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ABSTRACT 

This thesis i s concerned with the theory of f i t t i n g models of the 

form y = X$ + e, where some distributional assumptions are made on e. 

More specifically, suppose that y = X(5\ + is a model for a component 

j (j = 1, 2, ..., k) and that one is interested in estimation and inter­
im 

ence theory relating to y T = Z j = 1 y = X 3 T + e T-

The theory of estimation and inference relating to the f i t t i n g of 

y T is considered within the general framework of general linear model 

theory. The consequence of independence and dependence of the y 

(j = 1, 2, ..., k) for estimation and inference is investigated. It 

is shown that under the assumption of independence of the y^, the parameter 

vector of the total equation can easily be obtained by adding corresponding 

components of the estimates for the parameters of the component models. 

Under dependence, however, this additivity property seems to break down. 

Inference theory under dependence is much less tractable than under inde­

pendence and depends c r i t i c a l l y , of course, upon whether y^ is normal or 

not. 

Finally, the theory of additivity i s extended to classificatory 

models encountered in designed experiments. It is shown, however, that 

additivity does not hold in general in nonlinear models. The problem of 

additivity does not require new computing subroutines for estimation and 

inference in general in those cases where i t works. 
i i 
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CHAPTER I 

1.0 INTRODUCTION 

The main objective of this thesis is to formalize and extend or 

generalize results obtained by Kozak (1970) concerning conditions that 

ensure that predicted values calculated from component regression equa­

tions add up to those obtained from a corresponding total equation. Kozak 

(1970) derived his results within the context of forest biomass prediction 

using component biomass equations and a corresponding total biomass equa­

tion. He cites examples in other areas of forestry and forest research 

where such a problem arises. A broader view is adopted in this thesis 

with regard to areas of application of the 'additivity' problem. Since 

biomass analysis is of interest to scientists in various other disciplines 

of applied biology than forestry, a formalization and generalization 

of the additivity problem and i t s related s t a t i s t i c a l theory w i l l be 

of value to a large number of scientists, including those in agriculture 

and ecology. 

To f i x ideas with regard to the additivity problem as perceived 

in this thesis, suppose as in Kozak (1970), that for some tree species 

weight of bole (Yi), weight of bark on the bole (Y2), weight of crown 

( Y 3 = branches and foliage), and total weight ( Y = E ? , Y.) can each 

be modelled as some function (in the linear regression sense) of diameter 

at breast height (X). In this setting, one refers to the equations 

1 
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expressing each of Y i , Y2, and Y3 as functions of X as component equations 

and that giving Y^ as a function of X as the total equation. 

More generally, one can envisage k components of an organism or 

system characterized by measurable attributes Yi, Y2, Y and their 
K. 

sum Y = Y. where Yi, Y 2, Y are each related to a common K+l j — 1 j k+1 

set of p independent variables Xi, X2, X̂  according to a multiple 

linear regression model. Using the case (with k = 3) described in the 

preceding paragraph, Kozak (1970) states conditions under which one need 

only f i t the component equations, the total equation being completely 

determined by adding coefficients of corresponding independent variables 

in the component equations. Kozak's (1970) results pertain to the situa­

tion where each component equation contains a l l independent variables 

under consideration. 

In the sequel, our objective is essentially four-fold. F i r s t , 

i t is intended to demonstrate, in a rather simple way, why Kozak's (1970) 

conditions hold and to derive explicit expressions for statistics of 

interest for the total equation from those of the component equations. 

Secondly, i t w i l l be shown that additivity can be assured even when d i f f e r ­

ent terms are retained in the component equations (that i s , when r^ S p 

with st r i c t inequality for at least one j , where r^ is the number of 

independent variables in component equation j and p is the number in 

the total equation). This w i l l be achieved by appropriately correcting 

the total equation in order to take into account the conditioning that 

forces some independent variables not to appear in some component equa­

tions. Thirdly, i t w i l l be shown that the case considered by Kozak 

(1970), where each component equation has the same number of independent 

variables as the total equation (that i s , r. = p) , can be derived as a 
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s p e c i a l case of a g e n e r a l i z a t i o n of the c o n d i t i o n i n g p r i n c i p l e mentioned 

above. E s t ima t i on and i n fe rence theory w i l l be developed f o r the above 

o b j e c t i v e s based p r i m a r i l y on the assumption that Y. and Y are indepen-
J *• 

dent f o r each j * £ ( j , £ = 1, 2, . . . , k) and an app rop r i a te d i s t r i b u ­

t i o n a l assumption on the e r r o r term corresponding to model j . Because 

of i t s re levance when con s i de r i n g many b i o l o g i c a l phenomena, theory 

r e l a t i n g to the case where Y. , Y ( j * £) are dependent w i l l be con -
J * 

s i de red . F i n a l l y , some examples w i l l be worked out to i l l u s t r a t e the 

a p p l i c a t i o n of the theory . 

I t i s important to emphasize here that the main o b j e c t i v e of t h i s 

d i s s e r t a t i o n i s to i n v e s t i g a t e the a d d i t i v i t y problem and i t s r e l a t e d 

s t a t i s t i c a l theory w i t h i n a f a i r l y genera l framework. There fo re , the 

use of c e r t a i n models i n c o r p o r a t i n g and, p robab ly , e xc l ud i ng p a r t i c u l a r 

independent v a r i a b l e s i n the examples and elsewhere i n t h i s t h e s i s should 

not be construed as suggest ing that the equat ions are best i n a p r e d i c t i v e 

sense. More s p e c i f i c a l l y , a l though the subject of the t h e s i s has a 

d i r e c t bea r i ng upon biomass p r e d i c t i o n problems, i t i s not the o b j e c t i v e 

here to a r r i v e at a best biomass equat ion i n any p a r t i c u l a r sense. On 

the other hand, the v iew i s taken that the dete rminat ion of best equat ions 

f o r p r e d i c t i o n purposes i s best l e f t to p a r t i c u l a r a p p l i c a t i o n s of the 

theory to be presented here. 



CHAPTER II 

2.0 PRELIMINARIES, NOTATION AND PROBLEM DEFINITION 

We begin with some definitions and rules of convention regarding 

notation to be adopted in the sequel. 

2.1 Preliminaries and Notation 

Since the development in this thesis w i l l be concerned with linear 

regression models, we f i r s t seek to identify this class of models precisely. 

Accordingly, we define a regression model following Gallant (1971). Let 

X C Rm, n C R? and n and p be positive integers such that n > p. The 

elements of X and Q w i l l be denoted by x and g, respectively. Further-
oo , oo 

more, we shall let l e
t ) t _ ^ he a sequence of random variables, ' L x

t J t _ ^ 

a sequence from X, f(x, g) a real-valued function with argument (x, g) 

and go to be a point in Q. 

Definition 1. A regression model is defined here to be the sequence 

of random variables {yt}^_-^ given by 

y t = f ( x t , go) + e t-

We emphasize that we owe the basic idea behind this definition to Gallant 

(1971). Our definition is not as rigorous as Gallant's (1971) but i t 

wi l l suffice for our purposes. Note that f is a mapping of points from 

the product space X x fi into the real line R1 (that i s , f : X x fi ->• R1) . 

Now, suppose we denote the set of a l l possible regression models 

generated according to definition 1 by R* and define a set of regression 

4 



models of the form 
P 

y t = <t»o(xt) + Z B j * j ( x

t > + e t 

where <K : X R 1 , i = 0, 1, p. Again we owe t h i s f o rmu la t i on 

to G a l l a n t (1971). Note that i n the above, f ( x t , So) i n d e f i n i t i o n 

1 has been rep laced by <t>o ( x t ) + E ? = 1 ^ ^ ( X j - ) - G a l l a n t (1971) d e s i g ­

nates the c l a s s of r eg re s s i on models whose members are s p e c i f i e d accord ing 

to the l a s t equat ion by L, which i s the c l a s s of l i n e a r r e g re s s i on models. 

Thus we have a second d e f i n i t i o n . 

D e f i n i t i o n 2. A r eg re s s i on model r * i s c a l l e d a l i n e a r r e g re s s i on 

model i f r * E L, where L i s as de f ined above. 

Note, f o r completeness, that L C R*. Th i s t h e s i s w i l l be concerned 

w i t h the theory of e s t ima t i on and i n fe rence f o r members of L under c e r t a i n 

c o n d i t i o n s . As i s w e l l known, any member of L can be w r i t t e n i n mat r i x 

form. 

With regard to n o t a t i o n , a mat r i x r e p r e s e n t a t i o n w i l l be adopted 

throughout most of the development here . Th is has an obvious a e s t h e t i c 

appeal bu t , more impo r t an t l y , leads to b r e v i t y and a r a t h e r compact p r e ­

s e n t a t i o n of r e s u l t s which would otherwise be cumbersome us ing o rd i na r y 

s c a l a r a r i t h m e t i c . A c co rd i n g l y , l e t y^ denote an n x 1 vec to r of r e a l i ­

z a t i on s of an observable random v a r i a b l e corresponding to the j * " * 1 com­

ponent, X an n x (p + 1) mat r i x de f i ned so that 

X = (X 0 IXi I . . . IX ) = (tfIXiI...I X ), where X 0 = # i s an n x 1 vec to r w i t h 
I I p P 

components i d e n t i c a l l y equal to u n i t y and X^ ( i = 1, 2, . . . , p) i s an 

n x 1 vec to r c o n s i s t i n g of r e a l i z a t i o n s of the independent v a r i a b l e X^, 

8j i s a (p + 1) x 1 parameter vec to r and i s the corresponding n x 1 

vec to r of e r r o r s or d i s t u rbance s . 
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For any matrix A, say, we s h a l l w r i t e A*" to denote the transpose 

of A and A ^ to denote the inverse of A, provided that the inverse e x i s t s . 
-1 t Where A does not e x i s t , we s h a l l have occasion to use A , the ge n e r a l i z e d 

inverse of A, to o b t a i n more general r e s u l t s . In any case, new n o t a t i o n 

may be introduced i n the discourse as the need a r i s e s but i n every case 

our n o t a t i o n w i l l be c o n s i s t e n t w i t h that used i n standard t e x t s i n l i n e a r 

algebra (e.g., Noble & D a n i e l , 1977; S e a r l e , 1966; Stewart, 1973; Strang, 

1976). 

2.2 Problem D e f i n i t i o n 

With the above conventions and n o t a t i o n , we s h a l l be concerned, 

i n t h i s d i s s e r t a t i o n , w i t h models of the form 

y^ = Xgj + £j ( j = 1, 2, k) (2.2.1) 

and 

y x = £ j = 1 y- = x e T + e T (2.2.2) 

where (2.2.1) gives us k component models and (2.2.2) the corresponding 

t o t a l model. We s h a l l focus i n t e r e s t i n the sequel on c h a r a c t e r i z i n g 

estimators of 3rr, and on propounding a theory of inference r e l a t i n g to 

the t o t a l model under a number of assumptions concerning the behavior 

of the E j ( j = 1, 2, k ) . The theory to be presented here w i l l 

be based on well-known general l i n e a r model theory. Note that s p e c i f i ­

c a t i o n of the behavior of the leads, i n general, to s p e c i f i c a t i o n 

of the behavior of try.. 

In the next chapter, a review i s made of some of the work i n the 

l i t e r a t u r e r e l a t i n g to the a d d i t i v i t y problem before proceeding to propose 

a u n i f i e d theory of e s t i m a t i o n and inference f o r t h i s problem i n succeeding 

chapters. 



CHAPTER III 

3.0 LITERATURE REVIEW 

Theoretical and applied biologists have traditionally viewed biomass 

as a useful index for assessing the productivity of various flora and 

fauna with respect to designated environments or ecosystems (Ovington, 

1962). This index has also been used for cataloguing, in the form of 

inventories, the quantities of biological matter available at a given 

time in a given environment. 

A thorough reading of the literature on biomass and related studies 

indicates development in two main directions. The early part of the 

literature indicates that scientists essentially sought ways of quantita­

tively describing biomass production and productivity of various biolog­

ica l organisms. This approach was especially dominant in ecological 

studies for many years. Quite often, systematic sampling schemes (e.g., 

line transects) were used to obtain data which were subsequently summarized 

to give crude estimates of biomass. In many cases, these estimates 

were reported by component of the organism or system under consideration. 

-In general, l i t t l e or no s t a t i s t i c a l information, such as measures of 

precision, accompanied the summarizations. In any case, the very nature 

of the sampling schemes upon which the estimates were based militated 

against a meaningful s t a t i s t i c a l interpretation of the results. More 

recent literature is suggestive of a significant shift from the purely 

7 
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d e s c r i p t i v e approach to model-based, s t a t i s t i c a l l y - o r i e n t e d methods of 

d e s c r i b i n g biomass. Th i s approach not only leads n a t u r a l l y to the need 

to address quest ions r e l a t i n g to cho ice of proper model f o r use i n a g iven 

s i t u a t i o n , but more impor tan t l y perhaps, a t taches p a r t i c u l a r importance to 

choosing es t imates tha t are s t a t i s t i c a l l y reasonab le. The f o l l o w i n g 

rev iew of the l i t e r a t u r e on developments that l ed to the a d d i t i v i t y p rob ­

lem w i l l be b r i e f and, h o p e f u l l y , i n f o rmat i ve r a the r than exhaus t i ve . 

For a more complete rev iew, see Chiyenda (1974) or Kurucz (1969). More 

recent comprehensive reviews are g iven by Smith (1979) and Smith and 

W i l l i ams (1980). 

The f o r e s t r y l i t e r a t u r e c r e d i t s Tu f t s (1919) w i t h the f i r s t repor ted 

work on t ree component biomass. In that work, Tu f t s c o r r e l a t e d trunk c i r ­

cumference of f r u i t t r ee s w i t h the weight of t h e i r tops (or crowns). F o l ­

lowing that work, many workers i n f o r e s t r y engaged i n biomass s tud ie s of 

one form or another. A c co rd i n g l y , cons ide rab le work has been repor ted i n 

the genera l area of t o t a l biomass p roduc t i on of va r i ous t r ee spec ies (Honer, 

1971; Ke l l o gg and Keys, 1968; Young and Chase, 1965) and of f o r e s t e co ­

systems (Ovington, 1962). Some of t h i s work was c a r r i e d out as pa r t 

of ongoing inventory programmes ( e . g . , Honer, 1971) wh i l e others were 

conducted i n re search connected w i t h f o r e s t f i r e - h a z a r d abatement e f f o r t s 

( e . g . , K i i l , 1967, 1968; Loomis et a l . , 1966; Storey e t a l . , 1969). 

In a biomass study of 13 North American t ree spec ie s , Storey et a l . 

(1955) found that dry crown weight , branchwood weight , and f o l i a g e weight 

were s i g n i f i c a n t l y r e l a t e d to stem diameter at the base of l i v e crown 

f o r a l l the spec ie s . On the other hand, Ovington (1956) i n v e s t i g a t e d 

and compared the forms, we ight s , and p r o d u c t i v i t y of t ree spec ies grown 

i n c l o se stands. Th is study was mot ivated by s i l v i c u l t u r a l and e c o l o g i c a l 

c o n s i d e r a t i o n s . In a study s i m i l a r to that of 1955, Storey and Pong 
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(1957) i n v e s t i g a t e d and compared crown c h a r a c t e r i s t i c s of a number of 

hardwood species. 

Fahnestock (1960) used data c o l l e c t e d from nine coniferous tree 

species i n the Northern Rocky Mountain area to f i t r e g r e s s i o n equations 

to p r e d i c t crown weight and proceeded to construct crown weight t a b l e s 

f o r the species. Among the species i n v e s t i g a t e d were D o u g l a s - f i r 

(Pseudotsuga m e n z i e s i i [Mirb.j Franco), western hemlock (Tsuga heterophyla 

[Raf.] Sarg.) and western red-cedar (Thuja p l i c a t a Donn). 

Tadaki et a l . (1961) i n v e s t i g a t e d the p r o d u c t i v i t y of a young stand 

of b i r c h (Betula p l a t y p h y l l a ) i n southern Hokkaido, Japan, and e s t a b l i s h e d 

l i n e a r r e l a t i o n s h i p s on l o g a r i t h m i c axes between ba s a l area and stem 

biomass, ba s a l area and branch biomass, and between ba s a l area and f o l i a g e 

biomass. They al s o reported that estimated f r e s h and dry f o l i a g e weights 

d i d not vary w i t h stand density but that branch biomass decreased w i t h 

stand d e n s i t y . 

Brown (1963) i n v e s t i g a t e d the r e l a t i o n s between crown weight and 

diameter i n some Lake States red pine (Pinus r e s i n o s a A i t . ) p l a n t a t i o n s 

and a l s o studied the i n f l u e n c e of s i t e q u a l i t y and stand d e n s i t y on the 

weight of i n d i v i d u a l t r e e crowns. Keen (1963) analysed average green 

weights and centres of g r a v i t y of samples of black spruce (Picea mariana 

[ M i l l . ] B.S.P.), white spruce (Picea glauca [Moench.] Voss.), and balsam 

f i r (Abies balsamae [L.] M i l l . ) and i n v e s t i g a t e d t h e i r v a r i a t i o n w i t h 

species, season, and l o c a t i o n . He a l s o derived a t a b u l a t i o n of weights 

and centres of g r a v i t y of the t r e e s . 

Young et a l . (1964) used r e g r e s s i o n equations to c o n s t r u c t f r e s h 

and dry f i b r e weight t a b l e s f o r i n d i v i d u a l tree components, groups of 

components, and complete trees f o r seven tre e species. Brown (1965) 
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i n v e s t i g a t e d the e f f e c t of s i t e and stand den s i t y on the crown s i z e of 

i n d i v i d u a l red p ine and j a ck p ine (Pinus banks iana Lamb.) t rees and s tud ied 

ways of e s t ima t i n g crown f u e l we ight s . The study i n d i c a t e d that e s t i ­

mated amounts of f o l i a g e and branchwood per u n i t area v a r i e d w i t h the 

age and growing c ond i t i o n s of the s tand. 

Loomis e t a l . (1966) used a n a l y s i s of covar iance to t e s t the e f f e c t 

of stand den s i t y on dry f o l i a g e and branchwood weights i n s h o r t l e a f p ine 

(Pinus ech ina ta M i l l . ) and found that reg res s ions of dry f o l i a g e and 

branchwood weights f o r d i f f e r e n t stand d e n s i t i e s were not s i g n i f i c a n t l y 

d i f f e r e n t . Dyer (1967) prepared p r e l i m i n a r y f r e s h and dry weight t ab l e s 

f o r no r thern whi te cedar (Thuja o c c i d e n t a l i s L.) and de r i ved l i n e a r 

r eg re s s i on equat ions f o r p r e d i c t i n g f r e s h and dry wood weights of va r i ou s 

t r ee components as percentages of t o t a l t r ee f r e s h and dry we ights . 

K i i l (1967) used r eg re s s i on a n a l y s i s to con s t ruc t f u e l weight t ab l e s 

f o r white spruce and lodgepole p ine (Pinus c on t o r t a Dougl.) i n wes t -

c e n t r a l A l b e r t a and found that a combinat ion of diameter at b r ea s t - he i gh t 

and e i t h e r crown w id th or crown l eng th gave the most p r e c i s e e s t ima t i n g 

equat ion f o r f u e l weight. In a f o l l ow -up study, K i i l (1968) s tud ied 

the f u e l complex of 70 -yea r -o ld lodgepole p ine i n the same area w i t h 

a v iew to f a c i l i t a t i n g measurement and p r e d i c t i o n of weight and s i z e 

d i s t r i b u t i o n of f u e l components. 

Kurucz (1969) obta ined p r e d i c t i v e r eg re s s i on equat ions f o r t o t a l 

and component biomass of D o u g l a s - f i r , western hemlock, and western r e d -

cedar grown on the U n i v e r s i t y of B r i t i s h Columbia Research Fores t near 

Haney, B r i t i s h Columbia. In a study that was probably mot ivated as 

much by Ku ruc z ' s (1969) study as by o the r s , Kozak (1970) cons ider s the 

problem of a d d i t i v i t y of component biomass r eg re s s i on equat ions f o r 



purposes of p r e d i c t i o n . The r e a l essence o f .Kozak ' s (1970) work does 

not l i e i n the uniqueness of the problem he poses bu t , r a t h e r , i n the 

s t a t i s t i c a l problems that i t r a i s e s and the p o t e n t i a l p r a c t i c a l impact 

that a s o l u t i o n to these problems might have. 

Other s tud ie s conducted f o l l o w i n g ko zak ' s (1970), wh i l e e s s e n t i a l l y 

underscor ing the importance of the biomass e s t ima t i on problem i n f o r e s t r y 

and r e l a t e d d i s c i p l i n e s , d i d not address the a d d i t i v i t y aspect of the 

problem d i r e c t l y . I n s tead, many i n v e s t i g a t o r s cont inued to look f o r 

the best set of v a r i a b l e s g i v i n g the most pars imonious p r e d i c t i v e equat ion 

f o r t o t a l and component biomass ( e . g . , Crow, 1971; Honer, 1971; Johnstone, 

1971; Muraro, 1971; Z a v i t k o v s k i , 1971; Sando and Wick, 1972). 

