## A GENERAL THEORY ON COMMON POINT

 INTERSECT SAMPLING WITH SPECIAL APPLICATION TO DOWNED WOODY PARTICLESBY
JEFFREY N. EGGLESTONE
B. Sc., University of British Columbia, 1971

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCTENCE
in the Department of

FORESTRY

We accept this thesis as conforming to the required standard

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of


The University of British Columbia Vancouver 8, Canada



#### Abstract

A general sampling theory referred to as common point intersect sampling is developed and assessed. This new technique is specifically applied to the problem of estimating parameters of populations of downed woody particles of interest in fire research.

The performance of the common point intersect sampling method is compared to that of the well-established line intercept technique with respect to two lesser (less than 3 inches in diameter) downed woody particles populations. Results of these tests indicate that proper application of the new sampling system can yield total volume estimates of approximately 15 per cent precision with savings of up to 40 per cent of the total sampling time required by the line intercept technique.

The common point intersect sampling method is demonstrated to be a useful approach to solving the problem of obtaining estimates for numerous attributes of populations of downed woody particles. General formulas are also provided which facilitate the application of common point intersect sampling to the task of obtaining parameters of standing timber such as crown area and average crown diameter from aerial photographs.

The common point intersect technique is shown to be a fast and accurate means of sampling forest material. The new sampling system has been applied rigourously in only one problem area. The general nature of the common point intersect system suggests, however, that it has many other applications in a multiplicity of scientific disciplines.


## TABLE OF CONTENTS

Page
TITLE ..... i
ABSTRACT ..... ii
table of contents ..... iii
LIST OF TABLES ..... iv
LIST OF ILLUSTRATIONS ..... v
ACKNOWLEDGEMENTS ..... vi
CHAPTER I. INTRODUCTION ..... 1
CHAPTER II. DEVELOPMENT OF THE COMMON POINT INTERSECT CONCEPT. ..... 7
Brief review of past general sampling techniques ..... 7
Presentation of the Common Point Intersect theory. ..... 10
General discussion ..... 10
Application to downed woody particles ..... 19
CHAPTER III. FIELD TEST TO EVALUATE THE COMMON POINT INTERSECT TECHNIQUE ..... 43
General discussion ..... 43
Fieldwork undergone with respect to the Line Intersect technique ..... 52
Fieldwork undergone with respect to the Common Point Intersect technique ..... 61
CHAPTER IV. ANALYSIS OF THE FIELD TEST DATA ..... 71
CHAPTER V. CONCLUSIONS ..... 77
CHAPTER VI. PRACTICAL APPLICATIONS OF THE COMMON POINT INTERSECT TECHNIQUE ..... 87
BIBLIOGRAPHY ..... 92
APPENDIX I PROOF OF COMMON POINT INTERSECT FORMULA FOR CYLINDERS ..... 102
APPENDIX II COMPUTERIZED ANALYSIS OF VARIANCE MODEL ..... 106
APPENDIX III COMPUTERIZED DOWNED WOODY PARTICLES MODEL ..... 111

## LIST OF TABLES

Page1. Actual and estimated computer-generated lesser downed woody particle volumes ..... 35
2. Intersection angles of lesser downed woody particles in the study areas ..... 48
3. Sample means and standard deviations of the orientation random variables for lesser downed woody particles in the study areas ..... 50
4. Field particle intercept counts and corresponding volume estimates for the line intersect sampling units ..... 58
5. Relevant statistics for the line intersect field sampling units ..... 60
6. Field particle intercept counts for the common point intersect sampling units ..... 64
7. Field particle volume estimates for the common point intersect sampling units ..... 68
8. Sampling time comparison of the line intersect and common point intersect methods ..... 70

## LIST OF ILLUSTRATIONS

Figures Page
1 F1owchart depicting the development of the general common point intersect sampling concept ..... 17
2 Typical cross-section of sampling unit $s_{i}$ with special application to downed woody cylinders ..... 25
3 Curves representing actual and estimated computer-f generated downed woody particle volumes with respect to size class 1 ( $\leq \frac{1}{4}$ inch) ..... 37
4 Curves representing actual and estimated computer- generated downed woody particle volumes with respect to size class 2 (> $\frac{1}{4}$ inch $\leq 1$ inch) ..... 38
5 Curves representing actual and estimated computergenerated downed woody particle volumes with respect tosize class 3 (> 1 inch, $\leq 3$ inches)39
6 Map of Study Area 1 depicting placement of both the line intersect and common point intersect sampling units ..... 44
7 Map of Study Area 2 depicting placement of both the line intersect and common point intersect sampling units ..... 458 'Go-no-go' gauge used to determine the diameter sizeclass of each intersecting particle under $3^{\prime \prime}$ in diameterat initial point of intersection56

The writer wishes to thank Dr. J.H.G. Smith, Dr. J. Damaerschalk and Mr. S. Smith for their suggestions and comments concerning the thesis during its review stage. The writer also wishes to thank B.C. Forest Products for permission to sample logging residue in two of their cutover areas on Vancouver Island, British Columbia.

This study was financed by the Canadian Forestry Service as part of a project to improve knowledge of forest fuels and fire behaviour in coastal logging residue.

A special note of thanks is due my parents and family for their continuing moral support during the writing phase of the thesis.

## Introduction

This thesis is designed with two primary objectives in mind. The first is to present a general technique for non-destructively obtaining quantitative estimates for attributes of any community of objects. The second is to apply this technique to an important social problem area.

Since the author is currently employed as a fire research officer in the Canadian Forestry Service, the problem area selected is forest fire oriented, namely precise measurement of downed woody particles populations. A woody particle is considered 'downed' if it has been detached from its source and lies within six feet of the forest floor (Brown, 1974). Attention is focused primarily on lesser downed woody particles populations from which two constituent populations are chosen for analysis.

Before considering the scope and methods of the thesis, it seems very appropriate to consider whether it is worthwhile or not to develop a new general quantitative sampling technique. Historically, general sampling schemes have been developed from specific sampling methods designed to satisfy very specific needs in well-defined professional disciplines. The different physical and mathematical constraints imposed by each separate discipline have made this established pattern of procedure a necessary rather than optimum one. There currently being no urgent demand for new quantitative sampling techniques in any of the fire-oriented phytosociological biomes, it appears that at present a new technique would
be viewed with interest only on an academic plane. Any new sampling method should be significantly superior to the most successful existing one when both are applied to a specific problem. Once this superiority is demonstrated the utility of the new technique would be established operationally. This thesis demonstrates the superiority of the new sampling technique in at least one specific problem area.

At this time it is relevant that a comment be made concerning the problem area chosen for analysis. The significance of populations of downed woody particles as areas of concern for forest harvesters, land managers and fire scientists as well as numerous other professionals is not to be logically disputed (Bailey, 1969; Beaufait and Hardy, in prep; Deeming, 1972). The amounts, weights, and distributions of larger downed woody materials are of much concern when considering problems such as the assessment of: logging waste, behaviour of wildife, and probability of successful natural or artificial regeneration (Davis, 1959; Wagener and Offord, 1972). Also the volumes, weights, surface areas and distributions thereof for the smaller downed woody materials play a key role in rating the fire hazard within a particular region (Deeming, 1972; Beaufait and Hardy, in prep; Brown and Roussopoulos, in prep.). However, it could be argued that it seems silly to sample these downed woody particles directly. A more logical approach would be to sample the forest characteristics of interest when the woody materials are secured to the standing trees. Such initial values would then be combined with mathematical relationships which describe the effects of a given set of disturbances on the forest to arrive at estimates for the desired parameters of the downed woody particles populations. Although past efforts to apply this approach may have failed (Beaufait and Hardy, in prep.), the author
recognizes this as a viable approach to the problem of quantifying parameters of downed woody particles populations. Nevertheless, until a technique is created which can successfully apply this systems approach to the downed woody materials complex, interim physical methods will have to be used which means at least temporarily that downed woody particles will have to be sampled. In this thesis, a new general sampling technique is applied to populations of downed woody materials. Normally when a new concept of sampling is applied to a problem area it is because the old ones are in some way unsatisfactory. It is not immediately apparent that this is true in the case of downed woody materials. For example both 0.1 acre plots and long transect lines have been successfully used to measure the larger fuels (Bailey, 1969; Howard and Ward, 1972). Also short transect lines have been effectively used to measure the smaller fuels (Beaufait, Marsden and Norum, 1974; Brown, in prep; Brown and Roussopoules; in prep.). None of the above methods have disadvantages which seriously impair their applications. The justification of applying a new general sampling technique to downed woody fuels rests upon the insight of the author. He has worked in populations of downed woody materials for seven years and has tried numerous versions of currently used sampling systems in many fuel complexes. He believes that the new general sampling concept is not only feasible when applied to downed woody fuels but also has a good chance of being significantly more efficient than all other previously applied direct sampling systems. The scope and methods of the thesis are relevant to both of its major components which are the general theory and the case study. The scope of the general theory is very broad; it applies to any group of
objects whose attributes of interest can be described by functions of suitably well-behaved mathematical expressions. The methods used in developing the theory are basic theorems and principles of advanced calculus.

The case study applies primarily to lesser downed woody particles. It is agreed that a woody particle which intersects a transect line will be described as lesser (greater) only if its width at the initial point of intersection is less (greater) than or equal to 3 inches. Lesser woody particles are selected for detailed scrutiny because past studies have shown that these components are most likely to be consumed by the majority of broadcast fires (Steele and Beaufait, 1969; Brown, in prep). It should be noted that, although needles satisfy the above agreed definition of lesser woody materials, they will not be considered directly in the case study. Needles play an important role in the ignition process and hence in the initial stages of fire growth (Beaufait, 1965). But in general the extreme difficulty of measuring or counting needles even over relatively short distances necessitates the use of indirect sampling techniques. Examples of such techniques are regression estimates from lesser downed woody fuel data (Brown, 1970) and tables of desired needle attributes for specified fuel types (Fahnestock and Chandler, 1960; Brown, 1970). Regardless of which indirect sampling scheme is selected, the main objective of the case study can be completely met simply by considering the problem of obtaining estimates for the parameters of interest with respect to all subsets of the lesser downed woody fuels population excluding needles. It should be kept in mind that the main objective of the case study is to evaluate the new general sampling technique by comparing it to the most successful existing one when the
two are applied to two lesser downed woody fuels populations. There are two basic methods employed in the development of the case study. The first is the generation of mathematical formulae from the new general sampling concept. These formulae will serve to estimate the desired properties of the downed woody fuels populations. Care must be taken that the assumptions made in arriving at the explicit estimates reflect common field situations. Attention must also be paid to the levels of accuracy and precision which the estimates should meet, cost and time constraints under which the new and existing techniques may be forced to operate, and the physical and mental tolerance levels of average field inventory personnel. The last item in this list is an especially important one. Quantitative sampling of lesser downed woody fuels in logging residue for example is tedious and requires painstaking work. However, at present it is highly recommended that this task be undertaken if reliable objective predictions or assessments of fire behavior and impact are to be made (Beaufait, Marsden, and Norum, 1974). If the quantitative sampling process used is incompatible with normal levels of physical and mental tolerance, the non-sampling errors (Husch, Miller, and Beers, 1972; p.201) introduced through improper or careless measurements may well have a major effect upon the precision of the derived formulae. The formulae derived from the general sampling concept will be determined using functional analysis, analysis of variance, events modelling, numerical analysis and parametric statistical hypothesis testing. The second method used in the development of the case study is the application of the new sampling process to two actual field situations and a comparison of this new technique to the most successful existing one
with respect to these same two lesser downed woody fuels populations. The fuel complexes selected for examination are two areas of fresh (less than 1 year old) logging residue (slash). These areas are chosen because during the fire season many untreated slash areas become highly flammable. This means that objective quantitative projections of fire danger in slash are needed. Working in slash then maximizes the relevance and usefulness of the field exercise. The field comparison is made by inspecting pairs of total sampling times required to obtain pairs of population parameter estimates, where the members of each pair of estimates have both common units and a common allowable sampling error (Husch, Miller, and Beers, 1972) for a common percentage of the time. With respect to each subset of the lesser downed woody fuels population, the total sampling time is the sum of the total fuels inspection time plus the total travel time between sample units. Each resultant total sampling cost is directly proportional to its corresponding total sampling time. It is easy to see then that the total sampling times provide ranking indices for the two sampling techniques. This procedure is well established and has already been used in studies involved with logging residue (Bailey, 1969; Howard and Ward, 1972).

Having presented the general layout of this study; interest is now focussed upon fulfilling the two objectives cited at the beginning of the thesis.

CHAPTER II
Development of the common point intersect concept
Brief review of past general sampling techniques
Before attempting to achieve the first objective of the thesis which is to present a general non-destructive technique for quantitatively estimating population parameters or attributes for any community of objects, it seems logical to look briefly at some of the more successful general sampling schemes already in existence. The two selected on the basis of degree of flexibility and extent of proven usefulness are transect system sampling (T S S) and line intersect sampling (L I S).

T S S designs are simply applications of the solution offered by the 18th century French naturalist Buffon to the needle problem (Bradley, 1972). It is important to note that the solution given by Buffon and others (Segebaden, 1964; De Vries, 1973) is based on the assumption that the objects of interest are randomly distributed throughout the area of concern. The concept involved in this technique is quite ingenious and should be briefly described. Consider an area occupied by objects which are randomly distributed. If a network of transects is superimposed on this area those objects which both intersect any transect in the network and possess the attributes of interest are tallied. The total number of relevant intersections is then inserted into an appropriate formula derived from Buffon's solution to the needle problem. In this way an estimate is obtained for the desired population parameter. Approximate general formulas for the standard error of the estimate obtained, the transect system spacing required to achieve a specified precision level, and the number of sample points required to meet a desired degree of precision are all given by Bradley (1972). In passing it should be mentioned that the general

T S S theory can be extended to permit its application in any collection of objects whose placement and angular orientation distributions can be quantified.

T S S has already been applied successfully to the problem of determining cross-country transport distances for real road nets (Segebaden, 1964), and also to the problem of estimating road lengths (Bradley, 1972). Other applications can be made. For example the total length and volume of greater logging residue could be estimated with TSS. Also information about stand characteristics and lengths of streams could be obtained through the use of TSS. All of the above applications of TSS are greatly simplified by use of aerial photographs.

LIS is closely related to TSS and in fact may even be regarded as a special case of TSS, where the network of transects has been reduced to a single transect. Several derivations of LIS formulas are available (Canfield, 1941; Warren and O1sen, 1964; Van Wagner, 1968; Brown, 1971). The most general discussion of the LIS concept is that given by De Vries (1973, p.4-7). De Vries' formulation rests primarily upon two assumptions. The first is that the objects of interest can be viewed logically as line segments or shapes of moderate curvature and the second is that the placement and angular orientation distributions of the population of objects (identified as line segments or shapes of moderate curvature, whichever is appropriate) can be described quantitatively. It is possible to extend De Vries' argument to a more abstract plane making it independent of the two above assumptions.

LIS is a very popular technique having been applied to range vegetation (Canfield, 1941), greater logging residue (Warren and 01sen,

1964; Van Wagner, 1968; Howard and Ward, 1972), and lesser logging residue (Beaufait, Marsden, and Norum 1974; Brown, in prep.). Suggestions have also been made regarding its posisible application in other forestryrelated problems, such as the estimation of standing timber parameters (De Vries, 1973).

Before proceeding to the new proposed general sampling concept, one point should be stressed. It is not the intention of the author to imply through the introduction of a new technique that transect system sampling and line intersect sampling are in any way inadequate. More research conducted over a wide range of sampling problems is required in order to make a rigorous, unbiased comparison of the three approaches.

Presentation of the common point intersect theory
General discussion
Before developing the common point intersect theory mathematically, a non-mathematical introduction to the general theory will be made. This introduction will help non-mathematicians grasp a basic understanding of the general theory.

Suppose there exists a population of objects. To use some forestry examples, these objects could be standing trees, downed stems or branches, borer beetles, fructifications of wood destroying fungi, etc. Each population can be described in terms of variables which will be called parameters. The parameters of concern are listed by the investigator, say $p_{1} \ldots, P_{k} \cdot$ But the investigator may be interested in more than just estimating $\mathrm{pl}, \ldots, \mathrm{p}_{\mathrm{k}}$. He may want to estimate some combination of these parameters, say $p=u\left(p_{1, \ldots, p_{k}}\right)$ where $u!$ is some function. The investigator does not know the value of any of the parameters, but he has defined $p_{1}, \ldots, p_{k}$ and so he knows what they mean. He does not know the value of $p$, but he has defined $u$ and through the meaning attached to each parameter, he knows what $p$ means. So suppose he wants to estimate p. He may do this by introducing a random variable $X$ derived from the meaning of p . A random variable is simply a function which maps outcomes of some experiment $E$ into real numbers. In this case $E$ is the process of selecting locations for sampling units of a common size and shape within the population of objects. At this point the investigator knows what X means but he does not have a practical way to evaluate $X$. To be more specific, suppose $p$ is the mean number of particles per unit area. Implicit in the definition of $p$ is the random variable $Y$ where $Y$ represents the number of particles per unit area. Hence set $X=Y_{s 1, s 2}$ where $Y_{s 1, s 2}$ is a random
variable mapping each sampling unit (all of common size $s_{1}$ and shape $s_{2}$ ) into the mean number of particles per unit area with respect to that sampling unit.
$p$ is a variable consisting of some combination of $p_{1}, \ldots, p_{k}$ where $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}$ are parameters. This means almost by definition that they can be easily referenced to random variables since in effect they are descriptors of the distributions of random variables. A consideration of the random variables implicit within the meanings of $p_{1}, \ldots, p_{k}$ combined with the definition of $p$ leads to the definition of $X$.

The investigator knows what $X(S)$ means but as yet he does not know how to evaluate $X$ at any $\dot{S}$ in a practical way. The definition of $X(S)$ combined with the definition of $p$ results in a point estimate $\left(T\left(X\left(S_{1}\right), \ldots, X\left(S_{n}\right)\right)\right.$ of $p$, where $S_{1}, \ldots, S_{n}$ is a set of sampling units. $T$ is a function which maps sets of real numbers into real numbers. $T$ is not unique unless specific properties are required for the point estimator of $p$. Using standard statistical procedures, it can be assumed that a point estimator of $p$ has been found which satisfies all required properties.

There are two major remaining items to discuss before developing a figorous mathematical derivation of the general theory. These items involve an arbitrary sampling unit $(S)$ and the random variable $X$. The sampling unit S is restricted to being a right circular cylinder because of mathematical considerations regarding X . Without going into statistical details, it suffices to say here that basically the size and location of S are arbitrary. The last important item is how to evaluate X at S in a practical way. The concepts involved here are so intrinsically linked to mathematical considerations that a meaningful non-mathematical discussion cannot be made.

Keeping the above introduction in mind, a mathematical presentation of the general theory is now made.

Consider any community (C) of objects temporarily fixed in space. Let $u$ be a function which associates to each $K$-tuple ( $p_{1}, \ldots, p_{k}$ ) the unique value $u\left(p_{1}, \ldots, p_{k}\right)=p$, where $p_{1}, \ldots, p_{k}$ are parameters of unknown values describing $C$. A general technique will now be provided for determining quantitative knowledge about $p$ with respect to $C$.

Having specified $u$ the meaning of $p$ (the image of ( $p_{1}, \ldots, p_{k}$ )
under $u$ ) is understood. From the meaning attached to $p$, it is possible to introduce a random variable $X$ defined on the sample space of outcomes of an experiment $E$ which consists of selecting locations for sampling units of a common size and shape within C. The origin of $X$ is in no way mysterious. $X$ is simply a function consisting of a combination of the attributes constituting $p$; this function is referenced to the sample space of outcomes of $E$ whose infinite union comprises $C$. For example if $p$ is a mean quantity per unit area, $X$ is introduced as the obvious functional extension of $p$ defined on the sample space of outcomes of $E$, i.e. $X$ is a function which maps each sampling unit into a mean quantity per unit area with respect to that sampling unit. Through X and the meaning attached to p , a point estimate for $\mathrm{p}\left(\mathrm{T}\left(\mathrm{X}\left(\mathrm{S}_{1}\right)\right), \ldots, \mathrm{X}\left(\mathrm{S}_{\mathrm{n}}\right)\right)$ can be expressed explicitly in terms of $X\left(S_{i}\right)$ and known constants, $(i \varepsilon, f, \ldots, n)$, where $X\left(S_{i}\right)$ is the value of $X$ yielded by the $i \frac{\text { th }}{}$ independent repetition of $E$, $i \varepsilon\{1, \ldots, n\}$ for a given set $\left\{S_{i}\right\}_{i=1}^{n}$. Of course there is no unique point estimator for $p$. The form of $T\left(X_{1}, \ldots, X_{n}\right)$ (where $X_{i}$ is a random variable defined on the outcome of the $i \frac{\text { th }}{}$ independent repetition of $E, i(1 ; \ldots, n)$ depends upon the choice of $u$. It also depends upon any properties which are desirable for
$T\left(X_{1}, \ldots, X_{n}\right)$ to have. Some examples of desirable properties are unbiasedness, small mean-square error, closeness and consistency (Ehrenfeld and, Littauer, 1964). It is fair to assume that all properties required by the point estimator have been considered by the. investigator and that $T\left(X\left(S_{1}\right), \ldots, X\left(S_{n}\right)\right)$ has been expressed uniquely in terms of $X\left(S_{i}\right)$ and known constants, $i \varepsilon\{[1, \ldots, n\}$ for a fixed function $u$.

Quantitative knowledge about the probabilistic location of $p$ will be obtained once the size, shape and location of $S_{i}, i \in\{1, \ldots, n\}$ has been selected and once $X\left(S_{i}\right)$, $i \varepsilon\{1, \ldots, n\}$ has been expressed in terms of variables which can be measured in the field. This quantitative knowledge about $p$ is obtained simply by combining the value $T\left(X\left(S_{1}\right), \ldots, X\left(S_{n}\right)\right.$ ) for a given set of $\left\{S_{i}\right\} i=1$ with the distribution of $T\left(X_{1}, \ldots, X_{n}\right)$ acquired by either using existing statistical theorems or else applying goodness-of-fit tests to $\left\{T\left(S\left(S_{1}^{(j)}\right), \ldots X\left(S_{i i}^{(j)}\right)\right)\right\}_{j=1}^{N}$ for some sufficiently large No and using standard statistical procedures.

First attention is paid to selecting the size, shape and location of $S_{i,} i=1, \ldots, n$. Consider the $i^{\text {th }}$ trial for any $i \varepsilon\{(1, \ldots, n)$ in a set of $n$ independent repetitions of $E$. The $i^{\text {th }}$ sampling unit ( $\mathrm{S}_{\mathrm{i}}$ ) is chosen to be a right circular cylinder of radius ( $r$ ) and height ( $h_{i}$ ) selected from an infinite population of units in the shape of right circular cylinders, each unit containing a portion of $C$. Naturally the variability of $X$ is partially dependent upon the size and shape of the population elements. Right circular cylinders of common radius are chosen to facilitate the mathematics and $r$ is chosen so that the variability of $X$ will be small. Logically there should be optimum radius ( $r_{0}$ ) above which the variability of $X$ does not decrease significantly. If preliminary samples cannot be obtained here to help select ( $r_{0}$ ), the radius used may have to be chosen largely on a basis of personal experience and
intuition. The height of the ith sampling unit ( $S_{i}$ ) is simply the maximum height of all objects of interest intersecting the ith open right circular cylinder of radius ( $r$ ) . Finally the location of $S_{i}$ is a function of any important physical, time or statistical constraints under which $E$ may be forced to operate.

Now attention is paid to expressing $X\left(S_{i}\right), i=1, \ldots, n$ in terms of variables which can be measured in the field. Consider again the ith sampling unit $S_{i}$ whose basal center point $\left(c_{i}\right)$, radius ( $r$ ) and height ( $h_{i}$ ) are all known. Here $r$ can be regarded as either, a radius under investigation or an optimum radius selected from either a preliminary sampling analysis or a subjective decision-making process. Project a line segment along the base of $S_{i}$ from $c_{i}$ to some fixed perimeter point ( $\dot{p}_{0}$ ) on $S_{i}$. Let this line segment ( $L_{0}$ ) intersecting $p_{0}$ define a unique zero angle. Then sweeping a line segment (L) of length $r$ around the basal perimeter of $S_{i}$ keeping one of its end points fixed at $c_{i}$, it can be seen that each location of $L$ defines a unique angle $\theta \in[0,2 \pi]$, and hence the base of a rectangle $R_{\theta}$, of width $r$ and height $h_{i}, \forall \theta \varepsilon[0,2 \pi]$ (see Figure 2).

