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A b s t r a c t 

Permanent sample plots have become the main source of information for estimating mod­

els which quantify the dynamic processes of a forest. Fitted models allow for projecting 

inventories, used to determine timber production and many forest management decisions. 

The quality of these models is largely dependent on the quality of the information pro­

vided by the permanent sample plots. However, the pool of information contained in 

recent permanent sample plots is limited. Efficient estimation techniques must use all 

the information available from such plots. 

Current estimation techniques can be improved. Existing techniques employed in 

forestry have failed to recognize the random nature of the individual model characterizing 

each plot. On the other hand, techniques designed for remeasured entities in other 

scientific fields do not address particular forestry situations such as the small number 

of remeasurements or the irregularity of remeasurements. A framework for estimating 

forestry growth models which recognizes the individuality of each plot and special forestry 

situations is presented in this dissertation. 

The proposed framework is a two-stage estimation technique, in which the growth 

rate of a permanent sample plot is considered analogous to the interest rate on a bank 

account. The first stage estimates the growth rate after removing the time effect. The 

second stage, based on Von Bertalanffy's growth curve, relates growth rate to site index 

and volume at the beginning of the growing season. The proposed predictor of future 

growth rates, the "weighted predictor," is a weighted average between the growth rate 

observed on a plot and the growth rate predicted from the second-stage model. The 
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weighted predictor is then used to compound the current volume of a plot. An estimate 

of the variance of the prediction can also be computed. 
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Chapter 1 

Introduction 

The main purpose of forest management is to maintain or increase the yield of the 

different forest resources. This goal requires a knowledge of current inventory and growth 

potential. Growth potential is the change in the current inventory that would occur 

without harvesting. However, estimating growth potential is a difficult task because the 

forest is a dynamic system. 

Quantifying the dynamic processes in a forest is essential for forecasting the future 

inventory. One way of quantifying the timber aspect of the dynamic processes of a forest 

is to use permanent sample plots. Monitoring the same piece of land over time represents 

a logical way to assess timber growth. In British Columbia, permanent sample plots were 

first established for growth and yield purposes in the late twenties and the early thirties. 

They became more popular in the sixties and seventies because of an increased interest 

in predicting yield from managed stands (Marshall and Jahraus 1987). Today, many 

agencies have a network of recent permanent sample plots, which have had only a few 

measurements. 

Timber dynamics can be represented by a mathematical model that ideally has the 

following properties: representativity, tractability and simplicity. This model is called a 

growth model. The model should be representative of the biological behaviour and of the 

stochastic nature of this behaviour; it should be tractable so that estimation is possible, 

and simple in its parameterization. 
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Chapter 1. Introduction 2 

Modeling growth of permanent sample plots allows for the projection of sample plot 

inventories. Projections of temporary sample plot inventories can also be obtained. This 

information will be needed to estimate the timber production of a management unit 

and to determine an appropriate level of harvesting for this management unit. Most 

techniques used today to quantify inventory changes do not take advantage of all the 

information available from permanent sample plots. Techniques especially designed for 

remeasured entities are required. As most forest agencies have a large proportion of 

recent permanent sample plots, these techniques must be compatible with sample plots 

that have had only a few measurements. 

The objective of this dissertation is to define a modeling framework that will make use 

of all the information available from recent permanent sample plots in order to project 

an inventory with precision and accuracy. Estimates of the variability of the projections 

is also of special interest. For simplicity, only linear models are considered. 

The general linear statistical model of permanent sample plot collections can be ex­

pressed by: 

Yij — floij + PlijXuj + . . . + 0Kij^Kij + e;j 

where Yij is the dependent variable measured on individual i [i = 1, . . . ,N) at time j 

(j = 1,... , T); Xpij is the variable p (p = 1,..., K) measured on individual i at time j; 

0pij is the parameter associated with X^j, fioij is the intercept, and ê - is the error term 

on individual i at time j. 

Judge et al. (1985, p. 515-516) classified the parameter estimation techniques of such 

models in 5 broad categories: 

1. all parameters are constant over individuals and time; 

2. the intercept varies over individuals only, the other parameters are constant over 

individuals and time; 
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3. the intercept varies over i n d i v i d u a l s a n d t ime, the other parameters are constant 

over i n d i v i d u a l s and t ime; 

4. a l l parameters vary over i n d i v i d u a l s on ly ; 

5. a l l parameters vary over i n d i v i d u a l s a n d t ime . 

In forestry, most techniques developed for f i t t ing models o n permanent sample plots 

have assumed constant parameters over t i m e a n d i n d i v i d u a l s . T h i s fails to recognize the 

i n d i v i d u a l i t y of each sample plot . O t h e r scientific fields dea l ing w i t h collections of remea-

sured i nd iv idua l s have used models w i t h at least one parameter va ry ing over i nd iv idua l s . 

These models can " i n d i v i d u a l i z e " the general m o d e l . However , recent permanent sample 

plots have some pa r t i cu la r problems that models used i n other fields do not address. 

These inc lude : 

1. the plots are not the same age at the first measurement; 

2. the t ime in terva l between measurements is not a lways the same w i t h i n a plot; 

3. plots are not remeasured at the same t ime; 

4. the number of remeasurements are s m a l l . 

A s a general rule, specia l a t ten t ion must be g iven to the error s t ructure of the m o d e l 

and the assumpt ions about the covar iance m a t r i x of the r a n d o m terms i f efficient es t ima­

tors are required. T h e u s u a l assumpt ions required for s imple or m u l t i p l e l inear regression 

are frequently not v a l i d w i t h remeasured i n d i v i d u a l s . Because each plot is remeasured 

at different t imes, the plo ts are often referred to as a time-series. Observat ions f rom a 

time-series are often correlated; th is type of corre la t ion is ca l led serial correla t ion. O b ­

servations measured at the same t ime can also be correlated; this type of corre la t ion is 
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called contemporaneous correlation. Both types of correlation provide information about 

the remeasured entities needed to estimate model parameters efficiently. 

In this dissertation, a new framework for projecting recent permanent sample plot 

inventories is proposed. This new framework addresses the complexities of remeasured 

entities particular to forestry. The variable of interest is growth rate, that is, the change 

in volume per unit of initial volume.1 For short projections, an intuitive technique to 

predict future volumes on a given plot is to compound the current volume with the 

growth rate recently observed on this plot. Another technique, requiring a collection of 

permanent sample plots, is to regress the observed growth rates on stand attributes. The 

volume is then updated with the growth rate predicted from the regression. Another 

option, the one favoured in this thesis, is to use an average of both techniques, with each 

technique's growth rate estimates weighted proportionally to its reliability. 

The framework employed a two-stage model. In the first stage, average recent growth 

rates are obtained for individual plots. In the second stage, model parameters are es­

timated assuming growth rates to be a function of site index and initial volume. The 

predictor for a sample plot is a weighted average between the growth rate estimated in 

the first stage and the growth rate predicted from the second-stage model. 

Statistically, the framework can be explained in the following way. A general model 

exists, explaining the growth rate from two stand attributes: site index and initial volume. 

However, each individual permanent sample plot follows its own model; these individual 

models vary randomly around the general model. The individual model can be expressed 

as the general model plus an error term specific to a particular plot. The actual growth 
1This variable is also sometimes referred to as relative growth rate. In this thesis the term growth 

rate will be used. 
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rate observations also vary, but around the individual model. The framework can there­

fore be considered a hierarchical model: the observations are random variations of the 

general model's random variation. 

Repeated observations on the same individual and an estimate of the general model 

can yield a prediction of the random error term specific to a particular plot. Adding 

this term to the estimated general model gives a prediction of the individual model. The 

individual model is "predicted" and not "estimated" because the individual model is a 

random variation of the general model. The predicted individual model is then used to 

provide a prediction of the growth rate used to update the current volume. 

There are many reasons to prefer an estimate of the individual growth rate rather 

than a global estimate. The individual estimate can be used as a decision aid for plot 

remeasurement scheduling. It can also be employed in sampling with partial replacement 

to update the plots that have not been remeasured. A third possible use of individual 

growth rates is the ordination of the sample plots in groups to study the causes of the 

differences among groups. 

Most techniques used in forestry have failed to recognize the stochastic nature of this 

individual relationship. They also have failed to take into account that many permanent 

sample plots in North America are less than 25 years of age and have been measured 

less than 5 times. The proposed framework will provide a better understanding of the 

information given by permanent sample plots, especially recent ones, and will result in 

more efficient fitting techniques. 

The dissertation has been organized according to the following format: a brief presen­

tation of the past work in growth and yield and in other fields using data sets containing 

remeasured individuals is discussed in Chapter 2; the statistical model, the various as­

sumptions and the estimators are discussed in Chapter 3; a numerical example and results 
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are presented in Chapter 4; these results, along with the statistical model, are discussed 

in Chapter 5, and, finally, conclusions are drawn in the last chapter. 



Chapter 2 

Literature Review 

Permanent sample p lo t da ta bases are a co l lec t ion of plots remeasured a number of 

t imes. Remeasured da t a bases are not un ique to forestry. Research scientists i n business, 

economics, b io logy and medic ine have deve loped techniques cus tomized to their specific 

problems i n v o l v i n g entities w i t h repeated measurements over t ime . 

A n overview of these techniques is presented i n the fol lowing pages. A br ief h i s tory of 

forestry g rowth a n d y i e l d can be found i n the first sect ion. T h e second section groups the 

techniques developed i n econometr ics . M u c h a t ten t ion has been given i n business and 

economics research to da ta bases s imi la r to pe rmanent sample p lo t da ta bases. Research 

on b io log ica l g rowth curves is reviewed i n the t h i r d section. Because trees are b io logica l 

organisms, general knowledge of b io log ica l g r o w t h can help unders tand tree or s tand 

g rowth . F i n a l l y , the last section is a br ief presenta t ion of cond i t i ona l densities and 

expectat ions. Useful m a t r i x invers ion rules are also given. These basic rules w i l l help i n 

unders tand ing the s ta t i s t ica l m o d e l suggested i n C h a p t e r 3 to project inventory. 

2.1 Forestry Growth and Yield Literature 

P r e d i c t i n g y i e ld , a long w i t h de te rmin ing the current inventory, is a c o m m o n forest m a n ­

agement ac t iv i ty . A v a i l a b i l i t y of re l iable i n fo rma t ion , c o m p u t i n g technology a n d infor­

m a t i o n requirements have inf luenced the q u a l i t y of the in format ion desired f rom forest 

inventory project ions. Pe rmanen t sample p lo t d a t a bases have become the m a i n source 
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of information for these projections. A historical perspective of the uses of permanent 

sample plot data as a source of information is presented in the following pages. 

Yield is highly correlated with a few well-known variables: species, age, ecological 

association, climate, edaphic conditions, among others. Nineteenth century German 

foresters used the variables age, species, and site class to create their normal yield curves. 

"Normal" in this case merely meant that the variability in stocking was omitted by using 

only fully-stocked, even-aged, monospecific temporary sample plots. At any point in time, 

these curves represented the upper bound or potential yield of a stand. The interpretation 

of predictions from these tables was left to the manager's judgment and experience. 

To make these tables applicable to understocked forests, Gerhardt (1930, in Davis 

and Johnson 1987; p. 106) developed a simple correction factor. Growth was estimated 

from the percentage of stocking compared to that of a fully-stocked forest, the predicted 

growth for a fully-stocked forest and the species. With the correction factor, it was 

assumed that all stands were moving toward full stocking at a rate depending on the 

species and the stocking. 

Schumacher (1939) published a simple empirical yield function where the logarithm 

of volume was a function of site index (S) and the reciprocal of age (1/A): 

InV = 30+ Pi{l/A) + 82{S) + 33(S/A) 

No statistical assumptions were made to develop this model; no statistical inference could 

be drawn from this model. The parameters were fitted using least squared error as the 

criterion of optimality. Schumacher's model was among the first of the mathematical 

expressions for yield. 

Buckman (1962) recognized that serially correlated data from permanent plots were 

providing misleading significance levels and confidence intervals when analyzed as inde­

pendent observations. 
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Clutter (1963) recognized the need for compatible growth and yield models, where 

predicted growth is the derivative of predicted yield. He justified the use of volume on a 

logarithmic scale to fit his growth and yield equations by assuming a better compatibil­

ity in general with "the statistical assumptions customarily made in regression analysis 

(linearity, normality, additivity and homogeneity of variance)." 

Leak (1966) developed a technique for providing a large-sample estimator of the over­

all slope of a random coefficient model. He first assumed a linear relationship between the 

dependent and the independent variable for each sample plot, with the error terms inde­

pendently distributed as N(0,crf), where af is the variance of an error term observed on 

sample plot i. These individual regressions were solved using the least squares technique. 

On each plot, he assumed the same number of observations and a similar distribution of 

the independent variable, X, around the average, X (i.e., the corrected sums of squares 

of the variable X were approximately equal). The expected value of any individual slope 

was the overall slope. This was estimated as the simple average of the individual slopes. 

Assuming that a? was equal among plots, the standard error of the estimated overall 

slope was the standard error of the mean slope. 

Curtis (1967) developed a method to estimate the gross yield of Douglas-fir. He 

recognized that the usual assumption of independence was probably violated when fit­

ting equations to permanent sample plots. To handle the problem, he first fitted linear 

growth equations on each plot without regard to autocorrelation using the least squares 

technique. Then, the coefficient of determination was computed for u^_i and ui, the con­

secutive estimated residuals on a plot. If the coefficient of determination r2 was small, 

autocorrelation was considered negligible; otherwise, the analysis was repeated using a 

single randomly selected point per plot. 

Swindel (1968) showed the theoretical bounds on the bias of the variance of parameter 

estimates when serially correlated data were assumed independent for multiple linear 
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models estimated with least squares. Sullivan and Reynolds (1976), using Swindel's 

work, provided an example for data with two measurements. 

Sullivan and Clutter (1972) developed growth and yield models using permanent 

sample plots with two measurements per plot. They assumed common parameters over 

plots and time, homogeneous variance within a measurement period, serial correlation p 

between the first and the second measurements, and no contemporaneous correlation, in 

that the volumes measured in a given year were uncorrelated. If = (Vn V{2) is the 

vector containing the first and second measurements of volume on plot i, then, for any 

i 7̂  j , V; and Vj are uncorrelated and 

where p is the correlation between the first and the second measurement. They derived 

the maximum likelihood estimates of multiple linear models by an iterative procedure. 

Seegrist and Arner (1978) and Amer and Seegrist (1979, 1980) extended this method to 

Ferguson and Leech (1978), fitted a two-stage model drawing on the theory relating 

to random coefficient modeling. In the first stage, they fitted a quadratic model to each 

plot with the reciprocal of age as the independent variable using ordinary least squares. 

They assumed that the coefficients were different among plots: 

where V{j is the volume measured on plot i at time j, /3,-j. is the coefficient k on plot i, Aij 

is the age of plot i at time j, and ê - is an error term. Using matrix notation, V is the 

column-vector of the logarithmic volumes; 6 is the vector of parameters to be estimated; 

X is the matrix of independent variables, and e is the vector of error terms. The first 

1In econometrics nomenclature, this type of estimation is called classical pooling. 

allow multiple and varying number of remeasurements.1 

ln V{j = Ao + ftiUMy) + ft2(l/Ay )2 + 
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stage can be written 

V = X8 + e. 

With the assumptions that e is distributed with mean vector zero and variance ft and is 

uncorrelated with /? or X , the least squares estimate of 8, 8, is unbiased with variance 

They then considered 8 as a random variable that could be predicted from certain 

independent variables (second-stage models). The set of independent variables to predict 

8 do not need to be related to the set of independent variables used to predict V . They 

fitted three different models: to predict the intercept, the coefficient of the linear term 

and the coefficient of the quadratic term. The second-stage model structure was 

where d^i is the parameter associated with the variable I for the coefficient k\ Ziki is the 

corresponding explanatory variable on plot i, and u;*. is the error term. Using matrix 

notation, the second stage can be written 

Assuming that u is distributed with mean vector zero and variance S and is uncorrelated 

with 8 and Z, the random variable 8 is distributed with mean vector Z9 and variance S . 

Because 8 was considered a random variable, the distribution of 8 in the first stage 

was actually the conditional distribution of 8 given 8 with 

[x'rr 'x]- 1. 

a = ze + u. 

E\j3\8] = 8, and 

vai0\8) = [X'f2 _ 1 X]-- l 

Combining the conditional distribution of 8 given 8 with the distribution of 8, the 

unconditional distribution of 8 will have 

ze, and 
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var(/3) = [ X ' f r ' X ] " 1 + E. 

Because Vt and £ are unknown, they must be replaced by estimates. In the first-

stage model, Ferguson and Leech assumed homogeneous variance within plots, no serial 

correlation, and heterogeneous variance among plots. In the second-stage, they assumed 

a homogeneous covariance matrix for the coefficients and independence between sets of 

coefficients measured on different plots. Wi th these assumptions they developed a feasible 

generalized least squares (FGLS) algorithm. They also investigated more restrictive 

assumptions about the error structure. Commenting on this study, Davis and West (1981) 

claimed that no proper confidence intervals nor test of significance can be computed with 

this approach. Ferguson and Leech (1981) replied that asymptotically normal statistics 

have proved adequate for most practical purposes using large samples. 

Garcia (1983) fitted a height growth model with a stochastic differential equation. 

Height growth was assumed to be a function of height (if): 

dH/dt = f(H) 

The function of height was assumed to be (^if* 2 — d>3H, where </>i, d>2, and <f>3 are 

the function parameters. This function integrates to the well-known Chapman-Richards 

function (Chapman 1961, Richards 1959). The model included an error term to account 

for the random environmental variation in growth and the measurement error. The 

environmental error was assumed to be a Wiener process. This means that the variation 

in H accumulated over a short time interval is normally distributed with zero mean 

and a variance increasing with the interval length, and that errors for nonoverlapping 

time intervals are independent. The measurement error was assumed to be a function 

of observed height. The plots were assumed statistically independent. The parameters 

were simultaneously estimated with an iterative maximum likelihood procedure. Some 

parameters were global, that is identical across plots; some were local, that is site specific. 
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Gregoire (1987) applied error component modeling to permanent sample plot data. 

The basic model was 

Yij — ̂ ^dpXpij -f- Ujj 
p 

= e; + ij + Vij 

with XUJ defined as 1. The error was divided into three components: one for plot-

dependent variation (e,), one for time-dependent variation (rj) and one, (V;J), for the 

variation unexplained by plot-dependent or time-dependent effects; was the dependent 

variable measured on plot i at time j, and X^j was the variable p measured on plot i at 

time j. The expected value of each component of the error term was assumed to be zero. 

The error term components were also assumed to be uncorrelated with the independent 

variables and uncorrelated with each other. Alternative error covariance structures were 

analyzed. When compared to the least squares technique, with the undivided error terms 

assumed independently and identically distributed, the results were not conclusive. In 

general, the error component models performed better than the least squares for the 

likelihood criterion but worse for the minimum prediction error criterion. Gregoire also 

pointed out the need to find good statistics to compare alternative models. 

Biging (1985) derived a site index model using random coefficient modeling theory in 

order to account for between-tree differences in individual tree height growth. The error 

structure was identical to Swamy's (1970) model, and the parameters were estimated 

using Maddala's (1977) estimators. 

Finally, Tait et al. (1988) developed a simple, two-equation growth model where the 

growth of the average tree was a function of the average tree volume, site quality and the 

number of trees per hectare, and the mortality was a function of an index of the rate of 

area expansion of a tree. They simultaneously estimated the best model parameters (i.e., 

the global parameters) with the best initial values for each plot (the local parameters). 
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This type of analysis is close to an analysis of covariance where each plot is considered a 

different treatment with two covariates, the initial stand density and volume. 