Biomass s tud ie s and methods of e f f e c t i v e l y p r e d i c t i n g i n d i v i d u a l 

t r ee biomass cont inued to i n t e r e s t app l i ed q u a n t i t a t i v e b i o l o g i s t s i n 

the m id - and l a t e - s e v e n t i e s and w e l l i n t o the e i g h t i e s . Th i s i n t e r e s t 

i n biomass i s a s c r i b a b l e to the a p p l i c a b i l i t y of i n d i v i d u a l t ree biomass 

i n f o rmat i on i n address ing a wide range of e c o l o g i c a l and f o r e s t management 

problems. These i nc lude l a r g e - s c a l e biomass i n v e n t o r i e s (Young, 1978; 

Ker and Van R a a l t e , 1980), n u t r i e n t - c y c l i n g problems (Marks and Bormann, 

1972; Kimmins, 1977; Kimmins and K ruml i k , 1976; Kimmins e t a l . , 1979), 

as w e l l as the determinat ion of net p r o d u c t i v i t y of f o r e s t ecosystems 

(wh i t taker et a l . , 1974). Many s t u d i e s , such as Jacobs and Cun ia (1980), 

J oke l a et a l . (1981), Keyes and G r i e r (1981), Schmitt and G r i g a l (1981), 

Yandle and Wiant (1981), Z a v i t k o v s k i et a l (1981), Chaturved i and Singh 

(1982), Freedman et a l . (1982), and Singh (1982), have used r eg re s s i on 

methods to address the biomass p r e d i c t i o n problem. 

I t i s worth ment ioning that biomass s tud ie s of v a r i ou s d e s c r i p t i o n s 

are be ing conducted to date . Some of these are e s s e n t i a l l y computer-
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based s imu la t i on s of v a r i ou s aspects of the biomass problem. An example of 

t h i s i s the FORCYTE study be ing undertaken by Kimmins and h i s a s s oc i a te s 

at the U n i v e r s i t y of B r i t i s h Columbia (see Kimmins and S c o u l l a r , 1979; 

Kimmins e t__a l . , 1980). As desc r ibed by i t s au thor s , "FORCYTE i s an i n t e r ­

a c t i v e s imu l a t i o n model designed to examine, on a s i t e - s p e c i f i c b a s i s , the 

long- term e f f e c t s on n u t r i e n t budgets and p r o d u c t i v i t y of va r i ou s i n t en s i v e 

f o r e s t management and ha r ve s t i n g p r a c t i c e s . " Other s tud ie s are conducted 

as pa r t of ongoing n a t i o n a l programmes aimed at i d e n t i f y i n g u s e f u l model­

l i n g procedures f o r p r e d i c t i n g o r , o the rw i se , d e s c r i b i n g biomass. An 

example of t h i s i s the study, aga in at the U n i v e r s i t y of B r i t i s h Columbia, 

by Smith (1979) and Smith and W i l l i ams (1980) o r i g i n a l l y commissioned by 

the Canadian Fo r e s t r y Se rv i ce to propose the development of a comprehensive 

f o r e s t biomass growth model. That p roposa l has s ince been approved and 

work i s c u r r e n t l y under way to develop such a model. 

S u r p r i s i n g l y , most of the s tud ie s c i t e d e a r l i e r do not cons ide r the 

a d d i t i v i t y problem except f o r pass ing re fe rence to Kozak ' s a d d i t i v i t y 

r e s u l t i n a few ins tances ( e . g . , Ker and Van R a a l t e , 1980; S ingh, 1982). 

One might surmize that t h i s apparent l ack of i n t e r e s t i n the a d d i t i v i t y 

problem might be l a r g e l y due to the f a c t that a d d i t i v i t y has, s ince i t s 

i n t r o d u c t i o n i n t o the f o r e s t r y l i t e r a t u r e by Kozak (1970), been r e s t r i c t e d 

to s i t u a t i o n s i n which each component equat ion conta ins the same independent 

v a r i a b l e s . Th i s prec ludes the use of a d d i t i v i t y i n the more common and 

important s i t u a t i o n s where on ly s t a t i s t i c a l l y important independent v a r i ­

ab les are used i n any component equat ion . An ex tens ion of the a d d i t i v i t y 

problem to such s i t u a t i o n s a long w i t h i t s corresponding s t a t i s t i c a l theory 

would obv iou s l y be of i n t e r e s t . Th i s i s what i s intended to be done i n suc­

ceeding chapters of the d i s cou r se . One hopes that s tud ie s such as have been 
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c i t e d above w i l l , i n t ime , b e n e f i t from or a t l e a s t f i n d u s e f u l comple­

mentary methodology i n the theory to be presented i n t h i s d i s s e r t a t i o n . 



CHAPTER IV 

4.0 ADDITIVITY IN THE CASE r. = p 
J 

We consider f i r s t the models y. = XB. + e. (i =1, 2, .... k) and 
3 3 3 

= £. , y. = XB_ + e_ where i t is understood that each of these k + 1 I j=l J 2 T T 
models involves the same matrix X. This is the case considered by Kozak 

(1970). 

Consider the estimation of 3^ assuming £j % (<!>> o r 

e. (d), Vo2.) where d> is an n x 1 null vector, I is an identity matrix 3 3 
of dimension n and V is a known symmetric positive definite matrix of 

dimension n. Note that we have not for now specified the form of the 

distribution function of e. as this is not necessary to obtain estimates 
3 

of desirable properties. We restrict attention in this chapter to the 

situation where X is of f u l l rank. 

Under the assumption that ^ (<}>, ̂ °j)» ordinary least squares 

(OLS) f i t t i n g of the k component models yields Gauss-Markoff estimators 

Bj = ( X ^ ) " 1 xV. (j = 1, 2, k) . (4.0.1) 

The result given by (4.0.1) is completely basic and warrants no further 

comment except to note that the resulting Bj are best linear unbiased 

estimators (BLUE's) in the sense of the Gauss-Markoff theorem (see Gray-

b i l l , 1976, p. 219; Kempthorne, 1975, p. 32; Searle, 1971, p. 88). 

When £j ̂  (<|>, Vo?), generalized least squares (GLS) f i t t i n g applied to 

each component model leads to Gauss-Markoff estimators 
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B\ = ( X t V ~ 1 X ) " 1 X t V ~ 1 y j ( j = 1, 2, k ) . . (4.0.2) 

Note that i n (4.0.2) the ex i s t ence of V ^ i s guaranteed by the p o s i t i v e 

d e f i n i t e n e s s of V. I t i s worth p o i n t i n g out that the OLS e s t imator of 

3^ i s i n genera l d i f f e r e n t from the GLS e s t ima to r , except i n the s p e c i a l 

case where there e x i s t s a (p + 1) x (p + 1) nons ingu lar mat r i x F such 

that VX = XF. Th is i s a very s p e c i a l r e s u l t and i s due to Zyskind 

(1962). See G r a y b i l l (1976), Kempthorne (1975), and Sear le (1971) f o r 

re fe rences to t h i s r e s u l t . 

Now cons ider the t o t a l model. I n t roduc ing the expres s i on f o r y j 

g iven e a r l i e r i n t o the expres s i on f o r the t o t a l model, one gets 

k 
y T = Z (XB. + e.) = XB T + e T (4.0.3) 

j = l J 

or 

k k 
y = X I B• + I e. = XB T + e T (4.0.4) 

j = l J j = i J 

k k 
from where i t i s c l e a r that £_, = £. -, B- and £_, = ! . n e. . Hence, the 

T j = l J T j = l j 
k -

l e a s t squares e s t imato r of B j i s g iven by B^ = 8., where 8- i s g iven 

by (4.0.1) or (4.0.2) accord ing as o rd i na r y l e a s f squares or gene ra l i z ed 

l e a s t squares f i t t i n g i s used to ob t a i n BLUE ' s . Thus the t o t a l equat ion 

i s complete ly determined by c o e f f i c i e n t s of the component equat ions , 

as Kozak (1970) po in ted out . 

Having shown ( f o r = p) that the t o t a l equat ion i s complete ly 

determined by the parameters of the component equat ions , i t might be 

of i n t e r e s t to i n v e s t i g a t e whether s t a t i s t i c s de r i ved from the component 

analyses can be u t i l i z e d to make i n fe rences p e r t a i n i n g to the t o t a l equa­

t i o n . I t w i l l be shown, i n the seque l , that t h i s i s the case i n genera l . 

The r e s u l t s presented below w i l l be u s e f u l f o r t e s t i n g hypotheses 
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concern ing the t o t a l equat ion and f o r c o n s t r u c t i n g conf idence i n t e r v a l s . 

In order to s i m p l i f y the d e r i v a t i o n s , we s h a l l assume that the random 

v a r i a b l e s y. and y are independent f o r each j * I ( j , A = 1, 2, . . . , k ) . 
J * 

As we po in t out l a t e r , t h i s assumption may be q u i t e u n r e a l i s t i c f o r the 

phenomena be ing model led and t h i s may cons ide rab l y a f f e c t the u t i l i t y 

of the theory to be developed on the ba s i s of t h i s assumption. 

4.1 In ferences f o r T o t a l Model when E j ^ N(<j>, I a l ) 

We now address the problem of i n fe rence f o r the t o t a l model when 

the £j f o l l o w a m u l t i v a r i a t e normal d i s t r i b u t i o n w i t h e xpec ta t i on vec to r 

<j> and covar iance mat r i x l a ? , where $ and I have been de f i ned e a r l i e r . 

Note that we have e x p l i c i t l y s p e c i f i e d the form of the d i s t r i b u t i o n of 

e. here s ince such s p e c i f i c a t i o n i s necessary f o r i n f e r e n c e . 
J 

Let us beg in by supposing that i t i s de s i r ed to d i s cove r how w e l l 

the independent v a r i a b l e s i n the t o t a l equat ion e x p l a i n the observed 

v a r i a t i o n i n the components of y^,. To answer t h i s que s t i on , one needs 

to determine the amount of v a r i a t i o n i n the components of y^, that can 

be a t t r i b u t e d j o i n t l y to these independent v a r i a b l e s . Th is i s the usua l 

sum of squares due to r e g r e s s i o n . 

Denote the uncor rected sum of squares due to f i t t i n g the u n r e s t r i c t e d 

t o t a l equat ion by SS (3 T) and that due to f i t t i n g a v e r s i o n of t h i s model 

r e s t r i c t e d so that a l l components of ĝ , other than the i n t e r c e p t component 

are set equal to zero by SS^Cg^) . I t i s easy to show that 

s s R ( e T ) = = ( Z j = 1 I. ') x ' t t ^ y.) (4.1.1) 

and 

S S R ( B ( ) T ) = g ( I y ) - ny 2 (4.1.2) 
i = l 

where y . T i s the i ^ component of y T and y T i s the mean of the components 
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of y,p. I t f o l l o w s that the de s i r ed r eg re s s i on sum of squares f o r f i t t i n g 

the t o t a l equat ion i s g iven by 

k t k 

SS R ( (3 * T |B 0 T ) = ( Z 0 ) X t ( Z y ) - n y T

2 . (4.1.3) 
j = l j = l 

As u s u a l , the co r r ec ted t o t a l sum of squares f o r the t o t a l equat ion i s 

_ n _ 
SS T = y£ y T - n y T

2 = Z y | T - n y T

2 (4.1.4) 
i = l 

and the e r r o r sum of squares i s g iven by 

SS E = y£ y T - S S R ( 3 T ) (4.1.5) 

or as the r e s u l t of s ub t r a c t i n g (4.1.3) from (4 .1 .4 ) , that i s , 

SS E = SS T - S S R ( B * T | B 0 T ) . I t can be shown e a s i l y that S S R ( 3 * T | B Q T ) 

i s a s s oc i a ted w i t h p degrees of freedom wh i l e SS_, i s a s s o c i a t ed w i t h 

n - p - 1 degrees of freedom. Furthermore, s ince SSrj, i s a s soc i a ted 

w i t h n - 1 degrees of freedom and SS T i s the sum of S S R ( B * T j and 

SS E , i t f o l l o w s from Cochran ' s theorem (see Hogg and C r a i g , 1970, p.393; 

Kempthorne, 1975, p. 57; Montgomery, 1976, p. 37) that s s

r ( 3 * x | B 0 T ) 

and SSg are independent. By our d i s t r i b u t i o n a l assumption on 

( j = 1, 2, k) we have that S S R ( g * T | B Q T ) / a 2 and SSg/of a re , 

r e s p e c t i v e l y , noncen t ra l ch i - square w i t h p degrees of freedom and non-

t t ? 

c e n t r a l i t y parameter g*^ X Xg*^,/2a^, and c e n t r a l ch i - square w i t h 

n - p - 1 degrees of freedom. We have a l ready noted that they are i nde ­

pendent, whence i t f o l l o w s that a t e s t of s i g n i f i c a n c e f o r the t o t a l 

equat ion can be obta ined u s ing data and est imates r e l a t i n g to the component 

models w i thout a c t u a l l y f i t t i n g the t o t a l equat ion . An R 2 a s soc i a ted 

w i t h the t o t a l equat ion i s s i m i l a r l y obta ined. 

For examining the hypothes i s that some component of i s equal to 

ze ro , one i s o f t en i n t e r e s t e d i n c o n s t r u c t i n g conf idence i n t e r v a l s about 



the component or performing a direct t-test (see Montgomery, 1976, p. 

325). In either case, one requires an estimate of the covariance matrix 

of 3 T > Denote the true covariance matrix of g\ by ^ and that of 8 T 

by Then we have that 

$j = ( X ^ ) - 1 ^ (4.1.6) 

and by the fact that B T = E ^ = 1 j-L and that the (j = 1, 2, .. ., k) 

are independent, we have 

J T = ( X ^ ) " 1 Z j = 1 o2.. (4.1.7) 

The results given i n (4.1.6) and (4.1.7) are completely basic and we 

s h a l l not venture to prove them here. The estimator of $ w i l l be given 

by 

| T = ( X t X ) " 1 . Z j = 1 5^ (4.1.8) 
„ 2 , th 

where O j i s the mean square error associated with f i t t i n g the j com­
ponent equation. Hence confidence l i m i t s on the relevant component' 
of 3 T , say g , w i l l be given by 

hr 1 './a.n-p-l I t e j - l 5 P V ! (*-1-9> 

where t ,„ . i s the (1 - a/2) 100-th percentile of the central t -a/2,n-p-l r 

d i s t r i b u t i o n with n - p - 1 degrees of freedom and C i s the (£ + l ) s t 

diagonal element of the matrix (XfcX) ^. Note that £ takes integer values 

in the range 0 to p inclusive. The corresponding test based on the 

t - d i s t r i b u t i o n i s performed by computing 

and rejecting the n u l l hypothesis that 8 0 T = 0 i f | t 0 | > t ,„ _ _-. • 

Note also that the test in (4.1.10) can be derived as a special case 

of a more general approach i n the context of general linear hypothesis 

theory, as w i l l be shown i n a l a t e r part of the discourse. 

The inferences based on (4.1.9) and (4.1.10) are v a l i d i f (XfcX) ^ 
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is a diagonal matrix. In general, however, (XfcX) ^ is not diagonal 

and so results obtained from (4.1.9) and (4.1.10) can be misleading (see 

Montgomery, 1976, p. 326). This is so be cause both (4.1.9) and (4.1.10) 

and are based on the assumption that the elements of 3 ^ , such as 8 ^ 

3j T for i * j , are independent. When (XtX) ^ is not diagonal, this 

assumption does not hold in general. Therefore, a test for 8 „ T = 0 
Xi 1 

versus 3 ^ * 0 must be constructed using the 'extra sum of squares' prin­

ciple used in deriving (4.1.3) or using the general linear hypothesis 

theory alluded to above. The extra sum of squares principle is described 

in Draper and Smith (1981, p. 97 cf.) and in Montgomery (1976, pp. 326-

328) . 

Finally, for constructing a confidence interval about a true value, 

y ^ , corresponding to the x-coordinate, X ^ = (1, x - ^ r p » • • • » > where 

X _ is a row vector, one needs the covariance matrix $~ of y . Since 

y^ = X8,r,, we know from theory (e.g., Morrison, 1976, pp. 83-84) that 

i> = X(± T) Xfc = X(X tX)" 1 X t E k . a2.. (4.1.11) T Y T

 rT j=l j 

Hence the estimator of is given by 
yT 

L = X(X tX)" 1 Xfc . o2. (4.1.12) 

and, in particular, a- , the estimated standard error of y corres-
y£T 1 1 

ponding to the x-coordinate X ^ is 

8 , n - l y A ) " 1 4^.1 ¥ • < 4 - l - 1 3 ) 

Therefore, the desired confidence interval for y is given by 

y 4 T ± [ x^Cx 'x ) " 1 x[T z)ml o]l* t a l 2 ^ x • (4.1.14) 

Results given above show that tests concerning specific components 

of 3 r r , and corresponding confidence intervals can be constructed using 



information obtained from analyses relating to the component equations. 

Thus there is no need to f i t the total equation in order to make infer­

ences about i t . These observations pertain to the situation where 

e. <\i N(c|), la2.). We show below that the same holds when e. ̂  N(<f>, Va2) . 

4.2 Inferences for Total Model when e. ̂  N(<j>, Va2.) 
J J 

Consider now the situation where e. ̂  N(6, Va2.) with V as defined 
J J 

earlier. It was stated in (4.0.2) that the BLUE for gj under this dis­

tributional assumption is (XtV ̂ X) ̂ Xt V ^ . One must add here that 

this estimator is also a maximum likelihood estimator (MLE). It is 

desirable to motivate the derivation of (XtV ''"X) ̂  Xt V ^y^ , mainly to 

clear the way for it s use in making inferences. Accordingly, consider 

the model specification y. = Xg. + e . with e. ̂  K(<j>, Va2.) . Since V 
J J J J J 

is positive definite, there exists an n x n nonsingular matrix P such 

that 
V = PfcP. (4.2.1) 

Hence we have that 

(P1") lV P"1 = I. (4.2.2) 

Suppose one pre-multiplies the model y^ = Xg.. + by (Pfc) ̂ ; then one 

has 

(P t)~ 1y. = (P*) lX&. + (P*) 1 e. (4.2.3) 

which may be given equivalently by 

y*. = X*g. + e*.. (4.2.4) 
J J J 

Note that E y*. = X*g . = (P t)~ 1X B., since E e*. = $, and 
J J J J 

E(e*. e*5) = Io 2 so that we now have that z*. ̂  N(d>, Io 2). Therefore 
J J J J J 

a l l the theory developed in section 4.1 applies to (4.2.4). Applying 

OLS to (4.2.4) one obtains 
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&. = ( X * C X * ) " 1 X* f c y*. 
J J 

= [ x t ( p t p ) " 1 x f 1 x t ( p t p ) " 1
 y j 

= ( X t V - 1 X ) " 1 X f c V _ 1 y , (A.2.5) 

which i s the gene ra l i z ed l e a s t squares e s t imato r g iven e a r l i e r . Note 

that t h i s type of f i t t i n g (GLS) which produces (A.2.5) i s a l s o commonly 

r e f e r r e d to as weighted l e a s t squares f i t t i n g and, i n more genera l p r e ­

s en t a t i on s , as minimum V-norm f i t t i n g (see Kempthorne, 1975). 

Re su l t s u s e f u l i n making i n fe rences when ^ N(<j>, Va^) are b a s i c a l l y 

s i m i l a r to those de r i ved above f o r E J ̂  N(<j>, l a p w i t h a few important 

d i s t i n c t i o n s as a r e s u l t of our t r an s fo rmat i on of y^ above. In t e s t i n g 

f o r s i g n i f i c a n c e of the t o t a l equat i on , f o r i n s t ance , the r eg re s s i on 

sum of squares i s g iven by 

k t- t- k 

S S_ (B*|e n T ) = ( Z |p X * ( 1 y V " n y V (4.2.6) 
° T j = l J j = l 3 1 

where X* and y * . are as de f ined above and y * i s the mean of the components 

of v*m = Z. ., y * . . Furthermore, the co r r e c t ed t o t a l sum of squares 
T J=l J 

f o r the t o t a l equat ion i s 

SS T = y * ^ y * T - n y * T

2 (4.2.7) 

and the e r r o r sum of squares i s 

SS E = y * T

t y * T - S S R ( B T ) , (4.2.8) 

where SS^g^) i s g iven by the f i r s t term on the r i gh t -hand s i de of (4 .2 .6 ) . 

In these sums of squares, g\ i s as de f ined i n (4 .2 .5 ) . Aga in , 

SSr, (3* T I B__) la% and SS^/a 2 w i l l be d i s t r i b u t e d as noted e a r l i e r except 
K 1 1 (Jl 1 l i 1 

that the n o n c e n t r a l i t y parameter a s soc i a ted w i t h the d i s t r i b u t i o n of 

the former i s now g r j , * t x t V ̂  XB*rr ,/2a 2 . As be fo re , i t i s c l e a r that 

a t e s t of s i g n i f i c a n c e f o r the t o t a l r e g r e s s i on equat ion and the a s soc i a ted 

R 2 are ob ta i nab le from data and a n c i l l a r y q u a n t i t i e s de r i ved from f i t t i n g 
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the component equat ions wi thout recourse to a c t u a l l y f i t t i n g the t o t a l 

equat ion . 

