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Abstract 

The classification of forest cover types in the Pacific Coastal Rainforest is a difficult task. The 

complexity and variability of species compositions and sites makes various cover types arduous to 

define and identify. This study utilised multitemporal T M satellite data and a combined classification 

approach to determine if it is possible to discriminate forest cover types of the Carmanah Valley. 

Landsat T M data from June and September were used to investigate whether seasonal variability can 

aid in the discrimination. 

Due to the huge dataset involved, principal component analysis (PCA) was applied to reduce 

data dimensionality to a level that could be easily handled or processed with available image analysis 

software and enhance the meaning. Results from P C A were used in visual analysis and supervised 

classification. Classification accuracies for three temporal data sets, June-early summer, September-late 

summer and a multitemporal set, were compared. Finally, T M data were assessed for their potential 

to provide information regarding forest age and stocking classes. 

Results indicated that the degree of correlation between any two bands was related to the 

amount of spectral contrast. The higher the correlation, the less the spectral contrast and the lower the 

correlation, the more the spectral contrast. A trend was observed between stand age and digital values. 

With an increase in stand age, digital values decreased in all T M bands considered. However, the main 

funding was that the specific forest cover types of the Carmanah Valley can be identified and that 

time of the year can significantly affect cove-type classification accuracy. Comparison of the 

classifications of forest cover type showed that the multitempoal approach was significantly better 

than the single-date classifications. 
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Chapter 1 

Introduction 

As the world's population grows, the available land base declines. Planning and 

management of land resources become more complex. A partial solution to this complexity is a 

timely and reliable mechanism for acquiring land-use and land-cover information. Remote sensing 

is one tool that does provide this kind of information. It is such recent technologies in addition to 

traditional sources that have significantly improved our ability to manage our resources. 

Over the last decade remote sensing applications have been developed which can meet a 

variety of mapping information needs. The user can choose from several remote sensing systems. The 

criteria for selecting a remote sensing system include the accuracy of the information it provides, scale, 

and the information content implicit in the data. For example, the Thematic Mapper of the Landsat 

series produces an order of magnitude more data per scene than Landsat Multispectral Scanner. Once a 

sensor is selected there is need to address the question of the appropriate time for image acquisition. 

The best season to acquire Landsat data for instance is often generalised with respect to weather 

conditions, usually avoiding periods of cloud cover. However, imagery acquired on different dates, 

weather conditions notwithstanding, provide a different information content. 

Remote sensing has been applied widely in forest management planning. Aerial photographs, 

for example, have been used for many years by foresters as a tool to help monitor and manage forest 

resources. Aerial photographs are currently an integral part of most forest inventory programs. The 
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launch of Landsat-1 in 1972 added an entirely new dimension to the capability to obtain information on 

Earth resources. There has been an interest since that time in the potential of satellite data and 

computer-aided analysis techniques to detect, identify, quantify, and map forest resources. Attractive 

features of these data include repetitive coverage of large areas at short intervals (and consistent image 

quality), a digital data format allowing for fast processing of large amounts of data, and the potential 

for data incorporation into geographic information systems (GIS). 

Forest resources are continually changing. Some forest cover modifications are human-

induced, such as harvesting, while others have natural causes, such as insects or disease damage. The 

rate of change may be abrupt (e.g., logging) or gradual (e.g., growth). The potential for using satellite 

data to detect and characterise these changes depends on the ability to quantify temporal effects using 

multitemporal data sets. However, the intent in change detection is to compare spatial representations 

of two land cover types or selected features in time by controlling all variances caused by differences in 

variables not of interest. The basic premise thus is that changes in land cover must result in radiance 

values and changes in radiance due to land cover must be larger than changes in radiance caused by 

other factors (Ingram et al, 1981). The other factors include differences in atmospheric conditions, 

differences in sun angle, and differences in soil moisture (Jensen, 1983). The impacts of these factors 

may be reduced by selecting the appropriate data (e.g., Landsat data belonging to the same season of 

the year). 

Several methods of assessing the information content of Landsat T M data have been devised. 

These include interpretative analysis of the data in multidimensional feature space, computer-based 

classification of a scene, with emphasis on accuracy and detail, and computation of statistical measures 

of separability between cover classes (Horler and Ahern, 1986). In addition to relying on these 
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statistically based approaches, the interpreter's ability to extract information depends, among other 

things, on the method of colour presentation of the imagery, experience, and a thorough knowledge of 

the area under investigation. 

The classification of forest cover types in the Pacific Coastal Rainforest is a difficult task. The 

complexity and variability of species compositions and sites makes various cover types hard to define 

and identify. The general purpose of this study is to test for temporal discrimination of the forest cover 

types of the Carmanah Valley in Vancouver Island, British Columbia. By using Landsat Thematic 

Mapper data acquired in June, 1992 and September, 1992, this study investigates whether seasonal 

variability can help in mapping forest cover types. Forest inventory variables, namely forest species 

composition, age class and stocking class resident in a GIS database, serve as reference data. Questions 

to be answered include: (a) what new forestry information does each T M band contribute that is not 

contained in the others? (b) are there any differences between oldgrowth and maturing forests in terms 

of spectral characteristics? (c) does seasonal variability affect classification accuracy? (d) by how much 

does topography influence classification of forest cover types? and (e) what level of forest classification 

does T M data provide? A n additional objective of the study is to identify and measure the extent of 

change in the multitemporal data set using image differencing, image ratioing and the normalised 

difference vegetation index. 

This document is divided into five chapters. Chapter 2 provides a brief introduction to remote 

sensing, and a review of previous studies on the research topic. The methods used are outlined in 

chapter 3. Study results are presented and discussed in chapter 4. Chapter 5 briefly concludes the 

study. Ground control points and polynomial transformation used in geometric correction are given in 

Appendix I. Appendix II provides signature "seperability" reports of training statistics and results of 



some of the image analyses are presented in Appendix DI. Analysis of variance tables are presented 

Appendix IV. 
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Chapter 2 

Background For The Study 

2.1 Remote Sensing Defined 

Remote sensing is defined as the science and art of obtaining information about an object, area, 

or phenomenon through the analysis of data acquired by a device that is not in contact with the object, 

area or phenomenon under investigation (Lilesand and Kiefer, 1994). It basically involves using 

electromagnetic radiation sensors to record images of the environment which can be interpreted to 

yield useful information. 

The development of remote sensing dates back to early 1860s when photographs were 

successfully taken from balloons held to the ground (Aronoff, 1989). By the early 1900s photographic 

technology had improved to the point that smaller cameras and faster lenses and films were available. 

The 1960s ushered in a new age for remote sensing. It was during this time that visual interpretation of 

black and white aerial photographs paralleled research into the use of data from the new aircraft and 

satellite borne sensors. With the development of earth-orbiting satellites, it became feasible to obtain 

high altitude images of the earth's surface. More important was the development of digital electronic 

imaging systems that could relay image data back to earth. These data could be processed to 

photographic images using computer-based techniques known as image processing (Aronoff, 1989). In 

summary, remote sensing, especially non-photographic remote sensing, grew rapidly after the 

successful launch in 1972 of the Earth Resources Technology satellite (ERTS-1) later renamed Landsat 
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1 (Curran, 1985). This satellite, which carried sensors capable of providing synoptic views of the 

Earth's surface every 18 days, proved to be the harbinger of many of the interpretation techniques and 

image analysis softwares that are in use today. 

Remote sensing is utilised in a wide range of disciplines. It's usefulness has been realised in the 

environmental sciences of geography, geology, botany, zoology, civil engineering, forestry, 

meteorology, agriculture and oceanography. The advantage of remote sensing over traditional methods 

has been documented in all these fields. 

The two basic processes involved in electromagnetic remote sensing of earth resources are 

data acquisition and data analysis. However, the fundamental steps used to analyse all remotely sensed 

data include: (a) definition of information needs, (b) collection of data using remote sensing and other 

techniques, (c) data analysis - image processing, (d) verification of analysis results, (e) reporting of 

results to those who will use the information, (f) taking action based on the information (Aronoff, 

1989). Data analysis and verification of results are the main focus of this study. 

2.2 T M Spectral Regions and Their Principal Applications 

The Landsat Thematic Mapper is a highly advanced multispectral scanner incorporating a 

number of spectral, radiometric, and geometric design improvements relative to M S S (Lilesand and 

Kiefer, 1994). Spectral attributes include acquisition of data in seven bands in the visible, near-infrared, 

shortwave infrared and thermal infrared as shown in Table 1. The wavelength range and location of the 

T M bands have been chosen to improve the spectral differentiability of major earth surface features and 
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Table 1. Thematic Mapper Spectral Bands (Adopted from Lilesand and Kiefer, 1994). 

Band Wavelength 
(nm) 

Nominal Spectral Location 
and 

Remote Sensing Importance 

Spatial Resolution 
(m) 

1 450 - 520 Blue 

Water body penetration 

30 

2 520 - 600 Green 

Chlorophyll reflectance 

30 

3 630 - 690 Red 

Chlorophyll absorption 

30 

4 760 - 900 Near-infared 

Leaf structure reflectance 
and biomass content 

30 

5 1550- 1750 •Shortwave infrared (SWLR-1) 

Vegetation moisture content 
and soil moisture 

30 

6 10400 - 12500 Thermal infared 

Heat emission 

120 

7 2080-2350 Shortwave infrared (SWIR-2) 

Rocktype discrimination 

30 
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are particularly more finely tuned for vegetation discrimination. Radiometrically, the T M performs its 

onboard analog-to-digital signal conversion over a quantization range of 256 digital numbers (8 bits). 

This finer radiometric precision permits observation of smaller changes in radiometric magnitudes in a 

given band and provides greater sensitivity to changes in relationships between bands. Geometrically, 

T M data are collected using a 30 metre instantaneous field of view (IFOV) for all bands except for the 

thermal band which has a 120 metre IFOV. Additionally, several design changes have been 

incorporated within the T M to improve the geodetic positioning of the data (Lilesand and Kiefer, 

1994). Landsat-5 T M is best suited for vegetation discrimination. In particular, the spectral bands take 

advantage of distinctive characteristics of the spectral response of vegetation. Bands 1 and 3 were 

chosen to coincide with chlorophyll-absorption bands and band 2 with the chlorophyll-reflection peak. 

Whereas spectral response in the visible bands is controlled primarily by plant pigments, the response in 

the near-infrared sensed by band 4 is controlled mainly by the physical structure of the mesophyll layer 

of leaves (Townshend, 1984). Band 5 in the middle-IR is on the shoulder between two water-

absorption bands. Band 7 was chosen primarily for identification of hydrothermally altered minerals in 

association with mineral exploration, but should have some potential for soil discrimination (Lilesand 

and Kiefer, 1994). Band 6 is in the thermal part of the spectrum and hence includes emitted radiation 

almost entirely. It is potentially useful in a range of thermal mapping applications. 

2.3 P C A T M Data Reduction and Enhancement 

Dimensional satellite data reduction and enhancement have proven useful in various mapping 

and information extraction purposes (Schonwengerdt, 1983) and also in digital change detection and 

characterising seasonal changes in cover types (Townshend et al, 1983). A challenge encountered with 

raw Landsat T M data is to reduce the dataset and to display as much information as possible in a 



9 

three-image set colour composting. Principal component analysis (PCA) is one tool used to address 

this problem. Being a mathematical transformation, P C A generates new variables, referred to as 

components or axes, which are both orthogonal to each other and linear combinations of the original 

variables. 

Results of P C A on images poses two problems. One is that information that is not mapped to 

the selected components can be of significant interest, depending on the degree of correlation and 

spectral contrast that exist among the six Landsat T M bands (Williams, 1983). The other problem is 

that a colour composite made from three of the six components can be difficult to visually interpret 

(Williams, 1983). Chavez and Kwarteng (1989) demonstrated that "selective" P C A can be used to 

minimise both of these problems. 

Singh and Harrison (1985) reported that a significant improvement in signal-to-noise ratio and 

image enhancement is realised by employing the correlation rather than the variance-covariance matrix 

in the principal component analysis and that standardized principal components are more accurate than 

non-standardized components. They attributed the latter to better alignment along land-cover changes 

in the multitemporal data structure. The statistics that they extracted from the entire study area were 

better and more reliable than those extracted from the subset area. 

2.4 T M Imagery for Forestry Applications 

A relevant and accurate forest cover-type classification system is essential for providing 

necessary information for effective management of forest resources. Research aimed at developing 

methods for reliably classifying forest cover and habitat types dates back many decades and continues 

to this day (Eyre, 1980). Three approaches to the classification of habitat types have been outlined: 
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biophysical, forest type, and forest type/forest soil classifications. The single factor important to all 

three approaches is the classification of forestland into specific cover types. 

