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ABSTRACT 

Historically, Canada's productive forests have been assumed to be reserved for 

timber use while nonproductive lands have been reserved for other uses. However, 

demands on Canada's forestlands are becoming increasingly more diverse and traditional 

timber harvesting practices are now being scrutinized with regard to their consistency 

with these new demands. The response by provincial and federal policy makers has been 

a movement towards the concept of multiple-use forest management. However, due to 

the numerous meanings of the concept, policy makers and practitioners are finding it 

difficult to implement this new direction. 

Many of the issues surrounding forest management for multiple use are spatial in 

nature. Problems include where (location) to manage for single or multiple goods and 

services, and what scale (size) to choose for management units. The spatial issue, the 

issue of where, is of great importance in multiple-use forest management, because 

location is central to the long standing debate in forestry as to whether certain forest areas 

should be allocated to specialized or general multiple-use management. 

This dissertation focuses on the problem of modeling the issue of space in an 

economic model of multiple-use forestry. The study first involves modeling the problem 

of managing a two-stand forest over a two-period time horizon with and without intensive 

timber management and then solving a three-stand forest for several case studies by 

numerical simulation. 

The analytical and simulation results suggest that relative prices, the discount rate, 

forest productivity, nontimber productivity, and interdependencies between forest stands 

i i 



are all important determinants of the optimal harvesting and inventory solutions. Within a 

multiple-stand forest, areas are managed similarly i f complementarity exists between 

stands and differently i f substitutability exists between the stands in producing nontimber 

values, ceteris paribus. The results support both zoning for intensive timber management 

and integrated resource management everywhere. Thus, there is no a priori optimal 

management paradigm in forestry. However, intensive timber zones are supported under 

particular circumstances. Furthermore, the result suggest that forest policy tools, such as 

forest practices laws and forest land-use zoning, need to be flexible over time and space 

to promote and achieve efficient resource allocation. 

i i i 
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CHAPTER 1 

BACKGROUND AND SUMMARY 

1.1 Introduction 

Canada is a country with vast tracts of forestland. The total land area of Canada is 

estimated to be 997.1 mill ion hectares (ha.) o f which 417.6 mil l ion ha. is classified as 

forestland. Some 235.6 mill ion ha. is considered productive and available (non reserved) 

for timber uses. O f the 235.6 mill ion ha., an estimated 144.5 mill ion ha. is accessible for 

exploitation (Compendium of Canadian Forestry Statistics (CCFS) 1996). The majority 

of this forestland is classified as natural forest, with the majority considered "mature" or 

"over-mature" forest (46.2 per cent of the area and 68.4 per cent of total standing timber 

volume). The ownership of the forestland base is predominately public. O f the 235.6 

mill ion ha. o f non-reserved productive land, 188.7 mil l ion is provincially owned, 24.3 

mill ion ha. is privately owned, 19.3 is owned by Canada's territories, 3 mil l ion is 

federally owned and 0.3 mill ion is of unclassified ownership (CCFS 1996). 

In spite of the vast natural resource base in Canada, issues surrounding the use of 

Canadian forests and the impact on the environment are pointed. Historically, Canada's 

productive forests have been assumed reserved for timber use. Currently, only 9 mill ion 

ha. of the 144.5 mill ion ha. of accessible commercial timber land is excluded from 

commercial timber use. A further 90 mill ion ha. of the potential timber land base (235.6 

mill ion ha.) and approximately 270 mill ion ha. of the total forest base (418 mill ion ha.) is 

wilderness (CCFS 1996). However, public awareness of the importance of forest 



2 

resources on the health and welfare of people now challenges this assumption and current 

distribution of land use. Demands on Canada's forestlands are becoming increasingly 

more diverse while traditional timber harvesting practices are now being scrutinized with 

regard to their consistency with these new demands. The response by provincial and 

federal policy makers, academics and the forest industry has been a movement towards 

the concept of multiple-use forest management (e.g., Booth et al. 1993; MacDonald 

1999). However, due to the numerous held meanings of this concept, policy makers and 

practitioners are finding it difficult to find a new direction. 

Hyde and Newman (1991) highlight the obvious problem with forests; forests can 

produce multiple products and services for a wide range of competing demands. These 

demands may be social or private, a function of distance, and can vary among people of 

different incomes, while goods can be complements or substitutes in consumption. There 

are also technological issues in producing forest goods and services. These include: many 

products can be produced jointly while others are completely incompatible with one 

another, minimum and maximum scales of production differ between goods and services, 

time, and lastly, forest stocks are both an output and an input in production. 

Informational issues such as a poor understanding of the relative values of alternative 

forest uses and biological processes complicates the development and application of 

multiple-use forest management. Therefore, market failure and resultant misallocation of 

resources are the result of the very nature of forest resources. 

One policy response to market failure in forestry is the promotion of the concept 

of multiple-use forestry. However, the complex nature of forests makes the practice and 

understanding of multiple-use forestry difficult. A s a result, the many issues surrounding 
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the concept of multiple-use forestry have led to numerous definitions of the concept and 

the development and practice of various forms of multiple-use forest management around 

the world. 

Two public policy tools currently used or proposed to promote and enhance 

efficient use of forest resources are forest practices laws (programs) and forest land-use 

zoning. There are numerous examples of forest practices and programs in the world (see 

Brown et al. 1993; Cook 1998). In many cases, these programs/laws impose 

command-and-control regulations on forest users without any consideration for physical 

or socioeconomic differences among regions. The second tool, forest land-use zoning, is 

less common but widely debated as a useful planning tool to achieve the goals inherent 

with multiple-use forestry. For example, in British Columbia the topic is actively debated 

(see Sahajananthan et al. 1996; Binkley 1997; Rayner 1998) while it is being considered 

on a global scale by The Council of Foreign Relations in conjunction with the World 

Bank and the World Wildlife Fund (see http://greatrestoration.rockerfeller.edu/). A 

common concern surrounding the use of land-use regulation is that it is inflexible, and, 

therefore, w i l l prevent optimal resource allocation in the future. A common question is 

w i l l these policy tools be successful in promoting and achieving efficient forest resource 

allocation? 

Many of the issues surrounding forest management for multiple uses are spatial in 

nature. Such problems include determining where to manage for single or multiple goods 

and services, and at what scale of management unit. The spatial issue, the issue of where, 

is of great importance in multiple-use forest management. The issue of location is central 

http://greatrestoration.rockerfeller.edu/
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to the long-standing debate in forestry as to whether certain forest areas should be 

allocated to specialized or general multiple-use management. 

Economic modeling of the issue of where to have specialized or multiple-use 

forest management has contributed greatly to the intuitive understanding o f the 

management problem. The application of economic theory to the multiple-use forest 

problem from the view of production and capital theory, as evidenced by the pioneering 

work of Gregory (1955) and more recent contributions of Bowes and Kruti l la (1985) and 

Swallow et al. (1997), has greatly increased our understanding of the importance of 

economic variables in determining forest management decisions, particularly concerning 

where to harvest timber. However, the two approaches suggest two very different 

management models. Production theory suggests that areas be permanently allocated to a 

particular management emphasis (specialized or multiple use), while recent modeling 

work using capital theory (Bowes and Kruti l la 1985; Swallow and Wear 1993; Swallow 

et al. 1997) suggests areas should be periodically allocated to particular management 

units but eventually may need to be reallocated. On the other hand, Rose (1999) suggests 

that under the condition of a significant fixed harvesting costs, management is fixed over 

time. 

Each theoretic approach captures an incomplete picture of reality. Production 

models partially explain why particular areas are managed for single uses and suggest a 

permanent allocation, while new capital theory partially explains how management 

efforts move spatially over time reflecting the dynamic nature of forests. Neither 

modeling approach, with the exception of Rose (1999), is capable of determining the 

conditions under which we expect one multiple-use pattern to be favoured over another. 
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In short, current economic modeling of the multiple-use problem falls short of capturing 

the richness of spatial issues in a comprehensive framework. A s Clawson (1978) noted 

over 20 years ago, 

A n interplay between spatially differentiated and temporally differentiated 
areas in a moderately large forest managed under a multiple use 
philosophy can create many productive situations and relationships, to the 
benefit of all forest outputs and of all forest users, (p.308) 

1.2 Problem and Purpose of the Study 

The focus of this dissertation is on the problem of modeling the issue of space in 

an economic model of multiple-use forestry. The study involves two parts: first, 

modeling the management of a two-stand forest for more than one value over a 

two-period time horizon to maximize net present value; second, extending the model to 

three stands and multiple time periods. 

The general two-period model is solved analytically to obtain insights into the 

optimal short-run and long-run harvest rules and to generate predictive comparative 

statics results. The analytical model is then extended to a multiple-period model and 

solved using a dynamic programming algorithm. Three cases are presented to highlight 

the importance of space in the problem of multiple-use forest management. One case 

introduces pecuniary interdependencies and non-convexities as done by Swallow and 

Wear (1993). A second case introduces technological interdependencies, while a third 

introduces asymmetries by introducing a third good. In all cases, the problem is how 

much harvest and how much inventory to hold on each stand over time, accounting for 
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linkages between stands or forest-level asymmetries, to maximize the net present value of 

the forest over a finite time horizon. 

The two-stand analytical model is sufficiently abstract to cover different issues of 

scale and can capture different ownership contexts. Such abstraction permits analysis at 

the forest-level or multi-forest scale encompassing various ownership regimes. The 

model is extended to include management effort and can be further extended to allow for 

explicit modeling of owner preferences, uncertainty and risk, specific nontimber values, 

and can be used to analyze various policy instruments such as taxes and regulations. 

This study extends the two-period model of harvest-inventory to include explicitly 

intensive silvicultural management, to allow for three stands, to capture biological 

population dynamics, to explore management for more than two goods, and to analyze 

pecuniary and technological externalities. 

The results support the conclusion that forest policy tools need to account for 

spatial issues in forestry and be flexible to change i f they are to be effective instruments 

to promote multiple-use forestry and achieve forest resource efficiency. The results also 

support the conclusion that land-use specialization for timber production is economically 

efficient under particular conditions. 

1.3 K e y A s s u m p t i o n s a n d L i m i t a t i o n s o f A n a l y s i s 

Throughout the dissertation the term nontimber value is used very loosely. 

Nontimber value may mean a recreational value such as hunting that is not difficult to 

value in reality. Or, nontimber can mean biodiversity or a culturally modified tree that are 

very difficult to value. In all cases, nontimber values are assumed to be well defined and 
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can be valued. Furthermore, nontimber values are assumed to be a function of stand or 

forest inventory. For example, a nontimber value may increase, decrease or remain 

unchanged with a change in inventory. 

In this dissertation, perfect information is assumed. The reality is that nonpriced 

goods, public goods, multiple users and multiple and overlapping property rights, limited 

scientific knowledge, information and other transaction costs all exist and affect optimal 

forest management plans (see Wang and van Kooten 2000). 

The numerical results for the two-period model suggest that, to achieve the 

maximum economic value from a forest via multiple-use management, requires 

considerable information. In particular, information is needed on the marginal value of 

all goods, peoples' rate of time preference, knowledge of timber harvesting and other 

forest management technologies, forest ecology, and, finally, the physical inventories of 

flora and fauna. However, the reality is that many outputs are public goods or are 

nonpriced, there are multiple users of the forest, and little is known about forest 

ecosystems or how forest management practices can produce different sets of goods and 

services. 

The existence o f public goods and nonpriced goods in forestry is an important 

issue in multiple-use forest management. Their presence makes it difficult to know with 

any certainty the relative marginal values of nontimber goods. The fact that timber 

markets do not exist in many forest regions around the world, coupled with the lack of 

information on nontimber values, adds even greater uncertainty and confusion to the 

practice of multiple-use forestry. This issue is not only germane to public forestlands but 

also to private lands as public goods can and do occur on both. 
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Another important issue that potentially hinders the successful practice of 

multiple-use forestry is the presence of multiple users. With multiple users there is the 

possibility of differing demands on the same forest as well as differing rates of time 

preference. The introduction of different demands adds confusion in a manner not unlike 

nonpriced goods and public goods, as it raises the issue of what weights or relative values 

to assign to each good in each area. In addition, the issue of multiple users introduces the 

possibility of multiple time preferences that can further compound the confusion 

surrounding the practice of multiple-use forest management. The existence of different 

rates of time preference raises several ethical and empirical questions. Whose 

preferences count? What is the social discount rate? H o w are risk preferences and 

uncertainty included in its determination? These questions are difficult to answer but are 

critical for the practice of multiple-use forestry i f it is to be a successful management 

practice in achieving efficient resource use and socially optimal outcomes. 

A final issue important for the successful practice of multiple-use forestry relates 

to forest ecosystem and management knowledge. In reality, little is known about the 

actual function of forest ecosystems or how various forest management practices can be 

used to produce different quantities of goods and services. The lack of understanding of 

forest ecology or forest management technology adds greater uncertainty to the practice 

of multiple-use forestry. 

Therefore, modeling institutions, transactions costs and the valuation of 

nonmarket goods and services, to understand better their importance in determining the 

optimal management of forestlands for multiple uses, are areas of important research but 

beyond the scope of this dissertation. 
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1.4Outline of the Thesis 

Chapter two discusses the various concepts of multiple-use and the issues 

involved in the theoretical modeling and practice of multiple-use forest management. 

Chapter three presents a review of earlier studies with emphasis on how modeling 

approaches include space and time. In Chapter four, the multiple-use problem is analyzed 

with a two-period three-stand economic model of multiple-use forestry. In Chapter five a 

dynamic programming algorithm is used to solve various case studies. Conclusions are 

presented in Chapter six. 
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CHAPTER 2 

S P A T I A L I S S U E S IN M U L T I P L E - U S E F O R E S T R Y 

In this chapter concepts of multiple-use forestry are discussed and the importance 

of spatial considerations in the practice of multiple-use forestry are highlighted. In 

Section 2.1, I discuss the meanings of multiple-use forestry and provide an overview of 

the important issues in its practice. In Section 2.2, I discuss spatial issues involved in 

multiple-use forest management. Conclusions are presented in Section 2.3. 

2.1 Meanings of Multiple-use Forestry 

In practice, multiple-use forestry can have several forms and be applicable in 

many contexts. In Canada, multiple-use forestry is synonymous with the practice of 

managing for several competing uses on public forestlands, where 94 percent of 

forestland is publicly owned. This is also the case in the Province of British Columbia 

(Hoberg and Schwichtenberg 1999). However, the practice of managing forestlands for 

more than one use is prolific across many ownership forms, across cultures and across 

many spatial scales.' Multiple-use forestry is practiced on community forests (Allan and 

Frank 1994; Duinker et al 1994), on timbered range lands (Anderson 1994; Standiford 

'See Hytonen (1995) for a compilation of multiple-use forestry in the Nordic countries. 
Stridsberg (1984) gives a historic account of multiple-use forest in Sweden while Ammer 
(1992) discusses multiple-use forestry on commercial forests in Germany. Ito and 
Nakumura (1994) discuss recent changes in forestland use in Japan from single-use 
forestry to current multiple-use forest planning with particular attention to the issues of 
spatial and temporal scales. Yasumura and Nagata (1998) provide an account of 
multiple-use forest management operations on 13 districts of the national forests of 
Taiwan. Clawson (1978) provides a history of multiple use on U.S.national forests, 
which has been a guiding principle since at least 1905. 



11 

and Howitt 1992), in the form of agroforestry (see Carne and Prinsely 1992 for 

definitions), in urban forests (Konijnendijk 1997), on industrial forests, on non-industrial 

private forests (Binkley 1981), on second-growth, mature natural forest, and on intensive 

plantations in tropical and temperate regions (Rimoldi 1999). 

One of the most pointed and frequently occurring debates in modern forestry 

surrounds the choice of land management philosophy to employ to best satisfy societal 

demands and ensure resource-use efficiency (Binkley 1997; Burton 1994; Kutay 1977; 

Sahajananthan et al 1996; Alverson et al 1994; Walker 1974; Benson 1988, 1990; Haas et 

al 1987; Sedjo 1990; Bi rd 1990; Behan 1990; Wilson 1978; Juday 1978; Dancik 1990; 

Reed 1990; Conrad and Sales 1993). Two basic notions of multiple-use land 

management are debated: 

1.Intensive multiple-use forestry attempts to produce the maximum feasible and 

preferred outputs from the entire land base. 

2.Extensive multiple-use forestry attempts to produce the maximum feasible and 

preferred outputs from every part of the land under management. 

These two perspectives are further refined to include: 1) integrated resource management 

which is synonymous with extensive multiple use; 2) a mosaic of single uses over the 

land base (a form of intensive multiple use); 3) a single-use intensive timber zone 

surrounded by various forms of multiple use, further surrounded by wilderness areas, or 

the so-called triad approach (Teeguarden 1975; Binkley 1997); 4) management for a 

dominant use and all other uses, often referred to as dominant-use zoning (DUZ) , 

(Alverson et al 1994); and 5) the management of many uses sensitive to temporal and 
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spatial scales. The application of the concept of multiple-use forestry is made difficult 

due to all the alternative notions and management models (Clawson 1978).2 

In this thesis, I define multiple-use forestry as: 

Multiple-use forest management is the practice of forestry that exploits 
and augments flora and fauna stocks within defined forested areas 
together with man-made capital and labor inputs to produce more than 
one good or service over various time scales. 

This definition is sufficiently general to include natural and intensively managed forest 

areas, any geographical resolution, and any form of ownership. The definition also 

acknowledges durable, reproducible capital inputs, such as roads, buildings, bridges, 

water reservoirs, fencing, waste disposal systems and management effort, as an input that 

becomes capitalized in the natural resource stocks. Management effort can involve fire 

protection and efforts such as education programs on wildlife. However, the definition 

may be too strict as it excludes agricultural areas that through afforestation, become 

neither strictly agricultural areas nor forest areas and urban areas that are a mosaic of 

farmland, residential and commercial lands, and forested lands. This omission highlights 

the issue of spatial scale and location. It is clear that multiple-use forestry is simply a 

subset of the greater concept of the multiple use of land (Randall and Castle 1985; 

Barbier and Burgess 1997). 

2 Clawson (1978, p.308) argues, "greater possibilities for innovative and imaginative 
management exist when both time and space are considered variable, than i f an effort was 
made to manage every forest acre every year for multiple use." This argument suggests 
efficient resource management involves moving effort and focus across the forest area 
(space) over time. 
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2.2 Spatial Issues in Multiple-Use Forestry 

Central to the notion of multiple-use forestry, and the debates surrounding the 

practice of it, are the issues of spatial scale and location. 3 In fact, the issues of spatial 

scale and location are well recognized in land-use planning for traditional timber 

management. However, now in British Columbia and other jurisdictions, demands for a 

greater range of goods and services from the forests are increasing. Consequently, spatial 

issues of scale and location are of great importance surrounding land-use planning, 

ownership and control of forests, forest management regulations, timber pricing policies 

and other forest policies that attempt to produce efficiently the mix of goods and services 

that satisfy societal demands. 

Historically, traditional timber management has utilized two distinct land units for 

the purpose of regulating the cut of timber from a land area (Smith 1986, p.22). In forest 

management the basic land unit is a forest. A forest is a collection of stands that is 

administered as an integrated unit. The basic management objective from this land unit is 

a sustained, annual yield of products, typically commercial logs. 

In the practice of silviculture the basic land unit is called a stand. The size of a 

stand is arbitrary, in that it depends on many subjective factors (Smith 1986, p.22). While 

forest management determines the annual cut from the entire forest, silvicultural 

principles govern the timing and manner in which individual stands are treated so that 

3Shaw (1985, p. 193) discusses the issue of scale and location with respect to determining 
biological reserves to protect species. The suggestion of reserves implies that certain land 
areas be subject to a permanent land management focus over time. Bishop et al. (1995) 
challenge this presumption and make the claim that reserves may not be forever. If this is 
true, the question becomes, how long does a reserve remain under a particular 
management focus until it is reallocated? Spatial scale and location are also central to the 
ecological concept of island biogeography. 
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forest management goals are achieved (Smith 1986). Although the concepts of a stand 

and a forest are important for traditional timber management and silviculture, they are 

restrictive in their application to multiple-use forestry management and the associated 

silvicultural concepts.4 

The traditional management concepts of a stand and a forest are less useful in the 

practice of multiple-use forest management. This is due, in great part, to multiple scale 

issues commonly involved in multiple-use forestry and the multiple dimensions of a 

standing forest. Traditionally, forest management and silviculture focused on the 

harvesting and regeneration of trees for wood. The scale issues involved in timber 

management relate to the ability to organize economically and plan the harvest schedule 

and the adoption of a silviculture regime to ensure proper regeneration. Due to 

differences in species, geography, value and available technology, the working size of 

forest and stand ensure there is no size that fits all. The lack of a standard stand and 

forest units for forest planning in multiple-use forestry is also certain. The capacity of 

forests to be managed for more products and services challenges the traditional concept 

of a forest.5 In particular, the analysis is complicated as different forest growth processes 

and ecological functions occur at different spatial and temporal scales. 

4In Canada, where conscious practice of multiple-use forestry is relatively new, 
multiple-use forestry management is likened to gardening while the traditional forest 
model of converting natural old-growth forests to second-growth is likened to farming (or 
creation thereof) (Kryzanowski, 1999). Extending this analogy to the multiple-use debate 
leads to a set of questions such as these: When should farming be preferred to gardening? 
When should one manage for more than one crop? If gardening is best, what form 

should this gardening take? Should gardening involve only market goods or should it 
involve the provision of non-market goods? Should gardening and farming practices be 
conducted adjacent to each other? Why? 
5The increased use of landscape management in Forestry indicates a departure from 
solely relying on the concepts of a forest and stand management, as a landscape need not 
solely include forest but also rock outcrops, streams, bogs and other nonforested land 
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A s Samuel Dana (1943) notes, "a forest is not a continuous area of trees but is 

composed of meadows, bogs, marshes, non restocking burns, range lands, barren rock, 

streams and lakes." Consequently, a vast array of values is generated from a forest, 

including timber, forage, wildlife, watershed protection, climatic services, biodiversity, 

recreational opportunities and viewscapes. These values naturally vary in quality and 

quantity within and between forests due to climate, topography and soil. Standing forests 

are an inventory of timber and other products, a collection of habitats for various species, 

and an input into a broader geographical landscape. Standing forests are changing due to 

natural growth processes and due to natural impacts such as fire, wind, disease and pest, 

and due to man-made impacts. Standing forests also occupy space. These facts 

complicate the practice of multiple-use forestry and modeling of the problem. 

The multiple-use problem is succinctly described by Dana (1943), 

What he (the forester) may not know is how to evaluate the various 
possible products and services of a given area fairly and 
intelligently from the point of view both of timber management, 
wildlife management, range management, watershed management, 
and recreation management that w i l l result in the optimum 
production of different values. This is the nob of the problem of 
multiple-use. 

The problem of evaluation is not solely a technical problem. The problem is also one of 

valuation, monetary or otherwise that stems from market failure. Unfortunately, the 

relative values, present and future, of few forest goods and services are known with 

certainty. This is due to the absence of markets or presence of poorly developed markets. 

The lack of formal markets means that timber prices do not reflect true opportunity costs. 

Further, the lack of formal markets, as well as the presence of public goods, means that 

areas. For example, see Wal l in et al. (1994). 
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other formal and informal markets are required to direct the exploitation, protection and 

management of all forest resources. Without markets, how are values revealed to the 

persons responsible to manage the resources in a manner that is consistent with the 

current and future demands of society? 

The quantity and quality of production of many forest goods and services is 

largely a function of the size, location and nearness to other land areas. Clearly different 

flora and fauna have different natural habitat ranges and, as such, the choice of 

management scale will not be identical to timber management. Aesthetic and recreational 

values will also be affected by the location and the size of the forestland in addition to its 

other features. It is also the case that management activities in one part of the forest 

affect the production or value of other amenities elsewhere in the forest. 

An interesting aspect of forests is that most, i f not all, the values generated from 

them are dependent on the physical forest itself. More precisely, the values generated 

from forests are dependent on the physical characteristics of the forest environment and 

its perceived quality. An environment consists of the whole complex of factors (soil, 

climate, and living things) that influence the form and the ability of a plant or animal or 

ecological community to survive. Thus the use of forests not only affects the form of the 

environment but can degrade its capacity to support various forms of life. In fact, many 

nontimber values in one environment are dependent on the state of or changes in adjacent 

forest environments such as salmon resources and animals such as the Vancouver Island 

marmot.6 Therefore, all decisions regarding the use and nonuse of the forest resources 

6Personal correspondence with Susan Glenn, Dept. of Forest Science, Faculty of Forestry, 
University of British Columbia. 
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involve impacts on the forest environment that in turn impact on the values derived from 

forests. 

There are two types of interdependencies between areas in a forest (or between 

forests). One type of interdependence is a pecuniary interdependence where the value of 

a good or service in one area of the forest is affected by the total availability of the good 

across the entire forest(s). This is pecuniary (monetary) interdependence as actions in one 

area of the forest affect the valuation of the physical production in another area. A type 

of pecuniary externality can exist i f there is more than one independent land manager 

involved in the management of each area of the forest unit. 7 This form of externality does 

not lead to inefficient resource use but can lead to management decisions across a 

planning area that differ than when each forest area is considered independent of another; 

interdependencies are ignored perhaps due to ignorance. For a pecuniary interdependence 

to exist, the marginal value of the good in question needs to be non-constant. This may 

be the case when either 1) the good is unique or 2) there are no or few alternative sources 

of supply. For example, i f harvest of trees for lumber at location A drives down the 

lumber price, the decision to harvest at location B is affected. 

A second type of interdependency between areas in a forest is a technological 

interdependence. A technological interdependence is when a change in the condition in 

one area of the forest can affect the production capabilities in another location of the 

forest. There are several examples of technological externalities. One example is weed 

species (or pests or disease) infestation from adjacent forest areas surrounding a clear-cut. 

For example, often it is common in tropical forest systems to have hundreds of tree 

7 A n externality exists i f there are any benefits or costs derived from consumption or 
production that are not taken into consideration by the decision maker(s). 
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species of which only a few have commercial value (or ecological value). After a 

clear-cut many noncommercial tree species take hold quickly, which retards the 

regeneration o f more valuable commercial species. Another example relates to the notion 

of metapopulations in ecology. Changes in population densities among various 

sub-populations of a species can lead to migration. Therefore, harvesting of animals or 

changes in environmental conditions in one area of a forest can affect relative population 

densities and lead to migration (changes in production) (Sanchirico and Wilen, 1999). 

Another example has to do with the impact that logging in one area of a forest has on the 

visual quality of another area of a forest in relation to the overall view of the landscape. 

Another example is when each stand involves an interaction with an off-site value such as 

timber harvesting and its impact on riparian values in an adjacent stream or downstream 

water quality. A final example involves species that utilize two different habitat types in 

two different geographical locations, such as with migratory birds. In each case, the 

presence of the technological interdependency suggests that management decisions wi l l 

differ from those when areas are technologically independent. It also suggests that 

separate ownership o f the forest areas can result in inefficient resource allocation, even 

when markets exist for all goods. 

A final issue of space in multiple-use forestry relates to the natural stand 

heterogeneity of a a forest. Biogeographical factors, such as distance, species type, 

presence of water bodies or courses, and aesthetic factors such as colours and shapes, 

determine the physical and perceived differences within or between a forest(s). These 

factors are important in determining i f a forest area complements, substitutes or is 
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independent o f other forest areas in providing a particular good or service. 8 The presence 

of asymmetries also suggest that harvesting impacts (or other physical impacts) in 

different areas of the forest w i l l impact the same off-site value differently.9 

Figure 2.1 illustrates three common spatial aspects of multiple-use forestry. 

Figure l a depicts different cases of interdependence between stands within a forest. 

Figure 2 . la- i depicts a forest that consists of one stand and clearly demonstrates that no 

spatial relationship is involved with one stand. Figures 2.1a-ii and - i i i demonstrate two 

possible spatial relationships between two stands. Figure 2. l a - i i illustrates an asymmetric 

relation where one stand is somehow affected by conditions on the other. This captures 

the classic externality problem of timber harvesting and its impact on riparian values in 

an adjacent area of the forest. On the other hand, Figure 2. l a - i i i illustrates a symmetric 

relationship between two stands, as both stands are somehow affected by conditions on 

the other stand. This captures the case where a stand value is dependent on forest level 

conditions, for example a wildlife value. The remaining diagrams of Figures 2.1a 

illustrate different spatial interdependencies between three stands. Figure 2.1a-iv depicts 

a linear, symmetric interdependency between three stands while Figure 2.1a-v depicts a 

symmetric interdependence between each pair combination of the three-stand forest. 

