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ABSTRACT 

Means of drawing t r u l y random samples from populations 

of trees distributed non-randomly i n a plane are p r a c t i c a l l y unknown. 

Only the technique of numbering a l l items and drawing from a l i s t i s 

commonly suggested. Two other techniques are developed, reducing plot 

size and selecting from a cluster with probability (1/M) where M i s 

larger than the cluster s i z e . The exact bias from some other selection 

schemes i s shown by the construction of "preference maps". Methods 

of weighting the selection by tree height, diameter, basal area, gross 

volume, v e r t i c a l cross-sectional area and combinations of diameter and 

basal area are described. None of them require actual measurement of 

the tree parameters. Mechanical devices and f i e l d techniques are 

described which simplify f i e l d application. The use of projected angles, 

such as are used i n Variable Plot Sampling i s central to most of these 

methods. 

C r i t i c a l Height Sampling Theory i s developed as a generalization 

of Variable Plot Sampling. The f i e l d problem i s simply to measure the 

height to where a sighted tree i s "borderline" with a relaskop. The 

average sum of these " c r i t i c a l heights" at a point multiplied by the 

Basal Area Factor of a prism gives a direct estimate of stand volume 

without the aid of volume tables or tree measurements. Approximation 

techniques which have the geometrical effect of changing the expanded 

tree shape are described. The s t a t i s t i c a l advantages of using the 



system were not found to be large, and the problems of measuring 

the c r i t i c a l height on nearby trees was severe. In general use 

there appears to be no advantage over standard techniques of Variable 

Plot Sampling, however i n situations where no volume tables exist 

i t may have application, and the problem of steep measurements angles 

to nearby trees can be overcome by using an o p t i c a l c a l i p e r . The 

system can also overcome the problem of "ongrowth" for permanent 

sample plots. 

Donald D. Munro 
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INTRODUCTION 

This thesis w i l l develop two basic areas of interest. 

The f i r s t part w i l l examine the problem of drawing a t r u l y random 

sample of trees distributed i n a non-random pattern i n a plane. 

It i s d i f f i c u l t to believe that such systems have not been developed 

i n the past. Other than the c l a s s i c a l method requiring l a b e l l i n g 

of a l l trees i n the population the author has found l i t t l e mention of 

methods to accomplish t h i s . Two major methods of assuring a random 

sample w i l l be given, and one of them (the elimination method) w i l l be 

used to select trees with probability proportional to a number of 

different parameters for that tree. Selection proportional to diameter, 

height, basal area, gross volume and weighted combinations of diameter 

and basal area w i l l be of p a r t i c u l a r interest. The biases inherent 

i n incorrect attempts to gather random samples w i l l be examined and 

methods of specifying the magnitude of such biases w i l l be developed i n 

the form of "preference maps" constructed from standard stem location 

maps. In several cases mechanical aides w i l l be devised for f i e l d work 

in selecting samples with p a r t i c u l a r weightings. 

The second part of the thesis w i l l develop the theory of 

C r i t i c a l Height Sampling for the inventory of tree stands without the 

use of volume tables. The basic concept i s to extend the theory of 

B i t t e r l i c h s ' Variable Plot Sampling to the t h i r d dimension, so that not 

only the tree basal area, but the entire tree volume i s expanded by a 

constant and then d i r e c t l y sampled. A large scale f i e l d t r i a l w i l l not 
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be attempted, but the f i e l d work w i l l be described and some f i e l d 

experience w i l l be gained to anticipate problems i n application and 

to develop alternative measurement schemes to solve them. Approximation 

techniques w i l l be discussed and some computer simulation w i l l be used 

to determine the r e l a t i v e v a r i a b i l i t y of the system i n comparison to 

standard Fixed Plot or Variable Plot techniques. Applications and 

timber types for which the system i s p a r t i c u l a r l y suited w i l l be discussed. 

Emphasis throughout the thesis w i l l be on the geometrical reasoning 

involved, since an understanding of th i s w i l l greatly aid attempts to 

adapt these methods to l o c a l conditions. 

Reasons to Sample Individual Trees 

Selection of trees for sampling, as opposed to complete 

enumeration, i s now standard practice i n forest inventory. In most 

cases, the trees are selected as a cluster, and the value of interest 

i s a sum of individual values i n that cluster. S t a t i s t i c s are then 

applied to that sum as a single observation and usually expanded on an 

area basis. In their c l a s s i c application both fixed plot sampling and 

variable plot sampling are examples of th i s process of selecting a 

cluster of trees. The cluster has four major advantages, one i s 

s t a t i s t i c a l and the other three procedural. 

The s t a t i s t i c a l advantage i s that the sum of a cluster i s often 

less variable than individual tree values, both because i t incorporates 

several observations which may tend to "average out" under even random 
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spacing arrangements, and because there i s a tendency for trees to 

react to each others presence. This "competition effect" tends to 

cause higher v a r i a t i o n between individuals, but lower v a r i a t i o n among 

the groups, since as one tree increases i t s growth i t i s often at the 

expense of i t s neighbors. The process of competing for a shared amount 

of available l i g h t , water and nutrients serves to ret a i n a constant 

effect on a group of trees even while increasing individual differences. 

This reasoning certainly applies to growth, i f not to t o t a l volume. 

We are thus led to the c l a s s i c situation of v a r i a t i o n within (rather 

than between) clusters which gives cluster sampling i t s s t a t i s t i c a l 

advantage. 

The f i r s t procedural advantage i s that once a plot center i s 

established i t i s usually small additional e f f o r t to determine several 

trees for sampling at the same time. With the expense involved i n 

travel time, p a r t i c u l a r l y i n random sampling, i t often decreases t o t a l 

project cost to measure a cluster even when v a r i a b i l i t y between and 

within clusters would not indicate a s t a t i s t i c a l advantage. 

The second procedural advantage i s that most sampling systems 

are based on the concept of volume measured on a land area basis. I t often 

i s easy to determine the t o t a l area involved i n an inventory, but rather 

hard to determine the t o t a l number of trees, hence a system based on 

volume i n an indi v i d u a l tree requires a more ingenious approach to 

sampling. Such approaches as Triangle Sampling by Fraser (1977), and 

the same concept applied e a r l i e r by Jack (1967) are examples of using 

a land area base for indi v i d u a l trees, but they lack widespread 

acceptance. 
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) 

The th i r d advantage to selection of a c l u s t e r , i s that simple 

rules for the unbiased selection of a cluster of trees are easy to 

develop and readily available, while unbiased selection rules for 

individual trees are d i f f i c u l t to find or simply unavailable. 

Selection of individuals by even so simple a c r i t e r i o n as frequency i s 

d i f f i c u l t indeed. The following quote i s from Pielou (1977). 

In order to choose a random individual from which 
to measure the distance to i t s nearest neighbor, 
the only satisfactory method i s to put numbered tags 
on a l l the plants i n the population and then to 
consult a random numbers table to decide which of 
the tagged plants are to be included i n the sample. 
In doing t h i s , we acquire w i l l y - n i l l y a complete 
count of the population from which i t s density 
automatically follows. There i s another method of 
picking random plants, but i t , too, requires that 
the size of the t o t a l population be known. If a 
sample of size n, say, i s wanted from a population 
of size N, the probability that any given plant i n 
the population w i l l belong to the sample i s p=n/N. 
We must then take each population member i n turn 
and decide by some random process whose probability 
of "success" i s p whether that member i s to be 
admitted to the sample. Even i f we are w i l l i n g to 
guess the magnitude of N i n t u i t i v e l y and assign to 
p a value that w i l l give a sample of approximately 
the desired s i z e , i t i s s t i l l necessary to subject 
every population member to a " t r i a l " i n order to 
decide whether i t should be included i n the sample; 
as the successive t r i a l s are performed, a complete 
census of the population i s automatically obtained. 

The sampling of tree clusters based on a fixed area has 

three main disadvantages. F i r s t , there may be l i t t l e s t a t i s t i c a l 

advantage i n doing so. In an area where the growth of a cluster may 

be very consistent the t o t a l volume may be quite d i f f e r e n t . Dollar 
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values, p a r t i c u l a r l y where different species are involved, are 

l i k e l y to be even more variable. S t r a t i f i c a t i o n , either before or 

after data c o l l e c t i o n , may be only partly helpful i n reducing this 

variance. 

Secondly, as trees are measured with greater accuracy and 

for multiple c h a r a c t e r i s t i c s , the cost difference between establishing 

the sample point and measuring the tree diminishes, and i t i s less 

reasonable to measure many trees "as long as you are there anyway". 

The concern for accurate net volumes i n lump sum sales has led the 

United States Bureau of Land Management (BLM) to " F a l l , Buck and Scale" 

cruising (Johnson, 1972). This kind of destructive, intensive 

measurement can only be j u s t i f i e d when sample sizes are as small as 

s t a t i s t i c a l l y feasible. "Extra" trees can no longer be measured just 

because i t w i l l simplify the selection process to measure a cluster 

rather than an i n d i v i d u a l . 

Third, the t o t a l land area involved may be more d i f f i c u l t to 

determine than the number of trees. I t may be complexly defined, 

i n t r i c a t e i n pattern or there may be d i f f i c u l t y physically measuring 

the border. In addition there may be "boundary effects" for trees 

physically near the border. This has resulted i n a great number of 

papers, for instance (Martin et a l . , 1977; Beers, 1966; Beers, 1976; 

Barrett, 1964). I t might be an advantage, where possible, to avoid 

rather than solve these problems. 



Reasons to Sample Randomly 

Random sampling does not always mean selection of individuals 

with equal pr o b a b i l i t y , although i t i s often discussed i n this manner. 

I t does mean that an indiv i d u a l item has a part i c u l a r probability of 

being included i n a sample, and usually that the selection of the 

individual does not affect the further probability of selecting any 

additional member of the population for the sample. A more rigorous 

d e f i n i t i o n of random sampling can be found i n Brunk (1965). We w i l l 

consider, for the following discussion, only equal probability selection 

with replacement because i t i s simple and i l l u s t r a t e s the main points 

of the following topics. 

In equal probability selection with replacement each permutation 

of observations has an equal probability of occurrence. This usually 

means that during the sampling process each observation has an equal chance 

of selection at any time. This i s desirable, since i t permits unexpected 

termination of the sampling process without affecting the randomness of 

the smaller sample. 

This type of random selection i s presumed for most estimates 

of population variance. Many sampling schemes can be considered of 

th i s type by suitable d e f i n i t i o n s of what s h a l l be considered "an 

observation". Two main points are of interest. 

F i r s t , such a sample yields an unbiased estimate of the mean 
2 

( M ) and variance ( C T ) of the population. Unbiasedness i s s t i l l considered 

by many to be a very desirable feature for an estimator. There are 

other sampling schemes which also y i e l d unbiased estimates of the mean. 
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One way such estimates are easily produced i s by simply assuring 

that each observation has an equal probability of being sampled. 

Systematic sampling can often have this effect, and i s usually meant 

to. 

Unbiasedness i s not hard to produce i n an estimator, nor 

i s i t universally accepted as a desirable feature. The smaller 

expected mean square error E £ (x - which can be produced by 

Baysian estimation, many robust methods and other techniques, i s often 

gained by accepting very small biases. The problem i s to assure the 

researcher that these biases can indeed be expected to be small. The 

major arguments for the concept of unbiasedness are given by Brunk (1965). 

1. To state that an estimator i s unbiased i s to 
state that there i s a measure of central tendency, 
the mean, of the d i s t r i b u t i o n of the estimator, 
which i s equal to the population parameter. This 
i s simply the d e f i n i t i o n of unbiasedness. An 
equally appealing property, however, from this point 
of view, might, for example, be that the median 
(page 348) of the estimator be equal to the 
population parameter. 
2. For many unbiased estimators one can conclude, 
by applying the law of large numbers, that when 
the sample size i s large the estimator i s l i k e l y 
to be near the population parameter. However, this 
i s the property of consistency, discussed below; 
and the argument here i s not primarily i n favor of 
unbiasedness, but i n favor of consistency. For 

example, the unbiased estimator, |̂  ̂  " 1 J °̂  t*ie 

population variance has thi,s property; but so also 
does the sample variance s i t s e l f . 
3. An important advantage from the point of view of 
the development of the theory of s t a t i s t i c a l 
inference i s that i n many respects unbiased estimators 
are simpler to deal with. The linear properties of 
the expectation are p a r t i c u l a r l y convenient i n 
dealing with unbiased estimators. I f , for example 
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6 is a parameter having 6^ and Q^ as unbiased 
estimators in two different experiments, every 
weighted mean ad^ + with a + /3 = 1 is also 
an unbiased estimator of 6 . We note, however, 
that non-linear transformations do not in 
general preserve unbiasedness. For example, 

6 is an unbiased estimator of2 6, then $ is 
not an unbiased estimator of 6 . 

One point of view i s that the class of a l l 
possible estimators of a particular parameter 
is unmanageably large. A way of approaching 
the problem is to restrict attention to an 
important subclass, such as the class of 
unbiased estimators. 

From the point of view of most practical research we can 

dismiss the random sample from further consideration i f unbiasedness 

is the only c r i t e r i a of interest. The use of the random sample in 

much of sampling theory is not necessary, but rather a device for 

simplifying the mathematics. 

The second main feature of a random sample is the known 

standard deviation of the mean (<r—)or "sampling error" as i t is often 

called in the biological literature. Random sampling does not by any 

means minimize this sampling error. It is well known that systematic 

sampling often has a smaller actual sampling error. By forcing the 

observations throughout a non-random population dispersion a systematic 

sample w i l l often obtain higher variance within the sample and 

subsequently a lower variance between samples. This actual increase in 

precision i s usually accompanied by an apparent decrease when the sample 

variance i s computed as i f the sample were random. Intelligent direction 

of the systematic grids can add further precision, leading to suggestions 

that sampling be done "at right angles to the drainage pattern" (Husch, 

et a l . , 1972) and similar advice in many texts. 
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Fisher (1936a) covers the systematic sample thoroughly. 
His criticism i s mainly in two parts. F i r s t , such a systematic 
allocation can be quite variable (even with a so-called "random 
start") when the systematic pattern i s in phase with a periodically 
arranged population, and w i l l then also have an apparent decrease in 
sampling error. The v a r i a b i l i t y would actually be worse than a 
random sample while i t would seem to be better. If the sampler also 
has control over the placement of the systematic grid i t may actually 
be quite biased. Attempts to estimate the actual error by successive 
differences (Meyer, 1956), multiple systematic surveys (Shine, 1960) 
and more advanced methods have not been entirely successful. 

Second, because of the uncertain sampling error, confidence 
intervals and tests of hypotheses cannot be made with known probabilities. 
While i t i s true that most confidence intervals and tests with systematic 
samples w i l l be conservative - that i s the probability (a) of falsely 
rejecting a true nul l hypothesis i s even smaller than stated - this i s 
not guaranteed. Fisher's examination of Mendel's work (Fisher, 1936b) 
would not be correct when the true sampling error was smaller than assumed. 
In this case the wrong sampling error would have increased the probability 
that Fisher would accuse Mendel of tampering with the data or of using 
a different method than Mendel had stated. For these reasons, Fisher 
came down solidly against non-random arrangements for most purposes. 

