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ABSTRACT

There is interest in forest sampling methods which have
the ability to provide reliable estimates of volume without
incurring unreasonable costs. Fraser (1977), to this end,
described an individual tree variable probability sampling -
method which selects sample trees with probabilities based
on the areas of polygons derived from triangles; A
comparison of some alternative methods of sampling these
polygons confirms Fraser's work and demonstrates that the
method proposed by him probably has the greatest potential

for practical forest sampling.
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SOME METHODS OF SAMPLING TRIANGLE BASED
PROBABILITY POLYGONS FOR

FORESTRY APPLICATIONS

INTRODUCTION

Of the various levels of forest inventory, the
operational cruise requires the most precise estimate of

volume since it is wusually on the basis of this estimate

that investment decisions are made. There is interest,
therefore, in sampling techniques which provide such
estimates without incurring greatly increased costs. With

the availability of dendrometers and 1inexpensive data
processing more attention has been given to methods whose
sample units are individual trees rather than groups of
trees. Grosenbaugh (1967) demonstrated that‘ selecting
single trees with probabilities related to their size is
more efficient, statistically, than point or plot sampling.
Jack (1967) and Fraser (1977) described individual tree
methods which select sample trees with probabilities based
on the areas of polygons. These area-based methods have the
advantage of not requiring a visit to every tree of the

target population, as do methods which select trees from a
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" list or which are based on ocular estimates of tfee size.,
Hence area-based methods are better suited to the
measurement of large tracts of timber. Furthermore,
Fraser's method, which is based on the location of triangles
whose vertices are points on the ground defined by tree
stems, is relatively easy to apply in the field and provides
additional information on stand density and tree spatial

distribution.

The purpose of this study is to investigate some
alternative methods related to the method outlined by Fraser
in order to:

a) independently confirm his work,

b) determine if any improvements in statistical
efficiehcy can be provided by these
alternatives and

c) provide insights for further work.

It is hoped that this investigation will help to further
the development of the use of triangle based probability

polygons in forest measurements.
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CHAPTER ONE

LITERATURE REVIEW

In the context of allocating areas to individual trees,
Brown (1965) constrhcted polygons whose sides were
perpendicular bisectors of line segments joining tree stem
positions. This resulted in a set of polygons (historically
-named either Dirichlet cells or Voronoi polygons), one per
tree, which had no gaps or overlaps. Brown called the area
of a polygon "Area Potentially Available" (APA) to the tree
which it contained énd used it as a measure of point
density. He demonstrated that using the APA concept one
could detect correlation between basal area and tree
density more readily than with the conventional fixed radius
plot method of determining tree density. He also indicated

the utility of APA as a competition index.

Jack (1967) employed the polygons described by Brown in
the development of a singlé treé sampling technique. In
this method a tree is selected as part of a sample when a
uniformly distributed random coordinate point falls within

its polygon. Thus, trees are selected with probability
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proportional to their APA. Jack concluded from preliminary
trials that this sampling method will give results having
acceptable 1limits of accuracy at lower cost than other
methods which require visiting every-tree,‘where the sampled
area is reasonably large. In addition, he gives results of
using APA in the prediction of tree volume increment,
showing that a slight improvement in prediction can be made

with the inclusion of APA.

In the interests of obtaining better correlation between
APA and tree size, Adlard (1974) proposed adjusting polygon
sides such that they no longer bisected the line segments
between trees but instead divided the segments at a point
weighted by tree size. This resulted in allocating more APA

to larger stems.

Fraser and van den Driessche (1971) discussed describing
the liné segments which join points in a plane to form a
network of non-overlapping triangles. Such networks have
consistent traits, that is, a population of N points yields
2N triangles with 3N common sides. Also, a single point has
an expected value of six sides radiating from it. Thus,
sampling triangles for average triangle area enables one to

estimate population density and total population size. In
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addition, variances of triangle areas and triangle side
lengths can be used to indicate regularity and degree of
clumping of points. Construction of triangle sets is
facilitated with the selection of least diagonal neighbour
(LDN) pairs of points. A pair of points are LDN's provided
that no other point occurs on the line segment between the
pair and that the line segment cannot be intersected by a
shorter 1line segment between any otﬁer pair of points.
Except for a few special cases, forming triangles from pairs
of points defined this way will result in a unique set of

triangles.

