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ABSTRACT 

The increased incorporation of spatially explicit objectives into forest management 
planning has arisen from a concern over the ecological consequences of landscape-scale 
disturbance patterns through harvesting. Given the complexity of the ecosystems of 
forested landscapes, and our incomplete understanding of them, forest managers now 
commonly design plans to conserve landscape-scale biodiversity through the emulation 
of natural disturbance patterns. Harvest-scheduling is thereby constrained to imitate not 
only the aspatial age-class and cover-type distributions of a forest under natural 
disturbance, but also the patch-sizes and shapes of disturbed and undisturbed forest. 

Forest management planning typically requires the use of optimization models because 
the most efficient allocation of scarce resources is a central economic objective. 
Incorporating spatially explicit objectives into such models requires that decision 
variables be binary. This is because, in a spatially explicit plan, a forest stand must be 
either harvested or not. Hence, integer programming models are needed, and such 
models are notoriously difficult to solve computationally. 

The objective of this research has been to make significant advances in formulating, 
solving, and understanding three difficult forest planning problems involving spatial 
objectives. 

The first is a tactical planning problem where the objective is to maximize the net present 
value of a harvest-schedule, subject to the spatial constraint that stands may not aggregate 
to form harvest-openings greater than a maximum area. In Chapter I I , two integer 
programming models were formulated and solved, using the branch and bound algorithm. 
It was found that: a) the number of decision variables, and b) the number of opening 
constraints, ultimately restricts this method from applicability to larger problem 
instances. Given these limitations, a metaheuristic algorithm, simulated annealing was 
evaluated in Chapter I I . Using the branch and bound algorithm's solutions as upper 
bounds, the quality of solutions found by the metaheuristic was evaluated. The mean 
objective function value was within 5% of the optima. Problems instances ranged in size 
from 1,269 to 36,270 binary decision variables. 

The second problem, treated in Chapter IV, concerns the efficient allocation of cutting 
rights among competing mills within the same management unit. A mixed integer goal 
programming model was formulated and applied to the Kootenay Lake Timber Supply 
Area of British Columbia. It was concluded that the model is can a useful tool by which 
to interactively explore British Columbia's appurtenance policy. 

The third problem, treated in Chapter V, is a strategic planning problem: determining the 
optimal, sustainable rate of harvest while selecting spatially explicit old growth reserves. 
A mixed integer programming model was formulated and tested on three forests. It was 
concluded that the formulation appears to be integer-friendly, having solved problems 
instances containing up to 91,000 decision variables. 



The general conclusion of this work is that integer programming is a powerful paradigm 
by which to incorporate the complexities of spatially explicit objectives within the 
pragmatic constraints of forest management planning. 
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Chapter I 

Introduction 



Chapter I 2 

1.1 Introduction to Area of Research 

The discipline under which to categorize this dissertation is Forest Resources 

Management. This specialized discipline exists because of the role forests play in 

defining the ecological, economic, and social environment of mankind. Ecologically, the 

world's 40 million km 2 of forests provide habitat to at least 80% of the worlds remaining 

terrestrial biodiversity (Brooks 1993); and they function as a major carbon sink to 

regulate the global climate. Economically, almost 1.3 billion m 3 of roundwood is 

harvested annually from world's forests (UNECE 2003). In Canada alone, 200 million 

m 3 per year are harvested, generating over $68 billion in sales and providing direct or 

indirect employment for 1 in 16 Canadians (Natural Resources Canada 2004). Socially, 

there has been a gradual movement, beginning with grass-roots organizations, but 

ascending to national and international levels of influence, to proclaim that the ecological 

benefits of the forest must be conserved. The model of 'spaceship earth' now informs 

social values; and since forests are a major component of this model, increased public 

scrutiny and government regulation in the management of forest resources has occurred 

and will continue. The great significance of conserving the flow of benefits from our 

forests underlines the need to plan our forest management more thoughtfully, and this 

requires research into new methods of planning. 

The topic of this dissertation is clearly expressed in its title, Incorporating 

Spatially Explicit Objectives into Forest Management Planning. A direct approach to 
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introducing this area of research can therefore proceed by decomposing the title into a 

subset of broad questions to be addressed; namely: 

• What is forest management planning? 

• What are spatially explicit objectives? Why are they important? 

• How are they incorporated into forest management planning? 

1.1.1 What is forest management planning? 

The purpose of forest management planning is to support decisions on the 

assignment of management prescriptions to the stands or land-units of a forest over time 

(Davis et al. 2001). These decisions are not made in isolation from one another. Instead, 

the set of prescriptions is regarded as a whole, i.e., it is evaluated on its estimated 

potential to satisfy the aggregate of social, economic, and ecological objectives assigned 

to the forest as a whole over multiple scales of space and time. The forest management 

planning problem is characterized by considerable complexity, involves varying degrees 

of uncertainty, and supports decisions often carrying great economic, ecological, and 

social consequences. These three characteristics—complexity, uncertainty, and 

consequence— warrant a brief expansion in this introduction. 

The complexity of the forest management planning problem has several causes. 

First, there are multiple, often conflicting objectives. For example, an economic 

objective of maximizing a firm's profitability may conflict with an ecological objective 

of preserving large, contiguous areas of old-growth. Similarly, the social objective of 

securing an even-flow of timber from the forest may conflict with the economic objective 

of harvesting a forest as quickly as possible. Second, the spatio-temporal scale of 
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planning adds to this complexity. Since trees mature relatively slowly, and forests are 

composed of many stands, forecasts are commonly made for thousands of stands over 

hundreds of years. Consequently, the number of decision-variables, representing 

potential management treatments over time, can be great in number. Third, the planning 

process is interdisciplinary; i.e., various specialists are needed to define the quantitative 

indicators by which the satisfaction of objectives is measured. It is a complex 

undertaking both to define an analytically common ground on which specialists may 

communicate and to select indicators relevant to planning objectives and the availability 

of data. Finally, depending on the regulatory environment, several decision-makers are 

needed; and this entails that value tradeoffs be articulated. Ultimately, this is a political 

exercise, but the process can be informed and directed through quantified estimates of 

how much these values conflict. 

The second major characteristic of forest management planning is uncertainty. 

This stems from many sources; examples are: 1) the accuracy of data representing current 

forest conditions; 2) the validity of the growth and yield models; 3) the unpredictability 

of natural disturbances; 4) the fluctuation of market-values for wood products; 5) the 

changes in values of decision-makers; and 6) the unknown consequences of climate 

change. Clearly, uncertainty must be formally considered by decision-makers. 

Finally, the consequences of forest management planning are of considerable 

importance. Decisions on how much to cut, where, and when, carry tremendous 

economic, social, and ecological consequences. Howard (1988) argues that decisions of 

great consequence, complexity, and uncertainty warrant the development of decision 
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support models within the context of a formal decision-making framework. I wil l now 

describe the role of these models within forest management planning. 

There is a general framework within which decision support models fit, regardless 

of the genre of problem. This is illustrated in Figure 1. 

Figure 1.1: Framework within which decision support models operate. 

It is noteworthy that the ultimate purpose of the decision-making framework resides in 

action—not knowledge. Bunnell (1989) usefully distinguishes two types of models: 1) 

those which are primarily used to extend human understanding about the world; 2) those 

which are primarily used to provide information in support of decisions. Decision 

support models clearly fall into the latter category. Their product is information, not 

knowledge. Nevertheless, in the design of such models and the appraisal of their 
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solutions, it is not uncommon to gain valuable insights into the fundamental properties of 

the managed system. Such insights can be of great value to managers. 

In Figure 1, the iterative process of appraising a solution and redesigning the 

model is often referred to as model validation; i.e., testing the hypothesis that the model 

is a sufficiently precise representation of the essential features of the real system, and that 

the solutions obtained from the model are valid for the real problem (Hillier and 

Lieberman 2001). In forest management planning, with its long planning horizons and 

consequent uncertainty, the model validation process is quite difficult. Therefore, the 

solutions obtained from these models are accepted as valid for the real world, in very 

limiting ways. 

To clarify and organize the degrees of uncertainty in forest management planning, a 

hierarchical planning framework of three levels, each with different planning models, is 

commonly used (Gunn 1991, Martel etal. 1998, Davis et al. 2001). At the highest 

level, there are strategic, long-term plans {i.e., greater than one rotation), characterized by 

great uncertainty and aimed at answering a few general questions; e.g., given our 

ecological, economic, and social objectives, what is a sustainable rate of harvest for a 

given forest? The second level in this hierarchy is tactical, which involves mid-term 

planning (less than one rotation), characterized by less uncertainty, and addressing more 

particular questions; e.g., given a rate of harvest, and a set of ecological and social 

constraints, what is the most profitable set of stands to access and harvest? The final level 

is operational, involving short-term plans with relatively less uncertainty. Operational 

plans schedule machines and labour to build the roads and harvest the stands laid out in 

the tactical plan. Uncertainty is addressed in the hierarchical planning framework 
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through what Gunn (1991) calls the rolling planning horizon; i.e., plans are renewed well 

before their planning horizon has passed. The overall result is that a forest management 

plan is not a static template, but a dynamic, ongoing, adaptive process. 

1.1.2 What are spatially explicit planning objectives? Why are they important? 

Spatial relationships have always been important in forest management planning. 

Traditional sustained yield management, for example, had been concerned with finding 

the most economically efficient way to access and time the harvest of a mosaic of stands 

dispersed across a forest; and of assigning the right logs harvested to the rights mills. But 

the evolution of sustained yield management into ecosystem management has introduced 

new types of spatially explicit objectives and placed great importance upon their 

achievement—even when these objectives are in acute conflict with traditional economic 

ones. Hence, it is increasingly important that decision support tools be designed to 

satisfy both ecological and economic objectives. The underlying assumptions of 

ecosystem management, and the necessity for some of its objectives to be spatial in 

nature are now reviewed. 

Ecosystem management is both a practice and philosophy aimed at maintaining or 

enhancing the integrity of an ecosystem while providing resources, products, or non-

consumptive values for humans (Gordon 1994). As a philosophy, it envisions a 

deliberated and managed coexistence of man and nature (Davis et al. 2001). 

Ecosystem management entails managing the forest at multiple scales. This 

stems from the very nature of ecology: understanding scale is central to understanding 
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ecology (Levin 1992). The Scientific Panel for Sustainable Forest Practices in Clayoquot 

Sound (1995) stated that 'planning at a variety of spatial and temporal scales is critical at 

all stages of forest ecosystem management.' Predicting and planning at a variety of scales 

requires a conceptual framework; and for forested landscapes, this is provided by 

ecological hierarchy theory (Eng 1998). The basic premise of hierarchy theory, when 

applied to landscape ecology, is that hierarchically organized systems can be divided or 

decomposed into discrete functional components operating at different scales (Urban et 

al. 1987). An example of a hierarchical structure of a forest is, moving from lowest to 

highest: gap => stand =>watershed =>landscape. Events that occur at a certain level 

have a characteristic frequency and spatial scale. In general, the higher levels are usually 

comprised of larger units and operate more slowly than the lower levels (Eng 1998). It is 

also important to note that the higher levels tend to constrain the lower levels (Urban et 

al. 1987). Hence, altering substantial portions of our forested landscape, through 

harvesting, impacts all scales. 

Given the ecological consequence of landscape scale disturbance through 

harvesting, planning for spatial pattern in forest management is important because it has 

ecological consequences on population dynamics and ecosystem processes (Saunders et 

al. 1991, Forman 1997, Eng 1998, Haila 1999, Spies and Turner 1999). There are many 

indices of spatial patterns, but most fall within one of three categories (O'Neill et al. 

1988): 1) those which measure the dimensions of individual elements or patches; 2) those 

which measure landscape composition (e.g., abundance of patches); and 3) those which 

measure the spatial arrangement of patches. 
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Notwithstanding the importance of spatial patterns, there is some difficulty in 

defining which patterns are most relevant to the objectives of ecosystem management. I 

note two reasons for this difficulty. First, it not yet fully known, for all processes and all 

organisms in a forest, the conditions under which spatial heterogeneity is and is not 

important (Spies and Turner 1999). Landscape ecology is, after all, a relatively new 

undertaking, and the complexity of forest ecosystems ensures that it wil l be many years 

before science has caught up with the ambitious objectives of ecosystem management. 

Second, spatial forest patterns are meaningful from the perspective of particular 

organisms (Bunnel 1999, Spies and Turner 1999); e.g., what may appear as fragmented 

habitat from a human perspective may also appear as continuous from the perspective of 

another species. In other words, even i f it were possible to know all of the relevant 

spatial patterns for all organisms in a forest, it would be exceedingly difficult to consider 

and satisfy the perspectives of all species simultaneously. 

As a result of these two difficulties, the natural disturbance model of sustainable 

forest management has been developed (Hunter 1993). By emulating the results of 

natural processes as closely as possible, it is hypothesized that management through 

emulation of natural disturbance will minimize the negative impacts of forest harvesting 

on the biodiversity of forest ecosystems. This underlying assumption is made explicit by 

the coarse and fine filter analogy first proposed by the Nature Conservancy (1982); i.e., 

the maintenance of the distribution of habitat types that would occur under natural 

conditions will satisfy the habitat requirements for most species while recognizing that 

more specific management prescriptions (fine filter) are needed for species of special 

concern. 
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The emulation of natural disturbance patterns has become a model for many 

forest managers in both Canada (e.g., Canadian Institute of Forestry 2003, Ontario 

Ministry of Natural Resources 2001, British Columbia Ministry of Forests 2001) and the 

United States (Hunter 1990). The general approach has been to use historical fire history 

data and simulation models to estimate the natural, historical, forested landscape pattern 

against which to compare the landscape patterns of a managed forest. There are many 

such simulation models currently in use (see Mladenoff and Baker 1999). Harvest 

scheduling is thereby constrained to imitate not only the aspatial age-class and cover-type 

distribution of a forest under natural disturbance, but also the patch-sizes of disturbed and 

undisturbed (i.e., old growth) forest. While idealized landscapes are used as long-term 

goals, one of the more acute challenges concerns working with the pattern of what has 

been inherited from both nature and previous management (Bettinger and Sessions 2003). 

1.1.3 How are spatial objectives incorporated into forest management planning? 

The incorporation of spatially explicit objectives into forest management 

planning typically (but not exclusively) requires the use of optimization models because 

the most efficient allocation of scarce resources is a central economic objective in 

forest management planning (Davis et al. 2001). In such optimization models, the 

decision variables needed to model spatial attributes, such as the size and shape of 

harvest openings or reserve patches, must be constrained to being binary, not real 

numbers. This is because a stand is either harvested or it is not— it cannot be 

fractionally harvested (Bettinger and Chung 2004). Hence, integer programming 

models are required and such models are notoriously difficult to solve computationally; 
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i.e., the computing time needed to generate solutions typically increases exponentially 

i n relation to the number o f decis ion variables (Wolsey 1998, W i l l i a m s 1999). 

F o r many years, the principal solution technique used in solving integer 

programming models was the linear programming-based branch and bound , introduced 

b y L a n d and D o i g (1960). Unfortunately, the available software and computers 

restricted the application o f many integer programming models to unpractically small 

p r o b l e m instances; and since many real-world problems are large, disi l lusionment with 

the integer programming paradigm was c o m m o n (Bixby et al. 2004). O v e r the last 15 

years, however , research has progressed along two paths in response to the 

computational challenges posed by integer programming models (Reeves 1993, 

M i c h a e l i w i c z and F o g e l 2000). A l o n g one path, a backlog o f theory o n integer 

programming was translated into numerous algorithmic refinements o f the branch and 

bound approach (see B i x b y et al. 2004). A s a result, increasingly large problems can 

now be solved optimally using commercia l solvers. A l o n g another path, an explosion 

o f research into metaheuristic algorithms has occurred (see O s m a n and Laporte 1996 

for bibl iography) . Metaheuristics are general integer programming techniques not 

dedicated to the solution o f a particular problem; but rather, are designed to be flexible 

enough to handle many different problems. Metaheuristics have rapidly demonstrated 

their usefulness and efficiency in solving many large and difficult integer p r o g r a m m i n g 

problems (Glover 1986, H e r z and W i d m e r 2003). T h e major shortcoming o f 

metaheuristic algorithms, however, is that they are approximations o f optimal 

solutions, and neither guarantee optimality nor provide any indication o f how close 

their solutions are to being optimal (Reeves 1993). 



Chapter I 12 

Hence, insofar as this dissertation is concerned with the incorporation of 

spatially explicit objectives into forest management planning, it requires attentiveness 

to the computational challenges posed by integer programming models in general, and 

the appropriate use of approximation versus optimization algorithms in particular. My 

direction on the appropriate use of these algorithms follows Wolsey's (1998) common-

sense advice on this matter; viz., that i f at all possible, an optimal solution to an integer 

programming problem should be computed; and that barring this possibility, an 

approximation to the optimal solution should be found, on the condition that an 

estimation of the proximity of this solution to the optimal is also formed. 

1.2 Problems Treated in this Dissertation 

The objective of my research into forest management planning under spatial 

objectives has been to make a significant advance into formulating, solving, and 

understanding three difficult planning problems. These problems are: 

1. Generating optimal and approximately optimal solutions to tactical planning 

problem of simultaneously scheduling an optimal flow of timber and optimally 

aggregating forest stands into harvest-blocks with a limitation on block area; 

2. Allocating cutting rights, in the form of discrete areas of a forest management 

unit, among competing firms with the objective of optimizing economic 
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objectives—within the context of sustaining landscape-scale ecological values ; 

and 

3. Generating optimal solutions to the problem of simultaneously scheduling the 

harvest of timber and selecting spatially explicit old-growth reserves. 

My treatment of these problems is presented in Chapters I I to V of this dissertation, 

which I now describe. 

1.2.1 Description of Chapter I I 

In this chapter, I present two formulations of the integer programming problem of 

scheduling an optimal flow of timber subject to limiting the size of the harvest-blocks. 

These formulations are tested on 30 tactical planning problems using the branch and 

bound algorithm. 

There have been two approaches to modeling this problem: the unit-restricted model 

and the area-restricted model (Murray 1999). In the unit-restricted model, the 

boundaries of all potential harvest-openings are predefined. In the area-restricted model, 

these boundaries are not predefined; instead, polygons may be aggregated to form cut-

blocks, of a limited size, during the search for an optimal harvest-schedule. In the 

context of forest management planning, the area-restricted model holds greater appeal 

than the unit-restricted model because the definition of cut-block boundaries occurs in the 

context of the search for an optimal flow of timber; it can therefore generate solutions 

with a higher net present value than those generated using an unit-restricted model. In 

fact, Murray and Weintraub (2002) rightly observe that the objective function value of 
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optimal solutions to the unit-restricted model can function as lower bounds for the same 

problem instances when treated with the area-restricted model. 

In my analysis of these formulations, particular attention was paid to exploring the 

effects of problem size, initial forest age-class distribution, and the ratio of polygon area 

to the area of maximum allowable harvest-opening. The results and discussion of this 

research both explore and interpret the limitations of this approach, and also provide a set 

of benchmarks by which to evaluate the effectiveness of metaheuristic algorithms in 

solving the area-restricted harvest-scheduling model. 

1.2.2 Description of Chapter I I I 

In this chapter, I use the benchmarks established in Chapter I I to evaluate the 

effectiveness of a metaheuristic algorithm, simulated annealing, in solving the area-

restricted harvest scheduling model. As noted earlier, the major shortcoming of 

metaheuristic algorithms is that they neither guarantee optimality nor provide any 

indication of how close their solutions are to being optimal (Reeves 1993). 

The objective of this research is to provide an empirical worst-case analysis of the 

effectiveness of a metaheuristic approach to solving a variety of problem instances; i.e., 

to gain some idea on how well it performs in general, and in what circumstances it does 

relatively well or relatively badly. I describe this as a worst-case analysis because the 

implementation of the simulated annealing algorithm used, although shown to be 

effective (Bettinger et al. 2000), is but one of many possible implementations. That is, 
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the extraordinary flexibility of the metaheuristic approach prevents me from extending 

judgement beyond its explored potential. 

In the context of research on this problem, such analysis, though fundamental, is 

novel. The area-restricted model was initially introduced by Lockwood and Moore 

(1993) as a problem to be solved using simulated annealing. Since its introduction, the 

applications of various metaheuristic algorithms to the area-restricted model have been 

extensively researched (Bettinger et al. 1997, Ohman and Eriksson 1998, Van Deusen 

1999, Liu et al. 2000, Richards and Gunn 2000, Van Deusen 2001, Sessions and 

Bettinger 2001, Baskent and Jordan 2002, Richards and Gunn 2003, Caro et al. 2003), 

but these implementations have not been fully evaluated through comparison with 

optimal solutions. In Chapter I I I , the comparison of results from applying the simulated 

annealing algorithm to the benchmarks established in Chapter I I indicate that this 

algorithm can find excellent solutions to the area-restricted model; but that it tends to 

perform less well on larger problem instances than on smaller ones. 

1.2.3 Description of Chapter IV 

In this chapter, I present an approach to solving the problem of allocating cutting 

rights among competing firms with the objective of sustaining landscape-scale ecological 

values and optimizing the allocation of standing timber. This problem, although not so 

extensively studied as the harvest-scheduling problem, is nonetheless highly relevant to 

forest management planning, especially in British Columbia; for it incorporates and 

allows for evaluation of the recently proposed policy of allocating cutting rights to firms 

that do not own wood-processing facilities. 
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My treatment of this problem involves two steps: first, a forest management unit 

is divided into a set of landscape units, and for each landscape unit, a spatially explicit 

harvest-schedule is generated, subject to spatially explicit landscape-scale ecological 

objectives. Second, each landcape unit, and its forecast flow of timber, is assigned to one 

of many local licensees, using a mixed integer goal programming model. The optimal 

assignment of a landscape unit to a licensee is determined by its ability to satisfy multiple 

conflicting objectives for volume, species, log size, hauling cost, and seasonal access. 

The targets for theses objectives are derived from the demands of each licensee's 

processing facilities. It is an extension of the classic forestry problem of assigning the 

"right log to the right mi l l " (Pearse and Sydneysmith 1966)) constrained and frustrated by 

the requirement that these logs be assigned as discrete landscape units. The model is 

solved using the branch and bound algorithm, and is designed to facilitate the interactive 

exploration of decision makers' preferences. 

