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ABSTRACT

Knowledge of tree heights is important for classifying sites, projecting growth and yield

and estimating stand volume. Tree height is expensive and time consuming to measure so

samples should be taken in the most efficient way possible. The impact of different sample

designs and sizes on the fitting of height-diameter equations and subsequent prediction of

volume is explored in this thesis. Several different height-diameter equation forms were

compared for estimating height in second growth Douglas-fir. After selecting the best

equation, a variety of simple sampling designs and sizes were compared using this

equation. It was found that a uniform design, which was based on sampling tree height

uniformly from 3 diameter classes, gave good results for height estimation. A “large”

design, which concentrated 50% of its samples in the largest diameter class, gave the best

estimates for tree volume. In plots less than 50 years old, it was found that sampling more

than 16 tree heights produced diminishing benefits in height and volume estimates.
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1. INTRODUCTION

The measurement of tree heights is an important factor in forest management in British

Columbia (B.C.) for many reasons. Selected tree heights are often used for site

classification and growth and yield projections. Despite being important, the measurement

of tree heights can be an expensive and time consuming process (although, the use of a

laser device could greatly reduce time and cost of obtaining measurements). This is

because tree height, unlike tree diameter at breast height1 (dbh), must be indirectly

measured or estimated on trees more than several meters tall (Ker and Smith, 1957). As a

result, it is common to measure all tree diameters in an area (such as a sample plot), but

only a certain proportion of the tree heights. For example, stand volume is sometimes

calculated using measurements of all diameters in a sample and estimates of height based

on a sub-sample of those trees. The objective of this sub-sample is to obtain adequate

information to represent the relationship between tree height and dbh at a reasonable cost

(Ker and Smith, 1957). Height is then related to diameter using some form of a

mathematical equation (a height-diameter curve) which allows prediction of height for

every dbh within the sample. If stand volume is the objective of the sample, volume per

tree may be obtained from a volume table or (more commonly today) a mathematical

equation which uses tree diameter and the measured or estimated height given by the

height-diameter curve (Curtis, 1967).

11n B.C., breast height is defmed as 1.3 m above ground level, taken from the high side on sloped or
uneven terrain.

1



Introduction 2

The B.C. Ministry of Forests has recommended that for permanent sample plots (psp’s),

each plot should have the dbh measured on every tree within the plot boundaries, but have

height measurements made only on a subsample of 15 trees plus top height trees (Forest

Productivity Councils of B.C. 1990). Given these guidelines, it is important to know how

the size and distribution of height samples affects both height and volume estimation.

Some of the effects and consequences that result from employing different height sample

sizes and designs in second growth Douglas-fir (Pseudotsuga Mensiesii (Mirb.) Franco)

on fixed area plots were explored in this thesis. More specifically, the effects of altering

the number of heights sampled in a plot on height diameter curve construction and volume

estimation were examined. Knowing how sensitive volume estimates are to the number of

heights measured can help avoid under- or over-sampling tree heights in cases where

volume estimation is an important goal of the sample. Also, different sampling designs

were tested to determine the effects that sub-sample allocation has on volume estimation

and height-diameter curve construction.

This thesis has been organized in the following format. First, a literature review of height-

diameter equations and tree height sampling is presented. Next the methods used in fitting

height-diameter equations are described along with the process of simulating the various

sampling designs. Results of the equation fitting and sampling are presented in the next

section. This is followed by a discussion of results and implications. Finally conclusions

and recommendations are presented in the fmal chapter.



2.0 LITERATURE REVIEW

2.1 Sampling for Height-diameter curves

While much attention has been paid to the development of mathematical height-diameter

models, much less attention has been given to determining the number of sample heights

required and which trees are most suitable for sampling. The number of height samples

required to provide an estimate of stand volume for a given level of precision will be

governed by several factors including the number of species present, the variation in tree

heights, and the degree of correlation of tree height with dbh (Ker and Smith 1957). The

variation in tree heights is not a concern when that variation occurs among, rather than

within, dbh classes. If there is little variation within dbh classes, height-diameter curves

can be derived which give very good results. However, some variation often does occur

within dbh classes. For a single tree species, this is generally due to the position attained

by the tree within the crown canopy (Ker and Smith 1957).

It has been noted that it is not necessary (or even desirable) to sample all trees in a stand

randomly when taking a height sub-sample, but to limit the sample to specific diameter

classes, as long as the selection of samples within those diameter classes is not biased

(Bruce and Schumacher 1950; Ker and Smith 1957). For example, Trorey (1932)

recommended sampling from two dbh classes, one near the maximum diameter present

and the other at one-half that diameter. Modifying Trorey’s method, Alexander (1945)

used sample heights ranging throughout all diameter classes on permanent sample plots.

Ker and Smith (1955) found that good results could be obtained by sampling two large

3



2.0 Literature Review 4

diameter trees and two trees approximately 30 percent of the dbh of those trees, when

applying the parabolic height diameter equation.

In a study on height estimation for red pine (Pinus resinosa Ait.) and white spruce (Picea

glauca (Moench) Voss), Stiell (1965) found somewhat different results than Ker and

Smith (1955) using the same parabolic equation. In this study, many more sample heights

were required to obtain acceptable results (two heights per diameter class across the

diameter range). Even so, this was a small proportion of the total population.

The size and distribution of the sample can be important when regression techniques are

used to estimate the height-diameter relationship. Commonly, regression estimation is

inefficient because samples are concentrated in one area within the range of the

independent variable(s) while other areas are under-represented. This generally occurs

because sufficient effort has not been taken to plan the sample in accordance with the

sample objectives. Those objectives should be clearly stated before sampling begins

(Demaerschallc and Kozak 1974). When developing a predictive regression equation there

are two basic objectives which the equation must satisfy (Demaerschallc and Kozak 1974):

1. The regression must be useful for a given range of the independent variable(s).

2. The regression line should satisfy a minimum precision requirement2at the

lowest possible cost.

2Demaerschalk and Kozak (1974) defined the minimum precision requirement as “the required maximum
confidence interval of the mean of Yi for different Xi values”.



2.0 Literature Review 5

These two objectives will drive the selection of both sample size and sample distribution.

The sample range of the independent variable should equal or exceed the range specified

in objective one. In general, a uniform distribution should be used if there is any doubt

about the form of the relationship. If the relationship is known to be a simple linear one,

sampling only at the upper and lower extremes of the independent variable will provide the

most efficient design; however, this design does not permit a test for lack of fit. The

required sample size will then depend entirely on the minimum precision (objective 2) and

the sample distribution chosen (Demaerschalk and Kozak 1974).

The theoretical study of optimizing the quantity and distribution of samples falls into the

field of optimal design, of which much work has been published. Unfortunately, much of

the work is theoretical, and little has been written to facilitate the application of the theory

to practical problems (Penner 1989; Ziegel 1984). While many criteria can be used to

define optimality, the most common for linear regression involve minimizing the

generalized variance of the parameter estimates (called D-optimality) or minimizing the

maximum variance of the predicted response over the design region (called G-optimality)

(Atkinson 1982).

In traditional optimal design, it is assumed that the cost of sampling and the precision

requirements are constant over the range of the independent variable(s), both of which

may be untrue in a practical application (Penner 1989). For example, in biomass studies,

the cost of sampling a small tree may be many times lower than the cost of sampling a
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large tree. Precision requirements may also vary throughout the range of interest as well.

It is common in forestry to require estimates to be within a percentage of the true mean

(e.g., volume estimated to ± 10 %). To deal with these situations, Penner (1989)

developed a procedure to weigh the variance function3of traditional optimal design by

cost and precision. This resulted in a weighted optimum design which minimized the cost

of the sample for a given precision requirement. In her study she found that a uniform

design, while not as cost effective as the weighted optimum design, gave excellent results

and could be preferable to the weighted optimum design in some circumstances despite

costing more.

2.2 Desirable Characteristics of a Height-Diameter Equation

According to Curtis (1967), the function which is used to model the height-diameter

relationship should be reasonable, even when data are not adequate to fully define the

shape of the curve. Curtis (1967) suggested that height diameter curves should be

moderately flexible and possess the following characteristics:

1. a graph of the curve should show a slope that is positive, approaching zero as

diameter (D) becomes large;

2. the y intercept of the curve should occur at breast height (1.3 m); and

3. the curve should be easily fitted by linear regression methods.

In optimal design, the variance function measures the the gain in knowledge provided by an observation
taken at a given x (Penner 1989).
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Today, requirement 3 is unnecessary with advancements in nonlinear least squares solution

packages. It may be necessary to use a sigmoidal curve to meet requirement 2 without

distorting the curve. If small trees are absent (or are not important), then this requirement

may not be necessary (Curtis 1967). In fact, if small trees are absent, it may be

inappropriate to force the model through the origin. In any case, if requirement 2 is

applied, it is important that the potential problems of using a fixed-intercept regression are

recognized.

2.2.1 Problems With Restricted Regressions

As previously mentioned, it is very common to restrict height-diameter equations so that

they pass through a fixed point on the y-axis (in this case, at 1.3 m height). It is less

common to test whether this condition is valid.