Fraser (1977) advanced the use of LDN triangle networks
constructed among tree stem positions with the development
of a single tree variable probability sampling method based
on such networks. By allocating a portion of the area of a
triangle to each of its vertex trees according to some
proportioning scheme one can construct polygons around
trees. Having located the LDN triangle in which a sample
point falls, one calculates the probabilities of selection
of the three vertex trees (based on the chosen proportioning
scheme) and then selects a tree by 1list sampling with
variable probabilities. Fraser compared two formulae for

proportioning triangle areas, one being a direct
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'proportioning according to tree size and the other being a
geometric proportioning which “gonceptually" divides the
triangle into threea quadtilaterals »resulting from
partitioning triangle sides according to tree size and
joining the partitioning point to‘ the opposite tfiangle
vertex. As such, one need not think in terms of physical
polygons but only in terms .of probabilites. For each
formula of area partitioning he applied four different
measures of tree size or proportioning weights. These were
1 (or equal weights), tree diameter at breast height (D), D2
(or basal area), and Dzu (or portion of basal area found in
a triangle) where o is the angle measure of the triangle
-vertex. It should be noted that field meésurements require
only conventional tree volume measures plus triangle side
distances. Angles, areas, and proportions are calculated
later. Fraser found that the geometric proportioning
formula using the Dza weight resulted in the most precise

estimate of volume.

Fraser also pointed out that work on APA polygons can be
related to triangle based polygons. For example, three
trees are vertices of a Delauney triangle provided no other
points occur on or within the circumcircle of the triangle.

The centre of the circle is found by the intersection of
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perpendicular bisectors of triangle sides. Rogers (1964)
proves that the polygons formed by these bisectors are the
same as the Voronoi polygons; Thus, the polygons used by
Brown and Jack may also be described as triangle based
polygons where the vertex trees are weighted equally and the
triangles are partitioned by the polygons formed by the
perpendicular bisectors of their sides. Fraser suggests
that these Voronoi polygons are statistically inefficient
in the context of sampling for tree volumes. While Adlard's
modification might improve this efficiency there would be
considerable difficulty in implementing practical field
procedures in order to establish the related Delauney

triangles.
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CHAPTER TWO
METHOD OF ANALYSIS

THE BASIC METHOD

Fraser (1977) ohtlined a sampling method utilizing
polygons formed £from triangles constructed among LDN trees
(Figure 1). This method considers polygons as variable
sized plots, each containing oneb whole tree, and 1is
hereafter called the Basic Method. For a sample size of n

(i= 1 to n), if{

y; = volume of sample treei,

a; = area of polygon containing sample treei,
A = total area covered by target population,
z; = probability bf.selecting tree;, = ai/A,
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then the estimate of total volume (probability proportional

to estimated size) is:

V. n vy, '

i 1

z Al z al (1)
1 i i=1 i

s
I

_ 1
Yppes = ——

n Y. n y.
V(Yppes) = A (n}l) z (al = _I]{_- X al > (2)
_ =1 i= i
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Figure 1 Stem map showing least diagonal neighbours and
polygon of the type used in the Basic Method
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The field procedure for sampling using this type of

polygon is as follows:

i) Locate a sample point and establish the LDN

triangle among trees in which it falls.

ii) Take the necessary measurements for
determining proportioning weights from each
vertex tree of thé tiiangle. Using the
desired weighting and proportioning formula
calculate the probabilities of selecting each
tree: Pj, P,, and P3.  Generate a uniformly
distributed random nuﬁber between 0 and 1.
Select tree 1, if the random number is less
than or equal to Py; select tree 2 if the
random number is greater than P, but less

otherwise select

than or equal to P, + P

1 27

tree 3.
iii) Measure selected tree for volume.
iv) Locate the remaining LDN trees of the

selected tree and record their weighting

measures and side lengths of the triangles
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which they form. These measurements are
necessary for the calculation of polygoh
areas. Note that angle measurements are not
required as they are also calculated from

side distances.

In summary this method requires the measurement of:

12

tree measured for volume (assumed to include

measures for proportioning weights),

(average) trees measured for proportioning

weights,

(average) distance measures between LDN trees
(this is based on the fact that a point in a
triangle network has an expected value of 6

sides radiating from it),

probability calculation in the field in order

to select volume tree.