The constraint that standing timber be assigned to mills in the form of discrete 

zones of standing timber is a consequence of the Province of British Columbia's long­

standing appurtenance policy (Pearse 2001); viz., that allocation of cutting rights be 

restricted to firms with wood-processing facilities. This policy is currently undergoing 

re-evaluation, and the option of gradually introducing competitive auctioning of standing 

timber to logging firms without wood-processing facilities is under consideration. The 

mixed integer goal programming model described in Chapter IV incorporates this 

alternative by allowing the assignment of landscape units to logging firms, which in turn 

redistribute the scheduled flow of logs from these landscape units, to multiple licensees 

based on optimal satisfaction each licensee's multiple objectives. This refinement of the 
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mixed integer goal programming model allows not only for evaluation of the increased 

efficiency with which logs can be redistributed when the appurtenance policy is relaxed, 

but also for the selection of those zones best suited for competitive auction. 

1.2.4 Description of Chapter V 

In this chapter, I present a mixed integer programming formulation of a model 

designed to support the strategic-level planning challenge of selecting, or in some cases 

recruiting, patches of old growth reserves while optimizing the traditional economic 

objectives of harvest-scheduling. In the context of forest management planning, this 

model is relevant to many forest managers who are now caught in transition from the 

sustained yield paradigm to the ecosystem management paradigm, and are managing 

traditionally regulated forests without sufficiently representative areas of contiguous old 

ecosystems. 

The model is designed to generate optimal solutions using the branch and bound 

algorithm. Binary decision variables are required to represent each potential reserve, 

and the model's usefulness hinges upon its ability to solve large problems with a large 

number of potential reserves. The formulation is tested on several forests, ranging in 

area from 16,000 to 800,000 ha. Optimal solutions are found for each problem 

instance tested, including one forest requiring 91,000 binary decision variables. 

In the context of other research on this problem, Chapter V is relevant because 

optimal solutions to this problem have thus far been limited to extremely small problem 

instances (Hof and Joyce 1992, Hof and Joyce 1993, Rebain and McDill 2003). Given its 
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applicability to large problems with many binary decision variables, the formulation 

appears to be integer-friendly. 
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1.3 Format of Dissertation 

The format of this dissertation is manuscript-based; i.e., Chapters I I to V are structured as 

journal articles, with separate introductions, methods, and conclusions. Chapter I I has 

been published in the Canadian Journal of Forest Research (Crowe et al. 2003). Chapter 

IV's preliminary results were presented at the Canadian Operational Research Society's 

annual conference in June 2003. Chapters I I I , IV, and V are presented in draft form, and 

wil l each be submitted for publication as journal articles. 
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Introduction 

Regulations specifying allowable harvest patterns now commonly limit the size of 

harvest-openings and restrict harvest activities on adjacent polygons for a fixed period. 

These spatial constraints complicate the problem of finding optimal harvest schedules 

because, to model such a problem, the decision variables must be integer. The harvest-

scheduling problem with spatial constraints is therefore an integer programming problem; 

and these problems are, in general, more difficult to solve than similar sized problems 

with continuous decision variables (Williams 1999). The challenge of developing new 

formulations or algorithms that are more effective at solving the harvest-scheduling 

problem with spatial constraints has attracted many researchers during the last decade. 

There have been two broad approaches to modeling the harvest-scheduling 

problem with adjacency constraints (Murray 1999): 1) the unit restricted model (URM) 

and, 2) the area restricted model (ARM). In the URM, the boundaries of all potential 

harvest-opening are predefined; i.e., the boundary of each polygon equals the boundary of 

each potential cut-block (i.e., contiguous area of harvested forest). In the ARM, the 

boundaries of all potential cut-blocks are not predefined. Instead, polygons may be 

aggregated to form cut-blocks during the search for an optimal solution. The limit of this 

aggregation is defined by the maximum allowable opening size. It has been observed 

(Walters et al. 1999, Richards and Gunn 2000) that one advantage of the ARM is that the 

block configuration emerges in the context of an optimal flow of timber; and that the 

predefined cut-blocks of the URM may underestimate the potential harvest flow through 

sub-optimal cut-blocks. Moreover, research indicates that poor block configuration can 

contribute to lower objective function values (Jamnick and Walters, 1991). 
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In this paper, two formulations of the ARM as binary integer programming 

problems are presented. The formulations are tested on tactical planning problems in 6 

different forests with 3 different initial age-class distributions. Exact solutions are 

computed using the branch and bound algorithm. Our objectives are first, to develop and 

verify formulations which can produce optimal solutions on smaller problems within 

reasonable computing periods; and second, to discover and analyze any difficulties which 

might arise in applying these formulations to larger problems. 

The outline of this paper is as follows: first, a review of the literature on the 

harvest-scheduling problem with spatial constraints is presented. Second, our two 

formulations of opening size constraints are described and illustrated with an example. 

Third, descriptions of the tactical planning problem and data sets are presented, followed 

by a presentation of results. Next, we discuss the results of this research with an 

emphasis on examining possible shortcomings arising from the application of these 

formulations to larger problems. Finally, we offer our conclusions and suggestions for 

further research. 

Literature Review 

Prior to the introduction of adjacency constraints, the harvest-scheduling problem 

had been modeled using linear programming (LP). A host of LP models was developed; 

e.g. MAXMILLION (Ware and Clutter 1971), Timber RAM (Navon 1971), FORPLAN 

(Stuart and Johnson 1985) and MELA (Siitonen 1993). The problem shared by all LP 

approaches is that, since the decision variables are continuous, discrete allocation of cut-

blocks is not possible. 
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Research into solving the URM using branch and bound has taken two directions. 

First, methods were devised to decrease the number of adjacency constraints through 

constraint aggregation schemes (Meneghin et al. 1988; Torres-Rojo and Brodie 1990; 

Yoshimoto and Brodie 1994), although this can lead to a loss of efficiency in solving 

some problems (as discussed by Torres and Brodie 1990). Recent improvements in 

commercial mixed integer programming (MIP) solvers have made the reduction of 

constraints less relevant, since many solvers now accept an unlimited number of 

constraints. The second direction taken was reformulating adjacency constraints to 

improve the efficiency of the branch and bound search (Yoshimoto and Brodie 1994; 

Murray and Church 1995b; 1996b; Snyder and Revelle 1996; 1997; McDill and Braze 

2000). Beyond improved formulations, McDill and Braze (2000) provided strong 

evidence that, in addition to the number of decision variables, the initial age-class 

structure of a forest consistently affects the difficulty of solving problems with branch 

and bound. Branch and bound is not the only method used to solve the URM optimally: 

dynamic programming (Hoganson and Borges 1998) and column generation (Weintraub 

et al. 1994) have also been used. 

Increased computing speeds and improved commercial solvers have enabled 

researchers to solve larger problems using the branch and bound algorithm. Recently, 

McDill and Braze (2001) experimented with different optimality tolerance parameters in 

the branch and bound algorithm and showed that problems up to 2,500 cut-blocks over 

three periods can be solved when the acceptable gap between the best integer solution 

and the LP upper bound is widened. 
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The initial restriction of exact methods to smaller problems spurred interest in 

heuristic methods. Solutions formed through heuristic algorithms are not necessarily 

optimal, but they can provide "good" solutions to larger problems more quickly than 

exact methods. Monte Carlo integer programming (MCIP) has been used to solve the 

URM (O'Hara et al. 1989; Nelson and Brodie 1990; Clements et al. 1990; Boston and 

Bettinger 1999). When using a heuristic, it is reasonable to ask how far the solution is 

from the optimal (Wolsey 1998). The MCIP solutions of Nelson and Brodie (1990) and 

of Boston and Bettinger (1999) were within 10% of the optimum. 

Over the last ten years, researchers have improved the effectiveness of heuristic 

algorithms when applied to difficult integer programming problems. Three metaheuristics 

have emerged as flexible search strategies for solving such problems: simulated 

annealing, tabu search, and genetic algorithms. Simulated annealing (Dahlin and Salnas 

1993; Murray and Church 1995), tabu search (Murray and Church 1995; Brumelle et al. 

1998; Boston and Bettinger 1999), and genetic algorithms (Mullen and Butler 1997) have 

each been applied to the URM and were consistently found to compute solutions closer to 

the optimum than MCIP. Barrett et al. (1998) also used heuristics to investigate the 

trade-offs related to opening size problems. 

It was in the context of applying metaheuristics to the spatially constrained 

harvest-scheduling problem that the ARM was conceived and explored. Lockwood and 

Moore (1993) used simulated annealing on a large application of the ARM (27,548 

polygons scheduled over 12 periods). In their objective function, penalty costs were used 

for violations of opening size or adjacency regulations. Walters et al. (1999) developed a 

heuristic, reliant on an LP solution, to solve the ARM. Richards and Gunn (2000) used 
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tabu search, and Clark et al. (2000) used a three-stage heuristic to solve the ARM and 

simultaneously schedule road construction. Recently, there has been research performed 

on solving the ARM using the branch and bound algorithm. McDill et al. (2002) 

developed an algorithm for identifying a set of maximum opening size constraints for 

solving the ARM using the branch and bound algorithm. They tested this method on 

forests comprised of 50 and 80 polygons and limited their opening constraints to a 

maximum of four polygons. Our intention in this paper is to build on this initial research 

by examining the problems confronted when formulating and solving models of larger 

problems with more complex opening size constraints. 

Methods 

Our goal is to find a method to identify a set of opening constraints that ensure 

that no opening exceeds the maximum opening size. We are also concerned with 

computational efficiency, and for this reason, two formulations of opening size 

constraints are tested. These formulations are: 1) maximum opening constraints, and 2) 

appended clique constraints. Each formulation is described separately. 

Maximum Opening Constraints 

The set of opening constraints for the ARM is a list of unique inequalities that 

prevents openings from exceeding a specified size, for every possible combination of 

adjacent polygons. For each inequality, we identify the minimal set of adjacent polygons 

that, when simultaneously harvested, creates an opening violation. Next, we form linear 

inequalities from these opening violations. Since each equation is the minimal set of 
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polygons that violates the opening limit, each inequality requires that only one polygon 

be removed before it becomes feasible. Therefore, we do not need area coefficients for 

each decision variable, and the right-hand side of the inequality equals the sum of the 

decision variables minus 1. For example, consider the four neighbouring polygons in 

equation [1], where the maximum opening size is 40 ha and each polygon is 12 ha. We 

let x ; equal 1 i f polygon i is cut, and zero otherwise: 

[1] x, + x 2 + x 3 + x 4 <= 3 

I f any 3 polygons in equation [1] are selected for harvest, the maximum opening 

size remains feasible at 36 ha. 

Two types of redundancies are eliminated from the constraint set. First, different 

orderings of polygons, such as in equation [2] compared to equation [1], do not impact 

the solution, and are deleted from the constraint set. 

[2] x 4 + x 3 + x 2 + x, <= 3 

Second, i f any subset of the polygons also creates a constraint, the larger 

constraint is eliminated. This can occur, for example, i f polygons x „ x 2, and x 3 are 2 ha 

each, and polygon x 4 is 39 ha. A block containing polygons x l 5 x 2, and x 3 is feasible, but 

with the addition of x 4 becomes infeasible. However, just x, and x 4 alone break the 40 ha 

opening limit, and therefore are included in equation [3]. 

[3] x, + x 4 <= 2 

Including equation [1] as a constraint when equation [3] also exists, is superfluous 

(i.e. ineffective), and therefore it is removed from the constraint set. 
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Method for Computing the Set of Maximum Opening Constraints 

The algorithm used to compute a set of maximum opening constraints is described as 

follows: 

1. Create a set comprised of all polygons in the database. 

2. Select from the set a polygon, and determine all its adjacent neighbours. 

3. Add a single neighbour to the polygon to create a contiguous pair. 

4. I f the total area of the pair exceeds the opening size limit, add a new constraint to 

the constraint set. 

5. I f the total area of the pair does not exceed the opening size, add it to the set of 

feasible pairs. 

6. Return to step 3 until each neighbour has been selected. 

7. Return to step 2 until every polygon has been selected. 

8. Weed the constraint set of all superfluous and redundant constraints. 

This creates the weeded constraint set for all possible combinations of pairs of polygons, 

and the set of all possible combinations of feasible polygon pairs that do not break the 

opening size limit. The eight steps above are now repeated, except the initial polygon set 

in step 1 is replaced with the set of feasible polygon pairs (produced in step 5), and the 

neighbours in step 2 are all adjacent neighbours of both polygons. Starting at step 1 with 

pairs, the process results in a set of feasible polygon triplets, as well as the new set of 

constraints of infeasible triplets to be appended to the set of infeasible pairs. The entire 

process is repeated (quadruplets, quintuplets, etc.) until no feasible polygons groupings 

emerge. The algorithm exhaustively searches all possible additions of single polygons 

that are neighbours to a feasible polygon cluster. 
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The algorithm can be thought of as a breadth-first search of trees with branches 

added for each single neighbouring polygon. In this respect, it differs from the depth-first 

approach of McDill et al. (2002). Each successive level in the tree increases the number 

of polygons in a cluster by one. Efficiencies were added to the algorithm by branch 

bounding, redundancy checking at every level, and using hash values to eliminate 

redundancies. Branches were bound at levels where they violate constraints, greatly 

reducing the search area. Branches were also bound that were found to be redundant to 

other branches (i.e. equations [1] and [2]). Checking for redundancies normally involves 

comparing the polygons in each cluster to the polygons within every other cluster in a 

time consuming, exhaustive search. This was avoided by implementing the constraint set 

as a hash map, and using combinations of the polygon identification numbers as the hash 

key. This caused clusters with redundant polygon compositions to have identical hash 

keys. Because the hash map does not accept duplicate values with identical hash keys, 

redundant constraints were not retained. 

Appended Cliques 

The second formulation entails appending a set of clique constraints to the set of 

maximum opening constraints. A clique is defined as a set of mutually adjacent polygons 

(Murray and Church 1996). Cliques have been used to formulate adjacency constraints 

by researchers solving the URM as a binary integer program (Meneghin et al. 1988; 

Murray and Church 1996; McDill and Braze 2000). In solving the URM, the idea is that a 

single clique of more than two polygons (a higher order clique) can eliminate more than 

one pairwise adjacency constraint. For example, the set of pairwise adjacency constraints 
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applicable to the set of polygons in Figure 2.1 comprises 12 inequalities listed in Table 

2.1. 

Figure 2.1. Sample forest of seven polygons. 

Table 2.1: Twelve URM pairwise inequalities applicable to polygons in Figure 2.1. 

Constraint No. Constraint 
1 x , + x 2 < 1 
2 X i + x 3 < 1 
3 X] + X4 < 1 
4 X i + x5 < 1 
5 X] + X6 < 1 
6 x 2 + x 3 < 1 
7 X2 + X5 < 1 
8 X3 + X4 < 1 
9 X3 + X6 < 1 
10 X4 + X 6 < 1 
11 X4 + X 7 < 1 
12 X 6 + X 7 < 1 



Chapter II 35 

The cliques constraints applicable to the set of polygons in Figure 2.1 are: 

[4] X i + X 2 + X 5 < 1 

[5] X i + x 2 + x 3 < 1, 

[6] X l + X 3 + X 4 + X 6 < 1 

[7] X 4 + X 6 + X 7 < 1 

Note that clique constraint [6], for example, enforces the same adjacency constraints 

as the pairwise inequalities numbered 2, 3, 5, 8, 9, and 10 in Table 2.1. Hence, it can 

replace these pairwise constraints. In addition, researchers have noted that clique 

constraints are stronger inequalities than the pairwise constraints (Murray and Church 

1996) and therefore tend to improve computational efficiency. Both Murray and Church 

(1996) and McDil l and Braze (2000) have concluded that the use of clique constraints 

with pairwise constraints is, on average, the best formulation of adjacency constraints 

presently used to solve the URM. 

The use of clique constraints in solving the ARM is based on the same idea: one finds 

higher order cliques and adds them to the minimal opening constraints; but, the definition 

of higher order cliques differs from that used in the URM. In the context of the ARM, 

higher order cliques must: 1) comprise at least 3 mutually adjacent polygons; and 2) 

contain an area greater than the maximum opening size. To illustrate this, observe that 

Figure 2.1 contains a clique comprising polygons 1, 3,4, and 6. Letting a; equal the area 

of polygon i, the inequality representing this clique constraints is: 

[8] ajxi + 8 3 X 3 + 8 4 X 4 + a^x.^ < 40 
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Unlike minimal opening constraints, the area coefficient must be used with ARM clique 

constraints. For example, the above clique inequality, without the area coefficients is: 

[9] xi + x 3 + x 4 + x 6 < 3 

This inequality is not valid because it allows the simultaneous harvest of polygons 1, 4, 

and, 6, which violates the maximum opening size of 40 ha. 

Al l clique inequalities were added to the set of maximum opening constraints and 

incidental redundancies were not removed. Removal of duplicate cliques was left to the 

preprocessor of the MIP solver. The merit of this formulation requires empirical testing, 

so i f solution times are consistently decreased by the addition of cliques to the minimal 

opening constraints, then we can conclude that they may be a useful addition to our ARM 

formulation. 

Problem Definition and Model 

Formulations of the ARM are tested by scheduling harvest activities over three 20-

year periods in a forest with an 80-year rotation period. This is classified as a tactical 

planning problem because the planning horizon is less than one rotation (Martell et al 

1998). The objective is to maximize net present value of the harvest activities, where 

value is measured at $100 per m 3 , discounted from the middle of each planning period at 

4%. Harvest activities are restricted to clearcutting or doing nothing. The constraints in 

this problem are: 

1) a limit on inter-period harvest volume fluctuations of plus or minus 10%; 

2) a limit on opening size of 40 ha, with a 1-period restriction on harvesting of all 

adjacent polygons (adjacency is defined as sharing a common boundary node); 
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3) a minimum harvest age of 80-years; 

4) an ending-age constraint to ensure that the average age of the forest at the end of the 

planning horizon be at least 40 years (i.e., the average age of a forest regulated on an 

80-year rotation). The formulation of the ending-age constraint is from McDill and 

Braze (2000). 

The notation and mathematical formulation of the model are presented below: 

Xit - 1 i f polygon i is harvested in period t = 1, 2, or 3; 0 otherwise 

[Note, i f polygon i has not been cut for the entire planning horizon, then X j t =1 

when t = 0. This is done to implement the ending age constraint]. 

vn = volume of polygon i in period t (m 3). 

rn = discounted net revenue from harvesting polygon i in period t ($). 

a; = area of polygon i (ha) 

h t = total volume harvested in period t (m ) 

ejt = ending age of polygon i i f harvested in period t (ending age is measured in year 60) 

I = number polygons in the forest 

P = set of maximum openings in the forest 

f p = number of polygons in the maximum opening constraint p, where p e P 

Omax = maximum opening size (ha) 

C = set of cliques, where each has at least 3 polygons and a total area > Omax 

Sc = set of polygons in clique c, where c e C 

Objective Function: maximize net present value 

I 3 

[10] Maximize X X ritXit 
i= l t=l 
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Subject to: 

Each polygon may be assigned not more than one prescription over the planning horizon 

3 

[11] Z x i t = 1 V i = l,...,l 

t = 0 

Accounting variables defining the total volume harvested in each period 

I 

[12] Z V i t x i t - H t = 0 V t = 1 3 
i= l 

Maximum opening size constraints for each period 

[13] Z x i t < fp -1 V p e P ; t = l 3. 

i e P 

Inter-period harvest volumes may fluctuate at most by 10% 

[14] - . 9 H t + H t + 1 > 0 t= l , . . . ,2 

[15] - l . lH t + Ht+i < 0 t= l , . . . , 2 

Average polygon age of total forest area must be at least 40 years at the end of planning 

horizon (year 60). 

I 3 

[16] Z Z (e i t-40)aiX i t > 0 
i= l t=0 

The decision variables are binary 

[17] x i t G {0,1} V i = t = 0 3 
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Except for the addition of clique constraints, the ARM with clique constraints is identical 

to the above ARM. The mathematical formulation of the clique constraints is: 

[18] ZaiXit<Omax V c e C ; t = 1,...,3 

i e S c 

Description of Data 

Spatial data from six forests in British Columbia were used in this study. 

Polygons in the three smaller forests, Gavin, Hardwicke, and Naka were manually drawn 

by forest engineers, while the polygons of Stafford and Kootenay were formed by GIS-

overlays. The forest of Kootenay I is a subset of polygons extracted from the larger 

forest, Kootenay I I . Polygons ranged in size from 0.06 to 43 ha (a few polygons 

marginally greater than the 40 ha opening limit are allowed to be harvested by 

themselves). Table 2.2 summarizes the spatial attributes of these forests, including the 

size of polygons and the number of polygon adjacencies. 

Table 2.2. Spatial attributes of the six forests. 

Forest Total No. of Polygon Area (ha) Polygon Adjacencies 
Area Polygons (minimum, maximum, (minimum1, maximum, 
(ha) average) average) 

Gavin 6,193 346 1.1, 43.0, 17.9 1, 16, 5.8 
Hardwicke 6,948 423 3.0, 42.0 16.4 2, 10, 6.1 
Naka 10,934 785 0.06, 43.0, 13.9 1, 14, 5.2 
Stafford 10,421 1,008 2.0, 20.0, 10.3 0, 12, 4.3 
Kootenay I 38,441 3,256 6.0, 38.0, 11.8 0, 15, 5.6 
Kootenay II 71,257 6,093 6.0, 38.0, 11.7 0, 15, 5.2 

1. A few isolated polygons in Kootenay I, Kootenay II and Stafford have no neighbours. 
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Table 2.3: Three age distributions randomly assigned to each forest. 

40 

Eligibility in Range of Uniform 
Period 1 Distribution of Ages 

50% 10-150 years 
75% 40-200 years 
100% 80-200 years 

We were also interested in testing different age-class distributions for each forest. 

McDill and Braze (2000) found a strong correlation between the initial age-class 

distribution of a forest and difficulty of solving the URM using a branch and bound 

algorithm; viz., that problems with a high percentage of old-growth forest are, in general, 

more difficult to solve than others. For this reason, we assigned three age-class 

distributions to each forest to test the formulations on each. The age-class distributions 

are based on the percent of polygons eligible for harvest in the first period. The three 

distributions tested are: 100%, 75%, and 50%. Table 2.3 summarizes the uniform age 

distributions assigned to each forest using a random number generator. 

In addition to the effect of different age class distributions, we also wished to 

explore the effects of different maximum opening-size limits. Increasing the opening size 

limit has two effects. First, it allows for more possible combinations of polygons to 

aggregate into a feasible opening, thereby increasing the number of possible solutions. 