This brief historical report illustrates the change of attitude toward the information 

pool contained in permanent sample plot data bases. It is now recognized that an ob­

servation at a point in time on a given individual provides partial information, on one 

hand, on the same individual at other points in time and, on the other hand, on other 

individuals at the same point in time. Efficient parameter estimation techniques must 

exploit this information. 

2.2 The Econometrics Literature 

In econometrics literature, a data base that provides repeated measurement for each of 

a number of entities is called a pooled cross-sectional and time-series data base (Diel-

man 1983). The term panel data is also often used. This type of data base is very 

common in econometrics. The abundance of information has led econometricians to de­

velop techniques that take advantage of this information to explain and predict economic 

phenomena. Because of the similarities with forestry permanent sample plots, there has 

been a growing interest in forestry to adapt techniques developed in econometrics (e.g., 

Furnival and Wilson 1971, Ferguson and Leech 1978, Gregoire 1987, LeMay 1988). The 

literature about pooled cross-sectional and time-series data is extensive and only a brief 

overview of the major developments will be presented here. 

2.2.1 Estimated Generalized Least Squares 

When a simple or a multiple linear model is fitted to predict or to explain the outcome 

of a dependent variable, the most common assumptions about the error term are zero 

expectation and spherical disturbance, (i.e., the covariance matrix of the error term is 
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<J2I). These models are easily estimated with the ordinary least squares (OLS) technique. 

However, the assumption of spherical disturbance is often not met. Another technique, 

called estimated generalized least squares, allows for estimating efficiently the parameters 

of such models. 

The general linear model can be expressed as 

Y = X/3 + u 

where Y is the column-vector of dependent variables, X is a matrix of independent 

variables, 8 is the column-vector of model parameters, and u is the column-vector of 

random error terms. Aitken (1935) showed that if the covariance matrix of u is fl, then 

the best linear unbiased estimate (BLUE) of the parameters is 

P = [X' fT 'X^X' fT'Y. 

This estimate has been called the generalized least squares (GLS) estimate or Aitken 

estimate. If the error terms are assumed to be normally distributed, the GLS estimate 

is also the maximum likelihood estimate. 

Unfortunately, most of the time, fl is unknown. In this case, a two-step technique is 

required to obtain what has been called the estimated generalized least square (EGLS) 

estimate or the feasible generalized least square (FGLS) estimate. The first step of the 

EGLS technique is to estimate fl. In the most general case, fl will contain M ( M + l ) /2 

unknowns where M is the total number of observations. Because the number of unknowns 

is larger than the number of observations, assumptions about the structure of fl must be 

made to restrict the number of unknown elements to a manageable number. In the second 

step, fl, the estimate of fl, is simply substituted into the Aitken estimate. Consequently, 

the FGLS estimate of 8 is 

(3 = [ X ' f V ' x ^ X ' f V ' Y 
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which is the same as the GLS estimate except for 17 which was replaced by an estimate. 

The double hat above 0 emphasizes that it is estimated from a two-step technique. 

If Y is replaced by X/3 + u in the EGLS estimate, then it is easily shown that 

/3 =/3 + (x 'rT'x^x'fVV 

Because ti and u are usually correlated, inferences about 0 need to be based on the 

asymptotic distribution of 0 (Judge et al. 1985; p. 175). Generally, 0 will be asymptot­

ically normally distributed if u is normally distributed and ti is a consistent estimator 

for il. An estimator d is a consistent estimator for a if, for any £ > 0, 

Hm P[\a - a | > (] = 0. 

The EGLS technique is the general approach for obtaining the BLUE of the param­

eters of any linear model. The OLS technique is a special case, particularly restrictive, 

of the EGLS technique. With pooled cross-sectional and time-series data, the assumed 

structure of 0 will have a supreme importance on the structure of the covariance matrix 

of the error terms. This is why the EGLS technique for pooled cross-sectional and time-

series data has been organized in three different sections corresponding to the general 

assumptions about the structure of the model parameters: all parameters are constant, 

only the intercepts vary, and all parameters vary. 

2.2.2 All Parameters Are Constant 

Each individual measured over time can be represented by its own model 

Yi = Xifr + U i 

Y{1 

Xi = 

1 • XKH 0iO 

u; = 
U i l 

YIT 
1 X L I T . • X K i T 0iK MiT 
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When it is assumed that all individuals follow a similar behaviour, the model pa­

rameters are assumed to be equal over individuals. The variation between individuals is 

then explained by the stochastic error term only. This is called classical pooling (CP). 

If the error terms on the observations from a single individual were uncorrelated, the 

observations from this individual would oscillate around their expected values. However, 

because of serial correlation, a given individual can perform constantly above or below 

the expected behaviour. Classical pooling is used when there is no reason to believe 

that the different behaviour between individuals can be explained other than by serial 

correlation and chance. 

2.2.3 O n l y the Intercepts V a r y 

Sometimes, it is possible to explain partially the difference between individuals by their 

initial states. In these cases, it is assumed that the partial derivatives, that is the slopes of 

each independent variable, are constant over individuals and time, and that the intercepts 

will vary over individual and time. 

In this section, the general model describing such a situation is presented. Alternative 

approaches to parameter estimation depend on the assumptions about the nature of the 

intercepts. The intercepts can be assumed to be fixed or random. Both alternatives lead 

to different estimation techniques that are discussed separately. Finally, the model and 

the estimation techniques are summarized in a short recapitulation. 

2.2.3.1 T h e G e n e r a l M o d e l 

In the most general case, the error term of the general linear model can be divided into 

three components: one to account for the difference between individuals, one to account 

for the difference between initial time periods, and a third for the variables unaccounted 
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for in the model that are not individual-dependent or time-dependent. This gives 

K 
Yij = B0 + ]T BpXpij + e,- + rj + Vjj 

P = i 

where Yij is measurement j on plot i , /30 is the average intercept, Xpij is the variable p 

measured on plot i at time j, ej is the individual error term, ij is the temporal error term, 

and Vij is the unexplained variation. The individual intercept is defined by combining 

ei and Tj with the average intercept. These different intercepts will likely arise from 

omission of important unobservable or unmeasurable variables in the model (Dielman 

1989, p. 49). 

2.2.3.2 The Intercepts Are Fixed 

In this case, the individual error component and the temporal error component are as­

sumed to be fixed with mean zero (i.e., ̂  e i = 0 a r m 2~Z r j = 0) a i m the third unexplained 

component is random with mean zero and variance a2. The estimation technique is 

called analysis of covariance ( A N C O V A ) or least squares with dummy variables. Mund-

lak (1961) was among the first to use the A N C O V A for analyzing pooled cross-sectional 

and time-series data. 

There are a few disadvantages of A N C O V A . Since the different intercepts are consid­

ered fixed, they are using up as many degrees of freedom. Also, the different components 

of the error term represent some ignorance; the model does not explain the differences be­

tween initial states. Maddala (1971) suggested that this specific ignorance was not really 

different from the general ignorance un and should be considered in a similar way. This 

would also decrease the number of fixed parameters to be estimated, increasing therefore 

the number of degrees of freedom. This led to the assumption of random intercepts. 
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2.2.3.3 The Intercepts Are Random 

In this case, it is assumed that the various components of the error term are random 

effects with mean zero and specific variance: 

E[ei] = E[xA = E[v{j} = 0 

m = *j 

E[vl] = 4 . 

It is also usually assumed that e;, ij and V J J are mutually independent. The estimation 

technique based on these assumptions is called error component modeling ( E C M ) . 

Wallace and Hussain (1969) suggested estimating the variance components using the 

residuals obtained from the OLS estimate of the individual models. These estimators are 

consistent when the independent variables are assumed nonstochastic. Other estimators 

of the error components have been developed (e.g., Amemiya 1971, Swamy and Arora 

1972, Rao 1972, Fuller and Battese 1974). A l l these estimators have similar asymptotic 

properties. Consequently, the choice of an estimator cannot be based on its asymptotic 

properties. One must consider the simplicity of the estimator, finite sample results and 

Monte Carlo studies of small sample performance (Baltagi 1981). The finite sample 

properties of some estimators have been investigated analytically by Swamy and Arora 

(1972) , Swamy and Mehta (1979) and Taylor (1980). Monte Carlo studies were published 

by Arora (1973), Maddala and Mount (1973) and Baltagi (1981). Swamy and Mehta 

(1973) analyzed the error component model in a Bayesian framework. 

2.2.3.4 Recapitulation 

The difference between individuals can sometimes be explained by different initial states 

(or model intercepts). These different intercepts come from partitioning the error term 
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into generally three components: an individual error term, a temporal error term, and 

an unexplained error term, and from the combination of the common intercept with the 

individual and the temporal error terms. If the individual and the temporal error terms 

are assumed to be fixed, then the ANCOVA is the appropriate EGLS technique. If the 

individual and temporal error terms are assumed to be random, then ECM must be used. 

2.2.4 All Parameters Vary-

Some time-series observations of different individuals are highly correlated with the same 

set of independent variables but with slopes varying over individuals. Not only are their 

initial states different but also the increment in the dependent variable for one unit of 

change in one of the independent variables. This will occur if an important variable for all 

the individuals is omitted from the model or if a variable important for some individuals 

is omitted. 

This section follows the same format as the previous section. The general model 

describing the situation is presented first. The parameter estimation technique when the 

parameters are assumed to be fixed comes next, followed by the technique for random 

parameters. Last, the model and the techniques are briefly recapitulated. 

2.2.4.1 The General Model 

The individual model is 

Yi = Xidi + Ui 

where 

Yn 1 

0i = Ui = 

U i l 

YiT 1 XliT • • xKiT BiK 
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Then, the full model can be written: 

Y = XB + u 

where 

' Pi 

Y = X = P = u = 

XJV _0N UJV 

2.2.4.2 The Parameters Are Fixed 

With fixed parameters, efficient parameter estimates can be obtained using OLS if there is 

no contemporaneous correlation. When contemporaneous correlation is present, Zellner 

(1962) developed a technique using this supplementary information. He called the tech­

nique seemingly unrelated regressions (SUR). Estimators obtained with this technique 

are more efficient than simply applying least squares to each individual independently. 

The main assumptions about the error structure are: £[U;J] = 0, -Efujuf] = O^IT, 
and X,- is a fixed matrix in repeated samples. TV is the number of individuals, K is the 

number of independent variables in the model, and T is the number of observations on 

each individual. Based on the assumptions about the error terms, the covariance matrix 

of the error terms can be written 

il = S <g> I T 

where S = 

O i l &12 

°~21 °~22 CT2N 

0~N1 0~N2 ••• °~NN 

When the contemporaneous correlation between individuals i and I is equal to zero, 

an = 0 for i / /, the estimates are easily shown to be identical to the OLS estimates 
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computed independently on each individual. The SUR estimator will also be the same as 

the OLS estimator if the X; are identical for all individuals. If u is normally distributed, 

and hmT_ > 0 0 [XTi _ 1 X] _ 1 is a finite nonsingular matrix, the EGLS estimate is a minimum 

variance unbiased estimator, and is asymptotically efficient. 

To estimate ft, Zellner (1962) suggested using the residuals from the regression of 

Y{ on either the independent variables in the ith equation alone or all the independent 

variables in the system. Writing the residuals from either method as hij, the elements of 

S (or ft) are estimated by 

o-n = uijUij/{T - K). 

Zellner (1962) also suggested iterating the estimator by recomputing the residuals 

using 8 to get a new estimate of ft, and so on until convergence occurred. Dhrymes (1971) 

showed that the iterative estimator is equivalent to the maximum likelihood estimator. 

Parks (1967) and Kmenta and Gilbert (1970) extended the theory to include the case 

where the disturbances are both serially and contemporaneously correlated. Schmidt 

(1977) examined the SUR model with missing observations. Swamy and Mehta (1975) 

also studied SUR models with missing observations but in a Bayesian framework. Phillips 

(1985) derived the exact finite sample properties of the SUR estimator. Zellner (1987, 

pp. 240-256), Srivastava (1973), and Zellner and Vandaele (1975) analyzed the SUR 

model in a Bayesian framework. 

2.2.4.3 The Parameters Are Random 

The sets of different parameters can also be assumed to be random. The EGLS tech­

nique for such models has been called random coefficient modelling (RCM; Swamy 1970, 

1971, 1974). Because the model parameters link the same independent variables to the 

dependent variable, they could very well be related. If it can be assumed that many 
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independent unobservable or unmeasurable factors can influence a model parameter, this 

model parameter can be seen as a random variable. These excluded variables can be 

assumed to counteract each other, so that their overall effect is negligible. Consequently, 

the expected value of the model parameter is the mean parameter, and its variance is 

the variance of the aggregate effect of these excluded variables. The parameter 8{ can be 

rewritten 

Pi = P + e; 

where 

0 = 

Po 

PK 

and 

e i 0 

Replacing this new expression for Pi in the original individual model yields 

Y i = Xi{p + e;) + Ui = Xij3 + X ; e ; + U i = Xi/3 + Wi 

The error term w; is then the sum of two components, X i e i and Ui. The full model can 

be written 

Y = X ^ + w 

where 

(Xjei + 

(Xjv-Civ 

Swamy (1970, 1971) made the following assumptions: the number of individuals and 

the number of observations on each individual are larger than the number of indepen­

dent variables; the U, are independently and identically distributed with -E[uij] = 0 and 

.E[uiU^] = <THIT] the e, are independently and identically distributed with -E[ejp] = 0 and 

Y = X = w = 

XJV 
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i£[ejej] = A, and the u; and 0\ are independent for every i and /. The covariance matrix 

of w, CI, is the block diagonal matrix with 

The GLS estimate for /3 is 

p = r x ' n ^ x ^ x ' n - ' Y = E x ^ ^ r ^ x ^ Y ; = £ w ^ 
i i i 

where 

hi =[X&i]-1XiYi 

W , = { £ [ A + ^ ( X j X i ) - 1 ] " 1 } - 1 ^ + ^ ( X p t ; ) - 1 ] - 1 . 

i 

The GLS estimate can be seen as a weighted average of the OLS estimate applied to 

each individual model. Mundlak (1978) noted that 0 can be written as a weighted average 

of a "between estimator" and a "within estimator." Rao (1982) gave the conditions 

(unrestrictive) under which 0 is an unbiased estimator of 0. 

In general, 0{ is the parameter of interest. Lee and Griffiths (1979, in Judge et. al. 

1985; p. 541) showed that the best linear unbiased predictor (BLUP) of 0{ is 

ft = [A -1 + *rA(X'iXi)}-^7.i(X'iXi)bl + [A-i + ^(XjXOr A - \ § . 

Note that the term "predictor" was used instead of "estimator" because 0i is a random 

variable. The BLUP for 0{ is a weighted average of the OLS estimate of 0{ and the overall 

estimate of 0 with the weights inversely proportional to their respective variances. In 

a Bayesian analysis of a random coefficient model, Smith (1973) found a numerically 

identical estimator. As would be expected, the simple average of the individual BLUP's 

gives the overall BLUE, that is ( £ f 0i)/N = fi. 
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As usual, the unknown A and an must be replaced by consistent estimators to obtain 

the FGLS estimate. If û  is the OLS residual for individual i, Swamy (1970) suggested 

using: 

U - U ; 

T — K 

^ = ^ E ^ b j - ^ E b . b j i - i E M x j x , ) - 1 

With these estimates, Swamy showed that /3 is asymptotically efficient as T —> oo. 

Carter and Yang (1986) showed that this result was also valid when N —> oo or T —> oo 

if an = a2 (i.e., if all the variances of the disturbance terms are equal). 

Amemiya (1978) investigated the case where the individual parameters are a linear 

function of some explanatory variables 

Pi = Z;0 + e i . 

Swamy (1974) extended the theory to include the case with contemporaneous correlation 

and serial correlation. 

Finally, there are also techniques to estimate models with different sets of parameters 

varying across individuals and time. These models were not considered relevant to this 

dissertation and are not discussed (for information concerning these models, see Judge 

et. al. 1985; p. 545-550). 

2.2.4.4 Recapitulation 

The difference between individuals can sometimes be explained by different sets of model 

parameters. These parameters can be fixed in which case the SUR technique is the ap­

propriate EGLS technique if contemporaneous correlation is present. If the parameters 



Chapter 2. Literature Review 2 6 

are f ixed, a n d there is no contemporaneous corre la t ion, then the O L S technique is ap­

propr ia te . T h e parameters can also be assumed to vary r a n d o m l y a r o u n d a c o m m o n 

average. In th is case, R C M is the appropr ia te E G L S technique. 

2.2.5 S u m m a r y of the Econometr i c s L i t era ture 

T h e best, l inear , unb iased est imate ( B L U E ) of the parameters of a l inear m o d e l is given 

i n its general f o r m by the es t imated generalized least squares ( E G L S ) est imate. W h e n 

the error terms are assumed to be independent ly and iden t ica l ly d i s t r ibu ted , the E G L S 

est imate is equivalent to the o rd ina ry least squares ( O L S ) est imate. However , this rarely 

is the case w i t h models f i t ted on poo led cross-sectional and time-series da ta . T h e struc­

ture of the covar iance m a t r i x of the error t e rm is h igh ly inf luenced by the a s sumpt ion 

about the i n d i v i d u a l m o d e l parameters. There are three general cases: the i n d i v i d u a l 

models share the same parameters , the i n d i v i d u a l models have different intercepts bu t 

c o m m o n slopes, or the i n d i v i d u a l models have different sets of parameters altogether. 

These different parameters can be assumed to be f ixed or r a n d o m . C l a s s i c a l p o o l i n g 

( C P ) is the appropr i a t e technique i f a l l sets of parameters are assumed to be iden t i ca l 

across i n d i v i d u a l s a n d t ime. A n a l y s i s of covariance ( A N C O V A ) is used w h e n the inter­

cepts are a s sumed to be different but f ixed, whi le error component m o d e l l i n g ( E C M ) is 

app l i cab le for different r a n d o m intercepts. T h e seemingly unre la ted regression ( S U R ) 

technique is used to es t imate different sets of f ixed parameters, whi le e s t ima t ing different 

sets of r a n d o m parameters requires us ing r a n d o m coefficient mode l l i ng ( R C M ) . 

2.3 T h e G r o w t h C u r v e L i t era ture 

I n d i v i d u a l m o n i t o r i n g is a c o m m o n p r o b l e m i n b io log ica l research. Therefore, various 

models a n d techniques have been invest igated to analyze g rowth curves. In the b io log ica l 
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l i terature , time-series da t a are usua l ly cal led l o n g i t u d i n a l da ta or repeated measurement 

data . 

Po thof f and R o y (1964) suggested the mu l t i va r i a t e analysis of variance ( M A N O V A ) 

m o d e l to est imate g r o w t h curves. T h e M A N O V A m o d e l requires that a l l i n d i v i d u a l s 

be measured at the same age. T h i s m o d e l a l lowed confidence in te rva l es t imat ion and 

hypothesis tes t ing. R a o (1965) extended Po thof f a n d R o y ' s mode l , t ransforming i t to 

a r a n d o m coefficient m o d e l where the m a t r i x of independent variables were iden t i ca l 

across i nd iv idua l s (i.e., X; = X for any i). G r i z z l e a n d A l l e n (1969) used an analysis 

of covariance technique where the weight ing was ob ta ined from a subset of covariates. 

Geisser (1970) p rov ided a Bayes i an analysis of the M A N O V A mode l . 