Even when it is logical to do so, imposing restrictions on regression coefficients must be

regarded as a very strong assumption and should be justified before accepting the

conditioned model (Kozak 1973). More specifically, this condition should only be applied

if three conditions are met (Kozak 1973):

1. there must be good reason to impose restrictions on the coefficients;

2. the basic assumptions of the regression analysis must be met after the restriction

is imposed;

3. the sampling should be organized in such a way that the restriction is justified

for the sample, not for the population only.
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It has been recommend that a conditioned model, called the “hypothesis” model (Freese

1964) should only be accepted over the unconditioned or “maximum” model after it has

been tested in at least one of the following ways (Kozak 1973):

a) the hypothesis that the residual sum of squares for the hypothesis model is

not significantly different from the residual sum of squares for the

maximum model is tested;

b) the hypothesis model is tested for lack of fit; or

c) the residuals are plotted over the independent variable or over the predicted

y,s.

2.3 Comparing Regression Curves

Often, when regression models are being fit to sample data, the question of comparing

different regression curves arises. It is not always immediately clear which model best

describes the relationship between the dependent and independent variables. In cases

where the same dependent variable is used, the root mean square residual (or the standard

error of estimate) is usually adequate to compare regression curves based on the same

sample (Fumival 1961). However, it is very common in forestry to apply models in which

the dependent variable has been transformed. It is meaningless to compare the standard

error of estimate for these models with any which do not use the same dependent variable.

For example, the standard error of estimate from the model log(H) = a + blog(D) +

clog2(D) (where H represents total height in metres; D represents diameter at breast

height outside bark in cm; and a, b and c are regression coefficients) cannot be compared
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with the standard error of estimate from the model H = a + bD + cD2. In order to deal

with this problem, Furnival (1961) developed an index of fit (“I”) based on relative

likelihoods which “has the advantage of reflecting both the size of the residuals and

possible departures from linearity, normality and homoscedasticity”. While this index was

originally conceived and developed for comparing different volume equations to be used in

the construction of volume tables, it is also suitable for comparing height-diameter models

and has been used for that purpose in the literature (e.g., Curtis 1967).

2.4 Curve Fitting Techniques

Height diameter curves were once plotted in a freehand, graphical style but are now

generally fitted using mathematical techniques. While freehand curves were considered to

be accurate enough for use in local volume tables, the advantages of a least squares

solution has long been recognized (i.e., statistical comparisons, construction of confidence

intervals and repeatable results (Meyer 1936)).

Today, the least squares technique is commonly employed when fitting height diameter

curves to experimental data. However, several different procedures have been used

historically in British Columbia. Before electronic computers were readily available, such

curves were often fit by hand (Ker and Smith 1955). Mathematical techniques other than

least squares have also been employed. Trorey (1932) developed a simple equation that

gave a close representation of the relationship between total height and diameter at breast

height in the following form: H = a + bD + cD2,which he did not derive using least

squares. Since the outside diameter (D) at 4.5 feet (breast height in imperial units, equals
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1.37 m) is equal to zero, a = 4.5. b represents the initial height growth rate (feet increment

in height per inch increment of diameter) and c, a negative value, represents the rate at

which the initial rate decreases (in feet per inch). The constants b and c can be determined

when the heights at any two diameter classes are known (generally one of the classes was

taken from the middle of the diameter class range and one from the upper end of the range

(Ker and Smith 1955)). Average values of height (H) and dbh (D) for each diameter class

are determined and substituted into the original equation to form two equations with two

unknowns (b and c). The equations are then simultaneously solved for the unknowns.

While this was a convenient and simple method for expressing the relationship between

height and diameter, its accuracy was dependent upon the assumption that the relationship

is actually parabolic and that the averages selected are truly representative of the

population averages (Ker and Smith 1955). Because of these assumptions, Alexander

(1945) used an approximation similar to Trorey’s (1932), but included sample trees

throughout the range of dbh classes. To solve for the parameters, he used a short-cut

method of least squares described by Bruce and Schumacher (1950, pp. 199-200).

Three methods of approximating the least squares solution for a parabolic height-diameter

equation were recommended by Ker and Smith (1955). They found that these methods

yielded results very close to those obtained by least squares and were superior to other

mathematical approximations of the least squares solution for different model forms.
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Today, the proliferation of digital computers and the widespread availability of statistical

software packages has rendered graphical techniques, or mathematical approximations of

least squares regression, obsolete. However, other regression methods do exist. It may,

for example, be desirable to perform least absolute values regression to minimize the

influence of outliers. However, least squares (both linear and nonlinear) is most commonly

employed to fit height-diameter equations.

The ease with which least squares solutions can be obtained is certainly a huge benefit for

all types of modelling problems facing forest managers. Generally, it is possible for people

with very modest statistical backgrounds to obtain linear least squares solutions and many

packages offer reasonable documentation to assist in the interpretation of results.

However, one area which has not been well documented is the tendency for some modern

statistical packages to incorrectly calculate certain tests of significance when the

regression model has been restricted4.Specifically, many popular statistical packages

generate incorrect values forR2, significance testing, and incorrectly calculate confidence

intervals when performing least squares regression through the origin.

2.5 Common Height Diameter Equation Forms

Many different equation forms have been applied to model the height-diameter relationship

over the years. Several forces have driven the change in model forms including evolving

technology and advances in biological and mathematical theory. Table 1 (from Johnson

4Kozak, A. 1991. Personal communication.
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and Romero 1991) is a summary of height-diameter models which reflects the range of

forms. Note that any model in Table 1 which restricts the intercept to 4.5 (4.5 feet is equal

to breast height in imperial units) could be fit without that restriction, or could be fit using

an intercept of 1.3 meters for metric units.

Table 1. Common height-diameter models (after Johnson and Romero 1991).

Model Authors

1. H = 4.5 + e”° Dimitrou (1978), Murphy and Farrar
(1987), Wykoff et a!. (1982)

2. H = 4.5 +b0e(M Curtis (1967), Zakrzewski and Bella
(1988)

3. H=b0+b1ffi Van Deusen andBiging (1985)

4. H = 4.5 + e01) Wang and Hann (1988), West 1979

(b2(DY’3) Johnson and Romero, 1991
5. H=b0+b1e

6. H = b0 + eQ12b4B Doiph (1989). Larsen and Hann (1987),
Wang and Hann (1988)

Curtis (1967), Ker and Smith (1955),

7. H = 45+b0D+b1D2 Snowdon (1981), Trorey (1932)

(_i.(D)b2) Arney (1985)
8. H=4.5+b0e

9. H = 4.5 + D/./
+b1D Ker and Smith (1955), West (1979)

10. H =45+bo(L0_e(_1)2 Ek etal. (1984), Farr et. a!. (1989), Meyer
(1940)

where: H estimated tree height
e = base of natural logarithm ( e 2.718282)
D = dbh outside bark
b0, b1, !2, b3, b4 = regression coefficients
BA=basal area

It can be seen that height diameter models may be linear or nonlinear in their parameters.

In some cases (e.g., model 2) a nonlinear model can be transformed into an equivalent

linear form (in this case, by taking logarithms of both sides of the equation). In this case,
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the model is described in the literature as being intrinsically linear (Draper and Smith

1966).

2.5.1 Bias due to logarithmic transformations

It has been noted in the literature that logarithmic transformations of the independent

variable result in systematic underestimation (Baskervile 1972, Flewelling and Pienaar

1981). There have been several proposed methods of dealing with this bias. Baskerville

(1971) suggested that a correction taken from Brownlee (1967) would be appropriate for

transforming predicted values from logarithmic to arithmetic (untransformed) units. This

involved adding ½ of the sample variance of the logarithmic equation to the predicted

values before transforming to arithmetic units. Snowdon (1990) recommended that a ratio

of the arithmetic sample mean and the mean of the back-transformed predicted values

from the regression be used to correct for bias.

Some models (e.g., model 6) are nonlinear in their parameters and can not be transformed

to an equivalent linear model. These models are described as being intrinsically nonlinear

(Draper and Smith 1966). For purposes of convenience, the term “nonlinear” will be used

to describe only this class of model.

2.5.2 Features of Nonlinear Models

A nonlinear regression model can be described as possessing the following properties

(Weisberg 1985):

In some cases, this class of models has been described as nonintrinsically nonlinear (Draper and Smith,
1966).
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1. the function relating the dependent variable (response) to the independent

variables (predictors) is a nonlinear function of the parameters;

2. unlike the linear model, there is no need for a direct correspondence between

predictors and parameters;

3. parameterization is not unique, so many nonlinear regression models are

equivalent; and

4. as in linear regression, the errors are assumed to be independent and normally

disthbuted. Constant variance is also assumed, but this assumption can be

relaxed using weighted least squares, as with linear regression.

Computing least squares estimates for nonlinear models can be a complex process which

usually involves an iterative function minimization routine. There are many such routines,

and it is not uncommon to use several different routines in the search for a least squares

solution for a single nonlinear model (Weisberg 1985). Many of these routines require that

the first (and sometimes second) derivative of the model be computed. All iterative

routines require starting values (initial estimates of parameters).

The evaluation of nonlinear regression is not as well defmed as it is for linear regression.