We wished to assess the degree to which this increases the computing time needed to find 

an optimal solution. Second, since increasing the opening size limit also requires more 

maximum opening size constraints, we wanted to evaluate the rate at which the number 

of opening size constraints increases as the allowable opening size increases. For this 
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reason, we tested 5 different opening size limits on the Stafford forest: 20, 30,40, 50, and 

60 ha opening size limits respectively. 

For reasons of practicality, we limited our analysis of the clique formulations to 

the smaller forests, and set the maximum run-time to four hours. The larger forests in 

Kootenay I and I I were not solved with the clique formulation, and a limit of 24 hours 

was set as the maximum run-time. In each problem instance the optimality tolerance (the 

percent difference between the lower best integer program bound and the upper LP 

bound) was set at 0.5%. 

The models were written using MPL® modelling software (Maximal Software 

Inc., Arlington, VA) and all runs were executed using the CPLEX® 7.5 MIP solver 

(ILOG Inc., Mountain View, CA) on a Pentium® III 1.0 GHz central processing unit, 

with a Windows NT® 4.0 operating system and 1.5 gigabytes of RAM. In the CPLEX® 

solver, all default parameters were used except that the optimality tolerance was widened 

to 0.5% and the MIP emphasis was changed from optimality to feasibility. The program 

for computing the opening constraints was written in JAVA and executed on a Pentium 4, 

2 GHz central processing unit with a Linux operating system. 

Results 

The results from computing the opening constraints and cliques are presented in 

Table 2.4. We first observe that in the Stafford forest, an exponential increase in the 

number of opening constraints occurs as the maximum opening size increases (Figure 

2.2), while only a linear increase occurs in the maximum number of polygons per 

constraint (Table 2.4). 
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Table 2.4. Results from computing maximum opening constraints and cliques for each 

forest. 

Forest Minimal opening 
constraints per period 

Maximum 
No. of 

polygons per 
constraint 

Cliques 
per 

period 

Computing time 
for min. 

opening constraints 

Gavin 1,925 6 459 4 sec 
Hardwicke 4,4495 6 761 25 sec 
Naka 21,272 10 472 30 min 
Stafford-20 ha 2,183 6 1,047 5 sec 
Stafford-30 ha 5,474 7 745 45 sec 
Stafford-40 ha 16,049 9 251 9 min 
Stafford-50 ha 50,110 10 16 2 hrs 
Stafford-60 ha 168,885 13 2 100 hrs 
Kootenay I 97,360 6 N/A 5 hrs 
Kootenay II 156,563 7 N/A 8 hrs 

Figure 2.2. Exponential increase in the number of opening size constraints per period 

relative to the maximum opening size in the Stafford forest. 
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As the number of polygons within an opening increases, the number of adjacent 

neighbours rapidly expands and the possible combinations of polygons that create unique 

opening constraints explodes. Another factor contributing to the number of constraints is 
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the polygon line work. For example, Naka has more constraints, but fewer polygons than 

Stafford-40. This can be attributed to a few, small, linear-shaped polygons in Naka that 

have many adjacent neighbours. Overall, Naka has more very small polygons and more 

polygon adjacencies than Stafford-40 (Table 2.2). Small, irregular shaped polygons 

become non-trivial problems during constraint generation, so every effort should be made 

to eliminate them a priori from the database (e.g. merge them into neighbour polygons). 

The computing times needed to calculate the sets of opening constraints are also 

shown in Table 2.4. The time to process constraints for Stafford increased at an 

exponential rate relative to the opening size; however, relative to the number of 

constraints, it increased at a constant rate. However, there are differences between 

forests, as shown by Stafford-60 and Kootenay I I . These forests have a similar number of 

constraints (> 150,000), but processing time differs by an order of magnitude. This is 

caused by the high number of polygons per constraint in Stafford-60 (13) compared to 

Kootenay I I (7). The large number of polygons per constraint causes more superfluous 

constraints that need to be weeded out, and this weeding process can take up to 20 times 

longer than simply generating the constraint set that includes the superfluous constraints. 

Table 2.4 also lists the number of cliques per period per forest. One obvious 

trend, illustrated in the Stafford forest, is that as the opening size increases, the number of 

cliques decreases (e.g., Stafford-20 has 1,047 cliques, while Stafford-60 has only 2). It 

becomes harder to find cliques that by themselves create violations for the larger 

openings. This demonstrates an obvious limitation inherent in clique constraints for the 

ARM. 
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The resulting LP and IP objective functions, relative gaps, and computing times 

for each problem instance solved using the two formulations are presented in Table 2.5. 

Table 2.5. LP solutions, integer solutions, relative gaps, and computing times for each 

problem instance using the two ARM formulations. (Note 50%, 75%, and 100% refer to 

the number of polygons eligible for harvest in the first period. "With cliques" refers to the 

formulation with clique constraints appended; and "without cliques" refers to the 

formulation without clique constraints). 

Forest 50% with 
cliques 

50% 
without 
cliques 

75% with 
cliques 

75% 
without 
cliques 

100% with 
cliques 

100% 
without 
cliques 

Gavin LP 
IP 

Gap 
Time 

613,261 
607,712 
Optimal 
3.7 min. 

613,298 
607,924 
Optimal 
3.9 min. 

818,072 
813,816 
Optimal 
53.4 min. 

818,072 
813,361 
Optimal 

35.2 min. 

900,845 
896,085 
Optimal 
1.7 hr. 

900,860 
896,271 
Optimal 

42.3 min. 

Hardwicke LP 
IP 

Gap 
Time 

618,152 
614,929 
Optimal 
58 sec. 

618,152 
614,524 
Optimal 
2.3 min. 

905,372 
899,272 
0.60% 
4 hrs. 

905,399 
900,116 

0.515 
4 hrs. 

1,032,840 
1,017,604 

1.48% 
4 hrs. 

1,032,854 
1,017,008 

1.52% 
4 hrs. 

Naka LP 
IP 

Gap 
Time 

2,447,163 
2,436,547 
Optimal 
5.4 min. 

2,447,489 
2,436,552 
Optimal 
5.2 min. 

3,096,629 
3,077,219 
Optimal 
16.4 min. 

3,097,514 
3,077,230 
Optimal 
14.1 min. 

3,722,808 
3,694,829 
Optimal 

45.3 min. 

3,722,838 
3,694,812 
Optimal 

41.5 min. 

Stafford-20 LP 
IP 

Gap 
Time 

2,206,051 
2,202,451 
Optimal 
1.1 min. 

2,206,051 
2,205,899 
Optimal 
47 sec. 

2,844,800 
2,844,771 
Optimal 

1.7 min. 4 

2,845,313 
2,844,751 
Optimal 
45 sec. 

3,335,002 
3,334,967 

1.1% 
4 hrs. 

3,336,209 
3,290,517 

1.38% 
4 hrs. 

Stafford-30 LP 
IP 

Gap 
Time 

2,385,794 
2,380,009 
Optimal 
1.8 min. 

2,385,796 
2,378,215 
Optimal 
1.6 min. 

3,085,943 
3,077,917 
Optimal 
2.5 min. 

3,085,943 
3,073,567 
Optimal 
3.3 min. 

3,620,131 
3,601,615 
Optimal 
3.3 min. 

3,620,131 
3,601,315 
Optimal 
5.0 min. 

Stafford-40 LP 
IP 

Gap 
Time 

2,437,829 
2,423,872 
Optimal 
8.9 min. 

2,437,829 
2,424,135 
Optimal 
5.9 min. 

3,131,460 
3,127,728 
Optimal 
6.0 min. 

3,131,462 
3,127,943 
Optimal 
5.2 min. 

3,667,689 
3,661,992 
Optimal 
6.6 min. 

3,667,689 
3,662,742 
Optimal 
5.1 min. 

Stafford-50 LP 
IP 

Gap 
Time 

2,456,458 
2,452,818 
Optimal 
16.2 min. 

2,456,458 
2,452,855 
Optimal 
15.5 min. 

3,143,926 
3,142,367 
Optimal 
19.8 min. 

3,143,926 
3,142,717 
Optimal 
19.4 min. 

3,682,274 
3,681,035 
Optimal 

34.9 min. 

3,682,274 
3,681,035 
Optimal 

34.6 min. 
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. „ . . 50% _ . „ . ... 75% 1 A n o / ... 100% 50% with x 75% with ... . 100% with ... . 
Forest ,. without .. without ,. without cliques ,. cliques ,. cliques ,. _ cliques ___ cliques chques 

Kootenay I 

Kootenay 
II 

LP N/A 8,890,022 N/A 12,460,000 N/A 13,432,000 
IP N/A 8,852,097 N/A 11,178,270 N/A 13,302,383 

Gap N/A Optimal N/A Optimal N/A Optimal 
Time N/A 2hrs. N/A 5.6 hrs. N/A 7.5 hrs 

LP N/A 16,426,000 N/A 20,791,000 N/A 24,916,000 

IP N/A 16,423,000 N/A No solution N/A 24,915,000 
Gap N/A Optimal N/A None N/A 0.86% 
Time N/A 6.3 hrs. N/A 24 hrs. N/A 17.2 hrs. 

Note that the results for Stafford-60 were not included i n Table 2.5 because no solutions 

were produced within the 4-hour l imit placed on solving the smaller problems. T h e 

optimization software parses the data read, i.e., it builds the matrix, prior to the solution 

processing. T h e Stafford-60 forest was still being parsed after 4 hours; hence, no L P 

solution was calculated within the time limit. T h e parsing time for the Kootenay II forest 

was 5.5 hours. 

E a c h solution was entered into a G I S and analyzed to conf irm feasibility. F o r 

example, F igure 2.3 illustrates an optimal solution for the G a v i n forest. 

W e have several observations regarding the results in Table 2.5. First, the L P 

solutions produced b y the formulation with appended cliques are lower in value than the 

solutions produced b y the formulation without cliques i n 11 o f the 21 problem instances. 

T h i s indicates that the addition o f clique constraints are somewhat inconsistent i n 

"tightening" the formulation, i.e., reducing the feasible region o f the L P problem nearer 

to that o f the integer problem. O u r second observation concerns the ability o f the cl ique 

constraints to decrease computing time needed to find an optimal solution. In very few 
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Not Harvested 

Period 1 

Period 2 

Figure 2.3. An optimal harvest schedule of the Gavin forest mapped for 3 periods. 

problem instances did this occur, and in others, the cliques actually hindered the search, 

despite the fact that a given problem instance with clique constraints began with lower LP 

bounds than those without clique constraints (e.g., Gavin with 100% eligible). Why did 

the addition of cliques adversely affect the branch and bound search in some instances? 

Our reasoning is that different formulations can influence the selection of variables in the 

branch and bound algorithm. When branching from a node, there is a rule by which the 

branching variable is selected. In CPLEX®, there are various rules from which to choose 

and we selected the default parameter "automatic" along with the MIP emphasis on 
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feasibility. For reasons of commercial competition, the CPLEX® manual does not 

disclose the algorithms underlying these parameters. We can only conclude that, in some 

cases, the addition of cliques to the formulation 'misled' this process into selecting less 

promising variables on which to branch. This indicates that more research is needed into 

selecting a set of parameters to guide the branch and bound algorithm that wil l better 

exploit the structure of the ARM. 

Our third observation from Table 2.5 is that for each forest, as one moves from 

problems with younger to older initial age-class distributions, the solution quality (in 

terms of relative gaps and computing times) tends to deteriorate. This echoes 

observations made by McDill and Braze (2000) in their work on the URM; namely, that 

problems with older forests are, in general, more difficult to solve than problems with 

younger forests. The reason is that these older polygons make very similar contributions 

to the objective function, hence MIP solvers are unable to rule out as many branches in 

the branch and bound tree, thus slowing down the process. There are of, course, 

exceptions to this general rule. One interesting exception is Kootenay I I , with 75% of the 

polygons initially eligible for harvest. A feasible integer solution for this problem could 

not be found after 24 hours of computing time; and yet, the same forest, with 100% of the 

polygons initially eligible yielded a near-optimal solution in 17 hours. 

The results in Table 2.5 also illustrate, for the Stafford Forest, the effect of relaxed 

opening constraints upon the net present value for different age-classes. These trends are 

shown graphically in Figure 2.4 and demonstrate diminishing returns as the opening size 

increases beyond 30 ha. The greatest gain in net present value is achieved by modest 
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relaxation of the 20 ha opening limit, and the magnitude of change is similar for all age-

classes. 
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Figure 2.4. Net present value versus maximum opening-size for the three initial age-

classes (% polygons eligible for harvest) of the Stafford forest. 

Finally, we observe that the number of polygons in a given forest does not always 

indicate the difficulty of solving it. For example, some problem instances of the 

Hardwicke and Stafford-20 forests, (423 and 1008 polygons, respectively) proved to be 

difficult to solve optimally. Initial integer solutions were found within several minutes, 

but significant, further improvements were not found within the 4-hour limit. The 

prolonged computing times of Kootenay I and I I (at least 3000 polygons), however, 

indicate that longer computing times can generally be expected when the number of 
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polygons is great. With Kootenay I I , in particular, the limits of practical computing effort 

seem to have been reached. 

Discussion 

The results indicate that small and medium sized problems of the ARM can be solved 

optimally (or near-optimally) using the branch and bound algorithm within reasonable 

periods of computing time. There are however, two questions that must be addressed 

concerning possible shortcomings of this method. 

The first concerns the influence of the polygon size relative to the opening size. We 

observed, in the case of Stafford, that when this ratio is decreased, the set of opening 

constraints and the computing time required to calculate it, both increased exponentially. 

The task of computing opening constraints for Stafford very quickly became impractical, 

and this is a serious limitation of our method. It might be argued that a more efficient 

algorithm for preventing the inclusion of duplicate and superfluous constraints can be 

developed, and that this would help address this shortcoming. There is little doubt that 

improvements can be made in the coding of our algorithm; but even i f such efficiencies 

were made, there remains the problem of the time-consuming task of parsing hundreds of 

thousands of constraints. As noted earlier, it took 5 and one half hours to parse the input 

data for Kootenay I I . The solver's preprocessor can be used to remove redundant 

constraints, but only after the model has been parsed. Therefore, even i f our algorithm 

for computing a set of non-redundant opening constraints were improved, there would 

remain the problem of the excessive time needed to parse potentially millions of 

constraints. 
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A second limitation of this method was illustrated by the computing time needed to 

solve Kootenay I I . Sensitivity analysis of the Kootenay I I problem would become highly 

impractical given solution times in excess of 24 hours. The difficulty in computing 

solutions to the Kootenay I I problems appears to have arisen from the number of decision 

variables. This is the classic difficulty faced by many integer programming problems; 

and typical attempts to overcome these problems involve experimenting with better 

formulations or developing heuristic algorithms. 

There is perhaps, one approach to overcome the first and second limitations just 

discussed. This strategy involves aggregating many small, similar polygons into fewer, 

larger polygons prior to solving the ARM. This process would both increase the polygon 

size relative to the opening size and decrease the number of decision variables. Of 

cardinal importance in this aggregation procedure are the criteria by which polygons are 

classed as similar; for it is possible that poor aggregation criteria may lead to solutions 

with significantly lower objective function values than solutions without pre-aggregated 

polygons. Pre-aggregation of polygons could ultimately lead to developing blocks so 

large that only a URM and not an ARM would be a suitable model for the harvest-

scheduling problem. Such pre-aggregation would utterly defeat the purpose of of using 

an ARM instead of a URM; for, as Murray and Weintraub (2002) rightly observe, the 

objective function value of an optimal solution of a URM is always a lower bound for the 

same problem instance solved solved as an ARM. No doubt, a certain amount of 

experimentation with aggregation criteria would be needed. 
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Conclusion 

In this research we have shown how to formulate the area restricted harvest-

scheduling problem for exact solutions using the branch and bound algorithm. We have 

also shown that small and medium-sized problems can be solved optimally (or near-

optimally) within reasonable time periods. The addition of clique constraints to the 

original formulation inconsistently provided lower LP bounds, and was of little help, on 

average, to the branch and bound algorithm in finding solutions more efficiently. As 

distinct from prior work on this problem (McDill et al. 2002), we have explored the 

computational limitations of solving the ARM using the branch and bound algorithm by 

solving larger problems with more complex opening size constraints. We conclude that 

a) the number of decision variables, and b) the number of opening constraints ultimately 

limit the applicability of this method to larger problems. 

Our results point to several areas in need of further research. First, it would be 

helpful to have a comprehensive examination of the influence of various branch and 

bound parameters on the efficiency of solving the ARM. Second, it would also be 

interesting to see how much further this approach can be taken through the strategy of 

aggregating smaller polygons prior to solution by the ARM. Finally, it would be useful 

to evaluate the results of metaheuristic algorithms used to solve the ARM by comparing 

these results to the optimal solutions found in this paper. 
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Introduction and Literature Review 

With the advent of ecosystem management, it is increasingly common for the size 

of harvest-openings to be regulated and for harvest delays to be placed on all stands 

adjacent to these openings. For example, adoption of the American Pulp and Paper 

Association's Sustainable Forestry Initiative (2001) by more than 90% of the forest 

companies in the U.S., entails that the average clearcut size, on both private and public 

land, not exceed 48 ha (Boston and Bettinger 2001). Clearly, such restrictions have 

become an operational reality; but the challenges they pose to modeling and solving the 

harvest-scheduling problem have not been fully addressed. 

One such challenge is the evaluation of neighbourhood-search metaheuristic 

algorithms, now widely used for solving the harvest scheduling problem with constraints 

on opening sizes (e.g., O'Hara et al. 1989, Nelson and Brodie 1990, Lockwood and 

Moore 1992, Dahlin and Salinas 1993, Murray and Church 1995, Bettinger et al. 1997, 

Ohman and Eriksson 1998, Brumelle et al 1998, Boston and Bettinger 1999, Van Deusen 

1999, Bettinger et al. 1999 , Liu et al. 2000, Richards and Gunn 2000, Clark et al. 2000, 

Bettinger et al. 2000, Van Deusen 2001, Sessions and Bettinger 2001, Baskent and 

Jordan 2002, Boston and Bettinger 2002, Crowe and Nelson 2003, Richards and Gunn 

2003, Caro et al. 2003). Metaheuristic algorithms have been extensively used because 

the harvest scheduling problem with opening-size constraints is a binary integer 

programming problem; i.e., for a solution to be spatially explicit, a given stand must be 

either harvested or not harvested in a given period. Most large integer programming 

problems are notoriously difficult to solve using exact algorithms (Wolsey 1998). Partial 
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enumeration by exact algorithms often have a slow convergence rate, and only small or 

medium-sized problems have thus far been solved to optimality (Crowe et al. 2003). 

Since many practical harvest-scheduling problems are large, metaheuristics have been 

used instead of exact algorithms. 

One problem with metaheuristic algorithms is that they produce approximately 

optimal solutions; i.e., they neither guarantee optimality nor provide any indication of 

how close their solutions are to being optimal (Reeves 1993). Clearly, it is important to 

form some estimate of how close the objective function of a metaheuristic solution is to 

optimality for a given type of problem (Wolsey 1998). 

Reeves (1993) identifies three methods by which heuristic performance can be 

evaluated: 1) analytical methods, 2) statistical inference, and 3) empirical testing. Using 

the analytical method, it is possible to analyze the operations of some heuristics such that 

their worst case or average performance on a problem can be proven. For example, it 

has been proven that a particular heuristic for the traveling salesman problem wil l always 

produce a solution not more than 50% longer than the optimal (Johnson and 

Papadimitriou 1985). Such proofs, though mathematically challenging, are of limited 

practical use unless the performance bounds can be made tight. Also, local search 

methods (on which the metaheuristics of simulated annealing and tabu search are based), 

because of the random elements in their operation, have been shown to have no 

performance guarantee for the traveling salesman problem (Reeves 1993). Using the 

analytic method, it also possible to obtain a bound for a particular problem instance using 

some form of relaxation of the problem; e.g., a relaxation of integer constraints. Again, 



Chapter III 59 

the usefulness of this approach to evaluating heuristic performance depends on how tight 

the gap is between the value of the bound and the heuristic solution. 

Statistical inference has also been used to estimate the performance of a heuristic. 

This has been developed by Golden and Alt (1979) and is based on the statistical theory 

of extreme values (Fisher and Tippett 1928). Golden and Alt argue that each time we 

apply a heuristic to a minimization problem, we implicitly sample a large number, m, of 

possible solutions among which we find the minimum objective function value, v,. As m 

approaches infinity, the distribution of v, approaches the Weibull distribution. Given n 

independent solutions obtained in this way, it is possible to find a point estimate for the 

overall minimum and a confidence interval. Golden and Alt (1979) strongly supported 

the validity of this approach through extensive testing on the traveling salesman problem. 

Notwithstanding their efforts, according to Reeves (1993) there are few other reported 

applications of this approach in the literature. Among the few, Boston and Bettinger 

(1999) tested this approach on the 0/1 harvest scheduling problem and concluded that 

extreme value statistics provide unreliable estimates of the optimal objective function 

value and that the quality of the estimate is strongly dependent on the quality of solutions 

generated by the heuristic procedure. 

The empirical approach to testing a heuristic involves comparing its performance 

with that of existing techniques on a set of benchmarks. Since benchmarks represent 

only a small fraction of the possible population of instances, they should be sufficiently 

representative of real problems. Testing a heuristic across a range of problem instances 

facilitates evaluation of how well the heuristic performs in general, and under what 

conditions it performs relatively well or poorly. Factors commonly discussed are the 
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influence of problem size, solution quality, solution variance, and computational costs 

(Reeves 1993). 

In research on the integer harvest-scheduling problem, some evaluation of 

metaheuristic methods has occurred. For example, Nelson and Brodie (1990) used 

Monte Carlo integer programming to solve a three-period problem with 291 binary 

decision variables to within 10% of the known optimal. Murray and Church (1995) 

compared tabu search, simulated annealing, and hill climbing on the same data set used 

by Nelson and Brodie: the simulated annealing metaheuristic produced solutions 

averaging within 8% of the objective function of the optimal, and tabu search within 

6.3%. On a larger data set, comprised of 1,293 binary decision variables, Murray and 

Church (1995) found that simulated annealing averaged within 11.8% and tabu search 

within 4.4% of the known optima. Weintraub et al. (1995) interfaced metaheuristic 

decision rules with a continuous LP solver to produce an integer solution averaging 

within 6.4% of the known optimal for a transportation and scheduling problem 

comprising 191 integer decision variables. Boston and Bettinger (1999) compared tabu 

search and simulated annealing, on four problem instances ranging is size from 3,000 to 

5,000 decision variables. The simulated annealing algorithm produced solutions within 

3.4, 1.9, 0.2, and 3.5 percent of the known optima of the four problems, while the tabu 

search produced solutions within 6.3,2.8, 0.0, and 4.3 percent, respectively. 

