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ABSTRACT

The present study employed Monte Carlo procedures to

investigate the effects of data categorization and

noncircularity on generalizability (G) coefficients for the one-

facet and two-facet fully-crossed balanced designs as well as on

the Type I error rates for F tests in repeated measures ANOVA

designs. Computer programs were developed to conduct a series

of simulations under various sampling conditions. Five

independent parameters were considered in the simulations: (a)

three levels of repeated measures (3, 5, 7); (b) three G

coefficients (.60, .75, .90); (c) three epsilon values (.50,

.70, 1.0); (d) three sample sizes (15, 30, 45); and (e) six

measurement scales (Continuous, 5-point and 3-point scales with

either normal or uniform distribution, and dichotomous).

For the one-facet design, the results of the simulations

indicated that categorical data resulted in a considerably

smaller G coefficient than for the parent continuous data,

especially for a 3-point or less scale. Noncircularity did not

introduce any bias to the estimate, but yielded more variable

estimates of the G coefficient. The sampling theory of G

coefficients with continuous data was fairly robust to a

moderate departure from circularity, but somewhat sensitive to

severe noncircularity (about 6% for E = .7 and about 7.2% for E =

.5 of the sample estimates lay in the 5% region of the upper

tail). However, it was not adequate for categorical data,

especially for a 3-point or less scale. The results of the two-

facet design closely paralleled those of the one-facet design in
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terms of the effects of categorization, sample size, and

population G values. The primary difference in the findings

between the two designs was that the sampling theory of G

coefficients for the two-facet design, which was developed using

Satterthwaite's procedure, was very satisfactory and quite

robust to violations of the circularity assumption.

Type I error rates of the F test for continuous data were

inflated when the circularity assumption failed, with

categorization causing a slight reduction in this inflation.

Relationships among the population epsilon, the sample estimate,

and the Type I error rates across the 81 simulated conditions

revealed the presence of a strong negative relationship between

the epsilon estimates and the associated Type I error rates,

thus supporting current theory. However, for the e = 1.0

condition the associated Type I error rates were all close to

the nominal level, and the correlation with the estimated

epsilon was near zero. Further investigation of the

correlations among the sample estimates ("C, MS e , and MS r )

within each population epsilon condition suggested that the

inflation in Type I error rates is not, as is commonly assumed,

merely a function of the population epsilon value. This led us

to question the current practice of utilizing an epsilon-

adjusted F test in repeated measures ANOVA designs.
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Introduction

CHAPTER ONE: INTRODUCTION

Anyone who regularly plays a game with objective scoring,

whether it be one of physical activities or of mental tasks, is

acutely aware of the variability in human performance. This

inconsistency in human performance stems from a variety of

factors, depending on the nature of the measurement. Among the

important factors are subtle variations in physical and mental

efficiency of the test taker, uncontrollable fluctuations in

external conditions, variations in the specific tasks required

of individual examinees, and inconsistencies of those who

evaluate examinee performance. Quantification of these sources

of error that affect the measurement process constitutes the

essence of reliability analysis within the context of classical

test theory or generalizability theory.

Generalizability theory (G theory) was proposed by Cronbach

and his colleagues (1963, 1972) as an alternative to classical

test theory. G theory can be viewed as an extension and

liberalization of classical test theory that is achieved

primarily through the application of analysis of variance

(ANOVA) procedure to measurement data. The use of an

appropriate factorial ANOVA model permits one to identify and

independently estimate several sources of measurement error,

which is regarded as an amorphous quantity in classical test

theory. The application of G theory to measurement problems has

greatly expanded over the past several years in a wide range of

behavioral research. In the educational and psychological

literature a number of authors demonstrated the use of G theory
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to deal with multiple sources of measurement errors and stressed

the advantages of G theory approach to reliability estimation

over the classical test theory approach (e.g., Brennan, 1983;

Shavelson & Webb, 1991).

The use of G theory is evident in observational studies

(e.g., Godbout & Schutz, 1983; Huysamen, 1990; Lomax, 1982;

Morgan, 1988; Ulrich, Ulrich, & Branta, 1988). Although these

observational studies vary widely in content and method, they

all use human observers as a primary source of the necessary

measure by classifying and recording certain behaviors of

subjects. Particular examples of observational research that

are of interest in the present study include the assessment of

consistency of judges' ratings on motor behavior as well as

individual and team performances in sport competitions, the

evaluation of dependability of ratings on social and classroom

behaviors in educational settings, and the assessment of

diagnostic accuracy of subjects with physical or mental problems

in clinical settings. Data collection in any of these examples

can be done through the use of a simple checklist or a

sophisticated instrument such as a computerized recording

system. However, the quantification from "excellent" to "bad"

of the qualitative performances, the determination of occurrence

or nonoccurrence of a particular behavior, or the classification

from "not at all" to "severe" of symptom is solely based on

human judgement before any data recording process takes place.

Therefore, reliable and consistent judgement is a primary

objective, and unreliable observation, particularly in clinical
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settings, may have substantial effects on subsequent treatments.

In fact, Fleiss (1981, p.192) noted that the single most

important source of the discrepancies in the results of similar

studies he examined in clinical settings was the unreliability

of psychiatric diagnosis.

Researchers employing G theory often tend to place great

emphasis on the G coefficient in their interpretation, and

report it as a means of summarizing the adequacy of the

measurement process. However, the estimation of G coefficients

involves some combination of variance component estimates (or

mean squares), each of which is somewhat subject to sampling

error as well as to the violation of assumptions underlying

ANOVA procedures. Consequently, these variance components could

collectively produce a considerable amount of error that may

affect the estimation of the G coefficients, and this would be

especially true for small samples. Therefore, in the absence of

information such as a likely range of the estimate which might

occur under certain experimental conditions, one would not be

sure whether a large value of a G coefficient indicates that the

measurement process is reliable, or is merely an overestimate

due to sampling bias. The main focus of the present study,

therefore, is to investigate and compare the sampling

distribution of G coefficients obtained under various simulated

sampling conditions.



4
Introduction

Overview of test theory 

Within the context of classical test theory, a variety of

procedures have been developed for estimating different aspects

of reliability, for example: calculation of test-retest

correlations to estimate the stability of measurements over

different testing occasions; correlation of scores obtained from

parallel or alternative forms of a test to estimate the

equivalence of measurements based on different sets of items;

and applications of various formulas to estimate the internal

consistency, or homogeneity, of a pool of test items (e.g., see

Feldt & Brennan, 1989). Each of these approaches defines the

concept of measurement error in somewhat different ways, and

thus identifies a different source of error depending on the

purpose of the study under consideration. Classical test

theory, which is based on the concept of parallel measures (see

p.21 for definition), postulates that an observed score on a

test can be decomposed into a true score and a single source of

random error. As such, any single application of the classical

test theory model cannot clearly differentiate among multiple

sources of potential error that are inherent in most behavioral

measurements. A technical description of reliability

estimations in classical test theory is given in chapter II.

To overcome some of the measurement problems underlying

classical test theory, Cronbach and his colleagues (1963, 1972)

proposed generalizability theory (G theory) as an alternative to

classical test theory. Following the pioneering work of the

analysis of variance (ANOVA) approach to measurement issues by
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Burt (1955), Ebel (1951), Horst (1949), and Hoyt (1941) among

others, Cronbach, Rajaratnam, and Gleser (1963) formulated a

theoretical model that does not rely upon the restrictive

assumptions of classical test theory. By applying the

mathematical rationale of Cornfield and Tukey (1956) they

reformulated reliability estimation procedures with no

assumptions of the equivalence among the conditions. Based on

the variance component estimates obtained from the Cornfield and

Tukey method, Cronbach et al. (1963) derived a formula for

calculating an intraclass correlation coefficient for a

composite score in a one-facet design (i.e., a two-way, np

persons by n r raters, random effects ANOVA model), which is

identical to the reliability coefficient from the Hoyt ANOVA

procedure. (The term "facet" is analogous to the ANOVA term

"factor", but the subject factor is not considered as a facet in

G theory.) Cronbach, Gleser, Nanda, and Rajaratnam (1972) later

denoted this coefficient as Ep2 and named it the coefficient of

generalizability. The use of the symbol Ep2 for the G

coefficient was "... intended to imply that a generalizability

coefficient is approximately equal to the expected value ... of

the squared correlation between observed and universe scores."

(Brennan, 1983, p.17). Following the foundation papers by

Cronbach et al. (1963) and Gleser, Cronbach, and Rajaratnam

(1965), extensive treatments of G theory were documented in a

book by Cronbach et al. (1972), and more recently by Brennan

(1983), and Shavelson and Webb (1991). In addition, many

measurement specialists provided extensive reviews and
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pedagogical aspects of G theory (e.g., Brennan & Kane, 1977;

Cardinet, Tourneur, & Allal, 1976, 1981; Godbout & Schutz, 1983;

Hopkins, 1984; Morrow, 1989; Shavelson & Webb, 1981; Webb,

Rowley, & Shavelson, 1988). These authors presented fundamental

concepts in G theory with a conceptual framework for estimating

the reliability of behavioral measurements in a wide range of

educational and psychological research. By demonstrating the

applications of various factorial ANOVA procedures, they

advocated the use of G theory and stressed the advantages of a

multifaceted approach to reliability estimation over the

traditional classical test theory approach. The basic concepts

and terminology in G theory, along with underlying statistical

models, are presented in chapter II.

The application of G theory to measurement problems has

greatly expanded over the past several years in a wide range of

behavioral research. In the educational and psychological

literature a number of authors have used a generalizability

approach to deal with measurement issues. Bert (1979) and

Mitchell (1979), for example, applied G theory to the estimation

of inter- and intra-rater reliability; Gillmore (1983) to

problems of program evaluation; Johnson and Bell (1985) to the

assessment of survey efficiency; Kane and Brennan (1977) to the

assessment of class means; Lane and Sabers (1989) to the

evaluation of scoring systems for sample essays; Macready (1983)

to diagnostic testing problems; Morrow (1986) to reliability of

anthropometric measures; Staybrook and Corno (1979) to the

disattenuation of measurement error in path-analytic approaches;
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and Violato and Travis (1988) to the assessment of behavior and

personality. In addition, the use of G theory has also

increased rapidly in observational research. Examples include

the evaluation of social and classroom behavior (Huysamen, 1990;

Lomax, 1982) in educational settings, the assessment of

diagnostic accuracy in clinical settings (Morgan, 1988), and the

evaluation of motor behavior and sport performances (Godbout &

Schutz, 1983; Looney & Heimerdinger, 1991; Ulrich, Ulrich, &

Branta, 1988).

While it is evident in the literature that the number of

research papers employing G theory has greatly increased in

recent years, most appear to be limited to the applications and

flexibilities of the theory in dealing with measurement

problems, and very little attention has been given to the

presence of sampling errors in the estimated G coefficient. The

possible reason for the lack of attention in this area may be

that the common sources of G theory (e.g., Brennan, 1983;

Crocker & Algina, 1986; Cronbach, et al.,, 1972; Shavelson &

Webb, 1991) as well as many review and pedagogical papers on G

theory (e.g., Cardinet, Tourneur, & Allal, 1981; Shavelson,

Webb, & Rowley, 1989) have paid relatively little attention to

the fact that the G coefficient is subject to sampling error as

well as the violation of ANOVA assumptions. The major emphasis

has been on the concepts of randomness and on the use of ANOVA

techniques as a means of obtaining variance component estimates

(or observed mean squares).
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Sampling error of variance components 

G theory makes extensive use of ANOVA procedures to

estimate variance components. The estimated variance components

serve the basis in G theory for describing and indexing the

relative contribution of each source of error and the

dependability of a measurement. However, the problems

associated with estimating variance components (e.g., negative

estimates) have been frequently found in practice, and

subsequently several alternative approaches to variance

components estimation, such as maximum likelihood estimators,

restricted maximum likelihood estimators, nonnegative estimators

and Bayesian estimators, have been proposed to deal with such

problems for the cases of both balanced and unbalanced

experimental designs (e.g., see the reviews by Khuri & Sahai,

1985; Shavelson & Webb, 1981).

Cronbach et al. (1972) earlier suggested that large scale G

studies should be conducted to provide accurate and consistent

variance component estimates. They further warned that "... the

behavioral scientist is on dangerous ground when he employs

estimates of components and coefficients from a G study with the

usual modest value of ni and nj, unless he can confidently make

assumptions of equivalence, homoscedasticity, and normality."

(p.49). It may be intuitively obvious that in such large scale

G studies, the variance component estimates are likely stable.

However, there are many situations in which sufficient resources

are not available to conduct a large scale preliminary G study.

This may be particularly true in ratings, clinical and
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observational studies where human judgement provides the

necessary measure. Although G theory was not devised

particularly with ratings in mind, the use of this method in

observational research has rapidly increased, and most published

research in these fields involves relatively small samples with

a few conditions in each facet (e.g., Booth, Mitchell, & Solin,

1979; Huysamen, 1990; Lane & Sabers, 1989; Looney &

Heimerdinger, 1991; Violato & Travis, 1988).

In response to the increased use of G theory with small

samples in the literature, Smith (1978, 1982) conducted

empirical simulation studies in order to examine the sampling

properties of the variance component estimates with 'small'

samples (i.e., np = 25, 50, or 100 and ni, nj = 2, 4, or 8;

where np = number of subjects, and ni, nj = number of conditions

in each facet) under several two-facet designs (i.e., crossed

and nested designs). His results indicated that variance

component estimates based on small samples are very unstable,

resulting in discouragingly wide confidence intervals. Bell

(1986) and Smith (1982) further showed that the degree of

instability in the variance component estimates depends on a

combined relationship between the sample sizes, magnitude of

variance components, and design configurations. More recently,

Marcoulides (1990) also empirically demonstrated that the

variance component estimates in the one-facet and two-facet

designs (np = 25) are sensitive to nonnormal distributional

forms. Given these empirical results, it is apparent that the

estimation of G coefficients would also be unstable since it is
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computed by some combination of estimated variance components.

However, no further investigations were attempted in these

studies to examine the sampling characteristics of G

coefficients. Estimation procedures for variance components are

presented in chapter II.

Sampling distribution of G coefficients 

Although very little research has focused on inferential

properties of G coefficients, a considerable amount of work has

been directed toward examining sampling properties and

inferential procedures for reliability coefficients (e.g.,

Feldt, 1965, 1969, 1980; Hakstian & Whalen, 1976; Kraemer, 1981;

Kristof, 1963, 1970; Sedere & Feldt, 1976; Woodruff & Feldt,

1986). The investigations in this area have not dealt with G

theory per se, but instead have mostly addressed the properties

of a form of intraclass correlation coefficients -- Cronbach's

coefficient alpha, Kuder-Richardson 20 (KR-20) and the

generalized Spearman-Brown formula. These indices are

algebraically equivalent to the G coefficient in a one-facet

crossed design in generalizability terminology.

In what follows is a brief summary of the inferential

procedures for reliability coefficients (e.g., Feldt, 1965;

Fleiss & Shrout; 1978; Kristof, 1963) as well as that for the G

coefficients for various two-facet designs developed by

Schroeder and Hakstian (1990).
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Inferential procedures for coefficient alpha. Kristof

(1963) derived a sampling theory for reliability estimates and

demonstrated a method to apply it to a hypothesis testing.

Feldt (1965) also derived similar results based on a two-way

random effects ANOVA model and presented a method to construct

(1 - a) probability tolerance limits for the sample estimate in

terms of an F-distributed quantity. The derived 100(1-a)%

tolerance interval for the sample estimate provides the basis

for describing the distributional properties of the estimate and

can be used to compute any percentile point of the estimate in

the distribution for a known population parameter. Feldt (1969,

1980) extended it further to develop inferential techniques for

making two independent as well as two dependent sample

comparisons for coefficient alpha. Woodruff and Feldt (1986)

took an extra step to consider the general case involving K

dependent coefficients. Using Paulson's (1942) normalizing

transformation for an F-variable, they developed a test

statistic that is distributed approximately as a chi-square.

This test is essentially an extension of that by Hakstian and

Whalen (1976) who developed inferential procedures for testing

the equality of k independent alpha coefficients.

Inferential procedures for intraclass correlation 

coefficients. Many of the reliability indices can be viewed as

versions of the intraclass correlation, typically a ratio of the

variance of interest over the sum of the variance of interest

plus error variance. These intraclass correlation coefficients
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can give, however, quite different results when applied to the

same data, depending on the definition of error variance under a

particular experimental design (Bartko, 1976; Shrout & Fleiss,

1979). Fleiss and Shrout (1978), and Shrout and Fleiss (1979)

formulated six forms of intraclass correlation coefficients

under the one- and two-way ANOVA models and presented guidelines

for choosing the appropriate form depending on the intent of the

study. They also derived the approximate 100(1-a)% confidence

intervals for these intraclass correlation coefficients using

Satterthwaite's (1941, 1946) approximation to the F distribution

for a composite of mean squares. Kraemer (1981) also

demonstrated the procedures for testing the homogeneity of the

intraclass correlation coefficients based on the sampling theory

by Kristof and Feldt. Recently, Alsawalmeh and Feldt (1992)

derived, using Satterthwaite's procedure, an approximate

statistical test for the hypothesis that the two independent

intraclass coefficients are equal within the context of a two-

way random effects ANOVA model.

Inferential procedures for G coefficients. Schroeder and

Hakstian (1990) extended the work of Feldt (1965, 1969), and of

Hakstian and Whalen (1976) to develop inferential procedures for

G coefficients for various two-facet designs. In doing that,

they first applied the Satterthwaite's approximation procedure

for a composite of independent mean squares, which is involved

in the calculation of G coefficients in a two-way design. This

allowed them to treat the quantity (1-AEp2 )/(1-Ep2 ), which is
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the ratio of two chi-squared variates, as an approximate F-

variate. From this, they took a further step to derive the

normalized expression of the quantity (1-Agp 2 ) 1 / 3 using

Paulson's (1942) normalizing transformation, and developed an

asymptotic variance expression for the estimate (1- AEp 2 ) 1 / 3 by

employing the delta method (Rao, 1973, p.387). The resulting

variance expressions permit the construction of confidence

intervals for a single sample G coefficient and can be applied

to develop an inferential procedure for testing the equality of

K independent G coefficients under normal theory.

The sampling theory of the G coefficient (including

coefficient alpha) and the inferential procedures described

above have been developed under conditions in which the

underlying ANOVA assumptions are fully met. It is, however,

conceivable that "real-world" data will not always fulfill the

rigorous underlying assumptions of the models. In addition,

unlike test development studies, most observational studies

employing G theory rarely involve more than a few conditions

(e.g., usually 3 to 5) of each facet, along with rather small or

moderate sample sizes. Data collection in these studies are

often done in such a way that a rater or a group of raters

successively observes the behavior or performance of subjects

and numerically codes them using an instrument which yields only

a limited number of score values. Therefore, due to the nature

of the data, it is quite likely that the violation of ANOVA

assumptions will occur in conjunction with limitations of the
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score scale when such data are subjected to ANOVA procedures.

Considerable research has focused on examining the effects of

the number of scale points on the estimated reliability

coefficient (e.g., Cicchetti, Showalter, & Tyrer, 1985; Jenkins

& Taber, 1977; Lissitz & Green, 1975). In general, studies have

indicated that the reliability of a test increases with an

increasing number of scale points, but in most cases this

increase quickly levels off for anything beyond a 5-point scale.

However, these studies were mainly concerned with the magnitude

of the estimates under various measurement scales, and no

attention was given to the sampling variability of the estimates

under violation of ANOVA assumptions.

In principle, G theory is based on random effects repeated

measures ANOVA models. The assumption of randomness itself does

not carry with it the assumption of normality. Most estimation

procedures for variance components and thus mean squares do not

require normality. However, when distributional properties of

the resulting estimators are of interest, normality is assumed

in the distribution of random effects (Searle, Casella, &

McCulloch, 1991). In fact, Scheffe' (1959, p.345) earlier

demonstrated that non-zero kurtosis seriously affects inferences

about variances of random effects, although it has little effect

on inferences about means.

In the statistical literature, a number of empirical

studies on the effect of violating ANOVA assumptions of

normality and homogeneity of variance on Type I error rates have

shown that the ANOVA F statistic is generally robust with
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respect to moderate departures from these assumptions,

especially if sample sizes are equal (e.g., Glass, Peckham, &

Sanders, 1972, but see Bradley, 1978). However, ANOVA loses its

robustness, especially when the covariance matrix underlying the

repeated measures deviates from a certain pattern, referred to

as compound symmetry or circularity (see Appendix A for

details). Box (1954), for example, has shown that the violation

of this assumption can result in more unstable estimates of the

mean squares than would be the case if all observations were

independent. Subsequent investigations have also suggested that

the inflation in the Type I error rates of the F test introduced

by violating the circularity assumption was quite substantial in

a variety of specific cases (e.g., Collier, Baker, Mandeville, &

Hayes, 1967; Gessaroli & Schutz, 1983; Greenhouse & Geisser,

1959; Huynh, 1978; Huynh & Feldt, 1976; Maxwell & Bray, 1986;

Stoloff, 1970; Wilson, 1975).

Knowing that violating ANOVA assumptions will result in

unstable estimates of observed mean squares, it is expected that

this will add additional variability to the estimates of the G

coefficient. This would be especially true with a small scale

measurement design involving a limited number of score values,

and in such cases the usual interpretations for the estimated G

coefficient and subsequent generalization over the conditions of

the universe could be misleading. In fact, Schroeder and

Hakstian (1990) found that G coefficient estimates are highly

variable with small samples, especially if the error variances

are relatively large. They suggested that researchers should
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interpret with caution G coefficients calculated from designs

involving small numbers of objects of measurement (i.e., np=25)

since the population value could vary markedly from the observed

estimate, ranging from trivially low to impressively high.

However, there is very little published research regarding the

extent to which the sampling variability of the estimates and/or

the magnitude of the sample estimates will be affected by the

violation of ANOVA assumptions, especially the circularity

assumption.

Feldt (1965, 1969) provided some empirical evidence to

support the proposed sampling theory. He concluded that despite

certain violations of ANOVA assumptions inherent in binary data,

the empirical distribution corresponds, in general, quite

closely to the theoretical one, at least when the number of

items equals 80. However, Bay (1973, p.56) found in employing a

one-facet (n=30 by k=8) design that the non-zero kurtosis of the

true score distribution has substantial influence on the

sampling distribution and standard error of reliability

estimates, although the influence on the error score is

negligible for fairly large k.

By applying Box's work to reliability estimation, Maxwell

(1968, p.810) showed analytically that the correlated errors in

a (n by k) repeated measures ANOVA model will positively bias

the estimate of the reliability coefficient. Recently, Smith

and Luecht (1992) empirically investigated the effect of

correlated errors on the variance component estimates in a one-

facet G study design. Their results showed that serially
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correlated errors underestimated the residual variance component

and overestimated by a similar amount the person variance

component. Although they did not examine explicitly the G

coefficient, they noted from these results, that "Together or

separately, these biases will result in an overestimation of the

computed generalizability coefficient..." (p.232). Smith and

Luecht further noted that the effect of serially correlated

errors are equally likely to be present in designs employing

more than a single facet (p.234). However, there appears to be

very little, if any, published research regarding the effects of

violating compound symmetry or circularity on an inferential

procedure for the G coefficients in either one- or two-facet

designs. In fact, Schroeder and Hakstian (1990) are the only

ones who stated the assumption of circularity explicitly in

their study. In developing inferential procedures for G

coefficients in the two-facet designs, they assumed, besides

normality, that the covariance matrices for all subsets of first

and second facet conditions and their interaction have (local)

circularity or sphericity properties, which are necessary to

treat the sums of squares in the model as central chi-squared

variates. Although they provided some evidence of the

insensitivity of the proposed procedures to nonnormality, the

effect of noncircularity was not part of their study, but they

suggested that " ... the procedures may also be robust with

respect to violation of the local circularity assumption,

although at this point we have no proof of this." (p. 443).
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Purposes of the present study

There is insufficient information in the related literature

substantiating the conditions under which the estimated G

coefficient would be most variable and the relative extent to

which the estimated G coefficient for categorical data will be

affected by a particular sampling condition or a combination of

simulated conditions, in comparison to their parent continuous

data. Empirical work is certainly in need to provide

information about the sampling characteristics of G coefficients

under various sampling conditions of G study designs. Thus, the

major focus of the present study is an empirical investigation

of the sampling variability of the estimated G coefficients for

both categorical and continuous data under violation of the

circularity assumption. In doing so, the empirical

distributions of the G coefficient estimates under various

simulated sampling conditions are obtained for both one- and

two-facet designs, and the variabilities of the estimates are

compared across simulated conditions within each design to

investigate the precision and accuracy of the sample estimates.

Then, the empirical percentages of the sample estimates falling

beyond the theoretical limits are compared to the corresponding

theoretical values to assess the robustness of the proposed

sampling theory. For all simulated conditions, empirical

results for both categorical and the parent continuous data are

obtained and compared in order to assess the degree of relative

bias in sample estimates for categorical data, in comparison to

the parent continuous data.
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CHAPTER TWO: THEORIES AND MATHEMATICAL DEVELOPMENT

This chapter consists of four sections: classical test

theory, generalizability theory, variance component estimation,

and sampling theory of G coefficients. First, definitions and

estimation procedures for various reliability coefficients are

presented. Second, the basic concepts and terminology in G

theory are briefly reviewed, along with the statistical models

for one- and two-facet fully-crossed designs and the

formulations of G coefficients. Third, a brief overview of

estimation procedures and variance expression for variance

components is given. Lastly, the sampling theory of coefficient

alpha (equivalently, a G coefficient for relative decisions in

the one-facet crossed design) developed by Feldt (1965) and

Kristof (1963) is presented in detail and extended to develop an

approximate sampling distribution of the G coefficient for

relative decisions in two-facet fully-crossed design.

A. Classical test theory

According to the true-score model in classical test theory,

an observed score is viewed as a composite of two components --

a theoretical score (true score) and an error score. In

symbols:

[2-1]
x = t + e

where, x is the observed score; t is the true score; and e is

random error.
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Fundamental assumptions imposed by classical test theory

are:

(a) the true scores are stable over time;

(b) the expected error score is zero: E(e)=0;

(c) the correlation between error score and true score is zero:

rte ^0 (Ghiselli, Campbell, & Zedeck, 1981).

Consequently, the variance of observed scores is simply the sum

of the true and error score variances:

[2-2]^
62x = 6

2
t^6

2
e'

Given this, the ratio of the true score variance to

observed variance is called the reliability of measure x and can

be expressed as:

[2-3]^
rx = 62 t / 6

2
X

This ratio can be shown to be equal to the squared correlation

between observed and true scores:

[2-4]

rxt = axt / at ax

= a
(t+e) (t) / at ax

= att^a(te) / at (Tx

= 62 t / at ax

= at / GX'

(since Gte = 0)

Thus, squaring the last expression of [2-4] gives the same

result as in Equation [2-3], which indicates the degree to which

test scores are free from errors of measurement.
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Parallel Measures 

Since the true-score model includes an unobservable element

(true score), in practice, reliability of a measure is often

assessed by correlating parallel measurements. By definition

(Ghiselli et al., 1981), two measurements are said to be

parallel if they have identical true scores and equal variances.

As a result, the means and variances of both measures are also

equal. In addition, according to the assumption that errors are

independent, it follows that errors associated with parallel

measures are not correlated among themselves, nor are they

correlated with true scores. That is, r(e l e 2 ) = r(e it) = r(e2t)

= 0, where the subscripts 1 and 2 denote parallel measures.

Using these, it can be shown that the correlation between

parallel measures is an estimate of the reliability of either

one of them. Expressing observed scores on each measure as

composites of true and error scores, the correlation between two

parallel measures is:

[2-5]

rxlx2^6(x1x2) / 6x1 6x2

= 6[(t+e i ) (t+e2)] / Gxl 6x2

= G[tt + te2 + te l + ele2] / 6x1 6x2

Since the last three terms of the numerator equal zero and

because Oxi = 6x2f rxlx2 = 62t / 62 x which is consistent with

the definition of reliability given earlier. Thus, one can

estimate reliability of a measure by administering two parallel

measures. However, because of the very restrictive assumptions

underlying parallel measures which are rarely met in practice,
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the usefulness of this approach is limited. Some researchers

have proposed different formulations that may be viewed as

variations on the true-score model. Such alternatives are tau-

equivalent measures (identical true scores), essentially-tau-

equivalent (true scores differ by an constant), and congeneric

measures (error variances, true-score variances, and true-score

means need not be equal as long as both measure the same

phenomenon). These measures are in the order of less restricted

assumptions on the parallel measures (Novick & Lewis, 1967;

Joreskog, 1971). The comparison among these models in terms of

determining which model is better or preferred in estimating

reliability can be done by using a computer program, such as

LISREL (Joreskog & Sorbom, 1989).

Alternative Form and Test-Retest 

Commonly used procedures that require two test

administrations to estimate reliability of a measure are the

alternative-form method and the test-retest method. The former

is used to assess the degree of interchangeability between two

alternative forms of a test. It requires a test user to

construct two similar forms of a test and administer both forms

to the same group of examinees within a very short time period.

The correlation coefficient between the two sets of scores is

then computed, called the coefficient of equivalence, and taken

as an estimate of the test reliability. It is generally

suggested that the mean and variance for each form should be

quite similar, but ideally the two forms should meet the
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condition of parallelism as defined above, if the coefficient of

equivalence is to be interpreted as a reliability estimate

(Crocker & Algina, 1986).

The test-retest method is used when a test user is

interested in how consistently examinees respond to the same

measure at different times. Thus, the same measure is

readministered to the same group within a certain time period.