Developments within the remote sensing community have shown promise for classification of 

forest cover types throughout the world. These developments indicate that increases in the accuracy of 

forest classifications can be expected by combining supervised and unsupervised classification 

techniques (Chuvieco and Congalton, 1988). In the combined approach, a set of spectrally and 

'informationally' unique training statistics can be generated. This results in improved classification 

accuracy due to the improved grouping of training statistics (Green and Teply, 1991). 

Unfortunately, fewer researchers have presented results from the use of actual T M data in 

forestry applications. However, significant results have so far been realised by taking advantage of the 

excellent spectral, spatial, and radiometric quality of T M data. DeGloria (1984) reported that higher 

T M spatial resolution provides the ability to discriminate small agricultural fields and boundaries, forest 

stand boundary conditions, road and stream networks in rough terrain, and small clearings resulting 

from various forest management practices. In their application of T M data to forest surveys in 

California, Benson and DeGloria (1985) concluded that the best T M data can provide higher 

classification accuracies than M S S data. The additional spectral information of T M bands 5 and 7 

appeared largely responsible for the improved performance. Specifically, these bands seemed to be 

particularly sensitive to forest vegetation density, especially in the early stages of clear-cut regeneration. 

Spanner et al. (1984) found that T M simulator data were able to discriminate, with fair 

accuracy, among two conifer size classes, three shrub-classes in regenerating cutovers, and four conifer 

crown closure classes. Successful separation of red and jack pine in T M data by Hopkins et al. (1988) 

indicates again a potential distinction of species or species groups. They suggested that at least one 
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band of each of the non-thermal wavelength regions of the T M (visible, near-IR, and shortwave-IR) is 

desirable for forestry applications. 

Horler and Ahern (1986) emphasized feature selection, that is the determination and selection 

of optimal bands or band transforms, for visual enhancements of imagery of boreal forests. Shadowing 

was at least as important as leaf moisture content in influencing the spectral reflectance of forests. They 

concluded that T M data contain more spectral information on forest classes than M S S imagery. A 

limitation is that they based their conclusions on image enhancement rather than on classification 

performance. 

Using only four bands Latty and Hoffer (1981) achieved a high separability between a number 

of forest classes - pine, pine-hardwood, old age hardwood, second growth hardwood, water tupelo, 

sycamore, and clearcuts. This suggests that fewer bands can perform as well as all six bands. 

Recent emphasis on landscape and regional analyses necessitates monitoring forest 

regeneration over large areas. Conditions within regenerating stands change quickly and, therefore, 

stand information condition must be updated periodically. Analysis of remotely sensed data from 

satellites has potential for assessing forest regeneration and wildlife habitat because it provides 

coverage over large geographic areas on a regular basis (Fiorella and Ripple, 1993). T M data may be 

suitable to monitor within-stand condition because of the improved spatial and spectral resolution. 

In an analysis of T M simulator data for 123 field sites in Sequoia National Park, Peterson et al. 

(1986) indicated that canopy closure could be estimated well by a variety of bands or band ratios 

without reference to forest type. Estimation of basal area was less successful on average. Within forest 

types, canopy closure appeared to be the best predictor of spectral variation. 
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Wolter et al. (1995) suggested that changes in spectral reflectance caused by phenological 

differences among temperate forest tree species may allow for Anderson HI forest cover type 

classification on a regional scale. Specifically, large seasonal variation in forest species spectral 

response in the visible portion of the electromagnetic spectrum and phenological differences in 

senescence among tree species present unique forest classification opportunities (Eder, 1989). 

Forest classifications using single date Landsat. T M data have been demonstrated to be 

moderately successful in separating forest cover types. Not so with multitemporal T M data, where 

much better classification has been realized. In fact, the multitemporal approach was found to be useful 

for broad-scale forest cover monitoring in areas where ancillary data were not available (Wolter et al., 

1995). 

In their discrimination of coniferous forest, deciduous forest, and agricultural land using a 

maximum-likelihood decision rule, Kalensky and Scherk (1975) found that three dates of imagery from 

June, September, and October provided the best results (84 % mixed overall classification accuracy) 

over all other single- or multiple-date classifications tested. They concluded that, although the October, 

June and September M S S scenes individually produced low overall classification accuracies (67 

percent, 69 percent, and 81 percent, respectively), their collective use mitigated the effects of individual 

image noise. Using M S S data for a classification of the Crater Lake National Park region, Walsh 

(1980) found that September imagery provided more information than early summer M S S data due to 

the phenological condition of vegetation and the lower sun angle. 

In different regional settings, spectral response in visible and near infrared wavelengths 

measured by satellite and aerial sensors has been shown to vary significantly with forest attributes such 

as species, crown or canopy density, height, volume, health, and age (Horler and Ahern, 1986). In 
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mountainous areas, image variance can be influenced by the topographic effect (Leprieur et al, 1988). 

Atmospheric constituents, size of the viewed area, and the geometrical and optical properties of the 

surface cover, underlying soil, and background may also contribute additional variance. 

2.5 Mapping the Successional Stage of Temperate Conifers 

Distinguishing old-growth from maturing forests has been difficult because both successional 

stages tend to have large trees, and high basal and leaf areas (Spanner et al, 1990). Most forest 

parameters such as biomass, leaf area index, volume, and, in general, vegetation amount have 

asymptotic relationships to single band spectral data beginning at moderate to high levels of these stand 

parameters (Horler and Ahem, 1986). Differences in old-growth and maturing forests are determined 

by a combination of overstory and understory structural and compositional factors from ground-based 

surveys. Unfortunately, remote sensing data primarily measure only canopy overstory characteristics. 

Two of the most important distinguishing features observed at the canopy level are differences in the 

number and size of gaps in the forest canopy and the heterogeneity of tree sizes (Spies etal, 1990). In 

general, old-growth canopy gaps tend to be horizontally larger, but less numerous than those in 

maturing stands (Spies et al, 1990). They observed that both of these features create dark shadows in 

old-growth forest canopies which contrast sharply with sunlit tree crowns. 

Identifying forest successional stages in dissected mountainous terrain is complicated due to 

the dark shadowing on steep north-facing slopes and high variability in illumination conditions. Eby 

(1987) used Landsat M S S near-infrared band 4 imagery to identify old-growth forest stands with 80 

percent accuracy. Sun incidence angle was used to stratify the study area into normally illuminated and 

shaded areas for post-classification sorting. Studies by Leprieur et al. (1988) also indicate that both sun 
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angle and plant architecture or canopy structure can influence measured reflectance. These factors in 

conjunction with slope can determine whether vegetation response to incident sun light is best 

modelled by a Lambertian or non-Lambertian model (Leprieur et al., 1988). Unfortunately, previous 

work in the analysis of Thematic Mapper data related to forest canopy is limited, especially in 

mountainous areas. 

2.6 Classification Accuracy 

Thematic (categorical) maps are increasingly being used by people involved in management of 

natural resources. There is a need to assess the accuracy of these maps. Traditionally, the accuracy of a 

thematic map was determined by comparing the map with corresponding reference data or ground 

data. The results were tabulated in a square matrix whose columns usually represented the ground data 

(i.e., assumed correct) and the rows indicate the mapped or classified data. Each element in the matrix 

gave the number of areas assigned to a particular category relative to the ground data. Generally, the 

elements of the principal (diagonal) of the matrix represented correct matches, whereas the remaining 

cells were mismatches. This matrix is popularly known as an error or corifusion matrix (Card, 1982) 

and forms the basis for a series of discrete analysis (Congalton, 1991). 

Descriptive and analytical techniques are appropriate because remotely sensed data are discrete 

rather than continuous (Congalton, 1991). The data are binomially or multinormally distributed rather 

than normally distributed. Therefore, many common normal theory statistical techniques do not apply. 

Classification accuracy reviewed by Congalton (1991) listed ground data collection, classification 

scheme, spatial autocorrelation, sample size, and sampling scheme as important factors to consider 

when performing accuracy assessment. He cautioned that each of these factors provide essential 
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information for the assessment, and failure to consider even one of them could lead to serious 

shortcomings in the assessment process. 

Acceleration of the acceptance of remotely sensed data requires addressing issues for which 

the remote sensing technologist is often not prepared. Included, for example, are such issues as 

cost/benefit in relation to traditional approaches, and accuracy of results. It has been demonstrated that 

the cost of data acquisition and analysis are markedly lower with satellite data than with ground 

surveys. Given the cost advantage, the discussion then becomes one of whether accuracy is sufficient 

when remotely sensed data are the principal source. Unfortunately, accuracy of land-use interpretation 

is a complex issue, in both definition and measurement. For example, an area delineated as a particular 

category may be in error for one or more of three reasons: classification error, boundary line error or 

control point location error (Hord and Brooner, 1976). 

2.7 Change Detection 

Remote sensing provides a viable source of data from which updated land-cover information 

can be extracted efficiently and cheaply. Thus, change detection has become a major application of 

remote sensing data (Fung and LeDrew, 1988). Visual comparison of air photos as a traditional change 

detection tool has been characterised as slow, tiring, and subject to errors of omission (Shepherd, 

1964). He observed that there is need for a detector which can automatically correlate and compare 

two sets of imagery taken of the same area at different times and display the changes and their 

locations to the interpreter. With the availability of remote sensing imagery recorded in digital format 

and on repetitive coverage at short intervals, there have been substantial developments in digital change 

detection techniques. These techniques include image differencing, image ratioing, principal component 
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analysis, post-classification comparison, and multitemporal classification (Jensen, 1986). 

Change detection techniques involve a transformation of the original spectral bands so as to 

enhance the land-cover changes. In image differencing, the same spectral bands at different dates are 

subtracted from each other pixel by pixel. Image ratioing uses division rather than subtraction to 

generate new images. Work by Vogelmann and Rock (1989) demonstrated that temporal image 

differencing techniques are powerful tools for characterising changes in forest canopy characteristics. 

Miller et al, (1991) applied Landsat image differencing successfully in mapping changes in tropical 

forest cover in northern Thailand. Vegetation indices such as the normalised difference vegetation 

index (NDVI) derived from remotely sensed data collected throughout a growing season can enhance 

differences in vegetation phenology (Tucker et al, 1985). 

L i closing, it can be inferred that there is still a need for the development of a relevant and 

accurate forest cover-type classification system. It's usefulness in sustainable management of forest 

resources cannot be emphazied. To date, fewer researchers have presented results from the use of 

actual T M data in forestry applications. Yet out of the regional forest classifications presented, few 

achieved genus or species level accuracy. On the other hand, mixed results have been achieved with 

respect to the best season to acquire T M data. In a quest for an answer, this study aims to determine 

the level of forest categorization that is possible with T M data. It also aims to evaluate T M data from 

early summer and late-summer for seasonal variablity. Specifically, emphasis is placed on determining 

which season best captures the differences in leaf phenology. These differences are expected to help in 

mapping specific forest cover types. 
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Chapter 3 

Materials and Methods 

3.1 Study Area 

The study area is the Carmanah Valley, located on the West Coast of Vancouver Island, 

roughly 25 K m north of Port Renfrew (Figure 1). It covers a total area of 6731 hectares and is 

comprised mainly of Pacific coastal temperate oldgrowth rainforest. One hundred and sixty four 

hectares at the north of the valley were logged in the late 1980's. The southern end of the valley 

contains the Carmanah Giant, which at 95m is the worlds tallest sitka spruce (Picea sitchensis) 

(National Geographic, 1997), while the central floodplain is home to groves of other very large sitka 

spruce (Macmillan Bloedel Ltd, 1989). The valley also contains thousands of hectares of mature 

western hemlock is (Tsuga heterophylla), western redcedar (Thuja plicata), and fir (a collection of 

pacific silver fir (Abies amabilis) and other Abies spp) mixed in various proportions, with western 

hemlock being the dominant species in majority of the stands. Several other cover types are also 

prevalent including juvenile softwood stands on recently cut areas, low density shrub fields, bare 

ground, swamps, rock outcrops, and lakes. 

Study site selection was largely dependent on the diversity of forest cover types, and the 

availability of satellite data (Landsat T M data) acquired in 1992 and forest cover maps (ground truth 

data) that have been digitized and archived in a GIS. Another consideration was that collection of 

ground truthing for old T M data on the Landsat scale is difficult (i.e., it is not possible to reconstruct 



Figure 1. Location of project study area 
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the events for when the overpass took place). Fortunately enough, because of the valley's uniqueness, 

logging and other forest disturbances have been prohibited and the area reserved as a park since 1990. 

Moreover, an oldgrowth rainforest is not expected to change much over roughly a three year period. 

Additionally the region was under the public eye and as a consequence made more accessible than ever 

before. 

3.2 Satellite data sources 

Landsat Thematic Mapper (TM) data of Carmanah Valley and its environs were provided by 

Radarsat International to U B C forestry for pedagogic purposes. The first Landsat T M scene was 

imaged on June 30, 1992. Thin cloud, which was not evident in the quick-look images, covered a 

portion of the study area. The second Landsat T M scene was imaged on September 30, 1992, three 

months after the first. Unlike the first image, this image was cloud free with satisfactory fidelity and 

quality (Fig. 2). 