Inferential statements lean very heavily on normality and are only accurate for large

samples (Weisberg 1985). Estimates of standard errors produced by many computer

packages can be seriously in error (Weisberg 1985; Willdnson 1989).
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Despite these difficulties and potential problems, nonlinear regression is desirable in many

instances. For example, it may be completely inappropriate to model relationships that are

nonlinear in nature with a linear function. Even some models which can be transformed to

an equivalent linear form may be better handled with nonlinear techniques if the

transformation results in a log-normal error distribution. Also, it may be safer to

extrapolate nonlinear rather than linear functions (Payendah 1983). In some cases, it is

possible to theoretically interpret the parameters of nonlinear models.

In any case, both linear and nonlinear models are used to describe the height-diameter

relationship. The final choice of the model form used should ultimately depend on the

purpose of the model, the quality and quantity of the available data, the ease with which it

can be fit, and the overall quality of the fit.



3.0 METHODS AND ANALYSIS

3.1 Data Preparation

The data for this thesis were provided by Macmillan Bloedel, Ltd. and consisted of second

growth Douglas-fir permanent sample plots for which all heights and diameters were

measured. The piots were mostly 0.1 acres (.0405 ha) in area, although a few were slightly

smaller at 0.040 1 ha. In total there were 252 complete plots, many of which had been

measured repeatedly. After receiving the data, a series of computer programs were

written to facilitate analysis. First, header lines were stripped and delimiters added to

enable easy importing to microcomputer statistical packages. Plots which contained less

than 80 percent Douglas-fir (by stems) were removed, as were those which had been

subjected to thinning. For those plots with more than one measurement, only the initial

measurement was used to ensure that each tree appeared only once in the database.

The data were analyzed graphically to identify any obvious data points which would exert

undo influence (i.e. outliers) on height diameter equations. Figure 1 shows the height-

diameter relationship for all of the trees (5149 trees in total) and indicates that most of the

points fall close together, with the exception of a few obvious outliers that were

eliminated. Since there were no comments in the data set, it is not known if these trees

were damaged, had broken tops, or were the result of measurement or data entry errors.

The fmal data set (based on 5134 trees from 114 plots) is graphically presented in Figure

2.

16
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Figure 1. Initial data set

Figure 2. Final data set
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3.2 Fitting Height Diameter Curves

Six different height-diameter models were fit to the fmal data set. These models were

compared to determine the “best” model for height-diameter prediction. Of the six

different models used, three involved transformations of the dependent variable (height)

and three did not. While no rigorous criteria were used in selecting these six models from

the many available in the literature, these were chosen because they would be relatively

simple to use in the sample simulation. Nonlinear models would have presented difficulties

in estimating regression coefficients. Models with a fixed intercept would have likely

introduced serious bias in some of the samples. Table 2 shows the models used and the

publisher of each model. In the case of models 3 and 6, the author (Curtis, 1967)

suggested that the model be developed using either forward selection or backwards

elimination.

The models were compared using Fumival’s index of fit “I” (Furnival 1961) and by

plotting the curves and the residuals. After comparing, a “best” model was selected for use

in testing the sampling designs.

3.3 Simulating Sampling Designs

A variety of sampling designs were simulated. The plots were stratified into three site

index classes and three age classes (Table 3). Site index (based on King 1966) was the

height in metres at a reference age of 50 years (breast height age). An attempt was made

to randomly select 5 plots in each class to reduce the quantity of data generated during the

sample simulation and to provide representation across all age and site index classes. This
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proved impossible due to limitations in the data. As can be seen, some classes had no piots

and some had less than 5 plots. It would have been preferable to have plots representing

all age and site index classes as this would allow a better interpretation of the sampling

requirements for stands of different age and site classes. The number of trees per plot

varied for the selected plots, ranging from 42 to 124 trees.

Table 2. Height (H) diameter (D) models* and authors

Model Equation Author
1. H =b,+b1D+b2D2 Curtis (1967), Strand

(1959), Prodan (1965)
2. Curtis (1967), Strand

H = b0 +b1 log(D) (1959), Prodan (1965)
Curtis(1967) - Fitted in

H =b0+b1D+b2ThE+b3,Y+b4,YD
a stepwise fashion with

3. non-significant terms
deleted.

4. Curtis(1967),
lo?I) = b0 + b1 Zakrzewski and Bella

(1988)
5
. log(H) = b0 + b1 log(D) Curtis (1967)

(_.L’ Curtis (1967) - Fitted
log(H) = bo +b1D +b215 + b3 D in a stepwise fashion

6. with non-significant
b4(j_ ) + 2 ) terms deleted.

*th all cases, log refers to base 10 logarithm.

Table 3: Number of plots by age and site index classes

Age Class
Site Index Class 1. (10 - 30) 2. (31 - 50) 3. (> 50)
1. (<25m) - 4 5
2. (25-35m) 4 5 4
3. (>35m) 5 3 -



3.0 Methods and Analysis 20

After selecting the plots (randomly where possible) for the sample simulation, 5 different

sampling designs were simulated for 6 different sample sizes. Each sample design and size

was repeated 5 times for each plot. The sampling was simulated using a program called

SampleSim (a copy can be obtained from the author on request). Individual plots were

first extracted from the data set. Within each plot, trees were sorted by diameter. After

sorting, each plot was stratified into three classes based on diameter size. If the plot could

not be evenly divided into three classes, the extra trees (two at most) were randomly

assigned to classes ensuring that class sizes never differed by more than one within a plot.

Each plot was then “sampled”. The program incremented the number of trees sampled in

each plot - ranging from 8 sample trees to 28 in steps of 4 resulting in 6 sample sizes (n =

the number of trees in the sample) for five different designs:

1. Random - all n trees were selected randomly from the plot.

2. Extremes - 1/2 of the n trees were sampled from the largest and 1/2 from the smallest

diameter classes. None were taken from the middle.

3. Small - 1/2 of the n trees were taken from the smallest diameter class, 1/4 from the

middle and 1/4 from the large diameter classes.

4. Uniform - The n trees were taken uniformly throughout all diameter classes.

5. Large - 1/4 of the n trees were taken from the smallest diameter class, 1/4 from the

middle and 1/2 from the large diameter classes.
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The program used a simple routine to randomly select trees without replacement from a

diameter class. This ensured that there was no bias in selecting trees from the established

diameter classes.

When a plot was sampled in any given design, several different arrays were created. The

first held all the dbh measurements and three others held height values: one for all the

height measurements; one for the sample heights (all elements in this array were set to

zero at the start of each sample); and, one array of size n to hold measured heights for

calculating regression coefficients. Sampling resulted in replacing some of the zeros in the

sample height array with measured heights. These same values were used to estimate

regression coefficients for the model selected as the best. The coefficients were then used

to estimate height values for those remaining elements of the sample height array which

had a value of zero.

Occasionally, the regression coefficients produced extremely unusual and unrealistic height

estimations. This generally only occurred with small sample sizes and was characterized by

a very large intercept and extremely large height estimations on very small trees. This

condition is tested for in the program, and, if detected, another sample was taken using the

design and sample size in question. While this introduced some bias into the results, it is

very likely that operationally, samples such as these would either be rejected or fit with a

different equation which did not give such poor estimates.
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After sampling, the standard error of estimate was calculated for each regression equation

and stored in an output file.

3.4 Height Estimate Comparisons

The sample heights were compared against the true heights and the following values were

generated for each plot and sample and stored in the output file:

1. Mean deviation (bias). This is the average of the tree by tree differences between

measured height and estimated height (equal to zero for measured trees). If there were

no bias, mean deviation would be equal to zero.

2. Minimum deviation. This is the smallest (largest negative) difference between

measured and estimated height.

3. Maximum deviation. This is the largest (positive) difference between measured and

estimated height.

4. Standard deviation of differences. This is the standard deviation of the differences

between measured and estimated height.

5. Mean absolute deviation (MAD). This is the average of the absolute value of the tree

by tree differences between measured and estimated height (equal to zero for

measured trees).

3.5 Volume Comparisons

Two volumes were estimated for each tree. The “true” volume, based on measured heights

and diameters, and estimated volume, based on estimated heights and measured diameters.

In the latter case, if a tree was sampled (i.e. height was measured), the measured height
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was used in the volume calculation (meaning that true and estimated volumes were equal

for sample trees). The B.C. Ministry of Forests volume equation (Watts, 1983) was used

to calculate tree volumes:

=10319071+1.813(1.042ubog(11)

where: V = estimated volume (m3);

D = diameter outside bark (cm);

H = total tree height (m); and

log = base 10 logarithm.

The estimated volumes were then compared against the true volumes using the same

statistics used for height.



4.1 Height Diameter Curves

4.0 RESULTS

All models tested were significant at an X = 0.05 level, although there were some very

large differences among the shapes of the models. Figure 3 shows the shapes of the

models across the dbh range used in fitting (from 0.5 cm to 71 cm). Models 1, 3, 5 and 6

performed similarly for diameters of up to about 35 cm. Model 2 predicted negative

heights for any trees below about 4 cm in dbh. Model 4 predicted considerably smaller

heights than the other models with dbh’s larger than 15 cm. Model 6 predicted decreasing

heights with dbh’s larger than about 50 cm.

Figure 3: Six models compared

The fit statistics for the six models are summarized in Table 4. Normally, the square root

of the mean square residual (or the standard error of estimate) can be used to determine
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the model which gives the best fit. However, neither this, nor the multiple R2 values can be

compared when the dependent variable has been transformed (Fumival, 1961). Therefore,

Fumival’s index of fit “r’ was used as the basis for comparison.

