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ABSTRACT 

Performance-based engineering and design aim to achieve multiple performance 

levels under different hazard levels. There is a need to define and quantify structural 

performance in a reliability based format for managing risk and uncertainty. 

The tedious process of nonlinear dynamic analysis of shear walls requires an efficient 

tool to predict the drift with acceptable accuracy. A simplified mechanics-based analog 

model was developed for such purpose. The similarities of the load-displacement curves 

of individual nail connectors and shear walls indicate it may be possible to represent the 

shear wall behaviour with a large pseudo nail. To develop a pseudo nail model, a 

nonlinear optimization problem which minimizes the error of prediction is involved. 

Five search methods were implemented in solving the optimization problem: hill 

climbing, random search, genetic algorithm, simplex and artificial neural network. The 

input of the model is the load-displacement relationship of the structure subject to a half 

cyclic static load with the decreasing curve after peak load. Results from laboratory tests 

and validated models of two types of regular panel shear walls were used to verify the 

accuracy of this model. Good agreement was obtained. 

The uncertainty of structural performance is attributed to many sources of 

randomness. The combined effect of earthquake intensity and ground motion records, 

were considered in this thesis where wall drifts were considered as the performance 

measure. The drift demand distribution of a structure was formulated and a popular 

format of reliability procedure was discussed. A new reliability procedure based on 

conditional distribution at given earthquake records was established. Another procedure, 
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the Monte Carlo method considering weighted ranking, was proposed to improve the 

efficiency of simulation when intensity measure is arbitrarily sampled. The construction 

of confidence curves is also presented for the analysis of structural performance. 

Both the pseudo nail model and the reliability procedures were implemented to 

calculate the reliability indices of eight types of Japanese walls. The results can be used 

for engineering practice and to guide the modification of building code. 
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CHAPTER 1. INTRODUCTION 

1.1 General 

Wood is the primary building material used in low-rise construction in both North 

America and Japan. In typical wood platform frame construction, 38 mm thick members 

are used as frames; plywood or oriented strand board (OSB) panels as sheathing; and 

deeper dimension lumber or engineered wood products as joists and beams. Nail 

connectors are the principal fasteners used to connect various structural components. 

Lateral resistance against wind and seismic forces is provided by the diaphragms and 

shear walls. In Japan, diagonal brace and metal hardware are commonly used to 

reinforce traditional mortise-and-tenon connections in their post and beam buildings. 

Generally, light frame structures are believed to perform well under earthquakes due 

to the high ratio of strength to weight for wood materials and the high ductility of nail 

connections. It was reported (Diekmann 1997) that a non-engineered wood house 

survived the 1906 San Francisco earthquake even though fault rupture caused a 4.8 meter 

offset in the front garden of the house. In modern wood construction, complex and 

irregular plans and elevations are becoming more common. This type of construction 

tends toward structural eccentricity and load path issues that may show more pronounced 

damage from earthquakes (Zacher 1994). The 1994 Northridge earthquake and the 1995 

Kobe earthquake are two examples of recent earthquakes causing enormous damage to 

densely populated urban areas. The aftermath of these earthquakes has led to a greater 

level of interest; consequently, increased resources are being invested in the study of the 

seismic performance of wood structures. The 1994 Northridge earthquake had a 
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magnitude of 6.7. It did not cause a lot of collapses but the insured loss was as high as 

$10 billion US dollars, and it created an insurance crisis in the region. The 1995 Kobe 

earthquake had a moderate magnitude of 6.8. However, its epicenter was located close to 

the ground surface. Consequently, ground accelerations and velocities affected many 

buildings, causing damage to 150,000 wooden structures, and resulting in collapses, fire 

and significant loss of life. The 1995 Kobe earthquake inflicted grave emotional and 

psychological trauma to Japanese society (Prion and Filiatrault 1996, Foliente 1997). 

These two recent tragedies illustrate the destructive consequences of failing to meet 

the prime design objective of modern seismic resistance structural design, i.e., to prevent 

building collapse especially under long return period events, and to minimize damage 

under moderate shorter return period earthquakes. Performance-based engineering 

considers multiple performance and hazard levels. It is recognized that performance-

based engineering and design need to be defined and quantified in a reliability-based 

format. Many countries, including Canada and Japan, are revising their design codes in 

order to meet the criteria of performance-based design. The performance analysis of 

wood structures is one of the primary steps needed to achieve the objectives of modern 

codes. 

Japan is one of the important markets for the British Columbia (BC) softwood lumber 

industry. To maintain Canada's market share in Japan against its competitors, the BC 

softwood industry and Canadian government have invested in collaborative research on 

the performance of Japanese post and beam structures. In Canada, the University of 

British Columbia (UBC) is actively participating in this program. Through the academic 

activities and the collaboration between UBC and the Japan Building Research Institute 
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(BRI), both sides are sharing information and working together to develop performance 

based design procedures for Japanese wood structures. 

1.2 Objective and Scope 

The structural performance of wood shear walls relates to many sources of 

uncertainty, including wood properties and earthquake ground motions. The level of 

variation of these sources makes it almost impossible to conduct reliability-based 

performance analysis with experimental studies. Analytical tools calibrated against 

experimental results are typically used for reliability analysis. 

UBC has developed several sets of finite element programs to analyze the response of 

wood frame structures (Foschi 1990, He 2002) and Japanese post and beam structures 

(Foschi 2004). In these programs, all components of structures were meshed to fine 

elements, including beam elements, panel elements and contact elements. The nail 

connection, which is believed to be the main source of the nonlinearity and pinching 

effect of the cyclic load-deformation curves in wood structures, was modeled with a 

beam surrounded by the nonlinear foundation and contact interface. A sub-program, 

HYST (Foschi 2000), can be employed to calculate the response of each nail connection. 

A typical wood house has thousands of nails. When the house is subjected to 

earthquake load, the time-history analysis may have several thousand time steps, each of 

which can be divided into small load steps. At each load step, the response of every nail 

must be calculated by the HYST program. Iteration is usually necessary for such a 

nonlinear problem, and this requires repeating the calculation several times. 

Consequently it would be very time-consuming to calculate the earthquake response of 
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wood houses using the detailed finite element approach. Reliability based-analysis and 

design are especially challenging work for this kind of structural analysis. 

The objective of this thesis is to propose a solution to earthquake reliability analysis 

of wood structures. It includes a computationally-efficient model to evaluate the 

hysteresis behaviour of wood shear walls. The accuracy of the model should be 

acceptable for earthquake reliability analysis when compared with other simplified 

models. It also includes reliability analysis methods to deal with the uncertainty of 

structural performance. 

There are three major contributions from this thesis. First, a simulation-based 

hysteresis model which has good accuracy and computational efficiency is developed. 

Second, two new formats of seismic reliability procedures are developed for 

performance-based earthquake engineering and design. Third, reliability indices of eight 

types of Japanese wood shear walls are presented for code provision consideration or 

further study. ' 

Chapter 2 consists of a literature review for this thesis. Chapter 3 introduces the 

concept of the proposed shear wall model and its realization methods. Background and 

physical explanations are illustrated at the beginning, followed by an introduction of 

several search methods in solving the optimization problem. Chapter 4 describes the 

verification of the pseudo nail model with different configuration under different load 

protocols. Here, two examples of regular light frame shear walls with two different 

configurations of sheathing panels are presented. Chapter 5 discusses the procedures of 

seismic reliability analysis and three methods are presented to evaluate the structural 

probability of failure. The concept of confidence curves is also discussed. Chapter 6 
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involves an application of the shear wall model and reliability analysis procedures. The 

experimental results of eight types of Japanese walls are used as the input to calibrate the 

model, after which reliability analysis of each type of walls is conducted. Earthquake 

performance of the walls made from different species is compared. Chapter 7 presents 

the conclusions and recommendations for future study. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

When structures are subjected to horizontal loads, such as earthquake or wind loads, 

relative lateral motions tend to occur between the different stories of the structures. The 

large horizontal inertia forces must be transferred to the ground by the structural 

components to avoid excessive structural displacement, fracture or even failure. These 

components are as important as the gravity load resistant components of the structure 

since all of the components provide the integrity needed for the structure to function as a 

shelter. 

Basically three types of lateral load resistant systems are being used in wood 

structures: moment resistant connections, braced walls and shear walls. 

1) Moment resistant connections are not commonly used in platform frame 

construction. Splitting along the grain is critical even though moment resistant 

connections can provide a large opening within a frame. Some applications of 

moment resistant connection are found in heavy timber post-and-beam construction 

in North America. Efforts are being made to decrease the splitting issue by use of 

innovative connection systems, such as the timber rivets (Hampson et al. 2003). 

Nevertheless, wide application of this type of system still has a long way to go. 

2) Braced walls are one of the most efficient structural systems used to resist 

lateral load. Bracing members are the diagonal members inserted in the rectangular 

bays of frame. The bracing creates a stable triangulated frame to resist the lateral 

loads. Even numbers of braces are typically placed symmetrically on one side of 



walls to resist the load from both directions. Traditionally knee bracing and cross 

bracing were widely applied to provide horizontal stiffness. 

3) In North America, sheathed shear walls replaced braced shear walls in 

platform frame residential construction. A sheathed shear wall develops its in-

plane structural rigidity through the in-plane shear capacity of the sheathing 

material which is connected to the framing lumber with nails. The sheathing 

material can be solid lumber sheathing, structural panels, gypsum wallboard or 

stucco. Sheathing materials and the fasteners connecting the sheathing to frames 

are the key components developing shear action in a wood frame construction. In 

this thesis, such shear walls will be referred to panel-sheathed shear wall in order to 

distinguish it from other types of walls. 

In North America, sheathed shear walls are the most popular lateral resistant system 

in platform frame construction. In Japan and other eastern Asian countries, traditional 

construction style, consisting of the post and beam structures with wood to wood 

connections, such as mortise-and-tenon and wedge, are typically used. These wood-to-

wood connections alone can be considered as semi-rigid connections with limited 

capacity to resist the applied moment caused by large seismic loads. As Japan is an 

earthquake-prone country, diagonal bracing has become popular to increase the resistance 

of structures under earthquake. Metal hardware has also been introduced to connect or 

reinforce the major post and beam members. In recent years, home builders are become 

increasingly interested in panel sheathed shear walls although the braced post and beam 

walls with metal fasteners are still being used. These combined lateral resistant systems 
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represent the current trend in the Japanese home building industry (Japan Housing and 

Wood Technology Center 1996). 

According to the Canadian Wood Council, a shear wall is an in-plane or plate-type 

structural element designed to transmit force in its own plane. Herein, the terminology 

of shear wall in this thesis refers to all three types of lateral load resistant systems, 

including moment resistant connected frames, braced walls and sheathed shear walls. In 

fact, the shapes of the load-displacement relationships in the three types of systems are 

similar in form. It is not surprising therefore, that many models, such as B W B N model 

(Foliente 1993), apply to all three types of systems. 

2.2 Modeling of Shear Walls 

The structure of shear walls involves multiple types of members and connections. It 

is complicated to analyze the structural behaviour of shear walls. Research on the 

structural performance of shear walls under disaster load has been performed for many 

years. The shear wall modeling was summarized in many previous studies, such as those 

of Dolan (1989), BFRL report (1997), and Pardoen et al. (2003). The following sections 

summarize some of the research. 

2.2.1 Simple Nonlinear Spring Models 

The simple nonlinear spring model refers to models which describe the shear walls 

with one or several nonlinear springs. Under a dynamic load, one or multiple dampers 

are added to explain viscous damping. Basically, most of these models are single-degree-

of-freedom system (SDOF). They are purely phenomenon-based descriptions of 
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experiments. The significant difference among these models is how to express the 

pinching effect under a reversed cyclic load. 

Ewing et al. (1980) described a model of wood diaphragms supported on masonry 

walls under a seismic load. One pair of spring and damper was applied to simulate the 

response of each section of diaphragm. From the cyclic test results, the envelope curve 

of the nonlinear response was represented by a so-called second-order curve. Another 

multi-linear curve was added to describe the unloading curves from the backbone curve 

under cyclic load. 

Stewart (1987) and Stewart et al. (1988) proposed a load-deflection hysteresis model 

for ductile nailed structures. This model used a tri-linear curve to represent the envelope 

curve of the reverse cyclic test results. The unloading curve was described as two 

straight lines which intersect at the displacement axis. An additional straight line 

expressed the reloading curve to explain the pinching effect. 

Sakamoto and Ohashi (1988) suggested a lumped mass model for the earthquake 

response analysis of walls. Five lines connecting the origin, one specific point and four 

turning points outlined the envelope curve of the nonlinear spring. Two additional lines 

were added to formulate the unloading curve. The reloading curve had two additional 

lines, one of which had a slope varying with the starting point of reloading. 

Ceccotti and Vignoli (1990) applied a piecewise linear hysteresis model to DRAIN-

2DX, a commercial finite element program, to evaluate the seismic behviour of semi

rigid timber joints. This model employed six straight lines to describe the nonlinear load-

displacement relationship of wood members. This model was later applied to calibrate 
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the force reduction factor in the National Building Code of Canada for shear walls 

(Ceccotti and Foschi 1998) and wood buildings (Ceccotti and Karcabeyli 2002). 

Yasumura (1990) developed a SDOF lumped mass model to perform time-history 

earthquake response analysis for braced frames. A bi-linear slip model was used to 

describe the load-displacement hysteresis loops from cyclic tests. This spring model used 

five independent values for the slope of lines under different loading stages: one for 

loading on the primary curve before yield, one for loading on the post yielding primary 

curve, one for unloading from primary curve, one for reloading with a soft spring and one 

for loading with a hard spring toward a previous peak. A more complicated model was 

developed to analyze the earthquake performance of wooden frame shear walls 

(Yasumura 2000). 

The. Bouc-Wen-Baber-Noori model (BWBN, Bouc 1967, Baber and Wen 1981, 

Baber and Noori 1986) is a distinct SDOF model used to analyze the earthquake 

performance of structures. Unlike other models using multiple straight lines or curves to 

simulate the inelastic and pinching effect, this model expresses the hysteresis loop 

through a set of differential equations. 13 parameters are involved in the differential 

equations. Foliente (1993) proposed to use this model to conduct the stochastic analysis 

of wood systems. 

Kawai (1998) proposed a combined model with a series of straight lines considering 

the effect of slip. The-model used six parameters to define different levels of stiffness at 

different loading stages. Three additional parameters were used to locate the starting and 

ending points of lines. An assumption of this model is that the experienced maximum 

displacement after peak load on one side would be the limit for the other side. The 
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parameters of the model were obtained from the cyclic test results. Then a dynamic 

analysis using the same set of model parameters can be conducted to predict results from 

shaking table tests and pseudo dynamic tests. 

2.2.2 Simplified Analytical Models 

To add to the current knowledge of the phenomenon-based description of shear walls, 

many attempts were also carried out to analyze the load-displacement relationship of 

shear walls with analytical methods. Shear walls are heavily redundant since they are 

always connected with more connections than that of statically-determinate systems. To 

simplify the analysis, some researchers tried to describe the shear walls with several 

degree-of-freedoms (DOFs). Typical assumptions of these models are straight (or rigid) 

frame members, rigid sheathing panels, and three to five DOFs for the shear wall. Some 

models involve energy conservation to establish equilibrium equations. 

Tuomi and McCutcheon (1978) calculated the racking strength of nailed walls. The 

key assumptions of their work include: (1) the frame distorts as a parallelogram while the 

sheathing panel remains rectangular; (2) the nail connector is linear; ( 3 ) distortions and 

deflections are small, so that the deformation of each nail can be expressed as the 

function of corner distortion. An energy method was applied to calculate the racking 

strength. Robertson (1980) stated that the Tuomi and McCutcheon model (1978) cannot 

reflect the effect of wall length and vertical weight. This model was further improved 

upon to formulate an equivalent wall model in which all nails were represented by two 

diagonal springs in order to calculate the effect of openings (Itani et al. 1992). 

McCutcheon (1985) further modified this model with nonlinear nail connectors. 
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Easley et al. (1982) published another simplified model to explicitly calculate the 

shear deformation. Their method was originally developed for corrugated metal shear 

diaphragms. In this work, shear strain was decomposed into two parts: shear strain in the 

individual panels and shear strain due to the localized deformations at the fasteners. It 

was also assumed that shear forces in vertically arranged nail fasteners are in the vertical 

direction and those in top and bottom nail fasteners have both vertical and horizontal 

force components. The vertical forces of these nail fasteners were only proportional to the 

distance to the vertical center line of each panel. A set of formulae were given to predict 

the deformation of shear walls. The results were reported to be acceptable for 

engineering design when compared with finite element method results and test results. 

Gupta and Kuo (1985) proposed a simple numerical model for nonlinear analysis. 

Four degree-of-freedoms for a single panel wall were used to describe the relative angle 

between horizontal edge frames (top and bottom plates) and panels, the relative angle 

between vertical edge studs and panels, the shear angle of vertical studs, and the 

magnitude of the sinusoidal shape of the studs. Each panel had an additional one DOF. 