12
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Four alternative methods related to the Basic Method are
now proposed. In these methods the same formulae for Yppes
and V(Yppes) apply, however, the calculation of the ¥i and
a; and the field procedures differ. 1In particular, three of
the methods dispense with any probability calculation in the
field, In the £following discussion, in order to keep
notation simple, the same variable names are kept
throughout, even though their meaning may change slightly
from method to method. It is felt that this will be more
easily understood than having a éompletely different set of

variable names for each method.
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METHOD 1

‘This consiéts of a sample unit of 6nly a part of one tree
of a field selected LDN triangle (Figure 2). .The selected
tree is chosen with probability proportional to its
quadrilateral area. This method considers quadrilaterals as
variable sized plots, each containing the fractional part of
the tree which falls within the quadrilateral.' In this

case, if

‘o = size of triangle vertex angle at which volume
tree is located, |

v = volume of volume tree,
then

¥; = volume of porEion of volume tree contained

- in triangle

va
2T

a. = area of quadrilateral containing volume

tree.
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Sampling using this method requires per sample unit:

1 tree measured for volume (includes a

weighting measure),
2 trees measured for proportioning weights,

3 distance measures betweeen LDN trees
(weighting and distance measures are
used for calculation of quadrilateral

area),

1 probability calculation in the field

for selection of volume tree.

15
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Figure 2 Stem map showing a least diagonal neighbour triangle
and quadrilateral of the type used in Method 1



PAGE 17

METHOD 2

This is the simplest case of measuring three trees of a
field selected triangle (Figure 3). Once a triangle is
selected, its three vertex trees are automatically measured.
This method considers triangles as variable sized plots,
each containing the fractional parts of the three trees
”which fall within the triangle. I1f, for the triangle

vertices j =1 to 3 :

a. = measure of triangle vertex anglej,

vy = volume of tree at vertex,,

then

sum of volumes of portions of vertex

s
i

trees contained in triangle

v,a Va0 v,0
_ 1%1 . V2%2 3%3
N T T S T

3
_ 1
= m v
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a; = triangle area.

" This method requires per sample unit:

3 trees measured for volume,

3 distance measures between trees (used in
calculatibn of triangle angles and area),
no proportioning weight measurés,

no probability calculation in the field.

18
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Figure 3 Stem map showing a least diagonal neighbour triangle
of the type used in Method 2
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METHOD 3

This is anothei threé tree case using a field selected
triangle much 1like Method 2. fhe distances to the 9
(average) LDN neighbours of the Vthtee vertex trees are
measured in addition to those measurements required in
Method 2 (Figure 4). This method considers triangles as
variable sized plots, each containing weighted fractional
portions of the three trees at ité vertices. The fractional
portion of a tree is weighted by the ratio of the selected
triangle area to the sum of the areas of all triangles
common to that tree. Thus it is not equal to the
fractional volume portion falling within the triangle as in

Method 2. For the selected triangle vertices j = 1 to 3 let

PL. = area of the large polygon which is
the sum of the areas of all LDN

triangles having tree. at a vertex,

J
vy = volume of tree at selected triangle
vertexj,
t = area of selected triangle.

The selected triangle has allocated to its area "t" a

portion of each tree volume ‘vj proportional to t/PLj.



 PAGE 21

Therefore,
g, = Vlt .\ v2t . v3t
1 PL1 PL2 PL3
3 v,
=t 2 o5
J=1 ]
a., = t.
i

This method requires per triangle sampled:

3 trees measured for volume,

24 (average) distance measures between
LDN trees,
no proportioning'weight measures,

no probability calculations in the field.



PAGE 22

Figure 4 Stem map showing least diagonal néighbours and one
shaded large polygon of the type used in Method 3
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METHOD 4

This is also a three tree sample of a field selected
triangle as in Method 3 except that, in addition, the
weighting measures of the nine_(average) surrounding LDN
trees are taken, and the weights and distances are used to
calculate polygon areas in the same manner as in Fraser's
Basic Method (Figure 5). This method considers triangles as
variable sized plots, each containing weighted ffactional
portions of the three trees at its vertices as with Method
3. However, unlike Method 3, the fractionai portion of a
tree 1is weighted by the ratio of the area of its
quadrilateral in the selected triangle to the sum of the
areas of all its quadrilaterals. Thus, for the selected

triangle vertices j = 1 to 3 let

PS. = area of the small polygon which

is the sum of all quadrilaterals

having treej at a vertex,

q. = area of the quadrilateral, in the
selected triangle, having tree.

