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ABSTRACT

A general sampling theory referred to as common point intersect
sampling is developed and assessed. This new technique is specifically
applied to the problem of estimating parameters of populations of downed
woody particles of interest in fire research.

The performance of the common point intersect sampling method is
compared to that of the well-established line intercept technique with
respect to two lesser (less than 3 inches in diameter) downed woody particles
populations. Results of these tests indicate that proper application of
the new sampling system can yield total volume estimates of approximately
15 per cent precision with savings of up to 40 per cent of the total
sampling time required by the line intercept technique.

The common point intersect sampling method is demonstrated to be a
useful approach to solving the problem of obtaining estimates for
numerous attributes of populations of downed woody particles. General
formulas are also provided ﬁhich facilitate the application of common
point intersect sampling to the task of obtaining parameters of standing
timber such as crown area and average crown diameter from aerial photographs.

The common point intersect technique is shown to be a fast and
accurate means of sampling forest material. The new sampling system has
been applied rigourously in only one problem area. The general nature of
the common point intersect system suggests,’however, that it has many other

applications in a multiplicity of scientific disciplines.
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CHAPTER 1

" 'Introduction

This thesis is designed with two primary objectives in mind.
The first is to present a general technique for non-destructively obtain-
ing quantitative estimates for aftributes of any community of objects.
The second is to apply this technique to an important social problem
area.

Since the author is currently employed as a fire research officer
in the Canadian Forestry Service; the problem area selécted is forest
fire oriented, namely precise measurement of downed woody particles
,populationé. A woody particle is considered 'downed' if it has been
detached from its source and lies within six feet of the forest floor
(Brown, 1974). Attention is focused primarily on lesser downed woody
particles populationslfrom-which two constituent populations are chosen
for analysis.

Before considering the scope and methods of the thesis, it seems
very appropriate to consider whether it is worthwhile or not to develop a
new general quantitative sampling technique. Historically, geﬁeral
sampling schemes have been developed from specific sampling methods
designed to satisfy very specific needs in Qell—defined professional
disciplines. The different physical and mathematical constraints imposed
by each separate discipline have made this established pattern of procedure
a necessary rather than optimum one. There currently being no urgent
demand for new quantitative sampling techniques in any of the fire-oriented

phytosociological biomes, it appears that at present a new technique would
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be viewed with interest only on an academic plane. Any new sampling
method should be significantly superior to the most successful existing
one when both are applied to a specific problem. Once this superiority
is demonstrated the utility of the new technique would be established
operationally. This thesis demonstrates the superiority of the new
sampling technique ‘in at least one specific problem area.

At this time it is relevant that a comment be made concerning
the problem area chosen for analysis. The significance of populations of
downed woody particles as areas of concern for forest harvesters, land
managers and fire scientists as well as numerous other professionals is
not to be logically disputed (Bailey, 1969; Beaufait and Hardy, in prep;
Deeming, 1972). The amounts, weights, and distributions of larger downed
woody materials ére of much concern when considering problems such as
the assessment of logging waste, behaviour of wildlife, and probability
of successful natural or artificial regeneration (Davis, 1959; Wagener
and Offord, 1972). Also the volumes, weights, surface areas and distri-
butions thereof for the smaller downed woody materials play a key role in
rating the fire hazard within a particular regilon (Deeming, 1972;
Beaufait and Hardy, in prep; Brown and Roussopoulos, in prep.). However,
it could be argued that it seems silly to sample these downed woody particles
directly. A more logical approach would be to sample the forest charac-
teristics of interest when the woody materials are secured to the standing
trees. Such initial values would then be combined with mathematicél
relationships which describe the effects of a given set of disturbances
on the forest to arrive at estimates for the desired parameters of the
downed woody particles populations. Although past efforts fo apply this

approaéh may have failed (Beaufait and Hafdy, in prep.), the author



recognizeé this as a viable approach to the problem of quantifying
parameters of downed woody particles populatioms. Nevertheless, until a
technique is created which can ‘successfully apply this systems approach
to the downed woody materials complex, interim physical methods will have
to be used which means at least temporarily that downed woody particles
will have to be sampled. In this thesis, a new general sampling technique
is applied to populations of downed woody materials. Normally when a new
concept of sampling is applied to a problem area it is because the old
ones are in some way unsatisfactory. It is not immediately apparent that
this is true in the case of downed woody materials. For example both
0.1 acre plots and long transect lines have been successfully used to
measure the larger fuels (Bailey, 1969; Howard and Ward, 1972). Also
short transect lines have been effectively used to measure the smaller
fuels (Beaufait, Marsden and Norum, 1974; Brown, in prep; Brown and
Roussopoules; in preb.). None of the above methods have disadvéntages
which seriously impair their applications. The justification of applying
a new general sampling technique to downed woody fuels rests upon the
inéight of the author. He has worked in populations of downed woody
materials for seven years and has tried numerous versions of currently
used sampling systems in many fuel complexes. He believes that the new
general sampling concept is not only feasible when applied to downed
woody fuels but also has a good chance of being significantly more
efficient than all other previously applied direct sampling systems.

The scope and methods of the thesis are relevant to both of its
major components which are the general theory and the case study. The

scope of the general theory is very broad; it applies to any group of
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objects whose attributes of interest can be described by functions of
suitably well-behaved mathematical expressions. The methods used in
developing the theory are basic theorems and principles of advanced
calculus.

The case study applies primarily to lesser downed woody particles.
It is agreed that a woody particle which intersects a transect line will
be described as lesser (greater) only if its width at the initial point
of intersection is less (greater) than or equal to 3 inches. Lesser
woody particles are selected for detailed scrutiny because past studies
have shown that these components are most likely to be consumed by the
majority of broadcast fires (Steele and Beaufait, 1969; Brown, in prep).
It should be noted that, although ngedles satisfy the above agreed
definition of lesser woody materials, they will not be considered directly
in the case study. Needles piay an important role in the ignition
process and hence in the initial stages of fire growth (Beaufait, 1965).
But in general the extreme difficulty of measuring or counting needles
even over relatively short distances necessitates the use of indirect
sampling techniques. Examples of such techniques are regression estimates
from lesser downed woody fuel data (Brown, 1970) and tables of desired
needle attributes for specified fuel types (Fahnestock and Chandler, 1960;
Brown, 1970). Regardless of which indirect sampling scheme is selected,
the main objective of the case study can be completely met simply by
considering the problem of obtaining estimates for the parameters of
interest with réspect to all subsets of the lesser downed woody fuels
population excluding needles. It should be kept in mind that the main
objective of the case study is to evaluate the new general sampling

technique by comparing it to the most successful existing one when the



two are applied to two lesser downed woody fuels populations.

There are two basic methods employed in the development of the
case study. The first is the generation of mathematical formulae from
the new general sampling concept. These formulae will serve to estimate
the desired properties of the downed woody fuels populations. Care must
be taken that the assumptions made in arriving at the explicit estimates
reflect common field situations., Attention must also be paid to the
levels of accuracy and precision which the estimates should meet, cost
and time constraints under which the new and existing techniques may be
forced to operate, and the physical and mental tolerance levels of
average field inventory personnel., The last item in this list is an
especially important one. Qﬁantitative sampling of lesser downed woody
fuels in logging residue for example is tedious and requires painstaking
work. However, at present it is highly recommended that this task be
undertaken if reliable objective predictions or assessments of fire
behavior and impéct are to be made (Beaufait, Marsden, and Norum, 1974).
If the quantitative sampling process used is incompatible with normal
levels of physical and mental tolerance, the non-sampling errors (Husch,
Miller, and Beers, 1972; p.201) introduced through improper or careless
measurements may well have a major effect upon the precision of the
derived formulae, The formulae derived from the geheral sampling concept
will be determined using functional analysis, analysis of variance,
events modellipg, numericalfanalysis and parametric statistical hypothesis
testing. The second method used in the development of the case study is
the application of the new sampling process to two actual field situations

and a comparison of this new technique to the most successful existing one
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with respect to these same two lesser downed woody fuels populations,
The fuel complexes selected for examination are two areas of fresh (less
than 1 year o0ld) logging residue (slash). These areas are chosen because
during the fire season many untreated slash areas become highly flammablé.
This means that objective qﬁantitative projections of fire danger in
slash are needed. Working in slash then maximizes the relevance and
usefulness of the field exercise. The field comparison is made by inspecting
pairs of total sampling times required to obtain pairs of population para-
meter estimates, where the members of each pair of estimates have both
common units and a common allowable sampling error (Husch, Miller, and
Beers, 1972) for a common pe;centage of the time. With respect to each
subset of the lesser downed woody fuels population, the total sampling
time is the sum of the totél fuels inspection time plus the total travél
time between samplg; units., Each resultant total sampling cost is directly
proportional to its corresponding total sampling time. It is easy to see
then that the total sampling times provide ranking indices for the two
sampling techniques. This procedure is well established and has already
been used in studies involved Qith logging residue (Bailey, 1969; Howard
and Ward, 1972).

Having presented the general layout of this study, interest is
now focussed upon fulfilling the two objectives cited at the beginning of

the thesis.



CHAPTER II

Development of the common point intersect concept

Brief review of past general sampling techniques

Before attempting to achieve the first objective of the thesis
which is.to present a general non-destructive technique for quantitatively
estimating population parameters or attr%butes for any community of objects,
it seems logical to look briefly at seme of the more successful general
sampling schemes already in existence. The two selected on the basis of
degree of flexibility and extent of proven usefulnesé are transect
system sampling (T S S) and line intersect sampling (L I S).

T S S designs are simply applications of the solution offered by
the 18th century French natgralist Buffon to the needle problem (Bradley,
1972) ., It is important to note that the solution given by Buffon and
others (Segebaden, 1964; De Vries, 1973) is based on the assumption that
the objects of interest are randomly distributed throughout the area of
concern. The concept involved in this technique is quite ingenious and
should be briefly described. Consider an area occupied by objects which
are raﬁdomly distributed. If a network of transects is superimposed on
this area those objects which both intersect any transect in the network
and possesé the attributes of interest are tallied. The total number of
relevant intersections is then inserted into én appropriate formula derived
from Buffon's solution to the needle problem. In this way an estimate is
obtained for the desired population parameter. Approximate general formulas
for the standard error of the estimate obtained, the transect system spacing
required to achieve a specified precision level; and the number of sample
points required to meet a desired degree of precision are all given by

Bradley (1972). In passing it should be mentioned that the general
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T S S theory can be extended to permit its application in any collection
of objects whose placeméht and angular orientation distributions can be
quantified.

T S S has already been applied successfully to the problem of
determining cross-country transport distances for real road nets
(SegeHééen, 1964), and also to the problem of estimating road lengths
(Bradley, 1972) . Other applications can be made. For example the total
length and volume of greater logging residue could be estimated with TSS.
Also information about stand characteristics and lengths of streéms could
be obtained through the use of TSS. All of the above applications of TSS are
greatly simplified by use of aerial photographs.

LIS is closely related to TSS and in fact may even be regarded
as a special case of TSS, where the network of transects has been reduced
to a single transect. Sevéral derivations of LIS formulas are available
(Canfield, 1941; Warren and Olsen, 1964; Van Wagner, 1968; Brown, 1971).
The most general discussion of the LIS concept is that given by De Vries
(1973, p.4-7). De Vries' formulation rests primarily upon two assumptions.
The first is that the objects of interest can be viewed logically as line
segmeﬁts or shapes of moderate curvature and the second is that the
placement and angular orientation distributions of the population of objects
(identified as line segments or shapes of moderate curvature, whichever is
appropriate) can be described quantitatively. It is possible to extend
De Vries' argument to a more abstract plane making it independent of the
two above assumptions.

LIS is a very popular technique having been applied to range

vegetation (Canfield, 1941), greater logging residue (Warren and Olsen,
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1964; Van Wagner, 1968; Howard and Ward, 1972), and lesser logging residue
(Beaufait, Marsden, and Norum 1974; Brown, in prep.). Suggestions have
also been made regarding its possible application in other forestry-
related problems, such as the estimation of standing timber parameters

(De Vries, 1973).

Before proceeding to the new proposed general sampling concept,
one point should be stressed. It is ﬁot?the intention of the author to
imply through the introduction of a new technique that transect system
sampling and line intersect sampling are in any way inadequate. More
research conducted over a wide range of sampling problems is required in

order to make a rigorous, unbiased comparison of the three approaches.
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Presentation of the common point intersect theory

General discussion
Before developing the common point intefsect theory mathematically,
a non-mathematical introduction to the general theory will be made. This
introduction will help non-mathematicians grasp a basic understanding of
the general theory.
Suppose there exists a population of objects. To use some
forestry examples, these objects could be standing trees, downed stems or
branches, borer beetles, fructifications of wood destroying fungi, etc.
Each population”can be described in terms of variables which will be
called parameters. The parameters of concern are listed by the inveéti—
gator, say.pR;ﬁ.,pE. But the investigator may be interested in more than
just estimating PTs » s Pie s He may want to estimate some combination of
these parameters, say p = U(Plfﬁ°’Pﬁ) where us is some function. The
investigator does not know thenvalue of any of the parameters, but he
has defined pl,u..,pk and so he knows what they mean. He does not know
the value of p, but he has defined u and through the meaning attached to
each parameter, he knows what p means. So suppose he wants to estimate
p. He may do this by introducing a random variable X derived from the meaning
of p. A random variable is simply a function which maps outcomes of some
experiment E into real numbers. In this case E is the process of selecting
locations for sampling units of a common size and shape within the
population of objects. AE this point the investigator knows what X means
but he does not have a practical way to evaluafe X. To be more specific,
suppose p is the mean number of particles per unit area. Implicit in the
definition‘of P is the random variable Y where Y represents the number of
Whefe Y

particles per unit area., Hence set X =Y 2 is a random

sl,s2 sl,s
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vafiable mapping each sampling unit (all of common size-s1 and shape SZ)
into the mean number of particles per unit area with respect to that
sampling unif.'

p is a variable consisting of some combination of PyseeesPy where
Pys+.4P, are parameters. This means almost by definition that they can
be easily referenced to random variables since in effect they are descriptors
of the distributions of random variables. A consideration of the random
variables implicit within the meanings of pl,.{.,pk combined with the
definitibn of p leads to the definition of X.

The investigator knows what X(g) means but as yet he does not
know how to evaluate X at any S in a practical way. The dgfinition of
X(S) combinéd with the definition of p results in a point estimate
(T(X(Sl),...,X(Sn))) of p, Where Sl""’ﬁ;fis a set of sampling units.
T is a function which maps sets of real numbers into real numbers. T
is not unique unless specific properties are required for the point
estimator of p. Using standard statistical procedures, it can be assumed
that a point estimator of p has been found which satisfies all required
properties.

There are two major remaining items to discuss before developing a
;%gorous mathematical derivation of the general theory. These items involve
an arbitrary sampling unit(S) and the random variable X. The sampling unit
S is restricted to being a right circular cylinder because of mathematical
considerations regarding X. Without going into statistical detailé, it
suffices to say here that basically the size and location of § are arbitrary.
The last important item is how to evaluate X at<$ in a practical way.

The concepts involved here are so intrinsically linked to mathematical

considerations that a meaningful non-mathematical discussion cannot be made.



- 12 -

Keeping the above introduction in mind, a mathematical presenta-
tion of the general theory is now made.

Consider any community (C) of objects temporarily fixed in
space. Let u be a>function which associates to each K-tuple Qﬁl;..;;ﬁk)
the unique value u(ﬁl,...;pk)=p, where @1,;;.;pk are parameters of unknown
values describing C. A general technique will now be provided for deter-
mining quantitative knowledge about p with respect to C.

Having specified u the meaning of p(the image of (pl,...,pk)
under u) is understood. From the meaning attached to p, it is possible to
introduce a random variable X defined on the sample space of outcomes of
an experiment E which consists of selecting locations for sampling units
of a common size and shape within C. The origin of X is in no way mysterious.
X is simply a function consisting of a combination of the attributes con-
stituting p; this function is referenced to the sample space of outcomes
of E whose infinite union comprises C. For example if p is a mean quantity
per unit area, X is introduced as the obvious functional extension of'p
defined on the sample space of outcomes of E, i.e., X is a function which
maps each sampling unit into a mean quantity per unit area with respect
to that sampling unit. Through X and the meaning attached to p, a point
estimate for p (T(X(Sl)),...,X(Sﬁ)) can be expressed explicitly in terms
of X(Si? and known constants, éEﬂgi,;..,h%, where X(Si) is the value of
X yielded by,the'iEE-independent repetition of E, ie”él,...,ﬁ%éfor a given

n

N
%1 . Of course there is no unique point estimator for p. The

et {is

Fay

1
i
form of T(Xl,...,X ) (where Xi is a random variable defined on the outcome-

of the 12}-l independent repetition of E, ie&l;.r.,ng) depends upon the choice

of u. It also depends upon any properties which are desirable for
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T(Xl,...,Xn) to have. Some examples of desirable properties are unbiased-
ness, small mean-square error; closeness and consistency (Ehrenfeld and,
Littauer, 1964). It is fair to  assume that all properties required by
the point estimator have been considered by theﬁinvestigator and that
T(X(Sl),...,X(Sﬁ)) has been expressed uniquely in terms of X(Si) and
known constants, iégi,...,ngifor a fixed function u.

Quantitative knowiedge about the probabilistic location of p
will be obtained once the size, shape and location of Sy, iéﬁ;,..;,ng
has been selected and once X(Sg), iéii,...;ni'has been expressed in terms
of variables which can be measured in the fiéld. This quantitative knowledge
aﬂout p is obtained simply by combining the value T(X(S;),...,X(Sp)) for a
given set of‘§8i§i21 with the distribution of T(Xl,...,Xn) acquired by
either using existing statistical theorems or else applying goodness-of-fit
tests to'éT(S(Sij)),...X(S&(j)))gﬁzl for some sufficiently large No and
using standard statistical procedures.

First attention is paid to selecting the size, shape and location
of Si’ i=l,...,n. Consider the ith trial for any iéﬁi,...,ni in a set of
n independent repetitions of E. The ith sampling unit (S§{) is chosen to be
a right circular cylinder of radius (r) and height (hi) selected from an
infinite population of units in the shape of right circular cylinders, each unit
containing a portion of C. WNaturally the variability of X is partially dependent
upon the size and shape of the population elements; Right circular cylinders of
common radius are chosen to facilitate the mathematics and r is chosen so that the
variability of X will be small., Logically there should be optimum radius
(ro) above which the variability of X does not decrease significantly. If

preliminary samples cannot be obtained here to help select (ro), the radius

used may have to be chosen largely on a basis of personal experience and
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intuition. The height of the ith sampling unit (Si) is simply the maximum
height of all objects of interest intersecting the ith open right circular
cylinder of radius (r). Finally the location of Si is a function of any

important physical, time or statistical constraints under which E may be

1

forced to operate.

Now attention is paid to expressing X(Si),i=1,...,n in terms of
variables which can be measured in the field. Consider again the ith
sampling uni? %i whose basal center point (ci), radius (r) and height (hi)
are all known. Here r can be regarded as eithggéa radius under investiga-
tion or an optimﬁm radius selected from either a preliminary sampling
analysis or a subjective decision-making process. Project a line segment
along the base of,S; from ¢y to some fixed perimeter point (pb) on Sij. Let
this line segment (L,) intersecting P, define a unique zero angle. Then
sweeping a line segment (L) of length r around the basal perimeter of Si
keeping one of its end points fixed at Cys it can be seen that each location

of L defines a unique -angle ee[é, Zn],'and hence the base of a rectangle
RG’ of width r and height hi, V@e[pé?ﬂ] (see Figure 2).

The objective is to expreés X(gg) in terms of variables which
can be easily evaluated. From the meaning of X and from known properties of C,
it is possible to attach meaning to a function Fi: (o, 2@]41R+U§Q§“ﬁhere
Fi (2ﬂ)=KX(Si) for some constant K. From this understanding of Fi’
construct a bounded function (fi) defined on [b; Zﬁ] whose set of discon-

tinuities (Lang, 1968; p.50) on {§, Zﬂ] has Lebesgue outer measure zero,

(Taylor, 1965; p.191), such that:

0
(1) F,(8) = §fi(t)dt, Vee(o,zn]
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The right-hand side of (l.) is well-defined and exists (Speigel, 1963; p.81).
Now if fi(t) can be readily expressed in terms of measurable variables, the
only task left is to evaluate the right-hand side of (1.). 'However if it is
not possible to express fi(t) in .terms of measurable variables, it becomes
necessary to approximate gi(t)=fi(t)/k by @i(t); VEe[b;Q] V9€[§,2ﬂ], where
gi has both the bounded and 'almost everywhere' continuity properties
(Spiegel, 1969; p.33) of fi’ and where gi(t) can be expressed in terms of
measurable variableé. Then it is seen that X(Si) can be expressed as a
function of measurable variables by evaluating the right-hand side of

(1.) at 8=2m with & (t) replacing £,(t), VteE),Zﬂ].

The final remaining problem in producing X(Si) is to evaluate

“y
A

the right-hand side of (1.) at 9=2m with gi(t) replacing fi‘ Unfortunately

this may not be a trivial task. Very often the measurable variables used

in defining gi(t) cannot be easily expressed in terms of t mathematically.

In other cases the measurable variables of interest are not directly

integrable. If the ‘latter case arises, §i is approximated by a suitable directly
integrable function'hi and through integration of hi over [@,9=2ﬁ], X(S1)

is evaluated. In the former case however either numerica; or Gaussian inte-
gration.methods (Scheid, 1968) must be used. In this case, X(Si) is approximated

by:
N

E : Cw@i{t&),-where N, Cy, and ty, w=l,...,N
w=1

are determined from the choice of a particular integration method applied
at a particular level of sampling intensity.. The choice of the method
depends upon required precision subject to specific time and cost constraints.

From previous comments,quantitative knowledgefabout the

.
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probabilistic location of p is now theoretically obtainable. The general
sampling technique described above will hereafter be referred to as common
point intersect sampling (CPIS), since each sampling rectangle Re is
generated from a common point, namely the center of the circle comprising
the base of a particular cylindrical sampling unit. To clarify the logic
behind the general CPIS theory a flowchart (Figure 1) depicting the major
concepts involved is provided. Now before proceeding to some specific
applications of CBIS, a few remarks regarding this new concept should be
made. There seems to be two very serious drawbacks to CPIS. One of these
is that knowledge about the distribution of T(Xl,...,Xn) is required. It

is true that some general behaviour of tﬁe distribution of T(Xl,...,Xn)
shoﬁld be known if a parametric statistical confidence interval (Ehrenfeld
and Littauer, 1974; p.364) is to be constructed about p. If this information
is not available and furthermore cannot be obtainea from prior preliminary
sampling or related sampling due to time or cost cons;raints, distribution-
free or non-parametric statistical methods can still be used to construct
either a meaningful hypothesis test for p or a.rough confidence interval
for p. If the information yielded by the non-parametric investigation is
not sufficiently precise to be very helpful, general statistical techniques
can be used to estimate the standard deviation D(X)seeesX3) of T(XpyeeerXy).
Then given a set of independent trials of E, D(X(Sl),...,X(Sﬁ))/T(X(Sl),...,X(Sn))
gives a measure whith expresses the magnitude of the ;verage variation of
T(Xl,...,Xﬁ) relative to the size of T(X(Sl),...,X(Sﬁ)). This ratiq can
serve as a tentativg indicator of how successful T(X(Sl),...,X(Sﬁ)) can be
expected to be and as such can be temporarily used in place of information
regarding the distribution of T(Xj5..+5%). In other words an absence of

knowledge regarding the distribution of f(Xl,...,Xﬁ) has only the effect
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of reducing the power of CPIS; it does not prevent CPIS frqm being a wvalid
sampling method. CPIS seems to have a second serious drawback, namely

the problem of obtaining fi‘from an understanding of Fi' If the

meaning of X is clear, then with proper selection of K, there should be

no pfoblem in attaching meaning to Fi' All that need be remembered when
trying to achieve this understanding is that Fi(G) for each G;Ib,Zn]
simply considers objects in a portion of the ith sampling unit<Si.

means that as 0 approaches 2w, Fi(e) approaches K-X(Si) in the most natural

This

way, namely through increasing portions of Si defined by the sweep of 6
towards 2m. Note that K is chosen to convert‘X(Si) into a variable which
is easier to work with. It remains then to consider the question*bf
deriving fi from both an acquired understan&ing of Fi and a knowledge of
what is meant by a Reimann integral (Widder, 1947, p.149). It should be
said now that in general there is no optimum approach to use in deriving
fi from Fi through (1). In practice this problem is usuélly very easy to
solve. Since there is no preferable procedure to follow when obtaining fi’
the investigator must.at this point rely largely on his own experience and
ingenuity. It is the belief of the authér that the best insight into the
process of actually getting fi'is given through example. Hence attention

is now turned to the application of CPIS to downed woody fuel particles.
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Application to downed woody particles

Two experiments (E1 and E2) will be conducted upon a community
(C) of downed woody fuel particles. It will be shown that the results of
these experiments will ultimately yield esfimators for a number of specific
parameters of .interest. Consider a community (C) of downed woody particles.
Let u(pl,...,pk)=pl, where pl,...,pk are parameters of unknown values

describing C and pl is the mean number of particles per unit area. Divide

]

C into M subsets such that if the sampling rectangle (RG) intersects a
fuel particle (q), q is said to belong to the iEE subset,‘ié{l,...,M}
providing that the width of q taken at its initial point of intersection

lies between d, and D,, for some specified d,, D; where d, <D, ie{l,...,M}.

i’
Notice here that q is implicitly assumed to have a well-defined length

and hence a‘well—defined central axis with respect to which the widths

of q are measured.

pl(l) is taken to be the mean number of fuel particles per unit

area with respect to the population of sampling units comprising the iEE

(1)

subset of C. From the meaning attached to pl , it is possible to

introduce a random variable (Xl(l)) defined on the sample space of out-

comes of an experiment Eil) where Eii)

consists of selecting a sampling

(1)

unit with respect to. the ith subset of C. From the general theory X1l is
simply a function which maps each sampling unit into the average number
of fuel particles:per unit area (in the iEh subset of C) with respect to

. . (1) - . (1)
that sampling unit. Through X1 and the meaning of pl
f;) (T1(x1(1)(51§1)),...,x1(1)(51§1)
in terms of Xl(i)(Slj(})),jé{l}%@,,n}

a point

estimate for’bﬂ: ))) can be expressed



- 20 -

(1)}

and known constants for a given set {SI
Tl(Xl(i)('Slii)),...,'Xl(i)(Slr(li))) z x1(1)(s1(i))/ = x1(1)
j=1
The parent estimator of Xl( 1) (XPl(l) Z:- Xl§i?/n) isian unbiased estimator
of pii) and by applying the.Centrgl Liiii Theorem (Ehrenfeld and Littauer,
119645 p.187) it can be showﬁ that iff(i) is also a consistent estima'tor
of pl(i). The Central Limit Theorem can also be applied together with

the definition of Xl(l) to demonstrate that:

oy FLD =y
sp1t)

has approximately Student's t distribution with (n-1) degrees of freedom

W2 1 2 (1) _gpp (142
, where (3) (SD1'7/)° = - 2;: (le -XP1*"7)

(Ehrenfeld and Littauer, 1964; p 189). It is important to realize that
(2) has Student's t distribution with (n-1) degrees of freedom in most

cases even when n is small. This is true because Xl;i) is an average

taken over a large sampling area (ﬂ(r(i))2>>25) and hence by the Central

Limit Theorem has approximately a normal distribution. If C contains

large continuous areas (>>W(r(l))2) differing drastically in fuel particle

(1)

frequency, not only will the normallty of Xl
i),2
(4 ))

be probably violated b@g
also (SD1l will probably take on very hlgh values. To counteract
these problems, C should be stratified wherever feasibly possible into
regions of different fuel particle frequencies with respect to the ith
subset of C and the théory of stratified random sampling (Freese, 1962;
p.28) .applied. It follows that for a given set of {Sl(i)} (all
lying within one area -containing no large continuous sub-areas differing
drastlcally in fuel particle frequencies), a confidence interval for

IR COI sd1

(1)
is X1 tl—“/Z;n—l //- (Ehrenfeld and thtauer, 1964; p. 271)
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where (1-&) = level of statistical inference and t = value of

1-%/23n-1
Student's t distribution with (n-1) degrees of freedom at the (1-</2)
(1)

level. It remains to select the size, shape and location of S1; and to

(1)

express Xl (Slj(l)) in terms of measurable variables, Vié%l;...,Mﬂ;

Vﬁegi,:..,ng . This will now be done. Choose the sampling units in

(1)

the iEE subset of C to be right circular cylinders of common radius rl .