3.3 Acquisition of Reference data 

Reference data utilized in this study were acquired from different sources, namely Macmillan 

Bloedel forest cover maps (digital forest cover map and accompanying database), aerial photographs 

(UBC GIC) and a topographic map (UBC map library). Cover type changes and boundaries were 

verified or, if necessary, corrected for changes that occurred between Landsat data acquisition and 

preparation of forest cover maps. Guidelines for defining cover types, as outlined in Eyre (1980), were 

utilized during the interpretation phase. Forest parameters heavily relied upon for clues for forest cover 



Figure 2. 4, 5, 3 False Colour Composite showing entire Scene (a) June, 1992 image with cloud 

depicted as a bluish cast (b) September, 1992 image. 
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type recognition included species composition, age class and stocking level. Cost constraints coupled 

with inaccessibility to the vast majority of the stands limited field work to only a reconnaissance 

survey. 

Forest cover-types considered included the following, with their description adopted from Eyre 

(1980) and their inventory estimates based on the Carmanah Valley management plan (Macmillan 

Bloedel Ltd, 1989); (A) Sitka spruce comprises about 2% of the stocking of the entire watershed and 

occurs in combination with western hemlock and western redcedar. It is restricted to a narrow band at 

low elevations along seaward-facing slopes extending inland a few miles along streams and in most 

north-facing slopes. Sitka spruce is usually considered a sub-climax species eventually yielding to a 

western hemlock climax. It is less tolerant of shade than western hemlock. It may behave as a climax 

species over very long periods on valley bottoms, where seedbeds favour continuation of open stands. 

(B) Western hemlock comprises roughly 44% of the stocking. Most common tree associates 

include sitka spruce, western redcedar and true fir. Western hemlock is generally considered to be a 

climax type on moist sites, but successional patterns vary with soil type and moisture gradient. 

Following stand removal, western hemlock may regenerate at once to form pure stands. Western 

hemlock is a climax species on environmentally moderate sites, but western red-cedar, an important 

associate, tends to persist as part of the climax forest in wet situations. 

(C) Fir comprises 20% of the stocking. Both fir and western hemlock are very shade tolerant 

and reproduce themselves well under closed canopies, although the fir will usually displace the hemlock 

in the montane environments generally occupied by this type. This is usually not the case at lower 

elevations in coastal B.C. Wood productivity ranges widely, depending on soil conditions and 

temperature regimes. 
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(D) Western redcedar (WRC) consists of about 30% of the stocking. Major associates include 

sitka spruce and western hemlock. This type typically occupies moist or wet soils on flats, mountain 

slopes, and valley bottoms. Old-growth stands typically contain many large trees of advanced age. 

W R C is usually the most self-regenerating tree in virgin stands of the type. It tolerates high water 

tables. Although W R C often forms climax stands on wet to very wet sites, it lacks the shade tolerance 

to become established beneath undisturbed old-growth stands where western hemlock and fir compete. 

3.4 Methods 

3.4.1 Rectification of Landsat Data 

All image processing were carried out in the laboratory of Forest Information Resource 

Management System (FIRMS) using PC-based PCI software (Version 5.1 EASI /PACE) installed in a 

Sekani 486/25 computer. The entire scene was first displayed on the R G B monitor (Figure 2). From 

this display, a512by512 subscene, covering the study area in both the June and September images, 

was extracted with the aid of reference data. 

Geometric distortions were corrected by analyzing well distributed ground control points 

(GCPs) occurring in the June, 1992 T M image. These were points or features that could be accurately 

identified on both the topographic map and the image. Features considered for GCPs included forest 

road intersections, distinct shorelines, clear-cut boundaries, creek and lake edges, and pronounced 

mountain tops among others. U T M co-ordinates (Easting and Northing) for selected GCPs were read 

from a topographic map (map sheet No. 92 C/10 and scale 1:50000) and tied to the display. For each 

G C P entered, its accuracy was assessed based on the root mean square (RMS) error such that those 

that inflated R M S error were removed. 
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U T M co-ordinates for 36 GCPs were submitted to a least-squares regression analysis to 

determine the coefficients for two co-ordinate polynomial transformations that could be used to 

interrelate the geometrically correct map co-ordinates and the distorted image co-ordinates 

(EASI7PACE, 1992). The nearest-neighbour resampling technique, in conjunction with a third order of 

polynomial, were used to correct the image. This option preserved the original input pixel values 

(DNs). The corrected June image served as a master reference image for rectifying the September, 

1992 image, in an image-to-image correction step/tiedowri procedure provided by PCI. 

3.4.2 T M Dimensionality and Band Reduction 

The SAS (SAS Institute Inc., 1988) procedure for principal component analysis (Princomp) 

was used to compute desired principal components. All six reflective T M bands (bands 1, 2, 3, 4, 5 and 

7) were input into the analysis. The procedure first transformed the raw data (DN values) into a 

correlation matrix. The eigenvalues for this matrix, one for each principal component were then 

computed. Contribution of each principal component to the total variation was also calculated and 

arranged from the highest contribution to the lowest. The eigenvectors from each principal component 

were also calculated. The number of principal components to consider for later digital analysis was 

selected based on a descriptive rule. The rule adopted was a cumulative proportion of 98% of the total 

variation. 

Highly correlated subsets of bands were grouped with the aid of the correlation matrix. Each 

distinct group was subjected to a further principal component analysis. From this, the first principal 

components were considered for visual analysis. Additionally, T M band reduction was performed. The 

criteria was to select bands with the highest eigenvector coefficient in each distinct group. Selected 
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bands in combination with T M 4 were used to create a colour composite for visual interpretation and 

further digital analysis such as training and accuracy assessment. 

3.4.3 Spectral Contrast Mapping. 

In another run of P C A , only pairs of images of low correlation were used as input variables. By 

using only two images, two principal components were generated. The first component was discarded 

because it contained information common to both bands. The second component was examined for 

spectral contrast among forest cover types. A black and white image of this component was visually 

analysed and its potential for inclusion in later digital analysis considered. 

3.4.4 Classification of Thematic Mapper Data 

Both supervised and unsupervised techniques were examined for their utility in subscene 

classification. In the unsupervised approach, several types of clustering methodologies were tested. 

Generated spectral classes were identified using reference data. 

A traditional approach was utilized in delineating training areas. This involved digitizing 

training area polygons on the image display of enhanced false colour composites. The digital forest 

cover map, aerial photographs, topographic map and other auxiliary data served as reference data. For 

each information class or spectral class, consideration was given to selection of training areas that 

were representative and evenly distributed throughout the entire image. The aim was to develop 

sufficient training statistics for all spectral classes constituting each information class so as to improve 

discrimination by the classifier. However, forest complexity complicated identification and generation 

of sufficient training areas. 
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A training set refinement process was performed to check if all data sets were unimodal and 

spectrally pure. Spectral separability of training areas was evaluated as follows. Training areas that 

included more than one spectral class were identified and recompiled. Likewise, extraneous pixels were 

deleted from some of the training data sets. Training areas that might be merged were identified and 

additional training sets were delineated for poorly represented spectral classes. 

In addition to the original T M bands, 1 to 5 and 7, five derivative bands were prepared for 

spectral analysis and/or band selection. Widening band selection was deemed necessary because of the 

narrow spectral separation seen between cover types. The first derivative band was a principal 

component analysis of visible bands. Other derivative bands included image ratios. Band ratios 4/3 

and 5/4 have been shown to be sensitive to changes in vegetation characteristics (Peterson et al, 

1986). Jensen (1983), among others, reported that TM4/TM3 provides information with respect to 

vegetation and canopy condition and that TM5/TM2 may be a promising feature for wetland 

identification. N D V I was prepared mainly to assist in studying stand biomass levels. Finally, spectral 

pattern analysis was performed on all possible bands in an attempt to select an optimum band 

combination for supervised classification. 

The classification algorithm utilized was a maximum-likelihood classifier (MLC). The main 

advantage of the M L C is that it takes the variability of spectral classes into account by using the 

covariance matrices of these classes. It quantitatively evaluates both the variance and correlation of the 

category spectral response patterns when classifying an unknown pixel (Lilesand and Kiefer, 1994). 

Two iterations of a mode filter rule (FMO) smoothing, using a 3 by 3 window, were applied to 

the final classified image (thematic map) prior to accuracy assessment. The majority class within the 

window was first determined. If the center pixel happened to be not the majority class, its identity was 
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changed to the majority class. As the window progressed through the data set, the original class codes 

were continually used, not the labels as modified from the previous window positions. 

3.4.5 Classification Accuracy Assessment 

Accuracy assessment is an essential component of the classification process. A complete 

assessment was performed for all three classification results. Test areas were located with the aid of 

forest cover maps, aerial photographs and a topographic map. The guiding rule was to delineate areas 

that were representative and different from, and considerably more extensive than, training areas. Some 

sections of training data polygons were utilized to perform accuracy assessment. From test areas, the 

known category type of pixels were listed versus the classified categories. This represented a 

contingency table or error matrix. Based on this table, classification accuracy (total percent correct) 

was computed. Average classification accuracies for the June, September and multitemporal T M 

dataset were then subjected to analysis of variance to determine if they were significantly different. 

Scheffe's multiple range test was used to perform pairwise comparisons. 

3.4.6 Extraction of Representative Sites 

From geocoded images, matching 512 by 512 subscenes covering the study area in both June 

and September were extracted. Representative samples for the study of stand age and density were 

drawn from mixed cedar and hemlock stands. The choice of this stand type was based on the fact that 

it contained all desired age and stocking level stratifications. Numeric image window (NUM) command 

in PCI was used to generate DNs for each selected sample site. Recorded digital values from both 

original and derivative bands were then arranged in a spreadsheet before entering them into the SAS 
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statistical program. Descriptive statistics including means, variances, coefficient of variation, minimum 

and maximum values, histograms, skewness and kurtosis were computed. Additional analyses included 

generating and evaluating covariance and correlation matrices. Analysis of summary statistical 

measures provided an overview of the distribution of DNs by band of the multitemporal T M spectral 

data and, most importantly indicated the separability between forest-cover types and their 

characteristics. Illustration of separability between cover types was further improved by graphic 

presentation of mean DNs versus bands for all cover types and forest parameters considered. 

3.4.7 Change Detection 

Image differencing, image ratioing, and the normalized difference vegetation index (NDVI) 

were three image digital change detection techniques utilized in this study. L i image differencing, the 

spatially registered images of June and September were subtracted band by band in order to produce a 

further image which represented change. Mathematically: 

Dx = x( t l ) -x( t2) + C 

where Dx is the difference in pixel value, x is the pixel value for band k and t l = first date (June, 1992), 

t2 = second date (September, 1992) and C is a constant added to produce positive digital numbers. A 

threshold boundary between change and no-change pixels was selected based on standard deviations 

from the mean pixel value. 

Ratioing is considered to be a rapid means of identifying change. The registered image of June, 

1992 was divided by the registered image of September 1992 on a band by band basis. Ratio 

computation was as follows: 

Rx = x( t l ) /x( t2) 
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where Rx is the ratioed pixel value and x, t l and t2 are as defined above. 

In vegetation studies, ratios, commonly known as vegetation indices, have been developed for 

the enhancement of spectral differences on the basis of strong vegetation absorbance in the red and 

strong reflectance in the near-infrared part of the spectrum (Singh, 1989). NDVI , demonstrated in 

many studies to be significantly related to green leaf biomass, was computed for each image as follows: 

N D V I = (TM4 - TM3) / (TM4 + TM3) 

where TM3 and TM4 correspond to digital numbers in T M bands 3 and 4 respectively. The difference 

between the N D V I for June and September was evaluated to determine whether or not the forest 

canopy had been altered. 
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Chapter 4 

Results and Discussion 

4.1 Spatial Calibration and Geocoding 

The aim of image rectification and restoration was to first correct the image data for distortions 

and degradation's stemming from the image acquisition process (Lillesand and Kiefer, 1994) and 

secondly to allow for relatively easy overlay of reference data sets for training and accuracy assessment 

later on. Lack of information on solar angle among other parameters limited radiometric calibration. 

The June T M image was geometrically registered to the U T M zone 11 co-ordinates with a 

pixel size of 25 metres using nearest-neighbour resampling and a third order polynomial 

transformation. The nearest-neighbour resampling technique was chosen in an attempt to preserve the 

original digital numbers. A total of 36 GCPs was used to register the image. Refer to Appendix 1 for a 

list of GCPs ordered from the worst to the best residuals and the results of least-squares regression 

analysis for the two co-ordinate transformation. A root mean square error of 0.40 was achieved for the 

fitted polynomial regression model. 