In l i g h t of (4.2.5) the covar iance mat r i x of Sj i s now given by 

= (X tV _ 1X) a 2 (4.2.9) 

and that of by 

$ T = (XfcV X X) 1 Z k
= 1 o 2 (4.2.10) 

w i t h ^ and ^ obta ined r e s p e c t i v e l y by s imply r e p l a c i n g a? by a? i n 

the express ions ' f o r ^ and In t h i s con tex t , a 100(1 - a )% c o n f i ­

dence i n t e r v a l f o r 3 ^ i s g iven by 

hT ± t

a / 2 , n - p - l [ C V Z j = l 5 j ] i ( 4 ' 2 - n ) 

wh i l e a corresponding t - t e s t i s obta ined by c a l c u l a t i n g 

= & * T " C \ £ E j = l ( 4 - 2 ' 1 2 ) 

and r e j e c t i n g the n u l l hypothes i s that 3 _ = 0 i f It* 0I > t ,„ 
£T a /2 , n - p - l 

In (4.2.11) and (4 .2 .12) , C* r e f e r s to the (£ + l ) s t d iagona l element 

of ( X f c V '''X) , w i t h £ s p e c i f i e d as be fo re . The l i m i t a t i o n s of the r e s u l t s 

g iven by (4.2.11) and (4.2.12) when ( X t V ''"X) ^ i s not d iagona l are equa l l y 

v a l i d here so that one must r e s o r t to us ing the e x t r a sum of squares 

p r i n c i p l e or genera l l i n e a r hypothes i s theory to ob ta i n v a l i d t e s t s . 

To con s t ruc t a 100(1 - a )% conf idence i n t e r v a l about a t rue va lue 

of y T , say y^, corresponding to the x - c o o r d i n a t e , X £ T = (1, x 1 T  

Xp,p) , f o r X ^ T a row v e c t o r , one can show e a s i l y that the covar iance mat r i x 

of y^, = P*" yj* i s es t imated by 
L = X ( X t v " 1 X ) ~ 1 X s E k . a 2 . (4.2.13) 
r y T J=l J 

There fo re , a conf idence i n t e r v a l f o r y i s g iven by 

*£T * [ X l I ( x V l « _ 1 4 * j = l 5 j ^ ' a / Z . n - p - l * ( 4 ' 2 ' U ) 

Once aga in , r e s u l t s obta ined i n t h i s s e c t i o n show that t e s t s con ­

ce rn ing s p e c i f i c components of B.J-. and a s soc i a ted conf idence i n t e r v a l s 
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are c o n s t r u c t i b l e from i n fo rmat i on r e l a t i n g to analyses of the component 

equat ions . Th is r e s u l t ho lds when ^ N((|>, V a 2 ) . We a l ready showed 

that i t ho lds when e. ^ N(d>, l a 2 ) . In both cases , our d e r i v a t i o n s are 
J J 

based on the assumption that y . and y . are independent f o r each j * I 

( j , il = 1, 2, . . . , k) . Th is e s s e n t i a l l y completes our c o n s i d e r a t i o n 

of the problem of e s t ima t i on and i n fe rence f o r the t o t a l model when r_. = p. 

The problem of a d d i t i v i t y as de f i ned here when r^ = p i s mathematic­

a l l y n i c e and, i n a sense, t r i v i a l . The problem, however, has obvious 

p r a c t i c a l l i m i t a t i o n s as a r e s u l t of r e q u i r i n g that r j = p s i n c e , i n 

p r a c t i c e , one would l i k e to r e t a i n i n each component equat ion on ly those 

of the p independent v a r i a b l e s that are s t a t i s t i c a l l y important . I t 

i s , t h e r e f o r e , of i n t e r e s t to cons ider the consequences f o r e s t i m a t i o n 

and i n fe rence f o r the t o t a l model when r. ^ p w i t h the p o s s i b i l i t y that 
J 

r. < p f o r a l l j . Th i s i s the s i t u a t i o n not cons idered by Kozak (1970). 

We cons ider t h i s case i n the next chapte r . 



CHAPTER V 

5.0 ADDITIVITY WHEN r. £ p WITH r. < p FOR SOME j 
J J 

We now relax the requirement that each component model contain 

a l l the independent variables in the total equation. Specifically, 

i f the total equation contains p independent variables (each assumed 

important), we shall allow the component equations to contain only statis­

t i c a l l y important independent variables among the p variables. Thus 

, the number of independent variables in component equation j , may 

be less than p and s t r i c t l y so for at least one j . This admits the 

possibility that r_. < p for each j provided that in that case each inde­

pendent variable in the total equation is contained in at least one com­

ponent equation. This w i l l be consistent with additivity as defined 

here. 

With X = (i>|Xi | . . . |X ) as defined earlier, we now consider models 

of the form 

yj = Xgj + e (j = 1, 2, k) (5.0.1) 

and 

Y X = E j = 1 Yj = XB T + e T (5.0.2) 

where the matrix X is common to the k + 1 models. However, the latter 

models differ from those specified earlier in the following respects. 

In (5.0.1), is a (p + 1) x 1 vector defined so that g^ has an inter­

cept component with r^ £ p of the remaining p components nonzero and 

the other p - r. equal to zero. The relative positions of the zero 
J 

23 
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and nonzero components in the last p cells of g.. w i l l be such as correspond 

to the presence or absence of particular X^ ( i = 1, 2, ..., p) in the 

j t n component equation. g T w i l l be as defined before with p + 1 nonzero 

components. Our definition of g.. implies that the effective X matrix, 

say Xj, corresponding to component equation j is necessarily different 

for each j except when g. and g have nonzero components in identical 

positions for j * £ ( j , I = 1, 2, k). Assume that e.. and e^, are 

distributed as specified in chapter IV and also that y. and y (hence 
J * 

e. and e ) are independent for j * £. J £ 
5.1 Estimation when e. a* N(<j) l a 2 ) 

J 1_ 
We f i r s t consider the problem of estimation for the total equation 

when e. ̂  N (d>, la2.). F i r s t , we state an intuitive result for the e s t i -
J J 

mation problem and then demonstrate i t s validity. Note that model 

(5.0.1) is equivalent to model (2.2.1) with a condition adjoined, namely, 

y. = Xg. + e. .3. b = <(> (j = 1, 2, k) (5.1.1) 
J J J 

where b is a vector of zeros corresponding to the vector of components 
q j 

of gj in (5.0.1) which are set equal to zero in the j*"* 1 component equation. 

It is clear that estimation relating to (5.1.1) can be achieved via con­

strained minimization. Denote the resulting solution by g*^ (j = 1, 

2, k) and the corresponding conditioned f i t by 

Yj = Xg*.. (j = 1, 2, k). (5.1.2) 

Furthermore, let ŷ , be as defined in chapter IV; we shall occasionally 

refer to ŷ , as the unconditioned total model. Also, let ŷ ,̂ , be termed 

the 'conditioned' total equation in a sense to be defined momentarily 
k - . . . . . and let y * T r = E. , Xg*.. Then the conditioned total predictive equation IL. j-1 j 

is given by 
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y TC = y T ~' ^ y T ~ y *TC^ (5.1.3) 

where the f a c t o r - 9*JQ i s a c o r r e c t i o n or c o n d i t i o n i n g f a c t o r which 

c o r r e c t s the uncond i t ioned f i t t e d t o t a l equat ion (obta ined i n chapter 

IV) f o r parameters that are set equal to zero i n some of the component 

equat ions . Note that (5.1.3) imp l i e s that y T C = Y * T C = X ^ ^ = 1 3*j a n d 

that 

^TC - Z j = l * * j " g T " C*T ~ Z j = l ( 5 - 1 ' 4 ) 

In (5 .1 .4 ) , B ^ and 0^ are the e s t imato r of the parameter vec to r of the 

t o t a l cond i t i oned equat ion and that of the uncond i t ioned t o t a l equa t i on , 

r e s p e c t i v e l y . Equat ion (5.1.4) imp l i e s that the parameter vec to r of 

the cond i t i oned t o t a l equat ion i s es t imated by adding the est imates of 

the parameter vec to r s corresponding to the cond i t i oned component equa­

t i o n s . Our immediate task i s to demonstrate that t h i s r e s u l t i s mathe­

m a t i c a l l y v a l i d . To do so, we s t a te our problem as one of m in im i za t i on 

subject to c o n s t r a i n t s . 

Let us so lve the e s t ima t i on problem a s soc i a ted w i t h f i t t i n g 

y T = XB T + E t (5.1.5) 

subject to 

B T = Z j = ] _ &*.. (5.1.6) 

Note that 8*j i n (5.1.6) r e f e r s to the parameter vec to r corresponding 

to the cond i t i oned component equat ion j . Th i s problem i s so lved by 

m in im i z i ng the Lagrangian f u n c t i o n 

S ( g T , 6) = ( y T - X g T ) t ( y T - XB T ) + 2 9 ^ - Z * = 1 & * . ) , (5.1.7) 

where 2 6 t i s a vec to r of Lagrange m u l t i p l i e r s . Now, d i f f e r e n t i a t i n g 

(5.1.7) w i t h respect to the elements of B̂ , and 6, r e s p e c t i v e l y , one ob­

t a i n s 

9 S = 2X t XB T + 26 - 2X ty r j, (5.1.8) 
98j 
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f f = ~ e T " z j = i **y (5-1-9) 

Equat ing both (5.1.8) and (5.1.9) to zero leads to 

X C X B T + 6 = X ^ (5.1.10) 

3 T = Z j = 1 B*.. (5.1.11) 

Our s o l u t i o n vec to r g T must s a t i s f y both (5.1.10) and (5.1.11) . From 

(5.1.10) one has 

xcx g T = x ty T - e =>g T = (x^)-1 x̂ x - (x'x)"1
 0 

= 3 T - (,A)~h. (5.1.12) 

Now, ( 5 . 1 . 1 2 ) = * § = X t X(g_ - g_) and s ince 8 T = E k g * . by (5 .1 .11) , 
T T T J=l J 

one has that 

6 = X t X (g - E k

= g * . ) . (5.1.13) 

Hence, p u t t i n g (5.1.13) i n t o (5.1.12) one gets 

§ T = g T - ( X ^ ' V x d j - E k

= 1 g*.) 

= g T - ( g T - E k

= 1 %*.), (5.1.14) 

a r e s u l t g iven e a r l i e r i n equat ion (5 .1 .4 ) . This e s t a b l i s h e s the v a l i d i 

of that r e s u l t . 

S ince g^, the parameter vec to r of the t o t a l cond i t i oned equa t i on , 

i s determined by g*^ ( j = 1, 2, k ) , i t i s important to d i s cus s the 

e s t i m a t i o n of S*. here. I t should be emphasized that g*. i s a 
J J 

(p + 1) x 1 vec to r hav ing p - r^ of i t s components equal to ze ro . We 

are e x p l i c i t l y assuming that the i n t e r c e p t component of g*^ i s nonzero. 

In e s t ima t i n g 6*j> i t i s important to recogn ize that one does so c o n d i ­

t i o n a l l y on some s p e c i f i e d components be ing assumed equal to ze ro . In 

the f o l l o w i n g , we cas t the problem w i t h i n the framework of genera l l i n e a r 

hypothes i s theory . 



Consider testing the general hypothesis H : = m, where 3. . 

is a (p + 1 ) x 1 parameter vector of the model ( 2 . 2 . 1 ) , K C is any matrix 

of s rows and p + 1 columns and m is a vector, of order s, of specified 

constants. We shall require that K*" be of f u l l row rank, that is 

r(K t) = s, where r(«) denotes the rank of the argument. One is inter­

ested here in estimating 3 j under the null hypothesis H : = m. 

Designate the parameter vector under the null hypothesis by 3 * j . Using 

constrained least squares (see Searle, 1 9 7 1 , pp. 1 1 3 - 1 1 4 ) , the desired 

estimator is given by 

3 * j = fL - ( X ^ ) " 1 K[K t(X tX)~ 1 K]" 1 (K'JL - m), ( 5 . 1 . 1 5 ) 

where 3 j is the unconstrained estimator of 3 j (with a l l independent vari­

ables included) . When the hypothesis is of the form H : b^ = <j> for 

b a subset of 3 . of order q., we have 

Kfc = [I 0], m = s = q.. (5.1.16) 

Now partition 3^, g\ and (XfcX) 1 as follows 

where p. + q. = p + 1. Then the estimator of 3 * . is 
J J J 

f * 
3 * . = \ • (5.1.17) 

J Vb " T T 
\ p . p .q . q .q . 

If X is partitioned as X= (X JX ), then the estimator in (5.1.17) is 

equivalently given by 

V P j P j P j P j ^ j q j P j P j y 
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Observe that i f the columns of X are orthogonal to those of X , then 

(XfcX) is block-diagonal so that 

Equation (5.1.19) expresses the expected fact that when the columns of 

X and those of X are orthogonal, then f i t t i n g only the last p. com-

ponents of X w i l l yield the same b as f i t t i n g a l l components of X con-
P j 

ditionally on the f i r s t qj having zero coefficients. The consequence 

for estimation of having a l l columns of X mutually orthogonal should 

be obvious from this. In general, the estimator of 3 for any linear 

model depends upon variables not included in the model, including those 

that are not known. 

When a subset of a set of predictor variables is s t a t i s t i c a l l y 

unimportant, i t is common practice to f i t an equation which simply 

ignores the unimportant subset. Unless the latter subset is. orthogonal 

to the important one in the original set, the resulting f i t w i l l not 

be conditioned in the sense defined above. Hence, the corresponding 

estimator of the parameter vector is different from that of a correspond­

ing conditioned f i t , again unless orthogonality holds. .The estdmator 

is also of smaller order and is given by the non-null part of B* j in 

(5.1.19). It follows from (5.1.18) and (5.1.19) that one can correct 

the latter estimator and f i l l i t out appropriately to obtain the corres­

ponding conditioned estimator. In view of this, the remainder of this 

chapter w i l l be based on conditioned component equations in the sense 

just defined. 

(5.1.19) 
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5.2 Inference when e. ^ N(<J>,Ia2) 
J J 

When t e s t i n g the s i g n i f i c a n c e of the t o t a l cond i t i oned equat i on , 

the r eg re s s i on sum of squares i s g iven by 

S S R ( 8 * T C | B 0 T C ) = ( Z j = 1 8 * ^ ) X t ( E k

= 1 y . ) - n y T

2 . (5.2.1) 

Other sums of squares r e l a t i n g to t h i s p a r t i c u l a r t e s t i n g problem are 

obta ined i n an obvious way. We omit f u r t h e r d e t a i l s wh ich, aga in , are 

complete ly obv ious. We con s i de r , i n s t ead , the problem of t e s t i n g s pec i f 

hypotheses r e l a t i n g to the t o t a l cond i t i oned equat ion . 

I t has been demonstrated above that the e s t imator of the parameter 

vec to r g,^ f o r the t o t a l cond i t i oned equat ion i s determined by summing 

corresponding components of cond i t i oned component equat ions . A n a l y t i c ­

a l l y , there are two p o s s i b l e ways i n which a p a r t i c u l a r component of 8 

might tu rn out to be zero under a d d i t i v i t y . F i r s t , a component of 

8^^, may be zero as a r e s u l t of the c a n c e l l a t i o n law when adding negat ive 

and p o s i t i v e elements. While t h i s i s a r i t h m e t i c a l l y p l a u s i b l e , i t i s ' 

not reasonable g iven that we have assumed a p r i o r i that each independent 

v a r i a b l e i s s t a t i s t i c a l l y important. Secondly, i f a p a r t i c u l a r i n d e ­

pendent v a r i a b l e has an est imated c o e f f i c i e n t of zero i n each i n d i v i d u a l 

component equat i on , then the corresponding component of B ^ w i l l be zero . 

Aga in , t h i s i s u n l i k e l y s ince i t i s con t ra ry to the hypothes i s that each 

independent v a r i a b l e i s important. 

The fo rego ing suggests that an hypothes i s which s ta te s that some 

component (or vec to r of a subset of components of ^^Q) i s zero i s not 

a reasonable hypothes i s . In s tead, an hypothes i s that some component 

(or vec to r of a subset of components of &JQ) i s equal to c , where c i s 

a known s c a l a r (vector w i t h a l l i t s components) d i f f e r e n t from zero , 

i s a reasonable hypothes i s . The s p e c i f i c a t i o n of c may be based on 
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past exper ience or r e l a t e d ana ly se s . 

There are two ways i n which c may be s p e c i f i e d . The s p e c i f i c a t i o n 

of c may be d i r e c t as desc r ibed i n the preced ing paragraph. On the 

other hand, c may be s p e c i f i e d i n d i r e c t l y by s imply s p e c i f y i n g c . 

( j = 1, 2, . . . , k) i n a s e r i e s of subhypotheses r e l a t i n g to each com­

ponent cond i t i oned equat ion . We emphasize that the va lue of c i s not 

s p e c i f i c a l l y determined i n the l a t t e r case, but i t i s determined under 

a d d i t i v i t y of the cond i t i oned component equat ions when they are f i t t e d 

under the subhypotheses s p e c i f i e d by c^. We s h a l l r e f e r to the t e s t 

of hypothes i s concern ing c when c i s s p e c i f i e d d i r e c t l y as a d i r e c t t e s t 

of the hypothes i s c . The corresponding t e s t when c i s s p e c i f i e d i n ­

d i r e c t l y through the c^ ( j = 1, 2, . . . , k) w i l l be r e f e r r e d to as an 

i n d i r e c t t e s t . We use t h i s terminology on ly f o r i t s mnemonic appea l . 

Let the cond i t i oned t o t a l model s p e c i f i e d by g ^ be des ignated 

k 

as the f u l l model. R e c a l l tha t g r = g* . and that the sum of square 

r e g re s s i on due to f i t t i n g t h i s model i s g iven by S S R ( g * ^ | g ^ ^ J as g iven 

i n (5 .2 .1 ) . Now cons ider f i t t i n g a v e r s i o n of the f u l l model r e s t r i c t e d 

so that some s p e c i f i e d component(s) of g ^ i s ( a r e ) g iven by the s c a l a r 

(vector ) c . Le t the l a t t e r model be indexed by the parameter vec to r 
c ^ c • • g r . Note that g i s obta ined by f i t t i n g the model indexed by g „ 
X L I L x L 

sub ject to the f u r t h e r r e s t r i c t i o n that some s p e c i f i e d component(s) of 

g ^ i s ( a r e ) equal to c. Designate the sum of squares r eg re s s i on due 
• C C i c 

to f i t t i n g the model indexed by g^- by SS D (g* g ^ , ) . Th is sum of square 
I L K O I L 

i s g iven by 

U C I ̂ C \ _ / o C \ t „f-.-„k 
SSR(g*TC|g T̂C) = (g^r X t ( Z j = 1 y j) - n y T

2 . (5.2.2) 
c . 

S ince the model indexed by 3T(_, i s a r e s t r i c t i o n on the model indexed 

by gTC, i t f o l l o w s that SSR(g*^c | g^) ^ S S

R ^ * T C I B 0TC ) * H e n C e t h e 
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sum of squares 

HO = S S R ( B * T C | B 0 T C ) - SS R(3* T C|3^ T C) (5.2.3) 

can be i n t e r p r e t e d as the e x t r a sum of squares f o r t e s t i n g the hypothes i s 

that a s p e c i f i e d component (s) of $ ^ i s (are) equal to c. Thus, us ing 

ijj(c) and the e r r o r sum of squares f o r the f u l l model leads to a d i r e c t 

t e s t "for c. 

Suppose, now, that c i s s p e c i f i e d i n d i r e c t l y by s p e c i f y i n g c^ 

( j = 1, 2, . . . , k ) . As i n an e a r l i e r pa r t of the seque l , l e t 3*̂  be 

the parameter vec to r corresponding to cond i t i oned component model j . 

Suppose we f i t the model indexed by 3*j under the subhypothesis that 

~ c 

some component of 3*j 1 S equal to c^. Th i s leads to e s t imato r s 3*j 

( j = 1, 2, . . . , k ) , where the s u p e r s c r i p t c on 3*j denotes the f u r t h e r 

r e s t r i c t i o n c^. Again i f we denote the t o t a l cond i t i oned model w i t h 

the f u r t h e r r e s t r i c t i o n c imposed i n d i r e c t l y through the c^ as be ing 

c 
indexed by 3̂ ,̂, i t f o l l ows by our r e s u l t on a d d i t i v i t y that 
c k. c 

3__ = 6*. • The r e g re s s i on sum of squares due to f i t t i n g the l a t t e r 

model i s g iven by 

SS R(3* T C|3^ T C) = ( ^ ( B ' . V ) X C ( Z k
= 1 y . ) - n y / . (5.2.4) 

Once aga in , one has that S S
R ( 3 * X C I 3 Q T C ) i S S R ( 3 * T C | 3 0 T C ) , so that again the 

sum of squares 

* * ( c ) = S S R ( B* T C|3 0 T C) " S S R(3* T C|3^ T C) (5.2.5) 

can be i n t e r p r e t e d as the e x t r a sum of squares f o r t e s t i n g the hypothes i s 

that a s p e c i f i e d component (s) of 3 r i s (are) equal to c v i a the c . Thus, 

us ing ^ * (c ) and the sum of squares e r r o r f o r the f u l l model leads to 

an i n d i r e c t t e s t f o r c. 

I t i s worth emphasizing that the procedure f o r t e s t i n g a hypothes i s 

concern ing c d i r e c t l y or i n d i r e c t l y i s a p p l i c a b l e whether c i s a s c a l a r 
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or a vector. 