The correlation coefficient between the two sets of scores,

called the coefficient of stability, is taken as an estimate of

the test reliability as it indicates the degree of consistency.

However, the use of the correlation coefficient in the test-

retest method as a measure of reliability has been criticized by

several researchers (Carmines & Zeller, 1979; Erikson, 1978;

Heise, 1969). The correlation between the test and retest

scores of the same measure will inevitably be less than perfect

because of the temporal instability of measures taken at

multiple points in time and the measurement error. As a result,

a simple test-restest correlation is inappropriate to estimate a

variable's true reliability as well as the variable's temporal

stability unless one can assume that either the underlying

variable remains perfectly stable, or the variable is measured

with perfect reliability (Erikson, 1978). This point is

illustrated analytically in the following. Let x 1 and x2 be two

test scores, then, the correlation between the two scores can be

expressed as follows:
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[2-6]
rxlx2^6(x1x2) / (6x1 6x2 )

= 6 (t1t2) /
2^ 111/2

[(a tl^a2e1 ) (a2t2^G2 e2/J^•

Substituting for the covariance term in the numerator,

a (tlt2) , by (rtlt2 ) (6t1 6t2) since rtlt2 = • (t1t2) / (atl 6t2 ),

yields

[2-7]

rx1x2^(rt1t2) (at]. 6t2 ) /

[(62t1^62e1) (62t2^62e2)]
1/2.

Furthermore, since the reliability of a variable is the true

score variance divided by the true score variance plus the error

variance, the equation [2-7] can be rewritten as:

[2-8]^
rx1x2 = (rtlt2 )

 (r1 r2)1/2

where, rj = reliability of xj, j = 1,2.

From the above equation, we find that a simple test-retest

correlation is inappropriate as a measure of reliability unless

one can assume that the underlying variable remains perfectly

stable (i.e., rtlt2 = 1.0). In addition, it is possible that an

obtained low correlation in the test-retest case may not

indicate that the reliability of the test is low but may,

instead, signify that the underlying theoretical concept itself

(true score) has changed (Carmines et al., 1979).
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Internal Consistency 

Split-Half. The earliest form of the internal consistency

approach to the estimation of reliability may be a split-half

reliability estimate. The split-half approach may be viewed as

a variation of the alternative-form estimate of reliability.

The items that comprise a given measure are split in half, and

each half is treated as if it were an alternative form for the

other, thereby obviating the need to construct two forms of the

same measure. A reliability estimate is obtained by correlating

scores on the two halves of the measure. In order to estimate

the reliability of an original measure that is twice as long as

each half, split-half correlations are stepped up by the

Spearman-Brown formula. The general Spearman-Brown formula, of

which the split-half method is a special case, for the

estimation of reliability of a measure is:

[2-9]
k r 12

rx
1 + (k-1) r 12

where k is the factor by which the instrument is increased or

decreased (i.e., k=2 in case of the split-half method); r x is

the estimated reliability of a measure k times longer than the

existing one, r 1 2.

Rulon (1939) proposed a simplified procedure for estimating

the reliability coefficient by means of split-halves. This

method involves the use of difference scores between the half-

tests (i.e., d = a - b, a and b being the examinee's score on

the first half and the second half of the original test,
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respectively). The variance of the difference scores, a2 d , is

then used as an estimate of the error variance, 0 2 e , in the

definitional formula of the reliability coefficient so that:

[2-10]

rx = 1
a2

d
2a x

where 62x is the variance of the scores on the total test. The

two methods above yield identical results when the variances of

the two half-tests are equal. Otherwise, the Spearman-Brown

formula yields systematically larger coefficients than Rulon's

method. In general, the split-halves method does not yield a

unique estimate since there are many possible ways of dividing a

test into halves. If a particular way of splitting a measure

into halves happens to be an unlucky one, not parallel, it may

result in an underestimate or an overestimate of reliability.

Coefficient Alpha. The logical extension of the split-half

approach to estimate the reliability of a measure is to split a

measure into as many parts as it has items, and thus the

arbitrariness of splitting a measure in halves can be avoided.

Several approaches to the estimation of the internal-consistency

have been formulated based on the assumption that all items are

measures of the same underlying attribute. That is, the test is

homogeneous in content. A most general form for this approach

is known as Cronbach's alpha (1951) which can be computed by the

formula:
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[2-11]
k
^Eirs2i

a - ^ [1
k -1

 

]

E62 i + 2(Eaii)

where; k is the number of items in the measure, and 0 2 i and aij

are the variance of item i and the covariance of any pair of

items i and j (where, i > j), respectively. Cronbach's alpha is

a general form of the Kuder-Richardson 20 or KR-20 (1937).

Thus, it yields identical results with the KR-20 when items are

scored dichotomously. In addition, when all items are

standardized, having a mean of zero and a variance of one, it is

reduced to the Spearman-Brown formula, replacing a mean of all

pairwise inter-item correlations for the r 12 in Equation [2-9].

Thus, Cronbach's alpha is known as the mean of all possible

split-half coefficients of a given measure.

Intraclass Correlations 

Within the context of the variance component model of

analysis of variance (ANOVA), the intraclass correlation

coefficient is derived from the concept of the statistical

dependence between any two observations xpi and xpi, (i =1= i')

in the same class (i.e., with the same p) (Scheffe', 1959,

p.223). In a two-way array with scores on a test (having i

items) for nP persons, an observed score of person p on item i,

xpi, is viewed as the sum of four independent components:

[2-12]
x . = u + (u -u) + (u.-u) + (x .-u -u , +u)pi^P^1^pi p i

=u+p+i+e.
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where: up is the universe (true) score of person p (the mean of

xpi over all i in the universe); ui is the mean score on i over

all persons in the population; and u is the mean over both the

up and the ui (the grand mean). The p, i, and e are considered

to be independently distributed random variables with zero means

and their own variances. Thus, the model renders itself as an

additive model in ANOVA, which forces the variance of the items,

,a2 .1 to be equal and covariances or correlations between items

to be equal, which leads the covariance matrix to have compound

symmetry (Winer, 1971).

Most treatments of reliability based on [2-12] define

reliability as the ratio of true score variance (a 2p ) to

observed score variance (02
p + a

2 
e ) I which is an intraclass

correlation coefficient by definition in classical test theory.

Using the mean squares and variance components obtained by the

ANOVA procedure, the intraclass correlation coefficient for a

single item score is:

[2-13]
MS - MS e

r 1
MSp + (ni-1) MS e

and that for the mean test score over all items is:

[2-14]
MSp - MSe

r
MSp

One of the first attempts (among others being Burt, 1955;

Ebel, 1951; Horst, 1949) to use the intraclass correlation as an

estimate of reliability appears in Hoyt (1941). Hoyt derived
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Equation [2-14] by means of estimating reliability in a Persons

by Items design. Hoyt related this formula to the theoretical

definition of the reliability by noting that the MSP represents

the observed score variance, and the MS e represents the error

variance in the theoretical reliability expression [i.e., (0 2x -

a2 e ) / 62 x ] .

Hoyt (1941, p.155) noted that ANOVA procedures do not

depend on any particular choice in subdividing the items, and

they approximate an average of all the possible correlations

that might have been obtained by different ways of assigning

items to alternative forms. Therefore, this method of

estimating the reliability of a test gives a better estimate

than any method based on an arbitrary division of the test into

halves or into any other fractional parts. Although Hoyt drew

attention to its application only to the case where items are

scored dichotomously, Equation [2-14] yields identical results

with Equation [2-11], Cronbach's alpha, as well as with KR-20.

Numerous papers on reliability subsequently made use of the

ANOVA procedure or the closely related intraclass correlation.

Various definitions and procedures were formulated, each

defining the measurement error in somewhat different ways, and

thus estimating different aspects of reliability depending on

the purpose of the study under consideration (e.g., Algina,

1978; Bartko, 1976; Bert, 1979; Fleiss, 1975; Lahey, Downey, &

Saal, 1983; Mitchell, 1979; Shrout & Fleiss, 1979).
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B. Generalizability (G) theory

It has been shown that reliability can be defined as either

the correlation between parallel measures, or the squared

correlation between the true score and the observed score, or

the ratio of the true score variance to the observed score

variance (i.e., rxix2 -- r2tx _.= a2t/62x). It also has been shown

that different formulations for the estimation of reliability

lead essentially to the same results. Although they appear

different in form due to different theoretical orientations,

they all share the same underlying concepts in classical test

theory.

The concept of the parallelism or equivalence of measures

has been criticized as a major limitation in classical test

theory as it is very difficult to construct, and is often

unattainable in practice. As a result, Cronbach, Rajaratnam,

and Gleser (1963) proposed generalizability theory as an

alternative to classical theory which does not rely upon the

restricted assumptions of classical theory. Generalizability

theory (hereafter G theory) extends in some aspects the concept

of the intraclass correlation to the estimation of reliability.

G theory offers a comprehensive set of concepts and estimation

procedures for various measurement designs by making use of

various factorial designs in ANOVA in which the conditions of

observation are classified in several respects.

In the following, concepts and terminology in G theory are

presented briefly, followed by statistical models underlying G

theory and formulation of G coefficients for the one-facet and
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two-facet fully-crossed measurement designs. Throughout the

manuscript, the symbols G 1 and G2, instead of Ep2 , are used to

denote the population G coefficient for notational convenience,

and ^G i and AG2 for the sample estimates. The subscript

indicates the number of facets involved in the measurement

design.

Basic Concepts and Terminology in G theory

Object of measurement. The object of measurement in G

theory is the element of the study about which one wishes to

make judgments. In most applications of G theory, persons are

the object of measurement, but it can be any population of

objects other than persons.

Universes of admissible observation. The universe of

admissible observations is defined by all possible combinations

of the conditions that theoretically could be included in a

study in a G study. The variation of these conditions is

central to the study. Thus, G theory requires one to specify a

universe of conditions of observation over which s/he wishes to

generalize. Related to the concept of universe is the concept

of universe score. The universe score is viewed as a mean score

for an object of measurement over all conditions in the universe

of generalization, like the notion of true score in classical

test theory.
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G and D studies. G theory draws the distinction between a

G study and a decision study (D study). The purpose of the G

study is to obtain as much information as possible about the

sources of variation in the measurement. Therefore, the G study

should ideally define the universe of admissible observations as

broadly as possible. The purpose of the D study is to make

decisions about the object of measurement. The D study makes

use of the information provided by the G study to design the

best possible application of the measurement for a particular

purpose. In planning a D study, the decision maker defines a

universe of generalization over which the scores are to be

generalized. As well, using information from the G study about

the magnitude of the various sources of measurement error, the

decision maker evaluates the effectiveness of alternative

designs to optimize reliability (i.e., nested or fixed). In

practice, however, the same data are usually used for both G and

D studies; in this case the G and D studies are the same.

Facet and Condition. The design of a measurement procedure

implies the specification of the sources of error affecting the

measurement (e.g., judges, occasions), which are called facets.

The term facet is analogous to the factor in ANOVA terminology,

but the subject factor is not considered as a facet in G theory.

The conditions (cf. levels of a factor in ANOVA) representing

these facets usually constitute random sampling from the

predefined universe of conditions. Variability in the

measurement due to a facet or an interaction among facets is
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defined as error variance, whereas the variability among

individuals over all objects of measurement is defined as

universe score variance (Cronbach et al., 1972, p.15). Brennan

(1983, p.16,18) further clarifies that a set of randomly sampled

conditions is just one of an infinite number of sets from the

universe. Thus in G theory randomly parallel tests, for

example, can have different means, and the between-test variance

is therefore generally not zero since any test may consist of an

especially easy or difficult set of items relative to the entire

universe of items.

Relative and absolute decisions. In G theory, how

generalizable a measure is depends on how the data will be used

in the D study. In the D study one of two kinds of decisions is

made. A relative decision is made when the interest attaches to

the standing of individuals relative to one another. In

contrast, an absolute decision is made when the concern is with

how well a person's universe score estimates the universe score

for that person, without regard to the performance of others.

The variance components contributing to measurement error are

somewhat different for the relative and absolute decisions. For

the relative decisions those variance components that interact

with the object of measurement, and thus influence the relative

standing of individuals, contribute to error. For example, in a

one-facet Persons-by-Raters design, the systematic disagreement

between the raters would not introduce error into the estimation

of the person's universe score relative to the average universe
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score for all persons. Therefore, the variance component due to

the Rater facet does not contribute to error in the relative

decision. For the absolute decisions all variance components

except the object of measurement contribute to measurement

error. These variance components include all interactions and

the facet main effects.

Statistical models underlying G theory

One-facet crossed design. Consider a measurement design

where, for example, n persons are observed by k raters in an

observational setting, assuming the n and k are a random sample

from a respective population. The resulting scores from such a

design can be arranged in a two-way (n x k) array. A two-way

(Persons by Raters) random effects ANOVA interaction model can

be used to partition observed scores into their effects, which

can be written as:

[2-15]
xii = u+pi + rj + pri j +eij,^(i=1,..,n; j=1,..,k).

Note here that because of a single observation per cell, an

extra subscript for the number of entries in each cell is not

used. In this model, the pi is the effect due to Person i, rj

is the effect due to Rater j, pri j is the interaction effect

between the two, and ej k is the residual error. All the effects

in [2-15], except for a grand mean u, are assumed to be random

variables with zero means and their own variances, and all

pairwise covariances are zero (Searle, Casella, & McCulloch,

1992):
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E(pi) = E(rj) = E(prij) = E(eij) = 0;

var(pi) = E(p2 i) = 02p;

cov(Pi,Pi l ) = E(Pi,Pi l ) = 0 for all i =1= i f ;

cov(pi,rj) = cov(Pi,prij) = cov(pi,eij) = 0.

The symbol E denotes expectation. Similar statements can be

made for the remaining terms. Thus, the variance of an observed

score can be expressed as:

[2-16]^
6
2
x = 6

2p + 6
2 + a 2 

pr + 62 e•

The variance component for persons (()), or universe-score

variance, for example, can be obtained by taking E(up-u) 2 , which

indicates the average (over the population of persons) of the

squared deviations of the persons' universe scores from the

grand mean (Shavelson & Webb, 1991). Other terms can be defined

similarly. The estimates of the variance components are usually

obtained in practice by solving the expected mean square

expressions from ANOVA procedures. Searle et al. (1992) showed

that the ANOVA estimators of variance components with balanced

data are unbiased and have the smallest variance of all

estimators that are both quadratic functions of the observations

and unbiased (p.129). They also noted that the ANOVA estimation

of variance components does not demand any normality assumptions

for the error term or of the random effects unless the

distributional properties are of interest.

The statistical model in [2-15] is what Cronbach et al.

(1963) have used to formulate generalizability theory in an
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attempt to break away from restrictive assumptions in classical

test theory. Following the work of Cornfield and Tukey (1956),

Cronbach et al. (1963) derived the expected mean square

expressions for each effect in the model. Furthermore, they put

the variance components 02pr and 62 e together by stating that

... with one observation per cell, it is impossible to separate

the interaction component of variance from the within-cell

residual." (p.150). This allowed them to derive a G coefficient

that is comparable with a reliability coefficient and

coefficient alpha.

Huck (1978) demonstrated the application of Tukey's (1949)

'one degree of freedom for non-additivity' in estimating

reliability by decomposing the interaction effect from the error

term. However, this method may not be relevant in an

observational study. For example, when a group of judges

independently rates the behaviors of n persons (e.g., class or

social activities, live or taped sport performances), each

person has a true score which must remain constant across

judges. Therefore, any interaction between the judges and

subjects in this case should be considered as a consequence of

inconsistency among the raters themselves and thus be part of

the measurement error. Under this presumption, the p x r

interaction term drops out from the model [2-15]. Thus, the

model without the prij term renders itself as the two-way

additive, rather than nonadditive, ANOVA model with a single

observation per cell (Winer, 1971, p.394). Nonetheless, with a

single observation per cell the expected mean square expressions
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for either the nonadditive model with Cronbach's modification or

the additive model are structurally identical, and they are

presented in Table 2-1.

Table 2-1

The two-way (Persons by Raters) random effects ANOVA model with
a single observation per cell

Source of^ Mean^Expected
variability^df^Square^mean squares

Person(p)^n-1^MS^a2e + nr 02P^ p

Rater (r)^k-1^MS r^62
e + n 02p r

pr.e^(e)^(n-1) (k-1)^MSe^62 e

Note: the term pr.e reflects a combined effect of prij and eij

by following Cronbach's modification in the model [2-15].

A generalizability coefficient for relative decisions is

defined as the ratio of the universe score variance to the

expected observed score variance, which is a form of intraclass

correlation coefficient. The G coefficient, like the

reliability coefficient, reflects the proportion of variability

in individuals' scores (i.e., the object of measurement) that is

systematic. The population G coefficient for the one-facet

design, expressed in terms of variance components, is:

[2-17]
G2 P
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and expressing the estimate of G1 , AG 1 , in terms of the

estimated mean squares yields:

[2-18]

^Gi -
MSP - MSe

Ms p

This formula is exactly identical to Hoyt's formula for a

reliability coefficient presented in the previous section, which

in turn gives the same results as the Cronbach's alpha for any

metric, and as the KR-20 when items are scored dichotomously.

In addition, it can be shown that the formula [2-17] yields the

same results as the generalized Spearman-Brown formula. For

example, as noted previously, the intraclass correlation is

defined as Gii , / a2x = a2p / (a2 e + a2p ),) which indicates the

degree of statistical dependence between two conditions within

the same subject. This follows from the fact that the expected

variance of any condition i is defined as: a2i = a2e + a 2p, and

the expected covariance over pairs of conditions within the same

subject as: 0(pi, pi') = ail, = a2p . From this, it may be shown

that the expectation of all of the observed variances (mean

squares) in the analysis of variance can be expressed in terms

of parameters of the variance-covariance matrix. Winer (1971)

showed, for example, that

MSperson = var + (nr-1) cov, and

MSerror = var - cov.

     

where, var and cov = mean of the variances and covariances,

respectively, in the n r by nr variance-covariance matrix.
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Therefore,
E(MS ) = E[var + (n r-1) cov]

= 6
2
x^(nr-1)6

2
p

= 62e + 62p + n r 0
2 
p - 6

2

= a2e + nr 6
2 p and

E(MS e ) = E[var - cov]

2= 62 x - 6 p

= [6
2
e ^62 ]^a

2

= G2
e •

Applying these terms in Equation [2-17] yields:

[2-19]
nr cov

G 1
var + (n r-1)cov

which is in form identical with the Spearman-Brown formula.

A G coefficient for absolute decisions for the one-facet

design is defined as the ratio of the universe score variance to

the total observed variance. Brennan and Kane (1977) called

this an index of dependability, which can be defined as

[2-20]

Gabs
622

 

62 +02 in + rr2 / „
r^e'"r

and expressing the estimate of G abs in terms of obtained mean

squares, with some algebra, as:

[2-21]
MS - MS e

Gabs =

 

MSp + [MS r - MSe]/np
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This coefficient, which takes the variability of the raters into

account as error, has been given special attention in

observational and clinical studies where an absolute decision is

often required (Berk, 1979; Booth et al, 1979; 1983; Brennan &

Kane, 1977; Huysamen, 1990; Mitchell, 1979; Lomax, 1982). Since

the classical test theory of parallelism indicates that the

means across conditions (i.e., raters) are assumed to be equal,

the rater effect is assumed to be zero; if not, classical theory

cannot formally distinguish between the error variance and the

rater variance. However, in G theory, randomly parallel

conditions (Brennan, 1983) can have different means, and thus

the rater variance is generally not zero. Consequently, there

is no equivalent formula in classical reliability theory to the

G coefficient for absolute decisions.

Two-facet fully-crossed design. The partitioning of

observed scores into their effects and the decomposition of the

variance of observed scores into variance components for the

separate effects can be easily extended to measurement design

with additional facets. Consider, for example, the two-facet,

fully-crossed design where n persons are observed by r raters on

o different occasions. Persons here are the object of

measurement; raters and occasions constitute sources of unwanted

variation in the measurement. Persons, raters, and occasions

are considered to be randomly sampled from a respective

population or universe. The ANOVA model for this design is a

three-way (Persons by Occasion by Raters) random effects ANOVA
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model with a single observation per cell:

[2-22]

xij k = u + pi + of + rk + poij + pri k + orjk + pori jk.e•

In this model, the pi is the effect due to Person i

(i=1,2,..,np), of is the effect due to Occasion j of the first

facet (j=1,2,..,n 0 ), and rk is the effect due to Rater k of the

second facet (k=1,2,..,n r ). The pori j k.e term reflects a

combined effect of the three-way interaction and the residual.

The remaining terms in [2-22] represent two-way interaction

effects. As in the one-facet design, all the effects in [2-22],

except for a grand mean u, are assumed to be random variables

with zero means and their own variances, and all pairwise

covariances are zero. Normality assumptions of the effects are

added when the distributional properties are of interest.

Given the independence of the components in [2-22], the

variance of observed scores can be decomposed into variance

components for each effect as:

[2-23]

+ G^+ G ^+ G
2

G
2
x = (7

2
p + G2 r + a20 + a

2 
pr
^2 

po^2 ro^por.e•

For the G coefficient for relative decisions, all variance

components representing interaction with the object of

measurement (i.e., persons) contribute to the unwanted

variations in the measurement. Thus, in the two-facet design,

the population G coefficient is defined as:
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[2-24]

G2

 

62^62^62po^pr^e

no^nr^n no r

Note that the symbol 62e is used for the 62p or.e term.

The estimation of variance components in [2-24] can lead to

an estimate of G2, and it is usually done by ANOVA procedures.

Table 2-2 presents the expected mean square expressions for this

design from the ANOVA procedure. These expressions can be

solved to obtain estimates of each variance component. It is,

however, more convenient to express the estimate of G2, AG2, in

terms of the observed mean squares as:

[2-25]

AG2 —
MSp - MSpo - MSpr + MSe

Ms

A G coefficient for absolute decisions for the two-facet

design can be defined as:

[2-26]
02P 

Gabs -
2^02^2

^r ^a o^pr^po^ro
262^62^a a2 e

^

nr^n o^n r^no^n n^n nr o^r o

The estimate of Gabs could be expressed in terms of observed

mean squares presented in Table 2-2, but its complexity in form

still remains the same.
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Table 2-2

The three-way (Persons by Occasions by Raters) random effects
ANOVA model with a single observation per cell

Source^VC^MS^EMS

Person(p)^a^MS^a2e + nr a
2^+ n a22

P^P^po^o pr + n rn o6
2 
p

+ n n 62MS r^02 e + n 0
2 + n a2Rater(r)^G

2 r
^ p ro^o pr^p o r

Occasion(o) 02 0^MS o^02 e + n 02^+ n r 02^p ro^po + n pn r02 o

pr^a2^MS^a2 e + n 02pr^pr^o pr

po a2 e + n a62po^MS po^r
2 
po

roMS^a2e + n aa2 ro^ro^p
2 
ro

pro.e (e)^a
2^MS ee^02 e

Note: VC = variance components; MS = mean squares; and EMS =
expected mean squares.

C. Variance component estimation

In most cases a variance component estimate is computed

using some linear combination of available mean squares (MS)

divided by a constant:

[2-27]^
AG2i = [1 aimsi ] / ci

where; ai = + 1, MSi = 1,2, ...mth mean square, and ci is the

constant associated with the variance component 0 2 i.

Under normality and independence assumptions of the random

effects model with balanced design, it is known that fi(MSi)/

EMSi is distributed as a chi-square (x2 ) with fi degrees of
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freedom, and MS's are independent of one another (Searle, 1971,

p.409). Therefore, the sampling variability of variance

component estimates can be considered as a linear combination of

x2 -variables. For any mean square in the model,

[2-28]

MS. =MSi

 

EMSi x2

 

Thus,

 

fi1

 

[2-29]

var (MSi) =

 

(Ems i ) 2 var(x2 f)

  

fi1

 

2(EMSi) 2
since var(x2 f) = 2f

fii

where, the symbol E denotes expectation, and 'var' denotes

variance. Therefore,

[2-30]
1

var (^62 i)-

  

I var (MSi)
c2 i

(EMSi) 2
x ^

c 2 i f.1

It is more convenient to express above derivations in a

general form using the matrix notations (e.g., Brennan, 1983,

Searle, 1971; Winer, 1971). Let m = a k-by-1 column vector of

mean squares in the design, having the same order as 02 , the

vector of variance components in the model. Suppose P is such

E (m) = Pa2 .
that



45
Mathematical Development

P is a k by k (nonsignular) matrix of coefficients of the

variance components in the expected mean square expressions for

the model. Then, the ANOVA estimator of 02 is A62 , obtained

from m = PA62 as

[2-31]^
AG2 = p

which is a k by 1 column vector whose elements are unbiased,

because (Searle et al., 1992)

[2-32]
E(A62 ) = P-1 E(m) = -1(no _ p p02 = 62 .

From [2-31], the variance of A62 can be expressed as:

^

[2-33]^
var ( Aa2 ) = p-1 var (M) P -1 ' .

And with the last expression of [2-29], it can be rewritten as:

^

[2-34]^
var (A62) = p-1 [2(EMSi)2/fi] p-i'

Although mean squares in the balanced design are

distributed independently of one another, the estimated variance

components are themselves subject to sampling variability.

Furthermore, two estimated variance components are generally not

uncorrelated, unless there are no common mean squares used in

estimating the two variance components. Assuming a multivariate

normal distribution for the score effects, the variance-

covariance matrix associated with the estimated variance

components in A62 is

1^1V = P - D P-
[2-35]
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where D is a k by k diagonal matrix containing the variance of

MSi expressed in Equation [2-29]. Equation [2-35] is a

theoretical expression for the population values, and thus, in

practice, the estimate (^V) of V can be obtained by replacing

observed mean squares [i.e., 2(MSi) 2 /fi] in the diagonal of D

for the corresponding expected values. However, Searle (1971,

p.417) showed that the elements in ANT are biased. He showed

that the unbiased estimate of V can be obtained by replacing (fi

+ 2) for fi in the diagonal of D. For example, by definition,

var(MS) = E(MS 2 ) - (EMS) 2 , from this it follows that

[2-36] ^E(MS 2 ) = (EMS) 2 + var(MS)

= (EMS) 2 + [2 (EMS) 2 / f]

= [(f + 2)(EMS) 2 ] / f.

Therefore, the unbiased estimator of 2(EMS) 2 /f is 2(MS 2 )/(f+2).

The square root of the diagonal elements in the AV is the

estimated standard error of the variance components, which may

be used to construct a confidence interval of interest. The

variance components are essentially linear functions of mean

squares, and the exact distributional properties of a composite

of mean squares are too complicated to be of practical utility

(e.g., Burdick & Graybill, 1988; Fleiss, 1971). However,

Satterthwaite (1941, 1946) suggested that the sampling

distribution of a linear combination of mean squares can be

approximated by the F distribution and recommended the use of

chi-square distribution in which the number of degrees of

freedom is chosen so as to provide good agreement between the

two.
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Several methods of approximation procedures for conducting

confidence intervals for variance components have been proposed,

and these (about ten approximation procedures including

Satterthwaite's) are empirically compared by Boardman (1974).

More recent work on variance component analysis and on the

confidence intervals for a linear combination or a ratio of

variance components in both balanced and unbalanced random

models is thoroughly reviewed and presented in Burdick and

Graybill (1988), and Khuri and Sahai (1985). In addition, two

bibliographies on this subject, Sahai (1979) and Sahai, Khuri,

and Kapadia (1985), provide a comprehensive coverage of variance

components and other related topics.

In practice, the variance components are usually estimated

through an ANOVA procedure. As is almost always the case with

real-world data, the estimation for mean squares, and thus for

variance components, from the sample data are always subject to

sampling error. This is particularly true with small samples.

Smith (1978, 1982), for example, conducted empirical studies to

investigate the sampling error of variance component estimates

based on small samples with a few conditions for each facet.

His results revealed that the variance component estimates are

unstable and sometimes negative. He further noted that the

confidence intervals for variance component estimates with a

small number of facet conditions are discouragingly wide.

Negative variance estimates are not uncommon in practice

(e.g., Khuri & Sahai, 1985; Shavelson & Webb, 1981; Verdooren,

1982). Several methods have been proposed to treat such a
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negative estimate (e.g., Brennan, 1983; Cronbach et al., 1972;

Searle, 1971). The most common method, among others, is setting

the negative estimates to zero and carrying the zero through

wherever that variance components enters the expected mean

square of another variance component. Another option is setting

negative estimates to zero, but using the negative estimate

wherever that variance components enters the expected mean

squares of another variance component.

As an alternative approach to variance component

estimation, Shavelson and Webb (1981) reviewed a Bayesian

approach, but they concluded that this approach is not well

enough developed to have widespread applicability. More

recently, Marcoulides (1990) empirically examined the

performances of restricted maximum Likelihood estimation (RMLE)

and compared it with ANOVA estimates. In most cases of his

simulations, RMLE provided estimates for the variance components

that are more stable and closer to the true parameter than those

from the least square estimation of ANOVA. He also found that

ANOVA estimates were more sensitive to nonnormal distributional

form and produced consistently incorrect estimates to a greater

degree than RMLE. Only in balanced data sets from normal

distributions did the two methods perform similarly. However,

he concluded that although the sampling variability of RMLE

estimates is smaller than that for ANOVA procedure, it is still

quite sizeable, and unfortunately RMLE does not completely solve

the problem of large sampling variability.
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D. Sampling theory of G coefficients

As shown in the previous sections, the formulation of the G

coefficient for relative decisions in the one-facet design is

exactly identical to Hoyt's formula for a reliability

coefficient, which in turn gives the same result as Cronbach's

alpha. Therefore, although the sampling theory derived by Feldt

and Kristof was for coefficient alpha, we use it here in the

context of a G coefficient for the one-facet design. We then

extend Feldt's approach to develop an approximate sampling

distribution of the G coefficient for the two-facet fully-

crossed design using Satterthwaite's (1946) approximation

procedure. The reason for using Satterthwaite's procedure in

the present study is that it is the most commonly used method

and generally works well in many applications for constructing

confidence intervals on the sum or ratio of variance components.

