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ABSTRACT

This thesis is concerned with the theory of fitting models of the
form y = X8 + ¢, where some distributional assumptions are made on €.
More specifically, suppose that yj = ij +-€j is a model for a component
j (G =1, 2, ..., k) and that one is interested in estimation -and infer-

ence theory relating to Yp = = XBT + ¢

e Y. :
=1 -] T

The theory of estimation and inference relating to the fitting of
Yo is considered within the‘general framgwork of general linear model
theory. The cénsequence of independence and dependence of the yj
(j =1, 2, ..., k) for estimation and inference is investigated. It
is shown that under the assumption of independence of the yj, the parameter
vector of the total equation can easily be obtained by adding corresponding
components of the estimates for the parameters of the component models.
Under dependence, however, this additivity property seems to break down.
Inference theory under dependence is much less tractable than under inde-
pendence and depends cfitically, of course, upon whether Y is normal or
not.

Finally, the theéry of additivity is extended to classificatory
models encountered in designed experiments. It is shown, however, that
additivity.does not hold in general in nonlinear models. The problem of
additivity does not require new computing subroutines for estimation and

inference in general in those cases where it works.
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CHAPTER 1

1.0 INTRODUCTION

The main objective of this thesis is to formalize and extend or
generalize results obtained by Kozak (1970) concerning conditions that
ensure that predicted values calculated from component regression equa-
tions add up to those obtained from a corresponding total equation. Kézak
(1970) derived his results within the context of forest biomass prediction _

using component biomass equations and a corresponding total biomass equa-

tion. He cites examples in other areas of forestry and forest research
where such a problem arises. A broader view is adopted in this thesis
with regard to areas of application of the 'additivity' problem. Since

biomass analysis is of interest to scientists in various other disciplines
of applied biology than forestry, a formalization and generalization
of .the additivity problem and its related statistical theory will be
of value to a large number of scientists, including those in agriculture
and ecology.

To fix ideas with regard to the additivity problem as perceived
in this thesis, suppose as in Kozak (1970), that for some tree species

weight of bole (Y1), weight of bark on.the bole (Y2), weight of crown

(Y3 = branches and foliage), and total weight (YT= Z;=1 Yj) can each
be modelled as some function (in the linear regression sense) of diameter

at breast height (X). In this setting, one refers to the equations
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expressing each of Y;, Y, and Y; as functions of X as component equations
and that giving YT as a function of X as the total equation.

More generally, one can envisage k components of an organism or

system characterized by measurable attributes Yy, Yo, ..., Yk and their
_ ok
sum Yk+1 = Zj=1 Yj where Y1, Y2, «ou, Yk+1 are each related to a common

set of p independent variables Xi, X2, ..., Xp according to a multiple
linear regression model. Using the case (with k = 3) described in the
preceding paragraph, Kozak (1970) states conditions under which one need
only fit the component equations, the total equation being completely
determined by adding coefficients of corresponding independent variables
in the component equations. Kozak's (1970) results pertain to the situa-
tion where each component equation contains all independent variables
under consideration.

In the sequel, our objective 1is essentially four-fold. First,
it is intended to demonstrate, in a rather simple way, why Kozak's (1970)
conditions hold and to derive explicit expressions for statistics of
interest for the total equation from those of the component equations.
Seéondly, it will be shown that additivity can be assured even when differ-
ent terms are retained in the component equations (that is, when rj <p
with strict inequality for at least one j, where rj is the number of
independent variables in component equation j and p is the number in
the total equation). This will be achieved by appropriately correcting
the total equation in order to take into account the conditioning that
forces some independent variables not to appear in some component equa-
tiomns. Thirdly, it will be shown that the case considered by Kozak
(1970), where each component equation has the same number of independent.

variables as the total equation (that is, rj Z p), can be derived as a
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special case of a generalization of thg conditioning principle mentioned
above. Estimation and inference theory will be developed for the above
objectives based primarily on the assumption that Yj and Yz are indepen-
dent for each j # 2 (j, £ =1, 2, ..., k) and an appropriate distribu-
tional assumption on the error term corresponding to model j. Because
of its relevance when considering many biological phenomena, theory
relating to the case where Yj’ Yl (j # 2) are dependent will be con-
sidered. Finally, some examples will be worked out to illustrate the
application of the theory.

It is important to emphasize here that the main objective of this
dissertation is to investigate the additivity problem and its related
statistical theory within a fairly general framework. Therefore, the
use of certain models incorporating and, probably, excluding particular
independent variables in the examples and elsewhere in this thesis should
not be coﬁstrued as suggesting that the equations are best in a predictive
sense. More specifically, although the subject of the thesis has a
direct bearing upon biomass prediction problems, it is not the objective
here to arrive at a best biomass equation in any particular sense. On
the other hand, the view is taken'that the determination of best equations
for prediction purposes is best left to particular applications of the

theory to be presented here.



CHAPTER II
2.0 PRELIMINARIES, NOTATION AND PROBLEM DEFINITION

We begin with some definitions and rules of convention regarding
notation to be adopted in the sequel.

2.1 Preliminaries and Notation

Since the development in this thesis will be concerned with linear
regreésion models, we first seek to identify this class of models precisely.
Accordingly, we define a regression model following Gallant (1971). Let
XC Rm, @ c RP and n and p be positive integers such that n > p. The
elements of X and © will be denoted by x and By respectively. Further-
more, we shall let {et}:=1 be a sequence of random variables, {xt}:=1
a sequence from X, f(x, B) a real-valued function with argument (x, B)

and B¢ to be a point in Q.

Definition 1. A regression model is defined here to be the sequence

of random variables {yt}:=1 given by
Ve = f(xt, Bo) + S
We emphasize that we owe the basic idea behind this definition to Gallant
(1971). Our definition is not as rigorous as Gallant's (1971) but it
will suffice for our purposes. Note that f is a mapping of points from
the product space X x © into the real line R' (that is, f : X x © - RY).

Now, suppose we denote the set of all possible regression models

generated according to definition 1 by R* and define a set of regression

4



models of the form

P
y, = $o(x) + jile.¢.(xt) + €

where ¢i ¢t X*TR,1=0,1, ..., p. Again we owe this formulation

to Gallant (1971). Note that in the above, f(xt, Bo) in definition

.1 has been replaced by ¢0(xt) + ZE=1 8i¢i(xt). Gallant (1971) desig-
nates the class of regression models whose members are specified according
to the last equation by L, which is the class of linear regression models.
Thus we have a second definition.

Definition 2. A regression model r* is called a linear regression

model if r* € L, where L is as defined above.

Note, for completeness, that L C R¥%, This thesis will be concerned

with the theory of estimation and inference for members of L under certain
conditions. As is well known, any member of L can be written in matrix
form.

With regard to notation, a matrix representation will be adopted
throughout moét of the development here. This has an obvious aesthetic
appeal but, more importantly, leads to bfevity and a rather compact pre-
sentation of results which would otherwise be cumbersome using ordinary
scalar arithmetic.  Accordingly, let yj denote an n x 1 vector of reali-
zations of an observable random variable corresponding to the jth com-
ponent, X an n x (p + 1) matrix defined so that
X = (X0|X1|...|Xp) = (0‘X1|...|Xp), where Xp =9 is an n x 1 vector with
components identically equal to unity and X, (i=1,2, ..., p) is an
n x 1 vector consisting of realizations of the indeﬁendent variable X,
Bj is a (p + 1) x 1 parameter vector and Ej is the corresponding n x 1.

vector of errors or disturbances.
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For any matrix A, say, we shall write At to denote the transpose
of A and A_1 to denote the inverse of A, provided that the inverse exists.
Where A_1 does not exist, we shall have occasion to use A+, the generalized
inverse of A, to obtain more general results. In any case, new notation
may be introduced in the discourse as the need arises but in every case
our notation will be consistent with that used in standard texts in linear
algebra (e.g., Noble & Daniel, 1977; Searle, 1966; Stewart, 1973; Strang,
1976) .

2.2 Problem Definition

With the above conventions and notation, we shall be concerned,

in this dissertation, with models of the form

. =XB. +e. (3 =1, 2, ..., k (2.2.1
Y5 ; [ , ) )
and
v = 5K y. = XB + ¢ (2.2.2)
T “j=17; T °T o

where (2.2.1) gives us k component models and (2.2.2) the corresponding
total model. We shall focus interest in the sequel on characterizing
estimators of B and on propounding a theory of inference relating to
the total model under a number of assumptions concerning the behavior
of the Ej G=1,2, ..., k). The theory to be presented here will
be based on well-known general linear model theory. | Note that specifi-
cation of the behavior of tﬁe Ej leads, in general, tg specification
of the behavior of er.

In the next chapter, a review is made of some of the work in the
literature relating to the additivity problem before proceeding to propose
a unified theory of estimation and inference for this problem in succeeding

chapters.



CHAPTER III
3.0 LITERATURE REVIEW

Theoretical and applied biologists have traditionally viewed biomass
as a ﬁseful index for assessing the productivity of various flora and
fauna with respect to designated environments or ecosystems (Ovington,
1962). This index has also been used for cataloguing, in the form of
inventories, the quantities of biological matter available at a given
time in a given environment.

A thorough reading of the literature on biomass and related studies
indicates development in two main directions. The early part of the
literature indicates that scientists essentially sought ways of quantita-
tively desqribing biomass production and productivity of various biolog-
ical organisms. This approach was especially dominant in ecological
studies for many years. Quite often, systematic sampling schemes (e.g.,
line transects) were used to obtain data which were subsequently summarized
to give crude estimates of biomasé. In many cases, these estimates
were reported by component of the organism or system under consideration.

-In general, little or no statistical information, such as measures of
precision, accompanied the summarizations. In any case, the very nature
of the sampling schemes upon which the estimates were based militated
against a meaningful statistical interpretation of the results. More
recent literature is suggestive of a significant shift from the purely

7
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descriptive approach to model-based, statistically-oriented methods of
describing biomass. This approach not only leads naturally to the need
to address questions relating to choice of proper model for use in a given
situation, but more importantly perhaps, attaches particular importance to
choosing estimates that are statistically reasonable. The following
review of the literature on developments that led to the additivity prob-
lem will be brief and, hopefully, informative rather than exhaustive.

For a more complete review, see Chiyenda (1974) or Kurucz (1969). More
recent comprehensive reviews are given by Smith (1979) and Smith and
Williams (1980).

The forestry literature credits Tufts (1919) with the first reporfed
work on tree component biomass. In that work, Tufts correlated trunk cir-
cumference of fruit trees with the weight of ;heir tops (or crowns). Fol=-
lowing that work, many workers in forestry engaged in biomass studies of
one form or another. Accordingly, considerable work has been reported in
the general area of total biomass production of various tree species (Honer,
1971; Kellogg and Keys, 1968; Young and Chase, 1965) and of forest eco-
systems (Ovington, 1962). Some of this work was carried\out as part
of ongoing inventory programmes (e.g., Honer, 1971) while others were
conducted in research connected with forest fire-hazard abatement efforts
(e.g., Kiil, 1967, 1968; Loomis et al., 1966; ‘Storey et al., 1969).

In a biomass study of 13 North American tree species, Storey et al.
(1955) found that dry crown weight, branchwood weight, and foliage weight
were significantly related to stem diameter at the base of live crown
for all the species. On the other hand, Ovington (1956) investigated
and compared the forms, weights, and productivity of tree species grown
in close stands. This study was motivated by silvicultural and ecological

considerations. In a study similar to that of 1955, Storey and Pong



(1957) investigated and compared crown characteristics of a number of
hardwood species.

Fahnestock (1960) used data collected from nine coniferous tree
species in the Northern Rocky Mountain area to fit regression equations
to predict crown weight and proceeded to construct crown weight tables
for the species. Among the species investigated were Douglas-fir

(Pseudotsuga menziesii [Mirb.] Franco), western hemlock (Tsuga heterophyla

[Raf.] Sarg.) and western red-cedar (Thuja plicata Donn).

Tadaki et al. (1961) investigated the productivity of a young stand

of birch (Betula platyphylla) in southern Hokkaido, Japan, and established

linear relationships on logarithmic axes between basal area and stem
biomass, basal area and branch biomass, and between basal area and foliage
biomass. They also reported that estimated fresh and dry foliage weights
did not vary with stand density but that branch biomass decreased with
stand density.

Brown (1963) investigated the relations between crown weight and

diameter in some Lake States red pine (Pinus resinosa Ait.) plantations

and also studied the influence of site quality and stand density on the
weight of individual tree crowns. Keen (1963) analysed average green

weights and centres of gravity of samples of black spruce (Picea mariana

[Mill.] B.S.P.), white spruce (Picea glauca [Moench.] Voss.), and balsam

fir (Abies balsamae [L.] Mill.) and investigated their variation with

species, season, and location. . He also derived a tabulation of weights
and centres of gravity of the trees.

Young et al. (1964) used regression equations to construct fresh
and dry fibre weight tables for individual tree components, groups of

components, and complete trees for seven tree species. Brown (1965)
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investigated the effect of site and stand density on the crown size of

individual red pine and jack pine (Pinus banksiana Lamb.) trees and studied

ways of estimating crown fuel weights. The study indicated that esti-
mated amounts of foliage and branchwood per unit area varied with the
age and growing conditions of the stand.

Loomis et al. (1966) used analysis of covariance to test the effect
of stand density on dry foliage and branchwood weights in shortleaf pine

(Pinus echinata Mill.) and found that regressions of dry foliage and

branchwood weights for different stand densities were not significantly
different. Dyer (1967) prepared preliminary fresh and dry weight tables

for northern white cedar (Thuja occidentalis L.) and derived linear

regression equations for predicting fresh and dry wood weights of various
tree components as percentages of total tree fresh and dry weights.
Kiil (1967) used regression analysis to construct fuel weight tables

for white spruce and lodgepole pine (Pinus contorta Dougl.) in west-

central Alberta and found that a combination of diameter at breast-height
and either crown width or crown length gave the most precise estimating
equation for fuel weight. In a follow-up study, Kiil (1968) studied

the fuel complex of 70-year-old lodgepole pine in the same area with

a view to facilitating measurement and prediction of weight and size
distribution of fuel components.

Kurucz (1969) obtained predictive regression equations for total
and component biomass of Douglas-fir, western hemlock, and western red-
cedar grown on the University of British Columbia Research Forest near
Haney, British Columbia. In a study that was probably motivated as
much by Kurucz's (1969) study as by others, Kozak (1970) considers the

problem of additivity of component biomass regression equations for
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purposes of prediction. The real essence of Kozak's (1970) work does
not lie in the uniqueness of the'problem he poses but, rather, in the
statistical problems that it raises and the potential practical impact
that a solution to these problems might have.

Other studies conducted following Kozak's (1970), while essentially
underscoring the importance of the biomass estimation problem in forestry
and related disciplines, did not address the additivity aspect of the
problem directly. Instead, many investigators continued to look for
the best set of variables giving the most parsimonious predictive equation
for total and component biomass (e.g., Crow, 1971; Honer, 1971; Johnstone,
1971; Muraro, 1971; Zavitkovski, 1971; Sando and Wick, 1972).

| Biomass studies and methods of effectively predicting individual
tree biomass continued to interest applied quantitative biologists in
the mid- and late-seventies and well into the eighties: This interest
in biomass is ascribable to the applicability of individual tree biomass
information in addressing a wide range of ecological and forest management
problems. These include large-scale biomass inventories (Young, 1978;
Ker and Van Raalte, 1980), nutrient-cycling problems (Marks and Bormann,
1972; Kimmins, 1977; Kimmins and Krumlik, 1976; Kimmins et al., 1979),
as well as the determination of nét productivity of forest ecosystems
(Whittaker et al., 1974). Many studies, such as Jacobs and fCuniay(1980),
Jokela et _al. (1981), Keyes and Grier (1981), Schmitt and Grigal (1981),
Yandle and Wiant (1981), Zavitkovski et al (1981), Chaturvedi and Singh
(1982), Freedman et al. (1982), and Singh (1982), have used regression
methods to address the biomass prediction problem.

