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ABSTRACT i

This dissertation consists of two parts. Part I contains the state-
ments and proofs of two representation theorems. The first theorem, proved
in Chapter 1, generalizes the quasilinear mean of Hardy, Littlewood and Polya
by weakening their axiom of quasilinearity. Given two distributions with
the same means, quasilinearity requires that mixtures of these distributions
with another distribution in the same proportions share the same mean,
regardless of the distribution that they are mixed with. We weaken the quasi-
linearity axiom by allowing the proportions that give rise to the same means
to be different, This leads to a more general mean, denoted by M&

¢’

which has the form:

Ma¢(F) = ¢'1(fRu¢dF/fRudF),
where ¢ is continuous and strictly monotone, o is continuous and strictly
positive (negative) and F is a probability distribution. The quasilinear
mean, denoted by M,, results when the a funétion is constant. We showed,
in addition, that the Ma¢ mean has the intermediate value property, and
can be consistent with the stochastic dominance (including higher degree
ones) partial order. We also generalized a well known inequality among
quasilinear means, via the observation that the Ma¢ mean of a distribution
F can be written as the quasilinear mean of a distribution Fu, where F*
is derived from F via a as the Radon-Nikodym derivative of F* with
respect to F.

We noted that the Ma¢ mean induces an ordering among probability
distributions via the maximand, fRa¢dF/fRudF, that contains the (expected
utility) maximand, fR¢dF, of the quasilinear mean M¢ as a special case.
Chapter 2 provides an alternative characterization of the above represen-

tation for simple probability measures on a more general outcome set
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where mean values may not be defined. In this case, axioms are stated
directly in terms of properties of the underlying ordering. We retained
several standard properties of expected utility, namely weak order,
solvability and monotonicity but relaxed the substitutability axiom of
Pratt, Raiffa and Schlaifer, which is essentially a restatement of quasi-
linearity.in the context of an ordéring.

Part II of the dissertation concerns one specific area of application -
decisiog theory. Interpreting the Ma¢(F) mean of Chapter 1 as the
certainty equivalent of a monetary lottery F, the corresponding induced
binary relation has the natural interpretation as 'strict prefefence'
between lotteries. For non-monetary (finite) lotteries, we apply the
representation theorem of Chapter 2. The hypothesis, that a choice
agent's preference among lotteries can be represented by a pair of
o and ¢ functions through the M&¢ induced ordering, is referred to
as alpha utility theory. This is logically equivalent to saying that
the choice agent obeys either the mean value (certainty equivalent) axioms
or the axioms on his strict preference binary relation.

Alpha utility theory is a generalization of expected utility theory
in the sense that the expected utility representation is a special case
of the alpha utility representation. The motivation for generalizing
expected utility comes from difficulties it faced in the description of
certain choice phenomena, especially the Allais paradox. These are
summarized in Chapter 3.

Chapter 4 contains the formal statements of assumptions and the
derivations of normative ana descriptive implications of alpha utility

theory. We stated conditions, taken from Chapter 1, for consistency with



iv

stochastic dominance and global risk aversion and derived a generalized
Arrow-Pratt index of local risk aversion. We also demonstrated how
alpha utility theory can be consistent wi%h those choice phenomena

that contradict the implications of expected utility, without violating
‘either stochastic dominance or local risk aversion. The chapter ended
with a comparison of alpha utility with two other theories that have
attracted attention;‘namelx Allaié' theory and'prospect theory.

Several other applications of the representation theorems of Part

I are considered in the Conclusion of this dissertation. These include
the use of the Md¢ mean as a model of the equally-distributed-equivalent
level of income (Atkinson, 1970), and as a measure of asymmetry of a
distribution (Canning, 1934). The alpha utility representation can also
be used to rank social situations in the sense of Harsanyi (1977). We
ended by pointing out an open qhestion regarding conditions for comparative
risk aversion and stated an extension of Samuelson's (1967) conjecture
that Arrow's impossibility theorem would hold if individuals and society

express their preferences by von Neumann-Morgenstern utility functions.
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PREFACE

The preface is perhaps a suitable place for an informal discussion of
ideas leading to this dissertation. In their axiomatiiation of expected
utility, von Neumann and Morgenstern likened the "utility'", loosely speaking,
of a lottery to the center of gravity of a mass distribution. In other
words, the utility, u(xl,...,xn;pl,...,pn), of a lottéry, (xl,}..,xn;pl,...,
pn), which pays x; with probability P;> should be the mean or average of
the utilities associated with each probable outcome. This léd to the expected

utility expression:

n

u(xl,...,xn;pl,...,pn) = iglpiu(xi).

Together with their elegant axiomatic characterization, there seemed to be

a strong case for the adoption of expected utility. The Allais-Savage contro-
versy however clouded the picture somewhat. Some, including Allais, suggested
replacing the probabilities, {p }121, with a more general set 6f weights,

i
{¢. 3.0

iti=1° which depend on the lottery, and sum to unity. In this case,

n .
U(Xys e e s X 3PyseeP ) = 52000 (X5 e X 5P s esP Ju(x, ).

At this level of generality, the only testable implicationlis that theA
utility of a lottery is intermediate in value between the maximum and the
minimum attainable utilities. This property, which may be called intermediate
value property, is compatible with our intuition about the ﬁtility of a
lottery as a mean value.

To impose more structure, one may consider restricting the ¢i weights to:

(b ( . ) _ Wi(Xl,...,Xn;Pl,---:_pn)
i xlav--,xn,plsn'!pn - n ’

> ; «osP
j=le(xl,...,xn,p1,o :Pn)

where'{wi}iz1 is a set of positively valued weight functions that depend on



xi
the lottery, (xl,...,xn;pl,...,pn). A further restriction is obtained by
imposing a desirable property called combination property: the utility of
a lottery remains unchanged if we combine different probabilities of getting

the same outcome. This implies that the wo functions are of the form:
wi(xl,...,xn;pl,...,pn) = p.w.(x.5x_.,p ),

where X_5 and P_; denote the outcome vector and probability vector with the

ith component deleted. With a bold sleight of hand, as yet unsubstantiated

by any a priori reason, the Qi values are assumed to be obtained from a

single function a evaluated at the ith outcome, X, This leads to a fairly

tractable generalization of expected utility:

p,o(x,)

T uxp).

n
Z.p.o(x.
J=1pJa(XJ)

n
u(xl""’xn;pl""’pn) = iz:l{

Of course, a nice expression is just the first step. The next thing
is to work back and forth in order to identify a minimal set of characteristic
properties from which the o and u functions can be constructed. These
properties, once found, would then necessarily be weaker than the corres-
ponding ones for expected utility.

The first proof of such a representation theorem is in the context of
generalizing the quasiiinear mean of Hardy, Littlewood, and Polya given in
Chapter 1. The corresponding result in terms of a preference ordering is
given in Chapter 2. Although the basic result follows from a straightforward
reinterpretation of those of Chapter 1, a self-contained treatment of Chapter 2
is presented so that readers who are used to the preference ordering approach
can skip Chapter 1. Bob Weber provided an elegant geometrical interpretation
of one of the axioms (Ratio Consistency) in an eérlier version of the prefer-

ence ordering theorem and demonstrated that it was redundant. This led to a
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much weaker axiom in the current proof of the mean value representation
theorem. .

As is usual, the organization of the dissertation assumes the normal
trappings of academic writing. Formal results, which are developed rigor-
ously in Part I, precede interpretations in the context of decision theory
in Part II, designed to build a prima facie case for the adoption of the
more general expected utility hypothesis on both theoretical and empirical
grounds. This division may cause the appearance of repetitiousness, but
has the advantage of making Part II self-contained. Parts of tﬂe material
in Part II are the result of joint work with Ken MacCrimmon, my research
supervisor.

I would also like to acknowledge my debt to the other members on my
guidance committee. The numerous instances when I went to Shelby Brumelle
and Cindy Greenwood for help had been instrumental in enabling‘me to
carry through the analysis in the proofs of the representation theorems,
and also in the understanding of some basic mathematics. I have benefited
from Daniel Kahneman's research with Amos Tversky on the psychology of
judgement and decision-making under uncertainty and also from the seminars
in his home. I have also benefited from discussions with Dave Donaldson on
his work with Charles Blackorby on the measurement of inequality and poverty.
I was exposed to research in the economics of uncertainty during Yoshitsugo
Kanemoto's seminars, - Thanks are also due to a non-member, John Butterworfh,
for suggesting the problem during the final examination of his information

choice course.
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INTRODUCTION

Two well known representation theorems provide the starting
point for this dissertation. The first, due to Hardy, Littiewood and
Polya (1934), is an axiomatic characterization of a rather general
class of mean values called the quasilinear mean:

NGIE 7 (/g 6 dF).

M¢(F) denotes the quasilinear mean associated with a probability distribution
F and characterized by a strictly monotone function ¢. Hardy, Littlewood and
Poiya proved their characterization for simple probability distributions
defined on a compact interval. Examples of quasilinear means include the
widely used arithmetic mean (¢ is linear), the geometric mean (¢ is
logarithmic), the harmonic mean (¢ is of the form i) and the rth
moment mean, also known as the general mean of order r (¢ is of the

form xr).

AN

The second representation theorem has its genesis in the St.
Petersburg's paradox -- an individual is not willing to stake all that
he possesses to take part in a lottery that pays 2i dollars with iz
chance; thus, demonstrating the limifation of using mathematical |
expectation of payoffs as a general rule for the ordering of risky
prospects. This led Bernoulli to propose, in 1738, the expectation of
a 'moral worth' function,u, of wealth as an alternative. In particular,
he used the logarithmic function derived by assuming that an infinite-
simal increase in the worth of wealth is proportional to an infinite-

simal increase in wealth but inversely proportional to wealth

. itself. The monetary worth or certainty equivalent M(F) correspond-



ing to a lottery F is then given by,
u(M(F)) = ﬁaudF; .
or alternatively, .

M(F) = u‘l(fR udF).

Note that this expression is the same as that defining the quasi-
linear mean.

The first axiomatic treatment leading to the expectation of a
funétion of payoffs as a rule for the ordering of lotteries is given
by Ramsey (1926) in his "Foundation of Mathematics'. von Neumann and
Morgenstern (1947) provided an alternative axiomatization independently

in their "Theory of Games and Economic Behavior' and initiated the use

of the term '"utility'. They proved the existence of an order-preserving
~map on a mixture set (e.g. the space of probability distributions) subject
to a minimal set of postulates such that the order-preserving map is the
expectation of a utility function. Their result is now commonly referred

to as_the expected utility theorem.

. . 1
The usefulness of quasilinear means needs no elaboration.

Expected utility theory, i.e., the application of the expected utility

theorem to decision-making by iﬁterpreting the binary relation as a

preference relation and the mixture set as a set of risky alternatives

1 For a survey of the use of the rth moment mean in statistics, see

Norris (1976), Blackorby & Donaldson (1978a) contains examples of the
use of quasilinear mean in the measurement of income inequality.
Weerahandi § Zidek (1979) provides an alternative characterization
of the rth moment mean for probability distributions defined on the
positive half-Iine. Ben-Tal (1977) showed that quasilinear means
are ordinary arithmetic means defined on linear spaces with suit-
ably chosen operations of addition and multiplication.



or equivalently, the interpretation of the quasilinear mean as a
‘certainty equivalent, has attracted considerable attention since its
inception. Alternative axiomatizations were given by Marschak (1950),
Samuelson (1952), Herstein and Milnor (1953), Savage (1954), Anscombe
and Aumann (1963), Pratt, Raiffa and Schlaifer (1964), Jensen (1967),
DeGroot (1970), Fishburn (1970), Arrow (1971) and others. Savage
(1954), Blackwell and Girshick (1961) and DeGroot (1970) applied expected
utility theory to statistical decisions. In addition, it served as
the foundation for Arrow (1971) and Marschak and Radner (1972) in
their investigation of the economics of uncertainty, and for Howard
(1964) and Keeney and Raiffa (1976) in their work on decision
analysis. |

Expected utility theory, though, has been less successful in
describing and explaining actual choices (Edwards, 1961; Slovic,
Fischhoff and Lichtenstein, 1977). Even von Neumann and Morgenstern
realized at the outset that expected utility rules out complementarity
among mutually exclusive consequences, a utility for gambling per se,
and other behaviors that seem relatively commbn (von Neumann and
Morgenstern, 1947{ Appendix A, Sec. 3). Subsequently, various
challenges, beginning with the Allais paradox (Allais, 1953), have
called into question the empirical validity of a key property of expected
utility theory, the strong independence principle (Marschak, 1950;
Samuelson, 1952). The strong independence principle requires thgt
ranking among lotteries Tremains unaltered when each lottery is composed
with an identical lottery using the same probability. This is closely
linked to the axiom of quasilinearity of Hardy, Littlewood and Polya (1934}

~



the‘"substitution of lotteries' of Pratt, Raiffa and Schlaifer (1964)
and the '"sure-thing' principle of Savage (1954).

Part I of this dissertation contains the statements and proofs
of two representation theorems. The first theorem, proved in Chapter 1
generalizes the quasilinear mean of Hardy, Littlewood and Polya by
weakening their éxiom of quasilinearity. Given two distributions with
the same means, quasilinearity requires that mixtures of these distributions
with another distribution in the same proportions share the same mean,
regardless of the distribution that they mixed with. We weaken the
quasilinearity axiom by allowing the proportions that give rise to the
same means to be different. This gives rise to a more general mean,
Ma¢, that is specified by a continuous and strictly positive (negative)
function, o, and a continous and strictly monotone function, ¢. The
quasilinear mean results when the a function is constant. In addition, we
show that the Md¢ mean has the Intermediate Yalue Property, and provide
necessary and sufficient conditions for consistency with the stochastic
dominance (including higher degree ones) partial order. We also generalize
a well known inequality among quasilinear means, by the observation that

the M_, mean of a distribution F can be written as the quasilinear mean of a

b
. . . o . . . .

distribution F  where F® is derived from F via a as the Radon-Nikodym

derivative of F* with respect to F.

As was noted earlier, the M, mean induces an ordering among

¢

distributions via the (expected utility) maximand,
fR¢dF.

Correspondingly, the Ma¢ mean induces a more general ordering via the



maximand,

fRuéaF/fRadF.
We prove, in Chapter 2, an alternative characterization of the above
representation for simple probability measures on a more general outcome
set where mean values'may not be defined. In this case, axioms are
stated directly in terms of properties of the underlying ordering.
We retain several standard properties of expected utility, namely
weak order, solvability and monotonicity but relax  the substitution
principle of Pratt, Raiffa and Schlaifer, which is essentially a
restatement of quasilinearity in the context of an ordering.

The motivation for the research contained in Part I comes from
paradoxes in the .field of 'decision theory. Hence, the formulation of
a new theory of choice (called alpha utility theory) that generalizes
expected utility theory constitutes Part II (Chapters 3 and 4) of
this dissertation. Chapter 3 gathers together the criticisms and
empirical findings which contradict the implications of expected
utility theory to pave the way for the development of alpha utility
in the first two sections of Chapter 4. Sections 3 and 4 contain
respectively, the derivation of the normative implications (e.g.
stochastic dominance, global and local risk aversion) and descriptive-
implications (in particular, relating to the descriptive inadequacy
of expected utility theory) of alpha utility theory. The chapter
ends with a comparison in Section 5 of alpha utility with two

alternative theories that have attracted significant interest.



PART 1

TWO REPRESENTATION THEOREMS
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GENERALIZING THE QUASILINEAR MEAN OF HARDY, LITTLEWOOD AND POLYA

1.1 INTRODUCTION

What is mean value? Conventional wisdom tells us that it repre-
sents, typifies or in some way measures fhe central tendency of a dis-
tribution. We are rescued from the ambiguity, as in elementary
statistics texts, by examples. Some familiar notions of mean value
include median, mode, arithmetic mean, geometric mean, harmonic mean
and root-mean-square or more generally the rth root of the rth
moment of a positive random variable (known also as the general mean
of order r). Of these, the arithmetic mean is the most widely used.
There are however situations for which the arithmetic mean may not be the
most appropriate 'typical' value: notably, the discfepancy between
per capita income and the 'typical' income for a society, thevbulk
of whose wealth is in the hands of a few.

In their pioneering work of 1934, Hard&, Littlewood and Polya
showed'how a general class of mean values, called the quasilinear
mean, can be tailored to our needs subject to a necessary and
sufficient set of axioms. This class includes as special cases all
the examples of mean values mentioned above except for median and
mode which do not satisfy their axioms. We generalize, in this
chapter, the quasilinear mean &ia a weaker set of axioms stated in
section 2. They are shown in section 3 to be necessary and sufficient»
for the representation of a class of mean values that generalizes the

quasilinear mean. Finally, we derive some properties of our mean



value in section 4. Applications will be discussed in Part II and the

conclusion of this dissertation.

1.2 AXIOMS OF MEAN VALUE2

Let DJ denote the space of probability distributions with all
their mass concentrated in some interval J of the realbline R (J need
not be bounded). We consider a functional M whose domain is DJ.

What properties should M possess in order to be a mean value? A natural
candidate, motivated by the mean-value theorems of elementary calculus,

is:

Property 1: Intermediate Value Property M(F) e conv Supp(F),VF ¢ DJ.

The support of a distribution F, Supp(F), consists of each ﬁoint X

such that every open set containing x has positi&e mass, Con? Supp(F) is
the smallest interval containing Supp(F). The intermediate value property
requires that the mean of a distribution be neither greater than the
maximum attainable value nor less than the minimum attainable value. Axiom

1 below is a consequence of the intermediate value property.

Axiom 1: Consistency with Certainty M(GX) =x,Vx € J,

The distribution 6X refers to the step function at x which, in terms
of probability, indicates obtaining x with probability 1.

Another property that seems reasonable is given by Axiom 2.

In this section, the terms axiom and property are used interchangeably.
Properties carry the ''axiom'" label if they appear in the final represent-
ation theorem as a characteristic property.



Axiom 2:. Betweenness V F, Gs:DJ, if M(F) < M(G)

then VB e (0,1), M(BF+(1-8)G)e (M(F),M(G)).

It is straightforward to check that Betweenness is equivalent to

Property 2 stated below:

Property 2: Mixture-monotonicity V F,(SeDJ, if M(F) < M(G), then

M(BF+(1-8)G) < M(yF+(1-v)G) if 128>v20.

Lemma 1.1: Axiom 2 < Property 2,

Proof: Omitted.

A distribution G is said to stochastically dominate another
distribution F in the first degree, denoted by G ; F, if G is always not
greater than F pointwise. If in addition, G is strictly less than F
at some point, then G stochastically dominates F strictly inlthe first
degree, denoted by G ; F. Stochastic dominance of the first degree is
an appealing partial order. Consistency of mean value with this partial

order is stated as Property 3:

Property 3: Monotonicity VF, G e DJ, G 3 F = M(G) > M(F).

The next axiom deals with the effect on mean value of certain

changes in the composition of the underlying distribution.

Axiom 3: Weak Substitution V F, G ¢ DJ’ if M(F) = M(G)

" thenV B e (0,1)3y e (0,1) > V H eDJ,

M(BF+(1-B)H) = M(yG+(1-y)H).
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Hardy, Littlewood and Polya (1934) used a special case of Axiom 3 (They
called it quasilinearity.) stated as Property 4 below for their quasi-

linear mean.

Property 4: Substitution (Quasilinearity) VF, G, H ¢ , if M(F)=M(G),
p Dy

then V 8 ¢ (0,1)

M(BF+(1-B)H)=M(BG+(1-B)H).

Starting with two distributions with the same mean value, quasilinearity

or the substitution property requires that mixtures of these distributions
with another distribution in the same proportions share the same mean
regardless of the distribution that they mixed with. The weak substitution
axiom allows mixture proportions that give rise to the same mean value

to be different. The following property called Ratio Consistency is a
consequence of Axioms 2 and 3 (In an earlier paper (Chew, 1979), the

Ratio Consistency property was implicit in a stronger statemenf of Axiom 3.
The weaker version is due to suggestions of Weber, Myerson, and Milgrom.
For a discussion of an interesting geometrical interpretation of Ratio .

Consistency due to Weber, see Chapter 4, section 3.1):

Property 5: Ratio Consistency Suppose F, G, H ¢ DJ and Bl, 82, Yl’ Y, € (0,1)
> M(F) = M(G) # M(H), and
M(BiF+(1-Bi)H)=M(YiG+(1—Yi)H) for 1=1,2.

8,/1-8)  B,/1-8,
ATy Y

Then

Lemma 1.2: Axioms 2 and 3 imply Property 5.

Proof: Suppose that M(H) < M(F) = M(G) without loss of generality.
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Axiom 3 =3 f: (0,1) > (0,1) 5V B ¢ (0,1),
M(BF+(1-8)H) = M(£(8)G+(1-£(8))H) ;
Lemma 1.1 = f is a strictly inéreasing function.
This together with Axioms 3 and 4 implies that f—1 exists.

Therefore, they are continuous functions, and hence differentiable a.e..

Define T : (0,1) ~ R by () = 51§%§%§§£§l. (1.1)

Note that T‘iS continuous and differentiable a.e.. We show

below that T is a constant to complete the proof.
Cénsider 0<B <B+8 < 1. It follows after substituting G

for F using Axiom 3:

+8 YF+(1-(R+ - (B+8) T (B+S) 1-(B+6) )
M((gra) Fr{1-(5+))H) = M ((e+<s)r(s+a)+1-(s+a) N R IE G

(1.2)

But (B+8)F+(1-(B+6))H = BF + (1-3){T§E F o+ 1%§é9'ﬂJ

Therefore L.H.S. of (1.2) =pusF+(1-s)[if81:+ e E]) (1.3

- BT (B) . 1-8 § , 1-8-8
_14<;T(8)+1_B G HODE [1_8 F T8 HJ) (1.4)

after substituting G for F using Axiom 3.
Applying the same argument for the remaining F-component in

expression (1.4), we obtain:
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e BT(8/8T(8)+1-8) +BT(B) .
RH.S. _P4<;T(5/BT(B)+1—B)+BT(B)+1-(5+6) G

1-(B+¢)
 ST(S/BT (B 1-B) BT (B +1-(B+8) ) - (1.5)

Comparing expressions (1.2) and expression (1.5), it follows that
(B+8)T(B+8) = Bt(B) + 6T(8/BT(B) + 1-B) . (1.6)

Suppose without loss of generality that t is differentiable at 8.

Then

Lin  (8+6)7(6+9)-BT(8) ¢ (g)upq (p) - bn 108 gr (g)+1-8
(1.7)

Therefore, the right hand limit of T at 0 denoted by t(0%) exists.

Applying the same argument for other B's for which 1 is differ-

entiable, we obtain

%E{BT(B)] = 1(0%)  a.e. . (1.8)
Therefore T(B) = 1(0M) a.e.,
and hence t(B) = t(0%) by continuity.

Q.E.D.

Finally, we require our mean value to be a continuous functional

in the sense of Axioms 4 and 5.

Axiom 4: Continuity If {Fn}njlc Qj converges in distribution to
F e QJ and F has compact support, then

M(F) = Lim M(F ).

N->c
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Convergence in distribution has the following characterization which is
used sometimes as its definition.