Some researchers reported that it provides somewhat liberal

intervals under certain conditions and suggested modified or new

procedures, but the complexities of the proposed methods are

overwhelming (e.g., Birch, Burdick, & Ting, 1990; Burdick &

Graybill, 1988). An additional reason for using Satterthwaite's

procedure lies in its simplicity. In addition, several

simulation studies have found that the quasi F is an acceptable

approximation to the conventional F as long as the total degrees

of freedom are relatively large (e.g., Davenport & Webster,

1973; Gaylor & Hopper, 1969). Hudson and Krutchkoff (1968) also

found that when the total number of observations was 64 or

greater no negative values of the quasi F were observed out of
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2000 simulations.

Following the presentation of the sampling theory of G

coefficients, the amount of bias in the sample estimate for the

one-facet design derived by Kristof (1963) is presented.

Additionally the derivation of an unbiased estimator for the

population G coefficient is presented and extended further to

the two-facet design. A subsequent modification is made in the

sampling distribution expressions for the unbiased estimator.

Then, variance expressions for the estimated G coefficient for

the one- and two-facet designs are presented. Finally, the

application of this theory is illustrated to construct a 100(1-

a)% confidence interval for the population parameter as well as

a (1 -a) probability tolerance interval for the sample estimate.

One-facet Design. In deriving the sampling distribution of

the estimated G coefficient for relative decisions, we start

with rearranging Equation [2-18] as:

[2-37]
MS - MSe^ 1

^G 1 - ^ = 1
MSp^MS / MSe

From the above expressions, it is evident that the sampling

distribution of AG 1 can be defined by derivation of the sampling

distribution of MSp/MS e . Suppose SS is a sum of squares on f

degrees of freedom, and MS is the corresponding mean squares.

Under the normality assumptions the quantity SS/E(MS) =

fMS/E(MS) is distributed as a chi-squared variable with f

degrees of freedom (Searle, Casella, & McCulloch, 1992, p.131).
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From this relationship, it can be shown that

[2-38]

 

f MSP P 
= x2 with df = f .

   

E(MS )

 

Thus,
MS
^ = X

2 /f with df = f = (n -1).
nr a

2 
p + a

2
e

Similarly,

[2-39]
MS e

,2,c
1-Le with df = fe = (np-1) (n r-1).

62 e

According to Craig's theorem (1938), these chi-squares are

independent of one another. In addition, ratios of two

independent x 2-variables, each divided by its degrees of

freedom, have F-distributions (Searle, et al., 1992, p.465)

Therefore, the ratio of the two quantities in [2-38] and [2-39];

namely,

[2-40]^
MSp / (nr 62p + 6

2
e )

MSe / 62e

is distributed as a central F with fp=(np-1) and fe=(np-1)(nr-1)

degrees of freedom. Rearrangement of this ratio yields:

[2-41]^
MS^62 e

MSe
2

r pn a + 62e
F (np-1) , (np-1) (nr -1).

By denoting the ratio MS p /MS e as Fobs meaning the "observed
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F", and the (n ra2p + 02 e )/0
2
e, which equals EMSp/EMS e , as Fpop

meaning the "population F", Equation [2-41] may be rewritten as:

[2-42]

Fobs (1/Fpop ) = F(np- 1),(np- 1)(nr- 1).

Since Fobs = 1/(1-AG 1 ) and Fpop = 1/(1-G 1 ), Equation [2-42] can

be rewritten as:

[2-43]
(1 - G 1 ) / (1 - AG 1 ) = F(np-1),(np-1) (nr-1).

Feldt (1965, p.362) noted that regardless of whether the

variance component a2p be zero or be greater than zero, the

ratio in [2-43] is distributed as a central F with (n -1) and

(np-1)(nr-1) degrees of freedom. This sampling property of AG ].

in [2-43] can be used to derive a variance expression for AG ' as

well as to define a critical region in inferential applications

for an unknown population parameter.

Two-facet Design. Following procedures similar to those

demonstrated above, we have extended Feldt's approach to develop

an approximate sampling distribution of G coefficients for the

two-facet design. First, the formula for the population G

coefficient in Equation [2-24] can be rearranged as:

[2-44]

1
G2 = 1

    

2
e + n

2^+ n G2^+ non G2
r po^o prra p

     

a2e + n a
2 + n 02r po^o pr

Similarly, Equation [2-25] can be rewritten as:
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[2-45]
1

AG2 = 1

 

MSP / (MSpo + MSpr - MSe )

It can be noticed that the ratio of the expected mean square

expressions in [2-44] has the proper structural requirements for

the F statistic for the test of 02P = 0. Therefore, as in the

one-facet design, the sampling distribution of AG2 can be

defined by derivation of the sampling distribution of [MSp/(MSpo

+ MSpr - MSe )] in [2-45]. However, because the estimated mean

squares in the denominator of [2-45] involves a composite of

different sources of variation, the sampling distribution of

this ratio (i.e., quasi F ratio) is not the usual F

distribution, and the exact distributional properties of this

ratio are too complicated to be of practical utility (e.g., see

Burdick & Graybill, 1988). Consequently, Satterthwaite (1941,

1946) suggested that the sampling distribution of the quasi F

ratio can be approximated by the usual F distribution and

recommended to use a chi-square distribution in which the number

of degrees of freedom is chosen so as to provide good agreement

between the two. For example, if W is a linear combination of

independent mean squares with v l , v2, ...vk degrees of freedom,

W = a 1MS 1 + a2MS2 + ...+ akMSk,

where ai is +1), then the quantity fW/E(W) is approximately

distributed as a chi-squared variable with f degrees of freedom,

where f is given by
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(I ai EMSi) 2
f -  ^(i = 1,2,...k).

I [(ai EMSi) 2 / vi]

Applying Satterthwaite's approximation to Equation [2-45],

we see that the sampling distribution of AG 2 can be defined by

considering the quantity [MS p / (MSpo + MSpr - MSe )]. From the

one-facet case, we know that the quantity (np-1)MSp/EMSp is

distributed as a chi-squared variate with (np-1) degrees of

freedom. Furthermore, the composite of mean squares (i.e., MS po

+ MSpr - MS e ) is approximately distributed as a chi-squared

variate with fa degrees of freedom (the subscript a denotes

'adjusted') given by:

[2-46]

f

 

(EMSpo + EMSpr - EMS e ) 2
a

EMS 2 
po^EMS 2 

pr^EMS 2
e 

(np-1) (n 0 -1)^(np-1)(nr-1)^(n -1) (no-1) (nr -1)

Therefore, the ratio of these two chi-squared variates in [2-47]

below is approximately distributed as an F-variate with degrees

of freedom equal to f l (np-1) and fa :

[2-47]

MSp / (6
2
e + n a2^+ n 62^+ n n 62 )r po^o pr^o r p

(MS^+ MSpr - MSe) / I er2^n (r2^n cy2(MSpo^pr^e + o- pr^r poi

Rearranging the terms in [2-47] yields the following:

[2-48]
poEMS + EMSSp^ pr - EMS e

MSpr + MS - MSe^ EMpr MSpo^Sp
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To be consistent with the terminology used in the one-facet

design, we again denote the first term and the reciprocal of the

second term of [2-48] as F obs and Fp0p, respectively, and

rewrite the expression as:

[2-49]

Fobs (1/FpoP )^F (f 1 , fa ).

^

Since Fobs = 1 / (1 - AG2 ) and Fpop = 1 / (1^G2), the equation

[2-49] can be rewritten as:

[2-50]
(1 - G2) / (1 - AG2 )^F (f1 , fa ).

This expression describes the distributional property of AG2,

which is precisely the same in form as in [2-43], except for the

degrees of freedom of the denominator, which involves the

Satterthwaite's procedure.

Bias of the sample estimates 

In this section the accuracy of the estimator for the one-

facet design is examined, and the desired unbiased estimator is

subsequently presented based on the work of Kristof (1963). The

results are directly extended to the two-facet design.

One-facet design. To show that the estimator AG 1 is

biased, we begin with Equation [2-43]. The reciprocal of the

ratio in [2-43] is also distributed as F with degrees of freedom

reversed, namely:

[2-51]
(1 - AG 1 ) / (1 - G 1 ) = F(np-1) (nr-1),(np-1).
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Let f 1 = (np-1)(nr-1) and f2 = (np-1). Denoting the expected

value of AG 1 by E(AG 1 ), it follows that

[2-52]
E(AG1) = 1 - (1-G 1 ) E[F(f l ,f2)].

Since the expected value of the F distribution is [f2 / (f2 -

2)] (Winer, 1971, p.832), substituting this for E[F(f 1 ,f2 )] in

[2-52] yields:

[2-53]
f2 

E(^G1 ) = 1 - (1 -G1) [^]
f2 - 2

Replacing (np-1) for f2 , with some simplication, yields

[2-54]

E(AG1) =
G 1 (np -1) - 2

np - 3

From [2-54], it is apparent that E(^G i ) is not equal to the

population parameter G 1 , except for the unrealistic case G 1 = 1.

Thus, ^G i is biased and tends to underestimate the population

parameter G1 . In addition, this bias becomes larger for a

smaller population parameter and is independent of n r , the

number of levels of the facet. Kristof (1963, p.232) presented

the desired unbiased estimator of G 1 , ^Gu l , in relation to ^G 1

as follows:

[2-55]

^Gui =
"G 1 (np-3) + 2

np - 1
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From this the sampling distribution of unbiased estimator, AGu l ,

can be easily derived by replacing [AGu i (np-1) - 2]/(np-3) for

AG 1 in the denominator of the equation [2-51], with some

simplication, as:

[2-56]
- 3nP^1 - G 1 ^- F (np-1) , (np- 1) (nr - l) •

np^1^1

Two-facet design. As can be expected from the structural

similarity in the sampling distribution between AG 1 and AG 2 in

the previous section, the unbiased estimator of G2, ^Gu2, is

precisely the same as that in the one-facet design. That is,

the amount of bias is the same for both AG 1 and AG2.

Furthermore, it is also independent of the Satterthwaite's

adjusted degrees of freedom, namely:

[2-57]

AGu2 =
AG2(np-3) + 2

n - 1

Replacing [AGu 2 (np-1) - 2]/(np-3) for AG2 in the denominator of

Equation [2-50], the sampling distribution of the unbiased

estimator AGu 2 can be derived as:

[2-58]
nP - 3^1 - G2

F (f 1 , fa ) .

   



58
Mathematical Development

Variance expression for the sample estimates 

The variability of the distribution of the estimates is an

important aspect for assessing the performance of the estimator

and also can be used as a means for comparing the variabilities

of the theoretical and empirical distributions. Therefore, we

now derive the variance expression of AG1 and AG2, using the

properties of the F distribution.

One-facet design. In deriving the variance expression for

AG ' , we start with Equation [2-51], namely:

(1 - "G1) / (1 - G 1 ) = F(f l ,f2 )

where, f1 = (np-1) (nr-1) and f2 = (np-1). From this it follows

that

[2-59]
AG1 = 1 - (1-G 1 ) F(f l ,f2 ).

Thus, the variance expression for AG1 , var(AG1 ), can be written

as:

[2-60]
var(AG1) = var[1 - (1-G 1 ) F(f 1 ,f2 )]

= (1-G1) 2 var[F(fl,f2)].

The variance of the F distribution is given in Winer (1971,

p.832) as:

[2-61]^
2 f2 2 (f 1 + f2 - 2)

var[F(fl,f2)] -

  

f 1 (f2^2)2(f2^4)^•

Replacing f 1 = (np-1)(nr-1) and f2 = (np-1) in [2-61] yields:
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[2-62]

var[F(f l ,f2 )] =
2(np-1) 2 [(np-1)(nr-1) + (np-1) - 2]

 

(np-1)(nr-1)[(np-1) - 2] 2 [(np-1) - 4]
•

Therefore, the theoretical variance expression of AG ' , with some

simplication, can be written as:

[2-63]
2(np-1)[nr(np-1) - 2]

var(AG 1 ) = (1-G 1 ) 2 {^  1.
(n r-1)(np-3) 2 (np-5)

And, from the relationship between AG 1 and AGul shown in [2-55],

we find that the variance expression of AGu l , in relation to

AG1, is:
var(AGu i ) = [(flp - 3)/(flp-1)] 2 var(AG 1 ).

It is apparent from Equation [2-63] that the variability will

increase as G1 becomes smaller for a fixed n p and nr . For

example, the theoretical standard deviation of AG 1 in a

simulated condition with G 1 = .60, np = 30, and n r = 5 would be

.1349 = [(.0625)(.1138)] 1/2, which is considerably larger than

.0337 = [(.01)(.1138)] 1 / 2 for G 1 = .90 with the same np and nr.

The estimate of the var(AG 1 ), in practice, can be obtained by

substituting an AG ' for G 1 in the calculation.

Two-facet design.^The variability of the distribution of

AG2 also follows precisely the same structure as that in the

one-facet design, except for the associated degrees of freedom.

Following the same steps, starting from the reciprocal of

Equation [2-50], i.e., (1-AG2 ) / (1-G 2 )^F (fa , f 1 ), we derive
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the variance expression of AG2 as:

[2-64]
var(AG2) = var[l - (1 - G2 ) F(fa ,f 1 )]

= (1 - G2 ) 2 var[F(fa ,f 1 )].

where, fa is defined in [2-46], and f 1 = (np-1).

The variance of the F distribution with fa and fl = (np-1)

degrees of freedom is:

[2-65]

fa [(np- 1) - 2] 2 [(np- 1) - 4]

Thus, theoretical variance expression of AG2 , with some

simplication, can be written as:

[2-66]

and that of AGu2 as:

var(AGu2) = [(np-3)/(np-1)] 2 var(AG2).

For example, the theoretical standard deviation of AG2 in a

simulated two-facet condition with G2 = .90, np = 30, no = 3, nr

= 5, and fa = 76.91 (from Equation [2-46] with EMS po=66,

EMSpr=55, EMS e=31) would be .0353 = [(.01) (.1246)] 1 / 2 . The

estimate of the var(AG2 ), in practice, can be obtained by

substituting the sample estimates, AG2 and Af a , for G2 and fa in

the calculation.

var[F(fa,f1)] =
2(np-1)2[fa + (nP -1) - 2]

2(n -1) 2 [fa + np - 3]
var(AG2 ) = (1-G2)2 ^P{^ ).

fa (np-3) 
2 (nP -5)
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Inferential application of the sampling theory

The sampling distributions presented previously are now

applied to construct a 100(1-a)% tolerance interval for the

sample estimate for a given population G value as well as to

establish a 100(1-a)% confidence interval for an unknown

population G value.

One-facet design. From Equation [2-43] we know that the

ratio (1-G 1 )/(1-AG 1 ) is distributed as an F with (np-1) and (np

-1) (nr-1) degrees of freedom. From this, we can construct a

100(1-a)% tolerance interval for the sample estimate as follows.

If the probability (P) of [F L < F < Fu ] = 1 - a, then we may

rewrite this as:

[2-67]

1 - a = P [ FL <
1-G1

FU ]
1 -AG i

where, FL is the lower a/2 percentage point and F u is the upper

(1-a/2) percentage point of the F distribution with degrees of

freedom (n -1) for the numerator and (n -1)(n r-1) for the

denominator. Further manipulations of the inequality

relationship above yields:

[2-68]
1-AG1

1- a= P[ 1/FL > ^ > 1/Fu ]
1-G 1

1-G 1^1-G1
= p [^ > 1^AG1 > ^ ]

FL^Fu

1-G1^ 1-G 1
= P [ 1^AG1 < 1

FL^Fu
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Following the same steps and denoting the quantity (np- 3)/(np- 1)

by M in Equation [2-56], we can also derive a 100(1-a)%

tolerance interval for the unbiased sample estimate as:

[2-69]

1 - a = P [ FL <
M(1 -G 1 )

FU ]

 

1 -AGui

M(1 -G 1 )
^

M(1 -G 1 )
P [ 1

 

< AGu i < 1

  

FL^FU

The last expression of [2-68], which describes a (1-a)

probability statement for the sample estimates, provides the

basis for describing the sampling distribution of AG 1 .

Consider, for example, a simulated measurement condition with G i

= .90, np = 30, and n r = 5. The lower and upper limits for a

90% tolerance interval for the AG 1 , since FL(29, 116) - .5882 and

FU(29,116) = 1.5653 from F distribution, would be:

1 - (.10/.5882)^< AG1 < 1 - (.10/1.5653)

= .8300 < AG ' < .9361.

If we obtain 2000 sample estimates from the above condition in

the simulation, we expect 5% of them to fall beyond either the

lower or upper limit and the remaining 90% within the two

limits. Moreover, the empirical percentage of the unbiased

sample estimates falling beyond either limit in the last

expression of [2-69] would be identical since both limits of the

tolerance interval for the unbiased sample estimates will be
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shifted upwards correspondingly.

A 100(1-a)% confidence interval for an unknown population G

coefficient also can be constructed similarly by manipulating

the inequality relationship, starting from Equation [2-67]. The

resulting formula for a 100(1-a)% confidence interval for G 1 is:

[2-70]
1 - a = P[ 1 - (1-AG 1 )Fu < G 1 < 1 - (1-AG1)FL 1,

and a 100(1-a)% confidence interval using an unbiased estimator

is:

[2-71]
(1-AGu1) Fu^(1-AGu1) Fu

1 - a = P[ 1   < G l < 1
M^ M

The empirical percentage of 2000 confidence intervals that fail

to include the population G value in either lower or upper

direction would be essentially the same as the empirical

percentage of 2000 sample estimates that fall beyond either

limit of the tolerance interval. Therefore, using either

tolerance interval or confidence interval approach, it is

possible to assess and compare the sampling behavior of the

estimated G coefficients under various simulated sampling

conditions.

Two-facet design. The procedures presented for the one-

facet design are directly extended to the two-facet design.

Since the resulting equations for the two-facet design are

precisely the same in form as those in the one-facet design,

only the final equations for the tolerance interval and
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confidence interval are presented below. A 100(1-a)% tolerance

interval for the sample estimate in the two-facet design is:

[2-72]
1-G2^ 1-G2

1 -a=P[ 1   < AG2 < 1  ^],
FL^FU

and that for unbiased estimator is:
[2-73]

M(1-G2 )^ M(1-G2)
1 -a=P[ 1   < AGu 2 < 1   ]

FL^FU

A 100(1-a)% confidence interval for the population G2 is:

[2-74]
1 - a = P[ 1 - (1-AG2 )Fu < G2 < 1 - (1-AG2)FL ],

and that for an unbiased estimator is:

[2-75]
(1-AGu2) F u

1 - a = P[ 1   < G2 < 1
(1 -AGu2) Fu

l

 

M^ M

It should be noted that to construct the lower and upper limits

for a 100(1-a)% tolerance interval for the sample estimate, the

denominator degrees of freedom, f a , for determining the critical

F value should be calculated based on expected mean squares.

However, to establish a 100(1-a)% confidence interval for an

unknown population G2 , the fa is estimated using the observed

mean squares, instead of expected mean squares. In both cases,

the degrees of freedom f a is in general fractional as it

involves the Satterthwaite's approximation. Thus, it can be

rounded off, in practice, to the nearest integer. In the

present study, we obtained an exact critical F value using a



65
Mathematical Development

fractional fa by referring to F-inverse function in the

International Mathematical and Statistical Library (IMSL, 1991).

Nevertheless, as in the one-facet design, either the tolerance

or confidence interval approach can be used to assess and

compare the sampling behavior of the estimated G coefficients

under various simulated sampling conditions in the two-facet.
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CHAPTER THREE: METHODS AND PROCEDURES

Overview of problems and simulation conditions 

As shown in the previous chapters, G theory is formulated

based on a form of repeated measures ANOVA models, and a sample

estimate of G coefficient is calculated based on mean squares

obtained from the ANOVA procedure. Moreover, the sampling

theory of G coefficients was developed under the conditions in

which the underlying ANOVA assumptions are fully met. However,

knowing that violating compound symmetry or circularity

assumption in repeated measures ANOVA resulted in more variable

mean squares, (which in turn inflated Type I error rates in the

F test) it is somewhat conceivable that more-variable mean

squares would produce particularly a small or a large estimated

G coefficient when circularity assumption failed.

There is, however, virtually no research that has

investigated the effect of noncircularity on the magnitude of

the estimated G coefficient, nor on the robustness of the

sampling theory of G coefficient under the violation of compound

symmetry or circularity assumption. To systematically examine

the effect of noncircularity on the estimated G coefficient, the

present study employed Monte Carlo procedures.

In defining the simulation conditions of interest, we first

considered the characteristics of population epsilon (and of its

estimate). As shown in Appendix B, Box's (1954) epsilon (E),

which is a measure of the degree of departure from compound

symmetry or circularity, is a function of the variances and

covariances in the population matrix. When the matrix fulfills
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compound symmetry or circularity condition, e = 1.0; otherwise, E

< 1.0, with a minimum of 1/(k-1), where k = the number of

repeated measures. In other words, a matrix whose covariance

elements are all equal, yields epsilon equal to unity; whereas a

matrix whose covariance elements are further away from each

other, produces a lower epsilon (given that the variances are

constant).

Since each covariance element influences on the calculation

of epsilon, there are numerous different patterns of the

covariance matrix that can yield the same epsilon value.

Therefore, by systematically varying the average of the

covariance elements (i.e., different population G values) in the

matrix for a given epsilon value we will be able to investigate

whether the effect of noncircularity is the same, regardless of

the covariance structure as long as the covariance matrices

produce an equal epsilon value. Furthermore, by constructing

covariance matrices with a varying degree of noncircularity for

a given population G value, we can compare the effect of

noncircularity on the sample estimate of G coefficient as well

as a possible interaction between the levels of the two

population parameters (i.e., E and G).

Since Box's work, epsilon estimate (i.e., AE due to

Greenhouse and Geisser, 1959; or -E due to Huyhn and Feldt,

1976) has been widely used to correct a possible positive bias

in the F test. However, despite its wide use, the sampling

properties of epsilon are unknown and rarely investigated. It

can be speculated though that a sample covariance matrix is
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always expected to exhibit some degrees of violation of the

condition, even though the population matrix does not. In

addition, because of the theoretical lower limits on E, it is

more likely that an epsilon estimate (Ae) for a population E <

1.0 (say, E = .50) would be smaller in a measurement design with

a large number of k than that with a small number of k.

Therefore, by varying the number of repeated measures (k), we

will be able to examine the sampling behavior of the estimated G

coefficient in relation to the magnitude of epsilon estimate for

a given population G and E, as well as across different G and E

values.

Another consideration in defining the simulation conditions

of the present study stemmed from Cohen's (1983) work on the

effect of dichotomization. Cohen showed that dichotomization of

two continuous variables at their respective means resulted in

considerable amount of loss of measurement information, which

reduced the original correlation by a factor of .637. The

implication of Cohen's work suggests that when categorization is

performed on continuous data generated from a population matrix

with heterogeneous covariances, we would expect that it alters

the structure of the covariance matrix since it would probably

reduce the magnitude of the covariances disproportionately,

depending on the size of each covariance element. As a result,

the categorization not only reduces the magnitude of covariances

(or correlations), and thus G coefficient as well, but also

affects the degree of noncircularity in the resulting covariance

matrix for categorical data. Therefore, by incorporating data
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categorization into the simulations, we can examine the relative

bias introduced into the estimated G due to categorization, in

comparison to the parent continuous data. Moreover, this will

allow us to investigate the extent to which the effect of data

categorization interacts with the other simulation conditions

mentioned above.

As in any simulation study which deals only with a

restricted range of the populations of interest, the present

investigation was also limited to the G coefficients for

relative decisions in the single-facet and two-facet fully-

crossed balanced designs. To investigate the magnitude of the

estimated G coefficient and its empirical sampling distribution,

under various sampling conditions, we incorporated five

population parameters into simulations for the one-facet design,

and some of the conditions were further incorporated into the

two-facet design in simulation II. The following presents the

sampling conditions simulated in both designs, each followed by

detailed explanations for specific procedures implemented in the

simulations.

Simulation I: One-facet design

Sampling Populations 

Five independent variables were incorporated into the one-

facet design. There were: (1) three different levels of the

facet, k = 3, 5, and 7; (2) three generalizability coefficients,

G 1 = .60, .75, and .90; (3) three epsilon values, E = .5, .7,



70
Methods and Procedures

and 1.0 (the first two were approximated values); (4) three

sample sizes, n = 15, 30, and 45; and (5) six measurement

scales, continuous (C), normal 5-point (N5), uniform 5-point

(U5), normal 3-point (N3), uniform 3-point (U3), and uniform 2-

point (U2). The preceding combination of design conditions

resulted in 486 data sets simulated (3 x 3 x 3 x 3 x 6).

Although the range of the parameter values considered above

would not be sufficient to represent all that could exist in

practice, these values were the most commonly observed

conditions in published studies. For example, Smith (1978)

noted that observational studies employing G theory usually

involve about 3-5 levels (or conditions) for each facet. Thus,

the range of 3-7 levels of each facet will reflect most

situations. The values of the G coefficients were chosen to

represent the range from a poor (.60) to a good (.90) indication

of a measurement process. With respect to the covariance

structure, epsilon (Box, 1954) was used as a measure of

departure from the compound symmetry or circularity conditions.

The values of epsilon were set to represent severe violation

(.50), moderate (.70), and no violation (1.0) (e.g., Huynh,

1978). The range of response categories (i.e., a 2- to 5-point

scales) was chosen by considering the results of empirical

studies on the effect of the number of scale points on the

reliability estimation (e.g., Cicchetti, Showalter, & Tyrer,

1985; Jenkins & Taber, 1977; Lissitz & Green, 1975). These

studies demonstrated in general that the reliability of a test

quickly levels off for anything beyond a 5-point scale.
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Finally, the range of sample sizes was chosen to represent most

practical situations in observational research with a rather

small or moderate sample size. For example, Smith (1978)

considered sample sizes of 25, 50, and 100 as small, moderate,

and moderate-to-large samples in his simulation study.

We would like to point out here that the condition of

heterogeneity of variance across the levels of k, (i.e., a ratio

of .6 to 1.4 among the variances), was originally incorporated

into the simulation in order to investigate the effect of

unequal variances on the sample estimates of interest. However,

the results from preliminary simulations with k = 5 showed that

there were no noticeable differences in the estimates between

the equal and unequal variances conditions. Thus, these

conditions were eliminated from the present study.

Parameter Specification 

The model used for data generation in the single-facet

design was the two-way (Persons by Raters) random effects ANOVA

model. Under the usual assumptions, the total variance in the

design is expressed as:

[3-1]^
a2

x = 62p + 62 r + a
2 e .

From this, a population G coefficient for relative decisions can

be defined as:

[3-2]

G1
02P

02p + a
2 e /n r
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Alternatively, it also can be expressed in terms of parameters

of the population covariance matrix constructed over persons as:

[3-3]
k cov

G1 =

 

(where, k = nr ).

 

var + (k-l)cov

Since the term a 2 r is not included in the calculation of G

coefficient, it was not included (i.e., set to zero) in the data

generation. In addition, the expected variance 6 2 x , the mean of

the diagonal elements of the population covariance matrix, was

set to 100. It follows from the formula [3-3] that the average

of the covariances, and thus the error variance (i.e., var-cov),

can be defined for a fixed value of the population G coefficient

and a fixed level of the repeated measurements, k. Therefore,

these specifications allowed for the generation of a data set

from a k-variate normal distribution with a particular

covariance matrix as input in the simulations.

A computer program written on Turbo PASCAL was developed to

automate computational procedures involved in constructing

population matrices of interest. With specified population G

and k values, the computer program first constructs a population

covariance matrix with an epsilon equal to unity (i.e., all

covariances are equal). The procedure was repeated to obtain

nine matrices, three matrices under each of k = 3, 5, and 7.

Second, each of nine matrices was further manipulated by varying

the range of the covariances, while keeping the average

constant, in such a way that the resulting population matrix

possesses a desired epsilon value, either a moderate (.70) or a
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low value (.50) of epsilon. In addition, the pattern of

covariances in these matrices was so arranged that it resembled

a simplex structure (i.e., the covariance element decreases as

one moves away from the main diagonal) or a form of moving

average model (i.e., the covariance element away from the main

diagonal becomes zero).

Table 3-1.

Characteristics of population parameters in the covariance
matrices used for data generation in the one-facet design

k G : Low

Epsilon

Medium High G2 
P

62
e

3 .90 : .5268 .7051 1.00 75 25
.75 : .5395 .7051 1.00 50 50
.60 : .5389 .7088 1.00 33.33 66.67

5 .90 : .5001 .6930 1.00 64.29 35.71
.75 : .5179 .7061 1.00 37.5 62.5
.60 : .5047 .7066 1.00 23.08 76.92

7 .90 : .5069 .7024 1.00 56.25 43.75
.75 : .5080 .7046 1.00 30 70
.60 : .5135 .6993 1.00 17.65 82.35

Unfortunately, there are an infinite number of ways to make

an epsilon less than unity for a given G and k because each

covariance element influences the epsilon computations.

