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Abstract 

Habitat suitability modeling has both strengths and weaknesses as a land management tool. Its 

utility is highly dependent on the ecological interactions and spatial and temporal scales that are 

pertinent to land management concerns and the species of interest. To maximize the usefulness 

of mathematical habitat suitability models, it is important that they are constructed using all the 

reliable a priori information available, and selected using a method that consistently selects 

models of an appropriate level of complexity. Application is exemplified here to produce winter 

and summer habitat suitability models for mule deer (Odocoileus hemionus) in young, 

intensively managed lodgepole pine (Pinus contorta) stands in the interior of British Columbia. 

The building of all models likely to have good explanatory power was informed by a 

comprehensive literature review of mule deer habitat requirements. After models were built, 

multivariate correlations between predictor variables and the dependent variable of standardized 

pellet-group densities were analyzed to ensure that no strong and sensible relationships suggested 

by the data were left out of the model set. Akaike's Information Criterion (AIC) was used for 

model selection, as it is currently the best readily available model selection criterion when 'truth' 

is of near-infinite complexity. To improve robustness of inference and prediction error estimates, 

final models are produced as AIC weighted averages of the models most strongly supported by 

the data. Although models should ideally be validated using independent data, error was 

estimated here based on the same data used for model fitting. 
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Chapter 1 
Introduction 

1.1 The Management of Forests 

Forestry has been defined as the "science, art, and business of managing forests for 

human benefit" (Seymour and Hunter 1999). Recreation, food, water, aesthetic beauty, timber, 

medicine, biodiversity, and carbon dioxide regulation are but a fraction of the products and 

services produced by forests that are of value to humans. However, manipulating a forest to 

produce desired products is an incredibly difficult task, for two main reasons. First, the absolute 

and relative values of forest products are highly variable, changing with time, economic 

conditions, public demand, legislation, and ecological conditions (Thomas et al. 1979). Second, 

forest management requires planning over long periods of time for large, heterogeneous areas 

made up of complex ecosystems of which relatively little is known, and which are constantly 

changing (Christensen et al. 1996, Bunnell et al. 1999). These difficulties apply to management 

of the forest in general, and also equally well to management of biodiversity, and wildlife in 

particular. 

At one time, timber production was broadly viewed as the overwhelming priority of 

forest managers, while other values were viewed as constraints (Kessler et al. 1992, Seymour 

and Hunter 1999). In some circles, this paradigm likely still holds. Unfortunately, the most 

efficient way to produce timber is through intensive silviculture, which involves simplifying 

naturally diverse plant communities, and harvesting forest stands before they become senescent 

(Kuusipalo and Kangas 1994, Seymour and Hunter 1999). When biodiversity is seen as a 

constraint, timber production and biodiversity conservation appear to be in conflict. More and 

more, however, the importance of biological complexity and connectedness is becoming 

understood and appreciated, both for the intrinsic value of life, as well as for the provision of 

ecosystem services critical to human welfare (Christensen et al. 1996). As this understanding and 

appreciation has accrued in public opinion, the dominant paradigm of forest management has 

evolved into ecological forestry and ecosystem management (Kessler et al. 1992, Christensen et 

al. 1996, Seymour and Hunter 1999). Under the new paradigm of ecosystem management, the 

conservation of biodiversity is not a constraint to be minimized, but rather an integral 

consideration. 
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Managing an ecosystem is, needless to say, extremely challenging. Ecosystems are highly 

complicated and complex systems, exhibiting non-linear behaviour, self-organization, and 

emergent properties (Boyce 1992, Holling 1992, Levin 1998, Levin et al. 1998, Reynolds 2002, 

Wu and Marceau 2002). Every novel management activity, or a common management action 

applied in a novel environment, will produce results with a high degree of uncertainty (Walters 

and Holling 1990). As the process of science is currently the best tool available for learning 

about complex systems, it is important that the scientific method of testing hypotheses formed 

with the best knowledge available, monitoring results, quantifying error, and then re-evaluating 

hypotheses is integrated into the forest planning process (i.e. adaptive management; Walters 

1986, Walters and Holling 1990). Management goals and strategies must then be responsive to 

the improvements in knowledge that is acquired (Christensen et al. 1996). In this way, forest 

ecosystem management can adapt effectively to the changes in values demanded by society, and 

minimize the risk of doing persistent environmental damage. Unfortunately, it appears that old 

paradigms die hard, and many land management decisions for biodiversity conservation continue 

to be made based on experience, and follow traditional practices (Pullin et al. 2004). 

1.2 Modeling for Ecosystem Management 

Ecology has been defined as "the scientific study of the interactions that determine the 

distribution and abundance of organisms" (Krebs 1994). Those interactions are, for all practical 

purposes, of infinite dimension (Burnham and Anderson 2002). Understanding ecosystems 

therefore requires the aggregation and simplification of available knowledge, retaining what is 

essential and disregarding that which is not essential at the particular scale of interest (Levin 

1992). The concept of scale is imperative to this discussion, because relationships at large-scale 

cannot be described simply by aggregating information about small scale relationships, and vice 

versa (Levin 1992, Hobbs 2003). Ecologists need tools to help them simplify and understand the 

natural world, and to help them make predictions on the effects of changes to it. Modeling is 

such a tool, and its advantages are so convincing that it is considered by some to be necessary to 

the process of producing feasible resource management hypotheses and highlighting the 

uncertainties within them (Walters 1986). 

The advantages of modeling are numerous and compelling. For one, modeling allows the 

investigation of ecological systems in ways that experimentation cannot because of practical, 

political, or financial limitations (Jackson et al. 2000). For another, modeling aids in achieving 

an understanding of complex processes, as the procedure requires that just enough detail is 
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included to approximate observed patterns (Levin 1992). The very act of scientifically rigorous 

modeling forces researchers to be explicit about assumptions and to consider processes and 

interactions that had previously been overlooked (Hilborn and Mangel 1997, Jackson et al. 

2000). Also, models provide a structure for incorporating what is known with best guesses of 

what is not, at the same time highlighting gaps in knowledge (Hilborn and Mangel 1997, Jackson 

et al. 2000). In addition, models often give insight into systems, showing that it is combinations 

of variables acting together that control system behaviour rather than variables acting 

individually, thus cementing the importance of recognizing complexity for both model builders 

and users alike (Hilborn and Mangel 1997). Finally, through the use of computers, models give 

structure to the potentially convoluted calculations necessary to provide precise, quantified 

predictions and estimates of error. 

1.2.1. Habitat Suitability Models 

One of the simplest and perhaps the most frequently used form of ecological model is the 

habitat suitability model, which is based on the concepts of habitat and carrying capacity 

(Schamberger and O'Neil 1986). Habitat has been defined as "the range of environments or 

communities over which a species occurs", and can often be effectively approximated by 

observing the response of species to a range of environmental variables (Whittaker et al. 1973). 

Carrying capacity refers to the maximum density of animals that a habitat can support (Krebs 

1994, Morris and Davidson 2000). It is assumed that the measure of habitat suitability is 

proportional to carrying capacity. 

Habitat suitability models have been used extensively to predict the range of habitat 

variability that will sustain a particular species, and through that predict the potential impact of 

habitat alteration (Turner et al. 1995, Kliskey et al. 1999, Marzluff et al. 2002). These models 

assume that habitat is an important factor in deciding the presence and relative abundance of the 

species in question (Farmer et al. 1982). There is a strong theoretical foundation for this 

approach, as habitats are variable in their contributions to fitness, behaviour has a heritable 

component, and natural selection should therefore promote behaviour that steers animals into 

higher quality habitat (Krebs, 1994). It seems intuitive that higher quality habitat should receive 

greater use (Schamberger and O'Neil 1986). However, it is an often unrealistic simplification to 

assume that population densities are overwhelmingly controlled by habitat quality, and that 

animals are distributed according to an ideal free distribution (Fretwell and Lucas 1970). 
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Habitat suitability modeling has its limitations, as the presence and abundance of species 

are not always tightly coupled with particular habitat features on a particular site (Van Home 

1983, Maurer 1986, Rotenberry 1986, Hobbs and Hanley 1990). Presence and abundance is a 

function of many factors that may operate independently of habitat quality, such as history, 

weather, disease, parasites, predators, and human harvest (Lancia et al. 1982, Schamberger and 

O'Neil 1986, Levin 1998). Also, relationships between population density and habitat variables 

are likely to vary with habitat type (e.g. Stauffer and Best 1986), scale of measurement (e.g. 

Hamel et al. 1986), and populations density itself (Hobbs and Hanley 1990). To make matters 

even more complicated, animals have occasionally been documented showing actual preference 

for low quality habitat over higher quality habitat, in a phenomenon known as an 'ecological 

trap' (Dwernchuk and Boag 1972, Donovan and Thompson III 2001, Battin 2004). The risk and 

influence of confounding factors can be minimized, though not eliminated, by basing species-

habitat relationships on the mechanisms linking demographic performance to habitat features, 

rather than on simple correlations (Hobbs and Hanley 1990). 

Habitat quality is a function of the population density, birth rate, death rate, and social 

interactions particular to an area (Van Home 1983). Data on population presence and abundance, 

or indices of density such as pellet-group counts, do not necessarily equate to measures of habitat 

suitability, but they are often all that is available (Hansen et al. 1993). The many other factors 

affecting the distribution and abundance of species, and habitat quality itself, are usually 

excluded from habitat suitability models because they are either difficult to measure, manage, or 

predict (Farmer et al. 1982, Schamberger and O'Neil 1986). Of course, removal of mechanisms 

critical to the distribution and abundance of species reduces the explanatory and predictive 

power of habitat suitability models, especially when applied to very different conditions or for 

long periods into the future (Schamberger and O'Neil 1986, Conroy et al. 1995). This 

simplification is necessary, however, to make model construction and application a practical 

possibility. 

Even i f the majority of critical factors were included in habitat suitability models, 

predictive power would still be limited. For one thing, less obvious factors may exert great 

influence, such as the occurrence of an infrequent event with strong influence, or numerous weak 

interacting factors combining to have large influences over system behaviour. Also, change in 

any ecosystem, like all complex adaptive systems, occurs mainly at small scales through random 

events such as mutation and environmental fluctuation (Levin 1998). As the system changes and 

evolves, the local rules of interactions also change (Levin 1998). This inherent unpredictability 
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of ecosystems makes the number of potential outcomes of any management action extremely 

high, and works to hamstring even the very best efforts at prediction. 

Formation of useful habitat suitability models is extremely challenging even with 

excellent data. However, i f the data are of poor quality, i f spatial scale of measurement was 

inappropriate, or i f the data were not collected with habitat quality characterization in mind, any 

attempt at robust habitat suitability model creation may be utterly futile (Guisan and Zimmerman 

2000). Clearly, there are numerous risks and challenges with the use of habitat suitability models 

for forest management. 

It should be emphasized at this point that the previous discussion of the conditional 

weaknesses of habitat suitability modeling is not meant to discourage its use, but instead to 

carefully outline the considerations necessary to evaluate when they will be useful, and how to 

maximize their usefulness. "Models, of course, are never true, but fortunately it is only necessary 

that they be useful. For this it is usually needful only that they not be grossly wrong" (Box 1979). 

With the exception of exceedingly simple or impossibly complex situations, it seems logical that 

the process and products of mathematical habitat suitability modeling will be generally superior 

to an educated guess. In forest management, incorrect assumptions on the outcome of proposed 

management actions can have significant social, economic and ecological impacts. It is 

imperative that forest managers have the best information available for decision making, and 

habitat suitability modeling can be a powerful aide. 

1.3 Managing for Mule Deer 

Mule deer (Odocoileus hemionus), an important game species, have a range that extends 

2500 km in length, from central Arizona and New Mexico to northern Alberta and British 

Columbia, and 1500 km in width, from the east side of the Rocky Mountains west to the Coast 

range (Wallmo 1981). Mule deer reach the northern limits of their continuous distribution in the 

Cariboo Forest Region in the central interior of British Columbia (Armledder et al. 1994, 1998). 

The population trends of mule deer, when generalized over their entire range, show that 

populations have been in a state of decline since an overabundance peak that occurred through 

the 1940's to 1960's (Wallmo 1981, Alberta Forestry, Lands and Wildlife, Fish and Wildlife 

Division 1989). Mule deer populations in B.C. also appear to have followed this general trend 

(Edwards 1956). Periods of decline appear to have no consistent relationship with over-harvest, 

but there has been a general relationship with poor fawn survival (Wallmo 1981). Further 
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exploration of the possible reasons for this decline, as well as finding strategies to mitigate it, 

requires a basic understanding of mule deer biology and ecology (Loveless 1964). 

Throughout their distribution, mule deer are extremely variable in whether they migrate 

(Nicholson et al. 1997). In the interior of British Columbia, they do migrate, moving from winter 

to summer ranges to pursue nutritious forage and to escape the heat, and from summer to winter 

range to escape deep snow (Willms et al. 1976). Winter is generally accepted to be a harsh time 

for ungulates in temperate forests. In winter, forage is low in digestible energy and digestible 

components, such as protein, starches, sugars, and hemicelluloses (Wallmo et al. 1977, Hanley 

and McKendrick 1985). This is due largely to leaf fall of deciduous plants (Short et al. 1966), 

maturity of herbs (Willms et al. 1976), and snow covering low lying forage (Robinette et al. 

1952). Not only is the intake of energy low in winter, but energy expenses are high, as snow 

makes locomotion more difficult (Parker et al. 1984), and low temperatures make 

thermoregulation costly (Hobbs 1989). In late winter, available forage may be insufficient to 

meet maintenance energy requirements (Wallmo et al. 1977), at which point deer will draw upon 

stores of fat and protein (Torbit et al. 1985, Anderson et al. 1990). If energy stores are 

sufficiently depleted, fawns the following spring will be born with low vitality and a low rate of 

survival (Wallmo 1981). In more severe situations, extensive adult starvation may occur 

(Wallmo 1981). 

It seems clear that deer health and survival over winter is affected by snow on the ground 

and the quality and abundance of available forage. However, it has been suggested that winter 

ranges rarely meet maintenance requirements, and that management emphasis should therefore 

be spread more equitably through the year (Edge et al. 1990). Over-winter health and survival 

may have more to do with the body condition of deer entering winter than the condition of winter 

range (Hobbs 1989). Be that as it may, much of the focus on mule deer management has 

focussed on winter range requirements, due largely to the conspicuous relationship between mule 

deer population declines and winter severity (Wallmo 1981). As forest management activities 

have the potential to have considerable impact on deer habitat, mule deer winter range 

requirements have become necessary considerations for forest harvesting operations throughout 

the Southern and Central Interior of British Columbia (see the Ministry of Sustainable Resource 

Management's Cariboo-Chilcotin Land Use Plan 1995 and Okanagan-Shuswap Land and 

Resource Management Plan 2001). 
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1.3.1 Forest Management Effects on Mule Deer 

Forest management alters a forest by changing the amount and distribution of particular . 

age classes of forest stands, as well as the species composition of trees and understory plants 

within those stands. Economic incentives in sustained yield timber management are optimized by 

felling trees when they reach their maximum mean annual increment in monetary value 

(Kuusipalo and Kanga 1994). This provides an impetus that has tended to result in substantially 

reduced amounts of old-growth forest' and old forest attributes (i.e. large course woody debris, 

patchy canopy structure) on the landscape, and increased amounts of young forest and early serai 

associates (Kuusipalo and Kanga 1994). There is a strong possibility that the presence of old-

growth forest improves mule deer winter habitat, as old-growth stands, particularly old-growth 

Douglas-fir (Pseudotsuga menziesii) stands, intercept large amounts of snow, allow forage 

production in canopy gaps, and provide additional forage through winter branch breakage 

(Armleder et al. 1994). 

Forest management also can affect stand density through thinning, as there is a well 

established trend that understory production, and therefore mule deer forage, generally increases 

with decreasing canopy cover (Jameson 1967). This trend is certainly not absolute, however, as 

in some instances stand thinning activities have not resulted in a change to understory volumes 

(Lindgren and Sullivan 2001, Sullivan et al. 2002). This is likely to be because thinning can 

improve overall stand vigour, releasing stagnant stands and causing the canopy to close quickly 

(Homyack et al. 2004). In addition, forest management can also affect the speed that new stands 

are re-established after harvest or natural disturbance by planting seedlings and removing 

competing vegetation. 

In truth, forest management can affect the forest, and mule deer habitat, in near countless 

ways. There is great variation in stand and landscape harvest patterns, regeneration techniques, 

and application of thinning, pruning, fertilization, slashburning, herbicide, and scarification 

treatments. Forest management, by its very nature, alters stand overstory characteristics, as well 

as understory vegetation productivity, abundance, and species composition, all of which are 

components of mule deer habitat. 

1 The term 'old-growth', as used here, refers to a structural description of an over-mature forest stand. Overstory 
trees will be senescent, typically exhibiting large crowns, as well as signs of decay, disease, and deformation. The 
stand exhibits canopy gaps, as well as standing and fallen dead trees that are relatively large for the species present 
(Spies and Turner 1999). 
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1.3.2 Mule Deer Effects on Forest Management 

While the impact of forest management on mule deer is generally of primary concern to 

forest managers, the impact of mule deer on forests can be significant. A l l large mammalian 

herbivores alter vegetation and, potentially, vegetation communities (Huntly 1991, Mclnnes et 

al. 1992). Mule deer affect vegetation directly by consuming leaves, stems, fruits and flowers of 

palatable vegetation (Cote et al. 2004). Changing plant biomass and community composition 

may have a cascading affect on other species that are affected by their presence, abundance, and 

availability (Huntly 1991, Cote et al. 2004). 

Some mule deer impacts on forests and forest management are most apparent when deer 

become overabundant. For example, mule deer browsing on tree seedlings may over time affect 

overstory tree species composition and reduce timber yield, and mitigation measures (e.g. 

protective cones) may be expensive (Cote et al. 2004). Although outside the realm of traditional 

forest management, mule deer may also damage gardens, nearby agricultural crops, and, perhaps 

most importantly, impact with cars and thus endanger human life (Cote et al. 2004). Finally, deer 

may transmit disease to livestock, other wildlife, and humans (Cote et al. 2004). 

When deer are not overabundant, their impacts on forest management can still be 

considerable. For example, considerations for preserving mule deer winter range in the interior 

of British Columbia have effectively precluded harvest of numerous large, valuable stands of 

old-growth Douglas-fir. If attempts to integrate mule deer habitat needs into harvesting plans are 

not successful and population declines continue, large areas may be set aside as reserves, further 

limiting economic opportunities (Armledder and Dawson 1992). 

1.4 Thesis Overview 

Habitat suitability models generally fall into one of two categories; qualitative and 

quantitative synthesis of expert opinion, knowledge and understanding, or statistical models 

derived from empirical data, and incorporating varying degrees of expert influence (Pearce et al. 

2001). Quantitative models are generally preferred to qualitative ones, because weaknesses of 

quantitative models are more easily analyzed and evaluated (Maurer 1986). 

This thesis is concerned with the production of statistical mule deer habitat suitability 

models from empirical data, while at the same time exploring in detail the methods necessary to 

do so. The responses of mule deer pellet-group densities to experimental manipulations of 

thinning and fertilizer treatments in young lodgepole pine (Pinus contorta) stands in the interior 

of British Columbia provide the empirical data used. Chapter 2 (The Habitat Requirements of 
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Rocky Mountain Mule Deer: A Review) is a comprehensive review of mule deer habitat 

requirements. This review was necessary to identify which predictive variables to use in habitat 

suitability equations, as well as their likely ranking of importance. In Chapter 3 (Habitat 

Suitability Modeling from Data Using Multimodel Selection and Inference), habitat suitability 

models are developed for mule deer using an effective and increasingly popular approach. This 

approach, most commonly known as the information-theoretic approach and championed by 

Burnham and Anderson (2002), is based on Chamberlin's (1890) theory of multiple working 

hypotheses and Akaike's information criterion (AIC; Akaike 1973). AIC, in turn, is based on the 

theory of maximum likelihood and the Kullback-Leibler measure of information (Kullback and 

Leibler 1951). The intent is to apply this approach in such a way as to produce statistical habitat 

suitability models for mule deer in the interior of British Columbia that are as robust as the data 

will allow. 
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Chapter 2 

The Habitat Requirements of 

Rocky Mountain Mule Deer: A Review 

2.1 Introduction 
Habitat is defined as the range of physical and chemical environmental gradients that a 

given species occupies, and is described in nature by demographic responses to those gradients 

(Whittaker et al. 1973). As habitats are variable in space and time, natural selection will favour 

individuals that utilize the portions of their habitat that are most suitable for the successful 

production of progeny (Krebs 1994). This selection pressure has resulted in many species 

developing habitat preference behaviours to actively seek out habitat that maximizes net benefits 

to fitness (Parker and Robbins 1984). Behaviours are never a perfect reflection of natural 

selection pressures, however, and therefore preference does not necessarily equate with 

requirement (Krebs 1994). Preference may be shown for a habitat feature that does not contribute 

positively to fitness, or no preference may be apparent for a feature that is overabundant (Peek et 

al. 1982). 

As it is, behaviour is an imperfect indicator of preference, but even identifying specific 

behaviour can be challenging. Population density, commonly used as an index of preference, 

may become uncoupled from habitat quality, causing correlations between density and habitat to 

be potentially misleading (Van Home 1983). This may occur, for example, when territoriality or 

predator avoidance behaviours create high population densities in sub-optimal habitat. In 

addition, apparent preference is likely to vary with scale and time of year, making the 

meaningful measurement and interpretation of preference behaviour even more difficult (Krebs 

1994, Apps etal. 2001). 

Although identifying and interpreting animal behaviour for determination of habitat 

preference and requirements is challenging, it is a worthwhile endeavour. Land management 

activities that operate in ignorance or indifference to the needs of wildlife seem more likely to 

cause significant habitat damage. Such an outcome is considered to be unacceptable, for 

example, in modem, first-world forestry policy and practice. 

The following literature review is a detailed look at what is known regarding the habitat 

preferences and requirements of mule deer, with an emphasis on the Rocky Mountain sub-
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species and associated ecotypes that are found in the interior of British Columbia (Wallmo 

1981). Methods of determining habitat preference are also reviewed, as familiarity with them is 

necessary for interpreting literature results, and fully understanding their inferential limitations. 

The purpose of this review is to have the information on hand necessary to make the most 

informed decisions possible on which predictor variables to utilize, from a selection of many 

available, for habitat suitability modeling of mule deer in the interior of British Columbia. 

2.2 Methods Used for Determining Habitat Preference 

Numerous methods have been used to measure mule deer habitat preference. The most 

common method involves using pellet-group densities as an index of time spent in a habitat and 

of relative population densities (e.g. Robinette et al. 1952, Julander 1955, White 1960, Loveless 

1964, Gilbert and Wallmo 1970, Lyon and Jensen 1980, Tomm et al. 1981, Wambolt and 

McNeal 1987, Altendorf et al. 2001). Habitat preferences have also been inferred by directly 

observing mule deer (e.g. Martinka 1968, Constan 1972), or by snow track surveys (e.g. D'Eon 

2001). Data collected by tracking radiotelemetry-collared deer have been used to find 

correlations with habitat features (e.g. Carson and Peek 1987, Kie et al. 1991, Kie 1996, Coe et 

al. 2001), occasionally using tip-switches to identify habitat used for foraging (e.g. Kie et al. 

1991, Kie 1996). Recently, location tracking using GPS collars has also been utilized (D'Eon 

and Serrouya 2005). 

Preferences for specific forages have also been established in numerous studies, using 

several methods. The most common methods employed have been the observation of bites taken 

by tame deer (e.g. Wallmo et al. 1972, Urness et al. 1975, Carpenter et al. 1979, Deschamp et al. 

1979, Hobbs et al. 1983), and microhistological analysis of fecal material to determine forage 

composition (e.g. Hansen and Reid 1975, Uresk and Uresk 1982, Campbell and Johnson 1983, 

Hanley and McKendrick 1985, Waterhouse et al. 1994, Irby et al. 2002). Analysis of rumen 

samples (e.g. Martinka 1968, Willms et al. 1976) and observations of foraging signs (e.g. 