The registered June T M image was utilized in an image-to-image resampling technique to 

correct the September image. Geocoded images are presented in Figures 3a and 3b. 

4.2 Spectral Attributes of T M Data 

Descriptive statistics of multitemporal T M data (mean, standard deviation, minimum and 

maximum digital numbers (DN)) for the two dates were computed and compared band by band. They 
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Figure 3. Geocoded Thematic Mapper images showing (a) June, 1992 subscene and (b) September, 

1992 subscene covering study area. 
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are given in Table 2. The distribution of mean digital values from the scenes in June and September is 

best illustrated in Figure 4. Except for the thermal infrared band (band 6), mean digital numbers values 

for June were generally higher than for September. This can be attributed to the solar angle with the 

sun being at it's zenith in June and away from this position in September. Generally, the dynamic 

range occupied by both datasets is small in relation to the 256 levels available. However, the September 

image utilized a wider range than June image. 

4.3 T M Dimensionality and Band Reduction 

A summary of standard principal component analysis results are presented in Tables 3a and 3b. 

Correlation matrices indicated that the September image had a slightly higher correlation between 

visible bands than the June image. Band 1 versus band 2 correlation was 0.7282 and 0.8482 in June and 

September respectively. Band 1 versus band 3 correlation was 0.7779 in June but 0.8305 in September. 

The correlation seen between T M band 1 and the other visible bands in the June image could be related 

to haze and cloudy conditions present at the time of image acquisition. The blue band was likely more 

scattered than the green and red bands. Band 2 and band 3 were highly correlated for both dates 

(0.9218 in June and 0.94 in September). Band 1 was less correlated with the infrared bands than were 

the other two visible bands. Bands 2 and 3 were highly correlated to band 7 (0.8157 and 0.8690) in 

June and band 3 moderately correlated to band 7 (0.7605) in September. Additionally, eigenvalues 

and eigenvectors were analysed. Table 4 summarizes the results. The first three principal 

components (Figures 5 and 6) explained 97.63 and 97.60 percent of the image information in the 

June and September T M data, respectively. In each case, the first two principal components had 

an eigenvalue greater than one. These two components could suffice for dimensional reduction, 
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Table 2. Descriptive statistics of T M data 

June, 1992 T M data September, 1992 T M data 

Band Mean Std Min Max Mean Std Min Max 

1 90.33 5.19 2 201 59.83 5.56 49 250 

2 34.97 3.42 26 91 20.59 3.42 13 122 

3 35.55 5.06 24 107 18.04 5.29 8 168 

4 60.82 19.44 10 139 41.07 19.28 1 125 

5 43.44 15.57 10 149 24.95 15.24 0 156 

6 98.90 6.08 78 122 110.33 2.83 104 127 

7 15.35 6.07 3 66 7.27 5.73 0 69 
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Table 3 a Correlation matrix for June T M data 

Band 61 Band 62 Band 63 Band 64 Band 65 

Band 61 

Band 62 0.7282 

Band 63 0.7779 0.9218 

Band 64 0.0517 0.6197 0.4949 

Band 65 0.3693 0.7982 0.7975 0.8034 

Band 67 0.5351 0.8157 0.8690 0.6050 0.9363 

Table 3b Correlation matrix for September data 

Band 91 Band 92 Band 93 Band 94 Band 95 

Band 91 

Band 92 0.8482 

Band 93 0.8305 0.9400 

Band 94 0.0574 0.4386 0.4242 

Band 95 0.3563 0.6423 0.7142 0.7748 

Band 97 0.4651 0.6643 0.7605 0.5748 0.9388 

Band 61, 6 2 , 6 7 - T M band, 1, 2 , 7 acquired in June, 1992. 

Band 91, 9 2 , 9 7 - TMband 1 , 2 , 7 acquired in September, 1992. 
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but to avoid the risk of leaving out crucial information, the third principal component was 

included in later analyses. This component explained 4.68 percent and 6.12 percent of the 

variation in June and September T M data, respectively. The fourth, fifth and sixth principal 

components collectively accounted for 2.37 percent of the image information in the June scene 

and 3.4 percent of the image information in the September scene. The compression of image 

information in the first three principal components is typical of Landsat T M data, where the 

intrinsic dimensionality is three. These components were visually analysed and preserved for 

supervised classification and change detection. In this context, the transformed data reduced the 

number of computations required, as illustrated later, and as such made the classification process much 

more efficient. 

4.4 Selective P C A for T M Band Selection 

Visible, near-infrared and mid-infrared wavelengths occupy three fundamentally independent 

spectral regions. Subsets of highly correlated groups of bands ( T M bands 1, 2 and 3 on the one hand 

and 5 and 7 on the other) served as input in selective principal component analysis. The idea was to 

select a representative band in each subset to be combined with T M band 4 in colour compositing for 

visual analysis. A summary of the P C A analyses are presented in Tables 5a and 5b. PCI in the visible 

region accounted for 87.38 percent and 91.56 percent of the image information in the June and 

September T M data respectively. Based on a cut-off eigenvalue of > 1, PCI qualified for further 

analysis in band reduction. However, a substantial amount of variation, 10 percent (June scene) and 6 

percent (September scene) were left over in PC2. 
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Figure 5. Transformed data resulting from P C A of June data. The percentage of image information 

contained in the first three principal components is distributed as indicated. 
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c) PC3, 

4.68% 

PC3 shows distribution of cloud cover. 

Figure 6. Transformed data resulting from P C A of September T M data. The percentage of image 

information contained in the first three principal components is distributed as indicated. 

(a) 



(c)PC3, 

6.12% 

PC3 image shows image stripping. 
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Band selection was based on the eigenvector loadings. The magnitude of each coefficient of 

the eigenvectors showed the importance and correlation of each spectral band to the corresponding 

principal component. All visible bands were moderately related to PCI for both dates. In the June T M 

data, band 3 was more highly related to PCI than either band 1 or 2; thus, band 3 was found to be a 

suitable representative for the visible region. In relative terms, bands 2 and 3 in the September T M data 

were more highly related to PCI than band 1 and, as a consequence, both qualified for inclusion in a 

composite prepared for visual analysis. Band 3 may have an edge over band 2 since it is less affected by 

atmospheric scattering. 

Md-infrared band selection was achieved using P C A results summarized in Table 5(b). PCI 

accounted for 96.81 percent and 96.94 percent of the image information in the June and September 

T M data, respectively. This constitutes a large amount of total scene variation. Variation left over in 

PC2 may be mostly system noise. Based on an eigenvalue > 1 as the criteria for selection, only PCI 

met this criteria. Inspection of the eigenvector loadings revealed that bands 5 and 7 in both the June 

and September T M data were highly correlated to PCI . Both bands were thus important in explaining 

image information and/or scene variation acquired in the mid-infrared region. P C A may not be 

sufficient for band selection in this spectral region. However, band 5 was selected based on descriptive 

statistics in Table 2 (see page 32) which showed that it covered a wider range of the radiometric levels 

(10-149 and 0-156) and lower coefficient of variation than band 7. In combination with T M band 3 

(visible) and T M band 4 (near-infrared) a false colour composite (Figures 2 -see page 20) was derived 

which is in agreement with Horler and Ahern's (1986) suggestion that T M bands 3, 4 and 5 are best 

suited for producing enhanced colour imagery for most forestry applications. Another enhanced colour 

composite was created using PCI (visible region), PCI (mid-infrared) and T M band 4 (Figures 
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Table 4. PC's Eigenvalues and variation accounted (six reflective T M bands) 

June, 1992 September, 1992 

Principal 
Component 

Eigenvalue Proportion of 
Variation 

Eigenvalue Proportion of 
Variation 

1 4.4624 0.7437 4.2150 0.7025 

2 1.1149 0.1858 1.2740 0.2123 

3 0.2809 0.0468 0.3669 0.0612 

4 0.0726 0.0121 0.0785 0.0131 

5 0. 0500 0.0083 0.0444 0.0074 

6 0.0194 0.0032 0.0211 0.0035 

Table 5a. PC's Eigenvalues, variation accounted and eigenvetors ( T M visible bands) 

June, 1992 T M data September, 1992 T M data 

Principal 
component 

Eigenvalue Proportion 
of variation 

Eigenvectors Eigenvalue Proportion 
of variation 

Eigenvectors 

1 2.6215 0.8738 0.55,0.59,0.60 2.7467 0.9156 0.56,0.58,0.58 

2 0.3043 0.1014 0.83,-0.48,-0.29 0.1941 0.0647 0.82,-0.34,-0.45 

3 0.0742 0.0247 0.11,0.66,-0.75 0.0591 0.0197 0.07,-0.73,0.68 

Table 5b. PC's Eigenvalues, variation accounted and eigenvectors ( T M shortwave-infrared) 

June, 1992 T M data September, 1992 T M data 

Principal 
component 

Eigenvalue Proportion 
of variation 

Eigenvectors Eigenvalue Proportion 
of variation 

Eigenvectors 

1 1.9363 0.9681 0.71, 0.71 1.9389 0.9694 0.71, 0.71 

2 0.0637 0.0319 0.71,-0.71 0.0611 0.0306 0.71,-0.71 
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7a and 7b). Statistically and visually, this composite contained a vast amount of image variation and 

highlighted several cover types and features. 

4.5 Spectral Contrast Mapping of Multitemporal T M Data 

Multitemporal T M data were created by combining the geocoded T M data acquired in June 

and September into one image file in PCI. Principal component analysis was conducted on these data in 

an attempt to map the spectral contrast between the two datasets. A summary of the correlation 

between reflective T M bands in June (6) and September (9) is presented in Table 6. The following pairs 

of T M bands were established to be highly correlated: band 64 (June and TM4) and band 94 

(September and TM4); band 65 and band 95; band 65 and band 97; band 67 and band 95; and band 67 

band 97. It is evident that high correlation was seen between bands covering the same spectral region, 

mainly near-infrared and mid-infrared. Moderate correlation was seen between numerous pairs of 

bands. These included: band 62 and band 93; band 62 and band 95; band 62 and band 97; band 63 and 

band 93; band 63 and band 95; band 63 and band 97; band 64 and band 95; band 65 and band 93; band 

65 and band 94; and band 67 and band 93. 

The first six principal components accounted for approximately 98.09 percent of the image 

information (Table 7). This is enough variation to warrant exclusion of the remaining principal 

component from further analysis. Selection of T M bands for visual analysis was based on the 

eigenvector loadings. None of the 12 T M bands were highly related to PCI . T M bands 61, 63, 91, 

92, 94 and 97 were related to the other components . This was found to be a wide selection given the 

three band limit in colour compositing (composite). From visual inspection, bands 
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Figure 7. Intensity, Hue and Saturation (JUS) enhancement of PCI (visible region), TM4 and PCI 
(short-wave-infrared region), (a) Enhanced June, 1992 composite. Black is water and shadows, yellow 
is mixed hemlock and cedar stands, blue is alpine conifers, regenerating stands and mixed 
spruce/hemlock stand, cyan is scrubland, purple is sunlit conifers, grayish blue-violet is clearcuts and, 
green, red and orange are other mixed forest covertypes. (b) Enhanced September, 1992 composite. 
Black is water and shadows, cyan is scrubland, swamps and mixed hemlock and cedar stand, yellow is 
mixed cedar/hemlock and hemlock/cedar/fir stands, purple is alpine conifers, red is mixed 
spruce/hemlock stands and other forest stands and deep bluish violet is clearcuts. 
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Table 6. Correlation matrix for Multitemporal T M data 

Band 61 Band 62 Band 63 Band 64 Band 65 Band 67 
Band 91 0.5023 0.4029 0.4579 -0.0360 0.2637 0.3897 
Band 92 0.4387 0.5995 0.5995 0.3402 0.5499 0.5851 
Band 93 0.4916 0.6598 0.6973 0.3674 0.6481 0.7005 
Band 94 0.0164 0.5549 0.4233 0.9209 0.7190 0.5284 
Band 95 0.3185 0.7307 0.7186 0.7490 0.9296 0.8726 
Band 97 0.4305 0.7192 0.7626 0.5650 0.8822 0.9017 

Table 7. Multitemporal Eigenvalue and variation accounted 

Principal Component Eigenvalue Proportion of Variation 
1 7.8632 0.6553 
2 2.0510 0.1709 
3 1.1051 0.0921 
4 0.5096 0.0425 
5 0.1565 0.0130 
6 0.0848 0.0071 

Table 8. Correlation and Spectral Contrast 

T M band pair Correlation coefficient Principal component 1 
variance (%) 

Principal component 2 
variance (%) 

Band 61 and band 94 0.0164 50.8 49.2 
Band 63 and band 94 0.4233 71.2 28.8 
Band 64 and band 91 -0.0360 51.8 48.2 
Band 64 and band 92 0.3402 67 33 
Band 61 and band 95 0.3185 65.9 34.1 
Band 65 and band 91 0.2637 63.2 36.8 
Band 67 and band 91 0.3897 69.5 30.5 
Band 62 and band 91 0.4029 70.1 29.9 
Band 64 and band 97 0.5650 78.2 21.8 
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63, 94 and 97 turned out to the best false colour composite. As demand necessitated, other band 

combinations were chosen. The primary interest in spectral contrast mapping was to enhance the 

capability of the multitemporal T M data in forest cover discrimination. Based on the correlation matrix 

in Table 6, the following pairs of bands were found to have low correlation. These included: 

(1) band 61 and band 94 ( blue and near-infrared) 

(2) band 63 and band 94 ( red and near-infrared) 

(3) band 64 and band 91 (near-infrared and blue) 

(4) band 64 and band 92 (near-infrared and green) 

(5) band 61 and band 95 (blue and SVVTR-1) 

(6) band 65 and band 91 (SWTR-1 and blue) 

(7) band 67 and band 91 ( SWIR-2 and blue) 

(8) band 62 and band 91 (green and blue) 

(9) band 64 and band 97 (near-infrared and SWIR-2) 

The first four pairs were selected to map the spectral contrast between the visible and near-

infrared spectral regions. The next three pairs mapped the contrast between the visible and shortwave-

infrared regions while the eighth was selected to map the spectral contrast of two bands which are 

adjacent to each other in the visible spectral region. The ninth pair, whose PC2 image is presented in 

Figures 8a and 8b, mapped contrast between near-infrared and mid-infrared. Apart from mapping 

spectral contrast between major spectral regions, these pairs also mapped temporal change. 