at a vertex,
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v. = volume of tree..
] ]

A portion of each tree volume V3 proportional to qj/PSj is

allocated to the selected triangle area. So,

Vidy  Vo9y V343

Y: = + +
1 PSl P82 P53

<
Q

i
i~ w
g
[¢p] W
.L.l.

area of selected triangle.

o
1}

This method requires per triangle sampled:

3 trees measured for volume (includes

weighting measures),

24 (average) distance measures between

LDN trees,

9 (average) trees measured for proportioning

weights (weighting and distance
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measures are necessary for
calculation. of quadrilateral areas),
no probability calculations in the field.

Tables 1 and 2 suﬁmarize the important features of each of

the methods.
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Figure 5 Stem map showing least diagonal neighbours and one
- shaded small polygon of the type used in Method 4
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Table 1 Summary of the compilation of the y; and
a; for each method (used in formulae (1)

and (2))
Method : Yi : aj

Basic : sample tree volume ¢ area of polygon

Method 1 : volume of tree portion : area of quadri-
: contained in triangle : lateral contain-
: : ing tree

Method 2 : sum of volumes of tree : area of selected
: portions contained in : triangle
: triangle :

Method 3 : sum of: : area of selected
: (triangle area) (tree volume): triangle
: large vertex polygon area :

Method 4 : sum of: : area of selected
:(quadrilateral) (tree volume) : triangle
s ( area ) :

small vertex polygon area
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Table 2 Summary of measures required per sample
for each method

Method : Number of : Average : Average : Probability
: volume : number of : number of : calculation
. measures : weighting : distance : required in
: : measures : measures : field
Basic : 1 : 6 : 12 : yes
Method 1 : 1 : 2 : 3 : yes
Method 2 : 3 : none : 3 : no
Method 3 : 3 : none : 24 : no
Method 4 : 3 : 9 : 24 : no
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METHOD OF COMPARISON

Four data sets were analyzed in this study. These are

the identical data sets used by Fraser, being stem map and

diameter information for four forest types. (The data for a

fifth type used by Fraser had been misplaced -and could not

be reconstructed). The type symbols and species composition

are:

HB

HC

HCB

FPy

mature western hemlock (Tsuga

heterophylla (Raf.) Sarg.) and 

balsam (Abies amabilis Dougl.)

Forbes),
mature western hemlock and western

red cedar (Thuja plicata Donn),

mature western hemlock, western red

cedar and balsam (Abies lasiocarpa

(Hook.) Nutt.),

mature Douglas-fir (Pseudotsuga

menziesii (Mirb.) Franco) and yellow

pine (Pinus ponderosa Laws)

Information describing these stands is found in Table 3.

Figures 6, 7, 8, and 9 are frequency histograms of areas of
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quadrilaterals, triangles, small polygons, ~‘and large
polygons for each sﬁand. Note that all distributions are
similar, being skewed right. These histograms give no
information as‘to spatial arrangement. As Fraser noted the
FPy stand appears to be highly aggregated in spatial pattern

3
while the other three stands show random pattern.



PAGE 31

Table 3 Description of stands tested

STAND TYPE

HC HB HCB FPy

Area (m?) 3520 2378 3176 3567
Number of trees 94 106 76 51
Dbh, min (cm) 25 22 18 25
max (cm) 93 64 92 73

Height min (m) 18 19 15 29
max (m) 44 40 43 47

Volume per tree (m3) ' 2.80 1.35 2.48 2.76
Coeff of variation, percent 69.6 59.4 75.7 81.0
Volume per 200m2 plot (m3) 14.97 12.07 11.89 7.90
Coeff of variation percent 43.4 32.3 68.1 76.1

Trees per plot (average) 5.34 8.90 4.80 2.86
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400 quadrilaterals

200

6 18 30 42 54 66 78 90 102 Ha

g0 triangles

10 30 50 70 80 . 1o 130 150 170 190

A small polygons

20
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20 large polygons

- L | ‘l ——

375 112.5 187.5 2625 337.5 4i2.5 4875 562.5 637‘_5 7125

class midpoint

Figure 6 Frequency histograms of areas of quadrilaterals,
triangles, small polygons, and large polygons for
stand HC



frequency

PAGE 33

400 quadrilaterals
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w0 3 | triangles
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0 small polygons