Tests of hypotheses concerning individual components of 3 ^ ,Q using 

the usual t - s t a t i s t i c and/or univariate confidence intervals about such 

components can be obtained in a manner similar to that described in chapter 

IV provided an estimate of the covariance matrix of is available. 

These tests and confidence intervals are especially likely to be mislead­

ing here, however, since the conditioning makes the components of 3 ^ cor­

related unless the columns of X are orthogonal. Therefore, tests on 

individual components of B̂ -̂, are best performed as outlined in the preced­

ing paragraph. On the other hand, a confidence interval can be constructed 

about y^x> say, corresponding to a given x-coordinate in an obvious way. 

5.3 Estimation and Inference when e. ̂  N(<j>, Vo2.) 
J i _ 

Results presented in sections 5.1 and 5.2 relate to the distribu­

tional assumption ^ N((j), la?). These results carry over to the case 

£j ^ N(<j>, Vo?), for V as defined in chapter IV with the obvious modifica­

tion that wherever X, y^ and y^ occur, in the various expressions, they 

are replaced by (P1") ''"X, (P*") ̂y^ and (P*") ^y^, in that order, where 

V^F = V with P as defined in that chapter. Thus, most of the results 

w i l l involve V ^ as demonstrated before. 

In the following chapter, i t is demonstrated that the problem of 

additivity when T j = p can be treated as a special case of additivity 

when r^ i p. Such a demonstration provides a basis for constructing 

a unified theory relating to the additivity problem. 



CHAPTER VI 

6.0 A GENERALIZATION OF THE ADDITIVITY PROBLEM 

Within the framework of the conditioning p r i n c i p l e described i n 

the preceding chapter, the f i t t i n g of the component and corresponding 

t o t a l equations when r^ = p can be considered as a problem of f i t t i n g 

subject to ' n u l l ' or ' t r i v i a l ' conditions. By n u l l or t r i v i a l condi­

tions we mean here that no further conditions are imposed on the 

g. (j = 1, 2, k) beyond the basic a d d i t i v i t y requirement that 

Bj = BT- The point to observe here i s that there i s no require­

ment that any component(s) of g.. be equal to zero. In terms of r e s u l t 

(5.1.3) i n the preceding chapter, t h i s implies that y* TQ = y T so that 

(5.1.3) reduces to 

y T C = y T- (6.0.1) 

Note that ŷ ,, ŷ ,̂ , and y* T£ were a l l defined i n the previous chapter. 

Thus the co r r e c t i o n factor or the conditioning factor i s i d e n t i c a l l y 

zero when r . = p. 
J 

In terms of a r e s u l t given i n (5.1.14), the above implies that 

g T = I k g*. (6.0.2) 
T J=l J 

so that (5.1.14) then reduces to 

B T = 8 r (6.0.3) 

Equations (6.0.1) through (6.0.3) suggest that the problem of a d d i t i v i t y 

when r j E p can be treated as a sp e c i a l case of a d d i t i v i t y when r.. ^ p. 

33 
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In t h i s connection, the theory of estimation and inference described 

i n chapter V reduces to that presented i n chapter IV when r^ = .p. This 

gene r a l i z a t i o n i s s i g n i f i c a n t , at least t h e o r e t i c a l l y , since i t makes 

i t possible to v i s u a l i z e the a d d i t i v i t y problem as defined here as one 

very general problem which can be studied under one u n i f i e d theory of 

estimation and inference. 



CHAPTER VII 

7.0 OTHER ASPECTS OF THE ADDITIVITY PROBLEM 

The development of the theory has, thus f a r , been based upon the 

assumption that y. and y (and hence e. and e ) are independent f o r each 

j ^ £ ( j , i = 1, 2, ..., k). As indicated e a r l i e r i n the t h e s i s , how­

ever, there are examples of applications where t h i s assumption i s simply 

not tenable. The implications of t h i s , e s p e c i a l l y for inference, are 

well worth considering and w i l l be examined i n t h i s chapter. There 

w i l l be occasion also to consider other general complements of the add­

i t i v i t y problem such as that of the matrix X not of f u l l column rank 

and of V not nec e s s a r i l y p o s i t i v e d e f i n i t e . These l a t t e r generalizations 

are useful when considering c e r t a i n classes of the general l i n e a r model. 

In p a r t i c u l a r , they permit the extension of the theory of a d d i t i v i t y 

as developed here to c l a s s i f i c a t o r y models which are generally associated 

with designed experiments and are ro u t i n e l y analysed using analysis of 

variance procedures. Furthermore, i t i s noteworthy that i t i s generally 

assumed i n most applications of regression analysis that the X matrix 

i s f i x e d (that i s , that the independent v a r i a b l e s are eit h e r known or 

are measured without e r r o r ) . Yet i t i s quite conceivable that the inde­

pendent va r i a b l e s may themselves be random, j u s t as the dependent v a r i a b l e 

y, or they may be fixed but measured with erro r . It i s reasonable to 

consider b r i e f l y the implications f o r analysis of these p o s s i b i l i t i e s , 

at least f o r completeness. 

35 
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7.1 The Case y., y (j * £) Dependent 
J  

As a preamble, suppose that X i , X2, . .. , X^ are multivariate normal 

random vectors, each of dimension m, with mean vectors ( i = 1, 2, 

k) and corresponding covariance matrices ( i = 1, 2, ..., k ) . 
k 

Now define U = E. , X. and suppose one i s interested i n the d i s t r i b u t i o n 1=1 1 

of U. I f , in addition, i t i s assumed that the vectors X^ ( i = 1, 2, 

k) are independent, then'by a well-known theorem i n multivariate 

analysis (see Muirhead, 1982, p. 14), i t follows that U i s m-variate 
k normally d i s t r i b u t e d with mean vector u = E. -, u. and covariance matrix J i=l 1 

i T T = £ k , % .. On the other hand, i f the vectors X. ( i = l , 2, ...,k) TU 1=1 T i 1 
are dependent, we know only that 

EU = E k . y. (7.1.1) i=l 1 
and 

t. = E k . t. + E E i . . , (7.1.2) TU 1=1 T i . . T i l 

where t . i s the variance-covariance matrix of X. and t . . i s the covariance 
T i 1 T i j 

matrix of X^ and X. ( i * j ) . Hence i t follows that 
k k U ^ (E. , u., E. , I. + E E I . . ) . Note that we have only s p e c i f i e d the 1=1 1 1=1 T i . . T i j 

parameters of the d i s t r i b u t i o n of U and not i t s form. Indeed, as far 

as i s known, without making any assumptions concerning the form of depen­

dency of the summands in the d e f i n i t i o n of U, the exact d i s t r i b u t i o n 

of U under dependence i s la r g e l y an outstanding problem i n mathematical 

s t a t i s t i c s . However, as suggested above, given some knowledge of the 

form of dependency among the k vectors X^, i t i s possible to obtain a 

d i s t r i b u t i o n for U (Olkin, 1983, personal communication). Furthermore, 

one might surmize that the d i s t r i b u t i o n of U under dependence of the 

component vectors might be derivable as a multivariate generalization 



of the univariate analogue considered by Springer (1979, pp. 72-75). 

Even so, however, the explicit representation of such a distribution 

is likely to be nontrivial. 

The representation of $ given in (7.1.2) derives from a simple 

generalization of the univariate case to the multivariate case. For 

the analogous univariate result, see Mood, Graybill, and Boes (1974, 

p. 179). Note that independence of the vectors ( i = 1, 2, ..., k) 

implies that H 0, the null matrix, in (7.1.2). 

Now let U = y_ and X. = y. (j = 1, 2, ..., k); then for y., y J- J J J *• 
dependent for each j * I, i t follows that 

k k k J, x y„ = Z. - y. ^ (XE. .. 3., E. . t. + H I..), For simplicity in what T j=l J 2 J=l J J=l T J T i J 

follows, we shall mostly use t T to designate £ k i . + Z Z i , .-. Even 

given that the y^ (j = 1, 2, ..., k) are individually multivariate normal 

under dependence i t is not known what the distribution of ŷ , is exactly. 

What is known is that ŷ , is either multivariate normal or is not multi­

variate normal (see Kale, 1970). Examples are found in the literature 

of linear combinations of normal random variables which are themselves 

(the linear combinations, that is) not normal (e.g., Rosenberg, 1965; 

Behboodian, 1972) and of marginally normal random variables whose joint 

distributions are not normal (e.g., Ruymgaart, 1973). These results 

of course generalize to vector random variables. The overall implica­

tion of this is that lack of knowledge of the exact distribution of ŷ , 

and, in particular, i t s probable non-normality renders the construction 

of a small-sample theory of inference considerably more d i f f i c u l t . 

Given lack of knowledge of the exact distribution of ŷ ,, a small-

sample theory of inference for the total regression model is constriictibl 

on the basis of normality of ŷ , i f one can demonstrate that the vectors 
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V j (j = 1, 2, ..., k) are j o i n t l y multivariate normal. This i s the 

case because i t i s well-known that i f yx, yz , ..., y, are j o i n t l y m u l t i -
K. 

variate normal, then every l i n e a r function of these y ^ ' s i s multivariate 

normal. (Note that they.'s are vectors here.) This r e s u l t follows 

from a cha r a c t e r i z a t i o n of the b i v a r i a t e normal d i s t r i b u t i o n which gener­

a l i z e s to other j o i n t multivariate normal d i s t r i b u t i o n s (see Rao, 1965, 

pp. 437-438). Therefore, i n our instance, under dependence of the y^'s, 

normal theory can be used to construct inferences concerning y^ or 

or both i f i t can be shown that y i , y2» •••> y, are j o i n t l y multivariate 
K. 

normal. This suggests the need for methods of assessing multivariate 

normality based upon r e a l i z a t i o n s of the vectors y i , y2> •••> y^-

Graphical methods of assessing multivariate normality have been proposed 

in t h e \ l i t e r a t u r e (e.g., Healy, 1968; Cox, 1968; Andrews, Gnanadesikan, 

and Warner, 1973). Other authors have proposed a n a l y t i c a l s i g n i f i c a n c e 

tests for t e s t i n g for multivariate normality (e.g., Malkovich and A f i f i , 

1973; Hawkins, 1981). More recently, however, Koziol (1982) introduced 

a test for assessing multivariate normality which i s f a i r l y easy to use 

and has some nice properties. If a test for j o i n t m u l tivariate normality 

such as Koziol's (1982) leads one to entertain j o i n t multivariate normal­

i t y , then one proceeds to make inferences concerning ŷ , or based upon 

the usual normality assumptions. I f , on the other hand, j o i n t m u l t i v a r i ­

ate normality i s rejected, then one can eit h e r appeal to asymptotic r e s u l t s 

to construct approximate tests or resort to nonparametric approaches. 

We s h a l l discuss the l a t t e r approach only b r i e f l y i n th i s t h e s i s . But 

f i r s t , l e t us tackle the problem of estimation. 

file:///literature
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7.1.1 Estimation for Total Model under Dependence 

As observed e a r l i e r , estimation should not, in general, be hampered 

by lack of knowledge of the d i s t r i b u t i o n of ŷ , and, in p a r t i c u l a r , by 

i t s non-normality. Consider estimation for the t o t a l model when 

e. a, N(d>, la2.) and when e. ̂  N(<b, V a 2 ) . It i s demonstrated i n t h i s 
J J J J 

section that when the y^'s are dependent, the concept of a d d i t i v i t y , 

as defined here, does not hold. This follows from the following reasoning. 

When the e. are dependent, one has that 
k 

e m ^ (<f>, £• •, $• + £ E t • •) in general. In the case where T T i=l ' i . . T i i i * j J 

^ N((j>, l a 2 ) (j = 1, 2, k) , the f i r s t term i n the variance-covar i -

ance matrix of ê , reduces to l a 2 , , where a 2 = £j=]_ ° j • Furthermore, 

i t i s easy to see that t . . = Ip..a.a. so that E E I.. = I E E p..a.a.. 
+ i j i j 1 J ^ + U i 5 e j i J i J 

Therefore, under dependence of the with ^ N(4>, Io 2) , 

^ (<j>,Ia2) where a 2 = £ k a 2 + E E p..a.a.. Thus the variance-T Y 1=1 i . . i i l l i * j J J 

covariance matrix of Erj, i s diagonal. On the other hand, when 

e. ^ N(d), V a 2 ) , the f i r s t term i n the variance-covariance matrix of e_ 
J J T 

becomes Va2,, with a2, as defined above, so that e ^ (cf>, Va2, + E E $^.) 

where i . . i s not diagonal. 

Recall that under the assumption of independence of the y^'s and 

V p o s i t i v e d e f i n i t e , the transformation matrix P, such that PfcP.= V, ••was 

the same for each component model and the t o t a l model. As a consequence, 

a d d i t i v i t y followed n a t u r a l l y since 

§ T = (X t v" 1X)" 1X t v" 1y T 

= ( X t v " 1 X ) " 1 x V 1 E k
= 1 y.. 

= (X tv" 1X)" 1X tv" 1[yi + ... + yfc] 
= £ k (7.1.1.1) 

J=l J 



40 

Note that the above r e s u l t holds a l s o when V = I. Now suppose that 

under dependence of the ( j = 1, 2, ..., k ) , the variance-covariance 

matrix of may be w r i t t e n i n the form V^o 2, f o r some matrix Vj. F i r s t , 

note that when ^ N(<t>, Vo-^) w i t h V p o s i t i v e d e f i n i t e , there i s no guaran­

tee that i s p o s i t i v e d e f i n i t e , though we know that i t i s at l e a s t 

p o s i t i v e s e m i - d e f i n i t e . Secondly, even i f were p o s i t i v e d e f i n i t e , 

i t i s obvious that the matrix P^ such that = P^P^ i s not n e c e s s a r i l y 

equal to the matrix P which transforms each of the component equations. 

This holds when ^ N(<|>, i a ^ ) because Io" T 4 Io2. Consequently, when 

the y^ are dependent, 3^ cannot be determined from the a d d i t i v i t y property. 

This r e s u l t must obviously hold f o r more general V and Vj. Assuming 

p o s i t i v e d e f i n i t e n e s s of V and V^, n o n a d d i t i v i t y i s demonstrated as f o l ­

lows. Note that 

§ T = ( X t V ^ 1 X ) " 1 X t V T " 1 y T 

= (X f cV T
 lX) 1 X t V T

 1 Z k
= i y 

= E k 6 * 
j = l j 

+ E k § = ( x t v" 1X)" 1X t V _ 1 2 k
 y.. (7.1.1.2) 

J=l J J=l J 

Indeed, e q u a l i t y holds only i f V\j, = V which i m p l i e s that E „ = 0 f o r 

a l l i 4 . j and, t h e r e f o r e , independence of the Y j ' s - The above r e s u l t s 

suggest that when the Y j ' s a r e dependent, the parameters of the t o t a l 

equation must be determined by a c t u a l l y f i t t i n g the corresponding t o t a l 

equation r a t h e r than from a d d i t i v i t y . An exception to t h i s would be 

i n those cases where dependence i s so weak that the f i r s t term i n the 

covariance matrix dominates the second term (namely E I t..) i n the sense 

that the e n t r i e s of each are clo s e to zero. But t h i s simply i m p l i e s 

that independence l a r g e l y o b t a i n s . 
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S ince i n f e r ence f o r the t o t a l model i s e s s e n t i a l l y l i n k e d to e s t i m a ­

t i o n , i t f o l l o w s that i n fe rences concern ing parameters of the t o t a l model 

when the y a re dependent can on l y be made a f t e r f i t t i n g the r e l e van t t o t a l 

models d i r e c t l y . There fo re , under dependence of the y , one must a c t u a l l y 

f i t the t o t a l model i n order to es t imate i t s parameters and make i n f e rence s 

about them. 

Let us r e t u r n to the problem of i n f e rence under dependence. S i n ce , 

as observed e a r l i e r , e ,̂ may or may not be m u l t i v a r i a t e normal , one has 

s e v e r a l op t i on s . F i r s t , one can t e s t f o r j o i n t m u l t i v a r i a t e no rma l i t y 

(JMVN) of y 1 } y 2 , y, along the l i n e s of K o z i o l (1982). I f the t e s t 

shows that j o i n t m u l t i v a r i a t e no rma l i t y i s t enab l e , then one uses normal 

theory to make i n fe rence s concern ing the t o t a l equat ion as desc r ibed below. 

I f j o i n t m u l t i v a r i a t e no rma l i t y i s not t enab l e , one may examine 

y T = Yj d i r e c t l y f o r n o r m a l i t y , s i n ce l a c k of j o i n t m u l t i v a r i a t e 

no rma l i t y does not r u l e out the p o s s i b i l i t y t ha t y^ i s normal . I f both 

j o i n t m u l t i v a r i a t e no rma l i t y of the y . ' s ( j = 1, 2, k) and no rma l i t y 

of y^, by d i r e c t examinat ion of E j - j Yj a r e n o t t enab l e , then one may use non-

parametr ic procedures. I f c e r t a i n c ond i t i o n s a re met, one may use asymp­

t o t i c r e s u l t s t o a r r i v e at approximate i n f e rence s (see A r no l d , 1981, s e c ­

t i o n s 10.1, 10.3) when y T i s not normal . Th is l a t t e r i s not cons idered 

f u r t h e r here . However the other approaches a re cons idered b r i e f l y below. 

7.1.2 In ference f o r T o t a l Model when y j , y 2 , y^ are JMVN 

When a procedure f o r a s se s s ing j o i n t m u l t i v a r i a t e no rma l i t y such as 

K o z i o l ' s (1982) leads to the conc l u s i on tha t the assumption of j o i n t m u l t i ­

v a r i a t e no rma l i t y i s reasonable f o r y^, y 2 , y^> one t r e a t s 

y m = E. , y. as m u l t i v a r i a t e normal w i t h mean Xg,,, and v a r i ance - cova r i ance 
T J= l J T 

mat r i x r = E k , + E E The no rma l i t y of y when y i , y 2 , y, 
i J 1 3 X J I K 



are j o i n t l y m u l t i v a r i a t e normal i s a standard r e s u l t i n mathematical 

s t a t i s t i c s as suggested i n section 7.1. 

Recall that i f e. ̂  N(4>, l a 2 ) (j = 1, 2, .... k) , then with the e. 
3 3 3 

k ? 
j o i n t l y m u l t i v a r i a t e normal, £ ^ N(4>, I(£. - erf + E E P..o".a,)). 
J ' ' T ' j = l J ^ i j l j " 
With these conditions, f i t t i n g y^ = X6 T + d i r e c t l y by ordinary least 

squares y i e l d s BLUE's for 3 „ and a^ = E. a f + E E p . . a . a . i n the sense 
4 T j = l j ± ^ i ] i ] 

of the Gauss-Markoff theorem. These estimators, denoted by 3 ^ and cr = 

MSE, r e s p e c t i v e l y , are also maximum l i k e l i h o o d estimators. I t i s note-

worthy that the components of o are not estimable d i r e c t l y from the t o t a l 

model. However, the usual analysis of variance t e s t s f o r the t o t a l model 

based upon the above estimates are v a l i d and confidence i n t e r v a l s may be 

constructed on i n d i v i d u a l components of 3 ^ , and on y^ e s s e n t i a l l y as 

explained i n chapter IV. This approach i s also a p p l i c a b l e i f a d i r e c t 

examinat ion of ŷ , = ^ j = 1 Yj suggests that i t i s normally d i s t r i b u t e d . 

When e. ̂  N(<j>, Va?) and the £. are j o i n t l y m u l t i v a r i a t e normal, then 
k 

E _ i/ N(<|>, VE. - ar + E E $..). I f i t i s possible to write 
J = 1 3 1*3 1J 

VE. - a? + E E i . . as V^a 2 for some p o s i t i v e d e f i n i t e matrix V m, then i t 1=1 J ± ? £ j i j T T T' 

i s c l e a r by r e s u l t s given i n chapter IV that there e x i s t s a matrix P^ such 

that V^ = P ^ P r p . Therefore, generalized l e a s t squares applied to the t o t a l 

equation y i e l d s BLUE's which are also maximum l i k e l i h o o d estimators. Tests 

of hypotheses concerning 3,^, or i t s components can be achieved as outlined 

i n section 4.2 I f , on the other hand, the variance-covariance matrix of 

£rri i s simply p o s i t i v e semi-definite rather than p o s i t i v e d e f i n i t e , then an 

approach such as i s used by Zyskind (1967) and Zyskind and Martin (1969) 

may be employed f o r estimation and inference. 
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7.1.3 I n fe rence f o r T o t a l Model when y^, y 2 , . . . . y^. a re not JMVN 

I t has been noted above that when y^, y 2 , y, a re not j o i n t l y 

K 

m u l t i v a r i a t e normal , i t i s s t i l l p o s s i b l e tha t y_ = E. .. y . i s m u l t i -
T j = l 

v a r i a t e normal. I t has a l s o been i n d i c a t e d tha t when y^ i s m u l t i v a r i a t e 

normal, then e s t ima t i on and i n fe rence s r e l a t i n g to the t o t a l equat ion 

f i t t e d d i r e c t l y can be c a r r i e d out as o u t l i n e d i n the preceding s e c t i o n . 

When y i , y 2 , y a re not j o i n t l y m u l t i v a r i a t e normal and 
K. 

y T = Yj I s n o t normal, one of the opt ions l e f t f o r i n fe rence s f o r the 

t o t a l model i s v i a use of nonparametr ic procedures. I t i s not the o b j e c ­

t i v e here to pursue the subject i n d e t a i l bu t , f o r purposes of completeness, 

to i n d i c a t e what procedures a re a v a i l a b l e and p o s s i b l e r e f e r ence s . 