The behavior of the sampling error (c —) of a normal population 
i s well known, readily available and thoroughly documented. Research 
on the behavior of non-normal parent populations seems to indicate that 
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even rather small sample sizes give d i s t r i b u t i o n s of means which 

are roughly normal. If the population size frequency d i s t r i b u t i o n 

i s known (but not i t s s p a t i a l d i s t r i b u t i o n ) a random sample of 

observations i s s t i l l usually assumed before theoretical calculations 

can be made about the behavior of the sample mean. I t i s this known 

behavior of the sample mean which makes the random sample so popular 

with s t a t i s t i c i a n s . Other methods, even i f known to have smaller 

sampling error are more open to the kind of c r i t i c i s m that researchers 

would rather avoid, and i t seems l i k e l y that they w i l l continue to spend 

the additional time and ef f o r t to do so. I t therefore seems desirable 

to produce methods of obtaining such random samples. 

We s h a l l primarily be interested i n the case where a population 

of trees i s dispersed on a tr a c t of land with unknown s p a t i a l d i s t r i b u t i o n . 

The problem i s to draw a random sample of individuals. This i s , i n many 

respects, no different than selecting a plant at random on rangeland, 

a geologic specimen from an area, or a seaweed on the ocean f l o o r . When 

not taking advantage of the c i r c u l a r cross-section of the tree stem or 

other special features, these methods w i l l have application i n a number 

of d i s c i p l i n e s . 

Sampling Without Replacement 

When each observation i s allowed to enter the sample only once, 

there i s a decrease i n the sampling error expressable by means of the 

" f i n i t e population correction factor". In many cases, sampling without 
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replacement i s desirable, but when the f i n i t e population 

correction cannot be computed accurately, and because of the 

reasons mentioned i n the l a s t section, i t may be desirable to 

sample with replacement. The methods capable of sampling with 

replacement are easily modified for sampling without replacement, 

but the reverse i s not always true. When sampling without replacement 

there i s a decrease i n the number of permutations allowed as a sample. 

The decrease results i n the d e f i n i t i o n of sampling without replacement 

giving equal probability to a l l combinations of samples. I t seems 

to the author to be more general to use the phrase "permutations of 

observations" with the understanding that the number of allowable 

permutations i s implied when dealing with sampling without replacement. 

This s h a l l be done throughout the thesis. The methods developed i n 

th i s thesis w i l l be applicable to sampling with or without replacement. 

Weighting Selection P r o b a b i l i t i e s 

Individuals i n a population are often selected for sampling with 

a probability proportional to one of t h e i r c h a r a c t e r i s t i c s . I t reduces 

f i e l d work to be able to make such a selection without actually measuring 

that c h a r a c t e r i s t i c . There are several reasons to make weighted selections. 

F i r s t , i t may be desirable to have more precise answers regarding some 

size classes of the items i n the population. Often larger trees are more 

valuable than smaller trees. Second, larger sample sizes are often 

required f o r some classes of items because they are more variable. Third, 

i t i s sometimes mathematically easier to sample by weighting the selection 
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probability (and give the measurements equal treatment thereafter) 

than to sample with equal probability and weight a l l the subsequent 

calculations. F i n a l l y , there i s the s t a t i s t i c a l advantage that the 

f i n a l result can be less variable when selection p r o b a b i l i t i e s are 

varied. A very general equation for the estimation of a population 

t o t a l can be written: . 

where: V = the value measured on item i from the population 

T = the estimated population t o t a l for the type of 

population value measured 

p = t* l e Probability of sampling item i from the 

population. 

The variance of the t o t a l i s proportional to the v a r i a b i l i t y 

of t h i s r a t i o . How can the v a r i a b i l i t y be reduced? Clearly t h i s can 

be done by sampling with a probability proportional to the measured 

value of each item. One or more of these reasons often applies i n 

sampling forest stands, therefore considerable e f f o r t w i l l be made to 

derive means of selection for random samples proportional to several 

tree c h a r a c t e r i s t i c s , and to devise ways of selecting trees without the 

actual measurement of those c h a r a c t e r i s t i c s . Sampling methods w i l l f i r s t 

be derived for sampling with equal pr o b a b i l i t y for each i n d i v i d u a l and 

some of these techniques w i l l then be adapted for sampling with other 

p r o b a b i l i t i e s . 
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) 

Much of the f i r s t part of the thesis i s concerned with 

"bias" and how to avoid i t . More s p e c i f i c a l l y the concern i s with 

"selection bias" where objects may i n fact be selected with a probability 

much different than the one intended by the sampler. This i n turn w i l l 

generally result i n a bias i n any parameter estimated from the data 

gathered on those objects. In a few cases suggestions w i l l be made for 

changes to estimating equations which w i l l compensate for selection bias, 

but the emphasis w i l l be on selecting trees with the intended p r o b a b i l i t i e s . 
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SAMPLING SELECTION SYSTEMS 

PROPORTIONAL TO VARIOUS PROBABILITY WEIGHTINGS 

Frequency Weighting 

The common system for selecting members of a population i s 

one based on equal frequency, where each of the N members of a 

population i s measured with the same probability. In addition to t h i s 

requirement a random sample would also give equal selection 

probability to each permutation of observations. 

Surprisingly l i t t l e advice can be found on the problem of 

selecting a random sample of trees from a forest area. The only common 

system suggested for drawing such a sample i s f i r s t to lab e l a l l of the 

N individuals, to draw a random number from 1 to N, and to fi n d and 

measure that i n d i v i d u a l . The process i s repeated to select a sample 

of desired size. The ef f o r t involved i n t h i s process usually eliminates 

i t from serious p r a c t i c a l consideration. 

"Nearest Tree" Methods 

A common method i n practice i s to f i r s t f i n d a random point on 

the tract to be sampled. This i s simply accomplished by the intersection 

of two random coordinates. A tree "near" t h i s point i s then chosen 

subjectively, or the tree nearest to the point i s chosen by measurement. 
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This "nearest tree" idea w i l l be examined i n some d e t a i l throughout 

the thesis. The bias i n the f i r s t system cannot be calculated, but 

that of the second system i s easy to examine. I t can most easily 

be studied by the use of polygons constructed around each tree. 

These polygons are called Thiessen diagrams (Jack, 1967), "Voroni 

polygons" and " D i r i c h l e t c e l l s " (Fraser, 1977), "Plant Polygons" (Mead, 

1966), "Area P o t e n t i a l l y Available" (Brown, 1965) or "Occupancy Polygons 

(Overton et_ al_., 1973) . Their use i n forestry i s i l l u s t r a t e d by such 

publications as Jack (1967), Overton et a l . (1973) and Brown (1965). 

The construction of a D i r i c h l e t c e l l around a tree incloses 

a l l points to which the tree i s closer than any other tree i n the 

population. The size of the c e l l i s dependant only on the spacing of 

the trees i n the population. Construction of the c e l l i s defined 

concisely by Jack (1967) as follows: 

" the smallest polygon that can be obtained 
by erecting perpendicular bisectors to the 
horizontal l i n e s j oining the center of the 
tree to the centers of i t s neighbors at 
breast height of the tree center " 

The main features of the c e l l s are that they cover the entire 

tract without overlap or gap, that they are easy to construct; and that 

they are not affected by the shape or size of the c e l l constructed 

around other trees, which insures the same c e l l regardless of the order 

of construction. Jack (1967) gives a number of useful equations for 

determining which trees are c r i t i c a l to the construction of the c e l l 
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and for calculating the c e l l area. He also mentions a computer 

program for automatically doing this from f i e l d data giving the 

bearing and distances to surrounding trees. Newnham and Maloley (1970) 

provide a computer routine for computing c e l l areas from stem maps. 

The c e l l s are not d i f f i c u l t to construct on large scale stem maps, 

since the main process involved i s l i n e bisection. Figure 1 shows the 

general process involved, and examples of the c e l l s around 3 trees. 

for sampling w i l l be called "preference maps" for that selection system. 

I t i s obvious that the probability of choosing the tree nearest to a 

random point i s d i r e c t l y proportional to the area of the D i r i c h l e t 

c e l l around the tree. The exact probability of choosing the tree i would 

be: 

Such diagrams, noting the area i n which a tree may be chosen 

(1.1) 

where: = The probability of selecting tree i for sampling 

under the selection system. 

DC. = The area of the D i r i c h l e t c e l l around tree i 
I 

T = The t o t a l area of the tract where sampling i s 

conducted. 

A l l symbols i n th i s work w i l l be defined when f i r s t used, and also l i s t e d 

i n Appendix 1 for easy reference. 
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There i s every reason to believe, on the basis of experience, that 

large trees are spaced at wider intervals than small trees i n the 

same conditions. At the very least we know that different forest 

areas of the same size have different numbers of trees. I t i s 

therefore apparent that trees from both areas cannot have the same 

probability of selection by the nearest tree method, and that the 

bias i s very probably i n favor of larger trees, since these often 

have wider spacing. The exact bias can be computed from a stem map 

on which the D i r i c h l e t c e l l s have been drawn. 

Since the nearest tree system does not select trees with 

equal frequency, i s there a simple system which does?? The use 

of any size fixed plot w i l l assure that every tree has exactly the 

same probability of selection. This i s probably the easiest way to 

select a sample where each tree has an equal chance of selection. This, 

unfortunately, does not allow us to pick a random indi v i d u a l as eas i l y . 

Often such a cluster of trees picked by a plot w i l l serve the sampling 

purpose but occasionally a subsample i s required or a t r u l y random 

selection of individuals i s desired. A t r u l y random sample requires 

that every permutation of observations be equally l i k e l y , so selection 

of more than one tree from a plot would be non-random even though i t 

might be unbiased. 

If clusters with positive covariance among trees are selected, 

but treated as a random sample of individuals, the sampling error w i l l 

be underestimated. The reverse s i t u a t i o n can also occur, as stated e a r l i e r . 
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t 

Bias i n Subsampling From a Cluster 

One common approach to subsampling i s to choose a tree 

by a uniform random number R between 1 and np, where np i s the number 

of trees found i n a plot. The tree corresponding to the random number 

i s chosen for sampling. If only one tree i n each fixed plot i s chosen 

i n this way (or any other), there i s an obvious bias i n favor of trees 

of sparse d i s t r i b u t i o n . The probability of sampling an in d i v i d u a l on 

a particular plot i s (1/np). For an indiv i d u a l tree i n a given plot 

this can r i s e to a maximum of 1 or decrease to a minimum of 1/n , 
max 

where n i s the greatest number of trees found on any plot i n the study max J v j 

area. The expectation of an indiv i d u a l for sampling can be calculated 

from a preference map constructed i n the following way: 

1. Construct a plot around each of the N trees on the area with 

the s i z e , shape and orientation desired. 

2. Determine the number of trees which share each compartment 

formed by overlaps of the plots, and the area of each. In 

complex situations t h i s w i l l best be done by d i g i t i z e r or 

planim ter, i n simpler cases perhaps by equation. 

3. Calculate the expectation of sampling tree i from a randomly 

located single point by the formula: 
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N - 1.0 

k=l 

(2.1) 

where: t ^ = t o t a l number of compartments formed by overlap of tree i 

with other plots 

a^ = area of compartment k 

n^ = number of trees sharing compartment k 

T = t o t a l area of tract sampled. 

The probability that tree i has been selected given that some tree has 

been selected (hereafter called r e l a t i v e probability) i s : 

Pr 
{ s . j . T * p { s . } 

N (2.2) 

L-W EH 
i = l k=l 

where: t = the t o t a l number of compartments on the preference map. 

Figure 2 i l l u s t r a t e s the method and calculations using c i r c u l a r fixed 
2 

area plots of 25 m . 

The probability that some tree w i l l be sampled with a randomly chosen 

point i s : 

79.5 m 

200 m 
= 39.75% (2.3) 
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I l l u s t r a t i o n of the computation of sampling probability 
when a single tree i s chosen randomly from a l l those 
on a fixed plot. 
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Table 1. Computations involved for the example i l l u s t r a t e d 
i n Figure 2. 

Compartment 
from diagram 

tree 
1 2 3 4 5 

a * 12.0 1 12.0 
b * * 4.0 2 2.0 
c * * 2.6 3 • 0.87 
d * * 2.7 2 1.35 
e * * * * 3.1 4 0.78 
f * * * 0.6 3 0.2 
g * 2.9 1 2.9 
h * * 8.0 2 2.0 
i * * * 5.1 3 1.7 
j * 6.2 1 6.2 
k * * 2.0 2 1.0 
1 * 5.3 1 5.3 
m * * 2.9 2 1.45 
n 22.1 1 22.1 

79.5 

Tree E L V \ ] Relative Probability 
Selection 

Bias 
1 
2 
3 
4 
5 

17.2 
11.8 
13.88 
13.1 
23.52 

.22 

.15 

.17 

.16 

.30 

+10% 
-25% 
-15% 
-20% 
+50% 

Totals: 79.50 1.0 
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This i s simply the r e l a t i v e area covered by the plot of one or more 
trees. 

As a p r a c t i c a l matter, i f one tree must be randomly chosen 

from each cluster then that observation should be weighted proportional 

to the size of the cluster. This w i l l remove any bias from estimation 

based on the sample mean. 

Selection of the Closest Tree i n Each Cluster 

The equations are the same once the preference map has been 

drawn. There are fewer compartments but construction i s more tedious. 

Figure 3 shows res u l t s . When plots overlap the bisector i s drawn. This 

i s p a r t i c u l a r l y easy, since most of the bisector construction i s provided 

already by the overlap of the c i r c l e s . The nearest bisectors reduce 

the size of the plot as i n a D i r i c h l e t c e l l . Relative reduction i s most 

severe i n clumps of trees, decreasing the selection probability of trees 

i n dense spacings. As the size of plots increases the bisectors are 

increasingly important, with the D i r i c h l e t c e l l s being the l i m i t i n g 

d i s t r i b u t i o n . 

Using the term nuiL to denote the area of these modified 

D i r i c h l e t c e l l s , the p r o b a b i l i t i e s of sampling are given below. 





For selecting an indi v i d u a l tree: 

r e l a t i v e probability of selecting a tree: 

(3.2) 

i = l 

probability of selecting some tree at a random point: 
N 

(3.3) 

The "Azimuth Method" 

The system, sometimes used i n forest inventory, i s to establish 

a sample point, then choose for subsampling the f i r s t tree whose center i s 

encountered i n a clockwise (or counter-clockwise) dir e c t i o n from the 

plot center. The starting azimuth can be fixed (such as always starting 

from North) or randomly chosen. A preference map can be constructed for 

any given st a r t i n g d i r e c t i o n . Figure 4 shows the construction of such 

a map. Examples of each of the following steps are noted. A North 

starting azimuth and clockwise rotation are assumed for this example. 
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Figure 4. Construction of preference map based on the azimuth method. 
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Construction steps are: 

1. Construct, a l i n e (called the "stem l i n e " ) from each tree 

South to the area border. 

2. Starting at the West border lab e l the stem li n e s 1-N from 

West to East. 

3. Starting with tree 1 (tree^) and continuing sequentially, 

sweep clockwise from North u n t i l another tree i s encountered. 

Draw a l i n e from tree^ opposite the tree encountered u n t i l 

the border or another stem l i n e i s reached. 

Special steps must be taken after tree N-l. 

4. Consider only the f i n a l tree N. From tree^ sweep clockwise 

from South u n t i l a tree i s encountered. 

5. Draw a l i n e from the stem l i n e of tree^ to the border i n 

a dire c t i o n opposite the tree encountered. 