It is worth mentioning that biomass studies of yarious descriptions

are being conducted to date. Some of these are essentially computer-—
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based simulations of various aspects of the biomass problem. An example of
this 1s the FORCYTE study being undertaken by Kimmins and his associates
at the University of British Columbia (see Kimmins and Scoullar, 1979;
Kimmins et al., 1980). As described by its author;, "FORCYTE is an inter-
active simulation model designed to examine, on a site-specific basis, the
long-term effects on nutrient budgets and productivity of various intensive
forest management and harvesting practices.' Other studies are conducted
as part of ongoing national programmes aimed at identifying useful model-
ling procedures for predicting or, otherwise, describing biomass. An
example of this is the study, again at the University of British Columbia,
by Smith (1979) and Smith and Williams (1980) originally commissioned by
the Canadian Forestry Service to propose the development of a comprehensive
forest biomass growth model. That proposal has since been approved and
work is currently under way to develop such a model.

Surprisingly, most of the studies cited earlier do not consider the
additivity problem except for passing reference to Kozak's additivity
result in a few instances (e.g., Ker and Van Raalte, 1980; Singh, 1982).
One.might surmize that this apparent lack of interest in the additivity
problem might be largely due to the fact that additivity has, since its
introduction into the forestry literature by Kozak (1970), been restricted
to situations in which each component equation contains the same independent
variables. This precludes the use of additivity in the more common and
important situations where only statistically important independent vari-
ables are used in any component equation. An extension of the additivity
problem to such situations along with its corresponding statistical theory
would obviously be of interest. This is what is intended to be done in suc-

ceeding chapters of the discourse. One hopes that studies such as have been
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cited above will, in time, benefit from or at least find useful comple-

mentary methodology in the theory to be presented in this dissertation.



CHAPTER IV

4.0 ADDITIVITY IN THE CASE rj = p

We consider first the models yj = XBj + ej (3=1, 2, ..., k) and
_k _ L,
yr = Zj=1 yj = XBT + Eq where it 1is understood that each of these k + 1

models involves the same matrix X. This is the case considered by Kozak
(1970).

Consider the estimation of B assuming Ej v (¢, Io?) or
Ej N (b, VOE) where ¢ is an n x 1 null vector, I is an identity matrix
of dimension n and V is a known symmetric positive definite matrix of
dimension n. Note that we have not for now specified the form of the
distribution function of Ej as this is not necessary to obtain estimates
of desirable properties. We restrict attention in this chapter to the
situation where X is of full rank.

Under the assumption that Ej v (¢, 103), ordinary least squares
(OLS) fitting of the k component models yields Gauss-Markoff estimators

éj - &t Xtyj G=1,2, ..., k) . (4.0.1)

The result given by (4.0.1) is completely basic and warrants no further
comment except to note that the resulting éj are best linear unbiased
estimators (BLUE's) in the sense of the Gauss-Markoff theorem (see Gray-
bill, 1976, p. 219; Kempthorne, 1975, p. 32; Searle, 1971, p. 88).
When €; vo(d, Voé), generalized least squares (GLS) fitting applied to

each component model leads to Gauss-Markoff estimators

13
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éj = (xtv—lx)'lxtv—lyj (G=1,2, ..., k).. (4.0.2)
Note that in (4.0.2) the existence of V-1 is guaranteed by the positive
definiteness of V. It is worth pointing out that the OLS estimator of
Bj is in general different from the GLS estimator, except in the special
case where there exists a (p + 1) x (p + 1) nonsingular matrix F such
that VX = XF. This is a very special result and is due to Zyskind
(1962). See Graybill (1976), Kempthorme (1975), and Searle (1971) for
réferences to this result. -
Now consider the total model. Introducing the expression for yj

given earlier into the expression for the total model, one gets

M~

Yr (xsj + ej) = XBp + € (4.0.3)

1

or

ej = xsT + Er (4.0.4)

k

from where it is clear that BT = Zj=1

k
Bj and ET = Zj=1 ej. Hence, the

least squares estimator of B,. is given by é = ., where B. is given
q T T jise

hovh)
()

K
Lis1

by (4.0.1)/or (4.0.2) according as ordinary least squares or generalized
least squares fitting is used to obtain BLUE's. Thus the total equation
is completely determined by coefficients of the component equations,
as Kozak (1970) pointed out.

Having shown (for rj = p) that the total equation is completely
determined by the parameters of the component equations, it might be
of interest to investigate whether statistics derived from the component
analyses can be utilized to make inferences pertaining to the total equa-
tion. It will be shown, in the sequel, that this is the case in general.

The results presented below will be useful for testing hypotheses
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concerning the total equation and for constructing confidence intervals.
In order to simplify the derivations, we shall assume that the random
variables yj and y, are independent for each j = 2 (j, 2 =1, 2, ..., k).
As we point out later, this assumption may be quite unrealistic for the
phenomena being modelled and this may considerably affect the utility
of the theory to be developed on the basis of this assumption.

4.1 Inferences for Total Model when Ej v N(¢, Iag)

We now address the pfoblem of inference for the total model when
the Ej follow a multivariate normal distribution with expectation vector
¢ and covariance matrix Icg, where ¢ and I have been defined earlier.
Note that we have explicitly specified the form of the distribution of
ej here since such specification is necessary for inference.

Let us begin by supposing that it is desired to discover how well
the independent variables in the total equation explain the observed
variation in thevcomponents of ynp. To answer this question, one needs
to determine the amount of variation in the components of'yT that can
be attributed jointly to these independent variables. This is the usual
sum of squares due to regression.

Denote the uncorrected sum of squares due to fitting the unrestricted
total equation by SSR(BT) and that due to fitting a version of this model

restricted so that all components of BT other than the intercept component

are set equal to zero by SSR(BOT). It is easy to show that
_att L,k .t, .tk
$Sp(Bp) = Bp X'yp = (zj=1 B ) X (zj=1 yj) (4.1.1)
and
SSR(BOT) = Bor (iil yiT) = ny, (4.1.2)

where Vit is the ith component of Y and §T is the mean of the components
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of Yoe It follows that the desired regression'sum of squares for fitting

the total equation is given by

~

k
Aty t -

* = - 2
SSp (B*1|Bp) (-E Bj)X (1 yj) ny,’ - (4.1.3)
i=l i=1
As usual, the corrected total sum of squares for the total equation is

2 _ T2
. Yir T M (4.1.4)

[ I =]

=t - v 2 =
§Sp = ¥p ¥p T ®p :

and the error sum of squares is given by
C_ t _
SSg = Yr Yp SSR(ST) ‘ (4.1.5)
or as the result of subtracting (4.1.3) from (4.1.4), that is,

— - *
SS; = SS ssR(e

; : *
T It can be shown easily that SSR(B T|BOT)

! Bop? -
is associated with p degrees of freedom while SSE is associated with
n - p - 1 degrees of freedom. Furthermore, since SSp is associated
with n - 1 degrees of freedom and SST is the sum of SSR(B*TlBOT) and

SS., it follows from Cochran's theorem (see Hogg and Craig, 1970, p.393;

E’
Kempthorne, 1975, p. 57; Montgomery, 1976, p. 37) that SSR(B*TIBOT)

and SSE are independent. By our distributional assumption on €5

(jv= 1, 2, ces k) we have that SSR(B*TlBOT)/O% and SSE/O% are,
respectively, noncentral chi-square with p degrees of freedom and non-
centralityvparaméter B*TtXtXB*T/Zdé and central chi-square with

n - p - 1 degrees of freedom. We have already noted that they are inde-
pendent. Whence it follows that a test of significance for the total
equation can be obtained using data and estimates relating to the component
models without actually fitting the total equation. An R? associated
with the total equation is similarly obtained.

For examining the hypothesis that some component of Br is equal to

zero, one is often interested in constructing confidence intervals about



17

the component or performing a direct t-test (see Montgomery, 1976, p.
325). In either case, one requires an estimate of the covariance matrix
of éT' Denote the true covariance matrix of éj by ij and that of éT

by iT' Then we have that
1.

by - x') " o (4.1.6)
and by the fact that éT = Z?=1 éj and that the ej =1, 2, ..., k)

are independent, we have
= -t -1 k 2
tp= XX il 95 (4.1.7)

The results given in (4.1.6) and (4.1.7) are completely basic and we

shall not venture to prove them here. The estimator of iT will be given
by
d o ety l kL
fr = XX Zic1 8] (4.1.8)

AD . . C .th
where 03 1s the mean square error associated with fitting the j com-

ponent equation. Hence confidence limits on the relevant component
of Br, say BQT’ will be given by

ko~ } 4.1.9
T * ta/2,n-p—l [(Zj=1 oj)CQQ] (4.1.9)

is the (1 - a/2) 100-th percentile of the central t-

B
where ta/2,n-p—1
distribution with n - p - 1 degrees of freedom and C22 is the (2 + 1)st
diagonal element of the matrix (XFX)_l. Note that % takes integer values
in the range 0 to p inclusive. The corresponding test based on the

t—-distribution is performed by computing

/[C zk

- B ~213
to = B on Ti=1 oj] (4.1.10)

and rejecting the null hypothesis that BQT =0 if |t0| > ta/2,n-p—1'
Note also that the test in (4.1.10) can be derived as a special case
of a more general approach in the context of general linear hypothesis

theory, as will be shown in a later part of the discourse.

The inferences based on (4.1.9) and (4.1.10) are valid if (XtX)_1
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is a diagonal matrix. In general, however, (XtX)—1 is not diagonal
and so results obtained from (4.1.9) and (4.1.10) can be misleading (see
Montgomery, 1976, p. 326). This is so because both (4.1.9) and (4.1.10)

are based on the assumption that the elements of BT’ such asB... and

iT
éjT for 1 # j, are independent. When (th)-l is not diagonal, this
assumption does not hold in general. Therefore, a test for BQT =0
versus B,,. # 0 must be constructed using the 'extra sum of squares' prin-

LT

ciple used in deriving (4.1.3) or using the general linear hypothesis
theory alluded to above. The extra sum of squares principle is described
in Draper and Smith (1981, p. 97 cf.) and in Montgomery (1976, pp. 326-
328).

Finally, for constructing a confidence interval about a true value,

Yo corresponding to the x-coordinate, X, = (1, x X_.), where

LT 1T> "2 *pT

Xor is a row vector, one needs the covariance matrix $§ of 9T. Since
T

yT = XBT, we know from theory (e.g., Morrison, 1976, pp. 83-84) that

tr = x(p) xt = x@t 7t xt Ik o2, (4.1.11)
Y =1 73
Henice the estimator of i? is given by
T .
i, = xxt0 "t xt zk_ g2 (4.1.12)
g =1 7

T
and, in particular, 8§ , the estimated standard error of §2T corres-
LT :

ponding to the x-coordinate XQT is

A~ to-1 otk an.d
O?QT = [X, XX X . Lia1 °j] - (4.1.13)

Therefore, the desired confidence interval for Yor is given by
t k

~ to\—1 ~2 ¥
Yop * [Xn XX X2 621% t

LT “j=1 7j a/2,n-p-1 ° (4.1.14)

Results given above show that tests concerning specific components

of By and corresponding confidence intervals can be constructed using
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information obtained from analyses relating to the component equations.
Thus there is no need to fit the total equation in order to make infer-
ences about it. These observations pertain to the situation where

ej ~v N(o, Io?). We show below that the same holds when Ej ~v N(¢, Vc?).

4.2 Inferences for Total Model when aj ~ N(o, Vo;)

Consider now the situation where ej ~v N(¢, Vog) with V as defined

earlier. It was stated in (4.0.2) that the BLUE for Bj under this dis-

. . . .ot -1 -1t -1
tributional assumption is (X'V "X) "XV yj. One must add here that
this estimator is also a maximum likelihood estimator (MLE). It is

. . . . t-1..-1 _t -1 .
desirable to motivate the derivation of (X 'V "X) X"V yj, mainly to
clear the way for its use in making inferences. Accordingly, consider
the model specification yj = XBj + Ej with ej ~v N(¢, VOE)' Since V
is positive definite, there exists an n X n nonsingular matrix P such
that

V =PP. (4.2.1)

Hence we have that

1 1

eH Ve =1L (4.2.2)
Suppose one pre-multiplies the model yj = XBj + sj by (Pt)_l; then one
has

(Pt)_lyj = (Pt)'lxsj + @H1 s (4.2.3)

which may be given equivalently by

y*. = X*B, + e*,. (4.2.4)
j i j |
Note that E y*j = X*Bj = (Pt)_lx Bj, since E e*j = ¢, and
E(e*j e*?) = Io? so that we now have that s*j v N(¢, 103). Therefore

all the theory developed in section 4.1 applies to (4.2.4). Applying

OLS to (4.2.4) one obtains
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éj ) (X*t X*)—l xxt Y*j

- xtetm Tt xtetn Tt Y

- «Fviio Tt vl Yo (4.2.5)
which is the generalized least squares estimator given earlier. Note

that this type of fitting (GLS) which produces (4.2.5) is also commonly
referred to as weighted least squares fitting and, in more general pre-
sentations, as minimum V-norm fitting (see Kempthorne, 1975).

Results useful in making infergnces when € v N(¢, VGE) are basically
similar to those derived above for €5 v N(¢, 103) with a few important
distinctions as a result of our transformation of Y; above. In testing
for significance of the total equation, for instance, the regression
sum of squares 1s given by

ss.(8%_|8.) = ( I 5% xxt( 3
R IBor By .

y*;) - ny*, 2 (4.2.6)
j= j=1

T

where X* and y*j are as defined above and ;% is the mean of the components

of y*T = Z?=1 y*j. Furthermore, the corrected total sum of squares

for the total equation is

« t )
= y* x = *
8Sp = y¥p y*p - ny¥; (4.2.7)
and the error sum of squares is
.
= y* % -
SsE Yir Y SSR(BT)’ (4.2.8)

where SSR(BT) is given by the first term on the right-handside of (4.2.6).
In these sums of squares, éj is as defined in (4.2.5). Again,

* 2 2 . . . ) .
SSR(B TIBOT)/OT and SSE/cT will be distributed as noted earlier except
that the noncentrality parameter associated with the distribution of

. t t
the former is now Bp* X

V_1 XB*T/ZO%. As before, it is clear that
a test of significance for the total regression equation and the associated

R? are obtainable from data and ancillary quantities derived from fitting
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the component equations without recourse to actually fitting the total

equation.

~

In light of (4.2.5) the covariance matrix of Bj is now given by

tj = & ln 03 (4.2.9)

and that of By by
- t _1 "1 k 2
fo= XV R a1 95 (4.2.10)
with ij and iT obtained respectively by simply replacing 03 by 8j in
the expressions’ for ij and tT' In this context, a 100(1 - a)% confi-
dence interval for BQT is given by
A k  ~2.4
*
Bor * tuy2,mep-1 (g 25 831 (4.2.11)
while a corresponding t-test is obtained by calculating

_ 3 k  ~2.4
th = B /0%, Ty ) &%) (4.2.12)

. . . - . %
and rejecting the null hypotheéls that BQT 0 if |t 0l> ta/2,n—p—l'

In (4.2.11) and (4.2.12), C*22 refers to the (2 + 1)st diagonal element
of (XtV_lx)—l, with % specified as before. The limitations of the results
given by (4.2.11) and (4.2.12) when (XtV“IX)n1 is not diagonal are equally
valid here so that one must resort to using the extra sum of équares
‘principle or general. linear hypothesis theory to obtain valid tests.