Fearn (1975) app l i ed the general Bayes i an l inear m o d e l proposed by L i n d l e y and 

S m i t h (1972) to g rowth curves. H e also s tud ied predic t ions given a sample f rom this 

m o d e l . R a o (1975) gave an e m p i r i c a l Bayes so lu t ion to a r a n d o m coefficient m o d e l where 

the parameters of the i n d i v i d u a l models were assumed r a n d o m l y d r a w n f rom a c o m m o n 

d i s t r i bu t i on whose expected value was the average of the i n d i v i d u a l parameters . L a i r d 

and W a r e (1982), cons ider ing the i n d i v i d u a l parameters as miss ing data , used the E M 

a l g o r i t h m (Demps te r et al. 1977) to est imate t h e m . W i t h the E M a lgo r i t hm, slow 

convergence or convergence to a l oca l rather t h a n g loba l m a x i m u m are major concerns. 

Berkey (1982) extended R a o ' s (1975) technique to nonl inear models . H u i and Berger 

(1983) also used an e m p i r i c a l Bayes i an approach to g rowth curves. T h e i r technique 

cou ld be cal led an e m p i r i c a l Bayes es t imat ion of a r a n d o m coefficient mode l . R a o (1987) 

discussed the p r o b l e m of p red ic t ing future observat ions w i t h g rowth models . H e ana lyzed 

paramet r ic and nonparamet r i c models . Fo r the pa rame t r i c models , he considered b o t h 

Bayes i an and e m p i r i c a l Bayes i an techniques to deal w i t h u n k n o w n parameters . 

Bayes ian and empi r i ca l Bayes i an techniques have p redomina ted b io logica l g rowth 

curve l i terature . W i t h o u t s ta r t ing a ph i l o soph i ca l debate on how they differ and w h i c h 
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one, if any, is more appropriate, one can notice that both are partially based on some 

auxiliary information. This auxiliary information, particular to an individual, individu­

alizes a general model and its prediction of future observations. The prediction of future 

observations is dependent on the outcome of this individual-specific auxiliary information 

and on an estimate of the general model. 

2.4 Conditional Densities and Expectations 

Many techniques for analyzing remeasured individuals and for predicting future observa­

tions described so far assume that future observations are conditional on past, random, 

observations. The modeling process, therefore, involves conditional densities and expec­

tations. A conditional density is a probability density function (pdf) where the outcome 

of a random variable X depends on the outcome of another random variable Y. The 

variable of interest is thus X given Y, or X | Y, and its pdf is noted p(X \Y). Most 

of the theory concerning conditional pdf's was developed by Bayes (1763), and a brief 

summary is presented here. 

Some basic matrix inversion rules are useful for deriving conditional densities and 

expectations. These rules can be found in certain texts (see Smith 1973, for instance). 

Rule (1) (D + E F E ' ) - 1 = D 1 - D 1 E ( E ' D ~ 1 E + F ^ ^ E ' D " 1 

Rule (2) ( D + B ) - 1 = D 1 - D ^ D 1 + B 1 ) - ^ 1 

Rule (3) (D + B ) - ^ = I - ( D + B) - 1 D 

Conditional densities can be defined for univariate or multivariate variables. The 

multivariate case is more general. Let X and Y be two random vectors of n elements 

with pdf p(X) and p(Y), respectively. Their joint pdf is p(X,Y). Using Bayes' theorem 

on conditional probabilities, the joint pdf can be rewritten: 

p(X,Y) = p(X|Y)p(Y) 
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p ( Y | X ) p ( X ) 

From this theorem, the conditional pdf of X given Y can be defined as: 

p ( Y | X ) p ( X ) 
P ( X | Y ) = 

P(Y) 

When Y is given, the denominator p (Y) contains no unknown. It can be seen as a 

proportionality constant, so that the multiple integral of p ( X | Y ) over Xi, ... ,Xn yields 

one. This constant will be equal to the inverse of the integral of the numerator over the 

domain of X : 

p(Y) = l / / / . . . / P(Y\X)p(X)dX1dX2...dXn 

For instance, if Y given X is distributed as a i V ( X , f i ) , 

p ( Y | X ) = 
1 

(2TT)" / 2 \ f l \ ^ V 
- - ( Y - x y n - ^ Y - x ) 

and X is distributed as a N(p, A ) , 

1 
P(X) = -exp -(X-p)'A-\X-p) (2TT)"/ 2 I A I1/2 

the unconditional variable Y will be distributed as a N(p,A + ft) 

P ( Y ) = 
(2TT)"/ 2 I A + fl\V: ;exp hY-p)'(A + ftr^Y-p) 

To show this, rather than using the integral of the product of p ( Y | X ) and p(X), an 

easy alternative can be used. The variable Y given X can be seen as the sum of the 

variable X , normally distributed, plus an error term, e, uncorrelated with X , normally 

distributed too, with expected value zero and variance ft. Obviously, Y will be normally 

distributed since the sum of normal variables yields a normal variable. The expected 

value and the variance of this normal variable can be found easily: 
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Y = X + e, 

E[Y] = E[X] + E[e] = fi, 

var(Y) = var(X) + var(e) = A + ft. 

Using the definition of a conditional density, it can be shown that the variable X 

given Y will also be normally distributed: 

P[X|Y] = 

where 

(27r)™|A | 1 /2|f2 | l /2 e X P -H(Y - xyn-^Y - x) + (x - ̂A-̂ X - M)> 
(î /'lW'"* [-H(Y - ̂ )'(A + ")"1(Y - /*)}] 
A + n i 1 / 2 

X 

exp •-{(Y - xyn-^Y - x) + (x - U)'A-\X - p) 

-(Y-py(A + ny\Y-p)}} 

1 
(2TT)"/2 I (A-1

 + 0 - 1 ) - 1 ! 1 / 2 

exp [-1 [(X - E[X\Y})'(A-1 + f l ^ f X - £[X| Y]) 

£[x|Y] = (Â  + n-^^n^Y + ̂ ^ + n-1)-^-1/*-

The expected value of the conditional pdf X given Y is a weighted average between 

the expected values of the variables Y given X and X, where the weights are inversely 

proportional to their respective variance. The variance of X given Y is the inverse of 

the sum of the inverses of the respective variances. The expected value i£[X|Y] can be 

seen to be a random variable since it depends on the random outcome of Y. It is the 

sum of a constant, (A-1 + fi-1)-1 A_1/i, and a random vector normally distributed, Y, 

multiplied by a vector of constants. Therefore, it will be normally distributed, with the 
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following expected value and variance: 

E[E[X\Y}} E[X]=p 

va r (£ [X |Y] ) v a r ( X ) - £ [ v a r ( X | Y ) ] = A - ( A - 1 + ft-1)- 1 

If it is assumed that A and fi are two positive definite matrices, then it can be shown 

that var(X) is always larger than va,i(E[X | Y]) . A matrix A is larger than another 

matrix B if the matrix A — B is positive definite. 

Using matrix inversion rules (2) and (3) defined above, the expected value of the 

conditional density is equivalent to 

As demonstrated, statistical computations with conditional variables follow the same 

general rules as with unconditional variables, despite the more elaborate algebra. It is 

important to be famihar with the algebra of conditional variables to understand models 

making use of past observations to predict future observations. 

2.5 Overview 

Permanent sample plot attributes can be assumed to be explained by some general bio­

logical phenomenon. Observations of these attributes on a given plot at a point in time 

will also be influenced by the individual character of the plot and time-related variables, 

such as climate. Repeated measurements on a group of plots provide information on both 

the influence of the individual character and the time period effect. This suggests that 

permanent sample plot observations can be explained by a general model plus random 

terms specific to the individual and the time period. 

Since future observations must be predicted on a given plot, a prediction of the 

individual character of the plot as well as an estimate of the general model are needed 

E[X\Y] = A ( A + + ft(A + ft)~V-
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to individualize the volume prediction. This approach recognizes the random nature of 

the relationship between observations coming from a sample plot. Future observations 

depend on the general model, and the outcome of the individual plot character. The 

individual plot character can be predicted from past observations. Therefore, predictions 

of future observations are dependent on past observations. 

Many approaches can be used to predict future observations based on past observa­

tions. The approach suggested in this dissertation was inspired by the empirical Bayes 

models described by Rao (1975, 1987) and Hui and Berger (1983), the random coefficient 

model (Swamy 1970, 1971, 1974; Amemyia 1978; Ferguson and Leech 1978; Biging 1985), 

as well as the theory related to error component modeling. 



Chapter 3 

Statistical Methods 

Future volumes can be expressed as the current volume plus a volume increment. The 

analogy with the interest on the money in a bank account is often used to explain forestry 

ideas such as volume growth and allowable annual cut to non-foresters. Going from 

interest to interest rate to biological growth rate are steps easy to understand, and 

the mathematics relevant to interest rates can simply be adapted to a forestry context. 

Consequently, the parameter of interest in the proposed model is the growth rate. A 

biologically-reasonable model for predicting volume growth rate is defined and estimated. 

This predicted volume growth rate is used to compound the current volume of a plot, 

the same way money can be compounded with a certain interest rate. 

This chapter is divided into four parts. In the first section, the similarities between 

biological growth rate and interest rate are analyzed and explained. In the second sec­

tion, a two-stage statistical model based on interest rate mathematics and fundamental 

principles of biological growth is suggested to predict volume growth rate. Parameter es­

timation is discussed and estimators are proposed in the third section. Finally, algorithms 

for compounding the current volume of a sample plot and for computing a confidence 

interval around the predicted volumes are presented in the last section. 

3.1 The Timber Capital 

The trees on a permanent sample plot can be compared to a timber capital destined for 

yielding interest. The mathematics relevant to interest rates are simple and well-known; 

33 
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converting them to growth rates is straightforward as it is shown in section 3.1.1 The 

main difference between money and trees is the uncertainty coming with observations 

on biological organisms such as trees. This uncertainty must be recognized and incorpo­

rated into the mathematical expression of the compounded capital. In section 3.1.2, the 

problem of uncertainty attached to volume observations is addressed. 

3.1.1 The Interest Rate Analogy 

The growth in volume for a tree in a particular year is the amount of volume the tree 

gained between the beginning and the end of the growing season. When the growth is 

divided by the initial volume, it can be seen as a growth rate (i.e., the amount of volume 

per unit of initial volume gained in a year). The growth rate is the annual "interest rate" 

on the initial volume of a particular tree in a given year. This image can be extended to 

a plot or a stand without problem. In this section, the mathematics relevant to interest 

rates and their similarities with growth rates are explained. 

The interest rate at a particular bank will likely fluctuate over time. It will also likely 

differ between banks; two different banks can have different interest rates. In the same 

way, the growth rate of a tree (or a plot or stand) will be specific to a given individual 

and time. Mathematically, this gives 

V - y + 1 ) = ^ ( 1 + ^ . ) (3.1) 

where 

Vij = volume measured on individual i at time j, 

Pij = annual growth rate on individual i at time j, and 

(1 + pij) = annual multiplicative rate. 

In forestry, permanent sample plots are commonly used to monitor growth. However, 

annual measurements on permanent sample plots are rarely available. The sample plots 
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are remeasured at a regular frequency, usually between three and ten years. When 

the time interval between measurements j and j + 1 is more than one growing season, 

periodic growth is then observed. In this case, the ratio between the volume at the end 

of the period and the initial volume is the periodic multiplicative rate. The periodic 

multiplicative rate is the product of the annual multiplicative rates. Since the annual 

multiplicative rates are not observed, the periodic multiplicative rate can be considered 

as the geometric mean of the annual multiplicative rates raised to a power, Lj, equal to 

the time lag between measurements j and j + 1: 

Vi{j+1) = V k ( l ( 3 . 2 ) 

where Pij = [ H § = 1 ) ( 1 + P i j)}^ - 1. 

The periodic multiplicative rate is the percentage of initial volume obtained after 

a certain period of time. Therefore, the notation used for annual remeasurements is 

somewhat inadequate for periodic remeasurements since the subscript j in refers to 

the period between measurements j and j + 1 while in Vij it refers to the instantaneous 

moment at measurement j. Model (3.2) can be rewritten using the subscript p to refer 

to the time interval between measurements j and j + 1 with the initial volume on 

plot i and the volume at the end of the period: 

= V°(l + pip)L». (3-3) 

With this notation, the growth rate is located in space and time. The subscript i indicates 

a geographic space, (delimited by some longitude and latitude) and the subscript p is 

temporal space (delimited by an initial year and a final year). 

This approach to growth modeling could be taken for other stand attributes, such as 

diameter, height, basal area or number of stems per hectare. For illustrative purposes, 

the approach is shown for plot volume. For the remainder of this thesis, the term volume 

will refer to plot volume. 
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The periodic multiplicative rate in model (3.3) can also be expressed using the 

Napierian base (e = 2.7182818 ...) 

K = V° x exp[8tpLf (3.4) 

where 9ip = ln( l + pip). 

The parameter &ip is easily isolated 

1 
0* = — I n 

V-1  

' P 

vip 
(3.5) 

Using the logarithm rules and the definition of a derivative, it can be shown that, as 

the time period goes to zero, 6{p becomes the instantaneous growth rate 

lim 9j„ = lim 
*0 Lr 

In 
V 1 

v° 
v ip 

— lim 

hm At—o 
d\n[V] 

dt 
1 dV 
V~dt 

Aln[V] 
At 

(3.6) 

where t is time. 

Similarly, 0ipLp can be shown to be the integral of with respect to time between 

the initial and the final measurements. Time can be expressed on a relative scale. The 

initial measurement is taken at time 0, and the final one is taken at time Lp. This yields 

dipdt (3.7) 

which is the periodic multiplicative rate expressed in a logarithmic scale. 

The concept of growth as the derivative of volume with respect to time (or volume 

as the integral of growth) was recognized in the early sixties (Buckman 1962, Clutter 
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1963). This is a simplification of reality; it assumes that growth is a constant process, 

which is not exactly true since growth stops in winter. A discrete analog would be to 

take the annual interest rate analogy. This approach has some shortcomings too; there is 

no growth assumed before the end of the growing season, similar to the annual interest 

on a bank account that is paid once a year. Another discrete approach would be to 

follow the modern bank system and use daily interest rate, but this would demand a 

tremendous data set. Assuming that growth is a continuous process leads to relatively 

easy mathematical computations while being close to reality. 

3.1.2 Uncertainty and Growth Rate 

The deterministic model (3.4) could be used if the true initial and final volumes were 

observed. However, these quantities will likely be measured with some error. The ob­

served volumes are random variables. The variability in observed volumes will introduce 

some variation into the observed growth rate. Because the growth rate is essentially the 

ratio of two variables, it becomes a random variable itself. A stochastic term must be 

incorporated in model (3.4) to account for this variability. A priori assumptions are 

then made about this error term in order to draw inferences using statistical theory after 

mathematically fitting the model. This stochastic term can be included in different ways. 

Three common ones are 

iVi/VP) = exp[0ipJLp] + u t p (3.8) 

iVi/VP) = exp[(0ipLp) + uip] (3.9) 

{V£/V?) = exp[(0ip + uip)Lp}. (3.10) 

The choice of a model depends on its mathematical tractability and its biological 

interpretation. Model (3.8) is a nonlinear model and is particularly difficult to fit to 

recent permanent sample plots. Model (3.9) is linear after a logarithmic transformation. 
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It adds an error term to the periodic growth rate. The error term will undoubtedly 

depend on the length of the time period even if not explicitly expressed in the model. 

Model (3.10) is also log-linear. The error term is included with the instantaneous growth 

rate. Its dependency on the time lag is therefore implicitly expressed in the model. This 

model has the advantages of being simple to fit and of corresponding to the interpretation 

of a growth rate whose variation is dependent on the period length. For these reasons, 

model (3.10) was considered the best approach. 

Bank account and trees have this point in common: they become bigger as time 

passes. However, while knowing the exact amount of money in a bank account is no 

problem, direct observations of plot volume is impossible. An error term can be included 

in the mathematical expression of periodic growth rate to account for this uncertainty. 

Model (3.10) is the basic expression of growth rate with uncertainty. Within this basic 

expression, it is possible to assume that the growth rate, &{v, can be explained by some 

biological phenomena. A relationship explaining #;p from some variables can be substi­

tuted in the basic expression. This framework leads to the statistical model to predict 

future growth rates, which is discussed in the next section. 

3.2 The Statistical Model 

The framework proposed for estimating the statistical model is a two-stage procedure. 

The first stage is the basic expression describing the mathematics of growth rate, and 

the second stage is a biological explanation of the true growth rate. 

The framework was designed specifically for the irregular remeasurements of perma­

nent sample plots. These irregular remeasurements, along with overlapping time periods 

will create notation difficulty. Conventions must be defined to avoid confused notation. 

Once the notation is defined, each stage of the procedure can be discussed. The first 
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stage deals with the problem of a small number of observations on each plot and the 

error components. The second stage makes use of Von Bertalanffy's growth curve to 

estimate the growth rate from site index and volume. Finally, both stages are joined in 

the combined model. 

3.2.1 Notational Conventions 

It will be assumed that there are N plots covering M intervals. Some time intervals may 

be overlapping. For instance, if some plots were measured in 1970, 1975 and 1980, and the 

other plots were measured in 1973, 1978, and 1983, there would be four time intervals: 

(1970,1975], (1973,1978], (1975,1980], and (1978,1983]1. Not every plot will have an 

observation in each time interval. Furthermore, the number of plots measured each 

year will vary with the money budgeted annually for the remeasurement of permanent 

sample plots. Consequently, the number of remeasurements will differ among plots and 

among time periods. It will be assumed that there are T; growth observations on plot i 

[i = 1, . . . , N), Sp observations in time interval p ( p = l , . . . , M ) , and W observations in 

total where 

N M 
W = Y,Ti = Y,SP; with W > N and Sp > 1. 

i = i P = i 

Because time intervals may be overlapping, consecutive measurements on a plot do not 

lead to observations in consecutive time intervals. For the example mentioned above, the 

first set of plots would have observations in time intervals (1970,1975] and (1975,1980], 

while the second set of plots would have observations in time intervals (1973, 1978] and 

(1978, 1983]. The time interval numbering and the plot numbering are arbitrary. They 

are only coordinates to link an observation with geographic and time locations. Also, it 

is assumed that all plots used in the analysis come from the same geographic region, and 

1This notation supposes that the plots were measured at the end of the growing season. 
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are dominated by the same species. No notation is used to identify these two qualitative 

variables. 

3.2.2 F ir s t -S tage M o d e l 

The first-stage model is the basic expression for periodic growth rate, with uncertainty 

included with the instantaneous growth rate. Recent permanent sample plots only have a 

few growth observations. Using an approximation, the proposed first-stage model can be 

estimated from plots that have had only two growth observations. This approximation 

is explained in the model definition section. Next, the error term is decomposed to take 

advantage of the measurements of many individuals in a given time interval. Assumptions 

about the error term and their justifications follow. Finally, the matrix notation of the 

model is given to simplify the notation and derivation of the parameter estimators. 

3.2.2.1 M o d e l Def in i t ion 

The observed periodic multiplicative rate is the ratio Vip/Vip. The average annual mul­

tiplicative rate observed during this time period is the observed periodic multiplicative 

rate raised to the power l/Lp. Because the model (3.10) is in exponential form, it will 

be more convenient to work with the natural logarithm of this ratio. So let 

It will be assumed that the variable Y{p represents an estimate of the instantaneous 

growth rate, 8ip, since Lp is usually small. It is the sum of the true instantaneous growth 

rate plus an error term: 

(3.11) 

(3.12) 
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p l o t oge 

Figure 3.1: Growth Rate over Time for a Sigmoidal Yield Curve 

which corresponds to the logarithmic transformation of model (3.10). 