20
B ——I y . " _ ]
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40
large polygons
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I
— - — y e
100 300 500 700 900 1100 1300 1500 1700 1800
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Figure 7 Frequency histograms of areas of quadrilaterals,
triangles, small polygons, and large polygons for
stand HB
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400 quadrilaterals

200

15 45 75 105 135 165 195 225 255 285

80 triangles
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20 small polygons
0
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20
large polygons
10
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Figure 8 Frequency histograms of areas of quadrilaterals,

triangles, small polygons, and large polygons for
stand HCB
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Figure 9 Frequency histograms of quadrilaterals, triangles,
small polygons, and large polygons for stand FPy
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FORTRAN programs were written to enable the comparison of
the methods described herein. These programs identified LDN
pairs; solved their resultant triangles; partitioned the
triangle areas into their polygon portions; and calculated

the desired statistics.

The population forms of equations (1) and (2), that is,
summed over all possible samples, were applied to these
data. The trianéle partitioning formula used was the
geometric proportioning formula which calculates proportions

(P1, Py, and P3) of a triangle area in each quadrilateral.

Thus
2 2 )
Wy (wy Wy + 2wy w3 + Wy Ws)
Pl"-
W(wl + w2) (wl + w3)

where

W = Wy Wy + Wy Wi + w2 w3 '
and Wi W, and w3 are tree weights. VPZ and P, are
calculated similarly following symmetry in subscripts. The

2y weight described by

proportioning weight used was the D
Fraser. In addition, a D2Hu weight, with H being tree

height, was tested for the FPy, HC, and HCB data sets, since
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height information was available for these types. It was
hoped that this might give a partitioning of total area A
into polygon areas which is more highly correlated with tree

volumes.

Comparisions were made using values of C where

1 * ( i 1 % Y jf
SO L s B W Doje1 3
RS
Poi=1 44

and is the coefficient of variation of the estimate of mean
volume per unit area. As noted by Fraser, since the sample
size required to achieve a given 1level of precision is
directly proportional to C2, reductions in C of 1 or 2
percent are important. from the standpoint of improving
sémpling efficiency provided that they can be obtained by
change in partitioning_ formula with no other <change  in

costs.

In order to test sampling efficiency where cost items
change (that is where measurements and calculations change)
relative variance ratios. were calculated from these

coefficients of variation:
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C2 for Method X

Relative variance ratio = 5" :
C“ for Basic Method

in order to relate each méthod to tﬁe Basic Method. These
relative variance ratios give the relative numbers of
samples required for equal precision. That is, if h is used
to denote sample size, then:

n for Method X C2 for Method X

n for Basic Method C2 for Basic Method

Thus, one can calculate the average number of measurements
required to gain equal precision for each method relative to
the Basic Method by multiplying the relative variance ratios

by the average number of measurements given in Table 2.
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CHAPTER THREE

RESULTS AND DISCUSSION

Computed population total volumes and areas for the four
stand types were identical to those results obtained by
Fraser. Since the two studies used different methods to
construct LDN triangle networks (Fraser found his LDN pairs
manually; the present study was performed using LDN pairs
identified by a FORTRAN program) slightly different triangle
sets were obtained. The results for either study are still,
of course, meaningful since each triangle =~ set was
consistently applied throughout each analysis; hence the
relative differences of values of C will not change. In the
current study, the results for the Basic Method were judged
to be similar enough to those results of Fraser (in terms of

their absolute values and their behaviour from type to type)

as to verify their correctness. Indeed, when the FPy type
was tested with the tree weights of 1, D, and pD? that
Fraser had applied, the same trend in the values of C was

observed.