To construct a 100(1 - a)% confidence interval about a true value

of Yoo SaY Yoo corresponding to the x-coordinate, X = (1, x

LT 1T> *° 7

XpT)’ for XZT a row vector, one can show easily that the covariance matrix
of §p = Pt yo* is estimated by
b=zl gt 2k 62, (4.2.13)

Therefore, a confidence interval for Yot is given by

o t. -1 ‘—1 t k a2 3
Yor * [sz(x VX)X . I 621° t

2T “j=1 "j a/2,n-p-1 ° (4.2.14)

Once again, results obtained in this section show that tests con-

cerning specific components of Bp and associated confidence intervals
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are constructibie from information relating to analyses of the component
equations. This result holds when Ej v N(¢, Vo?). We already showed
that it holds when ej nv N(¢, Ic?). In both cases, our derivations are
based on the assumption that yj and y, are independent for each j = )

G, =1, 2, ..., k). This essentially completes our consideration

of the problem of estimation and inference for the total model when rj = p.
The problem of additivity as defined here when rj = p is mathematic-

ally nice and, in a sense, trivial. The problem, however, has obvious

practical limitations aé a result of requiring that rj = p since, in

practice, one would like to retain in each component equation only those

of the p independent variables that are statistically important. It

is; therefore, of interest to consider the consequences for estimation

and inference for the total model when rj < p with the possibility that

r. < p for all j. This is the situation nét considered by Kozak (1970).

J

We consider this case in the next chapter.



CHAPTER V
5.0 ADDITIVITY WHEN rj £ p WITH rj < p FOR SOME j

We now relax the requirement that each component model contain
all the independent variables in the total equation. Specifically,
if the total equation contains p independent variables (each assumed
important), we shall allow the component equations to contain only statis-
tically important independent variables among the p variables. Thus
rj, the number of independent variables in component equatiop j, may
be less than p and strictly so for at least one j. This admits the
possibility that rj < p for each j provided that in that case each inde-
pendent variable in the total equation is contained in at least one com-
ponent equation. This will be consistent with additivity as defined
here.

With X = (0|X1|...|Xp) as defined earlier, we now consider models

of the form

.= XB. + €. i _‘ 1, 2, .« k 5.0.1
and
y = 2 y = XB., + (5 0 2)
T '|—-1 .| T ET . e

where the matrix X is common to the k + 1 models. However, the latter
models differ fromthése specified earlier in the following‘respects.
In (5.0.1), Bj is a (p + 1) x1 vector defined so that Bj has an inter-
cept component with rj < p of the remaining p components nonzero and

the other P - rj equal to zero. The relative positions of the zero

23
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and nonzero components in the last p cells of Bj will be such as correspond
to the presence or absence of particular Xi (i=1, 2, ..., p) in the

jth component equation. By will be as defined before with p + 1 nonzero
components. Our definition of Bj implies that the effective X matrix,

say Xj’ corresponding to component equation j is necessarily different

for each j except when Bj and 82 have nonzero components in identical
positions for j = & (3, ¢ =1, 2, ..., k). Assume that €5 and ep are
distributed as specified iﬁ chapter IV and also that Y; andvy2 (hence

e and Eg) are independent for j = %.

5.1 Estimation when € v N(o, Io?)

We first consider the problem of estimation for the total equation
when ej v N (¢, Io?). First, we state an intuitive result for the esti-
mation problem and then demonstrate its validity. Note that model
(5.0.1) is equivalent to model (2.2.1) with a condition adjoined, namely,

. =XB. +e. . b = G=1,2, ..., k) (5.1.1)

yJ BJ J q' ¢ J 3 2 2
J
where bq is a vector of zeros corresponding to the vector of components
j

of Bj in (5.0.1) which are set equal to zero in the jth component equation.
It is clear that estimation relating to (5.1.1) can be achieved via con-
strained minimization. Denote the resulting solution by é*j (G =1,

2, ..., k) and the corresponding conditioned fit by

§i=XBR G=1,2, ..., K. (5.1.2)

Furthermore, let Y be as defined in chapter IV; we shall occasionally
refer to Y as the unconditioned total model. Also, let Yo be termed

the 'conditioned' total equation in a sense. to be defined momentarily

Ko o
= *
Tc - Fj=1 *F7y

and let §* ; Then the conditioned total predictive equation

is given by
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-+ = 9 - 9 - g%
where the factor ?T - ?*TC is a correction or conditioning factor which
corrects the unconditioned fitted total equation (obtained in chapter

IV) for parameters that are set equal to zero in some of the component

. . . ~ ~ k ~
equations. Note that (5.1.3) implies that = y* =X z. B*. and
4 P Yrc T Y'rc j=1 P73
that
n kK A . A kK -
= % = - - %
BTC Zj=1 B 5 By (BT Zj=1 B j)' (5.1.4)

In (5.1.4), B... and éT are the estimator of the parameter vector of the

TC
total conditioned equation and that of the unconditioned total equation,
respectively. Equation (5.1.4) implies that the parameter vector of
the conditioned total equation is estimated by adding thé-estimates ofv
the parameter vectors corresponding to the conditioned component equa-
tions. Our immediate task is to demonstrate that this result is mathe-
matically valid. To do so, we state our problem as one of minimization

subject to constraints.

Let us solve the estimation problem associated with fitting

yp = XBp t &g (5.1.5)
subject to
~ k
= *
By = I, B%;- (5.1.6)

Note that B*j in (5.1.6) refers to the parameter vector corresponding
to the conditioned component equation j. This problem is solved by

minimizing the Lagrangian function

~ _ — 3 yC T n ten k &
S(Bp, 8) = (yp = XBy) (v - XBp) + 267 (B Loy B 3 (5.1.7)
where 267 is a vector of Lagrange multipiiérs. Now, differentiating

(5.1.7) with respect to the elements of B, and 6, respectively, one ob-
T %
tains

35 2x"XB, + 20 - 2"y, (5.1.8)

dBT
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— *

Equating both (5.1.8) and (5.1.9) to zero leads to

=BT—

t, & N -
XX By + 8= Xy, (5.1.10)
B =1 px (5.1.11)
= Tiop B% .1.

Our solution vector éT must satisfy both (5.1.10) and (5.1.11). From

(5.1.10) one has

&t xty

I

t, 2 _ ot A% Coton-l &
XxgsT XyT e=>sT T 0.49:9) 6

By - xtx) 15, (5.1.12)

A _ wtora _ % .. £k
Now, (5.1.12)=>6 = X"X(B, Bp) and since By = Zj=1

é*j by (5.1.11),

one has that

k

~ Lt _ ~
0 = X X(Bg i s*j). (5.1.13)

Hence, putting (5.1.13) into (5.1.12) one gets

~
~

K
B

s eptey-loto s .
Bp = XOTXXBy - 35 BE)

A k
= Bp - By - Lia1 B*j), (5.1.14)

a result given earlier in equation (5.1.4). This establishes the validity
of that result.

Since ET’ the parameter vector of the total conditioned equation,
is determiped by B*j (3 =1, 2, ..., k), it is important to discuss the
estimation of B*j here. It should be emphasized that B*j is a
(p + 1) x 1 vector having p - rj of its components equal to zero. We
are explicitly assuming that the intercept component of B*j is nonzero.
In estimating B*j, it is important to recognize that one does so condi-
tionally on some specified components being assumed equal to zero. In
the following, we cast the problem within the framework of general linear

hypothesis theory.
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Consider testing the general hypothesis H : KtBj = m, where Bj
is a (p + 1) x 1 parameter vector of the model (2.2.1), Kb is any matrix

of s rows and p + 1 columns and m is a vector, of order s, of specified

constants. We shall require that Kt be of full row rank, that is

r(KY) = s, where r(+) denotes the rank of the argument. One is’inter-
ested here in estimating Bj under the null hypothesis H : EtBj = m.
Designate the parameter vector under the null hypothesis by B*j.  Using

constrained least squares (see Searle, 1971, pp. 113-114), the desired

estimator is given by

é*j'= By - at0 7 kit T k7L (Ktéj -m, (5.1.15)

where éj is the unconstrained estimator of Bj (with all independent vari-

ables included). When the hypothesis is of the form H : bq = ¢ for

bq a subset of Bj of order qj,vwe have

b _
kP =[I ¢],m=¢,s=gq.. (5.1.16)
q. : J
J
Now partition Bj’ éj and (XtX)_l as follows
b Bq T T o
43\ i e -1 3% 958
B. = B. = s X™X) =
] b J b T T o
Pj Pj Pid;  PjPj

where pj +'qj =p+ 1. Then the estimator of B*j is

. ¢

ax, = 4. ) (5.1.17)
I \b_ -T o.Tq.q. P

Py P 955 9

If X is partitioned as X = (quXp ), then the estimator in_(5.1.17) is

J ]
equivalently given by

% = - t . (5.1.18
8 x -1 T Lo )y. ( )
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Observe that if the columns of Xq are orthogonal to those of X , then
i Pj
(th‘)-1 is block-diagonal so that

) )
={r t . (5.1.19)

X vy.
pb. Pij Pj J
Equation (5.1.19) expresses the expected fact that when the columns of
Xq. and those of Xp. are orthogonal, then fitting only the last pj com-

3 3
ponenté of X will yield the same Bp. as fitting all components of X con-
J

ditionally on the first qj having zero coefficients. The consequence
for estimation of having all columns of X mutually orthogonal should
be obvious from this, In general, the estimator of B for any lineaf
model depends upon variables not included in the model, including those
that are not known.

When a subset of a set of predictor variables is statistically
unimportant, it is common practice to fit an equation which simply
ignores the unimportant subset. Unless the latter subset is orthogonal
to the important one in the original set, the resulting fit will not
be éonditioned in the sense defined above. Hence, the corresponding
estimator of the parameter vector is different from that of a correspond-
ing conditioned fit, again unless orthogonality holds. ' The estimator
is also of smaller order and is given by the non-null part of é*j in
(5.1.19). It follows from (5.1.18) and (5.1.19) that one can correct
the latter estimator and fill it out appropriately to obtain the corres-
ponding conditioned estimator. In view of this, the remainder of this

chapter will be based on conditioned component equations in the sense

just defined.
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5.2 Inference when € " N(¢,Id§)

When testing the significance of the total conditioned equation,

the Fegression sum of squares is given by

ssR(g*TC|BOTC) = (zljl1 é*jt) xt(zlj‘=1 yj) - n§T2. (5.2.1)
Other sums of squares relating to this particular testing problem are
obtained in an obvious way. We omit further details which, again, are
completely obvious. We consider, instead, the problem of testing specific
hypotheses relating to the total conditioned equation.

It has been demonstrated above that the estimator of the parameter
vector .. for the total conditioned equation is determined by summing
corresponding components of conditioned component equations. Analytic-
ally, there are two possible ways in which a particular component of éTC
might turn out to be zero under additivity. First, a component of
éTC may be zero as a result of the cancellation law when adding negative
and positive elements. While this is arithmetically plausible, it is’
not reasonable given that we have assumed a priori that each independent
variable 1s statistically important. Secondly, if a particular inde-
pendent variable has an estimated coefficient of zero in each individual
component equation, then the corresponding component of éTC will be zero.
Again, this is unlikely since it is contrary to the hypothesis that each
independent variable is important.

The foregoing suggests that an hypothesis which states that some
component (or vector of a subset of components of BTC) 1s zero 1s no;

a reasonable hypothesis. Instead, an hypothesis that some component
(or vector of a sﬁbset of components of BTC) is equal to c, where ¢ is

a known scalar (vector with all its components) different from zero,

is a reasonable hypothesis. The specification of ¢ may be based on
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past experience or related analyses.

There are two ways in which ¢ may be specified. The specification
of c may be direct as described in the preceding paragraph. On the
other hand, c may be specified indirectly by simply specifying cj
(j =1, 2, ..., k) in a series of subhypotheses relating to each com-
ponent conditioned equation. We emphasize that the value of ¢ is not
specifically determined in the latter case, but it is determined under
additivity of the conditioned component equations when they are fitted
under the subhypotheses specifigd by Cj' We shall refer to the test
of hypothegis concerning ¢ when c is specified directly as a direct test
of the hypothesis c. The corresponding test when ¢ is specified in-
directly through the cj (3 =1, 2, ..., k) will be referred to as an
indirect test. We use this terminology oniy for its mnemonic appeal.

Let the conditioned total model specified by Brc be designated

k

as the full model. Recall that BTC = Zj=1

é*j and that the sum of squares

regression due to fitting this model is given by SSR(B* ) as given

rc! Borc

in (5.2.1). Now consider fitting a version of the full model restricted
so that some specified component(s) of Brc is(are) given by the scalar
(vector) c. Let the latter model be indexed by the parameter vector

c : N . . s .
BTC' Note that BTC 1s obtained by fitting the model indexed by BTC

subject to the further restriction that some specified component(s) of

B is(are) equal to c. Designate the sum of squares regression due
TC 4

(o

OTC). This sum of squares

to fitting the model indexed by B;C by SSR(B*;CIB

is given by

c c _ (5€ \t oK _ =2
SSg(B*pc|Bopg) = (Bpe) ™ XT(Ty; vy) - myp® (5.2.2)

Since the model indexed by B;C is a restriction on the model indexed

by BTC’ it follows that SSR(B* Hence the

C [od
1clBorc) = SSg(B*pclBorc) -
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sum of squares

p(e) = SSR(B* - SSR(B* (5.2.3)

1cBozc? rc!®orc)
can be interpreted as the extra sum of squares for testing the hypothesis
that a specified component(s) of Bro is(are) equal to c. Thus, using
¢y (c) and the error sum of squares for the full model leads to a direct
test for c.

Suppose, now, that c is specified indirectly by specifying Cj
G =1, 2, ..., k). As in an earlier part of the sequel, let B*j be

the parameter vector corresponding to conditioned component model j.

Suppose we fit the model indexed by B*j under the subhypothesis that

. . . A C
some component of B*j 1s equal to cj. This leads to estimators B*j
(3 =1, 2, ..., k), where the superscript ¢ on é*j denotes the further
restriction cj. Again if we denote the total conditioned model with

the further restriction c¢ imposed indirectly through the cj as being

indexed by B;C’ it follows by our result on additivity that

E;C = Z?=1 é*jc. The ‘regression sum of squares due to fitting the latter
model is given by

£C 12C vy = (K ax Cyty Lok . =2

SSp(B*1clBope) = (Tjo B* )0 X (2, v -y’ (5.2.4)

. £C 1€ « ' .
Once again, one has that SSR(B TCIBOTC) < SSR(B TC|BOTC)’ so that again the
sum of squares

c c
* = * - %
p*(c) = SSp(B* o |Bypc) — SSp(8 TC|BOTC) (5.2.5)

can be interpreted as the extra sum of squares for testing the hypothesis
that a specified component(s) of Brc is(are) equal to c¢ via the Cj' Thus,
using Y*(c) and the sum of squares error for the full model leads to |
an indirect test for c.

It is worth emphasizing that the procedure for testing a hypothesis

concerning c¢ directly or indirectly is applicable whether ¢ is a scalar
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or a vector.

Tests of hypotheses concerning individual components of BTC using
the usual t-statistic and/or univariate confidence intervals about such
components can be obtained in a manner similar to that described in chapter
IV provided an estimate of the covariance matrix of éTC is available.
These tests and confidence intervals are especially likely to be mislead-
ing here, however, since the conditioning makes the components of éTC cor-
related unless the columns of X are orthogonal. Therefore, tests on
individual components of BTC are best performed as outlined in the preced-
ing paragraph. On the other hand, a confidence interval can be constructed

about Yors SaYs corresponding to a given x—coordinate in an obvious way.