Figure 2.1a-iv might represent the case where aesthetic values on a stand are dependent 

on the visual quality of adjacent stands in the forest. Figure 2.1a-v might represent a 

8Examples include forested parks, biological reserves and timberlands adjacent to 
manufacturing facilities. With respect to timber areas with location advantage see 
Ledyard and Moses (1976) and Gray et al. (1997a). Economic conditions or physical 
conditions can change exogenously, which can change location comparative advantage. 
9 For example, imagine a forest that varies in slope and soil stability. It stands to reason 
that a manager, who is concerned with on-site and off-site values, w i l l classify areas in 
the forest (spatially define areas) and determine a level and system of harvesting on each 
area that 'maximizes' the total economic value. 
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wildlife value that is produced and consumed on each stand within the forest. Figures 

2.1a-vi and 2.1a-vii each depict different forms of asymmetric relationships between 

stands. Figure 2.1a-vi represents the case where the value on the first and second stands 

depend symmetrically on each other while the value on the third stand is affected 

asymmetrically by the first stand. Finally, Figure 2 . la-v i i depicts the case where the first 

stand has a stand value dependent on total forest conditions while the second and third 

stands have values that are only dependent on subsections of the forest. 

(a) Spatial Interdependency 

One stand Two stands T h r e e s t a n d s 

(i) (ii) (iii) (iv) (V) 

(vi) (vii) 

(b) Distance Relations (c) Habitat Scales 

Mil l 

Figure 2.1 Spatial Aspects Relevant to Multiple-use Forest Management 

Figure 2.1b demonstrates that there are many possible distance relationships that 

are important to consider. Such distance relationships include: distance of timber to a 
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mill, distance of harvesting to sensitive areas or water courses and bodies, and distance 

between recreation opportunities and consumers. Finally, Figure 2.1c captures the issue 

of scale and its importance for habitat management and timber harvesting operations. In 

can be the case that habitats are overlapping and are of different scale, as is depicted in 

Figure 2.1c, which suggests that management effort will vary over the forest landscape. 

2.3 Conclusions 

There are many spatial issues in multiple-use forest management. The existence 

of unique areas, the presence of interdependence between areas in a forest, the allocation 

of existing demand and production, heterogeneous physical features of the land, differing 

habitat scales, and different ownership types imply that the management of the forest 

resources and land involves location and spatial scale questions. All these issues are 

important considerations for the day-to-day management and long-term planning and 

management of forest resources for multiple use that is efficient and economically 

sustainable. How are these spatial issues incorporated into current economic models of 

forestry? In the next Chapter, the current literature is reviewed. 
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C H A P T E R 3 

M U L T I P L E - U S E F O R E S T R Y : A R E V I E W O F 

E A R L I E R L I T E R A T U R E 

In this chapter, a review of the multiple-use forestry literature is presented. The 

literature is organized by the criteria space and time. The literature review is focused on 

the theoretical literature with empirical and numerical studies covered in less detail. I 

review the static multi-product firm framework in Section 3.1. This part of the review 

includes single- and multiple-stand models. The following two sections present two 

different approaches for including time into a forest management model. In Section 3.2, 

the review extends to optimal rotation models, or even-aged models, of forest 

management. This section is organized by timber-only and multiple-use models and 

further by single- and multiple-stand models. In Section 3.3, uneven-aged models and 

discrete two-period models of forest management are reviewed. This section is again 

organized by the number of goods and by the number of stands. Section 3.4 summarizes 

the survey to clarify the problem and orients this investigation in relation to previous 

literature. 

3.1 Static Models of Multiple-Use Forest Management 

Single-Stand, Multi-Product Firm 

Gregory (1955) was apparently the first to address the multiple-use forest 

management problem using an analytical framework of the multi-product firm. 

Gregory's use of a multi-product framework was not unlike Hopkin's (1954) application 
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of the model to the economics of range .management.' Subsequent uses of the 

multi-product framework include Pearse (1969), Walters (1977), Bowes and Kruti l la 

(1982,1989), and Vincent and Binkley (1993). This framework assumes there is a 

forestland area of given attributes, such as volume of standing timber, age class 

distribution, site qualities, and nontimber attributes. A single stand or a homogeneous 

forest area is assumed in all works except those of Bowes and Kruti l la (1982, 1989) and 

Vincent and Binkley (1993). Bowes and Kruti l la implicitly extend the framework to 

involve more than one forest area while Vincent and Binkley (1993) explicitly treat two 

stands in their analysis. Each application of the model assumes competitive input and 

output markets and known prices, although these are not crucial assumptions they do 

simplify the models. The objective in all papers is to determine the level of outputs and 

inputs to maximize the value derived from the land. 

Central to the multi-product framework is the notion of a joint production 

function. The production function is expressed as, T(Q, X) = 0, where Q represents a 

vector of outputs, and X represents a vector of inputs. This function expresses the 

maximum attainable level of an output, given a set of inputs, while maintaining feasible 

production of other outputs. Conversely, the function expresses the minimum amount of 

an input needed to produce a specific quantity of an output, given levels of other outputs 

and other inputs. A cost function, which represents the minimum costs to obtain a given 

level of output, also captures the technological relation between inputs and outputs 

expressed by the production function. Cost concepts, such as marginal and average costs, 

'It is interesting to note, Hopkin (1954) was well aware of the spatial aspects of livestock 
management over multiple range areas, though his multiple-use model of range 
management was non spatial. 
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may be derived from the cost function that can further be used to explain the notions of 

economies of scope and scale. In the analysis, the production and cost functions are 

interchangeable given the assumptions stated above. The perspective that is most useful 

for analysis depends on the question addressed. 

Technology is defined to be non joint i f and only i f the overall cost function can 

be expressed as the sum of independent cost functions for each product. If production is 

non joint, costs can be unambiguously be assigned to each type of output. Put another 

way, the marginal cost of a particular output is unaffected by changes in the production 

level of the other products. However, when production is joint, the cost function is not 

the sum of independent cost functions and costs cannot be uniquely assigned to each 

output. This simple economic fact has been the source of much confusion and debate in 

forestry.2 

The idea of jointness is extended in the multiple-use forestry literature by defining 

the effect that one output has on the cost of producing an extra unit of another output. If, 

at a particular output level, an increase in the production of good A causes a decrease in 

the marginal cost of output B, then the goods are defined as local complements. If, on the 

other hand, a marginal increase in the production of good A causes an increase in the 

marginal cost of B, then the goods are local substitutes (or competitive products). If no 

change in marginal cost occurs then the goods are defined as locally independent. 

2 Although there is no economic justification for allocating fixed costs between jointly 
produced goods, there are financial and budgeting reasons for doing so. See Schuster 
(1988) and Rideout and Wagner (1988) for discussions on allocating costs between goods 
in multiple-use forestry. 
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The degree of "competition" between outputs is reflected in the shape of the cost 

function and the production possibility frontier (PPF). Figure 3.1 depicts the degree of 

competitiveness between pairs of outputs with the use of the PPF. 

MV 

(a) (b) ( c ) 

(d) (e) (f> 

Figure 3.1 Production Possibility Frontiers 

Figure 3.1a represents two goods, that are independent of one another, as the level 

of production of one good does not affect the production of another good. A commonly 

used example, is the management of watershed quality and recreation. Figures 3.1b, 3.1c 

and 3. Id all represent pairs of goods that are competitive, as the increase in production of 

one good leads to a decrease in the production of the other good. The tradeoff between 

each good is decreasing in 3.1b, constant in 3.1c, and increasing in 3.Id. Figure 3.1e 

represents a pair of goods that reflect an all or nothing production choice set; two goods 

that are completely incompatible such as timber harvesting and wilderness, by definition 
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of wilderness. Figure 3.If presents a pair of goods, that are complementary, as an 

increase in one good leads to an increase in the production of the other good. 

The depiction in Figure 3.1 is common in forest economics textbooks and central 

to studies using the one-stand framework (Gregory 1955; Pearse 1969, 1990). A s noted 

by Gregory (1955) and Pearse (1969), i f the PPF is concave to the origin (Figure 3. Id), 

the optimal management regime is to produce (manage) a single output from the resource. 

This conclusion derives from the result that maximum value occurs when the slope of the 

PPF is equated with the ratio of marginal values of the goods. Compare Figures 3.1b and 

3. Id. In Figure 3b the slope of the PPF is equal to the ratio of marginal values, - j^y , a t 

a combination of production that includes production of both goods, where MVt is the 

marginal value of good /. However, when the PPF is convex to the origin, such as in 

Figure 3.Id, the tangency occurs at a point where only one good is produced. The general 

conclusion is that single-use management is economically superior to multiple-use 

management when goods are highly competitive. The weakness with the analysis is the 

focus on one stand, which obscures the spatial dimensions of the problem. 

Bowes and Kruti l la (1982, 1989), and Vincent and Binkley (1993), extend the 

framework to more stands. Bowes and Kruti l la (1982, 1989) show that the concept of 

jointness and non jointness are global measures, as they refer to the cost function over all 

feasible levels of output. On the other hand, concepts of substitution, complementarity 

and independence are local measures of competition between forest goods, as they all 

refer to a specific level of output. Therefore, when considering the decision to focus 

management on single value or multiple values, we must consider the scale of production 

over the entire forest. Only i f the local measurement concepts hold over all output levels 
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are they identical to the global measurement of jointness. Bowes and Kruti l la (1982) 

argue that the simple graphical analysis of Figure 3.1 is misleading as it does not consider 

expanding the scale of production to more forested land. I f expansion to new areas are 

considered, the actual PPF may resemble Figure 3.1b not 3.Id. Implicit to this 

conclusion is the assumption that potentially competitive uses can be spatially separated 

to weaken the negative impacts between uses. This argument also implies that there 

exists more than one stand or forest area relevant to the area of analysis. 

Multiple-Stand, Multi-Product Model 

Extending the multi-product framework from one stand to two or more stands 

leads to more results. In these models, stands are not spatially defined; stands can be 

adjacent or located in very different areas within a broader landscape. The first extension 

involves a forest with stands of different forest production. Holding all things constant, 

two forest areas of different natural capacities to produce forest outputs have a different 

shaped PPF . 3 In Figure 3.2, stand B is relatively better than stand A for producing 

nontimber outputs. This is reflected in the shape of the production possibility frontiers. 

The points where the relative value of nontimber to timber is equal to the slope of the 

PPF for stand A and B are labeled XA and XB, respectively. For a given level of 

expenditure on both sites, more timber is produced from site A than B. The common 

conclusions drawn from this analysis are that forests of differing quality are likely to be 

managed differently and the degree of management specialization depends on the degree 

of site quality differences across the forest landscape. However, Bowes and Kruti l la 

3Forest level isocost curves, that reflect the production of different combinations of 
outputs at equal costs, can be used for the analysis. See Bowes and Kruti l la (1989). 
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(1989) caution that, although stand differences favor specialization of management effort, 

the final determination of whether combined production or spatial specialization of 

substitute products is least costly depends on the degree of diseconomies of jointness of 

combined production and the diseconomies of scale of specialized production (Bowes 

and Kruti l la 1989, p.69). 

Economies of jointness imply combined production of outputs on a hectare of 

forestland is less costly than single-use production on separated land units. Diseconomies 

of jointness, on the other hand, imply single-use production on each land area is cost 

minimizing. The difference between joint and separated production costs becomes more 

significant as competition between goods increases. However, even i f diseconomies of 

jointness are present this is not always sufficient justification for specialized land use, 
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because of diseconomies of scale. Economies of scale of a multi-product firm is not to be 

confused with economies of scope that is analogous to economies of jointness. 

Economies of scope refers to the benefits associated with the production of a greater set 

of goods from the same firm. Economies of scope has become a more general notion of 

multiple goods production than economies of jointness. Economies of jointness is a form 

of economies of scope and specifically relates to production cost benefits. Tirole (1988) 

offers a definition of economies of scope that is identical to joint production. New 

definitions of economies of scope expand the definition from solely production costs to 

include the benefits of marketing a mix of goods through one firm. These benefits, 

although not specifically defined, are associated with informational costs and transaction 

costs. See Clarke (1985) for a summary of some of the sources of economies of scope 

and see Dana (1993) and Iossa (1999) for contemporary arguments for informational 

economies of scope. 

Economies of scale in the multi-product case is an extension of the single-product 

case. In the single-product case economies of scale refer to the proportional effect on the 

production o f an output from a proportional change in inputs. A measure o f returns to 

scale for the multi-product case is the proportionate increase in costs arising from a 

marginally small equi-proportionate increase in all outputs.4 This is a local measure. I f at 

a given Q a marginal equi-proportionate change in outputs leads to a less than (more, 

equal) proportionate change in costs, then there is said to be increasing (decreasing, 

4Goetz (1992) provides the following formulation of multi-product economies of scale 

(MPSE) for 2 goods, M P S E = 1 - Z jffln C(Y)/B\n Yt, where C(Y) is total cost and Y is the 

production of good /. When MPSE>0 {<0} there are multi-product scale economies 
(diseconomies). 
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constant) returns to scale. As mentioned already, diseconomies of jointness are not 

sufficient for specialization. The opportunity cost of expanding production to twice the 

land area needs to be considered. Therefore, single-use production on separate land areas 

is economically optimal i f the diseconomies of jointness exceed the diseconomies of 

scale. 

Specialization of land may also be efficient when marginal values vary across 

different stands or forest areas across the forest landscape. This is easily shown with 

Figure 3. Imagine that the PPFs are identical for the two stands in Figure 3. Now 

consider that the timber value is different on each stand due to the transport and road 

costs to access the timber on each site. A s timber prices are different on each site, the 

ratio of marginal values w i l l be different at each site, ceteris paribus. A s a consequence, 

the optimal production mix on each stand is different in general. However, i f prices and 

quality (the PPFs) are different it is possible that production levels are identical on each 

stand. 

Vincent and Binkley (1993) present a refined argument of economies of scope that 

favors specialized production across a forest landscape. The analysis involved the 

multi-product firm framework and two identical stands. The authors demonstrate, that 

due to differences in the responsiveness of the production of outputs to increased 

intensive management, it may be efficient to specialize. Helfand and Whitney (1994) 

indicate, in a note on Vincent and Binkley (1993), that the differences in responsiveness 

to management effort are due to diseconomies of scope in production. Varying 

responsiveness to management effort implies that by dividing a fixed unit of management 

effort unequally between two identical sites leads to changes in the optimal production on 
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each management site. They then show that the output which management favors 

unambiguously increases while the "non favored" output change is ambiguous. However, 

they did show that given relative prices and specialization through management effort 

that total aggregated value from the forest unambiguously rises. The conclusions reached 

by Vincent and Binkley are strengthened when sites differ as the magnitude of change on 

the production possibility frontier is greater. This condition lends further support to the 

rationale for greater land use specialization, although they note the extent to 

specialization is constrained by the degree of diminishing returns to management effort. 

They further comment that the presence of externalities between stands may be such that 

again general multiple-use management may prove superior. The principle source of 

weakness in their analysis is the lack of reference as to where the stands are located 

relative to one another. A second weakness is that no explanation as to the source of the 

economies or diseconomies of scope is provided by Vincent and Binkley (1993), nor by 

Helfand and Whitney (1994). 

Summary of Multi-Product Models 

In summary, the multi-product framework determines four conditions that address 

the question of when to produce a single output. The four conditions are: 1) differences 

in site productivity, 2) diseconomies of jointness (scope), 3) economies of scale, and 4) 

variation of marginal values across the forest (Bowes and Kruti l la , 1989). The first three 

are all cost related while the fourth is related to accessibility differences across sites in the 

forest landscape; net price of a resource varies with access and transportation costs. The 

multi-product framework is a useful model of multiple-use forestry. However, as it is a 
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static framework it fails to capture the richness of the multiple-use problem, because a 

one-stand model obscures the issues of location and space and none account for changes 

in values due to time. The multiple-stand application of the multi-product framework 

addresses some elements of the spatial issues. The works of Vincent and Binkley (1993), 

and Bowes and Kruti l la (1982, 1989), attempt to account for scale by expanding 

production to more than one stand. Unfortunately, the arguments involving 

(dis)economies of scale are obscure at best with regard to the location of the stands, 

although the framework permits different prices across the landscape that account for 

location of the stands. Lastly, the framework is a 'black box' approach as sources of 

economies of scope and scale, which are important to the arguments for and against 

land-use specialization, are not explained. 

3.2 Temporal Models of Multiple-Use Forest Management 

In this section, the economic models of forest management that incorporate time 

are reviewed. Before doing so, I review two basic biological growth functions that are 

central to the literature in Section 3.2.1. The functions are a sigmoid shaped yield 

function of an even-aged stand and a biomass growth function of an uneven-aged stand. 

The literature is grouped into two categories depending on the biologic growth functions 

assumed to better organize the literature Section 3.2.2 includes models focused on 

even-aged stand management. These models assume the sigmoid yield function and are 

commonly referred to as optimal-rotation models. Section 3.2.3 includes uneven-aged 

stand management models and two-period forest models. These models assume a 
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biomass growth function. Each category of work is further organized by one-stand versus 

multiple-stand models, and by timber versus multiple-use models. 

3.2.1 Biological Models of Stand Production 

There are two basic timber management methods, even-aged and uneven-aged. 

Management methods can be classified as one or the other depending on the proportion of 

the trees removed during timber harvest and by the defined scale of the stand. The 

distinction between the two essentially rests on what we define as a stand and a forest. In 

a standard silvicultural text (Smith 1986), a stand is considered even-aged when the 

difference in age between the oldest and youngest trees does not exceed 20 percent of the 

length of rotation. However, the determination of the rotation age is not explained. A n 

uneven-aged stand contains at least three age classes intermingled on the same area. 

Stands with two age classes are considered an intermediate category. A n uneven-aged 

stand can be further categorized as regular and irregular. "Irregular uneven-aged [stands] 

do not contain sufficient age classes necessary to ensure that trees arrive at a rotation age 

at short intervals indefinitely" (Smith 1986, p. 18). A s stated earlier, the size and 

determination of a stand wi l l depend on economics and biology. Therefore, the choice 

between each perspective of growth wi l l also depend on the underlying biology, 

harvesting and silvicultural knowledge, and input and output prices, which in turn, are 

likely a function of ownership characteristics. Theoretically either approach is 

acceptable, however to better organize the literature models are categorized as even-aged 

or uneven-aged models 
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Even-Aged Stands 

Some tree species do not regenerate i f not provided sufficient light (shade 

intolerant) after disturbances such as harvest or fire. Often these species are best suited to 

even-aged management techniques such as clear cutting, where nearly all tree vegetation 

is removed from a stand at the same moment in time. Species that are shade tolerant and 

benefit from an overstory may be best managed with uneven-aged harvesting techniques. 

The choice between systems wi l l depend on economic concerns (input cost and output 

prices) and physical factors such as climate, soil, tree (stand) growth, and risks of pests, 

disease and fire. 

The underlying biology assumed in even-aged models is described by the familiar 

sigmoid yield function. Figure 3.3 illustrates the even-aged production function. Stand 

volume begins to increase very fast once the stand has established a significant root 

system. In later years, the increase in stand volume starts to slow. Eventually the annual 

growth of the stand approaches zero and begins to decline, as the decay of wood volume 

exceeds new growth. The growth process of the stand over its life results in the sigmoid 

shape. The model explicitly assumes that the growth of the stand is from existing 

members and not from recruitment (Berck 1976). Consequently, stand volume and 

growth is best described by the age of a stand. 
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Uneven-Aged Stands 

Uneven-aged management models describe tree growth as a function of the stock 

of biomass. The basic difference between this model and the even-aged model is that it 

incorporates the assumption that growth occurs from current members of the stand and 

from new recruits (Berck 1976). Therefore, the model represents a population of a 

species (or mix of species) of different ages. Commonly, this model is said to describe 

uneven-aged stand management that involves selection cutting systems within a defined 

stand. However, this is not necessarily the case. The claim rests on the scale of the stand 

and the underlying biology of the species. As noted already, the definition of a stand is 

very subjective and depends on related biological, technological and economic factors. 

Therefore, it is possible that a feasible stand scale can incorporate all types of silvicultural 

technologies, including clear cutting, thinning and selection cuts, and be well represented 
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by the biomass growth function (Ovaskainen 1992). A common form of the biomass 

growth function is depicted in Figure 3.4. 

o 

0 VMSY K 

Level of Stock (V) 
(mbf) 

Figure 3.4 Biomass Growth Function 

The vertex of Figure 3.4 corresponds to the maximum volume that can be 

harvested from the stand per period in perpetuity. The stock that corresponds to the 

maximum sustained yield is marked as VMSY. This stock level has the greatest growth in 

biomass from one point in time to another implying that marginal growth is zero, 

g'(V)=0. A t this point, the increase in biomass from recruitment and growth of immature 

trees is equal to the loss of biomass from the removal of older trees. A l l stock levels less 

than the VMSY have lower growth but have higher marginal growth, g'(V)>Q. Higher 

marginal growth occurs as growth of young trees is greater than the loss of growth from 

the harvest of the older trees. For stock levels greater than VMSY the marginal growth is 
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negative, g'(V)<0. Negative rates of growth occur as the trees are permitted to reach ages 

greater than the maximum sustained yield age in Figure 3.4. Therefore, growth decreases 

as less recruitment occurs and younger tree growth is hampered by the presence of older 

and larger trees. 

One form of the biomass growth function is to implicitly incorporate the 

assumptions of the sigmoid yield function in Figure 3 .3 . The biomass growth function 

extends the concepts underlying the sigmoid function to be a collection of individual or 

groups of trees of a particular age. Two different approaches to modeling the problem of 

timber management in economics have been developed to reflect the two management 

strategies. 

3.2.2 Even-Aged Management Models 

Single Timber Stand 

Timber resources have been recognized as a typical example of the point-input, 

point-output class of investment problems in capital theory. The basic problem is to 

determine the timing of harvest that maximizes some measure of net return. This model 

has been the basis of the economics of timber management and assumes an even-aged 

stand management strategy where all like trees in a definable geographical space are 

harvested at one point in time (clear cut). It is also assumed that forestland is used for 

successive timber crops in perpetuity. 

There have been many formulations of the problem described above. It is now 

recognized by forest and mainstream economists that the correct formulation of the 

problem is the so-called Faustmann formulation, named after the German mathematician 
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Martin Faustmann. 5 However, Scorgie and Kennedy (1996) find that the first correct 

formulation was not Faustmann (1849) but by a British agriculturist Wi l l i am Marshall in 

1790. Lofgren (1983) credits M a x Robert Pressler (1860) and Bertil Ohlin (1921) as the 

first to correctly express the optimality conditions of the Marshall-Faustmann problem. 

The basic model assumes a timber owner chooses the harvest age of a stand to 

maximize returns to the fixed factor of production, land. The value is known as the bare 

land value or soil expectation (SE). The stumpage price and discount rate are determined 

"by market equilibrium and are taken as given, as are costs. The model is static in the 

sense that prices and the discount rate are assumed constant over time. So, i f the best use 

of the land now is for timber production, it w i l l also be timber production in the future 

and the optimal rotation w i l l be constant through time. The problem is to 

where T is the harvest age, p is the stumpage price, C is a fixed cost incurred at the 

beginning of each rotation, V(T) is the volume yield function for a stand of trees (volume 

of timber per unit area), and r is a real discount rate. The necessary condition for the 

optimal solution is 

given that V"< 0, the sufficient condition for a maximum. Equation 3.2 indicates, that the 

owner postpones harvest until the value of the incremental growth of the stand (LHS) is 

greater than the opportunity cost of the timber and the land (RHS). The opportunity cost 

of the timber is the foregone interest earnings on the income from current harvest, 

max 7i(T) = 
pV(J)e~rT-C 

1 - e-rT (3.1) 

PV'(T) = rPV{T) + rn* (3.2) 

See Bentley and Teeguarden (1965) and Samuelson (1976) for a discussion of the 
Faustmann formulation and alternative formulations. 
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rPV(T), while the opportunity cost of the land is the foregone interest earnings on the 

value of the bare land (successive use of the land for timber), rn (T). The inclusion of 

rent, opportunity cost of land, is an important determinant of the optimal rotation and 

differentiates the Faustmann model from the one rotation or Fisher model. 6 

The model can be used to predict changes in the optimal rotation when the 

exogenous parameters are changed. A one-time increase in the stumpage price or 

discount rate leads to a decrease in the optimal rotation. A n increase in the fixed cost, C, 

increases the rotation length as owners reduce the present value cost of C. The basic 

model has been used to predict the impact of policy instruments such as taxes and 

regulation and can be extended to include management effort (Montgomery and Adams 

1995). 

Single Multiple-Use Stand 

The even-aged management approach to managing a single stand for multiple uses 

is a direct extension of Faustmann (1849). The problem of selecting the optimum harvest 

of a stand of trees that provides timber and nontimber services was first formulated by 

Hartman (1976) and then soon after by Nguyen (1979) and Strang (1983). Hartman is a 

direct extension of Faustmann, while Nguyen incorporates a minimum stocking level 

while maintaining the spirit of the Faustmann calculus. The economic multiple-use 

management problem reduces to finding the rotation time in years that maximizes net 

6 The Fisher model considers the problem of when to cut one crop of trees Samuelson 
(1976). This problem is identical to the textbook wine storage problem. The optimal 
cutting rule is identical to Equation 3.2 with the omission of the last term on the R H S . 
The current single even-aged stand is cut when the growth in volume is equal to the 
discount rate. 
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present value through successive cutting and through the flow of nontimber services from 

the standing forest. 

Hartman (1976) assumes that the flow of net benefits from the nontimber services 

can be expressed as a function of stand age. Hartman (1976) assumes the value of the 

nontimber services flowing from a standing forest of age t is denoted as E(t) and that 

E'(t)> 0, E"(t) < 0. The stumpage value of timber in a forest of age / is F(t). It is further 

assumed that the timber stand is of even age and the site begins in a state of bare ground 

and remains in forest use forever. There are no planting costs or other outlays other than 

harvesting costs which are reflected in the function F(t) and are assumed constant through 

time. A l l future receipts are discounted to present dollars at a known and invariable 

competitive real discount rate r. 

The problem for the stand manager is 

F(t)e-rT + \lE(x)e-rxdx 
max7r = Y^P^t (3-3) 

where T is the rotation age.7 The first-order condition (FOC) necessary for a optimum 

value of TT* is 

F'{T) + E(T) = rF(T) + rn* (3.4) 

The T* that solves Equation 3.4 is when the increase in value from a marginal delay in the 

harvest date equals the opportunity cost of the delay. A s Eft) can take on many possible 

shapes there can be many solutions to the F O C representing maxima or minima. Further, 

it is possible that there may not exist a T* that equates equation 3.4, implying that the 

optimum decision is never to cut the standing forest. The general conclusion of this paper 

7 Nautiyal and Fowler (1980) consider the optimal rotation with price of timber as a 
function of stand volume, P = P (V(t)). 
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is that the inclusion of amenities into the formulation can lead to a rotation shorter, 

longer, or identical to the Faustmann rotation (Hartman, 1976). The difference between 

the Hartman and the Faustmann rotations wi l l depend on the nontimber function. I f the 

nontimber value from a particular output is such that it outweighs all other values it wi l l 

determine the optimal rotation age. 

Bowes and Kruti l la (1985) and Strang (1983) point out an important consideration 

in the Hartman analysis. If there are a variety of services present there is no a priori 

reason to expect that the total benefit function is monotonically increasing or decreasing 

with stand age. This suggests that there can be various local maxima and minima and 

marginal analysis alone is not sufficient to ensure resource efficiency. The policy 

implication is that tax or subsidy devices may not achieve efficient resource allocation 

(Swallow etal . 1990). 

Bowes and Kruti l la (1985) also point out that, unlike in the Faustmann model, 

starting inventory in the Hartman framework is important in the determination of the 

rotation age. If the starting inventory is greater than the Faustmann rotation it may be 

optimal to never harvest (Bowes and Kruti l la 1985). This result is contrary to Nguyen 

(1979) who finds that inclusion of a minimum stocking level ensures that the optimal 

rotation is always equal or less than the biological rotation ( M S Y ) . 8 The inclusion of a 

minimum stocking level in Nguyen (1979) mitigates the temporary scarcity of nontimber 

values after clear-cut harvest. Further, Snyder and Bhattacharyya (1990) show that 

The biological rotation is the rotation age that maximizes the annual flow of timber 
volume from a given forest area in perpetuity. This rotation is commonly referred to as 
the maximum sustained yield rotation ( M S Y ) or technical or physical rotation. 
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inclusion of annual and periodic nontimber management costs changes the optimal 

Hartman rotation. 