The results were compared with experiments by Easley et al. (1982) and satisfactory 

agreement was observed. It can also be noted that the assumption of the sinusoidal shape 

of studs is not necessary to obtain acceptable results. In principle, this model is similar to 

the works of Tuomi and McCutcheon (1978) and Easley (1984). The difference among 

these models is the number of DOF used to describe the movement of frames and 

sheathing panels. The diagonal displacement between frames and panels was the only 

DOF in the Tuomi and McCutcheon's work (1978). Two DOFs expressed the sway 

angle of frames and the angle of panels relative to the frames in Easley's work (1982). In 
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a later work, Gupta and Kuo (1987) improved on the model by considering the uplift 

deformation of studs caused by horizontal load. 

Kallsner (1984) proposed an elastic calculation model for shear walls. He used the 

assumptions of rigid frames, rigid panels and elastic nail connections. The system had 

four DOFs including: frame rotation angle, panel rotation angle and displacement of the 

panel center. Minimal potential energy method was applied to the variables of DOFs. 

Kallsner and Lam (1995) improved upon this model with the consideration of plastic 

deformation. Lower bound and upper bound methods were used to estimate the plastic 

load-carrying capacity of walls. . 

Another extension of simplified models was developed by Filiatrault (1990). It is a 

simple numerical model for the analysis of earthquake excitations. The deformation of 

the frame was defined by the lateral displacement of the top plate (1 DOF). Each 

sheathing panel was depicted as rigid-body translations and rotation (3 DOF) and 

symmetric shear deformation (1 DOF). In total, each wall had 4N+1 DOF (N is the 

number of sheathing panels). This number is significantly less than that of the general 

finite element method. The load slip characteristic of the nail connector is same as in 

Dolan's model (1989). Good agreement between analytical and experimental results was 

observed. Folz and Filiartrault (2001) improved this model to simulate reversed-cyclic 

tests and calibrate a single-degree-of freedom nonlinear dynamic system. This model 

was widely used in the CUREE-Caltech Woodframe Project (www.curee.org). 

Dinehart and Shenton (2000) developed a dynamic model based on the observation 

that, at small displacement amplitudes, the hysteresis curve of a nail connection is 

elliptical in shape. Then the sheathing-to-stud connections were modeled using a linear 
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viscoelastic element. The results showed that this model fit the experimental results well 

at small displacement and not badly at moderate displacement. In both the basic 

assumption and the formulae simplification, a small equivalent damping ratio was 

assumed. 

2.2.3 Finite Element Models 

Compared with simple analytical models, finite element models can consider the 

contribution of all structural members, including frame, sheathing, nail connectors and 

hold downs. Finite element models have much accuracy and robustness. They can 

consider the effect of sheathing openings and bending of frame members. The buckling 

effect was also considered in some models. The finite element based shear wall models 

can be easily expanded for 3D analysis of buildings. 

Foschi (1977) developed a finite element program for diaphragms. In this model, the 

sheathing panels were expressed as 12-node orthotropic plane stress elements. The frame 

members were modeled as linear beam elements. The nail connectors were expressed as 

nonlinear springs. The analysis gave a good estimate for the load-deformation 

characteristics of the walls as compared with experimental results. This model was 

improved to incorporate detailed nail connectors in DAP3D (Foschi, 1990). Recently, 

Foschi (2000) improved the model by calculating the hysteresis response of individual 

fasteners with principles of mechanics and the finite element method. Based on Foschi's 

work, He (2002) developed a three-dimensional finite element program for wood light 

frame structures. This program incorporated both a static module and a dynamic module. 

The outstanding feature of this program lies in the potenetial to simulate the structural 

eccentricity and load path of the whole building under dynamic loads. Compared to the 
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shake table tests of shear walls and one-storey house conducted at University of British 

Columbia (Durham 1998, He, 2002), good agreement of He's program was shown. 

Itani et al. (1984) developed a finite element model where the nail connector was 

modeled as joint elements that are similar to smeared nonlinear springs. Each two-node 

joint element was expressed by a 10x10 stiffness matrix corresponding to different nodal 

displacement of frame and sheathing elements. The predicted results were verified with 

test results and good agreement was reported (Itani et al. 1984, Cheung et al. 1988). 

Dolan (1989) developed a finite element model of shear walls that contains following 

elements: 1) beam elements for the frame members; 2) bilinear corner connector elements 

for the connection between the framing members; 3) plate elements for the sheathing 

panels; 4) sheathing connector elements consisting of nonlinear 3-D spring elements for 

the fasteners; and 5) bilinear bearing connector elements for the gap between adjacent 

sheathing panels. Beside the assumption proposed by Foschi (1977), Dolan used 

following assumptions: 1) contact elements are used between adjacent sheathing panels; 

2) after peak load, the- load decreases to zero linearly; 3) the exponential type functions 

are used to express the pinched loops; 4) the viscous damping is proportional to the mass. 

The results of this model compared well with test results. A dynamic program, 

D Y N W A L L , was also developed to compare with shake table test results. Good 

agreement was observed between numerical and experimental results for some cases. 

Kasal et al. (1992a) developed two finite element models with commercial finite 

element program, ANSYS. The first is a detailed substructure model. In this model, 

studs and sheathing were modeled as two-dimensional shell elements with linear 

orthotropic properties.' The joints were represented by two nonlinear springs clustered at 
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common nodes for sheathing and studs, with one for withdraw and another one for shear 

resistance. Gap elements were placed between sheathing panels. The other simple model 

utilized nonlinear diagonal springs to represent the shear behavior of walls (Kasal et al. 

1992b). This assumption was based on DOF condensation technique. Satisfactory 

agreement between these two models was reported. 

2.3 Experimental Tests of Shear Walls 

The structural behaviour of wood shear walls is well-recognized for its complexity. 

The materials, connectors, geometry and load condition strongly affect the performance 

of shear walls. Experimental tests of shear walls help engineers understand how 

individual structural components act together to exhibit the structural behaviour. The test 

results can help to point to improvements and design recommendations, which can be 

used in engineering practice. 

Over the past decades, many researchers have conducted numerous full size shear 

wall tests with the combination of different size, materials, opening and fastener spacing. 

Typical size of tested shear walls is 2.44 m x 2.44 m (8 feet x 8 feet), such as those in 

experiments conducted by Dolan (1989), Tissell (1993) and Durham et al. (2001). Large 

size shear walls were also investigated by some researchers, such as Karacabeyli and 

Ceccotti (1996), Lam et al. (1997) and Pardoen et al. (2003). Detailed bibliographies on 

some of the older full size shear wall tests were written by Carney (1975) and Peterson 

(1983). The research after 1982 was summarized by the BFRL report (1997), Pardoen et 

al. (2003) and van de Lindt (2003). Most of these bibliographies only covered the 

research on shear walls made with regular 38 mm x 89 mm members and sheathing 

panels. Few of them (van de Lindt 2003) mentioned some work that was done 
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concerning Japanese traditional construction. This thesis summarizes some published 

work on Japanese post-and-beam walls. 

Yasumura (1990) conducted a series of reversed cyclic tests of braced frames. The 

frames had a width of 3800 mm and a height of 7500 mm. Large size glulam beams and 

columns were used. Steel plates were used to connect the wood members both with and 

without pins. The test results were used to obtain parameters of a hysteresis model. 

Sugiyama et al. (1988) examined a series of racking tests for braced walls. Eleven 

walls with different geometry of bracing and siding were tested. It was found that the 

load-carrying capacity of the structure is larger than that of the summation of individual 

braced walls. 

Kakaoka and Asano (1988) conducted photoelasticity tests to study the performance 

of frames and joints for Japanese traditional structures. Isochromatic lines from small 

scale tests with wedge joints were compared to show the difference between different 

frame and sheathing configurations. Some rotational deformation curves of joints were 

also shown. Data from the tests were used to analyze a frame structure. 

Hirashima (1988) studied the earthquake response of a two-storey Japanese post-and-

beam house. The house had a width of 3.64 m, a length of 7.28 m and a height of 5.46 m. 

In the first stage test, the house was tested cyclically with amplitude of 1% of storey 

height. During the following three months, the house experienced 21 earthquakes and its 

response was recorded for analysis. Finally, a forced vibration test was conducted to 

identify the resonance frequency. The test results from different test stages were found to 

be consistent with each other. 
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Hayashi (1988) reported his racking resistant tests of conventional walls with 

plywood sheathing panels. The tested walls had a dimension of 1.8 m x 2.55 m for S-

series and 1.792 m x 2.514 m for SN-series. Each series had 12 walls with different 

opening ratios and locations. The test results revealed that stiffness and strength ratio 

decrease with the increase of opening ratio. 

Kawai (1998) tested 16 types of shear walls that followed traditional Japanese post-

and-beam construction. Most of the walls had the dimension of 3.64 m x 2.79 m. 

Twelve types of the specimen were sheathed with plywood, gypsum or siding boards. Six 

others were diagonally braced. Monotonic, cyclic and pseudo-dynamic loading tests 

were conducted for each type of wall. 

Yasumura (2000) conducted tests on a series of wooden frame shear walls in 

accordance to Japanese construction standards. These walls had the length of 1.72 m or 

2.73 m and the height of 2.44 m. They were tested under monotonic load, reversed cyclic 

load and pseudo dynamic load. Varying wall configurations including different opening, 

nail spacing, hold downs, sheathing orientation and sheathing blocking were considered. 

The test results were used to compare the structural performance of the various wall 

configurations and to verify some theoretical models. 

Yamaguchi et al. (2000) conducted a series tests on 2.44 m x 2.44 m shear walls 

made with 38 x 89 mm Canadian S-P-F lumber and 9.5 mm Canadian plywood. A total 

of 12 specimens were studied under different loading rates of monotonic and reversed 

cyclic tests, pseudo dynamic tests and shake table tests. It was found that the force-

deformation behaviour of light frame shear walls was influenced by the rate of 

displacement and the test protocols. 
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UBC conducted some experimental studies on the performance of Japanese walls. 

The walls consisted of three types: two-brace walls, four-brace walls and OSB sheathed 

walls. Beside traditional mortise-and-tenon connection,- metal hardware was used in the 

construction of the walls to reinforce the connection. Twelve specimens with the 

dimension of 2.62 m x 2.70 m were tested under monotonic and reversed cyclic load. 

Three load protocols were applied to compare the effect to test results. This work was 

reported in a master's thesis (Stefanescu 2000). 

2.4 Seismic Reliability Analysis of Wood Structures 

Traditional design methods for shear walls are based on limited experiments and the 

force reduction factor method. The factors of the design equations, applied to nominal 

loads or resistances, are normally calibrated or optimized to approximately achieve target 

reliabilities over a sufficiently large, representative number of "calibration points or 

design cases". As a consequence, the actual reliabilities achieved by these design 

equations may vary from situation to situation and may deviate substantially from the 

targets for cases other than the original calibration points (Foschi 2003). 

Performance of buildings is expressed with regard to the suitability of the building for 

function and occupancy, the extent to which life-safety is protected, and the necessity or 

practicality of effecting repairs on the structure and restoring it to service (SEAOC 1995). 

F E M A 273 (1997) defines earthquake hazard level with occurrence probability in 50 

years. Four levels, 50%, 20%, 10% and 2% of occurrence probability in 50 years, were 

specified as the hazard levels. The corresponding mean return periods of these hazard 

levels are, respectively, 72, 225, 474 and 2475 years. The last two were particularly 

defined as Basic Safety Earthquake 1 and Basic Safety Earthquake 2, based on their 
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levels of importance. The building performance levels were described as Operational, 

Immediate Occupancy> Life Safety and Collapse Prevention. The structural performance 

levels were expressed by limiting damage states and drift limitation. Drift limitation of 

3% for Collapse Prevention, 2% transient or 1% permanent for Life Safety and 1% 

transient or 0.25% permanent for Immediate Occupancy, is recommended for wood 

structures. 

Performance-based design was promoted for the uniform design performance 

objectives considering multiple performance and hazard levels. Due to the uncertainty of 

seismic levels and corresponding resistance levels, performance-based design needs to be 

defined and quantified in a reliability based or probabilistic format. 

Ceccotti and Foschi (1998) presented a structural reliability procedure to evaluate the 

force reduction factor for wood shear walls adopted in the NBCC. First, the shear walls 

of a four-storey residential building were designed following N B C C provisions for the 

city of Vancouver. Then nonlinear dynamic analysis was conducted with DRAIN-2DX 

to obtain the peak drift. The parameters of the hysteresis model came from the test data 

at Forintek Canada Corporation. The reliability indices were then calculated with 

R E L A N (Foschi et al. 1988). The results showed that the current force reduction factor 

in N B C C may be adequate. 

Foliente et al. (2000) conducted seismic reliability analysis of 0.91 x 2.45 m shear 

walls with a modified B W B N model. The applied mass was calculated following 

modified B R A N Z procedure. The artificially generated ground motion records were 

scaled to the levels of 50%, 10%, 5%, 2% and 1 % occurrence probability in 50 years. 

The reliability index was found to depend on the assumed displacement capacity 
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determined from the static cyclic test, and the intensity of earthquakes used to generate 

the displacement spectrum. 

Foschi et al. (2002) presented an approach to reliability calculations in performance-

based design, using an importance sampling simulation. A structural database (force and 

displacement) was generated by finite element tools. The target reliability levels were 

calculated with localized interpolation from a response database. This method was 

incorporated with R E L A N (Foschi et al. 1988) & IRELAN (Li and Foschi 1998). In the 

work which followed (Zhang and Foschi 2003, Foschi 2003), artificial neural network 

technology replaced localized interpolation to construct the response surface for 

reliability evaluation and seismic design. Due to the variation of the frequency content of 

earthquakes, two databases were built to represent average and standard deviation of the 

structural response over a large suite of earthquake records based on four variables 

representing perimeter and field nail spacing, the mass carried by the wall and peak 

ground acceleration of earthquake. Multiple performance levels, including serviceability, 

moderate damage and tearing force, were considered. Performance-based design of 

multiple objectives was realized through solving an optimization function which 

minimizes the deviations between the achieved reliabilities and the targets. A program, 

E Q W A L L , integrated with R E L A N , IRELAN and DAP3D, was available for the design 

of shear walls. 

Rosowsky (2002) reported his work in reliability-based seismic design conducted 

under Task 1.5.3 of the CUREE-Caltech Woodframe Project. The intention of this work 

was to propose a performance-based framework for the design. A suite of 20 ordinary 

ground motion records was selected to represent non-near fault ground motions in 
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southern California. These records were scaled to match the Uniform Building Code 

design requirements. Dynamic calculations were performed to give peak drift for each 

earthquake motion. Performance goals were calculated from the distribution of peak drift 

curves. 

In van de Lindt and Walz's work (2003), 10 pieces of 1.2m x 2.4 m (4 x 8 ft) shear 

wall were tested to calibrate a hysteresis model. The result from each piece of wall was 

fitted to a nonlinear spring model. Then a SDOF system with each set of parameters was 

analyzed under 10 earthquake ground motion records. The peak drift from the time 

domain analysis was fitted to a Weilbull distribution. The reliability under different 

hazard levels was evaluated and a wide range of reliability index was reported. Another 

study by van de Lindt's (van de Lindt et al. 2005) examined the reliability indices of 

shear walls specified by American Forest and Paper Association/American Society of 

Civi l Engineers 16 committee. Strength, rather than commonly used displacement, was 

chosen as the performance measure. This study examined a portfolio of shear walls 

under a set of 20 earthquake records (Krawinkler 2001). The calculated reliability 

indices ranged between 1.0 to 3.0 with a mean of 1.95 and a coefficient of variation of 

0.30. 

L i and Ellingwood (2004) presented a probabilistic methodology used in US Federal 

Emergency Management Agency supported SAC Steel Project to assess the performance 

of wood frame residential houses. SAC Project ground motions were used in the analysis 

and three hazard levels, 2%, 10 % and 50% exceeding probability in 50 years were 

considered. The maximum drift was predicted. The relationship between spectral 
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acceleration and demand (maximum drift) was fit to an exponential function, which can 

be the basis for further study. 

Ellingwood et al. (2004) proposed a fragility analysis methodology of light frame 

wood construction subjected to hurricane and earthquake hazards. The analysis was 

demonstrated for selected common building configurations and constructions. It pointed 

out that the conclusion of fragility analysis under the control variable is easily understood 

by the general public than the more complicated concept of exceeding probability. 

Further validations were believed necessary before being application to building code 

improvements or loss assessment and insurance underwriting could be made. 