Recent permanent sample plots cover only a few time intervals, and if these time 

intervals are short, the whole period covered by the sample plot can still be considered 

close to zero, especially when, it is compared to the lifespan of the stand. Therefore^ the 

instantaneous growth rate could also be estimated from the ratio between the last and the 

first measurements on a sample plot. This corresponds to assuming a constant growth 

rate on a plot. Hence, the growth rates estimated in the intervals can be considered as 

repeated observations of the same parameter, the constant growth rate. 

If the yield is assumed to follow a sigmoidal shape over time, the growth rate in the 

early ages declines rapidly to level off as the stand gets older (Figure 3.1). Therefore, 

the assumption of constant growth rate seems reasonable for a large part of the plot's 

life. Obviously, this assumption is a compromise to approximate the trend of growth rate 

over time for a sigmoidal yield curve and to allow for parameter estimation. 
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This approximation will simplify the model, but also bring some limitations. It likely 

could cause some bias. Assuming a constant growth rate on a plot will tend to un­

derestimate the growth rate at the first measurement and overestimate it at the last 

measurement. This bias should be negligible, or at least reasonably small, if the whole 

period covered by the plot is short enough. The period of time where the approximation 

is reasonable depends on the species and the age of the plot. The bias should be more 

pronounced on young plots. Also, the rate of change in the instantaneous growth rate 

is species-dependent; fast growing species will level off faster than slow growing species. 

Considering these limitations, the approximation can still prove useful in many cases 

such as older plots and fast growing species. Model (3.12) can be approximated by 

This model can be estimated with as few as two growth observations on a perma­

nent sample plot. That is, the model requires a minimum of three measurements on 

a permanent sample plot since the number of measurements is equal to the number of 

growth observations plus one. Also, measurements on different individuals in the same 

time period will allow decomposing u; p , the error term. 

3.2.2.2 Error Components 

Following the principles of error component modeling, when measured on a given individ­

ual (i.e., the individual is fixed), the error term u; p can be divided into two components: 

the error due to the time-dependent variables unaccounted for in the model and a term 

for the unaccounted variables that are not time-dependent. This gives 

Yip — Oi + U;. (3.13) 

u i p = r p + Vj. ip (3.14) 

where 
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rp = error term explained by the time-dependent variables unaccounted for in the model. 

It remains constant for all individuals in a time period but varies among time 

periods. 

V i p = unexplained residual noise. It accounts for the observed difference between indi­

viduals with the same true growth rate in a given time period. 

Some unobservable or unmeasurable variables will have a similar effect on geograph­

ically close plots in a time period (Gregoire 1987). For example, climatic variables, and 

major insect and disease epidemics will uniformly affect a small region in a given time 

period. Total number of days in the growing season, rainfall, quantity and quality of 

sunlight, etc. should be roughly similar for all plots in a time period. However, it would 

be impossible to include all these variables in the model. Their cumulative effect will 

vary from time period to time period. With a two-way lay-out such as a panel data 

set, it becomes possible to estimate the variation of the random effect caused by these 

variables. It is therefore possible to distinguish the time-dependent ignorance from the 

unexplained ignorance. The error term in model (3.13) was decomposed to represent this 

knowledge about the stochastic variation in the model. 

3.2.2.3 Assumptions 

Combining equations (3.13) and (3.14), the model for estimating the growth rate on plot i 

becomes: 

Yip = 6i + Tp + vip. (3.15) 

Assumption 1. E[TP] — E\v{p\ = 0 

Assumption 2. E [ T p i q ] ' = 62 iip = q 

= Spq iipf^q 
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Assumption 3. E[vipVjq] = cr2 if i = j and p = q 

= 0 otherwise 

Assumption 4. E[TpViq] — 0 

Assumption 5. rp and v;p are normally distributed. 

These assumptions imply that u;p is normally distributed and 

E[uip] =0 

E[uipujq] = o2 + 52 if i = j and p = q 

= S2 ii i ^ j and p = q 

= Spg Hpf^q 

Assumption 1 means that the expected value of the observed growth rate on a plot is 

assumed to be the true growth rate for this plot. Since Y±v is the logarithm of a ratio of 

random variables raised to a certain power, this assumption will make sense if and only 

if the expected value of the logarithm of the plot volume measured on plot i at time j is 

the logarithm of the true volume 

E[Yip] = 6i t=^> E[ln Vn] = l n 

where Vij is the true volume. The error of the logarithm of the observed volume has often 

been assumed to have zero mean in growth and yield literature (Schumacher 1939, Clutter 

1963, Curtis 1967, Ferguson and Leech 1978, Gregoire 1987), and the same assumption is 

made here. The bias created by the approximation of a constant growth rate is assumed 

to be negligible. 

Assumption 2 concerns the time-dependent error terms affecting the growth rate. 

The effects of these error terms should be correlated with each other since the time 
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periods are overlapping. Following Garcia (1983), it can be assumed that the correlation 

is proportional to the overlap between two time periods. Nonoverlapping time periods 

are considered independent; the weather varies randomly from one period to another. 

Overlapping time periods share the same climatic conditions for a certain number of 

years which should indicate the presence of correlation. This assumption also implies 

that consecutive growth observations on a given individual are considered independent 

because they are always taken in nonoverlapping time periods. 

Let Cpq be the number of overlapping years between periods p and q, then the covari­

ance between rp and rq, 8m, can be assumed to be 

2 C p q ( L p + Lq) 

*» ~ 5 2LpLq

 ( 3 - 1 6 ) 

where Lp and L q are the respective lengths of periods p and q. 

To explain this estimator, let r p be divided into two parts: r p l and r p 2 where r p i is the 

temporal error term for the first Lp — Cm years, and r p 2 is the temporal error term for the 

remaining Cm years. Similarly, let rg be divided into r g l and r g 2 where r g l is the temporal 

error term for the first Cpq years, and r g 2 is the temporal error term for the remaining 

Lq — Cpq years. Both r p 2 and r g i are error terms for the same time period. Within a time 

period, the variance is assumed constant. This means that the variance of r p 2 is Cpq82/Lp 

when estimated from time interval p. Similarly, the variance of the error explained by the 

same time interval but estimated from time interval q, iqi, would be Cpq82/Lq. Also, the 

correlation between r p 2 and r g l is really the variance of the time-dependent error term for 

the Cpq overlapping years. Therefore, Cpq82/Lp and Cpq82/Lq are two different estimates 

of the correlation between r p 2 and r g i . Averaging out both estimates will yield a single 

estimate of the correlation between the two error terms, providing in the same time an 

estimate of the variance of the time-dependent error term for these Cm overlapping years. 
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Mathematically, this yields 

E[(iPi + rp2 ) ( r qi + r g 2)] 

E[ipliql] + E[Tpliq2\ + E[ip2iql} + £ [ r p 2 r 9 2 ] 

£ [ r p 2 r g i ] 

\{E[rl2] + E[?ql]) 
-(var(r p 2) + var(r g l)) 

2 Lp Lq 

= 82 (3.17) 
2LpLq 

Two nonoverlapping time periods have Cpq — 0 satisfying the assumption of indepen­

dence; two completely overlapping time periods have Lp = Lq — C^ which would yield 

a covariance of 82. Assuming a known form for 8pq is convenient since it decreases the 

number of unknown parameters to be estimated in the model. 

Assumption 3 implies that the unexplained error terms are independently distributed 

with common variance within a time period. This error term represents the stochastic 

variation between individuals observed in given time period after correction for the true 

growth rate. It accounts for the general ignorance in the model. 

For various reasons, some plots can be more sensitive than others in unusual but 

not extreme climatic conditions. For example, rainfalls slightly below the average can 

have serious effects on some plots and leave other plots almost unaffected. Other special 

conditions can prevail on a particular stand in a time period. A local insect infestation, 

for example, could affect only a small number of plots. For extreme conditions, it can 

effect all plots similarly. For instance, a major insect infestation would probably have 

the same kind of impact on all plots. The variance of this error term is assumed to differ 
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among time periods. The variation among plots within a time period will differ with the 

magnitude of the effect of climatic conditions on each plot. Some climatic conditions will 

cause a wide range of impact on individual plot growth rates while other conditions will 

affect all plots in a similar fashion. 

This error term can be seen as the interaction between time periods and plots, and 

it is assumed that the variance of this interaction varies with time periods. It is also 

assumed that the interaction between a given plot and a time period is uncorrelated with 

the interaction between the same plot and another time period, or with the interaction 

between another plot and the same time period. 

Assumpt ion 4 implies that the time-dependent error term is uncorrelated with the 

unexplained error term. The individual plot behaviour in certain climatic conditions is 

unrelated with the average behaviour of all plots in the same conditions. 

Assumpt ion 5 was justified by Aitchison and Brown (1957; p. 1-2) who mentioned 

that a variable which is the product of numerous independent random variables tends 

to be lognormally distributed around its true value. If the growth rate at any time 

is considered a random proportion of the initial volume, and if the growth rates are 

considered independent for a given individual, then the volume tends to be lognormally 

distributed. Therefore, the observed growth rate tends to be normally distributed. 

3.2.2.4 M a t r i x Nota t ion 

Model (3.15) and its assumptions can be expressed with matrices. To define the model 

using matrix notation, the observations are sorted initially by time periods and secondly 

by plots. The first observation is then the observation measured in period 1 on the plot 

with the smallest plot number from all plots measured in period 1, and is denoted Y„\. 
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The last observation is the observation measured in period M on the plot with the largest 

plot number from all plots measured in period M ( Y i M ) . There are W observations in the 

matrix containing the growth observations. 

The first-stage model is conditional on fl. The second-stage model will express fl; as 

a function of site index and initial plot volume. This approach will make the estimation 

of the covariance matrix of the random terms easier. The first-stage model is: 

Y = F9 + Gr + v (3.18) 

with 

F = 

G = Gi 

V . l 

Y = 9 = r = v = 
YiM 8N 

TM 

Fa . . . F„ 

Gp = 

F, 

Fiw 

G p i 

G pW 

where Fik — 1 if the kth element of Y was measured on plot i 

= 0 otherwise 

and Gpk = 1 if the kth element of Y was measured in time period p 

= 0 otherwise. 
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T h e m a t r i x of the s u m of b o t h error components w o u l d be u = Gr + v . T h e various 

assumpt ions about the error terms lead to the fo l lowing matrices 

E[w'] = S = d iag 

where 

E[rr'] 

A = 

S2A 

A Ml AM2 

1 A12 . . . A i M 

A 2 i 1 . . . A 2 M 

(3.19) 

(3.20) 

a n d 
_ Cvq(Lv + Lq)  

m ~ 2LpLq 

£ [ u u ' ] = t o G ' + S = n . (3.21) 

T h i s concludes the first-stage mode l . In this m o d e l , a constant g rowth rate is assumed 

for each plot . Since the i n d i v i d u a l is f ixed, the first-stage m o d e l yields an est imate of the 

app rox ima ted constant g rowth rate of the p lo t . T h i s est imate comes f rom the i n d i v i d u a l 

g rowth observations and can be cal led the observed ins tantaneous g rowth rate. U s i n g a 

group of i n d i v i d u a l s , the g rowth rate can also be pred ic ted f rom independent variables. 

T h i s is the second-stage m o d e l . 

3.2.3 Second-Stage Model 

T h e second-stage m o d e l provides a b io log ica l re la t ionsh ip between the true instantaneous 

g rowth rate and the site i n d e x and the vo lume. T h i s re la t ionship is der ived f rom V o n 

Bertalanffy 's g rowth curve. 

T h e b a c k g r o u n d exp l a in ing the re la t ionship is presented first. T h e s ta t i s t ica l m o d e l 

and its assumpt ions fol low. F i n a l l y , the m a t r i x n o t a t i o n of the m o d e l is g iven. 
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3.2.3.1 Background 

It is reasonable to assume that the individual growth rate can be explained by some 

variables plus an individual-specific random term. For example, it can be assumed that 

the individual growth rate is a function of site index (SI) and initial volume (V). Any 

other factor that could have an influence on the individual growth rate can be included in 

a stochastic term. This function can be assumed to be identical for all individual growth 

rates, with fixed parameters and an additive error term 

Fitting the relationship expressed in (3.22) would provide an estimate of the growth rate 

of a plot as explained by its site index and its initial volume. Also, the stochastic nature 

of the individual growth rate is recognized by the additive error term. 

The structure of the deterministic part of equation (3.22) can be derived from the 

biological interpretation leading to Von Bertalanffy's growth curve. The fundamental 

assumption underlying this curve is as follows. The potential growth is the difference 

between anabolic gains and catabolic losses. Anabolic gains are assumed to be propor­

tional to the absorptive surface. The absorptive surface is assumed to be proportional to 

the volume raised to the power 2/3. Catabolic losses are assumed to be proportional to 

the volume. This gives 

The potential growth is the production of surplus metabolic products (Pienaar and Turn-

bull 1973), which is the gain in biomass. The gain in biomass is distributed among various 

components of the trees: fine roots, large roots, stem, branches, leaves and bark. There­

fore, the actual volume growth depends on the percentage of the total gain in biomass 

going to stem biomass. This percentage, « 3 , is an efficiency coefficient relating volume 

6i=f(SIi,Vi) + ei. (3.22) 

Potential growth = K^V2^3 — K2V. (3.23) 
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production to production of surplus metabolic products: 

Actual growth = K 3 ( K I V 2 ^ 3 — K2V) 

— = K 3 K I V 2 / 3 - K3K2V. (3.24) 

Keyes and Grier (1981) showed that the efficiency coefficient was correlated with site 

quality. Richer sites have a better availability of nutrients to put on stem growth. Poorer 

sites are poorer in nutrients, and more energy must be dedicated to fine roots production 

in order to get the nutrients. Kurz and Kimmins (1987) similarly found that the percent­

age of total biomass going into below-ground production is inversely proportional to site 

quality. As site quality decreases, a larger proportion of total biomass goes below ground, 

and consequently, a smaller proportion goes above ground. If the percentage of above-

ground biomass is proportional to site quality, it can be expected that the percentage of 

biomass going into stem biomass will be correlated to site quality as well. Axelsson and 

Axelsson (1986) showed that the efficiency coefficient increases with fertilization. Richer 

sites do not need as developed of fine root system as the poorer sites, and are there­

fore more efficient at transforming their production of surplus metabolic products into 

growth. Site index can be assumed to be highly correlated with site quality; therefore, 

it is reasonable to assume that the efficiency coefficient is proportional to site index. Let 

K 3 be K4SI. Equation (3.24) can be rewritten 

~ = K A S I K I V 2 / 3 - K A S I K 2 V ot 
= fa SI V2/Z - 02 SI V. (3.25) 

The growth rate is the growth divided by the volume. Dividing both sides of equation 

(3.25) by V yields 
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3.2.3.2 Model Definition 

The left-hand side of model (3.26) is the instantaneous growth rate, which is approx­

imated by fl;. Consequently, model (3.26) represents the deterministic part of model 

(3.22). The complete model (3.22) can be rewritten: 

SI-
9 i = h y ^ i - h M i + * - (3-27) 

The parameter fl; is assumed to be constant during the time periods covered by plot i. 

However, this does not correspond to the concept of instantaneous growth rate. This 

concept can be retrieved in the second-stage model if fl; is assumed to be measured at a 

single point, within the interval between the first measurement and the last measurement 

on plot i. The volume at this point can be used as the initial volume. This definition of 

initial volume will allow for simulating an instantaneous observation of the growth rate. 

Hui and Berger (1983) adopted a comparable strategy in a similar situation, mentioning 

that it should bring some robustness to the model. 

The constant growth rate is an average of the instantaneous (but unknown) growth 

rates. Therefore, its value is the value of an instantaneous growth rate located between 

the first and the last measurements. This suggests that an "average" initial volume would 

lead to a more appropriate definition of initial volume for an instantaneous growth rate. 

There are many possible definitions of this "average" initial volume, and since the real 

growth rate is unknown, there seems to be no definite rule to define this initial volume. 

One possible estimator is to take the mean volume, that is the arithmetic average of the 

observed volumes on a plot. 

V° = (3.28) 

where Vij is the volume observed on plot i at measurement j. When the growth rate is as­

sumed to be estimated at this point, it better corresponds to the concept of instantaneous 

growth rate represented by fl;. 



Chapter 3. Statistical Methods 53 

3.2.3.3 Assumptions 

Once an appropriate definition of the initial volume is accepted, stating the assumptions 

about the error terms is the next step. These assumptions are: 

Assumption 6. Sli and ( V ^ 0 ) 1 / 3 are fixed and measured without error 

Assumption 7. Efe] = 0 

Assumption8. E[eiej] = <t>2/(V?)1/3 if i = j 

= 0 otherwise 

Assumption 9. e; is normally distributed. 

Assumption 6 is a common assumption in regression. As a consequence, the error 

term e; is assumed to be uncorrelated with both independent variables, Sli and V®. 

Assumption 7 implies that the expected growth rate on a plot is assumed to be a 

function of site index and initial volume. 

Assumption 8 has two implications. First, it implies that the growth rates are inde­

pendent between plots. Knowing the true growth rate on a plot gives no idea about the 

true growth rate on another plot. The eight assumption also states that the variance of 

the individual growth rates is inversely proportional to initial volume raised to a power 

of 1/3. The variance of the individual growth rate should decrease as the plot gets older. 

Variation in growth rate is more important when the growth rate is large (i.e., when 

the plots are young). If it is assumed that the variance is proportional to the expected 

individual growth rate 

var(0{) oc &i 
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(i.e., i f the variance expressed as a p r o p o r t i o n of the expected g rowth rate is assumed 

to be constant) , i t w i l l also be inversely p r o p o r t i o n a l to the i n i t i a l v o l u m e raised to a 

power of 1/3 since the expected value of the g rowth rate is i tself inversely p r o p o r t i o n a l 

to i/(v°y/\ 

Assumption 9 can be jus t i f ied by i n v o k i n g the C e n t r a l L i m i t T h e o r e m . T h e numerous 

variables in f luenc ing the g rowth rate unaccoun ted for i n the second-stage m o d e l are 

assumed to be add i t ive w i t h their average effect bel ieved to be negl igible . 

3.2.3.4 Matrix Notation 

M o d e l (3.27) and its assumptions can be wr i t t en us ing m a t r i x no ta t ion as: 

6 = X0 + e (3.29) 

w i t h the fo l lowing matrices: 

" Ol" X11 X21 

0 = X = 0 = e = 

9N X\N 

where Xn = Sli/'(V®)1?3 and X2i = —Sli. F r o m the assumpt ions about the error t e rm, 

the d i s t r i bu t i on of 9 is easily found: 

9 ~ N(X0,(f>2V) (3.30) 

where V is a d iagona l m a t r i x whose i t h d i agona l element is l / ( V i ° ) 1 / ' 3 . 

T h i s concludes the second-stage mode l . T h i s stage provides a b io logica l ly- reasonable 

m o d e l to predict the growth rate. T h e est imate g iven by the second-stage m o d e l can be 

seen as the predic ted g rowth rate of a given p lo t . 
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3.2.4 Combined Model 

The second-stage model (3.27) can be substituted into the first-stage model (3.15). 

3.2.4.1 Assumption 

A new assumption is needed. 

Assumption 10. 22[v{p|ej] = -E[rp|e;] == 0 

Assumption 10 implies that the error terms from the first-stage model are uncorre­

lated with the error terms from the second-stage model. This means that the individual-

dependent variables unaccounted for in the model are assumed to be uncorrelated with 

the unaccounted time-dependent variables or the residual error term. It should be noted 

that the error terms from the first-stage model are also uncorrelated with the independent 

variables since the independent variables are assumed to be fixed. 