In all of the above comparisons, the type of harvest-scheduling model evaluated 

was the unit-restricted model (URM). In the URM, the boundaries of all potential 

harvest-openings are predefined; i.e., the boundary of each polygon in a problem instance 

equals the boundary of each potential cut-block (i.e., contiguous area of harvested forest). 
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There exists another model of the harvest-scheduling problem with opening size 

constraints, referred to as the area-restricted model (ARM). This model has not been 

fully evaluated. In the ARM, the boundaries of all potential cut-blocks are not 

predefined. Instead, polygons may be aggregated to form cut-blocks during the search 

for an optimal solution. The limit of this aggregation is defined by the maximum 

allowable opening area. It is important that an evaluation of metaheuristic algorithms 

used to solve the ARM be made, for two reasons: 1) the ARM is, arguably, a more 

suitable model of the harvest-scheduling problem than the URM; and 2) the ARM is 

potentially more difficult to solve. I discuss each reason in detail. 

First, the ARM has several advantages over the URM. For example, it has been 

observed (Walters et al. 1999, Richards and Gunn 2000) that in the ARM, the 

configuration of cut-blocks emerges in the context of an optimal flow of timber; and that 

the predefined cut-blocks of the URM may underestimate the potential harvest flow 

through sub-optimal cut-blocks. Moreover, research indicates that poor block 

configuration can contribute to lower objective function values (Jamnick and Walters, 

1991). Murray and Weintraub (2002), using several methods by which to pre-aggregate 

polygons into cut-blocks, demonstrate that the ARM consistently produces superior 

objective function values to the URM. 

Second, the ARM may be more difficult to solve than the URM. My reasoning 

for this is that the number of feasible solutions to a given problem instance can be much 

greater when modeled as an ARM than as a URM. The degree to which this difficulty 

increases depends on the difference in area between the polygons and the maximum 

opening size restriction. For example, given an opening size restriction of 40 ha and an 
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average polygon size of 5 ha, in one case, and an average polygon size of 15 ha in 

another case then, ceteris paribus, the number of feasible combinations in the former case 

wil l be much greater than in the latter. The URM avoids this type of expansion of the 

solution space. Murray and Weintraub (2002) for example, rightly observe that the URM 

can provide a lower bound on problems modeled as an ARM. 

As mentioned above, in the case of the ARM, metaheuristic algorithms have not 

been fully evaluated. This is because formulations have only recently emerged for exact 

optimal solutions to the ARM (McDill and Braze 2002, Crowe et al. 2003, Caro et al. 

2003). McDill and Braze (2002) solved problem instances up to 80 polygons over three 

periods, on a simulated forest designed to allow not more three polygons to aggregate 

within an allowed opening. Caro et al. (2003) evaluated a tabu search metaheuristic on 

six instances of a forest of 20 stands over 2 periods. Their metaheuristic solutions were 

within 1% of the optimal; but they note that the instances were too small to evaluate the 

true merit of their metaheuristic. Caro et al. (2003) also used a case study of 574 stands 

over seven periods and found that their tabu search algorithm produced solutions within 

8% of an LP upper bound. Crowe et al. (2003) evaluated exact formulations of the 

ARM on five forests ranging in size from 346 to 6,093 polygons scheduled over 3 

periods. These provide solid benchmarks by which to evaluate metaheuristic solutions to 

the ARM. 

The objective of this paper is to use an empirical approach to evaluate the ability 

of a simple implementation of a metaheuristic algorithm, simulated annealing, to solve a 

variety of instances of the harvest scheduling problem modeled as an ARM. 
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Each of these instances has been solved optimally using the formulation methods 

discussed in Crowe et al. (2003), and therefore optimal benchmarks are to be used in the 

evaluation. By testing a metaheuristic across a range of instances, the objective is to 

gain some idea on how well it performs in general, and in what circumstances it does 

relatively well or relatively badly. By using a simple implementation of the simulated 

annealing algorithm, the intention is to provide an empirical worst-case analysis of the 

potential of metaheuristic search algorithms in solving the ARM. While simulated 

annealing has been shown to be quite effective relative to other metaheuristic algorithms 

in solving the ARM (Bettinger et al. 2000), the extraordinary flexibility of the 

metaheuristic approach to problem solving (Herz and Widmer 2003) makes it 

inappropriate for us to speculate on its unexplored potential. 

The outline of this paper is as follows: first, I present the formulation of the area-

restricted harvest-scheduling problem. Second, I describe the benchmark problem 

instances to be used in this study. Third, I describe the simulated annealing algorithm 

used to solve these problem instances. Fourth, I present results, comparing the objective 

functions of solutions produced using simulated annealing with those of optimal 

solutions. Finally, I discuss these results and conclude with suggestions on further 

research. 

Problem Definition and Model 

Formulations of the ARM are tested by scheduling harvest activities over three 20-

year periods in a forest with an 80-year rotation period. The objective is to maximize net 
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present value of the harvest activities, where value is measured at $100 per m 3 , 

discounted from the middle of each planning period at 4%. Harvest activities are 

restricted to clearcutting or doing nothing. The constraints in this problem are: 

1) a limit on inter-period harvest volume fluctuations of plus or minus 10%; 

2) a limit on opening size of 40 ha, with a 1-period restriction on harvesting of all 

adjacent polygons (adjacency is defined as sharing a common boundary node); 

3) a minimum harvest age of 80 years; 

4) an ending-age constraint to ensure that the average age of the forest at the end of the 

planning horizon be at least 40 years (i.e., the average age of a forest regulated on an 

80-year rotation). The formulation of the ending-age constraint is from McDill and 

Braze (2000). 

The notation and mathematical formulation of the model are presented below: 

xu = 1 if polygon i is harvested in period t = 1, 2, or 3; 0 otherwise 

[Note, if polygon i has not been cut for the entire planning horizon, then xit =1 

when t = 0. This is done to implement the ending age constraint]. 

vit - volume of polygon i in period t (m3). 

rit = discounted net revenue from harvesting polygon i in period t ($). 

at = area of polygon i (ha) 

ht = total volume harvested in period t (m3) 

en = ending age ofpolygon i if harvested in period t (ending age is measured in year 60) 

I = set of all polygons in the forest 

Ou = set of stands, including stand i, that are harvested during period t, and are included 

in the same opening as stand i (i.e., contiguously connected to stand i) 
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Omax = maximum opening area for harvest-blocks (ha) 

Objective Function: maximize net present revenue. 

I 3 

[1] Maximize 
fitxit 

i=l t=l 

Subject to: 

Each polygon may be assigned not more than one prescription over the planning horizon. 

3 

[2] E xit < 1 V i = l / 
t = 0 

Accounting variables defining the total volume harvested in each period. 

/ 

[3] £vitxit-H, = 0 Vt = l 3 
i=l 

Limit on total area of polygons aggregating into harvest blocks for each period. 

[4] ^ XitOj < Omax V i eI; t = 1,...,3 
ieOtt 

Inter-period harvest volumes may fluctuate at most by 10%. 

[5] -.9Ht +H{+1>0 t = l,2 

[6] -l.lHt + Ht+I <0 t = l,2 
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Average polygon age of total forest area must be at least 40 years at the end of planning 

horizon (year 60). 

/ 3 

[7] X Z (eit-40)aiXit>0 
i=7 t=0 

The decision variables are binary 

[8] xit E {0,1} Vi = 1,...,/; t = 0, ...,3 

Description of Benchmarks 

Spatial data from seven forests in British Columbia were used in this study. Table 

3.1 summarizes the spatial attributes of these forests, including the size of polygons and 

the mean number of adjacencies per polygon. The number of opening constraints per 

period refers to the number opening constraints used to control opening size in 

calculating the optimal solution using the branch and bound algorithm. Polygons in the 

smaller forests, Gavin, Hardwicke, and Naka were manually drawn by forest engineers, 

while the polygons of Stafford and Kootenay were formed by GIS-overlays. The forest of 

Kootenay I is a subset of polygons extracted from the larger forest, Kootenay I I , which is 

similarly a subset of Kootenay II I . Polygons ranged in size from 0.06 to 43 ha (a few 

polygons marginally greater than the 40 ha opening limit are allowed to be harvested by 

themselves). In addition, the number of opening constraints per period is listed in this 
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table: this represents the number of linear constraints needed to prevent harvest-openings 

from exceeding 40 ha in the models solved using the branch and bound algorithm. 

Table 3.1: Spatial attributes of the seven benchmark forests. 

. Forest Total 
Area * 
(ha) 

No. of 
Polygons 

Polygon Area (ha) 
(minimum, 

' . maximum, average) 

Opening 
Constraints 
per period • 

Polygon 
Adjacencies :.t 
(minimum1, 
maximum, 
average) 

Gavin 6,193 346 1.1, 43.0, 17.9 1,925 1, 16, 5.8 

Hardwicke 6,948 423 3.0, 42.0 16.4 44,495 2, 10, 6.1 

Naka 10,934 785 0.06, 43.0, 13.9 21,272 1, 14, 5.2 

Stafford 10,421 1,008 2.0, 20.0, 10.3 16,049 o, 12, 4.3 

Kootenay I 38,441 3,256 6.0, 38.0, 11.8 50,110 o, 15, 5.6 

Kootenay I I 71,257 6,093 6.0, 38.0, 11.7 97,360 o, 15, 5.2 

Kootenay I I I 118,535 12,090 6.0, 39.5, 9.8 156,563 o, 15, 5.2 

1 . A few isolated polygons in Kootenay I, II, and III, and Stafford have no neighbours. 

I was also interested in testing different age-class distributions for each forest. 

McDill and Braze (2000) found a strong correlation between the initial age-class 

distribution of a forest and the difficulty of solving the URM using a branch and bound 

algorithm; viz., that problems with a higher proportion of old-growth forest area are, in 

general, more difficult to solve than others. For this reason, I assigned three age-class 

distributions to each forest to test the formulations on each. The age-class distributions 

are based on the percent of polygons eligible, by age, for harvest in the first period. The 
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three distributions tested are: 100%, 75%, and 50%. Table 3.2 summarizes the uniform 

age distributions assigned to each forest using a random number generator. 

Table 3.2: Three age distributions randomly assigned to each forest. 

Percent of Polygons Range of Uniform 
Eligible for harvest Distribution of Ages 

in Period 1 
50% 10-150 years 
75% 40-200 years 
100% 80-200 years 

In addition to the effect of different age class distributions, I also wished to 

explore the effects of different maximum opening-size limits. Increasing the opening 

size limit allows for more possible combinations of polygons to aggregate into a feasible 

opening, thereby increasing the number of possible solutions. For this reason, I tested 4 

different opening size limits on the Stafford forest: 20, 30, 40, and 50 ha opening size 

limits, respectively. 

The methods used to compute optimal solutions for these forests are described 

fully in Crowe et al. (2003). 

Description of the Simulated Annealing Algorithm 

The simulated annealing algorithm I used to solve the harvest-scheduling problem 

is similar to that designed and illustrated by Boston and Bettinger(1999), except for the 

choice of parameters: viz., the initial temperature, the reduction factor, the definition of a 

neighbourhood, and the number of iterations at a given temperature. To illustrate the 
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context of these parameter choices, I first present a concise outline (Wolsey, 1998) of the 

simulated annealing metaheuristic. 

1. Get an initial solution, S. 

2. Get an initial temperature,!", and a reduction factor, r with 0 < r < 1. 
3. While T is not frozen, do the following: 

3.1 Perform the following loop nrep times: 
3.1.1 Pick a random neighbour S' of S 
3.1.2 I f S'is feasible: 

3.1.2.1 Let delta = f (S ' ) - f (S) . 
3.1.2.2 I f delta >= 0, setS = S' 
3.1.2.3 I f delta < 0, set S = S' with probability e ^ e l t a / T 

3.2 SetT = rT 
4. Return best solution. 

I defined a neighbour of S to be any solution arising from the following operation: 

i) Randomly select any binary decision variable, X;J, from the current solution, S 

(where Xjj = 1 i f polygon i is harvested in period j , 0 otherwise). 

ii) I f x^ = 0, let X y = 1. 

iii) Else i f xy- = 1 , let x y = 0. 

iv) I f this permuted solution is feasible, then it is a neighbour, S'. 

Note that only feasible solutions can be accepted in this algorithm. The manner of 

defining a neighbour of S was based on the idea that small neighbourhoods are preferable 

to large complex ones (Reeves 1993). I should note the choice of a neighbourhood 

structure can itself be the subject of some experimentation, and that Bettinger, Boston 

and Sessions (1999) have initiated such research for a tactical planning problem. The 

choice of an initial feasible solution followed naturally from this choice of a 

neighbourhood: I set all decision variables equal to zero. 

The parameters requiring experimentation were r, T, and nrep. An experiment 

was designed to find the best values for these parameters within a reasonable period of 
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time, and it was complicated by the fact that the annealing algorithm is randomized, and 

therefore results of a single run may not be typical. To simplify the execution of the 

experiment, I set r = 0.99 as a constant. This choice was supported by the literature on 

simulated annealing which indicates that most reported successes use values between 0.8 

and 0.99 with a bias to the higher end of the range (Reeves 1993). 

The value of an initial experimental temperature, T, was determined by setting r = 

1.0, iteratively running the algorithm and raising T, until all feasible solution changes 

were accepted with at least 95% probability. The intention here was to find a value for T 

allowing an almost free exchange of neighbouring solutions so that the final solution 

would be independent of earlier solutions. 

Finally, the value of nrep was chosen. This value governs the number of 

repetitions at each temperature, and the theory of simulated annealing suggests that the 

temperature should converge gradually to a value of zero. I f computation times were of 

no consequence, then nrep should vary exponentially with problem size. I wished this to 

be a practical test of the algorithm, and were therefore forced to limit nrep. Since the 

number of iterations at each temperature is related to the size of the neighbourhood 

(Reeves 1993), I began with a value of nrep equal the number of binary decision 

variables in each problem instance. I then iteratively doubled the value of nrep and re­

ran the algorithm until convergence at a sufficiently cool temperature occurred. The 

stopping criterion was the completion of a fixed number of iterations, N. In this way, the 

cooling rate can be regarded as a constant relation between the number of iterations and 

the value of nrep; i.e., i f one wishes to run the simulated annealing algorithm for a longer 

period of time, one must multiply both nrep and N by the same factor. 
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The harvest-scheduling model using the simulated annealing algorithm was 

encoded in the C programming language, using Microsoft Visual C++ 6.0. Optimal 

solutions were computed using CPLEX 8.1. Al l models were solved using a 2.4 GHz 

Pentium 4 CPU, with 1.5 gigabytes of RAM, and a Windows XP operating system. 

Results 

The solution qualities and variances for all problem instances solved using the 

simulated annealing algorithm are presented in Table 3.3. In Table 3.3, mean solution 

quality refers to the mean objective function value of the solutions produced by simulated 

annealing divided by the optimal objective function value; gap variance refers to the 

standard deviation of those solutions divided by the optimal objective function value. I 

use this measure because it describes not only how widely values are dispersed around 

the mean metaheuristic objective function value, but also because it describes this value 

in terms of the variance in the gap between the metaheuristic and optimal solution values. 

Each mean requiring three minutes of computing time is based on a sample of thirty 

solutions; while the means requiring thirty minutes are based on a sample of fifteen 

solutions. Three-hour runs were executed for any problem yielding a mean objective 

function value of less than 90% of the optimal on a thirty-minute run. These are presented 

in Table 3.4. The simulated annealing algorithm evaluated, on average, 136 million 

solution permutations per minute. Results from the Kootenay I I I forest are not included 

in Table 3.3 for the instance where 100% of the stands are initially eligible. This is 



Chapter I I I 

because no optimal solution was found- the branch and bound solution tree required 

more memory than was available. 

72 

Table 3.3: Solution quality and gap variance from applying simulated annealing to 
benchmark instances. 

Forest- % of stands Mean pap Mean Gap 
eligible for Solution , variance Solution Variance 

harvest Quality after after 3 Quality after after 3 0 
3 minutes minutes 3 0 minutes minutes 

Gavin 5 0 % 9 4 . 2 % 0 .68% 9 4 . 5 % 0 .70% 

7 5 % 9 5 . 4 % 0 .73% 9 5 . 5 % 0 . 2 0 % 

1 0 0 % 9 4 . 9 % 0 .63% 9 5 . 0 % 0 . 8 2 % 

Hardwicke 5 0 % 9 8 . 0 % 0 . 5 1 % 9 8 . 0 % 0 .55% 

7 5 % 9 8 . 3 % 0 .42% 9 8 . 4 % 0 .58% 

1 0 0 % 9 8 . 6 % 0 .72% 9 8 . 8 % 0 .42% 

Naka 5 0 % 8 9 . 3 % 0 . 1 1 % 9 1 . 4 % 0 .49% 

7 5 % 9 0 . 5 % 0 .32% 9 2 . 5 % 0 .32% 

1 0 0 % 9 1 . 8 % 0 .29% 9 3 . 4 % 0 . 3 4 % 

Stafford 20 ha 5 0 % 9 6 . 5 % 0 .35% 9 7 . 1 % 0 . 2 6 % 

7 5 % 9 5 . 2 % 0 .60% 9 6 . 1 % 0 . 6 1 % 

1 0 0 % 9 7 . 1 % 0 .37% 9 7 . 7 % 0 .36% 

Stafford 30 ha 5 0 % 9 8 . 4 % 0 .16% 9 8 . 4 % 0 .18% 

7 5 % 9 8 . 5 % 0 .07% 9 8 . 5 % 0 . 0 9 % 

1 0 0 % 9 8 . 7 % 0 .04% 9 8 . 7 % 0 . 0 5 % 

Stafford 40 ha 5 0 % 9 8 . 8 % 0 .05% 9 8 . 8 % 0 . 0 6 % 

7 5 % 9 8 . 4 % 0 .04% 9 8 . 5 % 0 . 0 4 % 

1 0 0 % ' 9 8 . 6 % 0 .02% 9 8 . 6 % 0 . 0 4 % 

Stafford 50 ha 5 0 % 9 9 . 1 % 0 .05% 9 9 . 1 % 0 .06% 

7 5 % 9 8 . 4 % 0 .03% 9 8 . 4 % 0 .03% 

1 0 0 % 9 8 . 6 % 0 .08% 9 8 . 7 % 0 .05% 

Kootenay I 5 0 % 9 0 . 7 % 0 .32% 9 1 . 0 % 0 .13% 

7 5 % 9 2 . 3 % 2 .06% 9 2 . 5 % 1.07% 

1 0 0 % 9 3 . 8 % 1.26% 9 3 . 9 % 0 .98% 

Kootenay I I 5 0 % 8 7 . 1 % 1.14% 8 7 . 1 % 1.46% 

7 5 % 8 7 . 3 % 2 . 5 6 % 8 7 . 4 % 2 . 3 1 % 

1 0 0 % 8 8 . 5 % 1.72% 8 8 . 6 % 1.57% 

Kootenay I I I 5 0 % 8 8 . 5 % 0 .27% 8 8 . 5 % 0 .17% 

7 5 % 9 0 . 8 1 % 1.20% 9 0 . 8 % 0 .78% 
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Table 3.4: Solution quality and gap variance results from 3-hour runs using the simulated 

annealing algorithm 

Forest . % Stands " 
Harvestable in 

Period 1 

Mean Solution 
Quality after 3 

Hours 

Gap Variance ' 
after 3 hours 

Kootenay II 50% 87.6% 1.29% 

75% 87.9% 1.31% 

100% 88.8% 1.57% 

Kootenay III 50% 88.9% 0.17% 

75% 91.1% 0.78% 

The objective in testing the simulated annealing algorithm was to observe how well it 

performs in general, and under what circumstances it wil l do relatively poorly. This 

objective wil l guide analysis of the results. 

First, in general, the mean solution produced by the simulated annealing 

algorithm, for all 29 instances, using thirty minutes of computing time, was 94.97% of 

the optima, and the mean gap variance (as defined above) was +/- 0.51%. 

Second, in particular, the effects of attributes of particular problem instances 

which interested us were: 

1. the number of decision variables; 

2. the percent of stands initially eligible for harvest; and 

3. the ratio between the mean polygon area and the maximum opening area. 



Chapter III 74 

I examine these separately. 

The relation between the number of decision variables and the solution quality, 

for each of the thirty-minute runs are presented in Figure 3.1. 

• 50% eligible • 75% eligible A 100% eligible 
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-Kootenay III 
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Figure 3.1: Relation between mean solution quality and number of binary decision 

variables (Note: number of decision variables equals number of polygons times three 

periods). 

Figure 3.1 indicates that there is a downward trend between problem size and the quality 

of solutions produced by the simulated annealing algorithm. The problem instances 

which most weaken this trend are from the Naka and Kootenay I I forests, comprised of 

2,355 and 18,279 binary decision variables respectively. Each of these forests yields 

solutions relatively inferior to those of larger forests. Clearly there is an attribute, or 
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attributes, other than problem-size also influencing the algorithm's search for better 

solutions. I considered whether the relatively poor solution qualities of Naka and 

Kootenay I I might have arisen from either: a) the chance that the particular random 

assignment of ages might have made the problem instance difficult to optimize using 

neighbourhood search; or, b) the particular spatial arrangement of the polygons in these 

forests. Looking at Figure 3.1, and noting that variance in solution quality between the 

seven forests is greater than the variance within the three different age-classes randomly 

assigned to each forest, I was inclined to pursue b) as a possible venue for explanation. 

Unfortunately, the spatial attributes of the forests, presented in Table 3.1, reveal no 

attribute by which to differentiate both Naka and Kootenay I I from the other forests. 

The influence of the number of binary decision variables is more pronounced, 

however, when I compare the progress made on solution quality when moving from the 

three-minute to thirty-minute runs. Here the progress made on the smaller Naka 

problems produced a mean improvement of 1.90%, while on the much larger forests of 

Kootenay I I and I I I , mean progress was 0.20% and 0.07%, respectively. In fact, the 

solutions to the Kootenay I I and I I I forests benefited very little from the additional 3 

hours of computing time (Table 3.4), improving upon the 30-minute solution quality by a 

mean of 0.47% and 0.35%, respectively. 