Constan 1972, Keay and Peek 1980) have also been employed. 

There are many potentially serious sources of error with all habitat and forage preference 

assessment methods. For example, increased defecation rate with increased forage digestibility 

and succulence makes comparisons of mule deer preference between habitats using pellet-group 

densities difficult (Longhurst 1954, Rogers et al. 1958, Wallmo 1981). Also, results from 

analysis of digested plant material have an unavoidable bias towards plants with low digestibility 

or distinctive morphological features (Kufeld et al. 1973). Plants with low digestibility are 
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represented in feces disproportionately to their contribution to total diet because more of their 

mass remains intact and they are easier to identify relative to more thoroughly digested plants. 

Plants with distinctive morphological features are also relatively easy to identify in fecal 

samples. Even taking sources of error into account, however, a sufficient number of studies have 

been performed to clearly establish general trends. 

2.3 Habitat Requirements: General Overview 
Within the geographic range of mule deer, habitat requirements can be separated 

primarily into the interacting categories of cover and forage. Cover influences understory 

production and community structure, but also has important effects on mule deer habitat that are 

independent of its direct influence on forage production. For example, overstory trees act to 

intercept snow in winter, thereby reducing energy required for locomotion, and increasing access 

to forage (Parker et al. 1984, Bunnell et al. 1985). 

Other categories of habitat may be considered, but are unlikely to be of enough 

importance to be worthy of focussing on separately. For instance, coarse woody debris over 0.5m 

deep has been shown to greatly impede mobility (Lyon and Jensen 1980). Access to water is also 

important (e.g. Nicholson et al. 1997, Stewart et al. 2002), although it is unlikely to be directly 

limiting. 

2.3.1 Cover 

Forest cover has both positive and negative repercussions for mule deer. The benefits of 

cover include security from predators, reduced energy costs (Peek et al. 1982, Armleder and 

Dawson 1992), and increased access to winter forage (Peek et al. 1982). The negative 

repercussions of cover.include reduced predator detectability, escape obstruction (Mysterud and 

Ostbye 1999), and reduced forage production (Peek et al. 1982). Cover is composed of the 

interacting effects of topography and vegetation (Loveless 1964), and can be separated into the 

interacting functional categories of snow interception cover, security cover, and thermal cover. 

Snow interception cover, which is of importance only in winter, will be reserved for 

discussion in the 'Winter Range' section. Security cover, on the other hand, is of importance to 

deer year-round. Security cover helps deer escape predation and reduce energy expenditures 

caused by fleeing from human disturbances (Armleder and Dawson 1992). Security cover has 

been defined as any combination of vegetation and topography capable of hiding 90% of a 

standing adult deer from view of a human approximately 60 m away (Thomas et al. 1979). Deer 
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have shown strong tendencies to remain close to cover when it is available, with avoidance 

behaviour beginning at between 40 and 80 m into the open, and use declining sharply 100 m 

from cover (Tomm et al. 1981). A relationship between stress due to harassment and use of 

security cover has an intuitive appeal, and is somewhat supported by the literature. For example, 

use of cover has been shown to remain unchanged in relation to intensity of exposure to human 

activities (Tomm et al. 1981), but has been shown to increase with focussed harassment of does 

by an all-terrain vehicle (Yarmoloy et al. 1988). Female mule deer show a particular preference 

for cover when fawning, probably to reduce the likelihood of insect attack, predation, and 

extreme weather effects on young (Peek et al. 1982). 

Thermal cover is sought out by deer to avoid stress due to temperature extremes in a 

process known as behavioural thermoregulation (Sargeant et al. 1994). Thermoregulation in 

general is the ability of an animal to maintain body temperature within acceptable limits despite 

large variations in ambient conditions (Bunnell et al. 1986, Parker and Gillingham 1990). The 

temperature experienced by an animal, or operative temperature, is affected by air temperature, 

conduction with the ground (Bunnell et al. 1986, Parker and Gillingham 1990, Sargeant et al. 

1994), the cooling effects of wind, and the heating effects of incoming or reflected solar 

radiation (Parker and Gillingham 1990). Heat, cold and the interacting effect of humidity all 

elicit reactions in deer (Loveless 1964). 

Behavioural thermoregulation can involve any behaviour that affects an animal's 

operative temperature. Body posture, for example, can affect thermoregulation by altering 

exposure of surface area. Standing or lying stretched out will increase exposure to air flow and 

help with cooling, while lying and folding legs underneath the body will minimize air flow and 

retain heat (Parker and Gillingham 1990, Sargeant et al. 1994). Deer may also attempt to simply 

move to areas of more moderate temperatures. Thermal cover, although perhaps not necessary 

for maintaining high populations of mule deer (Peek et al. 1982), is often strongly preferred by 

them for relief from extreme high and low temperatures (Loveless 1964, Sargeant et al. 1994). 

Deer will seek shade and northerly aspects to cool themselves, while seeking exposure and 

southerly aspects for warmth (Loveless 1964, Sargeant et al. 1994). When wind causes operative 

temperatures to drop below lower critical limits, however, deer will leave exposed areas to seek 

shelter (Loveless 1964). 

Physiological thermoregulation is also important, and functions by expending metabolic 

energy when temperatures exceed critical limits (Parker and Gillingham 1990). In mule deer, this 

is exhibited primarily through panting to reduce heat and shivering to create heat, with cooling 
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by perspiration playing only a minor role (Parker and Robbins 1984, Bunnell et al. 1986). 

Critical limits will change with season, as Parker and Robbins (1984) found that shivering 

occurred below -20°C in winter and below 5°C in summer, while panting occurred when 

temperatures exceeded 2.5°C in winter and 23.5°C in summer. Mule deer produce a winter coat 

with excellent insulative properties (Parker and Gillingham 1990), and this is at least part of the 

reason for this seasonal difference. 

2.3.2 Forage 

Presence and availability of forage, although affected by cover, is likely of dominant 

importance for mule deer habitat. Food is required for energy, and the quality and availability of 

food affect both birth and death rates (Nicholson et al. 1997). Mule deer have been shown to be 

highly selective feeders (Wallmo 1981, Collins and Urness 1983), generally preferring forages 

that have a high nutrient content and high digestibility, when available (Swift 1948, Willms et al. 

1976). This selectivity is clearly to the species' advantage, as a restricted diet is essential for 

efficiency, and efficiency is necessary for competitive success (MacArthur 1955). 

While diets vary with geographic location, year and season (Morris and Schwartz 1957, 

Uresk and Uresk 1982, Campbell and Johnson 1983), mule deer generally feed primarily on 

browse (leaves and twigs of woody plants) and forbs with some component of grasses, sedges, 

rushes, and mushrooms (Kufeld et al. 1973, Wickstrom et al. 1984, Shackleton 1999). With 

regard to the twigs of browse, only the terminal current annual growth is considered forage 

(Hanley and McKendrick 1985). Nuts, fruits, and berries are also likely to be taken when 

available (Wallmo 1981). 

Mule deer select forages not only for particular quality and species, but also for variety. 

When available, a large number of species are generally consumed, particularly.with regard to 

forbs (Kufeld et al. 1973). This may be in part due to the fact that herbivores are forced to eat a 

variety of plant material to avoid toxification from excessive exposure to any one plant 

secondary defence compound (Freeland and Janzen 1974). A varied diet also seems more likely 

to provide the required amounts of trace minerals and nutrients. 

The quality of plants as forage varies between seasons and between species. Between 

seasons, the changes in forage quality follow the general growth patterns of dormancy in winter, 

re-growth in spring, succulence in summer and tissue hardening in autumn (Short et al. 1966). 

Succulence refers to the cell content to cell wall ratio, as well as general nutrient content (Short 

et al. 1966). From summer to winter, the digestible components (Wallmo et al. 1977, Hanley and 
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McKendrick 1985) and protein content (Willms et al. 1976) of forage generally decreases 

considerably. The difference is most acute in deciduous plants due to the annual shedding of 

leaves (Short et al. 1966), as well as in herbs and grasses due to the decrease in digestibility that 

comes with the thickening of the cell wall with age (Wallmo 1981, Spalinger et al. 1986). Also 

of potential importance is the increasing fat concentration in deciduous plants during winter due 

to the storage of lipids in branches during dormancy (Short et al. 1966). The changes in 

digestibility, in particular, can have a dramatic effect on mule deer, as decreased digestibility 

may increase forage handling time to the point that digestibility limits energy intake below 

maintenance requirements (Ammann et al. 1973, Wallmo et al. 1977, Torbit et al. 1985). Deer 

succumbing to starvation with full rumens have been observed frequently (Wallmo 1981). As 

digestibility increases beyond the point that there is a neutral gain in energy at maximum forage 

intake, less forage is required to meet energy needs and consumption rate is decreased (Ammann 

et al. 1973). 

Finally, as this is potentially of importance in forest management, it should be noted that 

fertilizer application may increase the digestibility and nutrient concentration of plant parts 

(Puoli et al. 1991, Johnson et al. 2001). For example, regarding Douglas fir foliage, fertilizer has 

been shown to increases the growth rate, crude protein level and preference by mule deer (Oh et 

al. 1970). 

2.4 Winter Range 

It has been well established that mule deer generally exhibit a preference between habitat 

types within seasons (e.g. Loveless 1964, Wallmo et al. 1972, Deschamp et al. 1979, Nicholson 

et al. 1997, Altendorf et al. 2001), between seasons (e.g. Loveless 1964, Schoen and Kirchoff 

1985, Nicholson et al. 1997, Plante et al. 2004), and between years (e.g. D'Eon 2001). Mule deer 

display a preference for winter range location that is largely determined by the interacting effects 

of snow depth, aspect, and topography (Gilbert at al. 1970). Relative to summer ranges, steeper 

slopes, more southerly exposures, and lower elevations are generally preferred in winter (e.g. 

Martinka 1968, Wallmo et al. 1977, Telfer 1978, Thomas et al. 1979, Wambolt and McNeal 

1987, Nicholson et al. 1997, Shackleton 1999, D'Eon 2001, D'Eon and Serrouya 2005), because 

of the lesser snow depths in those areas (Loveless 1964, Thomas et al. 1979, Bunnell et al. 1985, 

D'Eon 2004). However, there is some discussion over whether steep slopes are in fact preferred 

(Armleder et al. 1994). Snow depth has been implicated in driving deer migration (Gilbert at al. 

1970, Bartmann 1984, Schoen and Kirchoff 1985), limiting the amount of winter range available 
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(Wallmo et al. 1977, Schoen and Kirchoff 1985), and driving population dynamics (e.g. Edwards 

1956, Wallmo 1981, Bartmann 1984, Parker et al. 1984, Picton 1984, Hanley and McKendrick 

1985, Ballard etal. 2001). 

Snow has a dominant effect on mule deer habitat and habitat selection because snow 

covers low lying forage (Robinette et al. 1952, Loveless 1964, Martinka 1968, Willms et al. 

1976, Hanley and McKendrick 1985) and inhibits locomotion (Robinette et al. 1952, Parker et al. 

1984, Hanley and McKendrick 1985, Schoen and Kirchoff 1985, Bunnell et al. 1990, Shackleton 

1999). Snow will tend to cover forbs and grasses first, increasing the shrub component of the diet 

in winter (Martinka 1968, Willms et al. 1976, Carpenter et al. 1979, Hanley and McKendrick 

1985). This loss of herbaceous forage results in lower diet quality, most notably through lowered 

digestible energy (Hanley and McKendrick 1985). If enough snow accumulates, considerable 

proportions of shrub communities may become covered (Loveless 1964). As winter severity 

increases, preferred areas become those that receive the most sunlight, are driest in summer, and 

therefore support less vegetation than alternative areas (Wallmo 1981). These emergency winter 

refuges may be so small and so intensely used that vegetation has little opportunity to recover, 

and would be inadequate to prevent starvation over time regardless of population size (e.g. 

Gilbert etal. 1970). 

Snow not only affects energy intake, but also energy expenditures by making locomotion 

more difficult and costly (Parker et al. 1984, Hanley and McKendrick 1985). This is likely to be 

of greatest importance in situations where frequent encounters with people cause deer to attempt 

to flee (Parker et al. 1984), and where snow impedes escape from predators (Shackleton 1999). 

However, the increased energy cost of foraging may also take a heavy toll. As the depth that a 

deer sinks into snow increases, energy costs of locomotion increase exponentially (Parker et al. 

1984). Sinking depth is a function of not only snow depth, but also snow density and surface 

hardness or supportability (Bunnell et al. 1990). Deer will tend to avoid areas where they sink 

approximately halfway to their chest (Shackleton 1999). Despite the limitations on the relevance 

of actual snow depth measures, deer use of habitats has often been related to snow depth. In 

general, snow depths in interior habitats greater than about 50 cm seem to make an area 

inaccessible (Loveless 1964, Gilbert at al. 1970), and snow depths of about 25 cm to 30 cm are 

actively avoided (Loveless 1964, Martinka 1968, Telfer 1978). 

Although unlikely to be as important as snow, low temperatures also affect energy 

expenditures through thermoregulation costs (Hobbs 1989), and influence habitat selection 

towards areas that provide exposure to sunlight or shelter from the wind (Loveless 1964, 
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Sargeant et al. 1994). With increasing winter severity, energy costs of thermoregulation 

increase, energy intake decreases (Hobbs 1989), and mortality rate increases (Robinette et al. 

1952, Bartmann 1984, Ballard et al. 2001). The moderating effects of cover on winter conditions 

experienced by mule deer can therefore be of tremendous importance. 

2.4.1 Winter Cover 

Cover in winter is important to mule deer, to the degree that edges are generally avoided 

(Altendorf et al. 2001). Forests act as barriers to falling snow, altering snow depth and density 

(Kittredge 1953, Mysterud and Ostbye 1999). Snow interception generally increases with stand 

density (Kittredge 1953, Kirchoff and Schoen 1987), while forage production decreases 

(Mysterud and Ostbye 1999). Although total quantity of forage may be greater in the open, 

available forage will likely be greater under a forest canopy during severe winter conditions. The 

most important factors affecting the snow interception capabilities of a forest canopy are mean 

crown completeness and canopy structure (Bunnell et al. 1985, Nyberg et al. 1986, Kirchoff and 

Schoen 1987). Snow interception efficiency also varies greatly with magnitude of snowfall 

(McNay 1985), as well as wind and slope to a lesser degree (Bunnell et al. 1985). 

Mean crown completeness, which measures the average proportion of sky blocked out by 

tree crowns in a stand, is considered the best measure available of how snow responds to a 

canopy (Bunnell et al. 1985). In general, lower mean crown completeness results in less snow 

intercepted (Kittredge 1953, Bunnell et al. 1985). Crown closure, defined as the proportion of the 

ground surface in a stand encompassed by vertical projections of the outer edges of tree crowns, 

is considered an inferior correlate of snow interception (Bunnell et al. 1985). Nevertheless, mule 

deer appear to prefer stands with high crown closure during periods of deep snow (Armleder et 

al. 1994, D'Eon and Serrouya 2005). 

Canopy structure is a function of tree species composition, age, density, and site 

productivity. Snow interception efficiency increases with roughness of canopy, length and width 

of crown, inter-whorl distances, as well as flatness and width of foliage (Bunnell et al. 1985). 

Interception efficiency decreases with branch slope and branch flexibility (Bunnell et al. 1985). 

Evidence suggests that Douglas-fir is the most effective at intercepting snow of the naturally 

occurring tree species in British Columbia (Nyberg et al. 1986). Indeed, mule deer appear to 

show greater preference for Douglas-fir dominated stands as snow depths increase (Armleder et 

al. 1994). However, there is some debate over whether tree species is of dominant importance in 

affecting mule deer winter range (Nyberg et al. 1986). Requirements for snow interception cover 
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will of course vary with area and year, as low snowfall would make considerable canopy closure 

unnecessary, while very deep snow may make areas completely inaccessible (Nyberg et al. 

1986). 

Although the energy cost of thermoregulation is likely to be only a small portion of total 

energy costs, it may still have a substantial impact on energy reserves (Hobbs 1989). Thermal 

cover in winter provides relief from extreme high and low temperatures by reducing incoming 

and outgoing radiation and wind speed (Mysterud and Ostbye 1999). Any vegetation cover 

impedes air flow, reduces wind velocity, and increases air turbulence, thereby reducing wind-

chill in winter, and this effect increases with vegetation height (Bunnell et al. 1986). 

Any forest canopy that provides good snow interception will also provide adequate 

thermal cover, although adequate thermal cover can also be supplied by tall shrubs with 

negligible snow interception properties (Bunnell et al. 1986). Optimal shelter from severe winter 

conditions would have a patchy canopy structure to allow ease of locomotion under dense 

canopy and increased forage production within small canopy gaps. As this structural 

heterogeneity is generally absent in natural young stands, old-growth stands have traditionally 

been considered optimal mule deer winter range (McNay 1985). Indeed, mule deer appear to 

prefer old-growth stands in winter in the central interior of B.C., with preference increasing 

during periods of deep snow (Armleder et al. 1994). 

2.4.2 Winter Forage 

In winter, particularly in northern and high elevation habitat types, shrubs are generally 

the most important forage for mule deer, with the remainder of the diet made up mostly of forbs, 

coniferous trees, and some grasses (Julander 1955, Martinka 1968, Constan 1972, Kufeld et al. 

1973, Willms et al. 1976, Keay and Peek 1980, Campbell and Johnson 1983). Lichen and 

mushrooms may be present in small quantities (Kufeld et al. 1973, Willms et al. 1976, Campbell 

and Johnson 1983). Lichen supply in winter is likely to be positively correlated with stand age 

(Waterhouse et al. 1991). Consumption of forbs and grasses tends to decrease sharply, and 

consumption of tall shrubs, trees, and lichens tends to increase sharply, as snow accumulates and 

low-lying plants are covered (Willms et al. 1976, Hanley and McKendrick 1985, Nyberg et al. 

1986). Richness of plant species in the diet may be of importance in winter, as Waterhouse et al. 

(1994) found that in the central interior of B.C.; although only a few species made up the bulk of 

the diet, 87 species were consumed in total. 
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Very few published studies presented actual forage preferences, as most simply presented 

diet composition. Of those that did demonstrate preference, fewer still presented preferences for 

forages relevant to the interior of B.C. Willms et al. (1976), working in the Kamloops Forest 

District, found that sweet clover (Melilotus alba) and other members of the legume family were 

preferred forbs. For shrubs and trees, false box (Pachistima myrsinites) and Oregon grape 

(Mahonia aquifolium) were preferred over Douglas-fir (Pseudotsuga menziesii) foliage. This is 

likely due in part to the fact that essential oils from Douglas-fir have an inhibitory effect on 

rumen microbes, reducing digestibility (Oh et al. 1970). Working in the Selkirk Mountains of 

B.C., D'Eon (2001) found that Saskatoon berry (Amalenchier alnifolia), redstem ceanothus 

(Ceanothus sanguineus), Douglas maple (Acer glabrum), nootka rose (Rosa nutkana), ocean 

spray (Holodiscus discolor), wild rose (Rosa gymnocarpa), and ninebark (Phyoscarpus 

malvaceus) were preferred relative to availability. Western hemlock (Tsuga heterophylla) and 

beaked hazelnut (Corylus cornuta) were avoided, while white birch (Betula papyrifera) and 

willow (Salix spp.) were browsed in proportion to their availability (D'Eon 2001). 

Because of the belief that Douglas-fir blow-down is of great importance as forage on 

critical winter range, at a time when most other forage has either been buried or consumed, a 

number of studies have examined preference for Douglas-fir foliage. In the Kamloops Forest 

District, for example, Douglas fir foliage was found to make up 63% of the diet during the month 

of December (Willms et al. 1976). Foliage from Douglas-fir trees grown in the open has been 

shown to be preferred over that grown in gullies, unshaded needles have been shown to be 

preferred over shaded needles, and dry foliage seems to be preferred over moist foliage (Tucker 

et al. 1976). Foliage from the tops of trees is preferred over low-grown foliage, and older trees 

are preferred over younger trees (Tucker et al. 1976, Dawson et al. 1990). Seedlings of Douglas-

fir are generally avoided in uneven aged stands but new growth is likely to be browsed lightly, 

with a preference for taller seedlings and seedlings grown from cuttings of mature trees (Silen et 

al. 1986, Dawson et al. 1990). 

When assessing or predicting the value of winter habitat for mule deer, it is important that 

the researcher keep in mind that animal population densities may not necessarily be correlated 

with forage abundance. For example, although mule deer distributions have, in certain situations, 

been shown to be positively correlated with abundance of shrubs (Loveless 1964, Anderson et al. 

1972, Peek et al. 2002), distributions have also been shown to be independent of shrub 

abundance (Telfer 1978). In one case, deer population density was found to be negatively 

correlated with shrub production, and deer were concentrating on unproductive areas (Anderson 
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et al. 1972). This is likely due to the fact that in severe winter conditions, snow dictates deer 

distributions (Martinka 1968, Gilbert at al. 1970, Wallmo et al. 1977, Thomas et al. 1979, 

Schoen and Kirchoff 1985, D'Eon 2001). As winter severity increases, preferred areas are those 

that receive the most sunlight, are driest in summer, and therefore have the disadvantage of 

supporting less vegetation than alternative areas (Wallmo 1981). 

2.5 Summer Range 

Summer range, although generally not implicated directly as a major factor in deer 

population regulation, plays an important role in physically preparing deer for winter hardships 

(Julander et al. 1961, Wallmo 1981, Torbit et al. 1985, Hobbs 1989, Edge et al. 1990, Peek et al. 

2002). Relative to winter, in summer mule deer prefer more northerly exposures and higher 

elevations (Gilbert at al. 1970, Thomas et al. 1979, Kie et al. 1991, Nicholson et al. 1997). Deer 

that move to higher elevations in the summer benefit from a more digestible diet than deer 

remaining at lower elevations (Hanley and McKendrick 1985). Mule deer also show a preference 

for edge in summer months (Tomm et al. 1981), likely due to the triple benefits of access to 

forage, thermal cover, and security cover. 

2.5.1 Summer Cover 

Cover for mule deer in summer generally appears to be a simpler topic than it is in 

winter. As discussed earlier, deer require security and thermal cover in summer. In addition to 

normal security cover requirements, deer require cover in summer to camouflage fawns from 

predators (Shackleton 1999). However, one study that examined correlations with fawn mortality 

found no relationship between hiding cover and fawn mortality, but did find a strong relationship 

between forb production and decreased mortality (Hamlin at al. 1984). The authors suggested 

that this could be due to either increased nutritional intake, or increased alternate prey (e.g. 

microtines) for coyotes. The requirements for thermal cover in summer were also discussed 

earlier, and involve providing shade (Sargeant et al. 1994) and cooling airflow (Parker and 

Gillingham 1990). While shade is desirable, a forested area with too much canopy closure 

reduces carrying capacity due to reduced forage production (Bennett et al. 1940). 

2.5.2 Summer Forage 

In summer, forbs are utilized much more, and shrubs much less, than in winter (Julander 

1955, Martinka 1968, Kufeld et al. 1973). This is a generalization of course, and there are 
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exceptions (e.g. Campbell and Johnson 1983, Mt. Chopaka, Washington). Forbs are preferred 

when available (Julander 1955, Deschamp et al. 1979), and are clearly an important summer 

forage (Pederson and Harper 1978). Trees are utilized considerably less in summer than in any 

other season (Kufeld et al. 1973). Grass is generally consumed least in summer (Kufeld et al. 

1973), although it may be an important source of nutrition when it is succulent and actively 

growing, usually in spring or early summer (Willms et al. 1976, Collins and Urness 1983). 

Lichen and mushrooms may be present in the diet in small quantities (Kufeld et al. 1973, Willms 

et al. 1976, Deschamp et al. 1979, Campbell and Johnson 1983). 