Fn converges in distribution to F ¢ DJ if and only if

fdeFn converges to fdeF V f e C(J), where C(J) is the space

of all bounded continuous functions on J.
Note that when J is unbounded, the arithmetic mean of Fn does not necessarily
converge to the arithmetic mean of F since the function x does not belong
to C(J). We impose the condition of compact support in Axiom 4 in
orger not go exclude the arithmetic mean from our class of mean values.
The requirement of Continuity is useful because it tells us that the
mean of a distribution may be approximated by the mean of a differgnt
distribution that is close to it. When J is a compact interval, Axiom 4
is equivalent to continuity of the mean value, M, with respect to the Ll—norm.
When J is unbounded, the following condition tells us how to estimate

the mean value of a distribution F without compact support (if it exists)

by its restriction to a compact interval, K, denoted by FK’

be an increasing family of compact intervals

A%lom 5: Extension Let {Kn}n=l

such that Lim K, = J, then M(F)=Lim M(Fy ),VF(:Ib.
‘ n

n->e n->oo
The mean value for a distribution F without compact support is given by

the limit of the mean values of the sequence of truncated distributions,

[e¢)
{FK }=1, for any increasing family, {Kﬁ}:—O’ whose limit is J. Since
§ =
the sequence of mean values, {M(FK)}Oo does not always converge, the

i n=0
mean value for a distribution without compact support need not exist.

A good example is the arithmetic mean.
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1.3 REPRESENTATION THEOREM

We begin with a statement of the quasilinear mean representation
theorem. D[A,B] denotes the restriction of D[A,B] to simple distribu-

tions with a finite number of discontinuities.

Theorem 1.1: (Hardy, Littlewood § Polya)

Suppose dAM: p° [A,B] » R.
Then M satisfies Axiom 1, Property 3 and Property 4,
if and only if d¢ : [A,B]->R, continuous, strictly monotone

"1 B 0
such that M(F) = ¢ (J ¢dF), V Fe D [A,B]. (1.9)
A
Moreover, if d¢* : [A,B] - R
- B 0
such that M(F) = ¢* 1 (L\¢*dF), V F e D [A,B]

then V x ¢ [A,B], ¢*(x) = a¢p(x) + b, for some a,b with a # 0.
| (1.10)

Proof: (Omitted since it is a special case of Theorem 1.2).

In other words, the most general certainty consistent, monotone
and quasilinear functional of F is that defined by (1.9). We shall call
it quasilinear mean. Since the quasilinear mean M(F) is completely
specified by a continuous, strictly increasing function ¢, up to an
affine transformation, (1.10), it is éonvenient to write it as M¢(F).
The following theorem generalizes the theorem of Hardy, Littlewood
and Polya and extends their analysis from D°[A,B] to D[A,B]. A further

extension to Dy for the arbitrary J follows later.
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Theorem 1.2: Suppose 3 M: D[A,B] -~ R.

Then M satisfies Axiom 1, Axiom 2, Axiom 3 and Axiom 4
if and only if d¢ : [A,B] + R, continuous, strictly monotone,

+ . . . L.
and o : [A,B] > R, continuous, strictly positive,

- B B X
such that M(F) = ¢ 1(an¢> dF/ [ @ dF), VF e D[A,B]. ~(1.11)
Moreover, if J¢* : [A,B] > R, and o* : [A,B] » R,

such that M(F)

B B
¢*'1(IA a*cb*dF/fA a* dF), VF e D[A,B]

then  Vxe [AB], ... . _ k(4 (x) 9 (A))
O e N O I ERCOEIC)
and  a*(x) = ca(x){k@()-0(A) + B(B)-6(x))}, (1.13)

for some a,b,c,k with a,c # 0, k > 0.

Proof: (Necessity)
Axiom 1 follows immediately.

Axiom 2 follows from the observation that,

BUSa dR (M) + (1-8) U o dG) 6(H(G))

¢ (M(BF+(1-B)G))= B 5
- - --8(on¢ dF) + (1-B) (an dG) -

increases strictly in B when M(F)>M(G).

Consider F,G,H ¢ D[A,B], Suppose M(F) = M(G).

B B )
Then, ¢M(BF + (1-g)H))= BU 4% dFYOCUE)) + (1-8) ([ o dH)o(M(H))

BUfa dF) + (1-8)(fia dH)

= $(M(YG + (1-y)H))

with vy/1-y
' B/1-8

B B
= (an dF)/(f,0 d6), ¥V 8 e [A,B].
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Hence, Axiom 3.
© . -1 .
Let {Fn}n=1 converge to F. Since a,¢,¢ are continuous on a compact

interval [A,B],

B B B B
[y dF >f o dF and [po0 dF_ > [ ag dF .
B B B B

= ng¢an/an an - an¢ dF /an dF .
-1 ,B B -1 ,B B
> M(F) = ¢ (an¢ an/jAa dF ) > ¢ (jAa¢ dF/[,a dF) = M(F).
Axiom 4 follows.

(Sufficiency)

Define v : [0,1] >~ [A,B] as follows.

v(p)

Axiom 1 = ¥(0)

M(Sp), vpe [0,1], where sp = péy + (1-p)§,. (1.14)

A and (1) = B.
Axiom 2 = ¢ 1is strictly increasing.
Let =

et {Ppl

Axiom 4 = y(p) = M(Sp) = Lim M(Sp ) = Lim (pp) -

converge to p. Then Spn converges in distribution to Sp.

It follows that ¥y is continuous and strictly increasing and there-

fore has an inverse ¢ : [A{B] ~ [0,1] which is continuous and

¥(p), then p = ¢(x)

x = y(p) = M(Sp) = M(3$(X))- (1.15)

strictly increasing. If x

and ) M(éx)

Lemma 1.2 implies the existence of a strictly positive constant Ty

that depends on x such that, ¥V H ¢ D[A,B], v8 ¢ [0,1],

BTx 1-8

M(BGX + (1-B)H) = M(mSEi (X)+ mﬂ) . (1.16)
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Construct a: (A,B) » (0,=) by assigning a(x) = Tys V x ¢ (A,B).
The following argument establishes the continuity of a on (A,B) and
then extends its domain to include the end-points.

a(x) 1

Consider g(x) = M(I/Z(SX"'I/Z ) = (~(X)+1 ¢(x) a(x)+l A )

= M(s{&(X)é(X)/&.(X)*‘l}) = w(&(x)$(x)/&(x)+l)-

Let {xn}n:1 converge to x € (A,B). Then %6xn+%6A converges in distri-

bution to %Gx + 546 Axiom 4 implies that,

A*

g(x) = M(s8, + 48

= Li L 1 = Li
= %1m M(Qéxn + ZGA) %1m g (xn).
Therefore, g is continuous in (A,B).

It follows ‘that o is continuous in (A,B).

Let'{xn}nzl converge to B from below, then,

Lim MCssy, + %6,

TORRICH
= Lim g0x) = Lim w(3(x )/ (1+1/a(x ))).
= %3g a(xn) =1, since ¢(B) =
Similarly, we can show that Lim a(x ) = 1 as x_ converges to A from
n>e n n
above. We extend a to [A,B] continuously by assigning 1 to o at the

0
end-points. Now, we are ready to show that, Vv F ¢ D [A,B], the

functions o and ¢ satisfy condition (1.11),

. 0
Let {xi}izl be the support of a distribution F in D [A,B], and

n
represent F in the form, F = ) 0iSy. , where 6. = F(Xi)_F(Xi_)'
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n
M(F) = M( ) 6.8 )
1=1 1
_ 019 (x1) ph 83
- M(GJ&(X )+I6 S%(X ) ¥ Z 8 a(x,)+r0 6x-) :
1%V j 1 i=2"1%%% j
after substituting Sy for §_ using expression (1.16).
u & 53 x)) X1 g exp (1.16)

Repeating (n-1) times on the remaining Gxi, i=2,...,n, yields,

E’ ei&(xi)
M(F) = M( ) {=5=#=-1S ) = M(S N N )
_ is1 Zeja(g) ¢ (x;) {z6ia(xi)¢(xi)/29ja(xj)}

20, 8(x, ) (x.)/26.&( = ;1 fB~”dF/fB~dF
V(Z6;8(x)0(x;)/18,6(x)) = ¢ (A<x¢ N ).

Finally, we extend our construction to F € D[A,B].

Suppose F ¢ D[A,B] - D°TA,B]. Construct the following sequence

'{Fn} ® in D°[A,B].

n=1
Z ) (i-1)(
: , 1(B-A . (G-1) (B-A)
Fn = F(A)(SA +i§1{F(A —Zn—)_ F(A on )}6A+i(B—A)/2n

By construction, Fn(x) > F(x), Vx ¢ {A+ligﬁél :i,n e I+, i< 2ny

\

which is dense in [A,B]. Therefore {Fn} ® converges to F,
n=1

Axiom 4 = M(F) %ig M(Fn)
.71 B. B
= Lim ¢ ([ad an/faan)
A A
-1 B _ B.
= ¢ (J &b dF/[ a dp),
A A

~ -1
since ¢,¢ and & are continuous on [A,B].
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(Uniqueness)
Suppose T a : [A,B] > R and ¢ : [A,B] + R, that satisfy condition (1.11).

Then X = M(Gx) = M(S$(x))

= -1 a(.B)(b(B)&')(x) + a(A)¢ (A) (1-§(x))
o a(B)o(x) + a(A)(1-3(x)) ). (1.17)

and VB € (0,1),

¢'1(BG(X)¢(X) + (l-B)a(A)¢(A))
Ba(x) + (1-B)a(A)

M(BS, + (1-8)8,)

Ba(x) N (1-8)
M0+ (78 S5 (x) * BEpO*(1-8) A

- &1(8&(X)5(X)a(B)¢(B)+(B&(X)(1-§(X))+(1-8))G(A)¢(A))
Ba(x)$ (x)a(B)+(Ba(x) (1-¢ (x))+(1-B))a(A) ’

(1.18)

after applying o and ¢ to the equalities (1.15) and (1.16).

Let a = ¢(B) - ¢(A),
b = ¢(A),
c = a(A),

and k = a(B)/a(A).

It is straightforward to check that, V x e [A,B ],

a{k (x)/ (k§ (x)+(1-3(x)))} + b,
ca (x){k§ (x)+(1-§(x))}.

¢ (x)

and a(x)
Suppose o* and ¢* are another pair of functions that satisfy condi-
tion (1.11).

Then ¢*(x) = a*{k*(x)/ (k*¢ (x)+(1-§(x)))} + b,
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and a*(x) = c*a(x) {k*¢(x)+(1-4(x))},
with a* = ¢*(B) - ¢*(A),

b* = ¢*(A),

c* = a*(A),
and k* = o*(B)/a*(A).

Finally, we check that, V x ¢ [A,B],

o*(x) = a'{k'(¢$(x)-9(A))/ (k' (6(x)-4(A))+(¢(B)-¢(x)))}+b',
a*(x) = c'a(x){k'(¢(x)-¢(A)) + (¢(B)-4(x))},

for a' = ($*(B)-0*(A))/a = a*/a,
b= $*(A) = b,
¢! = a*(A)/{a(A) ($(B)-¢(A))) = c*/ca,
and k' = {a*(B)a(A)/a*(A)a(B)} = k*/k.

"Q.E.D.

Our generalization of the quasilinear mean, defined by (1.11), is
completely specified by a pair of functions (a,f). According to Theorem 1.2,
this is the most general mean for distributions defined on a compact interval
~ that satisfies Cbnsistency with Certainty, Betweenness, Weak Substitution and
Continuity. In keeping with precedent, we denote our generalized mean

by Ma The pair of functions (o,¢) denotes a particular member of the

o
class,»{a,¢}J, of functions that yield the same mean on DJ. When J is
a compact interval, such as [A,B] in Theorem 1.2, we can form the follow-

ing subclass of {a,¢}J, called k-ratio subclass, for k > 0.

{a,¢}FA’B] =((,6) € {o o, g7 ¢ a(B)/a(A) =k} .
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We denote by (ak,¢k) a generic element and (&k,$k)[A’B] the canonical

element of {a’¢}k[A,B] that satisfies: &k(A)=O, ik(B)=1, &k(A)=1 and

&k(B)=k. It can be shown, using expressions (1.12) and (1.13), that the elements
of a k-ratio subclass are related to each other via an affine transformation

for the ¢k component and a scalar transformation for the ak component.

The class {a’¢kA,B] can be obtained from its k-ratio subclasses by taking

their union over all positive k's.

The following corollaries of Theorem 1.2 are needed to extend our

results to include noncompact intervals. The restriction of {a,¢}[A B, ]
1:°1

to the interval [AO’BO] is denoted by {a’¢}[A1,Bll [AO,Bo]'
Corollary 1.1: Let A1 < AO < BO < Bl'
1°°1 0’°0 0’70
- _ al(Bg) 31(Bg)
where h01 = &l(AO) él(AO) 3 (1.19)
al(Bg) (1 - 3By
. & ) 1.20
and Dot aT(Ag) (1 - 3L(Ag) (1-20)
P ) kl kl kl
roof: Denote by (o;°,¢1") an element of {a’¢}[A1 B,]°
ki1 k3 k0
Observe that (aj*,¢1°) [Ag,Bo] © {q’¢}[AO,BO]’
1 ~ 1 x 1 r|
_e1 (Bo) _ &1 (Bo)(kydyl(Bp) + (1-3,1(By)))
) L - _ ; , 1.21
where 0 aTl(Ao) &11(A0)(k1¢11(A0) + (1—511(A0))) ( )

which is a continuous, strictly increasing and onto function of k1
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with domain (0,®) and range (ho1’ﬁo1)'

€.E.D.

Corollary 1.2: Let A < Ay} < Ay < By < By < Bjy.

Denote by (&il,iil) the canonical element of the unitary subclass.
for the interval [Ai;Bi], i=1,2.

Then ho2 <hoy and hgp >hg; , (1.22)

il 3.1
where hg; = gl (Bg) ¢1*(Bp)

. T(Ro) 3. T(Ag)

and hgi

i (B)(1 - 831(Bg)) ooyl o

a
&, TR) (1 - 3,7 (Ag))

Proof: Construct the functions Ej i

s

(0,=) » (bij’hij)’ for i < j,

via ki = Ej’i(kj)

~ 1 1 + _ 1

5 (Bi)(kjéj (B,). + (1 9, (B,))) ' (123
- . . _x 1
ajl(Ai)(kjéjl(Ai) (1 éj (A1)

Note that, by construction,

£5,1(kj)

k. -
{a,¢}p2 = {a,¢}

Note also that Ej i is continuous, strictly increasing, and onto

from (0,x) to (bij’hij)'
Suppose Eoz > 501.
Pick k; € [Elz,w). Then &€y4(k;) < 501 < Eoz.

= 3 ky e (0,%) such that £,9(ky) = Eqg(ky).
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ko
But {a’¢}[A2,B2] [AO:BO]

ko
{a’¢}[A2,52] [A1,B1]{[Ag, Bg]

{a, 3521 (K2)
[A;,B1]|[Ag,B5]

= ky = £51(k2) € (hyp,hyp) ==

A similar argument establishes hg; < hy,.
Q.E.D.

According to Corollary 1.1, we have to restrict the ky-ratio correspond-
ing to the [AO,BO] interval to within a range of values if we want
(a%0,¢%°) to agree with (a¥1,¢¥1) restricted to [Ao,Bo] for a larger
interval [Ay,B;]. Corollary 1.2 tells us that the range of permissible
kp-ratio's gets squeezed as we go from [Al,Bl] to a larger interval

[Az,Bz]. Now we extend Theorem 1.2 to the case of arbitrary interval J.

Theorem 1.3: Suppose I M : DJ > R

Then M satisfies Axiom 1, Axiom 2 , Axiom 3 , Axiom 4 and Axiom §
if and only if 3 ¢ : J » R, continuous, strictly monotone,
and a: J - R+, continuous, strictly positive,

such that3 M(F) = ¢‘1(5a¢dF/£adF) ,VFeD,. (1.24)

Moreover, if (a*,¢*) is another pair of functions that satisfies

-3 The ratio {Ia¢dF/{TadF for F without compact support is defined by
expression (1.25),
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condition (1.24), then V interval [A,B] € J, 3 a, b, c, k

with a, ¢ # 0O and k > 05 V x ¢ [A,B],

X K(6(x) - 4(A))
k(GG - 6(A) + (6(B) - (X))

$* (x)

+ b,

a*(x)

ca(x){k(9(x) - ¢(A)) + (¢(B) - ¢(x))}.

Proof: (Necessity)
Verification of Axiom 1, Axiom 2 , Axiom 3 , and Axiom 4 is

the same as in proof of Theorem 1.2, Axiom 5 follows trivi-

ally from the definition (expression (1.25)) of M(F) for F without

compact support.

(Sufficiency)
If J is compact, then we are done. Otherwise, let

{K } - {[A_,B_]} ® be a sequence of intervals such that
n n=0 n n n=0

{An}n=0 ({Bn}n=0) 1s a strictly decreasing (increasing) sequence,
and %iQ{Kn}z J.

Corollary 1.1 says that,

U

s - _ ko
{u1,¢1}[Ai’Bi] [AO:BO] kg(hoi’hoi){a0,¢0}[A0:B0] ,

8,7 (Bo) (1-5;"(Bo)) &, (Bo) 3. (Bo)

: )
81 (A) (18,7 (A0)) 8,7 (A0) .0 ()

where .(boi’hoi) = (

Corollary 1.2 says that,

{hOi} ® is strictly increasing and {HOi} ® is strictly
B i=1 i=1

decreasing.



Let Ci [(h

.+h .
01 -0 1

1]

and D.
i

NS

(h

(ho i+l ? ho i+1)'

0i

C C - .
Then Di 4 Ci 4 (hoi’hoi) for i

25

H.0/2 1,

=1,2,3,...

Observe that (hoi’ﬁoi)’ Ci’Di are strictly decreasing sequences of

sets by inclusion. Since Ci is compact for each i,

therefore, Lim C. =
i 1

Since D3 7 C; 7 (hy

Lim D,
i 1

But Lim D. = Lim
17> 1] 1>

Hence Lim (h .,h_.
i "-01" 01

C_ # 4]

h .) Vi, it follows that,

1’701

(hy;

) =C..

o]

01

).

C CC Lj h

To construct (a,¢) defined on J that satisfies condition (1.24),

pick kg € C_ .

Define (a(x),d(x))

such that

gio(ki)
o¥i,(a0)

851 (Ag)

(a5 (x)

(oX1 (x)

@K0x) |

¢%0(x)) for x ¢ [Ag,Bg],
6¥1(x)) for x e [A1,B1] - [Ag,Bo],

¢§i(x)) for x € [Ai’Bi] - [A B

=&EO(B0), (see expression (1.23)),
= 55%(Ag).

3N0(Ap),
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$51(Bg) = 1 = §50(By).

Observe that (a 1+1 s ¢

i

i
1+1 [Ai’Bi] (ai > ¢i ) since they

agree at Ad and at Bg.

Given any distribution F with compact support, pick [Ai’Bi] such
that Supp(F) € [Ai’Bi]'

k Bj ki

Then M(F) ¢ii (jA 1¢ 1 dF/[ 1o 1dF) ,
1

¢—1(£Ia¢ dF/f ;o dF) .

For any distribution F ¢ QJ’ if Supp(F) is not compact, then we

obtain M(F), if it exists, from Axiom 5 as follows.

Let {Kn}nfo be an increasing sequence of compact intervals whose

limit is equal to J. Denote by FKn the restriction of F to Kh.

Then Axiom 5 = M(F) %ig M(FKn)

Lin ¢‘1(fJa¢ dFKn/fJa aF ) . (1.25)

When the limit (1.25) exists and does not depend on the choice of
the sequence, {K 3 120" it is denoted by ¢~ (fJa¢ dF/fJa dF). However,
the above limit does not always exist. An example is given by the

- arithmetic mean for a cauchy distribution.

(Uniqueness)
This follows directly from applying Theorem 1.2 to arbitrary intervals

[A,B] in J.

€.E.D.
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We have characterized the class of mean values for distributions
on the real line having the properties of Consistency with Certainty,
Betweenness, Weak Substitution, Continuity and Extension with a pair of
functions (a,$). For distributions without compact supports, their
corresponding Md¢ means do not necessarily exist (see (1.25)). A
necessary and sufficient condition that ensures existence is given

below.

Corollary 1.3: Mq¢(F).exists V Fe Dy if and only if either ¢ is bounded

or a+*¢ is bounded.

Proof: The sufficiency part of the proof is straightforward.

To prove necessity, suppose for the pair (0,¢), neither ¢ nor a.¢ is
bounded. We may assume, without losing generality, that ¢ is not bounded
from above. There are two cases. As x tends to +=, either i) a(x)
is bounded from above,or ii) a(x) tends to +e.

Case 1): Consider a sequence {xi}cio=1 = a(xi)¢(xi)=2i.

Then Ma¢(2 ?= —lé ) = Lim — il ~ does not converge.

1 ,i7x3 m 1
2 me X2 i=1a(xi)/Z

Case ii): Consider a sequence {xi}:=1 > ¢(x;) = 2t

s m
1 i=1%(%3)
—5_:) = Lim - does not converge.

=1 o1 Xi

Then M (2 N
ad 1 moe 2 ?=1a(xi)/21
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A similar argument establishes the result for the case when ¢ is

unbounded from below.

Q.E.D.

The above corollary is useful in Chapter 4 when we interpret

mean value as the certainty equivalent of a lottery and insist that a

certainty equivalent should always be finite.
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1.4 PROPERTIES OF THE Ma¢ MEAN

Of possible properties for mean value, the Intermediate Value property
(Property 1)} enjoys a rather special status, somewhat like a defining
property. After all, even measures such as median and mode, which
are rejects of the quasilinear mean, exhibit this property. The

conclusion that Ma has the intermediate value property follows from

¢
the observation that,

- . s JaX)(9(x) - ¢(c))dF(x) _
M(F) = ¢ To(x) dF (x) =0.

Hence,

Corollary 1.4: Ma¢ satisfies Property 1 (Intermediate Value property).

1
Consistency with strict stochastic dominance ' > ' (Property 3:
Monotonicity) is deemed desirable for many applications of mean value.
The corollary below gives the condition under which Md

: 1
with stochastic dominance4 (nonstrict) ' > ',

is consistent

¢ .

Corollary 1.5: Suppose o and ¢ are both bounded on J.
1
G
6 (6

if and only if Vs ¢ J, a(x) (¢ (x)~9(s)) (1.26)

Then V F,G € Dy, F>26 = M,(F)2M

is a nondecreasing function (nonincreasing function).

Proof: We shall assume without loss of generality that ¢ is strictly

increasing.

1
4 The partial order ! é ' is defined by G 2 F if G(x) ¢ F(x),V x € J.
The stronger partial order ' 5'' defined earlier (Property 3) is the
above with strict inequality for some x.
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1 1
(Sufficiency) Suppose G > F. Then Fg' > Fg whenever 6' > ¢,

where Fg = (1-6)F+6G, V8 ¢ (0,1). {(1.27)

Define r(x;F) = {atx)/fJadF}{¢(x)-Q(F)}, (2 as in p. 22)(1.28)

where QF) wax¢dF/fJa dF.

Then _ $5UFg) = JE(x3F,)A(G(X) -F (), (1.29)

J3(6(x)-F(OdE (x3Fy) 2 0,

Since the integrand is nonnegative and ¢ is nondecreasing ¥ F ¢ D>

Q(G)-Q(F) = fé{fJ(G(x)—F(x))dc(x;Fé)}de > 0

> M, (6) 2 M (F).

(Necessity) Suppose a(x) (¢(x)-¢(s*)) is strictly decreasing at
some x* for some s* e int J. Since a(x)(¢(x)-4(s)) is a continuous
function, it is strictly decreasing for some open neighbourhood
(x*-&,x*+é). Assume wiéhout loss of generality that s* 2 X*.

Pick any y* > s* and compute p* such that,

|
o]
*
1
R
Lhat

S* Ma¢(p*6y*+(1—p*)6xn) = Ma¢(F*)’ where x" =

Consider G* p*dy* + (l-p*)dx, for some x' e [x*,x*+&).

Compute, [ ;(G*(x)-F*(x))dz(x;F*) = (1-p*) (5 (x';F*)-z(x";F*)) < 0.

But Ma¢((l—6)F*+eG*)==Ma¢ (F*e) is nondecreasing in 6.
d
= Jg Q(F*g) = J3(F(x)-G*(x))dz(x;F*g) > 0.