Apart from the effect of the number of decision variables, I was also interested in 

the effect of the mean polygon size upon the solution quality. In the Introduction of this 

paper, I reasoned that the smaller the mean polygon area relative to the maximum 

opening area, the more feasible combinations there would be, the larger the solution 

space would be, and therefore the more difficult it would be to find near-optimal 
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solutions. The results in Table 3.3 do not support this speculation. For example, in the 

Stafford forest, the solution quality improves from a 20 ha opening to a 50 ha opening. 

Figure 3.2 indicates that there is no apparent trend between solution quality and the ratio 

of mean polygon area to maximum opening area for all of the instances solved. 
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Figure 3.2: Relation between qualities of solutions produced by simulated annealing 
algorithm and the ratio of mean polygon area to maximum opening area. Results 
illustrated are from the 30-minute runs, with different solutions for each of the three 
initial age-class distributions per forest. 

Finally, I was interested in the effect of initial age-class distribution on solution 

quality. The results in Table 3.3 reveal that six of the seven forests yielded their worst 

mean solution qualities to the youngest forest (50% initially eligible) while 5 of the 7 

forests yielded their best mean solution qualities to the oldest forests. This indicates that, 

problems with fewer eligible stands are more difficult to optimize for a metaheuristic 
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than problems where more stands are eligible. These findings are contrary to those for 

the branch and bound algorithm, where older forests are more difficult to optimize. 

Discussion 

The results uncover several trends worthy of discussion. The first, and perhaps 

most important trend, is that problem size does not appear acutely to affect the ability of 

the simulated annealing algorithm to find near-optimal solutions. A weak trend was 

observed between larger problem instances and poorer solution qualities; but the decline 

in quality was not steep. The simulated annealing algorithm produced excellent results, 

on average within 5% of the optima over the range of instances tested. Of course, the 

number and size of the instances solved in this research cannot allow us to generalize this 

trend with certainty; but the results can provide some confidence to practitioners 

currently using neighbourhood-search metaheuristics to produce efficient tactical-level 

plans in forest management. Not all neighbourhood-search metaheuristics have been 

shown to cope equally well in finding near-optimal solutions as problem size increases 

(see Johnson and McGeoch 2002 for heuristic algorithms used on increasingly larger 

instances of the traveling salesman problem). 

A second interesting result provided by this research, especially from the the 

Stafford forest, is that the ratio of the mean polygon area to the maximum opening area 

did not influence the quality of the best solution found by the metaheuristic. As noted 

earlier, the smaller this ratio is, the greater is the number of feasible solutions (other 

things being equal). I am therefore obliged to ask: Why did problems with a smaller ratio 
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not yield solutions of lower quality, given the expansion of the solution space? My 

answer to this is complemented by reflection on another question raised by this research: 

viz., why is it that forests with 100% of the stands initially eligible for harvest yielded 

solutions of higher quality than forests with only 50% of the stands initially eligible? 

This question complements the first because, in both cases, problem instances with 

relatively more feasible solutions yield solutions which are of equal or higher quality than 

instances with relatively fewer feasible solutions. Why? 

The number of feasible solutions relative to the number of decision variables 

influences solution quality because it influences the neighbourhood search. For 

example, let S be a set of feasible solutions to a particular problem, and N(s) be the 

neighbourhood of a solution, s. In neighbourhood search, N(s) is defined as the set of 

solutions which can be obtained from s by performing a simple permutation operation on 

s. But not all such permutations upon s produce a solution within the set N(s), because 

some of these permutations produce infeasible solutions. Hence, i f there are, for 

example, more feasible solutions in problem A than in problem B, then on average, each 

neighbourhood of each solution in A will have a greater number of members than each 

neighbourhood of each solution in B. This can have two major effects on the 

neighbourhood-search in problems A versus B: 1) more time is lost in problem B than in 

problem A by producing infeasible solutions through a permutation operation; and, more 

importantly 2) the ability of the algorithm to diversify the search, i.e., enter new regions 

of the solution space is, hampered when neighbourhoods are smaller. Hertz and Widmer 

(2003), for example, have also observed the relative ineffectiveness of neighbourhood-

search in highly constrained problems where permutation-operations rarely produce a 
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feasible solution. To promote diversity in the search, they suggest relaxing some 

constraints and adding penalties to the objective function. 

A final point of discussion requires us to interpret the general results: a mean 

solution quality of almost 95%, generally with very little variance. What does this mean 

for the future of research on metaheuristic applications to the ARM? Clearly, there is 

little room for improvement, given that this is a worst case analysis. Closing the gap on 

the final 5% between metaheuristic versus optimal solution quality may present itself as 

an interesting challenge to researchers; but what might be the practical merit of this? 

Efficient solutions produced by a symbolic model rarely translate into equivalent results 

in operational realities. Hence, for the tactical harvest scheduling problem, the minor 

increases in NPV which might arise by improvements in metaheuristic planning 

algorithms may never materialize, given uncertainties in field data, growth and yield data, 

and estimates of harvested log grades and values. 

The results of this research therefore point in one direction for future relevant 

research on applying metaheuristic algorithms to the ARM: evaluate algorithms using 

much larger problems instances. There are several reasons for this. First, since there was 

a trend observed between problem size and solution quality, it would be useful to explore 

this further. Second, the results revealed that the simulated annealing algorithm, when 

applied to the larger problems (Kootenay I I and III), made very little improvement to 

solution quality between three-minute versus three-hour runs. This indicates that, on 

very large problems, it can be much more challenging to explore truly different regions of 

the search space effectively. Improvements in search diversification strategies should 

therefore be evaluated in the context of larger problem instances. Finally, although the 
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optimal benchmarks by which metaheuristic solutions to larger instances of the ARM are 

to be evaluated may not be computationally feasible, the research of Crowe et al. (2003) 

and Caro et al. (2003) indicates that LP relaxations of the ARM provide reasonable 

estimates of the upper bounds. 

Conclusions 

The objective of this paper was to apply the simulated annealing algorithm to a 

variety of instances of the area-restricted harvest-scheduling model, and to evaluate its 

approximately optimal solutions by comparison with optimal benchmarks. Of the 29 

instances solved, the average deviation from the optima was only slightly more than 5%. 

Attributes of the problem, such as the number of decision variables, maximum opening 

size, and initial age-class distribution were examined for their effect on the 

metaheuristic's ability to produce good solutions. A weak downward trend was observed 

on the relationship between solution quality and problem size. 

This research is significant because it constitutes the first evaluation of the ability 

of a metaheuristic algorithm to produce good quality solutions for the ARM. Given that 

the application of the simulated annealing algorithm required no innovation and was 

relatively simple to implement, the results constitute a worst-case analysis of the potential 

of the metaheuristic approach to this problem. The excellent results produced by this 

worst-case case analysis, coupled with weak downward trend on the relation between 

problem size and solution quality, suggest that future research on applying metaheuristics 

to the ARM use relatively large problem instances. 
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Introduction 

In British Columbia and elsewhere, publicly owned forest is often managed under 

volume-based tenure systems. Strategic management plans are made for each forest, and 

the allocation of cutting rights to forest companies is then made. In some cases, an entire 

forest management unit is allocated to one licensee; but in other cases, the allocation is 

made to several competing licensees. The problem of allocating cutting rights among 

competing licensees entails assigning large discrete units of forest land to these licensees, 

typically for periods of fifteen to twenty-five years. The units of forest land, known as 

chart areas, are large because it is economically infeasible for firms to maintain roads and 

operations widely dispersed across an entire management unit. The assignment of chart 

areas is a problem with several complicating factors, which will now be described. 

First, it has been the government's historic policy to allocate cutting rights to 

licensees on the condition that they own wood-processing facilities. This is referred to as 

the appurtenance policy (Pearse 2001). This policy renders the allocation of cutting 

rights problematic because not all mills process all types of logs with equal economic 

efficiency. In the last twenty years, many new specialty mills have arisen; and these 

mills, given certain types of logs, can make more valuable wood products than traditional 

volume based mills. Hence, solving the classic forestry problem of allocating the "right 

log to the right mi l l " is frustrated by the discrete allocation of chart areas to licensees. 

Failure to allocate logs optimally, in the long run, results in reduced net returns on timber, 

in the form of both profits to the private sector and stumpage to the government. Clearly, 

solving the problem of assigning chart areas to licensees necessitates an exploration not 

only of the costs of this appurtenance policy with regard to inefficient allocation of 
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standing timber; but also, a practicable method by which the appurtenance policy can be 

relaxed in order to increase the efficient allocation of standing timber. The government 

of British Columbia is currently considering a policy of relaxing the appurtenance policy 

through allocation of some chart areas to timber sales. 

The second complicating factor in the assignment of chart areas to licensees 

arises from the introduction of landscape-scale, spatially explicit, harvesting constraints 

(e.g., targets for serai patch size distributions, old-growth reserves, preservation of special 

habitat conditions) applied to the management unit as a whole. The imposition of these 

constraints could potentially cut across the boundaries of chart areas, thus affecting the 

timber supply of one licensee more than another. These constraints are also important for 

certification schemes (e.g., Canadian Standards Association), where a certification plan 

must be made for an entire management unit, regardless of the competing interests of its 

multiple licensees. Hence, there is a need for a method by which the imposition of spatial 

constraints may combine harmoniously with the assignment of chart areas to licensees. 

The third complicating factor in the assignment of chart areas to licensees is that 

objectives to be satisfied are, for each licensee, multiple and conflicting. For example, 

the assignment must not only satisfy each licensee's volume targets over time, but also its 

targets for certain species and log sizes. In addition, each licensee seeks to minimise the 

haul distance arising from the assignment, and to secure enough standing timber 

accessible for harvesting in the winter months. Since the supply of timber is scarce, these 

conflicting objectives also exist between licensees who must compete against one another 

to satisfy their objectives. 
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The problem of assigning chart areas to licensees is illustrated in Figure 4.1. Here a forest 

management unit is divided into 14 chart areas, each of which must be assigned to one of 

3 licensees or to timber sales, through which logs may be redistributed to licensees. In 

this problem, we cannot assume equivalence between a licensee and a mil l ; for, a licensee 

may own more than one mill. I f a licensee has more than one mill, the licensee's targets 

are the sum of its mill's targets. The assignment is based on satisfying each licensee's 

multiple timber and operational objectives over several decades. In addition, all 

scheduled harvesting must occur such that landscape-scale ecological objectives are 

satisfied. 

Figure 4.1: A forest management unit divided into 14 chart areas, each of which must be 
discretely assigned once to either of 3 licensees or timber sales. 
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The complexity and economic consequences of this problem warrant the design of 

a decision support model. It is my intention in this paper, to design, test, and evaluate a 

model for the problem of assigning chart areas to licensees and timber sales. First, a brief 

literature review on the strategic allocation of standing timber is presented. This wil l be 

followed by a description and formulation of the model of assigning chart areas to 

licensees and to timber sales. Next, the model wil l be tested on a case study, the 

Kootenay Timber Supply Area, in British Columbia. Results and discussion wil l follow, 

and I wil l conclude with a balanced evaluation of this model and suggest future research. 

Literature Review 

The allocation of cutting rights among competing mills may be regarded as an 

extension of the log allocation problem. Pearse and Sydneysmith (1966) define this 

problem succinctly: "Given a certain heterogeneous supply of logs in a particular 

production period, how should this raw material be allocated among the available 

utilization facilities?" The allocation of cutting rights is similar in its objective, but 

instead of allocating logs in particular periods, one must allocate heterogeneous groups of 

standing timber, i.e., chart areas, with the intent to produce certain logs in certain periods. 

In the literature, the log allocation problem has been extended from allocating 

logs to allocating standing timber. Walker and Preiss (1988) developed a model to 

schedule timber harvesting and delivery activities over five years for a firm with multiple 

mills in Ontario. The objective was to minimise delivered wood costs while satisfying all 
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mill demands. Interestingly, to avoid dispersal of the harvest, similar stands were 

aggregated into large blocks (averaging 1,000 ha) and these were treated as binary 

decision variables, with their harvested contents distributed to various mills. Wrightman 

and Jordan (1990) modeled the problem of satisfying the demands of competing mills 

within one timber supply area in New Brunswick. Their objective was to minimise total 

transportation costs while satisfying each mill's demand and controlling the differences 

in transportation costs for competing mills. It is noteworthy that, in New Brunswick, 

competing mills were not constrained to harvest in given chart areas. Burger and Jamnick 

(1995) designed a linear programming model to procure and distribute logs from multiple 

sources to multiple mills for the woodlands division of a single firm in Nova Scotia. Mi l l 

requirements, product revenues, harvest, transportation, and wood purchasing costs were 

all considered in the model. In the early 1990's, the first attempts to link the long-term 

spatial strategic plans with log allocation problem were made. Nelson and Howard (1991) 

developed a three-stage heuristic for allocating spatially and temporally feasible timber 

harvesting rights among competing firms in British Columbia. They generated a spatially 

explicit harvest schedule for a sample problem and then assigned chart areas to 

competing mills. The heuristic assignment algorithm was designed to satisfy the multiple 

objectives of each mill (total volume targets, seasonal volume targets, and transportation 

costs) as closely and equitably as possible. Colberg (1996) integrated strategic timber 

supply planning with a log procurement system using a set of interdependent models in a 

hierarchical planning framework for a firm operating in Georgia and Alabama. He 

sought to integrate three interdependent objectives in one planning framework: 1) to 

maximize returns from company-owned or controlled timberlands; 2) minimise the cost 



Chapter IV 92 

of wood procurement systems; and 3) manage wood products operations as an integral 

part of the firm's fibre supply system. 

Model Description 

The three complicating factors in the assignment of cutting rights to licensees, as 

described above, are: 1) the imposition of landscape-scale spatial constraints on 

harvesting across the boundaries of chart areas; 2) the multiple, conflicting objectives 

within and between licensees; and 3) the problem of evaluating the appurtenance policy, 

and planning for its relaxation through timber sales. I now describe how each of these, in 

turn, has been incorporated into the structure and model of the problem. 

First, the simplest way to prevent, over the long term, the inequitable or disruptive 

distribution of landscape-scale spatial constraints across the boundaries of chart areas, is 

to define a set of landscape-units for the management unit, and let these become the chart 

areas. Landscape-units are delineated on the basis of readily identifiable physiographic 

or geographic features such as a single large watershed or a series of smaller watersheds. 

They may also be established to reflect dominant resource use patterns or administrative 

boundaries. A harvest schedule can then be produced for each landscape-unit, subject to 

even-flow, spatial, and other harvesting constraints. This is what I propose doing for 

solving the problem of allocating cutting rights among competing licensees. The 

problem then becomes one of assigning landscape-units, with their forecast flow of 

harvestable timber, to competing licensees. 

The second problem is that of conflicting multiple objectives. The assignment of 

chart areas to licensees should address the multiple conflicting objectives of each licensee 
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(e.g., volume, species, log size, seasonal access, and haul distance objectives). When 

considering multiple objectives, the problem is to find an efficient solution, instead of an 

optimal solution. A solution is efficient i f the achieved level of any one objective cannot 

be improved without worsening the achieved level of any other objective (Romero 1991). 

Assuming each objective, Z j 5 is to be maximized, the multi-objective problem can be 

written as follows: 

[1] Maximize Z,(X), Z2(X) Zp(X) 

Subject to 
[2] gfiO = bt i = l,2,...,m 

Where: Z/X),j= 1 , p , are objective functions, X is the vector of decision variables, 

and g/X) are the problem constraints. 

In order to generate a solution, the initial problem is generally replaced by a 

single objective problem. There are several techniques for this: a) the constrained 

technique; b) the weighting technique; and c) the goal programming technique. 

In the constrained technique, only one objective is maximized subject to lower 

limits on the other objectives. The problem facing the analyst is that the values of the 

lower limits are unknown and have to be specified. 

The weighting technique entails assigning a relative weight to convert the 

objective vector to a scalar, Z, which is the weighted sum of the separate objective 

functions. These weights can be varied over reasonable ranges and the problem facing the 

analyst is to specify their values. 

The goal programming method is devised for problems where targets have been 

assigned for all objectives and the decision-maker is interested in minimizing the non-
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achievement of the corresponding goals. To illustrate this model, let each objective 

function be expressed in general terms as Z/X) and the value of the goal associated with 

each objective j from the set of objectives J, be br A variable is needed by which the 

deviation between Z/X) and bp either positive, dj+, or negative, dj-, is represented. The 

goal programming model can therefore be expressed in the following form: 

Minimize 

[ 3 ] Z <V + dj" 

Subject to 

[4] Z/X) + df - df = 0 for each j 

Of course, depending on the decision-maker, the objective function may or may not 

include both positive and negative deviations for each target. For example, i f the 

decision-maker stipulates only that Z/X) be greater than or equal to a given goal, bp and 

that negative deviations are of no consequence, then the associated dj would not enter 

the objective function. In designing the objective function of a goal programming model, 

some thought must be given to the desired control over each objective; i.e., whether 

positive or negative deviations ought to be minimized, or both. The usefulness of the 

goal programming approach hinges upon the clarity with which the targets, bp can be 

defined and the insights provided by trade-off analysis. 

In modeling the multi-objective problem of assigning chart areas to licensees and 

timber sales, the goal programming technique was selected for several reasons. First, 

given a clearly defined allowable annual cut for the management unit as a whole, the 

volume targets for each licensee can also be clearly defined. From this volume target, 

other targets can be defined; for example, given information on each licensee's marketing 
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and production strategy, targets for species type, seasonal access, and log sizes can also 

be defined in terms of cubic metres per annum. The targets on haul distance can also be 

estimated with reference to the allowable annual cut (AAC), by measuring these in units 

of m3» km per annum. Another reason goal programming is suitable to this multi-

objective problem is that, controlling both positive and negative deviations from these 

targets is an important element of this problem. Since every cubic metre of wood in the 

management unit is assigned, therefore i f one licensee exceeds its volume target, then 

another licensee wil l necessarily fall short of its volume target. Hence, the ability to 

control and understand both positive and negative deviations from volume targets makes 

the goal programming technique desirable for this multi-objective problem. 

The most common variants of goal programming are weighted and lexicographic 

(Tamiz et al. 1998). Weighted goal programming minimises a weighted sum of 

unwanted deviations from the decision-maker's set of targets across a set of objectives. 

Al l goals are considered simultaneously. Lexicographic goal programming minimises a 

ranked vector of unwanted deviations from a set of targets for a number of objectives 

where different goals are grouped into different levels of priority. Lexicographic goal 

programming occurs when there exists a natural or desired ordering amongst the goals. 

Goals in the higher priority levels are satisfied as closely as possible and only then are 

goals in the lower priority levels considered; i.e., a sequential minimization of priority 

levels with no degradation in the value of higher priority levels. For the problem of 

assigning chart areas to licensees, I have chosen to use a weighted goal programming 

approach because there exists no clear hierarchy among the multiple objectives each 

licensees desires satisfied by the assignment of chart areas. 
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In addition to an optimization scheme, solving a multi-objective problem also 

requires a method by which a decision-maker's preferences are articulated. Hwang and 

Masud (1979) classify solution techniques for multi-objective problems according to the 

timing of the requirement for information on preferences. That is, techniques vary 

depending on whether articulation of preferences occurs: 1) prior to the optimization; 2) 

in sequence with the optimization; or 3) after the optimization. For the problem of 

assigning chart areas to licensees, I suggest that the method of articulating preferences in 

sequence with the optimization is most suitable, for the following reasons. First, it would 

be too difficult to reach any consensus on a prior articulation of preferences, given that 

numerous stakeholders are involved as decision-makers. Second, a posterior articulation 

of preferences requires that a great number of efficient solutions be generated, and this 

set may be too large for the decision-makers to analyze effectively. Finally, an iterative 

interaction between the decision-makers and the computer program does not require 

preference information, which is often difficult for the decision-maker to articulate 

(Evans 1984). Instead, selective adjustment or readjustment of weights can be made at 

each iteration. There exists a vast literature on multi-criteria decision-making techniques 

which can be used, and it is beyond the scope of this paper to review them. For an 

updated review of interactive goal programming methods, the reader is referred to Jones 

and Tamiz (1995), Tamiz et al. (1998), and Lee and Olson (2000). 

The third complicating factor in the problem of assigning chart areas to licensees 

is that of evaluating the effects of the appurtenance policy, and of providing practicable 

alternatives to its strict application. The method used in this model is that of allowing for 

a gradual relaxation of the appurtenance policy by introducing a decision variable 
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representing timber sales. The timber sales variable is assigned a portion of the allowable 

annual cut as its sole goal, and is therefore eligible to receive chart-areas. The timber sale 

variable functions to redistribute its harvested timber to the other licensees in such a 

manner that the weighted sum of their deviations from their respective targets is 

minimised. In effect, the gradual relaxation of the appurtenance policy is accomplished 

by assigning a greater percentage of the management unit's allowable annual cut to 

timber sales. In British Columbia, for example, BC Timber Sales (TS) is a recent 

program allowing for the sale of standing timber to firms that do not possess wood 

processing facilities. The key to understanding the potential usefulness of timber sales is 

that it allows for the redistribution of logs from one chart area to multiple licensees, thus 

allowing greater flexibility in achieving the ultimate objective of assigning the right log 

to the right mill. One of the central objectives of this research is to provide a decision 

support tool by which: a) the effects of this redistribution can be evaluated, and b) the 

selection of chart areas most suited for timber sales can be made. 

In summary, the explicit objectives of this model are to minimize the sum 

of deviations from targets for total volume (nrVyear), volume by species (mVyear), haul 

distance (km - m3/year), seasonal volume (mVyear), and volume by log size class 

(mVyear). Specific annual targets by licensee are presented later in Table 4.1. 