Actual amounts of forage types in mule deer diets vary considerably among studies, 

likely due largely to differences in availability (Julander 1955). Some studies found that browse 

dominated summer diets (e.g. Smith 1953, Utah; Wallmo et al. 1972, Colorado; Hansen and Reid 

1975, southern Colorado; Austin and Urness 1985, western Utah), while others found that forbs 

made up the bulk of summer diets (e.g. Martinka 1968, Utah; Willms et al. 1980, southern 

interior of B.C.). In a review of 17 papers examining summer diets, Kufeld et al. (1973) found 

that shrubs and forbs were consumed in roughly equal proportions on average, but the proportion 

of herbs in the diet appears to increase somewhat when regions more arid than those typical to 

the southern interior of British Columbia are excluded from consideration. There is a clear trend 

of decreasing consumption of forbs and increasing consumption of shrubs from early to late 

summer, regardless of proportional contributions (Smith 1953, Willms et al. 1980, Austin and 

Urness 1985), probably due to the curing of forbs under hot and dry conditions (Coe et al. 2001). 

Richness of plant species in the diet may be of importance in summer. For example, 

Wallmo et al. (1972) in Colorado found that while essentially one forage species made up the 

bulk of the diet per habitat type (Vaccinium spp. in forested areas, Salix spp. on roads), the 

remainder of the diet was made up of 85 species, 71 of which contributed less than 1% each. 

Although none of the studies investigated this point in particular, the possibility certainly exists 

that deer do not require species rich diets, and the large number of species making small volume 

contributions to the diet may simply be a result of forage sampling behaviour. 

With regards to general summer forage, deer appear to primarily select foods with high 

digestibility and low lignin content (Vangilder et al. 1982). This is followed in importance by 

forage that is abundant, high in soluble material and high in calcium content. Forage that is high 

in gross energy and lignin content appears to be the third most important component of selection 

(Vangilder etal. 1982). 
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As with winter forage, few published studies have presented preferences for specific 

summer forages. Mushrooms appear to be a preferred source of food when available (Deschamp 

et al. 1979). Julander (1955), working in Utah, observed numerous forage preferences likely to 

be relevant to the interior of B.C, and Julander et al. (1961) produced a very similar list of 

preferred species proposed from numerous unpublished studies in Utah. Of browse species, 

aspen (Populus tremuloides), antelope-bush (Purshia tridentatd), Saskatoon berry, choke cherry 

(Prunus virginiand), elderberry (Sambucus spp.), falsebox, ninebark, Oregon grape, and wild 

rose (Rosa spp.) are considered highly preferred. Of forbs, white geranium (Geranium 

richardsonii), asters (Aster spp.), and lupines (Lupinus spp.) were highly preferred. Ligusticum 

spp., larkspur (Delphinium spp.), Valerian spp., columbine (Aquilegia sp.) and paint brush 

(Castilleja sp.) were also identified as highly preferred, although species other than those 

occurring in the interior of B.C. were specifically referred to. In the spruce-fir zone of western 

Montana, White (1960) also found preferences for plant species likely to be relevant. Of browse 

species, black huckleberry (Vaccinium membranaceum), and western mountain ash (Sorbus 

scopulina) were preferred. Of forb species, golden-aster (Chrysopsis villosa) was preferred to the 

point of being 'chewed to the ground' wherever it was found (White 1960). 

2.6 Summary and Conclusion 

Clearly, an abundance of studies have established the essential habitat requirements of 

mule deer. The approximate rankings in importance of habitat variables per season are 

summarized in Tables 2.1 and 2.2. However, a detailed understanding of the complexity of mule 

deer ecology remains elusive. The abundance, availability and quality of one habitat requirement 

are likely to affect preferences and requirements for other habitat components. Although the 

presence of such interactions has frequently been acknowledged, their strength and importance 

have proven difficult to establish (Edwards 1956, Loveless 1964, Peek et al. 1982, Parker and 

Robbins 1984). 
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Table 2.1. Summary of literature for important winter habitat variables and their probable order 
of importance. Arrows represent either positive (f) or negative (I) support for the importance or 
relative ranking of a given variable. Two opposing arrows side by side (i.e. f i ) represents 
conflicting support, likely due to confounding factors. Arrows are followed by a brief statement 
describing the variable's functional role, i f not obvious or self explanatory, except in regards to 
forage variables, in which case the percent contribution to the diet (if described), and study 
location is stated. The variable 'operative temperature' refers to the temperature experienced by 
an animal, and includes both ambient temperature and wind-chill. When considering forage 
volume variables, it is considered given that the volume of preferred forages will always be a 
preferred variable over gross volume. Studies thought to be irrelevant to the southern interior of 
British Columbia are excluded from mention. Irrelevant studies in the literature review by Kufeld 
et al. (1973) do not contribute to values presented here (values from Colorado, California, and 
Arizona excluded; values from Montana, Idaho, N.E. Washington, and Wyoming included). 
Relevant studies already included in the review by Kufeld et al. (1973) are not mentioned 
separately. 

Rank Variable Studies Providing Supporting Evidence for Rank 

l snow depth 

Robinette et al. 1952; Edwards 1956; Loveless 1964; Martinka 1968; Gilbert at 
al. 1970; Willms et al. 1976; Wallmo et al. 1977; Telfer 1978; Carpenter et al. 

1979; Schoen and Thomas et al. 1979; Bartmann 1984; Parker et al. 1984; Picton 
1984; Bunnell et al. 1985; Hanley and McKendrick 1985; Kirchoff 1985; 
Bunnell et al. 1990; Shackleton 1999; Ballard et al. 2001; all | , forage and 

locomotion 

2 mean crown 
completeness Bunnell et al. 1985 (f, snow cover); Kirchoff and Schoen 1987 (f, snow cover) 

3 crown closure . Bunnell et al. 1985 (f, snow cover); Armleder et al. 1994 (f, snow cover); 
D'Eon 2004 (|, snow cover at low elevations) 

4 stand age 
Tucker et al. 1976 (f, forage); Bunnell et al. 1985 (|, snow cover); McNay 1985 
(t, snow cover); Dawson et al. 1990 (f, forage); Armleder et al. 1994 (f, snow 

cover) 

5 stand density Kittredge 1953 (f, snow cover); Kirchoff and Schoen 1987 (|, snow cover); 
Mysterud and Ostbye 1999 (f, snow cover) 

6 overstory tree species 

Willms et al. 1976 (|, forage, 43% Douglas-fir in winter, S. interior B.C.); 
Bunnell et al. 1985 (f, snow cover); Nyberg et al. 1986 (J., snow cover); 

Armledder and Dawson 1992 (|, snow cover); Armleder et al. 1994 (f, snow 
cover) 

7 sinking depth 
in snow Bunnell et al. 1990 (|); Shackleton 1999 (|) 

8 shrub volume 

Kufeld et al. 1973 (f, avg. 69%, stdev. 18%, shrubs and trees combined, 
extensive review); Willms et al. 1976 (f, 40%, S. interior B.C.); Telfer 1978 (|, 

SW, central AB); Keay and Peek 1980 (|, 85%,W. Montana and N . Idaho); 
Campbell and Johnson 1983 (t, 47%, N . central Washington); Peek et al. 2002 

(1, S. central Oregon) 

9 herb volume 
Kufeld et al. 1973 (f i , avg. 30%, stdev. 18%, extensive review); Willms et al. 
1976 (t, 16%, S. Interior B.C.); Keay and Peek 1980 (f, 12%, W. Montana, N . 

Idaho), Campbell and Johnson 1983 (t, 32%, N . central Washington) 

10 operative temperature Loveless 1964 (|); Hobbs 1989 (f); Sargeant et al. 1994 (f); Mysterud and 
Ostbye 1999(f) 

11 vegetation height Bunnell et al. 1986 (t, wind reduction) 

12 distance from edge Altendorf et al. 2001 (edges avoided) 

13 forage species richness Kufeld et al. 1973 (f, herbs more than shrubs); Waterhouse et al. 1994 (f) 
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Table 2.2. Summary of literature for important summer habitat variables and their probable 
order of importance. Details are as listed for Table 2.1. 

Rank Variable Studies Providing Supporting Evidence for Rank 

1 herb volume 

Kufeld et al. 1973 (ti, avg. 56%, stdev. 24% extensive review; 
Willms et al. 1980 (t, 52%, S. interior, B.C.); Collins and 

Urness 1983 (t, > 50%, N . Utah); Hamlin at al. 1984 (|, N . 
Montana) 

2 shrub volume 
Kufeld et al. 1973 ( | | , avg. 42%, stdev. 25%, shrubs and trees 
combined, extensive review); Willms et al. 1980 (|, 45%, S. 
interior, B.C.); Collins and Urness 1983 (t, < 50%, N . Utah) 

3 distance to edge Tomm etal. 1981 (f) 

4 canopy closure Bennett et al. 1940 (f, shade reduces forage production), 
Sargeant et al. 1994 (|, shade for cooling) 

5 forage species 
richness 

Wallmo et al. 1972 (|, Colorado); Kufeld et al. 1973 (|, herbs 
more than shrubs, extensive review); Pederson and Harper 

1978 (T, herbs more than shrubs, SE Utah) 
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Chapter 3 
Habitat Suitability Modeling from Data 

Using Multimodel Selection 

3.1 Introduction 
Reality is essentially infinite in complexity, particularly in relation to the limitations of 

the human mind (Bronowski 1978). Ecosystems display all the typical traits of complex systems, 

including interactions across scales, nonlinearity, self organization, and emergent properties 

(Boyce 1992, Holling 1992, Levin 1998, Levin et al. 1998, Wu and Marceau 2002). Any 

ecosystem model, be it qualitative or quantitative, represents an attempt to create a simplified 

approximation of reality (Burnham and Anderson 2002, Kristov 2004). However, while reducing 

a process to its most dominant factors is necessary in order to improve understanding and make 

prediction possible, the complexity of ecosystems means that they are not completely reducible 

to their components, and generalities are difficult to obtain (Boyce 1992, Wu and Marceau 

2002). Ultimately, a model must incorporate that which is known with the best guesses possible 

regarding that which is not (Hilborn and Mangel 1997). A l l this simplification and guesswork, 

while necessary, inevitably leads to error (Farmer et al. 1982, Burnham and Anderson 2002). 

Great rigor is necessary in order to minimize this error. 

There appear to be two essential concepts that must be carefully considered before any 

formal model building should begin. First, modeling is necessarily and unavoidably subjective, 

incorporating the prior knowledge, bias, beliefs and objectives of the modeller (Farmer et al. 

1982, Marcot et al. 1983, Hodges 1987, Sokal and Rohlf 1995, Guisan and Zimmerman 2000, 

Jackson et al. 2000, Burnham and Anderson 2002). While some may think this to be a flaw, 

models that are constructed with an understanding of the system of interest are actually more 

likely to produce useful insights and reliable predictions (Conroy 1993, MacNally 2000, 

Burnham and Anderson 2002). As stated clearly by Krebs (1994), "Ecological controversies are 

biological in nature, and will be resolved by biologists rather than mathematicians." 

The second essential concept in modeling is that the optimal level of simplification for 

approximation is a delicate balancing act. The frequently invoked Ockham's razor embodies the 

principle of parsimony, and has been interpreted to mean, "Among competing hypotheses, 

favour the simplest one" (Jefferys and Berger 1992). To be more precise, Ockham's razor is 
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intended to shave away only excessive complexity, as some detail will of course be required for 

any description or prediction. The drive for simplicity is largely due to the fact that, when 

formulated properly, a simpler hypothesis can be more of a generalization about a process or 

phenomenon, and therefore more likely than not to be correct in its description. A simple 

hypothesis has the potential to encompass greater variation than a more complex and specific 

hypothesis within the same conceptual hierarchy. For example, while increasing parameters in a 

statistical model will improve the fit to data (decreasing error due to bias), it will also increase 

the variances of parameter estimates and prediction errors from one data set to another (Gorman 

and Toman 1966, Brieman 1995, Neter et al. 1996, Buckland et al. 1997, Hilborn and Mangel 

1997, MacNally 2000, Burnham and Anderson 2002, Cavanaugh 2004, Johnson and Omland 

2004). 

The difficulties with overly complex ('overfit') statistical models go beyond the problem 

of increasing parameter estimate variance. With enough parameters an excellent fit can be 

attained even i f selected variables have little or no correlation with the dependent variable 

(Brieman 1995, MacNally 2000, Burnham and Anderson 2002). The inclusion of such variables 

would of course reduce the reliability of a model's predictions (Neter et al. 1996). Also, the more 

complicated a model the more likely it is to deviate from assumptions (Chatfield 1995), the more 

difficult it is to understand, and the less likely it is to provide useful insight into the system of 

interest (Neter et al. 1996, Hilborn and Mangel 1997). Finally, model complexity has a practical 

cost, as data for each variable must be collected and processed. This increases the financial cost 

for model testing and application, and decreases the chance that the model will be used properly 

or at all (Chatfield 1995, MacNally 2000). 

While excessively complex models may be problematic, excessively simple ones may be 

even more so (Burnham and Anderson 2002). As models become too simplistic, the risk 

increases that important explanatory variables or processes will be left out (Neter et al. 1996, 

Hilborn and Mangel 1997, Burnham and Anderson 2002). Also, the fit of a simple model to the 

data used for parameter estimation will often be poor (i.e. a large bias, or 'underfit'). Optimal 

model complexity is a compromise between parsimony and goodness of fit (Sokal and Rohlf 

1995), and increases in complexity are desirable only when they result in dramatic improvements 

to predictive accuracy (Jefferys and Berger 1992). 

The proper construction of statistical models, in general, is a process that involves four 

main steps: careful a priori model construction, parameter estimation, model selection, and 

robust error rate estimation (Burnham and Anderson 2002). While the procedure for 
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mathematical modeling discussed in this chapter is applicable for virtually any subject, the 

emphasis here is on the production of habitat suitability models, which relate the distribution and 

abundance of organisms to measurable habitat attributes for which they display a preference 

(Farmer etal. 1982). 

3.1.1 Model Construction 

Model construction consists of the selection of relevant variables, variable interactions, 

and an appropriate functional form (Sokal and Rohlf 1995, Neter et al. 1996). Before beginning 

model construction, modeling objectives and assumptions must be clearly stated to maximize the 

model's usefulness and minimize misinterpretation (Farmer et al. 1982). 

The selection of variables is generally a major difficulty in model building, as 

correlations between predictor variables often make the identification of causal variables through 

data analysis extremely difficult (MacNally 2000). Multicollinearity is said to occur when 

variables are present that are strongly correlated with causal variables, but have no actual 

relationship with the dependent variable (Hocking 1976, Sokal and Rohlf 1995, MacNally 2000, 

Tabachnick and Fidell 2001). The inclusion of redundant variables serves to increase error terms 

and produce less reliable predictive equations, especially when predicting outside the range of 

sample data (Hocking 1976, Tabachnick and Fidell 2001). Therefore, it is important that variable 

selection not be based strictly on data analysis (Flack and Chang 1987). 

Choices of variables and functional forms can only be properly performed by someone 

with considerable knowledge of the population from which data are drawn (Gorman and Toman 

1966). Ideally, habitat variables should have mechanistic linkages to a population's performance, 

as simple correlative relationships are likely to produce inferences that are either unreliable or 

reliable only for a very limited set of conditions (Hobbs and Hanley 1990, Guisan and 

Zimmerman 2000). Modeling causal factors is not always practical however, and predictor 

variables may be limited to indirect variables that are easy to measure or manipulate (Marcot et 

al. 1983). Habitat suitability modeling has the added limitation that habitat itself may not actually 

be limiting population distribution or abundance (Farmer et al. 1982). 

It seems to be relatively undisputed in the statistics literature that careful, well informed 

thought is an integral part of model construction, serving to reduce the incidence of spurious 

(highly variable from one data set to the next, biologically irrelevant) relationships (Anderson et 

al. 2001, Pearce at al. 2001, Burnham and Anderson 2002) and models that are more complex 

than the data can reasonably support (Stauffer and Best 1986, Buckland et al. 1997). These a 
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priori considerations lead to a more powerful strength of inference (MacNally 2000, Burnham 

and Anderson 2002). As stated by Chamberlin (1890), "Laudable as the effort at explanation is 

in itself, it is to be condemned when it runs before a serious inquiry into the phenomenon". 

What does appear to be in dispute is at what point in the modeling process a subjective 

filter should become explicitly involved, and to what degree. For example, Chatfield (1995) and 

Burnham and Anderson (2002) state that models should be constructed entirely a priori using all 

available information, such as personal experience, expert knowledge, and accepted theory. In 

contrast, Cox (1958) and Hilborn and Mangel (1997) believe that it is important to first become 

intimately knowledgeable of the information contained in a data set before beginning model 

construction. However, the point is made well by Burnham and Anderson (2002) that variables, 

relationships, and model form suggested by data can be considered after a priori considerations 

have been exhaustively explored, but a priori based modeling cannot be performed after the data 

set has been explored. 

A middle ground appears to be advocated by Sokal and Rohlf (1995) and Neter et al. 

(1995), who suggested that prior knowledge be used as the foundation for model construction, 

but not as the exclusive influence. This more moderate approach is attractive when a priori 

knowledge is insufficient, or when there is the possible influence of a novel but important factor. 

Certainly the risk of modelling spurious effects will increase (Burnham and Anderson 2002). 

However, it needs to be kept in mind that i f preconceived theories are held too tightly, facts will 

inevitably be misinterpreted and potentially valuable insights will be missed (Chamberlin 1890). 

3.1.2 Coefficient Estimation 

Once variables and form are selected, model parameters must be estimated. Occasionally, 

a priori information may suggest specific coefficient values or value limits, and that information 

may be used to produce a more reliable model (Burnham and Anderson 2002). More commonly, 

however, parameters are based on empirical data, in which case the quality of the data wil l limit 

the quality of the model (Turner et al. 1995). 

Before parameters can be estimated from data, the data must be checked for outliers. 

Also, multicollinearity and serious departures from the assumed distribution of residuals must be 

assessed within a given model (Gorman and Toman 1966, Burnham and Anderson 2002). 

Collinearity diagnostics exist to help screen for multicollinearity (Neter et al. 1996, Tabachnick 

and Fidell 2001). Careful examination of residual plots can reveal deviations from assumptions 

of equal variance and the shape of the relationship between the dependent and independent 
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variables (Gorman and Toman 1966). Normal probability plots can help assess i f residuals 

follow a normal distribution. A global model, including all variables included in less complicated 

models, has been suggested as the model used for such diagnostic assessments (Burnham and 

Anderson 2002). 

Transformation of variables maybe necessary to satisfy assumptions (Hodges 1987), and 

prior knowledge and experience should be used to suggest which transforms are appropriate 

(Box and Cox 1982, Neter et al. 1996). When there is no a priori reason for selecting a particular 

transformation, a method such as the Box-Cox procedure might be used to suggest one (Box and 

Cox 1964, Sokal and Rohlf 1995). With this approach, however, there is the risk of finding 

spurious transformations that may be sub-optimal when applied to a different sample. 

With regard to outliers, any that are the clear result of error should be removed regardless 

of the circumstances. Deletion of valid outliers, however, will lead to underestimation of 

predictive uncertainty i f uncertainty is estimated with the same dataset used for parameter 

estimation (Chatfield 1995). 

3.1.3 Model Selection 

Model selection may be thought of as the process of making inferences from the data on 

what relationships they are capable of supporting (Burnham and Anderson 2002). A priori 

information should be incorporated as much as possible, preferably within a Bayesian framework 

(Akaike 1981). However, a point will often come where knowledge is too vague to assign prior 

probabilities to models or parameters with confidence (Akaike 1981). When this occurs, 

statistical model selection techniques become appealing. 

Some common single model selection methods and criteria include the likelihood ratio 

method, stepwise selection, adjusted R 2 , and Mallow's C p . Likelihood ratio tests operate on the 

principle of parsimony, and select a more complex model only when the maximum likelihood of 

that model is significantly greater than that of the simpler model (Johnson and Omland 2004). 

Stepwise selection, which includes forward and backward methods by single variables or 

subsets, operates by making decisions to add or remove variables based on whether their 

presence or absence elicits a statistically significant change in the coefficient of multiple 

determination (Sokal and Rohlf 1995, MacNally 2000). The adjusted coefficient of multiple 

determination includes a penalty to the calculation of R 2 for the number of parameters in a model 

(Neter et al. 1996). Mallow's C p statistic is used to graphically compare the bias and error of 

fitted models (Gorman and Toman 1966). 
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These model selection procedures are simple to operate, particularly with modern 

statistical analysis programs, but they are plagued with difficulties. First, likelihood ratio tests 

and stepwise selection are based on statistical significance, which frequently has little or no 

relation to biological significance (Hilborn and Mangel 1997). This is because p-values are 

arbitrary, fluctuating with sample size and relying on assumptions that are only approximately 

met (Cox 1958, Preece 1990, Johnson 1999, Anderson et al. 2000). Second, multicollinearity and 

limitations of the sample may make reliable predictor variables impossible to recognize in the 

data by any automated method (Flack and Chang 1987, Neter et al. 1996). Third, stepwise 

selection methods can be highly variable in the subset of variables selected, both between 

forward and backward methods and between samples (Maurer 1986, James and McCulloch 

1990). Stepwise procedures were not designed for, nor are they effective at ranking variables 

(Hocking 1976, James and McCulloch 1990, Sokal and Rohlf 1995). Results of statistical 

methods for variable selection should be used as tentative suggestions at best, and selected 

variables should not be used unless confirmed by theory (Flack and Chang 1987). 

Model selection by adjusted R 2 is a well established technique and a distinct 

improvement over simply modelling to maximize fit. However, as it is based on R 2 , its 

applications are limited. Comparisons of R 2 values between models become problematic when 

there is no intercept, when comparing between different transformations, and for weighted least 

squares (Anderson-Sprecher 1994). Also, although this practice would be i l l advised, R 2 values 

appear to be biased upwards when models are constructed using stepwise regression (Rencher 

and Pun 1980). The C p statistic has been found to have a one-to-one correspondence to the 

adjusted R 2 (Kennard 1971). 

It must be noted at this point that any data driven method that results in the selection ofa 

single model leads to a pervasive underestimation of error (Draper 1995). When the model is not 

known and is selected based on the data itself, which model is 'best' wil l likely vary from sample 

to sample (Burnham and Anderson 2002). However, calculations of parameter estimation error 

are made assuming that the model is known. When this is not the case, error arising from model 

selection uncertainty is being left out of calculations and estimates of error will be overly 

conservative (Chatfield 1995, Draper 1995, Buckland et al. 1997). Model selection uncertainty 

has its greatest impact when sample size is small, when there is a lack of true replication, and 

when there are many possible models (Burnham and Anderson 2002). A l l this concern with 

underestimation of error does not apply; however, when estimates of error are based on a data set 
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completely independent from that used in parameter estimation and model selection (Chatfield 

1995). 

3.1.4 Multimodel Selection and Inference 

In order to help resolve the difficulty of model selection error, Chamberlin's (1890) 

theory of multiple working hypotheses is incorporated into model selection (Anderson et al. 

2000). Science operates by challenging more than one description of nature with data, and it 

makes sense to stay true to this philosophy when modeling (Hilborn and Mangel 1997). The best 

model is very unlikely to be 'truth', and therefore it is illogical to treat it as such, especially when 

alternative models may contain important information (Stoica et al. 2004). Including that 

information allows for more robust inference as well as an estimation of model selection 

uncertainty, which is often ignored in traditional model selection procedures (Anderson et al. 

2000, Burnham and Anderson 2002). In addition, the act of producing multiple working 

hypotheses tends to stimulate non-linear thinking, which helps in viewing the problem from 

multiple perspectives (Chamberlin 1890). 

Once multiple models are constructed, they must be ranked according to how well they 

fit the data while taking model size and complexity into account (Cavanaugh 1999, Cavanaugh 

2004). In this way the principle of parsimony is incorporated into model selection (Schwarz 

1978, Atilgan 1996). Differences between rank scores can then be transformed into weights that 

provide measures of relative support for each candidate model (Johnson and Omland 2004). 

These weights can then be used to calculate weighted averages of parameter estimates and 

predictive output, which will be relatively robust in terms of model selection bias and model 

selection uncertainty (Johnson 1999, Anderson et al. 2000, Johnson and Omland 2004). 