Due to time constraints rl(l) will be determined subjectively. Choose

es €3

sufficiently large such that the variability of X1 is expected to

be small. The height hlg?) of the ith sampling unit éigl) is well-defined
from the general CPIS theory. A systematic plot sampling design with an

equidistant grid pattern (Husch, Miller and Beers, 1972; p.233) is used to
(1) '
h|

(Husch, Miller and Beers, 1972; p.228). It should be noted that the use of

: "!‘ : ( ) \‘h”\
select the location of SI- s jeé&,...,ng, due to its ease in application

systematic sampliﬁg does introduce a problem in that now the n repetitions
of El(i) are no longer completely independent. This means that (SDl(i))2
as defined in (3.) will not validly represent the sample variance (Husch,
Miller and Beers, 1972; p. 229). In fact (Sﬁl(i))2 tends to overestimate
the sample variance (Osborne, 1942). A supposedly more representative
expression for the sample variance for equidistant grid patterns is given
by using successive difference formulas (Loetsch and Haller, 1964).
However, unless the-spacing between sampling units becomes coincidental
with the pattern of population variation, the improvement offered by these
successive difference formulas becomes negligible (Husch, Miller, Beers,
1972; p. 229). It will be assumed that the sampling unit locations have
been sélected so that no such coincidence‘occurs; making (3.) valid. In

practice this is almost always done. If this manipulation process proves

awkward or expensive with respect to a particular downed woody fuels
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population, alternate successive difference formulas (Husch, Miller and

Beers, 1971; p.236) may be used to obtain a theoretically more realistic

(i))2 for the sample variance. The remainder of the argument

(i))2 (i))2.

Aexpression (cpn1
can then be applied with (CD1 replacing (8D1
In order to determine Xl(i)(Sl§i)) in an appropriate form it is
necessary to select a mﬁltiplicative constant kl which will transform
Xl(i)(Sl§i)).into a variable which can be related to more easily., Since °
particles are being considered with respect to their intersections along

transect lines, it seems natural to select kl as one unit length. Then

K1l - Xl(i)(Slél)) becomes the average number of particles per unit length
(1)
k|

sufficiently small. This relates better to the sampling design than does

with respect to S1 provided of course that the units' of length are chosen

average number of particles per unit area. F1§1) is a function which
. . (1)
associates to each 68[@,2ﬁ] a non-negative real number Flj (9)

representative of the average number of particles per unit length of

transect with respect to the area in Sl§l) defined by a radial sweep from

zero to 8.

(1)

In constructing £f1.7°, it seems logical as a first attempt to try

3
where O§l) is a function which associates to each t€[§,2ﬁ] a non-

negative real number 0§1)(t) representative of the number of particles

oD
J
which intersect the transect located at t, O <t fﬁ. This function is
bounded on.[O,Zﬂ] and in fact is a step function by definition which
ensures its 'almost everywhere' continuity on [p,Zﬂ]. Now from elementary

calculus “it. is well known that: ‘

. 9
2o 1
piy =(1) _ = S (1)
(4) oy (® = ¢ o Oj (t)dt, 0<6<2m
(1)

where 5?1) (6) is the average value of the function Oj taken over all

values of t ranging from 0 to 6>0. It now becomes obvious for fixed
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0e(0,21], to set f1§i)=c§i) Ko5i) since Flgi) = B'J?i) /11, Note that

for fixed 6€(0,2m), f1§i)(t) is already expressed in terms of measurable
variaﬁles, for each t 8[0,6], namely number of relevant particle inter-
sections at t. The final problem then in producing Xl(i)(Sl§i)) is to
evaluate the right-hand side of (4) at 8=27 with a§i)/rl(i) replacing

0§i). This will not be dohe here for one simple reason. Knowledge

about numbers of downed woody particles is not currently required as a
significant direct input for evaluation or prediction oﬁ fire béhaviour

and impact. It should be stated again that throughout this thesis the
applications of the CPIS general theory will be focussed on obtaining

those parameters which relate most significantly to fire-oriented activities.
It is true that results of E, can be combined with results of E

1 2

estimators for a number of downed woody particle parameters. In fact

to yield

this will be done later for completeness. But the results of E1 do not

relate significantly to fire evaluation, and so an explicit expression
which estimates the right-hand side of (4.) will not be derived.

i;x E1 serves here.primarily as a working example to demonstrate
that the process undertaken to get a meaningful "handle" on the general
CPIS theory is not a mysterious one. Each étep taken in working out
this first application of the general theory has been logical and very
straight—forward. It is of interest to notice that nowhere in the argument
have any assumptions been made regarding the distribution of the particles
~ within the CPIS units themselves. Attention is now turned to E,..

2
(1) is very similar to that of E

(1)
1

throughout the discussion

The general layout of E2

and reference will be periodically made to-E1
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of EZ' Here u(py,...,pk) = p2, where p2 is defined as the mean total

. (1) (1)
volume of particles per unit area. Analogous to El? s E2 is an
experiment consisting of selecting a sampling unit within C with respect
to the ith subset of C. Also, analogous to Xl(l), X2(1) is simply a
function which maps each sampling unit into the average volume of fuel
particles per unit area with respect to that sampling unit. The defini-
tions of T2(X1(l)(82(1)),...,Xl(l)(SZ(i))) and (snz(i))2 are both

—(i) (1)
obvious from»Eil)- All remarks concerning Xl( ) pLt €)) p{_
SD1'""/vn

(1) xpz(l) p2 (D)
and D
sSD2 "/ /v
regarding both selection and justification of the sampling units used

(1) (1)

in E1

apply equally to X2 » respectively. The comments

also apply equally to E

It remains then only to determine XZ(i)(SZ§1)) in an appropriate
L3

form. Since XZ(i)(SZ§l)) is an average volume per unit area it makes

good sense to select K2 as ﬂ(rZ(i))z. Then K2'X2(i)(82§1)) becomes a

total volume of particles which is more easily related to the sampling
design. An understanding of F2( 1) is now possible and F2( 1) is analogous

(1)

in meaning of Fl with the obvious difference that_F2§ )(6) represents a

(1)

total volume of partlcles with respect to the area in SZ defined by a

radial sweep from 0 to 6>0.

The construction ef fzfi) is derived from a basic understanding
of F2§i) and the meaning of a Riemann integral. F2§i) is a function which
when evaluated at fixed 0 yields a total volume. It is well known that
when a cross-sectional area is swept through an arc, a volume is
generated. (see Figure 2). This volume is a . function of the distance
separating the centre of the sampling unit‘and the cross—-sectional region.

Thus f2§1) will involve both the shape of the fuel particles in the ith

subset of C and a separation distance factor. More specifically, downed
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woody particles can be classified reasonably well into five geometric
divisions: frustums of cylinders, parallelepipeds, cones, parébaloids
and neiloids (Husch, Miller and Beers, 1972; p.120). The presence of
particle boundary taber as possessed by cones or particle boundary con-
cavity as possessed by parabaloids and neiloids provides a significant
complication to both the theoretical and practical aspects of quantifying
downed woody fuel parameters by working with the fuels themselves. If
the initial points of intersection are consistently used to compute the
fueliparticle widths, and if the concavity present is not too severe,
it should be feasible to classify the last three troublesome divisions
under frustums of cylinders. It is of importance toAmention that in
practice the lack of symmetry if any of a given cross-sectional region
is usually small. But due to time ponstraints no quantitative analysis
was undertaken to support the above classification grouping made by
using the above technique of width measurement. Hence furfher studies
are required to define a ;ompletely valid set of conditions under which
frustums of cones, parabaloids and neiloids may be considéred cylinders
with respect to geometric cross-sect;onal form. Continuing then, it is
seen that it is temporarily fair to assume that all cross-sectional
regions are whole ellipses, truncated ellipses, or rectangles. Without
loss of generality only the first two of these regions will be,QCOnsidered.
In practice the total number of parallelepiﬁedsﬁ generally comprise a
very small proportion of a downed woody fuels population. If parallel-
epipeds are of particular interest, an almost identical and in fact
simpler argument to that offered below can be made by applying the con-

cepts below to rectangles as opposed to ellipses. Now from the understanding
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gaiﬁed from the above remarks, the values of F2§i) are obtained by summing
up the volumes generated by rotating either whole or truncated ellipses
through small arcs. But 1f 61 e[?o, Gi], where (62 - eo> is small,

and if the fuél particle'cross-sectiOn at.ei is a whole ellipse, then

from elementary calculus, an excellent estimate for the particle volume

generatéd by rotating this cross-section at 61 through [?0; 62] is:

where (d(i)) = an estimate for the quadratic mean particle diameter (dbar(i))
(Brown, 1973) with respect to the ith subset of C, 1”—;{1 M}
’I..’ L]
s(el) = the horizontal dlstance between the centre of the elliptical
cross-section at 0, and the basal center point of the sampling
unit, where the hot¥izontal is defined parallel to the orienta-
tion of the base of the sampling unit.
(sec 2%155 = an estimate for the mean secant of the particle tilt ( )
‘ with respect to the ith subset of C, iek
. {1,...,M}
CSC(¢(QXP) = the cosecant of the angle of intersection (d(o )) between

the transect at 6 and the central axis of the fuel particle,
0<4(8)<n/2, Vo 5@0’92]

See Appendix I for a complete proof that the volume obtained by rotating

an elliptical cross-section of 61 through [ég, 65:]18 given by (5). Through
summation over relevant particles, it follows from the above that a logical
first attempt for f2€1) is vgl) where :
. 3 j (1)(t)
(6) x’zj(l)(t) = #4 @2 (sec(in)) . [(1) (t) - csc<¢(1) (t))]
o k=1

where m§i> (t) is the number of particles which intersect the transect at t,

and ﬁhere the kth fuel particle intersects the transect at t, Vkézl,...,m§i)(t)§.
In Eéi), a particle intersection is defined to occutr only when both the

particle central axis and at least one particle edge intercept the transect.

i)\2
(1 ————j) where a( 1)

Since csec (¢ )(t)) is bounded on [0 Zﬁ]by

kyj
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is the maximum length of all partlcles in the ith subset of C, 1€{1,...,M}
it follows that v( ) is also bounded on [@,2@]. (1§ and ¢(i) re
R ’

sectionally continuous CSpiegel, 1963; p.26) on [@,2@]. Also the cosecant

function is continuous on (0,7/2),. Hence the composite function cscogéfg
Xy
is sectionally continuous on [p,Zﬂ] (Lang, 1968; p.51). Thus v( D satisfies

all the required properties stated in the general CPIS theory. Setting
£2 (Do ()
J J

reveals: r
g N
: (1) M QW E PR 03
(7)) F2,77(6) §VJ (t)de, V6e(0,2k]

It follows that:

2m 2m
(1) 1)y _ ,(1) (1),2 _ (1) _ (1) -
X2 (SZj ) = F2j (2my/m(r2 )" = é- v, (t) de é g2j (t)dt, where ;
~ ﬂ(rz(i))zj

8225 (v = ¥{ (&) /m( 2®OF | Vee o,21]

The next step to be taken in order to express XZ( )(82(1))

explicitly in terms of measurable variables is a consideration of the

t

variables comprising g2(1)(t) as defined in (8) and (6). An inspection

of g2( )(t) reveals that it is: expressed in terms of Si})(t) and ¢£ﬁj{
ke{l,...,mgl)(t)}\ both of which are difficult to measure directly. ‘in
fact both are totally impractical to measure directly with respect to
lesser downed woody particles. Hence from this point on, it will be

necessary to consider the lesser downed particles and the greater downed

particles separately.

First consider isﬁi,;:'h& where Di_f 3 inches. From (6.),

n§® ()

2

% ( )(t)_ m (d(l)) (sec(v,vﬁll)) E [Slil?l (t) ‘CSC(@'Iii; (t))]/ﬂ_(rz(i))z ‘

4 k=L,
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23 (o) |

, —— . 3 A -,
7@H? Geeti wiP 0 S [s @ esco )] /
k=1

(m§i)(t)-n1rz(i))2); if.m§i)(t) £ 0

0, if méi)(t) =0

From the above, the selection of g2§i)(t) is obvious.

o 1o a2 (D)) e (1)
(10) go§§1)(t) - % (") (sec(¥i)) K mt(e), 1f myT(e) 70

0, if méi)(t) =0

i))Z (sec(%i))‘K(i)'mgi)(t), where K(i) is an appropriate

constant

P ¢
; (@
o (1)
2.
3 P
i . . CONRVAN S
exclusively in terms of measurable variables and K , Jeil,...,nﬁ. Hence

(1)

it remains to produce X' ’. It may seem somewhat optimistic to assume that

(1)

is a bounded step function on [9, Zi]and g2§1)(t) is expressed

for each'iééi,...;ﬁg; Di < 3 inches, there exists a unique comnstant K
independent of both j and t permitting éggi)(t) to be very close to g2§i)(t).
However ?f'for some j and t,-é&§i) is a poor approximation £6r é}§i)(g), it does
not really matter providing that the integrals of the -two functions from 0

to 2m are reasonably close.

K(i) was explicitly determined for i = 1,2,3 where
(@,0] = 0,%"]
(d2,Dz] = ("1
(d3,D£] = (1",3f]'

These three subsets were chbsen for two reasons. The first is that the
intervals are sufficiently smail so as to facilitate the effective use of
quadratip mean diametérs (as required in (10.)) and hence accommodate the
computation of accurate lesser particle volume estimates. The second

reason for this choice is that the above three subsets correspond
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respectively to 1,10 and 100 hour average moisture time lag divisions for
a number of common woody forest materials, (Fosberg, 1970). For each

i é{l,Z,B?,,~K‘i) was determined using simultaneous runs of a;one-way
classification random components analysis of variance model (ANOVAl) with
unequal numbers of observations in the cells (Ehrenfeld and Littauer,
1964; p.399) and a two-way classification random components analysis of
variance model with unequal numbers of observations in the cells
(Ehrenfeld and Littauer, 1964; p.432). ‘A description and computqrized
version of the first of these two models is offered in Appendix 2. Since
thé second of these models is virtually identical in design to the first
model, no computerized version of it is required; however, a supplementary
description of the two-way model is included in Appendi#'z.

The two-way model was constructed using particle distribution and
particle frequency or loading as the two influencing factors. . fhe pfimary
purpose of this model was to détermine for each‘i€I1;2,3?1the ranges of the
two above influencing factors under which it was. possible to assert the

(1)

existence of a unique constant K reasonably independent of both j and t

(1)
N . j i \
gZél) for each jé{l,...,hg', and for each iéfl,Z,B&. A thorough description

which would permit the integral of éﬁ to be close to the integral of
of the processes involved in the two-way model is given in Appendix 2.
It suffices to say here that the results of the two-way model indicated that

(1)

a satisfactory unique constant K could exist only when the fueéel particle
distribution (with respect to the iEE subset of C) was held fixed within
the CPIS units being sampled, V&éfl;Z,B@.

Explicit determination of K(l) for each iéﬂ],2;3§‘was performed

in the one-way model as described in Appendix 2. In order to produce
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-

for

&Y, 1 ' ' &

, it was necessary to select a suitable sampling radius r2

each 1i€{1,2,3}. Due to time constraints, selection of r2(1) was made

subjectively. More precisely,

r2(1) = 8.5 feet (sampling area of 1/192 acre)
r2(2) = 16.5 feet (sampling area of 1.51 acre)
r2(3) = 28.5 feet (sampling area of 1/12 acre)

It is noted that some experienced investigators may be more adept than

others in selecting an appropriate r2<1). Hence to eliminate as much

(1)

guesswork as possible in the selection of r2 .’y an approximate formula

\' .

for determining r2( D as a-function of D, is presented below:

(11) Log rZ( ) 1.22 + 0.47 log D;J, where Di is in inches and rZ(i)

Viell,... M)

is in feet,

(ii;) is presented here merely as a rule of thumb. It serves primarily as a
guide for the inexperienced investigator and as a reference for the exper-

(1)

ienced one when no preliminary deta to help select r2 is available.
It is of interest to note that the analysis of the one-way model
revealed that for randomly distributed fuel particles within the CPIS units

being sampled the random variable defined by:
(i) ,
o (1), (1) (1), (1),2, _ )
(12) )_; [ CSC(cbk )]/ (mj m(r2 ) K

2,
J

(1>.CSC(¢ <i>)] @@ @2
z;[ ) @

i and j fixed
was found to be normally distributed with mean 0. It was also discovered

that if j is ordered by loading, the variance of the above ratio generally



- 32 -

decreased with increasing j, Vdéﬁi;2,3ﬂ; ThlS means that the performance

(1) ~(1)

of g2 as a percentage approximation of g2 in the integral from 0 to

2m is satisfactory for all i and j. i and j may, if desired, be interpreted
in terms of fuel particle size and loading, respectivel&. Note that Rgi)
is defined only on those values in[@, Zﬁ]such that m§i)(t)#0. It is of
interest to note that the one-way model showed that the random variable
defined by:

m§i), i and j fixed

was found to have a coefficient of variation reasonably independent of i

and j,V&é{l,Z,B}“VGETi,...,59. This means that on a percentage basis the

(1)

. variability of g2 over [§,2ﬁ] is virtually independent on both i and j.

Combining the two above points of interest, it is‘seen that if numerical
methods are required to evaluate the ihtegral of g§§i), one numerical
technique applied at one level of sampling intensity will probably suffice
for all i and j.

Numerous runs of the one-way model with randomly distributed fuel

particles yielded values of k(i) within a small neighbourhood of the
following:
k1) = 2,83 x 1072 (feet)”
(13) k) = 1.49 x 1072 (feet)
k3 = 8.56 x 1073 (feet)”
éégi)(t) has now been explicitly determined in terms of measurable

variables V&€k1,2,3ﬂd as previously defined, providing that the lesser
particles considered are randomly distrlbuted within the CPIS units.
Attention is now turned to ie{l,...,Md-Where D > 3 inches.

Suitable formulas for explicitly defined subsets of greater
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downed particles whose distributions are either random in the CPIS units
or else can be quantified in the CPIS units.can be obtained by a procedure
almost identical to that used above for the lesser downed particies. Due
to time constraints plus the fact that attention is to be focussed
primarily upon the lesser fuels which as has been previously stated are
most likely to be consumed by the majority of broadcast fires, formulas
for the larger fuels are not derived. It is of interest to note that only
a slight manipulation of (9;) will yield a formula for gzgi)(t) (in terms
of measurable variables) which applies to greater downed particles and is

independent of particle distribution. This formula is presented below:

ms (i) (t)
() D 2 22D (py)2 (1) g]
~(14) g2 (t) = —m——r [ P27 (£))° - (P17 (b)) » Where

a5 et @ = s @ + @) osce) ©)72

a6) p1P (e = st (1) - @) .sc (61 (£)) /2 and Gee@D) = 1
k,j sJ ] !

Note thaF when D1>3 inches, it is fair to assume that TEEE??ITY =1

(Brown, 1973; p.3). Then from (15.) and (16.), it is clear that Pl and P2
_can be interpreted as distances to the left and right -end’ points of inter-
section, respectiQely for a wholeéllipse,which are not difficult to
measure for the greater woody particles. If a truncatedellipse is
encountered (i.e. a particle end) it is necessary to extrapolate one edge
of the particle to the transect in order to obtain the proper value
providing of course that the particle cenfral axis intercepts the transect.
Hence (14.) may be used directly for greater downed fuels of any distri-

bution and loading.
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There is one remaining step to be made so that XZ(i)(82§i)) will
be expressed in terms of measurable variables. This step is the evaluation
of the integral of an appropriate function between O and 27. Due to time
constraints and the fact the thesis is designed to focus upon the lesser
downed particles, evaluation of X2(i)(82§i)) through the integral of an
appropriate function will be done only for iéii,2,3a, as previously defined.
The processes involved here are thoroughly despribed in Appendix 3, which
inglhdes a computerized version of a downed woody fuels model. A major
result of this investigation was that the random variable defined by:

v{d) @ | /i

(1n 5 3

5 i and j fixed, where:

nee2 )y

| 4, ifwis odd
A 9
(18) hzgi)(c) - ) Cw-g2§i) (44D, ¢ { , 1f w1s even
w=2

ner2))y

and Vgi) = the true total particles volume in the jth sample taken with
-d respect to the ith subset of C, 18{1 2 3}«

was found to be normally distributed with mean 0 and very small variance

(i))2

independent ‘of i gnd Js V&éi},z,aizyﬁeii,...,ﬁ}; The means that V§i)/ﬂ(r2
can be very well approximated by an appropriate application of Simpson's rule
(Schied, 1968; p.108) with twelve transects, Vis{l 2 3}, V&s{l,...,n}
Selection of the placement for the first transect in a particular sampling
unit does not significantiy affect the performance of the estimate for the
avefaée particle volume per unit area with respect to that sampling unit.