Comparative statics results of the Hartman analysis are not as straightforward as 

with the Faustmann analysis. A n increase in stumpage price leads to a decrease (increase) 

in the optimal rotation i f the Hartman rotation is more than (less than) the Faustmann 

rotation. A proportionate increase (decrease) in E(x) for each x leads to a longer (shorter) 

rotation i f the Hartman rotation is longer (shorter) than the timber-only rotation. 

Disproportionate increases in E(x) for each JC or proportionate changes in stumpage price 

and E(x) and changes in the discount rate are ambiguous (Bowes and Kruti l la 1985, 

p.540). 

Empirical work by Calish et al (1978) found that the inclusion of nontimber 

values do change the optimal rotation. 9 They find that the optimal joint rotation can vary 

greatly from the timber only rotation when nontimber values are high. They also find that 

nontimber values contribute a large proportion to total stand value. In their study they 

find that very high values need to be considered before the solution approaches the 

biological rotation. Englin and Klan (1990) extend the Calish study to investigate the 

impact of various taxes on the Faustmann rotation and resulting mix of nontimber values 

provided. They also extend the Calish study by including a different stand type in the 

9 Cal ish et al. (1978) note that many of the stand-level production functions they use 
(non-game wildlife, deer, elk) only are meaningful in the context of a regulated forest as 
the nontimber productivity of a particular age-class depends on the whole mix of age 
classes. For example, elk need older (large) stands for cover to survive. I f stands in a 
regulated forest where cut on a 5 year rotation the forest could not sustain an elk 
population unless there was cover provided in a nearby forest area. This type of stand 
interdependence was modeled by Bowes and Kruti l la (1985) and is reviewed below. 
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analysis. They conclude that taxes can have a marked impact on the private provision of 

various non-marketed and public goods. 

Multiple Timber Stands 

. Extending the Faustmann model to multiple stands or a forest leads to a very 

simple optimal management strategy. The optimal strategy for an owner whose sole 

objective is to maximize the net present value from timber when costs and prices are 

fixed is to cut a stand when it reaches the optimal rotation age. Therefore, i f a forest is 

composed of n identical stands of equal age, the entire forest is cut down at the same 

time. This strategy is optimal when there are no constraints or interdependencies among 

the stands. From the point of view of timber supply, the supply of timber depends on the 

initial age composition of the forest. A forest of uniform age w i l l generate a periodic 

supply of timber over time. The so-called normal forest in the forestry literature, where 

there are n-age classes of equal size and the oldest age class is equal to the optimal 

rotation so that stands of equal size ranging from ages of 1 years to the optimal rotation 

age N remain, only occurs by chance, except for plantation forests. Thus an even flow 

timber supply over time is highly unlikely. Changes in prices, costs or the discount rate 

lead to the same behavior at the forest level as at the stand level. Consequently, an 

unexpected price increase leads to a shorter rotation and more stands are chosen to be cut, 

which leads to an increase in short-term timber supply. A n increase in the discount rate 

leads to the same behavior and impact on current harvest from the forest. In this model of 

forest management, location is not important to the model. Stands are cut when they 

reach a particular age and where this occurs is not important. 
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If we drop the assumption that stands are not independent, or include new 

constraints or transportation cost, the results of the model change. Sometimes the 

stumpage price received is a function of volume harvested. This is the consequence of a 

downward-sloping price function for logs or an increasing harvest cost function (see 

Nautiyal and Fowler 1980). In either case, the stumpage function is no longer constant 

but varies with total volume of wood harvested in any period of time. Further, 

stand-level harvest decisions are dependent on harvest decisions on other stands, as the 

harvest on one stand affects the stumpage price on other stands. The result is that 

harvests are smoothed out over time (Montgomery and Adams 1995). 

Ledyard and Moses (1976) present an optimal forest land-use model with 

transportation costs. The model is built on the Faustmann calculus. The owner of land 

must choose a rotation age, T, and a level of management effort, Q, so as to maximize 

the present discounted value of profits. In making these decisions the owner must also 

consider the distance between his land (log supply) and the mi l l (log demand). The 

principle conclusion of Ledyard and Moses is that the further away the land is from the 

mi l l , the less management is employed and longer the rotation. It follows from this result 

that the supply per land area increases with distance from the mi l l , i f and only i f optimal 

economic rotation is less than the M S Y rotation. It also follows that land units 

sufficiently far from the mi l l with negative land rent w i l l not be used for timber 

production and wi l l remain in their natural state. Gray et al. (1997) reach similar 

conclusions to Ledyard and Moses when road development and maintenance costs are 

included in the calculus. Gray et al. argue that infrastructure costs (building and 



45 

maintaining road networks) increase non linearly with distance from the mi l l . This 

implies more intensive timber management close to a m i l l . 1 0 

Interdependent, Multiple-Use Stands 

The Faustmann calculus has been extended to a multiple stand level by Bowes and 

Kruti l la (1985), Paredes and Brodie (1989), Swallow and Wear (1993), Swallow et al. 

(1997), and Rose (1999). 

Bowes and Kruti l la (1985) build on the work of Hartman by extending the 

Faustmann calculus to a forest level. Here stand nontimber values are interrelated and 

thus affect forest level planning. They focus on finding the optimal scheduling of 

harvests on all stands in the forest planning unit. The planning unit is made up of many 

stands of varying ages. Total value includes the value from timber stumpage sales and 

from the services of the land and its stock of vegetation. These values are assumed to be 

known and constant over time, as are the productivity of the sites. The nontimber values 

relate to the overall conditions of the forest unit, which is described by the mix of ages 

across the set of timber stands. Therefore, changing the proportion of the forest hectares 

held in each class alters the flow of nontimber values. This further implies that there is a 

nonlinear dependence of multiple-use values on the mix of stand ages unlike the 

single-stand analysis of Hartman (1976). 

1 0 The conclusions of these models are intuitive, and they can only explain part of the 
picture with regard to the spatial allocation of resource management. Central to these 
papers is the location of a mi l l . Why was the mi l l built where it is? Is a mi l l located in a 
particular area due to proximity to existing transport infrastructure, productive timber 
land, energy sources, labor supply? These questions are central to the fields of land 
economics, regional economics and development, and urban and rural geography. 
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The Bowes and Kruti l la (1985) problem involves selecting a sequence of harvests 

and stocks over time so as to maximize the net present value from all current and future 

flows of harvest and nontimber services. This is done sequentially. In each period, the 

manager chooses the pattern of harvests across the forest that maximizes the net flow of 

value plus the appreciation in the asset value of the land unit and its stock. For each age 

class, the landowner selects a treatment (harvest or growth) that provides the highest 

marginal return. The assumed management strategy is even-aged management. Under an 

optimal treatment schedule, the rate of return from a marginal unit in stock is equal to the 

return available on alternative market investments. 

The Bowes and Kruti l la (1985) approach to modeling the problem differs from the 

Hartman model. Unlike Hartman (1976), timber price and nontimber flow values are 

endogenously determined and depend upon the selected harvest pattern from the whole 

area. 1 1 This is a consequence of the marginal values being dependent on the stock of 

standing timber in each age class, i.e., the mix of age class proportions. The principle 

finding is that land values do not need to be constant from one rotation to another, as 

conditions change within the whole forest. This suggests that the rotation length on each 

stand can differ through time. Although forest stands are interdependent, the model does 

not involve spatial harvest decisions. 

Paredes and Brodie (1989) take a slightly different approach to the forest-level, 

multiple-use problem than Bowes and Kruti l la (1985). They model a multiple-stand 

timber problem with imposed nontimber constraints. The model explicitly accounts for 
1 1 The timber harvest value is represented by the function F(H) which represents a 
willingness-to-pay based on the demand for timber. It is assumed to be constant over 
time. The marginal value of F(H) is the net price at time t that would be offered for 
timber in a competitive market. 
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each stand in the forest and implicitly for the spatial location of the stands within the 

forest. They show that i f all information is known and included in the calculus, 

stand-level decisions wi l l result in overall forest level optimization. However, the model 

is not well suited to comparative statics analysis and so provides few conclusions or 

insights. 

A series of papers, beginning with Swallow and Wear (1993), and followed by 

Swallow et al. (1997) and Rose (1999), narrow the multiple-stand, multiple-use problem 

to two adjacent stands. The general model extends to any number of stands but the actual 

numerical and analytical analysis in all three papers is restricted to two stands. The first 

paper by Swallow and Wear (1993) introduces the basic notion of stand interdependence. 

The authors explain the hypothetical situation of a stand owner who manages her stand 

for timber and forage values. The owner is aware of the exogenous production of forage 

on an adjacent stand. Swallow et al. (1997) extend the situation to one landowner who 

manages both stands for timber and forage, while Rose (1999) adds a fixed harvesting 

cost in the analysis. These papers extend the single-stand, Hartman-type model to 

account for spatial interdependence between stands. Swallow and Wear (1993) claim that 

their model is complementary to Bowes and Kruti l la (1985) as they also recognize that 

unharvested portions of the total forest may still impact a harvest decision. However, 

Swallow and Wear (1993) correctly observe that Bowes and Kruti l la 's (1985) treatment 

of the problem does not specify which stands in the forest of age class j should be subject 

to treatment i at time / (i.e., it is void of spatial considerations). 

Swallow and Wear (1993) argue that the interaction of benefits between adjacent 

stands may affect optimal management decisions. The approach the authors take to 
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illustrate their thesis is loosely analogous to an industry with many firms. The external 

interactions among firms are evaluated from the perspective of a single one. In the 

forestry context, the forest is the industry and the individual stands are firms. 

The analysis builds on Hartman's (1976) simple model. The model incorporates 

into the Hartman formulation a measure of the conditions of nearby stands, while 

retaining a focal stand. Their analysis starts with the focal stand at bare ground. The 

problem is to maximize the net present value of timber and nontimber values through an 

infinite planning horizon. The problem involves two stands, the focal stand and a single 

neighboring stand. The owner of the neighboring stand ignores the conditions on the focal 

stand while the focal stand owner is aware of what happens on the neighboring stand. It 

is assumed that the owner of each stand manages her stand for timber plus any 

contribution that nontimber output makes to their own utility. The model is essentially a 

sequential decision process that is represented by a dynamic program linking the 

sequential optimization problems through the impacts on the neighboring stand. Taking 

each rotation in succession, the manager attempts to optimize the contributions from the 

current rotation plus the benefits from the future rotations. 

The nontimber benefits drive the results. For example, let the nontimber benefits 

from the focal stand and the nontimber benefits on the neighboring stand be substitutes. 

If benefits rise with stand age (e.g., aesthetics), a harvest event on the neighboring stand 

causes an upward shift in the flow of nontimber benefits on the focal stand. Specifically, 

harvest decreases the supply of nontimber services on the neighboring stand, which 

causes the marginal value of amenities on the focal stand to rise. This event increases the 

opportunity cost of harvesting on the focal stand causing a delay in harvesting. The net 
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effect is to lengthen the current rotation age. Thus there is an effect on harvest timing and 

timber and nontimber supply from the focal stand. In conclusion, shifts in the nontimber 

benefits quantify the effects of nearby harvesting by changing the relative scarcity of 

nontimber services in the geographic areas surrounding the focal stand. In effect, 

harvesting a nearby stand has an impact on the value of the focal stand. 

The weakness of Swallow and Wear (1993) is that only decisions are made on the 

focal stand and thus the model remains non spatial. 

Swallow et al. (1997) extend Swallow and Wear (1993) to the case of two 

interdependent stands controlled by one decision maker. Thus, the externality problem 

that arises in Swallow and Wear (1993) is internalized. This formulation of the problem 

leads to similar solutions to Swallow and Wear (1993). However, now the model 

prescribes the optimal form of action on each stand so that the "forest" value is 

maximized. In general, they find from their simulation results that the timing of harvest 

on each stand tends to be staggered over time and that rotation lengths are non constant. 

The limitation of this model is that it addresses the spatial interdependence between only 

two adjacent stands. In fact, the Swallow et al. (1997) case study does not correspond to 

their original hypothetical example of three stands and fails to capture the richness of 

spatial problems associated with more than 2 stands and 2 goods. 1 2 

Rose (1999) extends the two-stand forage-timber model to include fixed 

harvesting costs. Rose recreates the simulations of Swallow et al. (1997) with the 
, 2 Thei r hypothetical case is when a manager is producing deer and timber products. Deer 
need both forage area and a calving or shelter area. I f for some reason an ecological 
barrier such as an impassable river or timber harvesting separates these two habitats, the 
ecosystem becomes less supportive of the deer population. Thus the spatial arrangement 
o f these three stands (or land uses) affects benefits received by people who value wildlife 
for viewing, hunting or existence. 
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inclusion of fixed harvesting, finding that, i f the fixed harvesting costs become very large, 

specialization vanishes and the two stands are treated identically. This is a specific 

example of the effect of scale economies; as fixed costs rise the benefits from 

specialization become less important than the benefits from a greater scale of timber 

production. This finding raises the question: under what economic circumstances is 

specialization of production favored over integrated production of joint goods? 

Another recent model to address the multiple-use problem is that of Tahvonen and 

Salo (1999). These authors take the approach of a combining utility maximization with 

the optimal rotation framework of Faustmann. This approach, they argue, is consistent 

with the non-industrial private timber owner who has other means of income and values 

her forest for in-situ nontimber values. This approach leads to non-constant rotation ages 

due to linkages between stands via the budget constraint (wealth) and in-situ values. The 

model is extended to multiple stands in the fashion of Bowes and Kruti l la (1985). The 

important conclusions from this work are that private land owners may not harvest 

indefinitely and that the inclusion of an in-situ nontimber can lead to forests with 

increasing heterogeneity of age-class structures, and thus nonconstant flow of timber to 

mills. 

Summary of Even-Aged Models 

The even-aged models, as applied to the multiple-use forestry problem, have 

generated many interesting theoretical results. The single-stand model of Hartman (1976) 

suggests that the inclusion of nontimber values, which are age-dependent, can alter the 

optimal rotation. The multiple-stand models, such as the forest level model of Bowes and 
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Kruti l la (1985) and the two-stand model of Swallow and Wear (1983), further suggest 

that the optimal rotation on a given stand need not be constant over time. This last 

conclusion suggests simple stand-level rules of thumb are inadequate when nontimber 

values depend on the overall conditions of the forest. However, this is no longer the case 

i f interdependencies are included in making the stand harvest decision (Paredes and 

Brodie 1989). 

The shortcomings of the even-aged models are, first, that even-aged management 

practices such as clear cutting are assumed, and second, that interdependencies between 

stands are vague and thus the spatial dimensions of the multiple-use problem are not fully 

captured. For example, the forest level models of Bowes and Kruti l la (1985), or 

Tahvonen and Salo (1999), consider the problem from the perspective of managing 

age-class distributions within a forest. Such a modeling simplification fails to offer any 

insight into spatial decisions; which stands in an age-class are harvested and which are 

not? Likewise, the two-stand adjacency models, starting with Swallow and Wear (1993), 

are too narrow in their focus. B y simplifying the problem to only two stands again evades 

the richness of spatial decisions prevalent in multiple-use forestry. It seems that at least 

three stands are required to begin modeling the possible variety of situations that are 

faced in multiple-use management. 

3.2.3 Uneven-Aged Forest Management and Two-Per iod Models 

Single Timber Stand 

In this section we review models that relax the assumption of even-aged 

management. If we assume uneven-aged management, then the timber management 
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problem is analogous to an investment-disinvestment problem similar to other renewable 

resource problems such as fisheries and game animals. However, as property rights over 

forest resources are usually well defined, there is no open access problem as with 

fisheries and wi ld game management. The assumed objective of uneven-aged 

management is to choose the volume of timber to remove each period to maximize the 

present value of future net revenue. The choice is constrained by the initial stock of trees 

and the growth function. . 

The problem can be caste in continuous or discrete time. The continuous time 

problem is solved using optimal control while the discrete time model is commonly caste 

in a two-period framework. 

The simplest version of the continuous time model is to start with a homogeneous 

stock of trees, X, which grows according to a simple growth function g(V). We assume 

that the growth rate is strictly decreasing in the level of growing stock. This function is 

represented in Figure 3.4. A natural equilibrium of the population stock occurs when 

growth equals mortality, VMAX. The maximum sustained yield of harvest from the 

population occurs at VMSY, the greatest attainable harvest from the population such that the 

stock maintains a constant level (growth of biomass equals mortality and harvest). The 

mathematical properties of the growth function are g' > 0 for 0 < V< VMSY 

andg' < 0 for V> VMSY, w i thg" < 0 V K 

Montgomery and Adams (1985) review the formulation of the uneven-aged 

timber management problem as an optimal control problem. The owner must choose a 

volume of harvest in each period to maximize the present value of all future earnings. 

This decision is constrained by the initial stock and by the growth function. The optimal 
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decision rule for the owner is to hold a stock of trees as long as the long-run rate of return 

on the additional stock (gs) exceeds the rate of return on competing assets (discount rate 

minus any real price increase in stumpage prices). I f the stumpage price is constant, then 

the owner w i l l hold a level of stock where the marginal return is equal to the discount 

rate. If the price is rising at a rate equal to the discount rate, the optimal management 

strategy is to maintain a stock consistent with the maximum sustained yield (biological 

maximum). The interpretation of these results are like those of the even-aged stand. The 

owner delays the timber harvest as long as the rate of return on timber investments 

exceeds the rate of return on alternative assets. 

Unlike the Faustmann model, only changes in the rate of price growth and 

discount rate wi l l affect optimal stocking decisions. Higher rates of price growth yield 

higher levels of stock as the opportunity cost of holding the stock fall. Lower discount 

rates also increase the optimal stock. Changes in the initial stock do not affect the steady 

state conditions but w i l l affect the approach to the steady state. This is intuitive but can 

not be shown with this "bang-bang" formulation of the problem as the optimal stock is 

solved for instantaneously. 

The basic optimal control problem can be extended to heterogeneous stands and 

nontimber values. Adams and Ek (1974) and Haight et al. (1985) extend the uneven-aged 

formulation to account for a heterogeneous stand (distribution of trees of different sizes 

and/or species). The model can also be extended to include nontimber values by 

assuming that these vary with the level of stock. The inclusion of nontimber values leads 

to an increase in the steady state stock i f nontimber values increase at a decreasing rate 

with increasing stock (Montgomery and Adams 1995). 
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Two-Period Models 

The basic results derived from the optimal control problem above can be derived 

from a simple two-period model of timber harvesting (Ovaskainen 1992). The advantage 

of a two-period framework is that it generates short-term and long-term results. This is 

unlike steady-state frameworks that do not account for path dynamics. The framework is 

also very flexible and easily adaptable to fit new problems. 

The two-period framework has been extensively utilized in the forestry literature 

to examine timber harvesting behavior (Ovaskainen 1992; Binkley 1981; M a x and 

Lehman 1988; Koskela and Ollikainen 1999) and public policy issues such as taxation 

(Ovaskainen 1992; Amacher and Brazee 1997; Amacher 1999; Koskela and Ollikainen 

1997) and harvest regulation (Binkley 1980). The two-period framework is well suited to 

include nontimber values, management effort and multiple stands into the calculus. 

The bulk of the work that utilizes the two-period framework is concerned with 

harvesting behavior, in particular, harvesting behavior on private lands. This approach is 

essentially a forestry application of household production theory. 1 3 A s such, the basic 

ingredients for these problems are a utility function, a budget constraint, initial 

endowments of wealth, and a forest production function. Persons receive utility from 

consumption, which is financed from initial wealth, nontimber income and timber 

income. The problem for the owner is to maximize utility from consumption over time 

subject to the intertemporal budget constraint. That is the owner decides how much to 

consume (harvest) and save (inventory) in each period. A decision to consume involves 

1 3 Binkley (1981) was likely the first to apply household production theory to timber 
harvesting behavior. 
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spending money income and harvesting timber. The remaining stock of timber after each 

harvest grows according to a known biomass growth function. 

This basic framework has been used to analyze changes in harvesting and 

management decisions from changes in the discount rate, harvesting costs, stumpage 

prices, the imposition of harvest and forest taxes, and harvesting regulations. 

M a x and Lehman (1988), Ovaskainen (1992), Koskela and Ollikainen (1997), 

Koskela and Ollikainen (1999) extend the basic framework to include nontimber values. 

A l l of these works have focused on one stand except for Koskela and Ollikainen (1999). 

Multiple-Use One Stand 

The basic two-period timber-inventory model is Ovaskainen (1992). Ovaskainen 

considers the problem where a private landowner must consider how much to cut from an 

endowment of trees in each period so as to maximize utility subject to her budget 

constraint. The owner derives utility from consumption goods and from nontimber 

benefits from the standing forest. Nontimber benefits are assumed to be monotonically 

increasing in inventory. 

The basic harvesting rule when only timber is considered is 

j £ ( l + g v ) = ( l + r ) (3-5) 

where p] and p2 are first- and second-period timber prices, r is the real rate of discount 

and gv is the change in growth from a change in standing inventory. 1 4 Equation 3.5 

indicates that the owner harvests the initial endowment of timber until the marginal 

1 4Ovaskainen (1992) only considered management effort in the timber problem. 
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incremental growth in value is equated with the incremental growth in value from 

alternative capital investments. 

When both timber and nontimber values are considered, the harvesting rule is 

¥ [ l + g " ] = { X + r ) - p - ^ ) (3-6) 

where uc is the marginal utility from consumption, v v is the marginal utility from 

nontimber forest benefits, and /? is a discount factor (j3= (1 +/?)"' where /? is a subjective 

rate of time preference). The harvest rule now incorporates the foregone marginal value 

derived from the standing forest in terms of timber values. 

Comparative statics results are obtained from this model. A n increase in 

first-period price, discount rate or initial inventory results in an ambiguous change in 

harvest while an increase in second period price or exogenous initial income leads to a 

decrease in first-period harvest. 

Multiple-Use Two Stands 

Koskela and Ollikainen (1999) extend the two-period utility maximization model 

to two stands. One stand is assumed to be private and the second stand is assumed to be 

public land. The authors derive the optimal public harvest when nontimber benefits are 

public goods, while nontimber benefits on private lands are public or private goods. The 

authors derive different optimal harvesting rules under different assumptions of the 

interdependence between the two stands in providing nontimber benefits. They assume 

that the stands can be complements, independent, or substitutes in the provision of the 

nontimber good. 
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3.3Summary and Conclus ions 

Current literature is summarized in Table 3.1. The literature is categorized as to 

the modeling framework and then ranked by its application to multiple-use forestry, 

inclusion of time, and application of spatial issues. Current models of multiple-use 

management do not successfully capture the spatial aspects of forestry. The recent 

optimal rotation models do offer interesting insights when non-convexities exist, but this 

framework does not extend well beyond two stands. It is very difficult to obtain 

analytical results and, thus, economic insights. Furthermore, no model explicitly 

considers three or more stands. It is clear that to capture many spatial issues of forestry, a 

minimum of three stands wi l l need to be considered. 

The two-period framework, like the optimal rotation framework, has been 

extended to two stands. However, unlike the rotation model, the model does generate 

testable analytical results. This framework is less complicated than the optimal rotation 

frameworks, generates results similar to optimal control models, and is very flexible. 

There are drawbacks with the two-period framework. First, the framework does 

not explicitly consider the opportunity cost of land. However, Ovaskainen (1992) 

suggests that the growth function can be constructed to incorporate age-class structure so 

as to account for the opportunity cost of land. Second, the framework does not explicitly 

consider stand age or age-class distribution, which are surely important determinants of 

stand growth and nontimber benefits. Again this can be potentially overcome by making 

growth a function of age and accounting for age-class structure. However, this introduces 

greater complexity at the cost of loosing economic insight. 
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The two-period model has several advantages. The model generates short-term 

and long-term harvesting results. The framework can be extended to include risk and 

uncertainty and can be used to investigate the various policy instruments designed to 

change harvesting behavior. 

Table 3 .1 Summary of Curren t Li terature 
Multiple Time Quasi Explicit Stands 2-stands N-stands 
Use Space" Space Linked (adjacent) 

Multi-Product Framework 

Bowes and Krutilla (1982) v7 

Gregory (1955) v7 

Pearse (1969) v7 

Vincent and Binkley (1993) v7 

Walters (1977) V 

Optimal Rotation Framework 

Bowes and Krutilla (1985) v7 

Faustmann (1849) v7 

Hartman (1976) V 
Leyland and Moses (1976) v7 

Paredes and Brodie (1989) v7 v7 

Rose (1999) •/ v7 

Swallow et al. (1997) v7 

Swallow and Wear (1993) V v7 

Tahvonen and Salo (1999) 7 v7 

Two Period Framework 

Amacher(1999) v7 v7 

Amacher and Brazee (1997) v7 v7 

Binkley (1981) v7 v7 

Koskela and Ollikainen (1997) v7 v7 

Koskela and Ollikainen (1999) v7 v7 

Max and Lehman (1988) V v7 

Ovaskainen (1992) v7 

Other Forestry Models 

Gray etal. (1997) 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

V 
v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

v7 

Note: 
aStands are not spatially defined; stands can be adjacent or detached 
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In the remainder of this dissertation, I extend the two-period harvest-inventory 

framework to a three-stand forest where net present value is maximized. This reduces the 

complexity of the model and permits greater economic insights. The model is presented 

in the next chapter. It is then used to demonstrate how interdependencies between stands 

and location differences affect optimal harvesting patterns on a multiple-use forest. 
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C H A P T E R 4 

T W O - P E R I O D M U L T I P L E - U S E M O D E L 

In this chapter, a two-period framework is used to model multiple-use forestry. 

Section 4.1, presents a three-stand profit-maximization model. It contains the basic 

assumptions of the model, how it differs from previous models, and illustrate different 

forms of the model to capture different spatial components. I then present special cases 

of the three-stand model beginning in Section 4.2 with a one-stand timber-only model and 

a one-stand multiple-use model. Next, in Section 4.3, I present various two-stand 

versions of the multiple-use model. In Section 4.4, the two-stand model is extended to 

include management effort and the issue of intensive timber management zones is 

considered. I revisit the three-stand problem in Section 4.5 with insights gained from the 

previous sections. Section 4.6 presents conclusions drawn from the model. 

4.1 Three Stands 

The multiple-use problem for the forestlands manager is to maximize the net 

present value of a three-stand forest over a two-period planning horizon. The manager 

accomplishes this by choosing a level of harvest from each stand in each period to 

maximize net present forest benefits, B(.). The three stands are denoted by Z-left, 

M-middle, and i?-right and the two periods are referenced as 1 and 2. The use of L, M 

and R emphasizes the spatial arrangement and location of the stands.1 

'Stands can be adjacent or differentiated in space by distance functions. For example, the 
model can easily include transport costs of timber or people (travel time to recreation site) 
or distance of stands from another land form, such as a river or lake. A n obvious point, 
but worth mentioning, distance functions require points of reference. Either distance 
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Total net present benefits, B(h), are the sum of the net present value of timber 

benefits, F(h), and the net present value of nontimber benefits, E( V). Timber benefits, 

F(h), are simply the volume harvested, h, in each period multiplied by the stumpage price, 

p, i.e., there are no pecuniary interactions. Stumpage price can vary across all stands in 

the forest and between periods. This is the simplest means of differentiating one stand 

from another. To keep the model simple, we initially assume that the timber price is 

equal across the three stands but can differ between periods. 

We assume there is an initial inventory of timber at the beginning of the time 

horizon. We assume that after the first-period harvest the stand grows according to a 

known growth function. The stand growth function, g(V), is a function of the inventory 

left after the first harvest. The growth function has the properties of g ' > 0 for V < J / M S Y , 

g'<0 for V> J / M S Y , and g" <0 for all V, where 1 / M S Y is the inventory that corresponds to the 

maximum sustained yield ( M S Y ) . 2 We allow the growth function to be different on each 

stand. 

The nontimber benefits, E(V), are assumed to be a function of inventory, V. 