A number of criteria have been developed for ranking models, including Mallow's C p 

(Gorman and Toman 1966, Mallows 1973), Schwarz Criterion (SC; Schwarz 1978), KIC 

(Cavanaugh 1999), and Akaike's Information Criterion (AIC; Akaike 1973). These criteria act 

as objective and consistent methods for ranking and weighting candidate models (Johnson 1999, 

Anderson et al. 2000). A l l but Mallow's C p operate by providing approximately unbiased 

estimates of Kullback-Liebler (Kullback and Leibler 1951) information loss, which classifies 

them as information-theoretic approaches (Akaike 1973, Hurvich and Tsai 1989, Cavanaugh 

1999, Anderson et al. 2000). 

The performance of a criterion appears to be largely determined by how well its penalty 

term approximates the appropriate bias adjustment (Kim and Cavanaugh 2004). Sample size is 
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incorporated into the bias adjustment such that the ranking of complex models improves with 

sample size (Buckland et al. 1997). It was discovered quite some time ago that AIC tends to 

overfit in situations where sample size is small, or when the number of parameters is a large 

fraction of the sample size (Sugiura 1978, Hurvich and Tsai 1989). To resolve this difficulty, a 

version of AIC with a corrected penalty term was developed (AICc; Sugiura 1978, Hurvich and 

Tsai 1989, Bedrick and Tsai 1994). 

There appear to be important differences in the performance of different criteria. 

Fortunately, thorough investigations to clarify those differences have been undertaken. In 

circumstances that involve a true model of finite complexity where the dimension of the true 

model is represented in the candidate set, SC is clearly preferred (Hurvich and Tsai 1989, 

Hurvich and Tsai 1990, Cavanaugh 1999). AIC in this situation is not consistent in model 

ranking and tends to overfit (Hurvich and Tsai 1989). 

In contrast to SC, AIC operates under the assumption that the model representing 'truth' 

is infinitely complex (Buckland et al. 1997). Also, the true model does not need to be present in 

the set of candidate models for optimum results (Anderson et al. 2000). When the 'true' model is 

highly complex, SC tends to select underfit models (Cavanaugh 1999) and AICc outperforms all 

competing criteria (Hurvich and Tsai 1989). While KIC has been shown to compare favourably 

with AIC, it does not outperform it, and is not optimal for as broad a class of models as AIC 

(Cavanaugh 1999, 2004, Kim and Cavanaugh 2004). AIC appears to be consistent in 

outperforming Mallow's C p (Hurvich and Tsai 1989, Fujikoshi and Satoh 1997). 

More alterations of AIC have recently been suggested, including a 'modified' AIC 

(MAIC; Fujikoshi and Satoh 1997), and an 'improved' AIC ( A i d ; Hurvich et al. 1990). M A I C 

appears to be optimal only in situations where the dimension of the true model is the same as the 

largest dimension represented in the candidate model set (Cavanaugh 2004). M A I C is therefore 

not likely to be relevant to application in ecology. In contrast, A I Q appears to be a genuine 

improvement over AICc. A I Q provides only slightly better model selections when the number of 

model parameters is no more than half the sample size, but performs much better when some 

models have higher dimension (Hurvich et al. 1990). This is because AICi was designed under 

the assumption that the candidate models are either correct in dimension or overfitted. Therefore, 

it seems likely that in ecological modeling applications, where the ratio of model parameters to 

sample size should remain low and true model complexity is very high, the slight increase in 

performance of AICi over AICc is not worth the considerable increase in calculation difficulty of 

AICi. 
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Although a substantial improvement over single model approaches, a multimodel ranking 

approach does have weaknesses that must be recognized. First, model ranking is still based on 

data, and therefore the reliability of results is sensitive to the limitations and characteristics of 

those data (Chatfield 1995). Second, the reliability of results is sensitive to the construction and 

selection of candidate models to be considered. If important variables or better models are left 

out of the candidate set, they cannot be identified by selection criteria (Chatfield 1995, Burnham 

and Anderson 2002). Similarly, i f spurious models are included that closely fit quirks of the data, 

selection criteria may rank them higher than is appropriate (Johnson and Omland 2004). Third, 

i f none of the proposed models is a useful description of reality, then resultant inferences will be 

weak regardless of robustness to model selection uncertainty (Buckland et al. 1997). 

3.1.5 Validation 

Although a priori model construction and multimodel consideration minimizes the 

underestimation of error that results from fitting and evaluating models, error in predicting the 

behaviour of any open system is inevitable (Oreskes et al. 1994). Models can never be 

completely true, but fortunately they only ever need to be useful (Box 1979). To evaluate 

usefulness, habitat suitability model output should be tested by comparison with observations in 

a process known as validation (Hansen et al. 1993, Rykiel 1996, Hilborn and Mangel 1997, 

Huggard 1999, Burnham and Anderson 2002). 

Validation is necessary to evaluate model reliability and establish credibility (Marcot et 

al. 1983, Conroy et al. 1995, Rykiel 1996, Vanclay and Skovgaard 1996). Validity itself is a 

relative measure that must take into account model objectives, ecological context of planned 

application, as well as specific precision and accuracy requirements (Farmer et al. 1982, 

Schamberger and O'Neil 1986, Rykiel 1996, Vanclay and Skovgaard 1996, Guisan and 

Zimmerman 2000). The desired end result is a sufficient and quantified understanding of the 

model's attributes such that the limits of reliability can be anticipated within the planned range of 

application (Farmer et al. 1982). 

It is generally accepted that accurate estimates of prediction errors require an analysis of 

how well model output fits data that are independent of those used in the construction of the 

model or the estimation of model parameters (Hocking 1976, Farmer et al. 1982, Lancia et al. 

1982, Conroy 1993, Chatfield 1995, Conroy et al. 1995, Vanclay and Skovgaard 1996, Fielding 

and Bell 1997, Huggard 1999, Yang et al. 2004). Occasionally, truly independent data may not 

be available. Unfortunately, error estimates made with data that are not independent are likely to 
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be biased and overly optimistic (Chatfield 1995, MacNally 2000). When lacking independent 

data, some researchers suggest splitting the dataset into a portion for model fitting and the 

remainder for error estimation - a technique known as cross-validation (e.g. Anderson-Sprecher 

1994, Draper 1995). However, it seems likely that cross-validation is a poor substitute for 

independent data (Chatfield 1995). More recently, researchers have suggested re-sampling the 

dataset with replacement (bootstrapping) to form numerous new datasets that are treated as i f 

they were independent (Draper 1995, Buckland et al. 1997, Hilborn and Mangel 1997, Guisan 

and Zimmerman 2000). Bootstrapping appears to have the effect of 'fleshing out' the sample 

distribution. The dependence of the 'new' data to the original data, however, means that derived 

error estimates will be unreliable i f the original data is not a reasonable representation of the 

population of interest (Vanclay and Skovgaard 1996). 

It must be kept in mind that agreement between model output and independent 

observations does not in itself confirm model assumptions (Oreskes et al. 1994). A faulty model 

may appear to be correct due to sheer coincidence, as many models may arrive at the same 

prediction under very different assumptions (Conroy et al. 1995). Also, models that adequately 

fit historical data may not necessarily be reliable in predicting the future, as model errors will 

propagate and modeled relationships may become invalid under changing conditions (Conroy 

1993, Oreskes etal. 1994). 

3.1.6 Habitat Suitability Modeling Using Multimodel Selection: Application to Mule Deer 

in the Interior of British Columbia 

Mule deer are fairly amenable to habitat suitability modeling, as they show strong habitat 

preferences (e.g. Loveless 1964, Wallmo et al. 1972, Deschamp et al. 1979, Nicholson et al. 

1997, Altendorf et al. 2001), and population dynamics are often driven by the interaction 

between severe winter conditions and habitat (e.g. Wallmo et al. 1977, Schoen and Kirchoff 

1985, Edwards 1956, Wallmo 1981, Bartmann 1984, Parker et al. 1984, Picton 1984, Hanley and 

McKendrick 1985, Ballard et al. 2001). As an important game species, mule deer have 

requirements for winter range that are necessary considerations in forest harvesting operations 

throughout the Southern and Central Interior of British Columbia (e.g. Ministry of Sustainable 

Resource Management's Cariboo-Chilcotin Land Use Plan 1995 and Okanagan-Shuswap Land 

and Resource Management Plan 2001). Therefore, modeling habitat suitability of mule deer has 

both a sound ecological basis, as well as a management incentive to find more efficient methods 

of satisfying winter range requirements. The goal of this project was to produce separate mule 
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deer habitat suitability models for the summer and winter seasons, while at the same time 

exploring the methods necessary for doing so. To be considered acceptable, final models must 

make good use of available data, fit the data well, and must be functional for management 

applications. 

3.2 Methods 

3.2.1 The Data 

Empirical data used for fitting and validating habitat suitability models were provided by 

T.P. Sullivan (Department of Forest Sciences, Faculty of Forestry, University of British 

Columbia), and were obtained from a split-split plot experiment (Hicks and Turner, 1999) he 

conducted at three replicate sites (see Figure 3.1) in the interior of British Columbia (this and all 

details on the experimental design from T.P. Sullivan, personal communication). 

Figure 3.1. Map of British Columbia showing the location of the three study sites at 
Summerland, Kelowna, and Gavin Lake (Cariboo). 

Study sites (see Table 3.1) consisted of forest stands with an overstory dominated by 

young lodgepole pine. The location, proximity, and sizes of study sites were selected based on a 

combination of minimizing spatial autocorrelation (Hurlbert 1984, Legendre 1993), and practical 

considerations regarding logistics and access for operational-scale stand manipulations. 

Harvesting of lodgepole pine on the Summerland site began in 1978 in response to 

mountain pine beetle infestation (Dendroctonus ponderosae). Harvesting was done mostly by 

Gavin Lake 

Summerland Kelowna 
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clearcutting, but with some dispersed and aggregated reserves of Douglas-fir seed-trees. The 

number of residual Douglas-fir trees ranged from zero to two trees per ha, depending on original 

stand condition and post-harvest windthrow losses. Lodgepole pine now present arose from 

natural regeneration to become the dominant tree species. In addition to Douglas-fir, interior 

spruce, subalpine fir, Ponderosa pine (Pinus ponderosa), willow (Salix sp.), Sitka alder (Alnus 

sinuatd), and trembling aspen also made up minor components of the forested stands at the 

Summerland site. 

Table 3.1. Details of replicate sites from a study on the response of wildlife to various thinning 
and fertilizer regimes in young lodgepole pine stands, conducted by T.P. Sullivan (unpublished 
data). Montane Spruce BEC zone, dry mild subzone. Sub-Boreal Spruce BEC zone, dry mild 
subzone. 

^̂ 3̂ ®....... M S d m * M S d m * 
** 

S B S d m 

1450-1520m 1220-1240m 850-870m 

gently rolling gently rolling gently rolling 

(SRrarftir cool continental 
climate; cold winters 

and short, warm 
summers 

cool continental 
climate; cold winters 

and short, warm 
summers 

continental; severe 
snowy winters, 

relatively warm, 
moist, short summers 

'Smsmm^mJj 
. 0.5-4.7°C 0.5-4.7°C 1.7-5.0°C 

380-900mm (ms) 380-900mm (ms) 440-900 mm 

9980 to 11150 
stems per ha 8686 stems per ha 3333 stems per ha 

5 +/- 0.2 cm to 
9.5 +/- 0.2 cm 

. 6.2 +/- 0.2 cm to 
10.8 +/- 0.2 cm 

8.5 +/- 0.2 cm to 
12.7 +/- 0.3 cm 

4.1+/- 0.1m to 5.1 
+/- 0.1m 

5.3+/- 0.1m to 
6.4+/- 0.1 m 

6.1+/-0.1m to 
7.6 +/- 0.2 m 

17-19 yrs. 17-18 yrs. 18 yrs. 

4.4 to 11.3 ha 9.5 to 12.6 ha 1.5 to 4.5 ha 
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Harvesting of the Kelowna site by clearcutting occurred from 1979 to 1980, and a stand 

dominated by lodgepole pine was naturally regenerated. Minor tree species components were the 

same as the Summerland site, with the addition of western larch (Larix occidentalis). Unlike the 

other two sites, the Kelowna site was virtually split by a riparian area with a steep ravine that 

varied in width from 75 to 300 m. 

The Cariboo site was dominated by lodgepole pine that had regenerated naturally after 

wildfire, with minor components of interior spruce, subalpine fir, and some Douglas-fir. The area 

was clearcut in 1976, and the current lodgepole pine dominated stand arose from a combination 

of natural regeneration, and some planting that took place in 1983. 

In the understory of the young forest stands at each site, the main herb species included 

yarrow (AchUlea millefolium), rosy pussytoes (Antennaria microphylla), racemose pussytoes (A. 

racemosa), field pussytoes (A. neglecta), heart-leaved arnica {Arnica cordifolia), fireweed 

(Epilobium angustifqlium), bunchberry (Cornus canadensis), wild, strawberry {Fragaria 

virginiana), assorted grasses, white-flowered hawkweed (Hieracium albiflorum), Arctic lupine 

(Lupinus arcticus), and common dandelion (Taraxacum officinale). At the Cariboo site, fringed 

aster (Aster ciliolatus), northern bedstraw (Galium boreale), creamy peavine (Lathyrus 

ochroleucus), red-clover (Trifolium pratense), white clover (T. repens), and American vetch 

(Vicia americana) were also prominent (Sullivan 2005). 

The main shrub species consisted of Sitka alder (Alnus sinuata), twinflower (Linnaea 

borealis), black twinberry (Lonicera involucrata), red twinberry (L. utahensis), falsebox 

(Pachistima myrsinites), black gooseberry (Ribes lacustre), red raspberry (Rubus idaeus), 

kinnikinnick (Arctostaphylos uva-ursi), willow (Salix spp.), birch-leaved spirea (Spiraea 

betulifolia), and various Vaccinium species. At the Cariboo site, Saskatoon berry (Amelanchier 

alnifolia), tall Oregon-grape (Mahonia aquifolium), prickly rose (Rosa acicularis), and 

soopolallie (Shepherdia canadensis) were also notable (Sullivan 2005). 

Each site was divided into eight treatment stands and one control stand, with treatments 

consisting of one fertilized and one unfertilized stand at each of four thinning densities; 250 

stems per ha, 500 stems per ha, 1000 stems per ha, and 2000 stems per ha (see Figure 3.2 for an 

aerial view of the Kelowna site for an example). Thinning of all stands was done in the fall of 

1993, and fertilizer was applied in 1994, 1997, 1998, 2000, and 2002. In addition to fertilization 

and thinning, 250, 500 and 1000 stems per ha treatment stands were pruned to a height of 3 m at 

each site in September to October of 1998. 
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Stand density measurements taken in 1998, 5 years after thinning, showed that stand 

densities of crop trees were substantially different from stated treatment densities. The densities 

measured in 1998 were thus used in all analyses. Although stand densities would certainly have 

changed over the 5 years of the study (1998 to 2003), no better measurement was available. 

Each replicate site had one unthinned unfertilized stand per replicate site. However, in the 

unthinned stands, only total stems per ha of trees were measured, compared to the separate 

measurement of stems per ha over 3 m in height that was performed in all thinned plots. It seems 

unlikely that trees less than 3 m in height in unthinned stands would contribute much to deer 

habitat, as the low crown volumes of small trees would provide little shading, environmental 

moderation and snow interception at stem densities low enough to allow deer movement. I felt 

that including data from the unthinned unfertilized stands would confound more than clarify, and 

they were excluded from consideration. 

TFL 49 Riverside Forest Product? Ltd. 

Figure 3.2. Aerial view of the Kelowna site. 

Trees were sampled by nested circular plots, accommodating 10 sample trees per plot. 

Understory vegetation was sampled each summer from 1999 through 2003 using three 25 m 

transects with five plots each located systematically within each stand following the methods of 
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Stickney (1980). Each plot consisted of three nested subplots; a 5 m x 5 m plot for sampling 

trees, a 3 m x 3 m plot for sampling shrubs, and a 1 m x 1 m plot for herbs. Ground cover was 

estimated visually for each plant layer by treating the two horizontal dimensions of plant crowns 

as ellipse axes and solving for area. Each plant layer (trees, plants, herbs) was also divided into 

height classes of 0 - 0.25 m, 0.25 - 0.5 m, 0.5 - 1.0 m, 1.0 - 2.0 m, 2.0 - 3.0 m, and 3.0 - 5.0 m, 

and multiplied by crown area estimates to calculate a crown volume index which was then 

averaged over each stand (m / O.Olha; Stickney 1980). 

Species richness was calculated for each vegetation layer as the number of species 

sampled per stand, adjusted for sample size using the rearefaction method (Krebs 1999). In 

addition, species diversity was also calculated for each vegetation layer, along with total 

structural diversity of all layers combined. Although species richness is considered a measure of 

species diversity (Krebs 1994), the term diversity as used here refers exclusively to heterogeneity 

and proportional distribution. The Shannon-Wiener index (Shannon 1948) represents the 

evenness of the distribution between categories (species for species diversity and height class for 

structural diversity), and was used to calculate measures of diversity. Structural diversity was 

also calculated using the Shannon-Wiener index, with plant species represented by crown 

volume index of vegetation per height class, and coniferous trees represented by the stem density 

of trees per height class. 

Within each stand, pellet groups were counted for mule deer (Odocoileus hemionus), 

moose (Alces alces) and snowshoe hare (Lepus americanus) in the first two weeks of May to 

represent winter habitat use, and the first two weeks of October to represent summer habitat use. 

Pellet-group densities are a potentially problematic index of habitat use, however the method has 

a long history of use, and its strengths and weaknesses are well known. A thorough discussion of 

those strengths and weaknesses can be found in the Discussion section (Section 3.4). Overall, the 

method should provide a reasonable index of deer habitat use given the experimental design. 

Pellet groups were first counted for the winter of 1998/1999 after first clearing all plots 

in the fall of 1998, and were repeated twice a year for five years. The sampling design utilized 

permanent 5.0 m circular sample plots located systematically in five-plot arrays placed at the 

same permanent plots used to sample crop trees in each stand. In total, there were 55-145 plots 

per stand in Summerland, 60-140 plots per stand at Kelowna, and 35-100 plots per stand at 

Gavin Lake. This range of plots per stand was due to uncontrolled variation in fertilizer 

boundaries. Effort was made to count all pellet groups within each plot, and vegetation was 

moved i f it concealed the ground. Pellets that had become a part of the duff or litter layer were 
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excluded. After counting, pellets were again cleared off plots. Clearing plots takes time but 

provides complete assurance that the same pellet group will not be counted twice (British 

Columbia Ministry of Environment, Land and Parks 1998, Neff 1968). Pellet group counts were 

averaged over permanent sample plots to obtain counts per ha per stand per replicate per year. 

In total, there were 120 observations (4 treatments x 3 replicate sites x 5 years x 2 

seasons) from unfertilized stands and 120 observations from fertilized stands. Observations were 

split by season due to the differing habitat requirements of deer during summer and winter 

months. However, as observations were repeated in the exact same location every year for five 

years, all observations were not independent. Repeated observations are, in fact, spatially 

autocorrelated (Hurlbert 1984, Legendre 1993). Autocorrelation causes model parameters to be 

estimated with variances that are not minimized or unbiased (Dutilleul and Legendre 1992). To 

correct this problem, observations repeated over time were simply averaged to obtain one 

observation per treatment stand per replicate. This resulted in a final count of 24 independent 

observations per season. Although this dramatically reduces degrees of freedom, it will prevent 

error estimates used in AIC calculations and confidence intervals from being irrationally 

conservative, which they would be i f each observation was treated as independent. 

As a further consideration, pellet group densities themselves could not be used as the 

dependent variable because of the large expected differences in mule deer population densities 

between sites. For example, mule deer are known to reach the northern limits of their continuous 

distribution in the Cariboo Forest Region (Armleder et al. 1994, 1998). Because of this, mule 

deer will generally be at lower population densities at the Cariboo site relative to the other two 

sites, and will therefore deposit lower pellet group densities there. Means of pellet-group counts 

per replicate site support this assumption (see Table 3.2). Using unaltered pellet-group counts 

would have been appropriate only i f modeled habitat variables are capable of determining 

regional population densities. This would not be correct, however, as mule deer distribution and 

abundance is likely to be constrained more strongly by different factors at the regional scale, 

such as climate. Therefore, all pellet-group counts were standardized by region (each pellet count 

observation was divided by the highest pellet group density per region) combining fertilized and 

unfertilized treatments. For separating by region, Summerland and Kelowna were grouped 

together, and Gavin Lake was treated individually. In this way, pellet group counts were 

transformed into measures of preference that can be compared directly between areas of different 

population densities. Fertilized and unfertilized treatments were combined during standardization 

because fertilized treatments are expected to be of higher habitat suitability, and when fertilized 
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sites are being considered it is important to keep all observations relative to the pertinent 

maximum. Unfortunately, although standardizing resolves much of the variation due to unequal 

population densities, it creates the problem of seemingly setting an optimum habitat suitability 

level at each site. However, no combination of variables captured in the observations at any site 

is necessarily optimal habitat. Instead, standardizing is setting a particular combination of 

variable levels as 'best observed'. 

Table 3.2. Means and standard deviations of pellet-group counts per site per season, separated 
by fertilizer treatment. Values are calculated from averages of 5 annually repeated observations. 

I tasca 

Summer 

Summerland 
unfertilized 201.49 189.25 

Summer 

Summerland 
fertilized 494.18 563.88 

Summer Kelowna 
unfertilized 176.67 117.82 

Summer Kelowna 
fertilized 488.02 165.51 

Summer 

Gavin Lake 
unfertilized 21.64 16.21 

Summer 

Gavin Lake 
fertilized 39.39 23.66 

Winter 

Summerland 
unfertilized 268.39 106.78 

Winter 

Summerland 
fertilized 553.75 186.99 

Winter Kelowna 
unfertilized 277.01 93.65 

Winter Kelowna 
fertilized 674.63 75.09 

Winter 

Gavin Lake 
unfertilized 106.73 54.67 

Winter 

Gavin Lake 
fertilized 76.68 40.98 

If fertilization was not being considered as a management option, it would be best to re-

normalize the data to the maximum of unfertilized pellet-group counts per site, and exclude 

fertilized observations. Unfortunately, this would also have the effect of cutting the degrees of 

freedom for regression in half, and the number of parameters considered in the more complex 

models would have to be reduced (i.e. only shrub volume, herb volume, and lodgepole pine stem 

density would likely be considered). 
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3.2.2 Multimodel Construction and Inference 

For candidate model set construction, the functions that define the relationship between 

independent variables and the response variable should be assigned as much as possible prior to 

data analysis (Johnson and Omland 2004). Available variables were: crown volume, species 

richness, and species diversity measurements for each vegetation layer (herb, shrub, tree), as well 

as total species richness, total species diversity, total structural diversity and stand densities after 

thinning (T.P. Sullivan, personal communication). Based on available information in the 

literature (as summarized in Chapter 2), variables selected as likely to be important for modeling 

were: herb volume, shrub volume, herb species richness, shrub species richness, stand density, 

and interactions between stand density and each of herb and shrub volume. For the models 

produced for management applications, herb and shrub species richness were excluded, because, 

unlike understory volumes (e.g. Jameson 1967, Peek at al. 2001) and stand density, they would 

likely be too difficult to estimate and too expensive to measure (Palmer 1990). No available 

information suggested that 'evenness' of species abundances (species diversity) was of 

importance to mule deer, nor were any of the other calculated variables that were excluded from 

the a priori model set. Tree crown volume was excluded because although it is likely a superior 

indicator of canopy closure relative to stand density, the difficulty and expense involved in 

acquiring the measure prohibits its application in models intended for management use. Total 

structural diversity would likely have had an impact on thermal properties of winter cover, 

security cover, as well as represent robustness of the understory relative to the canopy; however, 

it seems that the connection would not be sufficiently important to include in models. 

