1 G [- S {- g ¢-

"L 1 J L e
N 00 °
o

o

m o

Q Lo
w wn
o

FS]

3 3

3. o

5 o
p.

o

o

0

—

o —
< >
N

ke

o

s

| ﬁ.Z
S o
o

& 00 I =7 ¥04 0134 ALISN3CO

o .

026°0=0Y ('bE=ZH 6 0(=lH [(0°0=ON (S5'PSZ=4Uldd Of 0=lZ 01G 0=0Z 00 G=Yddbi 00 S=bHdlt



129

Figure 28 - Horizontal contour plot of p‘®’ on z = .9

G'¢

1

020 0=0Y

[("PE=CH b6 0r=lH

06 0 =2 d04 01314 ALISNIQ

10G 0=0N [S'bSZ-HWWED 00 0=lZ 010°0=0. 0C O=HddbA 00 S=bHd'IY

0



130

Figure 29 - Horizontal contour plot of p‘°’ on z = .8
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Figure 30 - Vertical contour plot of p'°’ ony = .2
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Figure 31 - Vertical contour plot of p‘'°’ ony = .4

0 0 =A J03 01313 ALLISNIC

020°0=04 ['pE=C¢H 6 00l=lH 1[0 G=ON _[S'PSZ=bUWED O0f'0=lZ 010°0=0Z 00 0=YddBx 00 S=BHdJ1E



133

Figure 32 - Vertical contour plot of p‘°®’ ony = .6
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Figure 33 - Vertical contour plot of p'°’> ony = .8
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Figure 34 - Vertical contour plot of p‘°’ on y = 1
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Figure 35 - Vertical profile of p'°’ at (x,y) = (-2,.1)
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Figure 36 - Vertical profile of p'°) at (x,y) = (-2,.1)
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Figure 37 - Vertical profile of u‘®’ at (x,y) = (-2,.1)
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Figure 38 - Vertical profile of v‘%) at (x,y) = (-2,.1)
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Figure 39 - Vertical profile of w'°®) at (x,y) = (-2,.1)
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Figure 40 - Vertical profile of p‘°®’ at (x,y) = (-.4,.1)
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Figure 41 - Vertical profile of p‘°’ at (x,y) = k-.4,.1)
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Figure 42 - Vertical profile of u'®) at (x,y) = (-.4,.1)
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Figure 44 - Vertical profile of w'°) at (x,y) = (-.4,.1)
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Figure 45 - Vertical profile of p‘®’ at (x,y) = (0,.75)
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Figure 46 - Vertical profile of p‘°’ at (x,y) = (0,.75)
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Figure 47 - Vertical profile of u'®’ at (x,y) = (0,.75)
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Figure 48 - Vertical profile of v(°’ at (x,y) = (0,.75)

g

0

Y2 B\

SZ°0

SIXY Z
g 8Z9°0 5L 0

SLE'O

5(8°0 g

0ZC 0=0yY

SL 0 000 =AX d04

['vE=CH 6 0[=lH

[[0°C=ON _[S'bSZ=YlWYgD Ol 0=iZ 010°0=0Z

ALTIJC 13N A

06" 0=YddtX 00" S+bHdY

[_.

0

I



150

Figure 49 - Vertical profile of w'®’ at (x,y) = (0,.75)
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Figure 50 - Vertical profile of p'°’ at (x,y) = (.75,.75)
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Figure 51 - Vertical profile of p‘°’ at (x,y) = (.75,.75)
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Figure 52 - Vertical profile of u'®’ at (x,y) = (.75,.75)
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Figure 53 - Vertical profile of vf% at (x,y) = (.75,.75)
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Figure 54 - Vertical profile of w'°®’ at (x,y) = (.75,.75)
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Figure. 55 - Horizontal contour plot of the stream function
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Figqure 56 - Horizontal contour plot of the stream function
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Figure 57 - Horizontal contour plot of the stream function
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Figure 58 - Horizontal contour plot of the stream function
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Figure 59 - Vertical contour plot of p‘®’ on y = .6 with
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Figure 60 - Vertical contour plot of p‘®’ ony = .6 with
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Figure 61 - Horizontal contour plot of the stream function
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Figure 62 - Horizontal contour plot of the stream function
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Figure 63 - Vertical contour plot of p'®’ on y = .8 with
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Figure 64 - Vertical contour plot of p'°’ ony = .2 with
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Figure 65 - Vertical contour plot of p‘®’ on y = .8 with
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Figure 66 - Vertical contour plot of p'®’ on y = .8 with
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Figure 67 - Horizontal contour plot of the stream function
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.2 with