3.2.4.2 Matrix Notation 

The combined model can be written with matrix notation as: 

Yip = Qx - 82 Sli + e; + r p + v;. (3.31) 

Y = FX/3 + Fe + Gr + v (3.32) 

Based on the assumptions about the error terms, the distribution of Y is: 

Y ~ N(FX3,V). (3.33) 

where \Er = $ >2FVF' + n. 
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3.2.5 Summary 

Growth rate and interest rate are very similar in nature, and the mathematics relevant 

to interest rates can be adapted to permanent sample plot growth rates. On recent 

permanent sample plots, the growth rate can be approximated by a constant. When the 

time period effect is removed, an estimate of the constant growth rate can be obtained. 

This can be called the observed instantaneous growth rate. The instantaneous growth 

rate can also be predicted from independent variables using a relationship derived from 

Von Bertalanffy's growth curve. This relationship presents the growth rate as a function 

of site index and volume at the beginning of the growing season. The second-stage 

estimate of growth rate can be called the predicted instantaneous growth rate. Both 

models can be joined to express the growth rate observations as a function of initial 

volume, site index, an individual effect, a time effect and an unexplained error term. For 

predictions of future volumes on a permanent sample plot, the parameter of interest is 

the random variable and its prediction is discussed in the next section. 

3.3 Parameter Estimation 

Traditionally, the parameter of interest has been 0. However, this parameter does not 

recognize the individual character of each plot, represented by e;. The parameter 6i does 

recognize this individual character. The group of permanent sample plots provides the 

information to estimate the global parameter 0. Repeated observations on a given plot 

yield the information to predict the individual term e; of this plot. The estimate of 0 

and the predictor e; can be joined to predict the actual parameter of interest. 

It is a common technique in parameter estimation to assume that the covariance ma­

trix of the model random terms are known in order to derive the parameter estimators. 
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This simplification often allows a better understanding of the estimators. The estima­

tors of the parameters composing 6 are first derived for the case where the covariance 

matrix of the model random terms are assumed to be known. Second, estimators for the 

unknown covariance matrices are defined. Finally, the estimated covariance matrices are 

substituted in the parameter estimators to yield estimates of the best linear unbiased 

predictor of 0 and of its variance. 

3.3.1 Estimation When Covariance Matrices Are Known 

When the covariance matrix of the various random terms in the combined model (3.32) 

are assumed known, only the parameters 8 and e need to be estimated. These parameter 

estimates are random variables, and their variances can also be estimated. The parameter 

estimates are discussed first followed by a discussion of the estimate of the variance of 

the predictor of 0;. 

Deriving and simplifying the estimators involved a lot of matrix algebra. Most of 

the algebraic steps were carried out to provide a proof of the estimators. While complex 

at first glance, these steps are easy to follow using the matrix inversion rules given 

in section 2.4. Of course, the first and the final lines of any proof are sufficient to 

understand the text. The intermediate lines are complimentary, for the pleasure of the 

mathematically-inclined reader. 

3.3.1.1 Parameter Estimators 

Estimators for 8 and e are first derived from a theorem given by Harville (1976), and 

combined to form a predictor of 6. The simplification and interpretation of this predictor 

using matrix algebra leads to an easily interpretable form. The suggested predictor is 

shown to be a weighted average between the observed instantaneous growth rate and 
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the predicted instantaneous growth rate. Interpretation of 9 is discussed following the 

mathematical derivation of 3 and e. 

Harville (1976) gave an extension of the Gauss-Markov theorem for prediction of 

random terms. Using theorem 1 from Harville (1976), the best Hnear unbiased predictor 

of e can be found. This leads to 9, the individual growth rate. The random parameter 9 

is the sum of a fixed parameter, X8 and a random term, e (see (3.29)). The B L U P of 9 

will be the sum of the B L U E of X3 and the B L U P of e. From the full model (3.32), the 

B L U E of 3 is the GLS estimate 

$ = [ X ' F ' ^ F X J ^ X ' F ' t f ^ Y (3.34) 

which leads to X/3, the B L U E of X8. 

FoUowing Harville (1976), the B L U P of e is 

e = </>2VF'*_1(Y - FX/3) (3.35) 

which can be developed further using the definition of ^ and matrix inversion rules 

e = ^ V F ' ^ Y - 0 2 V F ' ¥ - 1 F X / ? 

= ^ v F ' j n - 1 - n-^KF'n^F) + ̂V-̂ F̂'O-̂ Y 
- ^ 2 V F ' { n _ 1 - n ^ F K F ' n ^ F ) + ^ v ^ ^ F ' n - ^ F x / ? 

= 0 2 vF'n _ 1Y - ^ v F ' n ^ F K F ' n ^ F ) + ^-'v-^^F'n^Y 

- ^ V F ' n ^ F X / S + ^ V F ' n - ^ K F ' n ^ F ) + t-'v-^F'n^Fxp 

= < ?6 2V{I-(F'n _ 1F)[(F'fl" 1F) + ^- 2 V- 1 ] - 1 }F , n - 1Y 

-4> 2v{i - (F 'n^FjKF'n^F) + ^ v - ^ - ^ F ' n ^ F X / ? 

= ^ v K F ' n ^ F j - ^ ^ v i - ^ F ' n " ^ ) - 1 ^ - ^ 
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- ( /^[(F'ft - 'F)- 1 + 0 2V]- 1X/3 (3.36) 

This predictor is unbiased in the sense that E[e] — E[e] = 0 where 0 is a column-

vector of zeros. It is best in the sense that 

E[{e - e)'(e - e)] < E[{e - e)'(e - e)] (3.37) 

where e is any other predictor of e. 

The BLUP of 6 can now be defined as 

9 = X/3 + e (3.38) 

= X/^ + ^ V ^ F ' O - ' F ) - 1 + ^ 2 V ] - 1 ( F ' f t - 1 F ) - 1 F ' £ r 1 Y 

- ^ [ ( F ' f i - ' F ) - 1 + </>2V]-lXp 

= ^ V K F ' O - ' F ) - 1 + ^ v j - ^ F ' n ^ F ^ F ' n ^ Y 

+{I - ^ [ ( F ' O ^ ' F ) - 1 + ̂ vj-^x/S 

= ^ V K F ' J T ' F ) - 1 + </>2\]-1(F'n-1F)-1F'ii-1Y 

+(F'n _ 1 F)- 1 [(F'fi" 1 F)- 1 + ^ 2 V ] _ 1 X / 3 (3.39) 

This predictor of 9 can further be simplified; however, the terms it includes first must 

be recognized. The term ( F ' f i ^ F ^ F ' f i ^ Y is the GLS estimate of 9, 9, from the first-

stage model, model (3.18). Its distribution is conditional on 9 since 9, a random variable, 

was assumed fixed in the first stage. This distribution is 

9\9 ~ N(9, [F'fi^F]- 1). (3.40) 

Therefore, the term [F'fi^F]- 1 is the variance of the variable 9 \ 9. From the distribution 

of 8, shown in (3.30), the variance of 9 is </>2V, and its expected value is X/3. Combining 
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this information with the distribution shown in (3.40), the unconditional distribution of 

9 is: 

0~iV(X/3 ,$) (3.41) 

where # = [F'ft^F]- 1 + cfV. 

The GLS estimate of 3 from the full model, defined in (3.34), is equivalent to the 

GLS estimate of 3 from the unconditional distribution of 9, shown in (3.41) (Amemiya 

1971). This can be shown using the matrix inversion rules. 

J3 = [ X ' F ' S ^ P X ^ X ' P ' * " ^ (3.42) 

= [ X ' F ' J T X F X - X ' F / f i " 1 F ( F / n " 1 F + ( ^ - 2 v - 1 ) - 1 F ' f i ~ 1 F X ] - 1 

• [ X ' F ' f t _ 1 Y - x ' F ' n ~ 1 F ( F ' n - 1 F + ^ - ' v - ^ ^ F ' n ^ Y 

= [X'{I- ( F ' n _ 1 F ) ( F ' f i _ 1 F + 0 - 2 v - 1 ) - 1 } ( F ' n _ 1 F ) X ] - 1 

•[X'{I - ( F ' f i - 1 F ) ( F ' n _ 1 F + ^ V - ^ - ^ F ' I T ' Y ] 

= [X'^F ' fi - 'F)- 1 +</ . 2 V]- 1 X]- 1 

• X ' ^ F ' f l - ' F ) - 1 + <f>rV]-\F'fl-1'E)-1F'Ql-1Y 

= [ X ' S ^ X j ^ X * - ^ (3.43) 

This demonstrates that X/3 in 9 (see model (3.39)) is equivalent to the GLS estimate 

of the expected value of the unconditional distribution of 9. 

The BLUP of 9, equation (3.39), can therefore be rewritten: 

9 = var(0)[var(0 \6) + vai(0)] _ 10 + var(0 \ 9)[vav(9 \ 9) + var(0)]_1£[0] (3.44) 
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It is almost identical to the expected value of the conditional variable 9 given 9. Using 

Bayes' rule, the expected value of 9 \ 9 is shown to be: 

E[9\6) = var(0)[var(0 19) + v a r ^ ) ] " ^ + var(0 | 0)[vai(01 9) + v a r ^ ) ] " 1 ^ ] (3.45) 

The only difference is that the unknown expected value of the unconditional variable 

9 is replaced by an estimate in the BLUP. The B L U P can be interpreted as a weighted 

average between the growth rate observed on a plot and the growth rate predicted from 

some plot attributes. This can easily be understood. The individual growth rates can be 

predicted from some independent variables with some error, and it can also be observed 

with some error. The best predictor will be an average between the prediction and 

the observation with the weights proportional to the confidence in each estimate. This 

confidence is inversely proportional to the respective variance of each estimate. The 

B L U P is this weighted average. 

As mentioned before, the B L U P is a random variable. The precision of the B L U P can 

be obtained by estimating the variance of the predictor. This variance estimator follows. 

3.3.1.2 Estimation of the Variance of the Predictor 

The B L U P is a random variable, and estimation of its variance will be needed to build a 

confidence interval around this predictor. The individual B L U P of 9{ can be defined by: 

§i = Xi/3 + e; (3.46) 

where X; = [Sli/(V®)1/3 — Sli]. Because 9i is a predictor of 9it the variance of 6{ can be 

expressed as: 

EiiBi-Bif] = E[(ynl3 + ei - Xi3 - erf] 

= EidxiP-Xi^ + ei-ei)2] 
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= E[(xi$ - X i/3) 2] + E[el\ + E[4\ + 2E[(xi/3 -

-2E[(xiJ3 - Xif3)ei] - 2E[eiei] 

= var(x;/3) + var(ej) + var(ei) + 2cov(xi/3, hi) — 2cov(0;, ê ) (3.47) 

The various components can be estimated separately, using the mathematics of linear 

combinations. First, it can be shown that the covariance between 3 and e is zero which 

means that cov(x;/3, §;) is zero. 

cov(/3,e) = cov ( [X'$- 1 X]- 1 X'$- 1 ^, 0 2 V * _ 1 [ 0 - X/3]) 

= cov([x ,$- 1x]- 1x'$- 1^, { ^ v s - ^ i - x p r ^ x ^ x ' s - 1 ] } ^ 

= [X'#- 1X]- 1X ,#- 1var(fl){^ 2V*- 1 [I - X p C ' ^ X l ^ X ' * - 1 ] } ' 

= [ X ' S ^ X I ^ X ' S - ^ I J I - ^ - ^ [ x ' * - 1 ^ - ^ ' ] * - 1 ^ } 

= [ X ' s - ' x ] - 1 ^ * - V 2 v - s ^ x p c ' s ^ x i ^ x ' s - V ' v ] 

= [ x ' * - 1 ^ - 1 ^ * - 1 ^ - [X'#- 1x]- 1x , *-V 2v 

= 0 (3.48) 

The variance of the B L U P of e; can be derived from the definition of e in (3.36). Let 

{02V*I>-1}; be the i t h row of the matrix defined by ^> 2V$ - 1. Then the variance of e; is: 

var(8i) = var({^ 2 V*- 1 } i [f l -X / S]) 

= {(^ 2 V#- 1 } i var(^-X /3){^ 2 V$- 1K 

= .{0 2V*- 1} ivar([I-X[X ,*--- 1X]- 1X ,*- 1]fl){^ 2V*- 1K 

= {^V*" 1 }^ - X[X'* - 1 X]- 1 X ,#- 1]var(tf) 

.[i - x t x ' * - 1 ^ - 1 ^ * - 1 ] ^ ^ * - 1 } ; 

= {^v* - 1 }^ - x[x , #- ' 1 x]- 1 x'$- 1 ]$ 
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•[i - $- 1 x[x'#- 1 x]- 1 x , ]{^ 2 v#- 1 } i }; 

= { ^ V S - ^ i ^ - X p C ' ^ ^ X j ^ X ' l ^ V * - 1 } ; (3.49) 

To define the covariance between 0; and e;, it will be useful to express in terms of 

Y . From equation (3.38), 9{ can be written as: 

= [ ^ - { ^ V ^ - ^ X ^ + ^ V * - 1 } ^ 

= [xj - { ^ V ^ - ^ i X K X ' * - 1 ^ - 1 ^ * - 1 ^ + {^V*-1}^ 

= ([X i - {^ 2 v#- 1 } i x][x '$- 1 x]- 1 x'*- 1 + { ^ V * " 1 } , ) ( F ' n ~ 1 F ) - 1 F , n _ 1 Y 

= T i Y (3.50) 

where Ti = ([x; - { ^ V * - 1 } ^ ] ^ ' * - 1 ^ - ^ ' * " 1 + { ^ V * " 1 } ; ) ( F ' n ^ F J ^ F ' n - 1 . 

Therefore, the covariance of and e; is 

cov(0;,e;) = cov(riY,ei) 

= cov(r i(FX/5 + Fe + G r + v),ei) 

= cov(riFe,ej) 

= cov(riFjej, e,-) 

= r i F i var(e i ) (3.51) 

The variance of e{ is given by 

var(ei) = 0 2 / ( ^ ° ) 1 / 3 (3.52) 

The term var(Xj/3) is easily obtained from the variance of 0: 

var(x;/3) = x;var(/3)x-

= X i f X ' S ^ X ] - 1 ^ (3.53) 
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Using these different estimators, the variance of 8{ can then be defined as 

E[{§{ - Q i f ] = x j x ' s ^ x ] - 1 ^ + o ' v * - 1 } ^ * - x p c ' s ^ x i ^ x ' K ^ v * - 1 } ; . 

+(1 - 2TiFi)<b2/{ViY3 (3.54) 

This estimator yields an estimate of the variance of the predictor of 6{. Both, the 

predictor of 8{ and the estimator of the predictor's variance are based on the assumption 

that the covariance matrix of the error terms e, r, and v are known. These unknown 

matrices must now be replaced by their estimates. 

3.3.2 Covariance Matrix Estimators 

Knowing the predictor when the covariance matrices are known "may provide some in­

sights into what to do when [they are] not" (Harville 1976). A common approach is to 

replace the unknown covariance matrices by their estimates and to assume that they are 

the true values. The various assumptions about the error terms have drastically reduced 

the number of unknown parameters. Estimates of 62, cr2, . . . , o-2

M, and <f)2 are sufficient to 

obtain estimates of the matrices fi and </>2V. 

The best strategy for estimating the unknown variances is to use the two-stage struc­

ture of the model; each stage can be dealt with independently. In the first stage, estimates 

of 8, 82 and cr2,... based on the observed growth rates are obtained. In the second 

stage, the variable 8 is unobservable, but the unconditional distribution of 8, an estimate 

of 8 from the first stage, can be derived. From this distribution, estimates of 8 and <f>2 

are computed. 

3.3.2.1 First-Stage Estimators 

Different estimators for error component models have been suggested in the literature. 

However, none of these estimators were found adequate for the assumptions made in the 
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first stage. Instead, theoretical estimators had to be derived based on moment estimators 

of the unobserved residuals. It is a common practice to replace the unobserved residuals 

by their OLS estimates in theoretical estimators (Wallace and Hussain 1969, Zellner 1962, 

Swamy 1971, among others). For small sample sizes, when replacing the unobserved 

residuals by their OLS estimates in an estimator, it is probably worthwhile to adjust the 

degrees of freedom. 

A) Estimator of o~2 

Following Wallace and Hussain (1969), the estimator for a2 can be derived using the 

squared residuals from period p with the following reasoning: 

E £ n i p Sr 

ip E 

E 

£ 
i 

E 

(5 p r p + E i v i p ) 

V i p Sr 

ip 

E f Vi» ~ V' ^ ip v pJ 

2 

= E 

= E ^ ^ p - v 

(3.55) 

Therefore, the theoretical estimator for a2 can be 

1 
Jp i 

Hp 
E i u»p 

Sr> 
(3.56) 

which, after correcting for the degrees of freedom and replacing the unknown residuals 

by their OLS estimates ri ; p , becomes 

1 E u. 
E t ^tp 

tp 
'V J 

(3.57) 

B) Estimator of 82 
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U s i n g a s imi la r s t rategy as for a2, an est imator for 8 can be der ived us ing the squared 

residuals , the estimates of <T2 (p = 1 , . . . , M ) , the c o m m o n variance of t ime-dependent 

error terms coming f rom the same t ime pe r iod and the covariance between error terms 

f rom over lapp ing t ime per iods . 

E Y(Y<- syp) 
I V i 

Y Y uipujp 

= W82 

= * 2£ (s
2

P - sP) 

E YYYY u * p u 

i p j <t>p 
= ^ Y Y sPSQX 

p p>q 

(3.58) 

(3.59) 

(3.60) 

F r o m the s u m of these three est imators , the es t imator of 82 is easi ly ob ta ined 

1 

v 
CY Y Y Y uiruj* - Y sPaD (3.61) 

i P J 9 

where u = W + E p
 <&=fi1 + E P Eq>P SpSqXm. 

Afte r correct ing for the degrees of freedom a n d replacing the u n k n o w n residuals by 

their O L S residuals , the es t imator becomes 

1 

(qnP)#o 

(3.62) 

C ) E s t i m a t o r of 9 

T h e estimates of a2 a n d 82 are replaced i n il to get the est imate il. T h e F G L S 

est imate of 9 becomes: 

9 = [ F ' n ^ F J ^ F ' n ^ Y (3.63) 

A g a i n , the double hat above 9 impl ies that i t was ob ta ined after first es t imat ing il. T h e 

F G L S est imate is a s y m p t o t i c a l l y n o r m a l l y d i s t r ibu ted . W h e n W is large, the n o r m a l 
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distribution should be a relatively good approximation. The approximate distribution of 

§\6,ia: 

l\8 ~ N(8, [F'fWF]-1) (3-64) 

The inversion of matrix fi, a W X W matrix, can be simplified using matrix inversion 

rules. The inversion of fi is equivalent to: 

f T 1 = [^GAG' + S] - 1 . 

= I T 1 - S ^ G ' G'S 1G + l/S2A~1 G'S 1 (3.65) 

G'S G + 1/S2A' which requires the inversion of S, a diagonal matrix, and A and 

two M x M matrices. 

3.3.2.2 Second-Stage Estimators 

In the second stage, an estimate of the unconditional distribution of 6, the GLS estimate 

of 6 is needed. Unfortunately, the GLS estimate of 8 cannot be obtained because the 

covariance matrix of the error terms is unknown. This difficulty can be overcome using the 

unconditional distribution of 8, a FGLS estimate of 9. From the conditional distribution 

of 8 given 8, shown in (3.64), and the distribution of 8, shown in (3.30), the unconditional 

distribution of 8 is easily found: 

8 ~ N(X0, [F'fV'F]-1 + <f>2V) (3.66) 

In the second-stage, estimates of 8 and (f)2 are needed. GLS estimates are not possible 

because they would depend on the unknown value of each other. An iterative FGLS 

estimate is then required. 