A relation was seen between band correlation and spectral contrast. The lower the correlation 

between two input images, the higher the percent of variance that was mapped to PC2, which indicates 

a larger amount of spectral contrast. L i Table 8 for example, T M band 61 and band 94 had a 
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correlation coefficient of 0.0164 and 49.2 percent of total variance was mapped to PC2. On the other 

hand, T M band 63 and band 94 had a correlation coefficient of 0.4233 and only 28.8 percent of total 

variance was mapped to PC2. 

4.6 Landsat T M Classification Results 

4.6.1 Spectral Clustering and Class Separability 

The multitemporal T M datasets were first subjected to spectral clustering (i.e. unsupervised 

classification). This step provided an opportunity for determining the degree to which forest types 

could be distinguished and the nature of spectral variability of cover types under study. A total of 20 

spectral classes (Figures 9a and 9b) were generated using the K-means clustering technique. The 

spectral classes included conifers on flat topography, shaded mountain slope conifers, alpine, 

regenerating conifers, and sunlit mountain slope conifers. Classification of sunlit and shadowed slopes 

as distinct and separate spectral classes illustrated that topography influenced spectral reflectance of 

cover types to a great extent. This observation, and clues to possible cover types and location of 

clearcuts and regenerations, were useful information during the training stage that ensued. 

The guiding principle during the training stage was selection and delineation of areas for each 

information class that were both representative and evenly distributed over the entire image. A total of 

18 training areas were delineated in the June image, 17 in the September image and 18 in the 

multitemporal T M data. The extra class in the June image was clouds which could not be avoided since 

a satisfactory separation was desired. The composition of the training sites included 12 forest classes, 

with the rest being other vegetation classes and cultural features. 

Signatures generated for each training site were used to compare between each pair of classes. 
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Figure 8. Results of spectral contrast mapping of T M bands 64 and 97. Alpine/sunlit conifers and 
regenerating stands are bright toned; cutblocks, creeks, logging roads, swamps, scrub and shoreline are 
dark toned; water bodies and majority of forest cover types appear in light to moderate tones, (a) June, 
1992 black and white PC2 image (b) September, 1992 black and white PC2 image. 
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Figure 9. K - C L U S spectral clusters in T M data, (a) June, 1992 spectral classes. Green is mixed 
conifers on even/flat topography, blue is conifers on north-facing slopes, yellow is alpine conifers and 
regeneration stands, pink is upland ('sunlit') conifers, orange is water, red is clouds (over ocean), gray 
is scrub land, cutblocks and other forest types, (b) September, 1992 spectral classes. Gray is water 
bodies, green is conifers on north-facing slopes, yellow is upland conifers, regenerating stands and 
other mixed conifer stands, orange, pale gray and blue are conifer stands containing 
cedarmerrdock/spmce/fir in various proportions, bluish gray is old clearcuts and light green is new 
clearcuts. 
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SIGSEP, a signature separability command provided by PCI, calculated statistical and response 

patterns among trained classes. Transformed divergence served as the separability measure. Divergence 

matrices for June and September are given in Appendix JX Real values between 0 and 2 were 

generated. 0 indicated a complete overlap between signatures and 2 indicated a complete separation 

between any two classes. A value below 1.5 indicated spectrally similar classes. Classes with at least 

s 

1.5 and above were statistically separable. In the June T M data, all forest cover types were statistically 

separable except for juvenile and alpine conifers (1.23), and the conifers on north-facing slopes and 

densely stocked mixed cedar/hemlock stands (1.25). Juvenile and alpine conifers (1.42), mixed 

cedar/hemlock/fir stand and spruce/hemlock stand (1.12) on the one hand and dense cedar/hemlock 

stands (1.34) on the other hand showed poor separability in the September T M data. The rest of the 

cover types were separable. Nevertheless, it should be noted that, except for a few classes, the training 

stage was repeated at least three times before the final training set was achieved. 

4.6.2 T M and Derivative Band Selection 

Two spectral analysis techniques were employed in the selection of band combinations that 

could best discriminate among forest cover types. The technique involved plotting spectral patterns for 

all classes (Figures 10a and 10b). Each plot was visually examined for bands or combinations of bands 

which maximised separability. A limitation of this technique was that there was no indication as to 

whether separability was improved with the addition or subtraction of bands. A more robust method 

was based on divergence of signature segments. The C H N S E L (channel selection) command in PCI 

offers the average interclass divergence, the average transformed divergence and the minimum pairwise 

divergence as decision rules for computing the dissimilarity between any two signature classes. The 

first two rules produced similar results. Six out of a possible 12 bands were determined to be the 
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optimum channel combination for discriminating the set of classes in both dates. The addition of a 

seventh band did not improve the forest class separability of any of the imagery, while using only five 

or four bands resulted in a significant loss of both forest class separability and classification accuracy. 

As in P C A , spectral pattern analysis indicated that the original T M bands 3, 4, and 5 were valuable 

for forest cover-type classification. Derivative bands were also included in the optimum band 

combination. For the June T M data, the optimum set of bands included 3, 4, 5, PCl(visible bands), 

N D V I and 4/3, whereas for the September T M data bands 3, 4, 5, PCl(visible bands), N D V I and 5/4 

first were selected as the best combination. It is evident that a similar set of bands were selected for 

both dates except for image ratios (4/3 and 5/4). For the multitemporal T M data, the two sets of band 

combinations (i.e., a total of 12 bands) were used. The object in this classification was to utilise scene 

information from both dates, though at the expense of computing time. 

4.6.3 Maximum-Likelihood Classification Results 

All three images were classified in PCI using the maximum likelihood classifier (MLC) 

command. A set of 18 , 17 and 18 signatures in the June, September and multitemporal images, 

respectively, were used during classification. The final thematic maps were prepared by passing two 

iterations of a 3 by 3 mode filter on the raw classified image. With two iterations, the "salt and pepper" 

or noisy pixels were removed. The results are as shown in Figures 11a, l i b and 11c. Cover types 

included water, clouds, shoreline, mixed cedar/hemlock stands of normal stocking, upland conifers, 

mixed spruce/hemlock, mixed cedar/hemlock/fir, conifers on north-facing slopes, young (new and old 

regeneration), alpine conifers, densely stocked cedar and hemlock stands, scrub stand, new clearcuts, 

old clearcuts, creeks and the void of shadows. A visual analysis of the three maps showed that similar 
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classification of the Carmanah cover types was achieved. Quantitatively, these thematic maps were of 

different accuracies. Error matrices for the classification of the June, September and multitemporal T M 

dataset are summarized in Tables 9a, 9b and 9c. Diagonal elements correspond to correct classification, 

whereas off-diagonals are misclassifications. Classification accuracy was computed using column 

totals. Overall accuracies were 79.2 percent (June), 82.2 percent (September) and 90.3 percent 

(multitemporal), and average user's accuracies were 72.2 percent (June), 78.69 percent (September) 

and 84.6 percent (multitemporal). Average producer's accuracies on the other hand were 76.9 percent 

for June, 82.5 percent for September and 91.2 percent for the multitemporal T M dataset. 

Classification results, mainly producer's accuracies, achieved using the three datasets are 

summarized and compared in Figure 12. Generally, the multitemporal T M dataset provided the highest 

classification accuracy level for most cover types and June had the lowest classification accuracy level 

in a number of cases. Specifically, all cover types except conifers on north-facing slopes and densely 

stocked mixed stands of cedar and hemlock were best classified using multitemporal T M data. 

Between dates, the September scene generally produced a higher classification accuracy than the June 

image. However a better classification for old clearcuts was achieved with the June T M data than with 

September data (i.e. 95.53 percent compared to 86.88 percent). 

Analysis of variance results for the three average classification accuracies, as presented in 

Appendix IV, indicated that the three averages were significantly different. In the next step, Scheffe's 

procedure (SAS Institute Inc., 1988) was used to perform a pairwise comparison of the averages. The 

alpha level was set at 0.05. Results of the tests are in Tables 10a and 10b. It can be seen that for 

general cover type classification, the multitemporal dataset was not significantly different from the 

September dataset but significantly different from the June dataset. Neither the June nor the September 
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Table 9a. June Classification Error Matrix 

Forest Cover Map Classes (Reference Data) 
Landsat 

T M 
Classes 

ncc occ reg juv scr ch sh nc dch alp uc chf wat swa %Corr. 
(User's) 

ncc 481 38 4 0 6 22 3 46 18 1 77.71 
occ 23 1603 31 2 101 61 12 124 8 46 79.71 
reg 7 27 738 158 27 16 12 18 54 10 2 69.17 
juv 66 1007 3 6 67 2 138 14 13 1 76.46 
scr 2 1 791 156 17 1 119 8 3 71.98 
ch 8 66 2258 5 44 25 3 20 107 89.04 
sh 3 34 10 11 499 74 171 33 8 98 53.03 
nc 7 27 1149 350 66 138 66.15 
dch 4 16 139 272 1696 1 115 75.61 
alp 16 205 25 1 406 161 12 49.15 
uc 6 23 21 23 5 54 71 1749 58 87.02 
chf 1 8 3 257 39 118 203 7 69 661 48.39 
wat 5367 100 
swa 10 12 1 75 183 65.13 

% Corr. 93.76 95.53 84.05 69.69 76.65 76.68 61.00 69.34 67.33 58.59 73.98 56.69 95.02 98.36 

Table 9b. September Classification Error Matrix 

Forest i 
Landsat 

T M 
Classes 

ncc occ reg juv scr ch sh nc dch alp uc chf wat swa %Corr. 
(User's) 

ncc 608 98 9 1 1 84.80 
occ 15 1086 10 25 1 19 2 93.78 
reg 3 44 453 4 17 2 75 24 72.83 
juv 20 21 987 12 22 2 175 60 10 75.40 
scr 6 7 1 803 119 5 23 1 8 82.53 
ch 34 2813 23 6 147 7 13 92.44 
sh 32 53 572 20 90 11 7 42 69.17 
nc 2105 6 99.72 
dch 2 51 82 77 1362 51 83.82 
alp 372 5 68 1 619 8 15 56.89 
uc 11 40 4 37 15 51 11 2083 28 91.36 
chf 8 2 47 43 14 104 9 263 441 47.37 
wat 7 6494 99.89 
swa 4 2 3 135 154 51.68 

% Corr. 95.60 86.88 88.13 68.35 90.53 89.79 74.97 86.05 79.32 74.85 82.46 73.38 79.41 85.08 
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Table 9c. Multitemporal Classification Error Matrix 

Forest Cover Map Classes^ 
Landsat 

T M 
Classes 

ncc occ reg juv scr ch sh nc dch alp uc chf wat swa %Corr. 
(User's) 

ncc 606 85 7 2 14 32 81.23 
occ 20 1132 9 4 97.17 
reg 8 19 485 38 2 2 9 3 85.69 
juv 1 1 1335 5 1 26 6 2 96.95 
scr 2 13 6 856 69 1 3 90.11 
ch 16 2955 10 207 177 2 13 87.43 
sh 5 21 679 173 128 11 10 66.12 
nc 2071 118 77 91.40 
dch 56 37 1795 1 9 94.57 
alp 57 6 8 7 4 772 19 12 87.23 
uc 8 20 3 72 2 11 2349 26 94.30 
chf 1 1 14 19 101 47 4 126 529 62.83 
wat 4271 100 
swa 6 176 178 49.44 

% Corr. 95.28 90.56 94.36 92.45 96.51 94.25 88.99 78.72 78.97 93.35 92.99 88.02 93.74 98.34 

Key: Occ - old clear-cuts; ncc - new/recent clear-cuts; reg - regeneration stand; juv - juvenile stand; 
scr - scrub land; ch - cedar and hemlock stand of normal stocking; sh - sitka spruce and hemlock stand; 
nc - conifers on north facing slopes ("northern conifers"); dch - dense cedar and hemlock stand; 
alp - alpine conifers; chf - mixed cedar, hemlock, and fir; wat - water bodies; swa - swamp. 
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Figure 11. Results of maxirnum-likelihood classification of Carmanah T M data. Blue is water, light 
blue is clouds, cyan is shoreline, green is mixed cedar/hemlock stands of normal stocking, purple is 
upland conifers, red is mixed spruce and hemlock, orange is conifers on north-facing slopes, deep pink 
is new and old regenerating stands, light pink is alpine conifers, orange-yellow is densely stocked cedar 
and hemlock stands, yellow is cedar/hemlock/fir, violet is scrub stand, light violet is new clearcuts, pale 
violet is old clearcuts, light cyan is creeks, black is null class, (a) June, 1992 thematic map (b) 
September, 1992 thematic map (c) multitemporal (combined) thematic map. 
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classification were significantly different from each other in classifying general cover types. The 

multitemporal classification of forest cover types was significantly different from the single date 

classifications. Between date comparison indicated that the September classification of forest cover 

types was significantly better than the June classification. 