Figure 68 - Vertical contour plot of p'®’ ony
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Figure 69 - Vertical contour plot of p'°®’ ony =

.8 with
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Figure 70 - Horizontal contour plot of the stream function
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Figure 71 - Horizontal contour plot of the stream function
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.2 with

Figure 72 - Vertical contour plot of p‘®’ ony
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Figure 73 - Vertical contour plot of p‘®’ on y = .8 with

SIXH X .
G ¢ 8 i G I G G0 50 G (- S (- G'¢
L j 1 ] | 1 ] |
- i ; ]
]
=
LTTVTTT _
08 0 =A d04 01314 F4dNS53dd
020 0=0d ["bE=¢cH b6 0C=IH T[0 G=ON Tﬁm,vmmnmz:ao [G'0=lZ 0IG 0=0Z (0 0O~Yddtdx OC 5=bthHdlb

0

S

5°0

SIXY Z

=



175

Figure 74 - Horizontal contour plot of the stream function
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Figure 75 - Vertical contour plot of p'°’ on y = .2 with
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V. APPLICATION TO THE SITKA EDDY

The mathematical model developed in Chapter III illustrates that
a baroclinic coastal current forced by topography can generate
anticyclonic baroclinic eddies. The model contains a number of
parameters. Estimates of these parameters based on the
available data record for the north east Pacific Ocean suggests
that the prominent regional bathymetry and the local mean flow
can interact to produce eddies which are gualitatively similiar
to the eddy observed by Tabata(1982). This chapter concerns
itself with qualitatively comparing the numerical calculations
described in Chapter IV with Tabata's(1982) and Bennett's(1959)
observations.

The lateral scale of the calculated large scale
anticyclonic circulation agrees favorably with the observed
radius of the Sitka eddy. Figure 11, computed for the standard
set of parameters, has a large scale anticyclonic circulation
with nondimensional radius .5, corresponding to a dimensional
radius of 200 km. Tabata's estimate of the eddy radius was on
the order of 100 to 150 km. The center of the computed large
scale circulation is more or less located at (x,y) coordinates
(.25,.5) which when converted to approximate longitude and
latitude is consistent with Tabata's location of the Sitka eddy
given as 57°N 138°W.

In Section 4.3 the numerical calculations of the resulting
flow field in the absence of the seamount (Figure 6!) or the

slope protrusion (Figure 62) were presented. In either case the
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resulting eddy has a radius on the order of 100 km. The
location of the Sitka eddy suggests that it is unlikely that the
Sitka eddy is simply produced by the individual interaction of
the seamount or the slope protrusion on the coastal current.

The calculations of Section 4.3 show that the seaward
deflection of the coastal current by the slope protrusion
extends out to the vincinty of the seamount. This implies that
the effect of the seamount on the flow field cannot be ignored.
This suggests that upstream from the Sitka eddy the currents
would show a tendency toward the region containing the Pratt
seamount. This topographic steering of the coastal current has
been detected in the oceanographic data
(Tabata; personal communication).

Ignoring the effects of the slope protrusion does not lead
to realistic results. Figure 62, in which h; = 0, has the
resulting eddy located substantially seaward of its observed
location. Furthermore, the strong seaward deflection of the
observed coastal current is absent, as is any significant return
coastal flow.

Observations of the isopcynal depression place the vertical
extent of the eddy on the order of a kilometer (Tabata; 1982).
During March 1958 and January 1960, the deflections of the
ispcynals persisted as deep as 2000 metres. Strictly speaking
the model predicts anticyclonic motion throughout the entire
water column. There are, however, large vertical gradients in
p‘°’, ut®, vi% and p'°’ near the surface. Vertical sections

of the density field (Figures 30 through 34) suggest that the
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sharpest gradients in p‘°®’ occur 1in upper 900 metres of the
ocean. Contour plots c¢f the isobars (Figures 16 through 20)
show that the significant wvertical wvariation in p'®) |is
constrained to the upper 1100 metres of ocean. Thus estimates
of the wvertical extent of the calculated eddy based on the
pressure and de;sity fields are on the order of 1000 metres,
which is entirely consistent with the observations.