Since the R.H.S. is continuous, its limit as 6 approaches 0 from

above is nonnegative, which is a contradiction. The extension to

possible end-points of J follows from the continuity and bounded-

ness of o and ¢.
&.E.D.
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The function z(x;F) can be used to generate the following
linear functional,
p(+) = JE(e5F)A()
Observe that expression (1.29) is the Gateaux differential of Q at

Fe in the direction G-F, which may be written as:

2(Fg) = t* (G-F).

0
The functional t*r(+) and the function ¢(+;F) are both referred to

3>

as the Gateaux derivative of Q at F. We now interpret condition
(1.26) as follows.
The Giteaux derivative of Q at F, ¢(-;F), is nondecreasing for
every F in Eb.
This generalizes the corresponding condition for quasilinear mean M¢
if we observe that the Giteaux derivative of (¢0M¢) at F is simply ¢
which is strictly increasing irrespective of F.
Anothef useful partial order is second degree stochastic dominance
v ¢ 1, defined by,
G § F if fJx(G(y)—F(y))dy <0, Vxed and fJ(G(y)—F(y))dy =0
where J = {yeJd: y £ x } , (1.30)
The above says that .G dominates F in fhe second degree if they
have the same arithmetic mean (if they exist) and the arithmetic mean
of G truncated by J* is not less than that of F truncated by J* for
every x in J. This is equivalent to the notion of mean pfeserving
spread (Rothschild § Stiglitz, 1970) in uncertainty economics, and
the principle of transfer (Dalton, 1920) which states that é society's

welfare is not diminished by a transfer of wealth from the rich to
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the poor. Quasilinear mean M¢ is known to be consistent with second
degree stochastic dominance when ¢ is increasing and concave or
. decreasing and convex. Having noted the similarity between ¢ and
£(*;F) in deriving consistency conditions for first degree stochastic
dominance, we entertain the conjecture that the corresponding second
degree condition for Ma¢ is that g(-;F) is concave (convex) if ¢ is
increasing (decreasing) for every F in DJ. The verification of this
conjecture is contained as a special case of a more general result
developed in the next paragraph.

We begin with the following definition of kth degree stochastic

dominance,

-

k
G> F if fJ{fJZn_l{"'LGZ3{IJ22(G(21)—F(zl))dzl}dzz}d23}--°}dzn_2}

dzn—1}=0’

for n = 2,...,k, and

fJZk{szk—l{"'{ as above }eee}dzy ,}dzy_;} ;VO, Yz e d |

When the nth moment about the origin exists for distributions F and G
for n = 1,...,k, then G dominates F in the kth degree if their nth
moments agree for n = 1,...k, and the.kzh_moment about the origin

of G truncated by J%K is not less (greater) than that of F truncated
at JZK if k is odd (even) for every 2 in J. The following corollary

gives conditions on a and ¢ for consistency of M . with kth degree

ad

stochastic dominance.

> Ol(k—l) » (b(k_l)

Corollary 1.6: Suppose o, a', a'',««- > and ¢, ¢', ¢,

are continuous and bounded on J.
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k
Then VF,GeDy, G>F = M, (G) 2 M, , (F)

if and only if VF ¢ DJ, C(k_l)(x;F)

is a ﬁondecreasing (nonincreasing) function if ¢ is increasing
(decreasing) when k is odd, or

is a nonincreasing .(nondecreasing) function if ¢ is increasing

(decreasing) when k is even.

Proof: Assume without loss of generality that ¢ is increasing and k
is even.
. k k
(Sufficiency) Suppose G > F. Then Fe, > Fe whenever 6' > g,
where F = (1-8)F+6G, for & ¢ (0,1).

Then g@_g(pe) = J;2(x;F)d(G(x)-F(x))

k . .
(-1 fJ{fJx{ as in p, 32 }dzk_l}dg(x,Fe)

(-1)%/ T, (0dz (x;Fy)

z 0,
where Ik(x) is the k-time iterated integral of (G(x)-F(x)) on the
interval JX (see expression 1.30),
since Ik(x) is nonpositive and c(k_l) is nondecreasing (nonin-
creasing) for k odd (even) VF ¢ DJ.
It follows that,  Q(G)-Q(F) = f;{fJIk(x)dc(x;Fe)}de >0

> M, (6) 2 M, (F).

¢

(Necessity) This follows from an argument that is essentially

the same as the one used in the necessity proof of Corollary 1.5.

Q.E.D.

We end this section by offering a link between M& and M, that

¢ ¢

leads to a useful condition under which certain known inequalities
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for M. can be extended to M .
) ad

through the function a, another distribution Fa,

We derive from a distribution F,

'Fa(x) = fchxdF/fJ adF, for every x ¢ J, (1.31)

if the denominator exists. In this case,Ma¢ and M¢ are related in
the following manner: Ma¢(F) = M¢(Fa).

This leads immediately to:

Lemma 1.3: Suppose M¢(F) > MW(F) VFeVC DJ.
Then if F® ¢ V whenever F does,
then Ma¢(F) > Maw(F) VFeV.
One use of the above is the extension of the result,

If r > s then M_(F) > M_(F) for every F ¢ D ,
T = s (0,®)

o 1
where M (F) = M (F) = {/ xTdF} .

to Ma,r(F) = {f:a(x)xrdF(x)/f:a(x)dF(x)fﬁ’. The function o has the
standard measure-theoretic interpretation as a Radon-Nikodym deriva-
tive of E” with respect to F. We may, on the other hand, consider
F* as an 'integral' of F through the function a¢. Can we defing
F* even when fJadF does not exist? Our &efinition of Ma¢(F) when F
does not have compact support (expression (1.25)) suggests the
following.
Let {Kn}njl be an increasing family of compact intervals whose
limit is J. Then fdeFa = %ig fKnaf dF/fKﬁxdF, for eyery

fe CO(J) where C0(J) denotes the space of continuous functions

on J.



We have defined F” so that the equality,
M (F) =M (FY,
MOERNGY
holds even when F does not have compact support. It is straight-

forward to check that Lemma 1.3 holds for the extended definition

of Fa.
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GENERALIZING THE EXPECTED UTILITY REPRESENTATION THEOREM

2.1 INTRODUCTION

The preceding chapter generalized the quasilinear mean by wéakening the
axiom of quasilinearity. As we noted in the introduction, the quasilinear
mean, M¢, represents another way fo axiomatize expected utility, via the
maximand, ﬁz¢dF. Correspondingly, our generalized mean, Ma¢’ induces a more

general ordering via the maximand, I§a¢dF/£{adF.

This chapter treats the problem of extending the above representation

. for the case of simple probability measures on a more general outcome space
tﬁan the real line. Since the notion of mean value may not be defined for a
more general outcome space (consider, e.g., the outcome space consisting of
getting a promotion, status quo and being fired), we need to state axioms
directly in terms of properties of the underlying ordering. The developments
of results parallel those of Chapter 1, ConsequentIy, the proofs here are
straightforward adaptations of the corresponding ones in Chapter I. They are
nonetheless included so that Chapter 2 may be read independently of Chapter 1.
Unlike Chapter 1, most definitions used here are given explicitly because they

are relatively unfamiliar.

2.2 PRELIMINARY DEFINITIONS

Definition 2.1: A simple probability measure P on a set X is a real-

valued function defined on the.set of all subsets of X such that:
1) P(A) 20, VA C X;

2) PX) = 1;

3) P(AUB) = P(A)+p(é) when A, BC X and AN B = ¢;

4) P(A) =1 for some finite A C X.
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A simple probability measure P on a set X has the property
P({x}) = 0 for all but a finite number of x € X and for all

ACX, P(A) = ) P(x) where P({x}) is wfitten as P(x).
x€EA ;

Definition 2.2: A point mass, 6x’ at x is the spm with P(x) = 1.

Definition 2.3: For B € (0,1), the B-mixture of a spm P with another

spm Q, BP + (1-B)Q, is the real-valued function that assigns

BP{A)} + (1-8)Q(A) for every A C X.
It is clear that 8P + (1-B8)Q is a spm when P, Q are spm's. 1In

n
general, z SiPi is a spm if Pi is a spm for i = 1, 2,..., n and
i=1

Bi=1with Bi>O for i =1, 2, ..., n. For a spm P on a set X,
1

He~13

let {xi}n C X be the set of points for which P(xi) > 0 for

i=1
n
i=1, 2, ..., n. It is easy to check that P = z piéx , where
i=1 i
p; = P(xi) fori=1, 2, ...,n.

Definition 2.4: The expectation, E(f,P), of a real-valued function f

defined on X relative to a spm on X is defined by

E(f,P) = ] f(x)P(x)

XE

For P Piéx.’ E(f,P) = . pif(xi).
1 i i

1

1
I~
nes-1s

i

Definition 2.5: A binary relation —<on a set Y is a weak order if < is

asymmetric (i.e. Vx, y € Y, x <y = not (y <x)) and negatively
transitive (i.e. Vx, y, z € Y, not (x <y) N not (y’«;z) = not

(x <2)).
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We summarize some properties of a weak order, <, via the following.
Lemma 2.1: Suppose < is a weak order on Y. Define binary relations ~ ,
<onY by x~y®not (x<y) "Nnot (y <x), vx, y €Y and
x=<y® (x=<y)Y (x~¥), VX, y € Y. Then,
i) ~ is an equivalence relation
ii) = 1is transitive,
iiij = is connected (i.e. Vx, Y€ Y, (x <y) U (y =<x)).
iv) (x=<y) N (y ~z) ® x<2z, and

(X~y)m(}"<2)=>X'<Z,VX, Y ZEY'

Proof: (Omitted).
In a preference context, < is called 'strict preference' and
X <y is read as 'y is strictly preferred to x'; =<is called 'weak
preference' and x =y 1is read as 'x is not preferred to y'; ~ is

called 'indifference' and x ~ y is read as 'x is indifferent to y'.

2.3 “AXIOMS

The following are conditions on a binary relation < on LX’ the set

of spm's defined on a set X.

Axiom 1: Ordering < is a weak order.

Axiom 2: Solvability VP, Q, R € P< Q and Q<R

LX’
= 38 € (0,1)

6P + (1-B)R ~ Q.

Axiom 3: Monotonicity W, Q&€ L, P=<Q

X’
= BP + (1-8)Q =< yP + (1-v)Q

for 0 <Y< B< 1.



39

Axiom 4: Weak Independence VP, Q € Ly » P~Q

= VB € (0,1) dy € (0,1)

S VR € Ly BP + (1-B)R ~ yQ + (1-v)R.

Axioms 1, 2, and 3 are standard properties of a binary relation that can
be represented by the expectation of a utility function. Axiom 4 is
our only departure. If we insist that B and v be identical, then
Axiom 4 reduces to the substitution principle, which is another property
of expected utility.
The following property is a restatement of Property 5 of Chapter 1

in the context of a weak order, < , on LX

Definition 2.6: (Ratio Consistency) If 3P, Q, R € LX

and By, By, Y1, Y2 € (0,1) 3
P~ Qand 8P + (1-B, )R~ v.Q + (1-v;)R

for i = 1, 2, then

Y1 / 1-Y1 Yo / 1-Y2

g1 / 1-8 By / 1-B»

Lemma 2.2: Axioms 1, 3 and 4 => Ratio Consistency.

Proof: The proof of Lemma 2.2 is essentially identical to that
of Lemma 1.2 in Chapter 1.
The interpretation of our axioms and the Ratio Consistency property
in the context of choice will be deferred until Chapter 4 where we
apply the representation theorems of this chapter and that of

Chapter 1 to decision theory;
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2.4 REPRESENTATION THEOREMS

To facilitate the statement of our representation theorem, we have

Definition 2.7: Let < be a binary relation on LX’ the set of simple

probability measures on a set X. The induced binary relation < on

X is defined by,

Vx, y € X, x< y*= §. =< dy

If <is a weak order, then < is also a weak order. We derive the

binary relations < and : from < as in Lemma 2.1.

Definition 2.8: Let < be a weak order on a set Y, an element ve Y is a

maximal (minimal) element if VX € Y, x <y (y =< x).

Theorem 2.1: Let LX be the set of simple probability measures defined
on a set X. Suppose < is a binary relation on LX with the induced
binary relation on X denoted by <. Then there exist functions
»a : X>R" and v : X > R such that v is non constant and attains

its supremum and infimum over X and VP, Q € LX’

« E@v,P) _E(v,Q)
PR TR RS

if and only if
~ satisfies Axioms 1-4
and X contains a maximal element X and a minimal element x such
that x < Xx.
Moreover, if a, v and a*, v* satisfy the condition of thi§ theorem,

then 3 a, b, ¢, k with a, ¢, k > 0 such that vx € X,
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a*(x)

ca(x){k[v(x) - v(x)] + [v(x) - v(x)]}

and

. K[v(x) - v(x)] o
KVEO - V0T D - v@T

v*(x)

(2.2)

Proof:

Necessity:

Let x, Xx € X 2 v(x) = inf v and v(X) = sup v
- - xeX xeX

Vx € X observe that

v(§) < v(x) < v(x)

. . -
S x=x<x=xXx

= X, X are minimal and maximal elements of X respectively.

Furthermore, v is nonconstant = Inf v <Sup v

= 6§ =< §-
X

= x =< x,

Axiom 1 follows immediately.

Axiom 2 follows from the observation that VP, Q € Lx

E(av,BP + (1-8)Q)
E(G:BP + (I'B)Q)

is continuous in R.

VP, Q€ Ly, P =<Q

- E(ov,P) E(av,Q)
E(a,P) E(a,Q)

- E(av,BP + (1-8)Q)

E(o, 8P * (1_B)Q) decreases strictly in B. (2.3)

= Axiom 3.
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E(av,P) _ E(ov,Q)
E(a,P) = E(a,Q

Suppose P, Q € LX and P ~ Q=
It follows that VR € LX and VB € (0,1)

E(ov,B8P + (1-8)R) _ E(av,yQ + (1-y)R)
E(a,BP + (1-B)R) ~ E(a,YQ + (1-Y)R)

¥/(1-y) _ E(o,P)
B/(1-8)  E(a,Q)

where
Hence, Axiom 4.
Sufficiency:
Let x, X be minimal and maximal elements of X, respectively.

Define yp € [0,1],

S, = Pog + (1 - p)s.

By hypothesis 6X-< Gi‘ It follows from Axiom 3 that

S <S5 =0<p<gq<I. (2.4)
P q ‘

Vx € X 3 éx-< 6x and Gx-< Si’ it follows from Axiom 2 that
3q € (0,1) > Sx ~'Sq.

It is clear from (2.4) that q is unique.

We construct a real-valued function v : X - [0,1] in the following

manner.
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From construction, Vx € X - {x,x},

% ~ S5 (2.5)

€ €
Lemma 2.2 = gt >0 3 VR LX and B : (0,1)

BT

X 1-8
Box * LBIR ~ 5T So” Bra18 B (20O

Construct a positive real-valued function & on X in the following

manner.
a(x) = a(x) =1
Vx € X - {x,x} , a(x) = Ty
' n
Given a spm P E.z p16x'
1=1 i
Applying (2.6) to Xps X5 eens X sequentially, it follows that
s
§ .~ P a(x;) . E 12 ;
21 iy pa(x) + I p; "1 1= pya(x,) + I op X
j=2 j=2 7]
At p,ate) + F pr YOO
I L A
P,a(x,)
+ +— S..
P a(x,)4pa(x,) + I p. V(XD)
1 1 2. -2 j=3 j
n P.
+ Z . n § ’
i=3 p.a(x )+p,a(x,) + £ p. i
t 193 P8 T L2 Py
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O i L = 3 n
L n o v(x.) ~ La(x)V(x.)/ _
o1 jgl pja(xj) v (xy [i=1 pjolx, i jzl pja(xj)].

Hence, VP € Lx, p ~,SE(ag,p)
E(a,P)

It follows from Lemma 2.1 (iv) that VP, Q'E LX’

P < Q < SE(av,P)
E(6,P) = E@,Q

E(a,P) E(a,Q)

Uniqueness:

Suppose 3 a X >R and v : X = R such that v is nonconstant
and attains its infimum and supremum over X at y, y, respectively,
and YP, Q € LX,

E(av,P) ~ E(av,Q)
E(a,P) E(a,Q) -

P< Q< (2.7)

Clearly, vy, y are minimal and maximal elements of X-

= (y

x) U (5)_, ~ 6)_() and (y = x) U (59 ~ 85

= v(x) = v(y) and v(x) = v(y) .

By construction, ¥Vx € X - {x,x},

S ~ Sox)?

(see relatiqn (2.5)) (2.8)
V(x)a(x)v(x) + (1 - V(x))a(x)v(x)

< v(x) =
V(x)a(X) + (1 - (x))a(x) ’

(2.9)



45

after applying (2.7) to (2.8).

Also VB € (0,1),

Ba(x) S + (1-B)¢
- Y (x) X
BGX + (1-8)65 S x) * (1°8) (2.10)
Ba(x)v(x) + (1-B)a(x)v(x)
Ba0) + (1-B)o(x) (2.11)
_ BA) V(X e(x)v(x) + [B&(X) (1-9(x)) + (1-B)]a(x)v(x)
BE(x)V(x)a(x) + [Ba(x)(1-9(x)) + (1-B)]Ja(x)
after applying (2.7) to (2.10)
Let a = v(x) - v(x),
b = v(x),
c = a(x),
o a(x)
k= alx) .
V It is easy to check that (2.9) and (2.11) become
- ko (x)
M STy R s Ty ML
and a(x) = ca(x) [kv(x) + (1 - ¥(x))]. (2.12)

A}

Suppose a*, v* are another pair of functions that satisfy the

hypotheses of the theorem. Then

k*9 (x) .
K*9(x) + (1-9(x))

v*¥(x) = a* b*

and a*(x) = c*a(x) [k*v(x) + (1 - v(x))], (2.13)
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where a* = v*(x) - v¥(x) , b* = v (x),
- _ 9% (x)
c* = a*(§) , and k* = o (x)

Finally, it is straightforward to check that,

k'[v(x) - v(x)]

v¥(x) = a' k'[v(x) - v(})] + v(i) —-V(X) + b
and a*(x) = c'oa(x){k"[v(x) - v(x)] + v(x) - v(x)} (2.14)
for a' = (v*(X)-v*(x))/a = a*/a

b!' = V*(E) = b*

o 2 ) 1 cr |1
o(x)  v(x) - v(§))= c " a
proo Y ek

a(x) o*(x) k.
Q.E.D.

We showed that any binary relation on LX’ that satisfies fhe ordering,
monotonicity, solvability and weak independence axioms, is characterized by
a pair of functions (a,v) defined on X. When a is constant, our represent-
ation, E(av,P)/E(a,P), reduces to the expected utility representation
E(v,P). If we define a simple probability measure P% derived from P in

the following manner,
p“(A) = E(al,,P)/E(a,P) , VA C X,
where 1A denotes the indicator function of A,

then we can state our representation in the alternative fashion below:
E(v,Pa).

Our fepresentation is then simply the expectation of the v-function
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with respect to the measure P® derived from P via the a-function which

is the Radon-Nikodym derivative of P% with respect to P. We render the

role of a transparent by considering a uniform measure

. N
P = z %-Gx . The corresponding representation of P is given by,
i=1 i '
N a(xi)
E(av,P)/E(a,P) = ]| ——— vi(x;).

i=1 b
.2 a(x,
;5100)
This is a weighted average of {v(xi)}iil with weights, {a(xi)}igl.

The statement of Theorem 2.1 requires the set X to be bounded by a
maximal and a minimal element. The remainder of this section deals
with the extension of Theorem 2.1 to the case where X has neither a
maximal nor a minimal element. This parallels the development towards

the proof of Theorem 1.3 in Chapter 1.

Definition 2.9: Let < be a weak order on a set X. For s, t € X, an

{xe X : s =<xx, x <t}.

interval [s,t] C X is defined by [s,t]

When X contains both a maximal element x and a minimal element X

relative to a weak order <, then X = [g,i]. When S1» Sy» tl,

€ C
X, such that S, <s;<t, <t,, then [sl,tl] 7 [52’t2]'

t 1= Y

2

Definition 2.10: A pair of functions (a,v) is said to represent a

weak order < on LX if (a,v) satisfies condition (2.1).
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‘Definition 2.11: The uniqueness class representing a weak order < on

Ly {a,v}x, consists of all pairs (a,v) that represent —< on LX'

Definition 2.12: Let s, t € X ® s <t, we denote by {u,v}?s £]’ the
2
k-ratio subclass of the uniqueness class {a,v} representing

[s,t]
=< on L[s,t]’ consisting of those pairs (a,v) that satisfy

k
[s,t]

s) = k. A generic element of {a,v} is denoted by (ak,vk).

Definition 2.13: Let s, t € X D s < t, the pair (a*,v*) is said to

be an (a,b,c,k) transformation of (a,v) on [s,t] if 9 a, b, c, k

such that a, ¢, k > 0 and Vx € [s,t]

a* (x)

co(x){k(v(x) - v(s)) + v(t) - v(x)}

a k[v(x) - v(s)] N
k[v(x) - v(s)] + v(t) - v(x)

and vF(x) = b.

We denote such a transformation by

(a*,v*) = Ta,b,c,k (a,v) on [s,t] C X.

U o ik
[s,t] = keR* (%VI5 ¢

element of {a,v}[s t]’ we can then generate all other elements
b

It is clear that {o,v} Let (a,v) be an

via the (a,b,c,k) transformation. Note that Ta b.1.1 is an
3 3 E

affine transformation on v and T is a positive scalar

1,1,c,1

multiple of o; and that we can use a unitary ratio pair

‘1 1 : 1
(q ,V) E {a’v}[s,t] to generate all elements of {G’V}[s,t]
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since Ta,b,c,k(al’vl) € {a,v}k We denote by (&k,ik), the

( [s,t]”

. . . p. ~k
canonical member of {a,v}Ts £] which satisfies bk(s) =0, V (t)=1,

A

~k <~k . .
&k(s) =1, and &k(t) = k., It is clear that (& ,V") is unique for

each k. In general, a member a, v of {a,v)} ] is uniquely

[s,t
specified by the values of o, v at.s and t. Let a = v(t) -

v(s), b = v(s), ¢ = a(s), k = a(t)/a(s), then V¥x € [s,t].