Once variables were selected, they were then evaluated for multicollinearity in the global 

model. This refers to the situation where predictor variables are so highly correlated that they 

become redundant and inflate error terms (Tabachnick and Fidell 2001). Variables were 

examined using collinearity diagnostics in SAS (SAS Systems 2001). If the reciprocal of the 

variance inflation factor (the tolerance) for any variable is too low (say less than 0.01 or 0.001), 

the variable in question is considered to be highly related to the others (Neter et al. 1996, 

Tabachnick and Fidell 2001). In this instance, no variables appeared to be redundant. 

Functional, shape then had to be assigned, which requires the modeller to describe the 

likely shape(s) taken by the response variable (in this case, pellet-group, counts as an index of 

habitat suitability) as it varies with the independent variables. Although linear forms are often 

assumed, ecological processes are inherently nonlinear (Boyce 1992). Over the entire range of 

habitat conditions, it seems most likely that habitat suitability would take a sigmoidal form, as 
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suggested for numerical response of predators to changing prey densities by Hassell and May 

(1974). At very low habitat quality, deer would likely not differentiate between slight 

improvements that keep the habitat within an "unprofitable" range, and habitat suitability would 

increase very slowly. Above the "profitable" threshold in habitat suitability, increases in habitat 

quality would likely translate directly into increases in preference, and habitat suitability would 

increase rapidly. At high habitat quality, the habitat suitability curve should flatten out, as deer 

would eventually reach their maximum point of habitat exploitation due to limitations imposed 

by handling time, space, disease, predation, or other factors. 

Figure 3.3. Segmenting of a sigmoidal response curve, a) An approximately Type I exponential 
shape, b) Approximately linear segment, c) An approximately Type III exponential shape. 

Although habitat suitability is likely to take on a sigmoidal shape over the entire range of 

habitat variables, the form may not be sigmoidal over the range captured within the observations 

(see Figure 3.3). If the observations are centered near the "unprofitable" area, the shape may 

appear to be a Type I exponential (see Figure 3.3a). If the middle of the total range is observed, 

the relationships would appear to be approximately linear (see Figure 3.3b). And i f the range 

captured is mostly in the high habitat quality area, the shape may appear to be a Type III 

exponential curve (see Figure 3.3c; British Columbia Ministry of Forests 1994). It is possible 

that the sample sites in summer would be well represented by a Type III exponential curve due to 

the low canopy cover of young thinned stands (i.e. high forage production). Winter sites may 

intermediate habitat until the snow begins falling, at which point it would become poor (Type I 

exponential). While a non-linear form is the most intuitive, limited preliminary data analysis did 
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not suggest strong non-linear relationships. In addition, modeling of non-linear forms adds 

another level of difficulty to parameter estimation, as well as a potential increase in the number 

of parameters (increased model complexity). Therefore, only linear models were explored. 

Once variables and model form(s) have been selected, model construction can proceed. 

Burnham and Anderson (2002) suggested that the number of candidate models be kept below 20 

in number, and that one model in the set should encompass all predictor variables and 

interactions included in less complicated models (a global model). This makes parameter 

estimation and model selection easier, but is not absolutely necessary. For the example presented 

here, 19 linear models were produced by listing all plausible combinations of the dependent 

variables selected for modeling, with the global model having 10 parameters. The full candidate 

set of models is listed in Table A l (summer data) and A2 (winter) of Appendix 1. A reduced set 

of models was produced for management application by removing models that included herb and 

shrub species richness, which are very expensive to measure, and very difficult to estimate 

(Palmer 1990). 

Error structure was then defined for parameter estimation (Johnson and Omland 2004). 

For count data, the error distribution would generally be expected to take on a Poisson 

distribution (Sokal and Rohlf 1995). However, as the values for each treatment are in fact 

averages over numerous sample plots and repeated observations, then according to the Central 

Limit Theorem errors should approach a normal distribution, assuming reasonable model fit 

(Sokal and Rohlf 1995). As only linear forms with normally distributed residuals were being 

explored, least squares linear regression was applied for parameter estimation using Proc G L M 

in SAS (SAS Systems 2001). Fertilizer was used as a classification variable, which allows the 

use of fertilized and unfertilized observations together to provide degrees of freedom for 

estimation of parameter coefficients, while separate intercepts are calculated. Although it seems 

logical that fertilized sites may exhibit steeper slopes of increasing habitat suitability with 

increasing habitat quality, to incorporate that into models would involve adding interaction terms 

between fertilizer and each of the other independent variables. It seems unlikely that the 

available data would have a high enough resolution to support a model with such a proliferation 

of parameters. 

Parameters were then estimated, once using all three sites for model fitting, and once 

using only the Summerland and Cariboo sites. In the latter case, the Kelowna data was reserved 

to be used as an independent dataset for error estimation. After parameters were estimated, 

residuals from the global model were examined for serious outliers or deviations from 
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assumptions regarding functional form or error distribution (Burnham and Anderson 2002). 

When the assumptions of the global model appear to be satisfied, more parsimonious models will 

also fit the data (Burnham and Anderson 2002). To test for deviations from normality, the 

Shapiro-Wilk W test was referred to due to its greater power relative to the Kolmogorov-

Smirnov test (Dutilleul and Legendre 1992). However, as any statistical hypothesis test is 

sensitive to sample size, reliable determination of true departures from normality is very difficult 

(Cox 1958, Johnson 1999, Neter et al. 1996). Therefore, normal probability plots were used as 

the primary assessment of normality. Plots of residuals over predicted values were used as the 

primary evaluation of fit and error variance homogeneity. In residual plots, a model with errors 

of equal variance, and a modelled relationship shape (e.g. linear) that fits the data well will 

display residuals that are evenly spread around zero (Sokal and Rohlf 1995, Neter et al. 1996). 

Residuals will show a highly uneven spread around zero i f an incorrect functional form was 

used, or i f error variances are simply heterogeneous (Neter et al. 1996). 

After models were constructed, parameters were estimated, and agreement of models to 

structural assumptions was evaluated; models were then ranked. As the model representing 

'truth' is assumed to be essentially of infinite complexity, model selection criteria from the AIC 

family were selected due to their competitive advantage over all other readily available methods 

in the circumstances encountered here (Hurvich and Tsai 1989). The number of parameters per 

model was calculated by adding together the number of variables (including the classification 

variable fertilizer) plus one parameter each for the intercept and the residual variance (Burnham 

and Anderson 2002). Because the ratio of sample size to number of parameters is considerably 

less than 40 (the ratio varied from 2.4 to 6.0), AICc was used to correct for small sample bias in 

AIC (Burnham and Anderson 2002). Equations for AIC and AICc are shown below, and follow 

Hurvich and Tsai (1989). Here, n refers to the number of independent observations, __ £,-2 

refers to the sum of squared errors of the regression, and K refers to the number of parameters in 

a given model: 

Ts2 

AIC = n l o g O ^ - * - +1) + 2(K +1) 
n 
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A I C c = „ , o g ( ^ +1) + = AIC H- 2 ( * + 1 ) ( * + 2 ) 

C « t ^ + 2 n-K-2 
n 

The more the data support a model, the lower the AICc score is for that model. Note that 

the first term of AIC will decrease with sample size and fit. The second term acts as a penalty for 

complexity by increasing as the number of parameters increases, thus encouraging the selection 

of parsimonious models (Burnham and Anderson 2002). Once AICc values had been calculated, 

further analysis followed Burnham and Anderson (2002). Absolute values of AICc are fairly 

unimportant, as it is the AICc values relative to the best ranked candidate model in the set that is 

of interest. Aj values were calculated as: 

At= AICt-min AIC 

Akaike weights must then be calculated for each model as: 

e x p ( - ^ A ; ) 
Wv = 

R 1 
_ _ e x p ( - - A r ) 
r=\ 1 

The Akaike weights represent the amount of relative support for each model considered, 

as provided by the data (Burnham and Anderson 2002). That relative support was then also 

expressed, perhaps more clearly, using evidence ratios, wherein the weight of the strongest 

model is divided by the weight of each successive model in turn. The relative importance of 

predictor variables was estimated by summing Akaike weights across all models that contained 

that variable. Models with Aj greater than 10 were then eliminated from further consideration, as 

they explain relatively little of the variation in the data (Burnham and Anderson 2002). Akaike 

weights were then recalculated for the reduced list of models, and used to produce a weighted 

average of the parameter coefficients of those models. This produces a multiple regression model 

that is a weighted average of the short-listed model set (Burnham and Anderson 2002). 

Parameter estimates are averaged by: 
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i=\ 

where 6 is the coefficient being averaged across models. Estimates produced by the weighted 

averaged model are identical to the weighted averages of estimates produced by each model 

separately. 

Once model construction, parameter estimation, and model scoring with AIC had been 

completed, the standard error of parameter estimates was estimated following Burnham and 

Anderson (2002). First, the standard error of the estimate for each parameter (represented by ) 

was taken from SAS Proc G L M output (SAS Systems 2001). The variance of the model 

averaged parameter estimate was then calculated by: 

where 6 is the model averaged parameter estimate, and 0i is the parameter estimate of each 

weighted model. The variance of the model averaged estimate is equal to the standard error of 

the model averaged estimate squared. 

The error in the fit between the final weighted average models and the observed data was 

calculated as the root mean squared error: 

predicted values, and m is the number of independent variables in the model. However, as the 

same observations are being used for model fitting and error estimation, the root mean squared 

error is expected to produce an overly conservative estimate of prediction error. A n alternative 

approach involving calculation of the root mean PRESS statistic was also performed. The 

PRESS (prediction sum of squares) criterion estimates prediction error by calculating the sum of 

squared differences between each observation and the estimation of that observation with, a 

model whose parameters were estimated in the absence of that same observation (Neter et al. 

where SSE is the sum of squared errors, Yt represents the observed values, Yt represents the 
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1996). As each final model here is in fact a weighted average of numerous models, this involved, 

for each observation; removing one observation, estimating parameters for each candidate 

model, re-scoring and re-weighting each model with AICc, producing new weighted averaged 

models, and finally calculating new estimates. The root mean PRESS criterion was then 

calculated by: 

The relative importance of predictor variables was first estimated by summing Akaike 

weights across all models that contained that variable (Burnham and Anderson 2002). After a 

priori modeling and parameter estimation was completed, the underlying relationships between 

standardized deer pellet-group counts and the habitat variables, as described by the data, were 

examined more objectively using the canonical correlation analysis procedure in SAS (Proc 

CANCORR; SAS Systems 2001). A strong a priori filter is necessary in model building to avoid 

the inclusion of spurious relationships, but a dataset's potential for enhancing learning about a 

system is limited i f the data are not eventually examined for potentially valuable insights. One 

must be cautious, however, not to be tempted to pursue a highly iterative approach to model 

building (Burnham and Anderson 2002). 

Canonical correlation analysis creates canonical variables for each side of an equation 

that are linear dimensions of the correlations between dependent and independent variables (Ter 

Braak 1986, Tabachnick and Fidell 2001). This method has a distinct advantage over 

comparisons of univariate correlations, where relationships can become more easily distorted by 

covariates. Canonical correlation analysis also has a descriptive advantage over standard multiple 

linear regression, where coefficients are more difficult to interpret because they do not arise from 

standardized independent variables (Ter Braak 1986), and the importance of variables must 

instead be judged by the black and white determinant of statistical significance. For examining 

predictive relationships, canonical correlation analysis also has an advantage over principal 

component analysis due to its emphasis on correlations rather than variance. Multivariate 

normality is not required when using this method descriptively, although a linear relationship in 

the data is. Correlations between independent variables and their associated canonical variable 

are used as the units of measurement because the information they provide is insensitive to 

root mean PRESS 
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correlations among the independent variables, unlike standardized canonical coefficients (Ter 

Braak 1986). 

3.3 Results 

3.3.1 Multimodel Selection and Inference 

For the global model that was fit using data from all three sites, analysis of normal 

probability plots and the Shapiro-Wilk W test suggested that the distribution of residuals did not 

deviate substantially (or statistically significantly) from normal for either summer or winter data. 

The model that was fit using only Summerland and Cariboo data combined, however, revealed a 

substantial lack of fit when compared to observations at the Kelowna site. Investigation of 

models fit only to Summerland and Cariboo data was therefore discontinued; the significance of 

this will be discussed later. 

AICc scores and weights, along with model variables and numbers of parameters, are 

listed in full in Table A l and Table A2 of the Appendix 1, for summer and winter data 

respectively. Models with A; values greater than 10 were eliminated from further consideration, 

as they explain relatively little of the variation in the data (Burnham and Anderson 2002). For 

example (see Table A2), a model with a Aj value of 10.25 has approximately 170 times less 

support from the data than the best model. Although 10 is an arbitrary cut-off point, it is a 

reasonable one. As shown in Figure 3.4, evidence ratios increase exponentially with A;, and 

begin to increase rapidly around Aj=10. 

Figure 3.4. Exponential increase of AIC evidence ratios with increasing A; values. 
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Models with Aj values less than 10 for the full model set are listed in Table 3.3 and Table 

3.4, for summer and winter data respectively. AIC weights have been re-calculated for the short­

listed model set, while evidence ratios remain as calculated for the full model set to provide 

contextual reference. There is a clear trend of decreasing AIC support for models of increasing 

complexity, with the simplest (2 variable) models receiving the best (lowest) scores for both 

winter and summer data. The trend is certainly not absolute, however, as there were a number of 

instances where more complex models possessed lower A; values than simpler models (see Table 

A l . l and A1.2). It also seems apparent from Tables 3 and 4 that models containing only the 

variables herb volume, shrub volume, and density were dominant in terms of support by the data 

relative to the other models considered. 

Table 3.3. Summary of AICc scoring results for summer data. AIC weights are calculated 
considering only this short-listed model set. K represents the number of parameters per model, 
and A ; is the difference between the AICc values of the model in question and the best model 
(lowest AIC value). Evidence ratios express the relative support for a model by the data, and are 
calculated by dividing the weight of the strongest model by the weight of each successive model. 

K j m 

17 fertilizer, shrub volume 4 5.38 0.00 0.37281 1.00 

19 fertilizer, density 4 5.52 0.13 0.34880 1.07 

18 fertilizer, herb volume 4 7.38 2.00 0.13736 2.71 

16 fertilizer, shrub volume, herb volume 5 8.90 3.51 0.06441 5.79 

15 
fertilizer, shrub volume, herb volume, 
density 6 10.86 5.47 0.02417 15.43 

9 
fertilizer, shrub volume, density, 
density x shrub volume 6 10.94 5.55 0.02319 16:07 

14 
fertilizer, shrub volume, herb volume, 
shrub species richness 6 12.47 7.08 0.01080 34.52 

13 
fertilizer, shrub volume, herb volume, 
herb species richness 6 12.62 7.24 0.01000 37.30 

10 
fertilizer, herb volume, density, 
density x herb volume 6 12.95 7.57 0.00847 44.03 
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Table 3.4. Summary of AICc scoring results, for winter data. Details are the same as for Table 
3.3. 

e E M€ 

19 fertilizer, density 4 7.27 0.00 0.30538 1.00 

17 fertilizer, shrub volume 4 7.31 0.05 0.29822 1.02 

18 fertilizer, herb volume 4 7.48 0.22 0.27398 1.11 
16 fertilizer, shrub volume, herb volume 5 10.31 3.05 0.06661 4.58 

13 fertilizer, shrub volume, herb volume, 
herb species richness 6 13.11 5.84 0.01646 18.55 

15 fertilizer, shrub volume, herb volume, 
density 6 13.59 6.32 0.01294 23.60 

14 fertilizer, shrub volume, herb volume, 
shrub species richness 6 14.29 7.02 0.00911 33.53 

10 fertilizer, herb volume, density, 
density x herb volume 6 14.37 7.11 0.00874 34.95 

9 fertilizer, shrub volume, density, 
density x shrub volume 6 14.41 7.15 0.00857 35.65 

The weighted averages of estimated parameter coefficients for models with A; values less 

than 10 are was used to produce final models, and are listed in Table A1.3 of Appendix 1. Also 

listed in Table A1.3 are calculated standard errors for each model averaged coefficient. The 

Akaike weights used for averaging were those recalculated to consider only the models in that 

reduced set. These coefficients form multiple regression models that take into account the 

numerous models most strongly supported by the data in each season, and the relative variation 

in parsimonious predictive power captured by each. However, as one of the objectives for 

modelling mule deer habitat suitability is to provide a useful land management tool, the practical 

utility of the final model must be taken into account. Given the weak relative support by the data 

and prior theory of shrub and herb species richness as predictor variables, as well as the expense 

of their measurement in the field, a reduced set of models was produced considering only those 

models with A; values less than 10 that did not include those two variables. Akaike weights were 

again re-calculated to consider only this further reduced set of models, and weighted averages 

were calculated for estimated parameters (see Table A l .3). 

Results of calculations describing the estimated prediction error and model fitting error in 

weighted averaged models from the full and reduced (excluding of species richness measures) 

management model set are listed in Table 3.5. Given the methods used for data handling, 
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parameter estimation, and model averaging, validation options were greatly reduced. After 

averaging across repeated measures, the number of independent observations remaining was too 

few to put aside a portion for model validation (i.e. cross-validation). Therefore, the sum of 

squared errors (SSE) and root mean sum of squared errors ) were used to quantify the 

error between observed and predicted values of standardized pellet-group densities. The PRESS 

(prediction sum of squares) criterion and root mean PRESS (IMPRESS ) were used to estimate 

prediction error. 

The root mean sum of squared errors can be thought of as an estimator of the standard 

deviation of residuals (Neter et al. 1996). As shown in Table 3.5, this mean error estimate 

represents approximately 25% of the range of 'habitat suitability' for both models in the summer, 

and only slightly more in the winter. The closer PRESS is to SSE, the better is as an 

indicator of actual prediction error (Neter et al. 1996). As the PRESS values are similar to SSE in 

summer, will be a reasonably good estimate of prediction error for that season. In winter, 

calculated PRESS values are substantially different from SSE and therefore -JMSE will 

generally be a poor indicator of prediction error for that season. The root mean PRESS can be 

thought of as an estimate of the standard deviation of predictions from observed values. As the 

same observations were not used in fitting and validation in the production of the root mean 

PRESS statistic, it should produce a less conservative estimate of error, and does (see Table 3.5). 

The root mean PRESS indicates a prediction error in summer in excess of 30% of the range of 

'habitat suitability' observations, and 40% in winter. However, as the remaining observations 

used in model fitting were from the same data set, root mean PRESS should itself be a 

conservative estimate of the errors that would likely occur in the presence of a truly independent 

validation data set. For an indication of how model prediction errors (derived from PRESS 

residuals) vary with standardized pellet-group densities, see Figures A4.1 to A4.4 of Appendix 4. 

In summer, errors show a negative residual bias (overestimation, as residuals arise from observed 

minus predicted values) at low deer use and a strong positive residual bias (underestimation) at 

high deer use. Also, residuals from summer models reveal a general trend of increasing degree of 

error as observed standardized pellet-group densities increase. In winter, errors are considerable 

both at low pellet-group densities, where the model tends to overestimate, as well as at high 

pellet-group densities, where the model tends to underestimate deer preference. The greatest 

estimation accuracy in winter is apparent at moderate levels of standardized pellet-group 

densities. 
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Table 3.5. Sum of squared errors (SSE) and Root mean squared error (4MSE ) of the fit 
between observed pellet-group densities and the values predicted by models derived as weighted 
averages of the full and reduced (for management applications) model sets. Also included are 

estimates of prediction error using PRESS and root mean PRESS (IMPRESS ). 

^nnrmoorsrp 

mM 
M D 

mM 
SSE 1.03 1.03 1.27 1.29 

JMSE 0.26 0.25 0.29 0.28 

PRESS 1.48 1.49 2.93 2.93 

IMPRESS 0.31 0.30 0.44 0.42 

As mentioned previously, the relative importance of predictor variables in the a priori 

model set of mule deer pellet-group counts can be estimated by summing Akaike weights across 

all models that contain that variable (Burnham and Anderson 2002). It is important to keep in 

mind that, when examining AIC indices of the relative strength of explanatory variables (see 

Figure 3.5), much of the variation in apparent variable strength arises not from the data, but from 

the importance placed on variables during a priori model construction. The summed relative 

strengths of variables over an a priori constructed model set therefore include a pervasive 

subjective component. For example, no models were put forward with herb or shrub species 

richness as the sole independent variables because of the weakness of support for those variables 

in the literature. However, exploratory analysis performed after a priori model set fitting and 

ranking revealed that models with only fertilizer (the classification variable) and herb or shrub 

species richness were among the most strongly supported models, particularly in winter. Had all 

variables been entered in every possible combination without any subjective weighting, the 

support for each variable by the data would be much closer than shown in Figure 3.5. This 

subjective component is prudent to apply in predictive modelling, because it reduces the 

probability of capturing spurious relationships, and increases the chance of producing reliable 

models (MacNally 2000, Burnham and Anderson 2002). 
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Figure 3.5. Summation of AIC weights over all the models containing each variable, 
representing a subjectively influenced estimate of the relative importance of variables. Positive 
and negative signs represent the calculated direction of influence on mule deer pellet-group 
densities. 'Density' refers to stand density in stems per ha. 

The value of AIC indices of the relative strength of explanatory variables becomes 

apparent when comparing relative strength between variables of equal a priori assigned 

importance (i.e. shrub volume, herb volume, and stand density), and referring to model 

coefficients (i.e. Table A1.3) for discerning direction of the apparent relationship (represented by 

positive and negative signs in Figure 3.5). Also, potential flaws in the a priori model set may be 

identified when variables that were appointed low a priori importance still come out as very 

strong relative to others. In the example presented here, no variables that were assigned as weak 

a priory overwhelmed the results, but comparisons of variables assigned equal importance are 

informative. For summer data, shrub volume was the most strongly supported variable, density 

was the second most important, and herb volume was third. In summer, shrub volume was 1.2 

times more strongly supported by the data than density, and about twice as strongly supported as 

herb volume. In winter, shrub volume, herb volume, and density are similar in their estimated 

strength of support by the data, with density the weakest of the three. The remaining variables 

appear be extremely weak in comparison (see Figure 3.5). Differences between the weaker 

variables are small, and certain to be meaningless after sampling error and bias are considered. 
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3.3.2. Data Min ing with Canonical Correlation Analysis 

Any analysis of the data without incorporating prior biological knowledge runs the risk of 

providing misleading results, because the symptomatic 'noisiness' of ecological data is likely to 

obscure any true underlying relationships. Nonetheless, canonical correlation analysis was 

performed to analyze the data for any potentially important relationships that may have been 

missed, and to further investigate the data set's usefulness for providing insight into mule deer 

habitat preferences. 

For the sake of interest, graphs showing univariate responses of selected model variables 

are displayed in Appendix 3. These graphs occasionally show an approximately linear response 

or little response at all. Also in Appendix 3 are univariate Pearson's correlation coefficients 

between all available variables, which occasionally show near independence between predictor 

variables and standardized pellet-group counts. In general, however, these simple graphs and 

correlations simply reveal substantial noise and variance. However, it is risky to read too much 

into a univariate analysis of data that is expected to be affected by multivariate interactions. 

Univariate perspectives conceal the effects of co-varying factors, therefore distorting 

relationships. Although simple to understand, in complex situations such a reductionist approach 

is likely to mislead more than clarify. For this reason, only multivariate analyses are considered 

in depth here. 

Overall results of canonical correlation analysis are fairly consistent with the expectation 

of substantial noise, as many variables appear to have moderate multivariate correlations with 

pellet-group densities, and few displaying truly weak or strong relationships (see Table 3.6). For 

summer data, the canonical variable explained 58% of the standardized variance of deer pellet-

group counts. Of all the variables included in the analysis, total structural diversity contributed 

the most, with a fairly strong correlation coefficient of 0.72. The possible effects of total 

structural diversity on mule deer habitat seem to be convoluted and difficult to interpret. The 

most likely explanation for this strong correlation may be due to relatively strong relationships 

between total structural diversity and variables that are more directly causal to mule deer habitat 

preference. For example, there are fairly strong negative correlations between total structural 

diversity, density and tree volume, and a moderate positive correlation with shrub volume. A 

stand with high structural diversity appears to be fairly open, with associated good understory 

development; two stand traits known to be of value to mule deer in summer. 
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Table 3.6. Summary of canonical correlation analysis results for fertilized and unfertilized 
treatments combined. Correlations listed are between available independent variables and their 
canonical variable. The canonical variable here is a linear component that maximizes the 
correlation between the independent variables and deer pellet-group counts standardized by 
region. 