5.3 Estimation and Inference when Ej v N(¢, ch)

Results presented in sections 5.1 and 5.2 relate to the distribu-
tional assumption Ej v N(¢, Io?). These results carry over to the case
Ej n N(o, Vog), for V as defined in chapter IV with the obvious modifica—
tion that wherever X, yj and yp occur, in the various expressions, they

-1

are replaced by (Pt)_lx, (%) yj and (Pt)-lyT in that order, where

P'P = V with P as defined in that chapter. Thus, most of the results
will involve V_1 as demonstrated before.

In the followiﬁg chapter, it is demonstrated that the problem of
additivity when rj = p can be treated as a special case of additivity

when rj < p. Such a demonstration provides a basis for constructing

a unified theory relating to the additivity problem.



CHAPTER VI
6.0 A GENERALIZATION OF THE ADDITIVITY PROBLEM

Within the framework of the conditioning principle described in
the preceding chapter, the fitting of the component and corresponding
total equations when rj = p can be considered as a problem of fitting
subject to 'mull' or 'trivial' conditionms, By null or trivial condi-

tions we mean here that no further conditions are imposed on the

Bj (j =1, 2, ..., k) beyond the basic additivity requirement that
Z?=1 Bj = BT. The point to observe here is that there is no require-

ment that any component(s) of Bj be equal to zero. In terms of result

A

(5.1.3) in the preceding chapter, this implies that ?*TC = yp so that
(5.1.3) reduces to

$rc = Ip- (6.0.1)

Note that ?T’ yTC and §*_, . were all defined in the previous chapter.

TC
Thus the correction factor or the conditioning factor is identically

zero when rj = p.

In terms of a result given in (5.1.14), the above implies that

s k4

Bp = 2y B (6.0.2)
so that (5.1.14) then reduces to

BT = BT' (6.0.3)

Equations (6.0.1) through (6.0.3) suggest that the problem of additivity

when rj Z p can be treated as a special case of additivity when rj < p.

33
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In this connection, the theory of estimation and inference described

in chapter V reduces to that presented in chapter IV when rj z p. This
generalization is significant, at least theoretically, since it makes

it possible to visualize the additivity problem as defined here as one
very general problem which can be studied under one unified theory of

estimation and inference.



CHAPTER VII
7.0 OTHER ASPECTS OF THE ADDITIVITY PROBLEM

The development of the theory'has, thus far, been based upon the
assumption that yj and Vg (and hence ej and 82) are independent for each
i+ 2 G, 2=1, 2, ..., k). As indicated earlier in the thesis, how-
ever, there are examples of applications where this assumption is simply
not tenable. The implications of this, especially for inference, are
weil worth considering and will be examined in this chapter. There
will be occasion also to consider other general complements of the add-
itivity problem such as that of the matrix X not of full column rank
and of V not necessarily positive definite. These latter generalizations
are useful when considering certain classes of the general linear model.
In particular, they permit the extension of the theory of additivity
as developed here to classificatory models which are generally associated
with designed experiments and are routinely analysed using analysis of
variance procedures. Furthermoré, it is noteworthy that it is generally
assumed in most applications of regression analysis that the X matrix
is fixed (that is, that the independent variables are either known or
are measured without error). Yet it is quite conceivable that the inde-
pendent variables may themselves be random, just as the dependent variable
y, or they may be fixed but measured with error. It is reasonable to
consider briefly the implications for analysis of these possibilities,
at least for completeness.

35
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7.1  The Case yj, Y, (j = &) Dependent

As a preamble, suppose that X;, Xz, ..., Xk are multivariate normal
random vectors, each of dimension m, with mean vectors My (i=1, 2,

..+, k) and corresponding covariance matrices ii (1i=1, 2, ..., k).

Now define U = Z§=1 Xi and suppose one is interested in the distribution
of U. If, in addition, it is assumed that the vectors Xi i1=1, 2,

., k) are independent, then' by a well-known theorem in multivariate
analysis (see Muirhead, 1982, p. 14), it follows that U is m-variate

. . . k . .
normally distributed with mean vector py = I, and covariance matrix

i=1 Hi
_ ok . .
iU = Zi=1 ii. On the other hand, if the vectors Xi (i1=1, 2, ..., k)
are dependent, we know only that
k .
EU = Z;_, ¥; (7.1.1)
and
) - f f.+rzi.. (7.1.2)
U i=1l Ti . Y oTige

1#]

where $i is the variance-covariance matrix of Xi and *ij is the covariance

matrix of X, and Xj (i 2 j). Hence it follows that

k k .o
U~ (Zi=1 uys Iiog ii + §¢§ *ij)' Note that we have only specified the
parameters of the distribution of U and not its form. Indeed, as far

as 1s known, without making any assumptions concerning the form of depen-
dency of the summands in thé definition of U, the exact distribution

of U under dependence is largely an outstanding problem in mathematical
statistics. However, as suggested above, given some knowledge of the
form of dependency among the k vectors Xi’ it is possible to obtain a
distribution for U (Olkin, 1983, personal communication). Furthermore,
one might surmize that the distribution of U under dependenée.of the

component vectors might be derivable as a multivariate generalization
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of the univariate analogue considered by Springer (1979, pp. 72-75).
Even so, however, the explicit representation of such a distribution
is likely to be nontrivial.

The representation of $U given in (7.1.2) derives from a simple
generalization of the univariate case to the multivariate case. For
the analogous univariate result, see Mood, Graybill, and Boes (1974,

ﬁ. 179). Note that independence of the vectors Xi (i=1, 2, ..., k)
implies that tij = ¢, the null matrix, in (7.1.2).

Now let U =y, and Xj =y. (j =1, 2, ..., k); then for yj, Yo

h
dependent for each j # &, it follows that
Vo = £k y. xzk B., gk 5. +3Iz £..). For simplicity in what
T =173 j=1 737 "3=1 "3} ... "1]

iz]

follows, we shall mostly use tT to designate Z?=1 $j +Iz $ij. Even
iz

given that the yj (j =1, 2, ..., k) are individually multivariate normal,
under dependence it is not known what the distribution of Yo is exactly.
What is known is that Y is either multivariate normal or is not multi-
variate normal (see Kale, 1970). Examples are found in the literature
of linear combinations of normal random variables which are themselves
(the linear combinations, that is) not normal (e.g., Rosenberg, 1965;
Behboodian, 1972) and of marginally normal random variables whose joint
distributidns are not normal (e.g., Ruymgaart, 1973). These results
of course generalize to vector random variables. The overall implica-
tion of this is that lack of knowledge of the exact distribution of Y
and, in particular, its probable non-normality renders the construction
of a small~sample theory of inference considerably more difficult.

Given lack of knowledge of the exact distribution of Yps @ small-
sample theory of inference for the total regression model is constructible

on the basis of normality of Yo if one can demonstrate that the vectors
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yj (j =1, 2, ..., k) are jointly multivariate normal. This is the
case because it is well-known that if yi, y2, ..., ¥, are jointly multi-
variate normal, then every linear function of these yj‘sis multivariate
normal. (Note that theyj's are vectors here.) This result follows
from a characterization of the bivariate normal distribution which gener-
alizes to other joint multivariate normal distributions (see Rao, 1965,
pp. 437-438). Therefore, in our instance, under dependence of the yj's,
normal theory can be used to construct inferences concerning yp or BT
or both if it can be shown that yi, V2, «.., ¥, are jointly multivariate
normal. This suggests the need for methods of assessing multivariate
normality based upon realizations of the vectors yi, ¥z, «--, Yy :
Graphical methods of assessing multivariate normality have been proposed
in the\literature (e.g., Healy, 1968; Cox, 1968; Andrews, Gnanadesikan,
and Warner, 1973). Other authors have proposed analytical significance
tests for testing for multivariate normality (e.g., Malkovich and Afifi,
1973; Hawkins, 1981). More recently, however, Koziol (1982) introduced
a test for assessing multivariate normality which is fairly easy to use
and has some nice properties. If a test for joint multivariate normality
such as Koziol's (1982) leads one to entertain joint multivariate normal-
ity, then one proceeds to make inferences concerning yp of BT based upon
the usual normality assumptions. If, on the other hand, joint multivari-
ate normality is réjected, then one can either appeal to asymptotic results
to construct approximate tests or resort to nonparametric approaches.

We shall discuss the latter approach only briefly in this thesis. But

first, let us tackle the problem of estimation.


file:///literature

39

7.1.1 Estimation for Total Model under Dependence

As observed earlier, estimation should not, in general, be hampered
by lack of knowledge of the distribution of Y and, in particular, by
its non-normality. Consider estimation for the total model when
€5 v N(o, 103) and when Ej v N(d, Vog). It is demonstrated in this
section that when the yj's are dependent, the concept of additivity,
as defined here, does not hold. This follows from the following reasoning.
When the Ej are dependent, one has that

k , '
ep v (¢, Ej=1 *j + Iz iij) in general. In the case where

iz]
Ej ~ N(o, Iog) (j =1, 2, ..., k), the first term in the variance-covari-
ance matrix of e,, reduces to Io2, where o2 = Zk_ a2, Furthermore,
T T T 3j=1 73
it is easy to see that *i' = Ip..GiO. so that I % ti' =13%x2Z P;:0:0.-
i ijij ey T feg 11

Therefore, under dependence of the ej with Ej v N(4, Ic?),

nv (¢,152) where o2 = Zk

=1 c; + 3 I pijo.c.. Thus the variance-

3
T
iz]j L]

covariance matrix of eg is diagonal. On the other hand, when

€; v N(o, Voj), the first term in the variance-covariance matrix of €

2
v (¢, Vog + §¢§ iij)

becomes Vo%, with o% as defined above, so that €

where iij is not diagonal.

Recall that under the assumption of independence of the yj's and
V positive definite, the transformation matrix P, such that ptp = V, -was
the same for each component model and the total model. As a consequence,

additivity followed naturally since

-1
Yo
-1 _k
. )
j=1 yJ

~

By &xtvin Ixty

xtv ) " ixty

G T xtv iy, + ..+ V]
k ~

=z, . 7.1.1.1
1= B ( )
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Note that the above result holds also when V = I. Now suppose that
under dependence of the yj (j =1, 2, ..., k), the variance-covariance

matrix of € may be written in the form V, 02

VST for some matrix V- First,

note that when Ej v N, Vo%) with V positive definite, there is no guaran-

tee that VT is positive definite, though we know that it is at least
positive semi-definite. Secondly, even if Vo were positive definite,
it is obvious that the matrix P, such that V_ = PLP_ is not necessarily

T T TT

equal to the matrix P which transforms each of the component equations.
This holds when ej v N, Ici) because IG% 4 102, Consequently, when

the yj are dependent, éT cannot be determined from the additivity property.
This result must obviouély hold for more general V and V. Assuming
positive definiteness of V and Vg, nonadditivity is demonstrated as fol-

lows. Note that

By = (xtv,"rlx)_lxth_lyT
) (Xth-lx)—lxth—l 2?=1 v,
- z?=1sj*
F B, - xtvlx Tt Z?=l Y- (7.1.1.2)

Indeed, equality holds oﬁly if VT = V which implies that Zij = 0 for
all i #.j and, therefore, independence of the yj's. The above results
suggest that when the yj's are dependent, the parameters of the total
equation must be determined by actually fitting the corresponding total
equation rather than from additivity. An exception to this would be
in those cases where dependence is so weak that the first term in the

covariance matrix dominates the second term (namely I I tij) in the sense
if ]

that the entries of each tij are close to zero. But this simply implies

that independence largely obtains.
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Since inference for the total model is essentially linked to estima-
tion, it follows that inferences concerning parameters of the total model
when the yj are dependent can only be made after fitting the relevant total
models directly. Therefore, under dependence of the yj, one must actually
fit the total model in order to estimate its parameters and make inferences
about them.

Let us return to the problem of inference under dependence. Since,
as observed earlier, €p may or may not be multivariate normal, one has
several options. First, one can test for joint multivariate normality
(IMVN) of yy, ¥, oo Vi along the lines of Koziol (1982). If the test
shows that joint multivariate normality is tenable, then one uses normal
theéry to make inferences concerning the total equation as described below.

/

If joint multivariate normality is not tenable, one may examine

Yr = Z§=l yj directly for normality, since lack of joint multivariate
normality does not rule out the possibility that Y is normal. If both

joint multivariate normality of the yj's (3 =1, 2, ..., k) and normality

of Y by direct examination of Z§=l yj are not tenable, then one may use non-
parametric procedures. If certain conditions are met, one may use asymp-
totic results to arrive at approximate inferences (see Arnold, 1981, sec-
tions 10.1, 10.3) when Yo is not nbrmal. This latter is not considered
further here. However the other approaches are considered briefly below.

7.1.2 Inference for Total Model when yj, Y2, ++:» ¥, are JMVN

o

When a procedure for assessing joint multivariate normality such as
Koziol's (1982) leads to the conclusion that the assumption of joint multi-

variate normality is reasonable for yi, y2, «--» Yy» one treats

Yp = Z§=l yj as multivariate normal with mean XBT and variance-covariance
matrix tT = Z§=1 tj + Iz tij' The normality of yp when yi, y2, «eer ¥

iFj



are jointly multivariate normal is a standard result in mathematical
statistics as suggested in section 7.1.

Recall that if Ej v N(9, I0§)'(j =1, 2, ..., k), then with the Ej

jointly multivariate normal, e v N($, I(Z% 62 + L Ip, 0.0)).
T =1 3 ., 13 i]
i#j
With these conditions, fitting Yp = XBT + €T directly by ordinary least
squares yields BLUE's for B., and 02 = Zk; 62 + 'L p_.0,0, in the sense
T =173 7 gy 31

of the Gauss-Markoff theorem. These estimators, denoted by éT and 02 =
MSE, respectively, are also maximum likelihood estimators. It is note-~

2 are not estimable directly from the total

worthy that the components of o
model. However, the usual analysis of variance tests for the total model
based upon the above estimates are valid and confidence intervals may be
constructed on individual components of BT and on Y essentially as
explained in chapter IV. This approach is also applicable if a direct

examination of = EF , suggests that it is normally distributed.
YT 7 *4=1 7

When e, v N(¢, Vc;) and the Ej are jointly multivariate normal, then

]
e v N(o, vz?_ 62+ £ £t ). If it is possible to write
T =1 7j vy ij
17]
VZF_ o2+ 153 t.. as V,_02 for some positive definite matrix - V_,, then it
i=1 7] 'y ij TT
J
is clear by results given in chapter IV that there exists a matrix P such

T

that VT = P;PT. Therefore, generalized least squares applied to the total

42

equation yields BLUE's which are also maximum likelihood estimators. Tests

of hypotheses concerning BT or its components can be achieved as outlined
in section 4.2 If, on the other hand, the variance-covariance matrix of
Er is simply positive semi-~definite rather than positive definite, then an
approach such as is used by Zyskind (1967) and Zyskind and Martin (1969)

may be employed for estimation and inference.