Although the computations of epsilon were fully automated with

the computer program, the process to obtain epsilon values close

to each other across conditions, while keeping the covariance

matrix positive definite, was not an easy task. Because an

exact method of doing so was not available, at least to the
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researcher at this time, it was based on trial-and-error

attempts. Eventually, there were a total of 27 population

covariance matrices generated, each defined by a combination of

three sampling parameters, G, E, and k (see Table 3-1), which

met the desired conditions. (All 27 population covariance

matrices are presented in Appendix B.)

Data Generation 

A FORTRAN 77 program under UNIX at the University of

British Columbia was developed to conduct the simulations.

Simulations were performed in the following order; first, each

population covariance matrix was used as input to generate a

population (N=90000) of continuous data from a k-variate normal

distribution with a mean vector of 50 for each of k levels using

a subroutine DRNMVN in the International Mathematical and

Statistical Library (IMSL, 1991). Second, the simulated

population continuous data were independently transformed into a

Likert-scale with respective scale proportions of normal and

uniform distributions as shown in Table 3-2. To be more

precise, the mean (m) and standard deviation (s) of a simulated

population continuous data (N=90000) were first computed. Then,

the computed m and s, along with a normal deviate score (z) that

corresponds to a specified scale proportion, were used to

compute a cut-off point (c) for each measurement scale by the

formula: c = zs + m. The rationale for doing the data

transformation in this manner was based on an assumption that

the population of the observed Likert-scale data has an



75
Methods and Procedures

underlying continuous metric with normal (or uniform)

distribution characteristics. Both continuous and dichotomous

data served as baselines in comparing the performance of G

coefficients obtained from the simulations. Third, within each

of the simulated population data sets (N=90000), a sample size

of 15, 30, and 45 per analysis was sequentially selected (for

n=15 every third line of the data was selected). Finally,

analyses were performed in order to obtain the following sample

estimates; mean square, G coefficient, epsilon, confidence

interval, F ratio, correlation between the estimates, and other

seemingly necessary information. All computations were done

with a double-precision FORTRAN 77 routines. The IMSL

subroutines used in the FORTRAN program for the one-facet were:

DRNMVN, RNSET, UMACH, DCHFAC, DCORVC, DFDF. For all data sets

simulated, 2000 replications were performed for each sample

size.

Table 3-2

Scale proportions of transformed data

Distribution^Scale Point^Scale Proportions(%) a

Normal

Uniform

C^Continuous
3^27 46 27
5^11 24 31 24^11

2^50 50
3^33 33 33
5^20 20 20 20^20

a The scale proportions for the normal distributions are based
on Cox's (1957) 'optimum grouping' scale proportions.
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Simulation II: Two-facet design

Design specification 

The focus of the investigation in the simulation II was on

the two-facet (3 Occasions by 5 Raters) random effects model.

The choice of this design and its dimensions was rather

arbitrary, but based on practical considerations in

observational studies. The two-facet, fully-crossed design has

received extensive treatments in most published texts and

tutorial papers (e.g., Brennan, 1983; Cardinet et al., 1976;

Shavelson & Webb, 1991) because of its broad range of

application in practice. Particularly, the two-facet design has

been applied to a wide range of behavioral research to deal with

measurement problems since modifications of the design (e.g.,

treating a facet as a fixed or nested facet) can easily lead to

the formulation of G coefficients for various decision studies

(e.g., Brennan, 1983; Cronbach et al., 1972). In addition,

unlike educational or psychological test development studies,

most observational studies employing G theory rarely involve a

large number of conditions of a facet due to practical

constraints in real world. Therefore, we felt that the 3 by 5

two-facet random effects model would adequately reflect a

typical observational study in practice.

Sampling Populations 

The same four independent variables that were used in the

one-facet design, except for the variation of the levels of the

facet, were incorporated into the two-facet design. There were:
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3 G values, 3 epsilon values, 3 sample sizes, and 6 measurement

scales. The combination of these parameter conditions resulted

in 162 data sets simulated (3 x 3 x 3 x 6), each having 2000

replications.

Parameter Specification 

The model used for data generation in the two-facet design

was the three-way (Persons by Occasions by Raters) random

effects ANOVA model presented in chapter II. Under the usual

assumptions, the total variance in the design is expressed as:

[3-4]^
62x = G

2
p + 6

2 + a2 r + 62p0 ^a2prpr 6̂2 or ^a2
or^e•

From this, a G coefficient for relative decisions for this

design can be defined as:

[3-5]^
a2

G2 =

  

a2p

02 02^2
+ ^po 

+ 
^pr + a e

no^nr^n no r

Since the terms a2 r , a2 0 , and a2 r0 are not included in the

calculation of the G coefficient, they were not considered

(i.e., set to zero) in the simulations. In addition, the

expected variance a2 x , the diagonal elements of the population

covariance matrix, was set to 100 in all matrices (as in

simulation I). As in the one-facet design, these specifications

allowed for the generation of a data set from a multivariate

normal distribution with a particular covariance matrix as

input.
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With respect to the construction of the population

covariance matrices that would yield the desired population G

values in the simulation II, we defined and expressed the

magnitude of variance components in terms of the variances and

covariances of the population matrix (see Brennan, 1983, p.99).

Consider, for example, a two-facet, fully-crossed design with 3

and 5 levels of the Occasion and Rater factors, respectively.

Table 3-3 illustrates a covariance matrix of 15 x 15 partitioned

into nine 5 x 5 submatrices. The 5 x 5 submatrix Eij contains

the covariances among the five levels of the R factor under each

level of the 0 factor. Therefore, an overall 15 x 15 matrix in

Table 3-3 consists of three types of covariances: (a) one has

levels of R in common, but different levels of 0, and these are

the diagonal elements of submatrices E12 , E23 , and E13 [i.e.,

cov(OiRi 3 OirRi]; (b) the second type has levels of 0 in common,

but different levels of R, and these are the off-diagonal

elements of submatrices Ell, E22, and E33 [i.e.,

cov(OiRi 3 OiRil]; and (c) the third type has neither levels of 0

nor levels of R in common, and these are the off-diagonal

elements of submatrices E 1 2, E23, and E13 [i.e.,

cov(OiRi 3 OisRi,]. These three types of covariances are directly

related to the variance components in the model as described in

the second half of Table 3-3. Therefore, for a fixed level of

the facets, an appropriate specification of the variance

component values will lead to the construction of a population

covariance matrix with a desired G coefficient.
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For each population G value, the variance components alp

and a2e were first determined by solving the equations [3-4] and

[3-5] simultaneously under the conditions a2po = a2pr = 0 and

a2 0 =47 2 r =6 2 or = 0. Under these constraints, the formulas [3-

4] and [3-5] are precisely the same in form as those in the one-

facet design: a2x = 02p + 432 e = 100 and G2 = [a lp / (a2p +

a2e /nonr )], respectively. The obtained value for alp and 02 e

from these formulations is a minimum and a maximum value,

respectively, for a given G, n o and nr in a sense that any value

beyond this limit would result in a negative value for a2 po

and/or a2pr . Since we wanted a positive value, instead of zero,

for the variance components for G2p0 and a2pr , otherwise the

resulting covariance matrix would exhibit a compound symmetry,

further computations were done by increasing the minimum value

of alp by a specified amount until the value of a 2e became

negative. All computations were fully automated by a computer

program, written on Turbo PASCAL for the two-facet design, which

calculates and prints out a set of suitable variance component

values. When a selection is made, the subsequent routines of

the program construct and print a 15 x 15 covariance matrix on

the computer screen on which further manipulations can be made.

This procedure was repeated to determine a covariance matrix for

each of three population G values. The resulting three matrices

exhibit the local circularity property for all three terms

(Occasion, Rater, and their interaction).
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Table 3-3

Partitioned covariance matrix for the two-facet design

Level^01^02^03

01^Ill^112^113

02^121^122^123

0 3^E31^132^133

Note: Each Eij is a 5 x 5 matrix containing the covariances of

the five levels of the R factor.

a) a2x equals the average of the diagonal elements of Ell ,

122, and E33 .

b) (a2P + 62po ) equals the average of the diagonal elements of

112 , 123, and E1 3.

c) (62P + a
2 pr) equals the average of the off-diagonal

elements of Ell, 122, and E 33 •

d) 62p equals the average of the off-diagonal elements of E 1 2,

E23 , and En.

e)^62e = a - (b - d) - (c - d ) - d.

The next step involves the construction of a covariance

matrix in such a way that one or more factors deviate with some

degrees from the local circularity conditions. In doing so,

each of the three matrices were further manipulated by varying

the pattern and/or range of relevant covariance elements in a

submatrix, while holding the mean constant. The matrix was

again so arranged that the pattern of the resulting matrix

resembles a simplex structure in an appropriate submatrix, while
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retaining it as a positive definite matrix. After each

modification in the covariance element(s), the computer program

computed three epsilons from orthonormally transformed

submatrices: (1) a (n 0-1) x (n0-1) matrix for Occasion; (2) a

(nr-1) x (nr-1) matrix for Rater; and (3) a (n 0-1) (nr-1) x (n0 -

1)(nr-1) matrix for the Occasion by Rater interaction term.

This process was again based on trial-and-error attempts and

repeated until a desired epsilon value for each term was

obtained. There were a total of 9 population covariance

matrices, each with a desired G value and three epsilon values.

Table 3-4 presents the characteristics of population conditions,

along with variance components related to each matrix. (All nine

population covariance matrices are presented in Appendix B.)

Table 3-4

Population characteristics of the nine covariance matrices

Variance Component^Epsilon

Matrix e^G: a2p a
2
po a

2
pr a

2
e

 

0^R^OR

1^NONE^.90:^54^7^8^31^1.0^1.0^1.0
2^0/OR .90:^54^7^8^31^.6729 1.0^.6752
3^R/OR .90:^54^7^8^31^1.0^.6810^.4495

4^NONE^.75:^34^17^18^31^1.0^1.0^1.0
5^0/OR .75:^34^17^18^31^.6543 1.0^.6742
6^R/OR .75:^34^17^18^31^1.0^.6810^.5673

7^NONE .60:^22^24^23^31^1.0^1.0^1.0
8^0/OR .60:^22^24^23^31^.6552 1.0^.6542
9^R/OR .60:^22^24^23^31^1.0^.6566 .5149

Note: 0 = Occasion, R = Rater, and OR = the interaction
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As seen in Table 3-4, within each population G value, there

were three covariance matrices, each having a different

condition of violation of local circularity: (1) none of the

three terms violates the local circularity (NONE); (2) only the

Occasion and OR interaction terms violate the local circularity

(0/OR); and (3) only the Rater and OR interaction terms violate

the local circularity (R/OR).

Note that the variance component for a2 e is kept constant

across all matrices. This was done on purpose. The reason was

that because it is the same measurement design used across

conditions, it is unlikely that the magnitude of the unmeasured

and random sources of variation confounded with three-way

interaction would vary, assuming that a person's trait remains

constant over the conditions of the facets. Thus, any reduction

in the G value would be more attributable to the inconsistency

of ratings among raters themselves within an occasion and/or to

the variations in ratings from one occasion to another, rather

than due to a certain time interval or situational interferences

in a measurement setting. Although the magnitude of variance

components were chosen somewhat arbitrarily, we felt that their

relative proportion may adequately reflect a common measurement

setting in observational studies.

Data Generation 

The nine population covariance matrices were used as input

in the simulation program for the two-facet written on FORTRAN

77 under UNIX in order to generate a population (N=90000) of
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continuous data from a multivariate normal distribution using an

IMSL subroutine. The same procedure as in the one-facet design

was used to transform each of the 9 simulated population data

independently into a Likert-scale form. This resulted in 54

data sets, from each of which a sample size of 15, 30, and 45

per analysis was sequentially selected. For all data sets

simulated, 2000 replications were performed, and the following

sample estimates computed from each analysis; mean square, G

coefficient, epsilon, confidence interval, quasi F ratio,

Satterthwaite's degrees of freedom, correlation between the

estimates, and other seemingly necessary information. All

computations were done with a double-precision FORTRAN 77

routines. The IMSL subroutines used in the FORTRAN program for

the two-facet were: DRNMVN, RNSET, UMACH, DCHFAC, DCORVC, DFDF,

DFIN.
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CHAPTER FOUR: RESULTS AND DISCUSSION

In this chapter the results of Monte Carlo simulations for

the one-facet and two-facet designs are presented. First, the

effect of categorization on the G coefficient based on simulated

population data (N=90000) across the simulated conditions is

examined. It was presumed that the simulated population data

set was large enough to describe the population characteristics

of the G coefficient across the simulated conditions, and thus

would serve as a baseline for investigating the sampling

behavior of estimated G coefficients. Second, sample estimates

of the G coefficient, and the empirical variability of these

estimates, are compared across simulated sampling conditions to

investigate the degree of precision and efficiency of the sample

estimate. Third, the empirical percentage of the sampling

distribution of the estimates are compared to the corresponding

theoretical values to assess the adequacy and robustness of the

sampling theory of the G coefficient. Finally, the empirical

percentage of Type I error rates of a conventional F test (in

the one-facet design) and quasi F ratios (in the two-facet

design) for the 'trial effect' are presented and compared to

previous findings in related literature. The primary purpose of

this component of the study was to provide verification of the

simulation procedures used in the present study. In relation to

the Type I error rates, the empirical performance of epsilon is

examined, and its effect on the Type I error rate across

categorical scales is discussed.
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Simulation I: One-facet design

A. Calculated population G coefficient (Gcp )

Table 4-1 summarizes the effects of categorization of

continuous data on the G coefficient across the levels of E, G,

and k. The values in each line in Table 4-1 were based on a

unique simulated population of N=90000 (i.e., 27 different

simulated populations). The G coefficient calculated on the

simulated population data was named the calculated population G

(Gcp ), in order to distinguish it from the population G defined

in the simulation conditions.

As can be seen in Table 4-1, the Gcp under the continuous

data (C) was virtually identical with the corresponding

population G value, and consistently so across the levels of e

and k. However, under the categorical scales, the Gcp decreased

considerably as the scale approached a uniform 2-point scale.

For example, the Gcp was reduced by about .02-.03 from C to a 5-

point scale (N5 and U5), .06-.07 from C to a 3-point scale (N3

and U3), and .11-.13 from C to a uniform 2-point scale (U2).

This decrease was consistent across the 3 levels of G values in

terms of absolute magnitudes. However, relative to the

magnitude of G, the reduction in Gcp was greater for the two

smaller G values. A similar trend, but a slightly less

reduction, was shown in G cp across the categorical scales for k

= 5 and k = 7.

There appears to be no effect of heterogeneity of

covariance (E) on Gcp for continuous data as the Gcp wascp^ cp

virtually identical across the levels of E within the same G
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Table 4-1

The effect of categorization of continuous data on the G
coefficient (Gcp ) with simulated population data (N=90000)

k G E: C N5 U5 N3 U3 U2 (C-U2)

3 .90 H: .9006 .8743 .8737 .8376 .8421 .7802 .1204
M: .9006 .8749 .8750 .8395 .8447 .7875 .1131
L: .9006 .8750 .8764 .8448 .8479 .8000 .1006

.75 H: .7511 .7206 .7139 .6765 .6740 .6020 .1491
M: .7509 .7219 .7181 .6807 .6813 .6155 .1354
L: .7509 .7234 .7237 .6879 .6915 .6386 .1123

.60 H: .6010 .5718 .5612 .5256 .5232 .4558 .1452
M: .6008 .5735 .5710 .5345 .5349 .4823 .1185
L: .6007 .5788 .5849 .5558 .5603 .5357 .0650

5 .90 H: .9006 .8813 .8783 .8518 .8527 .8007 .0999
M: .9006 .8816 .8795 .8535 .8551 .8044 .0962
L: .9005 .8819 .8805 .8552 .8574 .8095 .0910

.75 H: .7510 .7256 .7181 .6886 .6847 .6186 .1324
M: .7503 .7265 .7200 .6900 .6892 .6274 .1229
L: .7500 .7272 .7247 .6948 .6958 .6438 .1062

.60 H: .6011 .5749 .5659 .5355 .5317 .4672 .1339
M: .5991 .5756 .5700 .5385 .5384 .4816 .1175
L: .5993 .5763 .5801 .5520 .5548 .5165 .0828

7 .90 H: .9004 .8838 .8803 .8589 .8580 .8121 .0883
M: .9003 .8844 .8812 .8600 .8598 .8144 .0859
L: .9002 .8843 .8822 .8610 .8614 .8175 .0827

.75 H: .7502 .7279 .7197 .6931 .6893 .6280 .1222
M: .7498 .7276 .7213 .6950 .6922 .6334 .1164
L: .7494 .7285 .7257 .6989 .6996 .6537 .0957

.60 H: .6000 .5752 .5660 .5387 .5323 .4714 .1286
M: .6000 .5765 .5713 .5416 .5400 .4849 .1151
L: .5979 .5772 .5781 .5491 .5547 .5158 .0821

Note: The three conditions of E were denoted by H, M, and L to
represent the values 1.0, .70, and .50, respectively.
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value, and consistently so across the levels of k. However, it

can be noticed by examining the changes in G cp across the levels

of both G and e that the effects of categorization interact with

the population G and E conditions. Consider, for example, the

changes in Gcp across the categorical scales for k = 5. It is

evident that the Gcp with a higher epsilon became gradually

smaller than that with a lower epsilon as the scale approaches

U2. For instance, the difference in G cp between the C and U2

scales was the largest for the highest e value for all three

levels of G, as shown in the last column of Table 4-1.

Furthermore, this difference appeared to be more apparent for

the two smaller G conditions. The nature of this interaction

can be more clearly comprehended from a graph shown in Figure 4-

1, which illustrates the pattern of change in Gcp from C to U2

scales across the levels of E for k = 5. One further note from

Figure 4-1 is that there was little difference in G cp between

the normal and uniform distributions as long as it has the same

number of categories (i.e., 3-point and 5-point scale). This

trend was consistent across the levels of k as well. Although

the results for k = 3 and k = 7 are not explicitly discussed

here, they were virtually identical, in terms of trends, to that

for k = 5. From these results it is clear that the

transformation of continuous variables into categorical scales

resulted in a substantial reduction in Gcp , especially for a 3-

point or less scale.
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Figure 4-1

The effect of categorization on the G coefficient (G cp ) with
simulated population data (k = 5, N = 90000)

C^N5^U5 N3^U3^U2

As far as the effect of categorization is concerned, these

results were not surprising, and in fact showed somewhat

expected trends. However, the interactive effects between the

categorization, and the population G and e conditions on the

performance of Gcp needs further clarification. Consider first

the effect of categorization. Cohen (1983), for example,

investigated the effect of a 2-point scale on the effect size

and power in correlational research. He demonstrated that the
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dichotomization of correlated continuous variables results in

the systematic loss of a considerable amount of measurement

information, which consequently produces a significant reduction

in the original bivariate correlation. He further noted, based

on Peters and Van Voorhis (cited in Cohen, 1983), that when two

variables X and Y with a correlation (r) are both dichotomized

at their means, the resulting correlation is reduced to .637(r).

Although the work of Cohen was based on the cost of

dichotomization in the context of a bivariate correlation, the

general concept can be applied to describe the performance of

Gcp under the categorical scales, especially for the U2 scale.

For example, as described in the previous chapter, G 1 can be

expressed using an alternative formula (and its standardized

version) as:

[4-1]
k coy
^

k r
G1 =

var + (k-l)cov^1 + (k-1) r

It is evident from this formula that a decrease in the magnitude

of cov or r brought about by categorization produces a drop in

the resulting G coefficient (i.e., Gcp ) for a fixed value of k.

Consider, for example, that the Gcp = .6280 under the U2 scale

with k = 7, G = .75, and £ = H (i.e., 1.0) in Table 4-1. From

the above equation it can be easily shown that the r must be

.1943 in order for the Gcp under U2 scale to be equal to .6280.

In the corresponding population covariance matrix, the

covariances and variances were all set to 30 and 100,

respectively (or r = .3 for the correlation matrix), which
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yielded the G 1 = .75 and 6 = 1.0. Thus, the average correlation

(r) was reduced from .30 to .1943 as a result of dichotomization

of the k variables, which is very close to Cohen's predicted

value of .637(.3) = .1911. Although the aforementioned

discussion may not be mathematically explicit in describing the

performance of Gcp under all categorical scales used in the

present study, it does provide a general justification for the

effect of categorization on the G coefficient.

With respect to the interactive effects between the

categorization, G and E conditions on the performance of G cp , it

appears that the pattern of G cp shown in Table 4-1 across the

simulated conditions was a result of the population

characteristics defined in the population covariance matrix. As

described in chapter III, the construction of the population

covariance matrix was done in such a way that it produced a

desired G and e value. Particularly, the covariances in a

population matrix with an E < 1.0 varied widely in size from

their mean, and this was even more pronounced for a combination

of a large k and a small G value. When the categorization was

applied to the data generated from the population covariance

matrix with all covariances being equal (i.e., 6 = 1.0), it

would affect all covariances similarly and thus reduce them

about the same amount. On the other hand, it is probable that

the same procedure for the population matrix with an E < 1.0

could have a smaller effect, in terms of the size of reduction,

on those elements which were already so low (close to zero) than

it would have on larger covariances. Therefore, in general, the
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population covariance matrix with a combination of the lowest E

and the smallest G values would be relatively less affected by

these transformations, and thus result in a higher Gcp (i.e.,

less reduction). In addition, this phenomenon would be more

apparent if a crude grouping interval (i.e., dichotomy) is used

in categorization. The last column of Table 4-1, which presents

the difference in Gcp between C and U2 scales, reflects these

aforementioned population characteristics. In all cases, the

least reduction in Gcp occurs in the G = .60 and E= L

conditions. With these population characteristics of the G

coefficient under the simulated conditions in mind, we now

examine the sampling characteristics of the estimated G

coefficient.

B. Estimated G coefficient (AG1)

The results in this section are examined for the effects of

the five independent parameters; categorization, E, G, n, and k,

on the estimated G coefficient, which was calculated based on

the observed mean squares as: AG ' = (MSp - MS e ) / MSp .

Additionally, the empirical variabilities of ^G i are compared

across the sampling conditions as well as to the corresponding

theoretical value. The results for the 482 conditions, each

with 2000 replications, are summarized and are presented in

Tables 4-2, 4-3, and Figure 4-2.
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Table 4-2

The mean of AG 1 , averaged over the levels of n and k, and the
calculated population G coefficient (Gcp ) across the six scales

G E: C N5 U5 N3 U3 U2 (C-U2)

.90 H: .8911 .8705 .8693 .8392 .8418 .7856 .1055
M: .8912 .8709 .8706 .8407 .8438 .7902 .1010
L: .8912 .8710 .8717 .8436 .8464 .7975 .0937

.75 H: .7268 .7008 .6953 .6615 .6586 .5871 .1397
M: .7268 .7022 .6978 .6639 .6638 .5967 .1301
L: .7267 .7028 .7026 .6691 .6717 .6185 .1082

.60 H: .5622 .5349 .5277 .4941 .4892 .4208 .1414
M: .5627 .5375 .5351 .4996 .4993 .4406 .1221
L: .5625 .5392 .5446 .5139 .5181 .4827 .0798

G E: Gcp, averaged over the levels of k

.90 H: .9005 .8798 .8774 .8494 .8509 .7977 .1028
M: .9005 .8803 .8786 .8510 .8532 .8021 .0984
L: .9004 .8804 .8797 .8537 .8556 .8090 .0914

.75 H: .7508 .7247 .7172 .6861 .6827 .6162 .1346
M: .7503 .7253 .7198 .6886 .6876 .6254 .1249
L: .7501 .7264 .7247 .6939 .6956 .6454 .1047

.60 H: .6007 .5740 .5644 .5333 .5291 .4648 .1359
M: .6000 .5752 .5708 .5382 .5378 .4829 .1171
L: .5993 .5774 .5810 .5523 .5566 .5227 .0766

Table 4-2 presents the mean of AG 1 across the levels of E

and G under the six scales, averaged over the levels of n and k,

as well as the corresponding results for Gcp for comparative

purposes. The results showed, in general, that the pattern of

AG 1 across the simulated conditions is very similar to that

shown for Gcp , except for one aspect, that is, the magnitude of

bias in AG1. The results also indicate that there was no effect
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of heterogeneity of covariance on the magnitude of AG 1 -- note

that the AG 1 values under the continuous data were virtually

identical among the three levels of E within the same G value.

Furthermore, they gradually decreased as the scale approached

U2, but with no appreciable difference between normal and

uniform distributions under the same number of categories. This

trend in AG 1 closely resembled that of G cp . Additionally, as

can be seen in the last column of Table 4-2, the decrease in AG1

from C to U2 scales was larger for E = 1.0 within the same G

value, and it was more apparent for the two smaller G

conditions.

With respect to the bias in ^G l , as shown in chapter II,

the amount of bias is independent of the number of repeated

measures (k), but increases with decreasing G 1 (see Equation 4-

2) .

[4-2]

E(AG1) =
G 1 (np -1) - 2

 

nP-3

Figure 4-2 illustrates the pattern of AG 1 for the three

levels of k across the categorical scales for some selected

conditions (i.e., n = 30, averaged over the levels of e). Note

that the sample estimate of the G coefficient was biased, and

the amount of bias in ^G i was larger for the two smaller G

values. However, it was virtually identical, within the same G

value, for the levels of k under the continuous data. Although

the amount of bias in theory is independent of k, it was

slightly smaller for the two larger k under the categorical
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scales. This trend was due to the population characteristics

discussed previously in relation to Gcp , rather than sampling

ones.

Figure 4-2

The mean of "G 1 (n = 30, averaged over the levels of E)

3 --I-- k = 5 -x.- k=

0.90

0.75z..-,
1500
0
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0.45
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C^N5^U5^N3^U3^U2
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Since the dimension of k does not affect the amount of bias

in AG 1 (and as is shown later, it also has a relatively small

effect on the variance expression for AG1 ), we investigate the

performance of AG1 and its empirical variability more thoroughly

with k = 5 across simulated conditions. Table 4-3 presents the

mean and standard deviation of AG 1 across all simulated

conditions for k = 5, each entry being based on 2000

replications. Note first that "G 1 increases with increasing n,

reflecting the reduction in the negative bias of AG 1 with larger

sample sizes. The results in Table 4-3 support the general

statements made in relation to Table 4-2, that is, the pattern

of AG ' across the categorical scales was repetitively

demonstrated, regardless of sample sizes. Since the interactive

effects between the categorization, and the population G and c

conditions on the pattern of ^G 1 across the categorical scales

seemed to be consistent, the sampling behavior of the G

coefficient across simulated conditions is examined after the

effect of categorization has been partialled out. Each entry in

Table 4-4 is a difference between the calculated population G

(Gcp ) shown in Table 4-1 and the estimated G 1 (AG1 ) values in

Table 4-3. Note that the difference was greater for a smaller G

value, but consistent across the levels of E and the categorical

scales within the same G value. Therefore, it may be safe to

state that the amount of bias is relatively constant across all

six scales within the same G value, regardless of the conditions

of heterogeneity of covariances, though it seems to be slightly

larger for the U2 scale.



Table 4-3

The mean (standard deviation)^of ^G 1 (k^=^5,^2000 replications)

n G E: N5 U5 N3 U3 U2

15 .90 H: .8848(.0574) .8657 (.0646) .8643(.0654) .8340(.0775) .8374(.0762) .7809(.1088)
M: .8850(.0585) .8651(.0670) .8660 (.0649) .8361 (.0799) .8383 (.0776) .7841(.1055)
L: .8849(.0601) .8659(.0670) .8667(.0662) .8375(.0808) .8413 (.0773) .7885(.1034)

.75 H: .7110(.1434) .6868(.1540) .6810(.1542) .6489(.1622) .6463 (.1669) .5689(.2135)
M: .7109(.1471) .6883(.1532) .6841 (.1549) .6479(.1715) .6491 (.1695) .5795(.2055)
L: .7106(.1528) .6864 (.1639) .6863(.1634) .6523 (.1766) .6540(.1744) .6003(.1989)

.60 H: .5370(.2303) .5087 (.2456) .5054(.2428) .4733(.2453) .4645 (.2621) .3946(.3109)
M: .5338(.2445) .5109(.2481) .5081(.2484) .4764 (.2556) .4739 (.2586) .4068 (.2985)
L: .5367(.2512) .5097(.2665) .5162(.2581) .4864(.2641) .4890 (.2620) .4433(.2873)

30 .90 H: .8929(.0340) .8739(.0393) .8717 (.0396) .8441 (.0469) .8457(.0470) .7909(.0665)
M: .8930(.0351) .8742(.0397) .8729(.0396) .8455(.0476) .8477(.0478) .7957(.0642)
L: .8931(.0366) .8747 (.0410) .8741(.0408) .8471(.0484) .8501(.0484) .8005 (.0646)

.75 H: .7314(.0862) .7060 (.0936) .7000(.0940) .6688(.1017) .6653(.1044) .5956(.1245)
M: .7312(.0877) .7082(.0931) .7016(.0945) . 6697 (.1039) .6704 (.1046) .6031(.1277)
L: .7315(.0899) .7086(.0973) .7057(.0982) .6745(.1044) .6758(.1067) .6197(.1248)

.60 H: .5695(.1381) .5429 (.1473) .5351(.1452) .5025 (.1546) .4980 (.1610) .4318 (.1757)
M: .5690(.1385) .5452 (.1453) .5402 (.1470) .5060 (.1545) .5054 (.1581) .4453 (.1759)
L: .5701(.1422) .5455 (.1499) .5500(.1477) .5199 (.1556) .5218(.1563) .4821 (.1692)

45 .90 H: .8960(.0251) .8770 (.0291) .8746 (.0296) .8473(.0352) .8487(.0354) .7951(.0512)
M: .8960(.0259) .8773(.0297) .8759(.0300) .8489(.0365) .8510(.0362) .7992(.0498)
L: .8959(.0271) .8776(.0306) .8769 (.0309) .8505(.0374) .8533 (.0366) .8042(.0503)

.75 H: .7391(.0638) .7142 (.0698) .7076(.0711) .6766 (.0784) .6733(.0799) .6051(.0962)
M: .7385(.0658) .7153 (.0699) .7096(.0712) .6776(.0804) .6778(.0794) .6140(.0974)
L: .7381(.0692) .7155 (.0744) .7137 (.0755) .6820(.0831) .6838 (.0824) .6310 (.0939)

.60 H: .5818(.1031) .5558 (.1106) .5478 (.1114) .5159 (.1190) .5120 (.1225) .4458 (.1343)
M: .5800(.1067) .5569 (.1107) .5521(.1123) .5182(.1213) .5189 (.1207) .4607 (.1351)
L: .5805(.1113) .5570 (.1169) .5619(.1154) .5314(.1245) .5352 (.1211) .4960 (.1298)
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Table 4-4

The difference between the calculated population G (G cp) and the
estimated G (AG 1 ) values for k = 5 and n = 30

G^E^: C N5 U5 N3 U3 U2

.90^H: .0077 .0074 .0066 .0077 .0070 .0098
M: .0076 .0074 .0066 .0080 .0074 .0087
L: .0074 .0072 .0064 .0081 .0073 .0090

mean: .0076 .0073 .0065 .0079 .0072 .0092

.75^H: .0196 .0196 .0181 .0198 .0194 .0230
M: .0191 .0183 .0184 .0203 .0188 .0243
L: .0185 .0186 .0190 .0203 .0200 .0241

mean: .0191 .0188 .0185 .0201 .0194 .0238

.60^H: .0316 .0320 .0308 .0330 .0337 .0354
M: .0301 .0304 .0298 .0325 .0330 .0363
L: .0292 .0308 .0301 .0321 .0330 .0344

mean: .0303 .0311 .0302 .0325 .0332 .0354

With respect to the sampling variability of ^G i , which is

one of the main focuses in the present study, it is quite clear

from the variance expression of AG 1 in Equation [4-3] that the

variability of AG 1 is larger for smaller G values within the

same sample size, but decreases with increasing sample size (see

also Table 4-3).