Herb Volume 0.52 0.56 

Shrub Volume 0.69 -0.07 

Herb Species Richness 0.22 -0.01 

Shrub Species Richness 0.13 -0.25 

Stand Density -0.45 0.29 

Tree Volume -0.24 0.31 

Total Structural Diversity 0.72 -0.25 

Herb Species Diversity -0.47 -0.08 

Shrub Species Diversity -0.40 -0.08 

Tree Species Richness 0.06 -0.19 

Tree Species Diversity 0.54 -0.20 

Total Species Richness 0.21 -0.12 

Density x Shrub Volume 0.25 0.14 

Density x Herb Volume 0.05 0.51 

Standardized Variance of Pellet-Group 
Counts Explained by Canonical Variable 

of Independent Variables 
0.58 0.53 

Shrub volume was also correlated fairly strongly to the canonical variable, with herb 

volume showing a more moderate strength (see Table 3.6). The fact that these variables are 

strong relative to the others is well in line with theory. The importance of herb volume and shrub 

volume relative to each other has often been shown to vary greatly from location to location 

(Kufeld et al. 1973). For summer data, the relationships of the remaining variables to pellet-

group counts appear to be generally quite weak. 

For winter data (see Table 3.6), there were no strong correlations between any 

independent variables and the canonical variable, which explains only 53% of the standardized 
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variance of pellet-group counts. Somewhat notable within the winter data (see Table 3.6) is the 

low to moderate positive correlation of stand density and tree volume to the canonical variable. 

This is in contrast to the negative correlation of those variables in the summer data. In addition, 

total structural diversity shows a low to moderate negative correlation with the canonical 

variable, in contrast to the much stronger and positive correlation in the summer data. Clearly, in 

winter mule deer pellet-count densities are greater in stands that are more closed than in summer, 

although apparent strength of preference in winter is not as strong. 

The canonical correlation results for winter, which show shrub volume to be almost 

independent of standardized deer pellet-groups, are in sharp contrast to model fitting and ranking 

results, which show shrub volume to be slightly stronger in importance than herb volume (see 

Table 3.4 and Figure 3.5). To investigate this discrepancy, canonical correlation analysis was 

repeated, this time analyzing fertilized and unfertilized plots separately. As there are fewer 

independent observations available when the data set is split in half, further analysis cannot 

support as many independent variables. Therefore, only the variables included in the a priori 

model set were included in this additional analysis. Results are summarized in Table 3.7, where 

the reason for the discrepancy mentioned above becomes immediately apparent. When fertilized 

and unfertilized observations are combined, shrub volume is nearly independent of pellet-group 

counts, but when dealt with separately, shrub volume has somewhat more influence than herb 

volume on fertilized sites. 

A number of other interesting insights can be gained by separating observations by 

fertilization treatment (see Table 3.7). First, it is worth noting that canonical variables generally 

explain more of the standardized variance in pellet-group counts when fertilized and unfertilized 

plots are examined separately, with the exception of fertilized plots in winter. In that particular 

case, it appears that deer preference is being driven by factors that were not considered here. The 

amount of variance explained by a canonical variable is a necessary value for translating 

correlation strengths between predictor variables and the canonical variable into multivariate 

correlations between predictor variables and standardized pellet-group counts. 

It is immediately apparent (see Table 3.7) that both fertilization and season have a 

substantial impact on the relationships between pellet-group densities and the identified habitat 

variables. For example, in summer and winter data, shrub volume is nearly independent of deer-

pellet counts on unfertilized sites, yet more strongly and positively correlated on fertilized sites 

in summer, and more strongly and negatively correlated on fertilized sites in winter. Also in 
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winter, herb volume is nearly independent on unfertilized sites, but more strongly correlated to 

pellet-group counts on fertilized sites. 

Table 3.7. Summary of canonical correlation analysis results for fertilized and unfertilized 
analyzed separately. Correlations listed are between available independent variables and their 
canonical variable 

Herb Volume 0.42 0.20 0.09 0.40 
Shrub Volume 0.06 0.69 0.09 -0.62 

Herb Species Richness 0.54 0.30 0.55 -0.85 
Shrub Species Richness 0.46 0.67 0.16 -0.49 

Stand Density -0.49 -0.47 0.63 0.23 
Density X Shrub Volume -0.28 0.22 0.72 -0.26 
Density X Herb Volume -0.41 -0.22 0.62 0.50 

Standardized Variance of Pellet-
Group Counts Explained by 

Canonical Variable of 
Independent Variables 

0.77 0.61 0.65 0.36 

Finer details of the results summarized in Table 3.7 are interesting, but may simply typify 

noisy ecological data, with an abundance of weak and moderate relationships. For example, herb 

volume appears to be slightly more strongly correlated to deer pellet-group counts on unfertilized 

sites than on fertilized sites in the winter. This appears to be counterintuitive and may simply be 

a 'quirk' in the data, but it may be because forage quality is likely to influence habitat selection 

more strongly than abundance when supplies are not limiting. If this is the case, preference 

shown for fertilized habitats may be much greater than differences in volume measurements may 

suggest (Fryxell and Sinclair 1988). Data on herb nutritional content on each plot would be 

required to test this hypothesis. 

In both summer and winter (see Table 3.7), herb and shrub species richness appear to 

have moderate correlations to pellet-group counts. In summer, species richness measures are 

moderately important for all but herb species richness on fertilized sites. In winter on unfertilized 

sites, herb species richness has a moderate positive strength of correlation to pellet-group counts, 
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while shrub species richness shows little relationship. On fertilized sites, however, both species 

richness counts have a negative multivariate relationship to pellet-group counts, with herb 

species richness showing a relatively strong negative relationship. 

Also of interest are differences in density and density by volume interaction strengths. In 

summer, multivariate correlations between density and standardized pellet-group counts are 

moderate and negative, regardless of fertilizer treatment. However, in winter the multivariate 

correlation is positive; relatively strong on unfertilized plots, but weak on fertilized plots. When 

fertilizer treatment differences are ignored (see Table 3.6), the density by shrub volume 

interaction is very weak in winter, yet it appears to be relatively strong on unfertilized sites (see 

Table 3.7). Also, the density by herb volume interaction is almost independent of the canonical 

variable in summer when fertilizer treatment differences were ignored. However, fertilized and 

unfertilized sites both show negative relationships to pellet-group counts when examined 

separately. 

For an even deeper investigation, canonical correlation analysis was repeated a third time, 

this time separating observations by site as well as fertilizer treatment. Results suggest 

substantial differences between sites (see Appendix 1, Table A4). First of all, it important to note 

that the amount of variance in standardized pellet-group counts explained by each canonical 

variable varies widely by site, season, and fertilizer treatment. The predictor variables explain 

variance in standardized pellet-group counts at the Gavin Lake site the most effectively, with a 

fairly strong relationship on average. The variances explained in Summerland and Kelowna 

pellet-group counts are generally similar to each other, and are weak to moderate in strength. 

Finer details of differences by site are pervasive and readily apparent. For example, in 

summer, herb volume is moderately negatively correlated with standardized pellet-group counts 

on the Gavin Lake site on both unfertilized and fertilized plots. However, in Kelowna, herb 

volume is weakly negatively correlated on unfertilized plots, and strongly positively correlated 

on fertilized plots. In Summerland, herb volume is weakly correlated with pellet-group counts on 

unfertilized and fertilized sites. 

For another example, shrub volume in winter on fertilized sites is moderately negatively 

correlated with its canonical variable in Summerland, moderately positively correlated in 

Kelowna, and very strongly positively correlated in Gavin Lake. What makes this even more 

significant is the fact that the canonical variable for the Gavin Lake data on fertilized plots in 

winter actually explains a large proportion of the variance in pellet-group counts for that site, 

unlike the canonical variables for the Summerland and Kelowna sites. This suggests that unlike 
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the other two sites, shrub volume is actually quite important to mule deer in winter at Gavin 

Lake. However, when sites are analyzed together (see Table 3.7), shrub volume is strongly 

negatively correlated with a canonical variable that explains very little of the variance in pellet-

group counts. Although only a couple of examples are presented here, differences in 

relationships by sites between predictor variables and standardized pellet-group counts are 

pervasive, and occasionally fairly strong. These site differences suggest that analyzing sites 

together may be distorting or obscuring regionally relevant mule deer relationships with the 

habitat variables, resulting in weaker predictive models. However, given the paucity of 

independent observations, lumping sites together was necessary for model development. 

3.4 Discussion 

With the completion of careful and well informed a priori model construction and model 

averaging using AIC-based weighting, habitat suitability models have been assembled and 

evaluated. However, habitat suitability modeling, even in the best of circumstances, is an 

exercise in rough approximations. Population density in a habitat, or an index of population 

density, is often the best available measure of habitat quality. However, habitat quality is a 

function of more than just population density, but also of the birth rate, death rate, and social 

interactions particular to an area (Van Home 1983). Unfortunately, these extra factors are much 

more difficult and expensive to measure. To further complicate matters, presence and abundance 

may be driven by additional factors that operate independently of habitat quality, such as history, 

weather, disease, parasites, predators, and human harvest (Lancia et al. 1982, Schamberger and 

O'Neil 1986). Compounding this complexity is the fact that ecosystems are constantly changing, 

due to both autogenic succession (Kimmins 2004) as well as random, unpredictable events 

(Levin 1998). Still, scientifically rigorous habitat suitability modeling is likely to be a dramatic 

improvement over educated guesses, and land management decisions must be made. 

While habitat suitability models are rough approximations in the best of circumstances, i f 

the data are of poor quality, i f the spatial scale of measurement was inappropriate, or i f the data 

were not collected with habitat quality characterization in mind, any attempt at robust model 

creation may be utterly futile (Guisan and Zimmerman 2000). In the case of the example 

presented here, data used were taken from an experiment testing select mammal responses to 

various thinning and fertilization regimes in young lodgepole pine stands. Data quality (i.e. 

measurement error and consistency) and spatial scale of measurement are unlikely to be serious 

impediments, although certainly the data were collected for a different purpose than that which it 
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is used for here. The greatest problem in this case is likely to revolve around the concept that 

wildlife-habitat relationships may become confounded when sampling is not complete along 

habitat resource gradients (Best and Stauffer 1986). In the best of situations, models based on 

empirical observations are likely to only represent the realized ecological niche, and not the 

fundamental niche, which limits application over varying environmental conditions (Guisan and 

Zimmerman 2000). Certainly any predictions made outside the range of conditions represented 

in the sample will have a highly uncertain range and distribution of error. There are many other 

inherent difficulties with the data as well, and these will require some extensive discussion to 

explore them fully. 

Data for use in habitat suitability modeling obviously should include measurements of 

animal response over the natural range of habitat conditions that are of interest. However, the 

range of habitat conditions captured in the dataset used here is of such small extent that the 

habitat suitability models produced are of similarly low applicability. First of all, canopy 

structure is a function of tree species composition, age, stand density, and site productivity 

(Bunnell et al. 1985), but only young lodgepole pine stands on sites of similar productivity were 

sampled. Also, as stands were pruned and thinned, the canopy structures of the lodgepole pine 

stands measured are unlikely to be represented anywhere but in intensively managed plantations. 

Canopy structure is an important habitat feature because it influences ground shading, which 

affects understory communities and therefore herbivore forage year-round, as well as snow 

interception, a potentially critical factor for mule deer winter habitat. In addition to canopy 

structure, snow interception varies with magnitude of snowfall, and, to a lesser degree, wind and 

slope which would all, in turn, vary with elevation, topography, and climate (Bunnell et al. 1985, 

McNay 1985). Understory productivity, species composition, and overall quality of forage are 

also likely to vary with elevation, BEC zone and BEC sub-zone. As all measured stands were 

composed of young lodgepole pine at mid-elevation in only two BEC sub-zones (and only one 

subzone each), only a very small range of mule deer habitat is captured in the data. As such, 

habitat suitability models based on stand density would likely not be very reliable when applied 

in other conditions. 

To make matters more challenging, the stand density measurements, which are used as an 

index of canopy structure, are not entirely accurate. Measurement of stand densities, during the 

same period that pellet-group densities were being measured, occurred only once, in 1998. As 

stands will naturally decrease in density as they age (Oliver and Larson 1990), stand densities 

each year of the study will certainly be different. This discrepancy will have affected the 
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regression equations that were derived here. The resulting error, however, will not be reflected in 

the error estimated using the present dataset, as all density measures are similarly affected. This 

issue could have been resolved by using only observations from 1998, but this would have 

resulted in losing representation of the seemingly random variation in deer pellet-group densities 

between plots over time. Under normal circumstances, stand density may be a reasonable 

indicator of canopy closure, as snow interception generally increases with stand density 

(Kittredge 1953, Kirchoff and Schoen 1987), and forage production decreases (Mysterud and 

Ostbye 1999). In the example presented here, however, where stand density measurements are 

inaccurate, and canopies have been altered by pruning, density may be a somewhat weaker index 

of canopy structure. Still, the importance of canopy structure suggests that it should be included 

in models in some way, and density has the advantage of being a stand characteristic for which 

data is easy to obtain. 

In addition to the problems with the measures of stand density, the nature of the other 

independent variables available for modeling is potentially problematic. For example, shrub and 

herb crown volume measurements naturally lump together palatable and unpalatable plant 

species. While there may be a strong correlation between deer habitat preference and palatable 

vegetation, the relationship with plant volume may be weak i f palatable vegetation is not a large 

component. Of course, measuring total volume without separating by species makes field 

measurements for validation in a new area much more economical, which would increase the 

appeal of models for management application. 

There are several other characteristics of the data set used here that limit model predictive 

power and applicability. One factor is the reliance on pellet-group densities, which are 

recognized as a potentially problematic index of relative population densities. Pellet-group 

densities have received frequent use for assessing the relative preference of mule deer for 

different habitats (e.g. Robinette et al. 1952, Julander 1955, Loveless 1964, Gilbert and Wallmo 

1970, Lyon and Jensen 1980, Tomm et al. 1981, Wambolt and McNeal 1987, Altendorf et al. 

2001). The general theory behind the technique appears to be sound, as mule deer tend to 

defecate fairly continuously whenever grazing or travelling (Collins 1981). However, upon 

closer examination, the shortcomings of the technique are many, and have been well recognized 

for some time. For example, defecation rates have been shown to increase with increasing forage 

intake and nutrient concentration (Smith 1964), as well as forage digestibility and succulence 

(Arnold and Reynolds 1943, Longhurst 1954, Rogers et al. 1958, Wallmo 1981). Comparing 

results of pellet-group surveys between habitats may therefore be of questionable validity, as 
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intake, nutrient content, succulence and digestibility of forage will vary. This makes direct 

comparison between sites something that must be done cautiously. Also, as fertilizer application 

may increase the digestibility and nutrient concentration of plant parts (Puoli et al. 1991, Johnson 

et al. 2001), preferences of deer for fertilized sites, as indexed by pellet-group counts, may be 

exaggerated due to the resultant laxative effect. This is unlikely to be a complicating factor in the 

data set used here, however, as fertilized plots are not so large or so segregated that the deer 

defecating upon them are likely to be different individuals than those defecating on the 

unfertilized plots. Strong variations in individual preference and aversion for fertilized forage 

would cause enough of a segregation to affect results, and this is possible, although fairly 

unlikely. 

Defecation rates have been shown to decrease with the age of deer (Smith 1964), and so 

differing population structures between areas may cause incorrect inferences regarding habitat 

preference. This also may affect the utility of combining sites for regression, although the degree 

of difference between populations' age structures is likely to be too small to be of concern. The 

final concern seems to be comparing pellet-group densities as an index of deer use directly 

across seasons, because defecation rates are generally lower in winter than in summer (Rogers 

1987). This makes sense, as forage intake by deer is known to decrease in winter (Wallmo 1981) 

and available forage is less digestible (Hanley and McKendrick 1985). This concern is 

accommodated by the separation of the data set by season. 

There have been few studies that have actually tested the validity of relating habitat 

preference to pellet-group densities, and those that exist have produced varied results. For 

example, Collins (1981) found that although mule deer spent three times as much time in an old-

growth forest habitat as in a wet meadow habitat, pellet-group densities were three times as high 

in the wet meadow. This appears to support the hypothesis that defecation rates increase with 

forage succulence. However, Gilbert and Wallmo (1970) found a reasonable correlation between 

pellet-group counts and distribution inferred from actual mule deer observations. On the other 

hand, Anderson et al. (1970) found mean shrub utilization and mean fecal groups per plot to be 

only weakly related. The authors suggested that this may have been due to measuring preference 

for winter range during a mild winter, when preference is expected to be less. After considering 

the evidence put forth in the literature, it seems logical that using pellet-group densities as an 

index of habitat preference is fairly reliable as long as comparisons are made within a season, 

and different habitats do not vary too much in nutrient concentration, digestibility, or succulence 

of forage. 
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Regarding the winter habitat suitability models derived here, there is an additional factor 

limiting model application, namely, normal winter snow depths. On the experimental sites, these 

are approximately 0.5 to 1 m at the Summerland and Kelowna sites and 1.5 m at the Gavin Lake 

site (T.P. Sullivan, personal communication). However, the available literature suggests that 

snow depths in interior habitats greater than about 0.5 m generally make an area inaccessible to 

mule deer (Loveless 1964, Gilbert at al. 1970), and snow depths of about 0.25 m to 0.30 m are 

actively avoided (Loveless 1964, Martinka. 1968, Telfer 1978). Based on this information, as 

well as casual observations made during random mid-winter visits to some sites (T.P. Sullivan, 

personal communication), it seems unlikely that deer are using the experimental sites during the 

regularly occurring periods of deep snow. Instead, it is likely that pellet-groups counted at the 

end of winter were deposited before and after periods of deep snow. Although the winter habitat 

dealt with here is not without value, it would not be considered worthy of special management 

attention. This is in contrast to winter range that provides shelter from severe winter conditions, 

especially deep snow, which is very important to forest managers in the interior of British 

Columbia (e.g. Ministry of Sustainable Resource Management's Cariboo-Chilcotin Land Use 

Plan 1995 and Okanagan-Shuswap Land and Resource Management Plan 2001). The prevailing 

theory is that such habitat is very likely of critical importance to mule deer populations for access 

to forage at a time when accessible forage is extremely scarce (Robinette et al. 1952, Loveless 

1964, Martinka 1968, Willms et al. 1976, Hanley and McKendrick 1985), and for minimizing 

energetic costs of locomotion at a time when nutritional intake is low (Robinette et al. 1952, 

Parker et al. 1984, Hanley and McKendrick 1985, Schoen and Kirchoff 1985, Bunnell et al. 

1990, Shackleton 1999). These factors combine to suggest that the winter habitat suitability 

models produced using the data at hand may be of limited management value. 

Another factor that may reduce the predictive power of the models produced here is the 

standardization of observed mule deer pellet-group densities, which runs the risk of altering 

relationships between pellet-group densities and the independent variables. The choice to 

standardize by region (i.e. Summerland and Kelowna standardized together, Gavin Lake 

standardized separately) seems the best option, given the use of general linear models for 

parameter estimation, and the similarities in expected population densities and observed mean 

pellet-group densities between the Summerland and Kelowna sites relative to the Gavin Lake site 

(see Table 3.2). Nonetheless, it is likely that standardizing will have biased relationships in some" 

way. 
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The issue of differences between sites appears to go even deeper than differences in 

population densities. Using all three sites in the same regression equations may greatly decrease 

the effectiveness of the resultant models due to differences in correlative relationships between 

sites. This is most apparent when comparing canonical correlation results from the analysis of 

each site separately (see Table A4) to the analysis done with sites lumped together (see Table 

3.7). While a large component of the apparent difference between sites is bound to be due to 

random variation, it is reasonable to assume that a substantial component is also due to legitimate 

differences. For example, the dominant positive relationship of shrub volume with pellet-group 

densities in winter on fertilized plots in the Cariboo is in sharp contrast to the weak influence of 

shrub volume at the other sites. When the sites are analyzed together, the result is a strong 

negative relationship between shrub volume and a canonical variable that explains very little of 

the variation in pellet-group densities. It appears that grouping sites together may very well be 

distorting and obscuring regionally-relevant relationships. This is really an issue, once again, of 

utilizing data that were never intended for habitat suitability modeling, as well as a potentially 

sub-optimal method of parameter estimation (which wil l be discussed shortly). 

The difference between sites acted to foil efforts to validate models properly. As 

mentioned previously, habitat suitability model output should be validated to evaluate usefulness 

(Hansen et al. 1993), ideally with independent data (Hocking 1976). Attempts to utilize 

independent data for validation involved using two sites for fitting (i.e. Summerland and Gavin 

Lake) and one site for validation (i.e. Kelowna). However, residuals from the fitted model 

displayed substantial non-normality and lack of fit, which would have made any efforts at 

predicting error estimates based on the normal distribution completely pointless. The same result 

occurred regardless of the combination of fitting and validation sites. It is impossible to say 

exactly why this occurred, but the possibilities are numerous. For example, it may be that there 

were too few observations in the fitting data sets. A l l sites used together for fitting provided 

more independent observations and resulted in distributions of residuals that were approximately 

normal. However, while three sites used for fitting obviously allowed more numerous 

independent observations, the differences should not have been as dramatic as they were. 

Instead, it seems possible that the normality of residuals obtained when using all sites together 

for parameter estimation is simply coincidence. Unfortunately, a good independent data set 

would be required to test this hypothesis. In addition, while data from one additional site, i f 

available, could be used for validation, resultant error estimates may be more or less extreme 

than the overall population of such sites, depending on random chance. Only with numerous 
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validation attempts or one very extensive data set could a realistic estimate be obtained. 

Therefore, the validation performed here, which was done without independent data, is likely as 

good an estimate as can realistically be made, given the circumstances. 

Ideally, with more numerous independent observations, region-specific regression 

equations could be derived, and problems with aggregating sites together, either for 

standardizing or to establish independent observations for regression, would be greatly reduced. 

Through simulation and experimental results, it has been suggested that sample size is the most 

important factor in producing accurate wildlife-habitat models (Pearce and Ferrier 2000, Hirzel 

and Guisan 2002). What sample size is appropriate for a given study, however, depends on the 

degree of wildlife response to changes in habitat variables, the amount of variation in response, 

and the risks of inaccuracy (Hicks and Turner 1999). 

However, the option of gathering a larger sample is not available, and in truth, describing 

the problem as simply a lack of independent observations is somewhat misleading. Given the 

circumstances that are present, it is quite possible that parameters should have been estimated 

using a different regression technique that would resolve some of the difficulties imposed by 

aggregating repeated observations and standardizing pellet-group counts by region. General 

linear modeling, which was used for parameter estimation in this thesis, is not capable of 

representing the random interacting effects of site or time without a proliferation of parameters 

(Laird and Ware 1982, Schabenberger and Pierce 2001). Therefore, pellet-group densities were 

standardized by region (aggregating sites) and all observations were averaged over time. 