A typical performanée of Simpson's rule with twelve transects as applied

to subset i is given in Table 1 and displayed graphically in Figure (i42)

for‘i€ﬂ1,2,3%. In summary then XZ(l) (SZ§1)) can be very well approximated by:
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Table 1. Actual and estimated computer-generated lesser downed woody particle

volumes.
Actual Volumes Estimated Volumes
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
((£6)°/(£0)%)x 1072 (€03 /EnHx 107
0.03021 0.2129 1.317 .. ..0.02853 0.2178 1.413
0.03051 0.2171 1.345 0.02645 0.2087 1.257
0.03015 - 0.2162 | 1.322 0.03403 0.2141 1.295
0.02952 0.2070 1.309 0.03196 0.1986 1.204
0.03005 0.2167 1.365 0.02907 0.2004 1.381
0.02918 0.2138 1.305 0.02961 0.1913 1.375
0.0305 0.2133 1.326 0.03060 0.2297 1.680
0.03067 0.2032 1.294 0.02825 0.1977 1.268
0.04528 0.4686 2.665 0.04180 0.4759 2.916
0.04452 0.4681 2.614 0.04369 0.4686 2.905
0.04557 0.4757 2.543 0.04270 0.5299 2.611
0.04462 0.4766 2.658 0.04514 0.4438 2.622
0.04559 0.4709 2.658 0.04405 0.4704 3.023
0.04550 0.4855 2.590 0.03990 0.5042 2.852
0.04489 0.4711 2.653 0.03945 0.4695 2.793
0.04551 | 0.4688 2.663 0.04225 0.4512 2.889
0.05938- 0.7496 3.997 0.06147 0.7815 4.045
0.05922 0.7501 3.897 0.05615 0.7706 3.815
0.06070 0.7336 3.899 0.06012 0.7019 3.810
0.05912 0.7465 3.918 | 0.05741 10.8017 4.125
0.05912 0.7465 3.918 0.05741 0.8017 | 4,125
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Actual Volumes Estimated Volumes
Class 1 Class 2 Class 3 Class 1 Class 2 | Class 3
(0% ¢n)x 1072 ((£0)3/ g0y %x 1072
0.05993 0.7286 3.878 - 0.05678 0.7577 3.986
0.05934 0.7294 3.898 0.06048 0.6726 4.147
0.05988 0.7222 3.894 0.06184 0.7065 3.788
0.05967 0.7266 3.978 0.05886 0.7513 4.056
0.07372 0.9804 5.528 0.08106 1.052 5.399
0.07457 0.9973 5.251 | 0.07258 1.035 5.485
0.07457 1.012 5.166 0.07447 1.038 5.062
0.07359 0.9982 5.173 0.07068 1.045 5.217
0.07470 0.9934 5.152 0.07592 1.012 5.265
0.07550 0.9907 5.231 0.07285 0.9774 5.479
0.07477 1.009 5.358 - 0.07465 0.9783 5.784
0.07361 1.003 5.232 0.07330 0.9929 5.335
0.09020 1.240 6.539 0.08224 1.310 6.672
0.08955 1.276 6.593 0.08883 1.366 7.117
0.09011 1.266 6.488 0.08386 1.243. 6.533
0.09021 1.257 6.491 0.08278 1.320 6.314
0.08909 1.261 6.487 0.08296 1.290 6.491
0.08826 1.274 6.688 0.09208 1.312A 6.913
0.08996 1.263‘ 6.617 0.09009 1.199 6.710

0.08936 1.283 6.387 0.09460 1.405- 6.854
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(19) %,( ( Dy (sectyy)) K(l) E Cw-m(i)(t + ‘*’“) Vie{l 2 3} VJe{l,...,n}

and where t is arbitrary in
[0, 27)and
4 if wis odd
Cw =

2, if wis even
)]

providing of course that the fuel particles of interest are randomly
distributed within szJFl), Vi'e{_{{’i,z,3-}, Vj‘je*{yl,...,h_a};.
. . =(1) —=(1) .
Thus far, two estimators XPl and XP2 » have been explicitly

determined as far as . time constraints will permit. XPlcl) is an estimator

(1)

for pl , the mean number of fuel particles per unit area with respect to

o

the population of cylinders of common radius rl(l). XPZ(i) is an estimator

for p2(i), the mean volume of fuel particles per unit area with respect to

the population of cylinders of common radius rZ(i). Confidence intervals

for pl(l) and p2(l) have also been produced and they too are as complete as

time will permit., If i e{l 2 3&> not only has the estimate X2( ) been
(1)

completely determined but also a complete zconfidence interval for p2 has

been presented. The term 'complete' is used here in the sense that all terms
comprising the confidence interval of interest can be precisely evaluated
in any given downed woody particles population whose lesser components are
randomly distributed;. within the CﬁIS units selected for sampling.

At the beginning of the section regarding applications to downed

woody particles, it was asserted that the results of experiments E1 and E2

would yield estimators for a number of specific parameters of interest.

This assertion will not be verified.

1)

Let rl =ﬁ2(i), Viéﬁl,...,ﬁ?. Some common parameters of interest

2y,

(De.Vries, 1973) are: mean total volume per unit area (pl

()),

mean number

of particles per unit area (p2 mean total weight per unit area (p3(1)),

mean mid-sectional area per unit area (p4(i)), mean total length per unit
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area (p5(1)), mean total volume per particle (p6(i)), mean mid-sectional

@y, @)y,

area per particle (p7 mean mid-diameter per unit area (p8 mean

length per particle (p9(1)), mean mid-diameter pef particle (plO(i)), mean

total surface area per unit area (pll(i)), and mean total surface area

per particle (p12(l)). An estimator for pk(l), k#7,10 can be easily

(1)

expressed in terms of Xlg;), X2j and suitable constants, V&éﬁl,...,Mﬁ.

ice t - . 1) (1)2
Notice that if k=7 an excellent estimator for pk is m(dbar /4, where
(1)

an estimate for dbar is obtained from suitable tables (Brown, 1973). No

(1)

confidence interval is really reqﬁired for pk providing the ith subset

is sufficiently small. If a confidence interval is desired, it can be

obtained through repeated observations of particle diameters in the ith

(1)

subset of C. Similarly plO(l) can be very well estimated by dbar , Where

a confidence interval, if desired, can also be obtained through repeated
observations on particle diameters in the ith subset of C. It is left to

produce an estimator for pk(i),k¥7,10.

Estimators for pl(i), p2(i), p3(i), p4(i), pS(i), p6(i), p8(i),

p9(i), pll(i) and p12(i) are in order XPZ(i) XPl(i) (i{;‘ﬁﬁi(i) where

g{l) is the mean specific gravity for particles in the ith subset,:%(dbétg;))z-xPl(l),

. n
)'ir?i.(?):‘.‘/%(&b;r(‘i);-)f2=§, _xf?(l) @3 D= % 3 /n, where x3(i) —xz(l) /x1§1)),
dbar(i)@fff(?) 3(1)/ (dbar (i))2’ 0(1)§f7(1), and(j(i) CD , Where 0(')

is the average surface area to volume ratio for the ith subset (ie. O(i)=4/dbar(i)).

Confidence intervals for pkgl),k#6,9,12 are obvious from an inspection of

their estimators and from previous remarks made when discussing experiments

E1 and E2' It should be observed that it is possible only to produce a

sample coefficient of variation for pk(i), k=6,9,12 unless the distribution

(1)

of XP3 can be roughly determined. 1In passing it is of interest to note
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that the estimators of'p4(l), i?z 3, p7(1), i2>3, p8(1),i >3 and'plo(l)”j
i > 3 can all be alternatively obtained (ie. without using tables for
estimates of dbar(l)) with a CPIS design simply by applying an argument

almost identical to that given in experiment E The only difference here

1
would be of course that particle diameters and cross-sectional areas (for
i > 3) as well as numbers of particles would be of interest.

It has now been shown that it is very possible to attach a
meaningful "handle" to the.general common point intersect sampling (CPIS)
concept. The application of CPIS techniques to downed woody particles
provides a vehicle whereby the general Eheory is mapped into an operational
plane. But the value of CPIS procedures on an operational levél has not
as yet been demonstrated. It remains then to give the CPIS system an
actual field test and to compare its performance to that of the most
successfully established technique, line intersect sampling (LIS) (Brown,
1971). For reasons previdusly stated, the field test will be concerned
only with lesser downed woody fuels sub-populations. Attention will now.
be turned to demonstrating the tentative superiority of CPIS over LIS
with respect to at least two lesser downed woody particles populations

located in aréas of logging residue.
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CHAPTER III

Field test to evaluate the c¢ommon point intersect technique

General Discussion

In order to field test the CPIS technique and compare its per-
formance to that of the LIS‘technique with respect to lesser downed woody
particles, two areas of fresh (i.e. less tﬁan 1 year o0ld) coastal logging
residue were selected for reasons previously cited. The first area was a
clearcut comprised of 165 acres of tractor logged residue (see Figure 6).

It was situated approximately 8 miles west of Shawnigan Lake which lies

30 miles west of Victoria, British Columbia. The fuel types were predominantly
coastal Douglas-fir, western hemlock and western red cedar. The second study
area was a 180 acre clearcut of cable logged residue (see Figure 7). It was
located approximately 8 miles southwest of Sooke Lake which lies 25 miles
southwest of Victoria, British Columbia. The fuel types were similar to

those of the first area. Both study areas possessed moderate volumes of
residue and reasonably continuous terrains of moderate inclinations (i.e. less
than 30° slope). The second study area possessed a noticeable ravine where
lesser woody particles aécumulations were evident.

Before the two sampling techniques were applied to these areas,
each clearcut was examined in order to determine whether the downed particles
in the ith subset V&e&},Z,B%,were randomly distributed in the sampling space
of cylinders of radiué r(i)=r2(i). Recall that the formula offered for
XZ(i)(SZ§i?), iéii;Z,é@; jéil,...;najis valid only when the particles in the
ith subset are randomly distributed in Sgi); iéT;,Z,éi? Hence randomness in
the first three subsets must be verified in the sampling units to be sampled

at least on a tentative basis, before the CPIS technique can be applied to

those subsets,



r3Chcxins <>e o (® o e<>13 Chains
° @ . @ s - B

I. \ : 800 fh
L) S

‘Figure 6. Map of Study Area 1 depicting}placement of both the’ o
line intersect and common point intersect sampling units.

B VI



=45 -

~——1)

Figure 7. Map of Study Area 2 depicting piacement of both the liné 

intersect and common point intersect sampling units.
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In order that the particles may be regarded as randomly distri-
buted in the sampling units, they should satisfy two properties. The
first is that the random variable defined by angular orientation of
particle projection onto a planer section defined.by gdjacent ground
level should have approximately a rectangular distribution on [O,ZW]

(Mize and Cox, 1968; p.50) with respect to each sampling unit in question.
The second is that the random variable defined by distance from the
geometric centre of the‘i.-l:-E sampling unit (of radius r(i)) in question

to the contained particle geometric centre-point should have approximately
a rectangular distribution on [?, r(i{] V&éi},Z,Bi; for each sampling

unit of radius r(i) selected. |

The first pfopérty was tentatively verified for the ith subset,
¥&€§1,2,3§.0n each study area. VerifiéaﬁiG?jiwas made by constructing a
'X? goodnesé—of-fit test at the 5pérwégﬁfsignificance level. On each area
data for this test were collected by laying éut 5 CPIS units (for each
subset) systematically over the area to be sampled. Within each unit 20
transects of common length equal to the radius of the sampling unit were
positioned systematically in a unidirectional pattern. Transect lengths
for the first, second and third subsets were 8.5, 16.5 and 28.5 feet
respectively. Note that these transects lengths are not critical to the
test but that the gnidirectional sampling design 1is. Note also that the
CPIS units were not laid out over the entire area But rather only over
the area to be sampled. This sampling region is selected to act as a
representative fuel cell for the entire area. Size and location of the fuel
cell are largely at the discretion-of the investigator. It need only be said

here that a 6 chain by 6 chain square was selected on each clearcut where

no portion of either 3.6 acre fuel cell lay within 2.5 chains of any access
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road. Choice of the cells was based on the subjective decision that each
3.6 acre square proportionately reflected the major characteristics of
interest on its particular area. Continuing then if angular orientation
is truly random in the jth sampling unit, it can be shown that the random
variable (6)j defined by the intersection '‘angle between the particle
major axis and transect with respect to the jth unit has probability
density function fe‘ where:
3

. sin u, ue(O,ﬂ/z] N L _
1.(20) £y (uv) = Vﬁéil,...,S?} (Van Wagner, 1968)

: i 0, elsewhere '

Therefore under the assumption of randomness with respect to angular

orientation, it is expected that the statistic:
fo,k = observed frequency of angles in

20 th
z:: %fo:k _ fe,k)z/fe,k} , where kD partition
k=1 e k= exgected frequency of angles in

partition, Vke{l,...,ZO}

would have a)(z distribution with 19 degrees of freedom where fe,k is
evaluated using fe; Vkéﬂl,...,ZO}; The scheme used here for defining angular

class intervals is based on .05 proportions of area under the sine curve.

Hence:

20 v
2 v
> {(fo’k - fo,K) /fe’k} E (fo,k - fe) , where fe=fe L, Vke{l,..., }
k=1 .
. by des1gn.

All sampling units in the three subsets constructed for each area passed
the)(? goodness-of-fit test at the .05 significance level. Observed class
particle frequencies for 6 typical CPIS units are presented in tabular form
in Table 2,

It is difficult to construct a practical test to either support
or contradict the assertion that the random variable defined by distance
from the geometric centre of the sampling unit (of radius r(i)) in question

to the contained particle geometric centre point has a rectangular
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Table 2. Intersection angles of lesser downed woody particles in the study

areas.

Class Intervals Observed Frequency

..Size Class 1 Size Class 2 Size Class 3

Area 1 Area 2 Area 1 Area 2 Area 1 Area 2

degrees numbers
0-18.20 124 94 31 18 10 18

18.21-25.83 156 73 48 29 6 25
25.84-31.80 125 96 36 25 18 27
31.81-36.87 120 100 34 35 8 29
'36.88-41,40 122 79 28 19 14 17
41.41~45.58 155 101 32 40 .9 26
45.59-49.45 121 95 30 28 17 14
49.46-53.13 156 75 44 33 10 14
53.14-56.63 152 101 ‘34 . 22 19 27
56.64-60.00 125 98 47 .27 14 13
60.01-63.27 146 102 33 34 11 29
63.28-66.42 154 103 45 28 15 17
66.43-69.52 136 79 48 .21 17 30
69.53-72.53 144 78 34 23 8 18
72.54-75.52 123 80 27 33 13 25
75.53-78.47 132 71 47 36 15 18
78.48-81.37 151 95 42 35 14 26
81.38-84.25 140 98 36 35 8 28
84.26-87.13 160 81 50 38 19 19

87.14-90.00 122 69 45 24 : 9 28
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distribution on [b, r(i?], Viéﬁﬁ,Z;Bi; for each sampling unit of radius
r(i) selected. Recall that under the assumption of randomly distributed
particles in the CPIS units the random variable defined by (12.) was

found to have a normal distribution with mean 0. Now it. has been shown

that it is tentatively valid to assume that the random variable defined

by angular orientation (as previously specified) has a rectangular distri-
bution on [@, Zﬁ]. Therefore it can be seen that if the above assertion
regarding the random variablé defined by distance (as previously specified»f;
is true, the random variable defined by (12.) should have approximately

a normal distribution with mean O. Using this logic, a parametric
statistical two-sided hypothesis test comparing a mean against 0 (where

the population variance is assumed to be unknown) was set up at the .05
significance level for each study area. Five widely spaced CPIS units were
selected systematically on each area V&é{},Z,S}; Note that the comments

made earlier justifying the use of systematic sampling designs apply

equally here. Now within each unit, 24 evenly spaced transects were laid

24

i=1

out and the 1mage of t under R§ )(see (12.)) was found for each t s{ Wi}

where t=0 was chosen randomly. This process led to the computation of

five sample means and five sample variances for each ie{l,2,3} with respect
5 k) ‘

to each study area. This data is presented in Table 3 in which orientation

(1)

random variable' is to be identified with R . For each Je{l,...,S} and
for each 1€q1 2 5} the jth sampling unit yielded a sample value whlcﬁ lay
outside the rejection region constructed under the null hypothesis which
is identified with the assumption that the random variable defined by

distance from the geometric centre of the jth sampling unit (of radius r(l))

to the contained particle geometric centre point has a rectangular
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Table 3. Sample means and standard deviations of the orientation random
variable for lesser downed woody particles in the study areas.
Unit Sample Mean Sample Standard Deviation
Number Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
Area 1, 2 Area 1, 2 Area 1, 2 Area 1,.2 Area 1, 2 Area 1, 2
1 .072 .027 .096 .092 .0978 .108 .183 .169 .230 .228 .283 .302
2 .023 .005 .064 .021 .110 124,137 .133 .170 .159 .264 .296
3 .013 .049 .099 .068 .138 116 .157 .195 .237 .221 .331 .285
4 .044 .,039 .092 .080 .113 .118 .178 .106 .220 .194 .269 .282
5 .015 .059 .077 .025 ;135 137 .201 .206 .193 .206 .324 .325
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distribution on [O,r(‘i)] , Yiet1,2,3%, Vj;e{z‘i,...,;éi_}}f
Combining the results from the two above statistical tests, it
was considered tentatively valid to apply the CPIS technique to the above
CPIS units on each of the two stﬁdy areas with respect to the first three

downed woody particle subsets.
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Field work undergone with respect to the line intersect technique °

Within each fuel cell 25 line segments of common length 8.5 ft were
systematically placed uniformly over the entire fuel cell using an equidistant
grid pattern (see Figures 6 and 7). The orientation of each transect was
determined randomly. Random transect orientation is not really necessary here.
Note that it requires no more time to implement than.does unidirectional
transect orientation. Justification of the use of a systematic sampling
design with equidistant grid pattern has been previously made. It remains
fgrjustify both the number and common length of the line segments used.

The use of 25 transects will be explained first. Consider the
well-known formula for an infinite population of sampling units where the

random variable of interest is normally distributed:

@D N = (@t /23 w1222
where N = number of sampling units
CV = coefficient of sample variation

l-ix= level of statistical inference
tl—¢72; N-1 = Student's t'value at the (1—#72) level with (N-1) degrees of freedom
Z = degree of precision (expressed as a proportion of the sample mean)
An inspection of tHe behavior of the t distribution and application of
the Central Limit Theorem reveal almost immediately that the minimum
number of samples (Nmin) required to meet precision level Z can be
expressed as: (22) Nmin = 3.84(CV)2/22; providing Nmiﬁxis sufficiently
large (i.e. Ngi;ﬂi 25) regardless of the distribution of the random variable
of interest. It follows that if CV can be estimated from a preliminary sample,

then Nmin can be expressed roughly as a function of 'Z. With respect to

downed woody particles, it usually is of interest to determine Nmin



for Z within a small neighborhood of 0.15 (Howard and Ward, 1972; Brown,

1973). Hence for 15 percent precision, the following formula holds:

P

(23) N&igﬁ}l70.67f[(CV)ps]2, providing NmWTEis sufficiently large (i.e. NﬂfQii

in’

= Ae (Cv)ps 2

where (CV)ps = coefficient of preliminary sample variation

The validity of (23.) is crucial to the comparison of LIS and CPIS since
(23.) indicates the minimum number of samples required to meet 15 percent
precision at the 95% confidence level. It may be argued that (23.) leads
to erroneous results unless the coefficient of sample variation stabilizes
for sample sizes greater than the preliminary sample size. Unless the
lesser downed woody particles within the LIS units are pathologically
distributed, it is intuitively logical that the ratios of the sample means
to the sample variances should stabilize beyond some minimum sample size
usually quoted as 25 (Freund and Williams, 1958; Ehrenfeld and Littauer,
1964; Husch, Miller and Beers, 1972). No rigorous proof of this conjecture
is offered in the literature because (23.) is traditidnally regarded as only
an approximafion of Nmin’ not as a precise replacement. Unfortunately a
thorough investigation of just how precise (23.) is when applied to downed
woody fuels was not feasible. Therefore the validity of (23.) will have to
rest temporarily upon statistical intuition. Note that a more precise
knowledge of the adequacy of (23.) is not vital to the comparison between
LIS and CPIS. For example if (CV)ps is smaller than CV with respect to a
particular subset, Nmin should be larger than the estimate given by (23.).
Hence for comparison purposes (23.) works in'favour of LIS in this case.
Alternatively if (CV)pS isllarger than CV with respect to a particular

subset, the use of the oversized (CV)pS will mostly likely be offset by the

min

25)
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fact that (A)in (23.) is at least 4% larger than it should be. Even if
(23.) overestimates Nmin for a particular subset; this would have to be
very large to have a serious effect upon the sampling time required begause
the average measurement time per LIS point is relatively small.' Thus (23.)
is sufficiently credible for comparing LIS with CPIS. A preliminary sample
size of 25 was chosen in order than (23.) be valid when applied to the
comparison of LIS and CPIS. An explanation of the common transect length
of 8.5 ft will now be given.

In previous studies, optimum lengths for LIS transects applied
to lesser downed particles have been suggested as: 6.8 ft for material
less than 3 inches in diameter at intersection (Brown, in prep), 6.56 ft
for particles less than 1 inch in diameter at intersection and 9.84 ft
fof'particles from 1 inch to about 4 inches in diameter at intersection
(Brown, in prep). Although no statistical justification was given to
support the selection of these lengths, they have proven satisfactory for
previous investigators. The choice of minimum adequate transect length was
difficult to make without a thorough analysis to evaluate the performance
of the LIS technique when applied with different transect lengths. It was
again necessary to resort to intuition and experience supported with all
relevant information available in the literature. The transect length
chosen was 8.5 ft which agrees very well with Brown, in prep. If the
transect length was selécted greater than or equal to 25 ft and the random
varlable of interest was an average per unit area, (23.) may be regarded
as reasonably valid in many cases without the restriction that Nmin225;

Having completely specified and justified the lengths, number and locations
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of the LIS units on each area, attention is now turned to the data collected
at each LIS unit and the calculations performed upon that data.

At each LIS unit, every lesser downed woody partigle whose central
axis (and at least one of Qhose edges) intersected the 8.51%t;tfépsect\seg@gnt
was classified into one of the three previously defined subsets using a
go-no-go gauge (Brown, in prep.; p. 5)(see Figure éo. Also the times
taken to locate each LIS point and to perform necessary particle measurements
at each point were recorded.

The device used to define each LIS transect segment consisted of
two wooden stakes approximately 3 ft long, each of which was sharpened at
one end for the purpose of easy iﬁsertion into the ground. Attached to
each stake was a small metal ring with a wingnut to whichiﬁés fastened
one end of the 8.5 ft cord representing the transect. These wingnut devices
permitted the LIS transect segment to be adjusted for fuel depth and slope.
At each LIS point, the transect segment was oriented parallel to the adjacent
ground level. This procedure is well-established for light to moderate
slash (Brown, in prepi}

Two sets of formulas were used to -convert the preliminary LIS raw
data into values required for the comparison of the LIS and CPIS techniques.
The first set of formulas which converted particle intercept counts into

average total volumes per unit area is presented below:

(24) VOLj(i) = (Trz(d(i))z(sec(\ﬁi))/68 Kj(i), (Brown, 1'973),-?_‘7

Vief1,2,3% Viefl,..., 258 viiere
kD
J

=number of particle intersections (as previously defined) in the jth

LIS unit, jéTl,...,ZS}AWith respect to the ith subset, iéii,z,jf.
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Py
3“
A4
Figure 8. 'Go-no-go' gauge used to determine the diameter size class

of each intersecting particle under 3" in diameter a€ initial
point of intersection. :



—“Sjj-

4

VOL§1) = average total volume per unit area in the jth LIS unit, jé{l,...,ZS}f

with respect to the ith subset, ié{i,2,3i3 ((ft)3/(ft)2).

|25 |4 25 (4
g, DT ana o) T L
J j=1})i=1 j )i=1)i=

3 .
- <~ o ‘-
iwhere\K$4) = 2__ Kgi), Vﬁe{l,...,ZS}
and VOL§4) is similarly defined) obtained for each study area are presented

in tabular form in Table 4. Values computed from (24.) were then used to

N
calculate (CV);;) for each study area. The entries in this sequence
i=1

were then inserted into (23.) to arrive at the values offered in Table 5.
Note in Table 5 fhat 384-(CV)2 is simply the right-hand side of (23.),
evaluated at Z=.10. It is now evident that (24.) combined with (22.)
(where CV may be identified with (CV)pS) will yield the minimum number of
LIS units required to obtain a population mean estimate with a specified
degree of precision. The second set of formulas combines the results of
(24.) and (22.) with the raw LIS sampling time data to obtain the minimum
time reqqired to obtain a pdpulation mean estimate with a specified degree
of precision. This secqnd set of formulas whose derivation is obvious

is presented below:

. oy TTTINT U (4 s v e X
@25 12 = p@ (¢P)y 4 ,yH) [P + (M(l))] , 1€11,2,3,41.
where TZ(l) = minimum total sampling time required (hbﬁrs) using the LIS

¥ “
technique for the ith subset, ie{1,2,3,4%}.

D(i)='tota1 distance walked to obtain particle measurements (chains)
. £y warean |
=6 (U(l)—l)/VG(l) + 6‘1) + 1, where
U(l)= the minimum number of LIS units requiréd for the ith subset,

16%1,2,3, 48
@_ + D Vgt Y+
) *) = min {Ze% VU 4+ Z;:g'gé‘% ’ where%. represents the set of

all positive integers.



Table 4. Field particle intercept counts and corresponding volume estimates for the line intersect sampling

units.
Unit Fuel Component Count | Fuel Volume Estimate
Number
Class 1 Class 2 Class 3 %%3?21? Class 1 Class 2 Class 3 %%2::1?
Area 1, 2 Area 1, 2 Area 1, 2 Area 1, 2 Area 1, 2 Area 1, 2 Area 1, 2 Area 1, 2
S (feet)3/(feét)2 X 10_3
1 44 195 2 15 1 A3 47 213 0.73 3.24 0.63 4474 3.13 9.39 4.49 17.37
2 33 126 6 6 1 1 40 133 0.55 2.09 1.90 1.90 3.13 3.13 5.58 7.12
3 187 87 26 16 5 4 218 107 3.10 1.44 8.22 5.06 15.65 12.52 26.97 19.02
4 i75 187 16 12 3> 3 194 202 2.91 3.10 5.06 3.79 .9.39 9.39 17.36 16.28
5 151 75 14 8 2 2 167 85 2.51 1.25 4.42 2.53 6.26 6.26 13.19 10.04
6 105 210 10 11 1 7 116 228 1.73 3.49 3.16 3.48 3.13 21.91 8.02 28.88
7 227 102 27 13 4 5 258 120 3.77 1.69 8.53 4.11 12.52 15.65 24.82 21.45
8 157 153 13 14 2 9 172 176 2.61 2.54 4.11 4.42 6.26728.17 12.98 35:13
9 77 65 8 11 1 11 ~86 87 1.28 1.08 2.53 3.48 3.13 34.43 6.94 38.99
10 168 192 12 17 3 4 183 213 2.79 3.19 3.76 5.37 9.39 12.52 15.94 21.08
11 186 87 19 13 3 1 208 101 3.09 1.44 5.95 4.11  9.39 3.13 18.43 8.68
12 78 42 14 4 2 3 94 49 1.29 .70 4.38 1.26 6.26 9.39 11.93 11.35
13 66 59 5 20 1 4 72 83 1.10 .98 1.57 6.32 3.13 12.52 5.80 19.82
14 28 60 22 .9 5 1 55 70 .46 1.00 6.89 2.84 15.65 3.13 23.00 6.97

_8g_



Table 4 cont'd....