Randies and Wolfe (1979) g i ve a nonparametr ic approach to t e s t i n g the 

s lope i n s imple l i n e a r r e g r e s s i o n . C l e a r l y , t h i s i s of l i m i t e d use i n our 

con tex t . However, both the e s t ima t i on problem and i n f e r e n c e procedures 

f o r more genera l r e g r e s s i o n problems are cons idered i n chapter 9 of 

Ho l lander and Wolfe (1973). Other methods of d e a l i n g w i t h non-normal i t y 

of y^, i n e s t i m a t i o n and i n f e r ence f o r the t o t a l equat ion i s to use any of 

a number of s o - c a l l e d robust r e g r e s s i o n techn iques . One such techn ique 

i s known as robust r i d g e r e g re s s i on proposed by Hogg (1979). For f u r t h e r 

re fe rences to some of these robust r e g r e s s i o n techn iques see Montgomery 

and Peck (1982, s e c t i o n 9 .3) . F i n a l l y , be fore l e a v i n g the subject of 

nonparametr ic approaches and how they might be a p p l i e d to f i t t i n g a t o t a l 

model under non -no rma l i t y , i t i s worth mentioning two f a i r l y nove l non ­

parametr ic methods which a re a p p l i c a b l e to r e g re s s i on s i t u a t i o n s . These 

are the j a c k k n i f e and the boo t s t r ap . For a r e fe rence to use of the j a c k -

k n i f e i n r e g re s s i on see M i l l e r (1974) and f o r a p p l i c a t i o n of boot s t rap 

techniques i n r e g r e s s i o n see E f ron (1979). 
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7.2 The Case of X Random or Measured w i t h E r r o r 

I t i s g e n e r a l l y assumed i n r e g r e s s i o n a p p l i c a t i o n s t ha t the i n d e ­

pendent v a r i a b l e s are e i t h e r f i x e d and known or t ha t they a re measured 

without e r r o r . Indeed, i n most of the development i n t h i s t h e s i s , t h i s 

has been assumed i m p l i c i t l y . In such s i t u a t i o n s , on l y the dependent 

v a r i a b l e y i s assumed random. In many b i o l o g i c a l a p p l i c a t i o n s , however, 

i t i s o f t en the case tha t both y and the independent v a r i a b l e s a re random. 

A l t e r n a t i v e l y , i t may w e l l be that the independent v a r i a b l e s a re i n f a c t 

f i x e d but a re measured w i t h e r r o r . In the f o l l o w i n g , these two p o s s i ­

b i l i t i e s a re cons idered i n the l i g h t of t h e i r i m p l i c a t i o n f o r e s t i m a t i o n 

and i n f e r e n c e f o r t he t o t a l model. A t t e n t i o n i s r e s t r i c t e d i n both cases 

to the s i t u a t i o n of independent v j ' s ' Without l o s i n g s i g h t of the 

a d d i t i v i t y problem i t w i l l s u f f i c e here to examine the consequence f o r 

e s t i m a t i o n and i n f e r ence on a component equat ion which, f o r s i m p l i c i t y , 

w i l l be r e f e r r e d to without the j s ub s c r i p t as y = X3 + e. 

7.2.1 The Case of X Random 

Sampson (1974) d i s t i n g u i s h e s between two r e l a t e d r e g re s s i on schemes. 

One scheme i s that i n which the independent v a r i a b l e s a re constant o r 

f i x e d , as i s o f t e n assumed. He r e f e r s t o t h i s s imply as r e g re s s i on 

a n a l y s i s . The other i s t ha t i n which the independent v a r i a b l e s a re 

random v a r i a b l e s (or r e a l i z a t i o n s of random v a r i a b l e s ) . Th i s l a t t e r 

r e g r e s s i o n scheme i s r e f e r r e d to as m u l t i v a r i a t e a n a l y s i s of r e g r e s s i o n . 

We concern ou r se l ve s i n the present s e c t i o n w i t h the l a t t e r scheme. 

The o b j e c t i v e here i s not to p rov ide a d e t a i l e d a n a l y s i s of the s i t u a t i o n 

but to h i g h l i g h t the e f f e c t t ha t randomness of X may have on e s t ima t i on 

and i n f e r ence f o r component model j and, hence, f o r the t o t a l equat ion . 

The f o l l o w i n g i s l a r g e l y due to Sampson (1974). 
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The m u l t i v a r i a t e a n a l y s i s of regression scheme assumes that the 

vector y and the vectors c o n s i s t i n g of the columns of the matrix X form a 

mu l t i v a r i a t e random v a r i a b l e (or a r e a l i z a t i o n of a m u l t i v a r i a t e random 

v a r i a b l e ) . In the present case, i t w i l l be assumed that the j o i n t d i s t r i ­

bution i s m u l t i v a r i a t e normal. Denote the continuous random v a r i a b l e cor­

responding to the independent v a r i a b l e by X (where X i s p-dimensional) and 

l e t X* be a r e a l i z a t i o n of X. The random v a r i a b l e corresponding to the 

dependent v a r i a b l e i s denoted by y and i t s r e a l i z a t i o n by y*. With a 

t t 

sample of s i z e n ((y^, x^) , i = 1, 2, n), l e t ẑ , = (y^, x./) and the 

corresponding r e a l i z a t i o n s {(y^, x * ) , i = 1, 2, n) and (z* , i = 1, 2, 

n). In the mu l t i v a r i a t e analysis of regression, i t i s assumed that 

f o r 1 _< i _< n, z^ are independently and i d e n t i c a l l y d i s t r i b u t e d according 

to N(<|>, $) . In the mu l t i v a r i a t e analysis of regression model, the 

parameters equivalent to 8 and a i n the regression a n a l y s i s model are 

$22 $21 and $ n - $ i 2 $22 $21, where 

squared error l o s s . Thus, when one speaks of regression c o e f f i c i e n t s 

i n the m u l t i v a r i a t e analysis of regression s i t u a t i o n , one speaks of 

(7.2.1.1) 

and $21 i s p x 1. As stated by Sampson (1974), the j u s t i f i c a t i o n f o r 

the appropriateness of $ 2 2 $ 2 i as a parameter vector i s that f o r 

1 <̂  i _< n, E(y^ - x^ y ) 2 i s minimized f o r y = $22 $21» so that 

x^ $22 $21 i s the best l i n e a r predictor of y. i n the sense of minimizing 



46 

probability distribution law of the argument. The relationship between 

regression analysis and (7.2.1.2) should be f a i r l y obvious. Without 

going into further technical details, we state results concerning estima­

tion and inference in multivariate analysis of regression and how they 

relate to corresponding results in regression analysis with fixed or 

nonrandom X. 

An important result concerning estimation in multivariate analysis 

of regression i s that although the maximum likelihood (ML) estimators are 

necessarily d i f f erent from those in regression analysis (mainly because 

they are defined on different sample spaces), the corresponding ML e s t i ­

mates under the two models are exactly the same. Thus estimation under 

the two model formulations is the same. However, Sampson (1974) shows 

that for testing hypotheses in the two situations, the power functions 

are different. This i s a significant result in that i t stresses the 

importance of using a correct model in order to obtain tests with the 

correct power. This result is of considerable relevance in the present 

and other biological applications where X may in fact be random rather 

than fixed as i s often assumed in regression situations. The implication 

for additivity is that testing i s obviously affected by randomness of X 

but not estimation. 

7.2.2 The Case when X is Measured with Error 

In regression situations where the independent variables may reason­

ably be considered fixed, i t is conceivable that an error may be intro­

duced when measuring X at i t s fixed value. It i s noteworthy that this 

problem i s not necessarily the same as that of random X unless further 

assumptions are made about both X and y. The main objective here is to 

demonstrate the effect upon estimation and inference when X is measured 



w i t h e r r o r . For s i m p l i c i t y , r e s t r i c t a t t e n t i o n to the s imple l i n e a r 

r e g r e s s i o n model 

y = B 0 + B iX + E , (7.2.2.1) 

where i t i s assumed t ha t e ^ N ( 0 , a 2 ) and cov (e . , e.) = 0 f o r ±4 j . Now 

i f X i s measured w i t h e r r o r , one does not observe X d i r e c t l y but r a the r 

observes 

X ' = X + 6 (7.2.2.2) 

where X i s the t r u e v a l ue of X and 6 i s a measurement e r r o r . Suppose tha t 

6 ^ N (0 ,o 2 ), X ^ N(u , a2.) and tha t e, 6, and X a re independent. Then Y 
0 A A 

and X ' f o l l o w a b i v a r i a t e normal d i s t r i b u t i o n (Snedecor and Cochran, 1973) 

and the r e g re s s i on of Y on X ' i s l i n e a r w i t h r e g r e s s i o n c o e f f i c i e n t 

Bj = B i/(1 + X ) , (7.2.2.3) 

where X = o 2 / a 2 . Thus i t i s the case tha t when X i s measured w i t h e r r o r , 
£ X 

our l e a s t squares es t imate of the r e g re s s i on of Y on X i s b ia sed i n tha t i t 

underest imates the t r u e r e g r e s s i o n c o e f f i c i e n t from f i t t i n g Y on X. When 

X i s not normal , t he above r e s u l t ho lds i n l a r g e samples and holds a p p r o x i ­

mate ly i n sma l l samples i f X i s sma l l (see Snedecor and Cochran, 1973). 

I n fe rences concern ing y or the r e g re s s i on c o e f f i c i e n t a re v a l i d i f X i s 

measured w i t h e r r o r p rov ided that £, 5, and the t r u e X are approx imate ly 

normal . However, p r e d i c t i o n s of y a re l e s s p r e c i s e because of the 

i nc rea se i n r e s i d u a l s as a r e s u l t of e r r o r s i n X. 

The r e s u l t s g i ven above have some re levance i n the a d d i t i v i t y problem. 

More i m p o r t a n t l y , they po i n t to the need f o r a proper r e g re s s i on approach 

i f proper es t imates and i n fe rences are to be made. For other aspects of 

t h i s problem see Wald (1940), Berkson (1950), and Madansky (1959). 
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7.3 Other General Complements 

In more general applications of the general l i n e a r model, i t i s 

not uncommon that the matrix X i s not of f u l l column rank. Suppose, 

f i r s t , that ^ N(<f>, l°j) • Observe that XfcX i s singular and, therefore, 

a unique solution does not e x i s t f o r the least squares problem. An 

optimal solution i s obtainable, however, by using the well-known concept 

of a generalized inverse. Let us begin by considering a p a r t i c u l a r 

generalized inverse, one commonly ref e r r e d to as the Moore-Penrose inverse 

(Moore,1920; Penrose, 1955) but also often c a l l e d the pseudo-inverse 

or, simply, p-inverse. Attention i s r e s t r i c t e d to r e a l X throughout; 

but f i r s t some d e f i n i t i o n s are in order, given here as theorems. 

Theorem 1. Suppose X i s a r e a l n x (p+.l) matrix with 

rank (X) = r < p + 1. Then the (p + 1) * (p + 1) matrix XtX has exactly 
2 2 2 

r p o s i t i v e eigenvalues Xi 5 A2 5 ••• = ^ r > 0 plus the zero eigenvalue 

with m u l t i p l i c i t y p + 1 - r . 

The next theorem i s based on a well-known theorem in matrix 

algebra c a l l e d the Singular-Value Decomposition theorem. 

Theorem 2. With X s a t i s f y i n g theorem 1, one can always 

f i n d an n x n orthogonal matrix U and a (p + 1) x (p + 1) orthogonal 

matrix G such that A = uScG and X = UAG*" with A the n x (p + 1) matrix 

'D 0' 
A =( 

where D i s an r x r diagonal matrix with i 1 " * 1 diagonal element 

d.. = X. > 0 for 1 S i i r . The expression of X i n the form 
11 1 

X = UAG*" i s termed the singular-value decomposition of X. 

One must remark that U and G i n the above theorem are not neces­

s a r i l y unique. The r e a l importance of theorem 2 la that a.decomposition 
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of the matrix X e x i s t s , a r e s u l t which leads to d e f i n i t i o n of the Moore-

Penrose inverse as follows. 

Theorem 3 . I f , from the n x (p + 1) matrix A of theorem 

2 , one defines A + a s the (p + 1) x n matrix 

then the Moore-Penrose inverse (pseudo-inverse) of the matrix X i s given 

by 

X + = G A V 1 , 

where G and U are as s p e c i f i e d i n theorem 2 . 

With X + defined as above, an optimal least squares solution for 

a model of the form y = X 8 + £ i s given by 

B = X +y. ( 7 . 2 . 1 ) 

Pertaining to the a d d i t i v i t y problem of the discourse, r e s u l t ( 7 . 2 . 1 ) 

implies that 

£. = X +y. ( 7 . 2 . 2 ) 
J J 

for component equation j (j = 1 , 2 , ..., k) with 

g T = £ k -j B. ( 7 . 2 . 3 ) 
T J=l J 

for the t o t a l model. Note that inference theory r e l a t i n g to the t o t a l 

model as discussed elsewhere i n the thesis now incorporates X + in an 

obvious way. Note, for instance, that when ^ N(t(>, I°j) » i t i s the 

case that the covariance matrix of 8^ i s given by 

$ S = X + X + t Z k . a2., ( 7 . 2 . 4 ) T 3 T j = l j 

a r e s u l t which can be derived e a s i l y from ( 7 . 2 . 2 ) and ( 7 . 2 . 3 ) . 
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When y. ^ N(<f>, Vo.), using our usual transformation, g. i s given by 
J 

(7.2.5) 

so that 

(7.2.6) 

In (7.2.5) and (7.2.6), X T i s the Moore-Penrose inverse of 
* t -1 * t - 1 X = (P ) X and y^ = (P ) y . Again, the incorporation of these 

r e s u l t s i n inference theory i s a straightforward exercise and i s omitted 

here. However, some remarks are in order with respect to X (or X ). 

F i r s t , i t i s noteworthy that although U and G are not necess a r i l y unique 

in the decomposition of X given by theorem 2, the Moore-Penrose inverse 

X (or X ) i s unique. Therefore, d i f f e r e n t U and G w i l l lead to the 

same X + and, hence, the same optimal solution §. It was mentioned e a r l i e r 

that when X i s not of f u l l column rank, there i s no unique solution to 

the least squares problem of f i t t i n g y = X£ + e or i t s corresponding 

transform. While t h i s i s so, i t i s remarkable that the solution (7.2.1) 

or i t s transformed version i s optimal i n the sense that i t i s the only 

solution giving least 2-norm; that i s , i t i s the best so l u t i o n to the 

least squares problem. When X i s square and nonsingular, then 

X + = X \ the unique inverse of X. F i n a l l y , i t i s important to mention 

that the r e a l p r a c t i c a l usefulness of X + hinges upon the ease with which 

i t can be determined in any one problem. It turns out that X + i s r e l a ­

t i v e l y easy to compute when X has a few columns. However, the task 

of computing X + becomes increasingly more d i f f i c u l t with an increasing 

number of columns i n X. Since many p r a c t i c a l problems tend to involve 

an X matrix with a f a i r l y large number of columns ( e s p e c i a l l y i n c l a s s i -

f i c a t o r y models), the use of X + often presents a computational b a r r i e r . 

Largely because of t h i s , a more general (weaker) generalized inverse 
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i s used in many singular s i t u a t i o n s . The following i s only an introduction 

to t h i s type of inverse. For more complete treatments, see Searle (1971) 

and Rao and Mitra (1966). 

The Moore-Penrose inverse described above s a t i s f i e s the following 

conditions: 

(i) xx+x = X 
( i i ) x+xx+ •• = x+ 

( i i i ) (x+x)fc = x+x 
(iv) (xxV = xx+ 

(7.2.7) 

If one defines a matrix X s a t i s f y i n g only condition (i) in (7.2.7), 
*t" *t" 

that i s s a t i s f y i n g XX X = X, then X i s termed a generalized inverse 

of X (see Searle, 1971). Unlike X , the Moore-Penrose inverse, X i s 

not unique. However, X^ i s considerably easier to compute than X +. 

Furthermore, any X^ has the property that i t generates a l l possible solutions 

r e l a t i n g to any given estimation problem and these solutions are invariant 

under a f f i n e transformations. The l a t t e r property i s of value with 

regard to estimation and inference for l i n e a r functions of the parameters 

in a given problem. It should be pointed out that X^ enters into inference 

theory i n much the same way that the Moore-Penrose inverse does. Further 

d e t a i l s r e l a t i n g to the use of x"*" are omitted here as they can be found 

elsewhere (e.g., Searle, 1971; Rao and Mitra, 1971). 

Most of the r e s u l t s presented so f a r are based upon the assumption 
that whenever e. ^ N(<f>, V a 2 ) , then V i s p o s i t i v e d e f i n i t e and known. 

J . J 

While t h i s i s commonly true and lends i t s e l f to f a i r l y straightforward 

mathematical manipulations, there are instances in which V i s not neces­

s a r i l y p o s i t i v e d e f i n i t e . In addition, the elements of V may be unknown. 

The general approach i s indicated here for the case where V i s 



nonnegative d e f i n i t e and known. The case of V unknown i s considerably 

more d i f f i c u l t . 

As was the case when X was not of f u l l column rank, the concept 

of the generalized inverse i s employed when dealing with models where 

V i s not p o s i t i v e d e f i n i t e . In the general case, a sol u t i o n for model j 

(j = 1, 2, k) would be given by 

3 . = (X tV tX) +X tV +y. (7.2.8) 
J J 

where V i s any generalized inverse of V. Corresponding r e s u l t s f o r 

a d d i t i v i t y and the associated inference problem generally correspond 
t . 

to those presented e a r l i e r with the obvious modification that V i s used 

in place of V ^. Other d e t a i l s are given i n Searle (1971, section 5.8) 

while another f a i r l y i n s t r u c t i v e approach i s given by Zyskind (1967) 

and Zyskind and Martin (1969). 



CHAPTER VIII 

8.0 SOME EXTENSIONS OF THE THEORY 

It i s well-known that data sets generated under experimental condi­

tions according to a predetermined design model can be analysed using 

the general regression approach. Indeed, although the conventional anal­

y s i s of variance approach i s used in analysing most such data sets, the 

general regression approach often represents the most e f f i c i e n t and, at 

times, the only exact method of a n a l y s i s , e s p e c i a l l y for unbalanced s i t u a ­

t i o n s . In view of t h i s l i n k between regression analysis and conventional 

analysis of variance, i t i s reasonable to ask whether the problem of addit­

i v i t y , as defined here, cannot be envisaged within the context of c l a s s i -

f i c a t o r y models. It i s shown, i n t h i s chapter, that an extension of 

the a d d i t i v i t y problem to c l a s s i f i c a t o r y models i s not only t h e o r e t i c a l l y 

p l a u s i b l e but also makes sense in some p r a c t i c a l s i t u a t i o n s . Secondly, 

in view of the growing i n t e r e s t in the use of nonlinear models i n many 

branches of applied biology, i t i s of i n t e r e s t to investigate the extent 

to which the concept of a d d i t i v i t y , as understood here, can be expected 

to hold i n nonlinear s i t u a t i o n s . In a f o r e s t r y context, such an i n v e s t i ­

gation has an important bearing upon the determination of t o t a l volume 

or weight biomass of i n d i v i d u a l trees from corresponding component biomass 

using any of the well-known nonlinear models, such as the Chapman-Richards 

function. The main thrust of the development in t h i s chapter w i l l , 

53 
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then, be directed towards e s t a b l i s h i n g the extent to which the theory 

of a d d i t i v i t y , as developed i n chapters IV, V, and VI, applies to c l a s s i -

f i c a t o r y and nonlinear models. 

8.1 Extension to C l a s s i f i c a t o r y Models 

A t h e o r e t i c a l j u s t i f i c a t i o n for the extension of the theory of addi­

t i v i t y to c l a s s i f i c a t o r y models i s based upon the fact that any c l a s s i f i -

catory model can be equivalently expressed i n l i n e a r regression form. 

A s p e c i a l feature to note about such a model i s that the incidence matrix, 

otherwise known as the design matrix, i s , i n general, not of f u l l column 

rank. Therefore, no unique solution e x i s t s for the estimation problem 

using least squares. Hence, one eit h e r uses the unique Moore-Penrose 

inverse to obtain an optimal solution or uses a generalized inverse to 

a r r i v e at a so l u t i o n . As indicated elsewhere i n the discourse, the d e c i ­

sion to use the Moore-Penrose inverse or a generalized inverse w i l l depend 

upon considerations of computational e f f i c i e n c y . Furthermore, the incor­

poration of r e s u l t s from the estimation problem into inference involves 

the simple s u b s t i t u t i o n of expressions involving the appropriate general­

ized inverse into s t a t i s t i c s derived i n e a r l i e r chapters. To indicate 

the p r a c t i c a l i t y of the a d d i t i v i t y problem i n the context of a c l a s s i f i -

catory model, we describe below how such a problem might a r i s e i n p r a c t i c e . 

We draw our example from the f i e l d of a g r i c u l t u r e . 