43

7.1.3 Inference for Total Model when yji, Vo, ««., ¥, are not JMVN

It has been noted above that when yj, y2, ..., v, are not jointly
multivariate normal, it is still possible that Yr = 2?;1 yj is multi-
variate normal. It has also been indicated that when Yo is multivariate
normal, then estimation and inferences relating to the total equation
fitted directly can be carried out as outlined in the preceding section.
When y1, V2, «.0) ¥, are not jointly multivariate normal and
yr = Z§¥l yj is not normal, one of the options left for inferences for the
total model is via use of nonparametric procedures. It is not the objec-
tive here to pursue the subject in detail but, for purposes of completeness,
to indicate what procedures are available and possible references. |
Randles and Wolfe (1979) give a nonparametric approach to testing the
slope in simple linear regression. Clearly, this is of limited use in our
context. However, both the estimation problem and inference procedures
for more general regression problems are considered in chapter 9 of
Hollander and Wolfe (1973). Other methods of dealing with non-normality
of_yT in estimation and inference for the total equation is to use any of
a number of so-called robust regression techniques. One such technique
is known as robust ridge regression proposed by Hogg (1979). For further
references to some of these robust regression techniques see Montgomery
and Peck (1982, section 9.3). Finally, before leaving the subject of
nonparametric approaches and how they might be applied to fitting a total
model under non-normality, it is worth mentioning two fairly novel non-
parametric methods which are applicable to regression situations. These
are the jackknife and the bootstrap. For a reference to use of the jack-
knife in regression see Miller (1974) and for application of bootstrap

techniques in regression see Efron (1979).
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7.2 The Case of X Random or Measured with Error

It is generally assumed in regression applications that the inde-
pendent variables are either fixed and known or that they are measured
without error. Indeed, in most of the development in this thesis, this
has been assumed implicitly. In such situations, only the dependent
variable y is assumed random. In many biological applications, however,
it is often the case that both y and the independent variables are random.
Alternatively, it may well be that the independent variables are in fact
fixed but are measured with error. In the following, these two possi-
bilities are considered in the light of their implication for estimation
and inference for the total model, Attention is restricted in both cases
to the situation of independent yj's. Without losing sight of the
additivity problem it will suffice here to examine the consequence for
estimation and inference on a component equation which, for simplicity,
will be referred to without the j subscript as y = XB + €.

7.2.1 The Case of X Random

Sampson (1974) distinguishes between two related regression schemes.
One scheme is that in which the independent variables are constant or
fixed, as is often assumed. He refers to this simply as regression
analysis. = The other is that in.which the independent variables are
random variables (or realizations of random variables). This latter
regression scheme is referred to as multivariate analysis of regression.
We concern ourselves in the present section with the latter scheme.
The objective here is not to provide a detailed analysis of the situation
but to highlight the effect that randomness of X may have on estimation
and inference for component model j and, hence, for the total equation.

The following is largely due to Sampson (1974).
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The multivariate analysis of regression scheme assumes that the

vector y and the vectors consisting of the columns of the matrix X form a
multivariate random variable (or a realization of a multivariate random
variable). In the present case, it will be assumed that the joint distri-
bution is multivariate normal. Denote the continuous random variable cor-
responding to the independenf variable by X (where X is p-dimensional) and
let X* be a realization of X. The random variable corresponding to the

dependent variable is denoted by y and its realization by y¥*. With a

t=
i

corresponding realizations {(yg, xi), i=1,2, ..., n} amd{zi, i=1, 2,

sample of size nv{(yi, xi), i=1,2, ..., n}, let z (yi, xz) and the
cesy N}, In the multivariate.analysis of regression, it is assumed that
for 1 < i <n, z, are independently and identically distributed according
to N(¢, t). In the multivariate.analysis of regression model, the
parameters equivalent to B and o2 in the regression analysis model are
£33 f21 and 11 - 10 453 fo1, where

til $12

} = (7.2.1.1)

\b2r fao

and $21 is p x 1. Aé stated by Sampson (1974), the justification for
the appropriateness of iE% igl és a parameter vector is that for
1<1i f_n,-E(yi - xz ¥)2 is minimized for y = i;% £51, so that
xg i;% $21 is the best linear predictor of v; in the sense of minimizing
squared error loss. . Thus, when one speaks of regression coefficients
in the multivariate analysis of regression situation, one speaks of
tg% 21« In addition, under this scheme

2(y]x = 1 = Nxrizdar, (1 - $12d23to0 D, (7.2.1.2)

where I is an identity matrix of dimension n andwk(') denotes the
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probability distribution law of the argument. The relationship between
regression analysis and (7.2.1.2) should be fairly obvious. Without
going into further technical details, we state results concerning estima-
tion and inference in multivariate analysis of regression and how they
relate to corresponding results in regression analysis with fixed or
nonrandom X,

An important result concerning estimation in multivariate analysis
of regression is that although the maximum likelihood (ML) estimators are
necessarily different from those in regression analysis (mainly because
they are defined on different sample spaces), the corresponding ML esti-
mates under the two models are exactly the same. Thus estimation under
the two model formulations is the same. However, Sampson (1974) shows
that for testing hypotheses in the two situations, the power functions
are different. This is a significant result in that it stresses the
importance of using a correct model in order to obtain tests with the
correct power, This result is of considerable relevance in the present
and other biological applications where X may in fact be random rather
than fixed as is often assumed in regression situations. The implication
for additivity is that testing is obviously affected by randomness of X
but not estimation.

7.2.2 The Case when X is Measured with Error

. In regression situations where the independent variables may reason-
ably be considered fixed, it is conceivable that an error may be intro-
duced when measuring X at its fixed value. It is noteworthy that this
problem is not necessarily the same as that of random X unless further
assumptions are made about both X and y. The main objective here is to

demonstrate the effect upon estimation and inference when X is measured
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with error. For simplicity, restrict attention to the simple linear
regression model

y =8p +B1X+ ¢, (7.2.2.1)
where it is assumed that e ~ N(O,oze) and cov(ei, ej) =0 for i # j. Now
if X is measured with error, one does not observe X directly but rather
observes |

X'=X+§6 (7.2.2.2)
where X is the true value of X and § is a measurement error. Suppose that
§ ~ N(O,czé), X M‘N(ux, c%) and that e, 6§, and X are independent. Then Y
and X' follow a bivariate normal distribution (Snedecor and Cochran, 1973)
and the regression of Y on X' is linear with regression coefficient

Bl = B1/(1 + 1), (7.2.2.3)
where A = ci/o%. Thus it is the case that when X is measured with error,
our least squares estimate of the regression of Y on X is biased in that it
underestimates the true regression coefficient from fitting Y on X. When
X is not normal, the above result holds in large samples and holds approxi-
mately in small samples if A is small (see Snedecor and Cochran, 1973).
Inferences concerning y or the regression coefficient are valid if X is
measured with error provided that e, §, and the true X are approximately
normal. However, predictions of y are less precise because of the
increase in residuals as a result of errors in X.

The results given above have some relevance in the additivity problem.

More importantly, they point to the need for a proper regression approach
if proper estimates and inferences are to be made. For other aspects of

this problem see Wald (1940), Berkson (1950), and Madansky (1959).
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7.3 Other General Complements

In more general applications of the general linear model, it is
not uncommon that the matrix X is not of full column rank. Suppose,
first, that Ej ~ N(o, Iog). Observe that X'X is singular and, tﬁerefore,
a unique solution does not exist for the least squares problem. An
optimal solution is obtainable, however, by using the well-known concept
of a generalized inverse. Let us begin by considering a particular
generalized inverse, one commonly referred to as the Moore-Penrose inverse
(Moore,1920; Penrose, 1955) but also often called the pseudo-inverse
or, simply, p-inverse. Attention is restricted to real X throughout;
but first some definitions are in order, given here as theorems.

Theotem 1. Suppose X is a real n x (p+.1) matrix with

rank (X) =r < p+ 1. Then the (p + 1) x (p + 1) matrix XX has exactly
r positive eigenvalueseaX% 2 A% 2 ... 2 Xi > 0 plus the zero eigenvalue
with multiplicity p + 1 - r.

The next theorem-. is based on a well-known theorem in matrix
algebra called the Singélar-Value Decomposition theorem.

Theorem 2. With X satisfying theorem 1, one can always
find an n x n orthogonal matrix U and a (p + 1) x (p + 1) orthogonal
matrix G such that A = UtXG and X = UAGt with A the n x (p + 1) matrix

D ¢
¢ 0
where D is an r x r diagonal matrix with ith diagonal element
dii = Ai >0 for 1 £ 1< r. The expression of X in the form
X = UAG® is termed the singular-value decomposition of X.
One must remark that U and G in the above theorem are not neces-

sarily unique. The real importance of theorem 2 1s that a decomposition
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of the matrix X exists, a result which leads to definition of the Moore-
Penrose inverse as follows.

Theorem 3. If, from the n x (p + 1) matrix A of theorem
2, one defines.A+ as the (p + 1) x n matrix
-1
+ [P ¢
A= ’
1) )

then the Moore-Penrose inverse (pseudo-inverse) of the matrix X is given

by
X' = on'ut,

where G and U are as specified in theorem 2.

With X' defined as above, an.optimal least squares solution for
a model of the formy = XB + ¢ 1is given by
B =x'y. (7.2.1)
Pertaining to the additivity problem of the discourse, result (7.2.1)
implies that

éj = x7y. (7.2.2)

for component equation j (j =1, 2, ..., k) with
B =15 B, (7.2.3)

for the total model. Note that inference theory relating to the total

model as discussed elsewhere in the thesis$ now incorporates X+ in an

obvious way. Note, for instance, that when ej n N(o, IOE), it is the

case that the covariance matrix of éT is given by
+ +t _k o2

ié =X X I

._, O (7.2.4)
= ’
T i=1 7]

a result which can be derived easily from (7.2.2) and (7.2.3).
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~

When yj v N(¢, Vog), using our usual transformation, Bj is given by

B.o=x Ty " (7.2.5)
j Y3 il
so that

A Rk *

BT =X Zj=1 yj . (7.2.6)

*
In (7.2.5) and (7.2.6), X + is the Moore-Penrose inverse of
* ty-1 * ty -1 . . .
X =(P°) X and vy = (") Yy Again, the incorporation of these
results in inference theory is a straightforward exercise and is omitted

. . *+
here. However, some remarks are in order with respect to xt (or X' ).

First, it is noteworthy that although U and G are not necessarily unique

in the decomposition of X given by theorem 2, the Moore-Penrose 1inverse
+ Lo SN . . . ’
X (or X ') 1is unique. Therefore, different U and G will lead to the

+ . . N . .
same X and, hence, the same optimal solution B. It was mentioned earlier

that when X is not of full column rank, there is no unique solution to
the least squares problem of fitting y = X8 + ¢ or its corresponding
transform. While this is so, it is remarkable that the solution (7.2.1)
or its transformed version is optimal in the sense that it is the only
solutioh giving least 2-norm; that is, it is the best solution to the
least squares problem. When X is square and nonsingular, then

X+ = X_l, the unique inverse of X. Finally, it is important to mention
that the real practical usefulness of X+ hinges upon the easevwith which
it can be determined in any one problem. It turns out that X+ is rela-
tively easy to compute‘when X has a few columns. However, the task

of computing X+ becomes increasingly more difficult with an increasing
number of columns in X. Since many practical problems tend to involve
an X matrix with a fairly large number of columns (especially in classi-

. + . .
ficatory models), the use of X often presents a computational barrier.

Largely because of this, a more general (weaker) generalized inverse
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is used in many singular situations. The following is only an introduction
to this type of inverse. For more complete treatments, see Searle (1971)
and Rao and Mitra (1966).

The Moore-Penrose inverse described above satisfies the following
conditions:

(i) xx+x =X

Gi)  xxxt =xt

(7.2.7)
(i) &0t = xtx
(iv) xxHt = xxt.

If one defines a matrix X' satisfying only condition (i) in (7.2.7),
that is satisfying XXTX = X, then X+ is termed a generalized inverse
of X (see Searle, 1971). Unlike X+, the Moore-Penrose inverse, X-r is
not unique. However, XJr is considerably easier to compute tﬁan X+.
Furthermore, any X-r has the property that it generates all possible solutions
relating to any given estimation problem and these solutions are invariant
under affine transformations. The latter property is of value with
regard to estimation and inference for linear functions of the parameters
in a given problem. It should be pointed out that X+ enters into inference
theory in much the same way that the Moore-Penrose inverse does. Further
details relating to the use of X+ are omitted here as they can be found
elsewhere (e.g., Searle, 1971; Rao and Mitra, 1971).

Most_of the results presented so far are based upon the assumption
that whenever Ej v N(¢, Vo?), then V is positive definite and known.
While this is coﬁmonly true and lends itself to fairly straightforward
mathematical manipulations, there are instances in which V is not neces-
sarily positive definite. In addition, the elements of V may be unknown.

The general approach is indicated here for the case where V is
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nonnegative definite and known. The case of V unknown is considerably
more difficult.

As was the case when X was not of full column rank, the concept

of the generalized inverse is employed when dealing with models where
V is not positive definite. In the general case, a solution for model j
(=1, 2, ..., k) would be given by

éj = v Xty (7.2.8)
where V+ is any generalized inverse of V. Corresponding results for
additivity and the associated inference problem generally correspond
to those presented earlier with the obvious modification that V+ is used
in place of V—l. Other details are given in Searle (1971, section 5.8)

while another fairly instructive approach is given by Zyskind (1967)

and Zyskind and Martin (1969).



CHAPTER VIII
8.0 SOME EXTENSIONS OF THE THEORY

It is well-known that data sets generated under experimental condi-
tions according to a predetermined design model can be analysed using
the general regression approach. Indeed, although the conventional anal-
ysis of variance approach is used in analysing most such data sets, the
general regression approach often represents the most efficient and, at
times, the only exact method of analysis, especially for unbalanced situa-
tions. In view of this link between regression analysis and conventional
analysis of variance, it is reasonable to ask whether the problem of addit-
ivity, as defined here, cannot be envisaged within the context of classi-
ficatory models. It is shown, in this chapter, that an extension of
thg additivity problem to classificatory models is not only theoretically
plausible but also makes sense in some practical situations. Secondly,
in view of the growing interest in the use of nonlinear models in many
branches of applied biology, it ié of interest to investigate the extent
to which the éoncept of additivity, as understood here, can be expected
to hold in nonlinear situations. In a forestry context, such an investi-
gation has an.important bearing upon the determination of total volume
or weight biomass of individual trees from corresponding component biomass
using any of the well-known nonlinear models, such as the Chapman-Richards

function. The main thrust of the development in this chapter will,
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then, be directed towards establishing the extent to which the theory
of additivity, as developed in chapters IV, V, and VI, applies to classi-
ficatory and nonlinear models.

8.1 Extension to Classificatory Models

A theoretical justification for the extension of the theory of addi-
tivity to classificatory models is based upon the fact that any classifi-
catory model can be equivalently expressed in linear regression form.

A special feature to note about such a model is that the incidence matrix,
otherwise known as the design matrix, is, in general, not of full column
rank. Therefore, no unique solution exists for the estimation problem
using least squares. Hence, one either uses the unique Moore-Penrose
inverse to obtain an optimal solution or uses a generalized inverse to
arfive at a solution. As indicated elsewhere in the discourse, the deci-
sion to use the Moore-Penrose inverse or a generalized inverse will depend
upon considerations of computational efficiency. Furthermore, the incor-
poration_pf results from the estimation problem into inference involves
the simple substitution of expressions involving the appropri;te general-
ized inverse into statistics derived in earlier chapters. To indicate
the practicality of the additivity problem in the context of a classifi-
catory model, we describe below how such a problem might arise in practice.
We draw our example from the field of agriculture.