Table 4: Height diameter models compared

Model Equation Multiple Standard I
R2* Error

1 H = —1.8057 + l.287D — 0.0105D2 0.899 3.21092 3.2109
2 = —16.2470 + 28.3340 log(D) 0.822 4.2628 1 4.2628

H = —76.3726 — 1.1632D + 22.22954ffi +3 0.901 3.18431 3.1843

99.62431”_1_ — 40.01961’Iffi) D)
—

4 log(H) 1.2629—1.694i 0.427 0.2455 7.3832L\D)
0.884 0.11031 3.1313log(H) = 0.0262 + 0.9425 log(D)

6 11) —0.444 — 0.0402D + 0.5651J + 0.902 0.10146 2.880

0.1543
LD)

* Standard errors for models 4,5 and 6 are in logarithmic (base 10) units. The sum of
squares values used to calculate R2 for models 4, 5 and 6 are in logarithmic (base 10)
units.

Using this method to compare height-diameter curves, Curtis (1967) found that there were

surprisingly few differences between curves he tested. He concluded that “almost any

reasonable and moderately flexible curve will give similar values of I”. For the most part

this was the case here, with models 2, and especially 4, being exceptions. As a result,

determining the “best” model also involved other criteria such the ease with which the

relationship can be fit, and, very importantly, the result of analyzing graphs of the residual

plots. After determining the index of fit for each model, residual plots (residual values
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versus predicted values) were generated to see if any of the models displayed obvious lack

of fit (Figures 4 to 9). This process of plotting residuals also proved to be a valuable step

in comparing equations.

Figure 4: Residual Plot for Model 1

Figure 5. Residual Plot for Model 2

E
Cu

Cu
Cu

-30 -20 -10 40

0

Estimated Height (m)

0

0

0
0

E
Cu

Cu
Cu

00
00

0

-30 -20 -10 40

a,
Estimated Height (m)



4.0 Results 27

Figure 6. Residual Plot for Model 3

Figure 7. Residual Plot for Model 4

30

E

0

-30

25

20

15

10

5

-20 -10 -5

-10

-15

-20

cP

Estimated Height (m)

U 2.5

2

E
0,
0

1.5

e I
6

-2.5 -2 -1.5 -1 -0.5
-0.5

1.5 2

Estimated Height (Iog(m))



4.0 Results 28

Figure 8. Residual Plot for Model 5

2.5

2’

—. 1.5
E
0

D5

-2.5 -2 -1.5

Estimated Height (log(m))

Figure 9. Residual Plot for Model 6
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It can be seen from the residual plots that some models fit the data much better than

others. Models 1, 3 and 6 showed a reasonable distribution of residuals while models 2, 4

and 5 displayed a lack of fit. Any of models 1, 3 or 6 would probably be satisfactory.

When the input data were sorted by dbh, it was apparent that diameters were repeated,

some many times. This is an ideal situation to apply a lack of fit test. With repeated

measurements, the sum of squares residual can be partitioned into two new sum of squares

values: pure error and lack of fit. A simple F test can be applied to test for lack of fit. In

the absence of repeated measurements, it is possible to apply an approximate lack of fit

test based on clustering the data (Daniel and Wood 1981). However, this test is very

sensitive to the clustering algorithm used and will give different results with different

clustering methods (Weisberg 1985).

A lack of fit test was applied to models 1, 3 and 6 to facilitate the process of choosing the

best model. Appendix 1 shows the coefficients and analysis of variance for all models, with

the lack of fit test applied for models 1, 3 and 6.

Both models 1 and 3 tested significantly for lack of fit at an c = 0.01 level. This was not

apparent in the residual plots, but the huge number of points may have obscured some

trends. The lack of fit test was not significant for model 6. Because of this, and the fact

that model 6 had the lowest I value (i.e., the best fit index) and a reasonable distribution of

residuals, it was selected as the “best” model.
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4.2 Sampling Designs

4.2.1 Height estimation

To clarify results, the sampling simulations were summarized graphically, first comparing

the effects on height estimation and then the effects on volume (refer to Appendix 2 for

the tabular results of sampling).

4.2.1.1 Mean deviation in height

Figures 10 through 16 show the mean deviations in height by age-site classes, averaged

for all plots in each class and for the 5 sample repetitions.

Figure 10. Mean deviation in height for AGE1SI2

0.5

0.4

0.3

0.2

0.1
0

0

-0.1

-0.2

-0.3

-0.4

8 12

D Extreme
Large

rJ Random
DSmaU
Uniform

Sample Size



4.0 Results 31

Figure 11. Mean deviation in height for AGE1SI3

Figure 12. Mean deviation in height for AGE2SI1
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Figure 13. Mean deviation in height for AGE2SI2

Figure 14. Mean deviation in height for AGE2SI3
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Figure 15. Mean deviation in height for AGE3SI1

Figure 16. Mean deviation in height for AGE3SI2
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deviation than the younger plots, especially with small sample sizes. In age class 1, there

was not much change with different sample sizes. In age class 3 - site class 1, the mean

deviation was reduced when sampling 16 or more trees. In most cases, the extreme design

produced quite large mean deviations. The unifonn design usually displayed small mean

deviations. In general, mean deviation was usually positive indicating that tree height was

most often under-estimated.

4.2.1.2 Average maximum and minimum deviation in height

Figures 17 to 23 show the average maximum deviation in height for the age class - site

index groupings. The values in the charts represent the average of the largest positive

deviations for a given age - site index class. Figures 24 to 30 show the average minimum

deviation in height for the age - site index groupings. These values represent the average

of the largest negative deviations for a given age - site index class.
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Figure 17. Average maximum deviation in height for AGE1S12

Figure 18. Average maximum deviation in height for AGE1SI3
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Figure 21. Average maximum deviation in height for AGE2SI3

Figure 22. Average maximum deviation in height for AGE3SI1
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Figure 23. Average maximum deviation in height for AGE3SI2
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Figure 24. Average minimum deviation in height for AGE1S12

Figure 25. Average minimum deviation in height for AGE 1S13
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Figure 26. Average minimum deviation in height for AGE2SI1

Figure 27. Average minimum deviation in height for AGE2ST2
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Figure 28. Average minimum deviation in height for AGE2SI3

Figure 29. Average minimum deviation in height for AGE3SI1
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Figure 30. Average minimum deviation in height for AGE3SI2
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averaged over each plot and repetition in each age - site index class for each sample size

and design.

Figure 31. Average standard deviation of height differences for AGE1S12

Figure 32. Average standard deviation of height differences for AGE1S13
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Figure 33. Average standard deviation of height differences for AGE2SI1

Figure 34. Average standard deviation of height differences for AGE2SI2
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Figure 35. Average standard deviation of height differences for AGE2SI3

Figure 36. Average standard deviation of height differences for AGE3SI1
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Figure 37. Average standard deviation of height differences for AGE3SI2
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improvements with each increase in sample size, although in age class 2 - site class 1 those

improvements were quite small.
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4.2.1.4 Mean absolute deviation in height

Figures 38 through 44 show the mean absolute deviation in height, averaged for each age -

site class for sample sizes 8 through to 28.

Figure 38. Mean absolute deviation in height for AGE1SI2
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Figure 39. Mean absolute deviation in height for AGE1SI3

Figure 40. Mean absolute deviation in height for AGE2SI1
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Figure 41. Mean absolute deviation in height for AGE2SI2

Figure 42. Mean absolute deviation in height for AGE2SI3
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Figure 43. Mean absolute deviation in height for AGE3SI1

Figure 44. Mean absolute deviation in height for AGE3SI2
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although in most cases the largest improvements occurred at or before reaching a sample

size of 16. Age class 3 was an exception to this and displayed steady improvements with

each increase in sample size. Differences among sampling designs were generally not very

clear, except at a sample size of 8 where the random design displayed considerably larger

mean absolute deviations for some age-site classes. Also, the extreme design generally

perfonned well in age class 1.

4.2.2 Volume estimation

4.2.2.1 Mean deviation in volume

Figures 45 through 51 show the mean deviations in volume by age-site classes, averaged

for all plots in each class and for the 5 sample repetitions.

Figure 45. Mean deviation in volume for AGE1SI2
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Figure 46. Mean deviation in volume for AGE1S13
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Figure 47. Mean deviation in volume for AGE2SI1

0.017

0.012

0 Extreme
0

0.007 Large

0 Random
0 fl
.0 0.002 N m 0 Small

Uniform

-0.003

-0.008
8 12 16 20 24 28

Sample Size



4.0 Results 53

Figure 48. Mean deviation in volume for AGE2SI2

Figure 49. Mean deviation in volume for AGE2SI3

0.017

0.012

0.007
C)

U
.0z
0

0.002

-0.003

C Extreme

Large

[I Random

[j Smallfl rL . LIJiL UniformU - u..-.