Formulation of Model 

The notation and formulation for the mixed integer goal programming model of assigning 

chart areas to licensees and timber sales (TS) are presented below. 
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Let: 

r, R = the index and set of targets types measured in m3; e.g., m3 of total volume, 

of species, of log sizes, or of seasonal wood, 

m, M = the index and set of licensees, 

z, Z = the index and set of chart areas, 

t, T = the index and set of time periods 

xmz = 1 if chart area z is assigned to licensee m, 0 otherwise. 

yz = 1 if chart area z is assigned to TS, 0 otherwise 

amzt  = 1 in period t if chart area z is assigned to licensee m; 0 otherwise 

bzt = 1 in period t if chart area z is assigned to TS; 0 otherwise 

Dmz = haul distance between licensee m and chart area z (km) 

DVmzt = haul distance between licensee m and chart area z times volume 

harvest from chart area z in period t (km m ) 

dmt = haul distance incurred by each licensee in each period (m • km) 

dmt + = positive deviation from target for haul distance incurred by each 

licensee in each period (m3* km) 

dmt
 = negative deviation from target for haul distance incurred by each 

licensee in each period (m3* km) 

N_yrmt
 = percent normalization constant for deviation from a target r of licensee m, 

in period, t 

N_dmt = percent normalization constant for deviation from haul distance target of 

licensee m, in period, t 

N_tst = percent normalization constant for deviation from volume target of 

TS in period t 

Tar_dmt = haul distance desired by each licensee, m, in each period, t (km m ) 

Tar_vrml = volume desired by licensee m in period t for target r (m3) 

Tar_ vjst = volume target for TS in period t (m3) 

Vrzt - volume of target r harvestable from chart area, z, in period, t 

vrmt = volume of target r assigned to licensee m in period t (m3) 

vrmt

 + = positive deviation incurred by licensee m in period t from target r (m3) 

vrmt' = negative deviation incurred by licensee m in period t from target r (m3) 
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v_ts, + = positive deviation incurred by TS in period t from volume target (m3) 

v_ts, ' = negative deviation incurred by TS in period t from volume target (m3) 

v_tsrt = volume of target r assigned to TS in period t (m ) 

v_tranrmzt = volume of target r transferred through TS to licensee m from chart area z 

in period t 

Wrtnt = penalty weight for positive deviation from target r of licensee m, in 

period, t 

Wrmt~ = penalty weight for negative deviation from target r of licensee m, in 

period, t 

W_tS(+ - penalty weight for positive deviation from volume target r of TS, in 

period, t 

W_tst~ = penalty weight for negative deviation from volume target r of TS, 

in period, t 

Wdmt

+ = penalty weight for positive deviation from haul distance target of licensee 

m, in period, t 

Wdmt~ = penalty weight for negative deviation from haul distance target of licensee 

m, in period, t 

Objective function: 

Minimise total weighted percent deviations from all volume and haul distance targets 

[5] I X Z v j - Wrmt

+ N_vrmt + E E Z v r m l ' Wrm N_vrmt + 
r<=R meM teT reR meM teT 

S £ dmt

+ Wdmt

+ N_dmt + Z Z dmt' Wdmi N_dmt + 
meM teT meM t&T 

£ v_tst

+ Wjs? Njst + YJ vjsi Wjs; N_tst 

t&T teT 

Subject to: 

Ensure that each chart area is assigned only once, to either a licensee or timber sale (TS). 
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[6] Y  x™  +yz  =  1 ^ z  

meM 

Trigger assignment of chart areas across all periods 

[7] Xnu^Clmzt V m,Z,t 

[8] yz=bzt Vz,t 

Sum volume of each target, r, assigned to timber sale in each period, t 

[9] v_tsrt= YB«V* Vr,t 
zeZ 

Define the volumes transferred to licensees through assignment of chart areas to timber 
sale, for each target type, r, in each period, t, from each chart area, z. 

[10] ^  v - t r a n m a t = bzt VrZt Vr,z,t 
meM 

Define the total volume assigned to a licensee as the sum of the volume assigned directly 
through chart areas and transferred through timber sale 

[11] vrmt= Y  amztVrzt+ Y v - t r a n r m z t V r.m.t 
zeZ zeZ 

Define deviations from each licensee's volume target, r, in each period, t 

t 1 2 ] vrmt - vrml

+ + vrml~ = Tar_vrmt Vr,m,t 

Define deviations from timber sales volume target, in each period, t 

[13] v_tsrt - v_tst

+ + vjs,' = Tar_vjst Vt,r=l 

Define haul distance per licensee per period (where v_tranrtnzt refers only to volume 
transferred, i.e., target r-1) 

[14] dmt= Y a ™ < D V ™ t + YYJ VJ™"** Dnu \fm,t 
z&Z r=l zeZ 
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Define deviations from haul distance targets 

[15] dm - dm + dmt' = Tar_dm V m,t 

Define binary decision variables 

[16] xmz e { 0 , 1} \/m,z 

[17] yz e {0,1} Vz 

The objective [5] is to minimise the weighted sum of all percent deviations, both positive 

and negative, from each target. Normalisation techniques are used to overcome 

incommensurability. This occurs when deviational variables, measured in different units, 

are summed directly. The direct summation creates a bias toward the objectives with a 

larger magnitude, causing misleading results. In this model, I use the percentage 

normalization technique, where the normalization constant (Nrmz) equals the one divided 

by the target value (7ar r m z ); i.e., Nrmz= l/Tar^. This ensures that all deviations are 

measured on a percentage scale. 

The objective function therefore minimizes the total weighted percent deviations 

from all volume and haul distance targets. This is subject to the constraint [6] that each 

chart area be assigned to either a licensee or timber sale. Equation [7] lets the binary 

decision variable, x ^ , trigger the accounting variable a^t across all periods. Similarly, 

equation [8] lets the decision variable, yz, trigger the accounting variable bzt across all 

periods. This minimizes the number of binary decision variables needed by the model. 

Equation [9] defines the volume of each target type, r, assigned to timber sale for each 

period. Equation [10] defines volume of each target type, r, transferred from chart area, z, 

through timber sale, to licensee m. Equation [11] defines total volume of target type, r, 
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both assigned and transferred to each licensee in each period. Equation [12] defines 

positive and negative deviations from volume targets, for each target type, r. Equation 

[13] defines positive and negative deviations from volume targets for timber sale. 

Equation [14] defines volume haul distance incurred by each licensee (m • km). Haul 

distance incurred by each licensee, in each period, is measured in units, m3» km, to better 

reflect actual haul distance to be incurred from the allocation. Equation [15] defines the 

positive and negative deviations from haul distance targets. My approach to penalizing 

deviations from haul distance targets is, therefore, based on the fact that not all licensees 

have equal annual harvests. Equations [16] and [17] define the binary decision 

variables in this model. 

Case Study Description 

The model is applied to a hypothetical allocation problem in the Kootenay Lake Timber 

Supply Area (TSA) in the southern interior of British Columbia. This forest is comprised 

of 1.1 million ha and supplies approximately 700,000 m 3 per year to seven local licensees, 

each with one mill. Historically, the allowable AAC of this forest far exceeded the actual 

harvest; but, as Figure 4.2 illustrates, recent declines in the AAC have decreased this gap. 

This implies that there is less opportunity for licensees to "pick and choose" the stands 

within their assigned chart areas in order to satisfy the demands of their mills. 

Consequently, the efficient assignment of chart areas is more urgently needed than in the 

past. 
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Figure 4 .2: Historic allowable cuts and actual harvest levels of Kootenay Lake TSA 
(source: Kootenay Lake Forest District 2003) 

As noted above, the first step in preparing input data for the model is to divide the 

forest into landscape-units. In the case of the Kootenay Lake TSA, the forest is divided 

into 26 landscape-units, averaging 42,000 ha (Figure 4.3). 
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D D H x i i i s i s i n i i s a i m m 

Figure 4.3: Twenty-six Landscape-units of Kootenay Lake TSA (source: Kootenay Lake 
Forest District 2003). 

I used the landscape-units delineated by the British Columbia Ministry of Forests. Next, 

a harvest schedule, subject to landscape scale spatial constraints, is produced for each 

landscape-unit using Forest Planning Studio software (Nelson 2001). Each of the 26 

schedules has a 200-year horizon, with 5-year periods. The objective is to maximize total 

volume harvested subject to: 1) constraints on maximum inter-period harvest fluctuations 

of +/-10%; 2) preservation of special habitat conditions; and 3) achievement of targets 

for seral-stage distributions intended to emulate the effects of natural disturbance. These 

serai constraints comply with the Ministry of Forests Biodiversity Guidebook (B.C. 

Ministry of Forests 1995). For example, in each landscape-unit, ten percent of the forest 

area is targeted to be in old growth. 
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Given the 26 harvest-schedules, the problem is then one of assigning the 

sustainable flow of volume, estimated log-sizes classes, species, and seasonal wood 

supply to each licensee. Table 4.1 contains the target values used in the problem instance 

for period one. The assignment problem is for eight periods. 

Table 4.1: Annual target values for case study in period one (All values are in m 3 , except 
those for haul distance, which are in m3km). 

Target Licensee. Licensee. Licensee. Licensee. Licensee; Licensee Licensee Target Total 

Type . 1 „ 2 : . 3 4 5 . 6 . . 7 Total Available 

Volume 92,645 163,125 111,297 78,190 136,626 92,231 14,179 688,293 688,293 

Seasonal 23,161 40,781 27,824 19,548 34,157 23,058 3,545 172,073 49,331 

Species 46322 0 27,824 19,548 0 23,058 7,089 123,841 155,783 

Species 46322 0 27,824 19,548 0 23,058 7,089 123,841 152,179 

Species 0 8 1 5 6 3 2 7 8 2 4 1 9 5 4 8 6 8 3 1 3 2 3 0 5 8 0 220,305 191,378 

Species 0 81,563 27,824 19,548 68,313 23,058 0 220,305 186,474 

Log size 3 Q 5 ? 3 8 1 5 6 3 rj 0 68,313 23,058 3,545 207,051 65,351 
class 1 

Log size 30573 81,563 55,648 0 68,313 23,058 7,089 266,244 287,179 
class 2 

Log size 3 1 5 0 o 0 55,648 0 0 23,058 3,545 113,751 189,545 
class 3 

"dass'T 0 0 0 39,095 0 23,058 0 62,153 99,634 

Log size 0 0 0 39,095 0 0 0 39,095 46,583 
class 5 

haul 
distance 3,713,848 5,578,173 7,536,729 4,072,679 5,770,963 3,436,615 796,170 30,905,177 n/a 

* Species 1 = Lodgepole pine, species 2 = Douglas-fir, species 3 = Engelmann spruce; 
species 4 = Western red cedar. 

* * Log sizes are derived from the age and yield curve of each stand, where: class 1 > 
600 m3/ha; class 2 > 500 and < 600 m3/ha; class 3 > 400 and < 500 m3/ha; class 4 
> 300 and < 400 mVha; and class 5 > 200 and < 300 mVha. 

Determining the target values for this problem is an important step, and care was taken to 

avoid targets that needlessly result in inefficient solutions. The standard goal 

programming formulation can produce inefficient solutions i f the target values are set too 

pessimistically (Tamiz et al. 1998). In the case of volume targets, each licensee's target 
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is a fraction of the AAC, and the sum of all volume targets equals the AAC. Setting the 

right-hand side values for haul distance was somewhat different; for there is not a fixed 

supply of haul distance on which to base this estimate, as there is in the case of volume 

targets. Haul distance targets were estimated by: i) calculating the average distance from 

each licensee's mill(s) to each chart area; ii) dividing this mean distance by two; and, 

iii) multiplying this distance value (km) by the periodic volume target (m3). The 

average distance was divided two to avoid generating inefficient solutions by setting the 

targets too pessimistically. My approach to setting target values for log size and species 

was somewhat different. Here, I recognized that it is more realistic to have the demand 

for some species and some log sizes exceed supply and in other case, to have supply 

exceed demand. This is because some types of logs are in higher demand than others. 

This is evident in the first period demands listed in Table 4.1. Finally, the seasonal 

targets represent three months of operations (i.e., VA of the annual volume targets) 

reflecting availability at lower elevations. 

Although schedules were produced for a 200-year planning horizon, the 

assignment problem is for the first eight five-year periods. Should decision-makers think 

that a planning horizon of forty years for the assignment of chart areas is too long, given 

the expected life of a mill, then weights of zero in the objective function can be assigned 

to any periodic objectives deemed irrelevant. By default, all weights were assigned a 

value of 1 in the base scenarios. 

Results 

The first step taken in the strategic allocation of cutting rights was to produce 

harvest schedules for each of the landscape-units. As Roucke and Nelson (1995) 
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observe, the f low o f wood, when scheduled from a whole management unit, can be 

greater than the sum o f its parts, when scheduled separately. T h i s is because not all 

landscape-units have equal age-class distributions. I evaluated the cost o f scheduling 

landscape-units separately b y comparing the sum o f volumes from all landscapes versus 

the vo lume forecast from the management unit scheduled as a whole: the sum o f volumes 

from the sum o f all landscapes was 98.4% o f that forecast from the management unit as a 

whole. T h i s value is consistent with the findings o f Roucke and Ne l son (1995). 

Next , I used the branch and bound algorithm o f C P L E X version 7.5 to solve 

problem instances for m i x e d integer goal programming model . T h e number o f variables 

in this problem was 17,864, o f wh ich 161 were binary. T h e solution times were between 

30 s. and 5 m i n . us ing a 1.0 G H z Pentium III central processing unit. Since the 

interactive approach to multiple criteria decis ion-making necessitates speedy responses 

from the computer (Evans 1984), these computing times indicate that the mode l can lend 

itself to the interactive approach. 

A s mentioned above, the model was designed to evaluate the effects o f relaxing 

the appurtenance pol icy . T h i s was done b y computing solutions using different vo lume 

targets for the timber sales based on a percent o f the A A C . I compared the effects o f 

redistributing 0, 2 0 , 4 0 , 60, 80, and 100 percent o f the A A C through the timber sales. In 

the scenario where 0% o f the A A C is to be redistributed through timber sale, I used a 

h igh penalty value to ensure that no deviations from the targeted vo lume o f zero 

occurred. T h i s is because I wished to ensure a proper comparison on the effectiveness o f 

no timber sale versus incremental use o f the timber sale. F o r all other scenarios, and all 

other targets, a penalty weight o f 1 was used for each target deviation. T h i s is because I 
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wished to establish a base-set of scenarios, by which to evaluate the general trends 

resulting from increased volume in timber sales. 
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Figure 4.4: Changes in the mean percent deviation from targets relative to changes in 
the percent of total volume redistributed through B C timber sales. 

Figure 4.4 indicates the degree to which redistribution of timber through timber sale 

can increase the overall efficiency with which timber allocation objectives can be met: a 

decrease in mean of all target deviations from 10.9% to 4.8%. The absolute values of 

these percent deviations are not so meaningful here as the general trend; for, the absolute 

values are very much a function of the right-hand side targets. The general trend, though, 

is much more informative, at least for a base-case scenario. Observing this trend, it is 

noteworthy that the mean satisfaction of objectives does not improve greatly after 40% of 

the A A C is set as the target volume for redistribution through timber sales. 

Having observed the general trend, I turn now to particular objectives. Figure 4.5 

illustrates the effect of timber sale on the achievement of volume objectives. 
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Figure 4.5: Mean percent deviations from licensee and BC timber sales volume 
targets relative to different proportions of the AAC assigned to timber sales. 

Figure 4.5 illustrates two interesting trends with respect to deviations from 

volume targets. The first is that the proportion of AAC allocated to timber sale has little 

effect on the mean deviation from the volume targets of the 7 licensees. This is in part 

because the initial mean deviations are not great, i.e., when 0% of the AAC is 

redistributed through timber sale the mean deviations are +3.4% and -2.8% respectively. 

This indicates that, for the given problem instance, it is not difficult to allocate chart 

areas to licensees such that volume targets can be nearly met. The second interesting 

trend is that the positive deviations from volume targets for timber sale are relatively 
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high when a small percentage of the AAC is assigned to timber sale. For example, when 

only 20% of the AAC is set as a target for timber sale, the optimal solution exceeds this 

target by 26.1%. This indicates that the penalty incurred for such a deviation is 

compensated for by the greater satisfaction of other objectives in this problem. In other 

words, in these scenarios, there is a strong tendency for optimal solutions to exceed the 

volume targets of timber sale in order to exploit the flexibility which timber sales offer 

through redistribution. 

Turning to other targets, I observe the effects of timber sale on the satisfaction of 

haul distance targets in Figure 4.6: improvements are considerable, beginning with a 

mean deviation (per licensee per period) of +44% and ending with +27%. Once again, the 

absolute values of the deviations are not so important as the trend; viz., that redistribution 

through timber sale can decrease haul distance by an average of 40% per licensee per 

period. 

0 20 40 60 80 100 

Percent AAC Allocated to Timber Sale 

Figure 4.6: Deviations from haul distance targets relative percent of AAC allocated to 
timber sale. 



Chapter IV 111 

Positive deviations from targets for haul distance incurred by each licensee, in each 

period, are measured by the variable dmt

 + , which is in units, m3« km to better reflect 

actual haul distance incurred from the solution. It was necessary to measure haul distance 

in these units because the volumes of wood redistributed to particular licensees through 

timber sale are measured in m 3, and are not known in advance, as the volumes from 

discrete chart areas are. Hence, the satisfaction of haul distance targets, in this model, is 

necessarily linked to the satisfaction of volume targets; and interpretation of results 

should be informed by this. This discrepancy between the effect of timber sale on 

volume (Figure 4.5) versus haul distance (Figure 4.6) indicates that achievement of haul 

distance targets, in this model, is not wholly determined by the achievement of volume 

targets. Another interesting trend in Figure 4.6 is that little improvement is made after 

40% of the AAC is assigned to timber sale. This is consistent with the trend observed for 

all targets, shown in Figure 4.4. 

The relation between the achievement of log size targets and the percent of 

volume redistributed through timber sale is illustrated in Figure 4.7. 



Figure 4.7: The achievement of log size targets versus percent of volume 
redistributed through timber sale. 

The results are similar to those of other targets discussed; i.e., little improvement is made 

after 40% of the volume is redistributed through timber sale. There is one difference, 

though, in that log class 1, containing logs with the largest diameter, shows little 

improvement, even when 100% of the harvested volume is redistributed through timber 

sale. This indicates that demand, represented by the RHS-targets, greatly exceeds the 

supply. In this situation, the licensees with targets for log class 1 could use this model to 

explore various compromise scenarios. This can be done either through altering target 

values or through altering penalty weights assigned to deviations from this target in a 

given period. Working on compromise solutions is a useful part of planning, and this 

model lends itself to this. 
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Finally, Figure 4.8 illustrates the relation between the achievement of species 

targets and volume redistributed through timber sale. Little improvement is made after 

60% of the volume is assigned to timber sale. Note that, a necessity for comprise also 

occurs with species 3, where optimal redistribution through timber sale yields mean 

negative deviations of -14.4% per licensee per period. 
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Figure 4.8: Relation between achievement of species targets and volume redistributed 
through timber sale. 

Discussion 

The results from the application of this model indicate that timber sale can play a 

great role in redistributing timber to better satisfy the multiple conflicting objectives of 

competing licensees. I now address questions on how effectively this model and its 

application have dealt with the three complicating factors in this problem, discussed 
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earlier; viz., 1) the landscape-scale ecological objectives, 2) the multiple, conflicting 

objectives of the licensees; and 3) identifying potential effects of timber sale. 

The first category of discussion concerns the ability of the model to incorporate 

landscape-scale ecological objectives. On this topic, I must consider the effects of the 

boundaries of the landscape-units upon the solutions produced by this model. As noted 

above, the boundaries of the landscape-units are delineated on the basis of readily 

identifiable physiographic or geographic features (such as watersheds), and with no 

regard to the problem solved by this model. It might be contended that a different set of 

landscape-unit boundaries could yield a different, and perhaps more satisfactory, set of 

solutions to this problem; and that, insofar as this model fails to exploit the flexibility 

offered through the exploration of different landscape-unit boundaries, it falls short of 

providing the best possible solutions to this problem. I have two replies to this 

statement. 

First, this model can incorporate different landscape-unit boundaries. This would 

simply entail execution on a different data-set; i.e., a different set of landscape-units with 

scheduled flows of timber. Second, in designing the goal programming model, I was 

reluctant to incorporate into it the problem of directly redefining landscape-unit 

boundaries. In delineating natural landscape-unit boundaries, priority must be given to 

the physical features of the environment, such as topography and soil type, rather than to 

vegetative features, such as stand type and age. The former features are, as it were, 

ontologically prior to the latter (Seymour and Hunter 1999) and therefore constrain them. 

The allocation problem, insofar as it is concerned primarily with vegetative features, such 

as stand type and age, is solved in total disregard of these physical features of the 
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environment. It might have been possible to constrain this from occurring, but I thought 

this might introduce an unnecessary complexity into the model. Given the comparatively 

simpler, yet powerful, flexibility offered by timber sale, it seemed unnecessary to 

incorporate into this model the many principles of natural landscape-unit design (see 

Forman 1997). 

The second area of discussion concerns the ability of the model to address the 

multiple conflicting objectives of the licensees. One obvious point of discussion concerns 

the practicality of solving a problem given so many objectives. In the case study of the 

Kootenay Lake TSA, for example, there are objectives for volume, seasonal wood, haul 

distance, four species, and five log sizes for each of the seven licensees in eight periods, 

in addition to eight periodic volume targets for timber sale. The total number of 

objectives therefore equals 680, and this could be regarded as an unwieldy number for 

which to determine a set of penalty weights. 

In reply, it should be noted that the many objectives could be approached, initially, by 

applying aggregates of weights. For example, the eight periods can all be assigned the 

same weight for a given objective, thereby reducing the number of objectives to 84. 

Similarly, in first exploring trade-offs between objectives, the weights for all licensees 

can be aggregated, thus reducing the number of weights to 12. In short, one can reduce 

the number of weights to a manageable number in the initial stages of using the model— 

to explore both the general trends in the trade-offs between the multiple objectives and 

the role of timber sale. Hence, the great number of objectives in this model does not 

exclude it from being a useful tool. 
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A final question to address concerns the relation between the formulation of the 

model and the role of timber sale. It might be thought that the significant role of timber 

sale is, to some extent, predestined by the model's formulation; and therefore, that its 

ability to reduce target-deviations is entirely predictable. In short, it might be thought 

that this model labours upon the obvious. To some extent, this is a valid objection; but it 

overlooks two things: first, that the model is able to quantify the effects of timber sale, 

and therefore, of the appurtenance policy; and second, that the model is able to locate, 

within the management unit, where implementation of timber sale could occur. These 

features make it useful in both policy evaluation and planning. For example, the 

provincial government of British Columbia, it has been argued (Pearse 2001), should re­

evaluate its current approach to allocating timber, not only to increase net returns, but to 

re-engage in free-trade with the United States. In the National Forests of the United 

States, logging rights are sold by using a competitive auction. Timber sale variables in 

this model could therefore be used: 1) by policy analysts to evaluate the flexibility 

offered by using a competitive auction at the management-unit scale; and 2) by planners 

choosing which portions of the forest to put up for competitive auction. The introduction 

of timber sale variables into this model therefore greatly strengthens the analytical 

potential and relevance of this model. 