For simplicity, consider a controlled field crop experiment involv-
ing a treatments, each replicated n times. It is a simple matter to
recognize the design here as a completely randomized design. We shall
suppose that the leaf. component of the biomass of the crop under investi-
gation is used for human consumption as a vegetable. Further, suppose

that the floral component of the crop is used as a different type of
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vegetable food. Next, suppose that the seed component is used as another
type of food while the remaining unusable above-ground part of the plant
is burned as a fuel. If one 1is intefested in the effect of treatment
upon the accumulation of biomass (on a green weight basis) in component

j (3 =1, 2, 3, 4) and the corresponding effect on total biomass accumula-
tion (resulting from adding the four components), then one has the follow-
ing problem. Designate the observed biomass of the jth component corres-
ponding to the rth replicate by yijr i=1,2, ..., a; j=1,2, 3, 4;

r=1, 2, ..., n). Then one would be interested in models of the form

.. = W, .. + e.. .1.
Yijr M + i3 ElJr (8.1.1)
and
y
. = I. .. = .o te., .1.
Yitr Z_]=1 y1Jr Mr * i T fiTre (8.1.2)
with appropriate assumptions on the errors. Note that by using an approp-

riate incidence matrix X, one may write (8.1.1) and (8.1.2), respectively,

in matrix form as

<
1}

xej + €; (G =1, 2, 3, 4 (8.1.3)
and
= w4 -
Yo = Zj=1 y5 X0, + eq- . (8.1.4)
t .
We remark that 6. = (H.,T,. Tn:.» ««+5 T_.) while
i Fittiye T2 aj
_ t . .
eT = (uT, Tip Tops =o+» TaT) . . Clearly, the estimation and inference
theory presented elsewhere in this thesis can be applied to (8.1.3) and
(8.1.4) subject only to the proviso that a generalized inverse or the
. . . toy—1 t,~l,\"1

Moore-Penrose inverse is used in place of (X'X) ~ or (X'V "X) ~. The
regression formulation (8.1.3) and (8.1.4) of the analysis of variance
models (8.1.1) and (8.1.2) makes it especially easy to estimate ej sub—

ject to the condition that certain of its components are equal to zero.

Furthermore, there is no reason why the additivity concept cannot be
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applied to more complicated classificatory models such as the randomized
complete block design, Latin square design, and other designs since, in
each case, one can write the corresponding models in linear regression
form. This demonstrates that the extension of the notion of additivity
of component regression equations to classificatory models is not only
theoretically plausible but also appears to make sense in practice.

8.2 Extension to Nonlinear Models

A definition was given in chapter II for a regression model in generai
and for a linear regression model in particular. From those definitions,
it follows that any regression model r* & R* satisfying R* ¢ L is a non-
linear regression model. Recall that L was defined in chapter II as
the set of all linear regression models. Conventionally, nonlinear re-
gression models are divided into two groups, namely the class of nonlinear
regression models that can be made linear by applying an appropriate trans-
formation to the nonlinear model and the class of nonlinear regression
models for which there exists no known linearizing transformation. The
two types of noﬁlinear regression models are generally referred to in
thé literature as intrinsically linear and intrinsically nonlinear,
respectively (see Draper and Smith, 1981). The main objective in this
section is to investigate whether the notion of additivity does make sense
for these two types of nonlinear models.

We consider models of the form

y. = £(X, B.) + €. G=1, 2, ..., k) (8.2.1)
i j i
and
=Xy = FX, B +e (8.2.2)
Y T ti=1 73 > B T" e

Attention is directed here toward discovering the extent to which model

(8.2.2) is arithmetically determined by the models specified in (8.2.1).
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For purposes of simplicity, we restrict detailed analysis to two types

of nonlinear models, namely

«
]
™
o
m
7~
[
I
—
N
~
4

(8.2.3)

and

¥; = Bo; e I+ 5 G =1, 2, ..., k). (8.2.4)
Note that models specified by (8.2.3) are intrinsically linear, so that
for purposes of estimation, one may transform them to linear form using
a logarithmic transformation. This leads to

2n y; = zn(eoj) + Ble + ¢n €; G=1,2, ..., k) (8.2.5)
or simply
t 8 X+ ej* (G =1, 2, .., k). (8.2.6)
On the other hand, models specified by (8.2.4) cannot be so transformed
technically although the first member of the expression on the right of
thié model is linearizable. Indeed, (8.2.4) specifies the more simple
forms of an intrinsically nonlinear model.

Now consider fitting the linearized form of (8.2.3) and suppose
one is interested in this linearized form for prediction purposes. If,
in addition, one is interested in the predictive equation for the sum
of the transfofmed form of the components, then the parameters of the

latter model are determined by additivity from the component models. This

is the case since we have

* _ K x _ oK * *
e R L S R R E L
k % k k %
= z. o+ (T DX+ I, €.
j=1 6OJ j=1 B1J 3=l 73
_ * *
= BOT + BlTX + Ep - (8.2.7)

Thus, as in the ordinary model, additivity holds here as long as the variable

of interest is the transformed version of the dependent variable yj.
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Kozak (1970) made this point in his paper and, therefore, it is not new.

Suppose, on the other hand, that one is

nonlinear form as a predictive equation.

tion is only an intermediate step aimed
of estimation. Note that in this case

from the linearized equation would need

being inserted in a nonlinear predictive equation.

fitted analogue of (8.2.7) were desired,

really interested in the original
In this case, the lineariza-
largely at simplifying the process
some of the parameters estimated
to be further transformed before
if the nonlinear

Now,

note that using additivity one

would need to back-transform the expression

~ % _ Kk ~~ _ /k S k
ypo= Iy iy, = @ Bo; * (zj=1 slj)x (8.2.8)
to obtain
k- k 4 (Z?=1 150X
Vr = Hj=1 v, o= (Hj»=1 Boj)e
B..X
. S A 1j
= Hj=1 [BOj e ]. (8.2.9)

The result in (8.2.9) warrants some comment.

of such comments is the following.

Perhaps the most important

If one is interested in predicting

total biomass, say, as a sum of the components yj using a model of the

form (8.2.3), then one must not do so by invoking additivity of the trans-

formed version of (8.2.3) and then re-transform (that is, back-transform).

If one does so, then one gets an equation which predicts the product of

the components rather than their sum.
predictive equation.

of a modelling situation.

In a nutshell, one gets the wrong

Herein lies the real virtue of a proper analysis

Thus for models of the form (8.2.3), a total

predictive equation of the same form cannot be determined from additivity

of the parameters of the transformed component equations.

It may be

determined at least arithmetically, however, as a simple sum of the

corresponding fitted nonlinear component equations, though the predictive
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merits of such an equation ﬁay be debatable.

With respect to models of the form (8.2.4), it has been indicated
that such models do not admit transformation to linear form. Therefore,
the parameters would be estimated using any of a number of known iterative
search techniques. As with models of the form (8.2.3), howevef, a pre-
dictive total equation cannot be obtained here by appealing to the addit-
ivity property since the parameters of the total predictive equation cannot
be determined by adding corresponding parameters in the component equations.
However, if simple prediction was the objective, then a predictive total
equation may be obtained by simply adding up the predictive component
equations. Once again, the predictive usefulness of such a model is
1afge1y an open question.

The foregoing discussion indiéates that the additivity property,
which holds almost universally for linear models, does not carry over,
in general, to the class of nonlinear models. This precludes, for instance,
the use of the notion of additivity in inventory and/or biomass studies if

nonlinear models are used for prediction.



CHAPTER IX
9.0 COMPUTATIONAL CONSIDERATIONS

We have attempted to present, in preceding chapters, a theory of
estimation and inference for the additivity problem and to indicate general-
izations and extensions to other types of models. The essential objective
of the discourse has been to present the additivity problem as perceived
here within the general framework of iinear model theory. One hopes
that this objective has been achieved to a large extent. However, our
derivation of expressions for estimators and associated statistics, parti-
ularly in chapter V, leaves one important question largely unanswered.

This question is: Does the conditioning principle introduced to handle
the additivity problem in general call for new computing subroutines

or algorithms in order to obtain estimates and other statistics? We
shéw, in this chapter, that no such subroutines or algorithms are required.
All estimates and associated statistics can be computed using existing
system-based software such as is provided by the various statistical
packages. Examples of such packages are MIDAS (The Michigan Interactive
Data Analysis System, The University of Michigan, Ann Arbor, Michigan),
BMDP (Biomedical computer programmes P-series, University of California
Press, Los Angeles, California), SAS (Statistical Analysis System, SAS
Institute, Raleigh, North Carolina), and SPSS (Statistical Package for

the Social Sciences, McGraw-Hill Inc., New York). At computing
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installations where SAS is not available, BMDP is perhaps the most commend-
able package to use mainly because it has options for generating diagnostic
plots and other information valuable in model choice and validation.

To motivate the derivation of the main result of this chapter,
consider the estimation problem aséociated with fitting component equation
j (=1, 2, ..., k) as presented in chapter V. More specifically,
recall that in fitting equation j, where equation j contains only statis-

tically important independent variables, the estimator for Bj* is given by

R ¢
B .* = , (9.0.1)
J R S S 13
Py P3S4 Y
where b and ﬂ are given by the partition
3 3 -
b
. % '
B. = , (9.0.2)
] b
P3

of éj obtained from fitting the full model (with all independent variables)

while T and T are obtained from a corresponding partitioning
3% 3%

of‘(XtX)_1 in the form

T T
e | Y 4P
X°x) ~ = . (9.0.3)
T T
quj Pij

With a corresponding partitioning of the X matrix in the form

X= (X |X ), the result in (9.0.1) is given equivalently by (see
1 Py
equation (5.1.18) in chapter V)

¢

. Tp.q. q.q _1Tq p )X; Y
PiP5 P393 3% 93P P

] (9.0.4)
- (T
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Consider now fitting yj on the set Xp only (i.e., so that the

3
coefficients of the components of Xq are set identically equal to zero).
3
It is shown below that the estimator B; , say, from the latter fit is

3
precisely equal to the non-null part of éf* in (9.0.4). Hence éj* is
completely specified by simply fitting yj on the set X . The conse-
P3
quence of this result is that no special algorithm is necessary to obtain
éj* beyond those already available on standard statistical packages.
We demonstrate this result formally by stating and proving the following

theoren.

Theorem: Let y = {X1, Xo, ...; X 1} be a set of predictor variables

and consider fitting the linear model (with intercept)

. = XB + g,
73 i 3
subject to a subset b of B, of order q, being equal to the zero vector.
| qj J J
Here X = (Xg|X1| .o IXm_l) is an n x m (n > m) matrix of full column
rank and we assume, as usual, that Ej v N(¢, Ic§). Denote the solution

from fitting this constrained model by éj*. Now partition X so that

X= (X ]X ) for ¢ +p. =m, 0 < q, < m in accordance with the con~-
straining of Bj so that

Xt x xx \7 /T o Toop
e -1 i % 3 P 3% 373
(X% = " N = .
X X X X Tp q T >
Py 95 Py Py ity PyPy
Then éj* is given by
R ¢
B'* =
] (T T Lo yxty /.
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Furthermore, if Bp * is the solution from fitting yj on the set X
i P3
(that is, ignoring Xq ), then
3

T byl
495 4P P7d

b %= (T _ -T
P I, i R

P.P q T
P %5 Pi%

We prove the above theorem by utilizing a well-known theorem in
linear algebra concerniﬁg the inverse of a partitioned matrix. This
theorem is stated here as a lemma, without proof, and we refer the reader
to Graybill (1976, p. 19) or any standard text in 1inear.algebra for a
proof.

Lemma ; Let W be an n X n nonsingular matrix that is partitioned as
follows:

W11 Wi2

W21 W2z
where wij has size n, % nj for i, j =1, 2 (n; +np =n, 0 < ni < n).

If |W11| # 0 and |Wp2| # 0, then W_l is given by

- -1 - - -1
1 [Wy1-WioWoo lel] Wy 1W12[W22-W21W11 lW1z]
W™ = .
- - -1 - -1
22" 1 (W1 Wy oWop W1 ] [W2p—W21W11 Wy, ]
Proof of Theorem: The expression for éj* given in the theorem follows

from Searle (1971, pp. 113-114), as demonstrated earlier in the thesis.
It remains to show that the second part of the theorem holds.
With (XtX) partitioned as in the theorem and using the above lemma,

it follows that
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T " [xfl X - x: X (x; X y gt x 17t
i3 i 9 jpj iP5 P Yy
T o =—(x X, y~1 X X [x X -xt X (xflx )'1x:'1x 1t
94P5 95 95 j Py P3Py Py 9y 959 i Pj
T o " “Fx Yy x ot x -xtox (x" x )'1x; x 171
3% P; Py Py 9y 93 9 93 Py Py Py i
T, [x; X <t x of x )it X
i3 5 P35 P393 9359 93 Py

Note that the existence of (Xt,X )—1 and (Xt X )_1 follows from
z 9. . P.
1 7] N
the fact that X is of full column rank. Note also that the solution

Bp * obtained from fitting y, on the set X must also be given by
j . P3
b * = (Xt X )_1Xt Y. .

Pj Pj Pj Pj 3

Therefore, to complete the proof of the theorem, we need only show that
-1

(T . =T q T q T P Y = (Xt X )_1. To this end, note that
PsP5 P393 9395 95P; Py Pj
T, - T q'J:q’lrp=[xtxp-xtx(xtx)’1xtxp]'l
PiPy P39y 9495 945Py ijqujqjqj 95 Py
—{(XX)
. pq
J J 3
[xtx-xtxp (xx)qu]—l
LA T A T R A
-[X:x—xx(xx) pq](Xx)
j-%5 935 Py Py Py i % Uy

Xt x -xt x (qu )1:xp]'1}
Pjpj pJJ JJ |

P.
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-1

[x; X -x" X (x: X ) X X, 1t

3P P3 % %59 YRy

St x I x of x )7t x
I MO A AN

_l}

[ 81

[x; X —x; X, (xt X, e S
i Py P39y Y 9 94 Py

[1-(xt X
PP

y It x o x )7t ox ]
. P. q. qg. q.

A I 95 pj

[

-1

rt

[x; X -X X (x: X )'1xz xp ]
i P;3 P393 9 9 i Pj
(x; X )“l[x; x x*x (Ffx )“lx: X ]

i Pj iP5 P39 939 i Y
-1

k=)

[x; X -Xt X
iP5 Py 95 9 9

<x; X L,
i3

f x Y x ]
4. %q 4P

which is what we set out to show. Q.E.D.

Thus, we have established by the above theorem that the esfimation
problem associated with the generalized additivity problem as developed
in chapter V does not require that new computing algorithms be developed
to obtain estimates and related statistics. One simply fits a model
containing what are construed to be statistically impoftant independent
variables, The parameter estimate corresponding to such a fit can then
be augmented to the corresponding estimate for a full model constrained
so that the unimportant independent variables have coefficients of zero.
The virtue of the estimator of the parameter vector for component equation
j(G=1, 2, «v., k) given in chapter V is that it is of appropriate
size for additivity. However, whether éj* is obtained directly as in
chapter V or indirectly by fitting a subset Xp. and then augmenting the

, J

resulting estimator, its components may need to be permuted before invoking

. additivity to obtain the estimator for the corresponding total equation.
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A

Such permuting ensures that appropriate components of Bj =1, 2,
., k) are added to obtain éTC'
Finally, the theorem proved above is based upon the distributional
assumption Ej N N(d, Io;). Clearly, obvious modifications in the
theorem would make it hold for the case € v N(4, Vo?) for V positive

definite. Other generalizations are also possible.



CHAPTER X
10.0 SOME ILLUSTRATIVE EXAMPLES

In this chapter, some examples are given that illustrate the applica-
tion of the theory presented in the discourse. First, however, a some-
what detailed analysis is given aimed at assessing the tenacity of the

assumption of multivariate normality of Yo = yj for each of three

o
data sets. As was stated in chapter VII, the usuél inferences for the
total model depend critically upon the assumption that yp = Z?=l yj is

multivariate normal. Since there is no prior Rnowledge that the assump-
tion holds, it is necessary to assess for multivariate normality in order

to more appropriately qualify any inference statements in the examples.

10.1 Assessing Multivariate Normality of Y

Koziol's (1982) method for assessing joint multivariate normality of
the components yj, Vo, ..., ¥y was used on three data sets. The first of
these data sets is that used by Kozak (1970) to illustrate the additivity
result presented in his paper. The second data set is British Columbia
coastal western hemlock data used by Kurucz (1969). The third data set
is western hemlock data from various parts of British Columbia and was
obtained from the ENFOR project (Williams, 1983, personal communication).
Note that ENFOR is an acronym for ENergy from FORests.