]

ax) = ca (K 0 + (1 - v ()]
ko' (x)
and v(x) = a 1 Y 1 +b.
kv (x) +1 - 97 (x).
! . e . . .
Corollary 2.1: Let Sg» S1» too ty X s S, < 5, % tO <ty then
k
{a,v} - U - {a,v} , where
_aly vy
2 = , (2.15)
o alisy wlsy
0 0
&l(to) 1 - olcto)
Loy = - ) (2.16)

alts) 1-9'Gs
Proof: (s ,t ] < [s;,t;] =L <L . Therefore, if o, v
’ 0’707 # 1°71 [so,to] # [sl,tlj S

defined on [s,,t,] represents =< on L[Sl’tll, then ao,v [SO’tO] -
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represents < on [

y = {a:V}[Sl S

[59-t,] R O e R N

k1

Observe that {a,v}

fay v} 0 h
= O,V s where

ity kvl s -ty
k. = ] 1 1 (2.17)
G (sy) k9 (sp) + (1 - 97(s4))

£(k)) -

Note that £ is a continuous, strictly increasing and onto function

from (0,=) to (g Hence

%012 %017 -

k
U {a,v} 1

{a,v} =

g(k,)
U {G,V}[ lt ]
kle(oym) SO’ 0

U 0
{a,v} .
7 ’ [5 ,t ]
k052017 %01) 0"0

€.E.D.
Corollary 2.1 tells us it is possible to extend our representation

of a weak order on L[ ] to a weak order on L if the

t

S0°%o [s)-t4]

ordering has not changed on L It also gives conditions

[So,to] )

'S
on (ao,vo) {a,v}[so’to] so that (ao,vo) can be extended to a
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membeTr (al,vl) € {a,v} such that (ao,vo) z (al,vl) [ ,

[Sl’tl] SO’to]

i.e. the extended pair (al,vl) defined on\[sl,tl] agrees with

(ao,vo) on [so,to]. These conditions ((2.15) and (2.16)) are given

1

in terms of &l(to), a (so), Ql(to), 01(50); and can be obtained

via relations (2.5) and (2.6) in the constructive proof of

Theorem 2.1.

e 9 L) L) .
52, tO’ tl, t2 X S, <SS, <S5, <t

Corollary 2.2: Let s 2 1 0 0

S

0> "1’

=< tl-% tys and let (ﬁ;,ﬁi) denote the canonical unitary o, v
on [si,ti], for i = 1,2. Then,

g <13 and . > %

02 01 -02 -01 (2.18)
o | ~1
s Vi)
where ROi = 1
@ (sg) Vilsy)
65(tg) 1 - 9l(t,)
and %Oi = 1 s for i = 1,2.
ai(so) 1 - \)i(so)
Proof: From Corollary 2.1,
{a,v} U {a,v} 0
o,V = a,.v
s, t,1 sy, t,] ey T > [sh,ty]
227201007 kS8 ,08,) 0’"0
{a,v} U (@, w10
a,v = a,v
P s .t ] [s,t ] c 2 T ss,t,]
1’71 0°°0 k€015 %07) 0°°0
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k
1
and {o,v} = | {a,v}
» i s,,t,1 sy, 1] - > s, 5]
2% 1’71 K €(25,%,,) 1’51
alet) oiel)
- 2'Y 2t
where 2 = s
12 5k olesn)
GrtS1) Volsy
! !
. L 6,(t)) 1 - 9,(t))
*12 1 1
2 2

Construct the function Ej i

3

© Ql -.‘ .<. .
(0,°) -~ (_ij,llj), for 1 <j, via

k1 = ij’i(k.)

aliey  x.9be) + 1 - de)
- _J 1 J ) J 1 : (2.19)
L1 ~1 ~1 : T
aj(si) kjvj(s ) + 1 - VJ(Si)
Note that, by construction,

k. g, . (k)

{0.,\)} J - {(1,\)} J,l J
[sj’tj] [Si’ti] [Si’ti]

Note also that gj i is continuous, strictly increasing, and onto from

b

(0,=) to (2;4,2;5)-

2 =0
Suppose 202 201

Pick k1 € [le,w).
- <3
then glo(kl) <1201 YR
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k £.40k)
i.e. {a,v} 2 = {a,v} 10771
[SZ’tz] [so,to] [soﬁto]'

k
But {a,v} 2
[55,t51 1 [545t]

k

- {a,v}[2

systy ] [s),t]

[5y-t,]

€5, (ky)

{a,v}

[So’to]
= £yy(ky) = Ky

But £, (k,) € (glz,zlz) ==,

A similar argument establishes 201 <Ig02

Q.E.D.

Thus far, we have considered extending from an interval of X to a
lafger interval. Presumably X is not bounded, otherwise, we would
have constructed (a,v) on X with Theorem 2.1 once and for all. The
next interesting case then is when X contains neither a maximal nor a
minimal element, for example, the real line. With a structural condi-

tion on X, we show in Theorem 2.2 that even in this case, a a-v repre-

sentation exists on LX'

Definition 2.14: Let < be a weak order on a set Y. A sequence

(o]

{yi} C Y is cofinal (coinitial) if Vx € Y, x < yi(yiii x) for
i=1

some positive integer i.
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Theorem 2,2: Let FX be the set of spm defined on a set X, and < is a
binary relation on Lx'with the induced binary relation on X
denoted by < . There exist functions a : x—+R+ and v : X >+ R
such that

(i) v(X) contains a strictly increasing cofinal sequence
and a strictly decreasing coinitial sequence, and
(ii) VP, Q € LX

E(av,P) ~E(av,Q)

PR 0m “EGQ °

if and only if,
~< satisfies Axioms 1-5
and X ordered by < contains a strictly increasing cofinal
sequence and a strictly decreasing coinitial sequence.
Moreover, if o, v and a*, v* both satisfy (i) and (ii), then

Vs, t € X>s%<t, da, b, ¢, k with a, ¢, k >0 > vx € [s,t],

a*(x) = ca(x){k[v(x) - v(s)] + [v(t) - v(x)]},
* - k[v(x) - v(s)]
and M NGO EROIERNOETICIS
Proof:
Necessity:
Let {di}°° and {ei}w C v(X) be a strictly decreasing coinitial
i=0 i=0 )

sequence and a strictly increasing cofinal sequence, respectively.

Pick s., t. € X 3 v(s.) =d. and v(t.) = e. for i = 0,1,2,
i’ i i i i i
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It follows that {si}°° ({ti}oo ) is a strictly decreasing
i=1 i=1

coinitial sequence (strictly increasing cofinal sequence) of ¥.
Verification of Axioms 1-4 is straightforward (see Necessity

Proof of Theorem 2.1).

Sufficiency:

Let {si}°° ({ti}°° ) be a strictly decreasing coinitial sequence
i=Q i=0

A(strictly increasing cofinal sequence) of Y. Suppose without

loss of generality that so-i tO. It is easy to check that
x= U I[s;»t.]
i=0
Let (ai,vi) represent < on L[si’ti]’ for i = 0,1,2, ... . It can

always be done because of Theorem 2.1.

Corollary 2.1 =
k0
{a.,v.} = | {a.,v. .}

i h = 0’0
e b
~1 ~1 ~1 ~1
_ ai(to) 1 - vi(to) ai(to) . vi(to)
where (%5280 = (T —— -~ > 3 T
Corollary 2.2 =
{2 Oi}i=1 is strictly increasing and {JLOi}i=1 is

strictly decreasing.

L.+ 2. Lo. + L.
_ r-01 -0,1+1 01 0,i+1
Let Al—[ ) s 2 ]’
and Bi = (&O,i+1 s 10,i+1)'
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Then B. © A

C 7 i =
§ TG (8gy00g;) for i =1,2,3,

Observe that (&0.

1»1013, Ai’ Bi are strictly decreasing sequences

by inclusion. Since Ai is compact for each i,

nested interval theorem = lim Ai = A # 6.
1o

Since Y i

C C 7
Bi 784 7 (os Roy)

= 1i C AC 1i 3
Hm By © &G 1M (Rg;0 00
i i
~But }1m Bi = }1m (%01’201)'
1> 1->00

Hence }1m (301’201) = A .

o
10
To construct (a,v) defined on X that represents —< on LX’ pick

€A,
ko € A,

k0 kO
Define (a(x),v(x)) = (ao (x), Y (x)) for x € [so,to].

k k1

(all(x), vy (x)) for x € [Sl’tl] - [so,to],

k. k.
(0, (x), v, () for x € [s.,t.] - [s, ;.t. .1,

such that £o(k) = Ky = &Zo(to) (see (2.19)),
. ky Ko
and . (so) =1-= ay (so)
k. k
vll(so) =0 = 000(50)
vki(t ) =1-= vko(t )
i o o ‘o’
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ki+1 'ki+1 ki ki
Observe that (ai+1 > Viel ) = (ai > Vs ) since they
[s.,t.]
i’71
agree at So and at tO'

VP, Q € LX’ pick [Si’ti]

>P,Q€ L

[Si’ti] :
k. k. k. k.
E(w;" v.o , P)  E(ay v.' , Q
then P=<=Q* - X : <— k -
i i
E(ai ] P) E(ai ’ Q)

= E(GV’P) < E(Ct\),Q)
E(a,P) E(a,Q)

by construction.

To complete the sufficiency proof, observe that {\)(si)}°°
i=0

({\)(T:i)}°0 )} is a strictly decreasing coinitial sequence
i=0

(strictly increasing cofinal sequence) of v(X).

Uniqueness:
This follows directly from applying Theorem 2.1 to arbitrary

intervals [s,t] in X.

&.E.D.
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PART I

APPLICATION TO DECISION THEORY
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BACKGROUND

A choice situation exists when more than one course of action
is available to a decision maker., A theory of choice specifies, fqr
each set of available alternatives, the one that will be chosen.

We have a valid descriptive theory if, for the relevant domain of
choice situations, the theory can be compatible with the actual choices,
The theory is normatively compelling if the underlying postulates are
~of sufficient appeal so that a decision maker is willing to change
his choice to conform to the theory's specifications. Expected utility
has been considered an example of such a theory because for many
researchers (e.g. Savage (1954), MacCrimmon (1965) and Raiffa (1968)),
it satisfies the latter requirements. Yet, there is enough empirical
evidence (cf. Chapter 3) to suggest that it is not a very good descrip-
tive theory. People tend to systematically violate the implica;ions of
a key property of expected utility called the strong independence
principle or the substitution axiom. Many of them would not change
their choices after being told of their violations (MacCrimmon, 1968;
Slovic § Tversky, 1975).

Due to the success of expected utility in the modeling of phenomena
in the economics of uncertainty and its applicatioﬁ to statistical
decision theory, it has been fashionable to discount violations as
mistakes needing correction. ‘A departure from this trend is evident in
the appearance of several recent papers (Meginniss, 1977; Handa, 1977;
Karmarkar, 1978; Kahneman § Tversky, 1979; Machina, 1980) proposing

alternative theories of choice to account for Allais' 'paradox' and
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other empirical findings that contradict the implications of expected
utility.

We develop in Chapter 4 a new theory of choice called alpha utility
theory which generalizes expected utility via a necessary and sufficient
set of axioms that weaken the corresponding ones for expected utility.
Specifically, the substitution axiom is replaced by a weaker axiom
called Weak Independence. Given two lotteries that are indifferent to
each other, Weak Independence allows for different probabilities in com-
posing each of these lotteries with a third lottery to preserve indifference.
However, these mixture-probabilities once determined must be independent of
the third lottery. The axioms imply that the ratio of the mixture
(probability) odds is constant. We call this the Ratio Cons%stency
property. Expected utility results when this ratio is identically
unity. Our theory has descriptive relevance in that it can represent
the usual responses given to the Allais paradox and is compatible
with other réported empirical findings contradicting the implications
of expected utility. Yet, it can be consistent with such normatively
appealing partial orders as stochastié dominance and global risk
aversion. As with expected utility, the constructive proof of our
representation theorem furnishes a procedure for the assessment of
the alpha utility functions, from which empirically testable predictions

can be derived.
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CRITIQUE OF EXPECTED UTILITY THEORY

3.1 INTRODUCTION

Expected utility theory has attracted considerable attention
since its revival by von Neumann and Morgenstern in their "Theory of
Games and Economic Behavior'". It serves as the foundation for the
economics of uncertainty (Arrow, 1971; Marschak and Radner, 1972;
Diamond and Rothschild, 1978), statistical decision theory (Savage,
1954; Blackwell and Girshick,.1961; Raiffa and Schlaifer, 1961;
DeGroot, 1970) and decision analysis (Howard, 1964; Keeney and Raiffa,
1976) . Expected utility has been less successful though in explain-
ing and describing actual choices (Edwards, 1954, 1961; MacCrimmon,
1965; Kahneman and Tversky, 1979); thus, providing a strong impetus
for further theoretical development.

In this critique, we review briefly the empirical findings that
pose difficulty for expected utility. First, we provide a summéry,
based on a recent paper (Chew and MacCrimmon, 1979b), of the systematic
violations of the strong independence principle. The first example of
such a violation is provided by the Allais paradox, which inspired
extensive follow-up studies and modifications.

The next section, discusses the concurrence of risk-averting
and risk-seeking behavior evident in the prevalence of the purchase
of insurance and gambling (Friedman and Savage; 1948) . For instance,
Markowitz (1952) noted prevalent risk-proneness for lotteries involv-

ing losses among his subjects. This observation is also noted by

61



62

Kahneman and Tversky (1979), particularly their probabilistic insurance
example. Figure 3.1 displays a typical von Neumann-Morgenstern

utility function which is used to account for the joint risk averting/
seeking behavior discussed above. The "'convex' (''concave') regions

correspond to risk-proneness (risk-aversion).

Fig. 3.1: A '"typical" von Neumann-Morgenstern utility function

N

u(x)

risk : risk risk
. risk averse .
seeking seeking averse

7
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Since the von Neumann-Morgenstern utility function cannot be convex

and concave at the same time, expected utility rules out concurrence

of risk proneness and risk aversion within the same region of wealth
levels. Whether this is actually the case is an empirical question

that has yet to be fully investigated, There is however indirect

evidence (Manrimmon, et.al. 1972; Allais, 1977) to the contrary. Different
theoretically equivalent procedures for the elicitation of von Neumann-
Morgenstern utility, e.g., the certainty equivalent, the gain

equivalent, and the chaining method, tend to yield different curves

with opposing risk-propensities.

A difficulty with expected utility, one that touches on the largely
unexplored area of problem representation and its effect on the
decision maker's preference, is,the controversy over the domain on
which a utility function is defined. Should it be final wealth levels,
the normatively compelling position as in Friedman and Savage (1948),
Pratt (1964) and practically all the literature on the economics of
uncertainty, or changes in asset position relative to some ''customary'
wealth level? Markowitz (1952) and others have observed that ﬁrefer-
ences are relatively independent of the current wealth levels,

Another difficulty is related to the finding (Kahneman and Tversky,
1979) that preferences among two-stage lotteries may depend on whether
the decision maker represents these lotteries in their simple equiva-
lent forms.

This chapter expands on the issues introduced above without

duplicating unduly the contents of other critiques already cited.
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We shall explore the descriptive implications of our generalization

of expected utility theory in the next chapter in light of the examples

considered here,

3.2 SYSTEMATIC VIOLATION OF THE STRONG INDEPENDENCE PRINCIPLE

As a lead-in to a more general structure of lotteries, consider

the four decision problems given in Figure 3.2.

A : $1,000,000 for sure

B : 10/11 chance of $5,000,000

89/100 chance
11/100 chance

99/100 chance

of $5,000,000
of $1,000,000

of $5,000,000

1/11 chance of $0 1/100 chance of §$0

A, : 11/100 chance of $1,000,000| | A.: $1,000,000 for sure

89/100 chance of $0

B : 10/100 chance of $5,000,000( | B_:
90/100 chance of $0

10/100 chance of $5,000,000
89/100 chance of $1,000,000
1/100 chance of $0

Figure 3.2: Four decision problems

Under the expected utility hypothesis, the only permissible

patterns of choices are either AH’ AI’ AL’ A0 or BH’ BI’ BL, BO' If

your choices are like most péople's, you will have chosen AH’ AI’ BL

and AO, which is not consistent with the implications of expected

utility. The choice of AI and BL constitutes the Well known Allais
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paradox. A lesser known paradox, the Allais ratio paradox, is given

by the choice of BL and AO. The violating choice of A, and BL

H
has not been studied. The insight one gains from the struc-

ture in Figure 3.2, rather than simply considering separate binary
lotteries, is that the violating pairs (AI, BL), (BL, AO) and (AH, BL)
are all derivatives of the basic violation, AH’ AI’ BL’ A0 versus

A A, A

w A Ap Ao

Several features of the structure in Figure 3.2 are worth noting.
It is based on three consequences $0, $1,000,000 and $5,000,000,
denoted by L, I, and H respectively. The AX(BX) alternative, where x
stands for one of the consequences, L, I, H, is obtained from the

AO(BO) alternative by composition with consequence x at probability

89/100. This is illustrated in Figure 3.3 for the case x = L.

Figure 3.3: The composition of the AL (BL)

lottery from AO(BO)
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Since AL(BL) in Figure 3.3 has the same final outcomes and probabilities
és AL(BL) in Figure 3.2, these lotteries are equivalent.

Although for illustrative purposes, we have only considered the conse-
quences $0, $1,000,000 and $5,000,000 and the composition probability .89,
it seems reasonaﬁle to expect violations of expected utility for other con-
sequence values and other probability levels. This leads to a more general
structure of decision problems, illustrated in Fig. 3.4. AO is a sure pro-
spect of the intermediate consequence I. Bo offers a q chance at the most
-preferred outcome H and a ]-q chance at the least preferred outcome L. The
Ai(Bi) alternative is obtained from the AO(BO) alternatively by composing

with the x-consequence at probability g.

Figure 3.4: The HILO structure of three consequence lotteries
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Note that the H (for "high'), I (for "intermediate') and L (for ''low'"},
given in the boxes of Figure 3.4, exhaust the possible compositions
from the basic problem (denoted as "0"). For ease of reference this

will be called the "HILO'" lottery structure.

N

Expected utility theory imposes some severe restrictions on the
choices in this lottery structure. The strong inqependence principle
requires that prefefence between two alternatives be preserved.when
each alternative is composed with a common alternative at the same

B and BB
X X

’

ated, it implies that the choice of alternative AO entails the choice
i while the choice of alternative BO entails the choice of Bi,

probability. Since this is how the A alternatives are gener-
of A
for all values of x and RB. Hence, the choice of an A alternative in
one of the cases of the HILO structure and a choice of a B alternative
in another case (such as the standard Allais choice of AI’ BL) vio-
lates expected utility. In addition to these violations across
problems, violations may occur within each p?oblem since Ail may be
chosen for some particular level 81 while Biz.may be chosen for
some different level By

Although empirical results are not available for all the across-
case and within-case combinations (since this lottery structure has
not appeared in the literature), there are results for some of the
particular cases. Table 3.1 summarizes the choices from the main
empirical studies in terms of the HILO 1ottéry structure. From

this table it should be apparent that most of the effort has been

devoted to studying various versions of the standard Allais paradox,



Table 3.1: Summary of Empirical Results Relevant to the HILO Lottery Structure

<mmwwmm_o= Empirical Parameters in the HILO Structure Violation
Pattern Studies L 1 H q B8 Percentage
Allais '79 0 Fr 100 mi11 (o1d) Fr | 500 mill (old) Fr 10/ 117100 46% (n=101)
MacCrimmon '65 Bankruptcy 5% return 500% return 10/1 11/100 39% (n=36)
Bankruptcy very small return high return quatitative fescription 42% (n=36)
0% return 35% return 75% return 10/11 11/100 36% (n=36)
>
o
BLM Moskowitz '74 F grade B* grade A grade 10/M 11/100 32% (n=134)
o
- o
— Slovic & 6 6 _
<2 |rversky '75 0% $1 x 10 $5 x 10 1o/Mm 11/100 44% (n=78)
:z 4 4 .
& o {MacCrimmon & $0 $1 x 10 $5 x 10 10/11 117100 21% (n=19)
)
o § | tarsson 'S $0 $1 x 10° $5 x 10° 101 11/100 21% (n=19)
s $0 $1 x 10° $5 x 10° 10M 11/100 32% (n=19)
w
Kahneman & "
Tversky '79 $0 $2400 $2500 B3 34/100 65% (n=72)
Ashton '79 1%; bankruptcy 9% 45%; 450% 10/ 117100 14% (n=83)
1% 8%; 18%; 28% 115%; 180% 10/1 117100 20% (n=49)
4 Hagen '73 0 10000 Norw. Kr. 20000 Norw. Kr. .50 .02 34% (n=52)
2 |Maccrimmon & $0 1 x 10° $5 x 10° .80 .75 .50 32%; 21% (n=19)
. Larsson '75 $0 $1 x 10° $5 x 108 .80 .75; .50; .25; 32%; 41%; 58%;
@ 10; .05 58%; 63% (n=19)
3
- Kahneman & $0 $3000 $4000 .80 . .25 45% (n=95)
o Tversky '79 No tour 1 week tour 3 week tour .50 0 45% (n=72)
.BBL Hagen '79 0 5 mi11 Norw. Kr. 25 mi11 Norw. Kr. 10/ .99; . N 42% (n=53)
% ~ | Maccrimmon & $0 $1 x 10° $5 x 10° .80 755 vs .50 21% (n=19)
1
5 o tarsson 7S $0 $1 x 108 $5 x 10 .80 .75, vs .50; .25; | 37%; 26%; 26%;
v o .10; .05 26%; 32% (n=19)
(&) —
5 K vaeety 10 $0 $3000 $6000 .50 .90; . 002 59% (n=66)
o MacCrimmon & . eq. _
mAH Larsson '75§ -$5000 -$1000 $0 .80 .80; .20; .04 5%; 5%; 16% (n=19)
© -
Kahneman &
T ﬂw“: 79 -$4000 -$3000 $0 .80 .25 50% (n=95)
.o Kahneman &
hax T ?m:C 79 -$6000 -$3000 $0 .50 .90; .002 62% (n=66)
T L M
< - A
T ar MacCrimmon & 4
LB @ ' -$5000 -$1000 30 .80 .80 vs .20, .04 1%, 21% (n=19)
= Larsson '75 .20 vs .04 21% (n=19)

89
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the I-L case% Note that while the fréquency of choosing the violating
choices, A?, Bi, varies across studies, the violation seems robust
over quite different levels.of consequénces and probabilities. Receiv-
ing increasingvattention recently has been the L-L pattern, ABl, Biz
(including the special case 0-L, of choices AO, Biz).

The only studies which have considered several cases simultan-
eously are those of MacCrimmon and Larsson (1975) and Kahneman and

Tversky (1979). The former study introduced the 0-H and the H-H cases

in the context of negative outcomes and is the only attempt to map

B

L for various levels of B

patterns of preferences between AE and B
(including the special '"0'" case of 8 = 1.0) and various levels of the
intermediate outcome, I.

It seems clear from Table 3.1 that our understanding of actual
choices for the decision problems in Figure 3.4 is incomplete.
Studies thus far conducted have covered the I-L, L-0, and L-L cases,
for gains, and the H-0 and H-H cases, for 1qsses. With the HILO
lottery structure, there are potentially 6 distinct binary violation
patterns, "I-L", "H-I", "I-Q", "L-0'", "H-0" and '"H-L'", across problems
énd three binary violation patterns, '"H-H'", "I-I'" and "L-L'" within
problems. The c;ses "H-I'", "I-0", "I-I" and "H-L" remain unexplored.

To obtain a more complete picture, a systematic study of choices

related to Figure 3.4 is needed.

1 The terminology 'I-L case' refers to the pair of lotteries comprising

the I case being presented in conjunction with the lotteries of the
L case.
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3.3 CONCURRENCE OF RISK SEEKING AND RISK AVERTING BEHAVIOR

We shall not discuss here the existence of non-overlapping risk-
seeking and risk-averting regions of a utility function (see e.g. Fig.3.1)
corresponding to the purchase of lottery tickets, purchase of insur-
ance and greater risk-seeking propensity for lotteries involving
losses. This has been given adequate coverage elsewhere (Friedman
and Savage, 1948; Markowitz, 1952;‘Kahneman and Tversky, 1979).
Instead, we focus our attention on the possible concurrence of risk
proneness and risk aversion within the same region; thus negating
any explénation based on modifications of the von Neumann-Morgenstern
utility function. |

A
Several measurement procedures to elicit a decision maker's

von Neumann-Morgenstern utility function are based on lottery compari-

son of the sort given in Figure 3.5,

Figure 3.5: Standard lottery comparison

1-p

Lottery A is a sure consequence of Xc’ an amount greater than Xz but

less than Xg.' Lottery B is a p chance of getting Xg and a 1-p chance

of getting XQ. If we fix the amounts in lottery B at Xg and Xg
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respectively but allow XC and p to vary, then the pairs of numbers
(Xc,p) such that lottery A is indifferent to lottery B define a function
which we denote by ﬁC(X), i.e. lottery A is indifferent to lottery B
whenever p = ﬁé(XC). We denote an affipe transformation of GC(X) by
uC(X), ije. u (X) = aﬁC(X) + b, for some a , b with a > 0. Suppose

the decision maker is an expected utility maximizer with von Neumann-

Morgenstern utility function u(X). Then

A indifferent to B implies that

- 0, . - 0 i
u(Xc) uC(XC)u(Xg) + (l—uC(XC))u(XQ) , or alternatively

ux) = [uGx)-uX)IE X)) + ux)) (3.1)

which is an affine transformation of ﬁC(XC).