Theoretically, the GLS estimate of 0 would be 

J3 = [X'[</>2V + (F'n~ 1 F)- 1 ] - 1 X]- 1 XV 2 V + (F'fV'F)-1]-1^ (3.67) 
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which is also the maximum likelihood estimate since the error terms are assumed to be 

normally distributed. 

Similarly, a possible estimate of c62 is its maximum likelihood estimate. However, 

equating the differential of the pdf of 6 with respect to <f> 2 with zero does not yield a 

simple solution. No satisfactory estimate was found in the literature. An alternative 

estimate had to be derived. 

Based on the following reasoning: 

E 

E[(6 -X0)'(6 -X0)] = tr[cA2V + ( F ' f i - ' F ) - 1 ] 

= c62tr[V] + t r K F ' n ^ F ) " 1 ] 

(9 - X0)'(e - X0) - t rKF'SWF)" 1 ]" 
tr[V] 

(3.68) 

the following estimate was found adequate 

12 N [6 - X0)'{6 - X/3) - trKF'iWF)-- 1 ] 
^ = (iV^2) iriVJ ( 3 ' 6 9 ) 

Because the unknown 0 is replaced by an estimate, 2 degrees of freedom are lost for the 

two coefficients 0\ and 02-

Since both estimates, <̂ 2 and fi, depend on the unknown value of the other parameter, 

FGLS estimates are needed. To find these FGLS estimates, an iterative solution must 

be used. The algorithm stops when both $ and <f) 2 converge. The iterative estimate of 

<f> 2 is used to get the FGLS estimate of 0: 

$ = [x'[02v + ( F ' n 1F)-1]-1x]-1x,[^2v + [F'n 1F]~1]-1e (3.70) 
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3.3.3 The Best Linear Unbiased Predictor and Its Variance 

The estimates of o~2, S2, (f>2, and 0 can now be replaced in the BLUP, defined in equation 

(3.39), to obtain what could be called an "estimated best linear unbiased predictor". 

Equation (3.39) becomes: 

§ = ^vKF ' f t^F)- 1 + 4>2v\-H + 

( F ' n ^ F ^ K F ' n ^ F ) - 1 + ^ V ^ X / f l (3.71) 

Similarly, an estimate of the variance of the BLUP of di is obtained by replacing the 

unknown parameters in (3.54) by their estimates. This yields: 

E[(§i - 6i)2] = X i p c ' * - 1 ^ - 1 ^ + {^v*-1}^* - x tx ' ^x j^x 'K^v*- 1 } ; 

+(1 - 2 f i F i ) ^ 2 / ( ^ ° ) 1 / 3 (3-72) 

where 

$ = (F'fi <j>2V 

ti = ({^-{^V^-^iX^X'^X]-^'^-1+ {4>2V^'1}i)(Fn 1 F ) - 1 F ' n 1 

The estimate of the BLUP of 9i can now be used to predict future growth rates and 

compound the current volume of a permanent sample plot. Confidence intervals around 

the prediction can be built with the variance estimate. 

3.4 Model Predictions 

The annual growth rate on a given plot can be predicted from model (3.46) 

6i=Xii3 + -ei (3.73) 

Once the unknown parameters 0 and e; have been estimated, the instantaneous 

growth rate can be predicted from two plot attributes: the site index and the initial 
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volume. The growth rate can be assumed to be constant in a given year and to be chang­

ing from year to year. The volume can thus be updated annually. Each updated volume 

becomes the new initial volume, [i.e. the volume at the beginning of the next growing 

season). The growth rate that will occur in this particular year is then predicted leading 

to a new updated volume. This process is repeated, say, K times to get the volume K 

years from now. This recursive system offers more flexibility to predict future volumes 

because the growth rate is updated annually. Assuming a constant instantaneous growth 

rate over a period of one year is close to reality. 

The annual volume update involves computing the expected value of the antilog of the 

predictor 9{. The technique for estimating this expected value is discussed in section 3.4.1. 

If a confidence interval is desired around the predicted volume, the confidence interval 

around each intermediate volume will be needed too since the volume at the end of the 

growing season is a function of the predicted volume at the beginning of the season. In 

section 3.4.2, the problem of variance estimation is analyzed, and a solution is suggested. 

3.4.1 Volume Predictor 

Various techniques exist to estimate the expected value of the antilog of an estimate 

(Ung and Vegiard 1988). However, no technique was found to estimate the expected 

value of the antilog of a predictor. The subtle difference can be explained by recalling 

that 0i is a predictor of 9{, a random variable, while the expected value of an estimate is 

a constant. The technique used by Baskerville (1972) was simple enough to be adapted 

for estimating the expected value of the antilog of a predictor and was, consequently, the 

chosen technique. 

Future volume prediction is driven by the initial volume in the first iteration. The last 

volume measurement observed on the sample plot can serve as the initial volume since 
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this volume represents the best knowledge of initial volume to predict future growth 

rates. 

A possible estimator of the updated volume could be the volume at the beginning of 

the growing season multiplied by the antilog of the predicted growth rate: 

V/+l = V? x exp$] (3.74) 

where V? is the predicted volume on plot i at iteration j and Q\ is the predicted growth 

rate. However, this estimator is biased. Based on the moment generating function, it 

can be shown that 

E[X] = exp 

which can be approximated by 

E[X] = exp 

E[\nX] + 
var(ln X) 

E[\nX] + 
v a r i (lnX) 

(3.75) 

(3.76) 

Goldberger (1968) pointed out that this result was asymptotically unbiased.2 

The true model expressed in a logarithmic scale is 

lnV?'+ 1 =lnV? +61 + uf (3.77) 

where u\ is the error term on plot i at iteration j. The first term on the right-hand side 

of the equation can also be rewritten in a similar form. Hence, the true model really is 

lny / + 1 =lnVf-fE^ + Eu* 
fc=0 k=0 

(3.78) 

Given that the volume is estimated on plot i and that annual observations are used, if 

the first volume is assumed to be measured without error, then 

i 
E[\nVi

0+1}=\xvV? + Y<eki (3.79) 
k=0 

2Goldberger (1968) also mentioned that, instead of using the corrected expected value of InX, one can 
use the uncorrected median. However, the median might be more difficult to obtain than the corrected 
mean. 
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The variance of In V?+1 is the variance of the sum of the error terms 

var(lnV7 + 1) = v a r ( £ u*) 
fc=o 

= E v a r K f c ) (3.80) 
k=0 

The moment generating function can be used to rewrite the expected value of 

E[V/+1] exp 

= exp 

ElWV^} + T a r ( ' n 

fc=0 

(3.81) 

Baskerville (1972) replaced the theoretical moment generating function by an esti­

mate. The same strategy can be followed. At this point, no estimate of var(u*) exists 

because the time period which û  represents is located in the future. A possible estimate 

is to take the average variance estimate of the past time periods. This estimate can be 

found using 
, (Y - F8)'(Y - F6) 

s = - — — - ( 3 - 8 2 ) 

where 2 degrees of freedom are lost for the estimates of 0x and B2 and one is lost for 

E e; = 0. Any error terms located in the future will be assumed to have this estimated 

variance. The estimate of E[V?+l] will then be 

• j+i i exp 
fc=0 z 

(3.83) 

This estimator is the closest form to the estimator used by Baskerville (1972). Its main 

advantages are that it is simple to compute and asymptotically unbiased. Estimation of 

a confidence interval of this predicted volume is discussed in the next section. 

3.4.2 Confidence Intervals Estimator 

Confidence interval estimation is also a problem when a scale transformation is needed. 

Ung and Vegiard (1988) suggested the following confidence interval for ̂ [t^J+1] when the 
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estimated moment generating function is used 

vaf(ln X) 
[exp a + , exp b + 

var(ln A") 

where 

(3.84) 

a = 

b = 

a = 

v = 

£ [ l n X ] -*(1 - f ;i/)var(E[lnX]) 

E[\nX] + t(l - f ; i / )var(£[lnX]) 

type I error allowed 

number of degrees of freedom 

A possible estimator for the variance of the estimated expected value of ln V / + 1 is 

var(E[lnV r / + 1 ]) = vSr(ln + £ 6k

{ ) 
k=0 

= £ £ < £ * ( # , * ! ) (3-85) 
k=01=0 

where the estimated covariance between 6\ and 6\ is approximated by the following 

{ ^ v * - 1 } ^ * - x r x ' s ^ x j ^ x ' K ^ v * - 1 } ; 

+ i - f ? p ^ 2 / ( V i f c ) 1 / 3 r ! F ^ 2 / ( V i ' ) 1 / 3 (3-86) 

where xf and r * are the respective estimates of x^ and Ti after the ktil iteration. 

Following Ung and Vegiard (1988) and assuming a large number of plots, the confi­

dence interval can be estimated approximately with the following bounds 

j 
lower bound = exp 

upper bound = exp 

In V° + £ 61 - z , . f c6v(0?, §[) + ^ ± - ^ 
AJ=0 

j 

k=Q 
(3.87) 
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This estimator is an approximation of the true variance of the predicted volume due 

to the extra variation created by replacing the fixed x*, xj, rf, and T[ with estimates. 

Since the true variances of the various random terms in the model were also replaced by 

estimates, the true variance of the predicted volume will likely be underestimated. 



Chapter 4 

Numerical Example 

4.1 Description of the Data Base 

The data base was kindly provided by MacMillan Bloedel Ltd. It consisted of 68 per­

manent sample plots of coastal Douglas-fir. The sample plots were fixed plots located in 

central Vancouver Island. These were pure, even-aged, and undisturbed plots. A sample 

plot was considered pure Douglas-fir when Douglas-fir represented more than 80% of the 

basal area. Undisturbed meant that there had been no human intervention to modify 

the growth rate, nor catastrophic losses due to biotic or climatic agents. A l l sample plots 

were measured after the growing season. They contained between 3 and 8 measurements 

covering a wide range of site index (Figure 4.2). Site index was estimated with King's 

(1966) site index equation. To protect the confidentiality of the data, the actual volumes 

were multiplied by a constant factor. The modified volumes were assumed to be the 

measured volumes, and no further reference in the text will be made to the unmodi­

fied volumes. At first measurement, volume varied between 10.4 and 939.5 m 3 /ha, and 

breast height age varied between 8 and 90 years. At last measurement, volume varied 

between 95.8 and 1594.4 m 3 /ha, and breast height age varied between 24 and 115 years 

(Figure 4.3). 

The initial data base was split into two distinct groups: an experimental set and a 

prediction set. The model was calibrated with the experimental set in order to predict 

the volumes in the prediction set. A l l measurements prior to or taken in 1972 were 

75 
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Figure 4.2: Distribution of Site Index 
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Figure 4.3: Individual Plot Volume versus Age 
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included in the experimental set, and the measurements taken after 1972 were put into 

the prediction set. 

In the experimental data set, 42 plots were measured three times, and 26 plots had 

four measurements. In this data set, the maximum age was 100 years, and the maximum 

volume was 1224.6 m 3 /ha . The mean volume was 393.7 m 3 /ha and the standard deviation 

244.3 m 3 /ha. The number of growth observations on a given plot was equal to the 

number of volume measurements on this particular plot minus one. For example, three 

measurements on a plot will yield two growth observations. Consequently, 42 plots had 

2 growth observations (Ti = 2) and 26 plots had 3 (Ti = 3) for a total of 162 growth 

observations (W — 162). The growth observations in the experimental set covered 15 

time intervals (M = 15) of 5 years on average, a minimum of 2 years and a maximum of 6 

years. The number of observations in a time period varied between 2 and 26 (Table 4.1). 

Table 4.1: Time Intervals 

p Interval Sp P Interval 

1 1955-1961 17 9 1964-1969 14 
2 1956-1962 7 10 1965-1970 17 
3 1959-1962 2 11 1966-1969 9 
4 1959-1964 14 12 1966-1971 26 
5 1960-1965 14 13 1967-1970 2 
6 1961-1966 17 14 1969-1972 9 
7 1962-1965 3 15 1970-1972 2 
8 1962-1966 9 

In the prediction set, there were a total of 189 volumes to be predicted. The av­

erage volume in the prediction set was 555.4 m 3 /ha, and the standard deviation was 

289.6 m 3 /ha. The minimum age was 19 years and the minimum volume was 57.2 m 3 /ha 



Chapter 4. Numerical Example 78 

The time lag between a predicted volume and the last volume from the same plot 

used in the experimental set was called projection time. The model performances for 

volume projection were evaluated with respect to this projection time. The projection 

time varied between 4 and 16 years. It was divided into three classes: 5 years or less, 

between 6 and 10 years, and more than 10 years. The first class contained 68 volumes, 

the second one 62 and the last one 59 (Table 4.2). Another criterion of interest was 

the initial age. The initial ages were grouped by decades, except for the first category 

that included the first two decades. Predictive ability was estimated for each projection 

time-initial age class. 

Table 4.2: Frequency of Volumes by Initial Age and Projection Time Class 

Projection Class Initial Age Total 
(yrs) (yrs) 

0-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 

0-5 12 11 14 4 3 12 9 3 68 
6-10 12 11 8 4 3 12 9 3 62 
11+ 8 13 7 4 3 12 9 3 59 

Total 32 35 29 12 9 36 27 9 189 

It was also interesting to look at the predictive ability of the model as a function of 

the time lag between the predicted volume and the first observed volume on the same 

plot. This was called total lag. The total lag varied between 10 and 31 years. It was 

grouped in 4 categories: 10-15 years, 16-20 years, 21-25 years, and 26 years or more. 

The first class had 51 observations, the second one 49, the third one 66, and the last 



Chapter 4. Numerical Example 79 

one 23 (Table 4.3). The interaction initial age-total lag was also considered important to 

analyze, hence, the total lag classes were subdivided into age classes. 

Table 4.3: Frequency of Volumes by Initial Age and Total Lag Class 

Total Lag Initial Age Total 
(yrs) (yrs) 

0-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 

10-15 20 6 1 4 3 10 4 3 51 
16-20 10 7 1 4 3 12 9 3 49 
21-25 2 12 21 4 3 12 9 3 66 
26+ - 10 6 - 2 5 - 23 

Total 32 35 29 12 9 36 27 9 189 

4.2 Goodness of Fit Criteria 

A model can be assessed with many techniques and statistics. Generally these statistics 

are computed for the original model, but sometimes the actual variable of interest is a 

transformation of the original model. In these cases, the model can be assessed for either 

the original or the transformed model. 

Growth rate was the estimated variable in the original model. When variances are 

known, the suggested predictor is B L U P for the true growth rate. Best in this case meant 

that it minimizes the total sum of squared error of the growth rates. However, because the 

variable of interest was volume, it was considered more important to assess the capability 

of the model to predict volume rather than growth rate, even if the estimator was not 

minimum for the volume squared error. Therefore, it would theoretically be possible to 
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find another predictor of the vector of growth rates that would reduce the total sum of 

squared error on volume. 

The model was tested for its ability to predict future volumes. It was fitted using the 

experimental data set. First, the observed growth rate was computed for each growth 

period by taking the difference in the natural logarithmic scale between the final volume 

and the initial volume and dividing this difference by the length of the period in years. 

Then, the first-stage model was fitted using P R O C M A T R I X in SAS (Sas Institute Inc., 

1982) with the F U Z Z option on the mainframe at the University of British Columbia. 

The F U Z Z option reassigns any value less than 1 x 1 0 - 8 to zero. 

Before the second-stage, the average of the initial volumes of all growth periods on 

each plot were computed. This defined V^°. The second-stage model was fitted using 

the estimates of the growth rates from the first-stage, the plot site index and V®. The 

convergence criterion was 

Estimates of the unknown variances and of 3 and e were replaced in the theoretical 

predictor. The last volume on a plot in the experimental data set was used as the initial 

volume for all the projections on this plot. The predicted volumes were then compared 

with the corresponding observed volumes in the prediction set. 

The statistics used to assess the performance of the model were the bias, the mean 

absolute deviation and the root mean squared error, in both actual and relative scales. 

Also, these statistics were computed for both projection lag-inital age classes and total 

lag-initial age classes. Mathematically, these statistics were: 

^ f c + i _ pk < 0.0000001 

and -P\< 0.0000001 

where fi\ and fi\ are the estimates of /3X and /32 after the k iteration. 

bias (4.88) 
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where 

bias% 

mad 

mad% 

raise 

100 x 

1 

nv-v) 

N Y,\v-v\ 

I O O x — y 
V -V 

Uv-vy 

V 
n 0.5 

rmse% = 100 x 
NE(V-V)2) 

0.5 

EV 

(4.89) 

(4.90) 

(4.91) 

(4.92) 

(4.93) 

bias% = 

mad = 

mad% 

rinse = 

rmse% = 

V = 

V = 

N = 

4.3 Results 

relative bias 

mean absolute deviation 

relative mean absolute deviation 

root mean squared error 

relative root mean squared error 

observed volume 

predicted volume 

number of predicted volumes in the given class 

The estimated B L U P of 0 is a weighted average between the first- and the second-stage 

model and is referred to as the weighted predictor. The overall performances of models 

from both stages individually and the weighted predictor as estimators of the observed 

growth rates and of the future growth rates are presented. Even if the predictions of 

future growth rates were the main interest, knowing the model behaviour for estimating 

the observed growth rates was also of interest. 
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Estimation of the observed growth rates were compared for the three "estimators" 

(the first-stage model, the second-stage model, and the weighted predictor). Points 

of comparison included estimation of the mean value, prediction of the minimum and 

maximum growth rates and estimation of the standard deviation of the growth rates. 

Table 4.4: Estimation of Observed Growth Rates 

N Mean Minimum Maximum Std. Dev. 

observed rates 
first-stage estimator 
second-stage estimator 
weighted predictor 

162 0.03732 -0.08542 
162 0.03962 -0.04393 
162 0.04370 0.00084 
162 0.04246 -0.02738 

0.27720 0.04470 
0.23615 0.04441 
0.21485 0.03547 
0.23047 0.04347 

As expected, the first-stage estimation of the mean growth rate was not equal to 

the mean observed growth rate since the unknown variance structure of the error term 

was estimated (Table 4.4). The observed growth rates were overestimated on average by 

about 6%. Since the predicted rates were an average of the observed rates on a plot, it 

is normal that the extreme predicted values be closer to the mean rate. However, the 

first-stage estimates were as variable as the observed rates. 

The second-stage estimator was even more biased. It is a FGLS estimator of the 

first-stage estimates. FGLS estimators are biased in finite samples which explains the 

difference between first-stage and second-stage estimates. The mean second-stage esti­

mate is 10% larger than the first-stage estimate. When compared to the observed rates, 

the difference jumped to 17%. The second-stage estimator did not predict negative 

growth rates or extreme growth rates which is intuitively reasonable. Estimates were 

20.6% less variable than the observed growth rates. 
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When the weighted average of the first-stage and the second-stage estimator were used 

to predict the observed growth rates, the mean growth rate was overestimated by 13.8%. 

The weighted predictor tended to push the individual estimator toward the mean. Thus, 

the minimum and maximum growth rates predicted with this predictor were closer to the 

average prediction than the observed minimum and maximum. The mean, minimum and 

maximum estimates from the weighted predictor were between the respective estimates 

from the first-stage and second-stage models. The predicted estimates were slightly less 

variable than the observed growth rates. 