Unfortunately, the aggregation of sites is likely to distort relationships, while averaging over 

time means that all the variation between repeated observations is discarded prior to analysis, 

and sample size is reduced considerably. If included, that variation could alter the relationships 

as described in the final model, and increase estimates of error variance (in the absence of 

independent validation data) to more realistic values (Raudenbush and Bryk 2002). There is 

occasionally a concern with repeated measures experiments that the effects of initially applied 

treatments will wear off after time, altering relationships (Schabenberger and Pierce 2001). This 

concern is not addressed by standard repeated-measures models, which assume that each effect is 

constant over a particular time period (Laird and Ware 1982). In the data used here, fertilizer was 

applied repeatedly (in 1994, 1997, 1998, 2000, and 2002), and therefore it seems unlikely that 

the effects of fertilization would diminish. Nonetheless, the effects of stand thinning and site may 

change over time, along with other relationships as the stand matures over the five years of 

repeated observations. 
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As an alternative to general linear models, mixed models could have been used on pellet-

group counts that were not averaged over time nor standardized by site. Mixed modeling is a 

flexible approach that incorporates at least two random variables (one of which is model error) 

with standard fixed effects (Schabenberger and Pierce 2001). Determining exactly what 

constitutes a random variable appears to be a topic of some confusion (see Schabenberger and 

Pierce 2001 for a thorough discussion). As a general rule it seems effective to state that effects 

are considered random if they come from a probability distribution, and they should otherwise be 

considered fixed (Robinson 1991). Schabenberger and Pierce (2001) state further that it is likely 

reasonable to specify that all experimental effects other than treatments effects should be 

considered random as long as the outcome is stochastic in nature. In the case of the data used 

here, it seems likely then that all explanatory variables would be fixed effects, and time and site 

would be random effects. 

There are clearly numerous ways that the habitat suitability models derived here could 

have been improved. In addition to requiring more independent observations, models would also 

have been improved i f more of the natural range of habitat variation was sampled equitably in 

each region (Guisan and Zimmermann 2000). With more natural variation sampled, maximum 

pellet-group density levels could be set with more confidence, and models could be applied to a 

larger range of conditions. Numerous sampling methodologies have been thoroughly explored, 

and their relative efficiencies mathematically established (see Lohr 1999 for a comprehensive 

discussion). The most basic approach is simple random sampling, which is self explanatory, and 

often inefficient unless a population is thoroughly mixed. Slightly more efficient, as it is not 

constrained by the difficulty of achieving true randomness, is systematic sampling. Systematic 

sampling involves taking samples at equal intervals, and produces results similar to simple 

random sampling as long as population units are not in a periodic order of variation (Lohr 1999). 

Stratified sampling is somewhat more complex, and involves purposefully dividing 

sampling effort among different strata so that each stratum has a higher probability of being 

evenly represented by the samples. Effort can also be allocated differently per strata to further 

increase efficiency in certain circumstances. In stratified random sampling with proportional 

allocation, sampling effort is allocated to be proportional to the size of each stratum. This 

increases the likelihood of representative sampling as long as the within-stratum variation is 

similar across strata. If the variation differs considerably, optimal allocation will be preferred, 

which involves sampling a greater percentage of more variable strata (Lohr 1999). A variation on 

stratified sampling with optimal allocation is known as gradsect sampling, and operates by 
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selecting transects that fall along the steepest environmental gradients present in the study area 

(Austin and Heyligers 1989). Gradsect sampling has been suggested to be the optimal 

methodology for most habitat suitability modeling requirements due to its efficiency (Wessels et 

al. 1998). 

3.5 Conclusion 

Despite difficulties due to incompatibilities between the available data and the use to 

which they were applied here, models produced may yet be of use for management application. 

Application however, must be by necessity over a very limited set of conditions. This is mostly 

due to the fact that the actual sampled range of natural mule deer habitat conditions was very 

narrow, and therefore any application of the models produced here would be advisable only in 

young, thinned, pruned stands of lodgepole pine in the Montane Spruce and Sub-Boreal Spruce 

Biogeoclimatic Ecosystem Classes (dry mild subzones). Calculated relationships are only 

correlative, and stands with different overstory and understory species composition, age 

structure, site productivity, and management history wil l likely exhibit different relationships 

between mule deer pellet-group densities and the predictor variables that were utilized here. That 

being said, within the range of habitat that was sampled, the estimated standard deviation of 

prediction error is not too severe, especially in summer (see Table 3.5). Models tend to 

overestimate habitat preference at sites of low general preference in both seasons, but much more 

so in winter. Models tend to underestimate habitat preference at sites of high general preference, 

and more so in summer. However, prediction error overall appears to be more of a concern in 

winter. This is particularly represented by the much larger error estimates that resulted from 

calculation of the PRESS statistic through cross-validation relative to model fitting errors in 

winter. Validation with a representative and independent data set is necessary for a more reliable 

estimate of prediction error variance in both seasons. 

Problems with compatibility of the available data for their application here are pervasive. 

This raises an interesting issue that is sure to increase in prevalence as predictive ecosystem 

modeling becomes more commonplace; increased multiple uses of data sets for purposes that 

were not considered during data collection. To maximize scarce research resources, the design of 

applied ecology experiments will have to consider the breadth of demands that will come upon 

resultant data. That is not a criticism of the experimental design that produced the data set used 

in this thesis, however. In order to investigate the original research question posed (e.g. can old 

growth attributes be produced through intensive management of young lodgepole pine stands?), 
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the operative scale was necessary, and further replication was simply not a logistical possibility. 

If anything, the addition of mule deer pellet-group censuring to the existing sampling scheme 

was a noble attempt to maximize the utility of the resultant data in anticipation of demand. 

In the end, the compatibility problems between the available data and their use in this 

thesis are important to note, but they in no way invalidate the efforts applied here to produce 

predictive models with them. Indeed, the predictive models produced in Chapter 3 still may be 

useful for informing management of young lodgepole pine stands for deer habitat. Models may 

be further improved by utilizing a mixed models approach for parameter estimation. Mixed 

modeling has the potential to incorporate all the variation that was lost by the aggregation of 

observations over space and time that was done to facilitate general linear modeling in this 

project. Still, producing mule deer habitat suitability models that make maximal use of the data 

and fit the data well was not the only objective of this project. The other main objective was to 

gain familiarity with one of the better methods available for producing useful mathematical 

habitat suitability models from data, and produce a thorough, easy to follow example of it. The 

general procedure of a priori model set construction and model averaging with AIC is sound, 

and has been extensively explored and exemplified herein. The subjective filter of an a priori 

information emphasis in variable selection and model construction aids in coping with the 

symptomatic noise of ecological data in a logical manner. Using AIC (or AICc for small 

samples) allows an approximately unbiased estimation of the Kullback-Liebler information loss 

between models, thereby providing a logical foundation for model weighting and averaging that 

consistently and evenly incorporates the principle of parsimony. When used rigorously, the 

model selection and weighted averaging methods demonstrated here will aid greatly in producing 

robust habitat suitability models from empirical data. 
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Chapter 4 
General Conclusion 

4.1 Forests, Complexity, and Modeling 

The management of forest ecosystems is a daunting task. Forest managers must not only 

manage for the numerous, highly variable demands that society places upon forests (Thomas 

1979), but they must also plan over long periods of time and over large, complex, heterogeneous, 

dynamic, and relatively enigmatic ecosystems (Christensen et al. 1996, Bunnell et al. 1999). Due 

to the complex nature of ecosystems, any novel management activity, or a common management 

action applied in a novel environment, will produce results with a high degree of uncertainty 

(Walters and Holling 1990). Indeed, it has been suggested that true generality may not even exist 

in ecosystems, and that novelty may be the norm (Fielding and Haworth 1995). 

Ecologists need tools to help them effectively simplify and gain understanding of natural 

systems, and to help them make predictions on the effects of changes to it. As the process of 

science is currently the best method available for learning about complex systems, it is important 

that the scientific method be integrated into the forest planning process (i.e. adaptive 

management; Walters 1986, Walters and Holling 1990). An important tool within science is 

modeling, which is considered by some to be so advantageous as to be necessary for producing 

feasible resource management hypotheses and highlighting the uncertainties within them 

(Walters 1986). By incorporating scientifically rigorous modeling, it is likely that forest 

ecosystem management can adapt as quickly as possible, therefore lessening the risk of causing 

undesirable ecological changes through clumsy manipulations. 

When attempting to maintain viable wildlife populations, effective management requires 

that species' habitat needs are well understood and predictable (Clark et al. 1993). Also, the 

effective management of wildlife populations is certainly aided by, i f not outright requiring 

specific, accurate, predictive models of wildlife-habitat relationships (O'Neil and Carey 1976). 

Although fraught with limitations (i.e. see Lancia et al. 1982, Van Home 1983, Schamberger and 

O'Neil 1986), formal habitat suitability models act as an aide to mental models, helping to 

facilitate critical analysis, the exchange of ideas, and comparison of the consequences of multiple 

possible management scenarios (Boyce and McNab 1994). Also, the associated numeric outputs 
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of simulation models are helpful because managers are often interested in meeting specific 

targets, and may need to defend their decisions in court (Turner et al. 1995). 

4.2 Thesis Overview 

4.2.1 Literature Review of Mule Deer Habitat Requirements 

In Chapter 2 (The Habitat Requirements of Rocky Mountain Mule Deer: A Review), a 

thorough literature review of mule deer habitat requirements was conducted in order to inform 

the selection of variables for habitat suitability modeling as well as is realistically possible. 

Winter habitat has often been a focus for management attention, largely due to the conspicuous 

relationship between mule deer population declines and winter severity (Wallmo 1981). The 

variables suggested by the literature for describing winter habitat, in probable order of 

importance are; snow depth due to its effect of covering forage and increasing the energy cost of 

locomotion; mean crown completeness, crown closure, stand age, stand density, and overstory 

tree species for their effects on snow interception and ground shading; sinking depth in snow for 

its effect on increasing energy costs of locomotion; shrub volume followed by herb volume for 

their importance in providing maintenance energy; operative temperature for its effect on energy 

costs of thermoregulation; vegetation height for wind reduction and lowering energy costs of 

thermoregulation; distance from edge for proximity to security cover and access to productive 

forage; and forage species richness for access to all minerals and nutrients required in the diet. 

The variables suggested by the literature for describing summer habitat, in probable order 

of importance, are: herb volume followed by shrub volume for sustenance; distance to edge for 

proximity to security cover and access to productive forage; canopy closure, for shade from the 

heat of summer as a benefit, and affecting forage production; and forage species richness for 

access to all required minerals and nutrients in the diet. 

Limited by the availability of variables, those selected for habitat suitability model 

construction were overstory stand density, shrub volume, herb volume, shrub species richness 

and herb species richness 

4.2.2 Modeling and Model Results 

In Chapter 3 (Producing the Most Robust Habitat Suitability Models Possible from Data 

Using Multimodel Selection and Inference), the philosophy and methodology of one approach 

towards rigorous mathematical habitat suitability modeling was briefly reviewed, and an 

example was presented. It appears that one of the best methods currently available for producing 
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habitat suitability models from empirical data involves a process of building multiple models 

based on information known a priori to data analysis, scoring and averaging those models using 

Aikaike's information criterion (AIC), and then estimating error in the best way possible given 

available data and resources. Methods were outlined in detail. 

In the end, two sets of habitat suitability models were produced: one model for each for 

summer and winter seasons involving all selected variables, and one model for each of summer 

and winter seasons excluding forage species richness measures. The latter models were built with 

management application in mind, as species richness measures would be difficult to obtain over. 

large areas, and are difficult to estimate from generally available forest cover data. 

Resultant models will hopefully be found to be of practical use for management 

application, but will only be appropriate in a fairly limited set of conditions. Due to the relatively 

small extent of mule deer habitat captured in the data, it is likely that predictive error will 

increase greatly beyond that estimated i f models were to be applied outside of young, thinned, 

pruned, lodgepole pine stands in the Montane Spruce and Sub-Boreal Spruce Biogeoclimatic 

Ecosystem Classes (dry mild subzones) in the interior of British Columbia. As modeled 

relationships were primarily correlative and not causative, it is to be expected that they will vary 

with environmental conditions from one region to another. 

Error sum of squares estimates made with cross-validation suggest that error variance is 

not too severe, particularly in summer. This is despite data analysis results that suggest 

substantial differences in habitat preference relationships between replicate sites. However, 

cross-validation error variance estimates are still likely to be overly conservative, as fitting and 

validation observations arise from areas likely to be more similar to each other that they would 

be to a randomly sampled observation from the larger population of relevant sites. Reliable 

estimates of prediction error therefore require validation with a completely independent data set. 

Unfortunately, insufficient data were available for site specific prediction models or an 

independent test of model predictive accuracy because repeated observations were averaged over 

time. A mixed models approach to parameter estimation may result in enough observations for 

site specific models, representation of potentially meaningful changes over time and space, as 

well as sufficient independent observations for proper evaluation of the models' predictive 

accuracy. 

Should the models produced here not find application in a management context, the 

exercise was still of tremendous value. Modeling is a necessary tool for ecosystem management, 

and habitat suitability modeling, despite its shortcomings, holds great value for providing insight 
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into the potential repercussions of land management activities. The methods of model selection 

outlined in Chapter 3 are broadly applicable, and are among the best currently available for 

producing habitat suitability models from empirical data. As such, an explicit and concise review 

of those methods, with step-step-by step instructions, and all reinforced by the detailed example 

provided, should be of great value as a learning tool and guide for application in other modeling 

endeavours. 

4.3 Applications and Future Work 

4.3.1 Application Without Simulation Over Time 

As they currently are, parameterized models derived in Chapter 3 (see Appendix 1, Table 

A3 for parameter values of multiple linear regression models) should be applied to young, 

intensively managed lodgepole pine stands in the Montane Spruce and Sub-Boreal Spruce 

Biogeoclimatic Ecosystem Classes (dry mild subzones) of the interior of British Columbia. 

Optimum habitat suitability ratings (i.e. habitat suitability scores near 1) do not necessarily 

represent optimum habitat, but rather the habitat structure that is estimated to be most preferred 

in young, intensively managed lodgepole pine stands in the sampled ecotypes. Application of 

these models is likely to provide useful comparison or contrast with expert opinion, as well as 

the quantified estimates of mule deer response that expert opinion is less well suited for. 

Wherever possible, it would be of great advantage to validate the models parameterized 

in Chapter 3 with truly independent data. Data from a wide variety of locations with similar 

stand and biogeoclimatic characteristics would provide a fairly robust evaluation of the 

predictive accuracy of these models in the circumstances that they are best suited for. Diverse 

data from areas with different stand and environmental conditions would be of great use for 

demonstrating how predictive accuracy varies when models are applied outside the limited range 

of the calibration data. A diversity of locations for validation data collection is purposely stressed 

above, as a narrow set of independent data is more likely to be skewed by atypical relationships 

between mule deer and their habitat. 

If enough additional data are collected or available, it is possible that they may be pooled 

with the data used in Chapter 3 and models can be re-parameterized. Ideally, region specific 

models could be produced, which I believe have the potential to substantially improve predictive 

accuracy. Without collecting new data, as previously mentioned, a mixed modeling approach has 

the potential to increase the number of observations available for parameter estimation, while 
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eliminating complications that have arisen due to averaging over repeated observations and 

standardizing by region. 

A static estimate of a forest stand's habitat suitability for certain species is bound to be 

useful in certain circumstances. More often, however, estimates of habitat suitability are likely to 

be needed in the context of forest planning; over long periods of time and large areas of land. 

Because of the dynamic nature of forests, effective estimates of how habitat suitability in an area 

will change over time requires linking habitat suitability models to models of forest growth and 

succession (Brand et al. 1986, Holt et al. 1995). To be compatible with forest planning, forest 

simulation models must be able to represent the impacts of alternative management activities, 

and must be at a spatial scale and resolution of detail necessary to represent critical relationships 

(Smith 1986). 

4.3.2 Stand-Level Simulation Models 

Just exactly what level of detail is required in stand-level vegetation simulation models 

depends on the factors being considered for manipulation by forest management, the habitat 

attributes of importance to wildlife, and the manner in which the two interact. Models will likely 

have to be spatially explicit for accurate predictions i f the habitat at the scale of interest is not 

homogenous, i f organisms are not continuously well mixed, i f the organisms are not highly 

mobile, or i f organisms interact with each other and their environment over long distances (Law 

et al. 2000). For large mammals especially, it seems likely that aspatial approximations at a 

stand-level scale should be fairly effective, except perhaps under non-uniform cutting patterns 

(i.e. aggregated retention). This would of course depend on the stand structures represented in 

the calibration data set. 

FORECAST is an aspatial, stand-level simulation model that operates using a hybrid of 

bioassay and process-based approaches to predicting forest stand change and development 

(Kimmins et al. 1999). It is a powerful and flexible decision support tool, allowing representation 

of numerous adjustable forest management activities (e.g. thinning, harvesting, slashburning, 

fertilization, etc.) and numerous adjustable levels of complexity (e.g. soil, bryophyte, plant, and 

tree layers, single or multiple species). In addition, FORECAST incorporates economics. As 

ecological and economic considerations are highly interconnected in forest management (Lippke 

and Bishop 1999), models that can calculate both ecological and economic factors are certainly 

useful (Turner et al. 1995, Hansen et al. 1995), and occasionally required (Liu 1993). Also, as 

proper sustainable ecosystem management must be ecologically viable, economically feasible, 
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and socially responsible (Salwasser 1992), FORECAST is additionally functional by also 

estimating the impacts of management scenarios on employment. 

To further improve the functionality of FORECAST, a habitat suitability component has 

been designed and directly integrated (see Appendix 2 for description). This component allows 

for the flexible definition of habitat variables and habitat suitability equations. Equations can be 

designed in a traditional Habitat Suitability Index fashion (HSI; U.S. Fish and Wildlife Service 

1981), or as. empirically derived linear or non-linear equations. Although economic 

considerations are of pivotal importance to ecosystem management, economic repercussions of 

habitat management options are rarely incorporated into habitat suitability models (Marzluff et 

al. 2002). Through FORECAST, however, both can be examined concurrently. 

4.3.3 Landscape-Level Simulation Models 

For mule deer, which are highly mobile animals, planning at the landscape level probably 

does not require explicit spatial considerations. Exceptions are likely to occur during heavy 

snowfall period in winter, when the arrangement of stands providing a good balance of snow 

interception and forage opportunities may be of critical importance. Available data for the habitat 

suitability equations developed in Chapter 3 did not allow for spatial analysis, and resultant 

equations operate under the assumption that the importance of spatial arrangement is either 

immaterial or implicit. For many other species, however, aspatial approximations at the 

landscape level are less likely to be appropriate. The distribution of habitat has the potential to 

have powerful biological repercussions (Fahrig and Merriam 1985). 

Forest fragmentation, which produces a series of residual habitat patches surrounded by a 

matrix of altered land, has been recognized as a potentially significant force of change to wildlife 

habitat for some time now (Saunders et al. 1991). Fragmentation causes changes to microclimate 

(i.e. increased edge effects) and the isolation of habitat patches, both of which are modified by 

the size, shape, and position of the fragments (Saunders et al. 1991). In general, whether or not 

fragmentation is of importance in affecting habitat depends largely on a particularly species' 

ability to disperse, and the scale at which it perceives the landscape (Fahrig and Paloheimo 1988, 

D'Eon et al. 2002). 

At the very least, a landscape perspective is helpful for beginning to anticipate how 

activities in one area may influence the properties of nearby areas (Turner et al. 1995). Often, 

geographic information system (GIS) layers are used to project habitat suitability models over a 

landscape (e.g. Dale et al. 1998, Woolf et al. 2002, Store and Jokimaki 2003). As most GIS data 
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is very course in resolution, GIS-based habitat suitability analysis may be most effective for 

species with general habitat requirements (Clark et al. 1993). On its own however, GIS is not 

capable of dynamic modeling over time, but instead produces a static map. For projection over 

time, GIS layers must be combined into a landscape simulation program, such as Possible Forest 

Futures (PFF) or SIMFOR (Daust and Sutherland 1996). PFF functions primarily as an interface 

for the management of a landscape that is an amalgamation of independently operating stands 

simulated by FORECAST. At present, the habitat suitability component of FORECAST has yet 

to be fully integrated into PFF. SIMFOR, however, is by its very nature a habitat suitability 

projection program. It utilizes GIS data layers, customizable estimates of vegetation dynamics, 

customizable habitat suitability relationships, and a separate harvest scheduler for simulating the 

effects of forest harvest activities. SIMFOR is also capable of simple spatial calculations, such as 

representing the impacts of patch size or edge effects. 

4.4 Conclusion 

Management for timber and management for wildlife are generally compatible as long as 

wildlife habitat requirements are understood, and incorporated in planning along with 

requirements for timber management (Thomas 1979). Habitat suitability modeling is clearly an 

important decision support tool that helps to integrate wildlife habitat management into the 

overall management of forest ecosystems. The statistical methods for building mathematical 

models from empirical data that have been outlined and exemplified. within this thesis are 

reasonable. However, it seems likely that estimating parameters using a mixed modeling 

approach would have taken better advantage of the information contained in the available data. 

Nonetheless, the model selection approach of an a priori model building emphasis, using AIC 

for model ranking and producing weighted average parameter estimates, is sound. 

In all predictive models, assumptions and error are unavoidable, and therefore application 

requires careful consideration and common sense. Model producers have the responsibility to 

explain the processes, assumptions, strengths and weaknesses, of their models (Thomas 1986),. 

and I have attempted to do this to the best of my ability. Users of any model, at the very least, 

should understand the inherent model assumptions, the variability in the data used, and the best 

estimates of the uncertainty that is present in all model predictions (Thomas 1986). 
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Appendix 1: Extended Model and Data Analysis Results 

Table A l . l . Full AIC C output for summer data, including AIC weights and evidence ratios calculated for the full model set. 

; K Ih 

1 fertilizer, shrub volume, herb volume, herb species richness, shrub species richness, 
density, density x shrub volume, density x herb volume 10 33.64 28.26 0.00000 1370303.82 0.486 

2 fertilizer, shrub volume, herb volume, herb species richness, shrub species richness, 
density, density x shrub volume 9 26.57 21.19 0.00001 39841.24 0.486 

3 fertilizer, shrub volume, herb volume, herb species richness, shrub species richness, 
density, density x herb volume 9 26.57 21.18 0.00001 39819.24 0.486 

4 fertilizer, shrub volume, herb volume, shrub species richness, density, density x shrub 
volume 8 20.57 15.18 0.00019 1981.89 0.482 

5 fertilizer, shrub volume, herb volume, herb species richness, density, density x herb 
volume 8 20.53 15.15 0.00019 1946.96 0.485 

6 fertilizer, shrub volume, herb volume, density, density x shrub volume, density x herb 
volume 8 20.71 15.33 . 0.00017 2129.32 0.476 

7 fertilizer, shrub volume, herb volume, density, density x shrub volume 7 15.46 10.07 0,00241 153.83 0.476 

8 fertilizer, shrub volume, herb volume, density, density x herb volume 7 15.45 .10.07 0.00241 153.70 0.476 

9 fertilizer, shrub volume, density, density x shrub volume 6 10.94 5.55 0.02304 16.07 0.471 

10 fertilizer, herb volume, density, density x herb volume 6 12.95 7.57 0.00841 44.03 0.359 

11 fertilizer, shrub volume, herb volume, shrub species richness, herb species richness, 
density 8 20.50 15.12 0.00019 1919.36 0.486 

12 fertilizer, shrub volume, herb volume, shrub species richness, herb species richness 7 17.02 11.64 0.00110 336.53 0.391 

13 fertilizer, shrub volume, herb volume, herb species richness 6 12.62 7.24 0.00993 37.30 0.379 

14 fertilizer, shrub volume, herb volume, shrub species richness 6 12.47 7.08 0.01073 34.52 0.388 

15 fertilizer, shrub volume, herb volume, density 6 10.86 5.47 0.02401 15.43 0.476 

16 fertilizer, shrub volume, herb volume 5 8.90 3.51 0.06398 5.79 0.359 

17 fertilizer, shrub volume 4 5.38 0.00 0.37032 1.00 0.353 
18 fertilizer, herb volume 4 7.38 2.00 0.13644 2.71 0.216 

19 fertilizer, density 4 5.52 0.13 0.34647 1.07 0.344 
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Table A1.2. Full AIC C output for winter data, including AIC weights and evidence ratios calculated for the full model set. 