Unit
Number

15

16

17

18

19

20

21

22

23

24

25

~ Fuel Components Count

Fuel Volume Estimate

Class 4 Class 4
Class 1 Class 2- Class 3 (Total) Class 1 Class 2 Class 3 (Total)
Area 1, 2 Area 1, 2 Area 1, 2 Area 1, 2 Area 1, 2 Area 1, 2 Area 1, 2 Area 1, 2
(feet)3/(feet)2 X 10~
18 230 -5 16 3 26 249 .30 3.82 1.57 5.06 9.39 9.39 11.26 18.27
51 57 9 16 1 62 74 .85 .95 2.82 5.06 6.26 3.13 9.93 9.14
68 122 14 29 13 88 164 .13 2.03 4.38 9.16 18.78 40.69 24.29 51.88
193 93 40 21 4 242 118 .20 1.54 12.52 6.64 28.17 12.52 43.89 20.70
237 115 21 20 4 262 139 .93 1.91 6.57 6.32 12.52 12.52 23.02 20.75
218 90 23 20 10 245 120 .62 1.49 7.20 6.32 12.52 31.30 23.34 39.11
130 98 | 19 22 10 152 130 .16 .63 5.95 6.95 9.39 31.30 17.50 39.88
75 130 4 15 6 79 151 .25 2,16 1.25 4.74 0 18.78 2.50 25.68
7 92 4 21 5 11 118 .12 1.53 1.25 6.64 0 15.65 1.37 23.82
119 69 9 8 7 130 84 .98 1.15 '2.82 2.53  6.26 21.91 11.06 25.59
61 254 12 32 7 293 .01 4.22 3.76 10.11 21.91 21.91 26.68 36.24

80

_6g_
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Table 5. Relevant statistics for the line intersect field sampling units.

Area Class Mean Standard Coefficient of 2 2
Volume Deviation Variation (C.V.) 170.67(CV)~ 384(CV)

E03/E0? (f0)3/ (Er)?

X 1072 X 107
1 1 1.90 1.24 0.65 | 72 162
1 2 4.45 2.84 0.64 70 157
1 3 9.26 6.84 0.74 93 210
1 4 15.61 9.84 0.63 68 152
2 1 1.99 0.99 0.50 43 96
2 2 4.92 2.10 0.43 32 71
2 3 16.03 10.30 0.64 70 157

2 4 22.94 11.83 0.52 46 104
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(This subformula is clear from the fact that a square grid pattern super-
imposed uniformly on a 3.6 acre fuel cell is used for each LIS design).

EY

) = average chain walking time per unit distance (hrs./chain)
with respect to the ith subset, ie{1,2,3,4}

= average pin placement time per sampling unit (hrs./LIS unit)

"(M(i)) = average particle measurement time per LIS unit (hrs./LIS unit)
with respect to the ith subset; ié{1,2,3,4}.

Examples of minimum total LIS times required to obtain population mean
estimates of specified precision levels are given in Table 8.

A detailed discussion of the LIS field work which was undergone
has been presented. Also formulaé converting the LIS field data into values
which can be used to compare the LIS and CPIS techniques have been derived
and discussed. Hence it is now appropriate to discuss the next topic of
interest, namely the CPIS field work which was undertaken.

Field work undergone -with respect to the Common Point Intersect Sampling

Technique

Five sets of concentric circles were systematically placed within

=

each 3.6 acre fuel cell in the pattern sketched belo

3 cha

3nchains

2.12 chains

45°

Note that the centre CPIS unit is located at the center of the fuel cell.

Each set of circles consisted of three circles of radii 8.5, 16.5 and 28.5 ft.,
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. Y
in which fuel measurements were made for the first, second and third subsets

respectively. Inscribed within each of the above sets of circles were 12
radius transect segments, one every 300, with the location of the first
transect randomly selected. These radius segments were easily located
using a compass and yardstick.

Five CPIS units were selected here only on a tentative basis. If
computations using data from these preliminary CPIS units revealed that
5 samples were not sufficient to obtain a population mean estimate within
a small neighbourhood of 15 percent precision, then more CPIS units would
be collected using a different systematic CPIS design. The selection of
radii for the CPIS units with respect to each subset has been previously
justified. The use of 12 transects is required in order that the image
of t under h2§i) (see (18.)) can be computed for some randomly selected
tEJ[b,Zﬂ], jé{i,...,sgg iéﬁi,Z,j}. It is h2§i)(t) for the chosen t which

¢ o o ~ J

will serve as the very good estimate of V;i)/ﬂ(rz(i))z.(see (17.)). Having
both specified and justified the size, shape and tentative number and
locations of the CPIS units on each study area, attentipn will now be focussed
upon tﬁe data collected at each CPIS unit and the calculations performed
on that data.

Consider any of the 12 transects radiating from the center of
the jth CPIS unit in which particle measurements are to be performed with
respect to the ith subset. Every downed woody particle belonging to the
ith éubset whose central axis (and at least one of whose edgés) intersected
the transect was counted. Determination of whether or not a particular
intersecting particle was a member of the ith subset was made using the -
go-no-go gauge previously described. This process was repeated for all 12

e A -
transects Véeii,...,ii, V&efi,Z,&?.
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The tallies obtained are expressed in tabular form in Table 6. Also the
times taken to locate each CPIS unit and to perform necessary particle
measurements at each unit were recorded.

Each of the 12 transects inscribed within every CPIS unit was
defined by a device almost identical to that used in the section on line
intersect field sampling. The only difference here is the cord which now
is 28.5 ft long and is marked with flagging tape at both 8.5 ft and 16.5 ft.

As in LIS, two sets of formulas were used. to convert the pre-
liminary CPIS raw data into values required for the comparison of the LIS
and CPIS techniques. Analogous to the first set of formulas used in LIS,
the first set of formulas use& in CPIS converted particle intercept counts

into average total volumes per unit area:

12
(26) V:gi)/‘n(rzl)2 h2(l) E Cwéé(l)(t +-%; ), t arbitrary in [@, Zﬁ]
w=

and where

Vgl)/'rr(rZ(l))2 = average total volume per unit area in the jth CPIS unit

’ ' 38{1,...,5} with respect to the ifP subset, 18{1 2 3}

((££53/(£0)2)
Cw = |4, if wis odd

2, if wis even

and 287 (6) @®)? . (sec(v) kP uft) (1), Vee[0,21]

r.
A

Note here that:
@y = 0.0091 £t.

@®) = 0.0439 ft. (Brown, 1973)

@3y = 0.1400 ft.
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Field particle intercept counts for the common point intersect
sampling units.

Eziiér §£22250t Fuel Component Count
Size Class 1 Size Class 2 Size Class 3 Sifﬁogiiifih
Area 1 Area 2 Area 1 Area 2 Area 1 Area 2 Area 1 Area 2
1 1 b1 158 26 32 11 21 78 211
1 2 34 110 25 20 12 16 71 - 146
1 3 L7 69 17 21, L 12 68 ''i105
1 L 67 81 27 31 16 13 110 125
1 5 75 49 87 = 23 21 20 183 92
1 6 91 57 2, 39 o 15 129 111
1 7 75 97 13 17 8 20 96 134,
1 8 106 92 22 34 13 21 i1 147
1 9 79 9L 34 27 8 14 121 135
1 10 151 83 28 17 12 18 191 118
1 11 135 147 32 18 . 12 19 179 18y
1 12 68 128 27 32 13 20 108 180
2 11 189 93 28 41 7 19 22, 153
2 2 78 38 5, 27 8 12 1,0 77
2 3 61 39 32 11 i 20 100 70
2 I | 68 26 12 20 11 15 91 61
2 5 g - 49 17 19 7 22 168 90
2 6 101 28 21 29 11 21 133 78
2 7 79 L7 23 33 11 19 113 99
2 8 137 62 16 25 12 13 165 100
2 9 313 81 56 28 21, 20 423 129
2 10 118 6l 50 34 9 18 177 116
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‘Table 6 con'te....

,Eﬂiﬁgr Ez:gi;Ct Fuel Component Count

- Size Class 1 Size Class 2 Size Class 3 Sifgogiiis b

Area 1 Area 2 fArea 1 Area 2 ‘Area 1 Area 2 Area 1 Area 2

“2 1 212 51 81 26 5 2, 208 101
2 122 1,8 80 39 29 9 25 196 134
3 1 61 71 38 217 8 33 107 131
3 2 12 75 29 19 17 17 158 111
3 3 78 29 41 14 16 12 135 105
3 L 72 51 35 14 11 12 118 77
3 5 134 Lidy 32 17 16 11 182 72
3 6 95 L3 L8 17 9 10 152 70
3 7 54 L8 22 21 3 13 79 82
3 8 41 50, 20 19 10 18 71 91
3 9 L 12, 22 38 9 15 75 177
3 10 51 30 37 19 13 14 101 63
3 11 82 31 18 21 12 23 112 75
3 12 156 33 2, 2y 13 32 193 89
L 1 88 117 16 28 5 31 109 176
L 2 9 151 L7 21, 11 21, 148 199
L 3 128 70 27 13 11 22 166 105
L L g9 118 22 27 10 23 121 168
L 5 50 112 15 20 10 17 75 149
L .45 ' 149 177 26 31 10 28 185 236
I 7 112 97 17 32 b 15 133 14,
u 8 97 81 17 25 7 22 1121 128



Table 6 con'te....
oy rransect Fuel Component Count
Sike Class 1 Size Class 2 Size Class 3 Sifgogiiis b
Area 1 Area 2 Area 1 Area 2 Area 1 Area 2 Area 1 Area 2
L 9 L2 31 21 26 11 Rt 7 71
L 10 554 122 26 26 8 12 88 160
L 11 131 59 L9 29 5 20 185 108
I 12 138 134 22 L3 6 19 166 196
5 1 177 109 30 28 18 9 225 146
5 2 130 81 21 21 7 1, 158 116
5 3 208 28 45 10 11 12 261, 50
5 L 225 23 38 20 7 17 270 60
5 5 255 29 32 21 10 20 297 70
5 6 1442 541 36 21 10 23 4,88 85
5 7 310 L5 36 18 19 16 365 79
5 8 185 2 39 7 11 5 235 36
5 9 135 5k 22 37 13 31 170 122
5 10 135 61 23 3 1l 22 172 117
5 11 138 38 20 22 8 21, 166 &l
5 12 95 91 21, 26 10 25 129 142



and (sec(Yl» = 1.40
(sec(Yé»'= 1.13 (Brown, 1973)

(sec(yg» = 1.10

Also note that K1) is evaluated in (13.), Vic{1,2,3} and that o' (t) is

defined in (6.) Vis§{1,2,31-, Vjé@l,...,S} and Vte[O,Zﬂ].

(1) (1,25 13 3 (W), o (1).2] 3
{{Y& /m(x2*"") }j=1}i=1 and{%;; Vﬁ /m(e2 ") i were

obtained for each study area and are presented in Table 7. (26.) was
then combined with a spécial case of (21.) (N > 3) in order to obtain
the minimum number of CPIS units corresponding to at least one sample
mean of precision level as close to,15% as possible. Note that a sample
size of two was not ‘‘considered sufficient. Thié is done to reduce the
probability that the spacing between sampling units coincides with any
pattern of particles population variation not immediately apparent.

Note also that (21.) is meaningful with respect to CPIS because the
random variable of interest here is an average taken over a sufficiently
large sampling area (see page.(idl))._ Now once a satisfactory number (N)
of CPIS units has been obtained for some Z close to 15%, the second

set of formulas combines the value obtained for N with the raw CPIS

time data to obtain the minimum time required to obtain a population
‘mean estimate with degree of precision (). This second set of formulas
(25%) is almost completely analogous to the second set of formulas

i

(see (25.)) used in LIS. The only exception here is that now:

5.50 chains if three samples are used

27) D‘i) 7.24 chains if four samples are used

11.12 chains if five samples are used



Table 7. Field particle volume estimates for the common point intersect
sampling units.
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Unit Fuel Volumes Estimate
Number
Class 1 Class '2 Class 3 %%2izl?
Area 1 Area 2 ~Area 1 Area 2 Area 1 Area 2 ‘Afea 1 Area 2
(feet)3/(feet)2 X 10_3
1 1.32 1.52 4,58 4.33 11.34 15.79 17.24 21.64
2 2.06 0.85 5.53 4,33 9.16 16.65 16.75 21.83
3 1.34 0.86 4.98 3.22 10.63 15.84 16.95 19.92
4 1.44 1.82 4.15 4.45 7.59 18.98 13.18 25.25
5 3.19 0.84 4.87 3.51 9.97 16.40 18.03 20.75
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Examples of minimum total CPIS times required to obtain popula-
tion mean estimates of specified precision levels are given in Table 8.

Before proceeding to the analysis of the field test data, it is
appropriate to briefly summarize the process by which Table 8 was obtained.
Consider any iéil,2,3,4§ with respect to eacﬁ study area. First formula

| RS (1), 24>

(26.) was used to derive Vj /m(r2 ) }j=1’ i # 4, This sequence or a
suitable subsequence.or a suitable summation thereof was then used in (21.)
with ‘«=0.05 to derive an N(i)zﬁ such that at least one of its corresponding
sample means had precision (Z(i))(see column 5 of Table 8) within some
small neighborhood of 15%. The N(i) so obtained was inserted together
with raw CPIS time data into (257) (see (25.) and (27.)) to obtain Tl(i)
(see column 4’of Table 8), where Tl(i) refers to the minimum total CPIS
time required to obtain a population mean ‘estimate of precision Z(i).

iy\25
Next formula (24.) was used to derive {§OL§1)} j=1"gThis sequence was

i)
in

the use of (22.) where'CV(l) may be identified with (CV);;). Finally the

used to obtain (CV);;)which was combined with Z(i) to obtain N; through

Néii so obtained was inserted with raw LIS time data into (25.) to obtain
T2(l) which is defined analagous to Tl(l) (see column 3 of Table 8). It is

important to realize that this process cannot be simplified because there
is no formula for the CPIS technique analagous to (22.) (where CV is
identified with (CV)pS) used for LIS. This is due primarily to the fact
that the total sampling timé for the minimum number of CPIS units required
to obtain a population mean estimate with a specified degree of precision
is far more sensitive to the coefficient of sample variation than is the

sampling time for the corresponding minimum number of LIS units,
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Table 8. Sampling time comparison of the line intersect and common point
intersect methods.

Area Class Line Intersect Common Point . . Total Sampling!Time
. X Precision X
Time Intersect Time Gain
% % of line intersect

hours hours
o Sampling time

1 2 5.54 3.34 13.11 +39.71
1 3 2.46 2.04 18.41 +17.07
1 4 13.21 9.02 13.64 +31.72
1 2,3 6.28 5.09 13.11, 18.41 +18.95
2 2 1.47 2.64 17.56 ~79.59
2 2 2.24 2.01 14.50 +10.27
2 3 3.01 1.84 14.14 +38.87
2 4 5.64 6.10 15.57 - 8.16
2 4 7.63 4.58 10.28 +39.98
2 2,3 3.70 4.30 17.56, 1l4.14 -16.22

I~
N
[S%]
il
.
|-l
N
[9%]
w
W

14.50, 14.14 +18.69




- 71 -

CHAPTER .IV

Analysis of the field test data

Before interpreting the results listed in Tables 4 through 8,
there are two points concerning the field test that warrant diécussion.
These are considered below:

The first of these two points relates toithe fact that two
statistical hypothesis tests are conducted on each area prior to applica-
tion of the CPIS technique. These tests were performed in order to
either verify or reject the necessary assumption that the downed particles
in the ith subset were randomly distributed in the cylinders of radius
r(i) to be sampled, V&é%1,2,3%. As has been noted before, the data for
these two hypothesis tests (see Tables 2 and 3) consistently give good
credibility to the claim of particle placement and orientation randomness
within the CPIS units sampled in each study area. Now this required
condition of particle placement and orientation randomness within the
sampling cylinders may seem like quite a severe restriction on the CPIS
technique when applied to lesser downed fuels. It should be realized
that randomness is required only with respect to the CPIS units being
sampled ana not with respect to either the entire fuel cell or all CPIS
units within the fuel cell. This means that the CPIS formulas with K(i)
as evaluated in (13.) may be applied to any population of lesser downed
fuels with the one provision that randomness is present within the
CPIS units being sampled. It should be mentioned here that the general
theory on line intersect sampling (De Vries; 1973) utilizes randomness
but this time it is the particles population that is considered to be

randomly distributed. With respect to lesser downed fuels, LIS is some-~

what more theoretically flexible than CPIS in that the general LIS theory
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utilizing randomness can be modified to virtually overcome bias due to
nonrandom patterns of angular orientations of particle major axes (Van Wagner,
1968; De{?}ies, 1973) . Unfortunately the price of this flexibility is
that three times as many LIS units are required (De Vries, 1973).

The second point that warrants discussion is the fact that particle
intercept counts were made on each LIS  and each CfIS transect with respect
to all three subsets. An alternative approach would have been to use
Grosenbaugh's (1967) 3P subsampling procedures (Beaufait, Marsden and Norum,
1974) . These 3P procedures were not applied to the second and third subsets
because it was felt that here the reduction in sampling time offered by the
3P system was not sufficient to offset the statistical errors which these
procedures introduced. Grosenbaugh's 3P subsampling techniques were not
applied to the first subset because it was -iconsidered too difficult to
make ocular estimates (required by the 3P system) of the numbers of twigs
((0-%"]) intercepting most transects. This intersection count estimation
process required by 3P subsampling was deemed too difficult for twigs
because in many cases these finer particles were uniformly layered, making
the number of twig interceptions not only impossible to estimate but also
next to impossible to count. This difficulty in counting twig interceptions
was a point of much concern. When layers of particles were encountered, it
becomes necessary to disturb slightly the local particles in order to obtain
a valid intersection count. 1In the fieldwork undergone in the study areas,
this process was not found awkward unless the particles of concern were
twigs in layers. Then the process became mentally exasperating. Through
much painstéking effort, twig interception counts were obtained for both

study areas (see Table 4 for LIS twig counts and Table 6 for CPIS twig



counts). It was decided that if the five smallest preliminary CPIS units
did not yield a twig population mean volume estimate with approximately
15% precision, no more CPIS units would be sampled, thus preventing a
comparison of LIS and CPIS to be made for twigs. This decision was
reached because the frequency of occurrence of twig layers was so great
that it ﬁade the task of‘counting twig intersections next to futile.

Since the twig data analysis (which utilized data from the five smallest
CPIS units only) yielded mean volume estimates of about 40% precision for
both study areas, no comparison was made of LIS and CPIS with respect to
twigs. This fact is reflected in the absence of figures for the first
size class in Table 8. It is suggested that if mean twig volume estimates
are required in future investigations, fegression equations expressing
mean twig volumes per unit arearas functions of mean particle volumes

per unit area for at least the second and third subsets should be
developed for the important fuel types. These regression relations could
then be used in place of actual phyéical twig data. It is important to
observe that when sampling in slash, the utilization standard implemented
may ha&e a significant effect on either the general form of regression
model selected or the estimates for the regression coefficients used.

Due to time constraints, suitable regression equations will not be
developed here. Before analyzing the data in Tables 4 through 8, it should
be stressed that the CPIS technique has not failed in its application with
respect to twigs. The analysis with the available data has revealed that
sampling twigs in the two study areas is not practical. In areas where

it is practical to sample twigs and no regression equations for twig
'volumes are available, the CPIS technique can be applied providing that

either a bigger sampling unit radius is chosen or alternatively a larger
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number of CPIS units are considered.

Tables 2 through 8 list both raw field data and important values
computed from that field data. The values listed in Tables 2 and 3 have
already been discussed. The data given in Tables 4; 6 and 7 are straight
forward and require no further comment. In Table 5, it suffices to point
out that the number of LIS units (see column 7) required to obtain a
population mean volume estimate with 10% precision is more than double
that required to obtain a population mean volume'estimate with 15% precision
(see column 6). It should be observed that this is a very high price to
pay for an increase of 5% statistical accuracy. It remains only to consider
Table 8 which deserves the most attention since it summarizes the perfor-
mances of both the LIS and CPIS techniques when applied to the lésser
downed fuels of the study areas.

An iﬁépection of Table 8 reveals immediately that on the first
study area the performance of CPIS was consistently superior to LIS. As
previously mentioned the sampling times offered in Table 8 are represen-—
tative of total sampliﬁg times required to obtain population mean volume
estimates with specified degrees of precision (in a small neighbourhood
of 15%) at the 95% confidence level. Notice that on area 1, the minimum
time gain offered by CPIS was about 17% on 2.5 hours of LIS time. Also
notice that on area 1 thé maximum time gain offered by CPIS was about 40%
on 5.5 hours of LIS time. These figures clearly reveal that on study area 1
the total sampling times required by LIS to obtain lesser fuel volume
estimates of approximately 15% precision at the 95% confidence level can
be significantly reduced through proper application of the CPIS concept.

However the information presented in Table 8 for study area 2 is not so
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straight-forward. Recall that in the general discussion of the application
of CPIS to downed woody particles, it was mentioned that statistical
problems arose when the population of fuel particles contained large
continuous areas differing drastically in fuel particlé frequency.

Recall also it was pointed out there that if such distinct areas occurred,
it would be adviséble to stratify the fueis population in a meaningful way
and apply the theory of stratified sampling. Now it was remarked earlier
in the general discussion of the field test that there was a noticeable
ravine on study area 2 where lesser woody particle accumulations were
evident. A closer inspection of this ravine revealed that the fuel
particle frequencies of only the first and second diameter size classes
(subsets) were dramatically high. Hence it became necessary to stratify
the fuels populations of the first and second diameter size classes only.
It is suggested here that a bias in fuel particle frequency of occurrence
for the fuels of the first two size classes was present because it is
probable’ that the distribution of fuel placement for the smallest
particles becomes skewed when the direction of log pull interacts with
unusual featufes such as significant continuous undulations or irregularities
in the terrain. Going back to Table 8, notice that on study area 2 size classes
2, 4 and (2, 3) each have two sets of data assoéiated with them. Notice
also that one sét is underlined and one is not. The underlined set refers
to results of computing appropriate mean volume estimates with proportional
stratification (Ehrenfeld and Littauer, 1964; p. 388); the non-underlined
set refers to results without proportional stratification. The differences
are highly significant, indicating that fuel stratification by fuel loading
has a dramatic influence here especially upon the performance of CPIS. It

should be remarked that the increases in the total LIS times after
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stratification are consistent with the corresponding deéreases in precision
levels., Fuel stratification has a favourable effect upon both LIS and
CPIS. This effect is not exposed so obviously for LIS because LIS is
sensitive to a decrease in precision level within a neighbourhood of
15%. Note that size class (2, 3) refers to the pair of size classes not
their joint grouping into the size class, (%", 3"). The inclusion of size
class (2, 3) is justified by remarks made earlier to the effect that it was
theoretically feasible to obtain volume estimates for size.class 1 from
volume estimates for both size classes 2 and 3 using regression analysis.
Proper application of CPIS techniques to the problem of obtaining
mean downed woody volume estimates of approximately 15% precision at the 95%
confidence level has consistently resulted in significant total LIS
sampling time reductions with respect to both study areas considered. The
time constraints imposed upon this investigation prevent a rigorous verifica-
tion of the claim that CPIS is significantly superior to LIS with respect
to all downed woody fuel applications. On the other hand the findings
presented in Table 8 cannot be dismissed as simply interesting. These
findings offer concrete confirmation that common point intersect sampling
(CPIS) is a flexible and viable sampling technique which deserves much
attention. At this point the data for the field test has been presented
and analyzed. It is appropriate now to consider the overall significance
of the thesis, and the inferences which can be made from the information

the thesis has provided.



CHAPTER V
ConclusiOné

A general sampling.technique referred to as 'Common Point Intersect
Sampling' (CPIS) has been developed and discussed and tested operationally
with encouraging results. Appropriate CPIS formulas were derived with
respect‘to downed woody fuels. Using these formulas the performanceof CPIS
was compared to that of line intersect sampling (LIS) in two fresh cutover
areas. Proper application of the CPIS technique yielded lesser fuel volume
estimates of about 157 precision with savings of up to 40% of the total
sampling time required by the LIS technique. 8

The general theory of CPIS as presented is extremely flexible.
It can be applied to the problem of obtaining quantitative estimates for
attributes of any community of objects temporarily fixed in space. It is
impérative for the reader to realize that the basic concepts involved are
seated in sound logic. To emphasize this point a considefation of all
the seemingly negative aspects of CPIS will now be made.