Although this is an unrealistic assumption, as it ignores nontimber benefits independent 

of stand inventory, dependent on spatial distribution of age-classes or dependent on stand 

age, it is not without merit. In fact, nontimber benefits are a function of many variables 

of which the standing inventory is a major factor.3 In the general case, nontimber benefits 

refers to how the stands differ from each other or how they differ from another point of 
reference, such as a mi l l or river. 
2Ovaskainen (1992) reviewed function forms for the growth function. The most 
commonly assumed form is the logistics yield function shown in Figure 3.4 (p.36). 
3Nontimber benefits are likely to be a function of stand inventory, which is a function of 
stocking density, species type and mix, and age, non-tree attributes of the land such as 
topography and geographical location, and non-land attributes such as numerous 
ecological factors. 
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on each stand are a function of its own inventory and the inventory on other stands in the 

forest. There can also be more than one nontimber good or service on each stand. 

The relationship between a particular stand's nontimber value with other stands is 

central to the model. The nontimber values derived from a given stand in the forest can 

vary from being independent to completely dependent on other stands in the forest. In 

general, nontimber benefits are a function of the inventory on the L, M and R stands, 

EiV^, V*4, V). More specifically, the forest-level nontimber benefits function can be 

written as the sum of stand-level nontimber benefits functions or as a general forest-level 

function. Whatever the specific form of the nontimber function, we assume always that 

the function is smooth and continuous and strictly concave in inventory, V. Explicit ly, we 

assume that £ ,

V s v s < 0 for all se S, where S={L,M,R}, and that the Hessian matrix of 

second-order partial derivatives is negative definite (Chiang 1984).4 

Figure 4.1 illustrates the inventory profile of a three-stand forest over two periods. 

In time zero, we start with an initial inventory of timber on each stand. A t this instant, a 

harvest decision is made on each stand leaving a new stock of timber. The interval 

between harvests can be of any time period, e.g., one year, five years, or more. 5 Prior to 

the second harvest, the inventory is augmented by forest growth. The growth function 

accounts for the interval between harvests. For example, i f the interval between harvests 

4The assumption of smooth, continuous and strict concavity ensures that the solution is a 
unique global maximum. The assumption can be relaxed but a unique global maximum 
cannot be guaranteed. The greatest benefit of the concavity assumption is that the 
summation of concave functions is also a concave function (Beavis and Dobbs 1990). 
This is not true with the sum of quasi-concave functions. For this reason, we assume that 
the functions are concave. 
5The time period between harvests is exogenous to the model. A more complete model 
would determine the optimal cutting cycle for an uneven-aged forest, perhaps in a 
Faustmann-type model similar to Chang (1981). 
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is five years the growth function accounts for five years of accumulated growth from the 

last harvest. During the interval between harvests a constant flow of nontimber value is 

derived from the inventory. We assume that the timber and present value of nontimber 

benefits are realized at the time of harvest to simplify the model. 6 A t the beginning of 

period 2, a second harvest from the second-period inventory (inventory after first harvest 

plus growth) is realized leaving a new inventory to produce nontimber benefits. 

Second-period timber revenues and nontimber benefits are discounted by l/(l+r), where r 

is a real rate of interest. 

Stand 

Left Middle Right 

< Time Zero 

< After First Harvest 

< After Second Harvest 

Figure 4.1 Inventory Profile of a Three-stand Forest over Two Periods 

Formally, the problem is to 

max 
hL\hM\hR\hL2,hM2,hR2 

B=pl(hLl +hm +hm) + E(VL\Vm,VR') 

p2{hm + h m + hR1) E(VL2,VM2,VR2) 
(1+r) + ( 1 + r ) 

(4.1) 

+ 

6 For example, i f the harvest interval is five years then a flow of annual nontimber benefits 
are accounted for over this term. A more exact estimation of benefits entails continuously 
accounting for annual forest growth and the change in nontimber benefits over the term. 
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subject to the first-period harvesting constraints on each stand, 

hLX <XL (4.2a) 

(4.2b) 

hRX <XR (4.2c) 

and second-period harvesting constraints 

hL2<XL-hLl +gL(XL-hLl) (4.2d) 

hm ^ X M _ hm + GM(XM _ hMi) (4.2e) 

hR2^XR-hRl+gR(XR-hRl) (4.2f) 

where pl and p2 are timber prices in period one and two, and XL, X™, and X* are the initial 

inventories.7 The stock accounting identity for period one on stand s is 

The two-period model presented here differs from earlier two-period forest 

models as more than two stands are included. This formulation permits a more general 

representation of the multiple-use problem than earlier work and the introduction of a 

greater variety of spatial problems. 

The three-stand model can capture many different asymmetries. Figure 2.1 (p. 17) 

depicts some of the spatial issues that can be captured by this model. Distance 

relationships (Figure 2.1b) can be incorporated into the model by introducing different 

stumpage prices or nontimber values on each stand. Specific spatial considerations, such 

p i =Xs-hsl (4.3a) 

while the inventory in period two on stand s is 

Vs2 = Xs - hsX + gs(Xs - hsl) - hsl (4.3b) 

Superscripts are used to refer to the stand and period, e.g., hLl refers to the harvest on 
stand L in period 1 and pl refers to the stumpage price in period 1. 
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as stand interdependencies and habitat scale depicted in Figure 2.1a and 2.1c, can be 

incorporated by explicitly expressing stand- or forest-level nontimber value functions. 

Different forms of interdependency are captured by expressing each stand 

function as a function of one or more stands. For example, the case illustrated in Figure 

2.1a-vi can be expressed as 

max B=pl(hLl +hLl + hRX) + EL(VL\Vm) + EM(VL\Vm) 
IJL\ j,M\ /jR\ )jL2 fjM2 fjR2 r ' ' 

D2(hn + h m + hR2) FL(VL2 Vm) 
+ ER(V",¥<«) + P 1 , ^ + h \\ ' \ } (4.4) 

(1+r ) (1+r ) 

EM(VL2,VM1) ER(VL2,VR2) 
+ ( 1 + r ) + ( i + r ) 

The stand-level nontimber benefits on the left and middle stands, EL and EM, are both 

functions of the inventory on the left and middle stands indicating a symmetric 

interdependency between the two stands. Nontimber benefits on the right stand, ER, are a 

function of the inventories on the left and right stands, indicating a one-way 

interdependence between the left stand and right stands. The exact asymmetric 

relationship between the right and left stand is not expressed in Equation 4.4. A 

separable formulation of the nontimber benefit function on the right stand might be 

ER(VL,VR) = ER(VL) + ER(VR) (4.5) 

Equation 4.5 expresses right-stand nontimber benefits as the sum of nontimber benefits 

generated from conditions on the right and left stands. The second term can be positive 

or negative to indicate the nature of dependence between the stands. I f the stands are 

independently owned then this term measures the level o f external cost or benefit 

associated with a level of inventory on the right stand. Such an interpretation captures 

external costs associated with the rate or level of harvest on nontimber values such as 
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visual quality, water quality, fish and biodiversity. This form of interdependence is the 

classic case considered in environmental economics. 

Equation 4.1 can also be rewritten to express more than one nontimber good and 

habitat scale. Consider the case o f two nontimber goods, E and W. Assume that good E 

is best expressed at a stand level while good W is best expressed as a forest-level benefit, 

but production occurs only on two stands in the forest. This case might be represented by 

the following problem: 

max B=pKhu +hm + hRl) + EL(VL\ Vm) + EM(VU, VM\ VRX) 

D2(hL2 + h m + hR2) FL(VL2 Vm) 
+ ER(Vm,VR])+ W{VU,Vm) + P K , ) + h K , ' \ } (4-6) 

(1+r) (1+r ) 
EM(VL2,VM2,VR2) ER(Vm,VR2) W{VL2,Vm) 

+ (1+r ) + ( 1+r ) + ( 1+r ) 

Equation 4.6 states that the nontimber good E is measured as the sum of benefits on each 

stand. The stand-level fT-benefits on each stand depend on the inventory on each stand 

and the adjacent stand. The nontimber good W depends on the level of inventory on the 

left and middle stand and is measured as a forest-level benefit. For example, W may be a 

wildlife value. The breeding and rearing habitat range (production) of the species occurs 

over the left and middle stand but individuals move over the entire forest. Thus, the 

benefit realized from use or nonuse of the species occurs over the entire forest. The left 

and middle stand conditions are inputs into production while all three stands are sources 

of supply. E, on the other hand, is a nontimber benefit that is produced and realized on 

each stand, but the level of production depends on adjacent stand conditions. A possible 

example is recreational benefits. Recreational benefits derived from enjoying a view of a 



67 

forested valley are realized on each stand but are affected by conditions of the visible 

landscape of adjacent stands. 

Consider problem 4.6 in more detail. We can rewrite the problem by substituting 

the accounting equations 4.3a and 4.3b into Equation 4.6: 

max B =p1 (hLi + hm +hm) + EL(XL - hu ,XM -hm) + ER{XM - hm ,XR - hR]) 
ftL\ foM\ /jfll foL2 frMl /,ff2 ^ 

v2(hL1 + hM1 + hR1) 
+EM(xL-hn,xM-hm,xR-hRl) + w{xL-hL\xM-hm) + p y , , ' 

(1 +r) 

EL(XL -hL] + Rl(Xl -h11)-hL2,XM-hm + xM{XM-hm)-hm) 
+ (1+r) 

( XL-hu+gL(XL-hLi)-hL2,XM-hm+gM(XM-hm)-hm, ^ 
EM\ 

XR-hm +gR{XR-hRX)-h R2 

(4.7) 

(1+r) 

ER(XM - h m + zM(XM - h m ) - hM2,XR - hR[ + gR{XR - h m ) - hR1) 
+ (1+r) 

W(XL -hLl + gL(XL - h L l ) - h L 2 , X M - h m +£M(XM-hm)-hm) ' 
+ (1+r) 

If we assume that the harvesting constraints are satisfied, the first-order conditions 

(f.o.c.) of the unconstrained problem are8 

dB B i FL FM w EJ2(l+gL

v) Wn(l+rt) 
u ~P -ELX-ELX-WL\- - ~ n x - 0 (4.8a) 

d h u -y - L i - I I ( 1 + R ) ( 1 + R ) 

dB , p L p M f R w EM2(l+gy) E&a+rf) 
QfrM\ ~P C M I & m wM\ (l+r) ( 1 + r ) 

_ER

M2(l+gM) WM2{\+^) _ 

( 1 + r ) ( 1 + r ) 

(4.8b) 

Subscripts on the nontimber functions refer to the partial derivative with respect to the 
dW ( dW Y ' dV L 1 ~\ 

stand inventory and period. For example, = ^yL1 - y^ym )[_ Q^LI ) r e f e r s to the 

change in nontimber benefits on stand L from a change in the second period inventory via 
„ dgR f c V v 

harvest and, gv - ^yR - \JQVR J^Q^R J 

inventory via harvest. The superscript on the nontimber and growth functions refer to the 
stand while the absence of a superscript on a nontimber function implies a forest-level 
function. 

f4r^-l is the change in growth on R from a change in 
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-§2_-„i f L pM E"R2(l+gR) j % ( l + g * ) 

DHR\ ~P -ERX-ERX- ( 1 + r ) - ( 1 + r ) - 0 (4.8c) 

3 * — ? - - ^ - 0 (4.8d) 
dhn (1+r) (1+r) (1+r) (1+r) 

dB P2 EL

M2 E$2 ER

M2 WM2 = 0 (4.8e) 
dh^2 ( 1 + r ) ( 1 + r ) ( 1 + r ) ( 1 + r ) ( 1 + r ) 

dr? _ P2 _ ERI _ ER

R2 _ . 
a ^ 2 ~ ( l + r ) (1+r) ( l + r ) ~ U { ^ 

Rearranging Equations 8d-8f and substituting them into Equations 8a-8c gives the 

first-period harvest decision rules: 

px=EL

Ll+E^ + Wu+jf^ (4.9a) 

p1 = EL

m + + ER

m + PFMI + " T T T ) (4.9b) 

p^^.+^+^y (4.9c) 

The decision rule on each stand is different but has a common structure. The harvest rule 

is to cut until the marginal timber benefit is equal to the foregone marginal nontimber 

benefits, including the marginal impacts on interdependent stands, plus the foregone 

marginal timber revenues in the second period. If functions in Equation 4.6 are known 

and exactly specified, the problem is solved by simultaneously solving the system of 

equations, 4.8a-4.8e. 

From the implicit function theorem, comparative statics results can be obtained 

from the general model. First, from our assumption that the functions are all smooth, 

continuous and strictly concave, a solution exists which solves the system of first-order 

conditions. The solutions to.the problem can implicitly be written as functions of the 

parameters of the model, hsn* = hsn*(pl,p2,r,XL,XM,XR) for all s and n. Second, we 
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substitute the optimal solutions into the first-order conditions to form six identities that 

we totally differentiate to obtain the Jacobian matrix of second-order partial derivatives. 

Finally, changes in the optimal harvests from changes in the parameters, comparative 

statics results, can be obtained by applying Cramer's rule. 

Due to the size of the model, the comparative statics results can not be derived. 9 

Instead of working through the full model, we reduce the problem to one and two stands 

to obtain comparative statics results and gain insights into the more complicated 

three-stand problem. 

Though the comparative statics results are difficult to obtain, envelope results are 

easily obtained. We substitute the implicit harvest solutions back into the objective 

function, Equations 4.8. We then totally differentiate Equations 4.8 to obtain the 

following envelope results 

= hL]* + hm* + hRX* >0 (4.10a) 

m^ = h—±h—±h—>0 ( 4 1 0 b ) 

dp2 1 + r 

dB dXL 
=pl>0 (4.10c) 

^ M = P ] > ^ (4-10D) 

^ V >0 (4.10e) 
dXR 

9 A mathematical program such as Maple V can be used to solve the problem. However, 
due to the size of the problem, the solutions are so complicated and difficult that they are 
not reported. 
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dB _ _p2(hL2* + hm* + hR1*) _EL+EM + ER + W n 

dr ( 1 + r ) 2 ( 1 + r ) 2 < U (4.10f) 

Each envelope result measures the total change in the objective function from changes in 

a model parameter. A n increase in prices or initial inventories w i l l both increase net 

present value, while an increase in the interest rate decreases the net present value of the 

forest. Equations 4.10a and 4.10b are standard neoclassical results for a 

profit-maximizing firm and are commonly referred to as Hotelling's lemma (see Varian, 

1984). 

The general three-stand model can collapse into smaller problems by assuming 

independence between all or any of the stands. These special cases are considered below. 

The insights gained from these sub-models provide better understanding of the more 

complicated three-stand problems. 

4.2 One Stand 

If we assume that all three stands are independent in the production of timber and 

nontimber benefits, the model collapses into three single-stand problems. Consider first 

the case when only timber is valued and then the case when timber and nontimber 

amenities are both valued. 

4.2.1 T imber O n l y 1 0 

Consider the problem of maximizing the net present value from timber revenues 

over two periods. We assume timber benefits are independent between stands and thus 

1 0The analysis is very similar to Ovaskainen (1992). Ovaskainen's (1992) model is a 
utility maximization model and management effort is explicitly modeled. The exclusion 
of utility and management effort greatly simplifies the analysis. Management effort is 
introduced later in the chapter. 
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only one stand is analyzed; hence, we drop the stand identifier in this subsection. We 

assume that prices in each period are known and inventory grows according to the growth 

function, g{V). 

The simple two-period timber problem is 

max F(hx, h2) = px h x ( 4 . 1 1 ) 
y ^ (1+r ) 

subject to the harvesting constraints for period 1, 

hx <X (4.12a) 

and for period 2, 

h2^X+g(X-hx)-hx (4.12b) 

where r is a real rate of interest and X is an initial endowment of inventory. 

This model is not dissimilar from the basic two-period model of exploiting a 

nonrenewable resource, such as a mine or a ground water reservoir, and is similar to 

Binkley (1980)." The notable exception between this model and the nonrenewable model 

is the natural growth of the physical stock of timber over time and Binkley (1980) uses a 

constant rate of growth. 

The problem is a constrained optimization problem and can be solved by rewriting 

the model as a Lagrangian. However, as there is no value in the standing forest at the end 

of the planning horizon, the entire forest must be cut down within the two periods. 

Specifically, the harvest constraints reduce to the simple constraint 

hx+h2=X+g(X-hx) (4.13) 

"See Hartwick and Olewiler (1998) for good exposition of the simple two-period model 
and the history of the optimal extraction model for a nonrenewable resource. 
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Therefore, the sum of harvests in each period must equal the initial stock of timber plus 

any growth of the forest. 

We solve Equation 4.13 for the second period harvest, h2, and substitute this into 

the objective function, Equation 4.11; hence, we drop the period identifier on harvest for 

the rest of this subsection. The unconstrained problem is 

max F(h) = pih + - y. (4.14) 
h w y (1+r) v 

The first-order condition sufficient for a maximum is 

The necessary second-order condition for a maximum, F Vv=gw<0, is satisfied. 

The harvest rule in Equation 4.15, is similar to the optimal decision rule for 

P2 

exploiting a nonrenewable resource, p1 = ^ . This model can be extended to an 

industry or country (small open economy or closed economy) and is a fundamental 

building block for natural resource accounting for renewable and nonrenewable resources 

(see National Research Council 1999). The simple intertemporal harvest rule is to 

harvest until present marginal value in each period is equated. We can rearrange 

Equation 15 to form 

j £ ( l + g v ) = (l+r) (16) 

which states the optimal harvest occurs when the rate of return on the remaining 

inventory is equal to the rate of return on competing assets.12 This decision rule is 

identical to the rule derived by the utility maximization two-period model of Ovaskainen 

1 2 I f we consider g a constant then the optimal harvesting rule is to harvest in period one i f 
r>g or harvest in period two i f r<g. 
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(1992). Incremental growth in value has two components; the remaining stock grows in 

value from changes in timber prices between periods and from growth in the physical 

stock. 1 3 

The first-period harvest is a measure of the short-run timber supply as stands that 

exceed the opportunity cost of capital are cut. Note that the arbitrary decision of ending 

the model at two periods biases the second period decision. Therefore, we do not concern 

ourselves with the second-period harvest and inventory solutions. That said, the terminal 

period does not bias the first-period harvest and inventory results (Ovaskainen 1992). 

Ovaskainen (1992) shows that, in a three-period model, the second period harvest is 

analogous to the long-run steady state harvest derived from optimal control models and 

the first-period harvest is short-run harvest. 

It is obvious from the first-order condition that when r is zero and stumpage price 

constant the optimal inventory corresponds to the maximum sustained yield stock (g v

= 0) . 

Therefore, for a positive interest rate the optimal inventory w i l l be less than the maximum 

sustained yield inventory. This is a standard result with the exception of Binkley 

(1987). 1 4 

Comparative statics results are derived by first, substituting the optimal harvest 

into the first-order condition to form the identity 

P Y+r P ^ ^ 

1 3In natural resource accounting, the change in value from a change in price over time is 
referred to as the capital gain/loss of holding the capital stock (growing stock) (National 
Research Council 1999). 
1 4 Binkley (1987), using the Faustmann calculus, showed that the optimal rotation can be 
longer than M S Y for very fast growing species. 
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and then, differentiating with respect to the parameters. The comparative statics results 

are 

d h 1 + r - > 0 (4.18a) 
fyl P2gvv 

dh _ (1+gv) 

dp2 p2gvv 

dh 

<0 (4.18b) 

- > 0 (4.18c) 
dr ~ (\+r)g 

H=l (4.18d) 

The first-period harvest increases when the first-period price, interest rate and initial 

inventory increase and decreases when the second-period price increases. Note that 

solving for the optimal harvest simultaneously solves for the optimal growing inventory, 

V* = X-h*. Therefore, all the comparative statics results with respect to the optimal 

growing inventory are readily obtained. 

^ - ^ t 2 L < 0 (4.18a) 
dp 1 p2g 

dV _ - (1+gv) 
dp2 p2gvv 

>0 (4.18b) 

f = 7 T ^ f - < 0 (4.18c) 
dr ( l + r ) g w 

| | = 0 (4.18d) 

Simple envelope results are derived by substituting the implicit harvest solution 

into the objective function and totally differentiating with respect to the parameters. 

JjFr = h*>0 (4.19a) 
dp] 

dF_X-h*+g(X-h*)_jLiL^0 ( 4 1 % ) 

dp2 1 + r 1 + r 
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£ = ( 4 , 9 c ) 

£=W-*\y*-™=jgLzO (4 ,9d) 

The results are similar to those of the more complicated three-stand multiple-good 

problem. 

4.2.2 T imber and Nontimber Good 

Here we extend the simple two-period model to include a nontimber good, again 

focusing on one stand so stand notation is dropped for convenience. Assume that the 

standing forest produces a nontimber benefit, E(V). Recall that the function is assumed to 

be smooth, continuous and concave in inventory, Evv(V)<0. Assume that the nontimber 

benefits earned between decision periods are realized at the same instant as the timber 

revenues. The problem is now to 

ryn IS 1 ,1 rv ̂  1 \s P ^ E(X - k1 + g(X - k1 ) - k2) 
max B(h\,h)=plhx +E(X- h{) + 77 r + — , f , - (4.20) 
hiM (1+r) (1+r) v ' 

subject to the harvesting constraints, 

hx <X (4.21a) 

h2<X-hl+g(X-hl) (4.22b) 

Unlike the timber-only problem, we cannot assume that the entire forest is cut during the 

time horizon as the standing forest has value. Only i f the maximum nontimber benefit 

occurs at zero does the previous assumption hold. 

If we assume that the harvesting constraints are satisfied, the first-order of 

sufficient conditions for a maximum are 1 5 

1 5The first-period harvesting constraint is binding when: one, the maximum nontimber 
benefits occur at zero inventory and the relative price of timber to nontimber is less than 
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dh1 

dB = /?' -E\ -E2 
(l+r?v) = 0 (4.23a) 

dB P2 E2 = 0 (4.23b) 
dh2 1 + r 1 + r 

A s the nontimber function is strictly concave and the forest production function is also 

strictly concave, the objective function is assuredly strictly concave. The necessary 

conditions for a maximum, Bi,ihi<0, Bi,2h2< 0 and BhihiBh2h2-2Bhih2>0, are also satisfied. 

From Equation 4.23a, we see that the optimal first-period harvest occurs when the 

current marginal timber benefits are equated with the discounted marginal nontimber 

benefits of periods one and two. Equation 4.23b indicates that the optimal second-period 

inventory and harvest equate the marginal N P V timber benefits with the marginal N P V 

nontimber benefits. 

Substituting Equation 23b into Equation 23a reveals the first-period harvest rule, 

We now compare this rule with the timber-only rule (Equation 4.15). The inclusion of 

nontimber values affects the equilibrium level of inventory and the first-period harvest. 

The marginal nontimber benefits can favor a first- or second-period harvest. This is best 

understood by considering a special case. If timber prices in each period are assumed to 

be zero, the optimal harvest (ignoring harvesting costs) is simply where nontimber 

benefits are maximized. Note that, in this case, the decision rule is independent of the 

rate of interest and the forest growth. N o w consider the form of the nontimber function. 

1, or the discount rate is infinite. Throughout it is assumed that neither of these cases 
occur. A second corner solution is also possible; the entire stand is left uncut. This is 
likely to occur when the nontimber benefits are monotonically increasing and are much 
greater than the timber benefits. We entertain this possibility briefly but again assume an 
interior solution. 

pl =E\ +P 7 ( l + g y ) 
(1+r ) 

(4.24) 
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There are two extreme possibilities. First, maximum nontimber values occur at zero 

inventory. Second, maximum nontimber values occur at the carrying capacity of the 

stand, K (see Figure 3.4, p.36). 

Now, reintroduce positive timber prices. When timber prices are positive and 

maximum nontimber values occur at zero inventory, the first-period harvest (inventory) is 

lower (greater) than without timber values. When nontimber benefits reach a maximum 

at K, the first-period harvest (inventory) is greater (lower) than without timber values. In 

both cases, the optimal harvest (inventory) moves towards the timber-only harvest 

(inventory). Therefore, the joint-production harvest is greater (lower) than the 

timber-only harvest (inventory) i f the nontimber value reaches a maximum at an 

inventory less (greater) than the optimal timber-only inventory. For example, the 

inclusion of water values may lead to a greater harvest (lower inventory) while spotted 

owl values may lead to a lower harvest (higher inventory) than the timber-only harvest 

(inventory). This conclusion expands on Ovaskainen (1992) and is consistent with 

Hartman (1976) and Strang (1983). 1 6 

Equation 4.24 can be rearranged to form 

^ 0 + g v ) = ( l + r ) ( l - | f ) (4.25) 

to provide an alternative interpretation of the harvesting rule that is similar to Ovaskainen 

(1992). 1 7 The manager harvests from the initial inventory until the marginal rate of return 

1 6Ovaskainen (1992) only considered monotonically increasing nontimber benefits. 
1 7Ovaskainen (1992) derives the first period harvest rule 
p2 v (Vx) 
^—[1 +g v ] = ( i + r ) _ — — - — - f r o m a two-period utility maximization model, where uc 

" Plpuc{cs) 
is the marginal utility from consumption, vv is the marginal utility from nontimber forest 
benefits, and pis a discount factor that reflects individual time preferences. Letting fi 
equal l /( l+r), Vv=El and dropping marginal utility from the formulation results in 
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on the growing inventory, in terms of timber value, is equated with the marginal rate of 

return on other assets, adjusted by the marginal value of nontimber amenities from the 

standing forest. From Equation 4.25, it is possible that the optimal first-period inventory 

is greater than the maximum sustained yield inventory. This occurs when nontimber 

values reach a maximum at an inventory greater than the M S Y inventory and the 

marginal nontimber benefits are greater than the first period timber price for V> J / M S Y , 

where J / M S Y is the maximum sustained yield inventory. 

Figure 4.2 illustrates the two extreme nontimber cases described above. Figure 

4.2a illustrates the case where maximum nontimber benefits occur at zero inventory while 

Figure 4.2b illustrates the case where the maximum occurs at or beyond the carrying 

capacity of the stand, K. The upper panels illustrate the growth function and nontimber 

benefits for each case. 

B y setting pl=p2 in Equation 4.25, 

( l + g v ) = ( l + r ) ( l - | f ) (4.26) 

The left-hand (LHS) and right-hand (RHS) sides of Equation 4.26 are illustrated in the 

lower panels for the two different cases. In the lower panel of Figure 4.2a, E\ < 0 for 

V>0 and thus results in an upward sloping line starting at 1+r. Therefore, for r > 0 the 

optimal inventory for joint production of nontimber amenities plus timber, V™7, is less 

than the optimal timber inventory, I / r , and the M S Y inventory. Conversely, the case 

illustrated in Figure 4.2b has E\ > 0 for all V and therefore, the R H S of Equation 4.26 

lies below 1+r for all V. Consequently, V™1 lies to the right of the optimal timber 

inventory and can be greater than the M S Y inventory. For r = 0 and pl=p2=l, the joint 

expression identical to Equation 4.25 above. 
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timber and nontimber solution is equal to M S Y only if, maximum nontimber benefits 

coincide with the M S Y inventory. For timber prices greater than one, the 

joint-production inventory can coincide with the M S Y inventory when the maximum 

nontimber benefits occur at a higher inventory. In conclusion, the joint-production 

inventory is greater or less than the M S Y and the optimal timber inventories. 

Figure 4.2 Optimal Inventory with Joint Production 

Again, we derive comparative statics results by substituting the implicit solution 

of the first and second period harvests into the first-order conditions to form the identities 

p'-Ex(X-hx\a))-E2[X-h'\a) + g{X-hx\a))}{X+^~hl ( a ) ) ) =0 (4.27a) 
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P2 _E2[X-hl*(a) + g(X-hl*(a))] = 

1 + r 1 + r K • ) 

where a contains X,p\p2, and r. 

The comparative statics results are obtained by totally differentiating Equations 

27a and 27b with respect to a and solving the system of equations using Cramer's rule. 

8h]* E22 1 Sp1 (l+r)D 

dh1* _ (1 +Zv)E2i 1 
Sp2 ( 1 + r ) 2 D 

8hl* pK\+gv)E22 1 
dr ( 1 + r ) 3 - D 

dh1* 

> 0 (4.28a) 

< 0 (4.28b) 

> 0 (4.28c) 

dX = 1 (4.28d) 

where D = EnE22(l+ r) -\-gvvE2E22 > Q - g t n g j a c o b j a n determinant whose sign follows 
(1+r ) 

from the concavity assumptions of g and E and the first-order conditions. The 

comparative statics results are similar to the timber-only model with signs identical to the 

timber-only model. 