6. Consider the tree l a s t encountered. From i t sweep clockwise 

from South u n t i l another tree i s encountered, and repeat 

step 5. Continue t h i s u n t i l the l i n e so constructed strikes 

the area border west of the tree^ stem l i n e . 

Polygons i n which a part i c u l a r tree w i l l be chosen are noted 

on the diagram by c i r c l e d tree number. Note that s l i g h t additions may 

occur due to areas near the border east of tree^, but otherwise they 

are i n one part. 
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The straight lines of such a map simplifies i t s programming 
for computer plotting. The area of the polygons is easily computed 
from intersection points using standard surveying computations. 

When fixed plots are used, and the f i r s t tree from an azimuth 
is selected as a subsample, the construction is slightly more d i f f i c u l t . 
A map is drawn as in Figure 2, indicating the polygons in which a 
particular subset of trees may be chosen. For each of these subsets a 
further construction is made as described in Figure 4 but only considering 
the trees of that subset, and drawn across the polygon being considered. 
This is not too d i f f i c u l t , since few of the lines considered w i l l cross 
each polygon. The separate areas are then labelled indicating which 
tree w i l l be selected in each case. Figure 5 shows an example of such a 
construction. 

Three points are worth mentioning when construction is done by 
hand. As a f i r s t step construct only the stem lines which are in polygons 
occupied by two or more trees. Second, label the obvious situations 
f i r s t , particularly cases where only one tree is eligible. Third, as 
you move from one polygon to the next the number of trees to be considered 
normally changes by one. This helps to assure that no trees are ignored. 
Preference maps of this sort are very d i f f i c u l t to draw, except in large 
scale. The most common errors w i l l probably be due to steps 4, 5, and 6. 
Once the compartments have been designated on the preference map 
selection probabilities are calculated as follows: 
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Figure 5. Azimuth method applied with fixed plots. 
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z . 1 y a • 

where: a = the area of a compartment on the preference map 

i n which tree i w i l l be selected. 

z_̂  = the number of a l l the compartments allocated to a 

particular tree. 

Relative probability of sampling a tree i s : 

Pr {s.| = „ { Z ) (4.2) 

i = l 

Probability of choosing at least one tree from a random point i s : 
z 
P 

a c 

I M " T 

where: z 
P 

= the t o t a l number of compartments i n the area being sampled. 
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Methods for the Elimination of Bias 

Much attention has been given to the d i s t r i b u t i o n of 

individuals i n plots of various size under random spacing. Matern 

(1971) discusses such a d i s t r i b u t i o n . In f a c t , we know that tree 

d i s t r i b u t i o n s i n the plane are not usually random. The situation was 

nicely described by Warren (1972) as follows: 

Trees are, of course, not points. The diameter 
of a tree, conventionally measured at breast 
height (4 f t . 6 i n . or 1.3 m) i s generally 
not ne g l i g i b l e with respect to the distance 
between trees. Further, competition between 
trees ultimately produces an area about each 
tree within which no other tree can exist. 
These r e s t r i c t i o n s are often conveniently 
neglected i n theoretical studies (notably 
the w r i t e r ' s ) ; exceptions are the theoretical 
derivation of Matern (1960, p.47) and the 
simulation studies of Newnham (1968) and 
Newnham and Maloley (1970). 

The idea that there i s a truncation of actual d i s t r i b u t i o n s 

at some minimum plot s i z e , as w e l l as an actual upper l i m i t for the 

number of trees i n a given plot si z e , gives r i s e to two systems for 

selecting random samples. These w i l l be called the "plot reduction 

method" and the "elimination method". 

Plot Reduction Method 

Since the problem causing bias i s the overlap of p l o t s , they 

can be reduced i n size to a diameter equal to the smallest distance 
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between members of the population. This means maximum diameter i n 

the case of non-circular plots. The probability of being chosen i s 

now equal for a l l members of the population and the choice of not more 

than one member i s assured with each plot. In addition, observations 

selected are independent, insuring a truly random sample where 

any permutation of objects i s equally l i k e l y . The probability of 

finding a p a r t i c u l a r sample tree i s given by: 

where: ap = the area of the fixed plot used. 

The probability of sampling a tree with a random point i s : 

N 

(5.2) 

There are several p r a c t i c a l ways of equalizing the s p a t i a l 

d i s t r i b u t i o n of objects to be sampled, thereby increasing plot size and 

minimizing the probability of a vacant plot. I t i s not the tree i t s e l f 

which must be selected, but something which can be associated with the 

tree, and detectable on the plot. Even though tree stems may be quite 

close together the upper parts of the tree w i l l usually be more evenly 

distributed. I t w i l l probably be of advantage to use the tops of trees 

or perhaps the edge of the crown (say the center of the north edge) to 
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determine which tree to sample. This more even d i s t r i b u t i o n w i l l 

lead to more e f f i c i e n t sampling. In addition, such methods are useful 

i on a e r i a l photographs which have many advantages, p a r t i c u l a r l y their 

high potential for automation. 

The Elimination Technique 

Reduction of plot size can become quite severe under conditions 

of high clumping, this leads to i n e f f i c i e n c y i n sampling due to unoccupied 

plots. The elimination technique may be more effective i n this case. 

A plot of size ap i s chosen, and the maximum number of trees which could 

f a l l into such a plot i s symbolized by Mp. For any plot the trees 

included are numbered from 1 to np and a random number R i s chosen between 

1 and Mp. I f R corresponds to the number of one of the trees i n the plot 

that tree i s chosen, otherwise a new plot i s established. This system 

again gives a random sample of individuals. The probability of selecting 

a single tree i s calculated by: 

which i s a constant. The r e l a t i v e probability i s simply 1/N. 

If the expected maximum number of trees i s exceeded, the system 

w i l l be s l i g h t l y biased. The actual probability for a particular tree 

can then be computed by the standard formula except i n those compartments 

where np > Mp. Where the plots are not large and Mp conservatively 
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estimated t h i s should happen infrequently. The r e l a t i v e frequency 

of any tree w i l l not then be 1/N, but: 

Pr N (6.2) 

i = l 

where the maximum of the values (1/np, 1/Mp) has been used i n equation 

6.1 to calculate p • 

Increasing E f f i c i e n c y 

The way to minimize the occurrence of unoccupied plots i s to 

maximize the product of two p r o b a b i l i t i e s : 

P | sampling a tree j P | one or more trees i n plot j 

*p |selecting one of those trees | 

more formally: 

Mp 

np=l 

(6.3) 

where: p jnp > Mpj =0 

p | | i s the probability of selecting a plot with np trees 

present for possible selection. 
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The p r o b a b i l i t i e s of selecting particular numbers of trees might be 

calculated from theoretical considerations or by f i e l d tests. 

The elimination procedure i s a very general one, and can be 

used to choose a f i n a l sample from the equal probability f i r s t stage 

selection with plots. Suppose one i s interested i n choosing a random 

sample of trees from a population with probability proportional to 
2 ^ 

DBH_/ . One way to make the selection i s to choose a subset with equal 
probability using a p l o t , then select from the manageably short l i s t of 

2 6 DBH.' by means of a random number. The random number would be chosen l 
np 2 > 6 

between 1 and the maximum expected value for ~y ' DBH_̂ " . Grosenbaugh's 

system for 3P sampling i s s i m i l a r , except that tie ^ deals with the entire 

population rather than a subset. 

The discussions i n this thesis w i l l generally regard the 

occasion when a sample i s not drawn at a random point as a waste of time 

and e f f o r t . This i s not s t r i c t l y true, since the occurrence of vacant 

plots might be used for p o s t - s t r a t i f i c a t i o n to increase the precision of 

the estimator or for other uses. In the example of choosing a tree 
2 6 

proportional to DBH " the l i s t s of DBH on plots where no sample was 

chosen might be used as additional information for estimating the 

parameter of interest, much l i k e Grosenbaugh's use of the "adjusted" 

rather than the "unadjusted" estimator (Grosenbaugh, 1976). Since 

effi c i e n c y under these considerations hecomesheavily and complexly 

involved with the choice of estimator, a simpler c r i t e r i o n w i l l be 

applied. The c r i t e r i a of eff i c i e n c y i s the probability of selecting a 
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random sample with minimum f i e l d work, which generally means 

selecting a tree at each random sample point. 

Systems which screen the population through two or more 

stages can be constructed i n a variety of ways. Consider the equal 

probability selection scheme. At the f i r s t stage we could select a 

cluster of trees, each selection being proportional to tree basal area 

(or any other c r i t e r i a which would simplify f i e l d selection). At the 

second stage t h i s manageable subset could select an ind i v i d u a l 

proportional to (1/basal area) by the elimination system. The product 

of the two p r o b a b i l i t i e s would be: 

Ms4 • *(-=7) - ( - c ^ f ) < 6 4 > 

where: BA. = the basal area of tree i 1 
C^,C2= constants depending on the exact selection system used. 

C^ depends on the 1st stage selection probability 

(probably on the c r i t i c a l angle discussed l a t e r ) . 

C2 depends on the largest possible value for 

i = l 

The product i s a constant, regardless of tree basal area. The 

re l a t i v e probability of selection i s therefore 1/N. Such a multiple 

stage selection system may be of advantage where simple mechanical means 

can be contrived to select trees with compensating p r o b a b i l i t i e s at one 

or more stages. The v a r i a b i l i t y of these schemes would be of primary 

interest, and would have to be robust under a variety of s p a t i a l 
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di s t r i b u t i o n s . Simulation of stem maps would probably be the best 

device for assuring t h i s property. 

Because of the f i e l d s i m p l i c i t y of selections based on fixed 

distances or angles, and l i s t selection from short l i s t s , the elimination 

method w i l l be of primary interest. 

Diameter or Circumference Weighting 

Selection Proportional to Diameter Alone 

This problem was essentially solved by Strand (1958) with the 

introduction of horizontal l i n e sampling. Trees are sighted at r i g h t 

angles along transects through the sample area. A tree can be selected 

when the tree stem subtends the angle projected perpendicular to the 

l i n e . Figure 6 shows an example. A tree w i l l be picked i f the l i n e 

crosses an unseen plot surrounding the tree and proportional to i t s 

basal area. The use of the angle gauge determines when you are i n the 

plo t , the magnitude of the angle determines the absolute size of the 

unseen plot. The dashed l i n e s i n Figure 6 indicate the unseen borders 

of the plots around each tree. To simplify f i e l d work the trees are 

sometimes sighted to only one side of the transect. Changes to the 

equations used are simple. The assumption i n the following discussions 

i s that trees are sighted to both sides of the transect. 

The probability of selection obviously i s proportional to the 

diameter of the unseen plot around each tree. Figure 7 i l l u s t r a t e s the 

pr i n c i p l e . The angle, when small, acts i n the same way as calipering 
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Figure 6. Horizontal l i n e sampling, basic idea of the selection rule. 

transect 
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Figure 7. I l l u s t r a t i o n of selection probability with l i n e sampling. 
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a tree for diameter ( D j and multiplying by a constant which we s h a l l 

c a l l the Plot Diameter Factor (PDF). Under the assumption that trees 

are "convex outward" i n cross-section ( i . e . f l a t or curved outward so 

that a st r i n g wrapped around i t would always touch the surface) the 

average of a l l possible caliper measurements i s equal to the perimeter 

divided by ir . The horizontal l i n e sample therefore selects trees 

proportional to the perimeter or average diameter. Grosenbaugh (1958) 

has pointed out that large angles can cause certain biases, since the 

angle gauge no longer nearly resembles the caliper measurement. This 

i s of l i t t l e concern for most p r a c t i c a l work which uses angles i n the 

range of .03 to .08 radians (roughly 1.7 to 4.5 degrees). 

In the case where angles must be large for some reason, 

or trees cannot be considered convex outward there i s always the option 

of sampling with a plot, then choosing from a l i s t of cumulative diameters 

or perimeters by the elimination method. Two variants of horizontal l i n e 

methods are biased, and the bias can be calculated by the construction 

of preference maps. 

With the f i r s t method a transect i s started from a random point 

and the f i r s t tree " i n " with the angle gauge i s chosen for sampling. 

A preference map can be drawn only where the d i r e c t i o n of the l i n e i s 

assumed. A l i n e centered at the tree, and of length (PDF * D̂ ) i s 

constructed (see Figure 8). D̂  i s the diameter of the tree at the 

sighting point of the angle gauge. 
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Figure 8. Construction of l i n e sample preference map. 

tree number 
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The PDF i s a constant r e l a t i n g tree diameter to the diameter 

of an unseen plot surrounding the tree. The value depends upon the 

" c r i t i c a l angle" ( 6 ) which i s used. 

This tree w i l l be chosen for sampling whenever a point i s chosen along 

i t s band. The bands run opposite the dire c t i o n of the sampling transects 

u n t i l intercepted by another tree or the area border. The proportional 

area of these bands (ab^) determine the probability of sampling the 

tree. S p e c i f i c a l l y : 

P robability of sampling a p a r t i c u l a r tree: 

i = l 

The probability of sampling a tree along a transect beginning at a 

(7.1) 

Relative pr o b a b i l i t y i s : 

Pr (7.2) 

random point i s : N 

(7.3) 
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If the transect lines are of fixed length (L^) there i s only 

a s l i g h t modification. A l l bands of the preference map are truncated' 

at length from the tree. A l l equations above w i l l then apply to 

the revised diagram. There i s an obvious bias toward s o l i t a r y trees 

and those on one edge of clumps. As the diameter of the plots increases 

we approach a l i m i t i n g s i t u a t i o n where only the distance to the next 

tree in the population (in the dir e c t i o n of the transect) i s the determining 

factor. 

These diagrams lend themselves easily to computer 

pl o t t i n g . The straight l i n e s , truncated only by interception of another 

tree or the area border, are simply calculated and drawn, and areas are 

easily computed. When the transect i s run other than North-South, i t i s 

easy to translate a l l the coordinates and act as though the transects 

were North-South. 

A second method i s to extend a l i n e from a random point i n the 

t r a c t , and sample the f i r s t tree intercepted. This i s essentially the 

same as the previous system, but interception along a simple compass l i n e 

i s used instead of using an angle gauge. The bands of the preference 

map w i l l be longer and narrower, and a mathematical approach w i l l probably 

be needed because of the small scale involved. The width of the band 

i s simply the diameter of the tree. 

Selection Proportional to Diameter and a Constant (C g) 

A different v a r i a t i o n i s to sample the f i r s t tree encountered 

by running a s t r i p of specified width (W ) centered on a transect 
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If the tree i s included when any part of i t i s within the s t r i p 

sampling i s proportional to diameter plus a constant. When the tree 

i s sampled only i f the tree center i s included this takes the form 

of sampling with a rectangular plot of varying length. The preference 

map for the f i r s t method can be easily constructed. The band width 

i s simply D. + W , centered at the tree. Further construction i s the 1 s 
same. Figure 9 shows the basic idea. The elimination technique can be 

used, with a constant length s t r i p , to obtain a random sample. When 

selection i s to be proportional to - C g only a small change i s 

required. In th i s case, the tree i s chosen only when i t i s ent i r e l y 

within the s t r i p . Figure 10 shows the construction of the preference 

band of such a tree. 