2.5 Summary 

Different shear wall models have been developed. The models and their input 

parameters depends on the type of wall under consideration, the type of test conducted, 

and the data fitting approach employed to characterize the wall performance. Simple 

nonlinear spring models fit the load-displacement behaviour of shear walls with a 

nonlinear spring. Simple analytical models use several DOFs to describe the nail slip 

between sheathing panels and frame members. Hysteresis models can also be calculated 

from mechanics principles and the finite element method, considering the contribution of 

the structural members. Generally speaking, the finite element models have good 

robustness to adjust to typical input displacement history or protocol at the cost of 

computational efficiency. The simple nonlinear spring models are the most efficient to 

evaluate the response while the fitted parameters of the models varies from different wall 

configurations. The simple analytical models are moderate in both computational 

efficiency and configuration-independence. 
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Seismic reliability analysis of wood structures is a new topic for performance based 

earthquake engineering. Some researchers used fragility method to analyze the 

earthquake performance of wood structures, such as Foliente et al. (2000), Rosowsky 

(2002) and Ellingwood et al.(2004). Some other studies (Foschi et al. 2002, L i and 

Ellingwood 2004) followed a traditional method for steel structures (Cornell et al. 2002). 

A l l of these methods calculated the probability of exceedance fully or partially from 

conditional probability distribution. 

To conduct earthquake reliability analysis, two aspects of knowledge are required: an 

efficient model to predict the drift of structures with acceptable accuracy and appropriate 

methods to consider the combined effect of earthquake hazards and other sources of 

uncertainty. This thesis discusses the development of both aspects of knowledge. 
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CHAPTER 3. MODEL DEVELOPMENT 

Shear walls have different combinations of materials, sizes and styles. The 

uncertainty of performance of shear walls depends on all aspects of the components, 

construction process and service condition. The relatively expensive experimental tests 

limit the geometry, load condition and the number of test specimen that can be 

considered. Theoretical modeling is important to better understand the intrinsic 

mechanism of shear wall performance under the expected uncertainty, so that the 

performance of general shear walls can be predicted and codified. 

The objective of this chapter is to introduce a new shear wall model in which the 

mechanics based nail model is fitted to represent the behaviour of shear walls. Basically, 

the model is a nonlinear spring, which response is calculated from mechanics principles 

with a F E M program, HYST (Foschi 2000). 

3.1 Initiation of Modeling 

There are many similarities between the shapes of the load-deformation curve of 

individual nail connectors and that of shear walls (Figures 3.1 and 3.2). In both figures, 

the initial shape of load-displacement relationship is close to linear. With the increase of 

displacement, the nonlinearity becomes apparent. After reaching the ultimate or peak 

load, the load decreases while displacement continues to increase. The basic shape of 

pushover test curves of nails and shear walls are upwardly convex. The main difference 

between Figures 3.1 and 3.2 is the magnitude of units. 
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Figure 3.1 Load-displacement relationship from pushover and reversed cyclic loading of 

a nail connection test 
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Figure 3.2 Load-displacement relationship from pushover and reversed cyclic loading 

test of a shear wall 
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3.1.1 Visual Expression of Shear Wal l Mechanism 

The similarities between the load-displacement relationship of shear walls and nail 

connectors can be explained by the mechanism of load transfer in wood frame shear walls. 

It is well recognized that the lateral response of shear walls is mainly governed by the 

characteristics of the panel-to-stud connections. The combined effect of the deformation 

from all the nails is superimposed together to exhibit an overall load-displacement curve 

of shear walls. 

Figures 3.3 and 3.4 visually illustrate the relationship between the load-deformation 

curves of shear walls and nails. The frame is assumed to consist of pin jointed rigid 

straight members. When the wall is pushed by lateral force resisting wind or earthquake 

loads, the frame deforms in a parallelogram shape and the relatively rigid sheathing panel 

attempts to maintain the original shape. The shape difference between the frame and 

panel stretches the nail connectors. A l l of the components are integrated together through 

the connection of joints. 

P T 

Figure 3.3 Initial stage of shear wall tests 
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Figure 3.4 Secondary stage of shear wall tests 

For illustration, two nails are plotted in Figure 3.3a, Nail i and Nail j at different 

locations. At the beginning, the applied force P i , is small enough such that the nail forces 

are in the initial stage. The lateral displacement of the shear wall is noted as di. The 

current status is expressed as Point A in the load-displacement curve of the shear wall 

(Figure 3.3b). 

When the pushover test continues, the gap between frame and sheathing increases but 

the load increment lags after displacement increment since the nails behave nonlinearly. 

That is, the slope of the load-displacement curve of the structure will decrease 

continuously with the increasing of displacement. Some of the nails may experience 

yielding of the steel or crushing of the surrounded wood medium both of which result in 

further decrease of resistance in the structure. This process will continue until the 

number of key nails experiencing the maximum load reaches a critical point after which 
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the shear wall cannot sustain further increase of lateral load. Point B in Figure 3.4b 

exhibits the status at this stage. 

The approximate visual description illustrates that the load-displacement curve of a 

shear wall is the total contribution of an ensemble of nails. Its behaviour therefore is 

intrinsically related to the performance of single nail connectors. 

3.1.2 Mathematical Expression with Finite Element Method 

When the finite element procedure is applied to analyze the shear wall performance, 

the nodal forces can be finally expressed as the product of stiffness matrix and 

displacement vector (Foschi 1977, Filiatrault 1990): 

( d \ ( p \ 

_ nx\ nxn _ 

(3.1) 

where: 

k is a variable (nonlinear function of nail slip and other materials); 

A , B, K are sub-matrix (nonlinear functions of nail slip and other variables); 

R is a vector representing nail slips; 

d is the transverse displacement at the loading point (refer to Figures 3.3 and 3.4); 

P is the applied load (refer to Figures 3.3 and 3.4); 

O is a zero vector representing zero external forces at some nodes. 

It should be stated that the stiffness matrix here refers to the secant stiffness. For 

nonlinear analysis of shear walls, generally there is no closed form expression of this 

matrix. 

After simple calculation, one has: 

d = k~l(P + AK'XBd) (3.2) 
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This equation indicates that the lateral shear wall displacement is a function of nail 

slips, other material properties and applied load. If the frames and sheathing panels are 

assumed to be rigid, the load-displacement relationship of shear walls is governed by the 

property of the nail connectors. 

It can be concluded that the load-displacement curve of shear walls results from the 

total contribution of all nails as well as other materials. It can be considered as a "scaled" 

nail load-deformation curve representing the behaviour of a group of nails. This implies 

that it may be possible to find a pseudo nail connector with appropriate parameters to 

model the behaviour of shear walls. 

3.2 Model Development 

To simulate the load-displacement behaviour of shear walls, the selection of a 

representing nail model is important for the accuracy. Here a mechanics based nail 

model (Foschi 2000) was chosen as the analog. The finite element method is employed 

to describe the nonlinear behavior of the elasto-plastic properties of the nail, the nonlinear 

interaction between the nail and its surrounding wood medium and formation of the gap 

(Figure 3.5). In this figure, F represents the force applied to the top of the nail. When the 

nail head experiences a magnitude of displacement, A, the nail deforms to the shape as 

shown. The reaction of the surrounding wood medium is assumed to be a function p(w), 

which is the reaction force at unit length acted to nail with respect to the displacement, w. 

The embedding function p(w) has six parameters, K, Qo, Qi , Q 2 , Q 3 and D m a x , which 

allows for the degradation of strength and stiffness. K is the initial stiffness of the curve 

while Qo and Qi are the variables for an asymptote which illustrates the stage of the curve 

near the peak load. D m a x is the displacement at the maximal load. Q 3 is a ratio of peak 
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load defining the shape of decreasing curve. Q 2 is the ratio of the peak load that is 

achieved at a deformation Q 3 multiplied by D m a x . In this way, Q 2 and Q 3 define the shape 

of the decreasing or softening portion of the embedment relationship. Additional two 

parameters, Dj and L , are the diameter and length of the pseudo nail. So the reaction of 

wood medium, p(w) is expressed as: 

p(w) = (Q0+Qlw)[\.0~exp(-Kw/Q0)], (if w . ( 3 . 3 ) 

PM = Pim,^P[Q^-DmJ2], ( i f w > D m a x ) (3.4) 

=(0„ + 0 , A n a x ) [ l . O - e x P ( - ^ m a x / Q 0 ) ] (3.5) 

Q,=^g(Q2)l[Dmm(Q,-\.Q)f (3.6) 

Qi=plp^ (3-7) 

where 

p(.) is the resultant reaction force, force/length; 

QQ is the intercept of the asymptote, force/length (refer to Figure 3.5); 

Q] is the asymptotic stiffness, force/length (refer to Figure 3.5); 

K id the initial stiffness, force/length2; 

w is the displacement, length; 

pmm is the maximum resultant reaction force, force/length; 

Z ) m a x is the displacement at p m a x , length. 
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Figure .3.5 Typical mechanical connector (Foschi.2000) 

Figure 3.6 Embedment function of p(w) (Foschi 2000) 

Under cyclic load, a set of reloading rules was defined 

I f(w <Z>0), then p = 0; (3.9) 
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If (w > D0), then p = min[/?, = K(w - D0), p2 = p(w)]; (3.10) 

If (p = p2), then update D0: D0 -w-plK; (3-11) 

l f ( /? = 0)or(_p = px), then Z)0 unchanged. (3.12) 

where 

D0 is the experienced maximum displacement before reloading (point "b" in 

. Figure 3.5) . 

Mechanical properties for the nail (modulus of elasticity and yield point) are those of 

mild steel. The unloading path is linear. This procedure has been implemented into a 

finite element program, HYST (Foschi 2000). 

To represent the shear wall response with a pseudo nail such that it exhibits the same 

response of the representing shear walls, the selection of parameters is important. 

Compared with a physical nail connector, this pseudo nail model does not have real 

physical meaning of geometry. Beside the six parameters for HYST program, additional 

two parameters are required to identify its dimension: the length of the nail (L) and the 

diameter of the nail (Di). Therefore, there are eight parameters in total: Qo, Q i , Q 2 , Q 3 , K, 

D m a x , L and D|, to be determined. To simplify the problem, Q 2 is set to 0.8. The rest 

seven parameters are to be identified as import to the HYST program for the representing 

pseudo nail model. 

Since the pseudo nail model is not a real nail, it is difficult, if not impossible, to 

identify the parameters with traditional analytical method. Only simulation techniques 

are possible to find the appropriate parameters from the existing load-deformation curve 

of the pseudo nail model, or, of the shear walls. In other words, the challenge is to find 

parameters of the pseudo model from its known input and recorded output. Contrast to 
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traditional forward problems which determine the output from the known system 

parameters and given input, system parameter identification is an inverse problem. 

Inverse Problem 
< • — 

INPUT SYSTEM OUTPUT INPUT 
• 

SYSTEM 
w 

OUTPUT 

Forward Problem 

Figure 3.7 Forward and inverse problems 

To solve the inverse problem, an optimization function is written to minimize the 

summation of square error between predicted and test data, shown as: 

N ' 

mins = £ ( / v , s , - F l m o i e l ) 2 (3.13) 

where 
i and N, are the i t h and N l h discrete point, respectively; 

Ff l(lxl is the value of force obtained from tests at the i t h discrete point; 

Fj m o d e ] is the value of force calculated from models at the i t h discrete point. 

This optimization function is subjected to variables of Qo, Qi, K, Q 3 , D m a x , L and Dj. 

These variables can be identified with different search methods. 

3.3 Input Data Set 

The number of input and output data sets, N, of the inverse problem may be great 

enough to calculate the parameters. Since there are seven parameters to be determined, 
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the minimum number of data sets, N, is seven. This is based on the assumption that all 

the seven sets of data are intrinsically independent. 

Selecting seven implicitly independent data sets is difficult since the unknown 

parameters cannot determine the selection rules. More input data always consists of more 

system information. Ideally, the whole reversed cyclic test results are the best to feed 

into the optimization function (Equation 3.13), if computational efficiency is not of 

concern. For practical reasons, it is not necessary to fit the full set of reversed cyclic test 

results since much information from the test results is highly redundant with respect to 

the unknown variables of Qo, Qi, K, Q3, D m a x , L and Di. 

To capture the characteristics of loading and unloading paths with reasonable 

computational time, this model needs to be calibrated against the response of a shear wall 

subjected to a half cycle static load. This half cycle static load-deformation response can 

be obtained from an experiment or from a validated analytical calculation of wall 

response. 

The maximum displacement of the input data should be more than the displacement 

at peak load. A post peak load of 80% maximum load is recommended for the input data. 

Furthermore, including the descending branch of the load-deformation curve is crucial for 

determination of the variable Q3. 

3.4 Search Methods 

Equation 3.13 is a nonlinear optimization problem. The error function, e, is not 

monotonic for most of seven variables, which means there are multiple local optima in 

the 8-dimensional (7 variables and their function) Euclid geometry. The optimization 
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does not have any explicit constraint condition. But some of them have to be positive to 

be assigned corresponding physical meaning, such as the length L and the diameter Dj. 

Many search strategies are available to . identify the best parameters, of the 

optimization function. Basically, they can be classified into two groups: gradient based 

methods and non-gradient based methods. 

3.4 .1 Gradient Based Methods 

The gradient based methods can be evolved from Taylor series expansion of a 

function. Consider the error function of seven variables in Equation 3.13: 

min s = s(X) = e(Q0, Q„ K, Q 3 , D m a x , L , Di) (3.14) 

where 

h i ' f i o ) 
x2 fi, 

K 
X 4 

= 
X5 ^ m a x 

X6 L 

The Taylor series expansion for this function, about the reference point X , is 

e(X) = s{X') + V£(X)T \ x = x . (X-Xt) + ̂ (X-Xt)TV2

£(X)\x_x. (X-X') 

+ 0[(X-X')2] (3.15) 

where Ve(A^) is the gradient which is defined as: 
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Ve{X) = 

ds(X)\ f d 
dx, dQQ 

ds(X) d 
dx2 

ds{X) d 
dx3 

— t 
dK 

ds(X) d 

dx4 

ds(X) d 

dx5 

ds(X) d< 
—•— 8 dx6 dL 

de(X) d 

dx, , { dD, 

^ ( Q 0 , Q 1 , K , Q 3 , D m a x , L , D 1 ) 

- * ( Q 0 , Q 1 , K , Q 3 , D m a x , L , D i ) 

- £ ( Q 0 , Q , , K , Q 3 , D m a x , L , D , ) 

- * ( Q 0 , Q 1 , K , Q 3 , D m a x , L , D i ) 

^ ( Q 0 , Q , , K , Q 3 , O m a x , L , D , ) 

- s ( Q 0 , Q I , K , Q 3 , D m a x , L , D i ) 

- s ( Q 0 , Q 1 , K , Q 3 , D n i i x , L , D i ) 

(3.16) 

and W2e(X) is the Hessian matrix which is defined as: 

V2e(X) = 

d2s(X) d2s{X) d2s(X) 

dx2 Qx ̂  X 2 9xjX 7 

d2s(X) d2s(X) d2s(X) 

Qx 2 X ̂  dxi Qx^2 X i 

d2s(X) d2s(X) d2e(X) 

dx7x. $X -j X 2 dx2 

(3.17) 

Many search algorithms can be formulated from the Taylor series expanded at a local 

optimum. First order methods, such as Steepest Descent and Conjugate Gradient Method, 

truncate the second order Hessian while Quasi Newton methods involve both the gradient 

and Hessian. 

A l l gradient based methods converge to a local optimum, which may not be the 

global optimum. Trial solutions to initiate the iteration are usually significant to achieve 

the global optimum. 

The major difficulty to apply these methods is to generate the expression of gradient 

and Hessian in closed form. Since Fimoiel is calculated from a nonlinear finite element 
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program, it is hard to explicitly express the gradient and Hessian and then evaluate them 

at specified points. Instead, the gradient and Hessian are generally approximated by 

finite difference which computes the values of the object function at small steps of 

dependent variables. 

There is a dilemma in the choice of incremental steps of the variables for the 

determination of the gradient and Hessian. On one hand, the geometrical meaning of 

finite difference is a secant hyper-plane near the observed point. To represent the 

tangential hyper-plane of the gradient, incremental steps have to be as small as possible. 

On the other hand, truncation errors become significant for the generated gradient or 

Hessian when the incremental steps are very small. When the iteration reaches an 

optimum, the significant digits of adjacent function values are close to each other. Then 

the finite difference of these values deviates from the real situation, which results in 

divergence of the search. 

3.4.2 Non-gradient Based Methods 

Non-gradient based methods determine the search path without using the information 

of the gradient or Hessian. Many of these search methods are heuristic based, which 

improves the solution through incomplete available knowledge (Bole and Cytowaki 

1992). Some of them do not consider the search space, such as the hill climbing method. 

Others solely explore the search space without considering the object function values, 

such as the random search method. Finally, methods such as the genetic algorithm 

integrate the information from both search space and object functions (Michalewicz 

1994). In this thesis, five algorithms were implemented to identify the parameters of the 

pseudo nail model. 
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'3.4.2.1 Hi l l Climbing Method 

Foschi (2000) developed a program of the hill climbing to find the parameters of his 

nail model from connector test results. This method starts from an initial point and sets it 

as the current point. During iteration, the values of neighboring points are evaluated. If 

the neighbor is better than the current one, it replaces the current one; otherwise the 

algorithm keeps the current point. The hill climbing method is easy to implement. But 

its efficiency is heavily affected by the nature of the problems. A good initial solution is 

important because the method converges to a local optimum. In this thesis, Foschi's 

program was modified to solve the optimization problem with seven parameters. 