The three estimators were also compared on the basis of their respective efficiency to 

predict future volumes. The overall results showed that the weighted predictor performed 

better than the two other estimators (Table 4.5). Assuming a constant growth rate 

on a plot for a short period of time was a convenient approximation in the first-stage 

model. However, to assume that this estimate will stay constant in the future will tend to 

overestimate future growth rates. The overall results of the first-stage estimator showed 

this overestimation. The first-stage model also gave highly variable estimates. The 

relative root mean squared error was 30% (for an average volume of 555.4 m 3/ha). The 

predicted volume were off by 20% on average. 

In the second-stage model, the choice of the initial volume was arbitrary and caused 

some uncertainty in the model. This was reflected in the results. The second-stage 

estimator underestimated the actual volumes by 3.2%. This suggests the choice of the 

initial volume to fit the second-stage model was probably underestimating the true initial 

volume. The root mean squared error was much smaller than with the first-stage model. 

The mean absolute deviation followed the same trend and was to 7.1%. 

With the weighted predictor, the bias was reduced to 1.1%. The variance was smaller 

with the estimate of the second-stage model than with the estimate of the first-stage 

model, which pulled the weighted predictions closer to the second-stage estimates than 
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Table 4.5: Overall Results from the First- and the Second-Stage Estimators and from 
the Weighted Predictor 

Predictor N bias 

(m3/ha) 

bias% rmse 

(m3/ha) 

rmse% mad 

(m3/ha) 

mad% 

First-stage Estimator 
Second-stage Estimator 
Weighted Predictor 

189 
189 
189 

55.7 
-17.6 
-6.0 

10.0 
-3.2 
-1-1 

166.6 
71.9 
51.4 

30.0 
12.9 
9.3 

83.2 
42.5 
35.9 

20.1 
7.1 
7.5 

to the first-stage estimates. The weighted predictor was both more precise and more 

accurate than the second-stage model. The root mean squared error was reduced to 

about 9% and the mean absolute deviation was slightly more than 7%. 

Further details are only presented for the weighted predictor as this predictor per­

formed better than the two other alternatives. 

Except for the youngest plots, the model consistently underestimated the actual vol­

umes. The overestimation for the young plots is caused by the first-stage estimate, which 

assumed that the growth rate on a plot is constant. The growth rate is rapidly decreas­

ing in a young plot and projecting the observed growth rate will cause a strong bias. 

The growth rate levels off as the plot gets older, which explains why the bias is much 

smaller on plots that had their first observations at 20 years of age or later. As a general 

trend, it can be noticed that the bias increased with projection time. (Table 4.6). This 

trend of increasing bias is not as clear when the total lag is taken into consideration 

(Table 4.7). Projecting a plot more than 25 years after the first measurement yielded 

seriously underestimated volumes for plots over 30 years of age. 
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The relative variability of the predictions was more important for the young plots. For 

plots with an initial age less than 20 years, the root mean squared error reached about 

20% for projections over 6 years. On the other hand, the variation of the predictions for 

plots with initial age over 40 years were always less than 10%, generally less than 5% 

(Table 4.8). The mean absolute deviations were fairly small for plots whose initial age 

were greater than 20 (Table 4.10). When the total lag was considered, the predictions 

were more variable as the total lag increased, usually greater than 10% when the total 

lag was longer than 26 years. The mean absolute deviations followed the same trends as 

the root mean square errors. 
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Table 4.6: Bias and (Relative Bias) by Initial Age and Projection Time Class 

Projection Time Initial Age 
(yrs) (yrs) 

0-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 

0-5 21.8 4.3 -27.2 8.6 -7.2 -11.4 -15.0 -5.1 
(9.4) (1.3) (-5.6) (1.3) (-1.5) (-2.1) (-1.9) (-0.6) 

6-10 48.5 -1.2 -45.8 6.4 -12.7 -24.4 -28.1 0.5 
(15.6) (-0.3) (-9.9) (0-9) (-2.4) (-4.2) (-3.3) (0.1) 

11+ 92.7 -4.3 -44.1 5.4 -30.5 -33.0 -38.3 37.8 
(22.1) (-0.9) (-7.2) (0-7) (-5.2) (-5.2) (-4.1) (4.1) 

Table 4.7: Bias and (Relative Bias) by Initial Age and Total Lag Class 

Total Lag Initial Age 
(yrs) (yrs) 

0-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 

10-15 29.7 6.8 -1.4 8.6 -7.2 -9.7 -17.5 -5.1 
(11.3) (2.9) (-0.6) (1.3) (-1.5) (-1.9) (-3.5) (-0.6) 

16-20 66.4 0.7 -3.5 6.4 -12.7 -22.7 -21.7 0.5 
(18.9) (0.2) (-1.3) (0.9) (-2.4) (-3.9) (-2.6) (o.i) 

21-25 163.5 -6.8 -36.1 5.4 -30.5 -27.8 -38.0 37.8 
(30.7) (-1.4) (-7.3) (0.7) (-5.2) (-4.4) (-4.3) (4.1) 

26+ - 1.4 -48.7 - - -61.4 -25.7 -

- (0.3) (-7.4) - - (-8.1) (-2.1) -
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Table 4.8: Root Mean Squared Error and (Relative Root Mean Squared Error) by Initial 
Age and Projection Time Class 

Projection Time Initial Age 
(yrs) (yrs) 

0-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 

0-5 25.3 23.0 36.5 14.6 8.7 22.8 20.9 12.9 
(11.0) (6.8) (7.5) (2.2) (1.8) (4.3) (2.6) (1.5) 

6-10 61.3 41.6 60.3 38.2 16.6 38.5 37.1 9.9 
(19.7) (10.4) (13.0) (5.2) (3.2) (6.6) (4.3) (1.1) 

11+ 123.1 68.7 81.0 51.5 36.3 60.6 53.3 65.6 
(29.4). (13.9) (13.2) (6.4) (6.2) (9.5) (5.8) (7.1) 

Table 4.9: Root Mean Squared Error and (Relative Root Mean Squared Error) by Initial 
Age and Total Lag Class 

Total Lag Initial Age 
(yrs) (yrs) 

0-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 

10-15 40.3 8.7 1.4 14.6 8.7 20.8 24.2 12.9 
(15.3) (3.6) (0.6) (2.2) (1.8) (4.1) (4.8) (1.5) 

16-20 93.7 21.5 3.5 38.2 16.6 36.5 26.0 9.9 
(26.6) (5.4) (1.3) (5.2) (3.2) (6.3) (3.2) (1.1) 

21-25 164.2 56.2 47.8 51.5 36.3 45.7 50.2 65.6 
(30.8) (11.7) (9.7) (6.4) (6.2) (7.3) (5.7) (7.1) 

26+ - 66.8 87.2 - - 106.5 48.2 -
- (14.7) (13.3) - - (14.1) (3.9) -
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Table 4.10: Mean Absolute Deviation and (Relative Mean Absolute Deviation) by Initial 
Age and Projection Time Class 

Projection Time Initial Age 
(yrs) (yrs) 

0-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 

0-5 21.8 15.3 28.7 9.7 7.2 16.7 17.3 11.9 
(10.2) (4.8) (6.1) (2.2) (1.4) (3.2) (2.6) (2.0) 

6-10 48.8 28.8 45.8 28.5 12.7 34.3 33.8 9.9 
(15.1) (7.0) (10.3) (5.7) (2.6) (6.0) (4.5) (1.3) 

11+ 97.9 51.1 67.1 40.6 30.5 47.5 44.8 53.6 
(20.6) (11.1) (10.8) (7.5) (4.9) (7.2) (5.7) (5.0) 

Table 4.11: Mean Absolute Deviation and (Relative Mean Absolute Deviation) by Initial 
Age and Total Lag Class 

Total Lag Initial Age 
(yrs) (yrs) 

0-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 

10-15 29.9 6.8 1.4 9.7 7.2 15.3 19.6 11.9 
(10.8) (3.9) (0.6) (2.2) (1.4) (3.0) (3.9) (2.0) 

16-20 70.5 14.7 3.5 28.5 12.7 33.2 23.0 9.9 
(19.2) (3.4) (1.3) (5.7) (2.6) (5.9) (3.6) (1.3) 

21-25 163.5 42.5 37.1 40.6 30.5 38.1 43.8 53.6 
(30.7) (8.6) (8.1) (7.5) (4.9) (6.0) (5.9) (5.0) 

26+ 49.5 75.5 
(12.3) (11.7) 

87.1 38.8 
(12.3) (3.0) 



Chapter 5 

Discussion 

5.1 The Basic Concept 

Obtaining an intuitive approximation of future volumes on permanent sample plots is not 

very difficult when the projection time is short. When a few volume observations from 

a plot are available, the most intuitive technique for a non-forester would be to figure 

out an average current annual increment from the past periodic increments, multiply this 

estimate by the number of years, and add this number up the current volume. 

Another technique is the "interest rate" technique; that is, instead of working with 

the absolute value of growth, it is also possible to work with the relative growth. The 

average interest rate is estimated from past measurements, and the current volume is 

compounded for the required number of years. 

These techniques have some drawbacks, though. The current annual increment and 

the growth rate are not really constant over time. For instance, projecting any estimated 

past growth rate will overestimate future volumes. To make up for the drop in future 

growth rate, some factor must be introduced to reduce the estimated growth rate before 

compounding the current volume. This compensatory factor should be correlated with 

time as the decrease in growth rate is more important in young plots than in old ones. 

An alternative estimate is to use the information given by the relationship between 

observed growth rates and some plot attributes. This relationship must be estimated from 

a collection of individuals. This technique, called regression, has become common with 
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the proliferation of statistical software. The growth rate of an individual is assumed to 

be the expected growth rate of all individuals with similar plot attributes. The difficulty 

with this technique is that the growth rate estimation is not plot specific but is based on 

some expected value from a collection of individuals. 

The regression technique is theoretically unbiased but rather imprecise when applied 

to individual plots as it does not take into account the specific performance of the indi­

vidual plot compared to the average plot. This is of little importance if it is assumed that 

the individual relative performance in the past is unrelated to the relative performance in 

the near future. However, if it is assumed that the past individual relative performance is 

a good indicator of future individual performances, than the regression technique omits 

useful information: the individual plot performance. 

The weighted predictor combines the information that can be drawn from the regres­

sion technique with the average growth technique. In a sense, the second-stage model is 

the correction factor for the projection of the average growth rate, obtained from the first 

stage. It makes intuitive sense that future growth rates be highly correlated with both 

previous growth rates and future plot attributes. The weighted predictor recognizes this 

fact by using both types of information. 

The two-stage model and the resulting weighted predictor have some limitations, 

however. Knowing these limitations is essential to avoid misuse or misunderstanding. 

Theoretically, the weighted predictor will always be biased because of the approxima­

tion in the first-stage model. This absolute bias should decrease as the plot gets older 

since the growth rate levels off with time. 

When few measurements are available on each individual, it might be dangerous to 

try to estimate the individual component of the weighted predictor. Past individual per­

formances based on 2 or 3 observations might not be a good indicator of future individual 
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performances. Harville (1976) did not suggest a minimum number of observations to es­

timate the B L U P of a parameter. Therefore, there is no guarantee that short time-series 

are a valuable source of information for individual performances. 

Disturbed plots were not included in this study. This is a limitation of the second-

.stage model. At this stage, with our current knowledge, it is difficult to explain catas­

trophic disturbances and even more difficult to predict them; the decision was made not 

to include the disturbed sample plots in the study. Therefore, the capability of the model 

to predict future growth rates in a disturbed environment was not tested. 

5.2 The Statistical M o d e l 

A statistical model is a simplification of reality. It represents the experimenter's im­

perfect understanding of the system. Furthermore, this understanding is limited in its 

expression by mathematical tractability. A model must be identifiable to be estimated. 

This becomes a serious constraint when only minimal information is available to fit the 

model. Assumptions have to be made; these assumptions can be seen as a tractable 

expression of the modeler's partial knowledge about the system. Thus, by definition, a 

statistical model is a compromise between reality and tractability. 

The first-stage model represented this kind of compromise. First, for each plot one 

observation was lost by using growth rate instead of volume, diminishing an already 

small number of observations. That brought the number of observations down to two 

for 42 plots out of 68. These two observations were covering ten years on average since 

the mean period interval was five years. The constant growth rate assumption was 

made because obtaining repeated measurements of the same parameter is essential for 

parameter estimation. It was considered reasonable since for most plots, ten years is still 

a short period of time. Of course, had all plots had at least 4 volume measurements (3 
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growth observations), a first-stage model predicting a decreasing growth rate over time 

could have been proposed, and better results probably be achieved. The assumption 

of constant growth rate was not a constraint due to the technique used but due to the 

nature of the data set. 

Defining the structure of the random term in the first-stage model (and in the second-

stage model, for that matter) was certainly a major problem. Very little attention has 

been paid in forestry to error structure in model-building. Due to the absence of previous 

work, models from other fields had to be investigated. Most structures suggested in the 

literature on time-series require an extensive data set to be estimated with a reasonable 

confidence. North American foresters usually do not have access to such data sets. 

Estimating short time-series is a difficult task. Lack-of-fit and serial correlation are not 

easily differentiated when individuals have been remeasured only a few times. Common-

sense assumptions must be made to overcome this limitation. 

The assumptions about the error terms in the first-stage model reflect this absence of 

knowledge about the error structure. Two overlapping periods should intuitively be cor­

related. It is less certain, though, that two nonoverlapping periods can be automatically 

considered independent. For instance, two periods that had similar extreme climatic 

conditions could well be correlated. Nevertheless, the model neglects this information. 

Another consequence of the simplification of the covariance matrix of the time-dependent 

error terms is the independence between consecutive growth observations on an individ­

ual. One can probably argue that the temporal or the unexplained error terms might be 

correlated between periods. Considering this correlation as negligible is probably over­

simplifying. However, for short-time series, it is reasonable to neglect some information 

rather than to try to extract it by making dubious assumptions. 

The second-stage model includes a biologically-reasonable estimate within the weighted 

predictor. Von Bertalanffy's curve, or its more general form, the Chapman-Richards 
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curve, is probably the most used growth model in biological sciences to model growth. 

The yield model, given by the integration of the growth model can be written: 

V = b j ( l - e
b 2 ^ - b 3 ) ) 3 

where t is time. 

The parameter bi is the asymptotic volume of the plot. All curves with common 

asymptotic volumes will move to this volume at a pace depending on the parameter b2. 

The parameter b 3 is a location parameter. Growth models based on Von Bertalanffy's 

curve suggest some trends toward full-stocking since an asymptotic volume is assumed. 

This trend can be noticed in the second-stage model. Two plots with identical site indices 

but different volumes will have different growth rates; the plot with the smaller volume 

will increase its volume at a faster rate than the other plot, with both plots ending up 

with the same volume. 

The growth rate is assumed to be a function of two variables: site index and standing 

volume. Site index is a function of age and height, so these variables can be considered 

as being indirectly included in the model. 

Neither site index nor initial volume are ideal variables to be included in a model. 

While site index is generally accepted as a good index of site quality, its estimation on 

young plots might not be the best method for assessing the potential of a site. The 

definition of standing volume is also subject to some variation. The definition used of­

fered satisfactory results. With a similar problem, Hui and Berger (1983) used for each 

individual the point where a constant growth rate and a linear growth rate fitted individ­

ually would have given an identical estimate. This technique was tried but it sometimes 

yielded volume estimates that were outside the range of observed volumes on a plot, even 

giving a negative estimate for one plot. These problems ruled out this definition. The 

chosen definition for initial volume was reasonable and sufficiently efficient. 
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Age, a common variable in growth and yield modeling, was not directly included in 

the second-stage model. Growth was assumed to be a result of photosynthetic activity. 

This activity is executed by cells that are never more than a few year old at any point in 

time in the life of a plot. Growth is undoubtedly correlated with age, but it is not caused 

by age. Age is simply correlated with the real cause of growth, the standing volume. 

Density, another variable commonly used to predict growth, is not included in the 

model either. The most common forms of expressing density are probably the number of 

trees per hectare, basal area, and percentage of crown closure. It was believed that the 

volume per hectare could compensate for this variable since it can also be considered as 

an expression of density. 

When the second-stage model is combined with the first-stage model, individual 

growth rates can be projected into the future. 

While the error structure of the combined model was believed to be satisfactory for 

short projections, it might be inadequate for long projections. In the weighted predictor, 

the inverse of the variance of an estimate from one stage is a measure of the confidence 

in this stage's estimate. As the projection lag increases, the modeler's confidence in the 

first-stage model should diminish; the first-stage estimate should be closer to the actual 

growth rate in the first projection year than in the last one. Therefore, the variance 

of the estimate should reflect this change in confidence. In the weighted predictor, the 

relative confidence of the first-stage estimate (compared to the second-stage estimate) 

decreases as the confidence in the second-stage estimate improves with increasing volume, 

but it does not change in absolute value. However, this oddity was not important enough 

on short time-series to be corrected. If longer projection lags had been available, this 

problem would have been addressed. 

The purpose of the weighted predictor was to find a reasonable compromise between 

accuracy, precision, and mathematical tractability for projecting permanent sample plots 
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when minimal information is available to the modeler. The model was not intended to 

predict long-term yield or predict yield from an extensive data set. The model uses 

as much information as can be used and gives limited but useful information. Fortu­

nately, the concept of a two-stage framework can be extended easily to plots with more 

measurements. Another advantage of the two-stage framework is that the second stage 

constitutes the best option to project temporary sample plots, or permanent sample plots 

with less than three measurements. 

The combined model can be considered a random coefficients model. A random 

coefficients model recognizes that observations from an individual are random variations 

around the true individual relationship and that individual relationships are random 

variations around a general model. Permanent sample plots allow modeling these random 

relationships. The difference between random observations and random relationships has 

rarely been made in forestry. Growth is not an instantaneous variable such as volume or 

basal area, for instance. It is a linear variable, and it must be estimated as a hne. 

Geometrically speaking, instantaneous variables are dimensionless, while linear vari­

ables have one dimension. Regression through a series of dimensionless points does not 

yield a hne but an infinite series of points. The expected value of a dimensionless variable 

is a dimensionless value. This can easily be illustrated by an example of a simple linear 

regression where the only possible x-values are discrete. Then, if the scale of the x-axis 

is large enough, there will be gaps between predicted points since prediction for values in 

between discrete x-values are meaningless. The scale of the x-axis can also be reduced in 

such a way that the predicted points form a Hne if the range of x-values is large enough. 

However, regression through a series of Hnes does yield a Hne. The expected value of 

a one-dimensional variable is a one-dimensional value. This is a major difference when 

deahng with permanent sample plots. 
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Recognizing the random nature of the relationship between observations on a plot, 

and that this relationship is the parameter of interest, are essential steps in modeling 

with permanent sample plots. This motivates the use of a random coefficient model. 

Unfortunately, the random coefficient model has not been studied as thoroughly as the 

components of variance model or the seemingly unrelated regressions model due to the 

extra complexity of the model (Dielman 1989, p. 95), but there has been a renewed inter­

est (Gumpertz and Pantula 1989). Meanwhile, the lack of theoretical knowledge can be 

partially compensated by simulation or empirical evidence. Hopefully, more frequent use 

of random coefficient models will stimulate more research to improve our understanding 

of these models. 

5.3 Results 

Fitting the first-stage model was relatively fast and required a little more than 1 Mb of 

memory. The two design matrices (F and G) with the covariance matrix of the estimated 

rates ([F'fi_ 1F] - 1) used most of the memory. Results from the first-stage estimators were 

highly predictable. It was the best estimator of the observed growth rates but the poorest 

for predicting future rates. This estimator could adequately report what happened in the 

past, but any extrapolation to the future would be dangerous. This is best illustrated 

with negative growth rates. The first-stage estimator will yield negative estimates for 

plots undergoing a reduction in volume between the first and the last measurement. 