The first apparent negative pr&perty of CPIS is that there is
no cut and dried general formula for obtaining the common radius of the
cylindrical sampling units used. This property isoclosely linked to the
problems of selecting the appropriate number of transects to lay out in
each CPIS unit and of specifying a sufficient number of CPIS units which
will result in a satisfactory estimate. Although preliminary sampling
holds some promise for solving these problems there is little doubt in
the mind of the author that a truly satisfactory answer lies in the art
of ‘simulation modeling. Using a systems analysis approach, the system

in question can be subjected to a multitude of sampling designs with
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statistical and cost criteria used as the basis for selecting the best set
of outcomes. Time constraints forbid the construction of such a general
systems model which would be interfaced with different general sampling
techniques. 1In essence then what is being said is that a truly satisfac-
tory answer to the general problem of selecting both the number of CPIS
transects and the number and size of the CPIS units lies outside the scope
of the thesis. Until such time as a general systems model is built, each
investigator will be forced to either construct and experiment with

events models similar to those presented in this thesis, conduct preliminary
sampling, or else rely on his own experience and intuition in order to
quantify precisely the CPIS system which Wiil best serve him.

The second apparent negative property of CPIS is that it is not
immediately clear how to get the function whose integral is to be used in
obtaining an estimate for the parameter of interest. Of course it can be
argued that the multitude of situations which can arise here is so great
~ that it prevents the specification of a precise technique. But there is
a related procedure embedded in the general theory and reinforced in the
CPIS applications. More specifically, if the attribute is a one-dimensional
average, try to relate it through the multiplicitive constant k to the
image of a function whose component terms can be easily tallied either in
the field or on a photograph. If successful, this image then leads
directly to a form of the desired integrand using for example the concept

of the average value of a function. The argument used for E. is a perfect

1
example of this. If the attribute is two-dimensional, the integrand will
probably be either one or two dimensional depending upon what character-

istics can be measured. A good example here is that surface area is
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generated by rotating curvilinear length. Finally if the attribute'is three
dimensional, the integrand will probably be either one or two dimensional,
again depending upon the inputs involved and any simplifying assumptions
which are valid to use. A good example here is that volume is generated by
rotating surface area, In practice the selection of the integrand is almost
always simplified by the fact that only certain field variables can be
measured to satisfactory precision. See Chapter VI for a further discussion
of this problem.

The general common point intersect sampling concept has been applied
to the problem of obtaining estimators for important parameters of downed
woody fuels populations. A general approach has been presented which
permits the complete specification of CPIS designs and formulas for
computing total volume estimates of randomly distributed downed woody par;
ticles. This approach was followed in detail with respect to the lesser
downed fuels, and was followed in general with respect to the greater
downed fuels. A general formula which expressed CPIS unit radius as a function
of maximum particle diameter of interest was presented for randomly distri-
buted particles. Also a general CPIS formula independent of particle
distribution was offered for computing totél volumes of greater downed fuels.

These results will now be summarized by the following suggested
step-by-step field procedure to be followed when total volume estimates of
downed woody particles are of interest:

1) specify the set of diameter size classes of interest,
M
(di, DiJ i=1° di > 4",
2) select a representative fuel cell in the area of concern. Avoid

access roads and unusual topographic features such as rock



3)

4)

5)

6)
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outcrops. If the fuel cell has no large continuous areas of
unusually high or low fuel frequencies; apply steps 3 through
8 to the entire fuel cell. Otherwise stratify the fuel cell
by loading and if desired apply steps 3 through 8 to each
stratum. If this amount of detail is not reqﬁired for each
stratum, simply do steps 3 through 8 applying the theory of
proportional statified sampling (Ehrenfeld and Littauer, 1964;
p. 388). (Note that if this last process is conducted, the N
sampling units are selected on a basis of appropriate represen-
tation inh the fuel strata rather than on an arbitrafy basis as
implied by (5) and (6).

Lay out a systematic sampling design consisting of about seven
common point intersect sampling units, each of common radius

r(M) where:

(M

Log)o" " "R 1.22 + 0.47 log, Dy, Dy in inches

r (M) in feet
Within each of these 7 large circles there are (M-1l) concentric
circles, where the radius of the ith circle is defined by:

(1)

Di in inches

Log ¥ . - .
10 r(l) in feet’ Vie{l, UERX) M_l}

A1.22 + 0.47 logloDi,

Make sure that the 7 circles are spread such that they cover the
entire fuel cell uniformly.

1.

Set i
Set N =3, j =1, and k = 0. Select N widely spaced large CPIS
units from the 7 units laid out.

Consider the ith circle in the jth large CPIS unit. If the

fuel particles in the ith diameter size class in the ith circle
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are randomly distributed (assume this unless it is .very obviously
false), choose a radius transect (t) randomly using some set

of random numbers. Each radius transect is defined by a sub-
length of cord of length r(M) joining two or more wooden stakes,
each sharpened at one end to facilitate easy insertion into the
ground. Transects are laid out geodetically (i.e. parallel to
the adjacent topographic surface) not horizontally. The cord
should be attached to each wooden stake with a sliding ring
equipped with a wingnut to permit the cord height to be raised

or lowered according to fuel depth. Count the number of particles
in the ith diameter size class Cdi,D;j which intersect this
transect. Note that an intersection occurs only if both the
particle central axis and at least one of the particle edges
intersect the transect. Then rotate the radius transect

through a 300 arc and repeat the above process. This procedure

~ is carried out a total of 12 times to obtain the sequence

. 12
ROISNCEECY
UF

. ) N » .
, Where mgl)(t + %?), we{l,...,lZ% is the
) ‘

number of particles in the ith diameter size class which
intersect the transect at C%?’ + t) inscribed within the ith
concentric circle in the jth large CPIS unit. This sequence

is then inserted into (i9.) to obtain the desired volume
estimate‘for the ith circle in the jth CPIS unit. Note however
that if the particles in the ith circle (where Dj<3") are not
randomly distributed, no legitimate volume estimate can be

1) "

obtained using (19.) with K as.e%éiuaéeﬂ.in'(IB.), V&€I1,2,3}1

Now suppose that the fuel particles within the ith circle
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(where Di>3") are not randomly distributed. Then repeat the
sampling procedure described above for randomly distributed
particles, with the exception that for each relevant inter-
section the distances to the left and right most points of
the intersection (along the particle edge) are tallied and not
the number of relevant particle intersections. As indicated
previously if a truncated ellipse is encountered (i.e. a
particle end), it is necessary to extrapolate one edge of the
particle to the transect in order to obtain the proper value
assuming of course that the particle central axis intersects
the transect. The data so obtained are inserted into (14.)
which is then used to obtain the desired volume estimate for
the ith concentric circle (3<i<M) in the jth large CPIS

unit. - This estimate is described below:
12

.>:,':\;\1 ' )
-/4 s E Cw”ng(i) (t + %E) , JEgl, oo ,N)

vl 1e4,...,1, D23,

4, if w is odd

Cy= 2, if w is even
7) Increment j by 1 and repeat (6.) until j=N+1+k.

8) Take the N volume estimates obtained above and compute:

(to.975; N-1)‘CV)3/QE

(Ts)éi) where (CV), = coefficient of sample
’ 1 variation for the ith
diameter size class.

value from Student's t
distribution with (N-1)
degrees of freedom.

£0.975; N-1

Iﬁ (TS)(l)._E 0.15, the desired 95% confidence interval with 15% precision
N

has been obtained. Hence increment i by 1 and repeat steps (5) through (8)
A
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until i=M+1l. However if (TS > 0.15, increment K by 1 repeat steps

)(_i)
N
(6), (7) and (8) with j=N+K until either (TS)Ing)_i 0.15 or j=8. Then
increment i by 1 and repeat steps (5) through (8) until i=§+l. Note that
(6), (7) and (8) are repeated with only one new added sampling unit.
This means that it is necessary to select only one new CPIS unit each
timé (6), (7) and (8) are repeated for a particular iéél,.;.,M&. It
should be observed that the above guidelines are not aﬁplicable to particles
which lie in the (0"—%"] diameter size class. Upon investigation of
these smaller particles it was discovered that in many downed woody
fuel complexes, field problems (i;e.udlﬁmbéfgripiigg;pf@ﬁérﬁfciésx;nter—
spersed with needle mats) were enc;untered making impractical the twig
counting process or even the estimation of twig counts. It is recommended
that for'the(O"—%"] size class, an interim suitable regression model be
developed. This model would express particle ﬁolume in the(Q"—%" size
class as a function of particle volumes in the l%"-l"] and (1"-3"| size
classes and any other faétors (e.g. type of disturbing influence and
utilization standard for a harvesting operation) deemed important. Due
to time constraints the above step~by~-step procedure necessarily includes
slight abuses of that portion of the general CPIS theory previously
developed for greater downed particles. The above procedure can still
validly sefve as a sound tentative setlof guidelines for all downed woody
particles pending further studies of the performance of CPIS techniques
with respect to greater downed particles.

It can validly be argued that there are many sampling problems

of more economic importance than those involved with downed woody

materials. In fact in Chapter VI suggestions are given as to how the
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common point intersect technique may be applied in other forestry-related
areas. Perhaps the strength of CPIS should have been!tested in some
other forestry problem, such as the task of estimating important standing
timber parameters. The fact that the CPIS concept was not applied there
has been amply justified. It is the claim of thé author that the
problem of obtaining lesser downed fuel volume estimates is an extremely
difficult-one, and as such serves as an excellent test for evaluating any
- general sampling scheme. The common point intersect technique did more
than pass this test on two study areas; when properly applied it proved
itself to be signifié;ntly more time economical than line intersect
sampling, which to date is the only economically realistic means of
obtaining quantitative estimates for physical parameters with respect to
lesser downed woody material. It could also be argued quite validly that
the new sampling technique as presented is unappealing to the average
potential user. This disenchantment stems almost entirely from the use of
mathematics beyond the scope of the average potential user. More than
likely he will be hesitant about using a sampling technique which he does
not fully understand. Néte that there is nothing complicated about
picking locations for some points and imagining circles of a ‘common
specified diameter about those points. There is nothing complex about
inscribing a few spokes at specified angles within these circles and
counting particle intersections along each spoke and/or making a few
simple measurements at each intergecting particle. It should not be
difficult to see that these particle counts and/or intersections within a
particular circle result in an estimate of some attribute of concern with

respect to that circle. The only thing which the average potential user



- 85 -

may find hard to follow is the higher mathematics used in converting the
particle intercept counts and/or measurements to estimates of lengths,
surface areas, volumes or whatever is of interest. The use of advanced
mathematics here cquld'be frowned upon because it complicates the theory.
But it is because of the higher mathematics that the field work can be
reduced to a minimal level. The average potential user is most interested
in how much work he has to do and how much he has to spend to get what
he wants. The common point intersect technique hds been shown to make
substantial reductions in both of these areas af least with respect to
lesser downed woody materialé. There is good promise that with the use of
CPIS efficient solutions for other sampling problems can be found.

In the step-by-step field.procedure offered on p.74~78 there are
some formulas whose evaluation is periodically required in the field.
The author does not expect the average potential user to take these
guidelines verbatim into the field with him. But rather these guidelines
are intended to form a basis for developing a field guidebook which would
permit the uséf to lodk up inva table the volumes, etc. for his partiéular
data. The level of resolution of these tables is primarily a function of
the accuracy desired by most users. The average potential user is never
expected to understand mathematical formulas. At this stage all the
potential user need be aware of is that the common point intersect technique
was tested on two dissimilar slash areas and was shown to require signi-
ficantly shorter sampling times than the most successful sampling technique
currently available, namely line intersect sampling. Field packages will

come later.

The real power of common point intersect sampling lies in the
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facf that it is extremely versatile. It can be likened to cluster Sampling
and as such is most beneficial in those cases where the cost of selecting
and locating a ﬁopulation element far exceeds the cost of determining the
contribution which that element makes to the estimate for the attribute of
interest (Freese, 1962; p.64). A great deal of effort has been made to
convince the reader that common point intersecf sampling is a sound and
viable non-destructive technique which deserves the attention of investi-
gators from almost every scientific discipline. It is almost fedundant

to say that more studies in many more sampling problem areas are required
in order to thoroughly evaluate the worth of this new sampling concept.

But this is still not a valid reason to ignore common point intersect
sampling until its value has been conclusively determined. Through
numerous arguments it has been indicated that applications of CPIS techniques
are feasible now at least in the forestry-related areas of downed woody
material and standing timber (see Chapter VI).

The two main objectives of this thesis were stated as the pre-
sentation of a new general sampling theory and the application of this
theory to an important social problem area. But these objectives are only
~a means to an end, which is the full operational use of common point
intersect sampling. The achie&ement of this end is what this thesis is

all about.
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CHAPTER VI

Practical applications of ‘the common point intersect technique

Thus far the common point intersect sampling technique (CPIé) has
been applied only to the problem of esfimating parameters for populations
of downed woody materials. But this is only one small problem for which
CPIS offers a promising solution as this chapter will demonstrate. Before
discussing alternative applications of CPIS consider first a simplified
version of the sampling concept upon which CPIS is based. CPIS selects
cylindrical sampling units enclosing elements of the population of interest.
CPIS hopes to choose these units sufficiently large so that the variability
among them with respect to the attribute of interest is small. Within each
unit a number of line transects are inscribed. Regarding each sampling unit
in two dimensions as a circle, each transect corresponds to a radialigég@ént.
Many measurements are made in each circle at ﬁlaces defined by the inggfsection'
points of the transects and relevant population elements. For a given circle
these measurements are inserted int6 appropriate formulas which given an
estimate of the attribute of interest with respect to that circle. When
applying CPIS to the problem of estimating some physical property of interest,
it is usually of benefit to ask the question 'What geometric figure when
rotated about the centre of a circle will yield that physical property?’'.
Consider first the problem of estimating the length of a stream
or road network. The physical property of interest is length. So what
geometric figure when rotétea.ébout the centre of a circle yields length?
The answer is simply a point.' So for a given‘CPIS unit let xij)(e) be the
distance along the base of that unit from the centre of the unit to the
) th

=.point formed by the intersection of the transect at 6 with the i—

oy

stream or road intersecting the transect at 6. Let mi(e) be the number of
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such points formed by the intersection of the transect at 6 with the i—
stream or road intersecting the transect at 6. Also let n(6) be the number

of stream or road intersections intersecting the transect at 6. Then

2m

S‘ n(8) mi(d) .
= ?;;: XE‘J)(O)dG gives a measure of the total length of streams or
0

roads within the CPIS unit of interest. Notice that the result is inde-
pendent of stream or road distribution or frequency.

Consider next the problem of estimating large numbers of fructifi-
cations of wood-destroying fungi, large numbers of migrating wildlife or
large numbers of host-attached plant parasites.v The insight gained from
the discussion of experiment Ei'should provide the key to these problems.
For a fixed CPIS unit of radius r let n(6) be the number of population

2m

elements intersecting the transect at 6. Then 1 S. n(6)d8 gives a
2Tt
0

measure of the average number of elements per unit area within that CPIS unit
providing of‘course that the uniés of r are sufficiently small. This result
is also independent of distribution or frequency of the glements of concern.
The problem of estimating crown area (Husch, Miller and Beers, 1972; p.106)
and mean crown diameter (Husch, Miller, and Beers, 1972; p.49) with CPIS
techniques will be considered next. Time constraints permit only a general
investigation here and this is limited as above to the generationiof the
integrand in (1l.) with respect to each of the above two stand parameters.
Focus upon the problem of estimating crown area using the CPIS
concept. Suppose that aerial photographs.are available which permit crown
boundaries to be delineated. Let pl be a parameter representing the
average crown area per unit area. Similar to experiment E2 (see 'Application

to downed woody fuels'), let k be ﬂrz. The F&(zﬂ) represents a total crown
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area with respect to the area in the jth CPIS unit. Using notation as in
the application of CPIS to downed woody particles, a function fj is

desired such that:

2w . _

F,(2n) = S £ (6)at, where F,(2m) = TrrZX(Sj), and

2 :
X(Sj) = value taken on by X at Sj’ jé{l,.;.,N}, where X again refers to a
random variable defined on the sample space of outcomes of experiment E2.
Now in order to produce fj(t) in terms of variables which can be easily
measured, it is necessary to make some assumptions regarding the regions
enclosed by the crown boundaries. It is valid to assume that each region
defined By a crown is a collection of connected Sub-fegions (Taylor, 1965;
pP.76). If desired, this can be taken to mean that each sub-region can be
traced without ever havingsto 1ift the pencil. The attribute of concern
here is a surface area which is two-dimensional. So what geometric figure
when rotated about the centre of a circle yields surface area? The answer
is a line segment. A basic understanding of calculus reveals that if a
line segment of small length AX' is located approximately a distance X

away from the origin, a surface area of (A%) (%A9) is generated by

sweeping the line segment through A6 radians. It follows trivially that:
my (t)

Pi,j 2 2
fj(t) =1 > > [ek’i’j(t) - bk,i’j(t)] R Vts[o,zw], where
i=1 k=1
na(t) = number of crowns intersecting the CPIS transect located at the t
.within the jth CPIS unit.
Pi,j = number of line segments formed by the intersection of the transect

at t with the ith crown intersecting the transect at t,
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iel,"«{l,...,-fnj(t)vj, within the jth CPIS unit.

%g;i,j(t) = furthermost end-point of the'kEE line segment formed by the
intersection of the transect at t in the jth CPIS unit with
the ith crown intersecting the transect at t, ké{l,...,Pi,j},
ié{l,...,mj(t)}

bk}i,j(t) = jdentical to ek,i,j(t) with the exception that hkﬁi,j(t)

refers to the innermost end-point.
fj is sectionally continuous on [b,Zﬂ]and thus satisfies all required
analytical properties. Note that the only inputs required by fj are linear
distances which are‘most often easily obtained from aerial photographs.
It is important to realize that the CPIS formulas produced to obtain .
estimates of crown area are independent of tree distribution and also
virtually independent of crown shape.

The problem of estimating mean crown diameter with CPIS techniques
is completely analagous to experiment E1 (See 'Application to-downed woody
particles'). The only assumptions required are those used directly above,
namely that the aerial photographs used permit a meaningful delineation of
crown boundaries, and that each crown may be regarded as a collection of
connected sub-regions. Since crown diameters are usually well-defined
except for some hardwoods (Sayn-Wittgenstein, 1960), they can be measured
directly and used with an analogue to the average function value formula
presented in experiment E1 (See (4.)) to,yield the desired estimate.

With CPIS techniques it is easily possible to obtain estimates
for other stand parameters such as number.of trees per unit area by species
(whére species can be identified); mean crown diameter per tree by species,
mean height per tree by species (where tree height can be either estimated

or else regressed from other measurable tree characteristics, mean tree
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volume per tree by species; etc., Note that these estimates can be insérted
into suitable regression equations to produce estimates for component oven-
dry weights of total-tre;, bole-wood, bole—bark; total-crown and branches of
different sizes (Kurucz, 1969).
Now consider the problem of estimating the surface areas of lakes,
watersheds, large river systems, or areas occupied by different Herbaceous
and ligneous species. The application of CPIS to these problems is similar
to the application of CPIS in estimating crown area for standing timber.
'So let ai(e) and bi(@) be the distances along the base of some CPIS unit

from the centre of the base of the unit to the left and right hand end-points
respectively of the th segment formed by the intersection of the transect
étfe with the ith population element intersecting:the transect-aﬁ 8. Let ni(e)
be the number of line segments formed by the intersection of the transect

at 6 with the ith population element interéecting the transect at 6. Also

let m(8) be the number of population elements intersecting the transect at

8. Then

25”( n(® nij(8) bi(o)

xdx|{ db gives a measure of the total

surface area occupied by the population elements within that CPIS unit.
Note that this result is indepéndent of the distribution or frequency of
the élements of concern. This result can also be used to measure rate of
seasonal change or annual growth by comparing figures computed from photo-

graphs or direct measurements taken at appropriate times.
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APPENDIX I

Problem:

Proof:

To prove that the volume obtained by rotating an ellipse.at~61

R R . M
through a small arc [60 ,62 ] . eoielfﬁz, is given by (5).

R
2

center-point of E1 by (S, Yo) and let the left and right hand end-

Fix 61 in [ég » 0 ]. Let the ellipse be denoted by El. Let the
points of El bé\Xl and X2 respectively. Finally let d,'y, and é;*

be defined as in (5) and assume that A§>0.

El lies on a rectangle R (cross-section of some right-circular
cylinder) inscribed within the population of concern. Let the base
of R define an x" axis and the other-edge of R intersecting the
centre of the circular base of the sampling unit define a Yt axis.

R R R
Let the major axis of El be inclined at an angle-?;1—<n&<ﬂ , from the

2 2
Xf:axis.
From simple geometric considerations it can be seen that the ellipse

(E2) defined by:

.gx;Sgi + (Y—Yq)ir= 1
d/2 !d sedﬂ. '
2

intersects El at (S, Yo+ dsgcm y.

This gives one point on El. Now

consider the ellipse (E3) defined by:

2 2 . o
(X - S) (Y— YO) = Cim e i
) + descTl 1 and the“line defined by
2 4

Y = (X-S)cot ¢ + Yo where ¢ = sin_lﬁiéifgifyj, 0<.<m/2
From elementary calculus the length of the line Y =X cot ¢
which lies to the right of (0,0) and which is enclosed by E3 is:
AA..':deSé¢TAA.
2 VT + cotApsin?y




~tog -

Now let ((X?+X3) = XA,YO), X_>0, be.a point on EL, Then from geometric

3

considerations, it is seen that a second point on El is:

‘Xo + desed s, Yo
27i1cotz¢sin21“ _ .

These two points lead to the equation of El in the (X,Y) system., To see
this, rotate the X and Y axes through <R in either a clockwise or counter-
clockwise direction, whichever is appropriate to obtain a new (X',Y') system.

The equation of El in the (X',Y') system then becomes:

(;X'—:S")2 + (Y'—Yo')z = 1, where
2 2
(a/9) (d/9)
(*) - X' = Ysin=+ Xcos&
and Y' = Ycos®- Xsin®

Inserting the two points on El into (%) yields:

a = dcsc¢secY
(%%) >0 if rotation is counterclockwise
and cos ¢ = cotd , where sin«c
: <0 i . . .
'75562¢sec1y—1 0 if rotation is clockwise

Note that these last two equations also hold if ¥= 0. Consider a small
vertical strip of the area enclosed by El. Let this stfip have width AX and
height t(X). The area of this strip is approximately t(X) "AX. When this strip
is rotated about the X axis thrdugh a small arc of length X(@ZR—OOR) = X—A@R,
the resultant volume generated is approximately t(X)-AX-X-AOR. Using the
continuity of the height difference curve (maximum height less minimum height
for each X) defined by El, it follows that the volume generated by rotating

El about the X axis through a small arc [éOR’OZE] of measure A@Riis:
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- X2
A8 5 Xet(X)dX
X1

From (%*) and the quadratic formula, it can be shown that:

- x e .
1 i/ 2

S Xt (X)dX =3 S\ Xv B™ - AAC dX, where
X1 X1

A=4 csc2¢i

2 2 .
B = 8(X-S) (1 - csc¢-sec”y) cosx « sin«
C = 4(X--S)2 (1 + cot2¢sin2Y) seczY - dzcsc2¢ Séczy

Simpllflcatlon using (%%) results in

+ . - 3
fé ~4AC = 4 cscosecy v/dzcsc2¢ - 4(X—S)2

:-Therefore
X2 X2
_ sec +/ .2 2 T 2
S X-t(X)dX = esct j 5/ d2ese ¢-4(%-$)" dx
X1 X1
' X2-§
_“sec Y Zosc? 7 _ ~
= = (u+ s)Y d"csc™9p - 4u” du, where u = X-s, s=§
cscd
X1-8
X2-S
= d ‘secy S (u + s) l_l_ii_]}_i d
Xis 0w’
~0 IO .
. + g - i
= d secy S {dcscgcoss s} lSinBl{ dcsc§51n8}d8’
‘ 1
where B = cos éﬁiﬁz&l—}, 0<g<m
S
L2 :
='d"¢sé ¢ secy S {dcscgcoss + s} sin BdB
0

, . T
‘d“csedsecy dcsc¢ S

2 2
(o]

m
cosBsinzsdB + S 5 sinzBdB
o
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2

'd”isisec Y »eschd (B é‘siﬁ‘ZB"" .
4 2

B=0

m
'dZGCSc¢°secY~s S sinZBdB, since 1lst integral is O.
o

I
. 4

Therefore the volume generated by rotating El about the X axis through

d2-s~secY°csc¢

R R R R R
a small arc eol 62 of measure (62 - 60) = AD is:

o
A

Since-e1 was arbitrary in [ég,@g] » (5.) is established.

dz-s-secY-csc¢pA9R.

QED.
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APPENDIX II

The computerized analysis of variance model (ANOVA 1) offered
in this thesis is designed for a PDP-1l computer. It is primarily a
simultaneous runs one-way classification random components model (Ehrenfeld
and Littauer; 1964; p.391-399) with unequal numbers of observations in the
cells. This program both generates the values of the response variable of
interest and also does the standard analysis of variance computations.
It also examines both the assumption that the te?@s comprising the T matrix
(see ANOVA 1) are normally distributed with a common O mean and common
variance and the assumption that the terms comprising the E matrix (see ANOVA 1)
are normally distributed with a common 0 mean and common variance. Both
these assumptions are required to be valid in order to correctly apply the
standard parametric hypothesis test for homogeneity of 0 Qariance (Ehrenfeld
and Littauer, 1964; p.396) with respect to the terms comprising the above
mentioned T matrix.