3.4.2.2 Random Search Method 

A random search program was written by Foschi to identify the parameters of his nail 

model (Foschi 2000). This program generates all trial solutions within upper and lower 

boundaries randomly. Subsequent trials are limited to a given distance from the current 

best solution. If a trial is better than the current one, it updates the best solution; 

otherwise, it continues to search for a better solution. The key algorithm of the program 

is: 

Step 0: 

Generate some independent feasible random vectors and compare their 

functions. Pick up the best one as the initial current point. 

Step 1 : 

Randomly generate a trial point within a prescribed distance from the current 

best point. If the trial point exceeds the boundaries, set it to the corresponding 
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boundary. Evaluate the function value at this point. If it is better than current one, 

then update the current one. 

Step 2: 

If the function value of current best point does not satisfy the prescribed stop 

criteria, goes to Step 1; else stop. 

3.4.2.3 Simplex Method 

The simplex method (Nelder and Mead 1965) was reported to succeed in identifying 

the parameters of a modified B W B N model (Foliente et al. 2000). Nelder and Mead's 

simplex considers the minimization of a function of n variables. Po, P i , . . . P n are the (n+1) 

trial vectors in n-dimensional Euclid space. The function value at Pi point is denoted as 

v,. Denote [PjPj] for the distance from Pi to Pj. and define: 

Consequently, the function values at y, andy tare denoted as PhzmdP, respectively. 

Three operations, reflection, contraction and expansion, are involved to generate a new 

point to replace Ph. The result of reflection is denoted as P* and its co-ordinates are 

defined by the relation 

yh =max(>,) (i = 0,n) (3.18) 

y, =rninO>,.) (i = 0,n) (3.19) 

(3.20) 

P' =(l + a)P-aPh 
(3.21) 
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a is a positive constant, the reflection coefficient. It is defined as the ratio of the 

distance [PhP] to [P*P]. This operation can be shown graphically (Figure 3.8). If 

y lies between yh and_y,, then Ph is replaced by P* and the search is started again. 

O 

Figure 3.8 Reflection operation 

If y* < y,, i.e. if reflection has produced a new minimum, then P* is expanded to P** 

by the relation 

P" =yp* +(\-r)P (3.22) 

The expansion coefficient y is the ratio of the distance [P** P\ to [P* P]. It is greater 

than unity. Figure 3.9 shows the operation. If y" <yt, then P| is replaced by P" and 

the process is restarted. If y" > y,, the expansion fails and the process can be restarted 

after Ph is replaced by P*. 
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[P"P] = r[P'P] 

o 

Figure 3.9 Expansion operation 

If y* > y, after reflection, a new Ph is replaced by either old Ph or P*, whichever 

has the lower function value. A new P** is contracted by the relation 

P" = BP;i+(\-ff)P (3.23) 

The contraction coefficient P lies between 0 and 1 and is the ratio of the distance 

[P" P] to [PhP]. If y" >mm(yh,y"), replace all the Pl.'s by (P,. +/>)/2 and restart 

the process. Otherwise, P replaces the P], before the process is restarted. 

O 

Figure 3.10 Contraction operation 
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Nelder and Read (1965) found that the strategy a=l, (3=1/2, y=2 was the best. An 

open-source FORTRAN subroutine, MINIM (StatLib 2002), is used in this study to 

identify the parameters. 

3.4.2.4 Genetic Algorithm 

The Genetic algorithm (GA) is an adaptive heuristic search algorithm based on the 

mechanics of natural selection and natural genetics (Goldberg 1989). The fundamental 

concept of the algorithm is to mimic the Darwinian evolution process of the natural 

environments. Typical genetic operators include reproduction, crossover, and mutation. 

Encoding and decoding in strings are necessary before and after these operators. 

The algorithm starts with a set of random solutions, or population. Each individual in 

the population is named as a "chromosome", which represents a trial solution to the 

problem. A chromosome has multiple genes, each of which corresponds to one variable 

of the problem. The chromosomes have to be expressed in forms of strings before 

operated. The process converting the problem into strings is encoding. Usually, but not 

necessarily, the string is expressed in binary. 

Reproduction is a process in which individual strings are copied according to the 

relative ratio of their objective functions, or the fitness functions. The reproduction 

process imitates the natural selection of Darwinian survival of the fittest among creatures. 

The basic way to implement the reproduction operator is to create a biased roulette wheel 

where each current string in the population has a roulette wheel slot sized in proportion to 

its fitness for maximization problems. Figure 3.11 shows an example in which each 

chromosome (or solution), X(i), occupies an area Aj determined from the ratio of its 

fitness to the summation of the fitness of the population, i.e., 
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j 

where 

f[X(i)] is the fitness of the problem for i t n chromosome. 

Each spin of the roulette wheel generates one offspring. It is obvious that the 

chromosome with more fitness (more area on the wheel) has more opportunity to be 

chosen to generate offspring. The probability to be chosen is proportional to the area on 

the roulette wheel. 

The operator following reproduction is crossover. The newly reproduced 

chromosomes are mated in pair at random. Each pair exchanges some portion of their 

genes. The starting location of the gene to be exchanged is randomly (typically in 

uniform distribution) determined. Figure 3.12 shows a pair of chromosomes swapped 

their string from the 5 t h to the 8 t h bit. 

Mutation is a random change in the genetic material of a chromosome. Mutation 

alters one or more genes with a probability equal to the mutation rate, which is usually 

very low. In Figure 3.13, the 5 t h bit of the chromosome is flipped to 0 after mutation. 

After new chromosomes are generated via the crossover and mutation operators, new 

reproduction can be conducted. The whole flowchart of the GA is expressed in Figure 

3.14. 
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The occupied area Aj for x(i) 

equals to ^ L W J 

Figure 3.11 Reproduction from roulette wheel 

X ( 2 ) = 1 1 0 1 

X(i)= i o i o [ n o i C r o s s o v e r x ( i ) - i o i o; 

swap 

0 1 1 0 X ( 2 ) = 1 1 0 1 

0 1 1 0 

1 1 0 1 

Figure 3.12 Crossover operator 

mutation 
X ( l ) = 1 0 1 0 1 1 0 1 r \ X ' ( l )= 1 0 1 0 0 1 0 

0 

Figure 3.13 Mutation operator 
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Figure 3.14 Flowchart of G A operators 

This study employed an open-source FORTRAN program, PIKAIA (Charbonneau 

2003) as a subroutine of optimization. This program was written for maximization 

problems because reproduction using the roulette wheel suits for such problems. The 

minimization problem expressed in Equation 3.13 is converted to an equivalent 

maximum problem, shown as: 

m a x (I) = _ 1 (3.25) 

/ , V ijexl t . m o d e / / 

;«=1 

This format of conversion keeps the positive sign of function value that is essential to 

compute the relative area on the roulette wheel. The singularity of the divisor is not a 
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problem here since numerical simulation can not obtain exactly the same results as the 

input ones. 

3.4.2.5 Artificial Neural Network 

The Artificial Neural Network (ANN) was inspired by the characteristics of 

biological nervous systems, such as the brain. The brain consists of a large number of 

highly interconnected processing elements called neurons. Each neuron is a specialized 

cell which can propagate an electrochemical signal. The neurons and the communication 

among neurons through electrochemical signal establish new connections or modification 

of existing connection which is the basis of learning function. 

Artificial neural networks mimic the function of brain but they do not have the 

complexity as that of the brain. There are, however, two key similarities between 

biological and artificial neural networks. First the elements of both types of networks are 

simple computational devices that are highly interconnected. Second, the connections 

between neurons determine the function of the network. In the recent years, the power 

and usefulness of artificial neural networks have been demonstrated in many groups of 

applications, including clustering, classification and pattern recognition, function 

approximation and predication of dynamic systems. 

Many types of artificial neural networks are available for solving different problems: 

perception, vector quantization networks, feed-forward neural networks, radial basis 

function networks and Hopfield networks. Each type of artificial neural networks has its 

own features and applies for different applications. 

The artificial neural network is implemented here to extract the possible useful data 

from intermediate calculation results. The optimization methods, such as the random 
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search or simplex, have to run iteratively in order to obtain the final solution even though 

the final solution is not optimal. The incomplete data generated during the iteration 

process contains some valuable information. The artificial neural network is applied as a 

data mining tool to recover additional information. 

The concept of this application is to find the parameters of the pseudo nail given its 

response curve, or the half cyclic static load-deformation curve of shear walls. A three-

layer perception network is studied here with the topology shown in Figure 3.15. 

Input 1s t layer 2 n d layer 3 r a layer Output 

Figure 3.15 A three-layer network topology 

The input of the studying neural network is the information of the response curve. But 

the response curves are typically composed of several hundreds of points. To reduce the 

number of independent input elements, five parameters, Q'o, Q ' i , Q '3, K' and D ' m a x , are 

used to characterize the shape of the response curve. The geometrical meaning of these 
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five variables is the same as that of the embedding function (Figure 3.6). So the input of 

the neural network has five elements. The output of the neural network of interest has 

seven elements, which are the seven variables to be optimized for the pseudo nail, i.e., Qo, 

Q i , K, Q 3 , Dmax, L and D j . The transfer functions of neurons in the first and second layers 

are log-sigmoid, which is expressed as 

a = —— (3.26) 

where 

n is the input of the neurons, 

a is the output of the neurons. 

The transfer functions of neurons in the third layer are linear, which can be expressed 

as 

a = n (3.27) 

where 

n is the input of the neurons, 

a is the output of the neurons. 

The multilayer perception network is trained by the back-propagation algorithm. The 

training method is Levenberg-Marquardt algorithm (Scales 1985), which is a variation of 

Newton's method. The training database is accumulated from the iteration process in 

running other methods (random, hill climbing, simplex and genetic algorithm) when 

many sets of trial solutions and their corresponding response curves are generated. The 

numbers of neurons in different layers vary from the training database. Typically, there 

are six, eight and seven neurons in the first, second and third layer, respectively. 
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3.5 Nonlinear Time-History Analysis 

The representative pseudo nail is capable of predicting the nonlinear hysteresis 

behaviour of wood shear walls. Principally it is a nonlinear spring model which response 

is calculated with a finite element model. The dynamic response of the shear walls with 

such a nonlinear spring is calculated with a SDOF system, as illustrated in Figure 3.16. 

In this figure, the shear wall is represented by a nonlinear spring, whose response, F(x), is 

the function of drift x, as calculated by HYST (Foschi 2000). The shear wall carries a 

mass M on its top. C is the viscous damper of the system. 

\ 
\ 
\ 

F(x) 

v W 

Figure 3.16 SDOF system for dynamic response 

The governing equation of the SDOF system can be expressed as 

Mx + Cx + F(x) = -MaG (3.28) 

The second order differential equation is generally solved with direct integration 

methods (Bathe 1996). Houbolt method (Houbolt 1950), Newmark-p method (Newmark 
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1962) and Wilison-0 method (Wilson et al. 1972) are commonly used in engineering 

discrete analysis. The major difference of these methods is how to predict the 

acceleration or displacement in time. The implicit format of these methods requires 

iteration in solving the problems. This disadvantage does not stop their wide usage since 

their unconditional stability provides researchers with the flexibility in choosing the time 

step. 

Newmark -0 method is implemented in the study to analyze the dynamic equation 

3.28. The assumptions of Newmark-p method are 

x{t +1) = x{t) + [(1 - B)x(t) + px(t + \)]At (3.29) 

x(t + \) = x(t) + x(t)At + [(^-y)x(t) + pc(t + \)]At2 , (3.30) 

where 

t, t + l are the solved time and next unknown time, respectively; 

x(.) , x(.), x(.) are the drift (relative displacement), velocity and acceleration, 

respectively; 

f3, y are adjustable parameters. 

Solving Equation 3.30 for x'(̂  + l ) i n terms of x(t + l) and then substituting for 

x\t +1) into Equation 3.29, one obtains equations for x(t +1) and x(t +1), each in terms 

of the unknown displacements x(t +1) only. Substituting these two relations into 

Equation 3.28 gives the expression of x(/ + l ) , after which x(/ + l) and x(/ + l) can be 

calculated. The iterative procedure of Newmark-P method can be found in any text 

books about dynamics or finite element method (Bathe 1996). When programming these 
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procedures, the nonlinear response, F(x), is to be called or executed from another 

subroutine, HYST. 

A popular format of Newmark-(3 method, the constant-average acceleration method, 

in which 7 = ~ a r , d P = ^ , was used in the samples of the thesis. 

3.6 Summary 

A nonlinear single degree-of-freedom system, the pseudo nail model, was developed 

to simulate the dynamic behaviour of wood shear walls. This model used a nail analogue 

which response is evaluated with finite element method considering the nonlinear 

behaviour of nail shank, surrounded wood media and contact effect between nail and 

wood. Using nonlinear optimization methods, the parameters of the pseudo nail model 

can be calibrated with a half cycle result from reversed cyclic tests. With these 

parameters, the pseudo nail model can predict the behaviour of the representing shear 

wall under cyclic load or dynamic load. 

Five optimization methods were implemented to identify the parameters, including 

hill climbing method, random search method, genetic algorithm, simplex and artificial 

neural network. Newmark-P method was used to calculate the nonlinear response under 

dynamic load. 
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CHAPTER 4. MODEL VALIDATION 

4.1 Introduction 

The nature of the pseudo nail model is a nonlinear spring. With a viscous damper, an 

SDOF system can be constructed to simulate the dynamic behaviour under earthquake 

load. Compared to other simple nonlinear spring models, the pseudo nail model has 

some important features. Firstly, the pseudo nail model simulates the hysteresis loops 

through finite element procedures which usually give very smooth curves of results under 

continuous unloading and reloading. The continuity of the first order derivative of the 

resulting curves is important for the convergence of other gradient-based applications, 

such as the reliability analysis with FORM. Secondly, the process of identifying the 

parameters is conducted by the computer, which is independent of the potential variation 

introduced by human decision. 

As a simple nonlinear spring model, the parameters of the pseudo nail model are first 

established from a half loop of reversed cyclic test results. Then it can be validated with 

the test results under reversed cyclic load or dynamic load. To study the robustness of 

this model, verification should be conducted for as many configurations of walls as 

possible. Typical configurations to verify the model include different nail spacing, 

resistant types and loading conditions. 

The University of British Columbia has conducted many experimental studies on the 

performance of wood structures. Recent work consists of the performance of shear walls 

sheathed with oversize OSB panels (Lam et al. 1997, He et al. 1999 and Durham et al. 

2001), the shake table tests of full-scale wood frame residential houses (Ventura et al. 
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2002) and the performance of Japanese shear walls (Stefanescu 2000 and Jossen 2003) 

and the performance of Japanese post and beam houses (Lam 2005). The test results of 

these works provide useful information to verify the pseudo nail model. 

4.2 Validation of Panel-Sheathed Shear Walls 

Durham et al. (2001) reported an experimental study on the earthquake resistance of 

2.4 m x 2.4 m shear walls sheathed with regular or oversized OSB panels. This work 

extends a previous study on walls subjected to reversed cyclic loading regimes to 

investigating the dynamic behaviour of the shear walls on a shake table. Monotonic, 

reversed cyclic and dynamic loading tests were performed on shear walls with standard 

(1.22 m x 2.44 m) and oversize (2.44 m x 2.44 m) OSB panels. In total, 14 walls were 

tested. This work resulted in a master thesis (Durham 1998). 

The test walls were built with No. 2 and better grade of 38 x 89 mm Spruce-Pine-Fir 

dimension lumber. The end studs and top plates were double members and the bottom 

plates and interior studs were single members. Studs were spaced at 400 mm on centre. 

The fasteners connecting the sheathing panels to the frames were pneumatically driven 50 

mm spiral nails. Conventional hold downs were installed to prevent uplift. OSB panels 

(9.5 mm thick) were used as the sheathing panels which were configured into three types 

with different edge nail spacing (Durham 1998). Two of the configurations were used in 

this thesis: Type A and Type C. Type A had three regular-size panels, one of which was 

a single 2.4 x 1.2 m panel horizontally oriented at the bottom and two were 1.2 x 1.2 m 

panels at the top. Type C had a single 2.4 x 2.4 m panel. Interior nail spacing for all 

walls was 300 mm. The edge nail spacing was 150 mm for panel configuration Type A 
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and 75 mm for Type C, respectively. The difference of nail spacing and panel layout of 

the two configurations can verify the robustness of the proposed pseudo nail model. 

The monotonic and reversed cyclic tests were carried out on the same test apparatus 

as used for the long shear wall tests (Lam et al. 1997). A vertical load of approximately 9 

kN/m was applied to the top of walls to represent the weight of one storey. The test 

protocol for cyclic tests was developed by He et al. (1999). The test results were used by 

He (2002) to validate a FEM.program for wood frame structures, L i g h t F r a m e 3 D . . 