Koziol's (1982) method for assessing multivariate normality is based
upon a Cramér-von Mises type statistic Jn’ which is computed as follows:
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1. Given X1, X3, ¢+ Xn are random k-dimensional vectors, calculate
X = (X1, iz, oo ik)t and S. Here S is the sample variance-
covariance matrix of the n vectors and is k x k.
2. Calculate the sample Mahalanobis squared distances Y1, Yo, ..., Y
defined by
Y, = (X, - X)'S
3. Put Zi = F(k) (Yi)’ i=1, 2, ..., n and order the Zi in ascending
< Z

(1) = Z(2) £ ... S

the area under the chi-square density function with k degrees of

order so .that Z ()" F(k) (Yi) here denotes

freedom between the limits of zero and Yi (i.e.,

F(k) (Yi) = Pr [Y = Yi]).

4, Calculate Jn using

3 = - G- Y%)/n]? + (Q2m) .

i=1

[ =]

(1)

Note that with three components, k is equal to three in our case.
The three data sets are reproduced in Appendix I (a,b,c). The first
two of the data sets in the appendix are reported in imperial units,
while the third data set is given in metric units. However all analyses
reported in this dissertation were carried out in metric units.

Before presenting details of the test for joint multivariate nor-
mality of the yj's, it is worth pointing out some technical considerations
which simplify considerably the computation of the Koziol statistic Jn.

In partiéular, this simplifies the computational formula for the
sample Mahalanobis squared distances Yi (i=1, 2, ..., n). Observe
that the joint distribution of the yj's'in this case is conditional upon
the independent variables (the X's). As a result of this and based

upon the notion that the regression of yj on the X is important (signifi-

cant), the sample Mahalanobis squared distances are given by
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_ A ot-1 .

or by
v, = et 57,
1 1

where y, -y, = ¢, = (y,, - ¥ Voo = cees Yoo = ¥ )t and
i i i il i1’ 7i2 i2°’ > 74k ik

-1 st N A A oA , ,
S=(n-1) ce (note that £ = (el,ez,eg)t). The distinction between

Yi and A must be borne in mind here. The residual vectors used in
computing Yi above are those obtained from fitting component equations
using only statistically significant independent variables for each data
set. These equations are those used to obtain conditioned total predic-
tive equations in examples 1, 2, and 3 that follow. It should be empha-

sized that a test for multivariate normality of €1, €2, is

s €y

equivalent here to a test for multivariate normality of yi1, Y2, ---» Yo

Thus if €1, €25 .-.s &, are jointly multivariate normal, one can speak

k

of the multivariate normality of yi1, V25 ««+» yk and hence of ¢,, and yT.

T
In computing the statistic Jn for each data set, an APL programme
was used to calculate the Yi as specified above using an IBM 5100 Portable
Computer. This computer is located in the Mathematics Annex at the
University of British Columbia. APL is an extremely efficient language
when one is dealing with matrix computations. The computation of the

chi-square probabilities in step 3 was achieved by calling the IMSL

(International Mathematical
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and Statistical Libraries) subroutine MDCH which computes cumulative chi-
square probabilities. A short fortran programme was written to call
MDCH (see Appendix Id, PROGRAMME 1). Note that although DF in programme
1 is specified as 2.0, DF = 3.0 for the first part of this assessment
problem. Finally, the ordered chi-square probabilities from step 3 were
used in another fortran programme to calculate Jn (see PROGRAMME 2 in
Appendix Id). The results of Koziol's (1982) test on the three data
sets are summarized in Table 1 below.

Table 1. Results of Koziol's (1982) test for multivariate
normality on three data sets

Data Set Sample DF  Computed Koziol

Size Statistic (Jn) p-value
Kozak (1970) 10 3.0 0.05799 > 0.15
Kurucz (1969) 18 3.0 0.86078 < 0.01
ENFOR 48 3.0 4.27682 <<0.01

The p-values in Table 1 are obtained by comparison with Koziol's
Table 1 (Koziol, 1982). It is to be emphasized that due to small sample
sizes associated with Kozak's (1970) and Kurucz's (1969) data, our p-
values may be somewhat off.. However, on the basis of these results, the
assumption of joint multivariate normality will be entertained for Kozak's
data but not for the other two data sets. Note that this conclusion is
quite reasonable for the ENFOR data because of the moderate (n = 48)
sample size.

In view of the above results (ignoring the small sample sizes in the
first two data sets) it is reasonable to expect tha£ Yo is multivariate

normal for Kozak's data since it is reasonable that y;, ys, y3 are jointly
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multivariate normal in this data set. On the other hand, the above
results suggest only that for the two other data sets yo may or may not be
normal, since it is possible for Yo to be multivariate normal even when
Y1, ¥2, ¥3 are not jointly multivariate normal.

For both the Kurucz (1969) and ENFOR data, it was considered of some
interest to check for joint bivariate normality of the yj's. Accordingly,
Koziol's test for multivariate normality was applied to pair-wise yj's;
thus three tests were performed on each data set. The results are sum-

marized in Table 2 below.

Table 2. Results of Koziol's test for bivariate normality

Koziol's
Sample Computed
DF Size Statistic (Jn) p-value

Kurucz's (1969) data

(€1, €2) 2.0 18 0.8484 <0.01

€1, £3) 2.0 18 0.5023 <0.01

(€Ey, €3) 2.0 18 0.6873 <0.01
ENFOR data

(€1, €2) 2.0 48 5.4432 <<0.01

(€1, €3) 2.0 48 3.7356 <<0.01

€z, €3) 2.0 48 3.1189° <<0.01

The results in Table 2 indicate that the assumption of joint bivari-
ate normality is rejected essentially in every case. This result is not
unexpected since, having rejected trivariate normality, one expeets. that
bivariate normality should fail to obtain in at least one of the three
cases. It is also probably adequate to check bivariate normality and

reject trivariate normality the first time bivariate normality fails to
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hold.

It has been shown so far that joint multivariate normality of
V1, Y2, y¥3 does not appear to hold for the Kurucz (1969) and ENFOR data
while multivariate normality wiil be entertained for the Kozak (1970)
data. It should be emphasized again that, in general, one should be
more cautious in accepting multivariate normality for the Kozak data
because of the very small sample size. However, for purposes of the
_examples to follow, multivariate normality will be entertained. Once
again, it is reasonable then to assume Yo multivariate normal for the
Kozak data. However, one is unable to decide whether or not Yo is multi-
variate normal for the Kurucz and ENFOR data. A direct examination of

the behaviour of yp = Zk

j=1 yj is necessary to make a judgement concerning

its normality or non-normality.

One way in which information can be obtained concerning the multi-
variate normality or lack of it fof Yp = 2?21 yj is to fit the component
models and investigate the behaviour of the empirical distribution of
- k

8 =

T 2j=1 Ej' This can be achieved, in part, by plotting a histogram

of ET or a normal probability plot of ET’ Unfortunately, these proce-
dures require large enough sample sizes in order for the plots to be
reasonably interpretable. Largely because of this, it was possible to
examine such plots in this study only for the ENFOR data because of its
moderate sample size (n = 48). The Kurucz data were obviously too small
to be examined by this procedure.

Three component models were fitted using the ENFOR data. Bole
biomass was regressed on D2H and DCL, where D denotes diameter at breast-

height, H denotes height, and CL crown length. Bark biomass was regressed

on D°H and HCL and crown biomass was regressed on DCL and HCL. The
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residuals from these fitted component equations were added up and a histo-
gram and normal probability plot constructed using the BMDP P:5D subroutine.
If the histogram of éT looks sufficiently bell-shaped, it is reasonable
to conclude that Y is normal. Similarly, normality of Y would be
suggested by a sufficiently linear normal probability plot. The plots

are given in Appendix II(a,b) and both suggest that ¢,, and hence Y is

T
normal for the ENFOR data.

Based upon results of this section, we can pfoceed as though Yo
were multivariate normal for the Kozak and ENFOR data bﬁt are unable
to say whether Y is multivariate normal or not for the Kurucz data.
10.2 Example 1

In this section, the data given gy Kozak (1970) are used to apply
additivity theory as pfesented in chapters IV and V of this thesis. As
indicated earlier, though the data are reproduced in the appendix in
imperial units, all calculations here are in metric units. It is further
assumed throughout that the biomass components are independent. Admit-
tedly, this may be a tenuous assumption; however, we use it largely
for>purposes of demonstrating the application of the theory. For the
effect of dependence on estimation and inference see the discussion in
chapter VII. Let us assume further that ej v N(g, 103).

First; consider fitting the component equations using both diameter
and the square of diameter as independent variables. Recall that this

is the case considered by Kozak (1970). Then the fitted component equa-

tions are given by
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91 = 131.39 - 19.037X + 0.95195%%, R? = 0.9923

$, = -1.12 + 0.205X + 0.02980x%2, R2 = 0.9965

§3 = -13.08 +.l.136x + 0.08361X2, R? = 0.9605.
The corresponding total fitted equation is

yp = 117.19 - 17.696X + 1.06540%2, R2 = 0.9948.

One can check easily that the coefficients of the total equation are
obtained by adding corresponding coefficients of the fitted component
equations, aé Kozak (1970) demonstrated. The regression sum of sﬁuares
for the total equation is 289060, to five-digit accuracy, and given that
XtyT = (2300.6, 56183, 1448300)t, one can check easily that this is the
result one obtains using additivity and equation (4.2.6) of the thesis.

Next, Kozak (1970) reports that when only stafistically significant
(important) independent variables are used in fitting the component equa-
tions, the first equation (¥j) involves both X and X2, the second (yj)

only X2, and the last (y3) only Xz.also. The metric analogues of

Kozak's specification of these fitted equations are

$1 = 131.39 - 19.037X + 0.95195%%, R? = 0.9923
¥, = 0.822 + 0.03471x2, R2 = 0.9962
y3 = -2.342 + 0.11079%2, R2 = 0.9588.

In accordance with the extension of the concept of additivity as
developed in chapter V, there is a total equation determined by additivity
of the coefficients of the preceding equations. In fact, this equation
is given by

§TC = 129.87 - 19.037X + 1.09745%2.
The sum of squares regression for this conditioned total equation is given
by

At _t =2
BrcX Yo — Mg

818660 - 531860.4564

286799.5436.
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Since the total corrected sum of squares is 290580, it follows that R?
corresponding to the total conditioned equation is givén by

R? = 0.9870.
It is worth remarking that in terms of ﬁz, this model fits the data almost
as well as the unrestricted total model, with an R2 of 0.9948. Other
aspects of this problem, including computational details, are provided in
a more detailed example in Appendix III.

In connection with this problem and related problems concerning
additivity, the question naturally arises whether the variables in the
conditioned total equation remain statistically significant after being
incorporated into the total cohditioned equation. The answer appears
to be that they would be statistically significant if the variables in the
conditioned component equations are not very highly correlated. However,
this may not be the case if the variables are highly correlated. It
should be pointed out that this has not been checked thoroughly and, thus,
should be viewed here as largely a conjecture. For the Kozak data, how-
ever, the contribution to the total conditioned equation of each variable
waé checked by computing the increase in residual sum of squares when a
particular variable is omitted from the total conditioned equation. The
following partial F-values were calculated:

F, = 96.27, F

< = 15,64

x2
The degrees of freedom for these partial F values are 1 and 7, respectively.

It is clear from these results that both diameter at breast height and its

square are statistically important in the total conditioned equation.
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10.3 Example 2

In this example, use is made of the western hemlock data from
coastal British Columbia to go through the basic computational results
as in the previous example. These data were used by Kurucz (1969) and
are given in Appendix I(b). |

First it should be noted that, as discussed in section 10.1, it
has not been possible to determine whether Y is multivariate normal for
these data or not. Therefore, inferential results given in this section
relating to these data must not be viewed as strictly valid. The essence
of this example is mainly to demonstrate use of the concept of additivity
computationally. One would need to check that Y is reasonbly multi-
variate normal for inference statements to carry full weight. The cal-
culations here are carried out in metric units.and the assumption is made
that the components yj (3 =1, 2, 3) are independent.

An all-combinations (all subsets) procedure provided by the BMDP
package (P:9R) was used to find the best variable subsets for predicting
component biomass. Three components were recognized for purposes of this
anélysis, namely bole (y1), bark (ys), and crown (branches + foliage =
v3). The crown component was obtained by simply adding branch and fine
branch components for individual trees. Using R2 as a selection cri--

terion, the best equations were found to be

¥1 = -75.708 + 0.01330X,, R? = 0.9907
yo = -25.782 + 0.00203%X,, R? = 0.9309
¥3 = -24.765 + 0.095895%;, R? = 0.8122

where X; = (height)? and X, = (height)(diameter)?. A corresponding
unrestricted total fitted equation, using X; and X,, is given by

yp = 33.542 + 0.26819%; + 0.01993%,, &2 = 0.9655.
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The total corrected sum of squares corresponding to the latter fit is
182559547. As in the preceding example, a conditioned total fitted
equation is ébtained by additivity as

§Tc = -126.255 + 0.95895X; + 0.01533X,.
Since XtyT = (53205, 113670000, 15112000000)t, it follows that the sum

of squares regression associated with the latter conditioned equation is

st t _ o2 . - 2
Bpg ¥ ¥p - 07 332291089.2 - 18(2955.8)

175029523.7.
Therefore, the §2 associated with this total conditioned equation is
0.9588. Again, if the assumption of normality of Yo held, one would
conclude from this that the conditioned total equation performs well
when compared.with the unrestricted total equation. It may be noted
that because of the great variability in the size of the trees in this
data set, one needs to be careful about the predictive goodness of these
models. Indeed, as mentioned elsewhere in this thesis, we are much
less concerned here with using the best equations in a particular sense
than with demonstrating certain aspects of additivity.
10;4 Example 3

The ﬁextvexample is based upon the ENFOR data for western hemlock
(see Appendix I(c)). We restrict details to the level of previous
é%amples. Using an all-combinations procedure as in the previous example,

the following equations were found to be the best for predicting component

biomass:
$1 = 6.49538 + 0.01541D2H - 0.12258DCL, R2? = 0.9836
§2'= 0.93179 + 0.00247D2H - 0.03112HCL, R2? = 0.9561
y3 = -4.82066 + 0.31477DCL - 0.23344HCL, R? = 0.8424.
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The unrestricted total biomass equation is given by
3’1‘ = 2.05138 - 0.000074D%H + 0.09319DCL - 0.0667HCL, RZ = 0.8674.
The corresponding total conditioned equation is given by

§TC = 2.60651 + 0.01788D°H + 0.19219DCL - 0.264564CL.
The sum of squares regression due to fitting the latter equation is given
by é;CXtyT - n§% = 2876.506. Hence the R? corresponding to this model
is 0.8215 which compares favourably with that of the unrestricted total
equation. Note that even when crown variables are used for predicting
crown biomass, the R? is still in 0.80-0.90 range for that component.

In Appendix III, the computational details relating to the additivity
problem are given using Kozak's (1970) data again. The objective there

is to show how the various statistics are computed, especially the vari-

ances of the parameters in the total conditioned equation.