The objective is to express $X\left(\hat{S}_{i}\right)$ in terms of variables which can be easily evaluated. From the meaning of $X$ and from known properties of $C$, it is possible to attach meaning to a function $F_{i}: \quad(0,2 \pi] \rightarrow \mathbb{R}^{+} \boldsymbol{U}^{[ } 0$ where $F_{i}(2 \pi)=K X\left(S_{i}\right)$ for some constant $K$. From this understanding of $F_{i}$, construct a bounded function ( $f_{i}$ ) defined on $[0,2 \pi]$ whose set of discontinuities (Lang, 1968; p.50) on $[0,2 \pi]$ has Lebesgue outer measure zero, (Taylor, 1965; p.191), such that:

$$
\begin{equation*}
F_{i}(\theta)=\int_{0}^{\theta} f_{i}(t) d t, \forall \theta \varepsilon(0,2 \pi] \tag{1}
\end{equation*}
$$

The right-hand side of (1.) is well-defined and exists (Speigel, 1963; p.81). Now if $f_{i}(t)$ can be readily expressed in terms of measurable variables, the only task left is to evaluate the right-hand side of (1.). However if it is not possible to express $f_{i}(t)$ in terms of measurable variables, it becomes necessary to approximate $g_{i}(t)=f_{i}(t) / k$ by $\hat{g}_{i}(t), \forall t \varepsilon[0, \theta] \forall \theta \varepsilon[0,2 \pi]$, where $\hat{\mathrm{g}}_{i}$ has both the bounded and 'almost everywhere' continuity properties (Spiegel, 1969; p.33) of $f_{i}$, and where $\hat{g}_{i}(t)$ can be expressed in terms of measurable variables. Then it is seen that $X\left(S_{i}\right)$ can be expressed as a function of measurable variables by evaluating the right-hand side of (1.) at $\theta=2 \pi$ with $\hat{g}_{i}(t)$ replacing $f_{i}(t), \forall t \varepsilon[0,2 \pi]$.

The final remaining problem in producing $X\left(S_{i}\right)$ is to evaluate the right-hand side of (1.) at $\theta=2 \pi$ with $\hat{\hat{S}}_{i}(t)$ replacing $f_{i}$. Unfortunately this may not be a trivial task. Very often the measurable variables used in defining $g_{i}(t)$ cannot be easily expressed in terms of $t$ mathematically. In other cases the measurable variables of interest are not directly integrable. If the latter case arises, $\hat{g}_{i}$ is approximated by a suitable directly integrable function $h_{i}$ and through integration of $h_{i}$ over $[0, \theta=2 \pi], X\left(S_{i}\right)$ is evaluated. In the former case however either numerical or Gaussian integration methods (Scheid, 1968) must be used. In this case, $X\left(S_{i}\right)$ is approximated by:

$$
\sum_{\omega=1}^{N} c_{\omega j} \hat{\mathrm{~g}}_{i}\left(t_{\omega}\right), \text { where } N, c_{\omega}, \text { and } t_{\omega}, \omega=1, \ldots, N
$$

are determined from the choice of a particular integration method applied at a particular level of sampling intensity. The choice of the method depends upon required precision subject to specific time and cost constraints.

From previous comments, quantitative knowledge about the
probabilistic location of $p$ is now theoretically obtainable. The general sampling technique described above will hereafter be referred to as common point intersect sampling (CPIS), since each sampling rectangle $R_{\theta}$ is generated from a common point, namely the center of the circle comprising the base of a particular cylindrical sampling unit. To clarify the logic behind the general CPIS theory a flowchart (Figure 1) depicting the major concepts involved is provided. Now before proceeding to some specific applications of CPIS, a few remarks regarding this new concept should be made. There seems to be two very serious drawbacks to CPIS. One of these is that knowledge about the distribution of $T\left(X_{1}, \ldots, X_{n}\right)$ is required. It is true that some general behaviour of the distribution of $T\left(X_{1}, \ldots, X_{n}\right)$ should be known if a parametric statistical confidence interval (Ehrenfeld and Littauer, 1974; p.364) is to be constructed about $p$. If this information is not available and furthermore cannot be obtained from prior preliminary sampling or related sampling due to time or cost constraints, distributionfree or non-parametric statistical methods can still be used to construct either a meaningful hypothesis test for $p$ or a rough confidence interval for $p$. If the information yielded by the non-parametric investigation is not sufficiently precise to be very helpful, general statistical techniques can be used to estimate the standard deviation $D\left(X_{1}, \ldots, X_{i n}\right)$ of $T\left(X_{1}, \ldots, X_{n}\right)$. Then given a set of independent trials of $E, D\left(X\left(S_{1}\right), \ldots, X\left(S_{n}\right)\right) / T\left(X\left(S_{1}\right), \ldots, X\left(S_{n}\right)\right)$ gives a measure which expresses the magnitude of the average variation of $T\left(X_{1}, \ldots, X_{n}\right)$ relative to the size of $T\left(X\left(S_{1}\right), \ldots, X\left(S_{n}\right)\right)$. This ratio can serve as a tentative indicator of how successful $T\left(X\left(S_{1}\right), \ldots, X\left(S_{\check{n}}\right)\right)$ can be expected to be and as such can be temporarily used in place of information regarding the distribution of $T\left(X_{1}, \ldots, X_{\hat{n}}\right)$. In other words an absence of knowledge regarding the distribution of $T\left(X_{1}, \ldots, X_{n}\right)$ has only the effect


Figure 1. Flowchart depicting the development of the general common point intersect sampling concept.
of reducing the power of CPIS; it does not prevent CPIS from being a valid sampling method. CPIS seems to have a second serious drawback, namely the problem of obtaining $f_{i}$ from an understanding of $F_{i}$. If the meaning of $X$ is clear, then with proper selection of K ', there should be no problem in attaching meaning to $F_{i}$. All that need be remembered when trying to achieve this understanding is that $F_{i}(\theta)$ for each $\theta \varepsilon[0,2 \pi]$ simply considers objects in a portion of the ith sampling unit $\mathcal{S}_{i}$. This means that as $\theta$ approaches $2 \pi, F_{i}(\theta)$ approaches $K \cdot X\left(S_{i}\right)$ in the most natural way, namely through increasing portions of $S_{i}$ defined by the sweep of $\theta$ towards $2 \pi$. Note that $K$ is chosen to convert $X\left(S_{i}\right)$ into a variable which is easier to work with. It remains then to consider the question of deriving $f_{i}$ from both an acquired understanding of $F_{i}$ and a knowledge of what is meant by a Reimann integral (Widder, 1947, p.149). It should be said now that in general there is no optimum approach to use in deriving $f_{i}$ from $F_{i}$ through (1). In practice this problem is usually very easy to solve. Since there is no preferable procedure to follow when obtaining $f_{i}$, the investigator must at this point rely largely on his own experience and ingenuity. It is the belief of the author that the best insight into the process of actually getting $f_{i}$ is given through example. Hence attention is now turned to the application of CPIS to downed woody fuel particles.

## Application to downed woody particles

Two experiments ( $E_{1}$ and $E_{2}$ ) will be conducted upon a community (C) of downed woody fuel particles. It will be shown that the results of these experiments will ultimately yield estimators for a number of specific parameters of interest. Consider a community (C) of downed woody particles. Let $u(p 1, \ldots, p k)=p 1$, where $p 1, \ldots, p k$ are parameters of unknown values describing $C$ and $p l$ is the mean number of particles per unit area. Divide $C$ into $M$ subsets such that if the sampling rectangle ( $R_{\theta}$ ) intersects a fuel particle (q), q is said to belong to the $i \frac{\text { th }}{}$ subset, $i \varepsilon\{1, \ldots, M\}$ providing that the width of $q$ taken at its initial point of intersection lies between $d_{i}$ and $D_{i}$, for some specified $d_{i}, D_{i}$ where $d_{i}<D_{i}$, $i \varepsilon\{1, \ldots, M\}$. Notice here that q is implicitly assumed to have a well-defined length and hence a well-defined central axis with respect to which the widths of $q$ are measured.
pl ${ }^{\text {(i) }}$ is taken to be the mean number of fuel particles per unit area with respect to the population of sampling units comprising the $i \frac{\text { th }}{}$ subset of C. From the meaning attached to $\mathrm{pl}^{(i)}$, it is possible to introduce a random variable ( $\mathrm{Xl}^{(i)}$ ) defined on the sample space of outcomes of an experiment $E_{1}^{(i)}$ where $E_{1}^{(i)}$ consists of selecting a sampling unit with respect to the $i^{\text {th }}$ subset of $C$. From the general theory $X 1{ }^{(i)}{ }^{\prime}$ is simply a function which maps each sampling unit into the average number of fuel particles per unit area (in the $i$ th subset of $C$ ) with respect to that sampling unit. Through $\mathrm{Xl}{ }^{(\mathrm{i})}$ and the meaning of $\mathrm{pl}{ }^{(\mathrm{i})}$ a point estimate for $\mathrm{P} 1^{(\mathrm{i})}$ ( $\mathrm{Tl}\left(\mathrm{XI}{ }^{(\mathrm{i})}\left(\mathrm{S} 1_{1}^{(\mathrm{i})}\right), \ldots, \mathrm{Xl}{ }^{(\mathrm{i})}\left(\mathrm{S} 1_{\mathrm{n}}^{(\mathrm{i})}\right)\right.$ )) can be expressed


$$
\text { and known constants for a given set }\left\{\mathrm{Sl}_{\mathrm{j}}^{(\mathrm{i})}\right\}_{\mathrm{j}=1}^{\mathrm{n}} \text { : }
$$

$$
\operatorname{Tl}\left(X 11^{(i)}\left(S 1_{1}^{(i)}\right), \ldots, X 1{ }^{(i)}\left(S 1_{n}^{(i)}\right)\right)=\sum_{j=1}^{n} X 1^{(i)}\left(S 1_{j}^{(i)}\right) / n \equiv \overline{X 1}(i)
$$

The parent estimator of $\overline{\mathrm{XI}}{ }^{(\mathrm{i})}\left(\overline{\mathrm{XP1}}^{(\mathrm{i})} \equiv \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{XI}_{\mathrm{j}}^{(\mathrm{i})} / \mathrm{n}\right)$ is an unbiased estimator of $\mathrm{p}_{1}^{(\mathrm{i})}$ and by applying the Central Limit Theorem (Ehrenfeld and Littauer, 1964; p.187) it can be shown that $\overline{\mathrm{XP1}}{ }^{(i)}$ is also a consistent estimator of $\mathrm{pl}^{(i)}$. The Central Limit Theorem can also be applied together with the definition of $X 1^{(i)}$ to demonstrate that:
(2) $\frac{\overline{\mathrm{XP1}}^{(i)}-\mathrm{pl}^{(\mathrm{i})}}{\mathrm{SD1}{ }^{(\mathrm{i})} \sqrt{\mathrm{n}}}$, where
(3) $\left(\operatorname{SD1}{ }^{(i)}\right)^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(X 1_{j}^{(i)}-X P 1{ }^{(i)}\right)^{2}$ has approximately Student's $t$ distribution with ( $n-1$ ) degrees of freedom (Ehrenfeld and Littauer, 1964; p 189). It is important to realize that (2) has Student's $t$ distribution with ( $n-1$ ) degrees of freedom in most cases even when $n$ is small. This is true because $X 1{ }_{j}^{(i)}$ is an average taken over a large sampling area $\left(\pi\left(r^{(i)}\right)^{2} \gg 25\right)$ and hence by the Central Limit Theorem has`approximately a normal distribution. If C contains large continuous areas ( $\gg \pi\left(r^{(i)}\right)^{2}$ ) differing drastically in fuel particle frequency, not only will the normality of $\mathrm{Xl}_{\mathrm{j}}^{(\mathrm{i})}$ be probably violated but also (SD1 $\left.{ }^{(i)}\right)^{2}$ will probably take on very high values. To counteract these problems, C should be stratified wherever feasibly possible into regions of different fuel particle frequencies with respect to the ith subset of $C$ and the theory of stratified random sampling (Freese, 1962; p.28) ,applied. It follows that for a given set of $\left\{s 1_{j}^{(i)}\right\}_{j=1}^{n}$, (a11 lying within one area containing no large continuous sub-areas differing drastically in fuel particle frequencies), a confidence interval for ${ }_{p 1}{ }^{(\mathrm{i})}$ is $\overline{\mathrm{XI}}^{(\mathrm{i})} \pm \mathrm{t}_{1}^{-\alpha / 2 ; \mathrm{n}-1} \mathrm{sdl}^{(\mathrm{i})} / \sqrt{\mathrm{n}}$ (Ehrenfeld and Littauer, 1964; p. 271)
where $(1-\infty)=$ level of statistical inference and $t_{1-\alpha / 2 ; n-1}=$ value of Student's $t$ distribution with ( $n-1$ ) degrees of freedom at the (1- $\alpha^{\prime} / 2$ ) level. It remains to select the size, shape and location of $S 1_{j}^{(i)}$ and to
 $\forall j \varepsilon\{1, \ldots, n$. This will now be done. Choose the sampling units in the $i$ th subset of $C$ to be right circular cylinders of common radius $r{ }^{(i)}$. Due to time constraints $r l^{(i)}$ will be determined subjectively. Choose $r 1^{(i)}$ sufficiently large such that the variability of $X 1{ }^{(i)}$ is expected to be small. The height $h 1_{j}^{(i)}$ of the ith sampling unit $\mathrm{Si}_{j}^{(i)}$ is well-defined from the general CPIS theory. A systematic plot sampling design with an equidistant grid pattern (Husch, Miller and Beers, 1972; p.233) is used to select the location of $\mathrm{si}_{\mathrm{j}}^{(\mathrm{i})}, \mathrm{j} \varepsilon \mathrm{m}_{\mathrm{n}}, \ldots, \mathrm{nty}$, due to its ease in application (Husch, Miller and Beers, 1972; p.228). It should be noted that the use of systematic sampling does introduce a problem in that now the $n$ repetitions of $E_{1}{ }^{(i)}$ are no longer completely independent. This means that (SD1 $\left.{ }^{(i)}\right)^{2}$ as defined in (3.) will not validly represent the sample variance (Husch, Miller and Beers, 1972; p. 229). In fact (SD1 $\left.{ }^{(i)}\right)^{2}$ tends to overestimate the sample variance (Osborne, 1942). A supposedly more representative expression for the sample variance for equidistant grid patterns is given by using successive difference formulas (Loetsch and Haller, 1964). However, unless the spacing between sampling units becomes coincidental with the pattern of population variation, the improvement offered by these successive difference formulas becomes negligible (Husch, Miller, Beers, 1972; p.' 229). It will be assumed that the sampling unit locations have been selected so that no such coincidence occurs, making (3.) valid. In practice this is almost always done. If this manipulation process proves awkward or expensive with respect to a particular downed woody fuels
population, alternate successive difference formulas (Husch, Miller and Beers, 1971; p.236) may be used to obtain a theoretically more realistic expression (CD1 $\left.{ }^{(i)}\right)^{2}$ for the sample variance. The remainder of the argument can then be applied with (CD1 $\left.{ }^{(i)}\right)^{2}$ replacing (SD1 $\left.{ }^{(i)}\right)^{2}$.

In order to determine $\mathrm{Xl}{ }^{(i)}\left(\mathrm{Sl}_{\mathrm{j}}{ }^{(i)}\right.$ ) in an appropriate form it is necessary to select a multiplicative constant $k 1$ which will transform $\mathrm{X} 1^{(i)}\left(\mathrm{Sl}_{\mathrm{j}}^{(\mathrm{i})}\right)$. into a variable which can be related to more easily. Since particles are being considered with respect to their intersections along transect lines, it seems natural to select $k l$ as one unit length. Then $\mathrm{K} 1 \cdot \mathrm{X1}{ }^{(\mathrm{i})}\left(\mathrm{SI}_{\mathrm{j}}{ }^{(\mathrm{i})}\right.$ ) becomes the average number of particles per unit length with respect to $S 1_{j}^{(i)}$ provided of course that the units' of length are chosen sufficiently small. This relates better to the sampling design than does average number of particles per unit area. $\mathrm{Fl}_{\mathrm{j}}^{(\mathrm{i})}$ is a function which associates to each $\theta \varepsilon[0,2 \pi]$ a non-negative real number $F 1{ }_{j}^{(i)}(\theta)$ representative of the average number of particles per unit length of transect with respect to the area in $S 1{ }_{j}^{(i)}$ defined by a radial sweep from zero to $\theta$.

In constructing $f 1_{j}^{(i)}$, it seems logical as a first attempt to try $\sigma_{j}^{(i)}$ where $\sigma_{j}^{(i)}$ is a function which associates to each $t \in[0,2 \pi]$ a nonnegative real number $\sigma_{j}^{(i)}(t)$ representative of the number of particles which intersect the transect located at $t, 0 \leq t \leq \theta$. This function is bounded on $[0,2 \pi]$ and in fact is a step function by definition which ensures its 'almost everywhere' continuity on $[0,2 \pi]$. Now from elementary calculus it is well known that:
(4) $\bar{\sigma}_{j}^{(i)}(\theta)=\frac{1}{\theta} \int_{0}^{\theta} \sigma_{j}^{(i)}(t) d t, 0<\theta \leq 2 \pi$
where $\bar{\sigma}_{j}^{(i)}(\theta)$ is the average value of the function $\sigma_{j}^{(i)}$ taken over all values of $t$ ranging from 0 to $\theta>0$. It now becomes obvious for fixed
$\theta \varepsilon(0,2 \pi]$, to set $f 1_{j}^{(i)}=\sigma_{j}^{(i)} /\left(\theta \cdot \operatorname{Hin}^{(i)}\right)$ since $F 1_{j}^{(i)}=\bar{\sigma}_{j}^{(i)} / r 1^{(i)}$. Note that for fixed $\theta \varepsilon(0,2 \pi), f 1_{j}^{(i)}(t)$ is already expressed in terms of measurable variables, for each $t \varepsilon[0, \theta]$, namely number of relevant particle intersections at $t$. The final problem then in producing $X 1{ }^{(i)}\left(\mathrm{Sl}_{\mathrm{j}}{ }_{\mathrm{j}}^{(\mathrm{i})}\right.$ ) is to evaluate the right-hand side of (4) at $\theta=2 \pi$ with $\sigma_{j}^{(i)} / r 1^{(i)}$ replacing $\sigma_{j}^{(i)}$. This will not be done here for one simple reason. Knowledge about numbers of downed woody particles is not currently required as a significant direct input for evaluation or prediction of fire béhaviour and impact. It should be stated again that throughout this thesis the applications of the CPIS general theory will be focussed on obtaining those parameters which relate most significantly to fire-oriented activities. It is true that results of $E_{1}$ can be combined with results of $E_{2}$ to yield estimators for a number of downed woody particle parameters. In fact this will be done later for completeness. But the results of $E_{1}$ do not relate significantly to fire evaluation, and so an explicit expression which estimates the right-hand side of (4.) will not be derived.

* $E_{1}$ serves here primarily as a working example to demonstrate that the process undertaken to get a meaningful "handle" on the general CPIS theory is not a mysterious one. Each step taken in working out this first application of the general theory has been logical and very straight-forward. It is of interest to notice that nowhere in the argument have any assumptions been made regarding the distribution of the particles within the CPIS units themselves. Attention is now turned to $\mathrm{E}_{2}$. The general layout of $E_{2}{ }^{(i)}$ is very similar to that of $E_{1}{ }^{(i)}$, and reference will be periodically made to $E_{1}$ throughout the discussion
of $E_{2}$. Here $u(p 1, \ldots, p k)=p 2$, where $p 2$ is defined as the mean total volume of particles per unit area. Analogous to $E_{1}{ }^{(i)}, E_{2}{ }^{(i)}$ is an experiment consisting of selecting a sampling unit within $C$ with respect to the ith subset of $C$. Also, analogous to $\mathrm{X1}^{(\mathrm{i})}, \mathrm{X2}^{(\mathrm{i})}$ is simply a function which maps each sampling unit into the average volume of fuel particles per unit area with respect to that sampling unit. The definitions of $\mathrm{T} 2\left(\mathrm{X1}{ }^{(\mathrm{i})}\left(\mathrm{S}_{1}^{(\mathrm{i})}\right), \ldots, \mathrm{X1}{ }^{(\mathrm{i})}\left(\mathrm{S}_{\mathrm{n}}^{(\mathrm{i})}\right)\right)$ and $\left(\mathrm{SD}_{2}^{(\mathrm{i})}\right)^{2}$ are both obvious from $E_{1}^{(i)}$. A11 remarks concerning $\overline{X I}(i)$ and $\frac{\frac{X P 1}{(i)}-p_{1}^{(i)}}{S D 1{ }^{(i)} / \sqrt{n}}$ apply equally to $\overline{\mathrm{X} 2}{ }^{(i)}$ and $\frac{\frac{\overline{\mathrm{XP2}}}{}(\mathrm{i})-\mathrm{p} 2^{(i)}}{\mathrm{SD} 2^{(i)} / \sqrt{\mathrm{n}}}$, respectively. The comments regarding both selection and justification of the sampling units used in $E_{1}^{(i)}$ also apply equally to $E_{2}^{(i)}$.

It remains then only to determine $\mathrm{X} 2(\mathrm{i})\left(\mathrm{S}_{\mathrm{j}}^{(\mathrm{i})}\right)$ in an appropriate form. Since $\mathrm{X} 2^{(i)}\left(\mathrm{S} 2_{j}^{(i)}\right)$ is an average volume per unit area it makes good sense to select K 2 as $\pi\left(\mathrm{r}^{(i)}\right)^{2}$. Then $\mathrm{K} 2 \cdot \mathrm{X} 2{ }^{(i)}\left(\mathrm{S} 2_{j}^{(i)}\right)$ becomes a total volume of particles which is more easily related to the sampling design. An understanding of $F 2{ }_{j}^{(i)}$ is now possible and $F 2{ }_{j}^{(i)}$ is analogous in meaning of $\mathrm{Fl}_{\mathrm{j}}^{(\mathrm{i})}$ with the obvious difference that $\mathrm{FF}_{\mathrm{j}}^{(\mathrm{i})}$ ( $\theta$ ) represents a total volume of particles with respect to the area in $S 2{ }_{j}^{(i)}$ defined by a radial sweep from 0 to $\theta>0$.