The shake table tests were performed with a testing frame specially designed for 2.4 

m x 2.4 m wood walls (Dolan 1989). The earthquake record was chosen as the east-west 

component of the 1992 Landers, California earthquake recorded at Joshua Tree Station. 

An inertia mass of 4545 kg was placed on the top of the testing frame which applied the 

inertia force to the shear wall in testing. The visco-damping ratio is assumed to be 1% of 

the critical damping with respect to the initial tangential stiffness. 

4.2.1 I n t e r p r e t i n g Tes t D a t a 

In the monotonic and cyclic tests, the vertical loads were applied directly to the top 

plates of the tested shear walls. In shake table tests, the mass was placed on the frame 

above the top plates of shear walls. Figure 4.1 presents schematic drawings of the testing 

apparatus on the shake table. The vertical dark line represents the stiff sway frame with 

the height of L i . The rotational angle of the frame is noted as 0. The frame has an inertia 

mass, M , on its top. The shear wall is connected to the sway frame at a distance of L2 

from the bottom. The displacement of the shear wall relative to the ground, or the drift, is 

x, which equals to 9L2. The behaviour of shear wall is represented by a pair of nonlinear 

spring, F(x), and damper, c. When the ground is experienced the ground motion of 
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acceleration, y, the dynamic equation can be established from the equilibrium of the 

mass, as following 

M[y + LX0] + [F(x) + cx]^- = 0 (4.1) 

L , 

L 2 

M 

F(x) 

c 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

/vvv 

Figure 4.1 Schematic drawing of Dolan's dynamic testing frame 

From the relationship of x = 0L2, Equation 4.1 can be rewritten as 

{^-fMx + F(x) +.cx = -i^)My (4.2) 

It should be noted that this system is not equivalent to that where a mass of (y-)M is 
L 2 

directly applied to the top plate of the shear wall, which may lead to a wrong equation as 

(^-)Mx + F(x) + cx = -My (4.3) 
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In Durham's tests, Z, = 3043 mm,L 2 = 2545 mm, M=4545 kg. F(x)is defined by the 

pseudo nail model. 

The recorded drift data shown in Figure 5.20 of Durham's work (Durham 1998) were 

processed with both a low-pass filter and a high-pass filter in frequency domain (Durham 

1999). So there is no residual drift shown in the graph in Durham's work. To keep the 

residual deformation of shear walls, this thesis only filtered high frequency components 

from the original test results of Durham's work. 

The input of each calculation was the recorded shake table acceleration from the 

individual tests. The calculated drift was then compared with test results. From trial 

calculation, it was found that the numerical prediction did not match the test results well. 

Good agreement between test results and numerical prediction was only seen after the 

measured shear wall drift was phase-shifted for a period of time varying from 0.09s to 

0.28s. Durham's thesis attachment (Durham 1999) and Dolan's work (Dolan 1989) 

showed that two computers were involved to collect the data of the wood shear wall tests 

in the UBC Civi l Engineering laboratory. Obviously there was no electronic device to 

synchronize the two computers. The manual operation of the computers and 

corresponding programs created the time lag for some recorded data in Durham's work. 

After tests, discrete Fourier transformation was implemented to merge the data together. 

So the discrepancy of phase angle between test results and predicted results can be 

explained by a possible time lag between the two computers that recorded the table 

acceleration and shear wall drift. A personal communication with Durham suggested the 

same explanation. Unfortunately no more detail was found to confirm this explanation. 
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4.2.2 Pseudo Nail Calibration of Type A Shear Walls 

Durham (1998) tested four shear wall specimens of Type A configuration. Test 4 was 

subject to monotonic loading. Test 8 was subject to reversed cyclic loading. Tests 11 

and 14 were conducted under dynamic loading. The reversed cyclic test, Test 8, should 

be used for the input of the pseudo nail model. But this test did not give the unloading 

curve after peak load. In Figure 4.2, the unloading part of the input curve was estimated 

from the cyclic test results. The input curve was fitted with different search methods as 

discussed in Chapter 3. The fitted results are given in Figure 4.2. Table 4.1 presents the 

parameters for different search methods. 

— - - Random search 

— - • Simplex 

— - -Genetic algorithm 

Neural network 

— Hill climbing 

Input 

Displacement (mm) 

Figure 4.2 Input and fitted curves for Type A walls 
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Table 4.1 Parameters for Type A shear walls 

Qo Qi K Dmax Q 3 
Di L 

(kN/mm ) (kN/mm2 ) (kN/mm2) (mm) (mm) (mm) 

Hil l climbing 0.7389 0.05830 0.2866 30.606 1,3677 9.6000 135.00 

Random search 0.0807 0.05113 0.1908 27.697 1.7772 11.605 264.61 

Simplex 0.7707 0.02781 0.1100 38.652 1.1867 11.122 455.64 

Genetic algorithm 0.0491 0.09211 0.1903 28.093 1.3583 9.8225 397.52 

Neural network 0.4847 0.05980 0.2456 . 30.017 1.3836. 10.244 130.88 

4.2.3 Validation of Type A Shear Walls 

With these sets of parameters in Table 4.1, the load-displacement behaviour of the 

walls under cyclic and dynamic load was predicted. Figure 4.3 demonstrates the 

comparison between the model prediction and the cyclic test results (Test 8 of Durham's 

work). 

Two duplicates were tested under dynamic load for Type A shear walls in Durham's 

work: Test 11 and Test 14. Ideally, they should yield the same results. Due to the 

variation of material properties and the realization of loading condition, the results from 

the two specimens are slightly different. In Figure 4.4, the predicted drift of the shear 

wall is compared with that of experimental results of Test 11. Figure 4.5 shows the 

comparison between the predicted drift and the experimental results of Test 14. In each 

case, the recorded shake table acceleration, rather than the input earthquake record 

exciting the shake table, was fed as the ground motion for numerical calculation. This is 

to minimize the error of prediction since there was some deviation between the realized 

shake table acceleration and the input record. 
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The calculated response in Figure 4.4 was phase shifted forward by 0.09 seconds to 

match the measured response while the calculated response in Figure 4.5 is shifted 

backward by 0.08 seconds. Both figures were truncated along the abscissa to show only 

the significant portion of the results. Figures 4.6 and 4.7 present the correlation between 

the tested and predicted drift data. The correlation coefficients (or the cross-covariance 

coefficients with zero time lag) between the data of Test 11 and the predicted drift with 

the four search methods are presented in Table 4.3. The correlation coefficients between 

the data of Test 14 and the prediction are tabulated in Table 4.4. The data in Figures 4.6 

and 4.7 can be regressed with straight lines intersecting at the origin of the coordinate 

system. The angle between the regressed straight line and the 45° line (y=x) indicates the 

deviation of the prediction. Table 4.3 and Table 4.4 also show the angles between the 

regression and the ideal 45° line in Figures 4.6 and 4.7, respectively. 

Figure 4.3 Comparison of Type A walls under cyclic load 
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Figure 4.4 Comparison of Type A walls under dynamic load (Test 11) 
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Figure 4.5 Comparison of Type A walls under dynamic load (Test 14) 
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Figure 4.6 Correlation between test and prediction for Type A walls (Test 11) 

Table 4.2 Summary of comparison between test and prediction (Test 11) 

Correlation coefficient Angle to 45° line (°) 

Hi l l climbing 0.8078 15.19 

Random 0.8442 11.90 

Simplex 0.7967 14.16 

Genetic algorithm 0.7259 17.29 
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Figure 4.7 Correlation between test and prediction for Type A walls (Test 14) 

Table 4.3 Summary of comparison between test and prediction (Test 14) 

Correlation coefficient Angle to 45° line (°) 

Hi l l climbing 0.7734 23.53 

Random 0.7845 19.19 

Simplex 0.7307 21.19 

Genetic algorithm 0.6630 21.71 
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4.2.4 Pseudo Nail Calibration of Type C Shear Walls 

Three specimen of Type C shear walls of Durham's work (Durham 1998) were 

compared here: Test 6, Test 10a and Test 15. The results of Test 6 did not have the 

unloading curve after peak load. So the input curve was obtained through LightFrame3D 

(Figure 9.18 of He 2002), shown in Figure 4.8. The fitted results from four search 

methods are presented in the same figure. Table 4.4 outlines the parameters of the 

pseudo nail model for different methods. 
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Figure 4.8 Input and fitted curves for Type C walls 
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Table 4.4 Parameters for Type C shear walls 

Qo 
(kN/mm) 

Qi 
(kN/mm2 

K 

) (kN/mm2) 
Dmax 

(mm) 
Q 3 

Di 

(mm) 

L 

(mm) 

Hil l climbing 8.6214 0.02924 0.1733 32.216 1.438 12.131 412.23 

Random 8.2248 0.03400 0.2191 25.211 1.963 11.627 463.87 

Simplex 4.8978 0.00977 0.1926 44.537 1.835 12.988 55.84 

Genetic algorithm 4.1853 0.04481 0,2582 32.741 1.469 11.513 313.46 

4.2.5 Validation of Type C Shear Walls 

The cyclic behaviour of this type of shear walls was predicted with these sets of 

parameters. Figure 4.9 provides the comparison between the prediction and the results of 

Durham's Test 6. It is clear that the predictions of the various methods agree well with 

the cyclic test results. 

Durham (1998) tested several Type C specimens on the shake table using the Joshua 

Tree station ground motion record as input. In Test 10a and Test 15, the Type C shear 

wall specimens were newly built before testing. In Durham's Test 10a, the excitation 

ground motion was scaled to a peak ground acceleration level of 0.35 g. In Test 15, the 

ground motion was scaled to an acceleration level of 0.52 g. With the parameters shown 

in Table 4.4, the dynamic behaviour of the Type C shear wall was predicted. Figure 4.10 

shows the comparison between the predicted drift and the experimental results of Test 

10a. In this figure, the calculated response curve is flipped and phase shifted forward by 

0.28 seconds in order to fit the experimental results. Figure 4.11 presents the case for 

Test 15. In this figure, no phase angle shift is applied. Both Figures 4.10 and 4.11 are 

truncated along the abscissa to show the significant portion. Figures 4.12 and 4.13 

present the correlation between the tested and predicted drift data. The correlation 
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coefficients between the data of Test 10a and the predicted drift with the four search 

methods are presented in Table 4.5. The correlation coefficients between the data of Test 

15 and the prediction are tabulated in Table 4.6. The angles between the regression and 

the ideal 45° line in Figures 4.12 and 4.13 are shown in Tables 4.5 and 4.6, respectively. 

50 -, 

-40 J 
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Figure 4.9 Comparison of Type C walls under cyclic load 
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Figure 4.10 Comparison of Type C walls under dynamic load (Test 10a) 
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Figure 4.11 Comparison of Type C walls under dynamic load (Test 15) 

69 



Measured Drift (mm) Measured Drift (mm) 

Figure 4.12 Correlation between test and prediction for Type C walls (Test 10a) 

Table 4.5 Summary of comparison between test and prediction (Test 10a) 

Correlation coefficient Angle to 45° line (°) 

Hil l climbing 0.6727 14.55 

Random 0.6597 16.76 

Simplex 0.5312 14.38 

Genetic algorithm 0.6511 19.29 
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Figure 4.13 Correlation between test and prediction for Type C walls (Test 15) 

Table 4.6 Summary of comparison between test and prediction (Test 15) 

Correlation coefficient Angle to 45° line (°) 

Hi l l climbing 

Random 

Simplex 

Genetic algorithm 

0.3844 

0.3673 

0.3836 

0.3813 

35.62 

36.36 

33.06 

35.81 
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4.3 Results Comparison and Comments 

4.3.1 Comparing Search Methods 

For the artificial neural network, the minimum number of layers and neurons are 

determined by the type and the number of training data. Generally, its results have a 

relatively large error compared with other methods. The best results from the neural 

network are shown in Figures 4.2 and 4.3. Even in this case, the results are worse than 

the best solution in the training data. This is understandable since the neural network 

does not evaluate the value of function after prediction. 

For all other methods, the accuracy and convergence speed of optimization are 

heavily dependent on the initial values or boundaries and the problem itself. The hill 

climbing method and simplex method need a fairly good estimation of initial values 

while the random method and genetic algorithm have to be given the upper and lower 

boundaries. The comparison from all shear walls reveals that all methods give relatively 

good results (Figures 4.4, 4.5, 4.10 and 4.11). 

4.3.2 Comments of Model Verification 

The pseudo nail model utilizes the information from reversed cyclic tests to predict 

the behaviour under dynamic load. The validation of the examples in this chapter shows 

that the pseudo nail model generally provides good accuracy for prediction. In the 

comparison with Test 15, however, the error between the prediction and the test results is 

relatively large (Figures 4.11 and 4.13, Table 4.6). This may be partially be attributed to 

the variation of shear wall behaviour rather than the model itself. It is noticed that the 
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peak drift in Test 15 (73.36 mm) is 4.87 times of that in Test 10a (15.06 mm) while the 

excited PGA level in Test 15 (0.52g) is only 1.44 time of that in Test 10a (0.35g). 

The input data used to calibrate the model is essential for the accuracy of the pseudo 

nail model. To capture the characteristics of both loading and unloading paths, the 

pseudo nail model requires calibration with the response subjected to a half cycle static 

load. The maximum displacement should be higher than that at the peak load. In Figure 

4.2, the maximum displacement of the data used to calibrate the model for Type A walls 

is 90 mm. So the accuracy of prediction within this range with this model is very good. 

This is confirmed by the model prediction under dynamic load (Figures 4.4 and 4.5). 90 

mm displacement is deemed to be big enough compared with the typical collapse-

prevention criterion, 73.2 mm or 3% of the wall height. The accuracy of prediction 

beyond 90 mm is acceptable; however, it is not as good as that from the lower 

deformation level (Figure 4.3). Similar phenomenon can be seen in the calibration and 

validation of Type C walls (Figures 4.8, 4.10 and 4.11). 

Since the pseudo nail model fits the results from reversed cyclic tests, it cannot 

predict the information that does not exist in the cyclic test results. The comparison 

under the dynamic load in Figures 4.4, 4.5 and 4.11 shows that the predicted residual drift 

(near the end of time in all figures) does not match the test results well. It is suspected 

that the difference between the test results and the model prediction are partially 

attributable to the broken nails or withdrawn of nails that occurs in the shake table tests, 

which effect was not shown in the results of reversed cyclic tests. The discrepancy could 

also result from the test facility or the displacement measuring devices. The wall drift 

was calculated from the difference of the measured displacements of the shake table and 
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of the shear walls. Any problem of the displacement transducers occurred in the process 

of motion may cause this type of difference. 

74 



CHAPTER 5 . SEISMIC RELIABILITY ANALYSIS OF 

STRUCTURES 

Performance-based earthquake engineering and design aim to provide for target 

performance levels under different hazard levels. The uncertainty of seismic hazard and 

structural resistance requires reliability based analysis to achieve this goal. Reliability-

based performance analysis is typically conducted with validated analytical tools. The 

seismic reliability evaluation of components or structures typically requires significant 

computational efforts with many repetitive calculations. Computational efficiency with 

reasonable accuracy is essential for the analytical tools to perform the numerical 

calculation. The pseudo nail model provides such an analytical tool for reliability-based 

analysis of wood shear walls and structures. 

5.1 Earthquake Hazard in Reliability Analysis 

Earthquakes commonly occur in many parts of the world. For instance the December 

24 t h Sumatra-Andaman earthquake caused a catastrophic tsunami hazard that ravaged 

many coastal regions of south Asia. Earthquakes can cause other hazards, such as soil 

liquefaction and ground displacement that keenly interest seismologists. For structural 

engineering analysis, the most important earthquake hazard is the influence of the 

shaking of ground on the behaviour of the buildings. The shaking of ground in turn 

shakes the buildings, which can cause objects to fall and structures to partially or totally 

collapse with the potential to cause significant loss of life. 
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The shaking of ground at a specific site relates to many factors, such as the distance 

to the epicenter, the depth of the focus and the soil condition at the site. The effect of the 

shaking is particularly important for structural analysis of the buildings at the site. The 

ground shaking is generally characterized by two variables: frequency components of the 

earthquakes that could be experienced at this site and the intensity measure of the 

earthquakes. 

The frequency components are typically represented by the frequency content of a set 

of past earthquake records. These records were recorded by accelerometers at monitor 

stations. Some earthquake prone zones have many earthquake records. Sometimes the 

available earthquake records are more than enough for analysis. Some of the records 

may exhibit similar shape in both time and frequency domains, which cannot be 

considered as independent samples of frequency components at the observed site. This 

phenomenon is common for multiple records from same earthquake at different stations. 

For reliability analysis, the selection of these records has to consider the criteria of 

coherence function of any two earthquake records, such that the set of the selected 

records does not contain similar frequency components. With this method, every selected 

record is an independent (or nearly independent) specimen from the unknown frequency 

range of earthquakes at the observed site. 