-0.008
8 12 16 20 24 28

Sample Size

C)

C)

0
.0

0

0.017

0.012

0.007

0.002

-0.003

-0.008

C Extreme
Large

I] Random

I. ØSmall
n J1L. Lb,iform

8 12 16 20 24 28

Sample Size



4.0 Results 54

Figure 50. Mean deviation in volume for AGE3SI1

Figure 51. Mean deviation in volume for AGE3SI2
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deviations were much larger in age class 3 (especially in site index class 1) than in the

other age classes. Overall, the large and uniform designs gave good results.

4.2.2.2 Average maximum and minimum deviation in volume

Figures 52 to 58 show the average maximum deviation in volume for the age class - site

index groupings. The values in the charts represent the average of the largest positive

deviations for a given age - site index class. Figures 59 to 65 show the average minimum

deviation in volume for the age - site index groupings. These values represent the average

of the largest negative deviations for a given age - site index class.

Figure 52. Average maximum deviation in volume for AGE1S12
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Figure 53. Average maximum deviation in volume for AGE1SI3
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Figure 54. Average maximum deviation in volume for AGE2SI1
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Figure 55. Average maximum deviation in volume for AGE2SI2

Figure 56. Average maximum deviation in volume for AGE2SI3
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Figure 57. Average maximum deviation in volume for AGE3SI1

Figure 58. Average maximum deviation in volume for AGE3SI2
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sample sizes. Age class 3 - site index 2 gave displayed the poorest results, and showed

improvements with larger sample sizes. In age class 3- site index 1 results improved when

sample size was increased to 16. In most cases, the large design performed well, while the

small design usually gave very poor results.

Figure 59. Average minimum deviation in volume for AGE 1S12
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Figure 60. Average minimum deviation in volume for AGE1S13

Figure 61. Average minimum deviation in volume for AGE2SI1
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Figure 62. Average minimum deviation in volume for AGE2SI2

Figure 63. Average minimum deviation in volume for AGE2SI3
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Figure 64. Average minimum deviation in volume for AGE3SI1

Figure 65. Average minimum deviation in volume for AGE3SJ2
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poor results in age class 3. In age class 1 and the AGE2SI1 class there were no obvious

trends among sample designs. In classes AGE2ST2, AGE2SI3 and AGE3SI1 there was

little improvement in the large design when taking more than 16 samples. In class

AGE3SI2 results improved with each increase in sample size.

4.2.2.3 Average standard deviation of volume differences

Figures 66 to 72 present the average standard deviation of volume differences. These

values are the standard deviations of the differences between measured and estimated tree

volumes averaged over each plot and repetition in each age - site index class for each

sample size and design.

Figure 66. Average standard deviation of volume differences for AGE1SI2
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Figure 67. Average standard deviation of volume differences for AGE1S13

Figure 68. Average standard deviation of volume differences for AGE2SI1
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Figure 69. Average standard deviation of volume differences for AGE2SI2

Figure 70. Average standard deviation of volume differences for AGE2SI3
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Figure 71. Average standard deviation of volume differences for AGE3SI1

Figure 72. Average standard deviation of volume differences for AGE3SI2
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noticeable differences among sample designs, with the small design consistently showing

the largest average standard deviation. In general, the large design had the lowest average

standard deviation in this age class. Age class 3 displayed a constant reduction in average

standard deviation when sample size was increased. In age class 3 - site class 1 the most

pronounced improvements occurred when sample size was increased to 16. In age class 2,

there were no large differences among the different sample designs. In this age class, site

index 1 had a lower average standard deviation than site classes 2 and 3. Age class 1

showed little difference among sampling designs and little reduction with increased sample

size. There was no clear difference between site index classes for this age group.

4.2.2.4 Mean absolute deviation in volume

Figures 64 to 69 show the mean absolute deviation in volume, averaged for each age

class-site index class grouping for sample sizes 8 through to 28
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Figure 73. Mean absolute deviation in volume for AGE1S12
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Figure 74. Mean absolute deviation in volume for AGE1SI3
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Figure 75. Mean absolute deviation in volume for AGE2SI1

Figure 76. Mean absolute deviation in volume for AGE2SI2
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Figure 77. Mean absolute deviation in volume for AGE2SI3

Figure 78. Mean absolute deviation in volume for AGE3SI1
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Figure 79. Mean absolute deviation in volume for AGE3SI2
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Table 5. Summarized rankings of sample designs*

Size Sample MDH MDHTMAX MDHTMIN MADHT MDVOL MDVOIJMAX MDVOLMIN MADVOL
8 Extreme 5 1 3 3 4 3 2 3
8 Large 4 2 2 4 2 1 3 1
8 Random 2 3 1 5 1 2 5 5
8 Small 1 4 4 2 5 5 4 4
8 Uniform 3 5 5 1 3 4 1 2
12 Extreme 2 1 2 1 3 1 1 1
12 Large 3 4 1 5 1 2 2 2
12 Random 4 3 3 3 2 3 3 4
12 Small 5 5 4 4 5 4 4 5
12 Uniform 1 2 5 2 4 5 5 3
16 Extreme 5 2 1 1 3 2 2 2
16 Large 1 1 5 4 4 1 1 1
16 Random 4 5 3 3 5 5 4 4
16 Small 2 4 2 2 1 4 5 5
16 Uniform 3 3 4 5 2 3 3 3
20 Extreme 5 5 1 2 5 2 2 2
20 Large 4 4 5 5 2 1 1 1
20 Random 2 1 2 4 3 3 3 4
20 Small 1 3 4 1 4 4 5 5
20 Uniform 3 2 3 3 1 5 4 3
24 Extreme 5 1 1 2 5 2 2 2
24 Large 2 4 4 3 1 1 1 1
24 Random 1 5 3 4 3 3 3 3
24 Small 4 3 2 1 2 5 5 5
24 Uniform 3 2 5 5 4 4 4 4
28 Extreme 5 2 2 1 4 2 1 3
28 Large 2 4 3 2 2 1 2 1
28 Random 3 1 4 3 5 3 4 4
28 Small 4 5 1 4 3 5 3 5
28 Uniform 1 3 5 5 1 4 5 2

*Whe:
MDHT is the average mean deviation in height;
MDHTMAX is the average of the largest positive mean deviations in height;
MDHTMIN is the average of the largest negative mean deviations in height;
MADHT is the average of the mean absolute deviations in height;
MDVOL is the average mean deviation in tree volume;
MDVOLMAX is the average of the largest positive mean deviations in volume;
MDVOLMIN is the average of the largest negative mean deviations in volume; and,
MADVOL is the average of the mean absolute deviations in volume.

Average standard deviations in height and volume generally highlighted differences among

age-site classes rather than differences among sample designs and were,
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therefore, not included in this ranking. Likewise, minimum and maximum deviations in

height and volume were generated, but not presented graphically or ranked (values are

presented in tables 20 and 21, and tables 26 and 27 in appendix 2). These values

represented the largest minimum and maximum deviations in height and volume for a

single tree estimate. In general, there was little difference among designs and little

improvement with larger sample sizes.

To further summarize overall design performance, the rankings from table 5 were summed

across sample size to give the relative positions of the designs for each of the criteria

(Table 6).

Table 6. Overall rankings of sample designs

Sample MDHT MDHTMAX MDHTMIN NADHT MDVOL MDVOLMAX MDVOILMIN MADVOL
Extreme 5 1 1 1 5 2 2 2

Large 2 2 4 5 1 1 1 1
Random 3 3 3 4 3 3 4 4
Small 4 5 2 2 4 5 5 5
Uniform 1 4 5 3 2 4 3 3



5.0 DISCUSSION

5.1 Model Selection

In selecting a model to describe the height-diameter relationship, many different model

forms are available for consideration. The model selected in this thesis used a logarithmic

transformation of the dependent variable (height). As described in chapter 2, this will

result in systematic underestimation, and the results appeared to confirm this. Several

methods to correct for this underestimation are available, but none were used in this study.

Since the main objective was to compare sample sizes and designs, and the same model

was used for the testing of each design, any bias introduced by logarithmic transformation

was deemed unimportant.

Another problem that became visible with the selected model was its prediction of

decreasing heights for dbh’s greater than about 50 cm when it was fit to the entire

database. This was likely due to the huge number of small trees in the database, and the

very small number of large trees (greater than 50 cm). This condition was not duplicated

exactly in the sample simulation, but it may explain in part why the small sample design

performed poorly in estimating volume.

The model used in this thesis was linear in its parameters, and was, therefore, fit using

standard linear least squares techniques. There are several nonlinear models available that

could have been used. There are both advantages and disadvantages to using a nonlinear

74
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model, several of these were outlined in chapter 2. For this study, some disadvantages

made the use of nonlinear models impractical. In particular, fitting nonlinear least squares

is considerably more difficult than linear. The computer program written in this study fits

regression coefficients for each plot 150 times: 5 sample designs by 6 sample sizes by 5

repetitions. Besides the greater difficulty of coding the algorithms for the nonlinear

estimates, the time required to carry out the sample simulations would have been very

large due to the iterative nature of nonlinear least squares. It also would have presented

extraordinary difficulties if some samples wouldn’t converge, and it would have been very

difficult to determine if convergence was at a local minima. In contrast, writing the

algorithms for the estimates of the selected model was relatively simple, and program

execution was relatively quick.