The envelope results are identical in sign to the timber-only model and the 

three-stand model. The results are 

d B =hx* >0 (4.29a) 

> 0 (4.29b) 

dpi 

dB _ h2* 
dp2 1 + r 

&__Ei+m±sA__pt>Q ( 4 2 9 c ) 
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4.3 Two-Stand Two-Good Models 

4.3.1 Two Stands - One Influencing the Other 

The simplest extension of the one-stand multiple-use model is to include an 

exogenous second stand. Here it is assumed that the objective is to maximize the net 

present value of benefits on one stand, denoted by L for the left stand. Assume that the 

level of nontimber benefits on the left stand depends on the exogenous conditions of an 

adjacent stand.1 8 The adjacent stand is denoted by R for the right stand. This problem is 

conceptually identical to the problem considered by Swallow and Wear (1993): 

max BL = p1 hLl + E({XL - hL]); VR]) + 
h ' A h L 1 ( 1 + r ) (4.30) 

EL{(XL - hLX + gL(XL - hLl) - hL1); VR2) 
+ (1+r) 

subject to the harvesting constraints, 

hLl <XL (4.31a) 

hL2<XL-hLl+gL(XL-hLl) (4.31b) 

VRn is the exogenous level of inventory on the right stand in period n. The first-order 

conditions are 

=p* -EL

Ll(Vu;VRl)-EL

L2(Va; V R 2 ) ^ ± - 0 (4.32a) 

8B±_jS_ EJ2{V^VR2) 

dhL2 ~ 1+ r 1+ r ~ U 1 ' 

Equations 4.32a and 4.32b are identical to the first-order conditions for the one-stand 
problem except the solution now depends on VRn. The difference between the optimal 

1 8The stands need not be adjacent, Consider the case of migratory birds. The stands can 
represent two different forest habitats, summer habitat and winter habitat. 
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harvesting solution on an independent stand and a stand dependent on an adjacent stand 

w i l l depend on the nature of interdependence between the two stands. 

The comparative statics results are derived by substituting the implicit harvest 

solution into the first-order conditions to form the identities 

px-EL

LX(XL-hLX\a);VRX) 

-EL

L2(XL -hL{\a) + gL(XL -hLX\a))-hL2\a); VR2){1 ^ s 0 

p2 EL

L2(XL-hL{\a) + gL(XL-hLX\a))-hL2\a)-VR2) n 

T+7 - " TTT : B 0 (4.33b) 

The comparative statics results for p\p2, r a n d X L are identical to the one-stand case and 

are not repeated. Differentiate Equations 4.33 with respect to VRn and solve the system 

of equations to obtain 

= ( l + r ) D % lfEim $0 ( 4 ' 3 4 a ) 

fykT = 0 (4.34b) 

Thus, an increase in the inventory on the right stand leads to an increase (decrease) of the 

harvest on the left stand when the cross-partial derivative, EiX]U , is negative (positive). 

Where the cross-partial is zero there is no change in the optimal harvest. 

Formally, the cross-partial derivative measures the change in the marginal 

nontimber benefits on the left stand from a marginal change of the inventory on the right 

stand. The cross-partial derivative can be interpreted as a measure of substitution or 

complementarity between the left and right stands in producing nontimber benefits on the 
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left stand. This is generically referred to as the indirect effect, while the second-order 

partial derivative is referred to as the direct effect.19 

N o w consider a specific case. Assume an increase in right-stand inventory leads 

to an increase of available habitat and subsequent increase of wildlife numbers on the 

right stand. Migration of wildlife species from the right stand to the left stand can lead to 

greater or lesser total wildlife values and decrease (substitute) or increase (complement) 

the marginal value of wildlife on the left stand. If the increase of wildlife on the left stand 

(via the right stand) increases total value of wildlife and does not affect the marginal 

value, then the left-stand harvesting decisions are unchanged. Stands are independent and 

the indirect effect is zero. If the marginal value of wildlife is affected by the increase in 

wildlife from the right stand, then the left-stand manager wi l l find it profitable to change 

the level of harvest and inventory. In this case, i f the indirect effect is negative (stands 

are substitutes), harvest is increased. If the indirect effect is positive (stands are 

complementary), harvest is decreased. The optimal response depends on the nature of 

interdependence between the stands. 

The magnitude of increase in harvest depends on both the indirect effect, EL

lXRX, 

and the second-period direct effect, EL

L1L1. Therefore, the first-period harvest decision is 

forward looking as it explicitly considers the impact of current harvest decisions on future 

nontimber benefits. 

l 9 Koskela and Ollikainen (1999) interpret the cross-partial as 
Auspitz-Lieben-Edgeworth-Pareto ( A L E P ) measure of substitution, independence and 
complementarity. This is used in the context of the interdependence between public and 
private forests in providing a public nontimber good (recreation). The interdependence 
is via the marginal valuation of nontimber benefits. The nature of the interdependence 
between stands is discussed further in Chapter 5. 
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The envelope results for p\ p1, r and XL are identical to the one-stand model and 

are not repeated. The envelope result for a change in first-period inventory on the right 

stand are 

- f ^ = ^ , J O (4.35) 
dVRl 

A n increase of right-stand inventory can increase or decrease the forest benefits enjoyed 

by the owner of the left stand. For example, recall Equation 4.5. The change in inventory 

(or harvest) on the right can cause a negative impact on left's nontimber benefits. For 

example, larger inventory on the right provides greater habitat for predator species 

(wolves) which then compete with prey species on the left (deer). Therefore, higher 

inventory on the right involves a negative production externality. 

On the other hand, and probably more common, changes in inventory can 

positively affect the level o f nontimber benefits on the left stand. This does not imply 

that stands are complements but simply suggests that having more inventory on each 

stand increases overall nontimber benefits on the left stand. This is likely the case with 

values that monotonically increase with the total forest inventory, e.g., recreation values, 

water quality, aquatic values such as fish, and many wildlife species. 

To reiterate, optimal harvesting decisions on the left stand can be affected by 

changing conditions on adjacent stands. Swallow and Wear (1993) also find that changes 

on one stand may change marginal conditions on the other stand. 
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4.3.2 Two Stands: Asymmetric Nontimber Benefits on One Stand 

A n alternative two-stand problem is where two stands are controlled by one 

decision maker. We maintain the assumption that the level of inventory on the right stand 

affects the production of nontimber benefits on the left stand. We can either view this 

problem as one of asymmetric or symmetric interdependence. A n asymmetric case might 

be represented by Equation 4.5. That is an asymmetry in forest level nontimber 

production is assumed. This is the problem depicted in Figure 2 . la - i i . The externality is 

internalized. However, we can also assume that each stand is an input and positively 

affects the production of the nontimber goods. In this case, a symmetric interdependence 

between the two stands is assumed. In either case, net present forest value is maximized. 

N o w the problem becomes: 

p2(hL2 + hR2) 
max B=px(hLl + hRX) + EL(Xl-hLX,XR-hRX) + - ,t . 

h L \ h R \ h ^ , h R 2 (1+r ) 

EL[XL -hLX + zLtfL -hLX)-hL2,XR -hRX + zR(XR -hRX)-hR2] 
+ (1+r) 

(4.36) 

subject to the normal harvesting constraints on each stand (Equations 4.2). 

The interpretations of the results for an asymmetric or symmetric interdependence 

are very different. A s noted above, an asymmetric interdependence is analogous to the 

production link between two firms assumed in environmental economics. In this case, it 

is assumed that the right stand is negatively or positively affecting the production or 

consumption of nontimber amenities on the left stand. It is assumed that activities on the 

left stand do not affect timber production on the right stand. On the other hand, a 

symmetric link between two stands assumes a different set of circumstances. If indeed 
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the nontimber benefit is a forest-level benefit, and the manager controls both stands, there 

can be a technical link between the stands. This may be the case where both stands 

contribute to habitat (points of production) but the wildlife value is enjoyed only on the 

left stand (point of consumption). 

Assume that the nontimber functions on each stand are concave. In particular, 

assume that the nontimber benefits function for the left stand has the properties: 

E^<0,EL

f^<Q,E%^=EL\m%0^ for all «={1,2}. 

Further, assume that conditions on the right stand can directly affect, negatively or 

positively, the production of nontimber benefits on the left stand, specifically E\n ^ 0 

for all n. 

Assuming the harvest constraints are satisfied, the first-order conditions are 

^ r = P « - ^ - ^ ^ = 0 (4.37a) 

- § r = p ^ - E ^ - E ^ ^ ^ - = 0 (4.37b) 

dB__J?_ ^k = 0 ( 4 3 7 c ) dhL2 1 + r 1 + r 

Substituting Equations 4.37c and 4.37d into 4.37a and 4.37b gives the first-period 

harvesting rules for each stand. The harvesting rule for the left stand is 

pl=ELn+p2*(?$ ( 4 - 3 8 a ) 

which is identical in form to the single-stand problem (Equation 4.24). The harvesting 

rule for the right stand is 
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p>=EL

R]+p2^j£l (438b) 

which is different from the single-stand problem. The optimal decision rule on the right 

stand explicitly factors in its effect on left-stand nontimber benefits. The interdependence 

is internalized. The right stand harvesting rule says that, for optimal management, 

harvest until marginal first-period timber benefits are equated with marginal 

second-period timber benefits and left-stand marginal nontimber benefits (costs). 

Although the harvesting rule on the left stand is unchanged, the optimal harvest on the 

left stand depends on the conditions on the right stand. 

The optimal harvest on each stand depends on the relationship between the two 

stands and whether the interdependence is symmetric or asymmetric. Consider the 

decision rule on the right stand. If the two stands are completely independent then the 

term ERX disappears from Equation 4.38b and the optimal harvest is identical to the 

independent single-stand timber-only model, ceteris paribus. If 

ERX > 0 and ERXRl =0WR, so that there is an asymmetric link between stands, then net 

first-period price is reduced relative to the second period. Therefore, the first-period 

harvest, in the presence o f an external cost (benefit), is less (more) than in the 

independent case. In the case of an asymmetric link between stands, the harvest is less or 

more than the independent-stand multiple-use case. It is also the case that harvest levels 

w i l l be different on each stand, even i f stands are identical in timber and nontimber 

productivity. 

N o w consider symmetric interdependence between stands. If stands contribute 

equally to nontimber benefits (both contribute equally to the production of wildlife), then 
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harvest on each stand is identical. I f stands are different in nontimber, or forest 

productivity or contribute unequally to its production, then stands are treated differently. 

The comparative statics results for this model are found in Appendix 1 and 

summarized in Table 2. Except for the comparative statics results for changes of the 

initial inventory (see Appendix 1), the comparative statics results depend on the 

cross-partial derivatives. 
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Table 4.1 Comparat ive statics Results for Two Stands: Asymmetr ic Nont imber 
Benefits 

Comparative statics Sign 3 Conditions and Comments 

^ dp' 

+ £ £ i * , > 0 o r (l+r)EL

RXRX+gR

wEL

R2 >\(l+r)EL

LXRX\ 

^ dp' - |(l+ r )4 m+g&Efe| <\(l+r)Eim\ 

•(b) 
dh RI* 

dp' 

EL

RXLX > 0 or | (1 + r)EL

LXLX +gL

vvEL

L21 > | (1 + r)EL

R 
R\L\ 

\(\+r)EL

LXLX+gL

vvEL

L2\<\(\+r)EL

RXLX 

+ ELuRX >0 
(c) 

- ££i«i<o 

( d ) a/?* 1 

+ 

dhLV 

dp2 

- EL

LXRX > 0 or 1(1 + r ) £ f c m + gR

vEL

R2)\ > |(1 +r)(l + | 

(e) 
dhLV 

dp2 

+ 1(1 +^)((1 +r)EL

RXRX + gR

vEL

R2)\ < |(1 +r)(l + £*)££„>, | 

dhR'' 
dp2 

- >0 or 1(1 + g*)((l +r)EL

LXLX +gL

vvEL

L2)\ > |(1 +r)(l + g$)4iiil 
(f) 

dhR'' 
dp2 

+ 1(1 +g?)((l + r ) £ £ u l + gU£2)l < |(1 +r)(l | 

(g) dh1'* 
dpR1 

-
(g) dh1'* 

dpR1 

+ £ £ , R I < 0 

( h) 
dhR'' 
dpR2 -

dhLV 

dr 

+ conditions are similar to (e) see Equation A l i in Appendix 1 

(0 dhLV 

dr -

G) dhRV 

dr 

+ conditions are similar to (f) see Equation A l j in Appendix 1 
G) dhRV 

dr -

a A positive sign (+) includes zero for presentation purposes. 

Only i f stands are complements or independent can the comparative statics results 

be unambiguously signed. I f EL

LXRX = ERXLX >0, the comparative statics results are the 

same as the one-stand results; an increase in px or r leads to an increase in the first-period 

harvest and decrease in inventory, while the opposite occurs with an increase in p2. If 
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EL\R\ - ERILI < 0' there is the possibility that the signs of the comparative statics results 

are reversed. The result depends on the magnitude of the indirect effect relative to the 

direct effect. For the comparative statics results to be reversed, the indirect effect must be 

greater than the direct effect. However, this is a necessary but not sufficient condition 

due to the presence of other terms that share the same sign as the direct effect. Therefore, 

only under special circumstances do the comparative statics results take the reverse sign. 

It is possible to infer the sign of the comparative statics results under particular 

conditions. From Young's theorem, EL

LXRX = ERXLX. Further, from strict concavity of the 

nontimber function, EiXLXERXRX - EL

LXRXEL

RXLX > 0. Therefore, it is possible that ERXRXand 

EL

LXL\ are both greater than EL

LXRX, or only one is greater than E n R X . When both ERXRX 

and EL

LXLX are greater than EL

LXRX, the signs of the comparative statics results are 

unambiguous for /?' but remain ambiguous for p2 and r. If either EL

RXRX or EL

LXLX are less 

than EL

LXRX, the comparative statics results can not be signed. Therefore, i f 

^ i i i i >EL\R\ >ER\RI a n Q l stands have identical growth functions, then an increase in 

first-period price increases the harvest on the right stand, while the harvest on the left 

stand increases by a lesser amount or may even decrease. Therefore, i f two stands are 

substitutes in providing the nontimber value, a backward bending short-run timber supply 

is theoretically possible. 

If the change in the rate of growth on the right stand (g^) is less than the left 

stand, then the right-stand harvest increases by even more relative to the left-stand 

harvest. Therefore, i f the left stand is more productive in nontimber amenities and timber 

output, an increase in px leads to less of a change in harvest on the left stand than the right 

stand. This suggests that the more productive left stand specializes in the production of 
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nontimber production amenities. If the nontimber benefit is associated with inventory 

levels below the timber-only solution, the left (right) stand's first-period harvest is higher 

(lower) than the independent multiple-use solution. The converse occurs i f the nontimber 

benefit is associated with inventory levels greater than the timber-only inventory. The 

degree of specialization w i l l depend on the contribution each stand makes to nontimber 

benefits, the difference in timber productivity, and the magnitude of the first-order, EL

RX, 

and second-order interaction, EL

LXRX, between the stands. 

If we consider solely a change in first-period timber price on the right stand, the 

comparative statics results are less ambiguous. This may occur when road access is 

improved in only one area of the forest resulting in increased stumpage prices on stands 

serviced by the road. It can also occur when a mi l l is built closer to one stand than the 

other. Results (c) and (d) in Table 4.1 report a change in left and right stand harvests 

from a change in the timber price on only the right stand. A n increase in pRl leads to an 

increase in right harvest and increases (decreases) left harvest i f the stands are 

complements (substitutes). The opposite results occur i f the right-stand timber price 

increases in the second period ((g) and (h) in Table 4.1). This suggests that physical 

location and interdependence between stands can lead to very different treatment of 

stands when stands are substitutes. However, the opposite is true with stands that are 

complements. If interdependence between stands is ignored, different timber prices can 

lead to very different harvest levels on the two stands. However, the results suggest that 

stands that are complementary and affect each other positively w i l l tend to be treated 

similarly even with different timber prices. 
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The cross-partial derivative can be negative, positive or zero in equilibrium. For 

this reason, the comparative statics results can not be interpreted as general results as they 

depend on the forest growth function and the nontimber benefit functions. The results 

only hold at the point of equilibrium. Only i f stands are globally independent or 

complementary do the comparative statics results hold as general results with identical 

stands. I f stands are global substitutes, the comparative statics results are ambiguous with 

the exception of the first-period price. 

Two general conclusions can be drawn from the comparative statics results. If 

stands are identical in timber and nontimber production and there is a symmetrical 

relationship between the two stands, harvests are also identical and the comparative 

statics results are identical in sign and magnitude, 

¥ r = ¥v > 0, ¥T = ¥T < 0 , 4 ^ = > 0 . On the other hand, i f the stands have 
dp' dp] op2 dp2 dr dr ' 

different growth functions, contribute differently to the production of nontimber benefits, 

or there is an asymmetry, such as negative (positive) first-order impact (ERn ^ 0) , then 

harvests differ on each stand and the comparative statics results are different in magnitude 

and in some cases in sign. 

The envelope results are as follows: 

-^r = hL]*+hR]* >0 (4.39a) 

-§r = > 0 (4.39b) 

ML h—+n— < Q (4.39c) 
dr ( 1 + r ) 2 ( 1 + r ) 2 

b ( l + g 
(1+r) DXL ( L + R ) -P >u (4.3ydj 
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^ = ̂ , + j g ¥ 1 + f " ) = P 1 > 0 (4.39e) 
dX^~^RX' (1+r) 

which are similar to the other problems. 

4.3.3 Two Stands with Symmetric Nontimber Benefits 

A final possibility with two-stands involves the case where conditions on each 

stand affect the production of nontimber benefits on the other stand symmetrically. This 

problem is conceptually similar to the problem posed by Swallow et al. (1997) and is 

depicted in Figure l a - i i i . It involves linear interdependence between the two stands. The 

symmetric stands problem is: 

max B = p1 (hLX + hRX) + EL(XL -hLX,XR -hRX) + ER(XL -hLX,XR -hRX) + 
hL",hR" 

p2(hL2 + hR2) EL(XL -hLX + zL{XL -hLX)-hL2,XR -hR] + gR(XR -hRX)-hR2) ( 4 4 Q ) 

(1+r ) + (1+r ) 

ER(XL -hLX + zL(XL -hLX)-hL2,XR -hRX + gR(X* -hRX)-hR1) 
+ (1+r) 

subject to the usual harvest constraints given by Equations 4.2. 

Equation 4.40 can express two types of problems. E in Equation 4.40 might 

represent a nontimber value that is realized and produced on each stand or represent two 

different goods, EL and EK, that depend on both stands but realized on only one stand. 

Whichever case is considered, the calculus is the same for each problem. 

Assuming an interior solution, the first-order conditions are 

dB 
d h a =Pl ~ £ £ i -Eh -(Ei2+ER

2)^f^- = 0 (4.41a) 

- J f r = -E^-ER

X - ( E i 2 + E R

2 ) ^ £ ^ - = 0 (4.41b) 
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_dB___pL_(EI

fi?+E?i?) 

d/z*2 1 + r 1 + r 

Substitute Equations 41c-d into Equation 41a-b to obtain the first-period harvest rules 

P1=E11+EH+P2&±& (4.42a) 

pl=EJtl+E*n+p2&0± = O (4.42b) 

The optimal harvesting rule on each stand fully accounts for impacts on the nontimber 

benefits on the other stand. If the stand-level nontimber benefits represent the same good 

then the harvest rules have a similar interpretation as in the previous problem. However, 

i f these functions represent two distinct values then the harvest rule has a different 

interpretation. Equation 4.42b states that the optimal harvest occurs where the sum of 

first-period marginal benefits, which include right-stand timber and nontimber benefits 

and left-stand nontimber benefits, equates second-period marginal (timber) benefits. 

Equation 4.42a is interpreted similarly. 

The comparative statics results are presented in Appendix 1 and summarized in 

Table 4.2. They are similar to those of the previous problem, but they are more difficult 

to interpret. The only unambiguous results are where both stands are complements or 

independent, ElR,EiR > 0. Other results are inferred under particular conditions. If 

stands are substitutes and have identical timber growth then the signs of the comparative 

statics results are unambiguous i f Es

ss > ES

LR for stand s; otherwise the sign is ambiguous. 

These conditions are not dissimilar to the previous problem. 
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If we only consider a change in right-stand timber price, new insights are gained. 

A n increase in the first-period (second-period) price leads to an increase (decrease) in 

first-period (second-period) harvest on the right stand. Result c in Table 4.2 supports the 

inference that an increase of pm leads to an increase in harvest i f both stands are 

complements, E\R + ER

LR > 0. If stands are substitutes in providing nontimber benefits 

then an increase in pRl leads to a decrease in harvest and increase in inventory. If in fact 

there are two nontimber benefits and stands are complementary in providing one good 

and substitutes in providing the other, then the results are ambiguous. It w i l l depend on 

the relative value of the two nontimber benefits. 

Multiple stand-level nontimber functions or more than two distinct nontimber 

values, which is often the case in practice, increases the complexity of the problem 

considerably. If stands are independent or complementary in the production of the 

nontimber benefits, it is possible to derive comparative statics results; otherwise, the 

results are ambiguous. 
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Table 4.2 Comparat ive statics Results for Two Stands with Symmetric Nont imber 
Benefits 

Comparative a Conditions and Comments 
statics e 

dhLl' + EiXRl,ER

URX>0 ov\(\ +r)(E^Rl +ER

Rxm)+gR

v(EL

R2+ER

R2)\ >\(l + r)(EL

LXRX + ER

LXRX)\ 
(a) dpi 

- |(1+ r){EL

RXRX + ER

RXRX )+gR

v{EL

R2 +ER

R2)\< 1(1 + r)(EL

LXRX + ER

UR] )| 

dhRi' + EL

Rm,ER

Rm > 0 o r | ( l + r ) ( £ i 1 I 1 + £ « I 1 ) + g U £ i 2 + ^ 2 ) U l ( l + r X ^ l i l + ^ u l ) l 
(b) a p i 

- 1(1 + r){EL

LXLX +ER

m)+gUEL

L2+ER

2)\ < \(\+r)(EL

RXLX +E«m)\ 

dhLl* + EL

URX,ER

LXRX>0orEL

LXRX+ER

XRX>0 
(c) c>Pm 

- EL\R\>ELlRl < 0 o r £ L l « l +ELIR\ < 0 

dhRV 

(d) + 

^ i i « . , ^ i « i > 0 o r | ( l + g i ) ( ( l + r ) ( £ ^ 1 + ^ m ) + g ^ 2 + ^ 2 ) ) l 

(e) " ^ T >\(\+gRX\+r)(EL

Lm+ER

]m)\ 

+ 1(1 +g i)((l +r)(^ 1 / ? 1 +ER

m)+gUEL

R2+ER

R2))\ <l(l +g*Xl + r)G?£1J?1 +£f,«,)l 

0 o r | ( l + g ? ) ( ( l + r X £ i l i l + £ f , i l ) + g ^ ( £ i 2 + £ f 2 ) ) l 

( f ) 5/>2 > l ( l + r ) ( l + g^(^ l i,+^ l i,)l 

+ 1(1 +g?)((l + r ) (4 i*i + ^ l s l ) + g W £ i 2 + £ & ) ) ! < 1(1 +r)(l +gL

v)(EL

Rm +ER

Rm)\ 

, .dh!£_ - EL

LXR],ER

XRX>0orEL

LXRX+ER

]RX>0 
(g) dpR2 

+ EL

LXRX,ER

LXRX < 0 OTE^irx + EfXRX < 0 

(h) dp* 2 -

QfoL\ * + conditions are similar to (e) see Equation A2i in Appendix 1 
( i ) — 

QfiR\' + conditions are similar to (f) see Equation A2j in Appendix 1 
G ) - s r 

aA positive sign (+) includes zero for presentation purposes , 
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4.4 Extension to Management Effort 

Here the two-stand model is extended to include management. Management 

effort is any silvicultural activity beyond timber harvesting such as planting, fertilization, 

brushing, site preparation and drainage. First, we consider two stands with two owners 

and then we consider two stands owned by one owner. The purpose is to determine the 

conditions that support the notion of single-use management areas. 

Consider the problem of managing two stands for joint products where timber 

management on one stand is a choice variable. Assume the stand growth function, g, is a 

function of growing inventory, V, and the level of management effort, Q, specifically 

gs = (VS, QS) for stand s. We assume that gs

Q > 0 and ggg < 0 for all levels of Q. We 

continue to hold the assumption that gs

v > 0 for V< VMSY and gs

v < 0 for V> VMSY and 

g s

v v < 0 for all V. We assume g is a strictly concave function with gswgSQQ ~ §IQSQV > 0-

Figure 4.3 depicts the inventory-management growth function. In both figures, Qo 

refers to without management and Qi refers to with management. Figure 4.3a depicts 

how management effort causes stand growth to increase everywhere, which also increases 

the maximum sustainable yield, the M S Y inventory level and the carrying capacity of the 

site. Figure 4.3b depicts how management effort increases growth everywhere and 

reduces the M S Y inventory, but does not affect the carrying capacity of the stand. 

Ovaskainen (1992) discusses the introduction of management into the growth function, 

emphasizing the sign of the cross-partial derivative. Ovaskainen notes that, in general, 

gsv ^ 0, but he proposes other signs of gsv to address various forms of silvicultural 

prescriptions. For example, he proposes that gsv > 0 for fertilization and drainage of the 

site (Figure 4.3a). These management activities increase the overall productivity of the 
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stand. On the other hand, gsv < 0 is consistent with management activities such as site 

preparation, brushing or planting of larger seedlings (Figure 4.3b). These activities do 

not increase site productivity but shorten the time for the stand to establish and, 

consequently, to reach maximum growth and carrying capacity of the stand. 

a) Management and Inventory 
Complements (gsv >0) 

g(V,Q) 

b) Management and Inventory 
Substitutes and Complements 

g(V,Q) 

V gsv>0 gsv<0 y 

Figure 4.3 G r o w t h Funct ion with Management (Source: Ovaskainen 1992) 

The simplest two-stand case is where the conditions on one stand, the right stand 

say, are considered exogenous to the decision maker. Then the problem for the manager 

of the left stand can be represented as: 

max BL = p x h u + EL((XL - hL]); VRX)-wQL 

p2hL1 EL[(XL-hu + gL(XL - h L l , QL) — hL2); VR2] 
+ (l+r)+ ( 1 + r ) 

subject to the harvesting constraints, 

hLl <XL 

hL2^XL-hn+gL(XL-hL\Q) 

(4.43) 

(4.44a) 

(4.44b) 
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VRn is the exogenous level of inventory on the right stand in period n and w is the per unit 

cost of management effort. The first-order conditions are 

§ ^ = p> -E^V", P ' ) - f T £ 2 ( ^ 2 , VR2)^Y = 0 (4.45a) 

757^=1+7- l + r — = 0 < 4 - 4 5 b ) 

-QQ = f + 7 SQ - w, = 0 (4.45c) 

We substitute 4.45b into 4.45a and 4.45c into 4.45b to form the first-period harvesting 

and management decision rules: 

P^p'^f^ + Ei, (4.46a) 

w i =jfh)gs (4-46b) 

The first-period harvest rule, Equation 4.46a, is unchanged from the without 

management problem. The management decision rule, Equation 4.46b, is identical to that 

obtained by Ovaskainen (1992), who only considered timber values in a two-period utility 

maximization problem. The rule simply states invest in timber management until the 

marginal present value of benefits are equated with the marginal cost of management 

effort. The marginal present value of benefits is equal to the marginal growth from 

management times the discounted second-period timber price. 

The comparative statics results are presented in Appendix 1 and summarized in 

Table 4.3. The comparative statics results for the first-period harvest are now more 

ambiguous than in the model without management effort due to the presence of ggv. 

Only where g g v > 0 are the results unambiguous and consistent with the 
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without-management problem. The cross-partial derivative is absent of the results for the 

first-period price and right-stand inventory and are thus easier to interpret. 