This program was devised first to determine the cénditioné under

which it was feasible to replace:

%31,32
(1) (1) (1) (142 = i1 s
P S{;E.’jl’jz(t)-csc (q){.k:jl,j-’-(t)ﬂ (mjl’jz(t) (7)) =8(4,il1,32,0),
(1)
"51,52() 7 0
where: t refers to transect location in [é, éﬁ]

~j1 refers to particle distribution
j2 refers to particle loading
i refers to diameter size class

(see (5.) and (6.)) by a constant K‘i) independent of jl’ j2 and t such
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that not only the in§Egral.but also the shape of é}§i) (see (10.)) over
EO, Zﬂ:]would be approximately the same as the integral and shape
respectively of g2§i) (see (9.)) over [O;Zﬁ]. Having tentatively
established these conditions, the program was then adjusted to evaluate
<Kfi), for i ”61,2Q3} (seelaog)). ANOVA 1 was necessary because for many
downed woody particles it is not feasible to measure either distance to
transect/particle intersection or angle of transect/particle intersection
as required by (9.). |

Determination of the conditions under which it was possible to
replace S(i;jl,jz,t) by K(i) was made by setting up ANOVA 1 for a two-way
classification run (Ehrenfeld andHLittauer, 1964; p.432-434). The two
influencing factors were fuel particle loading and distribution. A wide
range of lesser fuel particle loadings (0.75 particles/sq.ft-50.00 particles/
sq.ft.) agd distributions was tested here under different fuel particle
length distributions. Let §'(i, jl,jz) be the mean value of S taken over
all te [O,ZH], i, j1, and jo fixed. Then an interesting result of th;é
analysis was that gki,jl,jz) was found to be reasonably independent (ie.
within statistical limits) of j2+ No such independence could be found for ji.
This wés found true V&éil,Z,Bé, Vﬁl,jz tested, and for every fuel particle
length distribution tested. Hence due to time constraints it was decided
to determine 551), iéil,Z,B? for only the most common lesser fuel particles
distribution, namely randomly distributed fuel particles with respect to the
CPIS units.

Before proceeding to the one-way classification ANOVA 1 set-up,
three relevant points should be briefly discussed. The first one'relates

to the fuel particle distributions which were used as levels of the second

influencing factor in the two-way classification ANOVA set-up. A multiplicity
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of angular orientafions and particle placements was used here. For example,
particles were randomly oriented and réﬁdomly placed, :andomly oriented and
placed in clumps or strata, unidirectionally oriented and randomly placed,
and unidirectionally oriented and placed in clumps of intensified fuel
accumulations. The second point which merits consideration is the éhoice

of fuel particle length distributions. Three distributions were tested
here, each applied using a variety of length ranges. The first distribution
Qas generated using a random number generator based on the Lehmer
Multiﬁlicative Congruential Method (Migérland Cox, 1968; p.68) where the

general formula used is:

u
n

X'u_ (mod m)

This formula is embedded in a library function subprogram (RAN) on the
PDP-11. RAN sets x equal to 21843 and n équal to 232; ﬁo is an arbi-
trarily chosen odd number. RAN has the unfortunate feature that the actual
order of the cycle it generateés is not easily determined. However RAN has
been demonstrated on the PDP-11 to have actual orders of at least 220 for
several choices of uge Only these choiées were used in generating the
random number cycles for both ANOVA models. The maximum ranges used here
for the first, second and third subsets were (%"-2'), (1"-3'), and (6"-8'")
respectively. Both the second and third length distributions were generated
using skewed versions of RAN. The second length distribution simply
allotted one-half of the particles to the first one-third of each range

and the second length distribution allotted one-half of the particles to

the first two-thirds of each.range. These length distributions were subjec-

tively chosen to provide dramatically different particle length distributions

in the modelling procedures. The third point which should be mentioned here



is that there is a general purpose analysis of variapce program designed
for the PDP-11 called ANOVA which can accommodate up to 5 influencing
factors, one hundred response variables, 50 transformation cards and 400
observation cells. Use of ANOVA would eliminate the need for a portion

of the ANOVA 1 model. ANOVA is definitely a viable approach here but was
not used because the author had written a large portion of ANOVA 1 prior to
commencement of the thesis.

The one-way classification ANOVA 1 set-up derivedJK(i); Viéii,Z,B}
for randomly distributed particles. Numerous runs were made here to test the
validity of the two underlying assumptioﬁs (stated at the begifhing of
APPENDIXTTL) required for application of statistical parametric hypothesis
tests, Using‘X'2 goodness-of-fit tests at the .05 significance level, both
assumptions were found to be correct. Ihé;anaiysis performed by ANOVA 1
for the one;way classification revealed that the random variable defined
by R;i), i and j fixed (see (12.)) was normally distributed with mean 0
(using a XZ goodness-of-fit test at the .05 significance level), V i, j
tested. A secondary result of the analysis was that if j is ordered by
loading for fixed i, the variance of Rgi)
j for all i. These results may be interpreted to mean that with respect

generally decreased with increasing

to randomly distributed particles, not only the integral of é&;l) (see (10.))

but also the shape of éZgl) over [b,Zﬂ] is approximately the same as that

Eﬁi) (see (9.)) over [b,2ﬂ] \6

of the integral and shape respectively of é

tested and Visli-.l,Z,B}f where:
(D)

e

2.83 X10 %(feet)

- 1.49 X107 (feet)”!

(3

8.56 X102 (feet) :
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A further interesting result of ANOVA 1 for the one-way classification case

is that the random variable defined by mgl), i and j fixed (see (6.)) has
a coefficient of variation reasonably independent of i aﬁd.j, \ﬁé{1,2;3y,

VB tested. This can be interpreted to mean that on a percentage basis the

variability of ézgi) over ﬁhZﬂ]iS reasonably independent of i and j. Combining
this observation with previous remarks, it follows that one numerical
integration technique applied at one level of sampling intensity will

probably produce the same degree of accuracy for the integral of g2§i) over
[O,ZTr], Viej{l,Z,B}, Vj as before,

Finally it is observed that the one-way classification ANOVA 1
set-up computes the non-parametric Spearman's rank-difference coefficient
(Tate and Clelland, 1957; p.13) with respect to distance to particle central
axis intersection and cosecant of particle cengral axis intersection.

Results of this investigation showed that in 90% of all CPIS units with
randomly distributed particles, the random variable represented by distance
to partiéle central axis intersection and the random variable represented
by the cosecant of particle central axis intersection were uncorrelated at
the .05 significance level.

The one-way classification ANOVA 1 set-up presented below is very
simplé and straight-forward. It is supplemented with many comment statements

explaining important procedures and definint important matrices to assist

in the reader's understanding of what has been done.
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APPENDIX III

: : o i
From APPENDIX IT it is now possible to express g2§ )(t) as follows:

2@ = 4O, Vien,..m
Wyeld, ,n}, Vee [O’Zﬁ]'
where A} can be explicitly determined Viéil"’°’M§'

N ey 2T, . )
Since xz(l)(sngl))&‘ nggl)(t)dt, Viel1,...,mM}

VJe{l,n} (see (8.))
it is clear that:
. 27 .y
(28.) XZ(i)(SZ:(il)):}A(i) §my P (0t
0

where mgi) is réferred to as the particle intercept counting function. ‘
Recall that XZ(i)(SZ§i)) refers to a total particle volume per unit area.
Since the images of the particle intercept counting function cannot be easily
expressed in terms of t mathematically, numerical techniques must be used

to estimate the right-hand side of (28.). The main purpose of the downed

woody fuel model is then to determine constants Cgi), P;i) and Q(i) such
that:
‘ o Q(1)
29 A | 2@ g x 4D ) WMy
J = w J w
o w=1
Due to time constraints C(l), P(i) and Q(l) are determined only for

randomly Qistributed fuel particles with respect to iéil,Z,Bi'as previously
defined. | ]

In order to fin@fC(i), P(i) and Q(i), V&S{l,z,Sé, three different
integration techniques were proposed. Each was examiﬁed at five different

levels.:of sampling intensity, namely 6, 8, 10, 12 and 14 transects. This

range was chosen because preliminary investigations with randomly distributed



matchsticks suggested that the desired level of sampling intensity lay
somewhere between 6 and 14 transects. The three techniques tested were:
Gaussian-Legendfe : (Scheid; 1968; p.126), Simpsonfé'rule (Scheid, 1968;
p.}08) and the average function value method (Thomas, 1951; p.257). Thus
in all 15 techniques were examined for each particle diameter size class.
Two criteria were used as ‘@ basis for selection of the optimum integration
formulas., The first criterion stipulated that the integration formula of
interest was required to yield a volume estimate within 10% of the
corresponding true volume for each of at least 90% of the circular
samﬁling units simulated. The second criterion stated that the integra-
tion formula of interest must yield a volume estimate within 15% of the
corresponding true volume for each of at least 97.5%, of the circular
sampling units simulated. Obviously if more than one of these integration
formulas satisfied these criteria for a particular diameter size class,
selection was based on the level of sampling iﬁtensity required and

ease in application and understanding. After conducting several runs of
the downed woody fuels model for each diameter size class, the technique
chosen using the above criteria was Simpson's rule with 12 transects. It
is important to realize that this formula worked best for all particle

diameter size classes tested. Hence it was found that:

1) = = ; ;
Cw = Cw 4, if w is odd »
2, if w is even , Vie {1,2,3}
P(i _ t +'%?,'for arbitrary t [§,2@]

W

o - 12
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Hence it may now be asserted that:
S 12 -
(30) X2(l)(52§1))Q:A(i) me§i) (t + mw), t arbitrary in [@,Zﬁ]
§, 6

Auw=1

Vie §123§

V%e'gl,...,ng

1t is important to realize that t is arbitrary in lb,Zﬂ . The

reason for t being allowed to be arbitrary in [0, Zﬂ]will now be examined

(1)

in more detail. For fixed i and j as above, let h2j be a random

variable defi?gd by the following.
; ~ps
h2 {8 ey = c g2t (¢ + ), Vee[o,27, where c, =
J w=J B

w=1

4, if w is odd

2, if w is even

Furthermore for fixed i and jeas previously specified let V§1) be the true
total particles volume in the jth sampling unit taken with respect to the
ith particle diameter size class. Then the random variable defined by:

(V§i) /1T(r(i))2

- h2§i))/(V§i)/ﬂ(r(i))2), i and j fixed, was found to be
normally distributed with mean 0 and small standard deviation (usually
under 0.05) reasonably independent of i and j, V& and j, as previously
specified. This means that‘(30.) holds independent of the choice of t.
Although this result may seem obvious, it is nevertheless an important one
to confirm, since it significantly simplifie§ the application of the common
point intersect concept.

A typical run of the downed woody fuels model designed for a
PDP-11 computer is presented below. This is only one run with one choice
of three tested particle length distributions and one choice of many tested

particle frequency ranges (see Appendix'II). As previously indicated, this

run is set up for randomly distributed particles. However it can easily
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be altered to accommodate non-randomly distributed particles. The downed

woody fuel model is almost self-explanatory. Numerous comment statement§

[N}

have been inserted to assist the reader in his understanding of the compu-

tations and procedures involved.
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THIS _PROGRAM_IS_PRIMARILY A ONE=WAY_CLASSIFICATION ANGYA RANDOM

COMPONENTS MODEL SET UP FOR SIMULTANEOUS RUNS, THIS MEANS THAT

C

c

c WITH ONLY SLIGHT ALTERATIONS, IY CAN ALSQ BE USED AS A TWO=WAY
i c CLASSIFICATION ANOVA MODEL,

201 BYTE_TIMER(S)

-t

ooo2 © _DIMENSION TLOCTS(24) ,NUM(S),TLOCT (24),C0O8L (24) s SINL(24),TANL (24),
1CON1(24),C0N2(24) ROCOEF(5,4),SUM(24) . NC24),Y1JK(5.8.2

) ' 2“)'YIJDOT(S,B),YIDDOT(SJ.YDJDOT(B),T(S.&),E(S,B,Zd),SVIlJi(SiS),SD
3}jJJiS¢§J¢N§AﬂEL§¢§l¢RANKDJiﬁﬂﬂl+&ANK£§LZﬁﬁ14§SnLJ(B).SDCOLJ(B).SS

481NJ(B),FMBlNJ(B),SSNINJ(B),FMWINJ(E).TSXWJI(S),VALIJK(S;&,Z“),VAL
b S8TA(5,8)

2003 EQUIVALENCE (SDCOLJ,SCOLJ,CON2), (SSBIWJI,FMBIWJ,CONL), (SSWIHJ,)FMWLW
: 1J,TLOCT), (SVIiJ1,SDILJs, TLOCTS), (VALIJK, YIJK)
p) 2004 KABQ
pRYs KBaQ
c CV. o COMMON RADIUS OF CIRCULAR SAMPLING UNITS,
> 0006 READ(S,6)_CV
eoe? 6 FORMAT (F5,2) .
o Kii = JRANSECT _NUMBER
P 2008 DO 482 Kiisi,24
009 TLOCTS(K11)=(Ki1=1)"6,283186/R4,
2010 4p2  CONTINUE
D, o NUM s NUMBER OF POPULATION ELEMENTS EMBEDOED IN THE SAMPLING UNIY
c CONSIDERED,
. epLd : READ(5,200) NUM
> - o012 290  FORMAT(SIS)
‘ - ¢ TLMIN 8 MINIMUM PARTICLE LENGTH
: c TLMAX ® MAXIMUM PARTICLE LENGTH
D c SECB - & MEAN SECANT FOR PARTICLE TILTY
. c DBEAR © GUADRATIC MEAN DIAMETER
2013 READ(S,201) TLMIN,TLMAX,SECB,DBAR
> ‘ po14 201  FORMAT(4F8,6)
5 2015 _ DEFINE FILE 1(200,2,U,JVAR)
oale DEFINE FILE 2(2p@,2,U,KVAR)
D ' 017 DEFINE FILE 3(960,1,U,IVAR)
0018 IVAR®1
c 111 = FUEL LOADING NUMBER
D - c LOOP OVER FUEL LOADING
2019 DO 114 311%4,5
P20 NFUELPeNUM(ILL)
D c (L0OP OVER FUEL DISTRIBUTION
go2} DO 116 Ji1si,8
2022 CALL TIMECTIMER)
D o023 WRITE(6,777) TIMER
' aua4 777  FORMAT(25X,'THE TIME 18°,8A1)
: o025 DO 607 Kilsi,24
o) 2026 SUM(K11) =@,
- TEX; N(K11) 80
ﬁ‘* 2028 607  CONTINUE
= c TLOCT® = LOCATION OF INITIAL TRANSECTY
12 pp29 TLOCT@36,283186%RANCKA,KB)
1 2030 JVARTY :
e 2031 KVAR®
3 p032 ICOUN®R i
- 8 _C THIS SET OF NESTED 00°S (UP TO 115) FINDS THOSE PARTICLES (IN A
.~ 7
! .
5
24
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¢ GIVEN SAMPLING_UNIT) WHICH INTERSECT EA CH_TRANSECY CONSIDERED, £
o NEXT THE LOOP RECORDS THE DISTANCE (DINT) TO INTERSECTION AND v
c COSECANT (CSC) _OF THE ANGLE OF INTERSECTJON FQR EACH PARTICLE, S
1 [ EACH PAIR IS THEN MULTIPLIED TOGETHER AND THE PRODUCTS ADDED UP o9
Ly c WITH RESPECT YO EACH TRANSECT, THEN EACH RESULTANT PRODUCT (ONE L
-~ c FOR EACH TRANSECT IN THE GIVEN SAMPLING UNIT) 1S DIVIDED BY THE 8
! c NUMBER(N)“DfﬂfAﬁTlpgﬁS“jNI§R§§§11N§W}1§"§QBB£sPONpING TRANSECT, 6
¢ EACH AVERAGE (YIJK) S0 OBTAINED COMPRISES ONE OBSERVATION FOR THE 0
c CELL(SAMPL ING UNIY) BEING CONSIDERED, EACH CELL HAS NSAMP AVERAGES
c NFUELP ® NUMBER OF FUEL PARTICLES IN CURRENT SAMPLING UNTT,
c LOOP OVER FUEL PARTICLES
0033 DO 115 Mm1,NFUELP
2034 110 X
c L.OOP OVER TRANSECTS '
Q@35 DO 115 Ki1si,24
0036 IF(KI1,.EQ,1) GO TO t4}
9037 GO 70 130
0638 131  TLOCT(K11)=TLOCTS(K11)+TLOCTD
0039 COSL(K$4)=COS(TLOCT(K11)) '
0040 SINL(K11)=SIN(TLOCT(K11)) , i
2041 151 1I1sIl+
gode IF(M,NE,1) GO TO 188
0043 CON3(I1I)=(CV/2,)*COSL (K1)
Q044 CONZ2(T1)=(CV/2,) *SINL(K1Y)
PB4YS 180  IF(COSL(Ky1),EG,@,) GO 7O 558
2046 TANL (K11 =sSINL(K11)/COSL (K1)
0947 IF (COST,EG,@,) GO TO 555
0048 IFCTANT EG,TANL(K11)) GO 10 115
2049 XIN=YINT/(TANL (K11)=TANT)
2050 TF(XIN.GE,XMIN,AND,XIN,LE,XMAX) GO TO 565
2051 GO TO 115
2052 550 . 1F (COST,EG,0,) GO TO §i5
PBs3 1F (@, .GE,XMIN,AND,@,,LE,XMAX) GO TO 589
2054 GO TO {15
0055 555  YINaTANL(K131)«XMIN
2056 TF(YIN,GE.YMIN,AND,YIN,LE,YMAX) GO TO 585
eps7 GO YO 115 -
2058 580 IF(vINT.GE.AMINx(e.,cona(::)).AND.VINT.LE.AMAxt(a..CONacxx))) GO
170 906 :
2059 GO 70 115
2060 585 IF(xMIN.sE.AMINx(e.,conx(:I)J.ANo.xMIN.LE.AMAx1(z..CONx(11))) GO
170 907
no6l GO TO 115 ' ’ !
062 565 TF (XIN,GE,AMINI (@, ,CONI (1)) (AND X IN,LE,AMAX1(@,,CONLI(I1))) GO TO
1605 : .
0063 GO 10 115
2064 605  YINsTANT#XINeYINT
2065 GO 70 606
P066 986  YINBYINT
2067 987  XINsXMIN
P68 606  N(K11)EN(K1i)+}
2069 DINT®SARY (XINww2*YINwx2)
0079 ICOUN3ICOUN«t’
2071 TF (ICOUN,GT,200,0R,J31,67,4) GO TO 952
ea72 WRITE(I*JVAR) DINT
0073 952 ANGINT=ABS(TLOCT(KITY~THETA)

& U Oy WO

1
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2974 XX34BS (SIN(ANGINT))
c. AN INTERSECTION IS SAID TO OCCUR ONLY IF BOTH THE PARTICLE CENTRAL
c AXIS AND AT LEAST ONE _PARTICLE EDGE INTERSECT THE TRANSECT LINE,
c IT 1S ASSUMED THAT THE INVERSE SINE OF THE RATIO OF FUEL PARTICLE
c DJAMETER TO TWICE THE FUEL PARTICLE LENGTH IS GREATER THAN OR
i c EQUAL TO .00451 RADIANS (15,5 MINUTES),
o) en75s TF (XX, hT.eP0455) XX=,00455
- 2076 €5C31, /XX :
! 2077 1F (JCOUN,GT,.200,0R,J11,6T,4) GO TQ 953
‘ o078 WRITE(2¢KVAR) CSC
0019 953 SUM(K11)8SUM(K11)+DINT#CSC
eo8e 118 .CONTINUE
008} ICOUNT =20
ep8e2 S1JKk0Ks@,
ge83s DO 900 Ki3s),24
o084 IF(N(K$1),EQ,@) GO TO 608
Pe8s YIJK(I14,J81,K34)aSUMCKYL) /NCKLL)
2086 GO TO 609
2087 608  ICOUNTSICOUNT#1
o088 : YIJK(181,J81,K11)20,
2089 609 SIJKOKSSIJKOK+YIJK(I$4,J13,K11)
LT 900  CONTINUE «
2091 NSAMP(111,J11)324«1COUNT
c VIJOOT = MATRIX WHICH CONTAINS THE SAMPLE MEANS FOR THE CELLS,
L EH YIJDOT(I11,J11)aSIJKOK/NSAMP(TIYL,J11) :
0093 1F(J11,6T,4) GO TO 998
2994 108 JVAR-1 :
2095 WRITE(6,1002) 111,J11,ID
2096 1002 FORMAT(? ¢, THE NUMBER OF SAMPLE VALUES TAKEN INTO ACCOUNT IN THE
TCOMPUTATIGN OF RDCOEF#/¢ ¢,*WITH RESPECT TO LOADING NUMBER®, IS, ?AN
20 DISTRIBUTION NUMBER?,15,°¢8f,15) :
T ROCOEF ®w SPEARMAN?S RANK=DIFFERENCE COEFFICIENT
c FROM HERE TO STATEMENT NUMBER 0345, THE PROGRAM SIMPLY COMPUTES
c RDCOEF,
0057 JVAR=1
'TEL DO 9@8 KkKkai,ID
0899 - READ(1*JVAR) RANKDI(KKK)
0100 908 CONTINUE :
p1ey INDICE=D
n1a2 626  1TALLYsY
@103 ISCORE=ID :
0104 957  INOTs®
2105 TINaY
2106 IFCITALLY,.EQG,1) GO TO 1417
pi1o7 JTALESSITALLY=1
0108 1416 CONTINUE .
2109 DO 955 ITAL®Y,ITALES
e11@ IF(RANKDI(YINY JEG,ITAL) GO TO 144l
2111 955  CONTINUE
o112 G0 TO 1417
2313 1411 TINSIIN+ : .
2114 GO TO 1416
2115 1417 CONTINUE
2116 DO 618 KKK=1,1D
2117 IF(ITALLY,EQ,1) GO TO 1418
2118 DO 34312 ITAL®Y,ITALES

—O t © M~ 0T ™
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FORTRAN V06,13

1F (RANKDI(KKK),EQ.ITAL) GO YO 619

! 2119 :
0120 1412 CONTINUE
: Q121 1418 CONTINUE
' 122 1F (RANKDI(IIN) ,LE,RANKDI(KKK)) GO TO 610
o 0123 TIN=KKK
- 0124 610 CONTINUE
1. nyes : SYDINTERANKDI(IIN)
B126 RANKOI(IIN)SITALLY
0127 DO 621 KKK=1,1D
0128 1F (RANKDI (KKK) ,NE,SVDINT) GO TO 621
0129 IF(KKK,EQ,IIN) GO _TO 624 L
0130 RANKDI(KKKI®BITALLY
Q134 INOTBINOT+Y
0132 621 CONTINUE
2133 IF (INOT EG,B) GO YO 956
0134 WRITE(6,951) INOT,SVDINT,INDIC,ITALLY
0135 951 FORMAT(? *,'NUMBER _OF TIES HERE ®¢,15,E30.4,215)
0136 956 ITALLYSITALLY#Y
337 I1SCORE=ISCORE=(INOT+1)
0138 IF(ISCORE,GT,@) GO TO 957
2139 IF(INDIC,EQ,3) GO TO 623
2140 INDICSINDICe!
; @141 JVAR=1
g1d4e KVAR®] )
¥3143 PO 909 KKK=1,1D :
2144 WRITE(T*JVAR) RANKDI (KKK)
@145 READ(2*KVAR) RANKDI(KKK)
2146 909  CONTINUE
2147 GO TO 626
0148 623  SDRANZ=2,
0149 JVARS]
0150 DO 910 KKKs1,1I0
0154 READ(17JVAR) RANKCS (KKK)
d35¢2 910  CONTINUE
2153 DO 911 KKK=1,ID
2154 SDORANSSSURANZ* (RANKCS (KKKY =RANKDI(KKK) Y x«2
0155 911 CONTINUE .
@156 ROCBEF (111, Ji 1) 81,6, wSORANS/ (((T0wT Y wu2=1, ) w{ w1D)
0157 998 DO 921 Kiiay,24
2158 : WRITE(I*IVAR) N(K11)
2159 9014 CONTINUE
gien 116 CONTINUE
2161 sIJDoJs@,
Q162 DO be8 Ji1al,8
0163 SIJDOJ=SIJOOJ*YIJOOT(I11,J11)
o164 628  CONYINUE
c YIODOY &= MATRIX WHICH CONTAINS THE OVERALL SAMPLE MEAN FOR EACH
C RUN,
0165 YIDDOT(I11)3S1JD0J/8,
0166 {14 ~CONYTNUE
0167 NSSAMP=Q
168 D0 630 J{is§,8
2169 sybJos@, :
ey7g D0 629 II{s{,5
2174 SYDJDSSYDJD+YIJOOT(I1¢,J11)
C

NSSAMP @& THE TOTAL NUMBER OF OBSERVAYIONS IN ALL CELLS FOR ALL

N IO @~ o N T ™

e
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c SIMULTANEOUS_RUNS,
0372 NSSAMPSNSSAMP¢NSAMP(I{1,J11)
2173 629 CONTINUE
¢ YDJDOT » MATRIX WHICH CONTAINS THE OVERALL SAMPLE MEAN TAKEN OVER
' C CORRESPONDING CELLS_IN ALL RUNS,
o 0174 Y0JOOT(J11)asSYDJD/5,
N e17s 630  CONTINUE :
1 2176 sSYDDD=D,
2177 DO_631 I1131,5
0178 SYDDD=SYDDD+YIDOOT(I11)
p179 631 CONTINUE
c YODDOT o OVERALL SAMPLE MEAN TAKEN OVER ALL CELLS AND ALL RUNS ¢
2180 YDDDOY®SYDDD/S,
0184 SQVERP=U,
p182 DO 638 1131%1,5
2183 DO 638 Jilsi,8
Q184 SVI1Ji(1is,di1)s0,
2185 DO 635 Kiis},24
o SOVERP = OVERALL SAMPLE STANDARD DEVIATION TAKEN OVER ALL CELLS
¢ AND ALL RUNS,
2186 SOVERPESOVERP* (YTJK(115,J31,K13)=YDODOT) %2
c SVI1J1 = MATRIX WHICH CONTAINS THE SAMPLE STANDARD DEVIATION FOR
c EACH CELL,
2187 SVIIJI(I11,d1108SVITJ1 (118, Jit)e(YIJK(I11,J11,Ki1)=YIJOOT(INL,J11)
1) wxe .
c € = MATRIX WHICH CONTAINS DIFFERENCES WITHIN CELLS FOR ALL RUNS,
p188 E(I11,J11,K11)8YTJKCT8y,J18,K13)=YIJDOTCI4S,Jd18)
9189 635 CONTINUE »
c T 3 MATRIX WHICH CONTAINS DIFFERENCES BETWEEN CELLS FOR ALL RUNS,
0190 T(I11,911)3YIJDOT(I11,J11)=YDJDAT(JIL)
2191 SOVERPSSOVERP» ((24=NSAMP (111,J11))%YDDDOT**2)
2192 SVITJI(181,d1108SVILJ1(I11,J11)w((24mNSAMP(I11,J11))*YIJ0OT(ILL,
1J11)*x2)
0193 SOT1J1 (111,011 %S0RT(SVIIJI(I11,J81)/ (NSAMP(T11,J11)=83)"
2194 638  CONTINUE
0198 = - SSDFE=0Q,
2196 SSDFT=0Q,
0197 DO 8 It1ay,S
2198 XMEFTsQ,
0199 SDFY=Q,
2200 DO 13 Kitsi,24
prey XMEFE=D,
@202 SDFE=Q,
2203 1C0=0
2204 DO 12 Ji1%1,8
0205 TFCYIJK(I11,J11,K11),EQ,0,) GO TO 22
2206 XMEFEsXMEFE*E(I31,J11,K1Y)
0207 GO TO @
2208 22 1C0=1C0+}
0209 10 CONTINUE .
0210 XMEFESXMEFE/(8=1C0) * -
p21t DO 11 Jiisl,8
g212 CIF(YIJK(I$1,J18,K81),EQ,0,) GO TO 1}
2213 SDFESSOFE¢(ECIL1,J11 K1) mXMEFE) wu2
9214 14 CONTINUE
0215 SDFE®SDFE/ (7=1C0)

OO W~ O T ™
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8216 SSDFE=SSDFE+SDFE . ;

P27 i3 CONTINUE

@218 DO 9 Jilsy,8

! @219 XMEFTaXMEFT+T(I11,J11)
o 0220 9 CONTINUE
- P22 “XMEFTSXMEFT/8,

p222 DO g2 J11=1,8 .