As stated in chapter 2, it is extremely common to fit height diameter models restricted to

an intercept of 1.3 meters (breast height). This is logical, but presented a potential

difficulty in fitting the various samples. Because the selected model was used for a large

variety of sample sizes taken from plots of different ages, the introduction of such a

condition would very likely introduce serious bias into at least some of the samples. It was

deemed more appropriate to use a model without any restrictions.
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5.2 Sampling designs

Although the ranldngs presented in Tables 5 and 6 are useful to view the relative quality of

the various sampling designs, it is important to recognize that much useful information is

not presented. For example, the magnitude of the deviations is completely hidden. It is not

clear if one design is only marginally better than another, or if the differences are quite

large. However, when considered along with the deviations presented graphically in

chapter 4, some useful observations can be made.

5.2.1 Height estimation

In estimating tree height, the uniform design performed well in MDHT and MADHT,

especially with small sample sizes (8 - 12). As sample sizes increased to 16 and beyond,

the magnitude of differences in MADHT among designs were generally quite small. The

uniform design did not perform as well as the other designs in the MDHTMIN and

MDHTMAX categories, but these categories often didn’t display clear trends among

sample designs. The extreme design performed well for most height categories, although it

produced some large deviations in MDHT. This would probably be due to the extreme

design producing biases that are mostly positive or negative for a given sample. The

MADHT results for the extreme design were similar to the uniform design. Despite its

relatively high ranking in Table 6, the small design offered little improvement over random

sampling, except in MADHT with a sample size of 8. Random sampling gave very poor
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results in MADHT with a sample size of 8. The large design performed similarly to the

small design, but generated better results in MDHT.

In general, the deviations increased with age and site quality (although MADHT did not

vary much across classes). This implies increased height variation in older plots, and

increased height variation with higher site quality.

When evaluating the effects of increasing sample sizes, it becomes clear that different age-

site index classes will require different sample sizes to achieve the same results. In age

class 1, and age class 2 site index 1, there was little to be gained by sampling beyond 16,

even though these classes had more trees per plot than the other classes (average trees per

plot for AGE1SI2 was 67, 58 for AGE1SI3, and 73 for AGE2SI1). Other age classes

showed improvements with successive increases in sample size. Even in these classes, the

most dramatic improvements occurred at or before reaching a sample size of 20. The

average number of trees per plot for these classes were quite similar, with values ranging

from 50 to 56.

5.2.2 Volume estimation

In estimating volume, the large design was clearly the best. The large design

underestimated volume by the smallest amount as evidenced by the lowest overall rankings
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in MDVOL and MDVOLMAX, and had the lowest MADVOL in almost every class and

sample size.

There are at least two reasons for the success of the large design. First, there is likely

greater variation among the larger dbh trees in most of the piots. The large design

increases the number of samples taken from the more variable stratum. The second reason

has to do with the shape of the chosen height-diameter model. If large samples are omitted

when fitting the regression, larger trees can be seriously underestimated because the model

may reach its maximum early and begin to decrease. The estimates for the largest trees

will be extrapolations beyond the range of the data, resulting in serious underestimation.

This problem also existed for the height estimates. However, errors in large trees have a

much greater effect on volume estimation than on height estimation, because volume is a

cubic measure while height is in linear units.

Overall, the extreme design performed well in estimating MDVOLMAX, MDVOLMIN

and MADVOL, although it did show some large underestimations in MDVOL. As with

the large design, the good results were likely due to the increased sampling of larger, more

variable trees.

The small design was very poor in estimating volume for all criteria. This is likely due in

part to the shape of the model. The uniform design performed well in MDVOL, but was
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not much better than the random design in MDVOLMAX and was poorer in

MDVOLMIN. However, it did perform better in MADVOL than the random design.

With volume estimates, the average standard deviation and the maximum mean deviation

demonstrated generally good results at sample size 16 for plots in age classes 1 and 2. In

age class 1, sampling beyond 12 showed very little improvement in MADVOL. In age

class 3, a sample size of 16 or 20 usually gave good results for these criteria and larger

sample sizes generally produced diminishing benefits.

5.2.4 Application in the field

Overall, the uniform design performed well in estimating height. The uniform design

would improve if there were more dbh classes as this would ensure more even sampling

across the dbh range. Three classes were chosen for this study because it could be easily

and quickly applied in the field.

There may be several ways to apply any of the designs from this study in the field. The

sampling design of choice could be applied in a strict fashion, or in a more flexible manner.

For example, a strict implementation of the uniform design would begin with the

measuring and recording of all dbh’s in the plot. On a separate tally sheet the trees would

be transcribed from the original sheet, in order of ascending dbh size. The trees would

then be divided into strata, and trees selected for sampling from the tally sheet. If damage

and pathological comments are recorded while measuring dbh’s there would be no danger
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of selecting damaged trees as sample trees. If a data recorder or a field computer is being

used, it may be possible to program the sorting and stratifying capability into the system. If

the plot has been previously measured, and it is not required to remeasure heights taken

previously (or, if tree heights have not yet been taken), the stratification could be

performed in the office using the dbh’s from the previous measurement.

This application does have some drawbacks. Mainly, it would add to the time and cost of

the sample, especially in plots with a large number of trees. It may be extremely difficult

and not at all cost effective to sort by dbh in the field if there are a large number of trees

and the dbh range is small. In many cases, this application may not be practical unless

measurements have been recorded on a field computer or data recorder with sorting and

stratifying capabilities, or, if the stratification can be performed in the office based on

previous dbh measurements.

The advantage of a strict application like this is the ability to select a veiy uniform sample.

If the effort is already being put into sorting and stratifying, it may also not add much cost

to increase the number of strata and further improve the sample.

A flexible application would not require a formal stratification, but simply require that the

field crew make an effort to identify trees to be sampled for height while measuring dbh’s

and noting these trees on the tally sheet or data recorder. If the target number of samples

is 15 trees, the crew would make an effort to mark 5 suitable trees that, in their estimation,
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fall into each of the three classes of small, medium and large. This need not be carried out

in a strict sense, as long as an effort is made to get a reasonably uniform distribution. After

measuring all dbh’s, the crew could examine their selections on the field sheet to

determine if a reasonable range has been selected. If necessary, some minor adjustments

could be made in the selections and the trees could then be sampled for height.

This flexible approach has the advantage of being quick, easily implemented, and not

adding significantly to the cost of a normal sample. However, it will not likely achieve the

results that a strict implementation would. Mistakes could easily be made and trees

incorrectly stratified. It is quite likely that field crew experience could play a critical role in

the success of this flexible application.

5.2.5 Measurement errors and costs

While the cost of measuring tree heights is not likely to vary widely with changes in tree

size, it is quite likely that the measurement of large trees will be somewhat more costly

than small trees. If trees are small enough to be measured with a height pole then the costs

of measurement will be much lower.

Many other factors can affect the cost of sampling. In very dense stands it may be difficult

to see tree tops and bottoms, adding to the time, and therefore, the cost, of the sample.

Stands of mixed species may also be more costly to measure than relatively pure stands,

especially if there are indistinct canopy layers that interfere with crown visibility. Higher
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site stands will tend to have greater density and larger trees, and will therefore be more

expensive to measure than lower site stands. Older stands will have larger trees and will

exhibit greater variability than younger stands, but they may be less dense.

Some of the factors that affect costs will also affect measurement error. In general, there

will be larger errors associated with measuring larger trees, especially if measurement is

performed with a cinometer. This means that old stands, and stands of higher site quality

may require more samples than younger, lower site stands. Anything which affects

visibility in the stand can add to errors in measurement.



6M CONCLUSIONS AND RECOMMENDATIONS

Given the importance and relative high cost of tree height measurement it is desirable to

sample in such a way that achieves satisfactory precision at the lowest possible cost. This

thesis has explored several different inexpensive ways of designing a sample, and

simulated the effects of those designs at different sample sizes in fixed area plots of second

growth Douglas-fir. The results of this study indicate that the uniform design is a good

design for estimating tree height, and that it shows improvement over purely random

sampling. The problems which became evident in volume estimation were likely caused in

part by the shape of the curve. Much of this could likely be alleviated either by choosing a

model which does not have a peak, or by ensuring that sampling does not exclude the

largest trees in the plot, and that the remaining samples are not concentrated in small

diameter classes. If one of the objectives of the sample is to determine site index, it is

likely that one or two of the largest diameter trees will be sampled. The simple addition of

these largest dbh trees would likely improve the uniform sample by preventing the curve

from reaching its maximum too early, and would therefore minimize the level of

underestimation in large trees.

In this study it was found that there was often a diminishing benefit to using sample sizes

larger than 16 for both height estimation and volume estimation for young plots (from 10

to 50 years old) of Douglas-fir. If plots are young and relatively uniform, sampling more

than 16 trees will probably be wasteful unless precision requirement are high. For plots

83
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older than 50 years, the benefits of sampling more trees was greater because the variation

was larger than in the younger plots, and it probably would be desirable to sample closer

to 20 trees. Given these results, the current B.C. ministry of forests recommendation of 15

trees plus top height trees is likely sufficient for Douglas-fir.

Deciding on an appropriate sample size in practice will have to include the costs of

sampling. Since a formal stratification may be expensive to implement, a flexible

implementation of the uniform design with a sample size of 15 plus 1 or 2 top height trees

should give good results in both height and volume estimation at reasonable cost.