Table 4.3 Results for left stand with management and exogenous right stand 

Comparative statics Sign 3 Conditions and Comments 

(a) 
dh n* 
Sp 1 

(b) 
dh 11* 

gL

vQ > 0 or \gL

QQ(\ +gL

v)\ > \gLQgL

vQ 

dp2 

+ \gQQ^+gL

V)\<\gLQSL

vQ\ 

dh"* 
dr 

+ conditions are similar to (b) see Equation A3c in Appendix 1 
dh"* 

dr -

dh"* 
dVR 

+ £ £ m <0 
dh"* 
dVR 

- ELIRI >0 

dh"* 
dw 

- gL

vQ < 0 
dh"* 
dw + 

dQL* 
dp' 

- gL

vQ > o dQL* 
dp' + gL

vQ<o 

dQL* 
dp2 

+ gL

vQ > 0 or { } < 0 see Equation A3h in Appendix 1 dQL* 
dp2 

- { }>o 

dQL* 
dr 

- conditions are similar to (g) see Equation A3i in Appendix 1 
dQL* 

dr 
+ 

8Q1' 
8VR 

+ ELL\R\ a n d ^ e v > 0 ; £ ' i i f l i mdgL

Qv<Q;EL

Lm o r g £ v = 0 
8Q1' 
8VR 

- ELL\R\ > 0 a n d g ^ v , < 0 o r £ i l f l l < 0 a n d g £ v > 0 

(c) 

(d) 

(e) 

(0 

(g) 

(h) 

0) dQ^_ 
dw 

3 A positive sign (+) includes zero for presentation purposes. 
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A new set of results is obtained for the changes in the optimal level of 

management on the left stand from changes in the model parameters. I f g g v > 0 , 

management effort increases with increases in second-period price and right-stand 

inventory i f Eiim > 0 (complements) and decreases with first-period price, rate of 

interest and right-stand inventory i f EiXRX <0 (substitutes). I f g g v < 0 , management 

effort increases with an increase in first-period price and an increase in right-hand 

inventory i f EL

LXR\ < 0 (substitutes) and decreases with an increase in right-hand 

inventory i f otherwise (complements). Management effort decreases with an increase in 

management cost. How the optimal harvest changes with changes in second-period price 

and rate of interest is ambiguous when g g v < 0. 

The results support the idea of intensively managed timber areas. Assume that the 

inventory on the right stand increases. From Table 4.3, i f stands are substitutes, harvest 

and management are increased on the left stand where management effort (e.g., planting) 

can efficiently substitute for inventory. Therefore, i f timber markets support the 

production of early-aged trees and stands are substitutes in providing nontimber values, 

which require older trees and larger inventory conditions, then dedicating one forest stand 

to intensive timber production and the other to nontimber production may be 

economically efficient. On the other hand, the opportunity for specialization is narrow as 

there are more conditions which favor no intensification of management or i f so, it is 

done to increase inventory to complement the adjacent forest stand. 

The above model can be extended to a solely-owned, two-stand forest with timber 

management on one stand. Assume management is feasible only on the right stand. This 
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is assumed so as to keep the problem as simple as possible. The problem for the manager 

of the two stands is 

max BL=pxhLX + EL{XL -hLX,XR -hRX)- w , Q R + 
h'Kh** y ^ (1+r ) 

EL{XL -hLX + gL(XL -hLX)-hL2,XR -hRX +gR(XR -hRX,QR)-hR2) 
+ (1+r) 

The first-order conditions are: 

(4.47) 

dBL 

dhu = P]-E1

LI -En 

dBL 

dhR] = P]~EL

R{ -ER2 

3BL P2 ELI 
dhL2 1 + r 1 + r " 

8BL P2 ER2 
dhR2 ~ 1 + r 1 + r " 

dBL 

dQR 

ER2 R 
~ \+rgQ -w — 

(1+r) 
(4.48a) 

(4.48b) 
(1+r) 

= 0 (4.48c) 

= 0 (4.48d) 

(4.48e) 

We substitute 4.48c into 4.48a, 4.48d into 4.48b and 4.48e into 4.48d to form the 

first-period harvesting and management decision rules. 

P l = E L u + p 2 j ^ - (4.49a) 

pX=ERx+pl{i^- <4-49b) 
P2 

w = obr8* ( 4 4 9 c ) 

The comparative statics results are very complicated and largely ambiguous when 

the cross-partial derivative of the nontimber function is non zero. A summary of the 

results is presented in Table 4.4 while the full results are found in Appendix 1. 
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The comparative statics result for first-period harvests are similar to the two-stand 

model without management although they are more complicated. Where EL'XRX >0 , 

first-period price has the same result as the previous 2-stand model. The results for 

second-period price, rate of interest and management costs all result in the same signs as 

the without management model i f EL

LXRX > 0 and ggv > 0. 

A change in the price on only the right stand, pRX o r p R 1 , generates interesting 

comparative statics results. Consider the case of ggv < 0 and ENRX < 0. From (c) and 

(1) in Table 4.4, an increase pRX leads to an increase in first-period right harvest, a 

decrease in left harvest and an increase in management effort on the right stand. In other 

words, i f the stands substitute for one another in the provision of the nontimber good and 

timber prices rise on the right stand, the right stand is intensively managed for timber 

while the harvest on the left stand decreases. However, where ggv < 0 and EL

LXR\ > 0 is 

the case, harvest is increased on both stands and management is also increased on the 

right stand. Where ggv > 0 and EL

LXR\ ^ 0, left-stand harvest increases and management 

decreases. If ggv > 0 and EL

LXRX < 0, both left-stand harvest and right-stand 

management effort decrease. The comparative statics results for an increase in pR1 are 

ambiguous except when g g v > 0 and EL

LXRX > 0. Where gR

Qv > 0 and EL

LXRX > 0, 

first-period left- and right-stand harvest decrease and right stand management effort 

increases. 
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Table 4.4 Results for Two Stands with Management on One 

Comparative statics Sign 3 Conditions and Comments 

dhLi' 
+ EL

URl> 0 or { } < 0 see Equation A4a in Appendix 1 

(a) 
dhLi' 

- { } > o 

(b) 
dhR]* 
dp1 

conditions similar to (a) see Equation A4b 

(c) 
dhLV + 

(c) - o 

(d) 
dhR,t 

dpm + 

(e) 
dhLl' - gRg and EL

LXRX > 0; { } < 0 see Equation A4e 
(e) dp 2 + { } > o 

(0 
8hR]* 
dp2 conditions similar to (e) see Equation A 4 f 

(g) 
dhLV 

dpR2 

-
gR

Q>0ox{ } <0<mdEL

Lm > 0; { } > 0 a n d £ £ l f l l < 0 see 
Equation A4g (g) 

dhLV 

dpR2 

+ £ £ m > 0 a n d { } > 0;EL

nRl <0 and { }<0 

(h) dhRr 

dpR1 

- gR

Q > 0; { } < 0 see Equation A4h 
(h) dhRr 

dpR1 
+ { }>o 

dhLV 

dr 

+ gRQ and E^RX > 0; { } < 0 see Equation A4i 

(i) 
dhLV 

dr - { }>o 

G) dhRl* 
dr 

conditions similar to (i) see Equation A4j 

(k) dhLr + ELL\R\ and gR

Q $ 0; EL

UR] or gR

Q = 0 (k) 
dw - EL

L]Rl > 0 and gR

Q < 0; EL

Lm < 0 and gR

Q > 0 

(1) dhR]t + ^ e > o (1) 
dw - 8RQ<0 

(m) dQR* + ELL\R\ ^ 0 and gg v > 0;gg v and { } < 0 see Equation A4q (m) 
dp1 - £ £ m >0andgg v <0 ; g § v > 0 a n d { }<0 

(n) dQRt + 

dP

RX - 4 v > 0 

(o) dQR* + EL

LXRX and ggv > 0; { } < 0 see Equation A4s (o) 
dp1 

- { }>o 

(P) dQR* + gR

Q > 0; { } < 0 see Equation A4t (P) 
dP

R2 

- { }>o 

(q) dQR* + EL

LXRX and gRg > 0; [ ] > 0 see Equation A4u (q) 
dr - [ ]<o 

(r) dQRt 

dw 
-

' A positive sign (+) includes zero for presentation purposes. 
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Intensive Timber Management Areas 

The notion that specific areas of the forest be intensively managed for timber is 

supported by the above analysis. The analysis suggests that, i f intensive timber 

management is economically feasible, then intensive timber management is supported in 

areas where nearby forests (stands) substitute for reduced nontimber benefits on the 

intensively managed stand and i f intensive timber management leads to faster growth 

(Figure 4.3b). This is likely where nontimber benefits are favored at low inventory levels 

(young ages), stands are homogeneous, and stands respond well to management activities 

such as planting, brushing and site preparation. In such areas, stands outside the intensive 

timber zone wi l l have adjusted inventories so as to generate higher nontimber benefits. 

The adjustment in management w i l l depend on whether nontimber benefits require low or 

high inventory conditions. 

In areas where stands are complementary in providing nontimber benefits, the 

optimal intensive timber management takes the form of activities that improve site 

productivity, such as fertilization or improved drainage. In these areas, stands outside the 

intensive timber zone wi l l also have adjusted inventories to generate higher nontimber 

benefits. 

Therefore, intensive timber management areas are economically efficient i f 

conditions support increased management effort (future returns justify expenditures) and 

are consistent with the interdependencies between stands in the forest. Therefore, the 

question of whether intensive timber management areas are economically efficient is an 

empirical question as it is a theoretical possibility. 
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4.5 Three Stands Again 

Consider the management of three stands again. Recall that as there are many 

possible outcomes with three stands that unambiguous interpretation of the comparative 

statics analysis is impossible . However, we can make some speculative suggestions of 

the comparative statics results based on the results in the preceding sections. Consider 

again the case first examined in Equation 4.6. Recall that the left and middle stands 

produce the nontimber benefit W. Also , all stands produce nontimber benefit E and each 

stand is dependent on adjacent stand conditions. To infer a solution requires knowing the 

interdependency between the left and middle stands in producing W and the 

interdependencies between the three stands in producing E. It is also necessary to know 

the relative values of the nontimber goods and i f they favor low or high inventory 

conditions. Assume that the left and middle stands are complementary in producing W 

and that this nontimber benefit reaches a maximum at high inventory levels. Also 

assume that all stands are substitutes in producing E and that E reaches a maximum at 

low inventory levels. Finally, assume that all stands are identical in productivity and 

timber price is equal on each stand. On the basis of these assumptions, the lowest levels 

of harvest (highest inventory) w i l l occur on the left stand and the highest (lowest 

inventory) on the right stand. The middle stand is likely to have a harvest level 

(inventory) somewhere between the two other stands. The resultant forest is, therefore, 

likely to have a heterogeneous stand structure across the forest landscape. 

Combining the insights for the three-stand case with those of the management 

model, it is possible to speculate further. Imagine a three-stand forest where the left and 

middle stands are substitutes, the middle and right stands are complementary, and the left 
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and right stands are independent. Also assume that the timber price is higher on the 

middle stand, due to its location vis a vis a road. The situation is depicted in Figure 4.4. 

O 

Assumpt ion: P M > P R = P L 

Figure 4.4 Two Stands are Complementary and Two Stands are Substitutes 

Assume that tree planting is only marginally economical and that nontimber benefits 

occur at high inventory levels. Therefore, i f stands are treated independently, the optimal 

harvest is lower than the timber-only harvest. N o w consider an increase of the timber 

price on the middle stand. A n increase in pM makes tree planting more economical and 

management on the middle stand increases. The price increase also encourages an 

increase in harvest and lower inventory on the middle stand. The optimal response on the 

left stand is to decrease harvest and increase inventory. The optimal response on the right 

stand is to increase harvest and decrease inventory. The end result is variable 

management effort across the forest and a heterogeneous forest structure. 
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4.6 Conc lus ions 

The two-period, net present value, harvest-inventory model produces results 

similar to those of the utility maximization two-period models for one and two stands. 

The addition of a third stand increases the complexity of the problem greatly. However, 

in general, the presence of complementarity and substitutability between stands in a forest 

encourages some areas of the multiple-stand forest to be managed similarly and others to 

be managed differently, perhaps for specialized uses. 

Several results were generated from the case studies. 

1. I f stands are identical and have perfectly symmetrical interdependence, then all 

stands are treated identically. 

2. Stands that are complementary to one another require similar treatment. 

3. I f stands are different, first-period harvest levels and inventory are different. 

4. The solution on each stands depends on the form of interdependence between 

stands, the timber price on each stand, forest productivity and productivity of 

amenities. 

5. Heterogeneous stands or asymmetric interdependence between stands in a forest 

support differentiated treatment of stands. 

6. Land-use specialization for intensive timber management may be economically 

superior in some circumstances. In particular, land-use specialization is likely to 

be superior on stands that support intensive timber management activities that 

substitute for inventory, such as planting and brushing, and the production of 

nontimber benefits on nearby stands substitute for the lost nontimber benefits on 

the intensively managed stand. 
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In the next chapter, numerical simulations of various hypothetical cases of the 

three-stand model are provided to gain a better understanding of the solutions to a 

multiple-use problem with stand interdependence. 
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CHAPTER 5 

S I M U L A T I O N S W I T H T H R E E S T A N D S 

In this chapter, a set of dynamic programming problems are solved to demonstrate 

the implications of multiple values on the spatial management of a forested area for the 

case of three spatially-differentiated stands. A brief discussion of the possible forms of 

nontimber functions is provided in Section 5.1, while the forage-timber problem first 

considered by Swallow and Wear (1993) to demonstrate the relevance of non-convex 

nontimber functions is recast in Section 5.2. The implication of more than two goods, in 

particular a forest-level nontimber benefit function with technological interdependence 

among three stands is considered in Section 5.3. Conclusions are presented in section 

5.4. 

5.1 Modeling Nontimber Benefits 

Central to the problem of modeling multiple-use forest management is the form of 

the nontimber benefits function. Presumably there are two components to a nontimber 

function: a marginal value function (or price function), and a technical production 

function. The nontimber benefits function can be expressed as 

E{V',V>) =J{N(.))N(.)\/i,j, where / ( . ) is a marginal value function and N(.) is a 

nontimber production function. The nontimber function may express stand-level benefits 

that depend on the conditions of surrounding stands or may express forest-level benefits. 

The marginal value function assigns a value to the last unit of output 

produced/consumed. The marginal value function can be a constant or declining function 
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of quantity, both of which are common in consumer theory. Mathematically, the 

marginal value function for nontimber amenities, f(N), has the properties that f'(N) < 0 

and f"(N)<0. A constant value is consistent with the notion of a price taker in the 

market; supply from the forest is small relative to the market or there are many alternative 

sources of supply or substitutes. A declining marginal value function is likely where 

there are few substitutes goods or the good is unique. 

The marginal value function needs to be consistent with the circumstances 

considered. Consider deer, for example, whose marginal value may reflect their value for 

food, leather, fur and medicinal ingredients or simply recreational value associated with 

hunting or viewing. The marginal value function for a particular supply area (forest) may 

be constant i f deer are a homogeneous good with many substitutes and supply is small 

compared to the overall market for deer. Conversely, i f the nontimber good produced in 

the forest region is unique then the marginal value changes with the amount produced 

from the forest. This may be the case for big game animals, such as Grizz ly bear. 

The function describing nontimber production, N( ), is l ikely to be of great 

research interest. Unlike the marginal value function, that is either constant or downward 

sloping, the production function can take on many more forms. Knowing the relationship 

between each stand in the forest and the production of the nontimber good is of critical 

importance in modeling the multiple-use problem. The simplest case is where each stand 

is physically independent from each other. The production of nontimber amenities for 

technologically independent stands can be expressed as, 

N=NL(VL) + NM{VM) + NR(VR) (5.1) 
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The nontimber production is assumed to be separable, with conditions on one stand in the 

forest not affecting the technological production of nontimber goods and services on the 

other stand.1 However, it may be the case that stand-level production of a nontimber good 

is dependent on the conditions of other stands in the forest. Therefore, forest-level 

production is more accurately expressed as 

N=NS(VL, VM, VR), s={L,M,R} (5.2) 

It is not clear how to capture a specific interdependence between two or more 

stands. A s illustrated in Chapter 4, many forms of asymmetry and interdependence can 

be modeled. In the next section, the case where two stands are linked via a marginal 

forage value function is examined. We then extend the analysis to three stands and other 

nontimber goods. 

5.2 Timber and Forage Problem 

In this section, a forage-timber problem is considered using a forage function first 

explored by Swallow and Wear (1993). The problem links two stands in a forest via a 

marginal value function for forage. The link is a pecuniary interdependence between the 

two stands and results in a nonconvex nontimber benefits expression. Here, the problem 

is cast in the simple two-period framework of Chapter 4 and the solution is explored 

using 3-dimensional graphics of the objective function. 

' A common nontimber example in the optimal rotation literature is the production of deer 
(Calish et al 1978, Swallow and Wear 1993, Swallow et al 1997). Deer require forage 
and shelter areas. To model this problem within a Hartman framework, a partial analysis 
is assumed. The production of deer on a particular stand is conditional on the availability 
of adequate habitat on surrounding stands. Therefore, the stand-level deer production 
function measures the level of deer benefits as the stand conditions change over time, 
holding conditions on surrounding stands constant. Under these assumptions, nontimber 
production from a collection of a few stands is simply the sum of production from each 
stand. This problem is explored in detail below. 
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Originally Swallow et al (1997) found the optimal sequence of harvest rotations 

on two adjacent stands that maximize the net present value of timber and forage values 

over a infinite period of time. This extended Swallow and Wear (1993) who considered 

two interdependent stands with separate ownership/control. The timber and nontimber 

functions used in each paper are the same. The authors solved these applied problems 

using a dynamic programming algorithm, where the decision in each period is to clear cut 

one or both stands given the histories of each stand. This formulation of the problem is in 

keeping with the Faustmann tradition and even-aged forest management. 

N o w the forage-timber joint-production problem of a two-stand forest is recast 

within the discrete harvest-inventory framework of Chapter 4. This involves converting 

the forage function used by Swallow and Wear (1993) to be a function of inventory 

instead of stand age. 

The problem involves choosing the amount of timber to harvest from each stand 

at each decision period to maximize net present value over a finite time horizon. The 

choice of harvest is tantamount to choosing the level of inventory to leave between 

periods; the decision maker chooses the level to consume/harvest and to save/inventory in 

each decision period. Holding a level of inventory between harvests accomplishes two 

things: inventory grows according to some known production relationship allowing 

greater future timber consumption, and inventory conditions provide habitat and forage 

conditions for deer. 

Forage Value Function 

A forage production function that relates forage to stand age can be transformed to 

a function of inventory by assuming a correspondence between stand age and inventory. 
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If we assume a one-to-one correspondence between stand inventory and merchantable 

volume, the functions utilized by Swallow and Wear (1993) can be converted into a 

function of inventory and used in the two-period model of Chapter 4. 

Swallow and Wear (1993) use the following specification for stand-level forage 

production 

j i D ^ P o s f e - ^ (5.3) 

where f(t) estimates forage production from stand s in animal-unit-months ( A U M ) per 

year for a stand of age f. Different values of p 0 generate different levels of production. 

High production is associated (3o=0.0770 and low production with pV=0.0616; p\=0.085. 

The timber function utilized by Swallow and Wear (1993) was derived from data 

for the Lolo National Forest in western Montana. Timber production is assumed to be 

represented by a logistic growth function 

ys(tsn ) = ("5 4) 

U ; ( l + e « - ^ " ) K } 

where Vs is volume (thousands of board-feet, mbf) per acre on stand s for trees of age f n 

and IQ is the carrying capacity of land on stand s. The estimated values are: K=15.055, 
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a=6.1824 and 0=(O.O8O1, 0.06408) for high and low production sites. Figure 5.1 

illustrates the timber production function for both high and low quality sites. 

Figure 5.1 T imber Y i e l d for H i g h and L o w Product ivi ty Stands 

A s the logistics function is monotonic its inverse function exists and is 

a- ln ( f - l ) 
f(V) = (5.5) 

Substituting Equation 5.5 into Equation 5.3 yields 

/ ( F ) = l o ( a ~ l n ( J ~ 1 ) y l ' J (5.6) 

for stand s, which can be rewritten as 

f(Vs) = (a-bm(^-\))e-c+dXn^-{) (5.7) 

where a, b, c and d take the values reported in Table 5.1 for high and low sites. Only low 

timber and low forage, and high timber and high forage, are considered in the analysis. 

High and low site values reported in Table 5.1 refer to a stand that has both high or low 

productivity parameter values for Equations 5.5 and 5.3. There are two other parameter 
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sets that correspond to stands having low productivity in only one good. These parameter 

sets are not necessary to demonstrate the issue of non convexities and so are omitted. 

Table 5.1: Parameter Values for Forage Product ion Funct ion 
Parameter Values 

Site Productivity a b c d 

High 5.94 0.96 6.56 1.06 

L o w 5.94 0.96 8.20 1.33 

The marginal value of forage is assumed to have the following form (Swallow and 

Wear 1993): 

a(tL,tR)=foe-^ilL)+f^] (5.8) 

so that the marginal forage value is an inverse function of the total quantity of forage 

produced from the two-stand forest. The upper limit on the value of forage is f0 and \\i is 

an adjustment parameter, where /o=$30/AUM and \|/=2. This produces a range of 

marginal values between $8 and $29 per A U M . 

Substituting Equation 5.7 for stand L and R into Equation 5.8 gives: 

a(VL, VR) =/oe-^(^)+/(^)]5 ( 5 9 ) 

so that marginal forage value is a function of the inventory on the two stands. Swallow 

and Wear (1993) calculated forest-level forage benefits by multiplying Equation 5.8, the 

marginal valuation of forage, by the sum total of stand forage production, Equation 5.3: 

E(t\tR) = \f(tL)+f(tR)] . / o e - r t r ^ W ) ] (5.10) 
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Equation 5.10 is illustrated in Figure 5.2 for two stands with high forage productivity. 

Note that maximum forage benefits occur at young stand ages, there are multiple optima, 

and the function has non-convex regions. 

Figure 5.2 Forage Benefits for Two H i g h Forage Stands - Age 

The forage-benefits-inventory function is obtained likewise by multiplying 

Equation 5.9 by the sum of forage production from stands L and R, Equation 5.7, 

E(VL, VR) = [fL(VL)+f(VR)] . / o e - * W > t f ^ ) ] (5.11) 

Three-dimensional graphs obtained from Equation 5.11 for various parameter values are 

depicted in Figure 5.3. Figures 5.3a and 5.3b illustrate how Equation 5.11 changes with 

productivity on both stands and Figure 5.3c demonstrates how it changes with forage 

productivity (note how the graph is slightly skewed towards the right inventory axis). 

Although Equation 5.11 was obtained with some heroic assumptions it is not too 

dissimilar from Equation 5.10. Comparing Figure 5.3a (high forage) with Figure 5.2 

(high forage), one sees that multiple optima occur at low inventory and low stand ages.2 

At very low inventory levels (young ages) the function exhibits a donut shape. This 
demonstrates that there are many combinations of inventories (or ages) that produce the 
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Equation 5.11 also leads to multiple optima and nonconvex regions, 

a) High forage production on both stands 

0 6 0 6 

b) Low forage production on both stands 
Value ($/year) . r 1 — ; ' j 

0.6 0.6 

c) Low forage on left stand high forage on right stand 

0.6 0.6 

Figure 5.3 Forage Benefits for Two Stands - Inventory 

Timber Growth Function 

A simple quadratic growth function is assumed for the analysis. This form was 

suggested by Ovaskainen (1992) and is based on the logistics yield function. It is used 

maximum level of forage benefits from the forest. In fact, maximum forage benefits for 
two high productivity stands occur where a combination of 0.5 A U M are produced from 
both stands. Therefore any combination of inventory levels (or ages) that produce a sum 
total of 0.5 A U M produce the maximum value of forage benefits (maximum forest forage 
benefits are $5.52/acre). 
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simply to demonstrate the relevance of nonconvex, nontimber functions, rather than to 

validate previous studies. The quadratic growth function is 

gs{Vs) = ysVs-rjsVs2 (5.12) 

where y is the maximum incremental growth attainable on the stand and rj is a growth 

adjustment parameter. Incremental growth is 

(12s (Vs) 

- ^ r L = Ys-2rjsVs (5.13) 

A s a first approximation of the parameter values, some of the information from 

the logistics growth function used by Swallow and Wear (1993) is borrowed, and it is 

assumed that there is a one-to-one correspondence between inventory and merchantable 

volume. 

Figure 5.4 illustrates the annual growth or current annual increment (CAI) and 

mean annual increment (MAI) for a high quality site (a) and low quality site (b) derived 

from Equation 5.4. The age that maximizes the maximum flow of timber volume over 

time from successive clear cuts, the maximum sustained yield ( M S Y ) rotation, occurs 

when the M A I is equal to the C A I (average growth is maximized). The M S Y occurs at an 

age of 102 years for high sites and 127 years for low sites. The volume that corresponds 

with these rotation ages, for high and low sites, is a volume of 13.24 mbf. We wi l l 

assume that 13.24 mbf corresponds with the maximum value (maximum growth) of 

Equation 5.12. 
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a. High Quality Timber Site 
0.4 

0.3 

| 0.2 

/ N> M A I 
0.1 

n 
^ ^ ^ ^ ^ 

60 90 102 

Age (years) 

b. Low Quality Timber Site 

60 90 

Age (years) 

Figure 5.4 Cur ren t and M e a n A n n u a l Increment of H i g h and L o w T imber Stands 

Assume that y takes a value equal to 6 in Equation 4 for one year of growth, and 

continue to assume that harvest decisions are every 5 years. To account for 5 years of 

growth, assume growth is constant between harvest periods and simply multiply 0 by a 

factor of 5. Therefore, y=0A and ^=0.32 for high and low growth stands, respectively. 

The slope of Equation 5.13, 2tj, is readily obtained as we know two coordinates, (y,0) and 

(0,13.24). Therefore, ^=0.015 and ^=0.012 for high and low stands, respectively. The 

parameter values for Equation 5.12 are summarized in Table 5.2. Figure 5.5 illustrates 



the quadratic growth function and incremental growth for high and low parameter values 

of Equations 5.12 and 5.13. 

Table 5.2 Parameter Values for Quadratic Growth Function 

Site 
productivity Intercept (y) Slope (rj) 

High 0.4 -0.015 

L o w 0.32 -0.012 

0 5 10 15 20 25 
Inventory (mbf) 

Figure 5.5 Growth and Incremental Growth for High and Low Stands 

Forest-Level Objective Function 

Before solving the multiple-period dynamic programming algorithm, considerable 

insight can be gained as to the form of the objective function and probable solutions with 

the use of graphical illustrations. Substituting Equations 5.11 and 5.12 into Equation 4.1, 

and assuming that all timber is cut by the end of the second period, yields 
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max B =pKhn + hR]) + \f(XL -hLX)+ f(XR - hRX)] .foe-^(x^)+f(x^)) 

2f XL-hL]+(yL(XL-hL])-rjL(XL-hL])) ) ( 5 1 4 ) 

P { +XR-hR] + (yR(XR-hRl)-nR(XR-hR1)) J 
+ ( 1 + r ) 5 

Three-dimensional contour plots of Equation 14 are presented in Figure 5.6. In 

each plot the inventory endowment is 12 mbf and pl andp2 are $80/mbf. 

For the graphical analysis in Figure 5.6 and subsequent dynamic programming 

simulations, harvest decisions are 5 years apart. This interval is somewhat arbitrary but is 

necessary to reduce the computational burden of the multiple-period dynamic 

programming problem. Therefore, to approximate the net present value of forage 

benefits, forage benefits are assumed to be constant between harvests. Between harvests, 

inventory contributes to the production of annual forage benefits according to Equation 

5.9. The present value of an annual series that terminates in 5 years is 

( l + r ) 5 _ l 
= a — : T i l -

5 where a is an annual value and r is an annual discount rate. 
r ( l + r) 

Therefore, we multiple Equation 5.11 by Z 0 to approximate the N P V of five years of 

forage benefits. 
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Figure 5.6 Forest Benefits for Two Stands 

Figures 5.6a-c are for high forage and timber parameter values and different discount 

rates, r=(0.03, 0.04, 0.05). Figures 5.6d-f illustrate the objective function for high forage 

and timber production on the left stand and low forage and timber production the right 

stand. Figures 5.6g-i illustrate the objective function for the case of low forage and 

timber parameter values on each stand. 

The graphs in Figure 5.6 suggest several conclusions. 
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1. The form of the objective function depends greatly on the assumed discount rate. 

A global maximum results for low discount rates, while higher discount rates are 

associated with multiple optima. 

2. There are two types of optima. There is an interior optimum and two border 

optima. Where the stands are identical the interior optimum is symmetrical. The border 

optima are not corner solutions but in fact one stand has very low inventory and the other 

high inventory. That is, one stand specializes in nontimber benefits and the other in 

timber benefits. 

3. The global optimum tends towards an asymmetric solution as the discount rate is 

increased. This last result is consistent with findings in Chapter 4. Recall that the 

optimal response to an increase in the discount rate is to increase harvest (see Equations 

4.18c and 4.28c for one stand). A s the inventory is reduced, the relative value of forage 

benefits to timber benefits increases as high forage values occur at low inventory levels. 