The construction of $f 2_{j}^{(i)}$ is derived from a basic understanding of $\mathrm{F}_{\mathrm{j}}^{(\mathrm{i})}$ and the meaning of a Riemann integral. $\mathrm{F} \mathrm{j}_{\mathrm{j}}^{(\mathrm{i})}$ is a function which when evaluated at fixed $\theta$ yields a total volume. It is well known that when a cross-sectional area is swept through an arc, a volume is generated. (see Figure 2). This volume is a function of the distance separating the centre of the sampling unit and the cross-sectional region. Thus $f 2_{j}^{(i)}$ will involve both the shape of the fuel particles in the ith subset of $C$ and a separation distance factor. More specifically, downed


Figure 2. Typical cross-section of sampling unit $S_{i}$ with special application to downed woody cylinders.
woody particles can be classified reasonably well into five geometric divisions: frustums of cylinders, parallelepipeds, cones, parabaloids and neiloids (Husch, Miller and Beers, 1972; p.120). The presence of particle boundary taper as possessed by cones or particle boundary concavity as possessed by parabaloids and neiloids provides a significant complication to both the theoretical and practical aspects of quantifying downed woody fuel parameters by working with the fuels themselves. If the initial points of intersection are consistently used to compute the fuel particle widths, and if the concavity present is not too severe, it should be feasible to classify the last three troublesome divisions under frustums of cylinders. It is of importance to mention that in practice the lack of symmetry if any of a given cross-sectional region is usually small. But due to time constraints no quantitative analysis was undertaken to support the above classification grouping made by using the above technique of width measurement. Hence further studies are required to define a completely valid set of conditions under which frustums of cones, parabaloids and neiloids may be considered cylinders with respect to geometric cross-sectional form. Continuing then, it is seen that it is temporarily fair to assume that all cross-sectional regions are whole ellipses, truncated ellipses, or rectangles. Without loss of generality only the first two of these regions will be considered. In practice the total number of parallelepipeds generally comprise a very small proportion of a downed woody fuels population. If parallelepipeds are of particular interest, an almost identical and in fact simpler argument to that offered below can be made by applying the concepts below to rectangles as opposed to ellipses. Now from the understanding
gained from the above remarks, the values of $\mathrm{F}{ }_{\mathrm{j}}^{(\mathrm{i})}$ are obtained by summing up the volumes generated by rotating either whole or truncated ellipses through small arcs. But if $\theta_{1} \varepsilon\left[\theta_{0}, \theta_{2}\right]$, where $\left(\theta_{2}-\theta_{0}\right)$ is small, and if the fuel particle cross-section at $\theta_{1}$ is a whole ellipse, then from elementary calculus, an excellent estimate for the particle volume generated by rotating this cross-section at $\theta_{1}$ through $\left[\theta_{0}, \theta_{2}\right]$ is:

$$
\text { (5) }\left\{\frac{\pi}{4}\left(\overline{d^{(i)}}\right)^{2} \cdot \operatorname{s}\left(\theta_{1}\right) \cdot \overline{\left(\sec \left(\gamma_{i}\right)\right)} \cdot \csc \left(\phi\left(\theta_{1}\right)\right)\right\} \cdot\left[\left(\theta_{2}-\theta_{0}\right)\right]
$$

where $\overline{\left(d^{(i)}\right)}=$ an estimate for the quadratic mean particle diameter ( $d b a r{ }^{(i)}$ ) (Brown, 1973) with respect to the ith subset of $C$, $i \varepsilon_{1}, \ldots, M$.
$s\left(\theta_{1}\right)=$ the horizontal distance between the centre of the elliptical cross-section at $\theta_{1}$ and the basal center point of the sampling unit, where the horizontal is defined parallel to the orientation of the base of the sampling unit.
$\overline{\left(\sec \left(\gamma_{1}\right)\right)}=$ an estimate for the mean secant of the particle tilt ( $\mathcal{Y}_{i}$ ) with respect to the ith subset of $C$, $i \in\left(1, \ldots, M \frac{1}{v}\right.$.
$\operatorname{CSC}\left(\phi\left(\theta_{1}\right)\right)=$ the cosecant of the angle of intersection $\left(\phi\left(\theta_{1}\right)\right)$ between the transect at $\theta_{1}$ and the central axis of the fuel particle, $0<\phi\left(\theta_{1}\right) \leq \pi / 2, \quad \forall \theta_{1} \varepsilon\left[\theta_{0}, \theta_{2}\right]$.
See Appendix I for a complete proof that the volume obtained by rotating an elliptical cross-section of $\theta_{1}$ through $\left[\theta_{0}^{R}, \theta_{2}^{R}\right]$ is given by (5). Through summation over relevant particles, it follows from the above that a logical first attempt for $f 2{ }_{j}^{(i)}$ is $v_{j}^{(i)}$ where
(6) $\dot{v}_{j}^{(i)}(t)=\overline{\pi / 4} \overline{\left(d^{(i)}\right)^{2}} \overline{(\sec (\vec{a} i))}$

$$
\sum_{k=1}^{m_{j}^{(i)}(t)}\left[s_{k, j}^{(i)}(t) \cdot \csc \left(\phi_{k, j}^{(i)}(t)\right)\right]
$$

where $m_{j}^{(i)}(t)$ is the number of particles which intersect the transect at $t$, and where the kth fuel particle intersects the transect at $t, \forall K \varepsilon\left\{1, \ldots, m_{j}^{(i)}(t)\right.$. In $E_{2}^{(i)}$, a particle intersection is defined to occur only when both the particle central axis and at least one particle edge intercept the transect.

$$
\text { Since } \csc \left(\phi_{k, j}^{(i)}(t)\right) \text { is bounded on }[0,2 \pi] \text { by } \sqrt{\left.1+\frac{2 a(i)}{\frac{1}{d}(i)}\right)^{2}} \text { where a }(i)
$$

is the maximum length of all particles in the ith subset of $C$, $i \in\{1, \ldots, M\}$, it follows that $v_{j}^{(i)}$ is also bounded on $[0,2 \pi] . s_{k, j}^{(i)}$ and $\phi_{k, j}^{(i)}$ are sectionally continuous (Spiegel, 1963; p.26) on $[0,2 \pi]$. Also the cosecant function is continuous on ( $0, \pi / 2$ ). Hence the composite function $\csc ^{0} \alpha_{\mathrm{N}}^{(\mathrm{i})} \mathrm{j}$ is sectionally continuous on $[0,2 \pi]$ (Lang, 1968; p.51). Thus $\mathrm{v}_{\mathrm{j}}^{(\mathrm{i})}$ satisfies all the required properties stated in the general CPIS theory. Setting $\mathrm{f} 2 \mathrm{j}_{\mathrm{j}}^{(\mathrm{i})}=\mathrm{v}_{\mathrm{j}}^{(\mathrm{i})}$ reveals:
(7) $\quad \underset{j}{(i)}(\theta)=\int_{0}^{\theta} v_{j}^{(i)}(t) d t, \forall \theta \varepsilon(0,2 i \pi$

It follows that:
$X 2^{(i)}\left(S 2_{j}^{(i)}\right)=F 2_{j}^{(i)}(2 \pi) / \pi\left(r 2^{(i)}\right)^{2}=\int_{0}^{2 \pi} \frac{v_{j}^{(i)}(t)}{\pi\left(r 2^{(i)}\right)^{2}} d t=\int_{0}^{2 \pi} g 2_{j}^{(i)}(t) d t$, where
(8.) $\mathrm{g} 2_{\mathrm{j}}^{(\mathrm{i})}(\mathrm{t}) \equiv \mathrm{v}_{\mathrm{j}}^{(\mathrm{i})}(\mathrm{t}) / \pi\left(\mathrm{r} 2^{(\mathrm{i})}\right)^{2}, \forall t \varepsilon[0,2 \pi]$

The next step to be taken in order to express $\mathrm{X} 2{ }^{(i)}\left(\mathrm{S} 2_{j}^{(i)}\right)$ explicitly in terms of measurable variables is a consideration of the variables comprising $g 2_{-j}^{(i)}(t)$ as defined in (8) and (6). An inspection of $g 2_{j}^{(i)}(t)$ reveals that it is expressed in terms of $s_{k, j}^{(i)}(t)$ and $\phi_{k, j}^{(i)}(t)$, $\mathrm{k} \varepsilon \int_{i}, \ldots, \mathrm{~m}_{\mathrm{j}}^{(\mathrm{i})}(\mathrm{t}) \mathrm{b}$, both of which are difficult to measure directly. In fact both are totally impractical to measure directly with respect to lesser downed woody particles. Hence from this point on, it will be necessary to consider the lesser downed particles and the greater downed particles separately.

First consider ic\{1,om, where $D_{i} \leq 3$ inches. From (6.),
(9) $g_{j}^{(i)}(t)=\frac{\pi}{4} \overline{\left(d^{(i)}\right)^{2}} \overline{\left(\sec \left(\gamma_{i}^{\prime}\right)\right)} \sum_{k=1}^{m_{j}^{(i)}(t)}\left[S_{k, j}^{(i)}(t) \cdot \operatorname{CSC}\left(\phi_{k, j}^{(i)}(t)\right)\right] / \pi\left(r 2^{(i)}\right)^{2}$

$$
=\left\{\begin{array}{l}
\frac{\pi}{4}\left(d^{(i)}\right)^{2} \overline{\left(\sec \left(\gamma_{i}\right)\right)} m_{j}^{(i)}(t) \sum_{k=1}^{m_{j}^{(i)}(t)}\left[s_{k, j}^{(i)}(t) \cdot \operatorname{Csc}\left(\Phi_{k, j}^{(i)}(t)\right)\right] / \\
\quad\left(m_{j}^{(i)}(t) \cdot \pi\left(r 2^{(i)}\right)^{2}\right), \text { if } m_{j}^{(i)}(t) \neq 0 \\
0, \text { if } m_{j}^{(i)}(t)=0
\end{array}\right.
$$

From the above, the selection of $\hat{g 2}_{j}^{(i)}(t)$ is obvious.

$$
\begin{align*}
& \underset{\mathrm{g} 2}{\mathrm{j}}{ }^{(i)}(t)=\left\{\begin{array}{l}
\left.\frac{\pi}{\frac{\left(d^{(i)}\right)}{2}} \overline{(\sec (\bar{Y} i)}\right) \cdot K^{(i)} \cdot m_{j}^{(i)}(t), \text { if } m_{j}^{(i)}(t) \neq 0 \\
0, \text { if } m_{j}^{(i)}(t)=0
\end{array}\right.  \tag{10}\\
& =\frac{\pi}{4} \overline{\left.d^{(i)}\right)^{2}} \overline{\left(\sec \left(\bar{Y}_{i}\right)\right)} \cdot K^{(i)} \cdot m_{j}^{(i)}(t) \text {, where } K^{(i)} \text { is an appropriate }
\end{align*}
$$

$\hat{g 2}_{j}^{(i)}$ is a bounded step function on $[0,2 \pi]$ and $\hat{g 2} \hat{j}^{(i)}(t)$ is expressed exclusively in terms of measurable variables and $K^{(i)}, \forall j \varepsilon l, \ldots, n+3$. Hence it remains to produce $\hat{K}^{(i)}$. It may seem somewhat optimistic to assume that for each $i \varepsilon\{1, \ldots, M i) D_{i} \leq 3$ inches, there exists a unique constant $K^{(i)}$
 However if for some $j$ and $t, \hat{g 2}{\underset{j}{(i)}}^{(i)}$ a poor approximation fôr $\hat{g 2}{ }_{j}^{(i)}(t)$, it does not really matter providing that the integrals of the two functions from 0 to $2 \pi$ are reasonably close. $K^{(i)}$ was explicitly determined for $i=1,2,3$ where

$$
\begin{aligned}
& \left(d_{1}, D_{1}\right]=\left(0, \frac{1}{4}{ }^{\prime \prime}\right] \\
& \left(d_{2}, D_{2}\right]=\left(\frac{1}{4}, 1^{\prime \prime}\right] \\
& \left(d_{3}, D_{3}\right]=\left(1^{\prime \prime}, 3^{\prime \prime}\right]
\end{aligned}
$$

These three subsets were chosen for two reasons. The first is that the intervals are sufficiently small so as to facilitate the effective use of quadratic mean diameters (as required in (10.)) and hence accommodate the computation of accurate lesser particle volume estimates. The second reason for this choice is that the above three subsets correspond
respectively to 1,10 and 100 hour average moisture time lag divisions for a number of common woody forest materials, (Fosberg, 1970). For each i $\varepsilon\{1,2,3\}, K^{(i)}$ was determined using simultaneous runs of a"one-way classification random components analysis of variance model (ANOVAl) with unequal numbers of observations in the cells (Ehrenfeld and Littauer, 1964; p.399) and a two-way classification random components analysis of variance model with unequal numbers of observations in the cells (Ehrenfeld and Littauer, 1964; p.432). A description and computerized version of the first of these two models is offered in Appendix 2. Since the second of these models is virtually identical in design to the first model, no computerized version of it is required; however, a supplementary description of the two-way model is included in Appendix 2.

The two-way model was constructed using particle distribution and particle frequency or loading as the two influencing factors. The primary purpose of this model was to determine for each $i \varepsilon[1,2,3\}$ the ranges of the two above influencing factors under which it was possible to assert the existence of a unique constant $K^{(i)}$ reasonably independent of both $j$ and $t$ which would permit the integral of $g \hat{i}_{j}^{(i)}$ to be close to the integral of $g 2_{j}^{(i)}$ for each $j \varepsilon\{1, \ldots, n\}$, and for each $i \varepsilon\{1,2,3$. A thorough description of the processes involved in the two-way model is given in Appendix 2 . It suffices to say here that the results of the two-way model indicated that a satisfactory unique constant ${\underset{i}{(i)}}^{(i)}$ could exist only when the fuel particle distribution (with respect to the $i$ th subset of $C$ ) was held fixed within the CPIS units being sampled, $\forall i \varepsilon\{1,2,3$.

Explicit determination of $K^{(i)}$ for each $i \in\{1,2,3\}$ was performed in the one-way model as described in Appendix 2 . In order to produce
$\mathrm{K}^{\text {(i) }}$, it was necessary to select a suitable sampling radius r2 ${ }^{\text {(i) }}$ for each $i \varepsilon\{1,2,3\}$. Due to time constraints, selection of $r 2^{(i)}$ was made subjectively. More precisely,

$$
\begin{aligned}
& \mathrm{r}^{(1)}=8.5 \text { feet (sampling area of } 1 / 192 \text { acre) } \\
& \mathrm{r}^{(2)}=16.5 \text { feet (sampling area of } 1.51 \text { acre) } \\
& \mathrm{r}^{(3)}=28.5 \text { feet (sampling area of } 1 / 12 \text { acre) }
\end{aligned}
$$

It is noted that some experienced investigators may be more adept than others in selecting an appropriate r2 (i). Hence to eliminate as much guesswork as possible in the selection of $r 2^{(i)}$, an approximate formula for determining $r 2^{(i)}$ as a function of $D_{i}$ is presented below:
(11) $\log r 2^{(i)} \approx 1.22+0.47 \log D_{i}$, where $D_{i}^{\prime}$ is in inches and $r^{(i)}$ is in feet,

$$
\forall i \varepsilon\{1, \ldots, M\}
$$

(11.) is presented here merely as a rule of thumb. It serves primarily as a guide for the inexperienced investigator and as a reference for the experienced one when no preliminary data to help select $r 2^{(i)}$ is available.

It is of interest to note that the analysis of the one-way model revealed that for randomly distributed fuel particles within the CPIS units being sampled the random variable defined by:
(12) $\left\{\sum_{k=1}^{m_{j}^{(i)}}\left[s_{k, j}^{(i)} \cdot \csc \left(\phi_{k, j}^{(i)}\right)\right] /\left(m_{j}^{(i)} \cdot \pi\left(r 2^{(i)}\right)^{2}\right)-K^{(i)}\right\} /$

$$
\left\{\sum_{k=1}^{m_{j}^{(i)}}\left[S_{k, j}^{(-i)} \cdot \csc \left(\phi_{k, j}^{(i)}\right)\right] / \mathrm{m}_{j}^{(i)} \cdot \pi\left(2^{(i)}\right)^{2}\right\} \equiv R_{j}^{(i)}
$$

i and j fixed
was found to be normally distributed with mean 0 . It was also discovered that if j is ordered by loading, the variance of the above ratio generally
decreased with increasing $j$, $\forall i \varepsilon\{1,2,3\}$. This means that the performance of $\mathrm{g}_{\mathrm{j}}^{(\mathrm{i})}$ as a percentage approximation of $\mathrm{g2} \underset{\mathrm{j}}{(\mathrm{i})}$ in the integral from 0 to
 in terms of fuel particle size and loading, respectively. Note that $R_{j}^{(i)}$ is defined only on those values in $[0,2 \pi]$ such that $m_{j}^{(i)}(t) \neq 0$. It is of interest to note that the one-way model showed that the random variable defined by:

$$
m_{j}^{(i)}, i \text { and } j \text { fixed }
$$

was found to have a coefficient of variation reasonably independent of $i$ and $j, \forall i \varepsilon\{1,2,3\}, \forall j \varepsilon\{1, \ldots, n\}$. This means that on a percentage basis the variability of $g \hat{2}_{j}^{(i)}$ over $[0,2 \pi]$ is virtually independent on both $i$ and $j$. Combining the two above points of interest, it is seen that if numerical methods are required to evaluate the integral of $g \hat{2}_{j}^{(i)}$, one numerical technique applied at one level of sampling intensity will probably suffice for all $i$ and $j$.

Numerous runs of the one-way model with randomly distributed fuel particles yielded values of $k^{(i)}$ within a small neighbourhood of the following:

$$
\left\{\begin{array}{l}
K^{(1)}=2.83 \times 10^{-2}(\text { feet })^{-1}  \tag{13}\\
K^{(2)}=1.49 \times 10^{-2}(\text { feet })^{-1} \\
K^{(3)}=8.56 \times 10^{-3}(\text { feet })^{-1}
\end{array}\right.
$$

$\hat{g 2}_{j}^{(i)}(t)$ has now been explicitly determined in terms of measurable variables $\forall i \varepsilon\{1,2,3\}$, as previously defined, providing that the lesser particles considered are randomly distributed within the CPIS units. Attention is now turned to $i \varepsilon\{1, \ldots, M\}$ where $D_{i}>3$ inches. Suitable formulas for explicitly defined subsets of greater
downed particles whose distributions are either random in the CPIS units or else can be quantified in the CPIS units can be obtained by a procedure almost identical to that used above for the lesser downed particles. Due to time constraints plus the fact that attention is to be focussed primarily upon the lesser fuels which as has been previously stated are most likely to be consumed by the majority of broadcast fires, formulas for the larger fuels are not derived. It is of interest to note that only a slight manipulation of (9;) will yield a formula for $g 2_{j}^{(i)}(t)$ (in terms of measurable variables) which applies to greater downed particles and is independent of particle distribution. This formula is presented below:
(14) $\underset{j 2}{(i)}(t)=\frac{\bar{d}^{(i)}}{8\left(r 2^{(i)}\right)^{2}} \sum_{k=1}^{m_{j}^{(i)}(t)}\left[\left(P 2_{k, j}^{(i)}(t)\right)^{2}-\left(P 1_{k, j}^{(i)}(t)\right)^{2}\right]$, where
(15) $P 2_{k, j}^{(i)}$
$(t)=\left(2 S_{k, j}^{(i)}\right.$
$\left.(t)+\overline{\left(d^{(i)}\right)} \cdot \csc \left(\phi_{k, j}^{(i)}(t)\right)\right) / 2$
(16) $\underset{k, j}{(i)}(t)=\left(2 S_{k, j}^{(i)}(t)-\overline{\left(d^{(i)}\right)} \cdot \operatorname{CSC}\left(\phi_{k, j}^{(i)}(t)\right)\right) / 2$ and $\overline{(\sec (\gamma i)}=1$

Note that when $D_{1}>3$ inches, it is fair to assume that $\overline{(\sec (\bar{\gamma} i))}=1$ (Brown, 1973; p.3). Then from (15.) and (16.), it is clear that P1 and P2 can be interpreted as distances to the left and right end points of intersection, respectively for a whole ellipse, which are not difficult to measure for the greater woody particles. If a truncated ellipse is encountered (i.e. a particle end) it is necessary to extrapolate one edge of the particle to the transect in order to obtain the proper value providing of course that the particle central axis intercepts the transect. Hence (14.) may be used directly for greater downed fuels of any distribution and loading.

There is one remaining step to be made so that $\mathrm{X} 2^{(i)}\left(\mathrm{S} 2_{j}^{(i)}\right)$ will be expressed in terms of measurable variables. This step is the evaluation of the integral of an appropriate function between 0 and $2 \pi$. Due to time constraints and the fact the thesis is designed to focus upon the lesser downed particles, evaluation of $X 2^{(i)}\left(S 2_{j}^{(i)}\right)$ through the integral of an appropriate function will be done only for $i \in\{1,2,3\}$, as previously defined. The processes involved here are thoroughly described in Appendix 3, which includes a computerized version of a downed woody fuels model. A major result of this investigation was that the random variable defined by:
(17) $\left\{\frac{V_{j}^{(i)}}{\pi\left(r 2^{(i)}\right)^{2}}-h 2_{j}^{(i)}\right\} /\left\{\frac{V_{j}^{(i)}}{\pi\left(r 2^{(i)}\right)^{2}}\right\}$ i and j fixed, where:
(18) $h 2_{j}^{(i)}(t)=\sum_{\hat{W}=2}^{12} C_{\omega} \cdot \hat{g 2} \underset{j}{(i)}\left(\hat{t}+\frac{\omega \pi}{6}\right), C_{\omega}= \begin{cases}4, & \text { if } \omega \text { is odd } \\ 2, & \text { if } \omega \text { is even }\end{cases}$
and $\mathrm{V}_{j}^{(i)}=\begin{aligned} & \text { the true total particles volume in the } \mathrm{j} \text { th sample taken with } \\ & \text { respect to the ith subset of } C \text {, ict }\end{aligned}$ respect to the ith subset of $C$, $i \in\{1,2,3\}$
was found to be normally distributed with mean 0 and very small variance independent of $i$ and $j, \forall i \varepsilon\{1,2,3\} \forall j \varepsilon\{1, \ldots, n\}$. The means that $V_{j}^{(i)} / \pi\left(r 2^{(i)}\right)^{2}$ can be very well approximated by an appropriate application of Simpson's rule (Schied, 1968; p.108) with twelve transects, $\forall i \varepsilon\{1,2,3\}, \forall j \varepsilon\{1, \ldots, n\}$. Selection of the placement for the first transect in a particular sampling unit does not significantly affect the performance of the estimate for the average particle volume per unit area with respect to that sampling unit. A typical performance of Simpson's rule with twelve transects as applied to subset $i$ is given in Table 1 and displayed graphically in Figure (i+2) for ic\{i, 2,3 \}. In summary then $X 2^{(i)}\left(S 2_{j}^{(i)}\right)$ can be very well approximated by:

Table 1. Actual and estimated computer-generated lesser downed woody particle volumes.

| Actual Volumes |  |  | Estimated Volumes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Class 1 | Class 2 | Class 3 | Class 1 | Class 2 | Class 3 |
| $\left((\mathrm{ft})^{3} /(\mathrm{ft})^{2}\right) \times 10^{-2}$ |  |  | $\left((\mathrm{ft})^{3} /(\mathrm{ft})^{2}\right) \times 10^{-2}$ |  |  |
| 0.03021 | 0.2129 | 1.317 | 0.02853 | 0.2178 | 1.413 |
| 0.03051 | 0.2171 | 1.345 | 0.02645 | 0.2087 | 1.257 |
| 0.03015 | 0.2162 | 1.322 | 0.03403 | 0.2141 | 1.295 |
| 0.02952 | 0.2070 | 1.309 | 0.03196 | 0.1986 | 1.204 |
| 0.03005 | 0.2167 | 1.365 | 0.02907 | 0.2004 | 1.381 |
| 0.02918 | 0.2138 | 1.305 | 0.02961 | 0.1913 | 1.375 |
| 0.0305 | 0.2133 | 1.326 | 0.03060 | 0.2297 | 1.680 |
| 0.03067 | 0.2032 | 1.294 | 0.02825 | 0.1977 | 1.268 |
| 0.04528 | 0.4686 | 2.665 | 0.04180 | 0.4759 | 2.916 |
| 0.04452 | 0.4681 | 2.614 | 0.04369 | 0.4686 | 2.905 |
| 0.04557 | 0.4757 | 2.543 | 0.04270 | 0.5299 | 2.611 |
| 0.04462 | 0.4766 | 2.658 | 0.04514 | 0.4438 | 2.622 |
| 0.04559 | 0.4709 | 2.658 | 0.04405 | 0.4704 | 3.023 |
| 0.04550 | 0.4855 | 2.590 | 0.03990 | 0.5042 | 2.852 |
| 0.04489 | 0.4711 | 2.653 | 0.03945 | 0.4695 | 2.793 |
| 0.04551 | 0.4688 | 2.663 | 0.04225 | 0.4512 | 2.889 |
| 0.05938 | 0.7496 | 3.997 | 0.06147 | 0.7815 | 4.045 |
| 0.05922 | 0.7501 | 3.897 | 0.05615 | 0.7706 | 3.815 |
| 0.06070 | 0.7336 | 3.899 | 0.06012 | 0.7019 | 3.810 |
| 0.05912 | 0.7465 | 3.918 | 0.05741 | 0.8017 | 4.125 |
| 0.05912 | 0.7465 | 3.918 | 0.05741 | 0.8017 | 4.125 |


| Actual Volumes |  |  | Estimated Volumes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Class 1 | Class 2 | Class 3 | Class 1 | Class 2 | Class |
| $\left((\mathrm{ft})^{3} /(\mathrm{ft})^{2}\right) \times 10^{-2}$ |  |  | $\left((\mathrm{ft})^{3} /(\mathrm{ft})\right)^{2} \times 10^{-2}$ |  |  |
| 0.05993 | 0.7286 | 3.878 | 0.05678 | 0.7577 | 3.986 |
| 0.05934 | 0.7294 | 3.898 | 0.06048 | 0.6726 | 4.147 |
| 0.05988 | 0.7222 | 3.894 | 0.06184 | 0.7065 | 3.788 |
| 0.05967 | 0.7266 | 3.978 | 0.05886 | 0.7513 | 4.056 |
| 0.07372 | 0.9804 | 5.528 | 0.08106 | 1.052 | 5.399 |
| 0.07457 | 0.9973 | 5.251 | 0.07258 | 1.035 | 5.485 |
| 0.07457 | 1.012 | 5.166 | 0.07447 | 1.038 | 5.062 |
| 0.07359 | 0.9982 | 5.173 | 0.07068 | 1.045 | 5.217 |
| 0.07470 | 0.9934 | 5.152 | 0.07592 | 1.012 | 5.265 |
| 0.07550 | 0.9907 | 5.231 | 0.07285 | 0.9774 | 5.479 |
| 0.07477 | 1.009 | 5.358 | 0.07465 | 0.9783 | 5.784 |
| 0.07361 | 1.003 | 5.232 | 0.07330 | 0.9929 | 5.335 |
| 0.09020 | 1.240 | 6.539 | 0.08224 | 1.310 | 6.672 |
| 0.08955 | 1.276 | 6.593 | 0.08883 | 1.366 | 7.117 |
| 0.09011 | 1.266 | 6.488 | 0.08386 | 1.243. | 6.533 |
| 0.09021 | 1.257 | 6.491 | 0.08278 | 1.320 | 6.314 |
| 0.08909 | 1.261 | 6.487 | 0.08296 | 1.290 | 6.491 |
| 0.08826 | 1.274 | 6.688 | 0.09208 | 1.312 | 6.913 |
| 0.08996 | 1.263 | 6.617 | 0.09009 | 1.199 | 6.710 |
| 0.08936 | 1.283 | 6.387 | 0.09460 | 1.405 | 6.854 |



Figure 3. Curves representing actual and estimated computer-generated downed woody particle volumes with respect to size class 1 ( $\leq \frac{1}{4}$ inch).