Conclusion 

The objective of this research was to develop a decision support model for the 

problem of integrating the allocation of cutting rights with spatially explicit timber supply 
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planning. Key elements of this problem were: 1) that allocation and scheduling of timber 

satisfy landscape-scale ecological objectives; 2) that the allocation problem is one of 

multiple conflicting objectives within and between licensees; and 3) that the costs of the 

appurtenance policy, in terms of the inefficient allocations entailed by its application, be 

quantifiable. From this perspective, I conclude that the mixed integer goal programming 

model formulated and tested in this research is satisfactory. Analysis and discussion of 

its hypothetical application to the Kootenay Lake TSA revealed: 1) that the model can be 

solved relatively quickly; 2) that it can quantify general trends in the increased efficiency 

with which allocation objectives are satisfied, given a relaxation of the appurtenance 

policy; and 3) that it identify contiguous areas of the forest most suited, not only for 

allocation to licensees, but to timber sales. The timely relevance of this model is that it 

can be used to help evaluate and plan for changes to the appurtenance policy in British 

Columbia currently demanded by our American trading partners. 
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Introduction 

In the management of forests over the last decade, an increased emphasis on the 

ecological objective to conserve biodiversity has led forest managers to adopt the 

ecosystem management paradigm. The central axiom of this paradigm is that 

manipulation of a forest ecosystem should work within the limits established by natural 

disturbance patterns (Seymour and Hunter 1999). One important consequence of this is 

that harvest levels are now determined through an approach that attempts to maintain, 

or in some cases recreate, a natural landscape age-class structure. This entails that a 

proportion of the forest be spared from harvesting at the financial rotation-age and age 

into an old growth serai stage. Even in forests where intervals of stand replacing fire-

disturbance are relatively short, the emulation of natural disturbance requires that some 

portion of the forest progress into old growth; the quasi-random spatial pattern of such 

disturbances results in some stands burning repeatedly on short cycles while others 

escape for long periods (Van Wagner 1978). 

Planning a schedule of harvests to satisfy these new age-class objectives poses 

little challenge to managers with linear programming models. The more serious 

planning challenge involves satisfying a related objective; namely, that the planned old 

growth reserves not be fragmented. Planning for this objective is both important and 

computationally difficult. It is important because harvest activities tend often to create 

landscapes where the old forest is fragmented (Gustafson and Crow 1994, Franklin and 

Forman 1987); and small, isolated patches of old growth do not provide adequate 

habitat for species specialized to live in their interiors, i.e., unaffected by edge-effects 
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(Harris 1984, Temple 1985, Murcia 1995). It is computationally difficult to plan for 

the size and shape of old growth patches for the following reasons. First, such 

planning typically requires the use of optimization models because the most efficient 

allocation of scarce resources is a central economic objective in forest management 

planning; second, in such optimization models, the decision variables needed to model 

spatial attributes, such as size and shape, must be binary. This is because a stand is 

either in a reserve or it is not— it cannot be fractionally reserved. Finally, since binary 

decision variables are needed to model the harvest scheduling problem with old growth 

reserves, traditional linear programming models do not suffice. Integer programming 

models are needed, and such models are notoriously difficult to solve computationally; 

i.e., the computing time needed to generate solutions typically increases exponentially 

in relation to the number of decision variables (Wolsey 1998, Williams 1999). As a 

result, many integer programming problems in general (Reeves 1993), and the harvest-

scheduling problem with spatially explicit old growth reserves in particular (e.g.,Hof 

and Joyce 1993, Rebain and McDill 2003), have been solved optimally on only small, 

impractical problem instances. Realistically large, strategic harvest-scheduling 

problems with spatially explicit objectives are now commonly solved using 

approximation, or, heuristic algorithms (Sessions and Bettinger 2001, Nelson 2003), 

which neither guarantee optimality nor provide any indication of how close the solution 

is to optimality (Reeves 1993). 

The objective of this paper is to present the formulation and evaluation of a 

strategic harvest scheduling model which can: 1) simultaneously schedule harvests and 

allocate spatially explicit old growth reserves; 2) yield exact optimal solutions through 
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application of the branch and bound algorithm; and 3) be applied to large, realistic 

problem instances requiring many thousands of binary decision variables. 

The organization of this paper is as follows: first, the literature on related 

modeling research is reviewed; second, the formulation of the model is presented and 

clarified through a small, worked example; third, the algorithm used to enumerate the 

old growth reserve constraints is described; fourth, the problem instances upon which 

the model is tested, ranging in size from 17,000 to 800,000 ha are described, followed 

by a presentation of results. Finally, I discuss strengths and weaknesses of this 

approach, focusing on the flexibility of this model in meeting planning needs and the 

computational challenges associated with increased numbers of potential reserves. 

Literature Review 

Strategic forest management planning problems have traditionally been modeled and 

solved through linear programming (LP) methods (Davis et al. 2001, Martell et ai. 

1998), and there is a wealth of knowledge and expertise invested in many LP planning 

tools; e.g., FORPLAN (Johnson etal. 1986), Woodstock (Remsoft 2003), MELA 

(Siitonen 1995) and FMPP (Jonsson et al. 1993). As mentioned above, the limitation of 

LP methods is that the selection of spatially explicit reserves must occur outside of the 

LP model per se. 

The inability of LP models to produce spatially explicit harvest schedules 

spurred much research in applying integer programming methods. Much of the initial 
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research was aimed at producing solutions where the area of harvest-openings was 

constrained through adjacency constraints in tactical planning models. Both exact 

algorithms were used (Meneghin et al. 1988; Torres-Rojo and Brodie 1990;Yoshimoto 

and Brodie 1994;Murray and Church 1996; McDill and Braze 2000) and heuristic 

algorithms (O'Hara et al. 1989, Nelson and Brodie 1990, Clements et al. 1990, 

Lockwood and Moore 1992, Murray and Church 1993, Dahlin and Salinas 1993, 

Weintraub et al. 1995, Bettinger et al. 1997, Ohman and Eriksson 1998, Brumelle et al 

1998, Bettinger et al. 1999, Van Deusen 1999, Boston and Bettinger 1999 , Liu et al. 

2000, Richards and Gunn 2000, Clark et al. 2000,Van Deusen 2001, Sessions and 

Bettinger 2001, Baskent and Jordan 2002, Boston and Bettinger 2001, Crowe and Nelson 

2003, Richards and Gunn 2003, Caro et al. 2003). Heuristic algorithms proved capable 

of solving larger, more realistic problems, and their application was extended to 

solving multiple rotation strategic planning problems with spatially explicit objectives 

(e.g., Liu etal. 2000, Sessions and Bettinger 2001, Baskent and Jordan 2002, Crowe 

and Nelson 2003). 

Of particular relevance to this research is that heuristic algorithms were also 

used to solve problems modeled to schedule harvests and to allocate reserves 

simultaneously. Bettinger et al. (1997) used tabu search to schedule timber harvests 

subject to spatially explicit habitat goals. These goals required that thermal or cover 

patches (ranging from 3 to 17 ha) be preserved and that forage areas be clustered 

around them. Ohman and Eriksson (1998) used a simulated annealing algorithm to 

solve a model designed to maximise the net present value of harvesting and to preserve 

patches of old growth forest. To reduce the fragmentation of the preserved old growth 

forest, they maximised the total "core area", i.e., the area of old growth forest not 
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influenced by edge-effects. Introducing a core area objective into the model led to the 

selection of old growth patches that were both large in size and round in shape. No 

explicit control of the spatial lay-out of the harvest-blocks was included. Ohman (2000) 

also applied the model to a forest of 755 stands over 20 periods. She compared the 

objective function from an integer programming model with that of an aspatial, linear 

programming model and concluded that the cost of attaining the spatial patterns appeared 

to be low. Van Deusen (2001) used a simulated annealing algorithm to schedule 

harvests and simultaneously create buffer strips of uncut forest around ponds and to 

promote habitat connectivity. 

With advances in computing power, the problem of simultaneously scheduling 

harvests and allocating old growth reserves has been solved on large problems using 

heuristic algorithms. For example, Liu et al. (2000) used a simulated annealing 

algorithm to simultaneously harvest timber and satisfy old growth patch size targets on a 

forest of 80,000 ha. Their problem contained 720,000 binary decision variables. 

Sessions and Bettinger (2001) used a simulated annealing heuristic to achieve similar 

objectives on a 38,000 ha forest and their problem required 600,000 binary decision 

variables. 

There has been much less research on simultaneously harvesting and allocating 

old growth patches using exact optimization algorithms, and the problem instances solved 

have either been very small or restricted to one period. Hof and Joyce (1992) initiated 

research on this problem by designing a multi-objective non-linear program to maximise 

three weighted objectives: old growth area, habitat for edge dependent species, and 

timber volume. They enumerated potential areas of protected old growth as circles where 
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the choice variables were the size and location of these circles. Their exploratory efforts 

were applicable to very small problems. Hof and Joyce (1993) also designed a mixed 

integer programming model to maximise population of edge dependent species, old 

growth dependent species, and timber output. Optimal solutions were generated on a 25-

cell planning area for one period. The authors note that the single time period reflects the 

permanence of the management options. Ohman (2001) formulated a mixed integer 

programming model to cluster harvest activities and reserves. The model was solved 

using the branch and bound algorithm and tested on a problem instance of 10,000 

pixels, but it did not schedule harvest activities periodically. Rebain and McDill (2003) 

formulated an integer programming model of a tactical planning problem to schedule 

harvest units with constraints on harvest openings and constraints on harvesting a subset 

of old growth patches. The set of potential old growth reserves was enumerated without 

control over patch-shape. The formulation required many binary decision variables and 

was slow to solve. It was tested on a forest of 50 stands and scheduled for 3 periods, and 

required 178 hours of computing time, using a 1.2 GHz cpu, to generate an optimal 

solution. Martins et al. (2003) developed a column generation approach to solve forest 

planning problems with constraints on the clearcut size and on the total area of old 

growth patches with a minimum size requirement. Their approach was tested on a forest 

of 574 stands for one period. 

This literature review would not be complete without mentioning research 

conducted on a different but related problem: the reserve selection problem. In this 

problem, there is no direct scheduling of harvests; instead the objective is to select, from 

a set of potential reserves containing diverse conservation elements, a subset that 
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maximises the diversity of biological representation. There are two general approaches to 

modeling this problem (Camm et al. 1996). In the first, the objective is to choose the 

minimal set of reserves containing all conservation elements, (typically threatened 

species or habitats) at least once. Underhill (1994) notes that this is a set covering 

problem. In the second, more realistic approach, the objective is to maximise the number 

of conservation elements when there is a limit on the number of reserves that may be 

chosen. This is the maximal covering problem (Church and ReVelle 1974, Church et al. 

1996). The maximal covering problem has been refined to control patch shape (Williams 

and ReVelle 1998 ) and applied to large, realistic problem instances by Fischer and 

Church (2003). 

Summary of Literature Review and Problem Definition 

The preceding literature review illustrates the following key points which help 

further clarify and define the problem modeled in this research. First, that in defining 

the boundaries of old-growth reserves, attention should be given to shape; i.e., that a 

reserve round in shape increases the relative 'core-area' of old growth habitat, and that 

some criterion to measure and produce a round shape should be used in modeling the 

problem. The second element is that a diversity of desired reserve types may exist, 

reflecting the diversity of forest ecosystems in a management unit. A model of this 

problem should therefore incorporate reserve types. Finally, the literature illustrates that 

in solving models designed to simultaneously harvest timber and select reserve patches, 

metaheuristic algorithms have been used with greater success than exact algorithms. The 



Chapter V 129 

computational challenges confronting exact approaches therefore require a formulation 

which minimizes the complexity of the search for an optimal solution. To minimize this 

complexity, I suggest that the tactical problem of controlling opening size need not be 

incorporated into a strategic model. The work of both Rebain and McDill (2003) and 

Martins et al. (2003) indicate that scheduling harvests while a) controlling opening size, 

and b) selecting old growth patches, restricts the model to solving small problems. 

Control over opening sizes requires that each harvestable polygon, for each period, must 

be represented in the model by a binary decision variable. By avoiding the control over 

opening sizes, the model in this research is therefore able to avoid the complexity of 

using this type of binary decision variable. 

In this research therefore, the tactical problem of controlling opening sizes wil l 

not be included the design of the strategic model. Instead, questions addressed in this 

model are the following: a) what is the optimal sustainable rate of harvest from a given 

management unit; and, b) where ought reserves be located in order to minimize the 

impact on timber flow? These are both critical questions in strategic planning. By 

excluding the tactical problem of opening size constraints, it is hoped that the model wil l 

be applicable to larger problem instances. Of course, a model designed to address such 

questions has already been presented by Ohman and Eriksson (1998); but what 

distinguishes my research here is that I use an exact approach, instead of a 

metaheuristic. 
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Methods 

The model presented here is based on a Model I formulation of the strategic 

harvest-scheduling problem, as defined by Johnson and Scheurman (1977). The 

innovation in this research is that a set of spatially explicit reserve constraints is 

appended to this Model I. 

This involves two steps: first, I enumerate all feasible reserves, for each 

reserve class, using an enumeration algorithm. A feasible reserve is a patch of forest 

that meets certain age, size, and shape criteria (described below). This model therefore 

allows for a multitude of reserve classes which could be based on types of forest 

ecosystems, or patch sizes, or other planning criteria. In this research, the classes are 

based on different old growth patch sizes. The second step involves translating this set 

of feasible reserve patches into a set of N possible constraints, of which only K of these 

constraints must hold. Part of the optimization process is to choose the combination of 

K constraints that permits the Model I objective function to reach its optimal value. 

It should be noted that no explicit control of the spatial lay-out of the harvest 

blocks is included in this model. These are typically addressed in tactical planning 

models. Since this is a strategic planning model, it addresses long-term planning issues 

which involve not only estimating the sustainable yield of a forest, but also the spatial 

allocation of its reserves. 

Formulation of Model 

The formulation of the model is described through the following example. 

Given a forest of twelve polygons, each comprised of 10 ha (Figure 5.1), and set of 
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feasible reserves (meeting size and shape criteria, listed in Table 5.1), the problem is 

twofold: 1) formulate a set of potential reserve constraints; and 2) incorporate these 

constraints into a harvest scheduling model. 

1 2 3 4 

5 6 7 8 

9 10 11 12 

Figure 5 . 1 : Sample forest of twelve 10-ha polygons 

Table 5 . 1 : Set of reserves in reserve-class K, i.e., where size is > 40 ha and< 50 ha, 

and the shape criterion restricts feasibility to only to square openings, i.e., excluding 

rectangular openings:. 

. Reserve Id Set of polygons within feasible 
reserve 

1 {1,2,5,6} 

2 {2,3,6,7} 

3 {3,4,7,8} 

4 {5,6,9,10} 

5 {6,7,10,11} 

6 {7,8,11,12} 
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To formulate the reserve constraints, let: 

x{j = the area of polygon / harvested under timing choice j (this is the classic 
Model I decision variable) 

yk = 1 i f potential reserve k is not selected to be an actual reserve, 0 i f it is 
selected. 

yk €{o,i}) 

M = a number of an arbitrarily high value (e.g., > that the total area of the 
forest). 

j ,J = the index and set of timing choices. 

k ,K = the index and set of feasible reserves. 

I k = the set of polygons in feasible reserve k 

Translation of the reserves into constraints requires two linear inequalities. First, an 

inequality [1] by which a harvested or unharvested polygon triggers yk to be 1 i f 

potential reserve k is not selected to be a reserve, and 0 otherwise. 

[1] Z S x0, - Myk < 0 V k e K 
ielk jeJ 

From the example illustrated in Figure 5.1 and Table 5.1, the inequalities 

(ignoring timing choice) would be: 

[2] x, + x2 + x5 + x6 - My, < 0 

[3] x2 + x3 + x6 + x7 - M y2 < 0 

[4] x3 + x4 + x7 + x8 - My3 < 0 

[5] x5 + x6 + x9 + x10 - My4 < 0 

[6] x6 + x7 + x,0 + xu - M y5 < 0 
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[7] x7 + + xI2- My6 < 0 

Second, an inequality is needed [8] by which the minimal number of reserves, in each 

reserve class, K, is implemented. 

[8] Z yk< PK-DK V Ke W 
k e K 

Where PK = the number of potential reserves in reserve class K; Dk = the number of 

desired reserves in reserve class K; and W is the set of all reserve classes. As noted 

above, this model allows for a multitude of reserve classes, and the set, W, is 

comprised of different size-classes of old growth patches. Also note that, Pk must be> 

Dk, otherwise there would be no selection problem. 

From the illustrated example, assuming two of the potential six reserves were 

desired, the inequality would be: 

[ 9 ] yj + y2 + ys + y4 + ys + y6 ^4 

There are several observations worth noting about this formulation as it 

currently stands. 

First, there is no aggregation of polygons into strata. In this model, each 

polygon is represented by a decision variable, and this is needed to trigger the spatially 

explicit reserves. The aggregation of polygons into strata is a traditional approach to 

solving LP models of harvest scheduling and is intended to decrease the number of 

decision variables; but the need to reduce the number of decision variables is no longer 

of great importance, given the advances in computing hardware and LP-solvers. 
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Second, the number of binary decision variables in each problem equals the 

number of potential reserves. This is important because the number of binary decision 

variables greatly influences the computing time required to reach an optimal solution in 

many integer programming problems (Wolsey 1998). In other words, a problem 

instance with many thousands of potential reserves may prove to be computationally 

intractable. It is, of course, difficult to know a priori, how computationally 

challenging a large problem instance is to solve; and a major objective in this research 

is to determine whether or not this model can be applied to large, realistic problem 

instances with many thousands of potential reserves. 

Third, the formulation, as currently expressed, does not prevent the overlap of 

reserves. For example, the two reserves to be selected from the sample forest (Figure 

5.1) could be 1 and 2, which both share polygons 2 and 6. Depending on the type of 

reserves selected this may or may not be desirable. On the one hand, i f one were 

selecting a set of reserves to maximise the number of species represented by the 

selection of a fixed number of areas for a reserve system, then one may wish to choose 

the minimal set of reserves- and thus overlapping would be desirable. In the reserve 

selection problem (Camm et ai. 1996), a set covering model is used where overlapping 

of reserves results from maximizing species representation on the minimal area of land. 

On the other hand, i f one has area targets to meet—e.g., 10% of the management unit 

must be reserved for old growth—then the formulation, as it currently stands, is 

problematic because the sum of all areas reserved may not equal the sum of all reserve-

areas; i.e., one could count twice those areas which overlap. To prevent this, three 

area-accounting constraints are needed. 
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For the first constraint, let r, 

polygon, /, within a feasible reserve 

= a non-binary variable representing each 

. The value of r, is triggered by yk. 

135 

[10] yk=n V ieIkandkeK 

Although functions as a binary decision variable (assuming the value of 0 or 1), 

because it is triggered by yk, it need not, and therefore is not, explicitly recognized in 

the model as such. It is recognized as a real number. This is because I do not wish to 

expand the size of the branch and bound tree unnecessarily. 

The second constraint needed for area-accounting of reserves is to place a limit 

on the total harvestable area of the forest, i.e., control the area not placed in a potential 

reserve for each reserve class, W. 

[U] Z rt Ai < RK- FK VKeW 
is CK 

Where At = area of polygon / ; CK= the set of polygons in potential reserve-class K; 

and RK = the total area of potentially reservable forest in reserve class K; and Fk = the 

desired area of forest in reserve class K to be reserved. Once again, R K > F K , 

otherwise there is no selection problem. It is noteworthy that this constraint wil l 

account for only the largest reserve class; i.e., smaller reserves nested partially or 

entirely within larger reserves can still satisfy the area constraint [11]. I include this 

constraint within the model because of the importance of meeting objectives for the 

largest reserve targets. To ensure that the total old growth reserve area is correct, an 

additional constraint is needed. 
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[12] £ r, A, < PR - aT 

ieQ 

Where Q = the set of polygons within all potential reserves; PR = the total area of 

forest within the set of all potential reserves; T = the total area of the forest; and a = 

the percent of total area of the forest desired to be within a spatially explicit reserve. 

Constraints [11] and [12] together will ensure: 1) that the desired area of forest 

reserved within the largest reserve size-class will be satisfied; and 2) that the total area 

of forest is placed within a spatially explicit reserve achieves a desired target. 

The complete mathematical formulation of the mixed integer programming model for 

strategic harvest scheduling problem with spatially explicit reserves is presented below. 

Let: 

i„I = the index and set of polygons. 

j ,J = the index and set of timing choices. 

k , K = the index and set of feasible reserves of a given reserve-class 

t,T = the index and set of planning periods. 

I k = the set of polygons in feasible reserve k 

Xy = the harvested area of polygon i under timing choice j 

yk

 = 0 if reserve k is selected for implementation, 1 otherwise 

r, = a non-binary trigger variable for each polygon, i, used in accounting 

the total area placed in reserve 
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h, = total volume harvested in period t 

a = percent area of forest area to be placed in a reserve 

A i = area of polygon i 

CK = the set of polygons in potential reserve-class, K 

DK = the desired number of reserves, in reserve-class K, to be 

implemented. 

FK = desired area of forest to be reserved in reserve-class, K (ha) 

LTSY = the long term sustained yield of the forest (m3 per period) 

M = an arbitrarily high number; e.g., a value greater than the total number 

of hectares in the forest 

PK = the number of potential reserves in reserve-class, K. 

PR = total area of forest within all classes of potential reserves (ha) 

Q = the set of polygons within all potential reserves 

RK = total area of forest in reserve-class, K (ha) 

G = total area of forest (ha) 

ViJt = harvest volume per hectare of polygon i under timing choice j in 

period t 

W = the set of all reserve-classes 

Maximise total volume harvested over all periods 

[13] Max. Z h, 
teT 
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Subject to: 

Accounting variable for periodic volume, h, 

[14] h, = Z Z XyVy Vt = l,...,T 
iel jeJ 

Limit area harvested for each polygon 

[15] Z xtj < Ai V i = 1,...,I 

Inter-period harvest fluctuations limited to +/- 20% 

[16] -.8h t + h t + 1 > 0 t = 1,...,|T|-1 

[17] -1.2h, + ht+1 <0 t = 1,...,\T\-1 

Harvest in last period, n, not to exceed long term sustainable yield 

[18] hn - LTSY <0 

For each reserve, let any harvested polygon within a potential reserve, k, trigger the 

binary variable, yk, to be 1, and unharvested polygons trigger yk to be zero 

[19] E £ Xy - Myk < 0 V k e Kand V K e W 
jeJ ielk 
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The minimal number of reserves, in each reserve class, K, must be implemented for all 

reserve classes, W 

[20] Z yk< PK-DK V Ke W 
k eK 

Let each reserve variable, yK trigger each polygon variable, r, 

[21] yk = r,- Vi elk andVksK 

For each reserve class, K, ensure that the total reserve-area target is satisfied. 