4.7 Change Detection 

Image differencing, image ratioing and normalized difference vegetation index (NDVI) 

techniques were utilized to derive new images for each T M band. To minimize sensor calibration 

effects and standardize data acquisition, an atmospheric correction routine was applied. Atmospheric 

normalization was achieved through linear regression over time. Jensen (1983) reported that regression 

techniques account for differences in the mean and variance between pixel values for different dates so 

that adverse effects from the differences in atmospheric conditions or sun angles are reduced. The 

regression analysis was conducted on digital values from the entire T M dataset. SAS output for 

regressing the September data versus the June data are summarized in Table 11. All models were 

significant at a= 0.05. A general trend seen in the table was an increase in R 2 from band 1 to band 5. 

With the exception of TM4 and TM5, S E E decreased across the electromagnetic spectrum. However, 

relatively poor fits were obtained with T M bands 1 (blue) and 2 (green), although standard errors of 

the estimate (SEE ) were low. This indicates that the June D N values could not be relied upon for 

predicting the September digital values in the two spectral regions. As such, analysis was restricted to 

bands 3,4, 5 and 7. Boundaries between change and no-change pixels were estimated using a statistical 

approach developed by Ingram et al. (1981) and recommended in many other studies. From visual 

analysis and histogram evaluation image, it can be seen that differences for bands 3 and 5 best indicated 
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Table 10a. 1 Scheffe's test for general cover type classification accuracies 

Scheffe Grouping* Mean Classification Accuracy T M dataset 

A 91.181 Multitemporal 

B A 82.486 September 

B 76.905 June 

* Means with the same letter are not significantly different, 
a = 0.05 
Critical difference (CD) = 9.6266 

Table 10b. Scheffe's test for forest cover type classification accuracies 

Scheffe Grouping* Mean Classification Accuracy T M dataset 

A 89.122 Multitemporal 

B 79.700 September 

C 68.594 June 

* Means with the same letter are not significantly different, 
a = 0.05 
Critical difference (CD) = 9.3315 

Scheffe's procedure tests for pairwise differences in population means, u; - Uj. The critical 
difference (CD) is computed as follows 

CD = V((k-l)F t c(dfl , df2))V(MSW(l/ni + 1/nj)) 

where M S W represents the mean square difference within-groups-variance estimate, ^ and nj are 
the sizes of the ith and jth samples respectively and k is the number of treatments or means to be 
compared. There is a significant difference between the two means being compared when the 
difference between their means is greater than CD. 
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the changes that occurred between June and September. The thresholding image to bitmap (THR) 

algorithm provided by PCI was used to density slice the new images in order to display suspected 

changes. 

Generally, minor to no changes were observed for most forest cover types in the differenced 

and ratioed images. This was not surprising given the short time interval and abolition of clear-cutting 

and other forest disturbances in Carmanah Valley. However, noted changes in radiance (tonal 

difference) were suspected to be related to high reflectance expected during early summer. This was 

highlighted for clearcuts which appeared in bright tones in both derivative images. Cloud cover stood 

out as a major non-forest change between the two dates. N D V I analysis produced similar results. The 

difference between the June and the September N D V I resulted in small (zero in most cases) digital 

values. This indicated that no significant change occurred with respect to forest biomass or forest 

canopy. 

4.8 Comparative Analysis of Classified Data 

Classified images were assessed for their capability to show likely trends and discriminate 

groups that are of interest in forest management. Comparative analysis involved looking at species 

composition, age classes and stocking level among other forest parameters. As illustrated earlier and 

shown in Figures 13a and 13b, the June digital values were generally higher than those from 

September. A general spectral pattern of moderately low mean D N in the red band followed by a 

relatively high mean near-infrared digital value and low to moderate mean D N in the mid-infrared 

spectral region was observed for both dates. Enhanced image ratios magnified the change in digital 

values across the electromagnetic spectrum. For example, the high TM4/3 ratio of alpine conifers for 

both dates indicated higher near-infrared digital numbers compared to the red band. High PCI (visible) 
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Table 11. Regression Analysis Results 

Fitted linear regression model R 2 S E E 

B91 = 11.22 + 0.54B61 0.25 4.81 

B92 = -0.39 + 0.6B62 0.36 2.74 

B93 = -2.82 + 0.61B63 0.75 2.63 

B94 = -14.48 + 0.91B64 0.85 7.52 

B95 = -14.57 + 0.91B65 0.86 5.62 

B97 = -5.81 + 0.85B67 0.81 2.47 

Table 12. Classification accuracies for age and stocking classes 

Classification Accuracy 
Age classes June, '92 T M data September, '92 T M data 

Juvenile (>20 yrs) 85.84 87.94 
Immature (21-100 yrs) 77.55 67.87 
Mature (100+ yrs) 76.26 85.54 

Stocking levels 

Non-stocked 94.65 90.88 
Low stocked 77.29 70.05 
Medium stocked 70.9 84.34 
Highly stocked 50.51 74.12 

S 



62 

values for upland conifers (June) and alpine conifers (September) were expected given they were 

located on south-facing slopes. At the lowest end of PCI were mixed cedar and hemlock stands in June 

and conifers on north-facing slopes in September. On both occasions, alpine conifers and conifers on 

north-facing slopes had the highest and lowest mean N D V I values respectively. With the exception of 

mixed spruce and hemlock stands, all other forest cover types showed almost similar mean N D V I 

values in June. On the other hand, the N D V I values in September scene provided a wide separation 

between forest types. 

Comparison of classification accuracies (Figure 12) indicated that a better classification was 

achieved with the September image than with the June image. This observation supports the wide 

spectral separation offered by September scene (Figure 13b). T M bands 3, 4 and 5 provided a narrow 

spectral separabilty. The high classification accuracy's achieved was thus due to discrimination 

provided by derivative bands. 

As detailed age information on a stand by stand basis was not available, general age groupings 

as given by forest cover maps were adopted. These included juvenile (less than 20 years old), maturing 

(between 21 and 100 years old) and mature or oldgrowth (greater than 100 years). Figures 14a and 

14b presents their spectral pattern plots. Juvenile stands had higher mean D N values than either 

maturing or mature stands in the visible, near-infrared and mid-infrared spectral regions. Mature stands 

had the lowest mean digital values in all three spectral regions. Juvenile and maturing stands registered 

the highest N D V I values in the June and September scenes respectively. Lowest N D V I and PCI and 

4/3 values recorded for mature/oldgrowth stands in June. Classification of mixed cedar and hemlock 

stands into their respective age categories is summarized in Table 12 (see page 61). On average all 

three age classes were accurately classified in both images. However, mature stands were classified 
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more poorly in the June image than in the September image. This was surprising given the wide 

spectral separation provided by near-infrared and derivative bands. In the September scene, immature 

stands had mean D N values close to those of juvenile stands in the red and near-infrared bands and 

close to those of mature stands in the red and mid-infrared spectral regions. As a result, the classifiers 

could not make a complete discrimination of this age class from either juvenile or mature stands. This 

may explain the observed low classification accuracy (67.87%) of immature stands in the September 

image compared to that achieved with the June image. Oldgrowth/mature forest was better classified 

(85.54) by the September image. 

Four stocking levels were considered: non-stocked, low, medium and high. Non-stocked 

stands included new and old clearcuts. Spectral patterns for stocking classes are presented in Figures 

15a and 15b. Medium stocked conifers had the highest near-infrared and mid-infrared mean DNs and 

highly stocked conifers showed the lowest mean digital values for all three T M bands. The latter 

observation appears to be as a result of the small size of selected sites. T M bands 4 and 5 provided a 

good separation of stocking levels. As for derivative bands, medium stocked stands had the highest 

PCI and N D V I values. In the September image, non-stocked and low stocked stands had similar PCI 

values, and low stocked and high stocked stands had similar N D V I values. A summary of classification 

accuracies of mixed cedar and hemlock stocking levels are given in Table 12 (see page 61). Both 

images a^scriminated non-stocked stands with a better accuracy than the other stocking classes, 94.65 

percent and 90.88 percent in the June and September images respectively. This was not surprising 

given non-stocked stands unique spectral pattern. The September image provided a better classification 

for medium and high stocked stands. A better delineation of low stocked stands was achieved with the 

June image. The exceptionally poor June classification for highly stocked stands was at first surprising 
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given the unique spectral pattern of this class. However, a close examination of this type revealed that 

cloud cover was most dominant over its vicinity. 
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4.9 Discussion 

The primary interest of this study was to test for temporal discrimination of the forest cover 

types in Carmanah Valley using the June and September T M data. A first step towards this objective 

involved determining the information content of T M dataset and ways of handling this data more 

efficiently. A principal component analysis (PCA) approach was adopted in an attempt to enhance T M 

images for visual interpretation (i.e., to select the best bands and features for display). Additionally, the 

P C A approach aided in understanding the fundamental spectral feature space and dimensionality of the 

TMdata. 

Two forms of P C A were carried out, namely "standard P C A " and "selective PCA" . In the 

former, all reflective T M bands were used as input, whereas in the latter only a subset of T M bands 

were used as input. Attention is first given to "standard PCA" . A large portion of information for both 

dates was compressed to the first three principal components, specifically 97.63 percent in the June and 

97.6 percent in the September images. In a statistical sense, a vast amount of information about general 

cover types of the Carmanah valley can thus be presented in a three-feature subset of the T M data. This 

result is in agreement with the observations of Townshend et al. (1983) and Crist and Cicone (1984) 

that T M data occupies three spectral dimensions. 

All six T M bands contributed to the variation seen in the first three principal components. 

Their contribution, as shown by the eigenvectors, varied from one component to another. Striking 

similarities could be seen between the P C A runs on the June and the September images. T M bands 2, 

3, 5 and 7 loaded strongly to the first principal component (PCI) with T M bands 1 and 4 loading 

strongly to the second principal component (PC2). T M bands 4 and 7 loaded strongly to the third 

component (PC3). PCI was thus a sum of visible and mid-infrared regions. Visually it appeared in 
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brighter tones (Figures 5a and 6a - see pages 36 and 37). Clearcuts, water bodies and swamps were 

highly emphasized. Except for scrub land, the majority of the forest cover types were difficult to 

discriminate. PC2, as mentioned, was a blue-green to near infrared contrast. A substantial amount of 

spectral contrast was evident in this feature (Figures 5b and 6b). The appearance of clearcuts in dark 

tones contrasted sharply to its bright tones in PCI . This reflects the fact that principal components are 

orthogonal to each other. PC2 highlighted some of the cover types that were obscured by the more 

dominant features in PCI . Among these were logging roads, rivers/creeks, south-facing slopes, 

scrubland, regeneration stands (bright toned) and a wide range of other forest cover types. An 

interesting observation was the complete absence of shadows on the north-facing slopes (illumination 

of shadowed areas). This allowed for evaluation of the minimal reflectance from "shadowed" slopes. 

PC3 appeared to be a contrast between near-infrared and mid-infrared. As shown in Figures 5c and 6c 

(pages 37 and 38), PC3 highlighted logging roads within cutblocks (i.e., bright pixels on a dark 

background). Its tonal reversal in PC3 compared to PC2 again illustrates the lack of correlation 

between the two images and the significant amount of noise present in PC3. A disadvantage of PC3 

was it's sensitivity to cloud cover in June. Hardly any meaningful discrimination could be made across 

a large portion of the June PC3 image. Thus only PCI and PC2 were useful for forest cover typing in 

this scene. The fourth, fifth and sixth principal component contained lots of noise, and thus they were 

not useful for either image generation or information extraction. 