The observed surface currents in the Sitka eddy are also
consistent with those computed in the model. Tabata(1982)
describes three drifting bouys that 1in 18977 entered the
northwest area of the Sitka eddy. This region would correspond
to the area surrounding (x,y) coordinates (.75,1.25) in the
horizontal sections contained in this thesis. The average drift
rate for these bouys was computed to be 62 cm s-', 91 cm s-' and
47 cm s~ ', with the later average obtained from a drogued bouy.
The model computes a surface drift speed in this region, for the
standard set of parameters, between 30 and 40 cm s"f Thus the
calculations are consistent with the drogue bouy results but are
about 50% of value obtained from the undrogued bouys.

Tabata's estimates of the southward drift rate in the
northeast sector of the Sitka eddy is range of values between 48
and 64 cm s~ ', Assuming the northeast sector to be in the
general neighbourhood of (x,y) coordinates (.5,.25), the model
predicts surface speeds on the order of 50 cm s-',

Current speeds in the interior of the water column in the
eddy are consistent with the observations of the Sitka eddy.

Relative to the 2500-decibar level, Tabata estimates a
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1.5 cm s-! current at the 2000-decibar level. The model
computes currents at the 1750 metre depth level as 2 cm s-' over
the slope protrusion and 3 cm s-' over the seamount.

The upstream current was effectively modelled as
exp(-ay)z(z). Bennett's(1959) analysis of the coastal current
revealed that the coastal current was significantly sheared,
both horizontally and vertically. The assumed horizontal
structure of the upstream current, modelled with an exponential
function with a distance of 80 km, was an accurate idealization
of the actual coastal currents horizontal structure.

The vertical structure of the wupstream current was
described by the function 2(z). Assuming that the potential
vorticity was conserved throughout the flow field forced Z(z) to
be formulated in a particular way. The resulting vertical
structure of the upstream current 1is consistent with the
profiles shown in Bennett(1959). The montonic decay of the
current with increasing depth was obtained.

| The upstream alongshore surface current was assumed to be
about 10 cm s-!' and the current speed in the deep interior of
the water column about 1 cm s-', as described in Bennett(1959).
Tabata(1982) reports that the upstream coastal current has a
transport on the order of 6 Sv. The modelled upstream current
had a transport of 5.9 Sv. This suggests that the linearization
of the potential vorticity equation as manifested in 2.10 was an
effective and accurate model of the upstream current.

The transports computed in the eddy were 1in the main

consistent with those observed by Tabata(1982). The large scale
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anticyclonic circulation (shown in Figure f1 as exterior to the
smaller local eddies) has a transport of about 4 Sv. This
compares favorably with Tabata's observation of 5 Sv. The local
eddies produced over the slope protrusion and the seamount had
computed transports on the order of 20 Sv. These estimates are
somewhat larger than the the observations. Over the slope
protrusion, Tabata estimates a southward transport of about
8 Sv. Tabata estimates the transport over the Pratt seamount as

between 5 and 6 Sv.
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VI, CONCLUSIONS

This thesis has examined the following conjecture: that
bathymetry and the local mean coastal flow of the north east
Pacific Ocean can interact to .produce baroclinic anticyclonic
eddies. A mathematical model was developed fo examine this
possibility.

This model demonstrates that the regional bathmetry and
local mean flow can interact to produce mesoscale anticyclonic
eddies. These eddies are genefated for parameter values which
are obtained from estimates of the geometry, bathymetry and
oceanographic data for the north east Pacific Ocean.

The solution of the mathematical model is consistent with
the oceanographic data of this region as reported by
Bennett(1959) and Tabata(1982). The lateral and vertical scales
of the anticyclonic circulation predicted by the model agrees
closely with the observations. The eddy 1s observed and
computed to have a radius of about 200 km and to extend at least
to 1000 metres in depth. The decay of the velocity field with
depth is consistent with the observations. The computed
transports are in good agreement with the observations. The
solutibn of the field equations is robust in the sense that for
variations in the parameters the basic gqualitative structure of
the solution varies little.

The mathematical model 1is derived from the steady,
inviscid, incompressible, stratified, f-plane and Boussinesg

equations of motion. The ocean is assumed to lowest order to be
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at rest and in hydrostatic balance. The Brunt-Vaisala
frequency, derived from the mean state density field, is a least
squares fit (Willmott and Mysak; 1980) of a typically observed
Brunt-Vaisala frequency for the north east Pacific Ocean (Emery
et al.; 1983) with an exponential function.