Therefore, as the discount rate rises, nontimber benefits become more significant. Given 

the shape of the forage function (Figure 5.3), it is not surprising that an asymmetric 

optimum becomes superior to a symmetric optimum as the discount rate is increased. 

4. The value of the function decreases with an increase in the discount rate and with 

a reduction in the productivity of the stand in timber and forage. 

5. Lastly, and most importantly, the graphical representation in Figure 5.6 supports 

the conclusion that the optimal harvest on identical stands can be different.3 

A s the graphical presentation is limited to two harvest periods and binding 

second-period harvest constraints, the conclusions are tenuous. Next we attempt to 
3 Swal low and Wear's (1993) analysis found alternating harvests on two stands (an 
asymmetric solution) with a real discount rate of 4 percent. 
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confirm the conclusions suggested from the graphical analysis of Equation 14 with the 

use of a multiple-period dynamic programming algorithm. 

5.3 Dynamic Program 

Here we Equation 5.14 is extended to multiple periods. The benefit of a 

multiple-period model is that harvesting constraints for each period can remain as 

inequalities and permit final period inventories. 

The model considered has 20 harvest decision periods that occur every 5 years 

over a 100 year time horizon. The overall objective is to choose a timber harvest in each 

period on each stand to maximize the net present sum of benefits over the planning 

horizon. Specifically, a level of harvest hs on each stand in each period n for n=\...20 is 

chosen to generate periodic timber benefits, price of timber times total harvest, plus 

annual nontimber benefits. Harvest revenues and nontimber benefits are realized at the 

start of each decision period. 

The optimization problem in period n is 

A t each decision node, a harvest of all to nothing can be removed from each stand. A 

constant nontimber benefit is realized for 5 years and is discounted to the beginning of the 

period. Forest renewal or growth on each stand is not realized until the beginning of the 

next harvest period. A t the end of each period the inventory is renewed to a new starting 

inventory equal to last period inventory plus growth. The inventory renewal equation 

max B = 
(5.15) 

Xs

n+l=Xs

t+gs(Xs

n) (5.16) 
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describes the state of the forest from one period to the next, where Xs„ is the stock or 

inventory in period n and g( ) is inventory growth between harvesting periods. The 

growth function is described by Equation 5.12 and the parameter values are presented in 

Table 5.2. In each period, the total amount harvested can not exceed the level of 

inventory available hsn < Xs

n. 

The multiple-period dynamic program is solved using G A M S and its nonlinear 

solver M I N O S . The basic dynamic programming algorithm for three stands is presented 

in Appendix 2. 

5.4 Results for Forage-Timber Problem 

The dynamic programming algorithm was solved for various scenarios. The 

scenarios were created by varying the number of stands from one to three, timber and 

forage productivity, the price of timber, the maximum forage value and the discount rate. 

The results from the scenarios are presented in Tables 5.3-5.6. Discount rates of 3, 4, 5, 

and 6 percent are used, with stumpage prices of $80/mbf and $84/mbf, and values of 

$ 3 0 / A U M and $ 6 0 / A U M for forage, f0. The base-case values are r=.04,p\ = p2 =80, and 

_/o=30. In all scenarios, the starting inventory on each stand, X, is 12 mbf. 

Independent stands 

First- and second-period harvest and inventory solutions are presented for 

independent stands (or one stand) are presented in Table 5.3. The first and second period 

harvest and inventory are reported along with the N P V for the entire 100-year time 

horizon. The first-period results can be interpreted as short-term while the second-period 

are long run or steady state as the solutions are unchanged for subsequent periods. The 
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second column indicates the values considered while the third column indicates the 

quality of timber and nontimber production. The fourth column indicates the assumed 

discount rate. 

Table 5.3 T imber Harvest and Inventory (mbf) for One Stand 

Period 1 Period 2 
Case Values Stand 

Conditions r hL2 [/L2 NPV 

Timber Only 
a) high 3 3.98 8.02 2.24 8.02 $1,415 
b) high 4 5.88 6.11 1.88 6.11 $1,162 
c) high 5 7.88 4.12 1.39 4.12 $1,033 

d) low 3 5.3 6.7 1.61 6.7 $1,213 
e) low 4 7.7 4.31 1.16 4.31 $1,040 
f) low 5 10.18 1.82 0.54 1.82 $971 

Forage Only 
g) high 4 11.92 0.08 0.03 0.08 $126 
h) low 4 11.93 0.07 0.03 0.07 $115 

Forage and 
Timber 

i) high 3 4.1 7.91 2.23 7.91 $1,423 
j) high 4 6.1 5.91 1.84 5.91 $1,170 
k) high 5 11.91 0.09 0.03 0.09 $1,065 

1) low 3 5.36 6.64 1.6 6.64 $1,214 
m) low 4 11.93 0.07 0.02 0.07 $1,077 
n) low 5 11.93 0.06 0.02 0.06 $1,053 

Cases a-f in Table 5.3 are for timber values only. It is clear that the timber only 

first-period harvest (inventory) increases (decreases) with an increase in the discount rate 

and a reduction in timber productivity. Second-period harvest decreases with an increase 

in r and a decrease in g(). It is also clear that an increase in r and a decrease in g(.) 

reduces N P V . Similar results hold for the forage and timber problem (Cases i-n). 

Cases g and h in Table 5.3 consider only high and low forage benefits. A 

decrease in forage productivity decreases N P V . 

Cases i-n combine forage and timber benefits. Cases i-k consider high forage and 

timber production on the stand while Cases 1-n consider low forage and timber 

production. It is clear that joint-production leads to greater stand benefits. The inclusion 
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of nontimber benefits increases first-period harvest and decreases the optimal growing 

inventory. This is consistent with the findings in Chapter 4. Further the inclusion of 

nontimber benefits decreases the level of subsequent harvests. This result is not available 

from the two-period model of Chapter 4. 

Forage-Timber Problem with Two Stands 

N o w consider the forage/timber problem with two stands, presented in Tables 5.4 

and 5.5. 

Table 5.4 T imber Harvest and Inventory Two Stand Timber-Forage Problem 

Conditions Period 1 Period 2 

Case Left Right r h R l y U V R I h u h R2 y L 2 yR2 N P V 

a) high high 3 4.09 4.09 7.91 7.91 2.23 2.23 7.91 7.91 $2,842 

b) high high 4 6.08 6.08 5.92 5.92 1.84 1.84 5.92 5.92 $2,339 

c) high high 5 7.94 11.91 4.06 0.09 1.38 . 0.03 4.06 0.09 $2,099 

d) • high low 3 4.09 5.36 7.91 6.64 2.23 1.6 7.91 6.64 $2,635 

e) high low 4 5.94 11.93 6.06 0.07 1.87 0.02 6.06 0.07 $2,241 

f> high low 5 7.98 11.93 4.02 0.07 1.37 0.02 4.02 0.06 $2,090 

g) low low 3 5.36 5.36 6.64 6.64 1.6 1.6 6.64 6.64 $2,426 

h) low low 4 7.34 11.93 4.26 0.07 1.15 0.02 4.26 0.07 $2,118 

i) low low 5 11.9 11.9 0.1 0.1 0.03 0.03 0.1 0.1 $2,031 

Three sets of results are presented in Table 5.4. Cases a-c consider two identical 

stands with high forage and timber productivity for three different discount rates. Cases 

d-f consider one stand with high forage and timber and another with low forage and 

timber for three different discount rates. Cases g-i consider two identical stands with low 

forage and low timber productivity for three different discount rates. 

A s in the one stand case, an increase in the discount rate and a decrease in 

productivity decreases N P V , increases first-period harvest and decreases inventory and 

subsequent harvests levels. 
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Stands also have equal harvests and inventory for some cases, while harvests and 

inventory levels are different for other cases. This result confirms what was suggested by 

the graphical illustrations of the objective function over two periods with no ending 

inventory. 

From Cases a-c an asymmetric solution occurs for a discount rate greater than 4 

percent while in Cases d-i an asymmetric solution occurs for discount rates greater than 3 

percent. A n asymmetric result also occurs when stands are different. Therefor, an 

asymmetric solution occurs where stands are different or where discount rates are high 

relative to growth rates and stands have low nontimber productivity. 

Where stands are identical, there is no spatial decision, even though the optimal 

harvest on each stand can be different. The reason is that N P V is invariant to which stand 

has a low harvest and which a high harvest. This is not the case with physically different 

stands. In this case, a spatial decision is important; the stand that has low productivity 

specializes in nontimber production, while the more productive stand is used for timber 

production. Therefore, a spatial decision is necessary to achieve the maximum N P V . 

Table 5.5 Timber Harvest and Inventory of Two High Quality 
Stands for Select Cases of the Forage-Timber 
Problem 

Period 1 Period 2 Period 3 
Case h L l h R I y L I y R l h U h R 2 y L 2 y R 2 h U frRi y U y R 3 N p y 

a) p'=84 7.86 7.86 4.14 4.14 1.37 1.37 5.54 5.54 1.84 1.84 5.92 5.92 $2,389 

b) p 2=84 4.07 4.07 7.93 7.93 4.23 4.23 5.93 5.93 1.85 1.85 5.93 5.93 $2,414 

c) /o=60 5.9511.91 6.05 0.08 1.87 0.03 6.05 0.08 1.87 0.03 6.05 0.08 $2,381 

In Table 5.5, three more cases are reported that demonstrate the effect of changes 

in the price of timber and the maximum marginal forage value on the optimal solutions. 
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In each case the discount rate is assumed to be 4 percent. Case a in Table 5.5 considers 

an unexpected increase in the first-period timber price. The result is an increase in 

first-period harvest, and decreases in inventory and second-period harvest. Inventory and 

harvests reach the steady state levels reported in Table 5.4 by the third period. Case b in 

Table 5.5 constitutes a known increase in the timber price in the second and subsequent 

periods. The result is a decrease in first-period harvest, increase in first-period inventory, 

a large increase in second-period harvest and then a marginal increase in the steady-state 

harvest and inventory level reported in Table 5.4. Finally, case c in Table 5.5 considers 

an increase in the maximum marginal forage value, f. The results reported are for a 

value of $ 6 0 / A U M however, but this was not the only value investigated as fo was 

increased by increments of 10 until an asymmetric solution resulted. This demonstrates 

that, similar to the discount rate, the relative value of forage is an important determinant 

of the optimal harvest. 

How do the solutions on each stand differ in the two stand endogenous model 

from the one stand solutions? For cases with interior solutions (symmetrical solutions for 

identical stands) we see by comparing Tables 5.3 and 5.4 it is clear that solutions are very 

similar. For asymmetric stands, the solutions are very different from the one stand 

solutions. Indeed, with asymmetry, one stand should specialize in production of timber 

and the other in nontimber amenities. 

Forage-Timber Problem for Three Stands 

Finally, consider three stands. The results for two cases for the forage/timber 

problem with three interdependent stands and two different discount rates are reported in 
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Table 5.6. Cases a and b in Table 5.6 show that the inclusion of a third stand marginally 

changes the solutions reported in Table 5.4. The direction of change is to decrease 

first-period harvest and increase inventory. B y induction, this suggests that the influence 

of nontimber benefits on the harvest solutions decreases as the number of stands 

increases. Heroically, we can conclude that the non-convex features of the forage 

benefits function become a non issue as the forest scale reaches some critical level. This 

is a tenuous conclusion. A s Bowes and Kruti l la (1982) noted, the analysis does not 

consider the opportunity cost of expanding operations to a larger scale. That said, i f 

harvesting and access costs are constant and there is no alternative use for the land the 

conclusion is plausible. 

Table 5.6 T imber Harvests and Inventories for Three H i g h Qual i ty 
Stands for Different Nont imber Values 

Case 

Forest Values 
r 

Period 1 Period 2 
N P V Case Left Middle Right r h R l V L I y M l y R l h L 2 h R2 yL2 yM2 yR2 N P V 

a) E E E 4 6.07 6.07 6.07 5.93 5.93 5.93 1.85 1.85 1.85 5.93 5.93 5.93 $3,508 

b) E E E 5 7.93 7.93 11.91 4.07 4.07 0.09 1.38 1.38 0.03 4.07 4.07 0.09 $3,134 

c) C C C 4 5.56 4.04 5.56 6.44 7.96 6.44 1.95 2.23 1.95 6.44 7.96 6.44 $3,690 

d) C C C 5 7.51 5.97 7.51 4.49 6.03 4.49 1.49 1.87 1.49 4.49 6.03 4.49 $3,222 

e) W W W 4 5.1 5.1 5.1 6.9 6.9 6.9 2.04 2.04 2.04 6.90 6.90 6.90 $4,109 

0 W w w 5 6.74 6.74 6.74 5.24 5.24 5.24 1.68 1.68 1.68 5.24 5.24 5.24 $3,557 

g) E , W E , W E , W 5 6.95 6.95 6.95 5.05 5.05 5.05 2.02 2.02 2.02 5.05 5.05 5.05 $3,581 

h) E , W E , W E , W 6 11.9 8.53 8.53 0.1 3.48 3.48 0.04 1.21 1.21 0.10 3.48 3.48 $3,293 

0 C , E C , E C , E 5 7.81 6.16 7.81 4.19 5.84 4.19 1.41 1.83 1.41 4.19 5.84 4.19 $3,250 

j) C C , E E 4 5.55 3.85 6.08 6.45 8.15 5.92 1.96 2.26 1.84 6.45 8.15 5.92 $3,710 

k) C C , E E 5 7.49 5.82 8.3 4.51 6.18 3.7 1.5 1.9 1.28 4.51 6.18 3.70 $3,246 

1) C C , E E 6 9.45 7.69 11.92 2.55 4.31 0.08 0.92 1.45 0.03 2.55 4.31 0.08 $3,067 

5.5 Addition of More Nontimber Goods 

The model is extended to the case of two nontimber values. Consider a late serai 

stage or high inventory good, such as recreation or wildlife value, that is best suited to 

high density or older-aged stand structure. The function employed here is from Swallow 
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et al (1990), who suggest that the stand-level production of spotted owl, red-cockaded 

woodpecker, squirrels and scenic views can be captured by the following function 

W= (5 17) 

where w is the maximum level of production, Co and c\ are parameter values, and f is 

stand age. Assuming that there is a one-to-one correspondence between stand age and 

stand inventory, the stand-level nontimber function is 

W=- ^ — — (5.18) 

In the absence of estimates for the parameters, values are assigned so that 

maximum values are greater than maximum forage values and reach a maximum at 

inventory levels greater than the timber-only inventory reported in Table 5.3. Let w=\, 

c»=0.2, and c/=0.3, and assume that each unit of output has a constant marginal value of 

$10 (stands are not assumed to be interdependent). These parameter values generate 

stand-level nontimber production and benefit functions illustrated in Figure 5.7. The 

benefit function is quasi-concave (maximum occurs in a concave region) with maximum 

nontimber benefits and production occurring around a stand volume of 20 mbf, which 

exceeds the M S Y timber volume. 

Cases e and f i n Table 5.6 consider the case of timber and nontimber benefits, W, 

for two different discount rates. Inclusion of this benefit decreases the first-period 

harvest and increases inventory and subsequent harvest levels. This is consistent with the 

findings in Chapter 4, which predict that the optimal joint-production inventory exceeds 

the timber-only inventory when the maximum nontimber value occurs at a high inventory 

level. Note that all stands are treated the same as stand-level production and marginal 

value are independent of production on other stands. 
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The case of timber and nontimber values E and W are presented as Cases g and h 

in Table 5.6. Two discount rates are used, 5 and 6 percent. B y comparing g and a in 

Table 5.4, it is clear that the inclusion of W changes the stands from being treated 

asymmetrically to symmetrically. The asymmetric treatment of the stands now only 

occurs at high discount rates (case h). This suggests that the presence of a third 

nontimber value, that occurs at high levels of inventory, may dominate nontimber values 
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that occur at low inventory levels. Therefore, the influence of non-convex nontimber 

functions on the optimal harvesting solution is dependent on the weight of this value 

relative to other values. This conclusion is consistent with the findings from the optimal 

rotation model (Bowes and Kruti l la 1989). 

A third nontimber function considered here is a forest-level benefit expressed by a 

Cobb-Douglas function: 

where K, X, p, and p are parameters. In Equation 5.19, a nontimber benefit (C) is 

dependent on conditions on all three stands in the forest. Assume that C is concave so 

that K, A, p, p>0 and A+p+p<\; Cysy* < 0 Vs and CW'» > 0 \/m±s; and the Hessian 

matrix, D , is negative definite. The stands are complementary in producing C. Assuming 

that only the left and middle stands contribute to the production of the nontimber benefit 

C, Equation 5.19 can be rewritten as: 

Assume that K=\.5, /l=0.1, //=(0.7,0.8) and p=(0,0.1), and that the per unit price 

of nontimber good C is $1. Again, the chosen parameter values are ad hoc and have no 

scientific foundation. However, the function demonstrates the issue of technical 

externalities absent from previous work in this area. Equation 5.20 is depicted in Figure 

5.8 for //=0.8 for three exogenous inventory levels on the middle stand. A s the inventory 

level is increased on the middle stand, nontimber benefits increase for all left-stand 

inventory levels. Also note that, a doubling of inventory on the middle stand from 3 mbf 

to 6 mbf to 12 mbf does not double nontimber benefits, i.e., there are diminishing returns 

to scale. 

C = K(VL)X(VMT(VR)P (5.19) 

C = K(VL)\VMT (5.20) 
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The inclusion of the nontimber benefits C into Equation 5.15 is presented in Table 

5.6 (Cases c and d and i through to 1). Cases c and d exclude forage benefits (E), which 

are included in case i . Cases j through to 1 consider the scenario where the left and 

middle stands contribute to the nontimber benefit C and the middle and right stands 

contribute to forage benefits. These cases demonstrate that: 

1) stands technologically related (not solely related by the marginal value function) 

w i l l always be treated differently i f the stands contribute differently to the 

provision of the nontimber benefit; and 

2) the presence o f more than two goods on the three stands and the spatial allocation 

of nontimber benefits can generate very different optimal harvest patterns across 

the forest. 
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5.6 Conc lus ions 

The numerical simulations demonstrate the influence of non-convexities in a 

manner similar to previous studies (Swallow and Wear 1993; Swallow et al 1997; Rose 

1999). However, unlike these studies, the simulations suggest non-convexities need not 

be important determinants of management strategies. Many factors are important in 

determining how closely or differently stands are treated. These factors include 

nontimber productivity, relative values, the discount rate and timber productivity. 

Truly spatial problems occur when more than two stands and two goods are 

considered. The optimal solutions for such spatial problems diverge greatly from the 

solutions derived from one- and two-stand analyses. This suggests that ignoring the 

explicit location of stands, spatial scale of habitats, and interdependence among stands 

involves an opportunity cost. The results also suggest very different management 

strategies can arise in different forest regions even when the technical production 

relationships and objectives are identical. The converse is also suggested. It is possible 

that similar management strategies are followed in different jurisdictions even i f the 

physical forest, prices and discount rates are different. 
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C H A P T E R 6 

C O N C L U S I O N S 

In this dissertation, the two-stand model of multiple-use forestry was simplified 

and generalized. Many of the results from previous two-period models were shown to be 

special cases of this general model. For instance, when stands were assumed independent 

results of previous one-stand models were produced. Furthermore, the importance of 

stand interdependence was more readily derived from this simplified model than previous 

models. In particular, it was found that the presence of nontimber benefits in a two-stand 

forest can lead to short-term backward bending timber supply on one of the stands. The 

two-stand model was also extended to consider silvicultural management intensity. It 

was found that allocating land to single-use management for timber production is 

efficient i f both capital and technology can substitute for land in timber production and 

forest management can be adjusted in other forest areas to achieve the optimal mix of 

timber and nontimber values. However, the results in general support the conclusion that 

there is no one optimal land management regime; the optimal land management regime 

depends on the circumstances considered. Next, a three-stand model was specified, and 

showed, through numerical simulations, that the results differ qualitatively from the 

two-stand case. The differences arise out of the possibility of asymmetries and 

non-adjacencies in the three-stand case. Finally, it was found that the discount rate, 

timber productivity, nontimber productivity, and relative values are all important factors 

in determining whether it is optimal for some forest stands to specialize in the production 

of a single forest value or many values. 
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The results from this work have important policy and forest planning implications. 

The work supports the argument that forest regulations and taxes used to promote or 

protect nontimber values need to be sensitive to the spatial location of stands, the natural 

physical differences of stands, and stand interdependencies. Therefore, forest policy tools 

and initiatives that promote or support the principle of socially optimal use of forest 

resources, such as forest practices laws and land-use zoning frameworks, need to vary 

from one forest region to another to account for spatial considerations; in general, there is 

no one dominant land management paradigm. 

In many jurisdictions of the world, including British Columbia, governments have 

introduced various laws that attempt to regulate timber harvesting practices on public and 

private land as a means to promoting multiple-use forest management and achieving 

forest resource use efficiency. In some cases, laws are stringent blanket approaches, such 

as in British Columbia (see Cook 1998), that do not do well to account for linkages and 

interdependencies between forest areas, regional differences in marginal values, or 

differences in forest ecosystems, while others are flexible, such as in Sweden (see van 

Kooten et al. 1999). The results from the model indicate that initiatives which do not 

account for spatial differences and are inflexible over time w i l l fail to achieve the policy 

goal of efficient resource use. It could be argued that stringent blanket approaches are a 

first effort towards the socially optimum when faced with little or no information. 

However, as asserted by Brown et al (1993), forest practices laws and programs need to 

adapt over time as information becomes known so as to better account for the spatial and 

temporal aspects of forestry, and achieve better social outcomes. If forest practice laws 

fail to do so, they w i l l certainly fail to achieve resource use efficiency. 
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Another key policy issue in multiple-use forestry is the question of zoning forests 

for single-uses versus integrated resource management everywhere. The analysis 

presented in this dissertation provides support for both positions, depending on the 

particulars of the situation studied. However, one case of interest and importance obtains 

when it is possible to substitute capital and technology for land in timber production. 

This is the case with management intensity discussed in Section 4.4. Under these 

circumstances, and the additional circumstances that other forest areas can be managed to 

provide the optimal mix of forest values, the results clearly support the idea of intensive 

use zones. 

Proponents of zoning often have argued that zoning w i l l better promote 

multiple-use forestry and achieve the social optimal outcome by reducing resource use 

conflicts, and thereby reduce transaction costs, better focus management priorities, and 

provide greater security essential for forest management investments. However, 

opponents of zoning argue that it prevents future land-use changes and, therefore, simply 

trades off short-term savings for larger long-term costs. A s stated, the analysis presented 

in this thesis supports the use of zones under specific circumstances. However, the 

results also indicate that the optimal zones can change with changes in values over time. 

Therefore, the issue of institutional inflexibility with regard to zones is important and 

relevant. 

To ensure that forest land is allocated to and managed for its most efficient use 

over time, be it for a single or multiple uses, a transparent and well designed 

compensation policy is likely an important and complementary policy. A compensation 

policy is in essence a form of insurance against the complete loss of property in the event 
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that forest land is reallocated among users for alternative uses. A compensation policy 

therefore affects the risks associated with undertaking intensive silvicultural activities in 

well defined intensive timber zones on public forests or on private lands. In designing a 

compensation policy, policy makers must be aware of the "tradeoffs" involved. A 

compensation policy can create incentives that are not in the public's interest. For 

example, a full compensation policy could encourage too much investment while a zero 

compensation policy might encourage too little. A full compensation policy can lead to 

too much investment due to moral hazard. Moral hazard is when a company does not 

consider the possibility that the current land area might best be used for another purpose 

in the future. A s a consequence, the company might invest too much into timber 

management, for example, i f it does not consider the full risk of the land being 

reallocated to another use. On the other hand, a zero compensation policy may not 

provide enough security for companies when government policies are rapidly changing or 

vague. On the other hand, i f compensation is set at a high level it could constrain a 

Government's ability to reallocate land to its highest valued use. Therefore, a 

compensation policy needs to consider the tradeoff between the Government's ability to 

reallocate resources and encouraging the socially optimal level of investment. 

Compensation policy essentially affects property rights, in particular it affects the 

security of property. Other government policies as well as social and cultural institutions 

w i l l also affect property rights and thus the incentives to manage and exploit forest 

resources. Understanding how institutions affect incentives and how these can be 

designed to change with time is an area of important research in multiple use forestry. 



141 

R E F E R E N C E S 

Adams D . M . and A . R. Ek, 1974, Optimizing the Management of Uneven-aged Forest 
Stands, Canadian Journal of Forestry Research 4: 274-286. 

Al l an K . and D . Frank, 1994, Community Forest in British Columbia: Models that Work, 
Forestry Chronicle 70: 721-724. 

Alverson W . S., W . Kulmann and D . M . Waller, 1994, Wild Forest: Conservation 
Biology and Public Policy, Island Press, Washington, D . C. 

Amacher G . S., 1999, Government Preferences and Public Forest Harvesting: A 
Second-Best Approach, American Journal of Agricultural Economics 81 
(February): 14-28. 

Amacher G . S. and R. Brazee, 1977, Designing Forest Taxes with Varying Government 
Preferences and Budget Targets, Journal of Environmental Economics and 
Management 32: 323-340. 

Ammer U . , 1992, Nature Conservation Strategies in Commercial Forest, 
Forstwissenschaftliches Centralblatt 111: 255-265. 

Anderson T. L . , 1994, Multiple Conflicts Over Multiple Uses, Political Economy 
Research Center, Bozeman, Montana. 

Barbier E . B . and J. C. Burgess, 1997, The Economics of Tropical Forest Land Use 
Options, Land Economics 73:174-195. 

Beavis, B and I . M . Dobbs, 1990, Optimization and Stability Theory for Economic 
Analysis, Cambridge University Press, Cambridge. 

Behan R. W. , 1990, Paradigmatic Challenge to Professional Forestry, Journal of 
Forestry 88(4): 12-18. 

Benson C. A . , 1990, The Potential for Integrated Resource Management with Intensive or 
Extensive Forest Management: Reconciling Vis ion with Reality - The Extensive 
Management Argument, Forestry Chronicle 66: 457-460. 

Benson C. A . , 1988, A Need for Extensive Forest Management, Forestry 
Chronicle 64: 421-430. 

Bentley W . R. and D . E . Teeguarden, 1965, Financial Maturity: A Theoretical Review, 
Forest Science 11: 76-87. 



142 

Berck P., 1976, Natural Resources in a Competitive Economy, Unpublished M.I .T. 
P h . D . pp 121. 

Binkley C. S., 1980, Economic Analysis of the Allowable Cut Effect, Forest Science 
26(4): 633-642. 

Binkley C. S., 1981, Timber Supply from Private Nonindustrial Forests: A 
Microeconomic Analysis of Landowner Behavior, Yale University, School of 
Forestry and Environmental Studies, Bulletin 92, 97 p. 

Binkley C. S., 1987, When is the Optimal Economic Rotation Longer than the Rotation of 
Maximum Sustained Yield?, Journal of Environmental Economics and 
Management 14: 152-158. 

Binkley C. S., 1997, Preserving Nature through Intensive Plantation Forestry: The Case 
for Forest Land Allocation with Illustrations from British Columbia, Forestry 
Chronicle 73: 553-559. 

B i rd I. D . , 1990, The Potential for Integrated Resource Management with Intensive or 
Extensive Forest Management: Reconciling Vis ion Reality, Forestry Chronicle 
66: 444-446. 

Bishop K . , A . Phillips and L . Warren, 1995, Protected for Ever?, Factors Shaping the 
Future of Protected areas Policy, Land Use Policy 12(4): 291-305. 

Booth D . L . , D . W . K . Boulter, D . J. Neave, A . A . , Rotherham, and D . A . Welsh, 1993, 
Natural Forest Landscape Management: A Strategy for Canada, Forestry 
Chronicle 69: 141-145. 

Bowes M . D . and J. V . Krutil la, 1982, Multiple-use Forestry and the Economics of the 
Multiproduct Enterprise, Advances in Applied Micro-economics 2: 157-190. 

Bowes M . D . and J. V . Krutil la, 1985, Multiple-use Management of Public Forestland, in 
Handbook of Natural Resources and Energy Economics, edited by A . V . Kneese 
and J. L . Sweeney, V o l II, North-Holland, Amsterdam. 

Bowes M . D . and J. V . Krutil la, 1989, Multiple-Use Management: The Economics of 
Public Forestlands, Resources for the Future, Washington, D . C . 