Figure 4. Curves representing actual and estimated computer-generated downed woody particle volumes with respect to size class 2 (> $\frac{1}{4}$ inch $\leq 1$ inch)


Figure 5. Curves representing actual and estimated computer-generated downed woody particle volumes with respect to size class 3 (> 1 inch, $\leq 3$ inches)
 providing of course that the fuel particles of interest are randomly distributed within $s 2_{j}^{(i)}, \forall i \varepsilon[1,2,3), \forall j \varepsilon(1, \ldots, n\}$.

Thus far, two estimators $\overline{\mathrm{XP} 1}{ }^{(\mathrm{i})}$ and $\overline{\mathrm{XP}}^{(\mathrm{i})}$, have been explicitly determined as far as time constraints will permit. $\overline{\mathrm{XP}}(\mathrm{i})$ is an estimator for $\mathrm{pl}^{(i)}$, the mean number of fuel particles per unit area with respect to the population of cylinders of common radius $r 1^{(i)}, \overline{\mathrm{XP} 2}{ }^{(i)}$ is an estimator for $p_{2}{ }^{(i)}$, the mean volume of fuel particles per unit area with respect to the population of cylinders of common radius $\mathrm{r}_{2}{ }^{(i)}$. Confidence intervals for $\mathrm{p} 1^{(i)}$ and $\mathrm{p}^{(i)}$ have also been produced and they too are as complete as time will permit. If i $\varepsilon\{1,2,3\}$; not only has the estimate $\overline{\mathrm{X} 2}{ }^{(i)}$ been completely determined but also a complete rconfidence interval for $\mathrm{p}^{(i)}$ has been presented. The term 'complete' is used here in the sense that all terms comprising the confidence interval of interest can be precisely evaluated in any given downed woody particles population whose lesser components are randomly distributed, within the CPIS units selected for sampling.

At the beginning of the section regarding applications to downed woody particles, it was asserted that the results of experiments $E_{1}$ and $E_{2}$ would yield estimators for a number of specific parameters of interest. This assertion will not be verified.

Let $\mathrm{rl}^{(\mathrm{i})}=\mathrm{r} 2^{(\mathrm{i})}, \forall i \varepsilon 1, \ldots, \mathrm{M}$, . Some common parameters of interest (De Vries, 1973) are: mean total volume per unit area ( $\mathrm{pl}^{(\mathrm{i})}$ ), mean number of particles per unit area ( $\mathrm{p}^{(\mathrm{i})}$ ), mean total weight per unit area ( $\mathrm{p}^{(\mathrm{i})}$ ), mean mid-sectional area per unit area ( $\mathrm{p}^{(i)}$ ), mean total length per unit
area ( $p 5^{(i)}$ ), mean total volume per particle ( $p 6^{(i)}$ ), mean mid-sectional area per particle $\left(\mathrm{p} 7^{(\mathrm{i})}\right.$ ), mean mid-diameter per unit area ( $\mathrm{p}^{(i)}$ ), mean length per particle ( $\mathrm{p} 9^{(\mathrm{i})}$ ), mean mid-diameter per particle ( $\mathrm{p} 10^{(i)}$ ), mean total surface area per unit area ( $\mathrm{pl1}{ }^{(i)}$ ), and mean total surface area per particle ( $\mathrm{p}_{12}{ }^{(\mathrm{i})}$ ). An estimator for $\mathrm{pk}^{(\mathrm{i})}, \mathrm{k} \neq 7,10$ can be easily expressed in terms of $\mathrm{X1}_{\mathrm{j}}^{(\mathrm{i})}, \mathrm{X}_{\mathrm{j}}^{(\mathrm{i})}$ and suitable constants, $\forall \mathrm{i} \varepsilon(1, \ldots, \mathrm{M}$. Notice that if $k=7$ an excellent estimator for $\mathrm{pk}^{(\mathrm{i})}$ is $\pi\left(\mathrm{dbar}^{(\mathrm{i}}\right)^{2} / 4$, where an estimate for $\mathrm{dbar}^{(i)}$ is obtained from suitable tables (Brown, 1973). No confidence interval is really required for $\mathrm{pk}^{(\mathrm{i})}$ providing the ith subset is sufficiently small. If a confidence interval is desired, it can be obtained through repeated observations of particle diameters in the ith subset of C. Similarly p10 ${ }^{(i)}$ can be very well estimated by dbar ${ }^{(1)}$, where a confidence interval, if desired, can also be obtained through repeated observations on particle diameters' in the $i^{\text {th }}$ subset of $C$. It is left to produce an estimator for $\mathrm{pk}^{(\mathrm{i})}, \mathrm{k} \neq 7,10$.

Estimators for $\mathrm{p} 1^{(\mathrm{i})}, \mathrm{p}^{(\mathrm{i})}, \mathrm{p} 3^{(\mathrm{i})}, \mathrm{p} 4^{(\mathrm{i})}, \mathrm{p} 5^{(\mathrm{i})}, \mathrm{p}^{(\mathrm{i})}, \mathrm{p} 8^{(\mathrm{i})}$, $\mathrm{p} 9^{(i)}, \mathrm{p} 11^{(i)}$ and $\mathrm{p} 12^{(\mathrm{i})}$ are in order $\overline{\mathrm{XP} 2}{ }^{(i)}, \overline{\mathrm{XP} 1^{(i)}}, \overline{\mathrm{S}}^{(\mathrm{i})}, \overline{\mathrm{XP} 2}{ }^{(i)}$ where $\bar{S}^{(i)}$ is the mean specific gravity for particles in the ith subset, $\frac{\pi}{4}(d b a r(i))^{2} \cdot \overline{X P 1}(i)$,

 is the average surface area to volume ratio for the ith subset (ie. $\sigma^{(i)}={ }^{4} / \mathrm{dbar}{ }^{(i)}$ ). Confidence intervals for $\mathrm{pk}^{(\mathrm{i})}, \mathrm{k} \neq 6,9,12$ are obvious from an inspection of their estimators and from previous remarks made when discussing experiments $E_{1}$ and $E_{2}$. It should be observed that it is possible only to produce a sample coefficient of variation for $\mathrm{pk}^{(\mathrm{i})}, \mathrm{k}=6,9,12$ unless the distribution of $\overline{\mathrm{XP}}$ (i) can be roughly determined. In passing it is of interest to note
that the estimators of $p 4^{(i)}, i \geq 3, p 7^{(i)}, i \geq 3, p 8^{(i)}, i \geq 3$ and $p 10^{(i)}$, $i \geq 3$ can all be alternatively obtained (ie. without using tables for estimates of dbar ${ }^{(i)}$ ) with a CPIS design simply by applying an argument almost identical to that given in experiment $E_{1}$. The only difference here would be of course that particle diameters and cross-sectional areas (for $i \geq 3$ ) as well as numbers of particles would be of interest.

It has now been shown that it is very possible to attach a meaningful "handle" to the general common point intersect sampling (CPIS) concept. The application of CPIS techniques to downed woody particles provides a vehicle whereby the general theory is mapped into an operational plane. But the value of CPIS procedures on an operational level has not as yet been demonstrated. It remains then to give the CPIS system an actual field test and to compare its performance to that of the most successfully established technique, line intersect sampling (LIS) (Brown, 1971). For reasons previously stated, the field test will be concerned only with lesser downed woody fuels sub-populations. Attention will now. be turned to demonstrating the tentative superiority of CPIS over LIS with respect to at least two lesser downed woody particles populations located in areas of logging residue.

CHAPTER III

Field test to evaluate the common point intersect technique
General Discussion

In order to field test the CPIS technique and compare its performance to that of the LIS technique with respect to lesser downed woody particles, two areas of fresh (i.e. less than 1 year old) coastal logging residue were selected for reasons previously cited. The first area was a clearcut comprised of 165 acres of tractor logged residue (see Figure 6). It was situated approximately 8 miles west of Shawnigan Lake which lies 30 miles west of Victoria, British Columbia. The fuel types were predominantly coastal Douglas-fir, western hemlock and western red cedar. The second study area was a 180 acre clearcut of cable logged residue (see Figure 7). It was located approximately 8 miles southwest of Sooke Lake which lies 25 miles southwest of Victoria, British Columbia. The fuel types were similar to those of the first area. Both study areas possessed moderate volumes of residue and reasonably continuous terrains of moderate inclinations (i.e. less than $30^{\circ}$ slope). The second study area possessed a noticeable ravine where lesser woody particles accumulations were evident.

Before the two sampling techniques were applied to these areas, each clearcut was examined in order to determine whether the downed particles in the ith subset $\forall_{i \varepsilon}\{1,2,3\}$ were randomly distributed in the sampling space of cylinders of radius $r^{(i)}=r 2^{(i)}$. Recall that the formula offered for $X_{2}{ }^{(i)}(S 2(i), i \varepsilon\{1,2,3, j \varepsilon\{1, \ldots, n\}$ is valid only when the particles in the ith subset are randomly distributed in $S_{j}^{(i)}$, $i \varepsilon\{1,2,3\}$. Hence randomness in the first three subsets must be verified in the sampling units to be sampled at least on a tentative basis, before the CPIS technique can be applied to those subsets.


Figure 6. Map of Study Area 1 depicting placement of both the line intersect and common point intersect sampling units.


Figure 7. Map of Study Area 2 depicting placement of both the line intersect and common point intersect sampling units.

In order that the particles may be regarded as randomly distributed in the sampling units, they should satisfy two properties. The first is that the random variable defined by angular orientation of particle projection onto a planer section defined by adjacent ground level should have approximately a rectangular distribution on $[0,2 \pi$ ] (Mize and Cox, 1968; p.50) with respect to each sampling unit in question. The second is that the random variable defined by distance from the geometric centre of the $i$ th sampling unit (of radius $r^{(i)}$ ) in question to the contained particle geometric centre-point should have approximately a rectangular distribution on $\left[0, r^{(i)}\right] \forall i \varepsilon\{1,2,3 \%$, for each sampling unit of radius $r^{(i)}$ selected.

The first property was tentatively verified for the ith subset, $\forall i \varepsilon\{1,2,3 \hat{y}$ on each study area. Verifications was made by constructing a $X^{2}$ goodness-of-fit test at the 5 per.cent significance level. On each area data for this test were collected by laying out 5 CPIS units (for each subset) systematically over the area to be sampled. Within each unit 20 transects of common length equal to the radius of the sampling unit were positioned systematically in a unidirectional pattern. Transect lengths for the first, second and third subsets were $8.5,16.5$ and 28.5 feet respectively. Note that these transects lengths are not critical to the test but that the unidirectional sampling design is. Note also that the CPIS units were not laid out over the entire area but rather only over the area to be sampled. This sampling region is selected to act as a representative fuel cell for the entire area. Size and location of the fuel cell are largely at the discretion of the investigator. It need only be said here that a 6 chain by 6 chain square was selected on each clearcut where no portion of either 3.6 acre fuel cell lay within 2.5 chains of any access
road. Choice of the cells was based on the subjective decision that each 3.6 acre square proportionately reflected the major characteristics of interest on its particular area. Continuing then if angular orientation is truly random in the $j^{\text {th }}$ sampling unit, it can be shown that the random variable ( $\theta_{j}$ defined by the intersection angle between the particle major axis and transect with respect to the $j$ th unit has probability density function $f_{\theta_{j}}$ where:
(20) $f_{\theta_{j}}(u)=\left\{\begin{array}{l}\sin u, u \varepsilon(0, \pi / 2] \\ 0, \text { elsewhere }\end{array} \quad \forall j \in\{1, \ldots, 5\}\right.$ : (Van Wagner, 1968)

Therefore under the assumption of randomness with respect to angular orientation, it is expected that the statistic:
would have a $X^{2}$ distribution with 19 degrees of freedom where $f e, k$ is evaluated using $f_{\theta}$; $\forall k \varepsilon\{1, \ldots, 20\}$. The scheme used here for defining angular class intervals is based on .05 proportions of area under the sine curve. Hence:

$$
\sum_{k=1}^{20}\left\{\left(f_{o, k}-f_{e, k}\right)^{2} / f_{e, k}\right\}=\frac{1}{f_{e}} \sum_{k=1}^{20}\left(f_{o, k}-f_{e}\right)^{2}, \text { where } f_{e}=f_{e, k}, \quad \forall k \varepsilon\{1, \ldots, 20\}
$$

All sampling units in the three subsets constructed for each area passed the $\chi^{2}$ goodness-of-fit test at the .05 significance level. Observed class particle frequencies for 6 typical CPIS units are presented in tabular form in Table 2.

It is difficult to construct a practical test to either support or contradict the assertion that the random variable defined by distance from the geometric centre of the sampling unit (of radius $r^{(i)}$ ) in question to the contained particle geometric centre point has a rectangular

Table 2. Intersection angles of lesser downed woody particles in the study areas.

distribution on $\left[0, r^{(i)}\right], \forall i \varepsilon\{1,2,3\}$, for each sampling unit of radius ${ }^{(i)}$ selected. Recall that under the assumption of randomly distributed particles in the CPIS units the random variable defined by (12.) was found to have a normal distribution with mean 0 . Now it. has been shown that it is tentatively valid to assume that the random variable defined by angular orientation (as previously specified) has a rectangular distribution on $[0,2 \pi]$. Therefore it can be seen that if the above assertion regarding the random variable defined by distance (as previously specified) is true, the random variable defined by (12.) should have approximately a normal distribution with mean 0 . Using this logic, a parametric statistical two-sided hypothesis test comparing a mean against 0 (where the population variance is assumed to be unknown) was set up at the . 05 significance level for each study area. Five widely spaced CPIS units were selected systematically on each area $\forall i \varepsilon\{1,2,3\}$. Note that the comments made earlier justifying the use of systematic sampling designs apply equally here. Now within each unit, 24 evenly spaced transects were laid out and the image of $t$ under $R_{j}^{(i)}$ (see (12.)) was found for each $t \quad\left\{\frac{\pi i}{12}\right\}$ where $t=0$ was chosen randomly. This process led to the computation of five sample means and five sample variances for each $i \in\{1,2,3\}$ with respect to each study area. This data is presented in Table 3 in which orientation random variable' is to be identified with $R_{j}^{(i)}$. For each $\left.j \varepsilon \notin 1, \ldots, 5\right\}$ and for each $i \varepsilon\{1,2,3\}$ the $j$ th sampling unit yielded a sample value which lay outside the rejection region constructed under the nu11 hypothesis which is identified with the assumption that the random variable defined by distance from the geometric centre of the $j$ th sampling unit (of radius $r^{(i)}$ ) to the contained particle geometric centre point has a rectangular

Table 3. Sample means and standard deviations of the orientation random variable for lesser downed woody particles in the study areas.

| Unit Number | Sample Mean |  |  |  |  |  | Sample Standard Deviation |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class 1 |  | Class 2 |  | Class 3 |  | Class 1 |  | Class 2 |  | Class 3 |  |
|  | Area 1, 2 |  | Area 1, 2 |  | Area 1, 2 |  | Area $1, .2$ |  | Area 1, 2 |  | Area 1, 2 |  |
| 1 | . 072 | . 027 | . 096 | . 092 | . 0978 | . 108 | . 183 | . 169 | . 230 | . 228 | . 283 | . 302 |
| 2 | . 023 | . 005 | . 064 | . 021 | . 110 | . 124 | . 137 | . 133 | . 170 | . 159 | . 264 | . 296 |
| 3 | . 013 | . 049 | . 099 | . 068 | . 138 | . 116 | . 157 | . 195 | . 237 | . 221 | . 331 | . 285 |
| 4 | . 044 | . 039 | . 092 | . 080 | . 113 | . 118 | . 178 | . 106 | . 220 | . 194 | . 269 | . 282 |
| 5 | . 015 | . 059 | . 077 | . 025 | . 135 | . 137 | . 201 | . 206 | . 193 | . 206 | . 324 | . 325 |

distribution on $\left.\left[0, r^{(i)}\right], \forall i \varepsilon\{1,2,3\}, \forall j \in \& 1, \ldots, 5\right]$.
Combining the results from the two above statistical tests, it was considered tentatively valid to apply the CPIS technique to the above CPIS units on each of the two study areas with respect to the first three downed woody particle subsets.

Field work undergone with respect to the line intersect technique
Within each fuel cell 25 line segments of common length 8.5 ft were systematically placed uniformly over the entire fuel cell using an equidistant grid pattern (see Figures 6 and 7). The orientation of each transect was determined randomly, Random transect orientation is not really necessary here. Note that it requires no more time to implement than does unidirectional transect orientation. Justification of the use of a systematic sampling design with equidistant grid pattern has been previously made. It remains to: justify both the number and common length of the line segments used. The use of 25 transects will be explained first. Consider the well-known formula for an infinite population of sampling units where the random variable of interest is normally distributed:
(21) $N=(C V)^{2}\left(t_{1}-\infty / 2 ; N-1\right)^{2} / Z^{2}$
where $N=$ number of sampling units
$C V=$ coefficient of sample variation
$1-\alpha=$ level of statistical inference
$t_{1}-\infty / 2 ; N-1=$ Student's $t$ value at the ( $1-\alpha / 2$ ) level with ( $N-1$ ) degrees of freedom $Z=$ degree of precision (expressed as a proportion of the sample mean) An inspection of the behavior of the $t$ distribution and application of the Central Limit Theorem reveal almost immediately that the minimum number of samples $\left(N_{m i n}\right)$ required to meet precision level $Z$ can be expressed as: (22) $N_{\text {min }}=3.84(\mathrm{CV})^{2} / \mathrm{Z}^{2}$, providing $\mathrm{N}_{\text {min }}$ is sufficiently large (i.e. $N \min \geq 25$ ) regardless of the distribution of the random variable of interest. It follows that if $C V$ can be estimated from a preliminary sample, then $N_{\text {min }}$ can be expressed roughly as a function of $Z$. With respect to downed woody particles, it usually is of interest to determine $N_{m i n}$
for $Z$ within a small neighborhood of 0.15 (Howard and Ward, 1972; Brown, 1973). Hence for 15 percent, precision, the following formula holds:
(23) $\mathrm{N}_{\mathrm{min}} \approx 170.67\left[(\mathrm{CV})_{\mathrm{ps}}\right]^{2}$, providing $\mathrm{N}_{\mathrm{min}}$ is sufficiently large (i.e. $\mathrm{N}_{\mathrm{min}} \geq 25$ ) $=A \cdot \quad(C V)_{p s}{ }^{2}$
where (CV) ${ }_{\mathrm{ps}}=$ coefficient of preliminary sample variation The validity of (23.) is crucial to the comparison of LIS and CPIS since (23.) indicates the minimum number of samples required to meet 15 percent precision at the $95 \%$ confidence level. It may be argued that (23.) leads to erroneous results unless the coefficient of sample variation stabilizes for sample sizes greater than the preliminary sample size. Unless the lesser downed woody particles within the LIS units are pathologically distributed, it is intuitively logical that the ratios of the sample means to the sample variances should stabilize beyond some minimum sample size usually quoted as 25 (Freund and Williams, 1958; Ehrenfeld and Littauer, 1964; Husch, Miller and Beers, 1972). No rigorous proof of this conjecture is offered in the literature because (23.) is traditionally regarded as only an approximation of $N_{\text {min }}$, not as a precise replacement. Unfortunately a thorough investigation of just how precise (23.) is when applied to downed woody fuels was not feasible. Therefore the validity of (23.)'will have to rest temporarily upon statistical intuition. Note that a more precise knowledge of the adequacy of (23.) is not vital to the comparison between LIS and CPIS. For example if (CV) ${ }_{\mathrm{ps}}$ is smaller than CV with respect to a particular subset, $N_{\text {min }}$ should be larger than the estimate given by (23.). Hence for comparison purposes (23.) works in favour of LIS in this case. Alternatively if (CV) ${ }_{\mathrm{ps}}$ is larger than CV with respect to a particular subset, the use of the oversized (CV) ${ }_{\text {ps }}$ will mostly likely be offset by the
fact that (A) in (23.) is at least $4 \%$ larger than it should be. Even if (23.) overestimates $N_{m i n}$ for a particular subset, this would have to be very large to have a serious effect upon the sampling time required because the average measurement time per LIS point is relatively small. Thus (23.) is sufficiently credible for comparing LIS with CPIS. A preliminary sample size of 25 was chosen in order than (23.) be valid when applied to the comparison of LIS and CPIS. An explanation of the common transect length of 8.5 ft will now be given.

In previous studies; optimum lengths for LIS transects applied to lesser downed particles have been suggested as: 6.8 ft for material less than 3 inches in diameter at intersection (Brown, in prep), 6.56 ft for particles less than 1 inch in diameter at intersection and 9.84 ft for particles from 1 inch to about 4 inches in diameter at intersection (Brown, in prep). Although no statistical justification was given to support the selection of these lengths, they have proven satisfactory for previous investigators. The choice of minimum adequate transect length was difficult to make without a thorough analysis to evaluate the performance of the LIS technique when applied with different transect lengths. It was again necessary to resort to intuition and experience supported with all relevant information available in the literature. The transect length chosen was 8.5 ft which agrees very well with Brown, in prep. If the transect length was selected greater than or equal to 25 ft and the random variable of interest was an average per unit area, (23.) may be regarded as reasonably valid in many cases without the restriction that $N_{m i n} \geq 25$. Having completely specified and justified the lengths, number and locations
of the LIS units on each area, attention is now turned to the data collected at each LIS unit and the calculations performed upon that data.

At each LIS unit, every lesser downed woody particle whose central axis (and at least one of whose edges) intersected the 8.5 ft transect segment was classified into one of the three previously defined subsets using a go-no-go gauge (Brown, in prep.; p. 5) (see Figure 8). Also the times taken to locate each LIS point and to perform necessary particle measurements at each point were recorded.

The device used to define each LIS transect segment consisted of two wooden stakes approximately 3 ft long, each of which was sharpened at one end for the purpose of easy insertion into the ground. Attached to each stake was a small metal ring with a wingnut to which wastened one end of the 8.5 ft cord representing the transect. These wingnut devices permitted the LIS transect segment to be adjusted for fuel depth and slope. At each LIS point, the transect segment was oriented parallel to the adjacent ground level. This procedure is well-established for light to moderate slash (Brown, in prep).