Problems of Scale and F i e l d Use 

If the r a t i o of s t r i p width to diameter i s too large or too 

small the diameter can be "expanded" or "reduced" to make i t easier to 

do the sampling. Reduction can be done by calipering and using 

(1/x) * (Di> as the diameter. Alternately an angle gauge can be used 

to get a proportional reduction on the princ i p l e s of the Biltmore Stick. 

Unfortunately, such a system i s very dependent on a round cross-section. 

Figure 11 shows the p r i n c i p l e . 

\ 



- 43 -

Figure 9. Band width for the preference map when sampling i s 
proportional to + Cg. 

Band width i s 
W + D. 
s 1 

center l i n e 
of s t r i p . 

s t r i p of width W 

The tree w i l l be chosen whenever the s t r i p 
passes between either of these l i m i t i n g 
situations. The distance between the center 
l i n e s then determines the probability of 
selecting that tree. 
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Figure 10. Band width for the preference map when sampling 
i s proportional to D. - C . r i s 

Band width i s 
W - D. 
s 1 

s t r i p of width W 

D. 

The tree i s chosen when the s t r i p i s between 
these two extremes. The distance between the 
centerlines determines the probability of 
selection. 
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Figure 11. Using an angle gauge to establish the reduced 
diameter of a tree. 

.The angle of the instrument determines the proportion 
of D. to D . The distance between the contact points 1 r 
i s then used as the reduced diameter of the tree. 
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Proportional expansion of the tree diameter i s easy to 

establish with the angle gauge. Often the use of the expanded diameter 

makes the constant term a more reasonable distance to measure. 

Figures 12 and 13 show two ways to select, i n the f i e l d , sample trees 

proportional to D. - C . Sim i l a r l y Figure 14 shows a system for X s 
selection proportional to D. + C . A late r discussion w i l l outline 

i s 

the use of the Wheeler Pentaprism to automatically account for the 

s t r i p width. 
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Figure 12. F i e l d systems to select trees proportional to 
D. minus C . i s 

If the tree i s " i n " along the transect move 
back a distance W and sight again. Sample 
the tree only i f i t i s " i n " at both points. 
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Figure 14. F i e l d system to select tree proportional to 
D. plus C . x s 

i 

w 
s r 

Select the tree i f i t i s " i n " with the prism 
to one side of the transect or_ within the 
distance W from the transect on the other side. 
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Tree Height Weighting 

This problem i s solved by using v e r t i c a l angles i n much 

the same way that a horizontal angle was used on tree diameters. 

A tree i s to be sampled when a transect passes within a distance 

proportional to tree height. A simple method, i n f l a t t e r r a i n , i s 

to sample the tree when i t f a l l s within a particular vertical.angle (C v). 

Figure 15 shows the general idea. The angle i s being used to 

establish the proportion of height to distance. Hirata (1962) 

describes this method to sample forest areas for volume. In sloping 

t e r r a i n t h i s angle selection method s t i l l selects proportional to height, 

but the exact proportion i s no longer given by the tangent of the angle. 

In such cases, the difference between two tangents i s used, read from 

a suitably calibrated instrument such as the Sunto Clinometer. Figure 16 

shows the p r i n c i p l e involved. 

The preference map i s constructed i n exactly the same way as 

with horizontal l i n e sampling. The system applies equally w e l l to some 

segment of the tree height such as distance to the f i r s t limb, merchantable 

height, crown length, etc. The reasoning concerning the elimination 

method and application of a constant term are the same as with horizontal 

l i n e sampling. The band width i s determined by height rather than 

diameter, but otherwise there i s no difference i n the p r o b a b i l i t i e s 

or preference maps. 
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Figure 15. Use of the angle gauge on f l a t ground for 
v e r t i c a l sampling. 
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The effect of leaning trees i s discussed by Loetsch e_t a l . 

(1973). If the tree i s not easily seen along a perpendicular from 

the transect i t can be tested from any other point which maintains 

the same distance as from the line, to the tree. 

An Adaptation of Line-Intersect Sampling to Standing Trees 

If a l l the trees on a tract were f e l l e d perpendicular to a 

random transect of length L, the tract volume could be simply estimated 

as a special case of li n e - i n t e r s e c t sampling. The estimate, from a 

single transect, of t o t a l tract volume would be: 
n 

V = i = l 
CA. 

where: CA i s the cross-sectional area of a stem crossed by the transect, i 

This i s the average depth of tree cross-sections along the 

transect multiplied by the tract area. The trees w i l l not i n fact be 

conveniently l a i d across the transect, but could this s i t u a t i o n be 

simulated i n some way? The key point i s that the diameter to measure 

i s the one which i s the same distance up the standing tree stem as the 

horizontal distance from the transect to the tree. That point can 

easily be found on l e v e l ground by looking up the tree at a [""M] 

radian (45°) v e r t i c a l angle. On sloped ground a "% scale" as i l l u s t r a t e d 

i n Figure 16 can easily be used. We thus have a simple way of using 

l i n e - i n t e r s e c t sampling theory on standing trees. 
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Figure 16. Use of two measurements on sloping ground. 

(tan b - tan a) = tan C^, giving correct 
horizontal sampling distance i n sloped areas. 
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If T / 4 radians i s an inconvenient angle for some reason, 

the estimating equation can be s l i g h t l y changed. The distance over which 

a tree w i l l be sighted with a v e r t i c a l angle i s : 

distance = tree height * cotan C 

Since the tree i s "stretched" out over a longer distance, the estimate 

must be correspondingly decreased. The f i n a l formula being: 

V = 
ZBAi 
i = l * T * tan C 

v 

A recent work by Minowa (1976) i n the Japanese language appears to have 

been based on the same idea. Although a complete translation i s not 

available his formula i s c l e a r l y equivalent to the one just derived. 

Minowa gives i t as follows: 

V J \ ^ y 
\ 4 * L * c o t J g y 

From the a r t i c l e cited and subsequent work (Minowa, 1978), i t seems 

obvious that Minowa has not recognized that this part of his work i s 

a special case of l i n e - i n t e r s e c t sampling. This i s an important step , 

since t h i s form of sampling has accumulated a considerable amount of 

l i t e r a t u r e , f i e l d testing and acceptance by f i e l d foresters. 
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Basal Area Weighting 

Since the development of the sampling method of B i t t e r l i c h 

(1948), usually called horizontal point sampling or variable plot 

sampling, a great deal of forest inventory has been done with 

selection of trees proportional to basal area. Since a simple count 

of trees which are " i n " with an angle gauge only provides an estimate 

of basal area, several trees are usually subsampled for volume 

chara c t e r i s t i c s . 

This i s done mainly to establish the "Volume to Basal Area 

Ratio" (VBAR). This r a t i o i s usually much less variable than the number 

of " i n " trees. Only a few of these trees should be measured for maximum 

sampling efficiency. The cost of measuring trees, compared to simply 

counting those which subtend the angle used, i s quite high. To minimize 

cost perhaps only one i n twenty trees should be measured. The problem 

i s to choose the volume sample trees at least unbiasedly i f not at random. 

One attempt to evade the r e l a t i v e cost problem i s to construct 

"Diameter-Height Curves" showing the tree heights for each diameter class. 

The diameters of a l l " i n " trees are then measured, at l i t t l e expense, 

and heights are read from the curve. I t i s open to question whether the 

extra e f f o r t might not be invested more pro f i t a b l y i n taking more plots 

for tree count only. Once such a Diameter-Height Curve i s established 

i t constitutes a bias i n subsequent measurements which should be accounted 

for s t a t i s t i c a l l y . 
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The process by which subsamples are chosen w i l l be examined 

in some d e t a i l i n regards to possible biases and non-randomness. 

Basic Ideas of Point Sampling 

angle established with some form of angle gauge. The angle radiates 

from a single point on the land area being sampled. There i s therefore 

a c i r c l e around each tree of diameter (D_̂  * PDF) where that tree w i l l be 

counted " i n " with the angle gauge. Figure 17 shows an example. The 

i l l u s t r a t i o n i s very much l i k e Figure 2, except that the c i r c l e s have 

an area proportional to the basal area of the stem. The probability 

of picking a tree with an angle gauge from a random point i s obviously 

proportional to the basal area of the stem. More formally the 

pr o b a b i l i t i e s are: 

For picking an ind i v i d u a l tree: 

In point sampling a tree i s counted when the stem subtends an 

P (8.1) 

Relative probability of picking a tree: 

(8.2) 

i = l i = l 
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Figure 17. Plots of variable size i n horizontal point sampling. 

tree 1 
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S l i g h t l y more d i f f i c u l t are the p r o b a b i l i t i e s of sampling when one 

of the trees i s randomly chosen from a cluster which are a l l " i n " 

from a par t i c u l a r point. Choosing clusters of trees makes a sample 

non-random, but selecting one tree from each cluster can seldom f a i l 

to be biased as w e l l . 

Bias From Selection of a Single Individual From Every Cluster 

Selection of one indi v i d u a l has a l l the biases discussed e a r l i e r 

with fixed plots. I t favors clusters with small numbers of trees, but 

t h i s clustering effect i s changed because smaller trees have smaller 

plots. In addition, when the selection i s not random, further biases 

can exist. Each of the simple systems can be explored by preference 

maps. 

Bias From Random Selection From Each Group 

After the mapping of plots around each of the trees a group of 

compartments i s formed. For each of these t compartments the number of 

trees involved (n^) and i t s area (a^) are determined. The expectations 

for sampling are then calculated as follows: 
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Probability of sampling a part i c u l a r tree: 

t. 1 
1.0 
T (2.1) 

Relative probability of sampling a tree: 

Pr (2.2) N 

i = l 

These are simply the equations used e a r l i e r with fixed plots. 
2 The difference i s that the area of the plots i s now (BA_̂  * PDF ) rather 

than fixed. To complete the example, the calculations are given for 

Figure 17 i n Table 2. 

In general, there i s a decrease i n individual probability as 

more plots overlap, indicating a bias again toward sparsely distributed 

trees. The average number of trees counted from a random point i s a 

function of the basal area of the trees, not of their numbers. Where 

basal area i s evenly distributed bias i s reduced. S t r a t i f i c a t i o n w i l l 

help to reduce the bias when i t i s done to equalize basal area. The 

overlap of plots w i l l have a greater effect on smaller trees, where the 

overlap i s a greater proportion of t o t a l area, therefore the mixture of 

size classes favors selection of larger trees. 
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Table 2. Calculations for the example shown i n Figure 17 

tree 
n k 

" a k l 
Compartment 1 2 3 4 5 3 k n k 

" a k l 

a * 15.5 1 15. 5 
b * A 4.83 2 2. 42 
c * * * 1.33 3 0. 44 
d * * 3.33 2 1. 67 
e * 3.00 1 3. 00 
f A * 1.83 2 0. 92 
g * * * 0.5 3 0. 17 
h * A 0.17 2 0 08 
i A A 0.5 2 0 25 
3 A 2.17 1 2 17 
k A 4.83 1 4 83 
1 A A 1.83 2 0 .92 
m A 43.17 1 43 17 

83.00 

Tree 
Relative Probability 

actual theoretical 
Selection 

Bias 

1 
2 
3 
4 
5 

20.02 
6.28 
3.51 
9.11 
44.08 

,2412 
,0757 
.0423 
.1098 
.5311 

25/99* 
10/99 
5/99 

14/99 
45/99 

-4.5% 
-25% 
-16% 
-22.5% 
+17% 

83.00 nr 

* sum of plot areas = 99 m , tree 1 has a plot of 25 m . 
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) 

Nearest Tree Method 

When the nearest tree which i s " i n " with an angle gauge 

i s chosen for sampling the preference map i s b a s i c a l l y the same as 

i t was with fixed plots, but the size of the plot around the tree 

varies with tree si z e . The area formed by the overlap of two plots 

i s allocated to the smaller one unless the bisector f a l l s within the 

overlap. See Figures 18c to 18e. 

As shown i n Figure 18, the i n i t i a l increase i n selection 

probability for two plots i s i n favor of the smaller (See 18b). The 

bias i n r e l a t i v e selection-probability eventually equalizes as plot 

centers approach each other, and favor the larger plot only with very 

close spacing as i n Figure 18d and 18e. As w i l l now be shown, a random 

spacing favors the smaller tree. 

Consider the plots of two trees (a) i s the smaller and 

(b) i s the larger. See Figure 19. We w i l l choose one plo t , and i t s 

associated tree, for sampling when we are within that plot and that 

plot center i s nearest the random point P. Consider what w i l l happen 

when a and b overlay the random point, b w i l l never be chosen when 

a and the outer ring of b (b Q) occur at the point, since the center of 

b would always be further away. Since b^ i s the same size as a i t has 

an equal chance of being closest to P when a and b^ occur together. 

The conditional probability of choosing b when a and b overlay, 

P i s therefore reduced, b has a 50% chance of selection only i f b. 
l 

and a overlay P, and no chance otherwise. 
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Figure 19. I l l u s t r a t i o n of terms used i n proof of 
bias toward smaller trees. 

area b. = area a 1 
area b = area b. + area b 

1 o 
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Ignoring edge effects, the exact p r o b a b i l i t i e s are noted below. 

A = area of plot a 

B = area of plot b 

B = area of outer ring of plot b as i n Figure 19, o 
i t i s the same as B-A. 

B_̂= area of the inner c i r c l e of plot b, i t i s the 

same size as plot a. 

Probability that a occurs alone, hence a w i l l always be chosen. 

Probability that b occurs alone, hence b w i l l always be chosen. 

Probability that a and b occur together. 

since B. = A = B * 1 

Conditional probability of choosing a and b given that a and b^ occur 

together: 
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p \ a | a>h

±} ~ h 

P |b | a , b i | = h 

(9.4) 

(9.5) 

Probability that a and b Q occur together, hence a i s always chosen. 

(9.6) 

The effect of the r e l a t i v e p r o b a b i l i t i e s i s not d i f f i c u l t to derive 

formally using these equations i n combination. 

The probability of choosing a i s : 

P { S a } = p | a , b | + 4 ~ [ P | a ' b i } ] + P I a > b o f ( 9- 7> 

_A_ 
T 

_A_ 
T 

_A_ 
T 

_A_ 
T 

+ 

[ 

. T J T V T / 

A + B-A 

(T-B) + (hk) + (B-A) 
T 

[ Jr t]- + [-f (9.8) 

The probability of sampling a i s £A/T (1 - R F L)J , where the term R a 

stands for the proportional reduction due to both plot overlap and the 

selection system. We can do the same thing for tree b. 
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p { S b( = p { b,a \ + 4 " [P {*S>±\\ 

•fM-M+W] 
T \ T J T T B 

K) + [f 4-] 

We now have the form I B/T ( l ^B/T (1 - R^ 

(9.9) 

(9.10) 

If R, i s larger than R there i s a greater proportional reduction i n the 
D cL 

large plot than i n the small one. p{^} i s proportionally reduced i f 

and only i f : 

R h > \ 
i f f 

i f f 

i f f 

( f ) - |> +] > * 

I B y T T 

< i 

which i s always the case when A i s smaller than B. 
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I t i s admittedly of minor interest what w i l l happen under 

random spacing, since we know that trees are not distributed i n this 

manner. As the angle gauge changes to produce larger plots the 

preference map uses more bisectors to describe the areas, eventually 

forming D i r i c h l e t c e l l s as the l i m i t i n g case. 

The computer p l o t t i n g of the preference maps can be simp l i f i e d 

by some of the following rules about l i n e s . The c i r c l e d numbers on 

Figure 20 refer to use of the rules noted below. 