However, these negative growth rates can be considered short-term adjustments, and are 

not an accurate indicator of future growth rate. The first-stage estimate is merely an 

observation rather than an explanation of the growth rate. 

Convergence of the second-stage model was also fast; only six iterations were needed 

before convergence. The initial value used for <f> 2 was 0. The second-stage was the poorest 
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estimator of observed rates. To make comparison possible with the first-stage model, the 

second-stage model was used to predict not the individual observations. Better results 

could have probably been achieved by using the observed initial volumes and by trying to 

predict the observed rates. Another reason for the weak results in the second stage is that 

it could not predict extreme growth rates. This poor performance was also expected since 

the number of plots was not large and the estimators of 3 and, especially, (j)2 were based 

on large sample theory. Surprisingly, the second-stage model could predict future growth 

rates with respectable precision but a rather large bias. Overall, the second-stage model 

underestimated the volume, suggesting that the initial volume used to fit the model was 

possibly underestimated. 

Writing the code for the prediction of future volumes was simple using a matrix al­

gebra language. When no variance estimates are computed, the predictions are rapidly 

obtained. However, computing the confidence intervals of the predictions can be cum­

bersome. The overall results of the weighted predictor were always between the overall 

results from the first-stage and the second-stage models. The weighted predictor also 

did poorly in estimating the observed mean growth rates. This is not surprising since it 

is derived from the best estimate for observed rates, the first-stage estimate, to which a 

certain quantity was added. Combining the first- and the second-stage was of no use for 

fitting the observed growth rates. If fitting past observations had been the only purpose, 

the first-stage estimator would have been sufficient. 

When future volumes were considered, the weighted predictor was more accurate than 

either of the individual estimates. The variation of the prediction errors was considerably 

better than the first-stage estimate and slightly smaller than the second-stage model. The 

weighted predictor was by far the best option for predicting future growth rates. 

Analyzing the detailed results, it is seen that the relative bias was more important 

for predictions on plots less than 20 years of age initially. For projection time less than 
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10 years, on plots with initial ages less than 20 years, the bias was close to the negative 

value of the mean absolute deviation, suggesting that the weighted predictor consistently 

overestimated the actual volumes. However, because these plots have less volume, they 

carry only a small weight when the overall bias is computed. For plots with initial age 

between 31 and 40 years, when only the projection time was analyzed, there was a strong 

bias. This probably occurred by chance, no rationale could be found to explain such a 

behaviour. Curiously, the length of the total lag did not seem to have an effect on the 

accuracy of the predictions. The projection time had a stronger influence on accuracy. 

The precision of the estimates was dependent on both the projection time and the 

total lag. There was a major difference in precision between plots with initial age less 

than 40 years and plots with initial age over 40 years. This probably indicated where the 

curve of growth rate over time for Douglas-fir in the data set began to level off. For plots 

with initial age over 40, the variability was less than 10% most of the time. For these 

plots, the first-stage estimate yielded precise estimates which explains the good precision 

of the weighted predictor. 

The mean absolute deviation is the arithmetic average of the error terms in absolute 

value. For plots over 40 years of initial age, it was usually less than 5%, even for projection 

times greater than 11 years. It was also relatively larger on young plots. This lack of 

precision was mainly caused by the first-stage estimates, as confirmed by looking at the 

results in detail. The precision of the second-stage estimator was relatively constant. 



Chapter 6 

Conclusions 

Statistical models based on a collection of remeasured entities are common in a few 

scientific fields. However, permanent sample plots in forestry have particular complexities 

that models developed in other fields do not address. Adequate techniques must be 

developed to predict growth in forestry permanent sample plots. These techniques must 

be adaptable to plots with only a few measurements since this is the situation most often 

encountered in Canada. Above all, these techniques must rely on a clear understanding of 

the purposes of permanent sample plots, and their possibilities and limitations as sources 

of information. 

The framework presented in this dissertation reflects this understanding. Growth 

rates were explained by site index and initial volume in a model inspired from Von 

Bertalanffy's growth curve. The individual relationship characterizing a sample plot was 

expressed as a random variation around a general model. Observations on a plot were 

assumed to be random outcomes of the plot's individual model. The current volume of 

a plot was updated using the growth rate predicted from the individual model. This 

technique was shown to be more precise than using the general model common to all 

plots. 

The weighted predictor also emphasizes the importance of the error structure in 

forestry statistical models, as pointed out by Gregoire (1987). Forestry information 

is not equally valuable; this fact must be recognized in a model. Separating the error 

term into components facilitates assigning a specific weight to each piece of information. 
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A greater weight must be given to reliable information when computing an estimator. 

Precision of an estimator is as important as its bias. However, too often foresters have 

not paid attention to precision. Accurate mathematical models are sought to the detri­

ment of statistical models. The power of statistics lies in its recognition of the difference 

between a variable and a constant. Statistical models will always be more precise than 

mathematical models when the error structure is correctly specified. Because models are 

used to make decisions, precise models are needed to make well-informed decisions. 

The results of the numeric example illustrated the advantages of the weighted pre­

dictor. Despite the approximations made in both stages, the weighted predictor was 

reasonably accurate and precise. It is probable that using a larger number of plots would 

have resulted in more precision with the second-stage model and consequently to the 

weighted predictor as well. Permanent sample plots with a longer history would also 

have provided more precise results. Fortunately, the weighted predictor can be adapted 

to data sets where all sample plots have more than three measurements. 

The weighted predictor is certainly not perfect. A major problem with the weighted 

predictor is the absence of statistical theory dealing with random coefficient modeling 

in finite samples. The estimator is approximately precise, but how approximate is un­

known. The first-stage approximation can be justified for a short period of time only. No 

stochastic term is included for predicting catastrophic losses. Despite these weaknesses, 

the weighted predictor can provide useful information for solving problems facing many 

forest agencies in Canada. 

The proposed framework, which led to the weighted predictor, opens new horizons 

for modeling using permanent sample plots. Developments in the theory related to ran­

dom coefficient models in finite samples can be expected in the near future and should 

answer many important questions. New computer technology will facilitate large simu­

lation problems. Research on techniques to include probabilities of catastrophic losses in 
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prediction could improve the decision-making process based on growth models. Foresters 

wil l benefit from these improvements if they adopt the right framework. Perfect models 

might still be far ahead, but we are definitely getting closer. 



References Cited 

Aitchison, J. and Brown, J. A . C. 1957. The lognormal distribution. Cambridge Univ. 

Press, Cambridge, England, 176 p. 

Aitken, A. C. 1935. On least squares and linear combinations of observations. Proceed­

ings of the Royal Society of Edinburgh 55:42-48. 

Amemiya, T. 1978. A note on random coefficient model. Inter. Econom. Rev. 19:793— 

796. 

1971. The estimation of the variances in a variance-component model. In-

ternat. Econom. Rev. 12:1-13. 

Arner, S. L. and Seegrist D. W. 1980. Missing: a computer program for the maximum 

likelihood estimates of the parameters of the multivariate hnear model with 

incomplete measurements. USDA For. Serv. Gen. Tech. Pap. NE-56, 19 p. 

1979. A computer program for the maximum likelihood estimator of the 

general multivariate Hnear model with correlated errors. USDA For. Serv. 

Gen. Tech. Pap. NE-51, 10 p. 

Arora, S. S. 1973. Error components regression models and their apphcations. Ann. 

Econom. Social Measurement 2:451-461. 

102 



References Cited 103 

Axelsson, E. and Axelsson, B. 1986. Changes in carbon allocation patterns in spruce and 

pine trees following irrigation and fertilization. Tree Physiology 2:189-204. 

Baltagi, B. H. , 1981. Pooling: an experimental study of alternative testing and estimation 

procedures in a two-way error component model. J . Econometrics 17:21-49. 

Baskerville, G. L. 1972. Use of logarithmic regression in the estimation of plant biomass. 

Can. J . For. Res. 2:49-53. 

Bayes, T. R. 1763. An essay towards solving a problem in the doctrine of chances. Philo. 

Trans. Roy. Soc. 53:370-418 (reprinted in Biometrika 45:296-315). 

Berkey, C. S. 1982. Bayesian approach for a nonlinear growth model. Biometrics 38:953-

961. 

Biging, G. S. 1985. Improved estimates of site index curves using a varying-parameter 

model. For. Sci. 31:248-259. 

Buckman, R. R. 1962. Growth and yield of red pine in Minnesota. USDA For. Serv. 

Tech. Bull. 1272, 50 p. 

Carter, R. L. and Yang, M . C. K. 1986. Large sample inference in random coefficient 

regression models. Comm. Statist. A:Theory-Methods 15:2507-2525. 

Chapman, D. G. 1961. Statistical problems in population dynamics, In Proc. Fourth 

Berkeley Symp. Math. Stat, and Prob., Univ. Calif. Press, Berkeley, p. 153-

168. 



References Cited 104 

Clutter, J . L. 1963. Compatible growth and yield models for loblolly pine. For. Sci. 

9:354-371. 

Curtis, R. 0. 1967. A method of estimation of gross yield of Douglas-fir For. Sci. Monogr. 

13, 24 p. 

Davis, L. S. and Johnson, K. N . 1987. Forest management. Third edition. MacGraw-Hill 

Book Company, New York, 790 p. 

Davis, A. W. and West, P. W. 1981. Remarks on "Generalized least squares estimation 

of yield functions" by I. S. Ferguson and J . W. Leech. For. Sci. 27:233-239. 

Dempster, A. P., Laird, N . M . , and Rubin, D. B. 1977. Maximum likelihood from 

incomplete data via the E M algorithm.(with discussion) Jour. Roy. Stat. 

Soc. series B 39:1-38. 

Dhrymes, P. J . 1971. Equivalence of iterative Aitken and maximum likelihood estimators 

for a system of regression equations. Austral. Econom. Papers 10:20-24. 

Dielman, T. E. 1989. Pooled cross-sectional and time-series data. Marcel Dekker Inc., 

New York, 249 p. 

_ 1983. Pooled cross-sectional and time-series data: a survey of current statis­

tical methodology. Am. Stat. 37:111-122. 

Fearn, T. 1975. A Bayesian approach to growth curves. Biometrika 62:89-100. 

Ferguson, I. S. and Leech, J . W. 1978. Generalized least squares estimation of yield 

functions. For. Sci. 24:27-42. 



References Cited 105 

1981. Reply to remarks by A. W. Davis and P. W. West on "Generalized 

least squares of yield functions." For. Sci. 27:589-591. 

Fuller, W. A. and Battese, G. E. 1974. Estimation of linear models with crossed-error 

structure. J . Econometrics. 2:67-78. 

Furnival, G. M . and Wilson, R. W. Jr. 1971. Systems of equations for predicting forest 

growth and yield. In Statistical Ecol. 3:43-57. G. P. Patil, E. C. Pielou, W. 

E. Waters, eds. Penn State Univ. Press, University Park. 

Garcia, 0. 1983. A stochastic differential equation model for the height growth of forest 

stands. Biometrics 39:1059-1072. 

Geisser, S. 1970. Bayesian analysis of growth curves. Sankhya A 32:53-64. 

Gerhardt, E. 1930. Ertragstafeln fur reine und gleichartige hochwaldbestande von eiche, 

buche, tanne, fichte, kiefer, gruner Douglasie und larche. Second edition. 

Springer-Verlag, Berlin. 

Goldberger, A. S. 1968. The interpretation and estimation of Cobb-Douglas functions. 

Econometrica 36:464-472. 

Gregoire, T. G. 1987. Generalized error structure for forestry yield models. For. Sci. 

33:423-444. 

Grizzle, J . E . and Allen, D. M . 1969. Analysis of growth and dose response curves. 

Biometrics 25:357-381. 



References Cited 106 

Gumpertz M . and Pantula, S. G. 1989. A simple approach to inference in random 

coefficient models. Am. Stat. 43:211-215. 

Harville, D. 1976. Extension of the Gauss-Markov theorem to include the estimation of 

random effects. Ann. Stat. 4:384-395. 

Hui, S. L. and Berger, J. 0. 1983. Empirical Bayes estimation of rates in longitudinal 

studies. J . Am. Stat. Ass. 78:753-760. 

Judge, G. G., Griffiths, W.E. , Hill , R.C., Liitkepohl, H. , and Lee, T. C. 1985. The theory 

and practice of econometrics. Second edition. John Wiley and Sons, New 

York, 1019 p. 

Keyes, M . R. and Grier, C. C. 1981. Above- and below-ground net production in 40-year 

old Douglas-fir stands on low and high productivity sites. Can. J . For. Res. 

11:599-605. 

King, J . E. 1966. Site index curves for Douglas-fir in the Pacific Northwest. Weyerhaeuser 

Co. For. Res. Center, For. Paper 8. 50 p. 

Kmenta, J . and Gilbert R. F. 1970. Estimation of seemingly unrelated regressions with 

autoregressive disturbances. J . Am. Stat. Ass. 65:186-197. 

Kurz, W. A. and Kimmins, J . P. 1987. The influence of site quality on tree resource 

allocation to fine roots and its effect on harvestable productivity of coastal 

Douglas-fir stands. Can. For. Service, Victoria, B .C. F R D A report 034, 

102 p. (+ appendices) 



References Cited 107 

Laird, N . M . and Ware, J . H . 1982. Random-effects models for longitudinal data. Bio­

metrics 38:963-974. 

Leak W. 1966. Analysis of multiple systematic remeasurements. For. Sci. 12:69-73. 

Lee, L. F. and Griffiths, W. E. 1979. The prior likelihood and best linear unbiased 

prediction in stochastic coefficient linear models. Univ. of New England 

Working Papers in Econometrics and Applied Statistics No. 1, Armidale, 

Australia. 

LeMay, V . 1988. Comparison of fitting techniques for systems of forestry equations. 

Unpublished Ph.D. dissertation, Univ. of B. C , 172 p. 

Lindley, D. V . and Smith, A. F. M . 1972. Bayes estimates for the linear model. J . Roy. 

Stat. Soc. B 34:1-41. 

Maddala, G. S. 1977. Econometrics. McGraw-Hill, New York, 516 p. 

1971. The use of variance components models in pooling cross-section and 

time-series data. Econometrica 39:341-358. 

Maddala, G. S. and Mount, T. D. 1973. A comparative study of alternative estimators for 

variance component models used in econometric applications. J . Am. Stat. 

Ass. 68:324-328. 

Marshall, P. L. and Jahraus, K. V . 1987. Growth and yield availability and use in British 

Columbia. Unpublished report, 96 p. 



References Cited 108 

Mundlak, Y . 1978. Models with variable coefficients: integration and extension. Ann. 

de 1'INSEE 30-31:483-509. 

_ 1961. Empirical production functions free of management bias. J . Farm 

Econom. 43:44-56. 

Parks, R. W. 1967. Efficient estimation of a system of regression equations when dis­

turbances are both serially and contemporaneously correlated. J. Am. Stat. 

Ass. 62:500-509. 

Phillips, P. C. B. 1985. The exact distribution of the SUR estimator. Econometrica 

53:745-756. 

Pienaar, L. V . and Turnbull, K . J . 1973. The Chapman-Richards generalization of 

Van Bertalanffy's growth model for basal area growth and yield in even-aged 

stands. For. Sci. 19:2-22. 

Pothoff, R. F. and Roy, S. N . 1964. A generalized multivariate analysis of variance model 

useful especially for growth curve problems. Biometrika 51:313-326. 

Rao, C. R. 1987. Prediction of future observations in growth curve models. Stat. Sci. 

2:434-471. 

. 1975. Simultaneous estimation of parameters in different hnear models and 

applications to biometric problems. Biometrics 31:545-554. 

1972. Estimation of variance and covariance components in hnear models. 

J . Am. Stat. Ass. 67:112-115. 



References Cited 109 

_ 1965. The theory of least squares when the parameters are stochastic and 

its application to the analysis of growth curves. Biometrika 52:447-458. 

Rao, U . L. G. 1982. A note on the unbiasedness of Swamy's estimator for the random 

coefficient regression model. J . Econometrics 18:395-401. 

Richards, F. J . 1959. A flexible growth function for empirical uses. J . Exp. Bot. 10:290— 

300. 

SAS Institute Inc. 1982. SAS user's guide: statistics, 1982 edition. SAS Institute Inc., 

Cary, NC, 584 p. 

Schmidt, P. 1977. Estimation of seemingly unrelated regressions with unequal number 

of observations. J . Econometrics 5:365-377. 

Schumacher, F. 1939. A new growth curve and its applications to timber-yield studies. 

J . For. 37:819-820. 

Seegrist, D. W. and Amer, S. L. 1978. Statistical analysis of linear growth and yield 

models with correlated observations from permanent plots remeasured at fixed 

intervals, p 209-233 In Growth models for long-term forecasting of timber 

yields, (eds. J . Fries , H . Burkhart, T. A. Max), Sch. For. Wild. Res. 

VPISU, Publ. FWS 1-78. 

Smith, A. F. M . 1973. A general Bayesian linear model. J . Roy. Stat. Soc. B 35:67-75. 

Srivastava, V . K. 1973. The efficiency of an improved method of estimating seemingly 

unrelated regression equations. J . Econometrics 1:341-350. 



References Cited 110 

Sullivan A. D. and Clutter, J . L. 1972. A simultaneous growth and yield model for 

loblolly pine. For. Sci. 18:76-86. 

Sullivan A. D. and Reynolds M . R. Jr. 1976. Regression problems from repeated mea­

surements. For. Sci. 22:382-385. 

Swamy, P. A. V . B. 1974. Linear models with random coefficients, In Frontiers in econo­

metrics (ed. P. Zarembka), New York, Academic Press, p. 143-168. 

. 1971. Statistical inference in random coefficient regression models. Springer-

Verlag, New York, 209 p. 

. 1970. Efficient inference in a random coefficient regression model. Econo­

metrica 38:311-323. 

Swamy, P. A. V . B. and Arora, S. S. 1972. The exact finite sample properties of the 

estimators of coefficients in the error components regression models. Econo­

metrica 40:261-275. 

Swamy P. A . V . B. and Metha J . S. 1979. Estimation of common coefficients in two 

regression equations. J . Econometrics 10:1-14. 

_ 1975. On Bayesian estimation of seemingly unrelated regressions when some 

observations are missing. J . Econometrics 3:157-169. 

1973. Bayesian analysis of error components regression. J . Am. Stat. Ass. 

68:648-658. 



References Cited 111 

Swindel, B. F. 1968. On the bias of some least squares estimators of variance in a general 

Hnear model. Biometrika 55:313-316. 

Tait, D. E. N . , Cieszewski, C. J . , and Bella, I. E. 1988. The stand dynamics of lodgepole 

pine. Can. J. For. Res. 18:1225-1260. 

Taylor, W. E. 1980. Small sample considerations in estimation from panel data. J . 

Econometrics 13:203-223. 

Ung, C. H. and Vegiard, S. 1988. Problemes d'inference statistique rehes a la transfor­

mation logarithmique en regression. Can. J . For. Res. 18:733-738. 

Wallace, T. D. and Hussain, A. 1969. The use of error component models in combining 

cross-section with time-series data. Econometrica 37:55-72. 

ZeUner, A. 1987. An introduction to Bayesian inference in econometrics. R. E. Krieger 

Publishing Co., Malabar, FL , 431 p. 

. 1962. An efficient method for estimating seemingly unrelated regressions and 

tests for aggregation bias. J . Am. Stat. Ass. 57:38-368. 

Zellner, A. and Vandaele, W. 1975. Bayes-Stein estimators for k-means, regressions, 

and simultaneous equation models In Studies in Bayesian Econometrics and 

Statistics (ed. S. E. Fienberg and A. Zellner), Amsterdam, North HoUand, 

p. 62 7-653. 