For s i m p l i c i t y , consider a c o n t r o l l e d f i e l d crop experiment involv­

ing a treatments, each r e p l i c a t e d n times. It i s a simple matter to 

recognize the design here as a completely randomized design. We s h a l l 

suppose that the leaf component of the biomass of the crop under i n v e s t i ­

gation i s used f o r human consumption as a vegetable. Further, suppose 

that the f l o r a l component of the crop i s used as a d i f f e r e n t type of 
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vegetable food. Next, suppose that the seed component i s used as another 

type of food while the remaining unusable above-ground part of the plant 

i s burned as a f u e l . If one i s interested i n the e f f e c t of treatment 

upon the accumulation of biomass (on a green weight basis) i n component 

j (j = 1, 2, 3, 4) and the corresponding e f f e c t on t o t a l biomass accumula­

t i o n ( r e s u l t i n g from adding the four components), then one has the follow­

ing problem. Designate the observed biomass of the j*"* 1 component corres-

ponding to the r r e p l i c a t e by y.. ( i = 1, 2, ..., a; j = 1, 2, 3, 4; 
x j r 

r = 1, 2, ..., n). Then one would be interested i n models of the form 
y. . = y. + T.. + e . . (8.1.1) i j r j i j i j r 

and 

? i T r = Z ] = l ? i j r " *T + T i T + E i T r > ( 8 ' 1 ' 2 ) 

with appropriate assumptions on the er r o r s . Note that by using an approp­

r i a t e incidence matrix X, one may write (8.1.1) and (8.1.2), r e s p e c t i v e l y , 

in matrix form as 

and 

y.. = X6j + £j (j = 1, 2, 3, 4) (8.1.3) 

y T = z j = 1 y.. = X0 T + e r (8.1.4) 

We remark that 6. = ( u . , i , ,, r~ •, T . ) t while 

6 T = ( y T , x 1 T , x 2 T , T ^ ) 1 " . C l e a r l y , the estimation and inference 

theory presented elsewhere i n t h i s thesis can be applied to (8.1.3) and 

(8.1.4) subject only to the proviso that a generalized inverse or the 

Moore-Penrose inverse i s used i n place of (X*"X) ^ or (XfcV ''"X) ̂ . The 

regression formulation (8.1.3) and (8.1.4) of the analysis of variance 

models (8.1.1) and (8.1.2) makes i t e s p e c i a l l y easy to estimate 9̂  sub­

j e c t to the condition that c e r t a i n of i t s components are equal to zero. 

Furthermore, there i s no reason why the a d d i t i v i t y concept cannot be 
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applied to more complicated c l a s s i f i c a t o r y models such as the randomized 

complete block design, L a t i n square design, and other designs since, i n 

each case, one can write the corresponding models i n l i n e a r regression 

form. This demonstrates that the extension of the notion of a d d i t i v i t y 

of component regression equations to c l a s s i f i c a t o r y models i s not only 

t h e o r e t i c a l l y p l a u s i b l e but also appears to make sense i n p r a c t i c e . 

8.2 Extension to Nonlinear Models 

A d e f i n i t i o n was given i n chapter II for a regression model in general 

and for a l i n e a r regression model i n p a r t i c u l a r . From those d e f i n i t i o n s , 

i t follows that any regression model r * e R* s a t i s f y i n g R* i L i s a non­

l i n e a r regression model. Recall that L was defined i n chapter II as 

the set of a l l l i n e a r regression models. Conventionally, nonlinear r e ­

gression models are divided into two groups, namely the c l a s s of nonlinear 

regression models that can be made l i n e a r by applying an appropriate trans­

formation to the nonlinear model and the clas s of nonlinear regression 

models for which there e x i s t s no known l i n e a r i z i n g transformation. The 

two types of nonlinear regression models are generally referred to i n 

the l i t e r a t u r e as i n t r i n s i c a l l y l i n e a r and i n t r i n s i c a l l y nonlinear, 

re s p e c t i v e l y (see Draper and Smith, 1981). The main objective in t h i s 

section i s to investigate whether the notion of a d d i t i v i t y does make sense 

for these two types of nonlinear models. 

We consider models of the form 

y.. = f(X, B..) + E j (j = 1, 2, k) (8.2.1) 

and 

y T = £ k
= 1 Yj = f(X, B T) + e T. (8.2.2) 

Attention i s directed here toward discovering the extent to which model 

(8.2.2) i s a r i t h m e t i c a l l y determined by the models s p e c i f i e d i n (8.2.1). 
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For purposes of s i m p l i c i t y * we r e s t r i c t d e t a i l e d analysis to two types 

of nonlinear models, namely 

B, -X 
y.. = $ e i J

 e (j = 1, 2, k) (8.2.3) 

and 
B, -X 

y.. = 3 Q : j e i J + z (j = 1, 2, k ) . (8.2.4) 

Note that models s p e c i f i e d by (8.2.3) are i n t r i n s i c a l l y l i n e a r , so that 

for purposes of estimation, one may transform them to l i n e a r form using 

a logarithmic transformation. This leads to 

Zn y. = £.n(BQj) + g^X + UTI e^ (j = 1, 2, . .., k) (8.2.5) 
or simply 

y j * = B 0 j * + B l j X + ej* ( j = l ' 2 ' '•' k ) ' (8- 2- 6) 
On the other hand, models s p e c i f i e d by (8.2.4) cannot be so transformed 

t e c h n i c a l l y although the f i r s t member of the expression on the r i g h t of 

t h i s model i s l i n e a r i z a b l e . Indeed, (8.2.4) s p e c i f i e s the more simple 

forms of an i n t r i n s i c a l l y nonlinear model. 

Now consider f i t t i n g the l i n e a r i z e d form of (8.2.3) and suppose 

one i s interested i n t h i s ' l i n e a r i z e d form for p r e d i c t i o n purposes. I f , 

in addition, one i s interested i n the p r e d i c t i v e equation for the sum 

of the transformed form of the components, then the parameters of. the 

l a t t e r model are determined by a d d i t i v i t y from the component models. This 

i s the case since we have 

y T* - y.* - Z%x (6oj* + B l jx + Ej*) 

" B0j* + hi* + 'i* 

= B0T* + B1TX + eT*. (8.2.7) 

Thus, as i n the ordinary model, a d d i t i v i t y holds here as long as the variable 

of i n t e r e s t i s the transformed version of the dependent variable y.. 
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Kozak (1970) made t h i s point i n h i s paper and, therefore, i t i s not new. 

Suppose, on the other hand, that one i s r e a l l y interested i n the o r i g i n a l 

nonlinear form as a p r e d i c t i v e equation. In th i s case, the l i n e a r i z a ­

t i o n i s only an intermediate step aimed l a r g e l y at si m p l i f y i n g the process 

of estimation. Note that i n t h i s case some of the parameters estimated 

from the l i n e a r i z e d equation would need to be further transformed before 

being inserted i n a nonlinear p r e d i c t i v e equation. Now, i f the nonlinear 

f i t t e d analogue of (8.2.7) were desired, note that using a d d i t i v i t y one 

would need to back-transform the expression 

y T * = E k

= 1 £n~y\ = Z k

= 1 A n " ^ + ( E j = 1 5 l j)X (8.2.8) 

to obtain 

k * k ~ ( Z i = l g l i ) X 

y = n . y. = ( I I . 6 )e J J  
y T J L j = l y j U 1 j = l P 0 j ; e 

3 X 
= I I k

= 1 [ § o j e l j ]. (8.2.9) 

The r e s u l t i n (8.2.9) warrants some comment. Perhaps the most important 

of such comments i s the following. If one i s interested i n p r e d i c t i n g 

t o t a l biomass, say, as a sum of the components y^ using a model of the 

form (8.2.3), then one must not do so by invoking a d d i t i v i t y of the trans­

formed version of (8.2.3) and then re-transform (that i s , back-transform). 

If one does so, then one gets an equation which predicts the product of 

the components rather than t h e i r sum. In a n u t s h e l l , one gets the wrong 

pr e d i c t i v e equation. Herein l i e s the r e a l v i r t u e of a proper analysis 

of a modelling s i t u a t i o n . Thus f or models of the form (8.2.3), a t o t a l 

p r e d i c t i v e equation of the same form cannot be determined from a d d i t i v i t y 

of the parameters of the transformed component equations. It may be 

determined at least a r i t h m e t i c a l l y , however, as a simple sum of the 

corresponding f i t t e d nonlinear component equations, though the p r e d i c t i v e 
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merits of such an equation may be debatable. 

With respect to models of the form (8.2.4), i t has been indicated 

that such models do not admit transformation to l i n e a r form. Therefore, 

the parameters would be estimated using any of a number of known i t e r a t i v e 

search techniques. As with models of the form (8.2.3), however, a pre­

d i c t i v e t o t a l equation cannot be obtained here by appealing to the addit­

i v i t y property since the parameters of the t o t a l p r e d i c t i v e equation cannot 

be determined by adding corresponding parameters in the component equations. 

However, i f simple p r e d i c t i o n was the objective, then a p r e d i c t i v e t o t a l 

equation may be obtained by simply adding up the p r e d i c t i v e component 

equations. Once again, the p r e d i c t i v e usefulness of such a model i s 

l a r g e l y an open question. 

The foregoing discussion indicates that the a d d i t i v i t y property, 

which holds almost u n i v e r s a l l y f or l i n e a r models, does not carry over, 

in general, to the class of nonlinear models. This precludes, for instance, 

the use of the notion of a d d i t i v i t y i n inventory and/or biomass studies i f 

nonlinear models are used for p r e d i c t i o n . 



CHAPTER IX 

9.0 COMPUTATIONAL CONSIDERATIONS 

We have attempted to present, in preceding chapters, a theory of 

estimation and inference for the a d d i t i v i t y problem and to indicate general­

i z a t i o n s and extensions to other types of models. The e s s e n t i a l objective 

of the discourse has been to present the a d d i t i v i t y problem as perceived 

here within the general framework of l i n e a r model theory. One hopes 

that t h i s objective has been achieved to a large extent. However, our 

derivation of expressions for estimators and associated s t a t i s t i c s , p a r t i -

u l a r l y i n chapter V, leaves one important question l a r g e l y unanswered. 

This question i s : Does the conditioning p r i n c i p l e introduced to handle 

the a d d i t i v i t y problem in general c a l l f o r new computing subroutines 

or algorithms i n order to obtain estimates and other s t a t i s t i c s ? We 

show, i n t h i s chapter, that no such subroutines or algorithms are required. 

A l l estimates and associated s t a t i s t i c s can be computed using e x i s t i n g 

system-based software such as i s provided by the various s t a t i s t i c a l 

packages. Examples of such packages are MIDAS (The Michigan Interactive 

Data Analysis System, The University of Michigan, Ann Arbor, Michigan), 

BMDP (Biomedical computer programmes P-series, University of C a l i f o r n i a 

Press, Los Angeles, C a l i f o r n i a ) , SAS ( S t a t i s t i c a l Analysis System, SAS 

I n s t i t u t e , Raleigh, North C a r o l i n a ) , and SPSS ( S t a t i s t i c a l Package for 

the Social Sciences, McGraw-Hill Inc., New York). At computing 

60 
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i n s t a l l a t i o n s where SAS i s not a v a i l a b l e , BMDP i s perhaps the most commend­

a b l e package to use main ly because i t has opt ions f o r generat ing d i a g n o s t i c 

p l o t s and other i n f o rmat i on v a l u a b l e i n model cho i ce and v a l i d a t i o n . 

To mot i va te the d e r i v a t i o n of the main r e s u l t of t h i s chapte r , 

cons ide r the e s t ima t i on problem a s s o c i a t ed w i t h f i t t i n g component equat ion 

j ( j = 1, 2, k) as presented i n chapter V. More s p e c i f i c a l l y , 

r e c a l l t ha t i n f i t t i n g equat ion j , where equat ion j con ta i n s on ly s t a t i s ­

t i c a l l y important independent v a r i a b l e s , the e s t imato r f o r B..* i s g i ven by 

M - L i . l ' o.o.i) 
ib - T T b 

p., p,q, q 4q., q. 3 3 3 3 3 3 

where b and b a re g iven by the p a r t i t i o n 
q • P • 
3 3 A q \ 

B. = 
3 b 

(9.0.2) 

of B obta ined from f i t t i n g the f u l l model (w i th a l l independent v a r i a b l e s ) 

w h i l e T and T a re obta ined from a corresponding p a r t i t i o n i n g 
P j q 3 q3 q3 

of ( X t X ) ~ 1 i n the form 

/T T \ 

t -1 ^ q J P J | 
(X CX) 1 = I I . (9.0.3) 

\T T / 
V p . q . p.p./ 

3 3 3 3 

With a cor respond ing p a r t i t i o n i n g of the X ma t r i x i n the form 

X = (X |x ), the r e s u l t i n (9.0.1) i s g iven e q u i v a l e n t l y by (see 
q j P J 

equat ion (5.1.18) i n chapter V) 

§ . * = ( , ) • (9.0.4) 
( T _ T T ~ T )X y. 

p.p. p.q. q.q. q-p. p. J * 
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Consider now f i t t i n g y. on the set X on l y ( i . e . , so that the 
3 P j 

c o e f f i c i e n t s of the components of a re set i d e n t i c a l l y equal to z e r o ) . 

I t i s shown below tha t the e s t imato r 6* , say, from the l a t t e r f i t i s 

p r e c i s e l y equal t o the n o n - n u l l pa r t of * i n ( 9 . 0 . 4 ) . Hence B \ * i s 

complete ly s p e c i f i e d by s imply f i t t i n g y. on the set X . The conse-
2 P j 

quence of t h i s r e s u l t i s t ha t no s p e c i a l a l go r i t hm i s necessary to ob t a i n 

0j* beyond those a l r eady a v a i l a b l e on standard s t a t i s t i c a l packages. 

We demonstrate t h i s r e s u l t f o r m a l l y by s t a t i n g and p rov ing the f o l l o w i n g 

theorem. 

Theorem: Let x = ( X i , X2, . . . , ^} be a set of p r e d i c t o r v a r i a b l e s 

and cons ider f i t t i n g the l i n e a r model (w i t h i n t e r c e p t ) 

y. = Xg + e. 
J j J 

s ub i ec t to a subset b of 8. of order q. being equal to the zero v e c t o r . 
q j J 2 

Here X = ( X Q | X X | . . . |Xm_^) i s an n x m (n > m) ma t r i x of f u l l column 

rank and we assume, as u s u a l , that ê . <v N(<J>, l f f ? ) • Denote the s o l u t i o n 

from f i t t i n g t h i s con s t r a i ned model by §..*• Now p a r t i t i o n X so tha t 

X = ( X I x ) f o r q + p . =m, 0 < q . < m i n accordance w i t h the c o n -
q j p i i 2 2 

s t r a i n i n g of 8.. so tha t 

(xtx)"1 

Then B . * i s g i ven by 

- ( * 

8. * = I 
J V T -T T - . - ; 

p i p j p i q i q j q i q j p i p j J 

_ 1 T ) X t y. J 
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Furthermore, i f b * i s the s o l u t i o n from f i t t i n g y. on the set X 
P- J P-

J 3 
( tha t i s , i gno r i ng X ), then 

q j 

b * = (T -T T - 1 T ) X C y. . 
p. p.p. p.q. q.q. q.p. p. i 

J 3 3 3 3 3 3 H3 3 3 

We prove the above theorem by u t i l i z i n g a wel l-known theorem i n 

l i n e a r a l geb ra concern ing the i n ve r se of a p a r t i t i o n e d m a t r i x . Th i s 

theorem i s s t a ted here as a lemma, w i thout p roo f , and we r e f e r the reader 

to G r a y b i l l (1976, p. 19) or any standard t e x t i n l i n e a r a l geb ra f o r a 

p roo f . 

Lemma; Let W be an n x n nons ingu la r ma t r i x t ha t i s p a r t i t i o n e d as 

f o l l o w s : 

/wn W 1 2 

w = I 
\ W 2 i w22> 

where W„ has s i z e n^ x n_. f o r i , j = 1, 2 (n i + n 2 = n, 0 < n j < n) . 

I f |Wn| 4 0 and |w22| 4 0, then W ̂  i s g i ven by 

W 
-1 [ W I J - W I 2 W 2 2 "H?21 ] -Wu ^Wl2 [W22-W2iWi i "H/i2] ^ 

-W22 "Hj2j [Wii-Wj2W22 ^W2ll ^ [ W 2 2 - W 2 I W J I ^Wi2l ^ 

Proof of Theorem: The expres s ion f o r i§.* g i ven i n the theorem f o l l o w s 
3 

from Sea r l e (1971, pp. 113-114), as demonstrated e a r l i e r i n the t h e s i s . 

I t remains to show tha t the second pa r t of the theorem ho ld s . 

Wi th (X t X) p a r t i t i o n e d as i n the theorem and us ing the above lemma, 

i t f o l l o w s tha t 

( X t X ) " 1 : 
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where 

T 1 —. 
q.q. 
3 3 

[xt x - xt x (xfc x )~1xt x ] 1 

q. q. q. p. p. p. p. q. J 3 3 j J J J 3 

Vj _ 
-(xfc x )_1xt x [xfc x -y?- x (xt x ) 

q. q. q- p. p. p. p. q- q- q. 
J j 3 3 3 3 3 3 2 3 

x l"1 

q3
 Pj 

= 

-(xt x )~1xt x [xfc x -x11 x (x11
 X ) 

p . p . p . q . q - q . q. p. •p. p 
-Vx r 1 

P3 q3 

[xfc x -xfc x (xfc x )"1xt x ]_1 . p. p. p. q. q. q. q. p. J J J J 3 3 3 3 

Note that the existence of (X*" X ) and (Xt X ) ^ follows from 
q- q. P. P. 

the f a c t that X i s of f u l l column rank. Note a l s o that the s o l u t i o n 

b * obtained from f i t t i n g y. on the set X must also be given by 
P. J P. 
*J J 3 

b * = ( X 1 X )" 1X t y. . 
P. P- P. P- 3 
F J F3 3 3 

Therefore, to complete the proof of the theorem, we need only show that 

(T -T T _ 1 T ) = (X t X To t h i s end, note that 
p.p. p.q. q.q. q.p. p- p-

3 3 3 3 3 3 H3 3 3 3 

T - T T " 1T = [X C X -x' X (X t X )" 1X t X ] _ 1 

p.p. p.q. q.q. q-p- p. p- p- q- q- q- q- P-
3 3 3 3 3 3 3 3 3 3 3 H3 3 3 3 3 - {(xt

 X ) V X 
p. p. p- q. 
J 3 3 3 

[xt x -x* x (xt x )"1xt x ] -1 

q. q. q. p. p. p. p- q. 
3 3 3 3 3 3 3 3 

[X t X -x' X (x11 x )~1xt x ](xfc
 X )"1xt

 X 
q j q j q J P J P J P J P J q J q3 q3 q J P J 

[xfc x -xc x (xfc x )"1xt x 
p. p. p. q. q- q- q- p-
3 3 3 3 3 3 3 3 
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= [x f c X -X* x (x f c X ) " 1 x t X l " 1 

p. p. p- q. q- q. q. p. 
3 3 3 3 3 3 3 3 

- {(x f c x ) " 1 x t X (x f c x ) " 1 x t X 
P j P J P J q j q j q j q3 P J 

[x* x -xz x (x f c x ) " 1 x t x 
p. p. p. q. q. q. q. p. 

J J J 3 3 3 3 3 

= [ i - ( x t X )" 1X t X (Xt X ) " 1 x t X ] 

P J P J P J qj qj qj ^ P j 

[x t x - x c x ( x t x ) " 1 x t x ] _ 1 

p. p. p. q. q. q. q. p. 
J 3 3 3 3 3 3 3 

= ( x c x ) " 1 [ x t x -x f c x (x c x ) " 1 x t X ] 
p. p. p. p. p. q. q. q. q. q. 
3 3 3 3 3 H J J J 3 3 

[Xfc X -X 1 X (x c X )~ 1 x t X ] _ 1 

p. p. p. q. q. q. q. p. 
3 * J 3 3 3 3 3 3 

P - P . 
J J 

which i s what we set out to show. Q.E.D. 

Thus, we have established by the above theorem that the estimation 

problem associated with the generalized a d d i t i v i t y problem as developed 

i n chapter V does not require that new computing algorithms be developed 

to obtain estimates and rela t e d s t a t i s t i c s . One simply f i t s a model 

containing what are construed to be s t a t i s t i c a l l y important independent 

v a r i a b l e s . The parameter estimate corresponding to such a f i t can then 

be augmented to the corresponding estimate for a f u l l model constrained 

so that the unimportant independent v a r i a b l e s have c o e f f i c i e n t s of zero. 

The v i r t u e of the estimator of the parameter vector f o r component equation 

j (j = 1, 2 k) given i n chapter V i s that i t i s of appropriate 

s i z e f o r a d d i t i v i t y . However, whether g\* i s obtained d i r e c t l y as i n 

chapter V or i n d i r e c t l y by f i t t i n g a subset X and then augmenting the 
P j 

r e s u l t i n g estimator, i t s components may need to be permuted before invoking 

a d d i t i v i t y to obtain the estimator for the corresponding t o t a l equation. 



Such permuting ensures that appropriate components of B\ (j = 1, 2, 

k) are added to obtain (3,^. 