/227 Z A - ( ^ < ^ - F X VKe W 

ie CK 

Ensure that the sum of all polygon areas placed in a reserve satisfies the target for total 

area of forest to be reserved. 

[23] Z n At < PR - aG 
ieQ 

yk is a binary variable 

[24] yk e {0,1} 

Non-negativity constraints 

[25] xu > 0 V i,j. 

[26] r, > 0 V i 

Enumeration Algorithm for the Set of Potential Reserves 

To provide a set of potential reserve constraints, all feasible reserves must first 

be enumerated. The reserve enumeration algorithm produces an exhaustive list of 
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feasible reserve blocks, i.e., aggregates of contiguous polygons in which: 1) the total 

area is within a desired range; 2) the age of each polygon is greater than or equal to the 

age of old growth; and 3) the shape is relatively round. 

The criteria by which patch-shape can be measured are many (Forman 1997). In 

this research, I wished to reduce edge-effects through compactness and used a 

circularity ratio (Unwin 1981) as the criterion by which compactness of reserve shape 

is measured. This circularity ratio equals the area of the patch divided by the area of 

the smallest circle enclosing the patch. 

The enumeration algorithm executes as follows: 

1. From the set of all polygons comprising the forest, define the subset of 

polygons meeting the age-class criterion to be subset A. 

2. From subset A, copy all polygons which also satisfy both size and shape criteria 

to the feasible list. This is the list of feasible reserves. 

3. For each polygon in subset A, form all possible couplings with adjacent 

polygons also in subset A. The set of all possible couplings is subset B. 

4. From subset B, copy all couples satisfying both shape and size criteria to the 

feasible list. From subset B, remove all couples which exceed the area limit. 

5. For each couple in subset B, form all possible triplings with polygons which are 

both adjacent to the couple and within subset A. The set of all possible triplings 

is subset C. 

6. From subset C, copy all triplings satisfying both area and shape criteria to the 

feasible list. From subset C, remove all triplets which exceed the area limit. 

7. Continue expanding the feasible list of old growth patches in this manner until 

all possible combinations have been enumerated. Eventually no candidate blocks 
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are created because there are either no further neighbours of blocks to be 

combined, or all blocks created are over the maximum size limit. 

8. Once the feasible list can increase no more, remove all duplicate sets from this 

list (e.g., the reserve {1,2,3} is a duplicate of {3,2,1}). 

Application of Model 

The model was tested on three different data-sets representing managed forests 

of different sizes in British Columbia—Stafford, Kootenay, and Arrow (see Table 5.2). 

I followed the British Columbia Ministry of Forests Biodiversity Guidebook (B.C. 

Ministry of Forests 1995) on setting the old growth patch-targets; viz, that 10% of the 

total area be placed in old growth reserves, distributed in patch-size between 40 and 

200 ha. I sought an equal distribution of reserved area in patches of three different 

sizes: 40-80 ha, 81-140 ha, and 141-200 ha. 

Table 5.2: Area and polygon numbers of forests used in testing the MIP model. 

Forest Area (ha) .# Polygons' Mean Polygon'":. 
, Area (ha)" 

Stafford 16,874 1,233 13.7 

Kootenay 71,245 6,093 11.7 

Arrow 799,211 34,054 23.5 

In testing the model, two questions were of special interest to us: 

1) How will the number of feasible patches increase in relation to: a) the percent 

of forest area in old growth; and, b) the circularity ratio by which patches are 

selected as feasible? and, 
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2) Is this model capable of solving problems with many thousand potential 

reserves? 

To pursue these questions, I altered the age-class distributions of these forests by 

controlling the percent of area in old growth stands. That is, a fixed percentage of 

forest area was randomly assigned an age greater than or equal to the old growth age. 

In all instances, the ages randomly assigned were between 225 and 500 years. The 

remaining polygons of the forest were randomly assigned an age between 0 and 224. 

A third question which interested us in testing the model was: how would the 

solutions from the model compare with the solutions produced by a traditional, aspatial 

method of allocating old growth area, using LP? In other words, what is the cost of 

imposing spatial objectives upon the old growth reserves? To address this question, I 

compare the results from the MIP model with those of an LP model. The LP model is 

the same as the model described in equations 13-18 above, with the following 

constraint added: 

Let the total harvested area of old growth polygons not exceed a fixed 

percentage of the total area of the forest. 

[27] Z Y Xy < PR - aT 
ieR jeJ 

The general parameters for the harvest scheduling problem were: a 200 year 

planning horizon of twenty 10-year periods. Each polygon had a rotation-age of eighty 

years and there were eight timing choices for the Model I decision variables. Inter-

period fluctuations of volume harvested were constrained to within + / - 20%. 
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The models were built with the MPL Modeling System and solved with CPLEX 

version 8.1, on a 2.4 GHz Pentium 4 central processing unit with 1.5 gigabytes of 

RAM. Selection of branch and bound parameters can greatly affect the efficiency of 

the search (Wolsey 1998). The CPLEX software allowed us several alternatives, and 

those chosen, after informal experimentation, are presented in Table 5.3. 

Table 5.3: MIP strategy options selected in CPLEX. 

MIP Strategy Options in'CPLEX . - . , • */ . • Option Selected 

Node Selection: the rule for selecting the next node to process 

when backtracking 
Best Estimate 

Variable Selection: the rule for selecting the branching variable 

at the node which has been selected for branching 
Automatic 

MIP Probe: determines the amount of variable probing to be 

performed on a problem 

Probing level 3 

(maximum) 

Branch Direction: decides which branch, the up branch or the 

down branch, should be taken first at each node 
Algorithm select 

MIP Emphasis: strategy used to inform automatic variable 

selection and branch direction (options are optimality, 

feasibility, best bound, or balanced). 

Best bound 

Results 

The resulting number of feasible old growth reserve patches, produced by the 

enumeration algorithm, based on different old growth percentages and circle ratios, are 

presented in Table 5.4. These values indicate the rate at which binary decision 

variables increase in each problem instance, and are therefore important indicators of 

computational difficulty. 
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Table 5.4. Resulting number of eligible reserve-blocks for each forest based on 
different old growth percentages and circle ratios. 

Forest Circle 
% Old growth 

Ratio 15% 20%' • 25% 30% 35% 40% 45% 
Stafford 0.40 0 0 0 1 2 2 4 

0.35 l l 1 6 10 15 65 
0.30 3 9 11 27 39 81 1,108 
0.25 6 22 38 99 202 396 11,256 
0.20 14 50 177 407 1,059 1,816 65,465 
0.15 23 112 452 875 1,604 3,023 111,098 
0.10 24 128 525 981 1,756 3,482 121,810 
0.00 24 128 525 981 1,756 3,534 121,925 

Kootenay 0.40 0 1 1 3 4 na na 
0.35 0 5 18 34 53 na na 
0.30 3 27 91 167 293 na na 
0.25 22 133 519 1,104 2,576 na na 
0.20 55 492 2,228 14,578 69,902 na na 
0.15 77 1,087 7,539 66,017 295,000 na na 
0.10 102 1,331 12,034 163,137 1,152,424 na na 
0.00 113 1,380 12,592 191,013 1,499,425 na na 

Arrow 0.40 29 34 55 84 108 157 na 
0.35 109 148 241 405 552 869 na 
0.30 313 538 950 1,674 2,450 4,571 na 
0.25 740 1,427 2,810 5,334 8,781 19,860 na 
0.20 1,461 3,031 6,825 14,171 34,873 91,461 na 
0.15 2,238 5,038 12,728 28,994 70,115 209,935 na 
0.10 2,790 6,622 18,317 45,141 121,143 392,072 na 
0.00 3,032 7,168 20,838 65,184 192,202 818,737 na 

*Note: the feasible reserves for some forests with higher old growth percentages were 
not enumerated because the number of reserves increased at such a high rate as to 
imply computational infeasibility for the given MIP formulation. These instances are 
represented by na 

In Table 5.4,1 observe an exponential increase in the number reserve-blocks as 

the percent of old growth in the forest was increased. The effect of relaxing the circle 

ratio also increased the number of feasible reserve-blocks. In addition, the mean 

polygon size affected the number of feasible reserve-blocks; e.g., Kootenay, with the 



Chapter V 145 

smallest mean polygon area, has the greatest rate of increase in feasible reserves as old 

growth percentages increase and circle ratios are relaxed. 

In Table 5.5, model statistics and solution information are presented for a subset 

of the problem instances described in Table 5.4. The criterion for selecting instances 

to solve was based on problem size; i.e., that they be large enough to allow for 

evaluation of the computational practicability of this model. Note that an estimate of 

problem size could not be formed prior to running the enumeration algorithm. Al l 

instances solved had a circularity ratio of 0.2, and were solved optimally. The 

optimality tolerance was defined to be within 0.5% of the LP upper bound. 

Table 5.5: Model statistics and solution information for instances solved. 

Forest 
% Old 
growth* Constraints Variables Binary 

Variables 
Parsing 
Time 

Solution 
Time 

% LP* 
Solution 

Stafford 40 15,003 11,945 1,816 35 sec. 49 min. 90.8 

Stafford 45 811,546 75,671 65,465 10.4 hr 56 min. 94.5 

Kootenay 30 177,215 64,216 14,578 41 min. 6 min. 97.6 

Kootenay 35 934,434 119,903 69,902 13.6 hr. 58 min. 97.8 

Arrow 35 248,776 314,205 34,873 5.2 hr. 68 min. 98.7 

Arrow 40 719,737 372,702 91,461 20 hr. 126 min. 96.8 

*this refers to the LP model described in equations 13-18 and 23. 

My first observations concern the computational practicability of this model. 

Table 5.5 indicates that the times needed for computing optimal solutions is 

consistently brief, given the size of some instances. For example, the greatest solution 

time was 126 minutes needed to solve an instance with 91,461 binary decision 
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variables. This indicates that the model may be integer-friendly, and therefore useful 

to planners with large, realistic problems. In addition to solution time, Table 5.5 also 

presents parsing times. This is the time needed for the MPL software to read through 

the model and data files and store them in the form of a matrix. In the larger 

problems, the parsing time was quite long; e.g., for the largest problem, parsing 

required 20 hours. The parsing is of practical concern, but fortunately it increases 

linearly with the problem size; therefore even larger problems may not be out of reach. 

In Table 5.5,1 also observe that the objective function values of the spatially 

explicit models are very close to those of the linear programming model. In other 

words, the cost of imposing a spatial arrangement on the retained old growth was 

relatively small, on average yielding a 4% lower objective function value. These 

results are consistent with those of Oilman and Eriksson(1998). 

Discussion 

In this discussion, I pursue two paths of inquiry concerning the practicality of 

this model. The first addresses the computational limits of this model, given the rate at 

which reserves, and therefore binary decision variables, can increase. Second, I reveal 

the flexibility implicit in the formulation of this model, focusing on how this model 

may be used to solve more complex planning problems with spatially explicit reserve 

constraints. 

First, the usefulness of this model may be limited by the exponential rate at 

which the number of feasible reserves can increase relative to: a) the relaxation of the 
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circle ratio criteria for feasible reserves; b) the percentage of the forest area in old 

growth; and c) a decreasing mean polygon-area relative to the patch-size area. In 

Table 5.4, for example, I observe one problem instance requiring 1.5 million binary 

decision variables. In light of this, what qualified statement can be made on the 

potential usefulness of this model? 

I address points a, b, and c, separately. First, the relaxation of the circle ratio 

criteria, by which reserves are deemed feasible, in practice ought to proceed to a 

l imit—which should be greater than zero. For example, relaxing the circle ratio to a 

value of zero conflicts with one of the main objectives of planning for spatially explicit 

old growth; viz. to minimize area of old growth forest not affected by edge. Hence, 

insofar as this model may require higher circle ratios to limit the number of binary 

decision variables, this limitation is not entirely regrettable; for, higher circle ratios 

more effectively satisfy the ecological objective of preserving core areas of old growth. 

Second, the percentage of forest area in an initial old growth state can greatly 

affect the number of feasible reserves. For example, in Table 5.4, in instances where 

the initial old growth area exceeds 30 to 40 percent of the total forest area, the number 

of feasible reserves is so great in number that some problems may be intractable. As a 

practical planning concern, however, this may not be relevant; for it is rare in managed 

forests today to have this percentage of old growth (FAO 2001). 

Third, a relatively small mean polygon-area relative to the patch-area of the 

reserves can greatly increase the number of feasible reserves. This is true, and it can 

present a serious obstacle to solving problems. Instances with extremely small old 

growth polygons relative to the patch-area would require aggregation of smaller, 

similar, and contiguous polygons into fewer, larger polygons. Further, this 
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aggregation must precede execution of the enumeration algorithm in order to reduce the 

number of feasible reserves and resultant binary decision variables. Of course, any time 

spatial data sets are aggregated to a coarser resolution (i.e., a smaller number of larger 

spatial units), one must ask what problems this might produce. This is referred to as 

the modifiable area unit problem, or MAUP (Openshaw 1981) and it produces two 

general effects. First, the scale effect, occurs when values are averaged over the 

process of aggregation, and variability in the dataset is lost; therefore values of statistics 

computed at the different resolutions change. In the case of the MIP model, given the 

potential necessity to aggregate similar old growth polygons, the variability lost through 

aggregation to a coarser scale may not be great. It would, for example, be much greater i f 

I proposed aggregating all polygons to a coarser scale of resolution. The second effect, 

referred to as the zoning effect, arises from the particular method by which zones at a 

coarser scale of resolution are delineated; for different delineation methods can produce 

different values or statistics within each zone. In the case of the MIP model, the 

method by which new boundaries of old growth patches are delineated, could influence 

and limit the flexibility with which the optimization algorithm selects certain old 

growth stands as actual reserves in the solution. To minimize this loss of flexibility, 

aggregation, i f necessary, should be minimized. 

My second line of inquiry concerns the flexibility of this model in solving more 

complex and practical planning problems. For example, the model, as described 

above, allocates reserves statically, rather than dynamically. Dynamic allocation may 

be a relevant planning objective because, as the forest ages within the strategic planning 

horizon, some stands may enter into an old growth condition while other stands may 

decay and pass out of the old growth condition. Closer investigation of the model 
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indicates that it can incorporate analysis of the dynamic nature of old growth reserves, 

without any changes to the formulation. 

There are two ways by which dynamic selection of old growth patches can be 

analyzed using this model. First, there is the problem of planning for those stands 

which enter into the old growth condition at some point within the planning horizon. 

This is a pressing problem for many management units with a deficit of old growth. 

The transition from the sustained yield paradigm to the ecosystem management 

paradigm has left many managers with a deficit of representative old growth. The 

problem facing such managers is how best to recruit patches of old growth while also 

meeting the economic objectives of the forest. In this model, recruitment of old growth 

would be examined by changing, in the enumeration algorithm, the age at which a 

forest polygon is eligible to become part of feasible old growth patch. For example, 

suppose a management unit currently had only 3% of its area in feasible old growth 

patches and the objective were to reach 10%. By incrementally lowering the feasible 

age of old growth in the enumeration algorithm, and incorporating these younger 

patches into the MIP model, one could examine trade-offs between rate at which these 

targets can be met and the resultant cost in terms of timber-supply. From Table 5.4,1 

see that relaxation of the age-criteria can proceed until 30 to 45 percent of the forest is 

eligible, at which point the number of reserves can become computationally 

impractical. Such economic trade-off analysis is particularly well suited to this model 

because, unlike models using heuristic algorithms, it produces optimal rather than 

approximately optimal solutions. 

Second, there is the problem of planning for stands which pass out of old 

growth condition. This problem can be addressed in the model through the use of 



Chapter V 150 

different classes of reserves. In the enumeration algorithm, just as one can form 

different classes based on size, or on species, so too can one do this with age. As a 

result, one can reserve a uniform distribution of old growth age-classes to regulate the 

rate at which the area of old growth reserves break up over time. Execution of this can 

be synchronized with the recruitment method described above. Therefore, the dynamic 

nature of old growth patches, while not explicitly incorporated into the formulation of 

this model, can nevertheless be thoughtfully addressed through controlling eligibility 

parameters in the enumeration algorithm. 

Conclusions 

In this paper I have presented the formulation and evaluation of a strategic 

harvest scheduling model which can: 1) simultaneously schedule harvests and allocate 

spatially explicit old growth reserves; 2) yield exact optimal solutions through 

application of the branch and bound algorithm; and 3) be applied to large, realistic 

problem instances requiring many thousands of binary decision variables. 

In testing the formulation, it was shown that the model may be integer friendly, 

having solved a problem instance with over 91,000 binary decision variables on a 

forest of 700,000 ha. Although the analysis was of static recruitment of old growth 

reserves, the model can facilitate analysis of dynamic recruitment of old growth. The 

ability of this model to solve large, realistic problem instances is relevant to the 

problem faced by forest managers currently facing a deficit of old growth and seeking 
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an optimal strategic recruitment method. It was also found that the cost of imposing a 

spatial arrangement on the retained old growth was relatively small. The mixed integer 

programming model on average yielded a 4% lower objective function value than that 

of the relaxed LP. 

Future research on this modeling approach can take several interesting 

directions. First, this model can be used to perform trade-off analysis on the rates at 

which spatially explicit old growth targets can be met versus the costs in terms of 

allowable annual cuts. Such analysis would be informative on forests where 

representative old growth is highly fragmented; and it would be quite innovative 

because, for the first time, this analysis would use optimal solutions on large problems. 

A second direction of future research is to apply this approach to a Model I I 

formulation of the harvest-scheduling problem (Johnson and Scheurman 1977). This 

would be a rather challenging formulation because, in the Model I I , individual hectares 

of forest cannot be tracked. Nevertheless, it could be a worthy direction of research 

because the Model I I formulation allows for the incorporation of fire probability 

statements (Davis et al. 2001); and an optimization model capable of combining 

spatially explicit old growth recruiting strategies with distributions of fire probabilities 

may yield valuable insights into the effectiveness of recruiting strategies. 
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Chapter VI 

Summary and Conclusion 

In this dissertation, I have presented advances in decision support models for three 

important forest management planning problems with spatial constraints. In Chapter I I , 

using the branch and bound algorithm, I explored the limitations of my formulations for 

the area-restricted model and found that: a) the number of decision variables, and b) the 

number of opening constraints, ultimately restrict this method from applicability to larger 

problems instances. 

These results directed me to the objective of Chapter I I I : a worst-case analysis of 

the strengths and weaknesses of the metaheuristic approach to solving the area-restricted 

model. I concluded that problem size does not appear acutely to affect the ability of the 

simulated annealing algorithm to find near-optimal solutions. A weak trend was 

observed between larger problem instances and poorer solution qualities; but the decline 

in quality was not steep. Another interesting result, of relevance to understanding the 

relation between neighbourhood search and the peculiar structure of the area-restricted 

model, was that the ratio of the mean polygon area to the maximum opening area did not 

influence the quality of the best solution found by the metaheuristic. Also, as the percent 

of old-growth area in the forest increased, it was found that relative solution qualities 

improved for the simulated annealing algorithm, but that the search was more time-

consuming for the branch and bound algorithm. 
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In Chapter IV, my formulation of a mixed integer goal programming model was 

described and applied to the Kootenay Lake Timber Supply Area. My conclusions were: 

a) the model is applicable to multiple criteria decision-making; b) that, given a relaxation 

of the appurtenance policy, it can be used to quantify the increased efficiency with which 

allocation objectives can be met; and c) it can be used to identify contiguous areas of the 

forest best suited not only for allocation to mills, but also for timber sales. One of the 

merits of this model is its relevance to the direction of tenure policy re-evaluation in 

British Columbia. 

In Chapter V, I presented and tested my formulation for a mixed integer 

programming model to schedule harvests and select old growth reserves. My 

conclusions were: a) that the formulation appears to be integer friendly, having solved 

problem instances with 91,000 binary decision variables; and b) that a relatively small 

mean polygon-area relative to the patch-area of the reserves can greatly increase the 

number of feasible reserves, and therefore present an obstacle to solving certain 

problems (This obstacle, I also reasoned, may be surmountable through a careful pre-

aggregation of smaller old-growth polygons into larger ones); and c) that the 

recruitment of old growth patches can be achieved indirectly through controlling 

eligibility parameters in the algorithm used to enumerate patches. 

Having summarized my work, I conclude with a general observation on my 

treatment of the topic of this dissertation, Incorporating Spatially Explicit Objectives 

into Forest Management Planning. For reasons stated in the Introduction, I have chosen 

to incorporate spatially explicit objectives into forest management planning through 

integer program models; and in each of the preceding chapters, I have demonstrated a 

rigourous interest in both optimization and large problems. This, of course, arises from 
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the applied nature of my discipline: forest management is concerned with selecting the 

most efficient allocation of scarce resources, and planning models ought to be solvable 

for real-world problem instances. But I would not like this concern with optimization and 

problem size to overshadow another concern implicit throughout my work. For, 

optimization and the ability to solve large problems are, as it were, constraints within 

which this other concern is feasible; viz., the ability to strengthen the relationship 

between the model and the reality of the problem modeled through an added layer of 

complexity. In each of the three problems treated in this paper, there was a concern to 

incorporate this added layer of complexity, which was spatial in nature. For example: 

• In the area-restricted model, one can not only find the optimal sequence of non-

adjacent cut-blocks to harvest, but also delineate the optimal boundaries of those 

cut-blocks. 

• In modeling the allocation of cutting rights, one can not only assign chart areas to 

mills, but also to assign chart areas to timber sales based on their ability to 

redistribute logs to those mills. 

• In the strategic harvest-scheduling problem, one can not only select an optimal 

sequence of stand-type areas to harvest or set aside as old growth reserves, but 

also delineate the optimal boundaries of those reserves. 

In this dissertation, therefore, I have also shown that integer programming is a powerful 

paradigm by which to incorporate the complexities of spatially explicit objectives within 

the pragmatic constraints of forest management planning. 