Therefore, the function uC(X) is a von Neumann-Morgenstern utility
function. The above measurement procedure is usually known as the
Certainty Equivalent method.

We can alternatively fix the sure amount in A at Xg and the 1loss
amount in B at Xg and obtain the pairs (Xg, pg(Xg))vsuch that A
remains indifferent to B. Applying expected utility again, we obtain

the following relation.

u(x)) Py (X Ju(X) + (l-pg(Xg))u(Xg) , or alternatively

u(Xg) - u(xg)
pg(Xg)

u(x,) . u(X%) . (3.2)

7

Since u(X) is related to pél(x) through an affine transformation,

pg-l(X) is also a von Neumann-Morgenstern utility function; and this
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elicitation procedure is called the Gain Equivalent method.

‘Similarly, we can determine the von Neumann-Morgenstern utility
using the Loss Equivalent method by fixing Xg and Xg to obtain the
pairs (Xz’pz(xz)) such that a pl(Xz) chance of Xg versus getting XZ
otherwise is indifferent to getting Xg for sure. We apply expected
utility again and obtain:.

0

0 0
u(X ) = u(x’) - uy) - vl
2 g

1-p, (X))

(3.3)

-1

Therefore, Ttégfif

is a von Neumann-Morgenstern utility function.

The certainty, gain and loss equivalent methods are obtained from

), (X, X)) and (X, X))

Fig. 3.5 by holding constant the pairs (Xl’ X g

8
respectively. "If instead we hold pO constant, then there are three

remaining candidates for additional methods known collectively as the
Chaining Methods which are obtained by holding constant the pairs

(pO,Xg), (pO,Xg) and (po,xg) respectively. Of the three cases, we

O),
2

larger than Xg, determine

describe only the first i.e. fixing (pO,X which is more often used

in practice. Beginning with an amount'X1

an amount X2 such that a sure consequence of X, in A would be indiff-

erent to pO chance of getting X, and obtaining Xg otherwise in B.

1
Determine a third value X3 by replacing X1 by X2 and repeating the
process. Thus, we obtain a decreasing sequence (Xl’XZ’XS’ ...) with
the following property,

uty,;) = plu0y) ¢ (apued). (3.4)

i+l

Assigning arbitrary values to u(Xz) and a greater value to u(Xl),



73

we observe that expression (3.4) determines the von Neumann-Morgenstern

utility on the decreasing set of points (Xl,X .). We shall

2:%3
denote the utility function obtained using the chaining method with
fixed probab&lity P° and fixed.loss amount Xg by upO(X).

As we have noted earlier, if the decision maker is a 'true'
expected utility maximizer, then the utility functions U.s ug, uy

and upo would be affine transformations of each other so that any

one of them suffices. Allais (1979, Appendix C), in an experiment

conducted in 1952 found that the uC and u, curves obtained from the
2

same subjects are generally very different. A fairly typical plot

is given in Figure 3.6. Note that under the expected utility hypo-
thesis, the convex region near X=0 of u, is not compatible with the glo-
bal concavity of u%. Behaviorally, the risk seeking region of uC
corresponds to our intuition about the psychology of lottery purchase

-- people tend to forgo a small certain amount in favour of a small
chance of a large gain; while the concavity of uy reaffirms the reluc-

tance of individuals to engage in symmetric bets.



Subject's net wealth = 500,000 old Francs

0 50 100

X {in units 106 old Francs)

Figure 3.6: Examples of u, and u, (based on data from Allais (1979), Appendix ()
3
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Subject's

Figure 3,7: Examples of u%,and ug (based on data from MacCrimmon et.
("

x (in units of $1000)

net wealth = $350,000

al. (1972))
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In an ongoing study on the risk attitudes of top-level business
managers carried out by MacCrimmon and others (1972), chaining and
gain equivalents were among the methods used to assess von Neumann-
Morgenstern utility functions. Fig. 3.7 displays a typicai pair of
curves u, and u, obtained from a subject using the chaining method and

T
gain equivalent method respectively. Note again that the convexity

of uy near X=0 is inconsistent, under the expected utility hypothesis,
L

with the concavity of ug at the same region. The same inconsistency

also applies, though in the opposite direction, to the convex region

of ug versus the concavity of u%hbeyond its initial convex region.
Even though the empirical evidence on the concurrence of risk
proneness and risk aversion within the same range of wealth levels is
scant and fragmentary, what we already know about the actual applica-
tion of different methods to elicit utility functions suggests that
expected utility does not account for the results. This suggests
that further investigation of the concurrence of risk proneness and
risk aversion and eépecially mutual incompatibility of the different

measurement procedures to obtain von Neumann-Morgenstern utility

functions is warranted.
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3.4 SOME PROBLEMS WITH PROBLEM REPRESENTATION

Problem representation and its influence on preferences is a
relatively untouched area of research on decision-making. Normatively,
a decision makef's preference should not depend on the way alternatives
are perceived or represented as long as it does not affect the desir-
ability of the underlying consequences of his alternatives. That
this may not be the case is démonstrated by Kahneman and Tversky (1979)

through a class of phenomena termed Isolation Effects. Consider the

choice between A and B in Figure 3.8.

1/4 $3000 1/5 $4000

3/4 4/5
$0 $0

Fig. 3.8: Graphical representation of two lotteries

/;Efi//”" $4000
1/4
1/5
$0
3/4

$0

Fig. 3.9: A sequential representation of lottery B
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If you are an expected utility decision maker, then your preference
does not depend on how the probabilities of final outcomes are obtained,
so that lottery C in Fig. 3.9 is equivalent to lottery B in Fig. 3.8,
i.e. preference‘between A and B should be in the same direction as pre-
ference getween A and C. Kahneman and Tversky found for one group of
subjects ( h = 95 ), 65% prefer lottery B to lottery A. However, the
modal preference pattern between lottery A and lottery C for another
group of subjects is found to be the opposite (78% prefer C to A;
with n=141). The problem description that elicited the modal preference
for lottery C versus lottery A is reproduced below. (4000, .80) refers
to a lottery that pays $4000 with .8 probability and $0 with .2 proba-
bility, and (3000) denotes the sure consequence of $3000.

Consider the following two-stage game.

In the first stage, there is a probability of .75 to end

the game without winning anything, and a probability of .25 -

to move into the second stage. If you réach the second

stage you have a choice between

(4000, .80) and (3000)
Your choice must be made before the game starts, i.e.,

before the outcome of the first stage is known.

The problem description above focuses the subjects' attention on the
choice between (4000,.80) and (3000) rather than the common outcome

$0 with the same probability .75. Kahneman and Tversky conjectured that
most subjects then ignore the common outcome - probability component
under the above problem representation so that their choice becomes
identical to that between (4000,.80) and (3000).

/
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Another kind of isolation effect considered by Kahneman and Tversky
is related to Markowitz (1952)'s observation that preferences are
relatively independent of current wealth levels. They presented the

following problems to two different groups of subjects.

Problem 1. In addition to whatever you own, you have been
given 1000. You are now asked to choose between

A: (1000, .50) and B: (500)

Problem 2. In addition to whatever you own, you have been
given 2000. You are now asked to choose between

C: (-1000,.50) and D: (-500)

The majority of subjects chose A in Problem 1 and B in Problem 2. Note>
however, that in terms of final outcomes, the two choice problems are
equivalent i.e. you are either $1500 richer if you choose B or D,
or you have even chance of ending up with $1000 or $2000 more if you
choose A or C. People, however, seem to perceive Problem 1 as a choice
between (1000,.50) and (500), and Problem 2 as a choice between
(-1000,.50) and (-500), with the lump sums of $1000 in Problem 1 and
$2000 in Problem 2 safely integrated into their current wealthvlevels.
As an alternative to the final outcome position normally associated
with expected utility, Kahneman and Tversky proposed that people perceive
outcomes as gains and losses relative to some neutral reference point.
Allowing the reference point to be determined by the decision maker
in the context of the choice situation he faces, expected utility,

with a utility function defined .on changes in asset position relative

to the reference point, is compatible with the modal preferences in



Problemsl and 2. The reference point need not be the status quo especially

when the choice situation involves a sure gain of $1000.

3.5 SUMMARY

We have reviewed briefly some of the literature on empirical evidence that
contradictsthe implications of expected utiiity. It has been classified
under the headings: systematic violations of the strong independence
principle (section 3.2), concurrence of risk proneness and risk aversion
(section 3.3), and some problems with problem representation (section 3.4).
The phenomena considered include the Allais paradox and its various
modifications, incompatibility among different methods of measuring a
von Neumann-Morgenstern utility function, and Kahneman and Tversky's
isolation effects.

In the next chapter, we generalize expected utility theory by
applying the representation theorems of Part I as a theory of choice.

We then explore the descriptive implications of our generalization with

respect to the phenomena considered in this critique.
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A NEW THEORY

We develop in this chapter a new theory of choice called alpha
utility theory which generalizes expected utility by interpreting, in
sections 1 and 2, the representation theorems of Chapters 1 and 2 in
terms of choice among lotteries. We explore in section 3 some normative
implications of our theory including consisfency conditions with
stochastic dominance and local and global risk aversion. The question
of descriptivé vélidity is considered in section 4 where we show that
alpha utility is compatible with the phenomena reviewed in the critique
of expected utility (Chapter 3). We end the chapter with a comparison

of our theory with two other alternative theories of choice.

4.1 INTERPRETING MEAN VALUE AS CERTAINTY EQUIVALENT

'In Chapter 1, we proved a representation theorem of a meén value
functional, M, for probability distributions subject to a necessary
and sufficient set of axioms. The present section explores the impli-
cations of our representation theorem for choice among lotteries by
interpreting mean values as certainty equivalents? In the ensuing
discussion, we assume that lotteries, defined on some single-attribute
consequence set, e.g., monetary gains, can be represented by probability
distributions defined on the real line. (The case of more general con-
sequence space is considered in section 4.2)

The decision maker is assumed to have complete and transitive
preference over lotterieé. The following axiom asserts that he

is able to assign, corresponding to any lottery F, a certainty equivalent

2 This was discussed in Chew (1979).
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M(F) which is an amount such that the decision maker is indifferent
between getting it for sure and taking the lottery F. D denotes the

space of probability distributions (lotteries) defined on the real line.
Axiom MO: Existence V F € D, M(F) exists.

Axiom MO rules out infinipé certainty equivalents thus pre-empting any
possibility of a St. Petersburg type paradox.

The following five axioms M1-M5 are taken directly from Chapter 1.
We did not state existence (M0) as an axiom in Chapter 1 because it is
not an intrinsic property of mean values. For example, the arithmetic

mean does not always exist.

Axiom MI1: Certainty Consistency M(&x) =x Vx€&R.

It is difficult to take issue with Axiom M1 which requires that
the certainty equivalent of GX i.e. getting x for sure, is x. Another

’

normatively appealing axiom is the following:

Axiom M2: Betweenness V F, G € D, if M(F) < M(G), then

v e € (0,1), MBF+(1-8)G) &€ (M(F),M(G)).

Axiom M2 requires that the certainty equivalent of a mixture of
two lotteries be intermediate in value between the certainty equivalents
of the respective lotteries. The next axiom weakens the axiom of
quasilinearity of Haray, Littlewood and Polya or the "substitution of

lotteries" ﬁrinciple of Pratt, Raiffa and Schaifer.
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Axiom M3: Weak Substitution V F, G € D, if M(F) = M(G),

thenV g € (0,1) I v ¢ (0,1)

>V H e D, M(BF+(1-B)H) = M(yG+(1-y)H).

Suppose F and G are two lotteries with the same certainty equivalents
i.e. indifferent to each other. Consider the mixtures or compound
lotteries BF + (1-B)H and vy G+(1-y)H of the respectivellotteries, with
a third lottery H at probabilities 8 and y. Weak substitution weakens
the substitution principle in the sense that the mixture probabilities
B and y that preserve equality of certainty equivalents or indifference
need not be the same. However, it requires that these mixture probabili-
ties once determined be independent of the third lottery H.

The next two axioms are technical assumptions which are introduced
to ensure that our notion of certainty equivalent is well behaved rela-
tive to certain limiting operations on probability distributions.

Axiom M4 permits the approximation of lotteries with numerous discrete

outcomes by a continuous distribution e.g. uniform distribution.

Axiom M4: Continuity If {Fn};=1 converges in distribution to F

and F has compact support, then

M(F) = Lim M(F ).

\
For a more technical discussion of Axiom M4 see Chapter 1. Our last
axiom stated below asserts that the certainty equivalent of a lottery
FK’ truncated by the interval K, is 'close' to that of the original

lottery F if the interval of truncation K is sufficiently large.
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Axiom M5: Extension Let {Kﬁ}:=1 be an increasing family of

compact intervals such that Lim K = R.
n> '
= i &
Then M(F) %&g M(FKn), VYV F € D.
We are now ready to restate Theorem 1.3 of Chapter 1 in terms of

certainty equivalents.

Suppose a decision maker assigns a certainty equivalent

M(F) corresponding to a lottery F, then the assignment of
M(F) satisfies Axioms M1-M5 if and only if there exist a
strictly positi;ely valued function o ‘and a strictly increas-

ing function v such that V F € D,

M(F) = \)_l(chwdF/fRoch) . (4.1)

Moreover, if (a*,v*) is another pair of functions that
satisfies condition (4.1), then, for every interval
[A,B] CR, there exist constants a,b,c,k with a,c,k > 0

such that V x € [A,B],

k[vx) - v(A)] N
kK[vx) - v(A)] + v(B) - vi(x)

v¥(x) = a b,

calx)k(v(x) - v(A))] + v(B) - v(x)]. (4.2)

and a*(x)
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'

Note that the expression for certainty equivalent (4.1) is more
general than the corresponding expression for expected utility,

M(F) = v‘l(vadF) (4.3)

which results when o is constant. The uniqueness relaéion (4.2) sub-
sumes as special cases, an affine transformation for v and a positive
scalar transformation for a. To avoid the possibility of any St.
Petersburg type paradox, we have asserted through Axiom MO that the
certainty equivalent M(F) must be finite for any lottery F. We can
then apply Corollary 1.3 in Chapter 1 to conclude that either v is
bounded or a.v is bounded. Thus, we ha?e obtained a generalization
of expected utility, called alpha utility, in the sense that the
decision maker's preference over lotteries is represented by a more
general expression for his certainty equivalent characterized by an
additional alpha-function. We shall defer discussion of the actual
shapes of a and v functions till the sections after next. The next
section contains a parallel development of the above theory using

the representation theorems of Chapter 2.
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4.2 REPRESENTATION OF A PREFERENCE BINARY RELATION

In the preceding section, we developed alpha utility theory for
lotteries defined on a single—attributé consequence set, e.g. monetary
lotteries, via an axiomatization of the decision maker's assignment of-
certainty equivalents. We showed, using the mean value repfesentation
theorems of Chapter 1, that the certainty equivalént M(F) corresponding

to a lottery F is given by:
M(F) = v_l(ﬂ?avdF / &zadF) (4.4)

for some strictly positive function o and strictly increasing function
v. When a lottery F is preferred to a lottery G, the certainty equi-
valent M(F) is greater than that of G, M(G). It follows (since v_l is

order-preserving) that
jRavdF / &{adF > &zavdG / %{adG . (4.5)

Observe that the preference represented by the above functional is more
general than that of expected utility,"vadF, which is a special case of

(4.5) when o is constant.

The present section applies the representation theorems of
Chapter 2 to provide an alternative axiomatization of alpha utility theory.3
Unlike the certainty equivalent approach, we do not limit ourselves to
choice situations where the range of consequences are monetary values or
some quantity of certain commodity. For example, the relevant consequence

set for a child contemplating whether to steal a cake from a bakery may be:

status quo, having the cake, getting caught in the process. We denote by

This was discussed in Chew and MacCrimmon (1979a).
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X (={x,y,z,+-+}) the consequence set corresponding to a choice situation and
LX (= {P, Q, R,*-+}) the space of simple probability measures defined

on X (cf. Chapter»l). A simple probability measure is completely
~specified by knowledge of the probabilities of occurrence of a finite
number of consequencés. The child in the -above example may feel that

he has an even chance of getting the cake without being caught. Simple
probability meaéures are convenient representations of actual lotteries
or risky decisions when the probabilities of occurrence of the underlyving
consequences‘can be subjectively estimated or determined based on
symmetry considerations, e.g.,a game of craps or roulette. We denote

the alternative of obtaining some consequence x for sure by dx. A

finite lottery P is then represented as a probability weighted combi-
nafion of sure consequences:

\

n
P = 3ps8,, A (4.6)

where P; is the probability of occurrence of

the consequence xj.

Our representation functional for simple probability measures correspond-
ing to that obtained from the certainty equivalent approach (see expres-

sion (4.5)) is:

E(av,P) / E(¢,P), (4.7)
where o and v are functions on X, and E(-,P) '
denotes taking expectation of a function with

respect to the simple probability measure P.

The theorems of Chapter 2 show that the axioms on the strict prefer-
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ence binary relation '<' of a decision maker stated below are necessary

and sufficient for representing his preference via expression (4.7).
Axiom Ul: Ordering = is a weak order.

The strict preference relation —< is a weak order if it is asymme-
tric (i.e.,if a lottery P is strictly preferred to a lottery Q, then the
converse does not hold), and negatively transitive (i.e.,if a lottery P
is not strictly preferred to a lottery Q which is in turn not strictly
prefgrred to another lottery R, then P is not strictly preferred to the
lottery R). Both asymmetry and negative transitivity seem like basic
consistency requirements for a strict preference relation that few would

want to violate.

Axiom U2: Solvability V P, Q, R e ly, P <Qand Q< R
= d8 ¢ (0,1)

>  gP+(1-g)R ~ Q.

Axiom U2 says that whenever a lottery Q is between two lotteries P
and R in preference, then there is a mixture between P and R which is
indifferent to Q. The reasonableness of the above axiom stems from
the intuition that a mixture between two lotteries is always intermediate
in preférence between them (see the Betweenness axiom in section 4.1 and
also Axioms 3:B:a and 3:B:b in von Neumann and Morgenstern (1947)). It
follows that a mixture with a greater probability weight on the better
lottery should be preferred to another mixture with a smaller probability
weight on the better lottery. This is the substance of thé following

axiom.



89

Axiom U3: Monotonicity VP, Q € LX’ P < Q

= BP+(1-8)Q < YP+(1-v)Q for 0 <y < B < 1.

The axioms discussed thus far are standard normative properties common
to expected utility theory. The next axiom which weakens the substi-
tution principle or its close counterpart, the strong independence

principle, is the only departure.

Axiom U4: Weak Independence V¥ P, Q e Ly, P~Q

=Vg e (0,1), Iy e (0,1) DYR ¢ Ly,
BP+(1-B)R ~ yQ+ (1-Y)R.

. {
Weak Independence is a restatement of the Weak Substitution axiom (M3)

for certainty equivalents. Given two lotteries that are indifferent

to each other, Weak Independence allows for different probabilipies in
composing each of these lotteries with a third lottery to preserve
indifference. However, these mixture-probabilities once determined
must be independent of the third lottery. We are now ready to interpret

the representation theorems of Chapter 2.

A decision maker, whose preference among finite
lotteries defined on a consequence set X satisfies

Axioms Ul-U4 chooses as if maximizing the functional
E(av,*) / E(e,*)

for some strictly positiVe—valued function o and real

valued function v both defined on the consequence set X.
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When the a function is constant, the representation E(av,+)/E(a,*)
becomes the expected utility representation E(v,+) with v assuming

the role of a von Neumann-Morgenstern utility function.

Although the approach taken in this section does not require the
consequence set to be single-dimensional, the certainty equivalent
approach has the advantage of being able to treat general probability
distributions, e.g.,continuous random variable or even unbounded
ones like the normal distribution. In the next two sections where
we discuss the normative and descriptive implications of alpha
utility theory, we shall represent lotteries in terms of either
probability distributions or simple probability measures. Representing
lotteries with probability distributions is more appropriate |
when we deal with numerical outcomes, especially if the outcome
can take on continuous values. Otherwise, simple probability measures

would be used.

4.3 NORMATIVE IMPLICATIONS

Despite growing evidence demonstrating its descriptive inadequacy,
expected utility remains dominant mainly because of the normative appeal
of its underlying postulates and the elegance with which expected
utility charackerizes stochastic dominance (increasing utility function),
local (Arrow-Pratt index) and gloBal (concave utility function) risk

aversion. We show in this section that alpha utility is also an attractive
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normative theory before considering its descriptive relevance in the

folloWing section,

4.3.1 Ratio Consistency

As we noted earlier, except for the Weak Substitution axiom (M3)
or equivalently the Weak Independence axiom (U4), the other axioms of
alpha utility are standard properties common to expected utility. We
showed in Chapter 1 (Lemma 1.2) and Chapter 2 (Lemma 2.2) that Weak
Independence together with Monotonicity implies the Ratio Consistency
Property (Chapter 1, Property 5; Chapter 2, Definition 2.6) which is
crucial to our proofs and the assessment of the o function. The
Ratio Consistency property has been given a rather striking geometrical
interpretation by Weber (1980).4 Consider a simplex formed
by the three lotteries P, Q and R in Figure 4.1. Each lottery X in the
simplex is specified by its barycentric (areal) coordinates (81, 82, 83)
given by the areas of the triangles XQR, RPX and XPQ. Assume that the
area of PQR is 1, X then represents a probability mixture 81P+82Q+83R
among the three vertices P, Q and R. The lotteries Y(Z) is a mixture

between P(Q) and R with 8(y) weight on P(Q) and 1-B(1-y) weight on R.

4 Ratio Consistency was originally Axiom U5 (see Chew and MacCrimmon,
1979a). It was also implicit in a stronger statement of Axiom M3 (see
Chew, 1979). Weber (1980) demonstrated via "an approach through the
analysis of iso-preference sets' the redundancy of Ratio Consistency
with respect to the other axioms by showing that Theorem 2.1 holds
without assuming Ratio Consistency. This motivated the statements of
Lemma 1.2 and Lemma 2.2.
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R(0,0,1)

X(Bl,82:83)
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Figure 4.1:

P(1,0,0)

Q(0,1,0)

Ratio Consistency illustrated using barycentric coordinates

[43)
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Mixing Y and Z with weights varying from 0 to 1 generates the line seg-
ment YZ. Suppose the lotteries P and Q are indifferent to each other,
then Monotonicity implies that the line segment PQ is an isopreference
set. For each Y on PR, Weak Independence implies there is an Z on QR
such that Y and Z are indifferent. Hence YZ is an isopreference.
Project YZ to meet PQ extended at the point O with coordinates (s,1-s,0)
(Note that either s > 1 (0 is on the left of P) or s < 0 (0O is on the
right of Q)). The Ratio Consistency property simply requires all other
isopreference sets such as Y'Z' joining points on PR to points on QR to
originate at the same point O. ‘That this is the case follows from the

observation that

~OZR = AOYR + AYZR, (4.8)
which is given by

ys = B(s-1) + yB. (4.9)
Solving for vy gives

Yy = B(s-1)}/(s-B) . (4.10)

Let T = s-1/s. Expression (4.10) becomes

=T, (4.11)

A similar observation for the line segment Y'Z' gives

y'/1-y! Y/1-y

"
~
1}

_— (4.12)
g'/1-8" B/1-8
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Hence, line segments originating from the same point O satisfy the
Ratio Consistency property (4.12). For expected utility, the mixture
probabilities B and Y such that Y is indifferent to Z are always
equal; so that the constant t equals unity. Geometrically, the line

segments YZ and Y'Z' are parallel,

The simplical representation can now be used as in Weber
(1980) to provide an alternative proof of Lemma 1.2 or equivalently
Lemma 2.2 without having to solve the functional equation (1.6).
The basic idea is to show, once an isopreference say YZ is found,
that all line segments such as Y'Z' originating from the point 0
of the intersection between the extensions YZ and PQ are also
isopreferences. Monotonicity which implies that these isopreferences
are non-intersecting then ensures tﬁat there are no other iso-
preferences. Lemma 2.2 is proved below using the simplical

approach. .