F i n a l l y , the theorem proved above i s based upon the d i s t r i b u t i o n a l 

assumption E^ ̂  N(<J>, I^j) • C l e a r l y , obvious modifications i n the 

theorem would make i t hold for the case E. ̂  N(<)>, Vo?) for V p o s i t i v e 
J J 

d e f i n i t e . Other generalizations are also p o s s i b l e . 



CHAPTER X 

10.0 SOME ILLUSTRATIVE EXAMPLES 

In t h i s chapter, some examples are given that i l l u s t r a t e the a p p l i c a ­

t i o n of the theory presented i n the discourse. F i r s t , however, a some­

what d e t a i l e d analysis i s given aimed at assessing the tenacity of the 
k 

assumption of m u l t i v a r i a t e normality of ŷ , = Z^_^ y^ f o r each of three 

data sets. As was stated i n chapter VII, the usual inferences f o r the 
k 

t o t a l model depend c r i t i c a l l y upon the assumption that y^, = y^ i s 

mu l t i v a r i a t e normal. Since there i s no p r i o r knowledge that the assump­

t i o n holds, i t i s necessary to assess for mu l t i v a r i a t e normality i n order 

to more appropriately q u a l i f y any inference statements i n the examples. 

10.1 Assessing M u l t i v a r i a t e Normality of y 

Koziol's (1982) method f or assessing j o i n t m u l t i v a r i a t e normality of 

the components y j , y 2 , y^ was used on three data sets. The f i r s t of 

these data sets i s that used by Kozak (1970) to i l l u s t r a t e the a d d i t i v i t y 

r e s u l t presented i n h i s paper. The second data set i s B r i t i s h Columbia 

co a s t a l western hemlock data used by Kurucz (1969). The t h i r d data set 

i s western hemlock data from various parts of B r i t i s h Columbia and was 

obtained from the ENFOR project (Williams, 1983, personal communication). 

Note that ENFOR i s an acronym for ENergy from FORests. 

Koziol's (1982) method f or assessing m u l t i v a r i a t e normality i s based 

upon a Cramer-von Mises type s t a t i s t i c , which i s computed as follows: 



68 

1. Given X T , X? , •••> X are random k-dimensional vectors, c a l c u l a t e 
n 

X = (Xi, X2» •••> X^) 1" and S. Here S i s the sample variance-

covariance matrix of the n vectors and i s k x k. 

2. Calculate the sample Mahalanobis squared distances Y\, Y2, Y 
n 

defined by 
Y. = (X. - X) tS~ 1(X. - X). 

1 1 1 

3. Put Z. = F. . (Y.), i = 1, 2, n and order the Z. i n ascending 
1 (k) 1 1 

order so.that Z / l N S Z.„. S . . . S Z. N . (Y.) here denotes (1) (2) (n) (k) 1 

the area under the chi-square density function with k degrees of 

freedom between the l i m i t s of zero and Y_̂  ( i . e . , 

F ( k )
 ( V = P r [ Y = Y i ] ) ' 

C alculate J using 
n 2 . f n s 1 J = £ [Z - ( i - h)lnV + (12n) 

i = l K ' 

Note that with three components, k i s equal to three i n our case. 

The three data sets are reproduced i n Appendix I (a,b,c). The f i r s t 

two of the data sets i n the appendix are reported i n imperial u n i t s , 

while the t h i r d data set i s given i n metric units. However a l l analyses 

reported i n t h i s d i s s e r t a t i o n were c a r r i e d out i n metric u n i t s . 

Before presenting d e t a i l s of the test for j o i n t m u l t ivariate nor­

mality of the Yj' s> i t i s worth pointing out some te c h n i c a l considerations 

which s i m p l i f y considerably the computation of the K o z i o l s t a t i s t i c J ^ . 

In p a r t i c u l a r , t h i s s i m p l i f i e s the computational formula for the 

sample Mahalanobis squared distances Y_̂  ( i = 1, 2, n). Observe 

that the j o i n t d i s t r i b u t i o n of the Y j ' s l n t h i s case i s conditional upon 

the independent variables (the X's). As a r e s u l t of t h i s and based 

upon the notion that the regression of y on the X i s important ( s i g n i f i ­

cant), the sample Mahalanobis squared distances are given by 
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Y. = (y. - y . ) t S ~ 1 ( y . - y.) 

or by 
-t - I -Y. = e. S E . x i x 

where y. - y. = £. = ( y ^ - y . ^ y ± 2 - y . ^ . . . , y ± k - y ^ ) ' and 

S = (n - 1) ^ EE*" (note that E = ( E I , £ 2 » E 3 ) t ) . The d i s t i n c t i o n between 

Y. and y. must be borne in mind here. The r e s i d u a l vectors used i n 
l x 

computing Y^ above are those obtained from f i t t i n g component equations 

using only s t a t i s t i c a l l y s i g n i f i c a n t independent v a r i a b l e s for each .data 

set. These equations are those used to obtain conditioned t o t a l p redic­

t i v e equations i n examples 1, 2, and 3 that follow. It should be empha­

sized that a test f o r multivariate normality of E J , £ 2 , ..., E ^ i s 

equivalent here to a test for multivariate normality of y i , y 2 » •••> y^-

Thus i f E I , £ 2 , ...» e. are j o i n t l y multivariate normal, one can speak 
K. 

of the multivariate normality of ylt yz, y^ and hence of E ^ and y T-

In computing the s t a t i s t i c for each data set, an APL programme 

was used to calculate the Y^ as s p e c i f i e d above using an IBM 5100 Portable 

Computer. This computer i s located i n the Mathematics Annex at the 

University of B r i t i s h Columbia. APL i s an extremely e f f i c i e n t language 

when one i s dealing with matrix computations. The computation of the 

chi-square p r o b a b i l i t i e s i n step 3 was achieved by c a l l i n g the IMSL 

(International Mathematical 



and S t a t i s t i c a l L i b r a r i e s ) subroutine MDCH which computes cumulative c h i -

square p r o b a b i l i t i e s . A short f o r t r a n programme was written to c a l l 

MDCH (see Appendix Id, PROGRAMME 1). Note that although DF i n programme 

1 i s s p e c i f i e d as 2.0, DF = 3.0 for the f i r s t part of t h i s assessment 

problem. F i n a l l y , the ordered chi-square p r o b a b i l i t i e s from step 3 were 

used i n another f o r t r a n programme to c a l c u l a t e (see PROGRAMME 2 i n 

Appendix Id). The r e s u l t s of Koziol's (1982) test on the three data 

sets are summarized i n Table 1 below. 

Table 1. Results of Koziol's (1982) te s t f o r m u l t i v a r i a t e 
normality on three data sets 

Data Set Sample DF Computed K o z i o l 
Size S t a t i s t i c (J ) p-value 

n 

Kozak (1970) 10 3.0 0.05799 > 0.15 
Kurucz (1969) 18 3.0 0.86078 < 0.01 
ENFOR 48 3.0 4.27682 « 0 . 0 1 

The p-values i n Table 1 are obtained by comparison with Koziol's 

Table 1 (K o z i o l , 1982). I t i s to be emphasized that due to small sample 

siz e s associated with Kozak's (1970) and Kurucz's (1969) data, our p-

values may be somewhat o f f . However, on the basis of these r e s u l t s , the 

assumption of j o i n t m u l t i v a r i a t e normality w i l l be entertained f o r Kozak's 

data but not f o r the other two data sets. Note that t h i s conclusion i s 

quite reasonable for the ENFOR data because of the moderate (n = 48) 

sample s i z e . 

In view of the above r e s u l t s (ignoring the small sample sizes i n the 

f i r s t two data sets) i t i s reasonable to expect that y^ i s m u l t i v a r i a t e 

normal for Kozak's data since i t i s reasonable that y i , y2, y3 are j o i n t l y 
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mult i v a r i a t e normal i n t h i s data set. On the other hand, the above 

r e s u l t s suggest only that f o r the two other data sets y T may or may not be 

normal, since i t i s possible f o r y^ to be m u l t i v a r i a t e normal even when 

Yl> Yl> Y 3 a r e n o t j o i n t l y m u l t i v a r i a t e normal. 

For both the Kurucz (1969) and ENFOR data, i t was considered of some 

in t e r e s t to check f o r j o i n t b i v a r i a t e normality of the y 's. Accordingly, 

Koziol's test f o r m u l t i v a r i a t e normality was applied to pair-wise yj' s» 

thus three t e s t s were performed on each data set. The r e s u l t s are sum­

marized i n Table 2 below. 

Table 2. Results of Ko z i o l 's test for b i v a r i a t e normality 

DF 
Sample 
Size 

Koziol's 
Computed 

S t a t i s t i c (J ) p-value n 

Kurucz's (1969) data 

( e i , ?2) 2.0 18 0.8484 <0.01 
2.0 18 0.5023 <0.01 

(£2, £3) 2.0 18 0.6873 <0.01 

ENFOR data 

(©1, £2) 2.0 48 5 .4432 « 0 . 0 1 

( e i , £3) 2.0 48 3.7356 « 0 . 0 1 

(£2. £3) 2.0 48 3 .1189 «0.0l 

The r e s u l t s i n Table 2 indi c a t e that the assumption of j o i n t b i v a r i ­

ate normality i s rejected e s s e n t i a l l y i n every case. This r e s u l t i s not 

unexpected since, having rejected t r i v a r i a t e normality, one expects that 

b i v a r i a t e normality should f a i l to obtain i n at le a s t one of the three 

cases. It i s also probably adequate to check b i v a r i a t e normality and 

rej e c t t r i v a r i a t e normality the f i r s t time b i v a r i a t e normality f a i l s to 
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h o l d . 

I t has been shown so f a r that j o i n t m u l t i v a r i a t e no rma l i t y of 

Yl> Y2» Y3 does not appear to ho ld f o r the Kurucz (1969) and ENFOR data 

w h i l e m u l t i v a r i a t e n o r m a l i t y w i l l be en te r t a i ned f o r the Kozak (1970) 

da t a . I t should be emphasized aga in t h a t , i n g ene r a l , one should be 

more cau t i ou s i n accept ing m u l t i v a r i a t e no rma l i t y f o r the Kozak data 

because of the very sma l l sample s i z e . However, f o r purposes of the 

examples to f o l l o w , m u l t i v a r i a t e no rma l i t y w i l l be e n t e r t a i n e d . Once 

a ga i n , i t i s reasonab le then to assume y m u l t i v a r i a t e normal f o r the 

Kozak da t a . However, one i s unable to dec ide whether or not y^ i s m u l t i ­

v a r i a t e normal f o r the Kurucz and ENFOR da ta . A d i r e c t examinat ion of 

the behaviour of y^ = v j i-s necessary to make a judgement concern ing 

i t s n o r m a l i t y or non -no rma l i t y . 

One way i n which i n f o rmat i on can be obta ined concern ing the m u l t i -

v a r i a t e n o r m a l i t y o r l a c k of i t f o r y^ = ^^aj_ Yj * s t o f i t t n e component 

models and i n v e s t i g a t e the behaviour of the e m p i r i c a l d i s t r i b u t i o n of 

= e j • Th i s can be ach ieved , i n p a r t , by p l o t t i n g a h i s togram 

of or a normal p r o b a b i l i t y p l o t of e^. Un f o r t una te l y , these p r o c e ­

dures r e q u i r e l a r g e enough sample s i z e s i n order f o r the p l o t s to be 

reasonably i n t e r p r e t a b l e . L a r ge l y because of t h i s , i t was p o s s i b l e to 

examine such p l o t s i n t h i s study on ly f o r the ENFOR data because of i t s 

moderate sample s i z e (n = 48) . The Kurucz data were obv i ou s l y too sma l l 

t o be examined by t h i s procedure. 

Three component models were f i t t e d u s ing the ENFOR da ta . Bo le 

biomass was regressed on D 2H and DCL, where D denotes d iameter at b r e a s t -

he i gh t , H denotes he i gh t , and CL crown l e n g t h . Bark biomass was regressed 

on D 2H and HCL and crown biomass was regressed on DCL and HCL. The 
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resi d u a l s from these f i t t e d component equations were added up and a h i s t o ­

gram and normal p r o b a b i l i t y p l o t constructed using the BMDP P:5D subroutine. 

If the histogram of e T looks s u f f i c i e n t l y bell-shaped, i t i s reasonable 

to conclude that y T i s normal. S i m i l a r l y , normality of y T would be 

suggested by a s u f f i c i e n t l y l i n e a r normal p r o b a b i l i t y p l o t . The plots 

are given i n Appendix II(a,b) and both suggest that e T and hence y T i s 

normal for the ENFOR data. 

Based upon r e s u l t s of t h i s section, we can proceed as though y^, 

were multivariate normal for the Kozak and ENFOR data but are unable 

to say whether y^ i s multivariate normal or not for the Kurucz data. 

10.2 Example 1 

In t h i s section, the data given by Kozak (1970) are used to apply 

a d d i t i v i t y theory as presented i n chapters IV and V of t h i s t h e s i s . As 

indicated e a r l i e r , though the data are reproduced i n the appendix i n 

imperial u n i t s , a l l c a l c u l a t i o n s here are i n metric u n i t s . It i s further 

assumed throughout that the biomass components are independent. Admit­

tedly, t h i s may be a tenuous assumption; however, we use i t l a r g e l y 

for purposes of demonstrating the a p p l i c a t i o n of the theory. For the 

e f f e c t of dependence on estimation and inference see the discussion i n 

chapter VII. Let us assume further that ^ N(cj), l°j)» 

F i r s t , consider f i t t i n g the component equations using both diameter 

and the square of diameter as independent v a r i a b l e s . R e c a l l that t h i s 

i s the case considered by Kozak (1970). Then the f i t t e d component equa­

tions are given by 



73 

y i = 131.39 - 19.037X + 0.95195X 2, R 2 = 0.9923 

y 2 = -1.12 + 0.205X + 0.02980X 2, R 2 = 0.9965 

y 3 = -13.08 + 1.136X + 0.08361X 2 , R 2 = 0.9605. 

The corresponding t o t a l f i t t e d equat ion i s 

y T = 117.1.9 - 17.696X + 1.06540X 2, R 2 = 0.9948. 

One can check e a s i l y t ha t the c o e f f i c i e n t s of the t o t a l equat ion are 

obta ined by adding corresponding c o e f f i c i e n t s of the f i t t e d component 

equat ions , as Kozak (1970) demonstrated. The r e g r e s s i o n sum of squares 

f o r the t o t a l equat ion i s 289060, to f i v e - d i g i t accuracy, and g i ven that 

X t y r f = (2300.6, 56183, 1448300) t , one can check e a s i l y t ha t t h i s i s the 

r e s u l t one ob ta in s us ing a d d i t i v i t y and equat ion (4.2.6) of the t h e s i s . 

Next, Kozak (1970) r epo r t s t ha t when on l y s t a t i s t i c a l l y s i g n i f i c a n t 

( important) independent v a r i a b l e s are used i n f i t t i n g the component equa­

t i o n s , the f i r s t equat ion ( y i ) i n vo l ve s both X and X 2 , the second ( y 2 ) 

on l y X 2 , and the l a s t (y3) o n l y X 2 a l s o . The me t r i c analogues of 

Kozak ' s s p e c i f i c a t i o n of these f i t t e d equat ions a re 

y i = 131.39 - 19.037X + 0.95195X 2, R 2 = 0.9923 

y 2 = 0.822 + 0.03471X 2, R 2 = 0.9962 

y 3 = -2.342 + 0.11079X 2, R 2 = 0.9588. 

In accordance w i t h the ex tens ion of the concept o f a d d i t i v i t y as 

developed i n chapter V, t he re i s a t o t a l equat ion determined by a d d i t i v i t y 

of the c o e f f i c i e n t s of the preceding equat ions . In f a c t , t h i s equat ion 

i s g iven by 

y T C = 129.87 - 19.037X + 1.09745X 2. 

The sum of squares r e g re s s i on f o r t h i s cond i t i oned t o t a l equat ion i s g i ven 

by 

B T C X t y T - n y 2 = 818660 - 531860.4564 

= 286799.5436. 
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S ince the t o t a l c o r r e c t ed sum of squares i s 290580, i t f o l l o w s that R 2 

corresponding to the t o t a l cond i t i oned equat ion i s g i ven by 

R 2 = 0.9870. 

I t i s worth remarking tha t i n terms of R , t h i s model f i t s the data almost 

as w e l l as the u n r e s t r i c t e d t o t a l model, w i t h an R of 0.9948. Other 

a spect s of t h i s problem, i n c l u d i n g computat iona l d e t a i l s , a re prov ided i n 

a more d e t a i l e d example i n Appendix I I I . 

In connect ion w i t h t h i s problem and r e l a t e d problems concern ing 

a d d i t i v i t y , the ques t ion n a t u r a l l y a r i s e s whether the v a r i a b l e s i n the 

cond i t i oned t o t a l equat ion remain s t a t i s t i c a l l y s i g n i f i c a n t a f t e r being 

i nco rpo ra ted i n t o the t o t a l cond i t i oned equat ion . The answer appears 

to be tha t they would be s t a t i s t i c a l l y s i g n i f i c a n t i f the v a r i a b l e s i n the 

cond i t i oned component equat ions a re not ve ry h i g h l y c o r r e l a t e d . However, 

t h i s may not be the case i f the v a r i a b l e s a re h i g h l y c o r r e l a t e d . I t 

should be po in ted out tha t t h i s has not been checked thoroughly and, thu s , 

should be viewed here as l a r g e l y a c o n j e c t u r e . For the Kozak d a t a , how­

ever , the c o n t r i b u t i o n to the t o t a l cond i t i oned equat ion of each v a r i a b l e 

was checked by computing the i n c rea se i n r e s i d u a l sum of squares when a 

p a r t i c u l a r v a r i a b l e i s omitted from the t o t a l cond i t i oned equat ion . The 

f o l l o w i n g p a r t i a l F -va lues were c a l c u l a t e d : 

F x = 96.27, F x2 = 15.64 

The degrees of freedom f o r these p a r t i a l F va lues a re 1 and 7, r e s p e c t i v e l y . 

I t i s c l e a r from these r e s u l t s that both diameter at b reas t he ight and i t s 

square are s t a t i s t i c a l l y important i n the t o t a l cond i t i oned equat ion . 
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10.3 Example 2 

In t h i s example, use i s made of the western hemlock data from 

coa s t a l B r i t i s h Columbia to go through the basic computational r e s u l t s 

as i n the previous example. These data were used by Kurucz (1969) and 

are given i n Appendix 1(b). 

F i r s t i t should be noted that, as discussed i n section 10.1, i t 

has not been pos s i b l e to determine whether y^ i s m u l t i v a r i a t e normal f o r 

these data or not. Therefore, i n f e r e n t i a l r e s u l t s given i n t h i s section 

r e l a t i n g to these data must not be viewed as s t r i c t l y v a l i d . The essence 

of t h i s example i s mainly to demonstrate use of the concept of a d d i t i v i t y 

computationally. One would need to check that y T i s reasonbly m u l t i ­

v a r i a t e normal for inference statements to carry f u l l weight. The c a l ­

culations here are c a r r i e d out i n metric units and the assumption i s made 

that the components y^ (j = 1, 2, 3) are independent. 

An all-combinations ( a l l subsets) procedure provided by the BMDP 

package (P:9R) was used to f i n d the best v a r i a b l e subsets for p r e d i c t i n g 

component biomass. Three components were recognized for purposes of t h i s 

a n a l y s i s , namely bole ( y i ) , bark ( y 2 ) , and crown (branches + f o l i a g e = 

y 3) . The crown component was obtained by simply adding branch and f i n e 

branch components f o r i n d i v i d u a l trees. Using R 2 as a s e l e c t i o n c r i - -

t e r i o n , the best equations were found to be 

y i = -75.708 + 0.01330X2, R 2 = 0.9907 

y 2 = -25.782 + 0.00203X2, R 2 = 0.9309 

y 3 = -24.765 + 0.095895X!, R 2 = 0.8122 

where Xj = ( h e i g h t ) 2 and X 2 = (height)(diameter) 2. A corresponding 

un r e s t r i c t e d t o t a l f i t t e d equation, using X\ and X 2, i s given by 

y T = 33.542 + 0.26819Xx + 0.01993X2, R 2 = 0.9655. 



76 

The t o t a l corrected sum of squares corresponding to the l a t t e r f i t i s 

182559547. As i n the preceding example, a conditioned t o t a l f i t t e d 

equation i s obtained by a d d i t i v i t y as 

y T_ = -126.255 + 0.95895X! + 0.01533X2. 

Since x'y = (53205, 113670000, 15112000000)t, i t follows that the sum 

of squares regression associated with the l a t t e r conditioned equation i s 

§ T C X t y T - ny 2 = 332291089.2 - 18(2955.8)2 

= 175029523.7. 

Therefore, the R 2 associated with t h i s t o t a l conditioned equation i s 

0.9588. Again, i f the assumption of normality of y^ held, one would 

conclude from t h i s that the conditioned t o t a l equation performs well 

when compared with the un r e s t r i c t e d t o t a l equation. I t may be noted 

that because of the great v a r i a b i l i t y i n the s i z e of the trees i n t h i s 

data set, one needs to be c a r e f u l about the p r e d i c t i v e goodness of these 

models. Indeed, as mentioned elsewhere i n t h i s t h e s i s , we are much 

less concerned here with using the best equations i n a p a r t i c u l a r sense 

than with demonstrating c e r t a i n aspects of a d d i t i v i t y . 