Two sets of formulas were used to convert the preliminary LIS raw data into values required for the comparison of the LIS and CPIS techniques. The first set of formulas which converted particle intercept counts into average total volumes per unit area is presented below:
(24) $\quad \operatorname{VOL}_{j}^{(i)}=\left\{\pi^{2} \overline{\left(d^{(i)}\right)} 2 \overline{(\sec (Y(Y))} / 68\right\} K_{j}^{(i)},($ Brown, 1973$)$,
$\forall$ i $\{1,2,3\}, \forall j \varepsilon\{1, \ldots, 25]\}$ where
$\mathrm{K}_{\mathrm{j}}^{(\mathrm{i})}=$ number of particle intersections (as previously defined) in the $j$ th LIS unit, $j \varepsilon\{1, \ldots, 25\}$ with respect to the $i$ th subset, $i \varepsilon\{1,2,3\}$.


Figure 8. 'Go-no-go' gauge used to determine the diameter size class of each intersecting particle under $3^{\prime \prime}$ in diameter at initial point of intersection.
$\operatorname{VOL}_{j}^{(i)}=$ average total volume per unit area in the $j$ th LIS unit, $j \varepsilon\{1, \ldots, 25\}$ with respect to the ith subset, $i \varepsilon\{1,2,3\},\left((f t)^{3} /(f t)^{2}\right)$.

and $V O L{ }_{j}^{(4)}$ is similarly defined) obtained for each study area are presented in tabular form in Table 4. Values computed from (24.) were then used to calculate $\{(\mathrm{CV}) \underset{\mathrm{ps}}{(\mathrm{i})}\}_{\mathrm{i}=1}^{4}$ for each study area. The entries in this sequence were then inserted into (23.) to arrive at the values offered in Table 5. Note in Table 5 that $384^{\circ}$ (CV) ${ }^{2}$ is simply the right-hand side of (23.), evaluated at $Z=.10$. It is now evident that (24.) combined with (22.) (where CV may be identified with (CV) ${ }_{\mathrm{ps}}$ ) will yield the minimum number of LIS units required to obtain a population mean estimate with a specified degree of precision. The second set of formulas combines the results of (24.) and (22.) with the raw LIS sampling time data to obtain the minimum time required to obtain a population mean estimate with a specified degree of precision. This second set of formulas whose derivation is obvious is presented below:
(25) $\quad \mathrm{T} 2^{(i)}=D^{(i)} \overline{\left(C^{(i)}\right)}+U^{(i)}\left[\bar{P}+\overline{\left(M^{(i)}\right)}\right], i \varepsilon\{1,2,3,4\}$ where $\mathrm{T} 2^{(\mathrm{i})}=$ minimum total sampling time required (hours) using the LIS technique for the $i$ th subset, $i \in(1,2,3,4\}$.

$$
\begin{aligned}
\mathrm{D}^{(i)} & =\text { total distance walked to obtain particle measurements (chains) } \\
& =6\left(\mathrm{U}^{(i)}-1\right) / \sqrt{\mathrm{U}^{(i)}+\delta^{(i)}}+1 \text {, where }
\end{aligned}
$$

$\mathrm{U}^{(i)}=$ the minimum number of LIS units required for the ith subset, ic $(1,2,3,4)$
 all positive integers.

Table 4. Field particle intercept counts and corresponding volume estimates for the line intersect sampling units.

| Unit <br> Number | Fuel Component Count |  |  |  |  |  | Fuel Volume Estimate |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class 1 |  | Class 2 |  | Class 3 |  | Class 4 <br> (Total) |  | Class 1 |  | Class 2 |  | Class 3 |  | Class 4 <br> (Tota1) |  |
|  | Area 1, 2 Area 1, 2 |  |  |  | Area 1, |  | Area 1, 2 |  |
|  |  |  |  |  |  |  |  |  | $(\text { feet })^{3} /(\text { feet })^{2} \times 10^{-3}$ |  |  |  |  |  |  |  |
| 1 | 44 | 195 | 2 | 15 | 1 | 3 | 47 | 213 | 0.73 | 3.24 | 0.63 | $4 \% 74$. | 3.13 | 9.39 | 4.49 | 17.37 |
| 2 | 33 | 126 | 6 | 6 | 1 | 1 | 40 | 133 | 0.55 | 2.09 | 1.90 | 1.90 | 3.13 | 3.13 | 5.58 | 7.12 |
| 3 | 187 | 87 | 26 | 16 | 5 | 4 | 218 | 107 | 3.10 | 1.44 | 8.22 | 5.06 | 15.65 | 12.52 | 26.97 | 19.02 |
| 4 | 175 | 187 | 16 | 12 | 3 | 3 | 194 | 202 | 2.91 | 3.10 | 5.06 | 3.79 | 9.39 | 9.39 | 17.36 | 16.28 |
| 5 | 151 | 75 | 14 | 8 | 2 | 2 | 167 | 85 | 2.51 | 1.25 | 4.42 | 2.53 | 6.26 | 6.26 | 13.19 | 10.04 |
| 6 | 105 | 210 | 10 | 11 | 1 | 7 | 116 | 228 | 1.73 | 3.49 | 3.16 | 3.48 | 3.13 | 21.91 | 8.02 | 28.88 |
| 7 | 227 | 102 | 27 | 13 | 4 | 5 | 258 | 120 | 3.77 | 1.69 | 8.53 | 4.11 | 12.52 | 15.65 | 24.82 | 21.45 |
| 8 | 157 | 153 | 13 | 14 | 2 | 9 | 172 | 176 | 2.61 | 2.54 | 4.11 | 4.42 | 6.26 | 28.17 | 12.98 | 35:13 |
| 9 | 77 | 65 | 8 | 11 | 1 | 11 | $\because 86$ | 87 | 1.28 | 1.08 | 2.53 | 3.48 | 3.13 | 34.43 | 6.94 | 38.99 |
| 10 | 168 | 192 | 12 | 17 | 3 | 4 | 183 | 213 | 2.79 | 3.19 | 3.76 | 5.37 | 9.39 | 12.52 | 15.94 | 21.08 |
| 11 | 186 | 87 | 19 | 13 | 3 | 1 | 208 | 101 | 3.09 | 1.44 | 5.95 | 4.11 | 9.39 | 3.13 | 18.43 | 8.68 |
| 12 | 78 | 42 | 14 | 4 | 2 | 3 | 94 | 49 | 1.29 | . 70 | 4.38 | 1.26 | 6.26 | 9.39 | 11.93 | 11.35 |
| 13 | 66 | 59 | 5 | 20 | 1 | 4 | 72 | 83 | 1.10 | . 98 | 1.57 | 6.32 | 3.13 | 12.52 | 5.80 | 19.82 |
| 14 | 28 | 60 | 22 | 9 | 5 | 1 | 55 | 70 | . 46 | 1.00 | 6.89 | 2.84 | 15.65 | 3.13 | 23.00 | 6.97 |

Table 4 cont'd....


Table 5. Relevant statistics for the line intersect field sampling units.

| Area | Class | Mean Volume | Standard Deviation | Coefficient of Variation (C.V.) | $170.67(\mathrm{CV})^{2}$ | $384(\mathrm{CV})^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} (\mathrm{f} t)^{3} /(\mathrm{ft})^{2} \\ \times 10^{-3} \end{gathered}$ | $\begin{gathered} (\mathrm{ft})^{3} /(\mathrm{ft})^{2} \\ \mathrm{X} 10^{-3} \end{gathered}$ |  |  |  |
| 1 | 1 | 1.90 | 1.24 | 0.65 | 72 | 162 |
| 1 | 2 | 4.45 | 2.84 | 0.64 | 70 | 157 |
| 1 | 3 | 9.26 | 6.84 | 0.74 | 93 | 210 |
| 1 | 4 | 15.61 | 9.84 | 0.63 | 68 | 152 |
| 2 | 1 | 1.99 | 0.99 | 0.50 | 43 | 96 |
| 2 | 2 | 4.92 | 2.10 | 0.43 | 32 | 71 |
| 2 | 3 | 16.03 | 10.30 | 0.64 | 70 | 157 |
| 2 | 4 | 22.94 | 11.83 | 0.52 | 46 | 104 |

(This subformula is clear from the fact that a square grid pattern superimposed uniformly on a 3.6 acre fuel cell is used for each LIS design).

$$
\begin{aligned}
\overline{{\left(C^{(i)}\right)}_{(i)}=} & \text { average chain walking time per unit distance (hrs./chain) } \\
& \text { with respect to the ith subset, i }\{1,2,3,4\} \\
\frac{\bar{p}}{{\left(M^{(i)}\right)}_{(i)}=} & \text { average pin placement time per sampling unit (hrs./LIS unit) } \\
& \text { with respect to the ith subset, } i \varepsilon\{1,2,3,4\} .
\end{aligned}
$$

Examples of minimum total LIS times required to obtain population mean estimates of specified precision levels are given in Table 8.

A detailed discussion of the LIS field work which was undergone has been presented. Also formulas converting the LIS field data into values which can be used to compare the LIS and CPIS techniques have been derived and discussed. Hence it is now appropriate to discuss the next topic of interest, namely the CPIS field work which was undertaken.

Field work undergone with respect to the Common Point Intersect Sampling
Technique
Five sets of concentric circles were systematically placed within each 3.6 acre fuel cell in the pattern sketched below:


Note that the centre CPIS unit is located at the center of the fuel cell. Each set of circles consisted of three circles of radii $8.5,16.5$ and $28.5 \mathrm{ft} .$,
in which fuel measurements were made for the first, second and third subsets respectively. Inscribed within each of the above sets of circles were 12 radius transect segments, one every $30^{\circ}$, with the location of the first transect randomly selected. These radius segments were easily located using a compass and yardstick.

Five CPIS units were selected here only on a tentative basis. If computations using data from these preliminary CPIS units revealed that 5 samples were not sufficient to obtain a population mean estimate within a small neighbourhood of 15 percent precision, then more CPIS units would be collected using a different systematic CPIS design. The selection of radii for the CPIS units with respect to each subset has been previously justified. The use of 12 transects is required in order that the image of $t$ under $h{ }_{j}^{(i)}$ (see (18.)) can be computed for some randomly selected $t \in[0,2 \pi], j \varepsilon\{1, \ldots, 5\}, i \varepsilon\{1,2,3\}$. It is $h 2{ }_{j}^{(i)}(t)$ for the chosen $t$ which will serve as the very good estimate of $V_{j}^{(i)} / \pi\left(r 2^{(i)}\right)^{2}$. (see (17.)). Having both specified and justified the size, shape and tentative number and locations of the CPIS units on each study area, attention will now be focussed upon the data collected at each CPIS unit and the calculations performed on that data.

Consider any of the 12 transects radiating from the center of the $j$ th CPIS unit in which particle measurements are to be performed with respect to the ith subset. Every downed woody particle belonging to the ith subset whose central axis (and at least one of whose edges) intersected the transect was counted. Determination of whether or not a particular intersecting particle was a member of the ith subset was made using the go-no-go gauge previously described. This process was repeated for all 12 transects

$$
\forall j \in(1, \ldots, 5), \forall i \in\{1,2,3\}
$$

The tallies obtained are expressed in tabular form in Table 6. Also the times taken to locate each CPIS unit and to perform necessary particle measurements at each unit were recorded.

Each of the 12 transects inscribed within every CPIS unit was defined by a device almost identical to that used in the section on line intersect field sampling. The only difference here is the cord which now is 28.5 ft long and is marked with flagging tape at both 8.5 ft and 16.5 ft .

As in LIS, two sets of formulas were used to convert the preliminary CPIS raw data into values required for the comparison of the LIS and CPIS techniques. Analogous to the first set of formulas used in LIS, the first set of formulas used in CPIS converted particle intercept counts into average total volumes per unit area:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{j}}^{(\mathrm{i})} / \pi\left(\mathrm{r} 2^{\mathrm{i}}\right)^{2}=\mathrm{h}_{\mathrm{j}}^{(\mathrm{i})}(\mathrm{t})=\sum_{\omega=1}^{12} \mathrm{C}_{\omega} \hat{g} 2_{\mathrm{j}}^{(\mathrm{i})}\left(\mathrm{t}+\frac{\omega \pi}{6}\right), \mathrm{t} \text { arbitrary in }[0,2 \pi] \tag{26}
\end{equation*}
$$ and where

$\mathrm{V}_{j}^{(\mathrm{i})} / \pi\left(\mathrm{r} 2^{(\mathrm{i})}\right)^{2}=$ average total volume per unit area in the $j$ th CPIS unit $j \varepsilon\{1, \ldots, 5\}$, with respect to the $i^{\text {th }}$ subset, $i \varepsilon\{1,2,3\}$ $\left.((f t))^{3} /(f t)^{2}\right)$
$C_{\omega}=\left\{\begin{array}{l}4, \text { if } \omega \text { is odd } \\ 2, \text { if } \omega \text { is even }\end{array}\right.$
and $\hat{g} 2_{j}^{(i)}(t)=\frac{\pi}{4} \cdot \overline{\left(d^{(i)}\right)^{2}} \cdot \overline{(\sec (\gamma i)} \cdot K^{(i)} \cdot m_{j}^{(i)}(t), \forall t \varepsilon[0,2 \pi]$
Note here that:

$$
\left.\begin{array}{l}
\overline{\overline{\left(d^{(1)}\right)}}=0.0091 \mathrm{ft} . \\
\overline{\left.\overline{(d}^{(2)}\right)}=0.0439 \mathrm{ft} . \\
\overline{{\left(d^{(3)}\right)}_{(3)}}=0.1400 \mathrm{ft} .
\end{array}\right\}
$$

Table 6. Field particle intercept counts for the common point intersect sampling units.


Table 6 con't.....

| Unit Number | Transect Number | Fuel Component Count |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Size Class 1 |  | Size Class 2 |  | Size Classs 3 |  | $\begin{gathered} \text { Size Class } 4 \\ \text { (Total) } \\ \hline \end{gathered}$ |  |
|  |  | Area 1 Area 2 Area 1 Area 2 Area 1 Area 2 Area 1 Area 2 |  |  |  |  |  |  |  |
| 2 | ${ }^{1} 11$ | 212 | 51 | 81 | 126 | 5 | 24 | 298 | 101 |
| 2 | 122 | 148 | 80 | 39 | - 29 | 9 | 25 | 196 | 134 |
| 3 | 1 | 61 | 71 | 38 | - 27 | 8 | 33 | 107 | 131 |
| 3 | 2 | 112 | 75 | 29 | - 19 | 17 | 17 | 158 | 111 |
| 3 | 3 | 78 | 29 | 41 | 14 | 16 | 12 | 135 | 105 |
| 3 | 4 | 72 | 51 | 35 | -14 | 11 | 12 | 118 | 77 |
| 3 | 5 | 134 | 44 | 32 | -17 | 16 | 11 | 182 | 72 |
| 3 | 6 | 95 | 43 | 48 | -17 | 9 | 10 | 152 | 70 |
| 3 | 7 | 54 | 48 | 22 | 21 | 3 | 13 | 79 | 82 |
| 3 | 8 | 41 | 54 | 20 | 19 | 10 | 18 | 71 | 91 |
| 3 | 9 | 44 | 124 | 22 | - 38 | 9 | 15 | 75 | 177 |
| 3 | 10 | 51 | 30 | 37 | 19 | 13 | 14 | 101 | 63 |
| 3 | 11 | 82 | 31 | 18 | 21 | 12 | 23 | 112 | 75 |
| 3 | 12 | 156 | 33 | 24 | 24 | 13 | 32 | 193 | 89 |
| 4 | 1 | 88 | 117 | 16 | 28 | 5 | 31 | 109 | 176 |
| 4 | 2 | 90 | 151 | 47 | 24 | 11 | 24 | 148 | 199 |
| 4 | 3 | 128 | 70 | 27 | 13 | 11 | 22 | 166 | 105 |
| 4 | 4 | 89 | 118 | 22 | - 27 | 10 | 23 | 121 | 168 |
| 4 | 5 | 50 | 112 | 15 | 20 | 10 | 17 | 75 | 149 |
| 4 | 6 | 149 | 177 | 26 | 31 | 10 | 28 | 185 | 236 |
| 4 | 7 | 112 | 97 | 17 | 32 | 4 | 15 | 133 | 144 |
| 4 | 8 | 97 | 81 | 17 | 25 | 7 | 22 | 1 121 | 128 |

Tablè 6 con't.....

| $\begin{aligned} & \hline \text { Unit } \\ & \text { Number } \end{aligned}$ | Transect Number | Fuel Component Count |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Size Class 1 |  | Size Class 2 |  | Size Class 3 |  | $\begin{gathered} \text { Size Class } 4 \\ \text { (Total) } \end{gathered}$ |  |
|  |  | Area | Area 2 | Area | 1 Area 2 | Area | 1 Area 2 | Area | Area |
| 4 | 9 | 42 | 31 | 21 | 26 | 11 | 14 | 74 | 71 |
| 4 | 10 | 554 | 122 | 26 | 26 | 8 | 12 | 88 | 160 |
| 4 | 11 | 131 | 59 | 49 | 29 | 5 | 20 | 185 | 108 |
| 4 | 12 | 138 | 134 | 22 | 43 | 6 | 19 | 166 | 196 |
| 5 | 1 | 177 | 109 | 30 | 28 | 18 | 9 | 225 | 146 |
| 5 | 2 | 130 | 81 | 21 | 21 | 7 | 14 | 158 | 116 |
| 5 | 3 | 208 | 28 | 45 | 10 | 11 | 12 | 264 | 50 |
| 5 | 4 | 225 | 23 | 38 | 20 | 7 | 17 | 270 | 60 |
| 5 | 5 | 255 | 29 | 32 | 21 | 10 | 20 | 297 | 70 |
| 5 | 6 | 442 | 41 | 36 | 21 | 10 | 23 | 488 | 85 |
| 5 | 7 | 310 | 45 | 36 | 18 | 19 | 16 | 365 | 79 |
| 5 | 8 | 185 | 24 | 39 | 9 | 11 | 5 | 235 | 36 |
| 5 | 9 | 135 | 54 | 22 | - 37 | 13 | 31 | 170 | 122 |
| 5 | 10 | 135 | 61 | 23 | 34 | 14 | 22 | 172 | 117 |
| 5 | 11 | 138 | 38 | 20 | - 22 | 8 | 24 | 166 | 84 |
| 5 | 12 | 95 | 91 | 24 | + 26 | 10 | 25 | 129 | 142 |

and

$$
\left.\begin{array}{l}
\left.\overline{\left(\sec \left(\gamma_{1}\right)\right.}\right)=1.40 \\
\left.\overline{\left(\sec \left(\gamma_{2}\right)\right.}\right)=1.13 \\
\left(\sec \left(\dot{\gamma}_{3}\right)\right)=1.10
\end{array}\right\} \quad(\text { Brown, 1973) }
$$

Also note that $K^{(i)}$ is evaluated in (13.), $\forall i \varepsilon\{1,2,3\}$ and that $m_{j}^{(i)}(t)$ is defined in (6.) $\forall i \varepsilon\{1,2,3\}, \forall j \varepsilon\{1, \ldots, 5\}$ and $\forall t \varepsilon[0,2 \pi]$.

$$
\left\{\left[v_{j}^{(i)} / \pi\left(r 2^{(i)}\right)^{2}\right\}_{j=1}^{5}\right\}_{i=1}^{3} \text { and }\left\{\sum_{i=1}^{3} v_{j}^{(i)} / \pi(\underset{2}{ }(i))^{2}\right\}_{j=1}^{5} \text { were }
$$

obtained for each study area and are presented in Table 7. (26.) was then combined with a special case of (21.) ( $\mathrm{N} \geq 3$ ) in order to obtain the minimum number of CPIS units corresponding to at least one sample mean of precision level as close to. $15 \%$ as possible. Note that a sample size of two was not considered sufficient. This is done to reduce the probability that the spacing between sampling units coincides with any pattern of particles population variation not immediately apparent. Note also that (21.) is meaningful with respect to CPIS because the random variable of interest here is an average taken over a sufficiently large sampling area (see page (20.)). Now once a satisfactory number (N) of CPIS units has been obtained for some $Z$ close to $15 \%$, the second set of formulas combines the value obtained for N with the raw CPIS time data to obtain the minimum time required to obtain a population mean estimate with degree of precision ( $Z$ ). This second set of formulas (25\%) is almost completely analogous to the second set of formulas (see (25.)) used in LIS. The only exception here is that now:

$$
\mathrm{D}^{(\mathrm{i})}\left\{\begin{array}{l}
=5.50 \text { chains if three samples are used }  \tag{27}\\
=7.24 \text { chains if four samples are used } \\
=11.12 \text { chains if five samples are used }
\end{array}\right.
$$

Table 7. Field particle volume estimates for the common point intersect sampling units.

| Unit <br> Number | Fuel Volumes Estimate |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class 1 |  | Class 2 |  | Class 3 |  | $\begin{aligned} & \text { Class } 4 \\ & \text { (Total) } \end{aligned}$ |  |
|  | Area 1 | Area 2 |
|  | $(\text { feet })^{3} /(\text { feet })^{2} \times 10^{-3}$ |  |  |  |  |  |  |  |
| 1 | 1.32 | 1.52 | 4.58 | 4.33 | 11.34 | 15.79 | 17.24 | 21.64 |
| 2 | 2.06 | 0.85 | 5.53 | 4.33 | 9.16 | 16.65 | 16.75 | 21.83 |
| 3 | 1.34 | 0.86 | 4.98 | 3.22 | 10.63 | 15.84 | 16.95 | 19.92 |
| 4 | 1.44 | 1.82 | 4.15 | 4.45 | 7.59 | 18.98 | 13.18 | 25.25 |
| 5 | 3.19 | 0.84 | 4.87 | 3.51 | 9.97 | 16.40 | 18.03 | 20.75 |

Examples of minimum total CPIS times required to obtain population mean estimates of specified precision levels are given in Table 8. Before proceeding to the analysis of the field test data, it is appropriate to briefly summarize the process by which Table 8 was obtained. Consider any i $\mathcal{E}\{1,2,3,4\}$ with respect to each study area. First formula (26.) was used to derive $\left\{V_{j}^{(i)} / \pi\left(r 2^{(i)}\right) 2\right\}_{j=1}^{5}$, i $\neq 4$. This sequence or a suitable subsequence or a suitable summation thereof was then used in (21.) with $\alpha_{\alpha}=0.05$ to derive an $N^{(i)} \geq 3$ such that at least one of its corresponding sample means had precision ( $\mathrm{Z}^{(i)}$ ) (see column 5 of Table 8) within some small neighborhood of $15 \%$. The $N^{(i)}$ so obtained was inserted together with raw CPIS time data into (25.) (see (25.) and (27.)) to obtain T1 (i) (see column 4 of Table 8 ), where $T 1{ }^{(i)}$ refers to the minimum total CPIS time required to obtain a population mean estimate of precision $Z^{(i)}$. Next formula (24.) was used to derive $\left\{V O L_{j}^{(i)}\right\}_{j=1^{\circ}}^{25}$ This sequence was used to obtain (CV) ${\underset{\text { ps }}{ }}_{(\mathrm{i})}$ which was combined with $Z^{(i)}$ to obtain $N_{m i n}^{(i)}$ through the use of (22.) where $C V{ }^{(i)}$ may be identified with (CV) ${ }_{\mathrm{ps}}^{(\mathrm{i})}$. Finally the $\mathrm{N}_{\min }^{(i)}$ so obtained was inserted with raw LIS time data into (25.) to obtain $\mathrm{T} 2^{(i)}$ which is defined analagous to $\mathrm{T}{ }^{(i)}$ (see column 3 of Table 8). It is important to realize that this process cannot be simplified because there is no formula for the CPIS technique analagous to (22.) (where CV is identified with ( CV$)_{\mathrm{ps}}$ ) used for LIS. This is due primarily to the fact that the total sampling time for the minimum number of CPIS units required to obtain a population mean estimate with a specified degree of precision is far more sensitive to the coefficient of sample variation than is the sampling time for the corresponding minimum number of LIS units.