[4-3]

var(^G i ) = (1-G 1 ) 2
2(np-1)[k(np-1) - 2]

(k-1) (np-3) 2 (np-5)

The empirical results in Table 4-3 show that with the continuous

data the empirical standard deviations for the e = 1.0 condition

was practically identical to its theoretical counterpart (see
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Table 4-5), but was larger than the theoretical value for the E

= M and L conditions (e.g., the empirical standard deviation for

the condition with n = 15, G = .90, and k = 5 equals .0574, as

compared to the corresponding theoretical value of .0575, as

shown in Table 4-5). This pattern was consistent across the

levels of n and G. This result indicates that heterogeneity of

covariance exerted a small but reliable effect on the sampling

variability of AG 1 . The cause for this increase can be

attributed to the effect of eon the observed mean squares. As

can be seen in Table 4-6, the standard deviations of MS P were

virtually identical for the three levels of E within the same G

value, and close to their population counterpart. On the other

hand, the variability of MS e increased for the E < 1.0

conditions. Therefore, given that the variability of MS P was

stable across the levels of E, it is clear that the larger

variability in ^G 1 for the two lower e conditions was mainly due

to the larger sampling variability in MS e .

Table 4-5

The theoretical standard deviation of AG ' for k = 5

G : n = 15^30^45

.90 : .0575 .0337 .0261

.75 : .1437 .0843 .0652

.60 : .2300 .1349 .1021

Note: The theoretical standard deviation was obtained by taking
the square root of Equation [4-3]
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Table 4-6

The mean (standard deviation) of the observed mean square for
persons (MSp) and error (MSe) for some selected conditions (k =
5,^n =^30, continuous data only)

G E: MSperson MSerror

.90 H: 360.34 (95.37) 35.85 (^4.77)
M: 359.72 (95.38) 35.78 (^5.62)
L: 359.47 (95.40) 35.72 (^6.59)

Pop: 367.16 (93.79) 35.71 (^4.69)

.75 H: 251.58 (66.47) 62.79 (^8.35)
M: 250.73 (66.14) 62.74 (^9.77)
L: 250.12 (65.72) 62.59 (11.47)

Pop: 250.00 (65.65) 62.50 (^8.21)

.60 H: 193.21 (50.98) 77.31 (10.27)
M: 191.91 (50.17) 77.12 (12.02)
L: 192.22 (50.37) 77.13 (14.36)

Pop: 192.32 (50.51) 76.92 (10.10)

Note: The 'Pop' values are population mean squares defined in

the simulation and their theoretical standard deviation

calculated by:

[ 2(EMSi) 2 / dfi ]1/2.

With respect to the sampling variability of AG 1 under

categorical scales, it is evident from Table 4-3 that the

empirical variabilities increased considerably as the scale

approached U2. These results were somewhat expected when

considering the fact that the magnitude of the population G

value (Gcp ) has the largest relative impact on the variance

expression of AG 1 . Since the Gcp value for the categorical
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scales, particularly for a 3-point or less scale, was already

substantially lower than its population counterpart, its sample

estimate inevitably produced a larger standard deviation. A

comparison of the pattern of changes in the variability of AG 1

among the three levels of E conditions within the same n and G

shows some interesting trends. For example, the empirical

standard deviation for the E = 1.0 condition was the largest

under the continuous data, but a reverse pattern was shown under

the U2 scale. These rather complicated trends in the

variability of AG ' across the categorical scales appeared to be

a result of the interactive effects among population conditions

discussed earlier in relation to Gcp .

Additional insight for the trend in the variability of AG 1

across the categorical scales may be obtained by examining the

sampling variability of AG 1 after the effect of categorization

has been partialled out. To do so, the theoretical standard

deviations were calculated using Gcp , instead of using G1, for

some selected conditions (k = 5 and n = 30) and are presented in

Table 4-7. As can be seen in Table 4-7, the theoretical

standard deviations of ^G i for continuous data were very similar

for the three E conditions. However, as the scale approached

U2, the theoretical standard deviation for the E = H condition

became larger than the other two conditions within the same G,

and the difference among the three E conditions was quite

noticeable especially under the U2 scale for G = 60. These

results were somewhat expected when considering that the

categorization resulted in a smaller Gcp for the E = H
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condition, which lead to a larger theoretical variability of

AG 1 . When the empirical standard deviations for the three e

conditions in Table 4-3 were compared to their corresponding

theoretical values in Table 4-7 across the categorical scales,

it was apparent that the effect of heterogeneity of covariance

on the sampling variability of AG 1 became smaller as the scale

approached U2. This appears to be due to the sampling

characteristics of epsilon -- the epsilon estimates under

categorical scales are considerably larger than those for

continuous data, as is shown later in section D. In general,

the pattern of changes in empirical standard deviations for the

categorical scales in Table 4-3 appears to reflect the trend

shown in Table 4-7. Taken together, these results suggest two

things. First, a larger standard deviation of ^G i for the

categorical scales and for the E = H condition was due to the

interactive effects among population conditions (i.e., types of

scales, G and E). Second, the sampling variability of AG '

became less sensitive to the heterogeneity of covariance for the

categorical scales, especially for a 3-point or less scale.

In summary, the results reported in this section indicate

that the sample estimate of AG ' was biased, especially for the

two smaller G values. However, the amount of bias became

trivial for the condition with G >.75 and n > 30. The

heterogeneity of covariance did not have any effect on the

magnitude of AG 1 , but they did have some positive effects on the

sampling variability of the estimate, especially for continuous

data. Although its effect was not large, it would be large
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enough to lead to more variable estimates of the G coefficient

(rather than to bias the estimate). This would result in too

many large estimates of the G coefficient (as well as too many

small ones). Lastly, the effect of categorization on the G

coefficient in terms of population characteristics was

consistent in the sample estimates. Thus, the G coefficient

under the categorical scales was seriously underestimated, which

resulted in a large sampling variability of ^G1, especially for

a 3-point or less scale. These results led us to question the

adequacy of the sampling theory of G 1 with the categorical

scales.

Table 4-7

(k =
The theoretical standard deviations for some

5 and n = 30),^calculated by using Gcp ,
selected conditions
instead of G 1

G c^: C N5 U5 N3 U3 U2

.90 H: .0338 .0403 .0413 .0503 .0500 .0677
M: .0338 .0402 .0409 .0498 .0492 .0664
L: .0338 .0401 .0406 .0492 .0484 .0647

.75 H: .0846 .0932 .0957 .1058 .1071 .1295
M: .0848 .0929 .0951 .1053 .1056 .1266
L: .0849 .0927 .0935 .1037 .1033 .1210

.60 H: .1355 .1444 .1474 .1578 .1591 .1810
M: .1362 .1441 .1461 .1567 .1568 .1761
L: .1361 .1439 .1426 .1522 .1512 .1642
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C. Empirical sampling distribution of AG1

The characteristics of the sampling variability of AG 1

across the simulated conditions reported in the previous section

are directly related to the properties of the sampling

distribution of AG 1 in this section. Therefore, with these

characteristics of the variability of AG 1 in mind, we now

examine the resultant empirical sampling distributions of AG 1

under the simulated conditions and compare them to the

theoretical ones in order to assess the precision of the sample

estimate and robustness of the sampling theory of the G

coefficient. The main focus in this section is on the effect of

heterogeneity of covariance on the performance of AG 1 .

As shown in chapter II, to describe and evaluate the

empirical sampling distribution of AG1 we can use either the

confidence interval approach by establishing the 100(1-a)%

limits for the population G 1 value or the tolerance interval

approach by constructing the theoretical 100(1-a)% limits for

the estimated G coefficient, namely:

[4-4]
[ Lower limit < AG 1 < Upper limit ]

1 - G 1 1 - G 1
AG 1 < 1

 

FL FU

where, the F L and Fu are the critical F values, corresponding to

the lower (a/2) and the upper (1-a/2) percentage points from the

F distribution with degrees of freedom (np-1) for the numerator

and (nr-1)(np-1) for the denominator (note that nr = k).
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The empirical percentage of the confidence intervals

failing to include the population G value is essentially the

same as empirical percentage of the estimated G coefficients

falling beyond the limits of the tolerance interval. Therefore,

we use the latter (using Equation [4-4]) approach to present the

results.

We first conducted a chi-square goodness of fit test

(Gibbons, 1985) between the empirical sampling distribution and

the theoretical F distribution in order to assess and evaluate

the adequacy of sampling theory of G coefficients. An empirical

sampling distribution of AG ' with k = 5, n = 15, and G 1 = .75

(6000 replications) was obtained for each of the three

population epsilon conditions (E = 1.0, .70, and .50). Using

Equation [4-4] a theoretical tolerance limit of AG 1 for each of

the following eleven percentiles of F distribution: 1.0th,

2.5th, 5th, 10th, 25th, 50th, 75th, 90th, 95th, 97.5th, and

99th, was computed. The empirical proportion of estimated G

coefficients that fell below each of these theoretical tolerance

limits was tabulated for each empirical sampling distribution,

and the results are presented in Table 4-8 (frequencies were

used for chi-square calculations, but proportions are presented

for interpretation).

As can be derived from in Table 4-8, the empirical

proportion in each region for the E = 1.0 condition was very

close to the corresponding theoretical value, and the goodness

of fit test (x2 (11) = 9.2133, p = .6022) also indicates a high

degree of agreement between theoretical and empirical sampling
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distributions. However, significant goodness of fit tests for

the E < 1.0 conditions suggests that the empirical sampling

distribution of AG 1 was not quite in agreement with the

theoretical distribution when the circularity assumption failed,

especially for severe noncircularity (i.e., E = .50).

Table 4-8

Empirical sampling distribution of AG 1 and a goodness of fit
test (k = 5, n = 15, G 1 = .75, and 6000 replications in each
condition with continuous data only)

Empirical proportions
Theoretical
percentile :^E = 1.0^.70^.50

^

99.0^:
^98.7
^

98.6
^

98.0

^

97.5^:
^

97.2
^

96.6
^

95.5

^

95.0^:
^

94.5
^

94.0
^

92.5

^

90.0^:
^

89.2
^

88.6
^

86.8

^

75.0^:
^

74.5
^

73.6
^

72.0

^

50.0^:
^

49.6
^

49.4
^

48.8

^

25.0^:
^

25.4
^

25.7
^

25.9

^

10.0^:
^

10.2
^

10.3
^

10.7

^

5.0
^

5.4
^

5.3
^

5.6

^

2.5^:
^

2.8
^

3.1
^

2.9

^

1.0^:
^

1.2
^

1.1
^

1.3

Mean of AG 1^•
Empirical SD :
Theoretical SD:

.7077^.7080^.7074

.1449^.1471^.1563

.1437^for all three conditions

x2 (11)^9.2133^36.0073^124.4687
P^ .6022^<.01^<.001

Examination of the empirical proportions for the e < 1.0

conditions suggests that the sampling distribution of AG 1 was

more spread out, thus leaving a larger proportion in both tails

of the distribution. This is also evident by a larger empirical
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standard deviation of AG 1 for the E < 1.0 conditions. For

example, the empirical proportion above the 95th percentile was

5.5%, 6.0%, and 7.5% for e = 1.0, .70, and .50, respectively.

Although a goodness of fit test for the E = .70 condition was

significant (x2 (11) = 36.0073, p < .01), the departure of

empirical proportion of "G 1 from the corresponding theoretical

value in each region does not seem to be too serious for

practical purposes -- with a large sample size (i.e., 6000), a

chi-square test may detect even a minuscule departure from the

theoretical distribution, and thus is almost certain to lead to

a significant result. Nevertheless, these results indicate that

the sampling theory of G coefficient is very satisfactory when

the circularity assumption is met, but quite sensitive to severe

noncircularity.

We now examine empirical sampling distributions of G

coefficients in details across the simulated conditions. For

each simulation condition 2000 replications were performed.

Table 4-9 presents the empirical percentage of ^G i falling

beyond the theoretical limits of 100(1-a)% tolerance interval,

averaged over the levels of G, n, and k (for a = .10 and .05,

two-tailed). Thus, the results in this table represents a

general pattern of the effect of heterogeneity of covariance on

the sampling distribution of AG ' across the six categorical

scales. To assess the extent to which the other simulated

conditions affect the empirical proportion of AG ' , Table 4-9 was

further broken down by the levels of G, n, or k. The respective

results, presented in Tables 4-9 through 4-11 separately, were
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used to investigate interaction effects on the empirical

proportion across the categorical scales.

Table 4-9

Empirical percentage of AG 1 falling beyond the limits of the
100(1-a)% theoretical tolerance interval,^averaged over the
levels of k, n,^and G

a e: C N5 U5 N3 U3 U2

Upper H: 5.2 2.5 2.4 .9 1.1 .5
5% M: 5.9 2.9 2.9 1.3 1.4 .7

L: 7.2 3.7 3.9 2.0 2.2 1.1

Lower H: 5.0 9.4 10.2 20.1 20.1 40.7
5% M: 5.1 9.3 9.8 19.6 18.8 38.2

L: 5.7 9.8 9.7 18.7 17.8 33.5

Upper H: 2.6 1.2 1.2 .4 .5 .3
2.5% M: 3.3 1.4 1.5 .6 .7 .4

L: 4.2 2.0 2.2 1.0 1.1 .6

Lower H: 2.5 5.1 5.5 12.6 12.4 30.4
2.5% M: 2.6 5.1 5.3 12.3 11.7 28.5

L: 2.8 5.4 5.2 11.5 10.8 24.4

As can be seen in Table 4-9, the empirical proportions of

AG 1 falling beyond the limits of 100(1-a)% tolerance interval

for the continuous data were very close to the nominal levels

for thee = 1.0 condition, indicating that the sampling theory of

G1 works well for continuous data. However, the results also

indicate that there was some positive effects of heterogeneity

of covariance on the sampling distribution of AG 1 . These

results are somewhat expected when we consider the results of

the goodness of fit test reported above and the effect of E

conditions on the sampling variability of AG 1 described in the
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previous section. Note also that the positive inflation was

more apparent with the empirical percentage beyond the upper

limit of the tolerance interval. The reason for this may be due

to the skewness of F distribution. The pattern of the empirical

percentage for the continuous data was very consistent across

the levels of G, n, and k, as is shown later in Tables 4-9

through 4-11.

Although the sampling theory of the G coefficient seems to

work well for the continuous data across all the simulated

conditions, it is not adequate for the categorical scales,

especially for a 3-point or less scale. As can be seen in Table

4-9 the empirical percentage beyond the lower limit increased

considerably as the scale approached the U2 scale, whereas a

reverse pattern was evident in the upper limit direction.

Furthermore, the comparison among the three 8 conditions reveals

that this trend was more apparent with the higher E condition.

The effect of the population G values on the empirical

percentage of the tolerance interval of AG 1 is shown in Table 4-

10. As discussed in the previous section, the "G1 is a

negatively biased estimator for its G cp . Additionally,

categorization resulted in a lower value of Gcp for the E = 1.0

condition under categorical scales, which was considerably

smaller than for the corresponding G 1 value. On the other hand,

the theoretical limits of the tolerance interval of ^G 1 are

constructed using G1, thus producing a narrower width of the

theoretical limits for a larger 0 1 . Therefore, as can be seen

in Table 4-10, it is not surprising that the e = 1.0 and G = .90
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conditions yielded a relatively larger empirical percentage

beyond the lower limit under the categorical scales. For

example, the mean (and standard deviation) of AG 1 for k = 5, n

15, and G = .90 under the U2 scale is .7809 (.1088) (see Table

4-3), whereas the corresponding 90% theoretical lower and upper

limits from Equation [4-4] are .7770 and .9488. Since the mean

is already close to the lower limit, a large number of AG 1 would

be falling below its lower limit, but little beyond its upper

limit.

Table 4-10

Empirical percentage of AG 1 falling beyond the limits of the 90%
theoretical tolerance interval, averaged over the levels of k
and n

a E G^: C N5 U5 N3 U3 U2

Upper H .90: 5.2 1.4 1.6 .3 .5 .3
5% .75: 5.2 2.8 2.5 .9 1.2 .5

.60: 5.2 3.4 3.1 1.6 1.8 .8

M .90: 6.1 1.6 2.0 .4 .6 .4
.75: 5.8 3.3 3.0 1.4 1.5 .6
.60: 5.8 3.9 3.7 2.0 2.1 1.1

L .90: 7.4 2.2 2.6 .6 .9 .4
.75: 7.3 4.1 4.0 1.8 2.1 .8
.60: 7.0 5.0 5.1 3.6 3.5 2.1

Lower H .90: 4.9 12.7 13.5 32.6 31.3 64.6
5% .75: 5.0 8.3 9.4 16.3 16.7 35.7

.60: 5.1 7.3 7.9 11.3 12.3 21.8

M .90: 5.0 12.6 13.1 32.0 30.0 62.9
.75: 5.3 8.4 9.1 15.9 15.7 33.3
.60: 4.9 6.9 7.1 10.9 10.8 18.5

L .90: 5.5 13.2 13.3 30.5 29.1 59.4
.75: 5.8 8.9 9.0 15.3 14.6 27.5
.60: 5.8 7.3 7.0 10.1 9.5 13.5

=
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Table 4-11

Empirical percentage of AG1 falling beyond the limits of the 90%
theoretical tolerance interval, averaged over the levels of k
and G

a E n: C N5 U5 N3 U3 U2

Upper H 15: 5.1 3.1 3.3 1.4 1.8 1.1
5% 30: 5.1 2.3 2.3 .9 1.0 .3

45: 5.3 2.1 1.7 .6 .6 .1

M 15: 5.7 3.7 3.8 1.9 2.2 1.3
30: 5.9 2.6 2.6 1.1 1.2 .5
45: 6.2 2.5 2.2 .9 .9 .2

L 15: 7.3 4.6 5.0 2.8 3.2 1.8
30: 7.1 3.4 3.6 1.7 1.8 .8
45: 7.3 3.3 3.1 1.4 1.5 .6

Lower H 15: 5.1 7.4 7.8 12.2 12.3 24.6
5% 30: 5.3 9.8 10.5 20.6 20.6 43.0

45: 4.5 11.1 12.4 27.5 27.5 54.5

M 15: 4.9 7.2 7.6 12.3 11.9 23.3
30: 5.4 9.7 9.7 19.8 19.4 40.3
45: 4.9 11.0 11.9 26.7 25.2 51.1

L 15: 5.5 7.7 7.6 11.8 11.7 20.6
30: 5.8 10.0 10.1 19.1 18.2 35.1
45: 5.8 11.7 11.6 25.0 23.4 44.6

With respect to the effect of the sample size on the

empirical results, it is apparent from Equation [4-4] that the

width of the theoretical tolerance limits of AG 1 becomes smaller

as the sample size increases. Given that the G cp for the

categorical scales is already a lot smaller than its

corresponding population G value, a smaller width of the limits

due to a larger sample size would yield even greater proportion

of AG ' beyond the lower limit. Table 4-11 clearly shows the
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aforementioned effect of the sample sizes in which the empirical

proportion beyond the lower limit increased considerably with

increasing sample sizes within the same value of E.

It should be noted that if we had constructed the

theoretical limits of the tolerance interval using the G cp

value, instead of using G 1 , the empirical results would have

shown a completely different pattern. For example, the G cp

under the U2 scale for the condition with G = .75, k = 5, and e

= H was equal to .6186. Replacing this value for the G 1 in

Equation [4-4] (and using n = 30 for the critical F values)

yields the lower and upper limits of 90% tolerance interval:

.3516 and .7563, respectively (as compared to the corresponding

theoretical limits of .5750 and .8403, which were calculated

using the G 1 = .75). The mean of AG1 for this condition was

.5956 with the standard deviation of .1245, as shown in Table 4-

3. Therefore, if the limits calculated using Gcp , instead of

G 1 , were used, most of 2000 sample estimates for this condition

would have fallen within these limits. This example also

demonstrates that the categorization was the main factor that

resulted in larger empirical percentage beyond the theoretical

tolerance limits of AG 1 . We could also look at this problem

from statistical power point of view. For example, we know that

power increases as the sample size increases. If we presume

that the difference between the G 1 and Gcp values is indeed a

true difference, the empirical percentage beyond both limits

would be interpreted as power for detecting that difference,

instead of Type I error, and similarly, the empirical proportion
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of AG 1 falling within the two limits would be considered as Type

II error. From these two examples, it is clear that the

sampling theory of G 1 is not adequate for the categorical data,

at least, under the conditions simulated in the present study.

Finally, as can be seen in Table 4-12, the effect of the

number of repeated measures (k) on the sampling distribution of

AG 1 was relatively small. The absence of an effect of the

levels of k on the sampling characteristics of AG 1 is also

evident from Table 4-13. For example, the size of the

theoretical tolerance interval was practically identical among

the levels of k (see Table 4-13). Although the larger value of

k tends to slightly reduce the empirical percentage beyond the

lower limit within the same e, the difference in the proportions

among the three levels of k was relatively small. Therefore,

unless a larger number of measurements are used in a design, the

use of categorical scales, especially for a 3-point or less

scale, could result in a serious downward bias in estimating the

population G coefficient. The dimension of k used in the

present study were certainly not large enough to produce

substantial differences in the empirical results across the

simulated conditions.

In summary, the empirical results for continuous data were

very close to the corresponding theoretical values across the

simulated conditions, which suggest the adequacy of the sampling

theory of the G coefficient. It was also evident that the

heterogeneity of covariance had some positive effects on the

sampling distribution of AG 1 . Although the effect was not
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large, it was large enough to result in a moderate inflation in

the empirical percentage beyond the upper limit of the

theoretical tolerance interval for AG ' . However, the sampling

theory was not adequate for categorical data, especially for a

3-point or less scale. This inadequacy was due to the effect of

categorization on the G coefficient in terms of population

characteristics, which led to a serious inflation in empirical

percentage beyond the lower limit of the theoretical tolerance

interval. These results led us to question the practical

utility of sampling theory of G 1 with categorical data.

Table 4-12

Empirical percentage of AG ' falling beyond the limits of the 90%
tolerance interval, averaged over the levels of n and G

a e k: C N5 U5 N3 U3 U2

Upper H 3: 5.2 2.5 2.6 1.1 1.4 .8
5% 5: 5.4 2.5 2.4 .9 1.1 .5

7: 5.0 2.5 2.3 .8 .9 .3
M 3: 6.4 3.2 3.3 1.5 1.7 1.1

5: 5.7 2.8 2.7 1.2 1.4 .6
7: 5.6 2.9 2.6 1.1 1.1 .4

L 3: 7.9 3.8 4.3 2.3 2.5 1.7
5: 7.2 3.8 3.8 1.9 2.1 .8
7: 6.6 3.6 3.6 1.8 1.9 .8

Lower H 3: 4.9 10.4 10.9 22.7 21.8 42.3
5% 5: 5.1 9.2 10.2 19.6 19.7 40.5

7: 4.9 8.7 9.7 17.9 18.8 39.2
M 3: 5.0 10.0 9.9 21.7 20.3 39.0

5: 5.2 9.1 9.7 19.4 18.6 38.3
7: 5.1 8.8 9.7 17.7 17.6 37.4

L 3: 5.7 10.5 9.5 19.8 18.5 32.5
5: 5.8 9.5 9.9 18.7 17.8 34.6
7: 5.6 9.4 9.9 17.5 17.0 33.3
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Table 4-13

The lower and upper limits of the 90% theoretical tolerance
interval for AG 1

k n

G =

: LL

.90

UL LL

.75

UL

0.60

LL^UL

3 15 : .7680 .9515 .4200 .8788 .0719 .8062
30 : .8243 .9399 .5607 .8497 .2971 .7594
45 : .8429 .9340 .6074 .8350 .3718 .7359

5 15 : .7770 .9488 .4426 .8665 .1081 .7864
30 : .8300 .9361 .5750 .8403 .3200 .7445
45 : .8474 .9308 .6185 .8270 .3896 .7233

7 15 : .7803 .9448 .4507 .8620 .1211 .7792
30 : .8320 .9348 .5800 .8369 .3281 .7390
45 : .8490 .9297 .6225 .8242 .3960 .7187

D. Sample estimates of epsilon and Type I error rates

As noted in the introduction to this chapter, a primary

purpose of examining Type I error rates in this study was to use

these results as a partial validation of the simulation

procedure. Inflations in error rates similar to those reported

in the literature, given the same epsilon values would suggest

validity and accuracy in the simulation and subsequent

calculations. A second purpose was to allow for a systematic

examination of the sampling characteristics of epsilon for both

continuous and categorical data, as there appears to be very

little published on this topic. The results of this study have,

in fact, provided the validation of the simulation procedure and

added some detailed information on the sampling characteristics
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of epsilon. However, these results have also revealed some

interesting and unexpected findings with respect to epsilon

estimates and Type I error rates -- findings which cause one to

question the appropriateness of current practice in applying a

"correction factor" to the conventional F test in the presence

of low epsilon estimate. Thus, this section on the sampling

characteristics of epsilon and Type I error rates, a section

which had been expected to be very brief, has been expanded

considerably to present and discuss these new findings.

A number of empirical studies have been conducted to

investigate the effect of heterogeneity of covariance on the

degree of inflation in Type I error rates. The results from

these studies were generally in close agreement, and have been

well documented in related literature (e.g., Collier, et al.,

1967; Hertzog & Rovine, 1985; Huynh & Feldt, 1976, 1978;

Stoloff, 1970; Wilson, 1975). Empirical studies with

categorical data have also been conducted to investigate the

degree of positive bias in the F tests. For example, Lunney

(1970) investigated the Type I error rates of the F tests in

various repeated measures designs with dichotomous data and

demonstrated that the actual error rates were quite close to

their nominal levels. Also, Hsu and Feldt (1969), and Gregoire

and Driver (1987) examined the degrees of positive bias in the F

tests with categorical data. However, in these studies, the

conditions of heterogeneity of covariance were not part of their

simulations. Furthermore, Myers, et al. (1982) found that

heterogeneous covariance in dichotomous data had a positive
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inflation in the empirical Type I error rates for the usual F

tests. However, they did not examine the sampling

characteristics of the epsilon estimates, nor did they

incorporate the corresponding conditions of continuous data in

their simulations. Thus, they failed to provide information

regarding the degree of relative bias in Type I error rates for

dichotomous data, in comparison to those for its parent

continuous conditions.

Since the early work by Box (1954) epsilon has been used as

a correction factor in repeated measures ANOVA designs in order

to control for probable inflation in the Type I error rates

brought about by heterogeneity of covariance. However, despite

its wide use, it appears that the properties of the sampling

distribution of epsilon are unavailable. For any covariance

matrix (either a sample or population matrix) the numerical

maximum of E is unity. If there is any deviation from the

homogeneity of covariance (or from the circularity condition), E

will be less than unity. This means that a sample matrix can

always be expected to exhibit some degrees of violation of the

condition, even though the population matrix does not. Although

we know that the estimator of E is biased, an unbiased estimator

of E is not known [Huynh & Feldt (1976) reduced this bias by

introducing a correction factor]. In addition, because of the

theoretical upper and lower limits on e [i.e., 1.0 and 1/(k-1)],

^c is, in general, negatively skewed for high values of E and

positively skewed for low values of E. Thus, we can also expect

that the variability of "E for both large and small population
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epsilons to be smaller than that for an E in the middle range.