@223 SOFTRSOFT#(T(I11,J11)=XMEFT) ®xu2

g224 12 CONTINUE

@225 SOFTsSOFT/7,

p226 SSOFT=SSDFT+SDFT ,

p227 8 CONTINUE

@228 SDFESSSDFE/120,

@229 SDFT®SSDFT/S, : ‘

2230 SDFE=SBRT (SDFE)

0231 SDFTESGRT (SOFT)

p23p PO 17 Ji1si,8

2233 00 17 Tii=1,5

2234 PO 18 x,»-h.wma:- L

@235 E(T14,J11, K O eE(TT1,018,K11)/SOFE

0236 HmﬁMHmMMwwp.L»,.x,»v NE,0.) GO TO 18

2237 zmuqmno.,mu Ti1, T80, Ki1 ECITT,J11,K10)

p238 15 FORMAT (¢ 7, *WE HAVE A © ENTRY AT,3I3, HENCE Hozomm VALUE?,E16,6)

@239 18 CONTINUE .

2249 T(I11,J11)87(111,J11)/5DFT

@241 17 CONTINUE

2242 SDOVEPESQRT (SOVERP/ (NSSAMP=1))

2343 DU 640 J11s1,8

LT scoLJ(J11)ee,

2245 SNSAOI®O,

B246 SSBIWJ (J11)e0,

@247 SSWIWJ(J11)=0,

p248 DO 642 I1131,5

2249 SNSADIESNSAUI+NSAMP(ITT, J11)

c $SB1WJ @ MATRIX WHICH CONTAINS THE SUM OF SQUARES BETWEEN CELLS
_ C FOGR EACH RUN,
2350 BOBIWY (J1 1) GBEBIWI (JIIIONOAMP(T11,d33)nCYTIIROTCI11)Jid)
,<ogcoqngﬁg¢qa.m ‘‘‘‘‘‘ TrEm e ————— —— —
c SSWiWJ ® MATRIX WHICH CONTAINS THE SUM OF SGUARES WITHIN CELLS FOR
9 EACH RUN,
@251 SSWIWJCJL1)RSSWIWJ (JI1) ¢ (NSAMP(I41,J18)w1)wSDI1J1(I21,J81)ww2
0252 D0 942 K§1s1,24

@253 SCOLJ(J11)eSCOLJ(JI1)+(YIJK(T11,J11,K11)=YDJDOT(JLs))nn2 '

@254 942 CONTINUE

p2ss SCOLJ(J11)8SCOLJ(J11)=((24=NSAMP(I11,J11))%¥0JOOT(J11)¥x2)

@256 6§82 CONTINUE ﬂ
¢ FMBIWJ 5 MATRIX WHICH CONTAINS THE MEAN SUM OF SQUARES BETWEEN .
€ CELLS FOR EACH KUN,

82s7 FMBIWJ (J11)sSSBIWICJII1) /4,

9258 SDCOLJ (JT ) ESURT(SCOLT (ITTY 7 (SNSKOT=1,))

c FMW1WJ = MATRIX WHICH CONTAINS THE MEAN SUM OF SQUARES WITHIN
€ TELLS FOR EACH RUN,

@259 FMWIWJ (J11)8SSWIWJ(J11)/ (SNSADI=5,)

0260 660 CONTINUE

@RE} .m_blmbuiE.i.. e .

=—pasz TSTWI I s FMBTHI (T /FHR TR (ITT) == : T T S T S T e
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' FORTRAN V06,13 13:03:103 20=MAR=7S PAGE 7 4
__ _pped  8@1 _ CONTINUE
g264 60 TO 643 ,
c STATEMENY NUMBER @246_T0 @267 IS AN EXTENDED RANGE QOF THE 14500
Ar, c LOOP, THIS PORTION OF THE PROGRAM POSITIONS THE GEOMETRIC CENTER
QO o POINT OF EACH PARTICLE AND_DEFINES THE ANGULAR ORIENTATION (THETA)
jﬁ c AND LENGTH (TL) OF THE CENTRAL AXIS OF EACH PARTICLE,
c ALL OTHER YERMS_ IN THIS ANOVA MODEL ARE CLEAR FROM PREVIOUS
- c’ COMMENTS AND THE FORMAY STATEMENTS BELOW,
0265 1414 YHETASE , 283186 %WRAN(KA,KB)
pa6b XCECVARAN(KA,KB)=CV/2,
a267 YCSCV*RAN(KA KB)=CV/2,
p268 COST=COS(THETA)
2269 SINT=SIN(THETA)
Q279 TLe(TLMAX=TLMIN) *»RAN(KA, KB)tTLHIN
2271 YLH3TL/SECB
Beve COST=TLHxCOST/2,
0213 SINT=TLH*SINY/2,
2274 X$13xXC+CQOST
2e7s Y1=YC+SINT
@276 X2axC=COST
2271 YPEYC=SINT
0278 IF(COST,.ER,@,) GO TO 556
@279 TANT=SINT/COST
p280 YINTaYC=TANT®XC . T
P28y 556 XMINSAMING (X1,X2)
Qe8e XMAX3AMAX1 (X1, X2)
P28y YMINSAMINI(YL,Y2)
@esa YMAX3AMAXL(Y1,YR)
pe8s 130 IF(M,EQ,1) GO TO 131%
11 G0 TO 1S}
0287 643 IVAR=]
. peas D0 902 I1131,5
9289 DO 902 Ji1i®1,8
8290 SFORMz=0,
%291 DO 903 Kii=i,24
p29e READ(3*IVAR) N(K1})
: 9293 IF(YIJK(Iy1,J11,K11),E0,0,) GO TO 878
2294 VALIJK(It1,J11, K11)=(YIJKt111 JlloKltJ'YDDDOT)/YIJK(IX& Ji1,K11)
0295 GO TO 879
0ese 878 VALIJK(I11,J11,K11)=0,
2297 879 SFORM=SFORM*VALIJK(I11,J11,K31)
2298 903 CONTINUE :
2299 SFORME=SFORM/NSAMP(T11,J11)
2300 SDIJKsQ,
2301 DO 904 Ki1s1,24
h30e SDIJKHSDIJK#(VALIJK(Iii,Ji! K11)wSFORM) #%2
2303 904  CONTINUE
0304 SDIJKISPDIJK=( (P4wNSAMP (I11,J11))«SFORMuw2}
2305 SDIJK=SQRT(SDIJK/ (NSAMP(I11,J11)=1))
2306 WRITE (6, 1@03) I1t,J11,SFORM,SDIJK
0307 1003 FORMAT(' ¢, *THE SAMPLE MEAN ANO STANDARD DEVIATION FOR THE ERROR T
{ERMS WITH RtSPECT TO LOADING NUMBER®,15/," #,°AND DISTRIBUTION NUM
2BER’,15,*ARE RESPECTIVELY®,E16.6,7AND*,EL6, 6)
0308 DO 985S Kiis},24
0309 VALIJK(T11,J11,K11)eVALIJK(T 1,011, Kll)/sDIJK
n310 985 CONTINUE

‘
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0311 VALSTA(I11,J11)8ABS(SFORM) /(SDIJK/SQRT (L, ANSAMP(I38,J11)))

B312 WRITE(6,688) I11,J11,(N(KL11),K1i81,24) .

2313 688 FORMAT(' "'LOADINGH',IB,iﬁx,'DISTRIBUTIONH',ISI' *,2415)

Y a314 902  CONTINUE .
o @315 WRITE(6,644)
T 0316 » WRITE(6,645) ((NSAMP(111,J11),J1181,8),I1181,5)

2317 644  FORMAT(’ *,*THE (1,J) ENTRY N _THE FOLLQM}ﬁG S¥8 MATRIX REPRESENTS
1 THE NUMBER OF SAMPLES'/' £, IN CELL(I,J), WHERE I STANDS FOR FUEL
2LOADING AND J FOR FUEL DISTRIBUTION.')

0318 645  FORMAT(" *,8(5X,12))

8319 WRITE(6,646)

2320 WRITE(6,647) ((RDCOEF(I}1,J31),J1181,4),11151,5)

9321 646  FORMAT(* *,*THE (I,J) ENTRY IN THE FOLLOWING S%4 MATRIX REPRESENTS
1SPEARMANS RANK DIFFERENCE COEFFICIENT®/7 ¢,fFOR CELL(I,J) WITH
2RESPECT YO THE FOLLOWING TWO VARIABLES®/* *,’(i,) DISTANCE TO
3POINT OF INTERSECTION BETWEEN TNE TRANSECT AND FUEL PARTICLE
4CENTRAL_AXIS?/” *,°¢(2,) COSECANT OF THE ANGLE OF INTERSECTION
SIMPLICATED IN'(1,),")

@322 647  FORMAT (" *,4(5X,E16,4))

8323 WRITE(6,648)

@324 WRITE(6,649) ((Y1JOOT(I1!,J11),J1183,8),11121,5)

e3es 648  FORMAY(® #,7THE (I,J) ENTRY IN THE FOLLOWING 5%& MATRIX REPRESENTS
§ THE SAMRLﬁwﬂﬁAN IN CELLCI,J).")

8326 649  FORMAT(* “,BE16,4)

Q327 WRITE(6,650)

2328 WRITE(6,651) (YIDDOT(IT1),I11s1,5)

8329 650  FORMAT(* ¢,*THE ITH ENTRY IN THE FOLLOWING COLUMN VECTOR
1§EPRESENTS THE SAMPLE MEAN?/* ‘,7TAKEN OVER THE I[TH ROW OF CELLS”)

a330 651  FORMAT(’ *,30%,E$16.4) »

2331 WRITE(6,652) :

8332 WRITE(6,649) (YDJDOT(J11),J11m1,8)

0333 652 FORWAT(# e UTHE JTH H ENTRY IN THE FOLLOWING ROW VECYOR REPRESENTS
{THE SAMPLE MEAN®/* ¢, ¢TAKEN OVER THE JTH COLUMN OF CELLS.?)

8334 WRITE(6,654) YDDDOT

2335 654  FORMAT(* *,’THE OVERALL SAMPLE MEAN 3¢,E16,4)

A336 WRITE(6,657) NSSAMP

8337 657  FORMAT(® *,"TOTAL NUMBER OF COMPARTMENTS OR SAMPLES ¥’,15)

2338 WRITE(6,661) .

2339 WRITE(6.649) (FMBiWJ(J11),J1431,8)

234e 661  FORMAT(? ¢,*THE JTH ENTRY IN THE FOLLOWING ROW VECTOR REPRESENTS M
1s8°%/°* ¢ 'N!TH RESPECY 1O THE JTH COLUMN,*)

2341 WRITE(b 662)

a342 WRITE(6,649) (FMWiwJ(Ji1},J1184,8) o

9343 662  FORMAT(* 7,°THE JTH ENTRY IN THE FOLLOWING ROW VECTOR REPRESENTS M
1SW"/¢ ¢, "4ITH RESPECT TO THE JTH COLUMN,*)

2344 WRITE(6,663)

@345 WRITE(6,649) (TS1WJ1(J11),J1151,8)

2346 663  FORMAT(® *,*THE JTH ENTRY IN THE FOLLOWING ROW VECTOR REPRESENTYS T

: {HE RATIO OF*/* *,*MSB TO MSW WITH RESPECT 70O THE JTH COLUMN,*)

@347 WRITE(®,664)

0348 WRITE(6,649) {((SDI1Jy(X81,J11),J81m1,8),181=1,5)

2349 664 FORMAY(? ¢, "YHE (I,JY ENYRY IN THE FOLLOWING 5% WATRIX REPRESENTS
ITHE SAMPLE STANDARD DEVIATION IN CELL(I,J).*)

2359 WRITE(6,666)

2351 WRITE(6,649) (SDCOLJ(J11),J3181,8)

@352 666

FORMAT(? ¥,7YHE JYH ENYRY IN TRE FOLLOWING ROW VECTOR REFRESENTS T

S5 N1 A0 O
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FORTRAN V06,13 13303103 AA=MAR=TS PAGE 9

IR%

AHE_SAMPLE STANDARD _DEVIATION®/* ¢,€YAKEN QOVER THE JTH COLUMN_OF CE

elLs,”)

-ASSEMBLY 03399 16285

LI 0353 : WRITE(6,667) SDQVEP
o~ ! 2354 667 FORMAT(* *,1@X,*THE OVERALL SAMPLE STANDARD DEVIATION ©87,Ei6,4)
“— @355 WRITE(6,668)

o 0356 WRITE(6,669) (((VALIJK(IL1,J18,K18),Ki888,24),J8851,8),18181,5)

4357 - 668 FORMAT(* *,*IN THE FOLLOWING ARRAY EACH PAIR _OF ROWS CONTAJINS 24 §
JAMPLE VALUES(i2 VALUES PER ROW)*/? *,’COMPUTED FOR A PARTICULAR SA
EMPLINQ_MNIIJ_IHE_ABEAX_QQNQIﬁIﬁ_DE_EJXE_EBQUEi_QE_MALM§§J§ACH GROYJ

: 3P*/,* ¢,’CONTAINING EIGHT SUBGROUPS, WHERE EACH SUBGROUP CONSISTS
! 40F A PAJR OF ROWS, EACH GROUP*/*-¢,*REFERS TO0 A FUEL (DADING CLASS
: S, AND EACH SUBGROUP REFERS TO A FUEL DISTRIBUTION IN THAT CLASS,")

2358 669 FORMAT(? *,6E16,4)

B359 WRITE(6,670)

2360 WRITE(6,6718) ((VA(LSTA(Y!3,J18),J31m3,8),114m4,5)

03614 670 FORMAT (¢ *,?THE (1,J) ENTRY IN THE FOLLOWING MATRIX REFERS TO A SA
{1MPLE STATISTIC COMPUTED FOR CELL(I,J),*/¢ *,*THIS ENTRY WILL BE CO
EMPARED T0 DIFFERENT VALUES TAKEN ON BY THE T DISTRIBUTION WITH? /¢

'(NSAMP(III Jis)=4) DEGREES OF FREEDOM,”)

0362 671 FORMAT(' ?,8E16,4)

0363 WRITE(6,672) SOFT

2364 672 FORMATY(* *,?IF A COMMON STANDARD DEVIATION DOES EXIST FOR THE T TE
§RMS, AN ESTIHATE FOR 17 IS*,E1b,4)

0365 WRITE(6,673) SOFE

P366 673 FORMAT(' “y*1F A COMMON STANDARD DEVIATION DOES EXIST FOR THE E TE
{1RMS,AN ESTIMATE FOR IT IS*,E16,4)

0367 WRITE(6,674)

V368 WRITE(6,675) ((T(I31,J11),J1121,8),I1184,9)

8369 674 FORMAT(* *, *IF THE T TERMS IN THE ANOVA MODEL ARE NORMALLY DISTRI
1BUTED WITH @ MEAN AND COMMON VARIANCE’/¢ *,*WE WOULD EXPECT 95 PER
2CENT OF THE VAILUES IN THE FOLLOWING MATRIX TO LIE BETWEEN =2,36 AN
3D 2,36¢/*" f,fSINCE THE VALUES BELOW ARE EXPECTED TO LIE ROUGHLY ON
3 A T DISTRIBUTION WITH 7 DEGREES QF FREEDOM,*)

8370 675 FORMAT(* *,8E16,4)

p371 WRITE(6,676)

p372 WRITE(6,677) (C(E(I13,J18,K18),J1188,8),Kitat,24),11108,5)

0373 . 676 FORMAT(’ *y*SIMILAR TO THE T MATRIX ABOVE WE EXPECT 95 PERCENT OF
1THE VALUES IN THE FOLLOWING E MATRIX*/' ¢,’«FOR FIXED Iii{ AND Jiie
270 [(JE BETWEEN T,025 AND 71,975 WHERE. T HAS (NSAMP(I11,J11)=1) DEGR
JEES OF FREEDOM,’)

9374 677 FORMAT(? ¢,8E16,4)

9375 CALL EXIT

8376 END

__8SE0D

ROUTINES CALLED} i
TIME , RAN + COS ° , SIN s AMIN1 , AMAX1 , SQRT.

12 OPTIONS s/0N,/CK,/0P14,/G0

3

0 BLOCK. . LENGTH .

9 MAIN, 11522 (055004)1

8 .

2 X4COMPILER wwww= COREwxw '

6 PHASE USED FREE :

5 DECLARATIVES Q0622 j4422

4 EXECUTABLES 21969 13075

3
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(oo FGRIRAN ¥db.1$ 13:&2:19_“__wa AUG=TA___ PAGE. _ 1. . O S
~ C Th1S PROGRAM IS A OOMNED_ WOODY PARTICLES MnoFL. 1715 CURRENTLY . i
o c SET UP FOK KANDOMLY DISTRIBUTED W0OOOY COMPONENTS, HOWEVER IT CAN
R c FASILY BE ALTERED TO ACCOMMODATE NON=RANDOM{Y OISTRIBUTED
N ~C _PARTICLES, THIS PROGRAM POSITIONS ALL FUEL PARTICLES WITHIN
N € CIRCULAK SAMPLING UNITS, IT THEN EVALUATES THREE TECHNIQUES EACH __ o 0 o
e c APPLIED AY FIVE DIFFERENT LEVELS OF SAMPLING INTENSITY IN ORDER TQ
o € DETERMINE THE OPTIMUM SAMPLING TECHNIGQUES TO USE FOR OBTAINING THE e . I
O c TUTAL WOODY RESIDUE VOLUMES FOR THE PARTICLE DIAMETER SIZE. CLASS&S
c DF_INTEREST,
EXY : BYTE TIMER(8)
O dH DIMENSION COEFF (14,5, 3),TLOCTN(10 5),TLOCTA(14,5,3) ,NUM(5),TLOCT (1
v 14,5,3),C08L (14,5, 3).51~L(14 $,3),TANL(14,5,3), co~1(15m) co~a(159)
L PRR3 DMENSION YIle(S)'XISISD(SJ XIVESDKS:S,S)
O ppng REAL ISVMAP,ISVVAP,IVMAP,IVVAP,ISD,ID(4@),1D8, Isoe,ISVEM IVEM, Isve
' 1V, IVEV, JVEST(5,3,40),181PUA(8,S)
: c TLMIN = MINIMUM PARTICLE LENGTH. . .
o _C . TLMAX = MAYIMUM PARTICLE_LENGTH L .
t SECB v MEAN SECANT FOR PARTICLE TILT "”’I ‘ l
S : c DBAR ® QUAORATIC MEAM OIAMETER (;me_mjhe .mcdgm )
O arAs REAL TLMIN,TLMAX,SECB,DBAR : -
Bne _DEFINE FILE 2(? 4,U,KVaR)
: Qa7 CKyAR=ed
D 2a28: Kazp o
0209 Kgeg T
S 15 L R . TCRsy s e e e .
O 701y KKCR® Y
a2 READ(S,25,END=100) ICODE
Batl3 25 FORMATCID)
o PeLy e PEADC2'KVAR) KA, KB - L
an1s READ(2°KVAR) ICR KKCR
. m2ye WRITE(6,1¢1) ICR,KKCR . '
P17 191° FDRMAT(lﬂx,fSTARY-UP LOADING AT',13 SX,'START-UP DISTRIBUTION TATY,
« 113)
© € To = SAMPLING INTENSITY
. ®B018 19 DO 350 IB=1,5
. Bo19 _ TBFa2xIB4y
o c CUEFF ® MATRIX wHICH CONTAINS THE COEFFICIENTS FOR ALL FIFTEEN
C c TESTED SAMPLING FORMULAS, . _
ne20 _READ(S,308) (COEFF(IC,18,2),1Ca},1BF)
TEIR 156, CONTINUE : ’
<o @ﬂ?&_nﬂwgggw”“FUHHAT(lﬂFB.b), _
: 223 DO 351 I8a3,5
- P24 IbEsIB+2 L '
& B TC TLOCTN & WATRIY WHICH CONTAING THE NORWALIZED LOCATIGNS (BASED ON
o c A FIXED © ANGLE) FOR ALL TRANSECTS USED Y0 OBTAIN :
‘ € PARTICLES DATA FOR FIVE SAMPLING FORMULAS OF INTEREST
! o c . (IF, GAUSSIAN=LEGENDRE INTEGRATION FORMULAS)
0R25 TTTTTTREAD(S,381) (TLOCYN(IC,IB), ICeL,IBEY
Ny 8026 o READ(S,3P9) (COEFF(IC,18,1),1C%1,IBE)
o4 an27 $51  CONTINUE . o -
2 n328 341 - FORMAT(IF9,6)
" ¢0e9 ODEFINE FILE 3(600,2,U,1VAR)
T 2032 DEFINE FILE 1(QQL3 u JVAR)
223} IVARs (((ICR= 1)*8+KKCR)*XSJ 1
3R

~
Oy

G-

[ R - -]

.JVARH(ICR l)t6+KKCR




Ve FORTRAN.VUB,13 e 13342339 - B2eAUG=T4___PAGE 2 _ _
Vo 0e33 _.DQ un4 IB=y,5 . e
(VI 2034 TBFu2xIB+y ' -
: c IC = NUMBER OF YRANSECTS
S 8035 DU 4m4 ICay,I1BF o ] ; - -
O N @036 e . COEFF(IC,18,3)m6,283166/1BF : : i : o R
'{ o37 494  CONTINUE : - A .
e ea3s e . DO 4@1 1Bat,5. e e e e e e . S e
O . 2039 I8F32%10+4 ; ' :
panye IND=IHEZ2
post 188:TBF/2+1 : , o
« __po4e D0 421 ICsIBS, IBF . oo e - N : , e — e
0243 - , TLOCTN(IC,TE)aABS (TLOCTN (IND,1B)) . ' - . . :
Y Q64 . COEFF(IC,IB,1)aC0EFF(IND,18,1)
o P45 INDaTND =1 :
An4h 491 CONTINUE .
' o "IA 3 INTEURATION TECHNIQUE(IE, GENERAL SAMPLING FORMULA)
6047 .. .DU 492 .1A=1,2. R ‘ :
C apas DO 4P 18s1,S , ' o
e BOHY e IBFE22 44 R NP S
o T PR50 DO 4%f 1C=1,1BF
pasy .- 1F(I1A.EG.1). GO 10 443
; c TLOCTS & MATRIX WHICH CONTAINS THE STANDARD LOCATIONS(IE, BASED ON
O o . FIXED © ANGLE) FOR ALL TRANSECTS USED TN NBTAIN PARYICLES
: o DATA‘FOR ALL SAMPLING FORMULAS OF INTEREST,
_hgse _ TLOCTS(IC, 16, A)8(IC=1)nb,253186/IHF
< ngs3 TLOCYS(IC,I8, 1A+1)=TLOCTS(IC,IB TA)Y
2054 GO 10 _4p?
@855 403 TLOCTS(IC, TR, TAY =3, 141593« (TLOCTN(IC,IB)+1,)
e -~ _QBS6___ 432 - CONTINUE
_ C NUM = NUMBER OF POPULATION ELEMENTS EMBEDDED IN THE SAMPLING UNIT
Cm € . CONSYOERED. .
‘ 2957 READ S, 200) NUM
& 72a58 200 FURMAT(51%) :
7060 Rt FORMAT (4FB8,.6) : :
: 2061 1CCa%
c AVCON _CORRESPONDS TO_YOODOT . IN_IHE ANOVA MODEL. CONTAINED IN
- - C THE PRECEDING ANOVA MODEL,
962 READ(S,6) AVCON :
0263 b FORMAT(FS,.2)
. Lo cCo_._.CV 3 COMMDN_ RADIUS OF FIPCULAR SAMPLING UNITS.
' LY , READC(S,7) CV '
ny65 7 FORMAY (FS,P).
" o CF = COEFFICIENT WHICH PRECEDES THE INTEGRAL OF THE PARTICLE
c INTERCEPT COUNTING FUNCTION, CF IS A VEHICLE WHICH PERMIIS
C THE INTEGRAL DF A SIMPLE STEP=FUNCTION TO BE MAPPED INTO A
T e c YOTAL PARTICLE VOLUME ESYIMATE,
o wabe CFEDRAR* 2% SECBRAVCON/ (CVr22) . o . - 5
| _DBunl N0. 222 KK1®1,40 o . : -
Y M6 00 222 1A=1,3
12 nn69 DY 222 1Hui,S
" . 2370 . - TVEST(I8,Ia, le)na.
N 2aT1 222 CONTINUE - -
0 L] T 00 223 Im1,5 .
6o _ @073 DO 223 KKsi,8 N N
C #8074 IS1PUA (KK, 1) =D,

[T Y -
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FORTRAN VBb,13

N 3,:_.421,19..H_H@_a: A.uc_:m _._.EA.GE 3.