Table 8. Sampling time comparison of the line intersect and common point intersect methods.

| Area | Class | $\frac{$ Line Intersect  <br>  Time }{ hours } | Common Point Intersect Time <br> hours | $\frac{\text { Precision }}{\%}$ | Total Sampling Time <br> Gain <br> $\%$ of line intersect <br> Sampling time |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 1 | 2 | 5.54 | 3.34 | 13.11 | +39.71 |
| 1 | 3 | 2.46 | 2.04 | 18.41 | +17.07 |
| 1 | 4 | 13.21 | 9.02 | 13.64 | +31.72 |
| 1 | 2,3 | 6.28 | 5.09 | 13.11, 18.41 | +18.95 |
| 2 | 2 | 1.47 | 2.64 | 17.56 | -79.59 |
| $\underline{2}$ | $\underline{2}$ | $\underline{2.24}$ | 2.01 | 14.50 | $+10.27$ |
| 2 | 3 | 3.01 | 1.84 | 14.14 | +38.87 |
| 2 | 4 | 5.64 | 6.10 | 15.57 | - 8.16 |
| $\underline{2}$ | 4 | 7.63 | 4.58 | 10.28 | +39.98 |
| 2 | 2,3 | 3.70 | 4.30 | 17.56, 14.14 | -16.22 |
| $\underline{2}$ | 2,3 | 4.12 | 3.35 | 14.50, 14.14 | +18.69 |

## CHAPTER IV

Analysis of the field test data
Before interpreting the results listed in Tables 4 through 8, there are two points concerning the field test that warrant discussion. These are considered below:

The first of these two points relates tor the fact that two statistical hypothesis tests are conducted on each area prior to application of the CPIS technique. These tests were performed in order to either verify or reject the necessary assumption that the downed particles in the $i$ th subset were randomly distributed in the cylinders of radius $r^{(i)}$ to be sampled, $\forall i \varepsilon\{1,2,3$. As has been noted before, the data for these two hypothesis tests (see Tables 2 and 3) consistently give good credibility to the claim of particle placement and orientation randomness within the CPIS units sampled in each study area. Now this required condition of particle placement and orientation randomness within the sampling cylinders may seem like quite a severe restriction on the CPIS technique when applied to lesser downed fuels. It should be realized that randomness is required only with respect to the CPIS units being sampled and not with respect to either the entire fuel cell or all CPIS units within the fuel cell. This means that the CPIS formulas with $\mathrm{K}^{(\mathrm{i})}$ as evaluated in (13.) may be applied to any population of lesser downed fuels with the one provision that randomness is present within the CPIS units being sampled. It should be mentioned here that the general theory on line intersect sampling (De Vries, 1973) utilizes randomness but this time it is the particles population that is considered to be randomly distributed. With respect to lesser downed fuels, LIS is somewhat more theoretically flexible than CPIS in that the general LIS theory
utilizing randomness can be modified to virtually overcome bias due to nonrandom patterns of angular orientations of particle major axes (Van Wagner, 1968; De Vries, 1973). Unfortunately the price of this flexibility is that three times as many LIS units are required (De Vries, 1973).

The second point that warrants discussion is the fact that particle intercept counts were made on each LIS and each CPIS transect with respect to all three subsets. An alternative approach would have been to use Grosenbaugh's (1967) 3P subsampling procedures (Beaufait, Marsden and Norum, 1974). These 3P procedures were not applied to the second and third subsets because it was felt that here the reduction in sampling time offered by the 3P system was not sufficient to offset the statistical errors which these procedures introduced. Grosenbaugh's 3P subsampling techniques were not applied to the first subset because it was aconsidered too difficult to make ocular estimates (required by the $3 P$ system) of the numbers of twigs ( ( $\left.0-\frac{1}{4}{ }^{\prime \prime}\right]$ ) intercepting most transects. This intersection count estimation process required by $3 P$ subsampling was deemed too difficult for twigs because in many cases these finer particles were uniformly layered, making the number of twig interceptions not only impossible to estimate but also next to impossible to count. This difficulty in counting twig interceptions was a point of much concern. When layers of particles were encountered, it becomes necessary to disturb slightly the local particles in order to obtain a valid intersection count. In the fieldwork undergone in the study areas, this process was not found awkward unless the particles of concern were twigs in layers. Then the process became mentally exasperating. Through much painstaking effort, twig interception counts were obtained for both study areas (see Table 4 for LIS twig counts and Table 6 for CPIS twig
counts). It was decided that if the five smallest preliminary CPIS units did not yield a twig population mean volume estimate with approximately $15 \%$ precision, no more CPIS units would be sampled, thus preventing a comparison of LIS and CPIS to be made for twigs. This decision was reached because the frequency of occurrence of twig layers was so great that it made the task of counting twig intersections next to futile. Since the twig data analysis (which utilized data from the five smallest CPIS units only) yielded mean volume estimates of about $40 \%$ precision for both study areas, no comparison was made of LIS and CPIS with respect to twigs. This fact is reflected in the absence of figures for the first size class in Table 8. It is suggested that if mean twig volume estimates are required in future investigations, regression equations expressing mean twig volumes per unit areatas functions of mean particle volumes per unit area for at least the second and third subsets should be developed for the important fuel types. These regression relations could then be used in place of actual physical twig data. It is important to observe that when sampling in slash, the utilization standard implemented may have a significant effect on either the general form of regression model selected or the estimates for the regression coefficients used. Due to time constraints, suitable regression equations will not be developed here. Before analyzing the data in Tables 4 through 8, it should be stressed that the CPIS technique has not failed in its application with respect to twigs. The analysis with the available data has revealed that sampling twigs in the two study areas is not practical. In areas where it is practical to sample twigs and no regression equations for twig volumes are available, the CPIS technique can be applied providing that either a bigger sampling unit radius is chosen or alternatively a larger
number of CPIS units are considered.
Tables 2 through 8 list both raw field data and important values computed from that field data. The values listed in Tables 2 and 3 have already been discussed. The data given in Tables 4, 6 and 7 are straight forward and require no further comment. In Table 5, it suffices to point out that the number of LIS units (see column 7) required to obtain a population mean volume estimate with $10 \%$ precision is more than double that required to obtain a population mean volume estimate with $15 \%$ precision (see column 6). It should be observed that this is a very high price to pay for an increase of $5 \%$ statistical accuracy. It remains only to consider Table 8 which deserves the most attention since it summarizes the performances of both the LIS and CPIS techniques when applied to the lesser downed fuels of the study areas.

An inspection of Table 8 reveals immediately that on the first study area the performance of CPIS was consistently superior to LIS. As previously mentioned the sampling times offered in Table 8 are representative of total sampling times required to obtain population mean volume estimates with specified degrees of precision (in a small neighbourhood of $15 \%$ ) at the $95 \%$ confidence level. Notice that on area 1 , the minimum time gain offered by CPIS was about $17 \%$, on 2.5 hours of LIS time. Also notice that on area 1 the maximum time gain offered by CPIS was about $40 \%$ on 5.5 hours of LIS time. These figures clearly reved that on study area 1 the total sampling times required by LIS to obtain lesser fuel volume estimates of approximately $15 \%$ precision at the $95 \%$ confidence level can be significantly reduced through proper application of the CPIS concept. However the information presented in Table 8 for study area 2 is not so
straight-forward. Recall that in the general discussion of the application of CPIS to downed woody particles, it was mentioned that statistical problems arose when the population of fuel particles contained large continuous areas differing drastically in fuel particle frequency. Recall also it was pointed out there that if such distinct areas occurred, it would be advisable to stratify the fuels population in a meaningful way and apply the theory of stratified sampling. Now it was remarked earlier in the general discussion of the field test that there was a noticeable ravine on study area 2 where lesser woody particle accumulations were evident. A closer inspection of this ravine revealed that the fuel particle frequencies of only the first and second diameter size classes (subsets) were dramatically high. Hence it became necessary to stratify the fuels populations of the first and second diameter size classes only. It is suggested here that a bias in fuel particle frequency of occurrence for the fuels of the first two size classes was present because it is probable that the distribution of fuel placement for the smallest particles becomes skewed when the direction of $\log$ pull interacts with unusual features such as significant continuous undulations or irregularities in the terrain. Going back to Table 8 , notice that on study area 2 size classes 2,4 and $(2,3)$ each have two sets of data associated with them. Notice also that one set is underlined and one is not. The underlined set refers to results of computing appropriate mean volume estimates with proportional stratification (Ehrenfeld and Littauer, 1964; p. 388); the non-underlined set refers to results without proportional stratification. The differences are highly significant, indicating that fuel stratification by fuel loading has a dramatic influence here especially upon the performance of CPIS. It should be remarked that the increases in the total LIS times after
stratification are consistent with the corresponding decreases in precision levels. Fuel stratification has a favourable effect upon both LIS and CPIS. This effect is not exposed so obviously for LIS because LIS is sensitive to a decrease in precision level within a neighbourhood of $15 \%$. Note that size class $(2,3)$ refers to the pair of size classes not their joint grouping into the size class, ( $\frac{1}{4}$ ", $3^{\prime \prime}$ ). The inclusion of size class (2, 3) is justified by remarks made earlier to the effect that it was theoretically feasible to obtain volume estimates for size class 1 from volume estimates for both size classes 2 and 3 using regression analysis.

Proper application of CPIS techniques to the problem of obtaining mean downed woody volume estimates of approximately $15 \%$ precision at the $95 \%$ confidence level has consistently resulted in significant total LIS sampling time reductions with respect to both study areas considered. The time constraints imposed upon this investigation prevent a rigorous verification of the claim that CPIS is significantly superior to LIS with respect to all downed woody fuel applications. On the other hand the findings presented in Table 8 cannot be dismissed as simply interesting. These findings offer concrete confirmation that common point intersect sampling (CPIS) is a flexible and viable sampling technique which deserves much attention. At this point the data for the field test has been presented and analyzed. It is appropriate now to consider the overall significance of the thesis, and the inferences which can be made from the information the thesis has provided.

## CHAPTER V

## Conclusions

A general sampling technique referred to as 'Common Point Intersect Sampling' (CPIS) has been developed and discussed and tested operationally with encouraging results. Appropriate CPIS formulas were derived with respect to downed woody fuels. Using these formulas the performance of CPIS was compared to that of line intersect sampling (LIS) in two fresh cutover areas. Proper application of the CPIS technique yielded lesser fuel volume estimates of about $15 \%$ precision with savings of up to $40 \%$ of the total sampling time required by the LIS technique.

The general theory of CPIS as presented is extremely flexible. It can be applied to the problem of obtaining quantitative estimates for attributes of any community of objects temporarily fixed in space. It is imperative for the reader to realize that the basic concepts involved are seated in sound logic. To emphasize this point a consideration of all the seemingly negative aspects of CPIS will now be made.

The first apparent negative property of CPIS is that there is no cut and dried general formula for obtaining the common radius of the cylindrical sampling units used. This property is closely linked to the problems of selecting the appropriate number of transects to lay out in each CPIS unit and of specifying a sufficient number of CPIS units which will result in a satisfactory estimate. Although preliminary sampling holds some promise for solving these problems there is little doubt in the mind of the author that a truly satisfactory answer lies in the art of simulation modeling. Using a systems analysis approach, the system in question can be subjected to a multitude of sampling designs with
statistical and cost criteria used as the basis for selecting the best set of outcomes. Time constraints forbid the construction of such a general systems model which would be interfaced with different general sampling techniques. In essence then what is being said is that a truly satisfactory answer to the general problem of selecting both the number of CPIS transects and the number and size of the CPIS units lies outside the scope of the thesis. Until such time as a general systems model is built, each investigator will be forced to either construct and experiment with events models similar to those presented in this thesis, conduct preliminary sampling, or else rely on his own experience and intuition in order to quantify precisely the CPIS system which will best serve him. The second apparent negative property of CPIS is that it is not immediately clear how to get the function whose integral is to be used in obtaining an estimate for the parameter of interest. Of course it can be argued that the multitude of situations which can arise here is so great that it prevents the specification of a precise technique. But there is a related procedure embedded in the general theory and reinforced in the CPIS applications. More specifically, if the attribute is a one-dimensional average, try to relate it through the multiplicitive constant $k$ to the image of a function whose component terms can be easily tallied either in the field or on a photograph. If successful, this image then leads directly to a form of the desired integrand using for example the concept of the average value of a function. The argument used for $E_{1}$ is a perfect example of this. If the attribute is two-dimensional, the integrand will probably be either one or two dimensional depending upon what characteristics can be measured. A good example here is that surface area is
generated by rotating curvilinear length. Finally if the attribute is three dimensional, the integrand will probably be either one or two dimensional, again depending upon the inputs involved and any simplifying assumptions which are valid to use. A good example here is that volume is generated by rotating surface area. In practice the selection of the integrand is almost always simplified by the fact that only certain field variables can be measured to satisfactory precision. See Chapter VI for a further discussion of this problem.

The general common point intersect sampling concept has been applied to the problem of obtaining estimators for important parameters of downed woody fuels populations. A general approach has been presented which permits the complete specification of CPIS designs and formulas for computing total volume estimates of randomly distributed downed woody particles. This approach was followed in detail with respect to the lesser downed fuels, and was followed in general with respect to the greater downed fuels. A general formula which expressed CPIS unit radius as a function of maximum particle diameter of interest was presented for randomly distributed particles. Also a general CPIS formula independent of particle distribution was offered for computing total volumes of greater downed fuels.

These results will now be summarized by the following suggested step-by-step field procedure to be followed when total volume estimates of downed woody particles are of interest:

1) specify the set of diameter size classes of interest, $\left\{\left(d_{i}, D_{i}\right]\right\}_{i=1}^{M}, d_{i} \geq \frac{1}{4} "$.
2) select a representative fuel cell in the area of concern. Avoid access roads and unusual topographic features such as rock
outcrops. If the fuel cell has no large continuous areas of unusually high or low fuel frequencies, apply steps 3 through 8 to the entire fuel cell. Otherwise stratify the fuel cell by loading and if desired apply steps 3 through 8 to each stratum. If this amount of detail is not required for each stratum, simply do steps 3 through 8 applying the theory of proportional statified sampling (Ehrenfeld and Littauer, 1964; p. 388). (Note that if this last process is conducted, the $N$ sampling units are selected on a basis of appropriate representation in the fuel strata rather than on an arbitrary basis as implied by (5) and (6).
3) Lay out a systematic sampling design consisting of about seven common point intersect sampling units, each of common radius $r^{(M)}$ where:

$$
\log _{10}{ }^{r(M)} \approx 1.22+0.47 \log _{10} D_{M}, \quad \begin{aligned}
& \mathrm{D}_{\mathrm{M}} \text { in inches } \\
& \mathrm{r}^{(\mathrm{M})} \text { in feet }
\end{aligned}
$$

Within each of these 7 large circles there are (M-1) concentric circles, where the radius of the ith circle is defined by:

$$
\log _{10} r^{(i)} \approx 1.22+0.47 \log _{10} D_{i}, \quad \begin{aligned}
& D_{i} \text { in inches } \\
& r^{(i)} \text { in feet, } \forall i \varepsilon\{1, \ldots, M-1\}
\end{aligned}
$$

Make sure that the 7 circles are spread such that they cover the entire fuel cell uniformly.
4) Set $i=1$.
5) Set $N=3, j=1$, and $k=0$. Select $N$ widely spaced large CPIS units from the 7 units laid out.
6) Consider the ith circle in the $j$ th large CPIS unit. If the fuel particles in the ith diameter size class in the ith circle
are randomly distributed (assume this unless it is very obviously false), choose a radius transect ( $t$ ) randomly using some set of random numbers. Each radius transect is defined by a sublength of cord of length $r^{(M)}$ joining two or more wooden stakes, each sharpened at one end to facilitate easy insertion into the ground. Transects are laid out geodetically (i.e. parallel to the adjacent topographic surface) not horizontally. The cord should be attached to each wooden stake with a sliding ring equipped with a wingnut to permit the cord height to be raised or lowered according to fuel depth. Count the number of particles in the ith diameter size class ( $\mathrm{d}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}}$ ] which intersect this transect. Note that an intersection occurs only if both the particle central axis and at least one of the particle edges intersect the transect. Then rotate the radius transect through a $30^{\circ}$ arc and repeat the above process. This procedure is carried out a total of 12 times to obtain the sequence $\left\{m_{j}^{(i)}\left(t+\frac{\pi \omega}{6}\right)\right\}_{\omega=1}^{12}$, where $m_{j}^{(i)}\left(t+\frac{\omega \pi}{6}\right), \omega \varepsilon\{1, \ldots, 12\}$ is the number of particles in the ith diameter size class which intersect the transect at $\left(\frac{\pi \tilde{\omega}}{6}+t\right)$ inscribed within the ith concentric circle in the $j$ th large CPIS unit. This sequence is then inserted into (19.) to obtain the desired volume estimate for the ith circle in the jth CPIS unit. Note however that if the particles in the ith circle (where $D_{i}<3^{\prime \prime}$ ) are not randomly distributed, no legitimate volume estimate can be obtained using (19.) with $\mathrm{K}^{(\mathrm{i})}$ as.evaluated in (13.), $\forall i \varepsilon\{1,2,3\}$. Now suppose that the fuel particles within the ith circle
(where $D_{i}>3^{\prime \prime}$ ) are not randomily distributed. Then repeat the sampling procedure described above for randomly distributed particles, with the exception that for each relevant intersection the distances to the left and right most points of the intersection (along the particle edge) are tallied and not the number of relevant particle intersections. As indicated previously if a truncated ellipse is encountered (i.e. a particle end), it is necessary to extrapolate one edge of the particle to the transect in order to obtain the proper value assuming of course that the particle central axis intersects the transect. The data so obtained are inserted into (14.) which is then used to obtain the desired volume estimate for the ith concentric circle ( $3<i<M$ ) in the $j$ th large CPIS unit. This estimate is described below:

$$
\begin{gathered}
\sum_{\omega=1}^{12} c_{\omega g 2_{j}^{(i)}\left(t+\frac{\omega \pi}{6}\right),} \begin{array}{l}
j \varepsilon(1, \ldots, N) \\
i \varepsilon(4, \ldots, M), D_{1}>3^{\prime \prime},
\end{array} \\
C_{\omega}= \begin{cases}4, & \text { if } \omega \text { is odd } \\
2, & \text { if } \omega \text { is even }\end{cases}
\end{gathered}
$$

7) Increment $j$ by 1 and repeat (6.) until $j=N+1+k$.
8) Take the $N$ volume estimates obtained above and compute: $\left(t_{0.975 ; N-1}\right) \cdot(\mathrm{CV})_{i} / \sqrt{\mathrm{N}} \equiv(\mathrm{TS})_{N}^{(i)}$ where $(\mathrm{CV})_{i}=\underset{\text { coefficient of sample }}{\text { variation for the ith }}$ diameter size class.

$$
\begin{aligned}
{ }^{t_{0.975} N-1=} & \text { value from Student's } t \\
& \text { distribution with }(N-1) \\
& \text { degrees of freedom. }
\end{aligned}
$$

If (TS) ${ }_{\mathrm{N}}^{(\mathrm{i})} \leq 0.15$, the desired $95 \%$ confidence interval with $15 \%$ precision has been obtained. Hence increment i by 1 and repeat steps (5) through (8)
until $i=M+1$. However if $(T S)_{N}^{(i)}>0.15$, increment $K$ by 1 repeat steps (6), (7) and (8) with $j=N+K$ until either $(T S)_{N}^{(i)} \leq 0.15$ or $j=8$. Then increment $i$ by 1 and repeat steps (5) through (8) until $i=1+1$. Note that (6), (7) and (8) are repeated with only one new added sampling unit. This means that it is necessary to select only one new CPIS unit each time (6), (7) and (8) are repeated for a particular i\&\{1,..., M\}. It should be observed that the above guidelines are not applicable to particles which lie in the ( $0^{\prime \prime}-\frac{1}{4} \|^{\prime \prime}$ ] diameter size class. Upon investigation of these smaller particles it was discovered that in many downed woody fuel complexes, field problems (i.e. clumps or piles of particies interspersed with needle mats) were encountered making impractical the twig counting process or even the estimation of twig counts. It is recommended that for the $\left[0 "-\frac{1}{4}{ }^{\prime \prime}\right]$ size class, an interim suitable regression model be developed. This model would express particle volume in the $\left[0^{\prime \prime}-\frac{1}{4}{ }^{\prime \prime}\right]$ size class as a function of particle volumes in the $\left[\frac{1_{4}^{\prime \prime}}{4 \prime \prime} 1^{\prime \prime}\right]$ and ( $\left.1^{\prime \prime}-3^{\prime \prime}\right]$ size classes and any other factors (e.g. type of disturbing influence and utilization standard for a harvesting operation) deemed important. Due to time constraints the above step-by-step procedure necessarily includes slight abuses of that portion of the general CPIS theory previously developed for greater downed particles. The above procedure can still validly serve as a sound tentative sethof guidelines for all downed woody particles pending further studies of the performance of CPIS techniques with respect to greater downed particles.

It can validly be argued that there are many sampling problems of more economic importance than those involved with downed woody materials. In fact in Chapter VI suggestions are given as to how the
common point intersect technique may be applied in other forestry-related areas. Perhaps the strength of CPIS should have been tested in some other forestry problem, such as the task of estimating important standing timber parameters. The fact that the CPIS concept was not applied there has been amply justified. It is the claim of the author that the problem of obtaining lesser downed fuel volume estimates is an extremely difficult one, and as such serves as an excellent test for evaluating any general sampling scheme. The common point intersect technique did more than pass this test on two study areas; when properly applied it proved itself to be significantly more time economical than line intersect sampling, which to date is the only economically realistic means of obtaining quantitative estimates for physical parameters with respect to lesser downed woody material. It could also be argued quite validly that the new sampling technique as presented is unappealing to the average potential user. This disenchantment stems almost entirely from the use of mathematics beyond the scope of the average potential user. More than likely he will be hesitant about using a sampling technique which he does not fully understand. Note that there is nothing complicated about picking locations for some points and imagining circles of a common specified diameter about those points. There is nothing complex about inscribing a few spokes at specified angles within these circles and counting particle intersections along each spoke and/or making a few simple measurements at each intersecting particle. It should not be difficult to see that these particle counts andor intersections within a particular circle result in an estimate of some attribute of concern with respect to that circle. The only thing which the average potential user
may find hard to follow is the higher mathematics used in converting the particle intercept counts and/or measurements to estimates of lengths, surface areas, volumes or whatever is of interest. The use of advanced mathematics here could be frowned upon because it complicates the theory. But it is because of the higher mathematics that the field work can be reduced to a minimal level. The average potential user is most interested in how much work he has to do and how much he has to spend to get what he wants. The common point intersect technique hás been shown to make substantial reductions in both of these areas at least with respect to lesser downed woody materials. There is good promise that with the use of CPIS efficient solutions for other sampling problems can be found.

In the step-by-step field procedure offered on p.74-78 there are some formulas whose evaluation is periodically required in the field. The author does not expect the average potential user to take these guidelines verbatim into the field with him. But rather these guidelines are intended to form a basis for developing a field guidebook which would permit the user to look up in a table the volumes, etc. for his particular data. The level of resolution of these tables is primarily a function of the accuracy desired by most users. The average potential user is never expected to understand mathematical formulas. At this stage all the potential user need be aware of is that the common point intersect technique was tested on two dissimilar slash areas and was shown to require significantly shorter sampling times than the most successful sampling technique currently available, namely line intersect sampling. Field packages will come later.

The real power of common point intersect sampling lies in the
fact that it is extremely versatile. It can be likened to cluster sampling and as such is most beneficial in those cases where the cost of selecting and locating a population element far exceeds the cost of determining the contribution which that element makes to the estimate for the attribute of interest (Freese, 1962; p.64). A great deal of effort has been made to convince the reader that common point intersect sampling is a sound and viable non-destructive technique which deserves the attention of investigators from almost every scientific discipline. It is almost redundant to say that more studies in many more sampling problem areas are required in order to thoroughly evaluate the worth of this new sampling concept. But this is still not a valid reason to ignore common point intersect sampling until its value has been conclusively determined. Through numerous arguments it has been indicated that applications of CPIS techniques are feasible now at least in the forestry-related areas of downed woody material and standing timber (see Chapter VI). The two main objectives of this thesis were stated as the presentation of a new general sampling theory and the application of this theory to an important social problem area. But these objectives are only a means to an end, which is the full operational use of common point intersect sampling. The achievement of this end is what this thesis is a11 about.

## CHAPTER VI

Practical applications of the common point intersect technique
Thus far the common point intersect sampling technique (CPIS) has been applied only to the problem of estimating parameters for populations of downed woody materials. But this is only one small problem for which CPIS offers a promising solution as this chapter will demonstrate. Before discussing alternative applications of CPIS consider first a simplified version of the sampling concept upon which CPIS is based. CPIS selects cylindrical sampling units enclosing elements of the population of interest. CPIS hopes to choose these units sufficiently large so that the variability among them with respect to the attribute of interest is small. Within each unit a number of line transects are inscribed. Regarding each sampling unit in two dimensions as a circle, each transect corresponds to a radial segment. Many measurements are made in each circle at places defined by the intersection points of the transects and relevant population elements. For a given circle these measurements are inserted into appropriate formulas which given an estimate of the attribute of interest with respect to that circle. When applying CPIS to the problem of estimating some physical property of interest, it is usually of benefit to ask the question 'What geometric figure when rotated about the centre of a circle will yield that physical property?'.