In addition to the aforementioned characteristics of

epsilon, as discussed in relation to Gcp , we also know that

categorization not only produces a smaller mean value of the

covariances, but also affects (reduces) the degree of

heterogeneity of covariance in the covariance matrix. Since the

condition of E is directly related to the Type I error rates in

the F test, we first investigate the effect of categorization on

the performance of epsilon. Second, the behavior of sample

estimates of epsilon across simulated conditions is examined.

Following this, the empirical Type I error rates of the

conventional F test for the 'rater effect' (MS r /MS e ) under the

simulated conditions are observed and compared to previous

findings in related literature.

Table 4-14 summarizes the effect of categorization of

continuous data on E across the levels of G, k, and E. The

values in each line in Table 4-14 were based on unique simulated

population data sets of N = 90000. The epsilon calculated on

the simulated population data was named the calculated

population e (ecp ), in order to distinguish it from the

population E value. The results in Table 4-14 show that e cp

values under the continuous data were virtually identical with

the corresponding population E values defined in the

simulations. (Note that the difference in Ecp among the three G

values under the continuous scale is due to the initial

population covariance matrices defined in the simulations). The

results also indicate that when the population epsilon equals
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unity (i.e., a perfect circularity condition), the

categorization did not affect the structure of the covariance

matrix, and the homogeneity of covariance condition remains the

same for all categorical scales, regardless of the levels of k.

However, for the e < 1.0 conditions the E cp increased

considerably as the scale approached U2, and this was more

apparent for the higher G values (see the last column in Table

4-14). This trend in ecp was consistently shown in the three

levels of k, within the same E.

With the aforementioned characteristics of epsilon in mind,

we now examine the empirical means and variabilities of AE

across the categorical scales, which are summarized in Tables 4-

14, 4-15, and 4-16 for some selected conditions. It is clear

from Table 4-15 that the Ae for E = 1.0 was a (downward) biased

estimator, and this bias became considerably larger with

increasing k. However, for a fixed k, the magnitude of AE and

standard deviations are very consistent across the categorical

scales, though there was a slight decrease in AE and increase in

its standard deviation at the U2 scale (see Table 4-15). As was

the case in Ecp ,

 these results indicate that the categorization

did not have any effect on the sample estimates of epsilon for

the homogeneity of covariance condition.
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Table 4-14

The effect of categorization of continuous data on epsilon (E cp )
with simulated population data^(N=90000)

k^e G :^C^N5^U5^N3^U3^U2 (U2-C)

3^H .90:
.75:^All equal^1.00
.60:

M .90:^.7052^.7918^.7697^.8542^.8301^.8815 .1763
.75:^.7052^.7570^.7565^.8170^.8062^.8744 .1692
.60:^.7082^.7500^.7501^.7979^.7919^.8522 .1440

L .90:^.5269^.6305^.6018^.7056^.6760^.7414 .2145
.75:^.5397^.6020^.5940^.6721^.6535^.7356 .1959
.60:^.5387^.5825^.5702^.6201^.6088^.6564 .1177

5^H .90:
.75:^ All equal^1.00
.60:

M .90:^.6935^.7651^.7569^.8304^.8158^.8887 .1952
.75:^.7061^.7549^.7599^.8083^.8074^.8752 .1691
.60:^.7068^.7463^.7528^.7939^.7945^.8600 .1532

L .90:^.5010^.5883^.5767^.6815^.6566^.7640 .2630
.75:^.5188^.5722^.5679^.6347^.6235^.7062 .1874
.60:^.5050^.5469^.5419^.5974^.5851^.6549 .1499

7^H .90:
.75:^ All equal^1.00
.60:

M .90:^.7009^.7623^.7591^.8233^.8147^.8852 .1843
.75:^.7034^.7465^.7530^.7990^.7977^.8630 .1596
.60:^.7001^.7370^.7407^.7830^.7816^.8440 .1439

L .90:^.5052^.5792^.5741^.6660^.6463^.7518 .2466
.75:^.5072^.5530^.5468^.6080^.5932^.6627 .1555
.60:^.5134^.5531^.5472^.5994^.5879^.6536 .1402

Note: Exact population e values for the three levels of G and k
were given in Table 3-1 in chapter III.
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Table 4-15

The mean^(standard deviation)^of
(n = 15,^averaged over the levels

AE for the three levels of k
of G)

E Scale: k= 3 5 7

High C^: .8948 (.0817) .7720 (.0769) .6905 (.0641)
N5: .8932 (.0830) .7735 (.0767) .6945 (.0639)
U5: .8899 (.0846) .7703 (.0776) .6909 (.0637)
N3: .8916 (.0844) .7729 (.0773) .6920 (.0637)
U3: .8862 (.0871) .7684 (.0776) .6904 (.0642)
U2: .8702 (.1032) .7637 (.0824) .6895 (.0680)

Med. C^: .6969 (.0889) .6136 (.0921) .5536 (.0772)
N5: .7437 (.0979) .6468 (.0932) .5808 (.0771)
U5: .7367 (.0992) .6473 (.0933) .5816 (.0759)
N3: .7831 (.1070) .6785 (.0915) .6065 (.0747)
U3: .7693 (.1052) .6701 (.0916) .6020 (.0753)
U2: .7919 (.1241) .7006 (.0932) .6324 (.0755)

Low C^: .5369 (.0212) .4744 (.0679) .4329 (.0601)
N5: .6051 (.0557) .5215 (.0765) .4698 (.0633)
U5: .5883 (.0476) .5169 (.0753) .4668 (.0625)
N3: .6549 (.0845) .5675 (.0852) .5083 (.0694)
U3: .6364 (.0726) .5557 (.0827) .4978 (.0658)
U2: .6785 (.1095) .6063 (.0954) .5415 (.0748)

For the E < 1.0 conditions, the bias in AE was almost null

for k = 3 under the continuous scale, but decreased with

increasing k. Note also that the variability of AE was greatest

for the E = M condition, within the same k. For the categorical

scales, the nature of the bias in Ae was shifted from negative

to positive, but at which scale this change occurs varied

depending on E, k, and types of scale. This trend seemed to be

a result of some interactive effects between the categorization,

the theoretical limits on c, and the nature of the downward bias

in AC. In general, for the E < 1.0 conditions the magnitude of
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Ae became smaller for larger k values, regardless of the

conditions of E and types of scale, but increased with

increasing n (see Table 4-16).

Table 4-16

The mean (standard deviation) of AE for the three sample sizes
(k = 5, averaged over the levels of G)

E Scale: n = 15 30 45

High C^: .7720 (.0769) .8717 (.0499) .9097 (.0369)
N5: .7735 (.0767) .8749 (.0482) .9127 (.0360)
U5: .7703 (.0776) .8719 (.0496) .9102 (.0374)
N3: .7729 (.0773) .8744 (.0498) .9121 (.0368)
U3: .7684 (.0776) .8712 (.0497) .9106 (.0371)
U2: .7637 (.0824) .8682 (.0537) .9094 (.0394)

Med. C^: .6136 (.0921) .6571 (.0755) .6713 (.0646)
N5: .6468 (.0932) .7004 (.0761) .7180 (.0660)
U5: .6473 (.0933) .6998 (.0754) .7182 (.0661)
N3: .6785 (.0915) .7426 (.0748) .7635 (.0656)
U3: .6701 (.0916) .7357 (.0761) .7578 (.0657)
U2: .7006 (.0932) .7814 (.0736) .8116 (.0626)

Low C^: .4744 (.0679) .4924 (.0537) .4971 (.0449)
N5: .5215 (.0765) .5472 (.0608) .5538 (.0517)
U5: .5169 (.0753) .5403 (.0591) .5474 (.0507)
N3: .5675 (.0852) .6047 (.0691) .6148 (.0592)
U3: .5557 (.0827) .5900 (.0673) .6004 (.0574)
U2: .6063 (.0954) .6550 (.0792) .6734 (.0691)

With respect to the effect of the population G conditions

(see Table 4-17), within the same G, the size of AE was fairly

consistent across the categorical scales for e = 1.0, but

increased as the scale approached U2 for the E < 1.0 conditions.

A comparison of the magnitude of AE among the three G values

reveals that the AE was slightly larger for the G = . 60
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condition underE = 1.0, but a reverse pattern was shown under

the E = L condition. However, the magnitude of these

differences among the three G conditions was relatively small.

Therefore, the magnitude of the mean of the covariances in the

population matrix did not seem to have appreciable influence on

the estimates of epsilon.

Table 4-17

The mean(standard deviation) of the epsilon estimates for the
levels of G^(k = 5,^n = 15,^2000 replications)

e Scale: G 1 = .90 .75 .60

High C^: .7722 (.0775) .7720 (.0768) .7718 (.0764)
N5: .7662 (.0789) .7739 (.0759) .7803 (.0752)
U5: .7525 (.0815) .7746 (.0772) .7837 (.0742)
N3: .7609 (.0809) .7755 (.0768) .7822 (.0741)
U3: .7443 (.0817) .7727 (.0768) .7881 (.0742)
U2: .7230 (.0946) .7754 (.0793) .7928 (.0732)

Med. C^: .6136 (.1016) .6171 (.0933) .6100 (.0814)
N5: .6512 (.1024) .6478 (.0946) .6415 (.0826)
U5: .6402 (.1032) .6525 (.0938) .6491 (.0829)
N3: .6833 (.0980) .6799 (.0914) .6722 (.0851)
U3: .6615 (.0970) .6749 (.0930) .6739 (.0848)
U2: .6730 (.1006) .7117 (.0924) .7170 (.0866)

Low C^: .4764 (.0784) .4826 (.0691) .4643 (.0563)
N5: .5387 (.0899) .5246 (.0776) .5011 (.0621)
U5: .5290 (.0894) .5225 (.0766) .4993 (.0600)
N3: .5960 (.0994) .5671 (.0840) .5393 (.0721)
U3: .5759 (.0952) .5589 (.0839) .5324 (.0690)
U2: .6156 (.1016) .6150 (.0968) .5883 (.0877)

In summary, the results reported above indicate that the

magnitude of "E decreased with increasing k and increased with

increasing n. The results also showed that the Ae was biased,
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but constant across the categorical scale for E = 1.0. However,

for the E < 1.0 conditions, the magnitude of AE increased

considerably as the scale approached U2, regardless of the

conditions of k, n, and G.

We now investigate the empirical Type I error rates of the

conventional F test for the 'rater effect' (MS r /MSe ) under the

simulated conditions. The results of the Type I error rates are

examined in relation to the behavior of the sample estimates of

epsilon reported above, and also compared to previous findings

in related literature.

Table 4-18 shows the general pattern of Type I error rates

(a = .01, .05, and .10) for the three E conditions across the

categorical scales, averaged over the levels of k, n, and G.

Note that the empirical percentage for E = 1.0 was very close to

the corresponding nominal levels, and consistent across the

categorical scales. However, as expected the Type I error rates

were noticeably inflated by the heterogeneous covariance, and

the magnitudes of inflation were similar to those reported in

the literature. For the E < 1.0 conditions, the size of the

error rates decreased as the scale approached U2. As a result,

the Type I error rates with dichotomous data did not appear to

be too serious, especially under the C = M condition. Note also

that the error rates for the uniform distributions were slightly

higher than those for the normal distributions, but the

magnitude appears to be negligible. These results are generally

in close agreement with previous empirical findings (e.g.,

Lunny, 1970; Myers, et al., 1982).
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Table 4-18

Empirical percentage of the Type I error rates, averaged over
the levels of k, n, and G

a E: C N5 U5 N3 U3 U2

.01 H: 0.9 0.9 0.9 0.9 1.0 0.9
M: 2.2 2.0 2.0 1.8 1.8 1.4
L: 3.5 3.1 3.2 2.6 2.8 2.3

.05 H: 4.7 4.6 4.9 4.9 4.9 4.6
M: 7.0 6.6 6.8 6.3 6.4 5.7
L: 8.9 8.0 8.4 7.5 7.8 7.0

.10 H: 9.4 9.4 9.9 10.0 10.0 9.7
M: 11.8 11.3 11.6 11.2 11.1 10.4
L: 13.6 12.7 13.1 12.2 12.4 11.5

The results in Table 4-18 were further broken down by the

levels of k, n, or G for some selected conditions, and are

presented in Table 4-19 for a = .05 only. The selected

conditions for the Type I error rates presented in Table 4-19

are in accordance with those used to construct Tables 4-14

through 4-16 for the epsilon estimates. Thus, the effect of the

magnitude of AE on the error rates can be easily examined by

comparing appropriate entries in the corresponding tables.
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Table 4-19

Empirical percentage of the Type I error rates for some selected
conditions

a c k:

C

n =

N5^U5^N3^U3

15, averaged over the levels of G

U2

.05 H 3: 5.6 4.9^5.2^5.1^4.9 4.8
5: 4.6 4.3^4.8^5.0^4.8 4.6
7: 4.7 4.6^4.8^5.0^5.1 4.4

M 3: 7.1 6.0^6.4^6.0^5.8 5.4
5: 7.3 6.5^7.2^6.3^6.2 5.9
7: 7.8 7.5^7.4^7.0^6.8 5.9

L 3: 8.5 7.3^8.1^7.3^7.2 6.7
5: 9.2 8.0^8.6^7.4^8.0 7.6
7: 9.8 8.8^9.1^7.9^8.2 7.2

a E n k = 5, averaged over the levels of G

.05 H 15: 4.6 4.3^4.8^5.0^4.8 4.6
30: 4.6 4.9^5.0^5.2^5.1 4 4
45: 4.7 4.8^5.1^5.2^5.3 4^9

M 15: 7.3 6.5^7.2^6.3^6.2 5 9
30: 6.6 6.6^6.3^6.2^6.8 6 0
45: 6.8 6.7^7.1^6.2^7.0 5 5

L 15: 9.2 8.0^8.6^7.4^8.0 7^6
30: 8.8 7.8^8.5^7.2^8.0 7^1
45: 9.0 8.5^8.7^7.9^8.3 6 9

a E G: n = 15 and k = 5

.05 H .90: 4.8 4.2^4.9^4.9^4.7 4.9
.75: 4.5 4.4^4.9^4.9^4.8 4.3
.60: 4.6 4.3^4.7^5.1^4.9 4.5

M .90: 7.5 6.6^7.3^6.8^6.2 5.6
.75: 7.0 6.1^7.2^6.2^6.0 5.8
.60: 7.3 6.9^7.2^6.0^6.5 6.4

L .90: 9.7 7.9^8.7^7.2^7.9 6.8
.75: 9.1 7.6^8.0^7.6^8.2 7.3
.60: 8.9 8.4^9.1^7.3^7.9 8.6
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As can be seen in Table 4-19, the general pattern of the

Type I error rates across the categorical scales was

repetitively demonstrated. That is, the Type I error rates for

e = 1.0 were all close to the nominal level, regardless of the

conditions of k, n, and G. The results also showed that the

heterogeneity of covariance conditions inflated the error rates,

to some extent, but the magnitude decreased as the scale

approached U2. This trend was consistent across the levels of

k, n, and G. Additionally, for the 6 < 1.0 conditions, the

error rates increased somewhat with increasing k within the same

e, and this trend was consistent across the categorical scales.

Note also in Table 4-19 that the error rates were slightly

smaller for the two larger sample sizes, but there was no

appreciable difference in the error rates among the three levels

of G. From these results, it is evident that the present study

replicated, in general, previous findings in related literature

and demonstrated that the heterogeneity of covariance increased

the Type I error rates for the usual F statistic.

With respect to the relationship between the magnitude of

epsilon estimates and the Type I error rates, the results in

Tables 4-17 and 4-18 showed that for the C < 1.0 conditions, the

pattern and magnitude of changes in Type I error rates across

the simulated conditions were very closely related to those

shown for the sample estimates of epsilon. For example, as

shown in Tables 4-14 through 4-16, the magnitude of AC decreased

with increasing k, but increased with increasing n for the C <

1.0 conditions. Furthermore, the magnitude of AC increased
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considerably as the scale approached U2, regardless of the

conditions of k, n, and G. Comparatively, the Type I error

rates under the e < 1.0 conditions decreased as the scale

approached U2. Within the same E, they increased for larger k

values, and slightly decreased for the two larger sample sizes.

Furthermore, the small difference in Type I error rates among

the three G values shown on the bottom of Table 4-19 was in

accordance with a marginal difference in AE among them shown in

Table 4-17.

The dependency between the magnitude of "E and Type I error

rates across simulated conditions is illustrated in Table 4-20,

which presents a general pattern of the correlation between the

two variables for the three e conditions across the six scales.

The values in each line in Table 4-20 were based on the

estimates across the levels of k, n, and G (i.e., 27

conditions), which add up to 81 conditions for the total (i.e.,

the 'All' on the last line in the table). Inspection of Table

19 for the E < 1.0 conditions shows that the correlations were

negative and reasonably high under the continuous data, and were

reduced as the scale approached U2. This trend in the

correlation supports the aforementioned relationship between "E

and Type I error rates.

While the size of the Type I error rates varied depending

on the magnitude of AE across the simulated conditions for the E

< 1.0 conditions, it was not the case under the E = 1.0

condition. As can be seen in Tables 4-14 through 4-16, the

estimated epsilons for E = 1.0 considerably varied in size,
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ranging from .69 to .91, depending on a particular combination

of simulated conditions. However, the associated Type I error

rates were remarkably similar with one another, and very close

to the corresponding nominal levels (see Table 4-19). This

relationship is also evident from Table 4-20 as the correlation

between the ^c and Type I error rates for the E = 1.0 condition

was almost zero, especially under the continuous and 5-point

scales. In other words, these results indicate that the

inflation in probability of Type I error rates for the usual F

tests may not be an issue, regardless of the magnitude of Ae, as

long as it is certain that the sample data at hand are from a

population which possesses homogeneity of covariance. However,

when the correlation was computed based upon all three E

conditions combined, the aforementioned relationship between the

AE and Type I error rates for the E = 1.0 condition was

completely obscured (see the correlation for the 'All' in Table

4-20).

Table 4-20

Correlation between the Type I error rates
estimates for alpha = .05 only

and the epsilon

C: C N5 U5 N3 U3 U2

H: -.0543 .0863 -.0246 -.1395 -.1552 .1907
M: -.6680 -.6662 -.6080 -.5927 -.3981 -.2439
L: -.8145 -.7709 -.7509 -.5512 -.7232 -.6784

All: -.9304 -.8948 -.9093 -.8634 -.8683 -.7696
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This highly negative correlation between the magnitude of

AE and Type I error rates would lead to a misleading

interpretation of the relationship between them, that is, the

Type I error rates increase with decreasing sample estimates of

epsilon, regardless of the population condition of E. In fact,

it is a common practice in repeated measures ANOVA designs to

use AC-adjusted F tests (i.e., Greenhouse-Gessier or Huynh-Feldt

correction) in order to protect against a probable inflation in

the Type I error rates whenever an observed epsilon is less than

unity. Interestingly, an estimated epsilon from a sample

covariance matrix is always less than unity due to the nature of

the downward bias in AE, and the population epsilon is always

unknown in practice. Therefore, under such circumstances the

Ac-adjusted F test would be correct only if one presumes that

the population covariance matrix from which a sample at hand

being taken possesses the heterogeneity of covariance condition.

Otherwise, the AC-adjusted F test would result in an unduly

conservative test, and thus increase the probability of Type II

error rate if the estimated epsilon is indeed from a population

matrix with homogeneous covariance. This leads us to query the

common practice of utilizing the Ac-adjusted F test in the

repeated measures ANOVA designs, and raises the question: Is it

always justifiable to use an Ac-adjusted F test when an observed

epsilon is less than unity?

To summarize the results obtained in this section in terms

of the relationships among sample estimates of epsilon,

heterogeneity of covariance, observed mean squares, and Type I
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error rates, the sample estimates of these variables are

presented in Table 4-21 for some selected conditions. Consider

first the observed mean squares (i.e, MS e and MS r ). The

magnitude of the mean of the observed mean squares was virtually

identical among the three e conditions, and very close to their

expected value (note that EMS e = EMS r under 62 r = 0, as defined

in the simulation), and this trend was consistent across the

categorical scales. However, the variability for both mean

squares was greater under the E < 1.0 conditions, while it was

very close to their theoretical value under E = 1.0 (note that

the variance expression for mean squares was given on the bottom

of Table 4-6). This resulted in a more variable sampling

distribution for the F ratio than indicated by the theoretical F

distribution under the E < 1.0 conditions. Since interest lies

in the upper tail of the distribution, the cumulative proportion

beyond the upper limit are attributed to the Type I error rates,

which were larger under the E < 1.0 conditions as shown in Table

4-21.

For the categorical scales, the AE for E < 1.0 became larger

as the scale approached U2, and consequently there was little

difference in the magnitude of AE among the three E conditions

under the U2 scale. As the size of Ac had a positive impact on

the variability of mean squares, this lack of difference in

variability among the three E conditions was shown in the

observed mean squares as well as in the F ratio. Therefore, the

difference in the error rates among the three e conditions under

the U2 scale was relatively small.
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Table 4-21

Type I error rates,^correlation, and descriptive statistics for
some selected conditions^(k = 5,^n = 15,^G 1 = .90)

Estimates:^C N5 U3 U2

eCp (and Ae)

H: 1.00^(.7722) 1.00^(.7662) 1.00^(.7443) 1.00^(.7230)
M: .6935(.6136) .7651(.6512) .8158(.6615) .8887(.6730)
L: .5010(.4764) .5883(.5387) .6566(.5759) .7640(.6156)

MSr (sd)

H: 35.6962(24.6115) .5471(.3783) .3110(.2134) .1397(.1009)
M: 35.9424(29.8885) .5474 (.4396) .3088(.2451) .1367(.1017)
L: 36.1523(35.4509) .5443 (.4929) .3075(.2780) .1367(.1110)

MSe (sd)

H: 35.5015(6.6744) .5445(.1041) .3080(.0689) .1380(.0334)
M: 35.4153(7.8132) .5461(.1173) .3061(.0705) .1369(.0337)
L: 35.4021(9.1513) .5424(.1275) .3021(.0739) .1352(.0338)

EMSe 35.71^(6.7486) .5458 .3055 .1370

F^(sd)

H: 1.0446(^.7616)^1.0418(^.7613) 1.0459(^.7439) 1.0461(^.7611)
M: 1.0677(^.9422)^1.0488(^.8859) 1.0514(^.8588) 1.0371(^.7922)
L: 1.0958(1.1488)^1.0669(1.0385) 1.0774(1.0169) 1.0573(^.8832)

Type I error (a = .05, .10)

H: 4.8^9.8 4.2^9.4 4.7^9.1 4.9^9.8
M: 7.5^12.3 6.6^11.6 6.2^11.7 5.6^10.6
L: 9.7^14.6 7.9^13.4 7.9^13.2 6.8^11.6

Correlations (AE, MSe ,

Ae^MS e

MSr )

AC MS e AC MSe AC MSe

H MS e : .0031 .0008 .1065 .4330
MS r : .0236 -.0259 -.0062 .0105 .0143 .0898 .1991 .1307

M MSe : -.4567 -.3468 -.1339 .3101
MS r : -.0068 -.0217 -.0015 .0035 .0595 .0664 .1684 .1193

L MS^•MS e : -.4801 -.4754 -.2877 .1730
MS r : -.0198 -.0264 .0101 -.0218 .0602 .0100 .1596 .0880
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Finally, examination of the correlations among the sample

estimates ( AC, MS e , and MS r ) reveals a very interesting but

unclear phenomenon, especially the correlation between AC and

MSe across the levels of E. For example, a negative correlation

between them under the E < 1.0 conditions suggests that a

smaller AC is associated with a larger MS e. Given that the

correlations between AE and MS r , and between MS e and MS r are

almost zero, this negative correlation between AE and MS e

indicates that the ratio of MS r /MS e (F) tends to be smaller for

a smaller AE under the E < 1.0 conditions. This is opposite to

what is reported in the literature. It appears that, given

moderate to severe noncircularity in the population, F tests

conducted on samples with moderate to severe noncircularity are

probably not associated with inflated Type I error rates. If

this is so, then the current practice of applying an epsilon-

based correction factor to the F test in repeated measures ANOVA

designs could be inappropriate. Additional studies are being

conducted to explore this phenomenon and the results will be

reported elsewhere (Eom & Schutz, 1993).
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Simulation II: Two-facet design

In this section, the simulation results for the two-facet

(3 Occasions by 5 Raters), fully-crossed design are examined

across the levels of G, n, E, and types of scale. The results

of the two-facet design closely paralleled those of the one-

facet design in terms of the effect of categorization,

population G value, and sample size, and thus they are discussed

only briefly. More emphasis is placed on the effect of

noncircularity on the sampling variability of AG 2 , which

resulted in some discrepancy between the two designs. To be

consistent, the results are presented following a similar

sequence as in the one-facet design. First, the effect of

transformation of continuous data into categorical scales on the

G coefficient is examined. Second, the characteristics of

sample estimates of the G coefficient are compared across the

simulated conditions. Third, the effect of noncircularity on

the sampling variability of the G coefficient is investigated.

Finally, empirical proportions of confidence intervals that

failed to include a population G coefficient and Type I error

rates of quasi F ratios for the "Occasion" and "Rater" main

effects are examined and compared among the three local

circularity conditions at specified alpha levels.
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A. Calculated population G-coefficient (Gcp )

Figure 4-3 illustrates the general pattern of the G

coefficient (Gcp ) across the six scales for a combination of e

and G. The values in each line shown in the bottom of Figure 4-

3 were based on a unique simulated population of N = 90000

(i.e., 9 different simulated populations).

As can be seen in Figure 4-3, the Gcp under continuous data

was identical to the corresponding population G value, and

consistently so, regardless of e conditions. However, as the

scale approached U2, the G cp gradually decreased. The pattern

of changes in Gcp across categorical scales was virtually

identical for the three G values, but the magnitude of decrease

in Gcp was somewhat larger for G = .75 and .60. Note also that

within the same G, the e = 0/OR condition produced a slightly

smaller Gcp value, especially under the U2 scale, but the amount

of difference among the three E conditions seemed to be

negligible. In comparison to the findings of the one-facet

design, the results of the two-facet design showed a similar

pattern of changes in Gcp across the simulated conditions.

However, the magnitude of decrease in Gcp from C to U2 scales

was somewhat smaller for the two-facet design, and also the

interactive effects between categorization, G and E conditions

appear to be marginal. This difference between the two designs

seemed to be due to a larger dimension involved in the two-facet

design as well as due to a less variation in the covariance

elements among the population covariance matrices defined in the

two-facet design simulation.



Figure 4-3. Effect of categorization on the G coefficient
with population data (two-facet design, N=90000)
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B. Estimated G coefficient (^G2)

A sample estimate of the G coefficient (AG2) for the two-

facet, fully-crossed design is calculated based on the observed

mean squares as:

[4-5]

AG2 = 1
MSpo + MSpr - MSe

MSP

As described in chapter II, AG2 is a negatively biased estimator

for the population G2 value, and the amount of bias is greater

for the smaller G2 value, but decreases with increasing sample

sizes. Furthermore, it was also shown that the magnitude of

bias in AG2 is independent of the number of facets as well as

the levels of a facet.

The aforementioned characteristics of AG 2 were well

reflected in the empirical results, and they are graphically

illustrated in Figure 4-4 separately for the three sample sizes.

Note that the AG2 values under the continuous data were almost

identical among the three 6 conditions within the same G and n.

These results indicate that the violation of circularity

condition does not have any effect on the magnitude of sample

estimates of the G coefficient. However, under the categorical

scales, the E = 0/OR condition yielded a slightly smaller AG2

value, especially for a combination of G < .90 and n = 15

conditions, but the magnitude of difference in AG2 among the

three E conditions was quickly reduced with increasing sample

sizes.
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Figure 4-4

The mean of ^G2 for the three sample sizes (2000 replications)

C
^

N5
^

U5
^

N3
^

U3
^

U2



138
Results and Discussion

To examine the nature of the bias in the sample estimator

of G2 under categorical scales, the values of AG 2 were compared

to the corresponding G cp values and depicted in Figure 4-5 for

the three sample sizes, averaged over the three E conditions.

Figure 4-5 clearly illustrates the effect of population G value

and sample size on AG2, that is, the amount of bias in AG2

increased for the smaller G2 values, but decreased with

increasing sample sizes. The parallel trends between G cp and

AG2 across the categorical scales also indicate that the AG2 was

biased, but the amount of bias was consistent across all six

scales.

Figure 4-5

Comparison of Gcp and AG2, averaged over the levels of epsilon
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In summary, the pattern of changes in AG2 across the

simulated conditions resembled that of Gcp shown in Figure 4-3,

except for the magnitude of bias in AG2 . Furthermore, the

effects of the simulated conditions (i.e., categorization, G,

and n) on the sample estimates were similar to those of the one-

facet design, but to somewhat less extent. Although there was

some discrepancy in the degree of noncircularity between the two

designs, it was apparent from the results of both designs that

the violation of circularity condition did not have any effect

on the magnitude of both AG ' and AG2 under continuous data.

With respect to the sampling variability of AG2, it is

apparent from Equation [4-6] that the variability of AG2

increases with decreasing G 2 and decreases with increasing

sample sizes. Note also that the variance expression involves

the Satterthwaite's adjusted degrees of freedom, f a .

[4-6]

var(AG2) = (1 - G2) 2
2(np-1)2 (fa + np - 3)

fa (np -3) 2 (nP - 5)

The theoretical variabilities of AG2 across the simulated

conditions are presented in Table 4-22, and these values were

used to examine whether the sampling theory of G coefficient is

robust to noncircularity by comparing them with the

corresponding empirical values among the E conditions.