Lemma 2.2: Ofdering (U1), Monotonicity (U3) and Weak Independence (U4)
implies Ratio Consistency (Definition 2.6).
Proof: Suppose P ~ Q but not (P L,R) in Figure 4.2.
Then from Monotonicity, PQ is an isopreference.
Corresponding to a mixture Y = BP+(1-B)R, Weak Independence’
implies that there is a mixture 7 = YQ+(1-y)R such that
Y~ Z, so that YZ is also isopreference. Let O be the point

of intersection of the extensions of YZ and PQ. (Suppose

without loss of generality that O is on the left of P).



R(1,0,1)

2(0,v,1-y)
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Figure 4.2:

> @

P(1,0,0) Q(0,1,0)

Geometric proof of the Ratio Consistency property

6
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Consider another line segment Y'Z' below YZ originating from
the same point 0. We shall show that Y'Z' is also an isopre-
ference and by the preceding discussion satisfies the Ratio
Consistency property (4.12). Draw the median from R to bisect
PQ at A. Draw a line froﬁ Y. parallei to RA and intersecting
Y'Z' at S. Produce PS to meet RA at V. Complete the triangle
PVQ by connecting V and Q. Denote by T the intersection between
VQ and Y'Z'. Draw a line from Z parallel to RA and intersecting
VQ ét T'. To see that OST' is collinear and hence T' must
be the same as T, view the figure in fhree dimensions with
V the top vertex of a tetrahedron with base PQR. The plane
through the parallel lines YS and ZT' contains O, S and T'.
The plane through PV and Q also contains O, S and T'. The
conclusion that Y'Z' is also an isopreference follows from
applying Weak Independence to S = RP+(1-B)V and T = vyQ+(1-vy)V.

A similar argument establishes the result for the case

Y'Z' above YZ.
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4.3.2 Assessment

The derivation of a procedure for eliciting alpha utility
functions directly from the proofs of the representation theorems
is a feature that is shared with expected utility and sets alpha
utility apart from other alternative theories in the literature.
This is illustrated below via a simple consequence set X With dis-
tincf outcomes L,I, and H arranged in ascending order of preference.
Chapter 3 section 1 contains a discussion of the systematic viola-
tions of thé Strong Independence principle by stating the empirical
studies on the Allais paradox in terms of lotteries defined on such
a 3-outcome consequence set. Suppose an alpha utility decision maker
chboses among lotteries defined on such a consequence set, then we

can measure his o and v functions in the following way:

Set the v-values for the worst and the best
consequences to 0 and 1 respectively, i.e.,
v(L) = 0 and v(H) = 1. The v-value of the
intermediate outcome I is given by the pro-
bability q such that the decision maker is
indifferent between the sure consequeﬁce I
and a q chance of obtaining H and 1-q chance

of obtaining L, as illustrated in Fig. 4.3.
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.Figure 4.3: Probability Equivalent Method

v (L)

0; v(H) = 1;

v(I) q such that P ~ Q.

Having constructed the v-function, we form in Fig. 4.4 the follow-

ing lotteries to determine the a function.

Figure 4.4: Test of Substitution Axiom

If the decision maker subscribes to the Substitution principle, P' and
Q' would be indifferent whenever 8 equals Y;'sin;e Q is constructed to

be indifferent to P. If,however,P' and Q' are indifferent with B and y
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unequal, then Ratio Consistency tells us that

Y/1-y
B/1-8

= 1, a constant. (4.13)

The decision maker's a-function is then given by a(I)=1 and a(L)=a(H)=1, i.e.,
assign 1 to the a-values of the best (H) and the worst (L) outcomes of the
consequence set X.(See the sufficiency proof of Theorem 2.1 in Chapter 2 for
more details).

For consequence sets with more than three outcomes, the above proce-
dure can be repeated for the other intermediate outcomes. In the case of an’
interval of a real line, the v and o functions can be obtained by interpola-
ting among a finite number of measurement points. Just as there are many
different ways to measure von Neumann-Morgenstern utility functions, this
would also be the case for alpha utility. Since we only skim the issue
of assessment here, more work seems to be needed. In the next sub-sections,
we obtain conditions for consistency of alpha utility with stochastic domi-

nance, local and global risk aversion.
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4.3.3 Stochastic Dominance

Definition 4.1: A distribution G is said to stochastically dominate

another distribution F in the first degree,denoted by G % F, if

G(x) s F(x), V x e R.

The above definition of what is usually called Stochastic Dominance
has its origin in the works of Hadar and Russell (1969), Lehmann (1955)

and Hanoch and Levy (1969). It is well known that,
1
G2F = JyudG > JpudF

for every increasing function u on R. Therefore, every expected utility
decision maker would prefer G to F when G dominates F in the first degree.
This is however not necessarily true of every alpha utility decision maker.
To the extent that consistency with first degree stochastic dominance is
normatively desirable (and, in the context of monetary lotteries, probably
descriptively valid), it can be imposed as an additional requirement.

The following corollary taken from Chapter 1 provides conditions under
which an alpha utility decision maker would be consistent with first

degree stochastic dominance.

Corollary 1.4: Suppose a, v are bounded.

Then YV F, Ge D, F é G = Q(F) > Q(G)
iff a(xX)(v(x) - v(s)) 7 (4.14)

is an increasing function V s € R.

The functional £ (F) refers to the alpha utility representation

&{avdF/ﬂRadF. It is easy to see that relation (4.14) can be restated,
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a(x)(v(x) - Q(F)) | (4.15)

is an increasing function V F ¢ D.

We obtain a "familiar" interpretation of (4.15) through the following

expository discussion of the necessity proof of Corollary 1.5. Observe

that 6 2 F = F , 2 F  if 8' > 0 where F, = (1-8)F+6G,

Suppose © is consistent with é, then Q(Fe) is increasing in 6. Differ-

entijating with respect to 8 yields

§§ Q(Fe) = ﬁRu(x;Fe)d[G(x) -Fx)] > 0 v o ¢ (0,1] "(4.16)
where u(x;Fe) = %%glf—j{v(x) - Q(Fe)} . (4.17)
’'8

By continuity of u(x;Fe) in 8, it follows that

S 9 [gLgr = SUEGRAIGE)-F()] 2 0. (4.18)

Since G is any distribution that dominates F, u(x;F) has to be increasing
for every x € R. The function u(x;F) has the functional-analytic
interpretation as a GAteaux derivative (Luenberger, 1969) of the

functional Q(F) at F and

%5 UF) gap+ = ﬁRU(x;F)d(G-F)

is interpreted as the Giteaux differential of Q@ at F in the direction
of G-F. For expected utility, the corresponding Gateaux derivative and
Gateaux differential are u(x) and ﬁ{u(x)d[G(x)—F(x)] respectively.

Note that u(x) does not depend on F since the expected utility répre—
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sentation &{udF is linear in F. This suggests the term Lottery Specific
Utility Function (abbv. LOSUF) for u(x;F)§ Corollary 1.5 has the familiar
interpretation: Alpha utility is consistent with 1st degree stochastic
dominance if its LOSUF is increasing for each F. This condition assumes
the following more manageable form if we impose 1st order differentia-

bility on o and v.

av' 2 max[a' [v-v(x)],-a' [v(x)-vI] V x e R, (4.19)

where v = Lim v(x) and v = Lim v (x).
X0 - X-y=00

Alternatively, the above can be stated as:

YxeR o (oga) ¢ 52Ok if a0 2o (4.20)
4.20
>-\)_(;’(%’_‘_)Y if a'(x) <0

The rate of change of log o is bounded from above and below by
v'(x)/v-v(x) and -v'(x)/v(x)—y respectively. Expression (4.20) can be
used directly to find all those a given a certain v that will be consistent

with 1st degree stochastic dominance.

5 Machina (1980) investigated the properties of a twice Fréchet-differenti-
able functional V(F) on D[0,Ml with respect to the stochastic dominance
and global risk aversion partial orders. Fréchet differentiability is
a stronger notion than Giteaux differentiability and does not admit a
natural extension of the analysis to the real line. Machina called the
first Fréchet derivatives of V(F) local utility functions. The alpha
utility functional Q(F) when restricted to a compact interval such as
{0,M] is Fréchet differentiable so that we can identify a lottery speci-
fic utility function with a local utility function,
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4.3.4 Global Risk Aversion

Definition 4.2: A distribution G is said to stochastically dominate

another distribution F in the secondbdegree§ denoted by G % F

3

if
S76(x)-F0))dx <

A
o

vy e R (4.21)

1
o

and [ (G(x)-F(x))dx (4.22)

When the means associated with the distributions F and G exist,
condition (4.22) implies that they are equal. Condition (4.21) requires
that for each x, the mean of G truncated at (-»,x] is not less than that

/
2

of F truncted at (-»,x]. Note also that for all concave u in R, F > G

if and only if JoudF > [ udG.

Consequently, an expected utility decision maker with a concave
utility function always prefers a distribution F that dominates another
distribution G in the second degree. The normative content of 2nd-degree
Stochastic Dominance (or Global Risk Aversion) is derived from the idea

that a prudent person should be risk averse.

Definition 4.2 extends the definition of increasing risk by
Rothschild and Stiglitz (1970) for a compact interval. Similar or related

results have been obtained in Blackwell (1951), Hanoch and Levy (1969) and

€ Whitmore (1970) defined third-degree stochastic dominance and related it
to the Arrow-Pratt index. The general kth-degree stochastic dominance
was defined in Chapter 1. However, both definitions will not be treated
here. '
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Strassen (1965).

The following corollary adapted from Chapter 1, which is a restric-
tion of Corollary 1.6 to the case of second-degree stochastic dominance,
provides conditions under which an alpha utility decision maker would be

consistent with second-degree stochastic dominance.

Corollary 1.6*: Suppose a, v, a', v' are bounded and continuous,

2
then VF, GeD, F>G = Q(F) > (6 (4.23)

iff {a(x)[v(x)-v(s)]1}' is a decreasing function

V s ¢ R.

Note that condition (4.23) requires the LOSUF u(x;F) to be a concave
function for each F. This further confirms our intuition that the LOSUF

plays a von Neumann-Morgenstern utility-like role.

Requiring a, v to be second differentiable, the condition (4.23)

becomes
V x ¢ R, av'"+2a'v' < minla"(v-v(x)), -a"(v(x)-v)]. (4.24)

This condition is related to the Arrow-Pratt measure for alpha utility

developed in the next subsection.
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4.3.5 Local Risk Aversion: The Arrow-Pratt Index

Consider an alpha utility decision maker with assets x. The Cash
Equivalent C(x;Z) corresponding to a risk Z is given by M(FX+Z)-X which
is the difference between the certain asset position M(FX+Z) such that
the decision maker is indifferent to taking the risk Z and his current

asset position x. The risk premium n(x;Z) is then defined by
m(x;2) = E(Z) - C(x;2) (4.25)

which is the difference between the actuarial value E(Z) of the risk
Z and its cash equiyvalent C(x;Z). Since x+Z and (x+p)+(Z-u) have the
same distribution on final assets, m and C from expression (4.25) have

the properties:

C(x+u;Z-n)

C(x;Z)-yu, and (4.26)

T(xX+p;Z-1) m(x;Z). (4.27)

Following Pratt (1964), we consider the behaviour of w(x;Z)

for an actuarially fair risk Z as g, > 0, assuming the third absolute

central moment of Z is of order o(o%). Thus,

jﬁ +Z

) = e—_— .
X+Z (4.28)
ﬁRade+Z

avdF
v(x-m(x;2)) = Q(F X

Expanding both sides after cross multiplication, we get
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G2
[v(x) - () +0(n2)] Ta(x) + e (x) +0(02)]

02 .
= (V)= (@) " () +0(0D). (4.29)
This reduces to
m(x;2) = %05 T(x) + o(02), (4.30)
where r(x) = - %}-{[logaz(x)v'(x)]' - -(3','%3228‘3 . (4.31)

As in expected utility, the decision maker's risk premium for a small,
actuarially neutral risk Z is approximately half the variance times r(x),
which, in keeping with precedent, we call the Arrow-Pratt index. When

Z is not actuarially fair, we obtain from (4.27)
m(x;7) = %07 r(x+E(Z)) + o(03). (4.32)

It is straightforward to check that r(x) has the following
alternative interpretation in terms of the probability premium (Pratt,

1964; Arrow, 1971),

p(x;h) = Lhr(x) + 0(h?), (4.33)

where %(1+p(x;h)) and %(1-p(x;h)) are the probabilities of obtaining
x+h and x-h respectively, such that the decision maker is indifferent
between the status quo x and taking the risk. It is also straightforward
to check that r(x) is invariant under the uniqueness transformation
(expression (1.12) and (1.13)) for the functions o and v. In particular,

it is invariant under an affine transformation for v and a scalar
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multiple for a.

It is comforting to note that r(x) has similar local properties as
expected utility.  Unlike expected utility however, we cannot recover
the functions o and v ohly from the knowledge of r(x) pointwise. We would
not therefore expect to be able to characterize in general, global risk
propensities of an alpha utility decision maker in terms of his local risk
aversion function r(x). In particular, we note from subsection 4.3.4 that
global risk aversion in the sense of consistency with second degree stochastic
dominance implies that r(x) > 0 pointwise, b&t the converse does not in
general hold. This result seems intuitively appealing. Consistency with
second degree stochastic dominance implies positive risk premium m(x;Z)
at any asset position x, for any actuarially fair risk Z, which in turn
implies that r(x) is positive for actuarially fair infinitesimal risks
about x. Even if r(x) is positive pointwise, indicating aversion to
infinitesimal actuarially fair risks, it is still possible for an alpha
utility decision maker to be risk seeking over some interval., This corres-
ponds to the observation that people purchase insurance and gamble at the
same time (Friedman & Savage, 1948; Markowitz, 1952). The implications of
this and other empirically observed choice behavior for alpha utility will
be considered in the next section; where we use the consistency conditions
developed in the last subsections to identify regions of local and global

risk aversion.
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4.4 DESCRIPTIVE IMPLICATIONS

We showed in the preceding section that alpha utility, like
expected utility, is coﬁpatibie with such normative notions és
stochastic dominance, local and global risk aversion. We also
illustrated how the constructive proof of our representation theorem
furnishes a procedure for the assessment of the alpha utility functions.
In this section, we will show that alpha utility is not so general
that it has no testable implications, nor is it such a minute departure
from expected utility that it is-susceptible to the same set of

violations.

7
4.4.1 Systematic Violations of the Strong Independence Principle’

The empirical findings violating the implications of the Strong
Independence principle that stem from the Allais paradox were summarized
in table 3.1 in terms of the HILO structure of lotteries developed in
section 3.1. We consider here the implications of alpha utility theory
for choice patterns for the HILO structure, and derive some testable
predictions.

Applying alpha utility theory to the decision choices in Figure 3.4

we obtain,

2(a5) = v(D By =g
8 8
28y = pa(nyv(D) e8Py .= Bq
L Ba(T) + (1-B) b
2a®) = v 2% = gg + (1-Ba(Dv (1)

B + (1-B)a(I)

Ba(1)v(D) + (1-B) R(B= Ba + (1-8)
Ba(I) + (1-B)

2(a5)

The material in this sub-section appeared in Chew and MacCrimmon
(1979b).
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v(I)
1
region I
B B B
. By Ap A5 By
a(l)
region
g B
q
region III
(1-q)
a(I)
-2 region IV
B B B B
BH’ BI’ BL’ BO
0 .5 1

Figure 4.5: Preference pattern for a(I) < 1
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'Assuming without loss of generality that'a(L)=a(H)=1, (cf. Theorem 2.1),
we obtain the following inequalities corresponding to preferences in each

decision box.

Ay =By = VI >q = A > B (4.34)
AE > Bﬁ < v(I) > q(B+ (;E%) | (4.35)
B B (1-8)

Ay > By - v(I) > 1-(1-q) (B+ (D). (4.36)

The inequalities (4.34), (4.35) and (4.36) are plotted in Figure 4.5
for the case in which a(I) < 1. Note that the four regions, denoted as
regions I-IV, correspond to four distinct choice patterns. These, along
with the choice patterns for the case of oa(I) > 1, are summarized in

Table 4.1.

Table 4.1

Allowable Choice Patterns Under Alpha Utility Theory

Expected Utility
Q(I) <1 = 1] > 1

Region

1 S T A

II .
AH’ AI’ BL’ AO Regions do BH’ AI, s A0
not
I1I1 AH: BI’ BL’ BO exist BH, BI’ AL’ BO
v B> By, B, B,

Apart from the patterns corresponding to regions I and IV (the
only ones consistent with expected utility) alpha utility theory allows

for 4 out of 14 additional patterns. These are given by the entries
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under the case a(I) < 1 and o(I) > 1 for regions II and III. The

region II and region III patterns under o(I) > 1 have not been reported
in the literature (cf. Table 3.1). On the othér hand, all the empirical
findings to date of violations of expected utility correspond to either

of the region II and III patterns with a(I) < 1. In particular, both

the standard Allais paradox (i.e. A?, Bi) and the Allais ratio paradox
(i.e. BE, AO) occur in region II. The existence of region III also has

some empirical support; note (Table 3.1) that both the AB, BO and Agl, Biz .

violations have been reported.

Before we continue with further implications based on the allowable
patterns of choice, we can gain some intuition about alpha utility theory
in relation to the HILO structure by examining, in Figure 4.5, the effects
of changes in the parameters B and V(I) on the resulting pattern of choices.
Looking first at changes in P, we see that if consequence I is sufficiently
attractive (i.e., V(I) > q/a(I)) then the choice will be A alternative
and will be unaffected by changes in 8. This indicates a basis for choice
that may be called the security effect. Correspondingly, if I is
unattractive (i.e., v(I) < 1 - (1-q)/a(I)), then no change in B will
induce a shift away from the B alternative. This may be called a
nothing-to-lose effect. Note that both above regions are the only
regions consistent with the substitution principle.

If I is somewhat attractive (i.e., V(I) between q and q/a(I)) then

B

decreasing B from 1 will cause a switch from Ai to BL. The smaller

value of B acts as a dilution probability to narrow the perceived gap

between Ai and Bi;due to the attractiveness of I until finally the

B

attractiveness is sufficiently diluted to cause a switch to BL’ This
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is the dilution effect. The special case for the dilution from Aﬁl.to

B

L 2, (where Bl = 1.0 and 82 << 1.0) has been called a certainty

effect (Kahneman and Tversky, 1979). When I is somewhat unattractive
(i.e., V(I) is between 1 - (1-q)/a(I) and q) a decrease in B will

B

cause a switch from BH to Aﬁ. This is a reverse dilution effect.
In addition to studying the effect of changes in B for given
values of v(I), fresh insight can be gained by examining the effect
of changes in v(I) for given levels of B. For B = 1, we no longer
0’ BO choice

which depends on whether V(I) > q. At low and intermediate levels of

have a compound structure and so revert to the simple A

B, the regions II and III, giving rise to the paradoxical choices can

be quite large. Note that as V(I) decreases from being very attractive,

B

at some point the AE choice will switch to BL' Then as Vv(I) drops

below q, the choices in the I and O cases change to Bi 0

Finally, as v(I) drops lower (i.e., below q(B + (l—B)/oc(I)),_AB changes
H

B
"

and B, respectively.
to B

Two main implications should be noted from these’observations.
First, alpha theory can describe a richer set of preferences than can
expected utility theory. Specifically, it covers the Allais-type
preferences (I-L, L-0, and L-L) and other observed violations (H-O and
H-H). It allows for a dependence on the values of the parameter and
hence captures the observed dilution effect.

On the other hand, it is not so general that it can describe any
preferences. Only 6 of the possible 16 preference patterns of the
HILO structure are consistent with alpha utility theory (and only 4

patterns for the empirically supported a(I) < 1 case). As Figure 4.5
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suggests, our theory makes very specific predictions about the preference
patterns and the way they change as the parameters B and v(I) changes.
In particular, monotonicity requires that preferences for the O and I

cases agree completely, i.e., A > B <=>A1>-B More interestingly,

0 0 I’

note that the standard Allais paradox (AI, BL) occurs if, and only if,

the Allais ratio paradox (B AO) occurs. Both new regions of permissible

L’
choice (i.e., regions II and III)provide for Ai and Bi; hence this
previously unreported case would seem to be a prime candidate for a
new ''paradox". TFurther, note that as v(I) decreases, the switch from
A6 to BB occurs first for the L case, then for the I and O cases, and

finally for the H case. All these implications from alpha utility

theory are empirically testable.
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4.4.2 Stochastic Dominance

Consistency with stochastic dominance is an intrinsic property
of expected utility. This is not the case with alpha utility. To the
extent that it is prescriptively desirable and descriptively valid
(see Chapter 5 for an example of a potential violation of stochastic
dominance in the context of income distributions), we can restrict
the alpha utility functions considered to those that do not violate
[

stochastic dominance via the following consistency conditions taken

from Corollary 1.4.

vxeR, [loga(x)]' < - [log (Vv (x)]' if a'(x)>0

> - [log (v(x)-v)]' if a'(x)<0.
where V = Lim V(x) and V = Lim V(%) (4.37)
X0 - K>

These conditions are depicted graphically in Figure 4.6 for a bounded
vV normalized to V=0 and V=1. The slope of log o is bounded by the
slope of -log (1-V) from above and -log V from below. The o function
that is compatible with (4.37) is then recovered from the graph of
log . The o function considered has a dent in the middle and increases
in both the positive and fhe negative directiéns in order not to
exclude the possibility of region II and region III preferences in
Table 4.1. (Recall that the condition for the existence of region
IT and III preference is that a(I) < qa(H)+(1-q)a(L)). The limiting
behavior of a is bounded above by I%s-and below by %u

It is interesting to note that after satisfying stochastic
dominance and also the "Allais'" type preference for thé HILO structure,

we are still left with a fairly large class of o functions. We

investigate in the next sub-section, the risk propensities of the o
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-In[v-v(x)]

Fig. 4.6:

Consistency Conditions for Stochastic Dominance
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and U functions of Figure 4.6.

4.4.2 Local and Global Risk Properties: Concurrence of Risk
Averting and Risk Seeking Behavior

Local risk aversion in the sense that the Arrow-Pratt index
(see sub-section 4.3.5) is nonpositive corresponds to the observation
that people tend to avoid taking a small gamgle in favor of its expected
return. For expected utility, local risk aversion pointwise is
equivalent to having a concave von Neumann-Morgenstern utility function
which is in turn equivalent to global risk aversion. Thus, the
behaviorally plausible local Tisk aversion hypothesis is not compatible
with any concurrent risk seeking behavior, e.g., the purchase of a lottery
ticket. Alpha utility does not share the above difficulty since local
risk aversion is necessary but not sufficient for global risk aversion.

The condition for local risk aversion, namely that the Arrow-Pratt

V'(x) 20'(x)
V() | a(x)

index (= - ) is nonnegative, is:

(Log a(x))' < (log V' (x))". (4.38)
This is depicted graphically in Figure 4.7 for the v function of Figure 4.6.
Note tﬁat a constant o (which corresponds to expected>utility) is not
admissible. The function log o has to decrease sufficiently rapidly
near the ruin point -X, in order to correct for the convexity of v
at the same region. -

At this point, we have a pair of functions (@, V) that satisfy
stochastic dominance, exhibit 1local risk aversion pointwise, and are
compatible with the Allais type preference for the HILO structure. It

remains to check whether the functions have the correct global risk

properties that correspond to actual choice behavior. First, we establish
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Fig. 4.7: Conditions for Local Risk Aversion
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Fig. 4.8: An admissible alpha function
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that our o and V functions describe risk seeking behavior by showing
that they do not satisfy the conditions for global risk aversion:

WeR, (a(x).v{x))" <0 if o'"(x) >0

A

a"(x) if o"(x) < 0 (4.39)

Since the o function considered is convex, it suffices to observe in

Figure 4.8 that the préduct ¢.-V admits a convex region near the ruin point.