Consider first the problem of estimating the length of a stream or road network. The physical property of interest is length. So what geometric figure when rotated about the centre of a circle yields length? The answer is simply a point. So for a given CPIS unit let $X_{i}^{(j)}(\theta)$ be the distance along the base of that unit from the centre of the unit to the $j \frac{\mathrm{th}}{\mathrm{m}}$ point formed by the intersection of the transect at $\theta$ with the $i-\frac{t h}{}$ stream or road intersecting the transect at $\theta$. Let $m_{i}(\theta)$ be the number of
such points formed by the intersection of the transect at $\theta$ with the $i \frac{\text { th }}{}$ stream or road intersecting the transect at $\theta$. Also let $n(\theta)$ be the number of stream or road intersections intersecting the transect at $\theta$. Then

$$
\int_{0}^{2 \pi} \sum_{i=1}^{n(\theta)} \sum_{j=1}^{m_{i}(\theta)} x_{i}^{(j)}(\theta) d \theta \text { gives a measure of the total length of streams or }
$$ roads within the CPIS unit of interest. Notice that the result is independent of stream or road distribution or frequency.

Consider next the problem of estimating large numbers of fructifications of wood-destroying fungi, large numbers of migrating wildife or large numbers of host-attached plant parasites. The insight gained from the discussion of experiment $E_{1}$ should provide the key to these problems. For a fixed CPIS unit of radius $r$ let $n(\theta)$ be the number of population elements intersecting the transect at $\theta$. Then $\frac{1}{2 \pi r} \int_{0}^{2 \pi} n(\theta) d \theta$ gives a measure of the average number of elements per unit area within that CPIS unit providing of course that the units of $r$ are sufficiently small. This result is also independent of distribution or frequency of the elements of concern. The problem of estimating crown area (Husch, Miller and Beers, 1972; p.106) and mean crown diameter (Husch, Miller, and Beers, 1972; p.49) with CPIS techniques will be considered next. Time constraints permit only a general investigation here and this is limited as above to the generation of the integrand in (1.) with respect to each of the above two stand parameters.

Focus upon the problem of estimating crown area using the CPIS concept. Suppose that aerial photographs are available which permit crown boundaries to be delineated. Let p 1 be a parameter representing the average crown area per unit area. Similar to experiment $\mathrm{E}_{2}$ (see 'Application to downed woody fuels'), let $k$ be $\pi r^{2}$. The $F_{j}(2 \pi)$ represents a total crown
area with respect to the area in the $j$ th CPIS unit. Using notation as in the application of CPIS to downed woody particles, a function $f_{j}$ is desired such that:

$$
F_{j}(2 \pi)=\int_{0}^{2 \pi} f_{j}(t) d t \text {, where } F_{j}(2 \pi)=\pi r^{2} X\left(S_{j}\right) \text {, and }
$$

$X\left(S_{j}\right)=$ value taken on by $X$ at $S_{j}, j \varepsilon\{1, \ldots, N\}$, where $X$ again refers to a random variable defined on the sample space of outcomes of experiment $E_{2}$. Now in order to produce $f_{j}(t)$ in terms of variables which can be easily measured, it is necessary to make some assumptions regarding the regions enclosed by the crown boundaries. It is valid to assume that each region defined by a crown is a collection of connected sub-regions (Taylor, 1965; p.76). If desired, this can be taken to mean that each sub-region can be traced without ever havingeto lift the pencil. The attribute of concern here is a surface area which is two-dimensional. So what geometric figure when rotated about the centre of a circle yields surface area? The answer is a line segment. A basic understanding of calculus reveals that if a line segment of small length $\Delta \mathrm{X}$ is located approximately a distance X away from the origin, a surface area of $(\Delta X)(\mathbb{x} \cdot \Delta \theta)$ is generated by sweeping the line segment through $\Delta \theta$ radians. It follows trivially that:

$$
f_{j}(t)=\frac{1}{2} \sum_{i=1}^{m_{j}(t)} \sum_{k=1}^{P i, j}\left[e_{k, i, j}^{2}(t)-b_{k, i, j}^{2}(t)\right], \forall t \varepsilon[0,2 \pi], \text { where }
$$

$m_{j}(t)=$ number of crowns intersecting the CPIS transect located at the $t$ within the $j$ th CPIS unit.

Pi,j $=$ number of line segments formed by the intersection of the transect at $t$ with the ith crown intersecting the transect at $t$,
$i \varepsilon\left\{1, \ldots, m_{j}(t)\right\}$, within the $j$ th CPIS unit.
$e_{k, i, j}(t)=$ furthermost end-point of the $k$ th line segment formed by the intersection of the transect at $t$ in the $j$ th CPIS unit with the $i^{\text {th }}$ crown intersecting the transect at $t, k \varepsilon\{1, \ldots, P i, j\}$, $i \varepsilon\left\{1, \ldots, m_{j}(t)\right\}$
$b_{k, i, j}(t)=$ identical to $e_{k, i, j}(t)$ with the exception that $b_{i, j, j}(t)$ refers to the innermost end-point.
$f_{j}$ is sectionally continuous on $[0,2 \pi]$ and thus satisfies all required analytical properties. Note that the only inputs required by $f_{j}$ are linear distances which are most often easily obtained from aerial photographs. It is important to realize that the CPIS formulas produced to obtain. estimates of crown area are independent of tree distribution and also virtually independent of crown shape.

The problem of estimating mean crown diameter with CPIS techniques is completely analagous to experiment $E_{1}$ (See 'Application to downed woody particles'). The only assumptions required are those used directly above, namely that the aerial. photographs used permit a meaningful delineation of crown boundaries, and that each crown may be regarded as a collection of connected sub-regions. Since crown diameters are usually well-defined except for some hardwoods (Sayn-Wittgenstein, 1960), they can be measured directly and used with an analogue to the average function value formula presented in experiment $E_{1}$ (See (4.)) to;yield the desired estimate.

With CPIS techniques it is easily possible to obtain estimates for other stand parameters such as number of trees per unit area by species (where species can be identified), mean crown diameter per tree by species, mean height per tree by species (where tree height can be either estimated or else regressed from other measurable tree characteristics, mean tree
volume per tree by species, etc. Note that these estimates can be inserted into suitable regression equations to produce estimates for component ovendry weights of total-tree, bole-wood, bole-bark, total-crown and branches of different sizes (Kurucz, 1969).

Now consider the problem of estimating the surface areas of lakes, watersheds, large river systems, or areas occupied by different herbaceous and ligneous species. The application of CPIS to these problems is similar to the application of CPIS in estimating crown area for standing timber. So let $a_{i}^{j}(\theta)$ and $b_{i}^{j}(\theta)$ be the distances along the base of some CPIS unit from the centre of the base of the unit to the left and right hand end-points respectively of the $j$ th segment formed by the intersection of the transect at $\theta$ with the $i$ th population element intersecting the transect at $\theta$. Let $n_{i}(\theta)$ be the number of line segments formed by the intersection of the transect at $\theta$ with the $i \frac{\text { th }}{}$ population element intersecting the transect at $\theta$. Also let $m(\theta)$ be the number of population elements intersecting the transect at Ө. Then

$$
\int_{0}^{2 \pi}\left\{\sum_{i=1}^{m(\theta)} \sum_{j=1}^{n_{i}(\theta)} \int_{a_{i}}^{b_{i}^{j}(\theta)} x(\theta d x\} d \theta \quad\right. \text { gives a measure of the total }
$$

surface area occupied by the population elements within that CPIS unit. Note that this result is independent of the distribution or frequency of the elements of concern. This result can also be used to measure rate of seasonal change or annual growth by comparing figures computed from photographs or direct measurements taken at appropriate times.

## BIBLIOGRAPHY

1. Acton, F.S. 1970. Numerical methods that work. Harper and Row Publ., New York, 541 p.
2. Anderson, H.E. 1964. Mechanisms of fire spread, research progress report No. 1. U.S.D.A. For. Serv. Res. Pap. INT-8, 20 p. Int. For. and-Range Exp. Stn., Ogden, Utah.
3. Anderson, H.E., A.P. Brackebusch, R.W. Mutch, and R.C. Rothermel. 1966. Mechanisms of fire spread, research progress report No. 2. U.S.D.A. For. Serv. Res. Pap. INT-28, 29 p. Int. For. and Range Exp. Stn., Ogden, Utah.
4. Anderson, H.E. 1969. Heat transfer and fire spread. U.S.D.A. For. Serv. Res. Pap. INT-69, 20 p. Int. For. and Range Exp. Stn., Ogden, Utah.
5. Bailey, G.R. 1969. An evaluation of the line-intersect method of assessing logging residue. Can. Dept. Fish. For., For. Prod. Lab. Inf. Rep. VP-X-23. 41 p.
6. Bailey, G.R. 1970. A simplified method of sampling logging residue. For. Chron. 46(4): 288-294.
7. Beaufait, W.R. 1965. Characteristics of back fires and headfires in a pine needle fuel bed. U.S.D.A. For. Serv. Res. Note INT-39. Int. For. and Range Exp. Str., Ogden, Utah.
8. Beaufait, W.R., M.A. Marsden, and R.A. Norum. 1974. Inventory of slash fuels with $3 P$ subsampling. Gen. Tech. Rep. INT-13, 17 p. Int. For. and Range Exp. Stn., Ogden, Utah.
9. Beaufait, W.R. and C.E. Hardy. The Miller Creek-Newman Ridge prescribed fire study: fire research summary. Manuscript in preparation, U.S.D.A. For. Serv. Int. For. and Range Exp. Stn., Ogden, Utah.
10. Blanchard, R.K. 1938. Progress report on fuel studies. Unpublished report, U.S. Forest Serv., Calif. Forest and Range Exp. Stn., 20 p.
11. Bormann, F.H. 1953. The statistical efficiency of sample plot size and shape in forest ecology. Ecol. 34: 474-487.
12. Bradley, D.P. 1972. Improve forest inventory with access data measure transport distance and cost to market. (U.S.D.A. For. Serv. Res. Pap. NC-82). North Cent. For. Exp. Stn., St. Paul, Minn. 21 "p., illus.
13. Brown, J.K. 1966. Forest floor fuels in red and jack pine stands. U.S.D.A. For. Serv. Res. Note NC-9. North Cent. For. Exp. Stn., St. Paul, Minn.
14. Brown, J.K. 1970. Ratios of surface area to volume for common fine fuels. For. Sci. 16(1): 101-105.
15. Brown, J.K. 1970. Vertical distribution of fuel in spruce-fir logging slash. U.S.D.A. For. Serv. Res. Pap. INT-81, 9 p. Int. For. and Range Exp. Stn., Ogden, Utah.
16. Brown, J.K. 1971. A planar intersect method for sampling fuel volume and surface area. For. Sci. 17(1): 96-102.
17. Brown, J.K. Calculation of downed woody fuel quantities using the planar intersect method. Manuscript in preparation, U.S.D.A. For. Serv. Int. For. and Range Exp. Stn., Ogden, Utah.
18. Brown, J.K. Inventory of downed woody material and duff. Manuscript in preparation, U.S.D.A. For. Serv. Int. For. and Range Exp. Stn., Ogden, Utah.
19. Brown, J.K. and P.J. Roussopoulos. Sampling small fuel volumes using the planar intersect method. Manuscript in preparation, U.S.D.A. For. Serv. Int. For. and Range Exp. Stn., Ogden, Utah.
20. Byram, G.M., H.B. Clements, E.R. Elliott and P.M. George. 1964. An experimental study of model fires. U.S.D.A. For. Serv. Tech. Rep. No. 3, 36 p. Southeastern For. Exp. Stn.
21. Canadian Forestry Service. 1970. Canadian forest fire weather index. Can. For. Serv., Dep̈t. Fisheries and For., Ottawa.
22. Canadian Forestry Service. 1970. Forest fire behaviour system. Pacific Forest Research Centre, Victoria, B.C.
23. Canfield, R.H. 1941. Application of the line interception method in sampling range vegetation. J. Forest. 39: 388-394.
24. Cartan, H. 1963. Elementary theory of analytic functions of one, or several complex variables. Addison-Wesley Publishing Co., Inc., Reading, Mass. 226 p.
25. Chandler, C.C. 1955. The classification of forest fuels for wildland fire control purposes. Unpublished Master's thesis, Univ. of Calif. Berkeley, 91 p., illus.
26. Curry, J.R. and W.L. Fons. 1940. Forest fire behaviour studies. Mech. Eng. 62(3): 219-225.
27. Davis, K.P. 1959. Forest fire control and use. McGraw-Hill Book Co., Inc., New York, 584 p., illus.
28. Deeming, J.E., J.W. Lancaster, M.A. Fosberg, R.W. Furman and M.J. Schroeder. 1972. The National Fire-Danger Rating System. U.S.D.A. For. Serv. Res. Pap. RM-84, 165 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo.
29. De Vries, P.G. 1973a. A general theory on line intersect sampling with application to logging residue inventory. Mededelingen Landbouwhogeschool Wageningen 73-11: 23 p. Nederland.
30. De Vries, P.G. 1973b. Line intersect sampling over populations of arbitrarily shaped elements. MededelingenLandbouwhegeschool Wageningen 73-19: 21 p . Neder1and.
31. Draper, N.R. and H. Smith. 1966. Applied regression analysis. John Wiley and Sons, Inc., New York. 407 p.
32. Ehrenfeld, S. and S.B. Littauer. 1964. Introduction to statistical method. McGraw-Hill Book Co., Inc., New York. 533 p.
33. Emmons, H.W. 1965. Fundamental problems of the free burning fire. 10th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh, pp. 951-964.
34. Fahnestock, G.R. 1960. Logging slash flammability. U.S.D.A. For. Serv. Res. Pap. No. 58, 67 p. Int. For. and Range Exp. Stn., Ogden, Utah.
35. Fahnestock, G.R. and J.H. Dietrich. 1962. Logging slash flammability after five years. U.S.D.A. For. Serv. Res. Pap. 70, 15 p. Intermt. For. and Range Exp. Stn., Ogden, Utah.
36. Fons, W.L. 1946. Analysis of fire spread in light forest fuels. J. Agr. Res. 72: 93-121, illus.
37. Fons, W.L. 1950. Heating and ignition of small wood cylinders. Ind. and Eng. Chem. 42: 2130-2133, illus.
38. Frandsen, W.H. 1973. Effective heating of fuel ahead of spreading fire. U.S.D.A. For. Res. Pap. INT-140, 16 p., illus. Intermt. Forest and Range Exp. Stn., Ogden, Utah.
39.. Freese, F. 1962. Elementary forest sampling. U.S.D.A. Agr. Handbook No. 232. 91 p.
39. Freund, J.E. and FiJ. Williams. 1958. Modern business statistics. Prentice-Hall, Inc., Englewood Cliffs, N.J. 539.p.
40. Gibbons, J.D. 1971. Nonparametric statistical inference. McGrawHill Book Co., New York. 306 p.
41. Glass, B. 1972. An elementary introduction to dynamic programming a state equation approach. Allyn and Bacon, Inc., Boston. 402 p.
42. Gooda11, D.W. 1952. Quantitative aspects of plant distribution. Biol. Rev. 27: 194-245.
43. Hansen, M.H., W.N. Hurwitz, and W.G. Madow. 1953. Sample survey methods and theory. Vol. 1. Methods and applications. John Wiley and Sons, New York. 638 p., illus.
44. Hawley, L.F. 1926. Theoretical considerations regarding factors which influence forest fires. J. Forest. 24: 756-763.
45. Howard, J.O. and F.R. Ward. 1972. Measurement of logging residue alternative applications of the line intersect method. U.S.D.A. For. Serv. Res. Note PNW-183, 8 p. Pac. Northwest For. and Range Exp. Stn., Portland, Oreg.
46. Husch, B., C.I. Miller and T.W. Beers. 1972. Forest mensuration. Edition 2. The Ronald Press Co., New York. 410 p.
47. Klor, G.J. 1969. An approach to general systems theory. Van Nostrand Reinhold Co., New York. 323 p.
48. Kurucz, J. 1969. Component weights of Douglas-fir, western hemlock, and western red cedar biomass for simulation of amount and distribution of forest fuels. Univ. of B.C., Fac. of For., M.F. thesis (mimeo). 116 p .
49. Lang, S. 1968. Analysis I. Addison-Wesley Publ. Co., Inc., Reading, Mass. 460 ; p .
50. Loetsch, F. and K.A. Haller. 1964. Forest Inventory. Vol. 1. Munich - BLV Verlagsgesellschaft.
51. Matthews, D.N. 1937. Small-plot method of rating forest fuels. J. Forest. 35: 929-931.
52. Maxwell, A.E. 1961. Analysing qualitative data. Methuen and Co. Ltd., London. $163 / \mathrm{p}$.
53. McMillan, C. and R.F. Gonzalez. 1965. Systems Analysis. A computer approach to decision models. Richard D. Irwin Inc., Homewood, Ill. 336 :p.
54. Mize;, J.H. and J.G. Cox. 1968. Essentials of simulation. PrenticeHall, Inc., Englewood Cliffs, N.J. 234 p.
55. Morris, M.G. 1973. Estimating understory plant cover with rated microplots. USDA For. Serv. Res. Pap. RM-104, 12 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo.
56. Osborne, J.G. 1942. Sampling errors of systematic and random surveys of cover type areas. Jour. Amer. Stat. Assn. 37: 256-76.
57. Rothermel, R.C. and H.E. Anderson. 1966. Fire spread characteristics determined in the laboratory. U.S.D.A. For. Serv. Res. Pap. INT-30, 34 ;'p. Int. For. and Range Exp. Stn., Ogden, Utah.
58. Rotherme1, R.C. 1972. A mathematical model for predicting fire spread in wildland fuels. U.S.D.A. For. Serv. Res. Pap. INT-115, 40 p. Int. For. and Range Exp. Stn., Ogden, Utah.
59. Roussopoulos, P.J. and Von J. Johnson. 1973. Estimating slash fuel loading for several Lake States tree species. (U.S.D.A. For. Serv. Res. Pap. NC-88). North Cent. For. Exp. Stn., St. Paul, Minn. 8p., illus.
60. Sayn-Wittgenstein, L. 1960. Recognition of tree species on air photographs by crown characteristics. Can. Dept. of For., For. Res. Div., Technical Note No. 5.
61. Scheid, F. 1968. Schaum's outline of theory and problems of numerical analysis. McGraw-Hill Book Co., Inc., New York. 422 p.
62. Segebaden, G. von. 1964. Studies of cross-country transport distances and road net extension. Studia Forestalia Suecica 18: 70 p. illus.
63. Segebaden, G. von. 1969. Studies on the accessibility of forest and forest land in Sweden. Studia Forestalia Suecica 76: $76 \mathrm{y}^{2} \mathrm{p}$. illus.
64. Smith, J. 1968. Computer simulation models. Hafner Pub1. Co., New York. 112 ;p.
65. Smith. J.H.G. 1970. Weight, size and persistance of needles of Douglasfir, western hemlock, western red cedar, and other B.C. conifers. U.B.C. Fac. of For. (mimeo) 6 , and tables.
66. Smith, J.H.G. 1970. Development of sampling and simulation methods for description of forest fuels. Final rep. on Can. Dept. Fish. and For., Can. For. Serv. EMR Proj. F-53, Univ. of B.C. Fac. of For., Vancouver, B.C.
67. Snedecor, G.W. 1956. Statistical methods applied to experiments in agriculture and biology. Edition 5. Iowa State Coll. Press, Ames. 534 p., illus.
68. Spiege1, M.R. 1963. Schaum's outline of theory and problems of advanced calculus. Schaum Publ-Co., New York. 384 p.
69. Spiege1, M.R. 1969. Schaum's outline of theory and problems of real variables - Lebesgue measure and integration with applications to Fourier series. McGraw-Hill Book Co., New York. 194 "p.
70. Steel, R.G.D. and J.H. Torrie. 1960. Principles and procedures of statistics with special reference to the biological sciences. McGraw-Hill Book Co., Inc., New York. 481 p., illus.
71. Steele, R.W. and W.R. Beaufait. 1969. Spring and autumn broadcast burning of interior Douglas-fir slash. Mon. Forestand Conserv. Exp. Sta. Bull. No. 36, 12 p.
72. Steward, F.R. 1971. A mechanistic fire spread model. Science and Technol. 4(4): 177-86.
73. Stockstad, D.S. 1967. Ignition properties of fine forest fuels: A problem analysis. Unpublished report, U.S. Forest Serv., Int. For. and Range Exp. Stn. Northern Forest Fire Laboratory, Missoula, Mont. 17 !p.
74. Storey, T.G., W.L. Fons and F.M. Sauer. 1955. Crown characteristics of several coniferous tree species. U.S. Forest Serv., Div. Fire Res., Interim Tech. Rep. AFSWP-416, 95. P., illus.
75. Tate, M.W. 1957. Nonparametric and shortcut statistics. Interstate Printers and Publishers, Inc., Danville, Ill. $171 \% \mathrm{p}$.
76. Taylor, A.E. 1959. Calculus with analytic geometry. Prentice-Hall, Inc., Englewood Cliffs, N.J. $762 \because \mathrm{p}$.
77. Taylor, A.E. 1965. General theory of functions and integration. Blaisdell Pub1. Co., New York. $437 \%$ p.
78. Thomas, G.B. 1951. Calculus and analytic geometry. Edition 3. Addison-Wesley Publ. Co., Inc., Reading, Mass. 1010 \%p.
79. Van Wagner, C.E. 1968. The line intersect method in forest fuel sampling. For. Sci. 14(1): 20-26.
80. Van Wagner, C.E. 1970. New developments in forest fire danger rating. Can. Dept. Fish. and For. Can. For. Serv., Infor. Rep. PS-X-19.
81. Van Wagner, C.E. 1972. Heat of combustion, heat yield, and fire behaviour. Can. Dept. Fish. and For., Can. For. Serv. Info. Rep. PS-X035.
82. Van Wagner, C.E. 1973. Rough prediction of fire spread rates by fuel type. Can. Dept. Fish. and For., Can. For. Serv. Info. Rep. PS-X-42.
83. Wagener, W.W. and H.R. Offord. 1972. Logging slash: its breakdown and decay of two forests in northern California. U.S.D.A. For. Serv. Res. Pap. PSW-83, 11 \%'p. Pac. Southwest For. and Range Exp. Stn., Berkeley, Calif.
84. Wald, A. 1947. Sequential analysis. John Wiley and Sons, Inc., New York. 212 p.
85. Walker, J.D. 1971. A simple subjective fuel classification system for Ontario. Can. Dept. Fish and For., Can. For. Serv. Info. Rep. 0-X-155.
86. Warren, W.G. and P.F. Olsen. 1964. A line intersect technique for assessing logging waste. For. Sci. 10(3): 267-276.
87. Widder, D.V. 1957. Advanced calculus-second edition. Vo1. 1. Edition 2. Prentice-Hall, Inc., Englewood Cliffs, N.J. 520 p.
88. Wilson, W.J. 1959. Analysis of the spatial distribution of foliage by two-dimensional point quadrats. New Phytol. 58: 92-101, illus.

## APPENDIX I

Problem: To prove that the volume obtained by rotating an ellipse at $\theta_{1}$ through a small arc $\left[\begin{array}{c}\theta_{0}^{R}, \theta_{2}^{R}\end{array}\right], \theta_{0}<\theta_{1} \leq \theta_{2}$, is given by (5).
Proof: Fix $\theta_{1}$ in $\left[\begin{array}{c}\theta_{0}^{R}, \theta_{2}^{R} \\ 0\end{array}\right]$. Let the ellipse be denoted by E1. Let the center-point of El by ( $\mathrm{S}, \mathrm{Yo}$ ) and let the left and right hand endpoints of El be X1 and X 2 respectively. Finally let $d, \gamma$, and $\phi$ be defined as in (5) and assume that $\gamma>0$.
E1 lies on a rectangle $R$ (cross-section of some right-circular cylinder) inscribed within the population of concern. Let the base of $R$ define an $X^{+}$axis and the other edge of $R$ intersecting the centre of the circular base of the sampling unit define a $Y^{+}$axis. Let the major axis of El be inclined at an angle $\propto,-\frac{\pi^{R}}{2}<\infty<\frac{\pi^{R}}{2}$, from the $\mathrm{X}^{+}$; axis.