1) There i s a distance, called the "plot radius" for each 

tree i , computed by PIL = (D * PDF/2) 

2) A point on the c i r c l e of radius PR^ surrounding the tree 

i s not drawn when such a point i s within the plot radius 

of the smaller tree or_ closer to another tree than a 

bisector with that tree. 

3) Bisectors between trees are not drawn when the distance 

from the point on the bisector to the smaller tree i s 

less than the distance PR. of the smaller tree. 
l 

4) Bisectors are not drawn at points which are within the 

plot radius of a t h i r d tree and are closer to that t h i r d 

tree than to either of the trees used for the bisector. 

Using these rules, parts of the preference map can be drawn as 

each tree i s considered. The c e l l around an indi v i d u a l tree w i l l not 

usually be completed u n t i l several other trees are also plotted. This 
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Figure 20. I l l u s t r a t i o n of construction rules for the 
nearest tree preference map. 
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i s p a r t i c u l a r l y true of larger trees. A more complete preference 

map i s shown i n Figure 21. P r o b a b i l i t i e s of sampling are exactly the 

same as i n Equations 3.1 to 3.3. They are l i s t e d again here for 

convenience. 

Probability of selecting an individual tree: 

N -( .) 
Relative probability of sampling: 

P r { S i } = ~ —^-^ ( 3 - 2 ) 

i = l 
P r o bability of selecting a tree at some random point: 

N 

I8.} *—T— 
In summary, the system w i l l have the following general 

properties. The actual biases toward small trees w i l l probably be even 

larger than with random sampling, since trees tend to overlap the 

borders of other trees rather than to be quite near them as might occur 

under random spacing. The biases are at any rate i n favor of small 

trees and trees which are sparsely d i s t r i b u t e d , and to a larger degree 

than with random selection of one tree per group. An increased mixture 
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Figure 21. Completed preference map, nearest tree method 
with variable plots. 
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of size classes w i l l increase the bias toward smaller trees, as 

w i l l greater variation i n size classes. 

The plot reduction method would be most d i f f i c u l t to apply 

with variable plots, and the elimination method would be the best way 

to obtain a random sample. In this case, the " i n " trees are numbered 

sequentially, then a random number would be drawn between 1 and Mp where 

Mp i s the estimated maximum number of " i n " trees at any point. A tree 

i s only chosen i f i t s number corresponds to the random number, otherwise 

a new point i s selected and the process i s repeated. In this case, 

the probability of sampling a tree i s : 

(10.1) 

i=l 

Relative probability i s : 

(10.2) 

i= l 

The probability of choosing some sample at a random point i s : 

Mp 
(10.3) 

The la s t equation uses the preference map, and i s i d e n t i c a l to Equation 

6.3. 
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The Azimuth Method With Variable Plots 

This i s just a modification for the system based on fixed 

plots. After the d i f f e r e n t sized plots have been constructed the 

compartments are further subdivided based only on the trees involved 

with that subcompartment. Equations 5.1, 5.2 and 5.3 are then used. 

Bias i s increased toward small trees which are well spaced or on the 

border of clumps. Figure 22 shows the preference map with extra lines 

removed. I t i s based on the same spacing and sizes as Figure 21. 

Non-Random But Unbiased Methods For Subsampling 

Selection of clusters of a l l " i n " trees at a point assures a 

probability based s t r i c t l y on basal area. Individual trees can also 

be picked with a fixed probability i n 2 ways. F i r s t , each time a tree 

i s " i n " i t i s picked with a probability (say 1/10) with a randomizing 

device. This allows more permutations of samples than systematically 

choosing every tenth tree, although either method would be unbiased. 

Second, i f the approximate number of trees which w i l l be counted on a l l 

points i s known, then random integers between 1 and this sum can be 

chosen to select the subsample. The only advantage to such a system 

i s that i t allows sampling with replacement. The f i r s t method i s 

probably best on the basis of operational convenience and the fact that 

the sampler does not know when the next sample w i l l occur. 
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Figure 22. Completed preference map for the azimuth system 
and variable plots. 
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Choice of one sample tree at each point, p a r t i c u l a r l y 

without s t r a t i f i c a t i o n , i s to be avoided. I f random selection within 

clusters must be done for some reason, weighting the sample proportional 

to tree count can remove the bias. 

Height Squared Weighting 

This i s an extension of horizontal point sampling, but uses tree 

height rather than tree diameter. Developed by Hirata (1955) for sampling 

the height of forest stands, the technique uses a v e r t i c a l angle and 

sights a l l trees from a point randomly chosen on the area. The size of 

the c i r c u l a r plot on the preference map i s determined by the v e r t i c a l 

angle and tree height, otherwise the equations are i d e n t i c a l to horizontal 

point sampling. The reasoning concerning biases and spacing i s the same 

but with diameter replaced by height. 

Combining Diameter Squared and Diameter Weightings 

Let us f i r s t consider the problem of sampling proportional to 
2 

aD^ + bD^. The perimeter of a plot i s proportional to diameter, and so, 

very nearly, i s a s t r i p around the plot. Figure 23 i l l u s t r a t e s the 

following l i n e of reasoning. 
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Figure 23. Plot area composed of 3 simple figures. 

c i r c l e of radius W 
inner c i r c l e 

(PDF*D.) TT 
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Area of inside c i r c l e = [ PDF * D. 1 | PDF2 * I -2 
_ > _ ] , . [ , j * ± 

Outside ring area = ĵ Wg * PDF * D ± * TT J + * J 

(10.4) 

(10.5) 

Total area = inside plot + s t r i p area + small c i r c l e area 

2 2 PDF * TT * D. l + £ w g * D ± * TT * PDFJ + J w g
2 7 r j (10.6) 

Here we have solved the problem except for the f i n a l complicating 
2 term W w , the area of a c i r c l e of radius W . The easiest way out s ' s 

of this i s to remove i t from the center of the plot. We then have a 

plot which has a void i n the center (of radius W ) as shown i n Figure 24. r s 
2 

The area of t h i s plot i s aD^ + bD^ The angle gauge used 

to pick the plot determines a, while b i s determined by the s t r i p width. 

An example may help to c l a r i f y the procedure. 

We wish to sample trees proportional to the equation: 

P | s i | CX 7.8 D ±
2 + 3 D. 

We also wish to use a s t r i p width of 2 meters for convenience i n the 

f i e l d . As already shown: 

^ PDF * j D^2 + j p D F * w ^ * „. * D J = plot area 
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Figure 24. Plot of an area proportional to aD. plus bD 
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The problem i s to choose PDF. By d e f i n i t i o n : 

PDF * * 2 2 2 D. =aD. = 7.8 D. i i l 
and 

|PDF * W * T * D . l = b D . = 3 D [ s i j i i 

by cancelling the D̂  term from both sides we obtain: 

PDF * w 

= a 
and 

ĵ PDF * Wg * TTJ = b and multiplying by a/b: 

(a/b) * PDF * 

therefore 

(a/b) * PDF * W s * '] ' [ PDF * TT * 1/4 = a 

cancelling terms we get the general equation: 

(a/b) * W * 4 = PDF s J 

inserting the example values we have: 

PDF = (7.8/3) * 2 * 4|= 20.8 
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The angle needed to produce this relationship i s 

0 = 2 * arcsin I PDF I 

Figure 25 shows the basic geometry needed to derive this formula. 

To check the results we compute the following examples. 

Tree 1, diameter = 20 cm, PDF = 20.8, s t r i p width = 2 meters. 

7.8 (.2) 2 + 3 (.2) = .912 

plot area = 20.8 T (.2) z + (20.8 * TT * 2) (.2) 

39.73 

39.737.912= 43.563 

Tree 2, diameter = 1 meter 

7.8 (1) + 3 (1) = 10.8 

plot area 20.8 - ] (1) + (20.8 * TT * 2) (1) 

470.485 

470.485 / 10.8 = 43.563 
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Figure 25. Geometry used to determine the angle 9 . 

hence: —r- = .0480 radians (2.755°) 

e = .0962 radians (5.511) 
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The actual plot i s 43.563 times as large as the number 
2 

given by the formula (7.8D_̂  + 3D^) due to the specified s t r i p width 

of 2 meters. I f i t were desirable we could reduce both the linea r 

dimensions of the Plot Diameter Factor and the s t r i p width by a 

factor of 43.563 to make the plot area i n square meters have the 

same magnitude. 

Once the s t r i p width and angle gauge have been established the 

f i e l d work i s straight forward. F i r s t , a random point P i s selected. 

Second, a l l trees around P are sighted with the angle gauge at a distance 

Wg from P. Figure 26 shows the f i e l d selection scheme. A random 

selection can then be made from trees by the elimination method. 

A recent a r t i c l e by Schreuder (1978) uses just such a selection 

scheme i n a method called "Count Sampling". Although Schreuder does not 

consider i t "a p r a c t i c a l system" i t can be considerably s i m p l i f i e d and 

improved for f i e l d application by modifying the Wheeler Pentaprism as 

described i n a following section. 
Selection of trees with a probability proportional to JaD^ 2 - bD^j 

2 
requires a s l i g h t modification. The area Wg TT must be added to the 

plot, and th i s can be done by adding 'it to the center of the plot and 

giving the tree two chances of selection when a random point f a l l s i n 

thi s area. A s t r i p i s "removed" from the basic plot by sighting across the 

point from a distance Ŵ . Figure 27 shows the selection r u l e . 
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Figure 26. Selection proportional to aD. plus bD.. 

To select trees from point P, view a l l trees 
with an angle gauge at distance W from P. 

The plot around an indi v i d u a l tree shows the locus of 
a l l points where the tree i s " i n " with the selection 
rule described above. 
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Figure 27. P r i n c i p l e s of selection proportional to aD. minus bD.. 

To select trees from point P view tree across 
the point with a prism from distance W . 

This diagram shows the plot around each tree. 
The tree i s counted once at a l l points within 
the s o l i d c i r c l e or twice when within the 
dotted c i r c l e . 
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Mechanical Devices to Aid Selection 

The selection method shown i n Figure 26 could be simulated 

without moving from point P by mechanical device which functions much 

l i k e a split-image rangefinder. Figure 28 shows the geometry of the 

device and the views to be expected through the eyepiece. Sampling 
2 

i s proportional to aD_̂  + bD^. 

a) tree i s within the distance W of point P. 
s r 

b) tree i s outside Wg, but " i n " with the angle gauge. 
c) tree i s "out" with the angle gauge. 

Figure 29 shows the same basic idea used for sampling proportional to 
aD.2 - bD.. 

l l 

Such a device could be b u i l t by simply attaching prisms i n front 

of the two lenses of a Wheeler Pentaprism which i s available commercially. 

This allows easy determination without leaving the sample point as long 

as the tree can be seen. F a i r l y wide border s t r i p s could be accommodated 

in this way. Using an angle of .0262 radians (1.5°) a 100 cm base would 

allow a 38 meter width for Wg. Alignment, measurement, and slope problems 

would make such a s t r i p i n f e a s i b l e under f i e l d conditions by other 

methods. Line of sight w i l l remain a major problem. 



Figure 28. Device prin c i p l e s for sampling proportional to aD^ plus bD^ 



Figure 29. Device p r i n c i p l e s for sampling proportional to aD. minus bD.. 

" i n " , count twice " i n " , count once 
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Adding a Constant, Selection Proportional to aD. + bD. + c 

Adding t h i s further r e s t r i c t i o n to the previous methods forms 

a cumbersome system. The only reasonable f i e l d method would be to apply 
2 

the methods outlined for aD + bD to a ir radian (18CT) sweep, 

while using a fixed plot to select trees through the opposite ir radians. 

Figures 30 and 31 show the basic idea. I t would appear desirable to 

generalize the rather awkward method and allow selection with any plot 

size computed by an equation using only diameter as a variable. One 

method, using only standard cruising prisms, requires only that the 

diameter be measured, or adequately estimated. A prism i s then rotated 

to form an angle which w i l l establish the plot size around the tree. 

For accurate work, p a r t i c u l a r l y with wider angles, two prisms, each of 

which establish h the i n i t i a l c r i t i c a l angle ( 9 )̂ should be counter-

rotated. The geometrical theory for this adaptation i s given by Beers 

(1964). For s i m p l i c i t y the case of a single prism w i l l be used for the 

following discussion. 

A Generalized Instrument 

For each diameter tree the plot size i s l i s t e d . Using the 

formula below 9, i s established for each diameter tree. 

2 
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P r i n c i p l e s of selection proportional to aD + bD + c. 

Figure 30. 
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A prism of deflective angle 0 i s used where 6 i s always 
max max J 

larger than 0^. A round prism i s best, preferably with a hole 

in the middle for easy mounting. 0^ can be formed by rotation of 

the prism around i t s center by an angle ( A r ) . 

e d = Gmax * C O S <V <U-1> 

The prism i s mounted and the angle of rotation i s marked with the tree 

diameter. Figure 32 shows such a mechanism set for checking a 50 cm tree. 

The decision of whether a tree i s " i n " or "out" i s the same as i n 

conventional uses of the prism as an angle gauge. 

Such a selection system has two advantages. F i r s t , size of 

plot can be derived by any means, as long as i t can be indexed only by 

diameter. Second, the plot i s a s o l i d c i r c l e centered at the tree. Such 

areas around trees are often described when dealing with problems such 

as competition, rooting zones, moisture depletion etc. 

When interpolation cannot be done a programmable calculator can 

easily be used to establish the rotation angle. If the differences i n 

the values for 0^ are small the adjustment may be d i f f i c u l t . When the 

angles of rotation are nearly a l i k e the bias of setting the instrument 

may be large. In such a case two prisms should be used. One fixed prism 

establishes the basic angle (A . ) , while the other rotatable thinner 
main 

one ( Ap"L u s) corrects i t by larger angles of rotation. The f i n a l angle 

0, i s then given by: 
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Figure 32. Prism device for selection of trees by plots 
indexed by diameter alone. 

TOP VIEW 

pxvo 

c lear 
round 
prism 

view through 
prism i s offset 
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6, = A . + (cos A ) * (A . ) (11.2) d mam r plus 

This method w i l l increase the range of rotation of the smaller prism 

and simplify the problem of setting the instrument accurately. 

Gross Volume Weighting 

Basics of the C r i t i c a l Height Method 

When an angle gauge using a c r i t i c a l angle 0 i s used to 

sight along a tree stem the effect i s to "expand" the diameter by a 

constant a l l along that stem. This gives a simple method to expand the 

stem of a tree. The basal area, and hence the volume i s expanded by the 

same constant at each point along the stem. Average height of the 

expanded stem i s obviously the same as the o r i g i n a l tree, and proportional 

to tree volume. The length of the v e r t i c a l l i n e from a random sample 

point l e v e l with the base of the tree to the point where i t leaves the 

expanded tree i s a sample of the average tree volume (see Figure 33). 

This distance, called the " c r i t i c a l height" w i l l allow us to select 

trees proportional to t o t a l volume. The tree need only be selected on 

the basis of i t s c r i t i c a l height. This basic idea was discovered by 

M. Kitamura i n 1962, but no English translations of the work were 

available and i t was v i r t u a l l y unknown i n North America. In 1974 the 

author independently discovered the p r i n c i p l e , from a s l i g h t l y more 

general viewpoint, and called i t "Penetration Sampling" ( l i e s , 1974). 