10.4 Example 3 

The next example i s based upon the ENFOR data for western hemlock 

(see Appendix 1(c)). We r e s t r i c t d e t a i l s to the l e v e l of previous 

examples. Using an all-combinations procedure as i n the previous example, 

the following equations were found to be the best for p r e d i c t i n g component 

biomass: 

yi = 6.49538 + 0.01541D2H - 0.12258DCL, R 2 = 0.9836 

y 2 = 0.93179 + 0.00247D2H - 0.03112HCL, R 2 = 0.9561 

y 3 = -4.82066 + 0.31477DCL - 0.23344HCL, R 2 = 0.8424. 



The unrestricted total biomass equation i s given by 

y T = 2.05138 - 0.000074D2H + 0.09319DCL - 0.0667HCL, R2 = 0.8674. 

The corresponding total conditioned equation is given by 

y„n = 2.60651 + 0.01788D2H + 0.19219DCL - 0.26456HCL. 

The sum of squares regression due to f i t t i n g the latter equation is given 

by f£ x'y - ny 2 = 2876.506. Hence the R2 corresponding to this model 
J. L» J. J. 

is 0.8215 which compares favourably with that of the unrestricted total 

equation. Note that even when crown variables are used for predicting 

crown biomass, the R2 is s t i l l in 0.80-0.90 range for that component. 

In Appendix III, the computational details relating to the additivity 

problem are given using Kozak's (1970) data again. The objective there 

is to show how the various statistics are computed, especially the var i ­

ances of the parameters in the total conditioned equation. 



CHAPTER XI 

CONCLUSIONS AND REMARKS 

In the discourse we have generalized the a d d i t i v i t y problem as 

o r i g i n a l l y posed i n the context of f o r e s t r y by Kozak (1970). It has 

been shown that the s t a t i s t i c a l theory of estimation and inference f o r the 

generalized a d d i t i v i t y problem as defined here i s c o n s t r u c t i b l e within the 

general framework of general l i n e a r model theory. I t i s important to recog­

nize that both estimation and inference theory i s , i n general, dependent 

upon d i s t r i b u t i o n a l assumptions f o r the £_. (j = 1, .. ., k) and upon 

whether the e_. are dependent or not. When the are dependent, i t has 

been shown that a d d i t i v i t y as defined here, does not hold. Furthermore, 

inference theory r e l a t i n g to the t o t a l model i s complicated by the fac t 

that although the components may follow normal d i s t r i b u t i o n s , i t does not 

follow automatically that t h e i r sum i s also normal. This suggests a need 

to inv e s t i g a t e , or otherwise, j u s t i f y the normality of y^, before inference 

can be drawn about i t when dependence obtains among the components. In 

p a r t i c u l a r , i t would be u s e f u l i f future studies i n t h i s area could address 

the problem r e l a t i n g to the d i s t r i b u t i o n of ŷ , d i r e c t l y uSing large enough 

data sets along the l i n e s indicated i n section 10.1. Large data sets that 

might become a v a i l a b l e through projects such as the ENFOR project might 

make such studies possible and worthwhile. Other d i r e c t i o n s of further 

i n v e s t i g a t i o n might be the determination of the form of the dependence 

among components. This might si m p l i f y the problem of determining the 

78 
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d i s t r i b u t i o n a l behaviour of y^,. 

The problem of a d d i t i v i t y has also been seen to lead to i n t e r e s t i n g 

but, as yet, unsolved problems i n m u l t i v a r i a t e d i s t r i b u t i o n theory. This 

i s obviously a f r u i t f u l l i n e of further research for those who are theor­

e t i c a l l y i n c l i n e d . 

One of the i n t e r e s t i n g r e s u l t s obtained here i s that the a d d i t i v i t y 

problem i s n a t u r a l l y extendible to the cl a s s of l i n e a r models known as 

c l a s s i f i c a t o r y models generally encountered i n designed experiments. This 

extension must not be construed to be a c c i d e n t a l since any c l a s s i f i c a t o r y 

model can, i n general, be expressed i n regression form. The a d d i t i v i t y 

problem does not, however, extend to the c l a s s of i n t r i n s i c a l l y nonlinear 

models. Hence the usefulness of theory r e l a t i n g to the a d d i t i v i t y prob­

lem i n mensurational studies involving nonlinear functions would, at best, 

be minimal. However, the theory should f i n d wide a p p l i c a b i l i t y among 

ecol o g i s t s and quantitative s c i e n t i s t s interested i n the assessment of 

biomass. 

The a d d i t i v i t y problem does not require the construction of new com­

puting subroutines as c l e a r l y demonstrated i n chapter IX. This should 

make i t e s p e c i a l l y easy to use the theory of a d d i t i v i t y as developed here. 

F i n a l l y , the examples given i n the preceding chapter show that the concept 

of a d d i t i v i t y i s quite p r a c t i c a l and r e a l i s t i c and s t a t i s t i c a l l y appealing. 
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APPENDIX 1(a) 

Kozak's (1970) Biomass Data 

DBH Bole Bark Branches Total 
(Inches) (lbs.) (lbs.) (lbs.) YT=Y1+Y2+Y3 

X Yi Y 2 Y 3 (lbs.) 

7.2 254 29 73 356 

11.0 749 60 192 1001 

9.8 519 49 151 719 

7.5 217 31 115 363 

12.2 1025 76 222 1323 

6.7 242 26 76 344 

5.9 136 18 37 191 

5.5 127 18 39 184 

3.5 62 6 11 79 

8.7 375 39 98 512 

Conversion f a c t o r s : 1 i n = 2.54 cm, 1 l b . = 0 .4535924 kg 
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APPENDIX 1(b) 

Western Hemlock Biomass Data (Kurucz, 1969) 

Fine Branch 
Height DBH Branch + Foliage Bole Bark Total 
(Feet) (Inches) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) 

20.0 3.5 25.23 36.26 15.56 3.57 80.62 

14.0 1.6 3.43 7.27 3.32 0.82 14.84 

34.0 6.1 55.62 71.95 60.18 16.21 203.96 

53.0 11.8 314.77 309.58 318.24 52.21 994.80 

41.0 8.8 130.36 168.71 169.58 35.45 504.10 

55.0 10.5 231.26 260.52 278.94 44.52 815.24 

55.0 11.7 289.72 275.71 346.04 56.06 967.53 

93.0 21.9 1210.37 859.97 2095.34 220.94 4395.23 

73.0 15.9 701.20 430.48 916.22 120.91 2168.81 

92.0 17.0 529.87 423.46 1329.83 188.24 . 2471.40 

117.0 24.5 1201.44 468.42 3806.64 487.50 5964.00 

167.0 30.5 3188.59 993.78 7971.30 1221.49 13375.16 

123.0 23.7 2424.59 831.81 3332.09 369.61 6958.10 

131.0 26.0 1658.45 522.55 4323.78 357.79 6862.57 

176.0 34.1 3876.44 2013.48 11187.62 1447.37 18524.91 

175.0 36.4 4027.03 1535.28 13874.81 2337.72 21774.84 

148.0 31.1 2870.00 1204.30 8920.92 1196.20 14191.62 

151.0 29.0 5926.09 2149.10 7537.04 1415.22 17027.45 

Conversion f a c t o r s : 1 in = 2.54 cm, 1 foot = 0.3048 m, 1 l b . = .4535924 kg 



APPENDIX 1(c) 

DBH 
(cm) 

19.20 
28.00 
22.70 
23.90 
28.90 
23.90 
14.60 
26.80 
11 .20 
3.10 
5.70 
14.00 
12.10 
7.00 
16.40 
4.50 
9.50 
10.50 
17.60 
18.20 
15.40 
14.50 
32.70 
31 .30 
16.10 
1 1 .20 
42.40 
17.40 
16.40 
29.90 
1 1 .30 
21 .50 
12.20 
14.20 
7.80 
9.40 

I 1 .00 
19.80 
13.60 
II .20 
9.80 
9.70 
12.90 
17.70 
1 1.40 
14.00 
18.70 
11.10 

Height 
(m) 

22.40 
25.20 
26.70 
28.30 
28.20 
22.40 
12.80 
26.60 
9.80 
3.50 
4.90 
11 .20 
10.20 
6.10 
13.40 
3.90 
7.10 
8.80 
10.70 
12.40 
8.70 
8.40 
20.60 
21 .30 
13.40 
10.00 
22.40 
1 1 .60 
12.60 
17.00 
8.30 
13.50 
6.70 
9.70 
5.90 
7.30 
7.60 
9.70 
6.90 
6.10 
6.40 
8.10 
9.20 
10.70 
9.70 
9.70 
9.80 
6.90 

ENFOR Biomass Data 
Crown Crown 
Length Width 
(m) (m) 

14.50 4.30 
20.20 6.80 
16.70 4.20 
15.40 4.10 
11.40 5.60 
12.10 4.00 
U.20 3.30 
23.60 4.80 
7.80 2.60 
3.10 1.30 
4.50 1.20 
9.70 4.40 
9.30 3.10 
5.60 2.40 
11.90 5.20 
3.80 1.40 
7.00 2.30 
8.80 2.70 
10.60 14.00 
10.80 4.40 
7.00 3.50 
7.20 4.00 
16.30 3.80 
15.30 6.70 
10.80 4.80 
8.30 3.70 
19.70 6.50 
10.60 2.80 
11.30 3.80 
16.20 5.20 
6.20 2.40 
11.60 3.60 
5.50 3.10 
9.10 4.30 
5.90 2.60 
7.30 2.00 
6.60 2.60 
7.60 2.60 
5.20 1.20 
4.40 2.30 
5.50 2.10 
8.10 2.70 
9.20 4.40 
10.70 4.70 
8.80 4.30 
9.70 2.50 
9.80 3.50 
6.30 2.30 

88 
T o t a l 

Bole Bark Crown Biomass 
(kg) (kg) (kg) (kg) 

94.43 13.96 9.29 117.69 
253.21 27.19 57.67 338.08 
184.65 21.67 7.21 213.52 
224.57 27.48 11.15 263.21 
324.82 34.56 45.79 405.17 
155.99 20.84 15.00 191.83 
28.85 4.58 18.80 52.22 

234.19 32.09 28.43 294.72 
19.77 2.97 5.84 28.58 
0.64 0.12 0.71 1.48 
2.79 0.37 2.56 5.73 
24.04 3.85 15.75 43.64 
17.34 2.82 9.73 29.89 
5.43 0.74 2.09 8.26 

43.07 6.66 24.29 74.02 
1 .30 0.32 2.16 3.79 
7.89 1 .41 4.23 13.53 
13.80 2.08 6.77 22.65 
36.52 5.51 17.54 59.58 
46.94 7.57 24. 17 78.68 
25.01 4.09 10.86 39.96 
19.94 3.20 12.19 35.32 

232.63 43.90 89.67 366.20 
326.34 50.43 86.41 463.18 
39.00 7.68 26.77 73.45 
16.15 2.52 1 1 .29 29.95 

523.92 96.28 129.66 749.86 
46.42 6.46 28.42 81 .30 
41.12 6.07 8.65 55.84 
131.27 18.81 142.89 292.96 
13.23 3.65 4.81 21 .70 
82.87 13.57 16.55 1 12.99 
14.35 3.30 5.14 22.79 
22.44 3.31 16.59 42.34 
3.93 0.53 2.04 6.50 
6.07 1.00 5.04 12.11 
10.94 1.16 4.42 16.51 
38.36 4.72 13.77 56.85 
15.57 2.18 8.54 26.29 
9.91 1.50 5.22 16.62 
7.17 1.57 4.56 13.30 
8.40 0.82 1 .98 11.19 
18.47 1.93 6.25 26.65 
31.71 3.53 14.63 49.87 
14.91 1 .60 6.88 23.39 
21 .87 3.64 6.61 32.12 
35.83 4.62 19.28 59.73 
9.01 1.40 5.28 15.69 
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APPENDIX 1(d) 

PROGRAMME 1: Fortran programme c a l l s IMSL subroutine MDCH to compute 
chi-square p r o b a b i l i t i e s 

INTEGER IER 
REAL. XC18) 
READ(5< 10) <X< J)< J= l » 18) 

10 FORMAT OX, 1SFS. 5) 
DO 15 I - l i 18 
DF=2. O 
CALL MDCH(X(I> • DF« P. IER) 
WRITE<6,20) X(I),P 

20 FORMAT( ' X < I )= ', F8. 5. 5X. 'P= ', F10. 5) 
15 CONTINUE 

STOP 
END 

PROGRAMME 2: Fortran programme computes and p r i n t s K o z i o l s t a t i s t i c s 

REAL X( 18 >, JN 
READ(5i 10) (X(J)» <J~li IB) 

10 FORMAT (18F8. 5) 
SUM=0. O 
DO 20 1=1/ 18 
SUM=SUM+(XU>-< (1-0. 5)/18. 0) )**2 

20 CONTINUE 
JN=SUM+ < 1.0/216.0) 
WRITE(6, 30) JN 

30 FORMAT( ' JN=',F10. 6) 
STOP 
END 



INTERVAL 
NAME 5 10 15 

+. + + +. 
*-42.OOO +X 
*-38.500 + 
•-35.OOO + 
*-31.500 + 
•-28.OOO + 
*-24.500 + 
*-21.000 +XX 
•-17.500 +X 
*-14.000 +X 
•-10.500 +X 
•-7.OOOO +XX 
•-3.5000 +XXXXXX 
•0.00000 +XXXXXXXXXXXXX 
•3.50000 +XXXXXXXX 
•7.OOOOO +XXX 
•10.5000 +XXXXX 
•14.0000 +XXX 
•17.50CO +X 
•21.OOOO + 
•24.5000 + 
•28.0000 + 
•31.5000 + 
•35.0000 + 
•38.5000 + 
•42.OOOO + 
•45.5000 + 
•49.OOOO • 
•52.5000 + 
•56.OOOO + 
•59.5000 + 
•63.OOOO + 
•66.5000 + 
•70.OOOO + 
•73.5000 + 
•77.OOOO + 
•80.5000 + 
•84.OOOO +X 
•87.5000 + 

+ -

20 
-- + -

25 
-- + -

30 
--+-

35 
-- + -

40 
--+-

45 
-- + -

50 
--+-

55 60 
--+ 

FREQUENCY PERCENTAGE 
INT. CUM. INT. CUM. 

1 
0 
0 
0 
0 
O 
2 
1 
1 
1 
2 
6 
13 
8 
3 
5 
3 
1 
O 
0 
0 
O 
0 
0 
0 
O 
O 
O 
O 
0 
0 
0 
0 
0 
0 
0 
1 
0 

3 
4 
5 
6 
8 
14 
27 
35 
38 
43 
46 
47 
47 
47 
47 
47 
47 
47 
47 
47 
47 
47 
47 
47 
47 
47 
47 
47 
47 
47 
48 
48 

2.1 
0.0 
0.0 
0.0 
0.0 
0.0 
.2 
. 1 
. 1 
. 1 
.2 
.5 

4 
2 
2 
2 
4 
12 
27. 1 
16.7 
6.3 
10.4 
6.3 
2.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
O.O 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
2.1 
0.0 

2.1 
2.1 
2.1 
2.1 
2.1 
2.1 
6.3 
8.3 
10.4 
12.5 
16.7 
29.2 
56.3 
72.9 
79.2 
89.6 
95.8 
97.9 
97 .9 
97 
97. 
97. 
97. 
97. 
97.9 
97 .9 
97 .9 
97 .9 
97.9 
97 .9 
97. 
97 
97. 
97. 
97. 
97.9 
100.0 
100.0 

.9 

.9 

.9 

.9 

.9 

.9 

.9 

.9 

.9 

.9 

a 
H> 
CO 
rt 
O CW 
H 

g 

M J. CO 

l-h 
O H 

CD 
M 
a 
o 

p 

55 
W 
C J H 
X 

- + -
5 

• - + -
10 

• - + -
15 20 

--+-
25 

-- + -
30 

--+-
35 

-- + -
40 

--+-
45 50 

-- + -
55 60 

KD 
O 



APPENDIX 1 1(b) 

Normal p r o b a b i l i t y p l o t of re s i d u a l s (e_ = e.) f o r the ENFOR data 

2 . 4 

1 . 8 

1 . 2 

. 6 0 

0 . 0 

- . 6 0 

1 . 2 

•1.8 

- 2 . 4 

- 3 7 . 5 
- 5 0 . 0 - 2 5 . 0 

RESIDUAL 
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APPENDIX H T 

A SOMEWHAT DETAILED COMPUTATIONAL EXAMPLE 

In t h i s part of the t h e s i s , i t i s intended to use Kozak's (1970) 

data to show some of the computational d e t a i l s r e l a t i n g to the generalized 

a d d i t i v i t y problem. These data are chosen p a r t l y because of t h e i r small 

s i z e , making the computational exercise f a i r l y straightforward yet making 

possible a demonstration of the computations involved. The computations 

for larger data sets (with more independent variables) are performed 

as t y p i c a l l y shown here. P a r t i c u l a r attention i s given i n the following 

to aspects of the computational d e t a i l s not given i n section 10.2. 

In the following, Xi = diameter, X2 = (diameter) 2, and the matrix X 

re f e r s to the 10x3 matrix X = (X 0|Xi|x 2) where X 0 i s a column vector 

of l ' s . Also l e t X* = (X0IX2). The following matrices w i l l be of 

use i n t h i s discussion. (8.2031 -0.82845 0.019172 \ 

0.82845 0.087614 -0.002093 

0.019172 -0.002093 0.0000514/ 

, / 0.36948 -0.0006217 \ /2300.6\ 
(X* tX*) 1 = , X y = 56060 

V^O.0006217 0.00000143/ \ 1443700 / 

The un r e s t r i c t e d t o t a l f i t t e d equation i s given by 

y T = 117.19 - 17.696Xi + 1.06540X2. 

The estimated variance-covariance matrix of 8 ^ for t h i s model i s 

( X t X ) ~ 1 r j 2 = (X tX)~ 1(217.64) , where 217.64 i s the MSE associated with 

f i t t i n g y^. Thus the standard errors for the parameters of t h i s model 

can be obtained from the estimated variance-covariance matrix. In t h i s 

case they are 42.25, 4.37, 0.1058 for § Q T , § 1 T» and res p e c t i v e l y . 



The component equations containing only important independent v a r i ­

ables are given i n section 10.2. The corresponding t o t a l conditioned 

equation as determined by a d d i t i v i t y i s 

y T C = 129.87 - 19.037X! + 1.09745X2. 

The covariance matrix of 3^, for the above equation, i s obtained, under 

the assumption of independence of the y^'s, as the sum of the covariance 

matrices of the estimated parameters of the component equations. In 

the present case, the estimated covariance matrix i s given by 

'8.94206 -0.82845 0.01793 \ 

i? . a2, 
J * 3 

j> = |-0.082845 0.087614 -0.002093 
BTC 

\0.01793 -0.002093 0.0000543; 

where i s the mean square associated with f i t t i n g component model j . 
In the present case, a 2 = 194.04, a 2 = 0.55375, and a 2 = 42.198. There­
fore E? , a 2 = 236.792. Hence the estimated standard errors for the 

J=l J 

parameter estimates i n y ^ are, i n order, 46.02, 4.55, 0.1134, which 

compare favourably with those given above for the u n r e s t r i c t e d t o t a l 

model. It should be pointed out here that before adding the covariance 

matrices, they are f i l l e d up with zeros to bring them to the f u l l s i z e 

corresponding to a l l variables i n the conditioned t o t a l equation and 

the elements are permuted to correspond to the same parameters p r i o r 

to a d d ition. This part has not been exhibited i n the above derivations. 

F i n a l l y , the predicted values generated by the u n r e s t r i c t e d t o t a l 

equation y^ and i t s residuals are compared with those obtained using 

the t o t a l conditioned equation y T r,. The r e s u l t s are given i n Table 

3(a,b) and i n Figure 1. For these data, at l e a s t , the t o t a l conditioned 

equation performs r e l a t i v e l y w e l l . Of course t h i s may p a r t l y be a s c r i b -

able to the very small sample and narrow sample range. 



Table. 3 Comparison of predicted values and r e s i d u a l s of unrestricted 
t o t a l equation with those of t o t a l conditioned equation 

a. Unrestricted Total Equation 

OBSERVED TOTAL BIOMASS PREDICTED TOTAL BIOMASS RESIDUAL 
161 .48 166 .53 -5 .05 
454 .05 454 .27 -0 .23 
326 . 13 336 .65 -10. .51 
164 .65 166 .53 -1 . .87 
600, . 10 591 .69 8 .41 
156 .04 124 .40 31 , .63 
86 .64 91 .08 -4. .44 
83 .46 77 .71 5. .75 
35 .83 43 .88 -8. .05 

232 .24 246 .21 -13. .97 

b. Total Conditioned Equation 

OBSERVED TOTAL BIOMASS 
161.48 
454.05 
326. 13 
164.65 
600.10 
156.04 
86.64 
83.46 
35.83 

232.24 

PREDICTED TOTAL 
165.48 
454.69 
335.99 
165.48 
593.78 
123.73 
91 .05 
78. 10 
47.36 

245. 10 

BIOMASS RESIDUAL 
-4.00 
-0.65 
-9.86 
-0.83 
6.32 
32.30 
-4.41 
5.36 

-11.53 
-12.86 
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Figure 1. Scatter of Residuals from Total Unrestricted Equation 
and from Total Conditioned Equation 
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