Given the pressures to manage forests more intensively, it is essential that sampling of any

kind be as efficient as possible. This study has suggested ways in which height sampling

could be carried out in a more efficient manner than the commonly applied random sample

and quantified the impact of different designs. It would be desirable to further this work

with a larger range of age and site index classes, and to look at other tree species whose

characteristics and sampling requirements may be different than those of Douglas-fir. It

would also be useful to explore the benefits and costs of using more than 3 strata as this

would almost certainly improve the precision of the results. Given the rising pressures and

demands on forest management, the issue of efficiency in sampling will be very costly to

ignore.
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APPENDIX 2- RESULTS OF SAMPLING

Tables 19 to 31 summarize the results of the sampling simulation. In each table, sample

refers to the sampling distribution method where:

E = Extreme design

L = Large design

R = Random design

S = Small design

U = uniform design

Size refers to the sample size while the remaining column headings refer to the age - site

index classes.

Table 18. Average mean deviation in height

Size Sample AGE1SI2 AOE1SI3 AGE2SI1 AGE2SI2 ACE2SI3 AGE3SI1 AGE3SI2
8 E 0.02132 0.17692 0.11477 —0.13642 —0.04609 0.41061 0.02861
8 L 0.12576 0.09416 0.07129 0.09620 —0.15591 0.29823 —0.06099
8 R 0.17445 0.09512 0.06793 -0.06120 —0.00084 0.17595 0.11868
8 S 0.03963 —0.05761 0.09971 0.01804 0.01487 0.25017 0.26676
8 U 0.14397 0.18552 0.07852 0.04839 0.11634 0.25503 —0.00614
12 E —0.00358 0.15712 0.34184 0.13520 —0.05020 0.18857 0.03978
12 L 0.11185 0.01921 -0.02911 0.13351 0.07496 0.24263 0.04900
12 R 0.07390 0.06101 0.09326 0.12986 —0.10990 0.13810 0.20454
12 S 0.01270 0.05692 0.16562 0.20670 —0.12986 0.25034 0.23522
12 U 0.07002 —0.01508 —0.07659 0.04545 —0.06065 0.30031 0.06850
16 E -0.03497 0.11398 0.18141 0.09119 -0.23597 0.07641 —0.10884
16 L —0.00183 0.11256 0.08652 —0.09369 —0.00227 0.02321 —0.22905
16 R 0.09427 —0.00004 0.00661 0.02000 0.10101 0.15858 0.26369
16 S 0.08559 0.02887 0.05617 —0.06769 0.00766 0.13197 0.22523
16 U —0.03398 0.05432 —0.05890 0.12188 0.02680 0.10347 —0.00749
20 E —0.05517 0.13032 0.21421 0.24570 —0.30802 0.09383 —0.03285
20 L 0.02368 0.07437 0.06266 0.17864 —0.16696 0.13425 —0.00865
20 R 0.06754 0.05121 0.10236 —0.01314 0.08109 0.02980 —0.07261
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Appendixi Analysis ofVariance 98

Size Sample AGE1SI2 AGE1SI3 ACE2SI1 AGE2SI2 AGE2SI3 AGE3SI1 AGE3SI2
12 L 0.00026 —0.00046 0.00030 0.00243 0.00144 0.00774 0.00089
12 R 0.00005 0.00081 0.00184 0.00186 —0.00396 0.00633 0.00123
12 S 0.00093 0.00032 0.00186 0.00350 —0.00372 0.01224 0.00447
12 U 0.00054 —0.00074 —0.00022 0.00145 —0.00171 0.01109 0.00544
16 E 0.00019 0.00084 0.00154 0.00122 —0.00656 0.00415 -0.00088
16 L —0.00019 0.00090 0.00137 0.00004 —0.00061 0.00362 —0.00514
16 R 0.00069 —0.00016 —0.00021 0.00173 0.00032 0.00527 0.00614
16 S 0.00039 0.00017 0.00092 —0.00131 0.00013 0.00486 0.00357
16 U —0.00052 0.00042 0.00017 0.00336 0.00158 0.00160 —0.00148
20 E —0.00036 0.00142 0.00149 0.00353 —0.00591 0.00227 0.00009
20 L —0.00008 0.00001 0.00060 0.00287 —0.00339 0.00339 —0.00156
20 R 0.00010 0.00049 0.00115 —0.00010 0.00140 0.00114 —0.00432
20 S 0.00021 0.00021 -0.00029 —0.00056 —0.00029 0.00585 —0.00684
20 U 0.00060 —0.00007 —0.00014 —0.00023 0.00021 0.00300 0.00217
24 E —0.00065 0.00099 0.00151 0.00226 —0.00120 0.00563 —0.00351
24 L 0.00030 —0.00026 0.00022 —0.00044 0.00050 0.00178 0.00074
24 R 0.00037 0.00004 0.00035 0.00151 0.00160 0.00377 —0.00006
24 S 0.00004 0.00106 —0.00008 0.00025 —0.00083 0.00535 0.00238
24 U 0.00041 0.00030 0.00028 0.00086 —0.00253 0.00349 —0.00070
28 E —0.00042 0.00053 0.00034 0.00254 —0.00102 0.00394 0.00169
28 L —0.00001 0.00036 —0.00006 0.00055 0.00031 0.00174 —0.00124
28 R —0.00029 0.00067 0.00072 —0.00079 0.00155 0.00214 —0.00216
28 S 0.00009 0.00017 0.00064 0.00223 0.00333 0.00573 —0.00139
28 U 0.00032 0.00028 0.00027 0.00033 0.00018 —0.00040 0.00113

Table 26. Average maximum deviation in volume

Size Sample AGE1SI2 AGE1SI3 ?GE2SI1 AGE2SI2 PGE2SI3 ?.G3SI1 ?.GE3SI2
8 E 0.02571 0.04140 0.04679 0.14752 0.09523 0.18562 0.19024
8 L 0.01933 0.02571 0.04727 0.09132 0.09960 0.13850 0.20596
8 R 0.02836 0.02647 0.08072 0.11989 0.10730 0.15046 0.15801
8 S 0.04719 0.03040 0.08016 0.14691 0.12063 0.19176 0.24737
8 U 0.02326 0.03003 0.06105 0.15343 0.12129 0.17698 0.16031
12 E 0.01443 0.02616 0.06095 0.10123 0.07746 0.11467 0.17367
12 L 0.01796 0.02271 0.04056 0.11807 0.10768 0.14211 0.14295
12 R 0.02337 0.04633 0.07219 0.13333 0.07773 0.12714 0.17225
12 S 0.05031 0.02629 0.06470 0.13611 0.07596 0.20330 0.16990
12 U 0.02359 0.02605 0.04961 0.11889 0.10482 0.20920 0.17880
16 E 0.03436 0.02296 0.03717 0.09165 0.05352 0.09122 0.17177
16 L 0.01870 0.03026 0.04431 0.08702 0.07422 0.08940 0.12876
16 R 0.02882 0.02562 0.03896 0.14650 0.09755 0.10964 0.18357
16 S 0.02754 0.02426 0.06374 0.11394 0.11664 0.13247 0.16880
16 U 0.01446 0.03245 0.04877 0.12064 0.07615 0.09677 0.14467
20 E 0.03178 0.02292 0.03488 0.10061 0.05547 0.06651 0.13585
20 L 0.01447 0.02103 0.03867 0.08601 0.04917 0.06507 0.11488
20 R 0.01389 0.02925 0.03745 0.07936 0.09066 0.09622 0.14418
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Size Sample AGE1SI2 AGE1SI3 AGE2SII. AGE2SI2 AGE2SI3 AGE3SI1 AGE3SI2
20 S 0.02495 0.01904 0.04866 0.12868 0.08023 0.11656 0.13421
20 U 0.02055 0.02042 0.04001 0.09471 0.08062 0.10780 0.15285
24 E 0.02330 0.02214 0.03962 0.05701 0.05059 0.08496 0.10021
24 L 0.01873 0.01713 0.03494 0.04815 0.05865 0.06857 0.08992
24 R 0.01666 0.03259 0.04798 0.08355 0.07813 0.11150 0.10398
24 S 0.01923 0.03807 0.05373 0.09332 0.09712 0.12715 0.13142
24 U 0.01929 0.02251 0.03763 0.08916 0.06862 0.08546 0.11436
28 E 0.01114 0.01772 0.02123 0.05663 0.04026 0.06792 0.07033
28 L 0.01250 0.01708 0.01927 0.06993 0.03366 0.05629 0.03369
28 R 0.01337 0.01977 0.02970 0.05399 0.08651 0.07473 0.03787
28 S 0.01956 0.02334 0.03870 0.07122 0.10636 0.11142 0.07196
28 U 0.01740 0.02036 0.03169 0.08881 0.05591 0.06592 0.09439