A more detailed history w i l l be given i n the second part of the thesis. 
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Figure 33. The "expanded tree", c r i t i c a l point and c r i t i c a l height. 

Random Point P 
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One of the simplest ways to test what part of a v e r t i c a l 

l i n e through point P l i e s within the imaginary expanded tree bole i s 

to move up the v e r t i c a l l i n e (B) with an angle gauge while sighting 

the tree bole along the horizontal plane. A prism, relaskop or any 

other angle gauge would serve the purpose. If the tree image i s " i n " 

when sighting horizontally towards the tree for a t o t a l of 12 meters, 

then the v e r t i c a l l i n e passes through the imaginary expanded tree stem 

for a distance of 12 meters. 

For the system to be p r a c t i c a l the physical problem of moving 

up and down the v e r t i c a l l i n e with the angle gauge must be circumvented. 

The solution to this problem i s fortunately quite simple. I t i s commonly 

known that the relaskop (or newer telerelaskop) has an "automatic slope 

correction". The geometric form of that correction does not seem to be 

as well known. When an observer views a tree diameter at any v e r t i c a l 

angle the automatic correction i s made by s l i g h t l y decreasing the c r i t i c a l 

angle 6 , which i s then being projected along a slope distance. The 

view through the instrument i s exactly the same as i f the observer was 

f l o a t i n g v e r t i c a l l y above or below the sample point and was sighting 

horizontally at the tree with the o r i g i n a l c r i t i c a l angle. This form of 

automatic correction then makes i t possible to th e o r e t i c a l l y " l e v i t a t e " 

above or below the sample point along a v e r t i c a l axis and "observe the 

tree horizontally". These are the exact requirements of the system. We 

now have a p r a c t i c a l method for determining the point at which the 

v e r t i c a l l i n e leaves the unseen expanded tree bole (see Figure 34). 



Figure 34. I l l u s t r a t i o n of some of the basic concepts of C r i t i c a l Height determination 

v e r t i c a l l i n e through 
the sampling point 

edge of imaginary 
expanded tree bole 

tree i s borderline at 
this " c r i t i c a l point" 

actual 
tree bole 

tree, base 

length through which the v e r t i c a l l i n e 
penetrates the imaginary expanded tree 
bole - the " c r i t i c a l height" 

Random Point P 
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To get the distance desired only 3 measurements are needed. 

1) The v e r t i c a l angle to the c r i t i c a l point (the point 

where i t becomes "borderline"). This i s the point 

where the v e r t i c a l l i n e leaves the expanded tree bole. 

2) The v e r t i c a l angle to the base of the tree, or the point 

below which cubic volume i s not to be considered. I t 

i s computationally convenient i f these angles are measured 

in A . 

3) The slope distance to the base of the tree. This should 

be measured at the same angle of slope as the second 

reading, and can be done with an o p t i c a l system i f desired. 

The second v e r t i c a l angle and the slope distance can be used to 

calculate the horizontal distance to the tree. Both v e r t i c a l angles along 

with t h i s horizontal distance w i l l give the c r i t i c a l height. These 

measurements can be made without leaving the sample point i f a range 

finding system i s used for slope distance. 

At any random point P we can get the c r i t i c a l heights of a l l 

the trees. Since the length of these c r i t i c a l heights are proportional 

to tree volume the elimination method may be used to choose a single tree. 

This allows selection of a random individual or a random sample proportional 

to t o t a l volume and without prior assumptions about tree shape or any use 

of volume tables. 
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When E i s the expansion factor of the angle gauge used 

and calculated by: 

E = ( s i n 
plot area 

tree basal area (12.1) 

• [ -
expanded tree volume 
actual tree volume - ] • 

E(V.) 
V. 

and using M as the maximum expected sum of c r i t i c a l heights at a sum 
point, the p r o b a b i l i t i e s with the elimination method are: 

I'.) 
• [ 

• [ • 

probability of sighting 
the tree with the prism 

BA. * E 
1 

V. 
BA. M sum 

expected c r i t i c a l 
height of tree 

E * V. l 
M 

L sum J 

,M 
L sum -1 

(12.2) 

The r e l a t i v e probability i s : 

Pr N- N E M M 
i = l 

N E T i 
i = l 

(12.3) 

The probability of choosing some tree at a random point i s 
N 

given by: 
Z ( E * v i ) 

M sum 

average sum of 
c r i t i c a l heights 

M sum 
(12.4) 
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Random Selection From a Cluster Proportional to C r i t i c a l Height 

of the Tree, a Biased Method 

If one tree i s chosen using the sum of c r i t i c a l heights at 

a point (S c) and drawing a random number uniformly from the i n t e r v a l 

1-Sc, the problem becomes very d i f f i c u l t . The overlap of trees i s 

now i n 3 dimensions. Figure 35 shows a side view for 2 trees only. 

In the area indicated by "0" there i s a probability of selection 

proportional to the r a t i o of the c r i t i c a l heights of the expanded 

trees. This r a t i o must be integrated over the land surface where the 

tree boles intersect i n order to compute the selection p r o b a b i l i t i e s . 

When 6-10 trees a l l overlap, even with the same stem form, an exact 

solution i s too d i f f i c u l t . The only p r a c t i c a l solution i s by numerical 

approximation methods. Using a grid of xp points across the land area, 

the estimated probability of selection i s then given by: 

r XP 

where S > 0 c / (13.1) 

where: CH. i s the c r i t i c a l height of tree i , 

(13.2) 

i= l 
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The probability of selection of a tree at a random point i s 

l i k e that of horizontal point sampling. The maximum diameter i s used 

to construct a plot around each tree. The proportion of land area 

covered by at least one plot gives the desired probability. 

One bias i n t h i s case i s toward trees which are widely spaced 

r e l a t i v e to their basal area. 

Selection of the Tree With Largest C r i t i c a l Height, a Second Biased Method 

This again i s a mathematical problem best solved by numerical 

approximation. Here selection i s based on the maximum c r i t i c a l height. 

See Figure 36. The area C w i l l favor selection of tree c, since at a l l 

points to the l e f t of the dotted l i n e the c r i t i c a l height of a i s larger. 

Unfortunately, t h i s l i n e cannot be located as easily as with other 

systems we have examined. 

One way to establish the l i n e by computer i s to plot perimeter 

points on c i r c l e s of size (stump * PDF) except where two or more such 

c i r c l e s overlap. When two c i r c l e s overlap only the intersection points 

w i l l be drawn, for diameters at intervals up the stem, u n t i l they no 

longer overlap and providing that no other c i r c l e overlaps this intersection. 

The c e l l s around trees so produced w i l l be the points at which that 

expanded tree i s the highest. A better alternative, where software 

plotter f a c i l i t i e s are available, i s to plot the surface of each of the 

trees from a top view with hidden lines removed. This w i l l produce the 

same kind of mapping. Using the area of these c e l l s (C^) the p r o b a b i l i t i e s 

are: 
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gure 36. Selection of tree with largest c r i t i c a l height. 

tree 
c 

tree 
d 
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(14.1) 

(14.2) 

E^ . 
i = l 

The probability of choosing a tree at a random point i s : 
N 

i= l 
T 

(14.3) 

Ta l l e r trees have increased probability of selection as do trees 

of better form and those which are we l l distributed r e l a t i v e to their 

basal area. As the expansion factor increases the bias towards t a l l e r 

trees increases because more smaller trees are completely enclosed i n 

the larger expanded tree. 

same cross-sectional shape but different magnitudes. To calculate t o t a l 

volume of the objects the relationship of cross-sectional area to plot 

area w i l l have to be known, and this i s p a r t i c u l a r l y simple with objects 

c i r c u l a r i n cross-section. While t h i s method can be used on sections 

of trees (merchantable height, height below f i r s t limb, knot free sections, 

etc.) i t measures outside the bark and cannot deduct for breakage or r o t , 

except perhaps by the samplers estimation of % reduction as i n most 

The system i s applicable to any set of objects which have the 
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systems. The use of the system to sample for t o t a l volume w i l l be 

discussed shortly. 

V e r t i c a l Cross-Sectional Weighting 

We have established a method of sampling proportional to 

horizontal cross-sectional area with horizontal point sampling. C r i t i c a l 

height l i n e sampling can be used to sample proportional to v e r t i c a l 

cross-sectional area of a tree. Consider the v e r t i c a l cross-section 

of a tree p a r a l l e l to a random transect through the woods as i n Figure 37. 

The average c r i t i c a l height along random transects i s proportional 

to the cross-sectional area. To choose a random tree f i r s t sum the 

c r i t i c a l heights along a transect then use the elimination method. 

Cylinder Volume Weighting 

2 
Tree volume can be calculated by V. = ( TT /4)D. H.F.. 

F. relates the volume of the tree to the volume of a cylinder of the 
2 

same diameter and height ( ir /4 * D̂, * R\) . When F^ i s the same for 

a l l trees, sampling can be done by a two stage selection system. 

F i r s t , the trees are picked proportional to basal area by the use of 

an angle gauge, then they are measured for t o t a l height (an easier task 

than measuring c r i t i c a l height) and f i n a l l y selected from a short l i s t 

of t o t a l heights. This produces a selection proportional to cylinder 
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Figure 37. Selection proportional to v e r t i c a l cross-sectional 
area of the stem. 

The c r i t i c a l height calculated i s the same as the 
distance run across the p r o f i l e _if_ i t were l a i d down 
at right angles to the transect and centered at the tree. 
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volume. Grosenbaugh (1974) uses a system l i k e this one for what he 

c a l l s the "Point-3P" sampling method. Unfortunately, he s t i l l has the 

problem of actually measuring tree volume on a l l the trees at some 

of the points. The c r i t i c a l height method has other advantages besides 

freedom from volume tables, and they w i l l be discussed shortly. 
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CRITICAL HEIGHT SAMPLING , 
HISTORICAL DEVELOPMENT AND 

LITERATURE REVIEW 

In one of B i t t e r l i c h ' s early a r t i c l e s concerning variable 

plot sampling ( B i t t e r l i c h , 1956), he "indicated that the volume 

contributed by each tree i n an angle count sample i s related to i t s 

' c r i t i c a l height' " ( B i t t e r l i c h , 1976). It i s strange that B i t t e r l i c h 

himself did not find the exact form of that relationship. Perhaps 

he was hampered by a view which was r e s t r i c t e d to the two-dimensional 

plane i n which tree cross-sections were being "expanded" by his use 

of the angle gauge. At any rate his system developed into a two phase 

sample. The f i r s t phase consisted of estimating stand basal area by 

counting trees chosen with an angle gauge. The second phase was 

sampling for the "Volume to Basal Area Ratio" (VBAR) which established 

the cubic volume r e l a t i n g to each square unit of basal area. This i s 

usually done by selecting sample trees and dividing t h e i r volume by 

t h e i r basal area. These estimates of the volume to basal area r a t i o 

are then averaged, weighting in d i v i d u a l ratios i f necessary. The tract 

volume i s then estimated by 

In 1962, Masami Kitamura delivered a paper laying out the basic 

technique of c r i t i c a l height sampling (Kitamura, 1962). The basic 
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geometry has been described i n a previous chapter. The c r u c i a l 

idea was that a v e r t i c a l l i n e passing through the forest could be 

used to sample d i r e c t l y for VBAR. Two years l a t e r , he published 

a major paper concerning the theory of the system (Kitamura, 1964). 

Another a r t i c l e (Kitamura, 1968) discussed indirect methods of c r i t i c a l 

height measurement. B i t t e r l i c h reported the development of Kitamuras 

system i n 1971 ( B i t t e r l i c h , 1971) and a b r i e f summary of the system 

was included i n the directions for the wide scale relaskop (Finlayson, 

1969). 

In 1973, the author independently derived the system as a 

special case of a more general system of random l i n e s penetrating a 

volume of space i n the forest. The method was called "Penetration 

Sampling" and was l a t e r developed as a class project ( l i e s , 1974). 

A search of the l i t e r a t u r e at that time revealed only one translated 

paper (Kitamura, 1968), but i t contained a diagram and one formula 

which were s u f f i c i e n t to establish the s i m i l a r i t y of my own work to 

that of Kitamura. 

An a r t i c l e by Loetsch i n the IUFRO proceedings from Nancy, France 

(Nash et^ a l . , 1973) l i s t e d f i e l d tests of the c r i t i c a l height system 

as one of the components of forest inventory which needed research. 

Also i n 1973, B i t t e r l i c h wrote an a r t i c l e for the f i r s t meeting of the 

International Association of Survey S t a t i s t i c i a n s at the 39th Session 

of the International S t a t i s t i c a l I n s t i t u t e i n Vienna. I t described 

the use of the angle gauge i n implementing the c r i t i c a l height sampling 

system ( B i t t e r l i c h , .1973). The a r t i c l e does not seem to have been 
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printed with the other papers presented at that meeting. In 1973 

the system was also mentioned b r i e f l y i n a book on forest inventory 

(Loetsch, 1973). These l a s t two works contained the f i r s t discussions 

of the method i n the English language. 

Due to the lack of other English translations the existence 

of the system was v i r t u a l l y unknown i n North America. By 1974, Thomas 

W. Beers, an authority on the variable plot technique, had s t i l l not 

heard of the method (Beers, 1974). As late as September 1976, a plea 

for information about the system i n the newsletter INFO 75 by Mike Bonnor 

(Bonnor, 1975) brought no responses except from t h i s author. 

In 1976, the f i r s t English journal a r t i c l e on the system 

appeared i n the Commonwealth Forest Review ( B i t t e r l i c h , 1976). The 

a r t i c l e was adapted from material published i n Allgemeine Forstzeitung 

( B i t t e r l i c h , 1975) and printed for the information of users of the 

relaskop and telerelaskop by the manufacturer of that instrument 

( B i t t e r l i c h , W. and W. Finlayson, 1975). 

In 1977, Kitamura developed a v a r i a t i o n of a process by Minowa 

(Kitamura, 1977). Minowas basic system was described e a r l i e r i n 

connection with using a v e r t i c a l angle to do l i n e - i n t e r s e c t sampling. 

Kitamurafe new method and further descriptions of s i m i l a r i t i e s of 

Kitamurafe and Minowate systems were outlined i n an a r t i c l e at the IUFRO 

conference i n Freiburg (Kitamura, 1978). At present, no a r t i c l e s have 

appeared i n North American publications and knowledge of the existence 

of the system i s s t i l l unusual. 
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ADVANTAGES AND APPLICATIONS 

The basic theory of the c r i t i c a l height system (hereafter 

often abbreviated as CH system) i s not d i f f i c u l t . The fundamental 

insight i s that the s o l i d content of the forest can be sampled by 

passing random v e r t i c a l l i n e s through the tract area and sampling the 

"depth" of wood encountered. The variance of the estimate i s obviously 

based on the v a r i a t i o n found at each of these points where the v e r t i c a l 

l i n e penetrates the stand. To decrease the v a r i a t i o n the stems can be 

"expanded" and the distance that a v e r t i c a l l i n e penetrates the expanded 

stem (the c r i t i c a l height) can be determined i n the f i e l d as described 

e a r l i e r . There i s no reason, other than operational convenience, for the 

sampling l i n e s to be oriented v e r t i c a l l y . A 45 degree angle to the 

ground would probably be less variable. 