This means that there is a concurrence of risk seeking and risk averting

behavior for that region. This corresponds to the prevalence of risk

seeking behavior for losses observed by Markowitz (1952) and recently

by Kahneman and Tversky (1979). However, the local risk aversion

hypothesis (see Figure 4.6) rules out the possibility of global risk

proneness so that the alpha utility decision maker will at the same

time have the opposite risk averse propensity for some other gambles.
Finally, we consider the mutual incompatability of different

procedures for the assessment of a von Neumann-Morgenstern utility

function. Suppose we apply the certainty equivalent method to the

alpha utility deéision maker considered, with status quo x=0 and some

substantial gain amount xg as the endpoints of lottery B in Figure 3.5.

The paifs of measurements (xc, uc(xc)) that corresponds to indifference

between getting X, for sure in lottery A, and getting Xg with uc(xc) chance

and getting 0 with l—uc(xc) chance are related by the following expression:

0L, ), (2 IV x,) + 4 (0) [1mu (k)] (0).
V) = (4.40)
0k u (5 + 0(0) [1-u_(x,)]

After rearranging, we get:

a(0)[v(x)-v(0)]

) = 4.
fe a(o )[\)(X)—\)(O)HOL(Xg) [\)(Xg)-\)(x)] (40
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-
0
X

Fig. 4.9: A pair of u, andu ,, derived from an alpha utility decision maker

1/2

3/4

Fig. 4.10: A pair of ug and u derived from

3/4
an alpha utility decision maker
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A

Alternatively, if we fix a loss amount at half the ruin position

-X, and use x=0 as the intermediate amount, we can apply the gain

equivalent method to obtain Ug below:

Xyl _Xr
a(x )Pg(xg)v(xg) + o 2)[l pg(xg)]v( > )

g
v(0) = =
T
a(xg)Pg(Xg) + a(- -iﬁll—pg(xg)].
Hence,
_ 1 _ox) V{(x)-v(0)

U ) = 575y T A=) @) T (4.43)

g 2 T

Finally, we consider the chaining method. With x°=0 and X=X

. o : Lo .
as the endpoint, and p =% as the probability parameter, we obtain

the sequence (Xl’ X ..) based on the following relation.

2°°
u(xi)V(xi) + a(0)v(0). (4.44)

v(xi+1) - a(xi) + a(0)

We have thus determined Uy on the sequence of points (x ...) given

5 1, X2:
by expression (4.44). Changing the probability parameter to po=3/4

o Xy .
1= "5 we obtain:

30.0x,)V(x,) + (- %I)v(-~§£). (4.45)

and the lower endpoint to x

V(xi41) =
3a(xi) + a(0)

As before, we have determined Uz /g On the sequence of points (xl, Xyyene
determined by expression (4.45).

Figure 4.9 shows the graphs of u. and uy with the same axes for
ease of comparison with Allais' results displayed in Figure 3.6.
Similarly, the curves of uj3/, and Ug are plotted in Figure 4.10 for
comparison with the results of MacCrimmon et. al. (1972) in Figure 3.7.
The rather striking fit between the theoretical prediction and the

~empirical measurement .supports the validity of alpha utility theory;

thus providing a '"rational" explanation for an otherwise puzzling phenomena.
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4.4.4 Some Problems with Problem Representation

In this final subsection, we comment briefly on how alpha utility
handles the two difficulties with problem representation discussed in
section 3 of Chapter 3. Our position on the question of whether alpha
utility functions should be defined on gains and losses relative to a
'customary wealth level or in terms of final asset positions is the
same as fhat of expected utility: it depends on the particular application.
The latter should be adopted if we are interested in modeling the choice
behavior of the "economic'" man or if a decision analyst is helping some-
one who professes his belief in integrating possible outcomes into his
/wealth position prior to evaluation (Kahneman and Tversky called this
the asset integration position). On the other hand, the former position
comes in handy if we want to describe the actual choice behavior of
people who do not conform to the asset integration position.

On the other question of whether a two-stage lottery is equivalent
to its single-stage deéomposition. Kahneman and Tversky showed that for a
particular two-stage lottery which is closely related to their version of
the Allais paradox (cf. the 0-L case in Table 3.1), a problem description
that focuses the subject's attention on a conditional comparison be-
tween one of the branches can elicit a majority preference that is the
reverse of what would be the case if the two-stage lottery is stated in
terms of its single-stage equivalent.

Expected utility cannot be consistent with this phenomena because the
strong independence principle or the sure-thing principle dictates that
the direction of the conditional preference must be the same as that
between the overall preference. Alpha utility does not share this

against B, and the

0

difficulty, since the conditional preference for AO
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preference for BL against A is a special case of the HILO choice pattern

L
(Table 4.1) considered in sub-section 4.4.1.

The phenomena considered have implications for studies in decision
making in general. Apart from situations where a clear normative position
dictates which is the 'correct' problem representation, the lesson seems
to be that one should be sensitive to the context associated with a par-
ticular choice situation. People appear to use different schemes to
represent the same choices, resulting in apparent inconsistency if the
rankings among alternatives are different for different problem representa-

tions.
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4.5 CRITIQUE OF ALLAIS' THEORY AND PROSPECT THEORY

Having developed alpha utility theory in the preceding sections,
we consider in this section two other alternatives to expected utility
that have attracted significant interest. .

4.5.1 Allais' Theory

Allais (1953) assumed the existence of a functional V(F) that
represents preference among probability distributions. Such an approach
has the immediate implications that preference thus represented satisfies
several stand;;d properties of expected utility: completeness,
transitivity, combination and composition.

Allais further assumed that preference shares another property
of expected utility, called consistency with stochastic dominance. This
assumption restricts the preference functional V(F) to those that increase
when the underlying distribution increases in the stochastic dominance
sense. For finite lotteries of the form F E.glpiaxi’ this condition has
the following simple form. B

VgglpiGXi) increases in each X, - (4.46)

Unl%ke expected utility, the theory outlined above is not an axiomatic
theory in the sense that the existence of the representation V(F) is
asserted rather than being a consequence of the assumed properties of
the underlying preference. Note also that the adoption of a more
general represeﬁtation is traded against the convenience of having a
simple von Neumann-Morgenstern utility function which captures our

intuition about diminishing marginal utility and offers a simple char-

acterization of risk proneness (aversion) via the convexity (concavity)
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of the utility function.

In order to obtain a utility-like function without resorting to
expected utility, Allais revived the Frisch (1926) notion of quartenary
preference among intervals of wealth and asserted the existence of a
cardinal utility of wealth he termed psychological value (denoted by
s). In other words, getting $100 at status quo is ''better' than getting
$100 after you have just received $1000 if the difference in psychological
value from status quo to getting $100, 5($100)-5($0), is greater than
the corresponding difference going from $1000 to $1100, 5($1100)-5($1000).
- According to Allais, a choice agent's preference depends on the mathe-

matical expectation (first moment), the dispersion (second moment) and
in general the shape of the probability distribution of psychological
values., This led him to assert that the preference functional V(F)
evaluated at a distribution F can be stated in terms of some functional

h(Fg) of the distribution of psychological values, Fg’ as follows:

V(F)=h(F;). ' (4.47)
For a finite lottery, F (E.g piéxi),‘the corresponding Fg is given by:
. i=1 o
ER LR ‘ (4.48)

After rescaling, we obtained the functional h below.

h(ég(x))=s(x). (4.49)
An important property of h, which we will derive shortly, was however not
noted by Allais. Since § is an interval scale, the functional h must
represent the same preference under an affine transformation for 8.

Consider a lottery F and its certainty equivalent M(F). It follows that

E(Fg)=E(6§(M(F)))=§(M(F)). _ (4.50)
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Under the affine transformation as + b, where a>0,

h(Fa5p) = B0 s meryyan)

as (M(F))+b

aE(F§)+b. (4.51)
It turns out that the above property of h enables us to draw very spe-

cific conclusions about the admissible functional forms of h. Consider

N
a uniform lottery F_ = l.Z 8., 1. Applying Aczel's theorem (Aczel,
5 Njop S(x5)
1966, p. 236) to h evaluated at F. yields:
N
-1 - - -
h(ﬁi_: Gg(x)) = U +0 gN(S(Xi)‘U, DRI S(X-N)"U)
i=1 i’ —_— _—
c o
N n
where U = %—Z 5(x.), 02 = l—Z (§(x.)-u)2,
. i N. i
i=1 1=1

and &\ is an artibrary symmetric function,

provided ¢ > 0. (4.52)
Define the functional g on the space of uniform distributions as follows:
N
1 ' 7
g8lg 28y ) = gl s ¥ (4.53)
i=1 "1
It follows that
_ N LN
h(z Z 6. ) = u+0g(F2I 6= ). (4.54)
Ni=1 s(xi) Ni=1 s5(x.)-u

Note that the above result can be applied to finite lotteries with

rational probabilities by taking N to be the least common denominator.

Hence
Lerma 4.1: H(Fg) =u o+ 0 g(F: ) / (4.55)
o
n
where F§ =1z pia§(x.)’ with P, rational,
1=} i
n 2 _ 0 2
u=2=Ip.5Skx.), o0 = p.[5(x.)-u]",
. i" i . i i
1=1 1=1
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and g an arbitrary functional on the space of finite
distributions with rational probability weights.
Without getting into details, we remark that the extension of Lemma 4.1
to remove the restriction of rational weights is~straight forward.
We need h to be continuous with respect to weak convergence (cf.
Chapter 2 Axiom M4), and then note that any finite distribution is
the Qéak limit of a sequence of finite distributions with rational
weights. This argument can be extended to include the case of dis-
tributions with compact supports since they are weak limits of sequences
of finite distributions. Further extension to the case of non-compact
support can be obtained through an assumption that is similar to
Axiom M5 of Chapter 2.
In a recent paper, Allais (1979) considered the following functional
form for h.
E(Fg)/= u o+ w(Fg_u) (4.56)
He then expressed w in terms of the normalized central moments of

F_ such that
S-u

2
_ o, L 07 113 :
W) =G, 575 ) (4.57)
H H
_ z 0
where mo= fR(s W) dF.
The resultant expression for h,
2
= _ lo 1 m3
h(Fg) =M + f(7—2, 7% ),
2 H

however does not satisfy property (4.51). Therefore it is not admissible.
The idea of representing a distribution via its moments can be applied

to the standardized distribution F§-U in expression (4.55). We define

o
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the function f in’ the following way:

£ (R ) = g(Fg ) (4.58)

u

)

3, 514, n"

where m is the nth-moment of F_ .
n S-u

o
Note that the value of f is not affected by an affine transformation
of §.

A key'idea in Allais' criticism of expected utility is that it
neglects the higher moments of the psychological value §. Presumably,
the more moments we include, the closer does the reéulting h approximate
actual preference. As a first step, one is tempted to consider only
the first two moments. The general form of h for this case is obtained
by setting the function f in (4.58) equal to some constant A, i.e.,

E(Fg) = U+ AO. (4.59)
It is however easy to see that h above with a nonzero A violates the
assumption of consistency with stochastic domiﬁance. Consider
F = pég(x) + (1_p)'6§(y), with 5(x) > 3(y). Differentiating
E(paé(x) + (1-p) 6§(y)) with respect to p yields:

o

S5 (PS0O+(1-p)S () Ap*(1-p) (5 () -5 (7)) )}

= (500 -5(M[1+5(1-2p/p7(1-p) D)]. (4.60)
This derivative is negative for any negative (positive) value of A,
when p is sufficiently close to zero (one). Hence, h restricted to the
- first two moments of 5§ cannot be consistent with stochastic dominance
even for lotteries with only two outcomes. We are compelled to include
the higher moments if we want to get away from expected utility but stay
within Allais' frahework. The most general h that depends on the first

three moments is given by
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H(Fg) = U o+ of(m3/03). (4.61)
A linear approximation of f by A + U mS/OS produces:

E(Fg) = U+ A0 + U m3/02. (4.62)
This is essentially the same expression adopted by Hagen (1979). Hagen
showed that the Allais type choice behavior is compatible with a positive
as long as the magnitude of A is not too large. The positive skewness
dependence matches our intuition about people's preference evident
in the prevalence of lottery ticket purchase.. The question of whether
the above form of h is consistent with stochastic dominance remains.
Consider again the two-outcome lottery F§ S pég(x) + (l-p)dg(y) with

§(x) greater than 5(y). The functionallh evaluated at F§ gives:
R(pS oy *+ (1-P)85 ()
=50 + {p + AP+ wpP(-p ] B-5M)].  (4.63)
In order that the derivatives of h with respect to p is always positive,
we again require A to be zero. The dependence of h on ¢ is then subsumed
in the denominator of the m3/02 term. The resultant h without the.

A0 term is given by:

ROy g *+ (19)855) = SO + (p + ulp™+(1-pH)1} (503001, (4.64)

As p tends to one, h converges to 5(x) + u [3(x) - 5(y)]. Yet, when
p equals one, h is equal to 5(x) which is less than §(x) + u[3(x)-3(y)].
This implies that the lottery p6X+(1-p)6y is preferred to getting the
higher amount x for sure when p is sufficiently close to unity. The
conclusion that h violates stochastic dominance still holds for negative
p if we consider the behavior of h as p tends to zero.

Instead of extending our analysis to include higher moments, we

shall pause to take stock of what we learned. In place of the expectation

of a utility function, Allais asserted that preference is represented by
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a functional that depends on the first moment, the dispérsion and in
general, the shape of the distribution of a psychological value function,
which is obtained from comparison among hypothetical changes in wealth
position. Based on the property of the psychological value function
as an interval scale, we obtained a restriction on the class of admissible
preference functionals. It turns out that the particular form of dependence
on the moments of the psychological value considered by Allais is
not admissible. Next, we considered those admissible functionals that
depend only on the first two moments. The resultant functional form,
the sum of the first moment and fhe standard deviation scaled by
some constant, is shown to be inconsistent with stochastic dominance.
Extending the analysis to include the third moment , we obtained the
functional form that Hagen (1979) considered in a recent paper. This
functional form is however again shown to violate stochastic dominance.
It is not known whether the problem with stochastic dominance can
‘be averted by incorporating even higher moments. The difficulty with
the first three moments suggests however that-the psychological value
assumption would not lead to a 'clean'" way to characterize preferences
that expected utility fails to capture. In the next sub-section, we
introduce prospect theory, which represents a different approach to the
problem of descriptive validity of expected utility first identified by

Allais via the famed Allais paradox.
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4.5.2 Prospect Theory

Prospect theory, developed by Kahneman and Tversky (1979),
distinguishes two phases in the choice process: an editing phase in
which problem representation rules called editing 0perations are’ applied
to the offered prospects followed by an evaluation phase. We first
introduce these editing operations before discussing their relafion to
the form of the evaluation functions.

Coding. The perception of outcomes in terms of gains and losses
relative to some reference wealth level. This is usually taken to
be the current asset position, in which case gains and losses are the actual
amounts to be received or paid.

Cancellation. This refers to the possible discarding of common

components that are shared by the offered prospects. An example is the
cancellation of a common probability-outcome pair, which is a restatement
of Savage's sure-thing principle,.
Segregation. An offered prospect with a riskless component such
as a minimum gainl(loss) is decomposed into a riskless component and the °
prospect with the riskless component taken from each outcome.
Combination. The probabilities associated with equal outcomes
are combined to yield a §ing1e;outcome with probability given by
the sum of the respective probabilities.

Detection of Dominance. The dominated prospects are eliminated

from the choice set prior to evaluation.

Simplification. This refers to the possible simplification of

prospects by rounding off probability or outcome values.
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The coding and the capcellation operations are prompted by the
empirical evidence described in Chapter 3 section 4. As a result of
coding, the outcome values of offered prospects are always stated in
terms of gains and losses. Although more remaiqs to be known about the
conditions under which cancellation applies, incorporating such an
operation does yield an additional degree of freedom in the description
of choice phenomena. Even less is known about the simplification operation,
which seems to be a plausible problem representation heuristic.
The other editing operations are related to the evaluation phase,
which concerns the way a value function v(x) of the outcome x and a
decision weight function w(p) of the probability of an outcome p combine
to obtain the overall value of a prospect. The value function is con-
cave for gains and convex for losses. The 7 function has the following
properties:
1) ™ increases from m(0)=0 to w(1l)=1.
2) m(p)>p, for small P-
3) m(p)+m(l-p)<1, for pe(0, 1).
4) m(pq)/m(p) < m(pqr)/m(pr), for p,q,r €(0,1].
Prospect theory is developed for simple prospects of the form,
P = p6x+q6y+(1-p—q)60, (4.65)
which have at most two non-zero outcomes. If the outcomes are strictly
positive (negative) and p and q add to unity, the simple prospect is

known as a strictly positive (negative) prospect. A simple prospect

is regular if it is neither strictly positive nor strictly negative.

’

For regular prospects, the overall value V is obtained from the scales

v and 7 in the following manner.
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V(p6X+q6y+(1-p-q)5O) = T(PIv(x)+m(q)v(y). (4.66)
Unlike the von Neumann-Morgenstern utility, the value function v(x) is
a ratio scale, i.e. v vanishes at the reference peoint. This property
was noted in Edwards (1961). There are however some difficulties with
the use of the above expression, stemming from the nonlinearity of .
Since n(p)+ﬂts—p) is not equal to w(p')+m(s-p').

V(p6X+(s—p)6X+GO)# V(p'6X+(s-p')6x+60). (4.67)
In other words, two lotteries each yielding outcome x with probabiiity
s are not equivalent in preference. To get around this, the choice
agent is assumed to apply the combination editing operation prior to
evaluation,

The other difficulty necessitates the detection-of-dominance

operation. Consider the following comparison:

T(p)v(x)+T(s-p)v(x+€) ? Tm(s)v(x) t4.68)
Suppose the L:H.S. is less (more) than the R.H.S. for € equal to zero,
then the inequality would still hold for a small but positive (negative)
€. Thus, dominance is violated. Eliminating the dominated alternative
before evaluation circumvents this problem, but not completely. Suppose

TPV (X)+7 (5-p)v (x+€°)<m (s)v (X), " (4.69)
for some positive e°.
We can find q0<s such that

T (P)V (%) +7 (5-p)v (x+€°) < (q°) v (x+e ) <T ()v (x) - (4.70)
This has the implication that

PO+ (5-PIS, o+ (1-)8 < q‘56x+€o+(_1-q0)60,
and p56x+(1-s)60'>—q°0x+€o+(1-q°)60,

which is both normatively and empirically untenable.
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L
For the strictly positive and strictly negative prospects, we will

run into the same problem with violations of dominance if we adopt
expression (4.66). Instead, Kahneman and Tversky proposed ‘that people
decompose a strictly positive (negative) prospect P = p6x+(1—p)6y with
y>x>0 (0>x>y) into a riskless component GX and a risky component
P! = p60+(1—p)6y_X and evaluate the segregated prospect via the
following expression:

V(P5x+(l-p)6y) = v(x)+m(1-p) [v(y)-v(x)]. (4.71)
The use of a different expression to evaluate strictly positive or
strictly negative prospects leads to a new difficulty which is not
covered by the editing operations. Consider the regular prospect
P = p6X+q6X+E+(1—p—q)60, with x,e>0.

V(P) = m(p)v(x)+m(q)v(x+€)

< m(p)v(x)+m(l-pIv(x+e).

Since V is concave for positive x,

V(P) < m(pIv(x)+m (1-p) [v(x)+ev' (x)]. (4.72)
Choose € such that

0
v(x) ’l-W(P)-ﬂ(l-p) ’
EO < v (x) T (1-p) (4.73)

This implies that,

op- ' 1-p).
p6X+q5x+€o+(l p-a)§y < §.» ¥ aqef0, 1-p)

For the case q=1-p, we apply expression (4.69) and obtain:

fl

vV(p)

This implies that

v(x)+m(1-p) [v(x+e-v(x)] > v(x). (4.74)

p6X+(1—p)6X+€ > 3.

The above implication is rather pathological. No matter how close

q gets to 1-p, the L.H.S. is strictly worse than SX. Yet, when q 1is
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equal to 1-p, the L.H.S. is strictly preferred to 6x. We can get some
feeling for the problem by estimating €, for some reasonable values of
X, p and m(p). Suppose x=$100, p=.50 and 7 (0.50)=.45. (Note that

property (3) of the m function implies that m(0.5)<0.5). We have that,
[1-27(0.5)] < v(10) [1-27(0.5)]

P c
o S10X G5y “viao)  w(0.5) (4.75)
since the concavity of v implies that x < v(x) \
v'(x)
A conservative estimate for €, is then given by
€, = 10 x .1+ .45 = 22,
Consider the following choice problems,
P1 = .56$100 + .455$122 + .056$0 VS. 5$100
P2 = .56$100 + .496$122 + .016$O Vs, 6$100
P3 = .56$100 + .4996$122 + .0016$0 VS, 6$100
Prospect theory would predict that Pl, P2, P3 are all strictly worse

than 6$100. Moreover, the direction of preference remains unchanged
as long as the probability of obtéining $122 is less than 0.5! -Note
that the inequality, x < 3451_3 used to obtain €, is highly conservative
since v'(x) is a decreasng(iinction for a concave v(x). We can arrive at
the above conclusion with a generally much higher €, given a specific
v(x). If v 1is bounded, then v'(x) tends to zero so that €, can be
made arbitrarily large if we consider a sufficiently large x.

Prospect theory builds on the form of the evaluation function
first suggested by Edwards (1955). It treats systematically several
classes of choice phenomena (cf. Chapter 3) that violate the implications

of expected utility. However, the nonlinearity of the decision weight

function 7, which constitutesits main deviation from expected utility,
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generates some serious difficulties for prospect theory. The immediate

ones, namely the violation of the combination principle and stochastic
dominance, were circumvented via the combination and the detection-of-dominance
editing operations. Two problems however remain. One of the problems

is the implication that there is always a prospect Q which is strictly

worse than some prospect P but strictly better than another prospect P’

that dominates P. The other problem has to do with the use of a different
evaluation function for the strictly positive (negative) prospects. This

gives rise to discontinuity in the preference represented which leads to

untenable predictions of actual choice behavior.
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4.5.3 ComEarison

We conclude the section with a comparison of alpha utility with
Allais' theory and prospect theory. The alpha utility representation
{1(F) can be stated in terms the expectation of a '"value" function, Vv,
with respect to an 'a-weighted' distribution F* given by: |

F(x) = f XadF / J “adF,

where o is a strictly positive function. The role of a becomes clearer

n
if we consider a simple distribution, F = I p.§ . 1In this case,
i=1 * %4
o
Q(F) = fR\)dF
n
= £ q. (F)v(x,),
1=1
n
= v
where qi(F) pia(xi)gzlpja(xj).