Table 27. Average minimum deviation in volume

Size Saniple AGE1SX2 ACE1SI3 AGE2SI1 AG2SI2 AGE2SI3 ACE3SI1 AQR3SI2
8 E —0.03069 —0.03198 —0.05653 —0.09615 —0.12974 —0.15032 —0.20175
8 L —0.03400 —0.04192 —0.06067 —0.11370 —0.12510 —0.20369 —0.22005
8 R —0.03880 —0.05533 —0.05704 —0.12066 —0.12231 —0.15778 —0.23753
8 S —0.03525 —0.04687 —0.04836 —0.08155 —0.15519 —0.18110 —0.24069
8 U —0.03386 —0.03448 —0.05834 —0.12970 —0.12020 —0.15060 —0.21556
12 E —0.02505 —0.02933 -0.03466 —0.09290 —0.11699 -0.14591 —0.19812
12 L —0.02451 —0.04671 —0.04095 —0.09440 —0.10585 —0.12238 —0.16207
12 R —0.03176 —0.03380 —0.03472 —0.10113 —0.13663 —0.10285 —0.20450
12 S —0.02551 —0.03411 —0.03936 —0.09301 —0.12182 —0.14799 —0.21160
12 U —0.02401 —0.03930 —0.05142 —0.12788 —0.16877 —0.13652 —0.17344
16 E —0.01932 —0.02989 —0.03546 —0.09000 —0.13094 —0.14955 —0.17026
16 L —0.02133 —0.02620 —0.03438 —0.08945 —0.11025 —0.07846 —0.18311
16 R —0.02403 —0.03542 —0.04924 —0.09463 —0.13330 —0.11751 —0.18959
16 S —0.02596 —0.02999 —0.06306 —0.14973 —0.12138 —0.17023 —0.19674
16 U —0.02830 —0.03486 —0.04688 —0.09054 —0.08911 —0.16720 —0.19740
20 E —0.01804 —0.02128 —0.02397 —0.06388 —0.11445 —0.11105 —0.14312
20 L —0.02038 —0.03690 —0.02669 —0.05125 —0.09637 —0.06300 —0.13615
20 R —0.02207 —0.02606 —0.03160 —0.08304 —0.09258 —0.08299 —0.18566
20 S —0.01763 —0.02673 —0.04325 —0.11919 —0.16300 —0.15996 —0.21676
20 U —0.02229 —0.02951 —0.04111 —0.09893 —0.11333 —0.08600 —0.14140
24 E —0.01665 —0.02449 —0.02001 —0.09330 —0.08423 —0.05359 —0.14639
24 L —0.01319 —0.02353 —0.02319 —0.07361 —0.07588 —0.08656 —0.11169
24 R —0.02228 —0.02552 —0.03902 —0.06830 —0.08579 —0.09261 —0.13777
24 5 —0.02231 —0.02462 —0.04323 —0.08280 —0.09922 —0.14150 —0.14728
24 U —0.01686 —0.02564 —0.02702 —0.07662 —0.12031 —0.06441 —0.12800
28 E —0.01568 —0.03062 —0.01925 —0.05205 —0.04640 —0.04108 —0.04500
28 L —0.01621 -0.02049 —0.02330 —0.07914 —0.03960 —0.03939 —0.05697
28 R —0.01955 —0.02146 —0.01540 —0.08425 —0.04845 —0.05592 —0.12065
28 S —0.01527 —0.02289 —0.02686 —0.05898 —0.04289 —0.08141 -0.10380
28 U —0.01620 —0.02054 —0.03041 —0.06480 -0.08073 -0.12109 —0.07688
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Table 28. Average mean absolute deviation in volume

Size Sample AGE1SI2 AGE1SI3 AGR2SI1 ACE2SI2 ACE2SI3 AGE3SI1 AGE3SI2
8 Extreme 0.00759 0.00870 0.01031 0.02167 0.02930 0.02718 0.04552
8 Large 0.00627 0.00818 0.00909 0.01852 0.02747 0.02877 0.04502
8 Random 0.00809 0.00861 0.01262 0.02469 0.02938 0.03522 0.04914
8 Small 0.00623 0.00847 0.01388 0.02337 0.03301 0.03204 0.06069
8 Uniform 0.00501 0.00986 0.00914 0.02116 0.02979 0.02696 0.04417
12 Extreme 0.00424 0.00660 0.00805 0.01635 0.02276 0.02243 0.03630
12 Large 0.00470 0.00700 0.00707 0.01661 0.02240 0.01923 0.03522
12 Random 0.00454 0.00955 0.00912 0.01794 0.02391 0.02544 0.03834
12 Small 0.00453 0.00763 0.00969 0.02125 0.02468 0.02494 0.05276
12 Uniform 0.00429 0.00768 0.00816 0.01590 0.02458 0.02190 0.03797
16 Extreme 0.00351 0.00526 0.00588 0.01275 0.01598 0.01974 0.02980
16 Large 0.00306 0.00552 0.00596 0.01206 0.01615 0.01414 0.02252
16 Random 0.00343 0.00560 0.00729 0.01358 0.01875 0.02079 0.03019
16 Small 0.00439 0.00699 0.00779 0.01668 0.02136 0.02056 0.03548
16 Uniform 0.00402 0.00675 0.00671 0.01523 0.01911 0.01849 0.02879
20 Extreme 0.00299 0.00480 0.00472 0.01153 0.01425 0.01588 0.02188
20 Large 0.00252 0.00508 0.00393 0.01009 0.01270 0.01131 0.01888
20 Random 0.00285 0.00511 0.00668 0.01196 0.01443 0.01659 0.02207
20 Small 0.00351 0.00540 0.00647 0.01433 0.01648 0.01904 0.03053
20 Uniform 0.00288 0.00497 0.00575 0.01213 0.01526 0.01333 0.02407
24 Extreme 0.00241 0.00424 0.00368 0.00865 0.01007 0.01096 0.01386
24 Large 0.00200 0.00393 0.00327 0.00692 0.00867 0.00789 0.01122
24 Random 0.00253 0.00525 0.00413 0.01093 0.00965 0.01237 0.01634
24 Small 0.00292 0.00453 0.00482 0.01178 0.01389 0.01500 0.02128
24 Uniform 0.00244 0.00458 0.00433 0.01070 0.01140 0.01181 0.01830
28 Extreme 0.00226 0.00354 0.00303 0.00652 0.00722 0.00916 0.00818
28 Large 0.00156 0.00321 0.00259 0.00479 0.00540 0.00682 0.00773
28 Random 0.00224 0.00358 0.00291 0.00758 0.00703 0.00900 0.01040
28 Small 0.00237 0.00375 0.00389 0.00856 0.00822 0.00984 0.01180
28 Uniform 0.00178 0.00346 0.00352 0.00757 0.00680 0.00761 0.01102

Table 29. Average standard deviation of volume differences

Size Sample AGE1SI2 AGE1SI3 AGE2SI1 AGE2SI2 AGE2SI3 ACE3SI1 AGE3SI2
8 E 0.00903 0.01216 0.01608 0.03825 0.04213 0.06062 0.07281
8 L 0.00919 0.01097 0.01753 0.03407 0.04149 0.05919 0.07875
8 R 0.01151 0.01252 0.02232 0.03782 0.04160 0.05643 0.07794
8 5 0.01357 0.01291 0.02332 0.04021 0.04870 0.06625 0.09595
8 U 0.00978 0.01117 0.01950 0.04285 0.04573 0.05449 0.07175
12 E 0.00650 0.00898 0.01444 0.03100 0.03586 0.04481 0.06456
12 L 0.00672 0.01105 0.01215 0.03159 0.03725 0.04221 0.05751
12 R 0.00863 0.01199 0.01687 0.03600 0.03895 0.04008 0.06675
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Appendixi Analysis ofVariance 103

Tables 34 to 39 show sample design rankings for each age-site class and sample size. The

following criteria is ranked:

the average mean deviation in height (MDHT);

the average of the largest positive mean deviations in height (MDHTMAX);

the average of the largest negative mean deviations in height (MDHTMIN);

the average mean absolute deviation in height

the average mean deviation in tree volume (MDVOL);

the average of the largest positive mean deviations in volume (MDVOLMAX);

the average mean absolute deviation in volume; and,

the average of the largest negative mean deviations in volume (MDVOLMIN).

Table 32. Sample rankings for sample size 8

Class Sample MDHT MDHTKAX KDHTMIN MADHT MDVOL MDVOLAX MDVOLMXN MADVOL
AGE1SI2 Extreme 1 1 3 3 4 3 2 4

Large 3 3 2 4 2 1 4 3
Random 5 5 1 5 3 4 5 5
Small 2 2 4 1 5 5 3 2
Uniform 4 4 5 2 1 2 1 1

AGE1SI3 Extreme 4 2 1 4 5 5 2 4
Large 2 4 2 3 2 1 4 1
Random 3 3 5 5 1 2 5 3
Small 1 1 4 1 3 4 3 2
Uniform 5 5 3 2 4 3 1 5

AGE2SI1 Extreme 5 1 3 4 3 1 4 3
Large 2 3 4 1 1 2 1 1
Random 1 4 2 3 2 5 3 4
Small 4 5 1 5 5 4 5 5
Uniform 3 2 5 2 4 3 2 2

AGE2SI2 Extreme 5 3 5 3 3 4 5 3
Large 4 2 3 4 1 1 1 1
Random 3 1 2 5 2 2 4 5
Small 1 5 1 1 5 3 3 4
Uniform 2 4 4 2 4 5 2 2

AGE2SI3 Extreme 3 1 4 1 2 1 1 2
Large 5 3 5 5 4 2 5 1
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