The f i r s t advantage to c r i t i c a l height sampling i s that i t i s 

a direct sample for stem volume. The bias involved i n the use of volume tables 

i s not included i n the volume estimate. This i s p a r t i c u l a r l y important 

where the top diameter i s highly variable, and cannot be predicted from 

taper equations. This i s often the case i n hardwood species, especially 

where log grade i s an important factor. The length to which in d i v i d u a l 

standing trees w i l l be cut simply cannot be predicted, but i s e a s i l y 

judged while looking at the p a r t i c u l a r tree. 

The system i s sensitive to actual tree form, and does not 

require any assumptions. This makes i t useful for situations where 

standards of u t i l i z a t i o n change frequently or where no research has been 

available on a species. When the c r i t i c a l height i s divided by t o t a l 
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tree height i t provides a weighted sampling of the c y l i n d r i c a l form 

factor. A weighting proportional to basal area i s automatically 

implemented since trees are selected with an angle gauge. 

A second advantage, dependent on the l o c a l u t i l i z a t i o n 

standards, species and spacing, may be i n the variance of the system. 

In the standard variable plot system, with a l l trees measured for 

VBAR, a tree i s either included or excluded from a c l u s t e r , and 

therefore that tree's VBAR i s added to the t o t a l or completely ignored. 

The result i s a "step function" over the area. Figure 38 i l l u s t r a t e s 

the sum of VBARs for the three trees on a sample area. The preference 

map for horizontal point sampling establishes the size and shape of 

these c e l l s . The sum of the VBARs i n each of these c e l l s determines 

the variance of the volume estimate for the t r a c t . This i s shown by 

the form of the volume estimate from a single variable plot. 

I 

estimated volume 
per hectare BAF 

i = l 

VBAR. 

where: BAF = the Basal Area Factor of the angle gauge used. 

I = the number of " i n " trees at a point. 

This E VBAR term changes dis c r e t e l y . The same reasoning 

applies to fixed plots using tree volume rather than VBAR. In c r i t i c a l 

height sampling each observation i s an estimate of the VBAR of the 

tree. The overlapping heights accumulate i n a continuous manner. 
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Figure 38. The step function formed by the sum of VBARs of 
overlapping expanded trees i n standard variable 
plot sampling. 
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See Figure 39. As trees tend to regularly space themselves this 
continuous function may be less variable than other sampling systems, 
particularly the fixed plot methods. This situation w i l l be explored 
later in the thesis by simulation techniques. 

A more important consequence of the smoother continuous 
distribution i s the effect on permanent forest inventory plots. One 
of the serious problems in the use of the variable plot technique for 
continuous forest inventory i s "ongrowth", where a tree which was 
previously "out" grows sufficiently to be included at a subsequent 
measurement. If the tree i s quite large the increase in the sum of 
VBARs for the plot can be quite important. This consequence of the 
step function, allowing trees to "jump" into a plot, can be avoided 
with c r i t i c a l height sampling. With the CH technique the tree overlaps 
the point on the second measurement, but contributes only a small 
value to the sum of the c r i t i c a l heights. Figure 40 demonstrates the 
effect. When mortality i s considered the CH method may have a greater 
or smaller effect, since the c r i t i c a l height can be larger or smaller 
than the tree VBAR. 

APPROXIMATION METHODS 

There are three basic problems to consider in the f i e l d 
application of CH sampling. F i r s t , the c r i t i c a l point may not be visible 
from the sample point, generally because of foliage. Second, the angle 
of measurement may be so steep that i t makes measurement d i f f i c u l t . 
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Figure 39. Side view showing sum of c r i t i c a l heights as a 
smooth continuous function. 
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Figure 40. The effect of "ongrowth" i n permanent sample points 
with variable plot vs. c r i t i c a l height sampling systems. 

cn 
Pi 
< 
PQ 
> 

to 

•H 

X. 

O 

U 
o 
o 
e 
CD 

second measurement 

change at second 
measurement due to 
"ongrowth" 

tree 
location" 

second 
measurement 

permanent 
sample 
point area covered by 

expanded diameter 

tree 
location 



- 113 -

Third, the instrument simply may not be s u f f i c i e n t l y accurate i n 

locating the c r i t i c a l point even when i t i s c l e a r l y v i s i b l e at a 

reasonable angle. 

The probability of f a l l i n g into the crown section of the 

tree i s easy to compute i f the diameter at the base of the crown i s 

adequately known. The c r i t i c a l point w i l l occur i n the crown when 

the sample point f a l l s within the expanded area of the diameter of 

the crown base. The proportion of times the c r i t i c a l point f a l l s 

within the crown i s given by 

Jbc 

where: D, = the diameter at the base of the crown, be 
D = the diameter of the base of the stem. 

Figure 41 i l l u s t r a t e s the p r i n c i p l e . 

Some method must be devised for calculating CH when the c r i t i c a l 

point i s not v i s i b l e . Perhaps the most immediate solution i s an 

approximate interpolation scheme. Using nearby v i s i b l e points and the 

number of bar widths on the relaskop one can interpolate to find the 

c r i t i c a l point. This i s of course a possibly biased approach, but the 

bias should be small i n the upper parts of the crown where taper i s 

rapid. An unbiased sample i s s t i l l maintained for the lower bole. 
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>ure 41. The proportion of occasions the c r i t i c a l point 
w i l l be i n the crown. 
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A second approach would be to use a taper equation with 

distance to the tree, tree height and DBH to calculate where the 

c r i t i c a l height should f a l l . I t might be wise to check nearby 

v i s i b l e sections to place l i m i t s on the range of possible values, 

p a r t i c u l a r l y i n the case where frequent broken tops are encountered 

i n the stand. Such an " i n d i r e c t " method was suggested by B i t t e r l i c h 

(1976) and informally by Beers (1974) and Bonnor (1975). Any bias i n 

such a procedure w i l l only affect those measurements where the c r i t i c a l 

point i s obscured. 

The second f i e l d problem occurs even when the c r i t i c a l point 

i s below the crown. The angle of measurement to the c r i t i c a l point w i l l 

probably be considered too steep when the tangent of the angle exceeds 

1.5 (about .98 radians or 56 degrees). This happens i n an area around 

the tree where the expanded tree radius i s no less than 2/3 of the height 

to that point. This w i l l depend on the taper of the tree and the angle 

gauge used. 

As an example consider a cone where the height i s 50 times the 

base radius and the plot diameter factor (PDF) i s 100. This leads to 

the geometry shown i n Figure 42. The distance we wish to fi n d i s B, 

from the tree to a point where the angle to the c r i t i c a l point has 

tangent 1.5. The proportion of c r i t i c a l height to t o t a l height i s the 

same as the proportion of distance from the plot boundary to the tree. 

This relationship i s simple because of the conical shape. Since we 

wish the r a t i o of c r i t i c a l height to distance from B to the tree to be 

3/2 i t i s possible to solve for p. 
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Figure 42. Calculation of the probability that the c r i t i c a l 
point w i l l be at too steep an angle for accurate 
measurement. 

Side View 

p*100 (l-p)*100 

Top View 
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[ 3 "I = I" c r i t i c a l height 1 = [" p * 50 _ p 

2 J I distance B J |_ ̂ "P) * 1 0 0 J L ( 1 _ P ) 2 J 

P 3 (1-p) 

p = 3 - 3p 

4p = 3 

p = (3/4) hence B = 1/4 * 100 = 25 

The general form of the equation for p, assuming a conical tree form, i s : 

(15.1) 

where: 

p " [ i i * J 
[ (maximum acceptable tangent) * (plot diameter factor) 

(tree height to radius ratio) J 

The proportion of times a tree crown w i l l not be measurable w i l l then 

be (1-p) 2. 

The result i s unaffected by the height of the tree, although 

i t i s d i r e c t l y changed by the plot diameter factor and the relationship 

between the tree height and tree radius. This example calculation t e l l s 

us that one sixteenth o f the time the c r i t i c a l point could not be 

observed on a tree. This proportion can r i s e sharply as the expanded 

stems grow t a l l e r and narrower. At a r a t i o of 50:1 for tree height and 

30:1 for plot diameter factor (a more reasonable r a t i o i n practice) p 

becomes .474, giving an intercept i n the crown about 28% of the time. 
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One method, when the angle to the c r i t i c a l point i s too 

large, i s to move away from the tree X times the distance to the tree 

and use an angle which has (1/X) the tangent of the o r i g i n a l . For 

example, with the wide scale relaskop normally using 2 bars we could 

double the distance and use one bar width to find the c r i t i c a l point. 

We could also move 4 times as far away and use 1/2 bar to find the 

same point. This would probably not be too d i f f i c u l t since the 

distances would be small, but i t might be best to avoid the whole 

issue by not sampling trees i n these cases. 

The Rim Method 

To avoid these cases we must assume some kind of tree form. 

We could simply ignore the center parts of the expanded stem, sampling 

only the "rim" which remained and where the angle to the c r i t i c a l 

point was not too steep. Let us again assume a cone shape with a 

50:1 height to radius r a t i o (HRR) and a 100:1 plot diameter factor (PDF). 

Figure 43 i l l u s t r a t e s t h i s example. 

In the f i e l d a l l trees which covered more than 4 times the 

usual angle would be ignored. These are the cases when the sampler i s 

inside the central area. The problem here i s to specify the change i n 

expected c r i t i c a l height caused by not measuring c r i t i c a l height within 

that section of the expanded stem. In practice t h i s means specifying 

tree form and solving mathematically,. or sampling for the proportion. 

The correction term (C ) which would afterwards be applied to calculate 
rm 

the f u l l tree average c r i t i c a l height would be: 
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Figure 43. Example of calculations when only the "rim" of 
the expanded stem is sampled. 

(1) cylinder volume 25 * 37.5 = 73,631.1 unit • ^ 3 

(2) small cone volume (top) 

(3) entire expanded stem 

25 * T * 12.5 

100 * T * 50 

= 8,181.2 

=523,598.8 

(4) "rim" volume (3)-(2)-(l) =441,786.5 
or 84.4% 
of f u l l cone 
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C rm 
cone volume 
rim volume 

Approximating C r i t i c a l Height 
With the Rim Method 

From the viewpoint of a f i e l d worker the ideal sampling 
system would require no measurements at a l l . At most perhaps one would 
like to make very simple counts. An example would be tree counts with 
an angle gauge. It i s also very l i t t l e trouble simply to read a 
vertical angle to a point on a tree, since instruments which do this 
quickly and easily are commercially available. Providing that the 
var i a b i l i t y of any sampling method using v i r t u a l l y no measurements were 
low enough that method would be very desirable. The problem usually 
reduces to one of instrumentation, and often to the specific problems 
of correction for slope or distance. If a system requires measurement 
of some sort one seeks to base i t on the simplest measurements for 
f i e l d work. Kitamura has attempted to solve this problem (Kitamura, 1968) 
but the translation i s very d i f f i c u l t to follow. The following line of 
reasoning was developed by the author and i s somewhat different, but 
w i l l be much easier to understand. 

Let us assume a cone shaped tree of radius B=l and some 
height K. We note that only the height and form affect the Volume to 
Basal Area Ratio, so we can work with any diameter we desire. See 
Figure 44. We w i l l measure the c r i t i c a l height of the tree whenever 
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Figure 44. I l l u s t r a t i o n of the terms used to develop an 
estimating system for c r i t i c a l height. 
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we f a l l within the range A to B, so we w i l l be measuring c r i t i c a l 

height i n the "rim" area just discussed. We wish to develop a 

method to estimate the average c r i t i c a l height of the tree using 

only the tangent of the angle (0 C H) and tree diameter. The following 

approach can be used, re f e r r i n g to Figure 44. We would l i k e to have 

a system for estimating c r i t i c a l height i n the form: 

CH = B*Q*(tan 0_„) (16.01) 

and CH = B *Q *T (16.02) 

where: Q a constant, as yet unknown 

tan 0, CH the tangent of the angle from the base of the 

tree to the c r i t i c a l height when viewed from 

the sample point. 

T the average tangent for a tree. 

We begin by finding the average tangent (T): 

B 

(16.03) 

A 

B 

(16.04) 

A 
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The cumulative density function for x, given that x i s within 

distance B, i s : 
2 

2 
CDFN = 1 = .5- (16.05) 

B 

hence the probability density function i s : 

" 2x 
_ B 2 _ 

PDFN = (16.06) 

Using T as the tangent from a random point x we solve the following 

formula: 

T = 
B 

/ A 2x dx (16.07) 

T = 

B 

K 

X 

dx (16.08) 

cancelling x and removing 2K/B yields: 

dx (16.09) 
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T = 2K 
_ B 3 _ 

%(x-B)' 

•B/2 
(16.10) 

T = 0 (16.11) 

T = 2K 
B3 j 

4- B2 (16.12) 

(16.13) 

Knowing that the volume i n the modified cone i s half that of the o r i g i n a l 

cone we can now solve for Q i n the form we wish to have our f i n a l 

estimator: 

CH E Volume "I 
Basal area J 

1/2 * 1/3 K B T 

B2* (16.14) 

Combining t h i s result with equation 16.02 we have: 

[-H= CH = B*Q*T = B*Q (16.15) 

Therefore the value of Q i s : 

Q = 
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The estimator for the c r i t i c a l height w i l l then be: 

CHe = B) tan 0 C R (16.16) 

tan 0 C H (16.17) 

A second way to prove t h i s would be as follows: 

— = r Volume I 
L Basal area J 

expressing the volume of a s o l i d of revolution by the Theorem of Pappus 

we get: 

2 TT C S 
CH f (16.18) 

B TT 

where: C = the center of gravity of the cross-section of the g 
expanded tree stem curve. 

S = the cross-sectional area of the stem from A to B 
B 

2 (-y- B) TT J (x) tan 0 C R dx 
CH = ^ (16.19) 

B TT 
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s h i f t i n g terms gives: 

CH = (+•) / " ) tan 0 C R dx (16.20) 

tan 0 CH dx (16.21) 

At t h i s point, we can recognize that the term i n square 

brackets i s the probability of a pa r t i c u l a r value of the tangent occurring 

(the pr o b a b i l i t y density function of x ) . When sampling randomly i n the-

plane we would be choosing the tangent with that probability and under 

a random sampling process we can drop that term. This leaves: 

tan 0 CH dx (16.22) 

which gives the same result as before. I t i s of interest because the 

method i s very general, and applies to any cross-section (stem curve) 

that i s of interest. Thus for any stem curve we may use the approximating 

formula for c r i t i c a l height as follows: 

CH = C * tan 0 
e g 1 

(16.23) 
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Where C i s the center of gravity of the expanded stem curve on 
g 

one side of the v e r t i c a l axis. 
Kitamura (1968) develops a method similar to the rim method 

and also uses a similar estimator, but there are differences i n 

application. Instead of allowing the hollow center h i s system 

requires the sampler to back up from the tree u n t i l he i s a certain 

proportional distance from the stem, and then measure the angle to the 

c r i t i c a l point. In e f f e c t , he would be " f i l l i n g " the otherwise hollow 

section with a constant. This i s a great deal of trouble i n the f i e l d . 

A l l t h i s appears to be much ado about very l i t t l e indeed. 