140
Results and Discussion

Table 4-22

Expected mean squares (EMS), Satterthwaite's degrees of freedom
(fa ), and theoretical standard deviation (SD)^of AG2

G^: EMSP EMSpo EMSpr EMSe n fa SD(AG2)

.90^: 900 66 55 31 15 37.13 .0600
30 76.91 .0353
45 116.69 .0273

.75^: 680 116 85 31 15 46.75 .1462
30 96.84 .0859
45 146.93 .0664

.60^: 550 151 100 31 15 48.32 .2332
30 100.11 .1369
45 151.89 .1059

Table 4-23 presents the mean and standard deviation of AG2

based on 2000 replications across the three E conditions for

some selected conditions. Note that the standard deviation for

the E = 0/OR condition with n - 15 was somewhat larger than the

other two conditions, but this difference vanished as the sample

size increased. Examination of the range of AG2 for this

condition showed that the large standard deviation was mainly

due to some outliers (e.g., the smallest value of AG2 for E =

0/OR was .1087 with a corresponding z value of -11.9 under the

continuous data, as compared to .4461 and .5060 for the other

two conditions). In general, the empirical standard deviations

under the continuous data were virtually identical among the

three E conditions for a fixed value of G and were close to the

corresponding theoretical values reported in Table 4-22.

However, it was not the case for the categorical scales. As can
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be seen in Table 4-23, the variability of AG 2 increased

considerably as the scale approached U2, and was substantially

larger than its theoretical counterpart. As was the case in the

one-facet design, the large sampling variability of AG2 under

the categorical scales appeared to be a result of the initial

difference between G 2 and Gcp brought about by the effect of

categorization. When considering the fact that the standard

deviations were similar among the three E conditions under the

same categorical scale, it appears that the violation of

circularity assumption had a minimal effect on the sampling

variability of AG2 for the categorical scales as well.

Therefore, taken together, these results suggest that the

sampling theory of G 2 is quite robust to the violation of

circularity condition.

With respect to the effect of the e conditions on the

sampling variability of AG2, the results from the two-facet

design were somewhat different from those of the one-facet

design. For example, as shown in Tables 4-3, under the

continuous data the standard deviation of AG 1 was larger for the

E < 1.0 conditions which indicate some positive effects of

heterogeneity of covariance on the sampling variability of AG 1 .

However, in the two-facet design although the standard deviation

of AG2 in Table 4-23 tends to be slightly larger for the E =

0/OR and R/OR conditions, the magnitude of difference among the

three E conditions seemed to be very small. Even though some

discrepancy may be expected between the two designs because of

the unmatched degree of E defined in each design as well as the
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design itself, the reason for why noncircularity did not have

any appreciable effect on the sampling variability of AG 2 needs

further clarification.

Table 4-23

The mean (standard deviation) of AG2 for the two-facet design (n
= 30 only,^2000 replications)

n G E^:^C N5 U3 U2

15 .90 NONE: .8838 (.0598) .8752 (.0649) .8595 (.0751) .8312(.0898)
0/OR: .8830 (.0649) .8741 (.0699) .8560 (.0798) .8256(.0964)
R/OR: .8851 (.0587) .8758 (.0636) .8571 (.0726) .8232(.0934)

30 .90 NONE: .8926(.0352) .8839(.0378) .8678(.0437) .8404(.0542)
0/OR: .8931(.0357) .8841(.0387) .8655 (.0459) .8352 (.0579)
R/OR: .8932 (.0359) .8839(.0388) .8650(.0452) .8323(.0572)

.75 NONE: .7308 (.0854) .7210(.0894) .7009(.0961) .6697(.1050)
0/OR: .7315(.0855) .7209(.0891) .6948(.1000) .6562(.1136)
R/OR: .7316(.0870) .7215(.0903) .6985(.0973) .6617(.1111)

.60 NONE: .5688(.1365) .5597(.1415) .5402 (.1476) .5099(.1565)
0/OR: .5689 (.1383) .5580 (.1428) .5298 (.1533) .4933(.1662)
R/OR: .5695(.1397) .5602(.1422) .5366(.1507) .5029(.1597)

45 .90 NONE: .8958 (.0265) .8871 (.0289) .8711(.0340) .8437 (.0418)
0/OR: .8959(.0272) .8869(.0297) .8684(.0358) .8379(.0458)
R/OR: .8965(.0267) .8872 (.0291) .8684 (.0346) .8359 (.0447)

To investigate the cause for this discrepancy, we examined

the sampling characteristics of the observed mean squares.

Table 4-24 presents the means and standard deviations of mean

square estimates and pair-wise correlations between them across

the three E conditions for some selected conditions. As

expected, the mean of the observed mean squares (MSp , MSpo ,

MSpr, MS e ) was very similar among the three E conditions within
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the same G, and close to their corresponding population value

(to be more precise, they were almost identical to those mean

squares calculated on the simulated population data set).

Table 4-24

The mean (standard deviation) of observed mean squares and their
correlations (continuous data only,^n = 30,^2000 replications)

MS £^: .90

G coefficient

.75 .60

MSP NONE: 906.13(241.03) 683.22 (181.48) 551.96(146.17)
0/OR: 903.66(240.70) 681.07(182.05) 549.78 (146.57)
R/OR: 905.34 (241.44) 683.04 (181.53) 551.63(146.58)

MSpo NONE:
0/OR:

66.58 (12.60)
66.31 (15.13)

117.09(21.99)
116.93 (27.05)

152.46(28.53)
152.46(35.04)

R/OR: 65.87(12.15) 116.55(21.90) 151.84(28.42)

MS pr NONE: 55.06(7.28) 85.15(11.33) 100.21 (13.36)
0/OR: 54.83(7.04) 84.82(10.97) 99.66(12.81)
R/OR: 55.05(8.88) 85.08(13.61) 100.12 (16.29)

MS e NONE: 30.98 (2.84) 30.97(2.83) 30.97(2.82)
0/OR: 30.98(3.51) 30.93(3.46) 30.91(3.50)
R/OR: 31.08(4.30) 31.07(3.79) 31.06(3.96)

Correlation:
MSe MS po MSe MSpo MSe MSpo

NONE MS^:o -.02 -.02 -.02
MSPpr : -.05 .00 -.05 -.01 -.05 -.01

0/OR MS o : -.02 -.01 -.01
MSpr :p .14 -.01 .25 -.02 .44 -.01

R/OR MS^:o .13 .06 .02
MSP :pr -.01 -.01 -.02 -.02 .00 -.02

Note: correlations between MSP and the other MS's were all less
than 1.051.
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With respect to the variability of mean squares, Table 4-24

shows that the standard deviation of MS P was virtually identical

for the three E conditions, but that of MSpo , MSpr , and MSe was

positively inflated under the violation of respective local

circularity. For example, the standard deviation (15.13) of

MSpo under the E = 0/OR condition was considerably larger than

its theoretical counterpart [12.26 = (2(EMSpo) 2/ df) 1/2 =

(2(66) 2/58)1/2]. A similar result was shown for MSpr under the

E = R/OR condition. Note also that the standard deviation of

MSe was positively inflated under both E = 0/OR and R/OR

conditions, and it was slightly larger under the E = R/OR

condition -- this was due to a smaller E value defined for the 0

by R interaction term in the simulation (see Table 3-4). Taken

together, these results indicate that the mean square estimates

were unbiased, but more variable under the violation of local

circularity. Given that the variability of MSp was fairly

consistent across the three E conditions, the variance of a

linear combination of the observed mean squares in the numerator

of Equation [4-5] appears to be the main source that determines

the degree of sampling variability of ^G2. Since the mean

squares in the numerator of Equation [4-5] were more variable

when circularity fails, we might expect that the variability of

^G2 would also be somewhat larger under noncircularity

condition, as was the case in the one-facet design. However,

the results in Table 4-23 showed that this did not happen, and

there was only a minimal effect of noncircularity on the

sampling variability of ^G 2 for the two-facet design. The
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reason for this is perhaps due to the fact that the

computational formula for AG2 involves a combination of mean

squares.

Inspection of Table 4-24 in relation to Equation [4-5]

suggests a possible explanation for why the sampling variability

of AG2 was not sensitive to noncircularity. For example, the E

= 0/OR condition produced more variable MS po and MSe , whereas

the e = R/OR condition yielded a larger variability for MSpr and

MSe . Therefore, in order for AG2 to be more variable under

noncircularity conditions, either MS po and MS e , or MSpr and MSe

must have at least some degree of negative correlation, given

that the correlation between MSpo and MSpr was essentially zero

under both E = 0/OR and R/OR conditions. However, as shown on

the bottom of Table 4-24, it was not the case. All correlations

were nearly zero, except for those between MSpr and MSe under

the E = 0/0R, and between MSpo and MSe under the E = R/OR

condition. A positive correlation between MSpr and MS e , for

example, may be due to the fact, in part, that MS pr is a

composite of MS e and no A62pr . Thus, under the E = 0/OR

condition, MSpr would tend to fluctuate with MS e , given that the

quantity n0 A62pr is almost independent of MS e . The cause of the

varied size of the correlation coefficients for these pairs

across the levels of G is unclear, but it could be a result of

the difference in the magnitude of the mean squares among the

levels of G. Nonetheless, these results suggest that more-

variable individual mean squares are not necessarily associated

with a particularly small or large value of AG2 . Since the
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characteristics of the sampling variability of AG 2 are directly

related to the properties of sampling distribution of AG2, we

examine this problem further in the following section.

C. Empirical sampling distribution of AG2

As presented in chapter II, the ratio (1 - G2)/(1 - AG2) is

approximately distributed as an F-variate with degrees of

freedom (np-1) for the numerator and f a for the denominator. It

was also shown that from this a 100(1-a)% confidence interval

for a population G2 value can be constructed as:

[4-7]
Lower limit < G2 < Upper limit

= 1 - ( 1 - ^G2) FU < G2 < 1 - (1 - AG 2 )FL .

The terms F L and Fu are the critical values corresponding to the

lower a/2 and upper (1-a/2) percentage points, respectively, of

the F distribution with degrees of freedom (np-1) for the

numerator and Afa for the denominator. The quantify Af a is

estimated using observed mean squares, and thus varies over

replications. In the simulation, the lower and upper limits of

a 100(1-a)% confidence interval for a specified population G2

value were obtained for each replication. The mean and standard

deviation of the limits of 2000 confidence intervals are

presented in Table 4-25 for some selected conditions.
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Table 4-25

The mean (standard deviation) of the limits of the 90%
confidence intervals for a G2 in the two-facet design for some
selected conditions (2000 replications)

n G e^: LL

C

UL LL

U2

UL

15 .90 NONE: .7703(.1161) .9490 (.0264) .6486 (.1770) . 9274 (.0395)
0/OR: .7685(.1260) .9487(.0287) .6411(.1888) .9246 (.0425)
R/OR: .7723(.1140) .9496 (.0260) .6344(.1831) .9237(.0411)

30 .90 NONE: .8263 (.0562) .9379(.0204) .7344(.0874) .9092(.0314)
0/OR: .8270 (.0573) .9382 (.0208) .7276(.0932) .9059(.0336)
R/OR: .8272(.0573) .9383 (.0209) .7220 (.0917) .9044(.0332)

.75 NONE: .5731 (.1351) .8428 (.0499) .4644 (.1682) .8094 (.0610)
0/OR: .5740 (.1358) .8432 (.0499) .4452 (.1821) .8012(.0660)
R/OR: .5743 (.1375) .8433 (.0509) .4525(.1774) .8047 (.0646)

.60 NONE: .3178 (.2160) .7478(.0798) .2101(.2501) .7163(.0910)
0/OR: .3179 (.2197) .7480 (.0807) .1877 (.2656) .7059 (.0966)
R/OR: .3188(.2208) .7483 (.0818) .1995(.2552) .7122(.0930)

45 .90 NONE: .8456 (.0389) .9328(.0172) .7632(.0617) .9004(.0271)
0/OR: .8457 (.0401) .9328 (.0177) .7558(.0675) .8964 (.0296)
R/OR: .8466(.0392) .9332(.0174) .7522(.0658) .8953 (.0289)

With respect to the relationship between mean squares and

AG2 under noncircularity conditions, it can be anticipated from

Equation [4-7] that if the more-variable mean squares obtained

under the E = 0/OR or R/OR conditions are associated with a

particularly small or large AG 2 , it would result in even greater

fluctuation in the limits of the confidence interval because the

critical value of F u and FL in Equation [4-7] varies depending

on its denominator degrees of freedom, Afa . As can be seen in

Table 4-25, the results, however, do not suggest the

aforementioned relationship between mean squares and AG2. There
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was little difference among the three e conditions in the mean

and standard deviation of both limits of 90% confidence

intervals under the continuous data within the same G and n.

Therefore, these results also support the robustness of sampling

theory of G2 to the violation of circularity. One further note

from Table 4-25 is that the width of the confidence interval

limits for the U2 scale became narrower with increasing G and n,

and thus its upper limit is already close to its population G2.

Therefore, as is shown later, a larger empirical proportion of

the confidence intervals would fail to include its population

G2 .

To assess the adequacy and robustness of the sampling

theory of the G coefficient in the two-facet design, the

empirical proportion of 2000 confidence intervals that failed to

include a specified population G 2 value in either the lower or

upper direction was obtained at three significance levels (a =

.10, .05, .01, two-tailed). Table 4-26 presents the empirical

proportion for the three E conditions, averaged over the levels

of G and n. Thus, the results in this table represent a general

pattern of the effect of noncircularity on the sampling

distribution of ^G 2 across the six scales. Table 4-26 was

further broken down by the levels of G or n, and the results are

presented in Table 4-27 for a = .10 only. Note that the values

for the upper 5%, for example, in the tables are the empirical

proportion of the confidence intervals whose lower limit was

greater than a specified population G2 value. Thus, the

proportion can be interpreted as a Type I error rate.
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From Tables 4-25 and 4-26 it is apparent that the sampling

theory of G 2 is robust to the violation of circularity condition

under the continuous data as the empirical proportion was almost

identical among the three 6 conditions. Although the proportion

was slightly larger for the E = 0/OR and R/OR conditions, the

magnitude of difference seemed to be negligible. Furthermore,

both upper and lower empirical proportions were all close to the

corresponding nominal levels, regardless of the levels of G and

n.

Table 4-26

Empirical proportion of confidence intervals that failed to
include a population G2 value (averaged over the levels of G and
n)

a E^: C N5 U5 N3 U3 U2

Upper NONE: 4.7 3.7 3.5 2.5 2.3 1.3
5% 0/OR: 5.2 4.0 3.7 2.3 2.2 1.0

R/OR: 5.2 3.7 3.5 2.4 2.2 1.1

Lower NONE: 5.0 6.6 7.3 10.2 10.7 19.5
5% 0/OR: 5.2 7.1 8.1 10.8 12.5 22.3

R/OR: 5.2 6.8 7.7 10.1 11.7 22.1

Upper NONE: 2.2 1.7 1.7 1.2 1.2 .6
2.5% 0/OR: 2.7 1.8 1.8 1.1 1.0 .4

R/OR: 2.5 1.8 1.7 1.1 1.1 .5

Lower NONE: 2.5 3.4 3.6 5.5 5.9 12.3
2.5% 0/OR: 2.6 3.5 4.2 5.8 6.9 15.0

R/OR: 2.6 3.4 4.0 5.6 6.6 14.4

Upper NONE: .5 .4 .4 .2 .2 .1
.5% 0/OR: .5 .4 .3 .2 .2 .1

R/OR: .5 .4 .4 .2 .2 .1

Lower NONE: .4 .7 .7 1.2 1.3 3.7
.5% 0/OR: .4 .7 .9 1.4 1.7 5.1

R/OR: .5 .6 .7 1.2 1.4 4.9
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Table 4-27

Empirical percentage of 90% confidence intervals that failed to
include a specified population G2 value

a E G^:

C N5^U5^N3^U3

averaged over the levels of n

U2

Upper NONE .90: 4.6 2.9 2.8 1.3 1.2 .4
5% .75: 5.0 3.9 3.6 2.7 2.5 1.5

.60: 4.6 4.4 4.0 3.5 3.1 1.9
0/OR .90: 5.3 3.2 3.1 1.2 1.2 .4

.75: 5.2 4.2 4.0 2.5 2.4 1.0

.60: 5.2 4.5 4.0 3.3 3.0 1.6
R/OR .90: 4.9 2.9 2.8 1.2 1.2 .3

.75: 5.2 3.7 3.7 2.6 2.3 1.2

.60: 5.4 4.5 4.1 3.5 3.1 1.8

lower NONE .90: 5.1 7.9 8.8 14.1 15.4 32.7
5% .75: 4.9 6.2 6.9 8.8 9.3 15.3

.60: 5.0 5.8 6.3 7.5 7.5 10.5
0/OR .90: 5.6 8.3 10.2 15.0 17.6 35.5

.75: 5.0 6.6 7.5 9.3 11.2 18.7

.60: 5.0 6.3 6.7 7.9 8.6 12.7
R/OR .90: 4.8 7.6 9.4 14.4 17.2 37.8

.75: 5.4 6.6 7.1 8.8 9.8 17.1

.60: 5.3 6.1 6.5 7.3 8.1 11.5

a E n^: averaged over the levels of G

Upper NONE 15: 5.0 4.7 4.5 3.4 3.2 2.1
5% 30: 4.6 3.5 3.3 2.2 2.0 .8

45: 4.7 3.0 2.6 1.9 1.6 .8
0/OR 15: 5.5 4.8 5.0 3.3 3.5 1.7

30: 5.2 3.8 3.3 2.0 1.8 .7
45: 5.0 3.4 2.9 1.7 1.3 .5

R/OR 15: 5.4 4.1 4.5 3.1 3.0 1.9
30: 5.0 3.6 3.4 2.4 2.0 .9
45: 5.1 3.3 2.7 1.8 1.6 .4

Lower NONE 15: 5.3 6.4 6.7 8.1 8.8 13.0
5% 30: 5.5 7.0 7.7 10.3 11.1 19.9

45: 4.2 6.5 7.6 12.0 12.3 25.5
0/OR 15: 5.7 6.7 6.8 8.8 9.5 14.3

30: 5.2 7.1 8.5 10.9 12.6 22.7
45: 4.8 7.5 9.0 12.6 15.3 29.9

R/OR 15: 5.4 6.4 6.7 8.2 8.7 13.9
30: 5.6 7.2 8.0 10.8 12.2 22.8
45: 4.5 6.8 8.3 11.4 14.2 29.8
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The results in Tables 4-25 and 4-26 also indicate that the

sampling theory of G 2 is not adequate for the categorical

scales, especially for a 3-point or less scale. As expected,

the empirical proportion decreased in the upper direction and

increased considerably to an unacceptable level in the lower

direction as the scale approached U2, and this trend was more

apparent for larger G and n values (see Table 4-27). In

general, these results reflected the characteristics of the

sampling variability of AG 2 reported above. That is, a

condition with a larger variability of AG2 is associated with a

larger empirical proportion in the sampling distribution of AG2.

Therefore, it can be concluded that the sampling theory of G2

for the two-facet design works well under continuous data, and

is quite robust to the violation of circularity condition.

However, it was not acceptable for categorical scales,

especially for a 3-point or less scale. As discussed in

relation to the one-facet design, the cause for this inadequacy

was mainly due to the effect of categorization in terms of

population characteristics.

D. Type I error rates in quasi F tests

In this section, we present some results of empirical Type

I error rates for quasi F ratios for the test of Rater and

Occasion main effects in the context of a three-way (Subjects by

Raters by Occasions) random effects ANOVA model. In general,

for any given design requiring the quasi F there are several

different ways to form a test statistic (Winer, 1971). The two
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quasi F ratios used for our two-facet design are presented at

the bottom of Table 4-28. Under the null hypothesis that a 2 r =

0 (i.e., no Raters effect), for example, the numerator and

denominator of both QFR1 and QFR2 have the same structure of

expected values of mean squares. Thus, the test statistic can

be set up in the usual way, but the degrees of freedom for those

terms associated with a combination of mean squares are obtained

from the Satterthwaite's procedure. In general, Satterthwaite's

adjusted degrees of freedom is fractional, and thus an exact

critical F value using a fractional degrees of freedom was

obtained by referring to F-inverse function in IMSL subroutine

in the simulation.

The reason for including the first form of the quasi F

ratio (Form 1 in Table 4-28) was that the structure of first

quasi F ratio is similar to that involved in the sampling

distribution of AG2 for the two-facet design. As reported in

the one-facet design, the effect of noncircularity on the

empirical proportion of the sampling distribution of AG 1 was not

as large as that on the Type I error rates in the F test. The

main cause for this is that the F test involves both MS r and MS e

which are more variable when the circularity assumption fails,

whereas the sampling distribution of AG 1 include MSe and MSp ,

but the variability of MS p is not sensitive to noncircularity

conditions. Therefore, for similar reasons, it may be expected

that noncircularity would have a larger effect on the quasi F

test than it would have on the sampling distribution of AG2, and

thus produce at least some positive effects on the quasi F test
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for either the Rater or Occasion main effect because the quasi F

ratio includes more-variable mean squares in both numerator and

denominator. As can be seen in Table 4-28, the results do show

that the Type I error rates for the test of both Occasion and

Rater main effects using the first form of quasi F ratio were

somewhat positively inflated under the violation of respective

local circularity. For example, the test for the Occasion

effect resulted in slightly larger Type I error rates under the

E = 0/OR condition, whereas the Type I error rates for the same

test were somewhat conservative or close to the nominal level

under the other two E conditions. Similar but slightly larger

inflation in the Type I error rates were produced for the test

of Rater effect under the E = R/OR condition.

With respect to the second form of the quasi F ratio,

Maxwell and Bray (1986) used this form in a simulation study to

investigate the effect of violating sphericity (circularity) on

the quasi F ratio in a three-way ANOVA design with one nested

factor. They concluded that the quasi F ratio was in general

quite robust to noncircularity, though it produced conservative

results for some of the conditions simulated. Although the

design, and thus the expected value of the mean squares, is not

the same in their study and the present study, we expect that

the results of this section would also show the robustness of

quasi F tests to the violation of circularity. These results

would then serve as a partial validation of the simulation

procedure and subsequent calculation implemented in the

simulation program. As can be seen in Table 4-28, the Type I
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error rates for the test of the Occasion effect were very close

to the nominal level, indicating the robustness of the quasi F,

whereas the same test under the other two conditions was

somewhat conservative. A slightly larger inflation was shown

for the test of Rater effect under the E = R/OR condition. In

general, the Type I error rates for the second form of the quasi

F test were smaller than those for the first form. This may be

due to the fact that the second form involves the

Satterthwaite's degrees of freedom in both numerator and

denominator, which could be adjusted in such a way that the

critical F value is larger or smaller, keeping the actual

probability of a Type I error rate near the nominal level. One

further note from these results is that the Type I error rates

were virtually identical between the normal and uniform

distributions within the same number of response scale, and they

decreased as the scale approached U2, regardless of the E

conditions and the types of quasi F ratio.

In summary, the results of the two-facet design closely

paralleled those of the one-facet design in terms of the effect

of categorization, sample size, and population G value.

However, some discrepancy was observed in terms of the effect of

noncircularity on the sampling variability of the G coefficient

between the two designs. That is, the sampling distribution of

AG2 was quite robust to the violation of circularity condition,

whereas the one-facet was not. Finally, as was the case in the

one-facet design, the noncircularity had more effect on the F

test (and quasi F) than it had on the sampling distribution of
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^G2. The results also indicate that the quasi F tests were

relatively robust to noncircularity, and their Type I error

rates were generally in close agreement with previous findings

in the literature.

Table 4-28

Empirical percentage of the Type I error rates for quasi F tests
in the three-way random effects ANOVA model (averaged over the
levels of G and n, each condition having 2000 replications,
alpha = .05)

Quasi F^E :^C^N5^U5^N3^U3^U2

QFO 1 NONE: 4.5 4.2 4.2 4.3 4.2 3.9
0/OR: 6.1 6.1 5.7 5.6 5.5 5.1
R/OR: 4.3 4.5 4.0 4.1 4.2 3.5

QFR1 NONE: 5.3 5.3 5.4 5.0 5.2 4.6
0/OR: 3.1 3.3 3.2 3.4 3.5 3.2
R/OR: 7.6 7.1 7.1 6.3 6.6 5.7

QFO2 NONE: 3.4 3.2 3.2 3.3 3.1 2.9
0/OR: 5.0 5.0 4.6 4.4 4.4 4.0
R/OR: 3.1 3.3 3.0 3.0 3.1 2.5

QFR2 NONE: 4.0 4.2 4.1 4.0 4.1 3.7
0/OR: 2.2 2.3 2.3 2.5 2.5 2.6
R/OR: 6.4 5.8 6.0 5.3 5.4 5.0

Occasion effect^ Rater effect

Form 1:

^

MS0^ MSr
QFO 1 =^ QFR1 = ^

MSpo + MSor - MSe^MSpr + MSor - MSe

Form 2:

^

MSo + MSe^ MSr + MSe
QFO2 =  

^

^QFR2 =
MS + MSoror MS + MSpr^or
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CHAPTER FIVE: SUMMARY AND CONCLUSIONS

This chapter presents a brief summary and the findings of

the present study, followed by the implications of the empirical

results. It concludes with limitations of the present study and

suggestions for future research.

The present study employed Monte Carlo procedures to

investigate the interactive effect of data categorization and

heterogeneity of covariance on the generalizability coefficient

for the one-facet and two-facet designs as well as on the Type I

error rates for the F tests in repeated measures ANOVA designs.

The primary focus was to examine and compare the sampling

characteristics of the G coefficients obtained on both

categorical scales and their parent continuous data under the

violation of the circularity assumption. Computer programs were

developed to construct the population covariance matrices of

interest with desired G and E values, and to conduct a series of

simulations under various sampling conditions.

One-facet design

An overview of the results with respect to the G

coefficient and to the Type I error rates is illustrated in a

tree diagram and presented in Table 5-1 and Table 5-2,

respectively, for the one-facet design.



1.0-->

.50-->

cp^k G cp AG 1 sd L% U%

r7-->
r-45-->

.90 -1--15-->

.90-r-45-->
1--15-->

r-45-->

.8958

.8841

.8960

.8845

.8956

.0242

.0550

.0274

.0610

.0258

4.1
5.3
4.5
4.9

5.2

5.0
5.3
5.2
4.9

6.7
r-7--> .90--15--> .8844 .0580 5.2 6.5

.90-L-3--> .90-r-45--> .8959 .0312 5.7 8.3
L-15--> .8847 .0660 5.6 7.9

r-45--> .8066 .0457 82.8 0.0
.79-r-7--> .81_L-15--> .7903 .0991 36.8 0.2

1--3--> .78-r-45--> .7742 .0666 83.7 0.0
L-15--> .7589 .1333 44.3 1.6

r45--> .8122 .0451 78.8 0.0
.81-r-7--> .82-1--15--> .7972 .0975 33.4 0.2

.80-r-45--> .7944 .0627 76.5 0.3
1--15--> .7807 .1205 37.3 1.9

r-45--> .5810 .0992 4.7 4.9
r-7-->
L

.60-1--15--> .5363 .2190 5.1 5.1
.60--3 --> .60-r-45--> .5818 .1119 4.5 5.1

L-15--> .5323 .2531 5.4 5.0

r-45--> .5789 .1069 6.2 6.2
r7--> -L-15-->.60 .5373 .2383 5.8 7.2

.60-L-3--> .60-r-45--> .5829 .1197 5.7 7.1
1--15--> .5344 .2661 5.2 7.2

r-45--> .4501 .1264 29.8 0.2
.46 -r-7--> .47-L-15--> .3979 .2772 12.9 1.2

1--3--> .46 -r-45--> .4356 .1508 29.0 0.4
1--15--> .3737 .3492 15.2 1.9

r45--> .4940 .1252 20.0 1.0
.52 -r-7--> .52 -L-15--> .4454 .2760 10.3 2.2

1--3--> .54-r-45--> .5190 .1287 12.5 2.3
1--15--> .4678 .2854 8.7 3.8

U2

-.50-->

710-->

.50-->

1.0-->

.50-->

G1 Scale^e

U2
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Table 5-1

An overview of the results regarding Gcn, A G 1 , and empirical
proportions beyond the theoretical limits of the tolerance
interval of AG 1 in the one-facet design



r7-->
U2--> .75-L-3-->

C -->
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0
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Table 5-2

An overview of the results regarding ecp , AC, and Type I error
rates in the one-facet design

0

C --> 1.0-r-7-->

--> 1.0

r7-->
-->

-->

-->

e cp Ecp

F7-->
1.0-L-15-->

1.0---3--> 1.0-r-45-->

7-- >

r-45-->

1.0^3 1.0-r-45-->>

F-45-->1 0---15-->
1 0 r-45-->

L-15-->

r-45-->
1.0-L-15-->
1.0-r-45-->

45-->

.53-r-45-->

F 45-->.75---15-->
.74-j--45-->

F 45-->

.54-r-45-->
L_15__ >

F-45-->.65 ---15-->
.66 -r-45-->

.8714 .0343

.6906 .0639

.9604 .0360

.8952 .0817

.8540 .0396

.6541 .0762

.9389 .0561

.8295 .1292

.8710 .0347

.6905 .0643

.9602 .0358

.8943 .0817

.8875 .0315

.7152 .0630

.9634 .0352

.8990 .0842

.4850 .0577

.4429 .0779

.5274 .0084

.5285 .0167

.6781 .0673

.5557 .0835

.7244 .0742

.6839 .1161

.4809 .0301

.4284 .0498

.5394 .0119

.5404 .0231

.6107 .0462

.5352 .0687

.6553 .0713

.6498 .1117

a=.05

4.9
4.7
5.1
5.7

4.9
4.3
4.5
4.8

4.4
4.8
4.8
5.6

4.5
4.4
4.6
4.8

9.1
9.8
7.8
8.9

6.0
6.9
5.7
6.7

9.9
9.7
8.2
8.2

8.2
7.2
8.0
7.2

E^G1^Scale

G 1 = . 0

AE sd
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Cost of data categorization. Categorization of continuous

data had a marked influence on the G coefficient, resulting in a

considerably smaller G cp than for the parent continuous data,

especially for a 3-point or less scale. Although the magnitude

of reduction in Gcp from C to U2 scales varied in a rather

complicated manner, depending on a particular combination of G,

k, and e of the simulated conditions, it was the largest with a

small number of measures (i.e., k = 3). In practice,

researchers rarely have control of the population parameters (G

and E), but these results can be used as a guide for planning a

G study. The findings of the one-facet design suggest that in

situations where a categorical response is inevitable (e.g., a G

study in observational research), the practitioner should

consider using a 5-point or more scale and try to avoid using a

combination of a 3-point or less response category and a small

number of raters (i.e., k = 3) in a G study. Otherwise, he or

she may estimate a G coefficient which is already about 20%

lower than its population G coefficient.