0 @ers _ 22% _ CONTINUE - B
: C THIS ST OF NESTEO DO’S (UP TO 116) FIRST FINDS THOSE PART!CLES
) c (IN_A PARTICULAR SAMPLINMG UNJIT) WHICH INTERSECT FACH TRANSECY
- C CONSTDERED FOR FACH OF THE FIFTEEN SAMPLING FORMULAS OF INTEREST,
S C CWITH THIS INFORMATION, THE SET _OF NO’S COMPUTES_ FIFTEEN TOTAL .
T c VOLUME ESTIMATES FOR EACH OF THE FORTY SAMPLING UNITS SIMULATED
I C . WITH RESPECT TO A GIVEN PARTICLE DIAMETER SIZE CLASS, THESE.VALUES. [ e
o ARE STOREN IN IVEST, THEN THIS SET OF NO’S CONSIDERS EACH PARTICLE
o SIMyULATED AND DFTERMINES THAT PORTION OF IT WHIGCH INTERSECTYS THE
C 3AMPLING UNIT OF INTEREST, THIS PORTION IS THEN CONVERTED 7O A~
C_ PARTTIAL PARTICLE VOLUME, THROUGH SUMMATION OVER RELEVANT. . -
c PARTICLES, THIS LAST PROCESS RESULTS IN THE TRUE TOTAL PARTICLES
— il e JVOLUME_PER UNIT AKEA_(STORED._.IN_IS1PUA)_WITHIN. EACI-LOE__THE FORYY
o 34MPL ING UNITS SIMULATED,
C LOOP NVER FUFL L OADING
AATs DO 116 IaICR,5
2477 NPINUMTY
c LOOP OVER FUEL OISTRIBUTION
o Pn78 DU 111 KX=KKER,8 e e s
JAL) CALL TIME(TIMER)
LR WRITE (6,777) TIMER
weat 177 FORMAT (25K, * THE TIHE Is',aAl)
ng8e  1CC=ICC+t
T ¢ TYLOCT# & LOCATION OF @ ANGLE FOR THE CURRENY SAMPLING UNIT OF
c _INTEREST,
apa3 TKVAR=Y . _ , :
2A84 WRTTE (2/KVAR) KA, KB ‘ . .
ZoRS WRITE(27KVAR) 1,KK
_EnBe WRITE(6,26) I, KK
fp87 26 FORMAT(i@x.'LOADING=',IS 12X, *DISTRIBUTIONS?,15)
______ 088 o TLOCTR®6,283186%RAN(KA,KBY o L o
. ¢ LUCP DVER FUEL PARTICLES
D089 . DO 1311 ME1,NP
#0Se 11z¢
_ ¢ LOOP OVER INTEGRATIOM TECHNIQUES (I1E, GENERAL SAMPLIVG FORMULAH)
8091 - DO 115 14cs1,3
C  LGDP _OVER SAMPLING INTENSITIES
da9e no 115 IRey,S
2093 IBFa2wlb+g
[ L.UOP QVER TRANSECTS
_____ 794 DO 115 IC=1,Ibf
%295 TF(IC,EQ.E,AND,IB,ER,1) GO TO 149
n296 LGN TD 130
T T puey 131 "TL0CY(IC,18, IA)!TLOCTS(IC , 18, IA)+TLOCTO
0a98 COSL(IC,I3,I1A)=CO0S(TLOCT(IC,I8,1A))
na99 SINL(IC,Ib, IA)beN(TLUCT(IC Ty I4))
nLnp 151 IIslT+y : .
a1y T T OIF (MGNF 1) GC TO 18D
Ping CONl(II)=CV/? w«COSL(IC,I8,14A) o
pLe3s CON2CTTYeCV/2, *SINL (IC, 18, TA)
. n1a4 180 ° IF(COSL(IC,IR,QA),EN,B,) GO TO 559
aias TYANLCIC, TR, TAYSSINL (1€, T8, Tay/tost (1, b, IA) o ‘ : : ~
2106 IF(CO3T,EQ.0.) GO TO 55% : . a o
8127 TF(TANT ERQ TANL(IC, IR, TAY) 6O TO 560 : N =
A126 XINSYINT/(TANL(IC,IB,1A)=TANT) =
2109 ) IrcxtN SGE XMINGAND, XIN, LE XMAX) GO To 56%.
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@10 - .60 TO 987 . SO R
ALLL 550 TFICOST,EQ,@,) GG TO 575
2342 TR (3, GF  XMIN, AND o0 rm ¥AX) G0 _TH SAQ
0113 . G0 TO 987 . ) '
o PdYYe 555 YIN=TANL (IC Hv.«>v.xzhz e — e . . e
2115 TF (Y Ti,GF, <sz ANDLYTNLLE,YMAXY GO 10 amm
Ll atte G0 TO 937 o e e e e e e e e R
o117 So¢ TF(YINT,FQ,0.) 6O 4o 59y
2118 G010 947
119 575 TF((MINLNE,D,) GO TOQ 987
2129 ||}H.ﬁﬁ4r:w«ﬂdr.Hm TA).GE, L. aaumusw >zo TLOCTLIC, Hm JA),LE, » mmmsmmmu e = -
1 AND, YMAX,GE,0,) GO TO 605
2121 Hvﬁnqronanun 1B, IA) . GE,7,766T165,AND, «ronqnun 1By IA), rm ole oe»mcmmu, e
{LAND,YMAX GE,0,) GO TO 625 ) )
N122 1ECCTLOCT(IC, IR, TA) BE.4,6251235 >zo.qronqun.Hm.H>,.rm.a.uommmmmu .
1.AND, YMIN LE,B,) 6N TO 085
PR YIFLTLOCTCIC,IB,TA),LGE,10,908309.AND. qronann I8, IA).LE,11,082841) [
L AND,,YMINLELO.) GO TO 605
I 124 ... ... GO TO-9a7 . e e e e e e - e e e e e
8125 540 1F(YINT,RE, »tzphs.,nozmnHHuu AND,YINT,LE, >z>x»ﬂs..nozmﬂuuyvu mo T
10 64% )
2126 GO TN 987
e My27 383 TE(XMIN,GE, bxuz»ﬂs..noz»hHHvu.;&o XMINGLE, AMAXL(P,,CONL(TT)))
. 4G0 TO 6GS
. Mles._ o GOYO S8BT . e
P19 Syp TF (XMIN,GE, >sz~ns..nozwﬁHHuu AND (XMIN,LE, >z>xnha..nozanHuuu
- 160 _T0_6QS
7”130 IF (XMAX GE,AMINI (@, ,CONL(I1)) ,AND,XMAX,LE, >z>x,ns..noz“ﬂuuuuu
e AG0 0 ewS T R e e et
7131 ) GO TO 987 o
. Lo B132 5658 1F(XIM,GE, >3Hz»hs..nazmnwnuu ANDXINJLE, >x>xpns..nozpﬁﬂﬂuuuimo e e e e e e,
170 b0k
#1353 £ 10 947
N34 " 605 ANGINTZARS(YLOCT(IC,I8,14)=THETA)}
135 XXEARS (SIN(ANGINT) ). ——
2136 IF{X¥X,LT,.P0455) GO TO 987
a1y JVEST(I8,[4,1CC)3CF*CCEFF (IC, Hmsu ) +1 4Aﬂ@ 14,1CC)
n13s IF(IC,NELL) GO TGO 987
7139 1F (1A, EQ.2) JVEST(IB,14, ﬂonuum<mmqﬁHm 1A, Hnnvth'nowmman Hm.H>u
n14w 987 TF (M NE NP, QR ICNELJBF) GO TO 115
R L L U A.._,,_.,zr:mc. VAR) IVEST(Ib, T4, rcey_ e
Nide 115  CONTINUE I ,
143 TF(OMaX LE,CV/2,). mo I0 634, : . e e e
ALdg IF(CNST,FA.0,) 60 TU 606
n14s CDISCE(R2,*YANTRYIN])#wp =4, (1, +ﬂ>24tnmunﬂ<H24nnv n<ttm\n )
FRET IF(0ISC,LE,G,) GO TU 998
bray XIN13 (=2, ,4>74.<~z«+ﬁanﬂﬁoKwnuv\nmA;A“ +TANTA%2)) e
Q214 XINQe (=2, «TANTAYINT=SQRT(DISC))/(2.x (1 +TANT®=®2))
01439 TFCXINTGEXMIN,AND (XINLLLE XMAX) GO TO 791 o
ni1Sa HﬁﬁxHZN.mn.szz.>zo.XHzm.rm.xz>xU GO TO 792
nis1 Gy TN 994
n152 606 BRT23CVa*2/4,=XMINwD ] : - -
...... M1s3 - T IF(BPTA,EW,©,)_60_Y0 ﬂ; o A s .
o154 <Hz,uaozqhm14mu
L 15S o YINZE=YINY — S
A156 IFCYINLLGELYMIN AND YINI,LE, <z>xU GO TO osm i




©
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' FORTRAN VUb,13

13142139 QR=AUG=T74 PAGE )

Hmﬁ<H2m GE,YMIN,ANO,YINZ,LE YHAX). mo 10689 o

IR 51 MA
2158 GO TO 998
72159 (X3 Hmﬁ<uzmrhw.«sz.>zo.<Hzm.rm.<z>xu.mo 10 638
‘ Y 610 TF(xleveeYiww2, LT X2wn2¢Y2xu2) GO TO 619
N 2161 TLH=ABS (YINi=Y2) . e o o
N aghe. G0 TO 706 :
L 92163 610 TLHIABS (YINL=YL) . e . . o . B e
164 GO TN 74k
L) 611 TLH=2AS (YINI=YIN2)
N6k €0 TO T¢e
e167 609 YINpEYIN? e e e . e
P1hE GO 10 612
. BLA9. TPL . YINLETANTRXINL#YINT _ E e
n170 TFCXINS.GEJXMIN,AND,XINS,LE, xmhx) 60 TO 703 , ;
237} 125 Hmﬂxut*m+<_*:m.rﬂ.xmr»m4<m.‘mu GO 70 724
Q] TLHESART ((XINL1=X2) wud+ (YINI=Y2) wxd)
ey GO _TO Tok L )
r174 704 TLHE=SGRT((XINJeX 1) rw2e (YINImYL) wx2) o
... %175 Go TO 726 U . e s
2176 783 <Hzxuﬁpaq*tzm+<qu .
_0yT7 TLH=SURT((YIN]= tzmv».m+n<Hzp =YIN2)wwe)
0178 GO 10 706
2179 792 (Mymnq>2q‘tzm+<Hza o
T p180 - XINpsXIN? -
I 2%:3 » _ YINt{EYINZ i o ~
2182 GO TO 705 )
C TL = TOTAL LENGTH OF THE v»mqﬂnrm CURRENTLY BEING nozmHommmo
n183 726 T #TLR*3ECH
. pis4e 63 1SI1PUACKK, 1) SISIPUA (KK, I) ¢+ (DBARw#2)wTL/(CVwn2) ) _
- TR188TTT 9987 IF (M NE, zru GO TO 111 - -
18 , WRITE(L” g<»nq ISIPUA(KK,I) -~ } -
»187 111 CONTINUE i - o
7183 KKCH= ]
n1a9 116 CONTINUE
_m19n GO TO 700 .
91914 {40 1F(IA,EQ,1) 66T T4
p192 _ GO TO 130 _
T [ TSTATEMENT NUMBER @190 TO 8213 Hw:wzzmm4mzonm!r>zmMidm q:mlﬁwo 0o " 11
c LGOP, THIS PORTION UF THE PROGRAM POSITIONS THE GEOMETRIC CENTER
o POYNT OF EACK PARTYCLE AND DEFINES THE ANGULAR ORTENTATION (YHETA):
C AND LENGTH (TL) OF THE CENTRAL AXIS OF EACH v»m:nrm. _
T 193 T T4 TRETASE,283186%RAN(KA,KE) T T _ T .z
2194 xnun<.z>znx>.xxu cv/e. . : S o L T
2195 TYCRCVERAN(KA,KBYSCV/2, , T
#196 COST=CNS(THETA) ) - : : .
Tayay SINTSSIN(THETAY . T
n198 TLE(TLMAX=TLMIN)WRAN(RA,KB)+TLMIN B
0199 TLHETL/SECS . _ , . i
_p2en COSTETLH*COST/2, o . - m
n20y SINTZTLHwSINT/2,. : - )
pene Y1eXC+COST - , _ .
CELK) YisYE+SINT , - .
pe0y Y2axCwCOST ~ . . . :
@205 T T Y2BYLeSINT , . .
- pene n:ei;p;;qfﬂromﬂ.no 2,) GO 1O 556
e Ban? TANTS3 qu\noma
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‘ _~_~___FORTRAV vik, 13, .”;;pmw";mmﬂ_nm_is:aaxsq.___naanus_JJ PAGE A .
w___‘_,.__.cﬁems____.__ e YINTEYC- TANT*XC__ e
209 596 YMINSZAMING (XY, X2)
2214 YMAXSAMAXLIX L, X2)
Y o eet S YMINSAMING (YD, ¥e)
O R L. B212. . _YhAXmAMAXY(YL,YR) o ST L e
- a3 NMAX2= AMAX!(X1*&2+Y1-t2,X2inE+Y2ﬁt2) . . -
b M218 . . DMAXSSORT (DMAX2) ..ot - - e S B
ER] 130 1F(M,ER,1) GO TO 131 ‘ : S
n2ie GO _TIN 191
) ne17 Ta? JvAxe] . : _ ,
o0 G248 IVAREY ' ' . — - e i et e e
B219 ICC=n : _
@a220 ISVHAP =G,
v n221 I5VVAPEY,
f2ee DO 246 121,59
o 0223 DO 218 KKzl,B
O __pg24 _ READCL7JVARY 181PUA(KK,I)
. _ @9e2s ISVMAP=ISVMAP+191PUA(KK 1) -
. @P2b._...210_. CONTINUE e
® ' nar? . . VRITE (6,6000) C(IS1PUA (KK, 1) KKll,B). -1 5y
_n228 eupn  FORMAT(? *,8E16,4)
c IVMAP ® MEAN TRUE TOTAL PARTICLES VOLUME PER UNIT AREA TAKEN OVER
&G o ¢ : THE FORTY CIRCULAR SAMPLING UNITS SIMULATED,
- 2229 JTVMAREZTSVMAP /4D,
- __?239 DO 215 11,5
&) 7231 NO 215 KKsi,8
. _B232 leVAPBISVVAP+(151PUA(KK 1 =TVMAP) #u2
- 2233 215  CONTINUE
@ o C.___IVYVAP = SAMPLE VARIANCE_OF THE TRUE TOTAL_ PARTICLE8 VOLUME_PER I
€ UNIT AREA TAKEN QVER ALL FORTY CIRCULAR SAMPLING UNITS
' e AR S SIMULATED, .. S
: p234 1VVAPS13VYAP/39,
Y 2235 No 1 1=1,%
ne3b D0 1 KKsi,8
- 2237 ICC3ICC+1
7238 - .00 1 I4A31,3
P23y DU § 18ay,5
2249 . REAQ (3 *IVAR) IVtST(IB IA 1cC)’
PplUy 1 CONTINUE
PEXE WRITE (6, sum:) ((CIVEST(IB,TA,1CC),1Ibu1,5), IA!I:S) Icc-x,an
N L 1 - bRy FOURMAT (" 7 ,5(eX, El6,4))
i c LOOP OQVER INTEGRATION TECHNIGUES (1€, GENERAL QAMPLING FORMULAS)
P24y NG 55 TAzy,3 _
O , c TLGOP OVER SAMPLING INTENSITIES
v %245 PO 90 T1R=2],5 .
- nedp 1shzn,
o _Bedq 11=0 )
o v c LOOP OVER FUEL LOADING
] _Reg4s 0095 1=1,5 i
4 o ¢ ‘LOOP OVER FUEL DISTRIBUTION
1 ne49 DO Y5 KKs3y,8
" 0ese 1717+
T 2251 I0(IT)=ISIPUA(KK, I)~TVEST(IB, TA,IT)
Ly S 10 v MATHIX WHICH CONTAINS THE ERRORS INVDlVED IN USING THE
e o e B - CURRENT VOLUME ESTIMATING TECHNIQUE (ONE OF FIFTEEN TESTED) . e
<y € U WITH RESPECT TO THE Fonrv CIRCULAR SA“PLING UNITS SIMULATED. EACH




W " FORTRAN V6,13 13:42 39 U2=hYG=T4  PAGE 1 s
o c ERWOR "MERE 1§ EXPPESSED AS A FRACTION OF THE uORRESPONDING TRUE
O o £ voLUNME, e
nosP tu(lT)zIn(n)/MPUA(M I)
053 TSDa1S0+IDCIT)
T mEsu 98 CONTINUE R S
T C 7108 = MEAN OF THE 10 MATRIX X UNDER CONSIDERATION,
L. mass INBeIsN/ad, e i . e
“Pese 180220,
nes? ITza
ness DO 14y I=1,9
. @259 - DO |05 _KK=1,8 . S
n260 ITeIT+1
C L PR26Y o 18D2=ISDRA(ID(TIT)I~IDR) e .
O LELY] 105 CONTINUE
‘ c T5D0 = STANDARD DEVIATION OF THE 10 HMATRIX UNDER CONSIDERATION
2263 T30z28URT(1,«TSDR)Y/SORT(39,)
Q- € CYAR ® COEFFICIENT OF VARIATION OF THE ID MATRIX_ UNDER
: T . CONSIGERATION,
e BRPBU CVARETSD/LDB e
& c CRVVM IS & SANPLE STATISTIC TO BE USED IN THE STANDARD PARAMETRIC
. ¢ PaTKED COMPARISUN TEST FOR MEANS, '
Aee6sS CRVVNEARS (1DE/ (TSD/SART (40,)))
© ZELY WRITE(6,6¢02) T0B,TSD,CRVYM,CVAR, IR, 1A o
- "”masi"”‘“Gﬁﬁé“”FouMAr(""'Iob-',Exb 4/, ’TSD:',Eib FCRVVMR? (El6,4/° 7,°C
' e VARE',E1E,4/" 7 'Is-,'.u/'_f  *1A8°,13) : -
O %268 DO 2t ITT=z1,49 T o
. c UNDER THE HYPOTHESIS THAT THE RANDOM VARXABLF OEFINED BY THE ERROR
¢ INVQLYECD 1IN USING THE CURRENT VOLUME ESTIMATING TECHNIGUE IS
» ) C NORMALLY DISTRIBUTEL WITH MEAN @, THE NEWLY OEFINED 1D MATRIX
: C77TT CONTAINS VALUES OF A RANDOM VARIABLt HAVING A T DISTRIBUTION WIYR-
: c 319 OFGREEGS OF FREEDOM, e
n269 I0CITT)=INCITY)/TSD
-~ pare 2u CONTINUE.
Mol WRITE(A,21) Ibo,IA
pere  WRITE(6,19) .(ID(ITT),ITT=1,40)
P273 21 FORMAT(? *,*THE FOLLOWING MATRIX CONTAINS "VALUES OF A RANDOM VARIA
- " . {BLE WHICH IS HYPOTHESIZED TO HAVE’/’ *,’A T DISTRIBUTION WITH 39 D
- REGREES QF FREEDOM, BENCE 95 PERCENT OF THESE VALUES SHOULD LIE’/*
3¢, *HE(WEFN T,.%25,39 AND T,975,39, HERE IBs’,I15,”AND IAS®?,I5)
ERD] 19 FORMAT (° *46E16.6) . .
o @eTs 899 - CUNTINUE L
n27e 86 DO 1Pp IRsi,S
@277 : ISVEMED,
> @278 1cC=0 ',
0219 Ng 239 [=1,5
LY SIONF 25% KKe}l,8&
oy n2ay ___IccsiccCes )
o g2Re ”‘rsvsm:lsvtM+IvEST(Ib 14, 1CCH
- P28l 230 CONTINUE .
A [ TVEM ® MEAN ESTIMATED 1 TOTAL U PARTICLES VOGLUME PER UNIT AREA WITH
' c ' RESPELT TO THE CURRENT ESTIMATING TECHNIQUE, THIS MEAN I8
0 v o TAKEN OVER ALL FORTY SIMULATED CIRCULAR SAMPLING UNITS,
e LY IVEMSISVENM/48,
0 g28s YSVEVED,
o M28e _1ccs=aw L
700 13571, S




o FORTRAN.V36.13 e 130421039 02w AUG=T 4. _PAGE 8 e e _‘
e e MRBB DO 135 KKeL,B _ywwm“mmw“;‘- I : . ]
(¥ P2ag " ICC=ICC+t '
’ 2290 ISVtV!ISV:\H(TVLST(IE TA TCCL—I\IFM):*P
- | a9y 135 CONTTINUE
e _§gw,ﬁm"¢”, . C..... IVEV = _SAMPLE VARIANCE.OF THE_ESTIMATED TOTAL. PARTICLES VOLUME.PER e
- c UNIT AREA WITH RESPECY TO THE CURRENY ESTIMATING TECHNIQUE,
i Gl THIS SAMPLE VARTANCE IS TAKEN OVER ALL FORTY._SIMULATED .. S .
: oc IRCULAR SAMFLING UNITS,
p292 rvayzlsyFV/tq
o CKVVYV 3 TnE RATIO NF ESTIMATED VOLUME SAMPLE VARIANCE (FOR THE
o : _CURRENT_ESTIMATING TECHNIQUE) . TO .THE _TRUE _VOLUME SAMPLE N e
I . VARIANCE, UNDER THE HYPOTHESIS THAT YHE POPULATION '
. C. _VARIANCES. APE EQUAL,. .CRVVV_HAS AN.F. DISTRIBUTION WITH._(39,39) —_
e ¢ DEGRFEES OF FREEDOM, CRVVV IS & SAMPLE STATISTIC TO BE USED IN THE
C STANDARD PARAMETRIC TESY FOR COMPARING TUO VARIANCES WITH 4 TWQe
. C SIDED ALTERNATIVFE, HOTE ThAT wITH RESPECT TO ANY PARTICULAR
Q — € ESTIMATING JECHNIQUE, THIS_TEST_MUSY_BE_PASSEO_IN DRDER _FOR_THE —
c CORRFSPONDING FAIFED COMPARISON TEST FOR MEANS -(SEE ABOVE) TO BE
[ €. s CORRECTLY APPLIED, . s - . e e
s P293 : CRVVVSIVEY/(1,%xIVVAP)
pn294 WRITFE (A, 6u03) IVEV,IVVAR,CRVYYV,IR,TA
N 295 6083 FORMATC(? *,*TVEVE’ , E16,4/° *,2IVVAPE’ ,E16,4/' *,'CRVVVB? ,E1b,4/"
oo _ R e {- LAY 13200, qaer oz
o 1T IS IMPURTANT TO REALIZE THAT GENERATING A POPULATION WITH
- C.____SIMILAR MEAN AND VARTANCE_TQO THE POPULATION OF INTERRST IS5 _NOT
O c SUFFICIéNT, SINGE, IN PRACTICE, SAMPLE SIZES ARE SMALL, IT I8
c HIGHLY NESIRABLE THAY TYHE ERRDR TERM INVOLVED WITH THE SELECTED
- c ESTIMATING 'TECHNIQUE BE SMALL FOR EACH SAMPLING UNIT.
o P96 1en. . _CONTINUE ‘
2297 85 CONTINUE
...bess CCALL EXIT _—
2299 END
< SEOD
RUUTINES CALLED: ‘ : :
ARS ¢ TIME__ , RAN r_COS y_SIN 1 AMINY , AMAYXY
SGRT , EXIT - : . ,
. OPTIONS /0N, /Ck,/CFt]
.bLOLK: " LENGTH
- MATn, - 8889 (Q42562)x
Ly
4 *kCGMPT|ER mwwaw CORE*n
. PHASE USED FREE
O .. DECLARATIVES 0nbee 314418
EXECUTAELES @18°3 13217
i~ ! ASSEMBLY - g3IyTS 16605
A,
S P
kol
v
.
o - i