Table 4 gives the values of C for the four types using
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i

the Dza weight. The results are consistent, showing

decreasing values in order of Method 1, Method 2, the Basic
Method, Method 3, and Method 4. It can'immediately be seen
that improved statistical performance is obtained with

Methods 3 and 4 but not with Methods 1 and 2.
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Table 4 Coefficients of variation (C) for each
method using the D2a weight

: Stand Type
Method : HC HB HCB FPy
Basic : 62.4 65.5 79.7 114.6
1 : 130.6 153.1 136.6 213.8
2 : 128.0 150.9 135.2 211.7
3 : 61.0 60.6 79.2 103.2
4 : 51.2 53.7 69.8 97.4
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Table 5 gives the values of the relative variance ratios
for each method compared.to the Basic Method for each stand.
As noted previously, these are the ratios of samples
required to obtainv the‘same precision as the Basic Method.
Thus, for example, it would require 4.38 times more Method 1
samples than Basic Method samples in order to obtéin equal
precision with the HC stand type. To see what these ratios
mean in terms of thé average number of measurements required
to obtain the same précision as with the Basic Method one
needs only to multiply the values of Table 5 with the
average number of measurements required in each method (from

Table 2). These values are shown in Table 6.
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Table 5 Variance ratios for each method relative to
the Basic Method

: Stand Type
Method : HC HB HCB FPy
Basic 2 1.00 1.00 1.00 1.00
1 : 4.38 5.46 2.94 3.48
2 : 4.21 5.31 2.88 3.41
3 : .96 .86 .99 .81
4 : .67 .67 .77 .72
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Table 6 Comparison of average number of measurements
required for each method to obtain the same
precision as the Basic Method

: :Number :Average : Average : Probability
: sof snumber of : number of : calculation
Stand :volume :weighting : distance : required in

Method : Type :measures:measures measures field
Basic : All : 1 : 6 : 12 : yes
i ac : 4.38 ¢ 8.76 @ 13.14
: HB : 5.46 : 10.92 : 16.38 : yes
HCB : 2.94 : 5.88 s 8.82 :
: FpPy : 3.48 : 6.96 : 10.44 :
> i HC :12.63 : 0 s 12.63
: HB : 15.93 : 0 : 15.93 : no
: HCB : 8.64 : 0 : 8.64 :
: FPy : 10.23 : 0 10.23 :
3 : HC : 2.88 : 0 T 23.08  :
: HB : 2.58 : 0 : 20.64 : no
: HCB : 2.97 : 0 : 23.76 :
: FPy : 2.43 : 0 : 19.44 :
2 i ae i a0l i 6.03 i 16.08
: HB : 2.01 : 6.03 : 16.08 H no
¢« HCB : 2.31 : 6.93 : 18.48 s
: FPy : 2.16 : 6.48 : 17.28
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For the data tested here, it is apparent that none of the
new methods offérs any advantage over the Basic Method.
More specifically} Method 1 requires a  probability
calculation in the field =-- in addition to weighting
measures ~-- and requires three to five times as many volume
measures as the Basic Method. (Volume measures typically
are the most costly as they usually include a diameter
measure, a height measure, quality assessment, and sometimes
diameter measures up the Stem.) Method 2 has the advantage
of not requiring a probability calculation in the field nor
does it require any weighting measures; however it does
require eight to sixteen times as many volume measures.
Method 3 also dispenses with the probability calculation in
the field, and does not require any weighting measures;
however, it needs two to three times as many volume measﬁres
and almost twice as many distance measures in order to
obtain the same precision as the Basic Method. = Method 4
does not require the probability calculation in the field,
but it does require weighting measures (about the same

number as does the Basic Method) and about twice as many

volume measures.

Table 7 gives the values of C for the Basic Method and

Methods 1 and 4 using the DZHu weight (Methods 2 and 3, of
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course, show no change since they make no use of the
proportioning weights). There are, once again, the same
trends as before, that is, the values decrease in the order
of Method 1, the Basic Method, and Method 4. However, when
these values are compared with those of the Dza weight of
Table 4 no consistent trends are observed. With Method 1
values actually increase or remain the same, going from a

D20L

to a D2Ha weight. With Method 4 and the Basic Method
values decrease slightly. These results certainly do not
encourage the measurement of height for weighting purposes,
at least in a volume sampling context; especially since
height measurements are so time consuming. It might be
worthwhile, however, to test a D2Hu weight for partitioning

triangle areas to form polygons which correlate well with

volume increment.