In selective P C A , T M bands were first grouped into their respective spectral regions. Separate 

P C A was conducted on the visible and mid-infrared group in an attempt to select a representative band 

in each region. The object was to generate bands for colour compositing to be used in visual analysis. 

Band selection was achieved with the aid of eigenvectors loadings of each chosen principal component. 
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In both the June and September images, band 3 was selected from the visible region and band 5 was 

chosen from the mid-infrared region. As a result, a representative colour composite for visual analysis 

was derived by loading band 4 in the red gun, band 5 in the green gun and band 3 in the blue band. 

This derivation is in agreement with many research results and authors including Horler and Ahern 

(1986) that T M bands 3, 4 and 5 perform almost as well as the first three principal components for 

ground cover type discrimination. 

A n additional optimum colour composite was generated using selective P C A results. PCI of 

the visible region was loaded to the blue gun, band 4 to the green gun and PCI of the mid-infrared to 

the red gun. As presented in Tables 5a and 5b (see page 40), PCI in each spectral region explained a 

vast amount of image information (i.e., 87.38 percent (June) and 91.56 percent (September) in the 

visible region, and 96.81 percent (June) and 96.94 percent (September) in the mid-infrared region). 

Using selective P C A in this manner allowed for dimensional reduction with little loss of information. 

The components not used contained minimal left over variation. A number of enhancements (THS) 

were performed on the composite to achieve the image shown in Figures 7a and 7b (see page 42). This 

composite looked similar to a normal colour composite made from three original T M bands and was 

found to be easier to interpret. Forest and other cover types appeared in distinct colours and were in 

fact categorized like in a thematic map. It is here that possible training areas were detected and 

identified, and their locations taken into account. Among other features, two classes of clearcuts were 

clearly evident in both the June and September images. Other visible cover types included alpine 

conifers, mixed conifers (mainly cedar and hemlock stands) and cedar and spruce stands, scrub land, 

regenerations, swamps and upland conifers or sunlit conifers. 
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The purpose of the second run of selective P C A was to look at the spectral contrast in the 

multitemporal T M data. Specifically, to identify the new information contributed by each band that is 

not contained in the others. It was hypothesized from the outset that mapping information unique to 

each band could be the key to discrimination of forest cover types of the Carmanah Valley. Combined 

June and September T M data was used in this run. Band correlations between dates were first 

evaluated. Low correlation was observed between visible and near-infrared, visible and mid-infrared, 

and near-infrared and mid-infrared. Pairs of less correlated bands were input into a P C A . In an attempt 

to map possible spectral contrasts between all spectral regions and temporal contrast, a total of nine 

band pairs were used. In general, the degree of correlation between any two bands appeared to be 

related to the amount of spectral and temporal contrast. Information common or similar to both bands 

was mapped to the first principal component and information unique to either of the bands was mapped 

to the second principal component. The higher the correlation, the more similar were the bands and the 

less the spectral contrast (more common information in the first principal component). The lower the 

band correlation, the more the spectral contrast (Table 8 - see page 44). PC2 of each image pair was 

interpreted one at a time in a black and white mode. The image derived from band pairs 61 and 94, 63 

and 94, 64 and 91, and 64 and 92 highlighted the spectral contrast between forest cover types and 

other vegetation cover. Regeneration, stands of mixed conifers dominated by hemlock with varying 

proportions of spruce, cedar and fir, could be vaguely detected and the extent of scrub land was 

obvious (Figures 8a and 8b - see page 47). Tonal difference between oldgrowth and young or juvenile 

stands was emphasized with the former appearing in dark to moderate tones and the latter in brighter 

tones. Location and extent of these forest age classes were noted for later digital analysis. Alpine 

conifers, like regenerating stands, appeared in bright tones. Scrub land in September was highlighted, 
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appearing in dark tones, a sharp contrast to the surrounding forest cover types. Clearcuts at both dates 

took very dark tones. At this point, enhancements performed so far were deemed sufficient and 

attention was directed to digital classification. 

There was a great temptation to load all available bands into a maximum-likelihood classifier 

(MLC). However, reduction of T M data has been demonstrated to significantly improve the processing 

efficiency of a classifier (Horler and Ahern, 1986). Towards this objective, T M bands 1, 2, 3, 4, 5, and 

7, and six derivative bands namely principal components (visible and shortwave-infrared bands), N D V I 

and image ratios 4/3, 5/4 and 5/2 were subjected to spectral pattern analysis for selection of band 

combinations most useful for cover-type discrimination. In both the June and September images, T M 

bands 3, 4 and 5 were chosen. PCI (visible region), N D V I and image ratios 4/3 and 5/4 were also 

included in the optimal subset. However utilization of six bands out of a possible twelve bands was not 

considered a major T M band reduction. In effect, classification efficiency was sacrificed at the expense 

of accurate discrimination of cover types. 

Paradoxically, classification accuracy appeared to be related to interband correlation. With low 

interband correlation, classification accuracy improved significantly over that found with high interband 

correlation. This was demonstrated by a poorly correlated subset of six bands (original and derivative 

bands) as opposed to twelve bands with some highly correlated. As evident from the correlation 

matrix (Tables 3a and 3b - see page 34), there was a relatively low interband correlation between T M 

bands 3, 4 and 5 on both occasions. A possible cause for this correlation stems from the combined 

influence of vegetated and non-vegetated surfaces absorbing red radiation (TM3), plant canopy 

structure and other surface properties reflecting near-infrared radiation (TM4) and plant canopy 

moisture and other moist surface properties absorbing short-wave infrared radiation (DeGloria, 1983). 
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Classification of forest cover types of Carmanah valley turned out to be a difficult task. The 

majority of forest stands appeared in mixtures of two or more species which differed in size, stocking, 

crown closure and age. This extreme forest complexity and narrow cover types for spectral 

"seperability" complicated identification of forest types at a species level. Numerous forest cover 

classes were documented by forest cover maps. It was apparent that such a detailed classification was 

not possible with the T M data. Reference data were condensed into 18 and 17 cover types (12 forest 

and 6/5 non-forest classes) for the June and September images respectively. Ironically, more spectral 

classes were generated by the unsupervised approach than were being explained by the supervised 

approach. Unfortunately, most of the spectral clusters possible with the unsupervised approach were 

difficult to identify and define. 

The intent of the study was not to maximize classification accuracy. Instead, interest was 

centred on providing a method for comparing three separate classifications of forest cover types and 

other forest parameters. Variability of spectral characteristics of forest cover types was maximized 

during multitemporal classification. Classification results showed that multitemporal classification were 

more accurate than single-stage classification. The multidate approach to classification of forest cover 

types yielded an average classification accuracy approximately 20.5 percent and 9.4 percent greater 

than that of the June and September image, respectively. Additionally, mean classification accuracy of 

the multitemporal data was significantly better than that of either of the single-dates. It is expected that 

even better improvements in classification performance than those achieved may be possible through 

merger of multidate data that is properly timed (that is, to avoid cloud cover and restrict data 

acquisition to the best season of the year). However, with respect to general cover types, there was no 

significant difference between the multitemporal classification and the September classification. This 
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suggests that single date dataset performed as well as multitemporal dataset in classifying non-forest 

cover types. 

Differing solar angles and uneven illumination conditions are expected between early- summer 

and late-summer. As a result, reflectance for any given cover type varied extensively between June and 

September. Spectral complexity that arose from a myriad of spectral signatures for each class was 

reduced to a great extent by moderate to high band correlation between dates. However, primary 

discriminatory power comes from low interband correlation between dates (e.g. band 64 versus band 

97). In totality, the combination of seasonal variability and low interband correlation was responsible 

for the clean, sharp and accurate thematic map shown in Figure 1 l c (see page 56). A n 'accurate' 

delineation of cover type extent was achieved. Cloud cover classified over ocean waters was a class 

attributed to June scene. This illustrates how seasonal variability was taken into account in the 

multitemporal data set. Improved classification was not without exception. Old clearcuts and north 

facing slope conifers were better classified in the June and September images, respectively. Moisture 

conditions and shadowing effect were suspected to have influenced discrimination of these cover types. 

Classification accuracy of the majority of cover-types was generally higher in September than 

in June. The mean September classification accuracy of forest-cover types was shown to be 

significantly better than June's. This was an interesting observation. It was originally hypothesized that 

with the sun being at it's zenith in June, higher reflectance is expected in early summer. The improved 

performance of the September data was attributed to cloud cover in June, whose influence was more 

pronounced in the visible region. June spectral reflectance was suspected to be coming from both 

ground features and clouds. Uneven distribution of cloud cover over the entire scene further 

complicated spectral variability. For instance, at one point a given cover type, (e.g. mixed cedar and 
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hemlock stands) was covered by clouds but cloud-free at another point. Consequently, the M L C 

classifier ended up identifying two spectral classes from the same information class. Unfortunately, the 

cloud cover component could not be removed or accounted for in digital analysis. Another possible 

cause is that unique reflectance characteristics of cover types may have been more enhanced (hence 

more spectral information ) in the September scene. Indeed, T M bands 4 and 5 in the September image 

(Figure 13b) provided a slightly wider spectral separation between forest types. This is in agreement 

with Walsh's (1980) observation that September imagery provided more information than early 

summer M S S data due to the phenological condition of vegetation and the lower sun angle. However, 

September superiority was not without exception, especially where there was no or minimal cloud 

cover in the June image. Old clearcuts and juvenile conifers were better classified by the June image by 

a margin of 8.6 percent and 1.4 percent, respectively. It should be mentioned here that both the June 

and September data discriminated the same forest cover types. Other than improving classification 

accuracies, seasonal variability hardly aided in delineating additional forest cover types. 

A characteristic spectral pattern of low red, high near-infrared, and moderate mid-infrared 

mean D N values, was shown for all forest cover types in both the June and September images. On the 

one hand, this observation indicated that a significant amount of spectral reflectance could be attributed 

to forest cover types and that there was a similar spectral variation among forest cover types despite 

cloud cover in June. This narrow spectral variability was attributed to the fact that coniferous trees 

were the only species cover types under consideration. Other possible causes include complex 

coniferous mixtures and hemlock dominance in all mixed stands. Some initial training sets showed no 

promise in separating certain classes (e.g., mixed hemlock/cedar stands versus mixed 

hemlock/cedar/spruce stands). These two stands were among cover types that accounted for most of 
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the off-diagonal errors. This made sense because there are so many factors which affect spectral 

reflectance of mixed types. On the other hand, it was extremely difficult to identify individual trees with 

unique and pronounced features. A case in point involved the reputed tall(est) sitka spruces. While this 

group of trees appear in sharp contrast on the ground, T M data could hardly separate them from the 

rest of the forest. 

Current information on the location and distribution of all ages and structures is needed to 

manage public lands for multiple use objectives. Information on younger stand development is 

necessary and critical in determining future timber supply and wildlife habitat (Harris, 1984). 

Furthermore, the identification of the remaining stands of oldgrowth forest has been recently 

highlighted (Ripple et al, 1991). In a study of age classes, juvenile stands were seen to have higher 

mean digital values than either immature or mature/oldgrowth forest stands. This was observed in both 

visual and infrared bands. The trend observed was that there was a decrease in mean digital values in 

the three spectral regions with an increase in stand age. This correlation may be due to the increased 

proportion of older foliage age-classes compared to current year foliage as the conifers matures. One 

other possible cause is that absorption of plant pigments (e.g., chlorophyll a and chlorophyll b) and 

moisture tend to increase with stand age (as suggested by Spanner et al, (1989)). 

This study suggests that general stocking classes can be discriminated by T M data. The 

September image, on average, provided better stocking class discrimination than the June image. 

Higher classification accuracies for non-stocked areas were expected given their unique spectral 

patterns. The order of mean digital values, from highest to lowest for stocking classes was as follows: 

medium stocked, low stocked and high stocked. This demonstrated poor or no correlation between 

mean digital values and stocking. The fact that highly stocked stands had the lowest digital values came 
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as a surprise. With this kind of stand, there are few if any gaps and shadowing is at a minimum. 

Additionally there is maximum reflectance. Possible causes could be the nature of canopy stratification 

and the structure of mixed coniferous stands or that insufficient training pixels were used for this class. 
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Chapter 5 

Conclusions 

Assessment of the six principal components generated from the reflective T M bands indicated 

that the first three principal components of the T M data explained a vast amount of image information. 

This suggests that the intrinsic dimensionality of the T M data was three. 