In adopting the estimation scheme we lose one of the major advantages 

of c r i t i c a l height sampling - the unbiased sampling procedure sensitive 

to tree form. I f we are w i l l i n g to assume some tree form why not just 

measure (or estimate) t o t a l height and get VBAR directly?? Certainly 

i f one goes to a l l the trouble of making Kitamura's scheme work i t i s 

more effo r t than simply measuring the distance to the tree. Indeed the 

whole business seems to be an awkward contrivance simply to avoid the 

one horizontal measurement. S t i l l , there may be an advantage which 

Kitamura has overlooked. 
Consider the two procedures for estimating c r i t i c a l height from 

a random point. 
(a) c r i t i c a l height = distance to tree * tan 0 

C H 

(b) c r i t i c a l height = a constant * tan 0 ^ 
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Method (a) i s the direct method and measures the height of an 

imaginary s h e l l around the tree. The estimator therefore has the 

same d i s t r i b u t i o n and s t a t i s t i c a l characteristics as the tree bole 

i t s e l f . The mean, variance and density functions are proportional 

to the stem form. 

Method (b) on the other hand has a d i s t r i b u t i o n which i s 

not the same as the tree bole. In effect we have created an "expanded 

tree" with the same volume (or known proportion thereof) but with an 

en t i r e l y different "shape". The d i s t r i b u t i o n of the estimator of tree 

volume physically surrounding the tree w i l l overlap d i f f e r e n t l y with the 

estimator of nearby trees. By manipulating the form of the estimator 

we can then change the variance of the sum of c r i t i c a l heights which 

depends on tree spacing. I t may be that i n forest stands, or perhaps 

i n the measurement of objects i n other f i e l d s of study, such 

manipulation of the overlapping shapes could s i g n i f i c a n t l y reduce the 

sampling variance. 

FIELD APPLICATION 

The f i e l d work for the c r i t i c a l height system has been described 

from a theoretical point of view. As with any sampling system there 

w i l l be adjustments necessary for p r a c t i c a l f i e l d application. Several 

plots were established i n a Douglas-fir stand near the University of 

B r i t i s h Columbia to i d e n t i f y problems i n application and possible 

solutions. 
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The most s t r i k i n g problem i n application i s with trees 

which are close to the sample point. With nearby trees a number 

of measurement problems become serious. Tree lean can be a large 

source of error. Although the c r i t i c a l point w i l l s t i l l be accurately 

located the c r i t i c a l height measurement w i l l often be unreliable. 

The maximum intercept bias i s possible, as discussed by Grosenbaugh 

(1963). Correction for t h i s type of bias can be made following his 

suggestions. The c r i t i c a l point of nearby trees tends to be i n the 

crown, and obscured by foliage or branches. 

On the other hand, taper i s rapid i n the top section of the 

tree, and there i s a great advantage to the depth of f i e l d for d i s 

tinguishing between the subject tree and the background. The depth of 

f i e l d advantage seems noticeable up to about 11 meters distance from 

the tree. While i t i s possible to move away from the tree i n multiples 

of the distance between the tree and the point center t h i s was found 

to be awkward for very short distances. I t i s clear that either some 

technique to bypass the nearby trees or some other method of c r i t i c a l 

height measurement i s needed. 

One alternate method i s to calculate the diameter at the 

c r i t i c a l point (from tree diameter and distance) then locate that 

point and i t s c r i t i c a l height using an o p t i c a l fork l i k e the Wheeler 

Pentaprism. This o p t i c a l fork can be used from any point where the 

stem i s v i s i b l e . The method bypasses problems of steep measurement 

angles and considerably reduces the d i f f i c u l t y of seeing the tree stem. 
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Taper equations can be used, but doing so waives the main 

advantage of a system designed to be sensitive to actual tree form. 

Taper function use would only be advisable i f i t helped to maintain 

another possible advantage of the system - lower v a r i a b i l i t y due to the 

d i s t r i b u t i o n characteristics of the tree stems. This would cert a i n l y 

be indicated on permanent growth plots for instance. Lacking any proof 

that the use of c r i t i c a l height sampling w i l l reduce sampling variance, 

i t would seem advisable to use the same taper functions i n a normal 

variable plot sampling procedure. 

The "rim method" discussed previously i s one way to ignore the 

nearby trees altogether, but the sampler must c a r e f u l l y keep track of 

" i n " trees, especially i f the Basal Area Factor i s reduced i n order to 

increase the tree count at each point. This method seems to be the most 

promising f i e l d adaptation even though i t too requires an assumption 

about tree shape. 

Not a l l problems are removed by sighting trees i n the lower 

bole. The lower section of the stem has less taper, i s more often obscured 

by brush and often has a bad background for sighting with the relaskop. 

In addition the stem i n t h i s area i s more l i k e l y to be e l l i p t i c a l and 

rough on the surface. The base of trees i s often impossible to see, 

although a f l a s h l i g h t held at stump height w i l l help a great deal i n 

brush. A more p r a c t i c a l method might be to sight the lower reading on 

a collapsable fiberglass pole and d i r e c t l y add the distance l a t e r i n 

the computations. 
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Relaskop Use 

Several hints about relaskops may be useful. Keep both 

eyes open when using the relaskop. The use of binocular v i s i o n 

decreases the d i f f i c u l t y of a poor background on the tree stem. 

Moving very s l i g h t l y from side to side w i l l often reveal an adequate 

outline of an upper stem even when the crown i s rather dense. I t i s 

often less trouble to read the degree scale i n the relaskop and 

convert afterwards to percent. The percent scale i s frequently hard 

to read and abruptly changes scale without adequate l a b e l l i n g . I t i s 

helpful i f the BAF i s chosen such that an odd number of bars i s used. 

This way they can both be white or black against the stem p r o f i l e as 

may best suit the background to the tree. 

Adjustment to the sunshade can result i n an almost transparent 

image of the relaskop scale, which helps i n locating the c r i t i c a l point. 

The intensity of the scale can be varied by moving a thumb i n front of 

the forward c i r c u l a r window of the relaskop. When th i s window i s covered 

the scale nearly disappears. Causing the scale to " b l i n k " by moving a 

forefinger on and off the window i s sometimes help f u l i n finding the 

c r i t i c a l point, p a r t i c u l a r l y i n low l i g h t conditions. 

Two modifications to the relaskop were useful. A threaded 

insert available at most camera stores w i l l change the metric European 

tripod thread at the base to a standard English system thread for easy 

tripod mounting. The second modification involved removing the side 

panel of the relaskop to expose the wheel bearing the measuring scale. 
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The negative side of i t was marked with a red transparency pen used 

i n overhead projectors. Shallow negative angles were then very 

apparent when the scale turned bright red. I t i s necessary to insure 

that the marking pen i s not the permanent type, so that errors can be 

corrected. 

To explore the precision of measuring a tree under f i e l d 

conditions c r i t i c a l height was determined repeatedly on a 60 cm 

Douglas-fir from the distances 12, 16, 20 and 24 meters. The background 

and crown condition of the tree was t y p i c a l for a Douglas-fir stand, 

but the tree was chosen so that no brush would interfere with sightings 

on the lower bole. The points on the tree where i t was obviously " i n " 

and "out" were also recorded at the same time the c r i t i c a l point was 

estimated. The results are shown i n Figure 45 f o r hand held relaskop 

readings and Figure 46 for readings with a tripod mounted relaskop. 

The increased precision i s obvious with the tripod. Every error of 1 

meter i n c r i t i c a l height implies an error of (1 m cubic meter * BAF) 

i n volume per hectare. In t h i s case, the BAF was 1.0. 

The greater precision of the tripod mounting was impressive 

during the f i e l d work. Differences i n c r i t i c a l height s t i l l appeared, 

and tended to occur i n clumps just as they did with the hand held 

instrument, however the cause was e a s i l y determined. The relaskop 

scale was so sensitive that i t was picking up the bumps and overgrown 

knots on the tree stem. I f anything the relaskop was too sensitive, 

even without magnification. Often the c r i t i c a l point occurred at two 

or three places, and whether you moved up or down the tree determined 
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Figure 45. C r i t i c a l height as measured by hand held relaskop. 
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which one was f i r s t noticed. This problem was not as serious with 

species such as hemlock and cedar where taper was either smoother 

or more rapid. 

In general, there i s no problem determining c r i t i c a l height 

to acceptable accuracy providing that the tangent of the angle i s not 

beyond about 1.50 and the l i n e of view i s clear. I f no assumptions 

can be made about tree form i t i s recommended that the diameter of the 

c r i t i c a l point be calculated and then located using an o p t i c a l caliper. 

Log Grading 

The grading of logs with c r i t i c a l height sampling i s the same 

as i n standard variable plot cruising. In place of the use of a VBAR 

for each grade stating the cubic volume of wood per unit area i n a 

pa r t i c u l a r grade we have a c r i t i c a l height for each grade. The portion 

of the stem between the c r i t i c a l point and tree base i s divided i n a 

series of c r i t i c a l heights attributed to the grades of those sections. 

The volume i n a grade at each sample point i s then computed by: 

Volume , per ha = V^CH . * BAF grade X—< grade 

These estimates are averaged over a l l points i n the cruise. With the 

c r i t i c a l height method the amount of sampling i n a grade i s proportional 

to the volume i n the grade. In standard variable plot cruising the sampling 

i n a grade i s proportional to the basal area of the trees containing 

that grade. 
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VARIABILITY OF THE SYSTEM 

The v a r i a b i l i t y of c r i t i c a l height sampling was b r i e f l y 

explored using a simulation study on an actual stand of Douglas-fir 

trees. The stand used was established i n approximately 1860, and 

contained 192 trees ranging i n diameter from 14 to 160 cm and i n 

height from 15 to 47 meters. The median tree was approximately ,4 

cubic meters. A conical form was assumed for a l l trees. The stand 

was clumped and more variable than usual. 

Repeated simulations were done over 200 random points 

throughout the area. BAF and plot size were varied on each run and 

variance of the t o t a l volume estimate was calculated. The results 

are shown i n Figure 47, recorded by the average number of trees 

measured i n each test. A few additional runs with different random 

points and larger sample sizes were made to v e r i f y that these results 

were representative. 

There appears to be no s t a t i s t i c a l advantage i n the c r i t i c a l 

height method. The v a r i a b i l i t y of both c r i t i c a l height sampling or 

standard variable plot sampling are the same for p r a c t i c a l purposes. 

The advantage of CH sampling i s that i t i s an unbiased estimate of 

stand volume. The disadvantage i s that the trees near the sampling 

point are d i f f i c u l t to measure. The approximation to the rim method 

using the percent angle and tree diameter proved to have a coe f f i c i e n t 

of v a r i a t i o n about 10% higher than the f i r s t two meth'ods. The loss 
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gure 47. Coefficient of Variation for 5 sampling methods. 
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i n e f f i c i e n c y does not seem warranted simply to eliminate the 

measurement of the distance to the tree. The standard rim method, 

simply ignoring trees which were more than twice the c r i t i c a l angle 

at the base, was more competitive with the standard c r i t i c a l height 

technique and also eliminated the problem of measuring nearby trees. 

Fixed plot sampling was competitive as long as the average number of 

trees measured was kept above 6 trees per plot. The range of 6-10 

trees per point seems to be most e f f i c i e n t for sampling purposes i n 

stands of t h i s type. 
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CONCLUSIONS 

In the f i n a l analysis the use of the c r i t i c a l height 

method w i l l depend on the importance of the bias i n volume tables 

and the d i f f i c u l t y of measuring the nearby trees for c r i t i c a l height. 

The most promising method for measuring these d i f f i c u l t trees seems 

to be the use of the Wheeler Pentaprism. Application of the system 

w i l l probably be limited to cases where volume tables are very 

unreliable due to v a r i a b i l i t y of the merchantable top, continuous 

forest inventory where "ongrowth" i s a problem, and use of the method 

to select trees randomly with p r o b a b i l i t y proportional to gross volume. 
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APPENDIX I 

LIST OF SYMBOLS AND TERMS 

area of a compartment formed on a preference map by 
overlapping of pl o t s , as well as c e l l , indicating 
the f i r s t tree from a given azimuth. 

area of a subcompartment formed by the overlapping of 
plots. 

The angle of rotation used with a prism. 

area of a band associated with a particular tree. 

area of a fixed plot used i n the sampling process. 

The basal area of tree i . 

Basal Area Factor. 

Area of a c e l l around a tree i n which that tree's 
c r i t i c a l height i s greater than any other tree. 

Center of gravity for a portion of a stem curve. 

Correction term to calculate f u l l average c r i t i c a l 
height from.the c r i t i c a l height estimated by the 
"rim method". 

a general constant, the exact value of which depends 
on the de t a i l s of the sampling scheme. 

a v e r t i c a l angle used to select a tree for possible 
sampling. 

cross-sectional area of a part of a tree stem crossed 
by a transect. 

average c r i t i c a l height. 

Estimated c r i t i c a l height. 

C r i t i c a l height of a part i c u l a r tree. 

Cumulative density function. 

Diameter at the base of the tree crown. 

Diameter at some point on tree i . 
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Diameter at the lowest sighting point on the tree, 
presumed to be the largest diameter as w e l l . 

Diameter at breast height (1.3 meters) on tree i . 

Area of a D i r i c h l e t c e l l around tree i . 

Expansion factor of an angle gauge. Equal to 
(plot area/tree basal area). 

A factor used in calculating p. 

The number of " i n " trees at a point 

Arbitrary height of a cone. 

length of l i n e s used i n l i n e sampling or one of i t s 
variations. 

area of a modified D i r i c h l e t c e l l , 

largest number of trees selected- as a cluster. 

The maximum expected sum of c r i t i c a l heights, 

sample size 

Number of possible observations i n the population. 
Usually the number of trees i n an area. 

number of trees involved i n a compartment. 

The largest number of trees selected i n any cluster 
throughout the sample area. 

number of trees present i n a cluster chosen by fixed 
or variable plots. 

A proportion of the distance to the edge of the plot 
from the tree located at the center. 

probability of sampling tree i . 

probability of sampling a cluster of np trees. 

probability of sampling a tree after establishing a 
random point on the t r a c t . 

a random point on the area to be sampled. 
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r e l a t i v e probability of sampling tree i compared 
to any other tree on the t r a c t . 

A constant r e l a t i n g tree diameter to the diameter 
of an unseen plot surrounding the tree. 

Probability density function. 
Proportion of plot radius,- to be multiplied by tan 
i n approximating "rim method". 

a uniform random number between 1 and some specified 
upper l i m i t . 

cross-sectional area of part of the stem p r o f i l e . 

sum of c r i t i c a l heights at a sample point. 

t o t a l number of subcompartments formed by overlapping 
plots or s t r i p s . 

Total area of the tract of land on which sampling i s 
conducted. 

Average tangent throughout the plot area. 

tangent of the angle to the c r i t i c a l point from a random 
point within the plot radius. 

Total number of compartments formed by overlap of plot 
of tree i with other plots. 

the tangent of the angle to the c r i t i c a l point. Equal to 
(CH/distance to tree). 

a particular tree from the population. 

The estimated volume with l i n e - i n t e r s e c t sampling. 

The volume of a particular tree i . 

Volume to Basal Area r a t i o . 

width of s t r i p used i n selecting a tree with a p a r t i c u l a r 
sampling system. Sometimes the distance between two 
transects. 

The number of points on a grid placed on the tract to 
be sampled. 
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number of compartments on preference map favoring 
selection of tree i . 

t o t a l number of compartments on a preference map. 

The angle used to select a tree with variable plot 
sampling. 

V e r t i c a l angle to the c r i t i c a l point i n c r i t i c a l 
height sampling. 