CHAPTER XI
CONCLUSIONS AND REMARKS

In the discourse we have generalized the additivity problem as
originally posed in the context of forestry by Kozak (1970). It has
been shown that the statistical theory of estimation and inference for the
generalized additivity problem as defined here is constructible within the
general framework of general lineaf model theory. It is important to recog-
nize that both estimation and inference theory is, in general, dependent
upon distributional assumptions for the ¢, (j = 1, ..., k) and upon
whether the Ej are dependent or not. When the Ej are dependent, it has
been shown that additivity as defined here, does not hold. Furthermore,
inference theory relating to the total model is complicated by the fact
that although the components may follow normal distributions, it does not
follow automatically that their sum is also normal. This suggests a need
to investigate, or otherwise, justify the normality of Yo before inference
can be drawn about it when dependence obtains among the components. In
particular, it would be useful if future studies in this area could address
the problem relating to the distribution of Y directly uging large enough
data sets along the lines indicated in section 10.1. Large data sets that
might become available through projects such as the ENFOR project might
‘make such studies possible and worthwhile. Other directiéns of further
investigation might be the determination of the form of the dependence
among components. This might simplify the problem of determining the

78
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distributional behaviour of Yoo

The problem of additivity has also been seen to lead to interesting
but, as yet, unsolved problems in multivariate distribution theory. This
is obviously a fruitful line of further research for those who are theor-
etically inclined.

One of the interesting results obtained here is that the additivity
problem is naturally extendible to the class of linear models known as
classificatory models generally encountered in designed experiments. This
extension must not be construed to be accidental since any classificatory
model can, in general, be expressed in regression form. The additivity
problem does not, however, extend to the class of intrinsically nonlinear
models. Hence the usefulness of theory relating to the additivity prob-
lem in mensurational studies involving nonlinear functions would, at best,
be minimal. However, the theory should find wide applicability among
ecologists and quantitative scientists interested in the assessment of
biomass.

The additivity problem does not require the construction of new com-
puting subroutines as clearly demonstrated in chapter IX. This should
make it especially easy to use the theory of additivity as developed here.
Finally, the examples given in the preceding chapter show that the concept

of additivity is quite practical and realistic and statistically appealing.
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APPENDIX I(a)

DBH

(Inches)

X

7.
11.
9.

~J

12.

0o W uv U o

Conversion factors: 1 in = 2.54 cm, 1 1b.

CUREEV. IV, B Vo R W R SRR, I o - B & R £

Bole
(1bs.)
Y,
254
749
519
217
1025
242
136
127
62
375

Bark
(1bs.)
Yo

29
60
49
31
76
26
18
18

6
39

Kozak's (1970) Biomass Data

Branches Total
(;bs.) Y =Y1+Y2+Y3
3 (1bs.)
73 356
192 1001
151 719
115 363
222 1323
76 344
37 191
39 184
11 79
98 512

= 0.4535924 kg
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APPENDIX I(b)
Western Hemlock Biomass Data (Kurucz, 1969)

Fine Branch

Height DBH Branch + Foliage Bole Bark Total
(Feet) (Inches) (1bs.) (1bs.) (1bs.) (1bs.) (1bs.)
20.0 3.5 25.23 36.26 15.56 3.57 80.62
14.0 .6 3.43 7.27 3.32 0.82 14.84
34.0 6.1 55.62 71.95 60.18 16.21 203.96
53.0 11.8 314.77 309.58 318.24 52.21 994.80
41.0 8.8 130.36 168.71 169.58 35.45 504.10
55.0 10.5 231.26 260.52 278.94 44 .52 815.24
55.0 11.7 289.72 275.71 346 .04 56.06 967.53
93.0 21.9 1210.37 859.97 2095.34 220.94 4395.23
73.0 15.9 ~701.20 430.48 916.22 120.91 2168.81
92.0 17.0 '529.87 423.46 1329.83 188.24 . 2471.40
117.0 24.5 1201.44 468.42 3806.64  487.50 5964.00
167.0 30.5 3188.59 993.78 7971.30 1221.49 13375.16
123.0 23.7 2424,59 831.81 3332.09 369.61 6958.10
131.0 26.0 1658.45 522.55 4323.78  357.79 6862.57
176.0 34.1 3876 .44 2013.48 11187.62 1447.37 18524.91
175.0 36.4 4027.03  1535.28 13874.81 2337.72 21774.84
148.0 31.1 2870.00 1204.30 8920.92 1196.20 14191.62
151.0 29.0 5926.09  2149.10 7537.04 1415.22 17027.45

Conversion factors: 1 in = 2.54 cm, 1 foot = 0.3048 m, 1 1b. = .4535924 kg



APPENDIX I(c)

DBH
(cm)

19.20
28.00
22.70
23.90
28.90
23.90
14.60
26.80
11.20

3.10

5‘70

14.00
12.10

7.00
16.40

4.50

9.50
10.50
17.60
18.20
15.40
14.50
32.70
31.30
16.10
11.20
42.40
17.40
16.40
29.90
11.30
21.50
12.20
14.20

7.80

9.40
11.00
19.80
13.60
11.20

9.80

9.70
12.90
17.70
11.40
14.00
18.70
11.10

Height
(m)

22.40
25.20
26.70
28.30
28.20
22.40
12.80
26.60
9.80
3.50
4.90
11.20
10.20
6.10
13.40
3.90
7.10
8.80
10.70
12.40
8.70
8.40
20.60
21.30
13.40
10.00
22.40
11.60
12.60
17.00
8.30
13.50
6.70
9.70
5.90
7.30
7.60
9.70
6.90
6.10
6.40
8.10
9,20
10.70
9.70
9.70
9.80
6.90

Crown
Length
(m)

14.50
20.20
16.70
15.40
11.40
12.10
12.20
23.60
7.80
3.10
4.50
9.70
9.30
5.60
11.90
3.80
7.00
8.80
10.60
10.80
7.00
7.20
16.30
15.30
10.80
8.30
19.70
10.60
11,30
16.20
. 6.20
11.60
5.50
9.10
5.90
7.30
6.60
7.60
5.20
4.40
5.50
8.10
9.20
10.70
8.80
9.70
9.80
6.30

ENFOR Biomass Data

Crown
Width

(m)

4.30
6.80
4.20
4.10
5.60
4.00
3.30
4.80
2.60
1.30
1.20

4.40

3.10
2.40
5.20
1.40
2.30
2.70
14.00
4.40
3.50
4.00
3.80
6.70
4.80
3.70
6.50
2.80
3.80
5.20
2.40
3.60

- 3.10

4.30
2.60
2.00
2.60
2.60
1.20
2.30
2.10
2.70
4.40
4.70
4.30
2.50
3.50
2.30

Bole
(kg)

94.43
253.21
184.65
224.57
324.82
155.99
28.85
234.19
19.77
0.64
2.79
24.04
17.34
5.43
43.07
1.30
7.89
13.80
36.52
46.94
25.01
19.94
232.63
326.34
39.00
16.15
523.92
46.42
41.12
131.27
13.23
82.87
14.35
22.44
3.83
6.07
10.94

38.36

15.57

9.91
7.17
8.40
18.47
31.7
14.91
21.87
35.83
9.01

Bark
(kg)

13.96
27.19
21.67

. 27.48

34.56
20.84
4.58
32.09
2.97
0.12
0.37
3.85
2.82
0.74

6.66

0.32
1.41
2.08
5.51
7.57
4,09
3.20
43.90

50.43

7.68
2.52
96.28
6.46
6.07
18.81
3.65
13.57
3.30
3.31
0.53
1.00
1.16
4.72
2.18
1.50
1.57
0.82
1.93
3.53
1.60
3.64
4.62
1.40

Crown
(kg)

9.29
57.67
7.21
11.15
45.79
15.00
18.80
28.43
5.84
0.71
2.56
-15.75
9.73
2.09
24.29
2.16
4.23
6.77
17.54
24.17
10.86
12,19
89.67
86.41
26.77
11.29
129.66
28.42
8.65
142.89
4.81
16.55
5.14
16.59
2.04
5.04
4,42
13.77
8.54
5.22
4.56
1.98
6.25
14.63
6.88
6.61
19.28
5.28

Total
Biomass
(kg)

117.69
338.08
213.52
263.21
405,17
191.83
52.22
294.72
28.58
1.48
5.73
43.64
29.89
8.26
74.02
3.79
13.53
22.65
59.58
78.68
39.96
35.32
366.20
463.18
73.45
29.95
749.86
81.30
55.84
292.96
21.70
112,99
22.79
42.34
6.50
12.11
16.51
56.85
26.29
16.62
13.30
11.19
26.65
49.87
23.39
32.12
59.73
15.69
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APPENDIX I(d)

PROGRAMME 1:

10

20
15

PROGRAMME 2:

10

20

chi-square probabilities

INTEGER IER

REAL X(18)

READ(S, 10) (X(J),J=1,18)
FORMAT(8X, 18F8. 52

Do 195 I=1,18

DF=2. 0

CALL MDCH(X(I),DF,P, IER)
WRITE(6,20) X(I).P
FORMAT(’ X(1)=',F8.5, 5X, 'P=',F10. 5}
CONTINUE

STOP

END

REAL X(18), JN

READ(S, 10} (X(J),J=1,18)
FORMAT(18F8. 5)

sSuUM=0. O

PO 20 I1=1,18
SUM=SUM+(X(I)=((I-0. 5)/18. 0))##2
CONTINUE

JN=SUM+ (1. 0/216.0)

" WRITE(6.30) JN

30

FORMAT(’ JN=',F10. &)
sSTOP
END

Fortran programme calls IMSL subroutine MDCH to compute

89

Fortran programme computes and prints Koziol statistics J
n



INTE
NAME

x-42

*-38.
*-35.
*-31.
*-28.

*-24
*-21
*-17
*-14
*-10

RVAL

.000

.500
.000
.500
.000
.500

*-7.0000

*-3.

5000

*0.00000
*3.50000

*7.0
*10.
*14.
=17,
*21.
*24 .
*28
=31,
*35
*38 .
*42.
*45.
*49.
- %52,
*56.
*59,
*63.
*66.
*70.
*73.
*77.
*80.
*84.
*87.

0000
5000
0000
5000
0000
5000

.0000

5000

$000

b F

+XX

+X

+X

+X

+XX
HXXXXXX
HXXXXXXKXXXXXXX
FEXXAXXXXX
+XXX
+XXXXX
+XXX

+X

O kIR T I

FREQUENCY PERCENTAGE

INT. CUM. INT. CUM,
1 1 2.1 2.1
0 1 0.0 2.1
o 1+ 0.0 2.%
0 1 0.0 2.1
o] {1 0.0 2.1
0 1 0.0 2.1
2 3 4.2 6.3
1 4 2.1 8.3
1 5 2.1 10.4
1 6 2.1 12.5
2 8 4.2 16.7
6 14 12.5 29.2
13 27 27.1 56.3
8 35 (6.7 72.9
3 38 6.3 79.2
5 43 10.4 89.6
3 46 6.3 95.8
1 47 2.1 97.9
o 471 0.0°97.9
O 47 0.0 97.9
O 47 0.0 97.9
o 47 0.0 97.9
O 47 0.0 97.9
O 47 0.0 97.9
o 47 0.0 97.9
o 47 0.0 97.9
O 47 0.0 97.9
0o 47 ©0.0 97.9
o 41 0.0 97.9
o 47 0.0 97.8
o 47 0.0 97.9
O 47 0.0 97.9
o 47 0.0 97.9
o 47 0.0 97.9
o 47 0.0 97.9
o 47 0.0 97.9
1 48 2.1 100.0
O 48 0.0 100.0
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APPENDIX II(b)

Normal probability plot of residuals

FPRIVOZ Om—AO0movxXm

mcrr»c<

1.

.60

* + g .+
*
*
*
*
*
.
P I S N e
-37.5 -12.5
-50.0 -25.0

® X X #

L2 2K 2% B ]

EREE

0.00

[ =
( T
g +
*
*
*
*
*
*
*
*
L
12.5
25.0

RESIDUAL

REEEE
37.

73
J

5

=1

§0.0

e2.5

EE

75.0

87.5

91



92
APPENDIX III
A SOMEWHAT DETAILED COMPUTATIONAL EXAMPLE
In this part of the thesis, it is intended to use Kozak's (1970)
data to show some of the computational details relating to the generalized
additivity problem. These data are chosen partly because of their small
size, making the computational exercise fairly straightforward yet making
possible a demonstration of the computations involved. The computations
for larger data sets (with more independent variables) are performed
. as typically shown here. Particular attention is given in the following
to aspects of the computational details not given iﬁ section 10.2.
In the following, X; = diameter, X, = (diameter)z, and the matrix X
refers to the 10x3 matrix X = (X0|X1|X2) .where Xo is a column vector
of 1's. Also let X* = (xolxz). The following matrices will be of
use in this discussion.
8.2031 -0.82845 0.019172
&%)t = [-0.82845  0.087614 -0.002093

0.019172 -0.002093 0.0000514

0.36948  -0.0006217 2300.6
(X*tx*)‘l = ’ XtYT _ | se060
-0.0006217  0.00000143 1443700

The unrestricted total fitted equation is given by
§T = 117.19 - 17.696X; + 1.06540X,.
The estimated variance-covariance matrix of éT for this model is
(XtX)‘_l 8% = (XtX)—1(217.64), where 217.64 is the MSE associated with
fitting Y- Thus the standard errors for the parameters of this model

can be obtained from the estimated variance-covariance matrix. In this

~

case they are 42.25, 4.37, 0.1058 for é R...» and éZT respectively.

0T> "1T
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The component equations containing only important independent vari-
ables are given in section 10.2. The corresponding total conditioned
equation as determined by additivity is
Yoo = 129.87 - 19.037X; + 1.09745%;.

The covariance matrix of é for the above equation, is obtained, under

TC’
the assumption of independence of the yj's, as the sum of the covariance

matrices of the estimated parameters of the component equations. In

the present case, the estimated covariance matrix is given by

8.94206  -0.82845  0.01793
f~ = |-0.082845  0.087614 -0.002093 | z3_. &%,
Brc =1 7j
0.01793  -0.002093  0.0000543

where 8; is the mean square associated with fitting component model j.

In the present case, 8§ = 194.04, 8% = (0.55375, and 6% = 42.198. There-

fore Z;=1 8; = 236.792. Hence the estimated standard errors for the

parameter estimates in §TC are, in order, 46.02, 4.55, 0.1134, which

compare favourably with those given above for the unrestricted total

model. It should be pointed out here that before adding the covariance

matrices, they are filled up with zeros to bring them to the full size

corresponding to all variables in the conditioned total equation and

the elements are permuted to correspond to the same parameters prior

to addition. This part has not been exhibited in the above derivations.
Finally, the predicted values generated by the unrestricted total

equation §T and its residuals are compared with those obtained using

the total conditioned equation §TC' The results are given in Table

3(a,b) and in Figure 1. For these data, at least, the total conditioned

‘equation performs relatively well. Of course this may partly be ascrib-

able to the very small sample and narrow sample range.



Table. 3 Comparison of predicted values and residuals of unrestricted
total equation with those of total conditioned equation

a. Unrestricted Total.Equation

OBSERVED TOTAL BIOMASS PREDICTED TOTAL BIOMASS RESIDUAL
161.48 166.53 -5.05
454 .05 454 .27 -0.23
326. 13 © 336.65 ~-10.51
164.65 166.53 -1.87
600. 10 591.69 8.41
156.04 124 .40 31.63

86.64 91.08 -4.44
83.46 77.71 5.75
35.83 43 .88 -8.05
232.24 246.21 -13.97

b. Total Conditioned Equation

OBSERVED TOTAL BIOMASS PREDICTED TOTAL BIOMASS RESIDUAL
161.48 165.48 -4.00

454 .05 454 .69 -0.65
326.13 335.99 ~9.86
164.65 165.48 -0.83
600.10 593.78 6.32
156.04 123.73 32.30

86.64 91.05 -4.41

B3.46 78.10 5.36

35.83 47 .36 -11.53

232.24 245. 10 -12.86
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Figure 1. Scatter of Residuals from Total Unrestricted Equation
and from Total Conditioned Equation
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