© ( M @ 0 C S m§® 
i m 

"'DEOO® 
• 

1 fertilizer, shrub volume, herb volume, herb species richness, shrub species 
richness, density, density x shrub volume, density x herb volume 10 34.78 27.52 0.00000 944823.18 0.435 

2 fertilizer, shrub volume, herb volume, herb species richness, shrub species 
richness, density, density x shrub volume 9 27.71 20.44 0.00001 27498.11 0.434 

3 fertilizer, shrub volume, herb volume, herb species richness, shrub species 
richness, density, density x herb volume 9 27.76 20.49 0.00001 28155.90 0.432 

4 fertilizer, shrub volume, herb volume, shrub species richness, density, 
density x shrub volume 8 23.06 15.79 0.00011 2683.99 0.352 

5 fertilizer, shrub volume, herb volume, herb species richness, density, 
density x herb volume 8 21.71 14.44 0.00022 1365.53 0.431 

6 fertilizer, shrub volume, herb volume, density, density x shrub volume, 
density x herb volume 8 23.37 16.11 0.00010 3145.75 0.332 

7 fertilizer, shrub volume, herb volume, density, density x shrub volume 7 18.15 10.89 0.00131 231.21 0.330 
8 fertilizer, shrub volume, herb volume, density, density x herb volume 7 18.18 10.91 0.00130 234.40 0.328 
9 fertilizer, shrub volume, density, density x shrub volume 6 14.41 7.15 0.00852 35.65 0.272 
10 fertilizer, herb volume, density, density x herb volume 6 14.37 7.11 0.00869 34.95 0.275 

11 fertilizer.shrub volume, herb volume, shrub species richness, herb species 
richness, density 8 21.72 14.46 0.00022 1378.09 0.430 

12 fertilizer, shrub volume, herb volume, shrub species richness, herb species 
richness 7 17.59 10.32 0.00174 174.26 0.365 

13 fertilizer, shrub volume, herb volume, herb species richness 6 13.11 5.84 0.01638 18.55 0.358 
14 fertilizer, shrub volume, herb volume, shrub species richness 6 14.29 7.02 0.00906 33.53 0.280 
15 fertilizer, shrub volume, herb volume, density 6 13.59 6.32 0.01288 23.60 0.328 
16 fertilizer, shrub volume, herb volume 5 10.31 3.05 0.06627 4.58 0.275 
17 fertilizer, shrub volume 4 7.31 0.05 0.29672 1.02 0.232 
18 fertilizer, herb volume 4 7.48 0.22 0.27260 1.11 0.219 
19 fertilizer, density 4 7.27 0.00 0.30385 1.00 0.235 
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Table A1.3. Final models. Listed values are weighted averages of parameter estimates for multivariate linear regression models of summer 
and winter data; for the full models created using all a priori selected variables (models cut off at a Aj value of 10), as well for as a reduced 
(management) model list composed of models with a Aj value less than 10 that do not include shrub or herb species richness. Standard errors 
(SE) of the model averaged parameter estimates are present in parentheses. Recall that models arose using pellet-group densities that were 
standardized by region, and expressed on a per ha basis. Stand densities were also on a per ha basis, and volume measurements are actually 
crown volume indices (calculated as described in the Methods section of Chapter 3) expressed as m3/0.01 ha. 

mm, 
ftwrih 

s i s 

Full Model 
Summer 0.3957 

(SE=0.4504) 

-0.1935 
(SE=0.3417) 

3.06E-03 
(SE=0.0603) 

3.72E-04 
(SE=0.0311) 

-8.07E-05 
(SE=0.0105) 

3.27E-04 
(SE=0.0282) 

1.04E-04 
(SE=0.0165) 

-3.48E-09 
(SE=3.47E-04) 

7.94E-10 
(SE=1.67E-04) Full Model 

Winter 0.6471 
(SE=0.4045) 

-0.2175 
(SE=0.3545) 

-1.74E-03 
(SE=0.0541) 

9.55E-04 
(SE=0.0420) 

4.46E-05 
(SE=0.0087) 

1.20E-04 
(SE=0.0213) 

3.76E-04 
(SE=0.0285) 

6.40E-09 
(SE=2.59E-04) 

-6.38E-09 
(SE=1.90E-04) 

Management 
Model 

Summer 0.4025 
(SE=0.4428) 

-0.1939 
(SE=0.3377) 

3.02E-03 
(SE=0.0596) 

3.52E-04 
(SE=0.0301) 

-8.24E-05 
(SE=0.0105) 

NA NA -3.55E-09 
(SE=3.47E-04) 

8.11E-10 
(SE=1.88E-04) Management 

Model Winter 0.6631 
(SE=0.3919) 

-0.2217 
(SE=0.3515) 

-1.60E-03 
(SE=0.0521) 

8.77E-04 
(SE=0.0407) 

2.90E-05 
(SE=0.0077) 

NA NA 6.57E-09 
(SE=2.67E-04) 

-6.55E-09 
(SE=2.24E-04) 
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Table A1.4. Summary of canonical correlation analysis results for fertilized and unfertilized plots analyzed separately, by site. Correlations 
listed are between available independent variables and their canonical variable. Site 1 = Summerland, Site 2 = Kelowna, Site 3 = Gavin Lake 
(Cariboo). 

•a g S fl 2 fl . 2 • ® 

Herb Volume 0.42 -0.34 -0.69 0.30 0.70 -0.71 0.2,1 0.27 -0.01 -0.34 0.32 0.12 
Shrub Volume 0.12 0.06 0.23 0.15 -0.17 0.71 -0.03 0.20 0.40 -0.36 0.49 0.95 

Herb Species Richness 0.44 -0.06 -0.36 0.39 0.68 -0.61 -0.02 0.91 0.58 0.50 -0.48 -0.04 

Shrub Species Richness 0.26 0.15 0.03 0.49 0.28 -0.04 0.23 0.15 0.08 -0.56 -0.28 -0.14 

Stand Density -0.43 0.31 0.47 -0.29 -0.28 0.17 -0.37 0.35 0.28 0.41 0.41 0.25 
Density X Shrub Volume -0.14 0.29 0.56 -0.19 -0.29 0.48 -0.20 0.52 0.56 0.14 0.69 0.78 
Density X Herb Volume -0.16 -0.06 -0.21 0.22 0.14 -0.19 -0.13 0.39 0.24 -0.09 0.46 0.34 
Explained Standardized 

Variance of Pellet-
Group Counts 

0.41 0.60 0.53 0.72 0.83 0.89 0.42 0.47 0.68 0.46 0.20 0.74 
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Appendix 2 

Habitat Suitability Component Design for FORECAST 

A2.1 General Structure 

The wildlife habitat suitability component described here has been designed to integrate 

into the ecosystem simulation program FORECAST, and includes three main components; 1) 

The wildlife suitability interface ('Wildlife Habitat Suitability' window), a main page for 

defining the number of species to model, naming the species, giving access to the variable 

definition and equation building tools, and for displaying constructed equations; 2) The 'Wildlife 

Variable Selection' window, a tool for defining variables for use in habitat suitability equations; 

3) The 'Build Habitat Suitability Equations' window, an equation building and editing tool. 

A2.2 Wildlife Habitat Suitability Interface 
The general structure of the wildlife habitat suitability interface is fairly simple (see Fig. 

A2.1). The functions to be performed by the main interface page are; 1) To identify the number 

of wildlife species to be represented; 2) To name the species; 3) To provide access to the 

"Wildlife Variable Selection" window; 4) To provide access to the "Build Habitat Suitability 

Equations" window; 5) To display the defined variables and relationships for easy reference. 

The first section of the wildlife interface involves setting the number of wildlife species 

to be represented. The only other viable option would have been to pre-determine how many 

wildlife species could be represented in a FORECAST run. However, this would have 

compromised flexibility in application. Next, the interface includes a location for naming the 

species. A l l FORECAST output referring to the species uses the text in this location for 

identification. 

The sections to the right of the main interface include one button each for providing 

access to the "Wildlife Variable Selection" (the "Define Variables" button) and "Build Habitat 

Suitability Equations" (the "Build Equations" button) windows. The "Variable Definitions" box 

displays all defined variables for easy reference. Similarly, the "Habitat Suitability Equations" 

box lists the defined habitat suitability relationships. Pn this way, the user can quickly review 

defined relationships at a glance without having to open the editor window and go over the 

defined relationships one at a time. It would likely be an appealing additional feature for the 

interface to have the capability to display the simple curves definable in the "Manual Input" box 
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of the "Relationship Workshop" (described later). However, the displaying of equations and 

curves within the main interface window has not been included in the interface design at this 

point. 

• Wildlife Habitat Suitability 

Represented Species 

Wildlife Species D e t e t e 

Number of Wildlife Species 

Loaded Data Set C:\Horizori\DataSets\Lodgepolelfds 

Variable Definitions (fa highlighted species) Define Variables 

1 shrub volume 

shrub species richness 

herb species richness 

Habitat Suitability Equations (for highlighted species) Build Equations 

Save Lists Restore Lists Help Close 

Figure A2.1. Wildlife interface main page. 

A2.3 Wildlife Variable Selection 

Perhaps the most complex component of the FORECAST wildlife interface involves 

defining variables out of FORECAST data outputs for later use in constructing mathematical 

relationships. The structure for the "Wildlife Variable Selection" window is shown in Figure 

A2.2. It is composed of 6 parts; a "Variable Identity" box, a "Feature" box, a "Species" box, a 

"Trait" box, basic mathematical buttons, and a "Variable Definition" box. 
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I Wildlife Variable Selection 

Variable Identity 
1 shrub volume Number of Variables 

2 herb volume 

3 shrub species richness 
Add Variable | 

Delete Variable j 

4 herb species richness 
Add Variable | 

Delete Variable j r stem density 

Add Variable | 

Delete Variable j 

Trait Modifiers 

Units Conversion 

X I 

Range Limits 

> I 

Feature Species Trait 

Variable Definitions Variable Number 

Close 

Figure A2.2. The Wildlife Variable Selection component. 

The first step in defining a variable will be to select a variable and to name it. This is 

done in the "Variable Identity" box in the top left corner. To add a new variable, the user simply 

clicks into an empty space next to a variable identification number, and type. Next, the user will 

specify the feature, species (one or more), and trait for the variable. To specify the feature, the 

user will click in the "Feature" box and select from the available options of "Trees", "Plants", 

"Snags" and "CWD". Only one feature can be included per variable. Options available in the 

"Species" and "Trait" boxes will be dependent on the option selected in the "Feature" box. Next, 

in the "Species" box, all species to be referred to by the variable must be selected. Options 

available will depend on the option selected in the "Feature" box, and species names listed will 

come from species names specified in the "Header" tab of FORECAST 'S Ecodata file. Species 

are selected from the list by simply clicking on them. 

Next, in the trait box, the particular trait of the "Feature" and "Species" in question will 

be specified. In the final version, the user will likely select from pre-defined "Traits", rather than 

be free to define them independently. Options to be available are as follows; 
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For "Feature" "Trees"; SPH (stems per hectare) @ D B H (diameter at breast height), SPH @ 

height, SPH @ age, B A (basal area) @ D B H , B A @ height, B A @ age, average D B H , average 

height, average age, canopy closure (and/or light reaching ground), and canopy depth. 

For "Feature" "Plants"; height, volume, fruit, new volume. 

For "Feature" "Snags"; decay state, SPH @ D B H , SPH @ height. 

For "Feature" " C W D " ; decay state, SPH @ D B H , SPH @ length. 

There is an interesting point made by Kim Scoular (personal communication) that should 

be noted here regarding defining edible biomass of plants. Here I simply defined the trait as new 

volume (growth since the previous winter), however this may be an over simplification. As Kim 

Scoular stated "perhaps moose eat more twigs than deer". At the time of writing, no solution had 

been found regarding this problem. 

Once the variable (in the "Identity" box) "Feature", "Species", and "Trait" are all 

selected, the user will click the "Define Variable" button below the "Trait" box, and an 

expression describing the variable thus far will appear in the "Variable Definitions" box at the 

bottom of the "Variable Selector" window. The appropriate variable identification number will 

simultaneously appear in the "Variable Number" box. 

Finally, the user will specify the final details of the variable with the mathematical 

buttons in the top right section of the "Variable Selector" window and the numerical pad on a 

keyboard. Currently, only lesser-than and greater-than symbols are available, but lesser-than-or-

equal-to and greater-than-or-equal-to functions will likely be available in the final version. For 

an example of application, the species "Douglas-fir" and trait "SPH @ D B H " followed by the 

sign ">" and the number "40" would specify that the variable refers to the number of stems per 

ha of Douglas fir above 40 cm in dbh. If, D B H was unimportant, no range limit button would be 

selected, specifying that Douglas fir stems per ha at all D B H are referred to (e.g. large Fd = 

Douglas fir SPH @ DBH). If it simplifies matters, "Traits" of just "SPH" and " B A " may be 

included in the final version to provide the same feature. 

Variable definitions entered will be saved automatically upon closing the "Wildlife 

Variable Selection" window. Also, variable definitions entered can be reviewed and edited by 

again clicking on the appropriate variable names in the "Identity" box. 
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A2.4. Build Habitat Suitability Equations 
I Build Habitat Suitability Equations 

Equation Identity: Manual Input: 

Functions: 

M a n u a l 

r 

VariableSelect: 

shrub volume 

shrub species richness 
herb species richness 
stem density 

Relationship: 

Mule Deer = 0.4414 + (-1 .60E-03)(shrub volume) + (877E-04)(herb volume) + (2.90E-05)(stem density) + (6.57E-09p(sh 

Clear Vallidate Close 

Figure A2.3. The Build Habitat Suitability Equations component. 

The "Build Habitat Suitability" component of the wildlife habitat suitability interface (see 

Figure A2.3) provides the user an opportunity, through a number of possible methods, to express 

relationships between variables defined in the "Wildlife Variable Selection" component and the 

habitat suitability of species of interest. Habitat suitability relationships can be defined by one 

equation, or by more than one component equation combined by a total habitat suitability 

equation. Although incomplete at the time of writing, relationships between variables and 

habitat suitability will be able to be defined mathematically or by manually entering values in the 

final version. This component has 7 main parts; a "Equation Identity" box, a "Variable Select" 

box, a "Functions" box, a "Manual Input" box, a "Feedback" check box, "Validate" and "Clear" 

buttons, and the "Relationship" box. 

The first step in defining relationships will be to select and name the curve to be defined. 

The user simply clicks the appropriate space in the "Equation Identity" box, and types in the 

desired name. Unless the "Feedback" or "Manual" boxes are checked, after selecting a curve the 

name of the curve followed by an equal sign will appear in the "Relationship" box. 
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Variables in the "Variable Select" box will be those variables defined in the "Wildlife 

Variable Selection" window (see section A2.3), as well as each curve defined. Equations already 

defined will also appear in the "Variable Select" box. This will give the user the option of 

defining habitat suitability of a species through the combination of multiple habitat suitability 

curves that each define habitat suitability in relation to a particular component of the habitat. 

Although incomplete at the time of writing, habitat suitability equations defined for other defined 

species may also appear here, clearly marked as such, so that the user may define how the habitat 

suitability of one species will impact on the habitat suitability of another. 

Variables will be selected by clicking on the appropriate space in the "Variable Select" 

box. If the "Feedback" and "Manual" boxes are not checked, the name of the selected curve will 

appear as a predictor variable wherever the cursor is placed in the "Relationship" box. If the 

"Feedback" box is checked, the dependent variable will be the first variable selected in the 

"Variable Select" box, and should automatically be followed by an equal sign for clarity. 

Subsequently selected variables will appear, as normal, on the right side of the equation, 

wherever the cursor is placed. If the "Manual" box is checked, the name of variable selected wil l 

appear in the left column of the "Manual Input" box as the independent variable. 

Equations can be built in the "Relationship" box through a combination of selecting 

desired variables, using the numerical keypad on a keyboard (including brackets), and adding 

mathematical functions from the "Functions" box. Functions will be selected by simply clicking 

upon them with a computer mouse. Once clicked, the function will enter into the "Relationship" 

box wherever the cursor is placed. The functions to be included are all standard mathematical 

functions; exponent, logarithm, natural log (LN), and e, with the possible inclusion of 

trigonometric functions. 

If the "Feedback" box is checked, as mentioned above, the first variable selected will 

appear as the dependent variable followed by an equal sign, and each subsequent variable 

selected will appear as a predictor variable on the opposite side of the equation. The "Feedback" 

box will give the user the opportunity to define impacts on defined variables (or perhaps even the 

habitat suitability of other defined species) in relation to calculated habitat suitability of a 

species. This would only be of use for animals whose populations are tightly tied to habitat 

components, and no such animals that I currently know of would achieve abundances that would 

appreciably impact habitat components. Therefore, this feature would not likely be useful 

without the addition of population demographic details, and may be excluded from the final 

version 
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Whenever the "Manual" box is checked, the identified equation will refer to the values 

manually entered into the right column of the "Manual Input" box, and the name of the selected 

variable will appear in the left column. This option will allow the user to more easily take a 

traditional habitat suitability index (HSI) approach, where responses to variables are generally 

defined as linear changes of habitat suitability in relation to the supply of a particular habitat 

variable. This is the general approach adopted by SIMFOR, and the widespread use of habitat 

suitability index modelling in wildlife management necessitates it's inclusion into the 

FORECAST wildlife interface as well. A n example of one component of a traditional HSI 

model is shown in Figure A2.4. The "Build Habitat Suitability" component will be required to 

automatically form an equation of a line between specified low and high values (calculating 

slope and intercept behind the scenes) in order to be able to assign a particular habitat suitability 

index value for an intermediate level of supply for the variable in question. The habitat variable 

of interest will be selected from the "Variable Select" box, and will appear in the independent 

variable column (left column) of the "Manual Input" box. It would be helpful at this stage i f a 

simple graph, similar to the structure of Fig. 4, could appear in the "Relationship" window to 

visually represent curves entered into the "Manual Input" box, however this is not an essential 

function. 

% herb cover 

Figure A2.4. Example of a traditional HSI component model. The user specifies at what level in 
the independent variable the habitat suitability index reaches it's high and low points, and simply 
draws a straight line between the two. 
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Appendix 3 
Univariate Responses of Model Variables to 

Standardized Pellet-Group Densities 

A3.1. Graphs of Univariate Responses in Summer 
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Figure A3.1. Standardized pellet-group density vs. shrub volume index for fertilized and 
unfertilized plots in summer. 
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Figure A3.2. Standardized pellet-group density vs. herb volume index for fertilized and 
unfertilized plots in summer. 
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Figure A 3 . 3 . Standardized pellet-group density vs. shrub species richness for fertilized and 
unfertilized plots in summer. 

1 9 

•a 

o ^ 
O) o 
». Q-
«> in — a. 

o 
£ S 0.4 

0.8 

0.6 

0.2 

A unfertilized 

• fertilized 

10 15 20 25 

herb species richness 
(# species per stand) 

Figure A 3 . 4 . Standardized pellet-group density vs. herb species richness for fertilized and 
unfertilized plots in summer. 
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Figure A3.5. Standardized pellet-group density vs. stand density for fertilized and unfertilized 
plots in summer. 

A3.2. Graphs of Univariate Responses in Winter 
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Figure A3.6. Standardized pellet-group density vs. shrub volume index for fertilized and 
unfertilized plots in winter. 
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Figure A3.7. Standardized pellet-group density vs. herb volume index for fertilized and 
unfertilized plots in winter. 
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Figure A3.8. Standardized pellet-group density vs. shrub species richness for fertilized and 
unfertilized plots in winter. 
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Figure A3.9. Standardized pellet-group density vs. herb species richness for fertilized and 
unfertilized plots in winter. 
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Figure A3.10. Standardized pellet-group density vs. stand density for fertilized and unfertilized 
plots in winter. 
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A3.3. Simple Correlations 
Table A3.1. Simple Pearson's correlation coefficients between available variables for summer data. 

eftrafe 
spaa® 

gtefe 

' sireftnrass 

. 8§8dl gfarfo 
I o 

t£S§§ 
spaa® 

gtefe 

' sireftnrass > m$KMi 

8§8dl gfarfo 
I o 

t£S§§ 
spaa® 

gtefe 

' sireftnrass > m$KMi 

8§8dl t£S§§ 

1.00 0.44 0.39 0.53 0.17 0.10 -0.35 -0.18 0.55 -0.36 -0.30 0.04 0.41 0.16 

0.44 1.00 0.65 0.35 -0.22 -0.45 0.08 0.22 0.15 -0.64 -0.64 -0.27 0.01 -0.35 
0.39 0.65 1.00 0.34 -0.34 -0.20 0.01 0.08 0.29 -0.71 -0.40 0.05 0.07 -0.30 

0.53 0.35 0.34 1.00 0.34 0.22 -0.07 0.10 0.45 -0.36 -0.64 -0.17 0.16 0.29 

0.17 -0.22 -0.34 0.34 1.00 0.63 -0.16 0.00 0.18 0.61 0.20 -0.13 0.07 0.93 

ssreftnrass 
0.10 -0.45 -0.20 0.22 0.63 1.00 -0.29 -0.06 0.34 0.40 0.53 0.51 0.40 0.87 

-0.35 0.08 0.01 -0.07 -0.16 -0.29 1.00 0.89 -0.74 -0.05 -0.21 -0.15 -0.49 -0.24 

-0.18 0.22 0.08 0.10 0.00 -0.06 0.89 1.00 -0.65 -0.12 -0.18 -0.01 -0.35 -0.02 

agiilitgamrgiil 0.55 0.15 0.29 0.45 0.18 0.34 -0.74 -0.65 1.00 -0.27 -0.10 0.16 0.64 0.27 

-0.36 -0.64 -0.71 -0.36 0.61 0.40 -0.05 -0.12 -0.27 1.00 0.58 -0.09 -0.20 0.57 

-0.30 -0.64 -0.40 -0.64 0.20 0.53 -0.21 -0.18 -0.10 0.58 1.00 0.62 0.26 0.42 

0.04 -0.27 0.05 -0.17 -0.13 0.51 -0.15 -0.01 0.16 -0.09 0.62 1.00 0.66 0.23 

0.41 0.01 0.07 0.16 0.07 0.40 -0.49 -0.35 0.64 -0.20 0.26 0.66 1.00 0.28 

0.16 -0.35 -0.30 0.29 0.93 0.87 -0.24 -0.02 0.27 0.57 0.42 0.23 0.28 1.00 
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Table A3 .2. Simple Pearson's correlation coefficients between available variables for winter data. 

M b * . : 
stalk) Iterib : 

0 
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fSSSg.. ^^^^^^^^ 
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o ^^^^^^^^ 
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1.00 0.44 0.41 -0.05 -0.01 -0.18 0.21 0.22 -0.18 -0.06 -0.06 -0.14 -0.14 -0.09 

0.44 1.00 0.65 0.32 -0.17 -0.37 0.00 0.21 0.11 -0.60 -0.58 -0.29 0.01 -0.30 
0.41 0.65 1.00 0.36 -0.30 -0.14 -0.10 0.08 0.26 -0.69 -0.37 0.02 0.08 -0.27 

-0.05 0.32 0.36 1.00 0.37 0.30 -0.04 0.14 0.39 -0.38 -0.62 -0.13 0.15 0.36 

-0.01 -0.17 -0.30 0.37 1.00 0.59 -0.07 0.04 0.18 0.51 0.11 -0.15 0.02 0.91 

fMnrasa -0.18 -0.37 -0.14 0.30 0.59 1.00 -0.25 -0.02 0.37 0.29 0.49 0.55 0.43 0.86 

0.21 0.00 -0.10 -0.04 -0.07 -0.25 1.00 0.88 -0.79 -0.01 -0.18 -0.13 -0.48 -0.16 

waferars 
0.22 0.21 0.08 0.14 0.04 -0.02 0.88 1.00 -0.69 -0.14 -0.19 0.01 -0.35 0.03 
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Appendix 4 

Graphs of PRESS Residuals vs. 

Standardized Pellet-Group Densities 
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Figure A4.1. Residuals vs. standardized observations for full summer model. 
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Figure A4.2. Residuals vs. standardized observations for the summer management (reduced) 

model. 
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Figure A4.3. Residuals vs. standardized observations for the full winter model. 
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Figure A4.4. Residuals vs. standardized observations for the winter management (reduced) 

model. 
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