Brown, Thomas C , Douglas Brown and Dan Binkley. 1993. Laws and Programs for 
Controlling Nonpoint Source Pollution in Forest Areas. Water Resources Bulletin 
29(1): 1-13. 



143 

Burton P. J., 1994, The Mendelian Compromise: A Vis ion for Equitable Land Use 
Allocation, Land Use Policy 12: 63-68. 

Calish S., R. D . Fight, and D . E . Teeguarden, 1978, How do Nontimber Values Affect 
Douglas-fir Rotations? Journal of Forestry, 76(4): 217-221. 

Carne J. and R. Prinsely, 1992, (1) Agroforestry: What is it? (2) Agroforestry Redefined, 
Agricultural Science 5: 45-48. 

Chang S. J., 1981, Determination of the Optimal Growing Stock and Cutting Cycle for an 
Uneven-aged Stand, Forest Science 27: 739-44. 

Chiang A . C , 1984, Fundamental Methods of Mathematical Economics, 3rd Ed. , 
M c G r a w - H i l l , Toronto. 

Clarke R., 1985, Industrial Economics, Basic Blackwell , Oxford and New York. 

Clawson M . , 1978, The Concept of Multiple Use Forestry, Environmental 
Law 8:281-308. 

Compendium of Canadian Forestry Statistics 1995, 1996, Canadian Council of Forest 
Ministers, Ottawa, Canada. 

Conrad J. M . and G . Sales, 1993, Economic Strategies for Coevolution: Timber and 
Butterflies in Mexico, Land Economics 69(4): 404-415. 

Cook, Tracy, 1998, Sustainable Practices? An Analysis of B.C. 's Forest Practices Code, 
in The Wealth of Forests, Markets, Regulation, and Sustainable Forestry, Ed. 
Chris Tollefson, U B C Press, Vancouver, Canada, pp.204-231. 

Dana J. D . Jr., 1993, The Organization of Scope of Agents: Regulating Multiproduct 
Industries, Journal Of Economic Theory 59: 288-310. 

Dana S. T. , 1943, Multiple Use, Biology and Economics, Journal of 
Forestry 41: 625-626. 

Dancik B . P., 1990, Lost Opportunities and the Future of Forestry: W i l l we Respond to 
the Challenges? Forestry Chronicle 66: 454-456. 

Duinker P. N . , P. W . Matakala, F. Chege and L . Bouthillier, 1994, Community Forest in 
Canada: A n Overview, Forestry Chronicle 70(6): 711-720. 

Englin J. E . and M . S. Klan , 1990, Optimal Taxation: Timber and Externalities, Journal 
of Environmental Economics and Management 18: 263-275. 



144 

Faustmann M.[1849] 1968, On the Determination of the Value which Forest Land and 
Immature Stands Posses for Forestry, in Martin Faustmann and the Evolution of 
Discounted Cash Flow, English Translation by M . Gane (ed.), Oxford Institute 
Paper 42. 

Goetz S. J., 1992, Economics of Scope and the Cash Crop-Food Crop Debate in Senegal, 
World Development 20: 727-734. 

Gray J. A . , Y . Yevdokimov and S. Akoena, 1997, Spatial Benefits of Intensive Forestry, 
Conference Paper, X I World Forestry Congress, Antalya, Turkey, Oct. 

Gregory R. J., 1995, A n Economic Approach to Multiple Use, Forestry Science 1: 6-13. 

Haas G . E . , B . L . Driver, P. J. Brown, and R. G . Lucas, 1987, Wilderness Management 
Zoning, Journal of Forestry 85:17-21. 

Haight R. G . , J. D . Brodie and D . M . Adams, 1985, Optimizing the Sequence of Diameter 
Distributions and Selection Harvests for Uneven-aged Stand Management, Forest 
Science 31: 451-462. 

Hartman R., 1976, The Harvesting Decision when a Standing Forest has Value, Economic 
Inquiry 14: 52-58. 

Hartwick J. M . and N . Olewiler, 1998, The Economics of Natural Resource Use, Second 
Edition, Reading, Mass, Addison-Wesley, 432p. 

Helfand G . E . and M . D . Whitney, 1994, Efficient Multiple-Use M a y Require Land-Use 
Specialization: Comment, Land Economics 70: 391-395. 

Hoberg G . and D . Schwichtenberg, 1999, Getting More Benefits from B C Forest Lands: 
The Intensive Zoning Option, Discussion Paper for Focus on Our Forests, 
Discussion Paper Series Submitted to the B . C . Government, September. 

Hopkin J., 1954, Economic Criteria for Determining Optimum Use of Summer Range by 
Sheep and Cattle, Journal of Range Management 7: 170-175. 

Hyde W . F. and D . H . Newman, 1991, Forest Economics and Policy Analysis, A n 
Overview, World Bank Discussion Papers 134, Wor ld Bank, Washington, D . C. 

Hytonen, 1995, Multiple-use Forestry in the Nordic Countries, Finnish Forest Research 
Institute, Vantaa, Finland, pp. 460. 

Iossa E . , 1999, Informative Externalities and Pricing in Regulated Multiproduct 
Industries, Journal of Industrial Economics X L , VI I : 195-219. 



145 

Ito A . and F. Nakamura, 1994, A Study on Diversity and Total Management of Natural 
Resources from the Perspective of Land Conservation, Journal of the Japanese 
Forestry Society 76: 160-171. 

Juday G . P., 1978, Old Growth Forests: A Necessary Element of Multiple Use and 
Sustained Y i e l d National Forest Management, Environmental Law 8: 497-522. 

Konijnendijk C. C , 1997, A Short History of Urban Forestry in Europe, Journal of 
Arboriculture 23: 31-39. 

Koskela E . and M . Ollikainen, 1997, Optimal Design of Forest Taxation with 
Multiple-Use Characteristics of Forest Stands, Environmental and Resource 
Economics 10: 41-62. 

Koskela E . and M . Ollikainen, 1999, Optimal Public Harvesting Under the 
Interdependence of Public and Private Forests, Forest Science 45(2): 259-271. 

Kryzanowski T., 1999, Buil t to Thin, Logging and Sawmilling Journal 30: 35-36, 38. 

Kutay K . , 1977, Oregon Economic Impact Assessment of Proposed Wilderness 
Legislation, in Oregon Omnibus Wilderness Act , Publication no. 95-42, Part 2, 
Hearing before the Subcommittee on Parks and Recreation of the Committee on 
Energy and Natural Resources, United States Senate, 95th Congress, 1st Session, 
pp. 29-63. 

Ledyard J. and L . N . Moses, 1976, Dynamics and Land Use: The Case of Forestry, in 
Public and Urban Economics: Essays in Honor of William S. Vickery, Ed . R. E . 
Grieson, D . C. Heath & Co. Lexington Books, Mass, U S A . 

Lofgren, K . G . , 1983, The Faustmann-Ohlin Theorem: A Historical Note. History of 
Political Economy 28(2): 261-264. 

MacDonald P., 1999, Prized Forests, Logging and Sawmilling Journal 30: 11-12, 14-15. 

M a x W . and D . E . Lehman, 1988, A Behavioral Model of Timber Supply, Journal of 
Environmental Economics and Management 15: 71-86. 

Montgomery C. A . and D . M . Adams, 1995, Optimal Timber Management Policies, in 
The Handbook of Environmental Economics, Ed . D . W . Bromley, Cambridge, 
M A and Oxford: Basil Blackwell . 

National Research Council , 1999, Nature's Numbers, Expanding the National Economic 
Accounts to Include the Environment, Eds. W . D . Nordhaus and E .C . 
Kokkelenberg, National Academy Press, Washington, D . C . 



146 

Nautiyal J. C. and K . S. Fowler, 1980, Optimum Forest Rotation in an Imperfect 
Stumpage Market, Land Economics 56: 213-226. 

Nguyen D. , 1979, Environmental Services and the Optimum Rotation Problem in Forest 
Management, Journal of Environmental and Economic Management 8: 127-136. 

Ohlin, B . , 1921, T i l l Fragan om Skogarnas Omloppstid (On the Question of the Rotation 
Period of the Forests), Ekonomisk Tidskrift 12: 89-113. 

Ovaskainen V , 1992, Forest Taxation, Timber Supply, and Economic Efficiency, Acta 
Forestalia Fennica No . 233. 

Paredes G . L . and J. D . Brodie, 1989, Land Value and the Linkage Between Stand and 
Forest Level Analyses, Land Economics 65: 158-166. 

Pearse P. H . , 1969, Towards a Theory of Multiple Use: The Case of Recreation Versus 
Agriculture, Natural Resources Journal 9: 561-575. 

Pearse P. FL, 1990, Introduction to Forestry Economics, Harvest Wheatsheaf, London, 
England. 

Pressler, M . R . , 1860, Aus der Holzzuwachslehre. Allgemeine Forst-und Jagd-zeitung. 

Randall A . and E . N . Castle, Land Resources and Land Markets, 1985, in Handbook of 
Natural Resources and Energy Economics, V o l . II, edited by A . V . Kneese and J. 
L . Sweeney, Elsevier Science Publishers B . V . 

Rayner, J. 1998, Priority-Use Zoning: Sustainable Solution or Symbolic Politics? in The 
Wealth of Forests, Markets, Regulation, and Sustainable Forestry, Ed . Chris 
Tollefson, U B C Press, Vancouver, Canada, pp.232-254. 

Reed F. L . C , 1990, Canada's Second Century of Forestry, Closing the Gap between 
Promise and Performance, Forestry Chronicle 66: 447-453. 

Rideout D . and J. E . Wagner, 1988, Testing Cost-sharing Techniques on a Multiple-use 
Timber Sale, Forest Ecology and Management 23: 285-296. 

Rimoldi J., 1999, U n Ejemplo entre Ganaderia y Forestacion, Sistema Silvopastoril, 
Forestal, 3(11). 

Rose S. K . , 1999, Public Forest Land Allocation: A Dynamic Spatial Perspective on 
Environmental Timber Management, Unpublished Paper, Dept. of Agricultural, 
Resource and Managerial Economics, Cornell, University. 



147 

Sahajananthan S., D . Haley and J. Nelson, 1998, Planning for Sustainability of Forests in 
British Columbia Through Land Use Zoning, Canadian Public Policy 24(0), 
Supplement May, S73-81. 

Samuelson P. A . , 1976, Economics of Forestry in an Evolving Society, Economic 
Inquiry 14: 466-492. 

Sanchirico J. N . and James E . Wilen, 1999, Bioeconomics of Spatial Exploitation in a 
Patchy Environment, Journal of Environmental Economics and Management 37: 
129-150. 

Schuster E . G . , 1988, Apportioning Joint Costs in Multiple-use Forestry, Western Journal 
of Applied Forestry 3: 23-25. 

Scorgie, M . and J. Kennedy, 1996, Who Discovered the Faustmann Condition?, History 
of Political Economy 28(1): 77-80. 

Sedjo, R. A . , 1990 Comments on "The potential for Integrated Resource Management 
with Intensive Forest Management: Reconciling Vis ion with Reality", Forestry 
Chronicle 66: 461-462. 

Shaw, J. H . , 1985, Introduction to Wildlife Management, M c G r a w - H i l l , New York. 

Smith, D . M . , 1986, The Practice of Silviculture, 8th Edition, John Wiley and Sons, New 
York and Toronto. 

Snyder, D . L . A n d R. Bhattacharyya, 1990, A More General Dynamic Economic Model of 
the Optimal Rotation of Multiple-Use Forests, Journal of Environmental 
Economics and Management 18, 168-175. 

Standiford R. B . and R. E . Howitt, 1992, Solving Empirical Bioeconomic Models: A 
Rangeland Management Application, American Journal of Agricultural 
Economics 74(2): 421-433. 

Strang W . J., 1983, On the Optimal Forest Harvesting Decision, Economic Inquiry 
21: 576-583. 

Stridsberg E . , 1984, Multiple-use Forestry in Former Days, Communicationes Instituti 
Forestalls Fenniae 120: 14-18. 

Swallow S. K . , P. J. Parks and D . N . Wear, 1990, Policy-Relevant Nonconvexities in the 
Production of Multiple Forest Benefits, Journal of Environmental Economics and 
Management 19: 264-280. 



148 

Swallow S. K . , P. Talukdar and D . N . Wear, 1997, Spatial and Temporal Specialization 
in Forest Ecosystem Management under Sole Ownership, American Journal of 
Agricultural Economics 79: 311-326. 

Swallow S. K . and D . N . Wear, 1993 Spatial Interactions in Multiple-Use Forestry and 
Substitution and Wealth Effects for the Single Stand, Journal of Environmental 
Economics and Management 25: 103-120. 

Tahvonen O. and S. Salo, 1999, Optimal Forest Rotation with in Situ Preferences, 
Journal of Environmental Economics and Management 37: 106-128. 

Teeguarden D. , 1982, Multiple Services, in Forest Resources Management: 
Decision-Making Principles and Cases, eds. W. A . Duerr et al., Oregon State 
University, Bookstores Corvallis. 

Tirole J., 1988, The Theory of Industrial Organization, M I T Press, Cambridge, 
Massachusetts. 

van Kooten, G .C . , B . Wilson and I. Vertinsky, 1999, Sweden in Forest Policy, 
International Case Studies, Eds. B . Wilson et al., C A B I Publishing, U K , 
pp.155-186. 

Varian H . L . , 1984, Microeconomic Theory, W . W . Norton & Company, New York, 
2nd. Edition. 

Vincent J. R. and C. S. Binkley, 1993, Efficient Multiple-Use Forestry M a y Require 
Land-Use Specialization, Land Economics 69: 370-376. 

Walker J., 1974, Timber Management Planning, San Francisco, C A : Western Timber 
Association Mimeo. 

Wal l in D . O., F. J. Swanson and B . Marks, 1994, Landscape Pattern Response to Changes 
in Pattern Generation Rules: Land-use Legacies in Forestry, Ecological 
Applications 4: 569-580. 

Walters G . R., 1977, Economics of Multiple-Use Forestry, Journal of Environmental 
Management 5: 345-356. 

Wang, S. and G .C . van Kooten, 2000, Forestry and the New Institutional Economics, 
Adershot U . K . : Ashgate, 206pp. 

Wilson C. N . , 1978, Land Management Planning Processes of the Forest Service, 
Environmental Law 8: 462-477. 



149 

Yasumura N . and S. Nagata, 1998, Japanese People's Perception of Needs for Forests 
(I): an Overview of a Questionnaire, Bulletin of the Tokyo University Forests, 
100:13-27. 



150 

A p p e n d i x 1 C o m p a r a t i v e s t a t i c s R e s u l t s 

The comparative statics results for problem 4.36, the simple two-stand problem 

with nontimber benefits on the left stand, are as follows: 

dhLlt _ / / . { - ( ! + r ) £ i , , - g £ , g k + ( l + * • ) # , , , } l > 0 i f £ £ l f f l > 0 o r { }>0 
dp1 ( l+r ) 3 D{ < 0 if { } <0 

dhRV _ / / , { - ( !+ r )£ f , , , + ( ! + / • ) £ £ , „ } i > 0 i f ^ i / . i > 0 o r { }>0 
dpl ( l+r) 3 < 0 if { }<0 

dhLV

 = # i£J i* i 1 > 0 if Elm * 0 
dp"* ( 1 + r)2 D, < 0 if££m < 0 

^ (1 +r)(l + g £ ) £ £ m +(1 + gL

v)gR

vEL

R2 

dh"' '1 -(1 + r)(l + g{ f )£ j m j _ j _ < 0 if £ £ m > 0 or { }>0 
dp2 ~~ (1+r) 4 £>i >0 if { } <0 

Hi 
dhRV 

-(l+r)(\+gR)EL

ULl-(l+gR)gL

vvEl

L2 ) 
+{\+r){\+gL

v)EL

Rm < 0 if EL

Rl,, > 0 or { }>0 
dp2 (i+r)4 > 0 if { }<0 

dht\* _Hi(\+gR)EL

URl i < 0 ifEL

URl >0 

SA£H 
dr (1+r) 5 < 0 if { }<0 

2 , ( l+ r ) ( l+g*)£ i l i ,+ ( l+g i f )gUi2 

(A la ) 

( A l b ) 

(A le ) 

dhR*' __Hi((l + r ) £ f 1 „ + g j £ f 7 ) 1 > Q ( A l d ) 
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X P \ -(l+r)(l+g*)£jm [ ! > 0 i f £ £ l s l > 0 o r { } > 0 

( A l l ) 

„ 2J v ' ' ' / v i ' *v L\Ll ' v* ' bV 'bvv~Ll l 

gft*i* ' P j - ( l + r ) ( l + g Q ^ U i J _ j _ > 0 if > 0 or { }>0 

ar _ ( 1 + r ) S r>i <oif{ } < o 1 j ; 

a^. i (Alio 

^ 1 = 0 (AM) ( A i m ) 
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dh 
dXR = 1 ( A l n ) 

w h e r e j D i = / / ( ( r 2 + 2 r ) ( ^ 1 / , ^ , g , - # , „ £ i 1 M ) + (l + r ) q f c g * # „ l + # , g U i , „ ) ) > Q a n d 

#i = (EL2L2ER2R2 -EL2R2ER2L2^ > 0 is a common factor. 

The comparative statics results for problem 4.40, the two-stand problem with 

nontimber benefits on both stands, are as follows: 

dhu' 
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dpi 

dhm* 
dpRi 

dhL]* 
dp2 

dhRV 

dp2 

dhLV 

dpR2 

dp Rl 

H2 

H2 

( A\+r)(EL
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The comparative statics results for one stand with management and nontimber 

benefits, Equation 4.43, are: 
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f ^ = . (A3d) 
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The comparative statics results for two stands with timber management on the 

right stand and nontimber benefits on the left stand, Equation 4.47, are: 
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This last expression was simplified by exploiting the f.o.c.s and setting p2 = EL

L2 = EL

R2. 

This expression is correct for equal timber prices on each stand. I f prices are different the 

expression changes but the result does not. 



156 

f f - = 0 (A4v) 

f ^ T = 0 (A4w) 

dw ~ ( 1 + r ) 4 DA < 0 (A4X>* 

where 
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the Jacobian determinant, H4 = EL

L2L2EL

R2R2 - EL

L2R2EL

R2L2 > 0, ^ 4 = £ £ , £ , £ £ m - £ i i « i £ « u i >0 

and GA = gRQQgRv-gQVgRQ > 0. 
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A p p e n d i x 2 G A M S / M i n o s P r o g r a m 

$Title Discrete Harvest-Inventory Multiple-use Model 
SOntext 

This is a discrete harvest-inventory multiple-use model. 
•Three Stands and 5 years between each harvest decision 
•Forage benefits, timber benefits, 'recreation benefits', Cobb-Douglas benefit 
function 

SOfftext 

S O F F S Y M X R E F O F F S Y M L I S T 

SETS 

T optimization time 100 years /PT *P 1 9 , T E R M I N A L / 
TI(T) initial decision period 
TB(T) all decision periods but last 
TBF(T) all but first decision period 
TL(T) last or terminal decision period; 

TI(T) = Y E S $ ( O R D ( T ) E Q 1); 
TB(T) = Y E S $ ( O R D ( T ) L T C A R D ( T ) ) ; 
TL(T) = N O T TB(T); 
TBF(T)= N O T TI(T); 

S C A L A R S 
SOntext 
Parameters for forage benefits 
SOfftext 

A L first part forage production left /5.943 / 
B L second part forage production left /0.961 / 
C L third part forage production left /6.561 / 
D L fourth part forage production left /1.061 / 
A M first part forage production middle /5.943 / 
B M second part forage production middle /0.961 / 
C M third part forage production middle /6.561 / 
D M fourth part forage production middle /1.061 / 
A R first part forage production right /5.943 / 
B R second part forage production right /0.961 / 
C R third part forage production right /6.561 / 
D R fourth part forage production right /1.061 / 

F maximum value of forage / 3 0 / 
G value adjustment for forage 12 1 
K timber carrying capacity 1 15.055 / 

SOntext 



Parameters for wildlife benefits 
SOfftext 

W A L maximum wildlife production left /1 / 
W A M maximum wildlife production middle /1 / 
W A R maximum wildlife production right /1 / 
W B max increment of wildlife production 1.2 1 
W C change in incremental wildlife 13 1 
W F max value of wildlife / 1 0 / 
W G value adjustment for wildlife /1 / 

SOntext 

Parameters for Cobb-Douglas benefits function 

SOfftext 
C D K cobb-douglas constant / 1.5 / 
C D L cobb-douglas exponent on left stand /0.1 / 
C D M cobb-douglas exponent on middle stand /0.8 / 
C D R cobb-douglas exponent on right stand 10 / 

SOntext 

Parameters for stand growth function 

SOfftext 
G I L first constant on quadratic growth left /AO 1 
G 2 L second constant on quadratic growth left 1.0X5 1 
G I M first constant on quadratic growth middle IA0 1 
G 2 M second constant on quadratic growth middle /.015 / 
G 1 R first constant on quadratic growth right /.40 / 
G 2 R second constant on quadratic growth right AO 15 / 

SOntext 

Economic parameters 

SOfftext 
P B base stumpage value of timber / 8 0 / 
P L low stumpage value of timber / 8 0 / 
R H O discount rate A04 / 

SOntext 

Initial and terminal conditions 

SOfftext 

K T L terminal stock on left stand A 5 / 



K T M terminal stock on middle stand 1.5 1 
K T R terminal stock on right stand 1.5 1 
K I L initial stock on left stand 1 12 1 
K I M initial stock on middle stand l\2 1 
K I R initial stock on right stand 1X2 1 

D E L T discount factor for 5 year annual series ; 

D E L T = ( ( ( l+RHO)**5)- l ) / (RHO*(l+RHO)**5) ; 

P A R A M E T E R 
D E L T A P ( T ) 5-year periodic discount rate; 

D E L T AP(T)=( 1+RHO)* * ((-ORD(T)+1) * 5); 

V A R I A B L E S 
P(T) price in period t 
H L ( T ) harvest from left stand 
H M ( T ) harvest from middle stand 
HR(T) harvest from right stand 
K L ( T ) inventory on left stand 
K M ( T ) inventory on middle stand 
K R ( T ) inventory on right stand 
FPL(T) forage production on left stand 
F P M ( T ) forage production on middle stand 
FPR(T) forage production on right stand 
FV(T) forage value 
W P L ( T ) wildlife production on left stand 
W P M ( T ) wildlife production on middle stand 
WPR(T) wildlife production on right stand 
W V ( T ) wildlife value 
C D V ( T ) cobb-douglas value 
TV(T) timber value 
R E V ( T ) revenue in each period 
Z total value; 

P O S I T I V E V A R I A B L E H L , H M , H R , K L , K M , K R ; 

E Q U A T I O N S 
PRICEI(T) stumpage function for first period 
P R I C E (T) stumpage function all but periods but first 
LNVL(T) inventory accounting equation on left stand 
I N V M ( T ) inventory accounting equation on middle stand 
INVR(T) inventory accounting equation on right stand 
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INVLI(T) 
I N V M I ( T ) 
TNVRJ(T) 
C O N L I ( T ) 
C O N M I ( T ) 
CONRI(T) 
C O N L ( T ) 
C O N M ( T ) 
C O N R ( T ) 
QFPL(T) 
Q F P M ( T ) 
QFPR(T) 
QFV(T) 
Q W P L ( T ) 
Q W P M ( T ) 
QWPR(T) 
Q W V ( T ) 
Q C D V ( T ) 
QTV(T) 
A P R O F I T ( T ) 
T P R O F I T 

SDouble 
PRICEI("pl") . , 
PRICE(TBF) . . 
I N V L I ( " p l " ) . . 
I N V M I ( " p l " ) . . 
INVRI("p l " ) . . 
INVL(T+1). . 
INVM(T+1). . 
HM(T+1); 
LNVR(T+1).. 
CONLI(TI) . . 
CONMI(TI ) . . 
CONRI(TI) . . 
C O N L ( T ) . . 
C O N M ( T ) . . 
CONR(T) . . 
QFPL(T) . . 

initial inventory accounting equation on left stand 
initial inventory accounting equation on middle stand 
initial inventory accounting equation on right stand 
initial harvest constraint on left stand 
initial harvest constraint on middle stand 
initial harvest constraint on right stand 
harvest constraint on left stand 
harvest constraint on middle stand 
harvest constraint on right stand 
forage production on left stand 
forage production on middle stand 
forage production on right stand 
periodic forage value 
wildlife production on left stand 
wildlife production on middle stand 
wildlife production on right stand 
periodic wildlife value 
cobb-douglas value 
periodic timber value 
periodic objective function 
total objective function; 

P("P1") =E= P B ; 
P(TBF) =E= P L ; 
K L ( " p l " ) =E= K I L - H L ( " p l " ) ; 
K M ( " p l " ) =E= K I M - H M ( " p l " ) ; 

K R ( " p l " ) =E= K I R - HR("p l " ) ; 
K L ( T ) + ( G 1 L * K L ( T ) - G 2 L * K L ( T ) * * 2 ) - HL(T+1); 
=E= K M ( T ) + ( G 1 M * K M ( T ) - G 2 M * K M ( T ) * * 2 ) 

KL(T+1) =E= 
KM(T+1) 

G2R*KR(T)**2) - HR(T+1); KR(T+1) =E= K R ( T ) + (G1R*KR(T) 
HL(TI) =L= K I L ; 
HM(TI ) =L= K I M ; 
HR(TI) =L= K I R ; 

HL(T+1) =L= K L ( T ) + ( G 1 L * K L ( T ) - G 2 L * K L ( T ) * * 2 ) ; 
HM(T+1) =L= K M ( T ) + ( G 1 M * K M ( T ) - G 2 M * K M ( T ) * * 2 ) ; 
HR(T+1) =L= K R ( T ) + (G1R*KR(T) - G2R*KR(T)**2) ; 
FPL(T) =E= ( A L - B L * L O G ( K / K L ( T ) - l ) ) * E X P ( - C L + 

D L * L O G ( K / K L ( T ) - l ) ) ; 
=E= ( A M - B M * L O G ( K / K M ( T ) - l ) ) * E X P ( - C M + 

D M * L O G ( K / K M ( T ) - l ) ) ; 
=E= ( A R - B R * L O G ( K / K R ( T ) - l ) ) * E X P ( - C R + 

D R * L O G ( K / K R ( T ) - l ) ) ; 
QFV(T) . . FV(T) =E= DELT*F*EXP(-G*(FPL(T)+FPM(T)+FPR(T)) )* 

(FPL(T)+FPM(T)+FPR(T)); 

QFPM(T) . . F P M ( T ) 

QFPR(T). . FPR(T) 
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QWPL(T) . . W P L ( T ) 
Q W P M ( T ) . . W P M ( T ) 
QWPR(T) . . WPR(T) 
Q W V ( T ) . . W V ( T ) 
Q C D V ( T ) . . C D V ( T ) 

QTV(T) . . TV(T) 
APROFIT(T) . . R E V ( T ) 
TPROFIT. . Z 
$ S I N G L E 
* 

*Fixed initial conditions such as lower and upper bounds on inventory and 
* starting point for possible first period harvest levels 
* 

KL . lo (T)=KTL; ICM.LO( t )=KTM;KR.LO(T)=KTR; 
K L . U P ( T ) = 15 ;KM.UP(T)= 15 ;KR.UP(T)= 15; 
HL.L(T)=6; HM.L(T)=5; HR.L(T)=10; 
* 

* Command statement 
* 

M O D E L B R Y A N 1 / A L L / ; S O L V E B R Y A N 1 U S I N G N L P M A X I M I Z I N G Z ; 

=E= W A L / ( l + e x p ( W B - W C * K L ( T j ) ) ; 
=E= W A M / ( l + e x p ( W B - W C * K M ( T ) ) ) ; 
=E= WAR/ ( l+exp (WB-WC*KR(T) ) ) ; 
=E= DELT*WF*(WPL(T)+WPM(T)+WPR(T) ) ; 
=E= D E L T * C D K * ( K L ( T ) * * C D L ) * 

( K M ( T ) * * C D M ) * ( K R ( T ) * * C D R ) ; 
=E= P(T)*(HL(T) + H M ( T ) + HR(T)) ; 
=E= (FV(T) +WV(T)+CDV(T)+ T V ( T ) ) * D E L T A P ( T ) ; 

=E= S U M ( T , R E V ( T ) ) ; 

D I S P L A Y K L . L , K M X , K R . L , H L . L , H M . L , H R . L ; 