The dynamic pressure and density fields associated with
fluid motion are in hydrostatic balance. The horizontal
velocity field is geostrophically scaled relative to the dynamic
pressure field. This scaling resulted in the nondimensional
parameters e, F, and s, which are the Rossby number, the sqguared
ratio of the length scale to the external -Rossby radius and the
Burger number respectively. Estimates of these parameters based
on scales obtained from the north east Pacific éuggest that
So = 0(1), F = 0(e) and 0(e) = 10-2,

These parameters suggest that the motion 1is primarily
geostrophic and therefore horizontal. The smallnesé of F
implies that the vorticity associated with the deformation of
the sea surface is an order of magnitude smaller than the
relative vorticity. However, since the Burger number is order
unity then the baroclinic compression of the isopcynals makes an
egqual contribution to the vorticity of a vortex tube as does its
angular wvelocity. The smallness of e is exploited by
constructing the lead terms for the pressure, density, velocity
and mass transport fields in an asymptotic expansion in the
parameter e.

The essential physical feature captured in this lead order

solution is that the order one dynamics is the result of the
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conservation of potential wvorticity along streamlines. The
potential wvorticity 1is the balance between the relative
vorticity and the vorticity induced by the compression of vortex
tubes.

‘The guasi-geostrophic potential wvorticity equation (ie.
the Jacobian between the stream function and the potential
vorticity must vanish) was solved by assuming that the potential
vorticity was a linear function of the pressure field. This
procedure implied that the upstream vertical current structure
was the solution of a second order ordinary differential
equation.

The horizontal structure of the upstream current was
assumed to exponentially decay away from the coast. The
observed upstream current and the modelled upstream current were
in very good agreement. The vertical structure of the computed
upstream current was in good agreement with the obsefvations
contained in Bennett(1959). Tabata(1982) suggests that this
current transports about 6 Sv of water northward. The modelled
current transported about 5.9 Sv northward.

The topography of the ocean floor in the north east Pacific
Ocean was idealized as an abyssal plain with two orographic
features. The seamounts in the vincinty of the Pratt seamount
were modelled as a smooth orographic feature with the maximum
height of the Pratt seamount. In addition, the continental
shelf has a prominent horizontal seaward protrusion 1in the
coastal region near the Sitka eddy. This feature was modelled

as a smooth cosine-like orographic feature protruding from an
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other wise straight channel wall.

Estimates of the heights of the topography suggested that
the heights of the seamount and slope protrusion was order
Rossby number with respect to the mean depth of the ocean. Thus
the no normal boundary condition on the velocity field at the
bottom could be expanded in a Taylor series about a state of no
topography.

The solution for the order one stream function was obtained
as a linear sum of the upstream stream function and an
interaction pressure field. The interaction pressure field was
obtained via a normal mode analysis described in Chao et al.
(1980). The boundary conditions on the interaction pressure
field were integrated upstream into the form suggested by
Hogg(1980). The vertical modes and upstream vertical structure
were obtained wusing a technique 1illustrated 1in Bryan and
Ripa(1978) in their analysis of the vertical structure of
temperature anomalies in the north east Pacific Ocean. The
horizontal amplitude function, associated with the normal mode
analysis, were obtained using Green's functions.

The solution obtained 1in this thesis suggests that Sitka
eddy is essentially produced in the following manner. The
northward flowing coastal current encounters the southern edge
of the slope protrusion. The compression of the isopcynals and
the conservation of potential wvorticity 1implies that the
relative vorticity must decrease. This decrease in the relative
vorticity is obtained by increasing the anticyclonic motion of a

vortex tube, implying that the current turns seaward. Some of
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the deflected current encounters the Pratt seamount, the rest
continuing downstream.

For those streamlines passing over the Pratt seamount the
isopcynals are again compressed which induces an anticyclonic
rotation toward the coastline. Some of these streamlines
subsequently interact with the slope protrusion, others are
deflected downstream by the coastline. Those that interact with
the slope portrusion are as a conseqguence of the conservation of
potential vorticity turned wupstream. The <constraint of the
coastline and the upstream -streamlines therefore sets up a
closed anticyclonic circulation. This large scale circulation
is centered and has charateristics which agree closely with the

observations made of the Sitka eddy contained in Tabata(1982).
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