The definition of "intensity measure" was adopted from Vamvatsikos and Cornell 

(2002). Two commonly-used intensity measures are the peak ground acceleration and 

the spectra acceleration. Using the peak ground acceleration as the intensity measure 

directly scales the original earthquake records to the prescribed peak ground acceleration 

levels. Foschi (2003) employed this measure in his reliability study. Using the spectra 
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acceleration as the intensity measure relies on the elastic design spectra of the records. 

Each earthquake record is scaled with a non-negative factor that is determined from the 

original and prescribed levels of earthquake spectra. Many researchers used spectra 

acceleration as the intensity measure for probabilistic analysis (Cornell et al. 2002, 

Ellingwood et al. 2004). 

When using spectral acceleration as the intensity measure, the scale factor has to be 

determined from the earthquake spectra at a given value of natural frequency or period. 

However, wood structures exhibit inelastic response over the entire range of lateral 

deformation (Foliente et al. 2000, Filiatrault and Folz 2002). It does not show a definite 

yield point and cannot be characterized by a single-value variable, such as the system 

frequency or period. Although there are some definitions for the linear stage of load-

displacement curves of wood structures, the resulting linear stage or the system frequency 

varies from protocol to protocol. Peak ground acceleration, rather than spectral 

acceleration, is used as the intensity measure in this thesis. 

5.2 Performance Measure and Criteria 

Performance measure refers to a particular designated value that characterizes the 

performance of structures. For panel sheathed shear walls, the rigidity of the sheathing 

panels is transferred to the frame members by the nail joints. The nail joints are the 

weakest element within the load transfer path and they affect the structural behaviour of 

the shear wall. Benefiting from the ductile nail connection as well as structural 

redundancy, the load-deformation relationship of shear walls exhibits good ductility. The 

shear walls tested in the laboratory typically failed after large deformation. No nailed 

panel sheathed shear wall has been reported to exhibit brittle failure. Based on this fact, 
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deformation control is naturally selected as the performance measure to conduct 

performance-based seismic engineering and design. The deformation criteria provided 

by F E M A 273 (FEMA 1997) can be the basis of engineering practice. 

Compared with panel sheathed shear walls, braced walls have less redundancy and 

less ductility. The full-scale braced wall tests conducted at UBC and the Center for 

Better Living Japan (CBL) show that some specimens failed with broken brace members 

near the connection. Splitting of girders and sills caused by the tension perpendicular to 

grain stress is another common phenomenon of braced walls. Brittle failure mode can 

also be observed from the load-displacement curves of test results. Since this type of 

failure is governed by the capacity of strength of wood members, force criterion may be 

an extra choice for performance-based design for braced walls although it is not 

considered in this thesis. 

5 . 3 Drift Demand and Its Distribution 

Peak drift of a specific structure can be calculated from nonlinear time-history 

analysis under a given earthquake record scaled to a certain level of peak ground 

acceleration. The value of peak drift varies with earthquake records and peak ground 

acceleration levels. The peak drift can be expressed as a function of the earthquake 

records and the peak ground acceleration, shown as 

d = d(r,aG) (5.1) 

where 

d is the peak drift; 

78 



r(.) is the earthquake ground motion representing the frequency component of 

the ground shaking; 

aG is the scaled peak ground acceleration representing the intensity of the ground 

shaking. 

For each earthquake record, performing dynamic analysis with varied peak ground 

acceleration obtains a relationship between peak drift and peak acceleration. This process 

was named as Dynamic Pushover Test by analogy with the pushover test under static load. 

The dynamic pushover tests for all selected earthquake records constitute the drift 

function as stated in Equation 5.1. 

The ground motion records and the earthquake intensity are generally related.. For the 

feasibility of reliability assessment, they are assumed to be independent variables. The 

selected earthquake records, or their frequency components, are discrete and implicitly 

assumed to be distributed uniformly over the range of all possible earthquakes. Therefore 

it is important to verify that there is no (or little) similarity between the frequency 

components of any two earthquake records. The distribution of earthquake intensity is a 

subject of interest for engineers and seismologists and generally cannot be determined 

prior to application. The peak drift follows a two-dimensional distribution of the random 

variables for the earthquake records and the intensity measure. The probability density 

function of the peak drift is illustrated in Figure 5.1. 

In this figure, the dotted lines are equally spaced and they divide the virtual range of 

frequency component of the earthquake records. Each curve within every two adjacent 

dotted lines represents the density distribution of scaled acceleration levels for one record. 

A l l curves are same in shape and parallel in the direction of frequency component 
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because all records are scaled to have the same distribution of peak ground acceleration 

levels. Given any peak acceleration level, the probability density at all curves is same, 

which indicates that all earthquake records have the same occurrence probability. 

Frequency Component of Earthquake Records 

Figure 5.1 Probability density function of drift demand 

5.4 Traditional Format For Seismic Reliability Analysis 

The probability of structural failure can be expressed as 

Pf=P(C<D) (5.2) 

where 

C is the drift capacity of the system; 

D is the drift demand of the system. 

When the region of non-performance is integrable and the drift demand and capacity 

are uncorrelated, Equation 5.2 can be further expressed by the integration of probability 

density function of the capacity and demand, shown as 

/', = jjfc,D(x,y)dS (5.3) 
C<D 
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\\fc(.x)fD(y)ds (5.4) 
C<D 

J / c W t }fD(y)dy]dx] (5.5) 
0 x<y 

\fc(x)[l-FD(x))dx (5.6) 
o 

where 

fCD(x,y) is the joint probability density function of drift capacity, C, and drift 

demand, D; 

S is the integration variable representing a region; 

fc (.) is the probability density function of drift capacity C; 

fD (.) is the probability density function of drift demand D; 

FD (.) is the cumulative probability function of drift demand D; 

x, and y are the integration variables; 

An alternative format of Equation 5.6 is: 

where 

Fc (.) is the cumulative probability function of drift capacity D; 

The drift demand is a function of ground motion records and earthquake intensity 

(Equation 5.1). The probability density function of drift demand is illustrated in Figure 

5.1. Therefore, three random variables are involved in the calculation of Equations 5.6 or 

(5.7) 
0 x<y 

(5.8) 
o 

81 



5.8: drift capacity, ground motion records and earthquake intensity. Ideally, Equations 

5.6 and 5.8 can be further expressed as the integration of the frequency component of 

ground motion and the intensity, if all the three elements are assumed to be uncorrelated 

and integrable. Noting Equation 5.1, Equation 5.6 (or 5.5) can be expressed as 

+00 

Pf = J / c W P - \\fr.aadS)dx (5.9) 
0 J(r,aG)<x 

+00 

= J / c W P - • \\frfaGdS]dx (5.10). 

0 cl(r,aG)<x 

where 

fr a is the joint probability density function of earthquake records and intensity; 

fr{.) is the probability density function of frequency component of the 

earthquake records, r; 

/ (.) is the probability density function of peak ground acceleration levels to be 

scaled, aG. 

A closed form of expression of d(r,aG) is necessary to symbolically solve Equation 

5.10. Assume that the drift demand d(r,aG) can be graphically shown as the curved 

surface in Figure 5.2; the plane d = x, which is parallel to r-aG plane, intersects the 

demand surface, S, as a curve of m, which is an inverse form of x = d{r,aG) about r. If 

the curve m is monotonic (or segmental monotonic) with respect to the intensity aG, one 

can further express Equation 5.10 as 
+oo +oo ni(aG)\cl=x 

Pj = j / c ( * ) [ l - {{ \fA}fac(y)dy]dx (5.11) 
0 " o'o" 
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where 

m(aG )\d = x is the curve intersected by the plane d = x . 

The curve m in Figure 5.2 is analogous to a shoreline of the integration which 

emerges into the water. The integration process of Equation 5.1 can be imagined as the 

increasing level of sea water which pushes the "shoreline" upward step by step until the 

whole surface emerges into the water. 

Figure 5.2 Surface of drift demand and integration range 

Typically the demand surface is not as smooth as that shown in the example. It could 

have some caves or hills due to the nature of different records. The closed form of the 

curve m may not exist or may not be continuous, which leads to the difficulty to further 

express. Equation 5.11 in closed form. To facilitate the problem, some researchers 

(Cornell et al. 2002, L i and Ellingwood 2004) adopted a procedure which estimates the 

probability of failure with the conditional distributions for a given earthquake intensity 

measure: 
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FD(x) = P(X<x) (5.12) 

+co m(aG)\d=x 

\{ \frdr}fao (y)dy (5.13) 
0 0 

* \P(D<x\aG=y)faa(y)dy (5.14) 
0 

With this concept, Equation 5.11 can be written as 

<xaG = y)faG(y)dy]dx (5.15) 
0 0 

\fc WO - J[ j/D|flG=, (^]/0G 0 0 ^ } * (5.16) 
0 0 0 

where 

P(D < x\aG = y) is the probability of drift demand not exceeding value x given 

the intensity level of aG = y ; 

fD\aG=y(-) * s m e probability density function of drift demand, D, given the 

intensity level of aG - y. 

To evaluate Equation 5.15 numerically, the exceeding probability, P(D < x\aG = y), 

can be evaluated by ranking the drift demand values at the given intensity level of aG = y. 

The integration also involves infinite upper bound of earthquake intensity measure. To 

evaluate the integration with limited samples, an integration strategy is used here. 

Assume N points are sampled from the range of earthquake intensity measure. They are 

numbered in an ascending order of their cumulative probability (Figure 5.3). The 
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incremental cumulative probability [discrete form o f / (y)dy ] can be calculated from 

the cumulative probability of adjacent two samples, shown as 

Ai>=/OGOOAX (5.17) 

= ( ' ' , - / : ,) /2 (5.18) 

where 

i is the i t h sample (1 < / < TV +1); 

Pj is the cumulative probability at the i t h sample. 

The (N+l) t h point is set to the upper bound, where the cumulative probability equals 

to 1 (Pi+] =1). The conditional exceeding probability at each of N discrete samples in 

Equation 5.15 can be evaluated. However, the N samples divide the cumulative 

probability range (between 0 and 1) into N+l division (Figure 5.3). Consequently, the 

summation of all APt'(i = 1..JV) is less than 1. The portion of the first half interval (APfl) 

and the last half interval (AP N 12) is missed. The conditional exceeding probability 

corresponding to half Ai^ is declared to 1 and the conditional exceeding probability 

corresponding to half APN is declared to 0. When the sample number N is big enough, 

the error introduced by the assumption is minor and the result of the numerical 

integration will close to the real one. 
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Figure 5.3 Sampling of intensity measure 

5.5 A Procedure Based on Conditional Distribution of Given Records 

In the traditional procedure (Equation 5.15), the conditional distribution is 

constructed at given levels of earthquake intensity measure. The total demand function is 

the summation of the conditional distribution weighted by the incremental cumulative 

probability. A similar formula can be deduced if the conditional distribution is 

established at given earthquake records, shown as 

where 

P(D < x\r = y) is the probability of drift demand not exceeding the value x given 

the earthquake record of r = y ; 

fr (.) is the probability density function of the earthquake record, r . 

(5.19) 
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Since the earthquake records are always discrete, the variable r does not have a form 

for integration. The discrete form of Equation 5.19 is 

P(D < x|r,) is the probability of drift demand not exceeding value x given the 

earthquake record of r; = y 

fr (.) is the probability density function of the earthquake record of r,; 

Ay, is the i t h interval representing the distance of adjacent earthquake records; 

i is the i t h earthquake record. 

Because the earthquake records are assumed to be uniformly distributed, the value of 

probability density function, fr, and the interval, Ay, are the same for all records (Figure 

5.1). Noting the relationship that 

(5.20) 

where 

where 

N is the total number of earthquake records to be analyzed. 

One has 

(i = l~N) (5.22) 

Equation 5.20 can be written as 

(5.23) 
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= \fc(m--?J(}fDlrdy)]dx (5.24) 

0 ^ '=1 0 

+» i N * 

= jfcm--'£{!faa[d-l(y,rl)] 
0 ^ '=1 0 

where 

fDy (.) is the probability density function of drift demand given the i t h earthquake 

record of r,; 

d'\y,rj)\s the inverse function of drift demand, d(r,aG) as stated in Equation 

5.1, about intensity measure, aG for the i t h earthquake record. 

Equation 5.23 indicates that the probability of drift demand is calculated from the 

weighted average of probability failure with the conditional distributions over all 

earthquake records. As a format parallel to the traditional format (Equation 5.15), the 

difficulty to implement Equation 5.25 is to identify the inverse function of drift demand. 

But for approximate numerical calculation, it is not necessary to obtain the closed form to 

express the probability density function in Equation 5.25. The exceeding probability at a 

given drift capacity in Equation 5.23 can be interpolated directly from the values of drift 

demand. 

The general procedure to evaluate the probability of failure with Equation 5.25 is 

summarized as following: 

1) Conduct dynamic push-over tests for all earthquake records; 

2) For each push-over curve, find the relationship of aG = d'](y,rt) for each 

earthquake record; 

dd-\y,r,) 

dy 
dy}]dx (5.25) 
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3) Find the conditional density function of drift demand for each earthquake 

record, / f l o[rf_ 1 Cy,/})] 

4) Calculate the average of cumulative probability function of demand and 

evaluate the exceeding probability. 

5.6 Construction of Confidence Curves 

Riddell and Newmark (1979) used 84.1% cumulative probability curves over an 

ensemble of earthquake records (one standard deviation above the mean curve) to 

construct a linear design spectra. For nonlinear problems, similar confidence curves can 

be constructed to estimate the randomness of the selected earthquake records. At any 

peak ground acceleration level, the resulting peak drift data from the nonlinear time 

history analysis for all records can be ranked to establish a conditional probability 

distribution. Figure 5.4 shows an example. In this figure, four earthquake records were 

scaled to five levels of ground acceleration. Peak drift can be obtained from nonlinear 

time history analysis. Ranking the peak drift at a selected level of earthquake ground 

acceleration gives a probability distribution, typically in a cumulative form. For 

illustration, Figure 5.4 expresses that in the form of probability density function. 

This distribution can be used to determine a point representing a certain magnitude of 

probability of exceedance, for instance, 15.9% (Figure 5.5). Linking the points at 

different acceleration levels establishes a curve which represents 15.9% of exceeding 

probability at any peak ground acceleration level over all records. This curve has a 

relationship between peak ground acceleration and drift demand with a confidence level 

dy 
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of 84.1% over all earthquake records. This kind of confidence curves is noted as PGA-

based Curves. 

Alternatively, at a given peak drift level, a distribution of peak ground acceleration 

can be established over all records. With this distribution, a point can be determined at 

some magnitude of exceeding probability. The points at different peak drift levels can be 

linked together to construct a design curve representing this level of confidence. This 

kind of confidence curves is noted as Drift-based Curves (Figure 5.6). 

Drift demand 

• 

D Earthquake 1 
v Earthquake 2 
0 Earthquake 3 

0 Earthquake 4 
Intensity Measure 

Figure 5.4 Drift demand at different intensity levels and its distribution 
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Confidence curves simplify the relationship between drift demand and its variables, 

including scaled earthquake intensity and records. These curves present the structural 

behaviour under earthquake load. They can be used to compare the seismic behaviour of 

different structures and materials. 

5.7 Assessing Seismic Reliability with Monte Carlo Method 

5.7.1 Original Monte Carlo Method 

The discrete form of distribution of drift function is written as following 

P(D<X)= Ytfrf^Aa, . (5-26) 
d{r,aG)<x. . . 

Imagine using a traditional Monte Carlo simulation process to generate the 

distribution of drift demand. An earthquake record is randomly picked from the selected 

set of records that representive of the frequency content at the site. A level of earthquake 

intensity is also randomly determined from its distribution. With the pair of the 

earthquake record and the level of intensity, nonlinear dynamic analysis is conducted in 

order to obtain the peak drift. Repeating this process with enough times will obtain many 

sets of data. Then the values of drift demand can be ranked to give a cumulative 

distribution curve. This process is very time-consuming to obtain accurate results, 

especially for the tail portion of the distribution. 

Ranking the values of drift demand with the original Monte Carlo simulation implies 

two assumptions: 

1) The sampling of random variables have followed their own distributions; 

2) Each set of samples equally contributes to the formation of cumulative 

distribution of drift demand. 
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Successful realization of the simulation requires sufficient number of samples, 

especially for the reliability assessment that concentrates on the tail of the distribution. 

For earthquake reliability analysis, the number of earthquake records is limited by the 

observation of earthquakes. Even with enough earthquake records, the requirement of 

time (or cost) in performing nonlinear time history analysis limits the number of samples 

for drift demand computation. 