Candidate bands used in selective P C A included visible and mid-infrared bands on the one 

hand and less correlated band pairs on the other hand. In this run of P C A , a dimensionally reduced and 

enhanced composite in the form of PCI (visible), TM4 and PCI (mid-infrared) was obtained. Major 

T M reflective spectral regions were represented in this composite (i.e., visible-TM 1, 2, or 3, near-

infrared-TM 4 and mid-infrared-TM 5 or 7). This composite was a lot easier to visually interpret and 

was, as such, utilized in of the most visual analyses. A n image analyst who relies heavily on visual 

analysis for information extraction may want to generate such a composite. 

In mapping spectral contrasts between spectral regions, the degree of correlation between any 

two bands was observed to be related to the amount of spectral contrast. The higher the correlation, 

the less was the spectral contrast and the lower the correlation, the more was the spectral contrast. 

Less correlated T M bands 3, 4 and 5 provided the best discrimination among candidate forest cover 

types. These bands and their derivatives in the form of 4/3 and 5/4 and N D V I were included in the 

optimum band combination for maximum-likelihood classification. Before performing supervised 
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classification, it is crucial to determine the degree of interband correlation and to use only those bands 

that are poorly correlated to each other. This improves both classification efficiency and classification 

accuracy. 

It may be too optimistic to conclude that forest cover types in the Carmanah Valley can be 

discriminated by T M data. The multitemporal approach to classification of forest cover types, 

combined with a specific knowledge of cover-type characteristics and attributes, is preferable to single-

date classifications. Combining imagery helped to increase forest cover type classification accuracy. 

Indeed, classification involving multidate imagery resulted in classification accuracies greater than 90 

percent for some cover types, and was significantly better than single-date classifications. It can be 

inferred that multi-date T M data may map specific forest cover types more effectively and accurately. 

Off-diagonal elements (misclassification) tended to be between related cover types. This was expected 

given that the majority of Carmanah forest stands are complex mixtures of two or more species which 

differ in size, density, crown closure, and age. 

Based on classification performance achieved with T M bands 3, 4 and 5 in the combined 

multitemporal data set, it is suggested that would-be users of Landsat T M data in forest cover type 

mapping may need to limit data purchase to the three bands or at least a band from the visible, near-

infrared and mid-infrared. Instead of ordering complete sets of multitemporal T M data, it could be cost 

effective to order multitemporal sets containing only the three bands. This reduces data cost and at the 

same time limits analysis to T M bands that contain a vast amount of spectral information. Atmospheric 

correction and geometric rectification should be mandatory, as this extra effort is worth the additional 

information and improved classification accuracy that results. 



83 

The classification results also indicated that time of the year can significantly affect cover-type 

classification accuracy. The classified forest cover types from the September image were significantly 

better than those from the June scene. The September T M data are thus a suitable dataset to 

recommend to users. It may be a suitable time to recommend for an overpass, but the superiority of 

this date may be solely because of cloud cover in June. In contrast, the June T M data appeared to 

contain high digital values than the September data. It is thus too early to generalize the conclusion, 

due to the observed atmospheric effects. Future studies should attempt to avoid cloud conditions. 

Only then can objective comparisons be made. In closing, it should be noted that both the June and 

September scenes looked similar in the "quicklook" imagery. Evidence of the cloud cover in the June 

scene was not apparent until image analysis began. 

Classification accuracies achieved here were overly optimistic. Forest cover type maps were 

used as reference data and possibly could contain errors of omission and commission. Additionally, test 

areas covered training sites used in the classification process, thus they were not independent but large 

and evenly distributed. However, with a general forest cover type definition adopted in this study, 

"accurate classification" may be expected. Still, there is need to validate these accuracies. 

The T M data under study appeared to contain information related to stand density, 

regeneration and age. Assessment of these forest parameters was achieved with spectral pattern 

analysis and maximum likelihood classifications. Non-stocked, low-stocked, medium stocked and high 

stocked stands were discriminated reasonably well. A trend was established between stand age and 

digital values. With an increase in stand age, there was a decrease in mean digital values in all T M 

bands considered. 
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The foregoing results were not without exception. The level of detailed forestry information 

possible from Landsat T M data was found to be limiting. Not only was it difficult to identify and map 

species, but also other forest parameters such as height class, dbh class, volume class, crown closure 

and canopy structure proved to be extremely difficult to detect. Statistics generated, through the 

unsupervised approach, contained more variables (spectral clusters) than were being explained by 

forest cover maps. A future study should therefore strive for detailed reference data that contain more 

information regarding specific Carmanah forest cover types. 

Spectral reflectance appeared to be related to topography. Although sunlit and shadowed 

slopes were analysed separately, the effect of aspect was not satisfactorily accounted for. Since some 

spectral variance is topographically induced a future study should include topography in the form of 

slope, aspect, and elevation or use a digital elevation model (DEM). This may improve cover type 

discrimination. 

In summary, given the choice of only one scene, the evidence seems to be in favour of the 

September imagery for assessment of the oldgrowth, temperate, coniferous rainforest. 
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Appendix I GCPs And Polynomial Transformations 

Ground Control Points (GCP's) for June '92 T M data ordered from worst to best residuals. 
G C P Set 2 GCP's Set 1 GCP's Residual Distance 
No. O J T M 10UE000) (PIXEL) (PIXEL) 

1 ( 373200.0, 5395100.0) ( 151.5, 81.5) ( .42, -.54) .69 

2 ( 374300.0, 5386200.0) ( 256.5, 362.5) ( -.40, -.53) .66 

3 ( 375100.0, 5396200.0) ( 203.5, 30.5) ( -.22, -.44) .49 

4 ( 376500.0, 5392400.0) ( 278.5, 143.5) ( -.45, .14) .47 

5 ( 379200.0, 5395800.0) ( 339.5, 10.5) ( .27, -.37) .46 

6 ( 372000.0, 5396680.0) ( 99.5, 40.5) ( -.39, .22) .44 

7 ( 372300.0, 5392800.0) ( 140.5, 164.5) ( .28, .34) .44 

8 ( 378500.0, 5390800.0) ( 356.5, 179.5) ( .34, .21) .40 

9 ( 380000.0, 5380400.0) ( 486.5, 505.5) ( -.24, -.29) .38 
10 ( 377830.0, 5381850.0) ( 405.5, 476.5) ( .26, .26) .37 

11 ( 370800.0, 5396300.0) ( 64.5, 62.5) ( .30, .19) .36 
12 ( 373900.0, 5396300.0) ( 164.5, 37.5) ( .31, .15) .34 
13 ( 377100.0, 5395200.0) ( 276.5, 47.5) ( .31, .14) .34 
14 ( 377900.0, 5382650.0) ( 401.5, 449.5) ( .32, -.10) .34 
15 ( 376200.0, 5394100.0) ( 255.5, 90.5) ( -.33, .07) .33 
16 ( 375400.0, 5391000.0) ( 254.5, 197.5) ( .01, -.32) .32 
17 ( 368300.0, 5393400.0) ( 6.5, 176.5) ( -.09, -.31) .32 
18 ( 381190.0, 5387550.0) ( 468.5, 263.5) ( -.14, .28) .32 
19 ( 372500.0, 5397600.0) ( 108.5, 6.5) ( -.24, .19) .31 
20 ( 380000.0, 5392300.0) ( 392.5, 118.5) ( -.21, .21) .29 
21 ( 369380.0, 5398560.0) ( -5, •5) ( -.09, .27) .29 
22 ( 382020.0, 5392500.0) ( 456.5, 95.5) ( .24, .15) .28 
23 ( 369200.0, 5385700.0) ( 96.5, 420.5) ( .14, .24) .28 
24 ( 373500.0, 5383720.0) ( 250.5, 450.5) ( -.15, .22) .27 
25 ( 368700.0, 5395300.0) ( 4.5, 111.5) ( .05, -.27) .27 
26 ( 375400.0, 5388100.0) ( 277.5, 292.5) ( .09, .23) .25 
27 ( 383200.0, 5394100.0) ( 481.5, 33.5) ( -.12, -.18) .21 
28 ( 379850.0, 5388400.0) ( 418.5, 246.5) ( -.20, .03) .20 
29 ( 371800.0, 5388700.0) ( 156.5, 301.5) ( .03, -.19) .20 
30 ( 373600.0, 5390500.0) ( 200.5, 228.5) ( .16, -.10) .19 
31 ( 377800.0, 5396100.0) ( 291.5, 12.5) ( -.17, .08) .19 
32 ( 381950.0, 5385750.0) ( 507.5, 315.5) ( .13, -.09) .16 
33 ( 368430.0, 5390000.0) ( 37.5, 286.5) ( -.12, .08) .15 
34 ( 373900.0, 5388650.0) ( 224.5, 286.5) ( -.13, .06) .15 
35 ( 369400.0, 5397900.0) ( 6.5, 21.5) ( .05, -.03) .06 
36 ( 381500.0, 5394900.0) ( 420.5, 21.5) ( -.02, .00) .02 

RMS=( .28, .29) .40 



Polynomial Transformation 

Results of least-square regression analysis for the two co-ordinate transformation were as follows: 

x = 0.440+E05 - 0.234X + 0.0013Y - 0.857E-08XY + 0.774-06X2 - 0.109E-08Y 2 

- 0.195E-13X 2Y - 0.209E-14XY 2 - 0.593E-12X3 - 0.374E-30Y3 

y = 0.272E+06 - 0.747X - 0.129Y + 0.355E-07XY - 0.227E-05X2 + 0.152E-07Y 2 

+ 0.480E-12X 2Y - 0.367E-13XY 2 - 0.290E-12X3 - 0.142E-28Y3 

where x, y are distorted image co-ordinates (pixel/column; line/row) and X , Y are U T M (map) 
ordinates. 

Residual Plot (PLXEL): 
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Appendix II Signature Separability Reports 

Divergence matrix for forest training classes in June T M data 

ncc occ reg juv scru ch sh nc dch 
occ 2.00 
reg 2.00 2.00 
juv 2.00 2.00 1.98 
scru 2.00 2.00 2.00 2.00 
ch 2.00 2.00 2.00 2.00 1.77 
sh 2.00 2.00 2.00 1.99 1.99 1.98 
nc 2.00 2.00 2.00 2.00 2.00 1.99 1.99 
dch 2.00 2.00 2.00 2.00 2.00 1.99 1.99 1.25 
alp 2.00 2.00 1.99 1.23 2.00 2.00 1.94 2.00 2.00 
uc 2.00 2.00 2.00 1.96 1.99 1.99 1.99 2.00 2.00 
chf 2.00 2.00 2.00 2.00 1.98 1.82 1.79 1.99 1.99 

uc chb 

1.88 
2.00 1.99 

Divergence matrix for forest training classes in September T M data 

ncc occ reg. juv scru ch sh nc dch 

occ 2.00 
reg 2.00 2.00 
juv 2.00 2.00 1.99 
scru 2.00 2.00 2.00 2.00 
ch 2.00 2.00 2.00 2.00 1.85 
sh 2.00 2.00 2.00 1.99 1.99 1.96 
nc 2.00 2.00 2.00 2.00 2.00 2.00 2.00 
dch 2.00 2.00 2.00 2.00 1.99 1.93 1.90 2.00 
alp 2.00 2.00 1.99 1.42 2.00 2.00 1.99 2.00 2.00 
uc 2.00 2.00 1.99 1.89 2.00 2.00 1.99 2.00 2.00 
chf 2.00 2.00 2.00 1.99 1.99 1.94 1.12 2.00 1.34 

uc chb 

1.96 
1.99 1.99 

This method gave real values between 0 and 2 where 0 indicated a complete overlap between 
signatures and 2 indicated a complete separation between any two classes. A value below 1.5 indicated 
spectrally similar classes. Classes with at least 1.5 and above were statistically separable and deemed 
suitable for classification. 
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Appendix III. PCA and Change Detection Images 

Figure 16. Enhanced PCI , PC2 and PC3 colour composites. Black is water, purple is clearcuts, violet 
is scrubland, orange is shoreline/creeks and, blue, green and green-yellow are forest stands, (a) June, 
1992 enhanced composite with cloud cover appearing in yellow over the subscene. (b) September, 
1992 enhanced composite. 
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Figure 17. Change detection images generated using image ratioing. Black is clearcuts/logging roads, 
white (bright tones) is water bodies, gray/moderate tones is forest stands, (a) TM63/TM93 image ratio 
(b) TM67/TM97 image ratio. 
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Appendix IV. Analysis of Variance Procedure for Classification Accuracy 

Dependent Variable : General Cover Type Classification Accuracy. 

Source D F Sum of Squares Mean Square F Value P r > F 

Model 2 1449.2026 724.6013 123 0.0021 

Error 39 3906.5246 100.1673 

Corrected Total 41 5355.7272 

Dependent Variable : Forest Cover Type Classification Accuracy. 

Source D F Sum of Squares Mean Square F Value P r > F 

Model 2 1900.2519 650.2519 16.50 0.0001 

Error 24 1381.8502 57.5771 

Corrected Total 26 3282.3541 