Like prospect theory, Q(F) is obtained from the v(xi)'s via a set

- . n . . . .
of 'decision weights", {qi} with each-qi being a nonlinear function

i=1"
of the probability Py of obtaining the ith outcome, X, . We should however
note three distinctions. fhe 93 weights sum to unity but not the ﬂ(Pi)
weights of prospect theory. 1In addition to Pi» 94 depends on the

rest of the pj's and all the xj's. Finally, the qi-weights has the

combination property, since if the jth and kth outcomes are both equal

to x, then

Q(pj6X+pk6x +i§j,kP?6Xi)'
P,a () a (Ve + T pia(x;)v(x;)
i#j,k

n
L opjolx;)
i=1
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(5P )E(VE) + T pia(x)V(x;)

_ i=j,
- n

2 pio(xy)

1=1 \ -
= Q((pj+pk)5X +I pS ).

i#j,k

Some of Allais' ideas can also be expressed in terms of the
alpha utility representation. We canwrite Q(F) as the sum of Vv,
the first moment of v with respect to F, and the deviation temm fR(v-doFu
shown below:

Q(F) = U + fR(v-doF“,
where V = vadF.
Thus, the preference of an alpha utility decision maker depends on
the first moment of v, and also the distribution of the deviation,
(v-V), of v from V through the a-weighted distribution F*. According
to the proofs of the representation theorems in Chapters 1 and 2,
p

the v-function, much like the von Neumann-Morgenstern utility, can be
constructed from preferencé comparisons using a standard lottery. Allais
may insist however that v be a psychological value function that is
determined from introspective comparison among hypothetical changes
in wealth position. In this case, we can apply the principle of Occam's
razor to weed out the ''psychological value' assumption since it is
redundant.

Finally, we summarize via Table 4.2 some of the salient features
of the theories treated in this chapter. A '+' sign means the corresponding
theory is compatible with the property referred to. Otherwise, we use

a '-' sign.
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Properties
Allais'
Transitivity Dominance Combination Continuity Paradox
Expected Utility + + + + -
Alpha Utility . + + + + +
Allais Theory + - + + +
Prospect Theory - + + - +
Table 4.2: Comparison among Theories

A novelty of Prospect theory is the explicit use of editing operations
prior to evaluation. Two of these operations are however needed to
ensure consistency with dominance and combination. If Allais' theory
were to adopt the detection-of-dominance editing operation, it would

exhibit systematic intransitivity, as is the case for prospect theory
(cf. expression (4.70)). Since lotteries are stated in terms of gains
and losses, the coding operation seems a reasonable hypothesis about

how people perceive monetary outcomes. Kahneman and Tversky (1979)

have provided preliminary empirical evidence in support of two other
editing operations, namely cancellation and segregation. These may be
adoptéd by alpha utility theory if future empirical studies ascertain

their validity as behavioral hypothesis.
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CONCLUSION
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5
CONCLUSION

5.1 SUMMARY

Part T of this dissertation contains the statements and proofs
of two representation theorems. The first generalizes the quasilinear
mean, M¢, of Hardy, Littlewood and Polya:

My(F) = 67 (JphdE), (5.1)
where @ is continous and strictly monotone, and F is a probability
distribution. We have weakened a characteristic property of the quasi-
linear mean, M¢, called quasilinearity to obtain a more general mean
value, Ma¢’ which is characterized by an additional function a. The
Ma¢ mean of a probability distribution F has the following form:

Ma¢(F) = ¢’1(fRa¢dF/fRadF), (5.2)
where 0 is continuous and strictly positive (negative). Through the
strict inequality, <, binary relation, the Mu¢ mean induces a binary
relation, <, among probability distributions:

F< G <= M (F) <M (0). (5.3)
The R.H.S. is equivalent to

JRo8dF/[padF < [oagdG//padG, (5.4)
for a strictly increasing 4. Note that the ordering represented by
(5.4) is more general than that represented by the expected utility
representation, fR¢dF. For éonvenience, we use {I(F) to label the
representation functional, qu¢dF/fRadF.

An alternative approach to obtain the Q representation, (5.4),
is given in Chapter 2. Instead of probability distributions, we consider

simple probability measures defined on some arbitrary set X. (A simple



142

probability measure is a convex linear combination of a finite number
of point masses in X). Axioms were stated directly in terms of a -
binary relation, < , to obtain the corresponding Q representation for
simple probability measures:

$1(P) = E(aw,P)/E(x,P), ' (5.5)
where P is a simple probability measure on a set X, and o and v are
real-valued functions on X. This is contrasted with the approach based
on axioms on mean values in Chapter 1. The reason why the mean value
approach cannot be extended to siﬁple probability measures on an arbitrary
set X is that mean value itself may not be defined in X . As an example,
consider the outcome set ¥ = {status quo, being promoted, being fired}.
Being able to deal with an arbitrary outcome set such as the above
example is an advantage for the simple probability measure approach.
There are however certain drawbacks. Without further structural assumptions
on X, we cannot discuss the ndtiOns of continuity and differentiability
of the a and v functions nor can we generalize the Q representation to
include more general probability measures.

Part II of the dissertation concerns one specific area of application _—
decision theory. Interpreting the Ma¢(F) mean of Chapter 1 as the certainty equivalent
of a monetary lottery F, the corresponding induced binary relation, < ,
has the natural interpretation as 'strict preference' between lotterigs.

For non-monetary (finite) lotteries, we apply the representation theorem
of Chapter 2. The hypothesis that the  representation of either approach
represents a choice agent's preference among lotteries is referred to

as alpha utility theory. IThis is logically equivalent to saying that

the choice agent obeys either the mean value (certainty equivalent) axioms

or the axioms:on the '<' (strict preference) binary relation.
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Alpha utility theory is a generalization of expected utility theory
in the sense that the expected utility representation is a special case
of the alpha utility representation, and that alpha utility assumes a
weaker form of a key property of expected utility, called substitutability
(Pratt, Raiffa and Schlaifer, 1964), which is essentially the same as
the quasilinearity property of Hardy, Littlewood and Polya. (A close
counterpart of substitutability is the strong independence principle of
Marschak (1950) and Samuelson (1952)),

The motivation for generalizing expected utility comes frpm difficul-
ties it faced in the description of certain choice phenomena, especially
the Allais paradox. These are summarized in Chapter 3.

Chapter 4 contains the formal statements of assumptions and the derivations
of normative and descriptive implications of alpha utility theory.

We stated conditions, taken from Chapter 1, for consistency with stochastic
dominance and global risk aversion and derived a generalized Arrow-Pratt
index of local risk aversion. We also demonstrated how a pair of o and

Vv functions that satisfy both stochastic dominance and local risk aversion
can be consistent with those choice phenomena, summarized in Chapter 3,
that contradicts the implications of expected utility. The chapter

ended with a comparison of alpha utility with two other theories that

have attracted attention; namely, Allais' theory and prospect theory.

5.2 EXTENSIONS

We conclude by pointing out sbme potential areas of application.
The quasiliﬁear mean was given an interpretation as the 'equally-dis-
tributed-equivalent' level of income corresponding to an income
distribution by Atkinsoﬂ (1970) in his paper on the measurement of

inequality. We may use the Ma¢ mean as a more general model of
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equally-distributed-equivalent income. Is there any need for a more

general measure? Consider two societies with income distributions F and

G given by: 3 ‘
F = 0.5063;1,000 + 0.506$2,000, and
G = 0.506$1,000 + 0.496$2,000 + 0.016$1’000,000.

To many (including probably Mao Tse-Tung), society F fares better than
society G. But the G distribution stochastically dominates the F

distribution, so that M, (F) is less than M¢(G). Therefore, the M

¢ ¢
measure fails to reflect the relative welfare of the two societies for
those who believe that society F is better off. This does not pose
any difficulty for the Mu¢ measure since consistency with stochastic
dominance 1is not an intrinsic property.

Thg departure of Ma¢ from M¢ can be made clearer if we consider a
society of N individuals with incomes, {Xi}izl’ The corresponding
equally-distributed-equivalent is given by:

N

N
RS P
Mg (F) = (2 aeV0y)/ T alx;)) (5.6)

A remarkable feature of (5.6) is the presence of complementarity across
incomes of different individuals. That this is a desirable property is
reinforced by the fact that an individual perceives concurrently the
incomes of other individuals in the distribution whereas only one of a

set of mutually exclusive outcomes will obtain in a lottery, We can

think of the role of o as assigning discriminatory weights on individuals
based on their attained incomes. Mao Tse-Tung's (hypothetical) preference
for society F may then be explained in terms of a decreasing discrimination
function o that treats wealthy individuals less 'equally' than the poorer

folks.
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In a recent paper on the measurement of poverty, Blackorby and Donald-
son (1978b) applied Atkinson's equally-distributed-equivalent to the
'censored' distribution, i.e., the income distribution truncatéﬁ at some
exogeneously established poverty line. This}is tantamount to having a
Ma¢ measure with an o that is constant up to the poverty line and zero
beyond. It.is natural to suggest that a decreasing o with an inflexion
point at the poverty line (see Figure 5.1) would integfate the contribution

due to the whole distribution and at the same time be particularly repre-

sentative of the poorer folks with incomes below the poverty line.

4

Income

poverty
line

Fig. 5.1: An alpha function that discriminates against the rich

The M&¢ mean can also be used to generate measures of inequality

as follows:

Relative Inequality Index = 1 - Ma¢/u, and

Absolute Inequality Index =

i
=
]
=
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where | denotes the arithmetic mean. The relative index is due to
Atkinson (1970) and the absolute index is due to Kolm (1976a,b). When'
the distribution of income is completely equal, both indices equal zero.
The coefficient of variation, an.occasional measure of income inequality,

is related to Mu¢ by:

' 1
coefficient of variation = {Ml (B - UF}Z,

(5.7)
® S+t © s 1/t . s t
where M_  (F) = {fox dF/fOx dF}  (i.e. a(x) = x~ and @(x) = x ).
As an equally-distributed-equivalent, M is undesirable because it

1,1

is always higher than the arithmetic mean except at equality, and so
encourages inequality. Also, its weighting function a(x) Z x assigns
progressively more weight to the more wealthy.

The MS mean suggested above may be of use in statistics. We

st

offer some examples.

M2,1

standard deviation - coefficient of skewness, and

) 1
M2 9 standard deviation .- (coefficient of Kurtosis + 3)6.

An equality that generalizes the well known result that the product of
the arithmetic mean and harmonic mean is equal to the square of the
geometric mean for two positive numbers, may be stated in terms of

M-t,2t as follows.

M (F) = M

t,2t (F), (geometric mean) (5.8)

log x
where F = I %Gxi, with x; > 0,
when the frequency polygon of log xj; is symmetrical about the axis of

ordinate at %@Ilog X;. Canning (1934) proposed the use of
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0y (I L(B))2, | ~ (5.9)
as a descriptive measure of asymmetry.

Harsanyi (1977) applied expected utility to an individual making
a moral judgement about alternative social sitﬁations. Making a moral
judgement, in this case, means making a hypothetical best choice under
the assumption that the individual assumes the position of any one
member of the society with equal chance. A social situation X, which
is a listing of the N persons' states, would be perceived as a lottery
that assigns the individual to any particular individual's position
with 1/N chance. An expected utility decision maker would then maximize
the expected utility corresponding to social situation X. This is simply the
arithmetic average, .glui(x)/N, of his von Neumann-Morgenstern utility,
ui(X), for taking t;; position of the iEh_ﬁerson. An alpha utility
decision maker will however maximize a slightly more general expression:

I; o, (XIv. (X)/ I; . (X), (5.10)
j=1 * i i=1 i

where ai(X) denotes his o value for being in ith person's shoes within
the social situation X. This is a weighted average of the vi(X)'s with
weights given by the ai(X)'s. -Expression (5.10) may be interpreted as
the average of the vi(X)‘s b;t the alpha utility decision maker uses
a 'biased' estimate, ai(X)/.glai(X), for his probability of being the
ith person. Again, the alp;; utility expression has the advantage of
allowing for complementarity, ypich is supported by our intuition about
how moral judgements are made.

Several questions remain untouched. There are other situations

where the representation functions have the additive structure of

expected utility. One example is the averaging of individual utility
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functions using a set of fixed weights to obtain a group utility function
(Keeney and Raiffa, 1976). Another example is the time-honored practice
of discounting a time stream of utilities (Koopmans, 1972). The intuition
that complementarity should not be ruled out is strong in both cases.
For these and othér similar examples, the alpha utility representation
provides a useful first candidate for a departure from the additive structure
in order to incorporate complementarity across attributes.

The last decade saw a tremendous growth in the literature on
the microeconomics of uncertainty. Ptactically all of these works are
based on the assumption that choice agents maximize expected utility. We
have not investigated what new results would follow or what old results
are robust if we introduce alpha utility choice agents. One example is
comparative risk aversion. The condition for one expected utility maximizer
to always be more risk averse than another is given in Pratt (1964). An
equivalent result appeared in Hardy, Littlewood and Polya (1934) in the
form of an inequality between two quasilinear means. The corresponding result
for alpha utility choice agents or the M&¢ mean, however, remains an open question.
Another example is Samuelson's (1967) conjecture, which was confirmed by
Kalai and Schmeidler (1977), that Arrow's impossibility theorem will hold
in a cardinal setup where individuals and society express their preferences
by von Neumann-Morgenstern utility functions. It is perhaps safe to
conjecturé that Arrow's impossibility theorem would still hold if individuals

and society express their preferences via alpha utility functions.



149
REFERENCES

Aczel, J. (1966), Functional Equations and Their Application,
Academic Press, New York and London.

Allais, M. (1953), "Le comportement de 1'homme rationnel devant le risque',
Econometrica 21, No. 4, 503-546.

Allais, M. (1979), "The So-Called Allais Paradox and rational decisions
Under Certainty,' in M. Allais and O. Hagen, eds., Expected Utility
Hypothesis and the Allais Paradox, Reidel Publishing Company,
437-682. .

Allais, M. § O. Hagen (1979), Expected Utility Hypothesis § the Allais
Paradox, D. Reidel Publishing Co.

Anscombe, F.J. & R.J. Aumann (1963), "A Definition of Subjective Probability,"
Annals of Mathematical Statistics, Vol. 34, No. 1, 199-205.

Arrow, K.J. (1971), Theory of Risk Bearing, Markham Publishing Company,
Chicago.

Atkinson, A.B. (1970) '"On the Measurement of Inequality," Journal of
Economic Theory, 2, 244-263.

Becker, G.M. § C.G. McClintock (1967), "Value: Behavioral Decision
Theory,' Annual Review of Psychology, Vol. 18, 239-286.

Bernoulli, D. (1954) 'Speciman theoriae novae de mensura sortis,"
Comentarii academiae scientiarum imperialas Petropolitanae,
Vol. 5, 175-192; translated as, "Exposition of. a New Theory
on the Measurement of Risk,' Econometrica, Vol. 22, 23-26.

Ben-tal, A. (1977) '"On Generalized Means and Generalized Convex
Functions," Journal of Optimization Theory and Applications,
Vol. 21, No. 1, January, 1-13.

Blackorby, C. and D. Donaldson (1978a), "A Theoretical Treatment of
Ethical Indices of Absolute Inequality' forthcoming in International
Economic Review, Department of Economics Discussion Paper 78-03,
University of British Columbia.

Blackorby, C. and D. Donaldson (1978b), "Ethical Indices for the Measure-
ment of Poverty, Department of Economics Discussion Paper 78-04,
University -of British Columbia.

Blackwell, D. (1951), "Comparison of Experiments,'" Proceedings of
Symposium on Mathematical Statistics and Probability, 2nd,
Berkeley, J. Neyman and L.M. Lecam, eds., University of California
Press, 93-102.




150

Blackwell, D. and M.A., Girshick (1954), Theory of Games and Statistical
Decisions, Wiley § Sons, Inc.

Canning, J.B. '"A Theorem Concerning A Certain Family of Averages of a
Certain Type of Frequency Distribution,' Econometrica 2, 442. The
abstract is a reporter's summary of an unpublished paper.

Chew, S.H. (1979), "A Generalization of the Quasilinear Mean of Hardy,
Littlewood and Polya," Institute of Applied Mathematics and
Statistics Technical Report 79-39, University of British Columbia.

Chew, S.H. and K.R. MacCrimmon (1979b), "Alpha Utility, Lottery Composition
and the Allais Paradox,'" Faculty of Commerce and Business Admini-
stration Working Paper #686, University of British Columbia,.

Chew, S.H. and K.R. MacCrimmon (1979a), "Alpha Utility Theory: A
Generalization of Expected Utility," Faculty of Commerce and
Business Administration Working Paper #669, University of
British Columbia.

Dalton, H. (1920), "The Measurement of Inequality of Incomes,” Economic
Journal 20, 348-361. '

DeGroot, M.H. (1970), Optimal Statistical Decisions, McGraw-Hill Book
Co., New York.

Diamond, P. § M. Rothschild (1978) Uncertainty in Economics, Academic
Press, New York.

Edwards, W. (1954), "The Theory of Decision Making,' Psychological
Bulletin, Vol. 51, 380-417.

Edwards, W. (1955), "The Prediction of Decisions Among Bets,' Journal
of Experimental Psychology 60, 265-277.

Edwards, W. (1961), '"Behavioral Decision Theory,' Annual Review of
Psychology 12, 473-498.

Fishburn, P.C. (1970), Utility Theory for Decision Making, John Wiley,
New York.

Friedman, M. & L.J. Savage (1948), "The Utility Analysis of Choice
Involving Risk," Journal of Political Economy, Vol. 56, 279-304.

Frisch, R. (1926), "Suv une Probleme d'Economie Pure,'" Norsk Mathematish
Forenings Skrifter, 1. '

Hadar, J. and W.R. Russell (1969), "Rules for Ordering Uncertain Prospects,"
AER 49, 25-34,



151

Hagen, 0. (1979), ”Towards‘a Positive Theory of Preferences Under Risk,"
in Expected Utility Hypothesis and the Allais Paradox, M. Allais
and O. Hagen, eds., Reidel Publishing Company, 271-302.

Handa, J. (1977), "Risk, Probabilities and a New Theory of Cardinal
Utility," Journal of Political Economy, Vol. 85, No. 1, February,
97-122. :

Hanoch, G. and C. Levy (1969), "Efficiency Analysis of Choices Involving
Risk," Review of Economic Studies 36, 335-346.

Hardy, G.H., J.E. Littlewood & G. Polya (1934), Inequalities, Cambridge
University Press.

Harsanyi, J.C. (1977), Rational Behavior and Bargaining Equilibrium
in Games and Social Situations, Cambridge: Cambridge University
Press.

Herstein, I.N. & J. Milnor (1953), "An Axiomatic Approach to Measurable
Utility," Econometrica, Vol. 21(2), April. ‘

Howard, R.A. (1964), "The Foundations of Decision Analysis," IEEE
Trans. SSC-4:211-19.

Jensen, N.E. (1967), "An Introduction to Bernoullian Utility. 1I.
Utility Functions,' Swedish Journal of Economics.

Kahneman, D. & A. Tversky (1979), "Prospect Theory: An Analysis of
Decision Under Risk,' Econometrica, March, 263-291.

Kalai, E. and D. Schmeidler (1977), "Aggregation Procedure for Cardinal
Preferences: A Formulation and Proof of Samuelson's Impossibility
Conjecture,'" Econometrica 45, No. 6, September, 1431-1437,

Karmarkar, U.S. (1978), '"Subjectively Weighted Utility: A Descriptive
Extension of Expected Utility Model,' OBHP, Vol. 21, 61-72.

Keeney, R.L. § H. Raiffa (1976), Decisions with Multiple Objectives:
References and Value Tradeoffs, Wiley § Sons, Inc.

Kolm. S.Ch. (1976a), 'Unequal Inequalities I," Journal of Economic
Theory 12, June, 416-442,

Kolm, S.Ch. (1976b), 'Unequal Inequalities II," Journal of Economic
Theory 13, August, 82-111.

Koopmans, T.C. (1972), "Representation of Preference Orderings Over
Time," in Decision and Organization, C.B. McGuire and R. Radner,
eds., North Holland Publishing Company, Amsterdam.

Krantz, D.H., D.R. Luce & A. Tversky (1971), Foundations of Measurement
Vol. 1, Academic Press, New York & London.




152

Lehmann, E.L. (1955), "Ordered Families of. Distributions," Annals of
Mathematical Statistics 26, 399-419. ‘

Lichtensfein, S. & P. Slovic (1971), "Reversal of Preference Between Bids and
Choices in Gambling Decisions," Journal of Experimental Psychology 89, 46-55.

Luenberger, D.G. (1969), Optimization by Vector Space Methods, New York:
John Wiley §& Sons.

MacCrimmon, K.R. (1965), "An Experimental Study of the Decision-Making
Behavior of Business Executives," unpublished dissertation, Univer-
sity of California, Los Angeles. :

MacCrimmon, K.R. (1968), "Descriptive and Normative Implications of
the Decision Theory Postulates,' in K. Borch and J. Mossin, eds.,
Risk and Uncertainty, St. Martin's Press, New York, 3-32.

MacCrimmon, K.R., John F. Bassler § William T. Stanbury (1972), Unpubllshed
Results, Risk Study Project, University of British Columbia.

MacCrimmon, K.R. § S.-Larsson (1979), "Utility Theory: Axioms Versus
'Paradoxes',” in M. Allais and O. Hagen, eds., Expected Utility
and the Allais Paradox, Holland: D. Riedel.

Machina, M.J. (1980), "Expected Utility Analysis Without the Independence
Axiom," unpublished working paper, Department of Economics,
University of California - San Diego.

Markowitz, H. (1952), "The Utility of Wealth," Journal of Political
Economy, Vol. 60, 151-158.

Marschak, J. (1950), ""Rational Behavior, Uncertain Prospects, and
Measureable Utility,'" Econometrica 18, 111-141.

Marschak, J. § R. Radner (1972), Economic Theory of Teams, Yale
University Press.

Meginniss, J.R. (1977), ”Alternatives to the Expected Utility Rule,"
unpublished Ph.D. dissertation, University of Chicago.

von Neumann, J. § O. Mdfgenstern (1947), Theory'of Games and Economic
Behavior, Princeton University Press, 2nd Edition, Princeton.

Norris, Nilan (1976), "General Means and Statistical Theory," The
Amerlcan Statistician, February, Vol. 30, No. 1.

Pratt, J. (1964), “Risk Aversion in the Small and in the Large,"
Econometrica, Vol. 32, No. 1-2, January-April, 122-136.




153

Pratt, J.W., H. Raiffa § R. Schlaifer (1964), "The Foundations of
Decisions Under Uncertainty: An Elementary Exposition,' JASA
59, 353-375.

Preston, M.G. § P. Baratta, "An Experimental Study of the Auction Value
of An Uncertain Outcome," Journal of Psychology 61, 183-193.

Raiffa, H. (1968), Decision Analysis: Introductory Lectures on Choice
Under Uncertainty, Reading, Massachusetts: Addison-Wesley.

Raiffa, H. & R. Schlaifer (1961), Applied Statistical Decision Theory,
Division of Research, Harvard Business School, Boston, 356.

Ramsey, F.P. (1931}, "Truth and Probability," (1926) in The Foundations
of Mathematics, R.B. Braithwaite, ed., Humanities Press.

Rothschild, M. & J.E. Stiglitz (1970), "Increasing Risk I. A Defintion,"
Journal of Economic Theory 2, 225-243.

Samuelson, P.A. (1952), "Probability, Utility, and the Independence Axiom,"
Econmetrica 20, 670-78.

Samuelson, P. (1967), "Arrow's Mathematical Politics,' in Human Values
and Economic Policy, S. Hook, ed., New York: New York University
Press, 41-51.

Savage, L.J. (1954), The Foundations of Statistics, Wiley, New York.

Slovic, P., B. Fischhoff § S. Lichtenstein (1977), "Behavioral Decision
Theory,'" Annual Review of Psychology, 39.

Slovic, P. § A. Tversky (1974), "Who Accepts Savage's Axiom?'" Behavioral
- Science 19, 368-373.

Weber, R. (1980), Personal Communication,

Weerahandi, S. and J. Zidik (1979), "A Characterization of the General
Mean,' forthcoming in the Canadian Journal of Statistics,
Department of Mathematics Discussion Ppaer, University of British
Columbia.

Whitmore, G.A. (1970), "Third-Degree Stochastic Dominance,'" American
Economic Review 60, 457-459.