It is noted from Equation 5.26 that each set of samples is associated with a certain 

value of "incremental" probability. For example, for the i t h earthquake record scaled to 

the j t h level of intensity, the drift demand, dy, is (Equation 5.1) 

d0 =d(r„aGj) (5.27) 

The incremental probability associating to drift demand, dy, is 

AP/J=(frAr),(facAaG)J (5.28) 

With Equation 5.22, one has 

^ = ^ ( A A . ) y ( 5 - 2 9 ) 

Equation 5.29 states that the associated incremental probability of each sample of 

drift demand equals to that of the corresponding sample of earthquake intensity measure 

divided by the number of earthquake records. If intensity measure is sampled from its 

distribution, the cumulative distribution of drift demand can be constructed from ranking 

their values directly as stated by the Monte Carlo simulation method. To minimize the 

number of samples of earthquake intensity, a Quasi Monte Carlo method was used in 

which the intensities were sample at constant cumulative probability intervals. 

It is obvious that 
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(5.30) 

M 
(5.31) 

7=1 

(5.32) 

where 

M is the total number of division to sample the range o f intensity measure. 

5.7.2 Monte Carlo Method Considering Weighted Ranking 

Equation 5.29 indicates that each value of drift demand, dtj, has an incremental 

probability of APy. The values of the incremental probability may vary from one sample 

to another. For the original Monte Carlo simulation, these values of incremental 

probability are the same for all samples of drift demand. It requires that the sampling of 

intensity measure follow its distribution. 

Sometimes, the sampling of intensity has been pre-determined (for example, in this 

study, the data of drift demand are ready for use based on a range of earthquake 

intensities of 0.0243g ~ 1.19 g) and does not follow the rules as required by the Quasi 

Monte Carlo method. In this study a few extra sampling points were added to enrich the 

sampling around the upper tail of the distribution. The weighted ranking Monte Carlo 

method intends to improve the efficiency of the Monte Carlo method used, especially 

when the time-consuming process to establish the database of drift demand has been 

completed before the distribution of intensity measure is known. With this method, the 

generation of random numbers does not have to be same as that of the Quasi Monte Carlo 

method. After obtaining the data combination (GL , AP..) (i = 1 ~ NJ = 1 ~ M), ranking 
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the drift demand dtj in an ascending order gives a set of sorted data noted as (d'k, APk) 

(k = \~ NM), where dx <d2 <---<dk <•••< d'NM_x < d m . During the sorting process, 

APy is always associated with the corresponding dtJ which is noted as APk. APk is just a 

different arrangement of APtJ. Here k is corresponding to the original combination of i 

and j . Accumulating APk produces the cumulative distribution Pk corresponding each 

value of dk , shown as: 

Pk=fJM>] (5-33) 

With the cumulative distribution of drift demand of dk, the probability of failure can 

be evaluated with Equation 5.6 or 5.8. For the determined drift capacity C, the 

probability of failure can be obtained directly from the distribution of dk. 

The whole procedure to analyze the seismic reliability with the weighted ranking 

Monte Carlo method is summarized as follow: 

1) Prepare a set of ground motion records; scale the earthquake intensity to 

multiples levels (their cumulative probability levels does not have to be 

uniformly distributed); 

2) Perform dynamic analysis and obtain the peak drift d,. for the i t h earthquake 

record scaled to the j t h level of intensity; 

3) For a specific design requirement, determine the probability distribution of 

intensity measure and calculate the incremental probability AP,. with Equation 

5.29; 
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4) Sort the data set (dy, APy) by dy and note the sorted set as (dk, APk); evaluate 

the accumulative probability with Equation 5.33; 

5) Calculate the structural reliability with Equation 5.6 or 5.8. 

The accuracy of the method heavily depends on that of the incremental probability, 

APy. The incremental probability can be calculated from the difference of cumulative 

probability or from the integration of probability density function. If the incremental 

cumulative probability is calculated from the integration of density function, different 

formats of Newton-Cotes method for numerical integration can be implemented. 

Using the ranking method for Monte Carlo simulation requires that the calculated 

maximum drift demand should be greater enough to evaluate the exceeding probability. 

If the maximum of drift demand is found to be not great enough after calculation or the 

distribution of intensity measure is changed, all samples of intensity measure have be 

changed accordingly and all values of drift demand have to be re-calculated. With the 

weighted ranking technique, only the extra samples are needed to calculate their drift 

demand. 

5.8 An Example of Shear Wall Analysis 

An example of a 2.4 m x 2.4 m shear wall is presented here, which has the 

configuration of Type C of Durham (Durham 1998) as introduced in Chapter 4. The 

dynamic behaviour of the shear wall is simulated with a SDOF system using the pseudo 

nail model. The visco-damping ratio is 1% of the critical damping about the initial 

tangential stiffness. The supported load is 5400 kg. The set of 20 ordinary CUREE 

Woodframe Project records (Krawinkler 2001) were used as the input for the dynamic 

96 



pushover analysis. The drift demand data from the calculation are shown in Figure 5.7. 

Three confidence curves (84.1%, 50% and 15.9%) were established (Figure 5.8). Linear 

interpolation was applied to create points while generating these curves. 

Assume that the peak ground acceleration follows a lognormal distribution with a 

mean of 0.3g and a coefficient of variation of 0.55. According to Foschi's mapping 

method (Foschi 2003, Zhang and Foschi 2003), the statistics are consistent with a site 

design acceleration of 0.86 g (corresponding to a return period of 475 years) and a mean 

arrival rate of earthquakes of 0.2 (average of one every five years). The drift capacity is 

assumed to be 73.2 mm or 3% of wall height. The reliability index of this type of walls 

with the load of 5400 kg was calculated with three methods: the traditional method 

(Equation 5.15), the method based on conditional distribution given earthquake record 

(Equation 5.23) and the Monte Carlo simulation with weighted ranking technique. The 

calculated reliability indices with the three methods are 2.178, 2.062 and 2.181, 

respectively. 
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Figure 5.7 Peak drift demand at different ground acceleration levels 

50 

PGA-based curve (15.9%) 

PGA-based curve (50%) 

P G A - b a s e d curve (84.1%) 

Drift-based curve (15.9%) 

* — Drift-based curve (50%) 

•—Dr i f t -based curve (84.1%) 

100 150 200 
Drift Demand (mm) 

250 300 

Figure 5.8 Confidence curves determined from both methods 
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5.9 Summary 

Reliability methods considering the randomness of earthquake ground motion records 

and intensity measure are discussed here. To perform displacement-based reliability 

analysis under earthquake load, the dynamic push-over "test", or Incremental Dynamic 

Analysis, has to be conducted. During this process, drift demand for all ground motion 

records at different levels of intensity measure is calculated. 

The traditional method calculates the structural probability of failure from conditional 

distribution of drift demand at given intensity level. Two new methods are developed. 

The first method is similar to the traditional one, which evaluates the probability of 

failure from conditional distribution of drift demand at given ground motion record. The 

second new method is a modified Monte Carlo simulation procedure. It is based on the 

fact that every earthquake ground motion record is a sample representing a realization of 

unknown distribution of the possible ground motion characteristics. Recognizing that all 

ground motion records are uniformly distributed in the range of their representing random 

variable, Quasi Monte Carlo method is used to conduct seismic reliability analysis. To 

increase the efficiency of calculation, weighted ranking technique is implemented into 

this calculation. 
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CHAPTER 6. PERFORMANCE EVALUATION OF JAPANESE 

WALLS 

6.1 Introduction 

Japan has a strong tradition to build wooden post-and-beam housing. Over the years, 

much effort has been made to improve the performance of this type of buildings, 

especially under seismic loads since Japan is an earthquake-prone country. Besides the 

use of traditional mortise-and-tenon connections, metal hardware, hold down devices, 

braces and sheathed shear walls are used to improve the lateral resistance of these 

structures. Although many species of wood are available in the Japan market for the 

construction of such buildings, the design values for wood shear walls are typically 

developed on the basis of Japanese Sugi (Cryptomeria japonica). 

As a part of an international research project between Canada and Japan, the Centre 

for Better Living Japan conducted a series of shear wall tests supported by Canadian 

forest industry. The primary objective of the tests was to identify and compare the 

structural behaviour of Japanese shear walls made with three wood species: Japanese 

Sugi, Canadian Tsuga (Hemlock) and European Whitewood glulam. Both two-brace 

walls and panel sheathed walls were tested. The test results from the Center for Better 

Living Japan (Center For Better Living 2001, Okabe et al. 2004) were used as the input to 

calibrate the model parameters of the pseudo nail model for simulation. The calibrated 

models were used in nonlinear dynamic time step analysis to obtain the peak drifts of 

different walls subject to seismic ground motions as input. A set of confidence curves 
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was constructed for each type of walls. Reliability indices were computed with the 

methods introduced in Chapter 5. 

6.2 Description of Specimen and Testing 

Al l the walls had the width of 1.82 m and the height of 2.73 m. The girders (top 

beam) of the tested walls had cross-section of 105 mm x 180 mm. The sills and posts had 

cross-section of 105 mm x 105 mm. The studs were 30 mm x 105 mm or 45 mm x 105 

mm. They were placed 450 mm on centre. Mortise-and-tenon connections were used 

between posts and girders or sills. For the braced walls, the braces were 45 mm x 90mm 

in cross-section. In all tests, S-HD20 hold down devices were installed between post and 

sill or girder connections to prevent uplift. Each hold down was connected to posts with 

four M l 2 bolts. 

Three types of configuration were tested: two-brace walls (Figure 6.1), plywood 

panel-sheathed shear walls and OSB panel-sheathed shear walls (Figure 6.2). In braced 

walls, the ends of brace were connected to the post and sill or girder with " Z \ marked 

"BP2" steel plates. Five ZS 50 nails connected the end "BP2" plate to the post, sill or 

girder. The "BP2" plate and brace were jointed with seven ZS 50 nails and one M12 bolt. 

In plywood shear walls, JAS grade two vertically oriented larch plywood panels with 9.5 

mm thickness were used in the tests. JAS grade 4 OSB panels made by Ainsworth 

Lumber Co. with thickness of 9 mm were used for the OSB walls. The dimensions of all 

panels is 1.82 mm x 0.91 mm. These panels were connected to the frames with JIS 

A5508 N50 nails at a spacing of 150 mm and the edge distance of 15 mm. 
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Figure 6.1 Configuration of two-brace shear walls (Center For Better Living 2001) 
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Figure 6.2 Configuration of OSB/plywood sheathed shear walls (Center For Better 

Living 2001) 



In all the tests, the girders were constructed with Douglas fir lumber. The posts, sills, 

studs and braces were made from three different species: Canadian Tsuga (Hemlock), 

Japanese Sugi and European Whitewood glulam. Canadian Tsuga and Japanese Sugi 

were used in the tests of all three types of configurations. They were not graded in JAS 

standard. The grade of Whitewood glulam was E85-F300. Whitewood was only used in 

the tests of two-brace walls and plywood sheathed shear walls. The test matrix is 

presented in Table 6.1. Three replications for each type were tested. A l l materials are in 

dry condition. 

Table 6.1 Replication of test specimens of different configurations and species 

Species Two-brace walls Plywood shear walls OSB shear walls 

_ Sugi ~ ~ 3 • 3. , • 3 

Tsuga 3 3 3 

Whitewood 3 3 

Subtotal 9 9 6 

The walls were tested under reversed cyclic loading controlled by the shear 

deformation angle of the walls. The amplitudes of shear deformation angles of the cycles 

were 1/600, 1/450, 1/300, 1/200, 1/150, 1/100, 1/75, 1/50, 1/30, 1/24, 1/20, 1/15 radians. 

Each of the amplitude'was repeated for three cycles. No dead load or vertical load was 

applied to the top of the beam. 
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6.3 Cyclic Test Results 

In all figures, " S G " , " T G " and " W W " refer to the abbreviation of "Sugi", "Tsuga" 

(Hemlock) and "Whitewood", respectively. "BR" , " P L " and " O S " are the abbreviation 

of "Brace", "Plywood sheathing" and "OSB sheathing", respectively. The number, " 1 " , 

"2 " or " 3 " of the legend is the number of replication of the tests for that configuration 

from the report of the Center for Better Living Japan (2001). For example, "WW-PL-2" 

means the second specimen of the plywood sheathing shear walls with European 

Whitewood glulam as framing members. 

In each type of walls, the test results from all three replications were consistent, 

especially for those walls sheathed with plywood or OSB panels. From three replications 

of each type, the specimen with the moderate envelope curve of test results was selected 

as the input of data fitting of the pseudo nail model. The obtained parameters for each 

type of walls are listed in Table 6.2. With these sets of parameters, the predicted load-

displacement behaviour is compared with test results in Figures 6.3 to 6.10. It can be 

seen that the level of displacement of the validation in all figures are more than 100 mm, 

which exceeds the performance level considered in this thesis, 68.3 mm. 
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Table 6.2 Parameters of the pseudo nail model for each type of walls 

Wall type Q 0 Q, K D m a x Q 3 D, L 

(kN/mm) (kN/mm2) (kN/mm2) (mm) (mm) (mm) 

SG-BR 4.09257 0.106469 0.518693 30.2831 1.958082 3.62639 72.4866 

SG-PL 0.337608 0.0275855 0.0834557 45.2553 1.80881 9.27850 426.697 

SG-OS 0.675727 0.0343936 0.0835077 29.4405 1.98132 8.36695 412.964 

TG-BR 0.0121494 0.0583440 0.0587390 54.6693 1.25350 9.41585 461.161 

TG-PL 0.80209 0.029098 0.19012 75.720 1.1145 10.771 41.552 

TG-OS 0.22109 0.028795 0.061880 54.520 1.2947 10.830 207.88 

WW-BR 0.152276 0.0675076 0.384076 68.8104 1.08092 7.67615 47.6601 

WW-PL 0.87649 0.045017 0.099672 22.129 2.9286 8.8215 410.20 

Displacement (mm) 

S G - B R - 3 Model prediction 

Figure 6.3 Comparison of Sugi braced walls under cyclic load 
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300 

Displacement (mm) 

S G - P L - 2 Model prediction 

Figure 6.4 Comparison of Sugi plywood walls under cyclic load 

15 

-15 

Displacement (mm) 

SG-OS-1 Model prediction 

Figure 6.5 Comparison of Sugi OSB walls under cyclic load 
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200 

Displacement (mm) 

T G - B R - 3 Model prediction 

Figure 6.6 Comparison of Tsuga braced walls under cyclic load 
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Displacement (mm) 

TG-PL-3 Model prediction 

Figure 6.7 Comparison of Tsuga plywood walls under cyclic load 

108 



20 

Displacement (mm) 

T G - O S - 2 M o d e l p r e d i c t i o n 

Figure 6.8 Comparison of Tsuga OSB walls under cyclic load 
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WW-BR-2 -Model prediction 

Figure 6.9 Comparison of Whitewood braced walls under cyclic load 
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-20 

Displacement (mm) 

WW-PL-2 Model prediction 

Figure 6.10 Comparison of Whitewood plywood walls under cyclic load 

6.4 Seismic Performance Analysis of Japanese Walls 

A set of 10 earthquake ground motion records were selected to conduct the seismic 

performance analysis (Table 6.3). The first seven records in Table 6.3 were 

recommended by the Building Center of Japan. Five of the seven records were recorded 

from representative earthquakes that occurred in Japan in the past. Other two records 

were recorded from the 1952 Kern County Earthquake and the 1940 Imperial Valley 

Earthquake in California. The Building Center of Japan published the set of records in 

1994. Another three records was added in the analysis: the north-south component of the 

1994 Northridge Earthquake recorded at Beverly Hills Station, the east-west component 

of the 1992 Lander Earthquake at Joshua Tree Station and the north-south component of 

the 1995 Kobe Earthquake recorded at Shin-Osaka Station. 
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Table 6.3 Ground motion records for performance analysis of Japanese walls 

Event name Year Direction PGA (g) Station 
Headland of 1963 EW 0.02551 Nihon Itagarasu (Osaka 

Echizen 205) 
Northern Miyagi 1962 EW 0.04847 Tohokudaigaku Kogakubu 

Prefecture (Sendai 501) 
- 1956 NS 0.07551 Todai Jishinkenkyujo 

(Tokyo 101) 
Tokati 1968 EW 0.1866 Hachinohe 

Kern County 1952 EW 0.1795 Taft Lincoln School Tunnel 
Tohoku 1978 NS 0.2634 -

Imperial Valley 1940 EW 0.2144 El Centro Site Imperial 
Valley 

Northridge 1994 NS 0.416 Beverly Hills- 14145 
Mulhol 

Lander 1992 EW 0.284 Joshua Tree Station 
Kobe 1995 NS 0.243 Shin-Osaka 

Nonlinear time history analysis was conducted to obtain the peak drift using the 

pseudo nail model with parameters given in Table 6.2. Fifteen levels of earthquake 

intensity (or 15 scale factors for each record) were used in the analysis. In some 

calculations, the nonlinear time history analysis did not converge at some high levels of 

intensity measure. In these cases, only 10 to 14 levels of earthquake intensity were used. 