These results confirm Fraser's work and, in addition,

demonstrate that some improvement in statistical efficiency

may be obtained with two of the methods proposed here. It
seems unlikely, though, that any of the four new methods
offers any improvements in sampling costs. Another

conclusion to be drawn from. this is that sampling methods
which use volumes of parts‘of trees, rather than of the

whole tree, introduce more variation and hence require more
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samples to obtain equal precision. Therefore, costs of
making such samples would have to be reduced in order to
make them practically applicable. Thus it appears that
those methods which use whole tree volumes might provide the

greatest potential for any future sampling work.
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Table 7 Coefficients of variation (C) for each
method using the D2Hqa weight

s Stand Type
Method : HC » HCB FPy
Basic : 59.3 78.6 113.5
1 : 132.1 139.6 213.8
4 : 49.8 69.0 96.7
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CHAPTER FOUR

SUGGESTIONS FOR FURTHER WORK

\

Obviously, the most important need 1is to obtain field
experience in order to assess the cost of sampling triangle
based probability polygoné relative to conventional methods.
Such trials need to be rigorously tested with experienced

field crews in order to obtain the most realistic results.

Somewhat related to this is a need 'to test for
sensitivity of the volume estimate to measurement errors in
data collection. Stochastic simulation would probably be

the best approach to accomplish this.

In the Basic Method and Methods 1 and 4 the volume
estimates make no di;ect use of tree volumes which might be
derived from the additional weighting measures taken for the
purpose of calculating polygon areas. Estimates of volume
may be improved by using these measures and in addition,
diameter distributions may be derived. (The éssumption here
is that diameters are partiof thé weighting measurements

taken.) This might result in Methods 1 and 4 becoming more
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palatable sampling alternatives.

Currently, the Research Branch of the British Columbia
Forest Service is tesﬁing the identification of plus trees
using competition indices as a basis for the assessment of
stress. Trees exhibitihg desirable traits may be doing so
simply due to a social position which is relatively free of
stress, whereas trees exhibitiné the same traits while being
subjected to high_ stress may be of exceptional genetic
stock. Thus competition is an important quantity to be
determined. The advantage of using triangle probability
polygons to estimate competition is the ease of field
measurement. Awkward and expensive stem mapping procedures
are not necessary, nor is there the possibility of measuring
too few or too many trees. The indentification of LDN pairs
always results in the optimum number of trees. 1In addition,
there is the potential to test various partitioning and
'weighting alternatives to obtain those which best suit the

needs of this work.

Measures of . density and pattern are important for
thinning and spacing work. Reliable assessment of stands
prior to entry for thinning or spacing can be useful for

determining the necessity of such treatments and for
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defining contract specifications. Likewise, similar
assessment after entry can be hsed to check satisfactory
completion for approval of forestry costs or prior to
contract pay-off. Simple stems per hectare estimates do not
suffice; they giye no information as to degree of clumping.
Using the statistics of average triangle area and variance
of this estimate proposed by Fraser and van den Driessche
(1971), one has 1indicators of density and spatial
distribution. This is achieved simply through the sampling
of individual LDN triangles and measuring side distances.
Stauffer (1979) has advanced this aSpect of Fraser and van
den Driessche's work and has estimated the distributions of
these spatial indicators so that confidence intervals may be
calculated for them. With these indicators and the ability
to test their statistical significance the next step is to
gain experience through simulation and from the field in
ofder to develop an interpretation of what their magnitudeé
mean in'practical terms. Development of field technique is
also required. Note that an offshoot of _this application
would be to sample for volume information (with little extra
measurement required) for the phrposes of estimating volume
of wood removed or for testing growth response through
periodic measurements. Information about diameter

distributions is also useful from the point of view of
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spacing contracts; therefore, investigation of the
production of diameter distributions from simple diameter

measures of triangle vertex trees would be useful.

Regeneration surveys would‘ also enjoy a similar
application of triangle spatial indicaiors; however, it is
difficult to visualise a practical field technique to apply
to small seedlings. Results, though, ’could be much mdre

reliable than the use of stocked quadrats.

Another area requiring more study 1is the problem of
identifying LDN pairs from stem map data. Shamos and Hoey
(1975) provide a good summary of algorithims for jbining
points according to various <criteria. Included are
algorithms for construction of triangles and Voronoi
polygons. They point out that using a linear.programming
approach (i.e., the Simplex Method) 'in two variableé with N
constraints (where N represehts number of points) results in
computation time increasing as N2, while polygons can be
constructed, in two dimensions, wusing geometric techniques
which result 1in a computation time increasing as N 1log N.
Developing these algorithms to produce LDN triangle

networks, or their resultant polygons directly would greatly

improve computational efficiency and facilitate simulation
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studies involving spatial pattern problems.
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