From simple geometric considerations it can be seen that the ellipse (E2) defined by:

$$
\frac{(X-S)^{2}}{(\mathrm{~d} / 2)^{2}}+\frac{(\mathrm{Y}-\mathrm{Yo})^{2}}{\left(\frac{\mathrm{dsec})^{2}}{2}\right.}=1
$$

intersects $E 1$ at ( $S, Y o+\frac{\text { dsecy }}{2}$ ). This gives one point on E1. Now consider the ellipse (E3) defined by:

$$
\frac{(\mathrm{X}-\mathrm{S})^{2}}{(\mathrm{~d} / 2)^{2}}+\frac{(\mathrm{Y}-\mathrm{Yo})^{2}}{\left(\frac{\mathrm{dcscy}}{2}\right)^{2}}=1 \text { and the line defined by }
$$

$Y=(X-S) \cot \phi+$ Yo where $\left.\phi=\sin ^{-1} \frac{d}{(X 2-X 1)}\right\}, \quad 0<\leq \pi / 2$
From elementary calculus the length of the line $Y=X \cot \phi$
which lies to the right of ( 0,0 ) and which is enclosed by E3 is:


Now let $\left(\left(\mathrm{Xo}_{\mathrm{o}}+\mathrm{X}_{3}\right)=\mathrm{X}_{4}, \mathrm{Yo}\right), \mathrm{X}_{3}>\hat{0}$, be a point on E1. Then from geometric considerations, it is seen that a second point on El is:

$$
\left(X o+\frac{d \csc \phi}{2 \sqrt{1+\cot ^{2} \phi \sin ^{2}}}, \text { Yo }\right)
$$

These two points lead to the equation of El in the ( $\mathrm{X}, \mathrm{Y}$ ) system. To see this, rotate the $X$ and $Y$ axes through $\propto^{R}$ in either a clockwise or counterclockwise direction, whichever is appropriate to obtain a new ( $\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$ ) system. The equation of $E 1$ in the ( $X^{\prime}, Y^{\prime}$ ) system then becomes:

$$
\frac{\left(X^{\prime}-S^{\prime}\right)^{2}}{(\mathrm{a} / 2)^{2}}+\frac{\left(Y^{\prime}-Y O^{\prime}\right)^{2}}{(\mathrm{~d} / 2)^{2}}=1, \text { where }
$$

(*) $\quad X^{\prime}=\gamma^{\prime} \sin \alpha+X \cos \alpha$
and $Y^{\prime}=Y^{\prime} \cos \alpha_{-} \quad X \sin { }^{\alpha}$
Inserting the two points on El into (*) yields:
$(* *)\left\{\begin{array}{l}a=\operatorname{dcsc} \phi \sec \gamma \\ \text { and } \cos \alpha=\frac{\cot \phi}{\sqrt{\csc ^{2} \phi \sec ^{2} \gamma-1}}, \text { where } \sin \alpha c .\left\{\begin{array}{l}>0 \text { if rotation is counterclockwise } \\ <0 \text { if rotation is clockwise }\end{array}\right.\end{array}\right.$
Note that these last two equations also hold if $\ddot{\gamma}=0$. Consider a small vertical strip of the area enclosed by E1. Let this strip have width $\Delta X$ and height $\mathrm{t}(\mathrm{X})$. The area of this strip is approximately $\mathrm{t}(\mathrm{X}) \cdot \Delta \mathrm{X}$. When this strip is rotated about the $X$ axis through a small arc of length $X\left(\Theta_{2}^{R}-\Theta_{0}^{R}\right)=X \cdot \Delta \theta^{R}$, the resultant volume generated is approximately $t(X) \cdot \Delta x \cdot x \cdot \Delta \theta^{R}$. Using the continuity of the height difference curve (maximum height less minimum height for each $X$ ) defined by $E 1$, it follows that the volume generated by rotating E1. about the $X$ axis through a small arc $\left[\theta_{0}{ }^{R}, \theta_{2}^{R}\right]$ of measure $\Delta \theta^{R}$ is:

$$
\Delta \theta \int_{X 1}^{x 2} x \cdot t(X) d x
$$

From (*) and the quadratic formula, it can be shown that:

$$
\int_{X 1}^{X 2} x \cdot t(X) d X=\frac{1}{A} \int_{X 1}^{X 2} x+\sqrt{B^{2}-4 A C} d X \text {, where }
$$

$$
\begin{aligned}
& A=4 \csc ^{2} \phi \\
& B=8(X-S)\left(1-\csc ^{2} \phi \cdot \sec ^{2} \gamma\right) \cos ^{\alpha} \cdot \sin ^{\alpha} \\
& C=4(X-S)^{2}\left(1+\cot ^{2} \phi \sin ^{2} \gamma\right) \sec ^{2} \gamma-d^{2} \csc ^{2} \phi \sec ^{2} \gamma
\end{aligned}
$$

Simplification using (**) results in

$$
\sqrt[+]{B^{2}-4 A C}=4 \csc \phi \sec \gamma+\sqrt{d^{2} \csc ^{2} \phi-4(X-S)^{2}}
$$

Therefore

$$
\begin{aligned}
& \int_{X 1}^{X 2} x \cdot t(X) d x=\frac{\sec \gamma}{\csc \phi} \int_{X 1}^{X 2} x \sqrt{d^{2} \csc ^{2} \phi-4\left(X-\dot{S}_{i}\right)^{2}} d x \\
& \begin{array}{l}
=\frac{\sec }{\csc \phi} \int_{X^{X 1-S}}^{X 2-S}(u+s) \sqrt{d^{2} \csc ^{2} \phi-4 u^{2}} d u, \text { where } u=X-s, s=S \\
=d \sec \gamma \int_{X 1-S}^{X 2-S}(u+s)+\sqrt{1-\frac{u^{2} \sin ^{2} \phi}{(d / 2)^{2}}} d u
\end{array} \\
& =d \sec \gamma \int_{\pi}^{-}\left\{\frac{d \csc \phi \cos \beta}{2}+s^{2}\right\}|\sin \beta|\left\{\frac{-d \csc \phi \sin \beta}{2}\right\} d \beta \text {, } \\
& \text { where } \left.\beta=\cos ^{-1} \frac{2 u \sin }{d}\right\}, 0 \leq \beta \leq \pi \\
& =\frac{d^{2} \csc \phi \sec \gamma}{2} \int_{0}^{\pi}\left\{\frac{d \csc \phi \cos \beta}{2}+s\right\} \sin ^{2} \beta d \beta \\
& =\frac{\mathrm{d}^{2} \csc \phi \sec \gamma}{2}\left\{\frac{\mathrm{dcsc} \phi}{2} \int_{0}^{\pi} \cos \beta \sin ^{2} \beta d \beta+\mathrm{s} \int_{0}^{\pi} \sin ^{2} \beta d \beta\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{d^{2} \cdot \csc \phi \cdot \sec \gamma \cdot s}{2} \int_{0}^{\pi} \sin ^{2} \beta d \beta, \text { since 1st integral is } 0 \\
& \left.=\frac{d^{2} \cdot \operatorname{sisec} \gamma \cdot \csc \phi}{4}\left(\beta-\frac{\sin 2 \beta}{2}\right)\right]_{\beta=0}^{\beta=\pi} \\
& =\frac{\pi}{4} d^{2} \cdot \operatorname{sesec} \gamma \cdot \csc \phi
\end{aligned}
$$

Therefore the volume generated by rotating El about the $X$ axis through a small arc $\left[\begin{array}{cc}\theta_{0}^{R}, & \theta_{2}^{R}\end{array}\right]$ of measure $\left(\theta_{2}^{R}-\theta_{0}^{R}\right)=\Delta \theta^{R}$ is:

$$
\frac{\pi}{4} \cdot \mathrm{~d}^{2} \cdot \operatorname{sesec} \gamma \cdot \csc \phi \cdot \Delta \theta^{R}
$$

Since $\theta_{1}$ was arbitrary in $\left[\begin{array}{l}\theta_{0}^{R}, \theta_{2}^{R}\end{array}\right]$, (5.) is estab1ished.

## APPENDIX II

The computerized analysis of variance model (ANOVA 1) offered in this thesis is designed for a PDP-11 computer. It is primarily a simultaneous runs one-way classification random components model (Ehrenfeld and Littauer, 1964; p.391-399) with unequal numbers of observations in the cells. This program both generates the values of the response variable of interest and also does the standard analysis of variance computations. It also examines both the assumption that the terms comprising the $T$ matrix (see ANOVA 1) are normally distributed with a common 0 mean and common variance and the assumption that the terms comprising the E matrix (see ANOVA 1) are normally distributed with a common 0 mean and common variance. Both these assumptions are required to be valid in order to correctly apply the standard parametric hypothesis test for homogeneity of 0 variance (Ehrenfeld and Littauer, 1964; p.396) with respect to the terms comprising the above mentioned $T$ matrix.

This program was devised first to determine the conditions under which it was feasible to replace:

$$
\begin{aligned}
& \sum_{k=1}^{\dot{m}_{j 1, j 2}}(t)\left[{\underset{(i)}{(i)}, j 1, j 2}^{\left.(t) \cdot \csc \left(\phi_{k, j 1, j 2}^{(i)}(t)\right)\right] /\left(m_{j 1, j 2}^{(i)}(t) \cdot \pi\left(r^{(i)}\right)^{2}\right) \equiv S(i, j 1, j 2, t), ~}\right. \\
& m_{j 1, j 2}^{(i)}(t) \neq 0, \\
& \text { where: } t \text { refers to transect location in }[0,2 \pi] \\
& j_{1} \text { refers to particle distribution } \\
& j_{2} \text { refers to particle loading } \\
& \text { i refers to diameter size class } \\
& \text { (see (5.) and (6.)) by a constant } \mathbb{K}^{(i)} \text { independent of } j_{1}, j_{2} \text { and } t \text { such }
\end{aligned}
$$

that not only the incegral but also the shape of $\hat{g 2}{ }_{j}^{(i)}$ (see (10.)) over $[10,2 \pi]$ would be approximately the same as the integral and shape respectively of $\mathrm{g}_{\mathrm{j}}^{(\mathrm{i})}$ (see (9.)) over $[0,2 \pi]$. Having tentatively established these conditions, the program was then adjusted to evaluate $K^{(i)}$, for $i \notin\{, 2,3\}$ (see (10,)). ANOVA 1 was necessary because for many downed woody particles it is not feasible to measure either distance to transect/particle intersection or angle of transect/particle intersection as required by (9.).

Determination of the conditions under which it was possible to replace $S\left(i, j_{1}, j_{2}, t\right)$ by $K^{(i)}$ was made by setting up ANOVA 1 for a two-way classification run (Ehrenfeld andlittauer, 1964; p.432-434). The two influencing factors were fuel particle loading and distribution. A wide range of lesser fuel particle loadings ( 0.75 particles/sq.ft-50.00 particles/ sq.ft.) and distributions was tested here under different fuel particle length distributions. Let $\bar{S}\left(i, j_{1}, j_{2}\right)$ be the mean value of $S$ taken over all te $[0,2 \pi], i, j_{1}$, and $j_{2}$ fixed. Then an interesting result of this analysis was that $\bar{S}\left(i, j_{1}, j_{2}\right)$ was found to be reasonably independent (ie. within statistical limits) of $j_{2}$. No such independence could be found for $j 1$. This was found true $\forall i \varepsilon\{1,2,3\}, \forall_{j}, j_{2}$ tested, and for every fuel particle length distribution tested. Hence due to time constraints it was decided to determine $\mathbb{K}^{(i)}$, $i \varepsilon\{1,2,3\}$ for only the most common lesser fuel particles distribution, namely randomly distributed fuel particles with respect to the CPIS units.

Before proceeding to the one-way classification ANOVA 1 set-up, three relevant points should be briefly discussed. The first one relates to the fuel particle distributions which were used as levels of the second influencing factor in the two-way classification ANOVA set-up. A multiplicity
of angular orientations and particle placements was used here. For example, particles were randomly oriented and randomly placed, randomly oriented and placed in clumps or strata, unidirectionally oriented and randomly placed, and unidirectionally oriented and placed in clumps of intensified fuel accumulations. The second point which merits consideration is the choice of fuel particle length distributions. Three distributions were tested here, each applied using a variety of length ranges. The first distribution was generated using a random number generator based on the Lehmer Multiplicative Congruential Method (Mize: and Cox, 1968; p.68) where the general formula used is:

$$
u_{n} \equiv x^{n} u_{o}(\bmod m)
$$

This formula is embedded in a library function subprogram (RAN) on the PDP-11. RAN sets $x$ equal to $2^{16}+3$ and $m$ equal to $2^{32}$; $u_{0}$ is an arbitrarily chosen odd number. RAN has the unfortunate feature that the actual order of the cycle it generates is not easily determined. However RAN has been demonstrated on the PDP-11 to have actual orders of at least $2^{20}$ for several choices of $u_{0}$. Only these choiges were used in generating the random number cycles for both ANOVA models. The maximum ranges used here for the first, second and third subsets were ( $\frac{1}{4}^{\prime \prime}-2^{\prime}$ ), ( $1^{\prime \prime}-3^{\prime}$ ), and ( $6^{\prime \prime}-8^{\prime}$ ) respectively. Both the second and third length distributions were generated using skewed versions of RAN. The second length distribution simply allotted one-half of the particles to the first one-third of each range and the second length distribution allotted one-half of the particles to the first two-thirds of each range. These length distributions were subjectively chosen to provide dramatically different particle length distributions in the modelling procedures. The third point which should be mentioned here
is that there is a general purpose analysis of variance program designed for the PDP-11 called ANOVA which can accommodate up to 5 influencing factors, one hundred response variables, 50 transformation cards and 400 observation cells. Use of ANOVA would eliminate the need for a portion of the ANOVA 1 model. ANOVA is definitely a viable approach here but was not used because the author had written a large portion of ANOVA 1 prior to commencement of the thesis.

The one-way classification ANOVA 1 set-up derived ${ }^{(i)}, \forall i \varepsilon\{1,2,3\}$ for randomly distributed particles. Numerous runs were made here to test the validity of the two underlying assumptions (stated at the beginining of APPENDIXTI) required for application of statistical parametric hypothesis tests. Using $\mathrm{X}^{2}$ goodness-of-fit tests at the .05 significance level, both assumptions were found to be correct. The analysis performed by ANOVA 1 for the one-way classification revealed that the random variable defined by $\mathrm{R}_{\mathrm{j}}^{(\mathrm{i})}$, $i$ and j fixed (see (12.)) was normally distributed with mean 0 (using a $X^{2}$ goodness-of-fit test at the .05 significance level), $\forall i, j$ tested. A secondary result of the analysis was that if $j$ is ordered by loading for fixed $i$, the variance of $R_{j}^{(i)}$ generally decreased with increasing $j$ for all i. These results may be interpreted to mean that with respect to randomly distributed particles, not only the integral of $\hat{\mathrm{g} 2}{ }_{\mathrm{j}}^{(\mathrm{i})}$ (see (10.)) but also the shape of $\hat{\hat{\mathrm{g}}}{ }_{j}^{(i)}$ over $[0,2 \pi]$ is approximately the same as that of the integral and shape respectively of $\mathrm{g}_{\mathrm{j}}^{(\mathrm{i})}$ (see (9.)) over $[0,2 \pi] \forall j$ tested and $\forall i \varepsilon\{1,2,3\}$ where:

$$
\begin{aligned}
& \mathrm{K}^{(1)}=2.83 \times 10^{-2}(\text { feet })^{-1} \\
& \mathrm{~K}^{(2)}=1.49 \times 10^{-2}(\text { feet })^{-1} \\
& \mathrm{~K}^{(3)}=8.56 \times \times 10^{-3}(\text { feet })^{-1}
\end{aligned}
$$

A further interesting result of ANOVA 1 for the one-way classification case is that the random variable defined by $m_{j}^{(i)}, i$ and $j$ fixed (see (6.)) has a coefficient of variation reasonably independent of $i$ and $j, \forall i \varepsilon\{1,2,3\}$, $\forall j$ tested. This can be interpreted to mean that on a percentage basis the variability of $g \hat{2}_{j}^{(i)}$ over $[0,2 \pi]$ is reasonably independent of $i$ and $j$. Combining this observation with previous remarks, it follows that one numerical integration technique applied at one level of sampling intensity will probably produce the same degree of accuracy for the integral of $g 2_{j}^{(i)}$ over $[0,2 \pi], \forall i \varepsilon\{1,2,3\}, \forall j$ as before.

Finally it is observed that the one-way classification ANOVA 1 set-up computes the non-parametric Spearman's rank-difference coefficient (Tate and Clelland, 1957; p.13) with respect to distance to particle central axis intersection and cosecant of particle central axis intersection. Results of this investigation showed that in $90 \%$ of all CPIS units with randomly distributed particles, the random variable represented by distance to particle central axis intersection and the random variable represented by the cosecant of particle central axis intersection were uncorrelated at the . 05 significance level.

The one-way classification ANOVA 1 set-up presented below is very simple and straight-forward. It is supplemented with many comment statements explaining important procedures and definint important matrices to assist in the reader's understanding of what has been done.

## APPENDIX III

From APPENDIX II it is now possible to express $\hat{\mathrm{g}} \mathrm{i}_{\mathrm{j}}^{(\mathrm{i})}(\mathrm{t})$ as follows:

$$
\begin{array}{ll}
\hat{\mathrm{g}_{\mathrm{j}}^{(i)}(\mathrm{t})=A^{(\mathrm{i})} \mathrm{m}_{\mathrm{j}}^{(\mathrm{i})}(\mathrm{t}),} \quad & \forall i \varepsilon\{1, \ldots, M\} \\
& \forall j \varepsilon\{i, \ldots, n\}, \forall t \varepsilon[0,2 \pi]
\end{array}
$$

where $A^{(i)}$ can be explicitly determined $\forall i \varepsilon\{1, \ldots, M\}$.
Since $\mathrm{X} 2^{(\mathrm{i})}\left(\mathrm{S}{\underset{j}{(i)})}_{(\mathrm{i}}^{\mathrm{j}} \int_{0}^{2 \pi} \mathrm{~g}_{\mathrm{i}}^{\mathrm{j}}{ }^{(\mathrm{i})}(\mathrm{t}) \mathrm{dt}, \quad \forall i \varepsilon\{1, \ldots, \mathrm{M}\}\right.$

$$
\forall j \varepsilon\{1, \ldots, n\} \text { (see (8.)) }
$$

it is clear that:

$$
\text { (28.) } X 2^{(i)}\left(S 2_{j}^{(i)}\right) \approx A^{(i)} \int_{0}^{2 \pi} m_{j}^{(i)}(t) d t
$$

where $m_{j}^{(i)}$ is referred to as the particle intercept counting function.
Recall that $\mathrm{X} 2{ }^{(i)}\left(\mathrm{S} \mathrm{j}_{\mathrm{j}}^{(\mathrm{i})}\right.$ ) refers to a total particle volume per unit area. Since the images of the particle intercept counting function cannot be easily expressed in terms of $t$ mathematically, numerical techniques must be used to estimate the right-hand side of (28.). The main purpose of the downed woody fuel model is then to determine constants $C_{\omega}^{(i)}, P_{\omega}^{(i)}$ and $Q^{(i)}$ such that:

$$
\text { (29.) } A^{(i)} \int_{0}^{2 \pi} m_{j}^{(i)}(t) d t \approx A^{(i)} \sum_{\omega=1}^{Q^{(i)}} C_{\omega}^{(i)} \cdot m_{j}^{(i)}{ }_{\left(P_{\omega}^{(i)}\right)}^{(i)}
$$

Due to time constraints $C^{(i)}, P^{(i)}$ and $Q^{(i)}$ are determined only for randomly distributed fuel particles with respect to $i \underline{\varepsilon}\{1,2,3\}$ as previously defined.

In order to find $\mathrm{C}^{(\mathrm{i})}, \mathrm{P}^{(\mathrm{i})}$ and $Q^{(\mathrm{i})}, \forall \mathrm{B} \dot{\varepsilon}\{1,2,3\}$, three different integration techniques were proposed. Each was examined at five different levels of sampling intensity, namely $6,8,10,12$ and 14 transects. This range was chosen because preliminary investigations with randomly distributed
matchsticks suggested that the desired level of sampling intensity lay somewhere between 6 and 14 transects. The three techniques tested were: Gaussian-Legendee: (Scheid, 1968; p.126), Simpson's rule (Scheid, 1968; p.108) and the average function value method (Thomas, 1951; p.257). Thus in all 15 techniques were examined for each particle diameter size class. Two criteria were used as basis for selection of the optimum integration formulas. The first criterion stipulated that the integration formula of interest was required to yield a volume estimate within $10 \%$ of the corresponding true volume for each of at least $90 \%$ of the circular sampling units simulated. The second criterion stated that the integration formula of interest must yield a volume estimate within $15 \%$ of the corresponding true volume for each of at least $97.5 \%$, of the circular sampling units simulated. Obviously if more than one of these integration formulas satisfied these criteria for a particular diameter size class, selection was based on the level of sampling intensity required and ease in application and understanding. After conducting several runs of the downed woody fuels model for each diameter size class, the technique chosen using the above criteria was Simpson's rule with 12 transects. It is important to realize that this formula worked best for all particle diameter size classes tested. Hence it was found that:

$$
\begin{aligned}
& \mathrm{C}_{\omega}^{(i)} \equiv \mathrm{C}_{\omega}=\left\{\begin{array}{l}
4, \text { if } \mathrm{w} \text { is odd } \\
2, \text { if } \mathrm{w} \text { is even }
\end{array}\right. \\
& \mathrm{P}_{\omega}^{(\mathrm{i})}=\mathrm{t}+\frac{\pi \mathrm{w}, \text { for arbitrary } \mathrm{t}}{6}[0,2 \pi] \\
& Q^{(\mathrm{i})}=12
\end{aligned}
$$

$$
, \forall i \varepsilon\{1,2,3\}
$$

Hence it may now be asserted that:


It is important to realize that $t$ is arbitrary in $[0,2 \pi]$. The reason for $t$ being allowed to be arbitrary in $[0,2 \pi]$ will now be examined in more detail. For fixed $i$ and $j$ as above, let $h 2_{j}^{(i)}$ be a random variable defined by the following:
$\mathrm{h}_{\mathrm{j}}^{(\mathrm{i})}(\mathrm{t})=\sum_{\omega=1}^{12} \mathrm{C}_{\omega} \hat{g}_{\mathrm{j}}^{(i)}\left(\mathrm{t}+\frac{\pi \omega)}{6}, \forall \mathrm{t} \varepsilon[0,2 \pi]\right.$, where $\mathrm{c}_{\omega}=\left\{\begin{array}{l}4, \text { if } \mathrm{w} \text { is odd } \\ 2, \text { if } w \text { is even }\end{array}\right.$
Furthermore for fixed $i$ and $j$ enas previously specified let $\mathrm{V}_{\mathrm{j}}{ }^{(\mathrm{i})}$ be the true total particles volume in the $j$ th sampling unit taken with respect to the ith particle diameter size class. Then the random variable defined by: $\left(V_{j}^{(i)} / \pi\left(r^{(i)}\right)^{2}-h_{j}^{(i)}\right) /\left(V_{j}^{(i)} / \pi\left(r^{(i)}\right)^{2}\right)$, $i$ and $j$ fixed, was found to be normally distributed with mean 0 and small standard deviation (usually under 0.05) reasonably independent of $i$ and $j, \forall i$ and $j$, as previously specified. This means that (30.) holds independent of the choice of $t$. Although this result may seem obvious, it is nevertheless an important one to confirm, since it significantly simplifies the application of the common point intersect concept.

A typical run of the downed woody fuels model designed for a PDP-ll computer is presented below. This is only one run with one choice of three tested particle length distributions and one choice of many tested particle frequency ranges (see Appendix'II). As previously indicated, this run is set up for randomly distributed particles. However it can easily
be altered to accommodate non-randomly distributed particles. The downed woody fuel model is almost self-explanatory. Numerous comment statements. have been inserted to assist the reader in his understanding of the computations and procedures involved.

PIP VIO-02
\#*.*/DE



FORTRAN VQG. 13





```
FORTRAN VOG. 13






\[
\begin{aligned}
& \text { ONTINUE } \\
& \text { F COMAX. } \\
& \text { F COST. }
\end{aligned}
\]




```