The visco-damping ratio is assumed to be 1% of the critical damping with respect to the 

initial tangential stiffness. Three levels, 15.9%, 50% and 84.1%o, of confidence curves 

were established from- the results of peak drift demand. Three fixed gravity/dead load 

levels were considered: 20 kN, 30 kN and 40 kN. The results for each type of walls 

under three load levels are presented from Figures 6.11 to 6.34. 
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Figure 6.11 Confidence curves for Sugi braced walls (20 kN load) 

0 50 100 150 200 250 300 
Drift Demand (mm) 

;ure 6.12 Confidence curves for Sugi braced walls (30 kN load) 
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Figure 6.13 Confidence curves for Sugi braced walls (40 kN load) 

Figure 6.14 Confidence curves for Sugi plywood walls (20 kN load) 
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Figure 6.15 Confidence curves for Sugi plywood walls (30 kN load) 

Figure 6.16 Confidence curves for Sugi plywood walls (40 kN load) 
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Figure 6.17 Confidence curves for Sugi OSB walls (20 kN load) 
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Figure 6.20 Confidence curves for Tsuga braced walls (20 kN load) 
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Figure 6.21 Confidence curves for Tsuga braced walls (30 kN load) 
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Figure 6.23 Confidence curves for Tsuga plywood walls (20 k N load) 

Figure 6.24 Confidence curves for Tsuga plywood walls (30 k N load) 
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Figure 6.25 Confidence curves for Tsuga plywood walls (40 kN load) 

Figure 6.26 Confidence curves for Tsuga OSB walls (20 kN load) 
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Figure 6.28 Confidence curves for Tsuga OSB walls (40 kN load) 
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Figure 6.29 Confidence curves for Whitewood braced walls (20 kN load) 

Figure 6.30 Confidence curves for Whitewood braced walls (30 kN load) 
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Figure 6.31 Confidence curves for Whitewood braced walls (40 kN load) 
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Figure 6.32 Confidence curves for Whitewood plywood walls (20 kN load) 
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Figure 6.33 Confidence curves for Whitewood plywood walls (30 kN load) 

Figure 6.34 Confidence curves for Whitewood plywood walls (40 kN load) 
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Three methods were implemented to calculate the reliability indices of the walls. In 

Tables 6.4 to 6.6, "Method 1" refers to the traditional procedure (Equation 5.15). 

"Method 2" refers to the method based on the conditional distribution for given 

earthquake records (Equation 5.23) and "Method 3" refers to the Monte Carlo simulation 

improved by weighted ranking technique. The scaled peak ground acceleration level is 

assumed to follow a lognormal distribution with a mean of 0.25 g and a coefficient of 

variation of 0.55. According to Foschi's mapping method (Foschi 2003, Zhang and 

Foschi 2003), the statistics are consistent with a site design acceleration of 0.717 g 

(corresponding to a return period of 475 years) and a mean arrival rate of earthquakes of 

0.2 (average of one every five years). This level of ground acceleration is relatively high. 

The drift capacity is a fixed level with a value of 68.3 mm (2.5% of wall height). The 

calculated reliability indices of the walls are tabulated in Table 6.4, 6.5 and 6.6 for the 

gravity/dead load levels of 20 kN, 30 kN and 40 kN, respectively. 

Table 6.4 Reliability indices of the Japanese walls (20 kN) 

Wall Type Method 1 Method 2 Method 3 

SG-BR 1.407 1.326 1.592 

SG-PL 1.848 1.808 1.818 

SG-OS 1.592 1.612 1.928 

TG-BR 2.221 2.200 2.258 

TG-PL 2.240 2.196 2.477 

TG-OS . 1.967 •1.8.59 2.029 

WW-BR 1.624 1.595 1.855 

WW-PL 2.070 1.972 2.304 
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Table 6.5 Reliability indices of the Japanese walls (30 kN) 

Wall Type Method 1 Method 2 Method 3 

SG-BR 0.743 0.648 0.690 

SG-PL 1.088 1.040 1.129 

SG-OS 1.046 1.017 1.124 

TG-BR 1.464 1.410 1.545 

TG-PL 1.627 1.566 1.691 

TG-OS 1.264 1.219 1.629 

WW-BR 1.144 1.068 1.209 

WW-PL 1.326 1.305 
i 

1.474 

Table 6.6 Reliability indices of the Japanese walls (40 kN) 

Wall Type Method 1 Method 2 Method 3 
SG-BR 0.339 0.328 0.541 

SG-PL 0.759 0.743 0.903 

SG-OS 0.670 0.636 0.798 

TG-BR 0.991 0.922 1.105 

TG-PL 1.197 1.133 1.239 

TG-OS 0.861 0.828 0.922 

WW-BR 0.795 . -0.7.52 0.915 

WW-PL 0.891 0.878 1.039 



Table 6.7 Ratios of probability failure of the Japanese walls 

Wall Type Method 1 Method 2 Method 3 

SG-BR 6.35 6.65 8.41 

SG-PL 2.57 .2.54 .5.21 

SG-OS 4.44 3.85 4.06 

TG-BR 1.05 1 1.81 

TG-PL 1 1.01 1 

TG-OS 2.14 2.27 3.2 

WW-BR 4.16 3.98 4.80 

WW-PL 1.53 1.75 1.60 

6.5 Comparison of Performance of Japanese Walls 

The.reliability indices in Tables 6.5 and 6.6 are less than 1.7, which is relatively low 

compared with general requirement of design codes. Higher reliability indices can be 

achieved through the decreasing of gravity/dead load level or design acceleration level. 

The 1% viscous damping coefficient used in the nonlinear time history analysis may be 

lower than that of real structures. Higher value of viscous damping coefficient will yield 

smaller drift demand and consequently bigger reliability indices. Under the load level of 

20 kN, Tsuga braced walls, Tsuga plywood sheathed walls and Whitewood plywood 

sheathed walls have the reliability indices greater than 2.0. These three types of walls 

also show higher reliability indices than other types of walls at 30 kN and 40 kN load. 

Sugi braced walls have the lowest reliability indices. 

Table 6.7 presents another format of Table 6.4. This table expresses the probability 

of failure in ratios relative to the minimum values of each method at the load level of 20 

kN. It is clear that the Tsuga plywood sheathed walls has the lowest probability of failure 
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at the 2.5% drift capacity. The probabilities of failure of Tsuga braced walls, Tsgua OSB 

sheathed walls and Whitewood plywood sheathed walls are larger than those associated 

with Tsuga plywood sheathed walls by a factor between 1.0 and 2.0. The probabilities of 

failure of Sugi plywood sheathed walls, Sugi OSB sheathed walls and Whitewood braced 

walls are larger than those of Tsuga plywood sheathed walls by a factor between 2.0 and 

5.0. The probabilities of failure of Sugi braced walls are larger than f ive times that of 

Tsuga plywood sheathed walls. 

The reliability indices from the three methods are consistent with each other. The 

slight difference of the results may be explained by the difference of the three methods. 

Method 2 generally gives conservative results in most cases while Method 3 gives the 

highest values of reliability indices. A l l the three methods can be equally used to 

evaluate the structural reliability. Method 2 is recommended for future practice since it 

gives conservative results. 

The comparison from Figures 6.10 to 6.33 shows that the results of PGA-based and 

Drift-based confidence curves are very similar. Only PGA-based confidence curves are 

used in the following comparison. 90% confidence curves were selected for the 

comparison although other levels of confidence curves yield similar results. The 

comparison of confidence curves of braced walls made from different species is given in 

Figure 6.35. Figures 6.36 and 6.37 illustrate the comparison of the shear walls sheathed 

with plywood panels and OSB panels, respectively. 

The comparison of Tables 6.4, 6.5 and 6.6 and Figures 6.35, 6.36 and 6.37 shows that 

Canada Tsuga is superior to other two species in any type of walls. The performance of 

Whitewood is slightly lower than that of Tsuga. 
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary of the thesis work 

Seismic performance assessment in a reliability format requires two aspects of 

knowledge: a model to compute the dynamic response of structures and reliability 

analysis procedures. This thesis discusses the development of a pseudo nail model for 

wood shear walls and the reliability analysis procedures. An application of the analysis 

to Japanese wood walls is introduced. 

The process of repetitive computation of nonlinear time-history analysis of wood 

shear walls is generally time-consuming and may represent a bottleneck to generate 

dynamic response of shear walls for reliability analysis. A SDOF model was developed 

with the characteristic load-displacement curve of shear walls simulated by the pseudo 

nail model. Compared with other SDOF systems, the accuracy of this model is 

satisfactory with improved computational efficiency over detailed F E M models. 

The concept of this model originates from the similarity of the load-displacement 

curves of individual nail connectors and shear walls. The similarities can be explained by 

the mechanism of wood frame shear walls. It is well recognized that the lateral response 

of shear walls is governed by the characteristics of the nails connecting panels to framing 

members. The combined effect of all nails of a wall is superimposed together to exhibit 

an overall load-displacement curve for the shear wall. 

Since the load-displacement curve of a shear wall is the group effect from all of the 

nail connectors and its shape is similar to that of the nail connectors, it is possible to 

represent the shear wall behavior with a pseudo nail. The process to identify the 
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appropriate parameters from the given load-displacement behaviour can be accomplished 

by a nonlinear optimization problem which minimizes the summation of square error 

between predicted and observed data. Five search methods were implemented to solve 

the optimization problem: hill climbing method, random search method, genetic 

algorithm, simplex method and artificial neural network. The input of the pseudo nail 

model requires the test results of half cyclic static loading, in which the peak 

displacement is recommended to be greater than that at the peak load and the load at the 

peak displacement should be less than 80% of the peak load. 

The pseudo nail model was validated against the laboratory test results of two types 

of regular panel-sheathed shear walls. Good agreement was obtained between the model 

prediction and test results. The comparison also shows that, except for the artificial 

neural network, the other four search methods succeeded in identifying the parameters in 

the optimization problem. 

Seismic reliability analysis involves two types of earthquake ground shaking hazard: 

earthquake intensity measure and ground motion records. Since the drift demand is a 

function of earthquake intensity measure and records, the distribution of drift demand 

relates to both intensity and records. A popular format of reliability procedure based on 

conditional distribution at given earthquake intensity is discussed. Then a new format 

based on conditional distribution at given earthquake records is proposed. Another 

method, the weighted ranking technique, is also proposed to improve the efficiency of the 

classical Quasi Monte Carlo. simulation process. Instead of equal spacing of samples 

used in the classical Monte Carlo simulation method, this method calculates the 

incremental cumulative probability as the spacing to rank samples. 
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Construction of confidence curves is presented to simplify the two-dimensional 

distribution of drift demand. The confidence curves are established from the conditional 

distribution of drift demand given intensity or drift demand. They can be employed to 

compare the performance of structures made with different materials under different 

earthquake intensity levels. 

Eight types of Japanese walls were analyzed with the pseudo nail model. These walls 

consisted of three species: Japanese Sugi, Canadian Tsuga and European Whitewood, and 

two structural types: two-brace walls and panel-sheathed walls. From the comparison of 

confidence curves and reliability indices of the walls, it is shown that the seismic 

performance of Canadian Tsuga walls is superior to that of other species, and the 

performance of panel-sheathed walls seems better than that of braced walls. 

7.2 Conclusions 

The developed pseudo nail model is a SDOF system to simulate the dynamic 

behaviour of wood shear walls. This model was verified with laboratory tests under 

cyclic load and dynamic load, which results shows that it can successfully predict the 

dynamic behaviour under earthquake load. The examples show that this model is 

computationally efficient and accurate; therefore it is suitable for earthquake reliability 

analysis. 

Two new procedures were developed to perform the earthquake reliability analysis. 

The first one is established on conditional distribution at given earthquake records. The 

second one is based on Monte Carlo method with weight ranking technique to improve 

the efficiency for seismic reliability analysis. 
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Both the pseudo nail model and the earthquake reliability procedures were used to 

analyze and compare the reliability indices of Japanese walls under earthquake load. The 

results can be used for engineering practice and to guide the modification of building 

codes. 

7.3 Recommendations for Future Work 

The developed pseudo nail model is a nonlinear spring to calculate the response of a 

shear wall. To evaluate the response of structures, multiple springs can be placed on all 

sides of walls to form a one-storey model. Furthermore, multiple-storey models can be 

established to study the seismic performance of whole structures. A preliminary study of 

such a model shows encouraging results (Lam 2005). 

The computation efficiency of the searching process to identify the parameters of the 

pseudo nail model is to be further improved. The execution of F E M subroutines is very 

suitable for parallel computation, especially with the distributed systems through the 

Internet which connects multiple personal computers together. To achieve that, a set of 

interface programs following communication protocols, such as TCP/IP, is to be 

developed. 

Over the past years, many dynamic models were developed to analyze seismic 

performance of wood walls. These models have different computational efficiency and 

accuracy. Compared with the uncertainties of materials and modeling, the earthquake 

hazard has high uncertainty. For example, the coefficient of variation of earthquake 

intensity could be as high as 50%. Whether the accuracy of models is important to the 

results of reliability analysis is to be studied in the future. 
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Earthquake ground shaking is not the only source of uncertainty of reliability analysis. 

The wood and joint properties, geometry miscellaneous, construction error, load 

condition and other variables contribute significantly to the performance of structures. 

To improve the efficiency, the reliability of structures under multiple variables can be 

solved with some other tools, such as R E L A N with the implementation of the artificial 

neural network (Zhang and Foschi 2003). 
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APPENDIX I. TWO EXAMPLES OF MONTE CARLO 

METHOD CONSIDERING WEIGHTED RANKING 

Two examples are demonstrated to verify the efficiency of the Monte Carlo method 

considering weighted ranking. One example is to simulate a lognormal distribution with 

a mean of 1.6487 and a variation of 2.1612. 30 pseudo random numbers were generated 

to follow this distribution. They were ranked as illustrated in the original Monte Carlo 

method (Figure A. 1 top). Same set of numbers are processed with the weighted ranking 

method and the results are shown in the bottom half of Figure A.2. 

Another example is the simulation of the distribution of the variable, z, which is a 

function of x and y, shown as 

z = - ^ x V (A.l) 

where 

x follows a lognormal distribution with a mean of 1.6487 and a variation of 

2.1612; 

y follows a uniform distribution between 0 and 1. 

The distribution of z can be simulated with the original Monte Carlo method. Figure 

5.6 gives the result simulated from 1000 set of data. To achieve the result with fewer 

samples, 16 values were sampled from the variable x and 10 values were sampled from 

the variable y. The function z is evaluated for each combination of x and y. There are 

160 sets of z value in total (16x10). Directly and weighted ranking methods were applied 

to generate the distribution curves, respectively. The result is presented in Figure A.2. 
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Figure A. 1 Simulating lognormal distribution with weighted ranking method 
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Figure A . 2 Comparison between Monte Carlo and weighted ranking methods 



APPENDIX II. RESULTS OF DRIFT DEMAND OF 

JAPANESE WALLS 

Figure A.S Drift demand for Sugi braced walls (20 kN load) 

0.45 

0 50 100 150 200 250 

Drift Demand (mm) 

Figure A.4 Drift demand for Sugi braced walls (30 kN load) 
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Figure A.5 Drift demand for Sugi braced walls (40 kN load) 
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Figure A.6 Drift demand and for Sugi plywood walls (20 kN load) 
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Figure A.7 Drift demand and for Sugi plywood walls (30 k N load) 
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Figure A.8 Drift demand for Sugi plywood walls (40 k N load) 



Figure A.9 Drift demand for Sugi O S B walls (20 k N load) 
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Figure A. 10 Drift demand for Sugi O S B walls (30 k N load) 
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Figure A . l 1 Drift demand for Sugi O S B walls (40 k N load) 
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Figure A . 12 Drift demand for Tsuga braced walls (20 k N load) 



0 ¥ 
0 50 . 100 150 20.0 250 300 

Drift D e m a n d (mm) 

Figure A . 13 Drift demand for Tsuga braced walls (30 kN load) 
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Figure A. 14 Drift demand for Tsuga braced walls (40 kN load) 
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Figure A . 15 Drift demand for Tsuga plywood walls (20 k N load) 

Figure A . 16 Drift demand for Tsuga plywood walls (30 k N load) 
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Figure A. 17 Drift demand for Tsuga plywood walls (40 kN load) 
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Figure A. 18 Drift demand for Tsuga OSB walls (20 kN load) 
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Figure A. 19 Drift demand for Tsuga OSB walls ( 3 0 kN load) 
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Figure A . 2 0 Drift demand for Tsuga OSB walls ( 4 0 kN load) 
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Figure A.21 Drift demand for Whitewood braced walls (20 kN load) 
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Figure A.22 Drift demand for Whitewood braced walls (30 kN load) 
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Figure A.23 Drift demand for Whitewood braced walls (40 k N load) 
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Figure A.24 Drift demand for Whitewood plywood walls (20 kN load) 
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Figure A.25 Drift demand for Whitewood plywood walls (30 kN load) 
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Figure A.26 Drift demand for Whitewood plywood walls (40 kN load) 