Sample estimates. The sample estimate of the G coefficient

(AG ' ) is a downward biased estimator, as shown in the

mathematical derivation where E(AG1) < G1, and the amount of

bias varies as a function of the size of G 1 and n, but

independently of the number of measures (k). The empirical

results in the present study suggest that this bias became

substantially larger when G 1 < .75 and n < 30. In such

circumstances, the use of the unbiased estimator of the G
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coefficient is strongly recommended.

Although AG 1 is a biased estimator of G 1 , the mean of AG '

over the replications was very close to its expected value

[i.e., E(AG 1 )] and was consistently so across all simulated

conditions (k, E, and types of scale) for a given G1 (or Gcp ).

These findings suggest that the degree of heterogeneity of

covariance did not introduce any additional bias to the

magnitude of AG 1 , nor did nonnormality, nor a moderate departure

from homogeneity of variance (i.e., a ratio of .6 to 1.4 among

the variances). However, heterogeneity of covariance,

especially e = .5, did result in more variable estimates of MS e

(but not for MSp ). This in turn produced a larger sampling

variability of AG1 . Especially, the magnitude of AG 1 with k =

3, G = .60, E = .5, and n = 15 varied markedly, ranging anywhere

from .93 to -2.0.

The variability of ^G i across the categorical scales showed

a rather complicated trend. The magnitude of empirical standard

deviations for the categorical data was considerably larger than

for its parent continuous data, but this result was deemed to be

a result of the initial difference between Gcp and G 1 brought

about by the interactive effects among population conditions (G,

E, types of scale). When the effect of categorization was

partialled out, the variability of AG 1 appeared to be very close

to its corresponding theoretical value, although it was still

considerably larger than that for the continuous data.

Furthermore, the comparison of empirical standard deviations

among the three C conditions for the categorical data showed
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that the variability of AG 1 for the E = H condition was larger,

especially under the U2 scale. This result was deemed to be due

to the sampling characteristics of epsilon as well as to the

effect of categorization -- the categorization resulted in a

smaller Gcp for the E = H condition and produced a larger

epsilon estimate, especially under the U2 scale.

Therefore, these results suggest that the violation of the

circularity assumption did not add any bias to the estimate, but

yielded more variable estimates of the G coefficient for

continuous data. Thus, it is likely to produce too many large

estimates of the G coefficient (as well as too many small ones).

However, the sampling variability of AG ' for categorical data

was less sensitive to the heterogeneity of covariance,

especially for a 3-point or less scale.

Sampling distribution of ^G i . Heterogeneity of covariance

had some positive effects, though not large, on the sampling

distribution of ^G i as evident by the inflated empirical

proportions beyond the upper limit of the theoretical tolerance

interval of AG ' , especially under the E = .5 condition. The

empirical proportions were, in general, about 6% for E = .7 and

about 7.2% for E = .5 at a/2 = .05. When considering the

criteria of robustness suggested by Bradley (1978, p.146) -- a

stringent criterion being 0.9a < actual value < 1.1a and the

most liberal one being 0.5a < actual value < 1.5a, these results

indicate that the sampling theory of the G coefficient is fairly

robust to a moderate departure from circularity (i.e., under the



162
Summary and Conclusions

E = .7 condition), but somewhat sensitive to severe

noncircularity. Therefore, when the circularity assumption is

not seriously violated, the sampling theory of G coefficient can

be adequately applied to an inferential test for an estimated G

coefficient.

The sampling theory of the G coefficient was not adequate

for categorical scales. The empirical proportion beyond the

theoretical upper limit was reduced to close to zero, and that

beyond the lower limit increased considerably to an unacceptable

level -- for the U2 scale it was as large as about 80% for n =

45 and G 1 = .90 for all three levels of k. These results were

deemed to be mainly due to the initial difference between G 1 and

Gcp brought about by the effect of categorization. An

interesting yet rather contradictory interpretation of these

results would be that the empirical proportion of AG 1 falling

within the two limits of the tolerance interval could be

interpreted as a Type II error, if one could presume that the

difference between the G i and Gcp is indeed a true difference

(but the sampling theory and statistical model assume that

observed variables have an underlying continuous metric).

Nevertheless, these findings indicate that the sampling theory

of the G coefficient and its inferential procedure are not

adequate for categorical data, especially for a 3-point or less

scale, unless a large number of measures (k) (large enough to

bring up the G cp close to its parent continuous G 1 value) are

involved in a design.
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Type I error rates in the F test. As expected, the results

showed that the Type I error rates of the F test for the Rater

main effect (MS r /MS e ) were inflated when circularity failed.

For categorical data, the degree of this inflation in the error

rates decreased as the scale approached U2. This appeared to be

due to the sampling characteristics of epsilon -- epsilon

estimates were larger under categorical scales than under

continuous data. As a result, the error rates for categorical

scales were not too serious for a moderate departure from

circularity, especially for a 3-point or less scale. The

results also suggest that the effect of noncircularity on the F

test was larger than that on the inferential procedure of the G

coefficient (i.e., about 7% vs. 9% under E = .50). In general,

the empirical results in the present study were in close

agreement with previous findings in the literature, and thus

provided the validation of the simulation procedure and accuracy

of subsequent calculations implemented in the simulation

programs.

Examination of the relationships among the population

epsilon, the sample estimate, and the Type I error rates

revealed an interesting phenomenon. There was a strong negative

relationship between the magnitudes of epsilon estimates and the

Type I error rates across simulated conditions when covariances

were heterogeneous, thus supporting current theory. However,

for the E = 1.0 condition, although the magnitude of the sample

estimates varied widely, the associated Type I error rates were

all close to the nominal level, thus yielding a near zero
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correlation between them. Further investigation of the

correlations among the sample estimates (AE, MS e , and MS r )

showed the presence of a negative correlation between AE and MSe

for the low epsilon conditions. This negative correlation

indicates that the ratio of MS r /MS e tends to be smaller for a

smaller Ac under the violation of circularity assumption, which

is a contradictory relationship of what is reported in the

literature.

Two-facet design

The results of the two-facet design closely paralleled

those of the one-facet design in terms of the effects of

categorization, sample size, and population G value. However, a

primary difference in the findings between the two designs was

that the violation of the circularity assumption did not have

any appreciable effect on the sampling characteristics of the G

coefficient for the two-facet design. The results of the

sampling variability and empirical distribution of AG2 suggest

that the sampling theory of the G coefficient for the two-facet

design, which is based on an approximated F distribution using

the Satterthwaite's procedure, was very satisfactory and quite

robust to the violation of the circularity assumption for

continuous data and for a 5-point scale.

With respect to quasi F ratios, the magnitude of Type I

error rates for the Rater or Occasion effect test varied

somewhat depending on the particular form of the F ratios. It

was found that the Type I error rates for the quasi F ratio,
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which include a combination of mean squares only in the

denominator of the F ratio, were somewhat positively inflated

under noncircularity. As in the conventional F test, the degree

of inflation in the error rates was reduced to close to the

nominal level as the scale approached U2. However, the second

form of the quasi F test, which includes a combination of mean

squares in both numerator and denominator of the test, resulted

in tests which were quite robust to noncircularity. On the

other hand, the same test was somewhat conservative when the

circularity assumption was met. These results for the second

form of the quasi F test were in close agreement with those in

the related literature.

Implications of the present study 

The findings of the present empirical study have

implications for the use of G theory. First, the results showed

that categorization of continuous data into a 3-point or less

scale resulted in a considerable loss of measurement

information. For example, a G coefficient for a 5-point scale

was only about 5% smaller than that for the parent continuous

data. However, it was about 10% and about 20% smaller for a 3-

point scale and for a dichotomous scale, respectively.

Therefore, dichotomization of any Likert-scale variables or the

use of dichotomous scale for the simplicity of ratings should be

avoided, whenever possible.

Second, it was shown that AG ' is a downward biased

estimator of G 1 , and the amount of bias increases with
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decreasing G and n. Furthermore, sample size and the magnitude

of the G value have relatively larger influence on the

variability of ^G 1 , in comparison to the number of measures.

Therefore, if possible, the use of a large sample size should be

considered in conducting a G or D study in order to reduce the

amount of bias as well as the sampling variability of the G

coefficient. However, when a small scale G study is inevitable,

researchers should consider using an unbiased estimator of G1.

For example, consider a measurement design under which a

researcher obtained a G coefficient of .68 with n = 15. The

corresponding unbiased value for the same data would be .73 =

H.68)(15-3) + 2]/(15-1). The two values may lead him/her to

reach quite a different conclusion in a decision making, one

being classified as an unacceptable value and the other being

considered as a reasonable value.

Third, the sampling theory for the one-facet design was

quite robust to a moderate violation of the circularity

assumption (i.e., c = .70). Researchers applying an inferential

test for a G coefficient may not need to worry too much about

noncircularity unless a severe noncircularity is observed (i.e.,

= .50). For the two-facet design, noncircularity did not have

any effect on the sampling distribution of G coefficient.

However, for both designs the use of inferential procedures for

a G coefficient with categorical data, especially with a 3-point

or less scale, should be given extra consideration. Since a G

coefficient for a 3-point or less scale is already considerably

lower than that for the parent continuous data, the limits of a
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confidence interval for an unknown population G coefficient

would be shifted downward, and thus give a misleading range for

a true population G coefficient.

Fourth, Type I error rates for continuous data were

inflated when circularity failed, but the error rates for

categorical data were not too serious for a moderate departure

from circularity, especially for a 3-point or less scale.

However, the Type I error rates were close to the nominal level

for the E = 1.0 condition, regardless of the size of epsilon

estimates. These findings suggest that an Ac- or -6-adjusted F

test would be correct only if one can presume that the

population covariance matrix from which a sample being taken

exhibits noncircularity. Otherwise, the adjusted F test would

result in a conservative test, and thus increase the probability

of a Type II error if the estimated epsilon is indeed from the

population matrix with homogeneous covariances. Furthermore,

empirical results revealed the presence of negative correlations

between MSe and AE for the e < 1.0 conditions. Given that

correlations between MS r and AE and between MS r and MS e were

near zero, the negative relationship between MS e and Ae suggests

that a smaller Ac is associated with a larger MS e , which in turn

tends to produce a smaller F ratio (MS r /MS e ). These results led

us to question the validity of the common practice of utilizing

the "E- or -E-adjusted F test in the repeated measures ANOVA

designs.
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Suggestions for future research

As with any simulation study, the results obtained in the

present study must be interpreted with a certain degree of

caution. There are a number of limitations imposed by the

conditions simulated, and these limitations suggest possible

directions for future research in this area. One such

limitation is that the present study investigated the sampling

behavior of only one form of the G coefficient, that is, the G

coefficient for a relative decision. There are a number of

reliability-like indices frequently used in practice, such as

intraclass correlation coefficients and the G coefficient for

absolute decisions, and it is uncertain as to the extent which

the results obtained for one specific index can be generalized

to other indices.^Further research is also needed to

investigate the extent to which the results obtained for the

specific measurement designs used in the present study can be

generalized to other measurement designs, such as fixed and

nested designs, and to a design having a large number of facets

and levels within a facet.

Another restriction on the generalizability of the present

results is that the simulated population data were generated

from a particular form of population covariance matrix, and the

data were transformed to the categorical scales having the

normal and uniform distribution. Although it seems clear that

the sampling characteristics of the G coefficient would be

insensitive to a certain level of variation in nonnormality

represented by the uniform distribution and in heterogeneity of



169
Summary and Conclusions

variances / covariances, it is less clear whether similar

conclusions can be made about the performance of the G

coefficient under other distributional forms (e.g., exponential)

or under a radically different form of covariance matrices with

severe noncircularity for all facets and their interactions.

Finally, it would be worthwhile to conduct further

investigations on the relationships between the population

epsilon, the sample estimates, and the Type I error rates for

the F tests (perhaps for quasi F ratios as well). An

interesting yet contradictory preliminary finding regarding the

correlations among the sample estimates raises a question about

the current practice of utilizing an AE-adjusted F test in

repeated measures ANOVA designs, and this question requires

further confirmation with extensive empirical work.
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Circularity assumptions in repeated measures ANOVA

Repeated measures analysis of variance (ANOVA) procedures
are extensively used in educational and psychological research.
When the repeated measures are obtained from the same
individuals, it is naturally believed that the successive
measures or responses will tend to positively correlated. In
this case, besides the usual ANOVA assumptions of normality of
distribution and homogeneity of variances, there is an
additional assumption regarding the pattern of these correlated
measures. A number of empirical studies on the effect of
violating ANOVA assumptions of normality of distribution and
homogeneity of variances on Type I error rates have shown that
ANOVA F statistic is generally robust with regard to moderate
departures from these assumptions, especially if sample sizes
are equal (e.g., Glass, Peckham, & Sanders, 1972), but see
Bradley (1978). However, ANOVA loses its robustness when the
covariance matrix underlying the repeated measures deviates from
a certain pattern, referred to as compound symmetry or
circularity.

A covariance matrix is said to possess the property of
circularity if the variances of all pair-wise differences
between the repeated measures are equal. A special case of
circularity is compound symmetry, a covariance matrix with equal
variances and equal covariances (Huynh and Feldt, 1970; Rouanet
and Lepine, 1970; Winer, 1971). For example, for a two-way
ANOVA model, which is the equivalent model to a one-facet
crossed design (i.e., subjects by raters) in G theory, the
compound symmetry implies that a r by r covariance matrix
exhibits equal variances in the diagonal and equal covariances
in the off-diagonal. Furthermore, for a three-way ANOVA model,
i.e., a two-facet (Persons x Raters x Occasions) fully crossed
design in G theory, each of the covariance matrices /r (nr x
nr ), Zn (no x n^and /r) 

I^o )^ro (nrno xnrno ) is required to possess
a local circularity (Rouanet & Lepine, 1970) in order for the F
or quasi F statistic to be valid (Huynh & Mandeville, 1979;
Maxwell & Bray, 1986; Mendoza, Toothaker, & Crain, 1976).

Box (1954) has shown that violating this assumption yields
more variable estimates of the mean squares, and thus results in
more extreme large as well as small F ratios than indicated by
the theoretical F distribution. Since interest is directed to
the upper tail of this distribution, a cumulative proportion
beyond the theoretical upper limit is attributed to Type I error
rates. Consequently, he developed a measure of the degree of
departure from compound symmetry, known as epsilon (C). Epsilon
is used to correct a positive bias in the usual F test by
adjusting the degrees of freedom by an amount proportional to E
or of its estimate Ae. The epsilon is a function of the
variances and covariances in the population matrix (I x), and can
be calculated as:
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k2 (aii - 6..) 2

(c_1) (EF.02ij - 2)(27,02
1.^k2 62 ..)

where;

k^= the order of the covariance matrix,

2ii = the mean of the variances (diagonals),

6.. = the grand mean of the covariance matrix,

Gi• = the mean of the i th row or column of the
covariance matrix, and

6ij = an individual element in the matrix
(where; i and j = 1,2,..k).

Huynh and Feldt (1970), and Rouanet and Lepine (1970)
demonstrated independently that the compound symmetry condition
of the covariance matrix is a sufficient condition for the ratio
of mean squares to have an F distribution, but it is not a
necessary condition. That is, a matrix E may have other
patterns, but the ratio of the mean squares may still have an F
distribution with E = 1.0. If the difference scores between all
pairs of measures are equally variable, this produces a
covariance matrix which possesses circularity (Rouanet & Lepine,
1970) condition. This property in the covariance matrix
indicates that when a k x k covariance matrix Ex is transformed
orthonormally, using a k-1 by k orthonormal matrix M, then a
resultant (k-1) by (k-1) matrix Ev contains a set of orthonormal
variables. If the original matrix Ex has the circularity
pattern, then the resultant matrix Ev has sphericity condition
which results in Ev = mExmy = cI, wh6re I is the identity matrix
of order (k-1), anti c is a constant. From this relationship,
the epsilon E can be alternatively defined in terms of
orthonormally transformed matrix as:

[A2]
^ (x c i ) 2

E
(k-1) E c2 1

where;
c is the (k-1) eigenvalues of a (k-1) by (k-1) matrix

Y .

Under circularity or sphericity condition, all eigenvalues are
equal. Consequently, (E c i) (k-1) E c' i , and E = 1.0. Under
maximum departure from sphericity, all eigenvalues, except one,
are equal to zero (e.g., Boik, 1981; Grieve, 1984), thus (E ci) 2
= E c'. and E = 1/(k-1).

[Al]

E =
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Box's work was extended to more complex designs by Geisser
and Greenhouse (1958), Greenhouse and Geisser (1959), McHugh,
Sivanich, and Geisser (1961), and Huynh (1978). In addition,
many subsequent simulation studies (with continuous dependent
variables) have shown that the degree of bias introduced by
violating circularity assumption is quite substantial in a
variety of specific cases (Collier, Baker, Mandeville, & Hayes,
1967; Greenhouse & Geisser, 1959; Huynh, 1978; Rasmussen,
Heumann, Heumann, & Botzum, 1989; Wilson, 1975). For example,
Collier et al. (1967) showed that computing "E from a sample
covariance matrix and adjusting the degrees of freedom for the
critical F by amount of AE produced an approximate F test that
is relatively robust for reasonable samples of 15 or larger.

However, Stoloff (1970), and Huynh and Feldt (1976) have
demonstrated, through Monte Carlo studies, that AE-adjusted test
is negatively biased (i.e., too conservative). This bias is
greatest when a population E is near or above .75, especially
when the sample size is small. Consequently, Huynh and Feldt
proposed an alternative estimator of E. Their estimator -E is a
function of n (sample), g (group), k (level) and Box's AE:

[A3]
n(k-1) AE - 2

-E -
(k-1) [n-g- (k-1) ^E]

Thus, for any value of n and k, -E is equal to or greater than
AE, and the equality holds when AE = 1/(k-1). The upper bound of
-E was set to unity, though it theoretically can be greater than
unity. Huynh and Feldt(1976, 1978) and Rogan, Keselman and
Mendoza (1979) reported that -E-adjusted test produced a test
size closer to a specified alpha level than did the AE-adjusted
test.

Most empirical studies mentioned above have focused more on
examining the behavior of the ratio of the mean square estimates
and the degree of positive bias in the F test. However, knowing
that the departure from the circularity condition in the
covariance matrix results in unstable estimates of mean squares,
it is quite likely that the more-variable mean squares would add
an additional variability to the estimates of the G coefficient
since the G coefficient is a function of observed mean squares.
This would be especially true with a small scale of a
measurement design. There is, however, little research in the
literature that has systematically examined the effects of
noncircularity on the magnitude of the sample estimates of the G
coefficient as well as on the sampling variability of the
estimates.
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Input population covariance matrices 

Table B-1

Population covariance matrices for the one-facet design (k = 3)

G = .90^.75^.60

E =^1.0^1.0^1.0

 

100
75 100
75 75 100

 

100
50 100
50 50 100

 

100
33.33 100
33.33^33.33 100

 

E =^.7051^.7051^.7088

 

100
75 100
61 89 100

 

100
50 100
22 78 100

 

100
14^100
10^76^100

 

e =^.5268^.5395^.5389

100^100^100
76 100^50 100^3^100
54 95 100^10 90 100^2^95^100
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Table B-2

Population covariance matrices for the one-facet design (k = 5)

G = .90:

100^ E = 1.0
64.29 100
64.29 64.29 100
64.29 64.29 64.29 100
64.29 64.29 64.29 64.29 100

100^E = .6930
77 100
64 77 100
51 64 77 100
41 51 64 77 100

100
^

8 = .5001
83 100
65 83 100
41 65 83 100
34 41 65 83 100

G = .75:

100^ E = 1.0
37.50 100
37.50 37.50 100
37.50 37.50 37.50 100
37.50 37.50 37.50 37.50 100

100^E = .7061
60 100
33 60 100
12 33 60 100
12 12 33 60 100

100
^

e = .5179
80 100
25 50 100
10 25 50 100
10 10 25 90 100

G = .60:

100^ 8 = 1.0
23.08 100
23.08 23.08 100
23.08 23.08 23.08 100
23.08 23.08 23.08 23.08 100

^

100^E = .7066
30 100
1 40 100

^

0^5 60 100

^

0^0 25 70 100

100

^

95 100
^

E = .5047
0 25 100
0^0 26 100
0^0^0 90 100
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Table B-3

Population covariance matrices for the one-facet design (k = 7)

G = .90:

100^E = 1.0
56.25 100
56.25 56.25 100
56.25 56.25 56.25 100
56.25 56.25 56.25 56.25 100
56.25 56.25 56.25 56.25 56.25 100
56.25 56.25 56.25 56.25 56.25 56.25 100

100^E = .7024
71 100
60 71 100
54 60 71 100
40 54 60 71 100
40 40 54 60 71 100
40 40 40 54 60 71 100

100^e = .5069
80 100
60 80 100
50 60 80 100
39 50 60 80 100
35 39 50 60 80 100
15 35 39 50 60 80 100

G = .75:

100^E = 1.0
30 100
30 30 100
30 30 30 100
30 30 30 30 100
30 30 30 30 30 100
30 30 30 30 30 30 100

100^c = .7046
65 100
20 50 100
20 20 50 100
15 20 20 50 100
10 15 20 30 50 100
10 10 20 30 40 65 100

100^E = .5080
90 100
25 40 100
15 25 90 100
10 15 25 40 100
50 10 15 25 40 100
5 10 10 15 25 90 100
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Table B-3 - continued

Population covariance matrices for the one-facet design^(k = 7)

G =^.60:

100
17.65

e =
100

1.0

17.65 17.65^100
17.65 17.65^17.65 100
17.65 17.65^17.65 17.65 100
17.65 17.65^17.65 17.65 17.65^100
17.65 17.65^17.65 17.65 17.65^17.65 100

100 e = .6993 100 e = .5136
20^100 90^100
10^50 100 5^25 100
10^10 70^100 0^5 25 100
0^10 10^20^100 0^0 5 90 100
0^0 10^10^50 100 0^0 0 5 25 100
0^0 0^10^10 70^100 0^0 0 0 5 90^100



Table B-4

Population covariance matrices for the two-facet^(3
5 Raters)^design
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Occasions by

100 G =^.90,^Matrix: NONE, Epsilon
61 100
61 61 100 0^= 1.0
61 61 61 100 R^= 1.0
61 61 61 61 100 OR^= 1.0
62 54 54 54 54 100
54 62 54 54 54 61 100
54 54 62 54 54 61 61^100
54 54 54 62 54 61 61^61 100
54 54 54 54 62 61 61^61 61^100
62 54 54 54 54 62 54^54 54^54 100
54 62 54 54 54 54 62^54 54^54 61 100
54 54 62 54 54 54 54^62 54^54 61 61 100
54 54 54 62 54 54 54^54 62^54 61 61 61^100
54 54 54 54 62 54 54^54 54^62 61 61 61^61^100

100 G =^.90,^Matrix:^0/OR, Epsilon
75 100
75 75 100 0 =^.6729
75 75 75 100 R = 1.0
75 75 75 75 100 OR =^.6752
66 54 54 54 54 100
54 66 54 54 54 60 100
54 54 66 54 54 60 60^100
54 54 54 66 54 60 60^60 100
54 54 54 54 66 60 60^60 60^100
40 54 54 54 54 80 54^54 54^54 100
54 40 54 54 54 54 80^54 54^54 48 100
54 54 40 54 54 54 54^80 54^54 48 48 100
54 54 54 40 54 54 54^54 80^54 48 48 48^100
54 54 54 54 40 54 54^54 54^80 48 48 48^48^100

100 G =^.90,^Matrix:^R/OR, Epsilon
80 100
60 80 100 0 = 1.0
40 60 80 100 R =^.6810
30 40 60 80 100 OR =^.4495
70 54 54 54 54 100
54 60 54 54 54 80 100
54 54 60 54 54 60 80^100
54 54 54 60 54 40 60^80 100
54 54 54 54 60 30 40^60 80^100
70 54 54 54 54 70 54^54 54^54 100
54 60 54 54 54 54 60^54 54^54 80 100
54 54 60 54 54 54 54^60 54^54 60 80 100
54 54 54 60 54 54 54^54 60^54 40 60 80^100
54 54 54 54 60 54 54^54 54^60 30 40 60^80^100
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Table B-4 - continued

Population covariance matrices for the two-facet (3 Occasions by
5 Raters) design

100 G = .75,^Matrix:^NONE, Epsilon
51 100
51 51 100 0 =^1.0
51 51 51 100 R =^1.0
51 51 51 51 100 OR =^1.0
52 34 34 34 34 100
34 52 34 34 34 51 100
34 34 52 34 34 51 51 100
34 34 34 52 34 51 51 51 100
34 34 34 34 52 51 51 51 51^100
52 34 34 34 34 52 34 34 34^34 100
34 52 34 34 34 34 52 34 34^34 51^100
34 34 52 34 34 34 34 52 34^34 51^51 100
34 34 34 52 34 34 34 34 52^34 51^51 51 100
34 34 34 34 52 34 34 34 34^52 51^51 51 51^100

100 G = .75,^Matrix:^0/OR, Epsilon
80 100
80 80 100 0 =^.6543
80 80 80 100 R =^1.0
80 80 80 80 100 OR =^.6742
50 34 34 34 34 100
34 50 34 34 34 50 100
34 34 50 34 34 50 50 100
34 34 34 50 34 50 50 50 100
34 34 34 34 50 50 50 50 50^100
30 34 34 34 34 76 34 34 34^34 100
34 30 34 34 34 34 76 34 34^34 23 100
34 34 30 34 34 34 34 76 34^34 23^23 100
34 34 34 30 34 34 34 34 76^34 23^23 23 100
34 34 34 34 30 34 34 34 34^76 23^23 23 23 100

100 G = .75,^Matrix:^R/OR, Epsilon
70 100
50 70 100 0 =^1.0
30 50 70 100 R =^.6810
20 30 50 70 100 OR =^.5673
40 40 30 30 30 100
40 50 40 30 30 70 100
30 40 50 40 30 50 70 100
30 30 40 50 40 30 50 70 100
30 30 30 40 70 20 30 50 70^100
40 40 30 30 30 40 40 30 30^30 100
40 50 40 30 30 40 50 40 30^30 70^100
30 40 50 40 30 30 40 50 40^30 50^70 100
30 30 40 50 40 30 30 40 50^40 30^50 70 100
30 30 30 40 70 30 30 30 40^70 20^30 50 70^100
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Table B-4 - continued

Population covariance matrices for the two-facet (3 Occasions by
5 Raters) design

100 G = .60,^Matrix: NONE, Epsilon
46 100
46 46 100 0 = 1.0
46 46 46 100 R = 1.0
46 46 46 46 100 OR = 1.0
45 22 22 22 22 100
22 45 22 22 22 46 100
22 22 45 22 22 46 46 100
22 22 22 45 22 46 46 46 100
22 22 22 22 45 46 46 46 46 100
45 22 22 22 22 45 22 22 22^22 100
22 45 22 22 22 22 45 22 22^22 46 100
22 22 45 22 22 22 22 45 22^22 46^46 100
22 22 22 45 22 22 22 22 45^22 46^46 46 100
22 22 22 22 45 22 22 22 22^45 46^46 46^46 100

100 G = .60,^Matrix:^0/OR, Epsilon
82 100
82 82 100 0 =^.6552
82 82 82 100 R = 1.0
82 82 82 82 100 OR =^.6542
33 22 22 22 22 100
22 33 22 22 22 36 100
22 22 33 22 22 36 36 100
22 22 22 33 22 36 36 36 100
22 22 22 22 33 36 36 36 36^100
20 22 22 22 22 82 22 22 22^22 100
22 20 22 22 22 22 82 22 22^22 20^100
22 22 20 22 22 22 22 82 22^22 20^20 100
22 22 22 20 22 22 22 22 82^22 20^20 20^100
22 22 22 22 20 22 22 22 22^82 20^20 20^20 100

100 G = .60,^Matrix:^R/OR, Epsilon
70 100
40 70 100 0 = 1.0
20 40 70 100 R =^.6566
20 20 40 70 100 OR =^.5149
30 30 20 15 15 100
30 45 30 15 15 70 100
20 30 45 30 20 40 70 100
15 15 30 45 30 20 40 70 100
15 15 20 30 60 20 20 40 70^100
30 30 20 15 15 30 30 20 15^15 100
30 45 30 15 15 30 45 30 15^15 70^100
20 30 45 30 20 20 30 45 30^20 40^70 100
15 15 30 45 30 15 15 30 45^30 20^40 70^100
15 15 20 30 60 15 15 20 30^60 20^20 40^70^100
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