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A B S T R A C T 

Monitoring the condition of a large number of dispersed riparian management areas on 

northern Vancouver Island is hampered by poor ground access, the high cost of flying, 

and a lack of resources. Furthermore, monitoring them with high spatial resolution 

satellites, such as IKONOS, QuickBird, and Terra, is frustrated by persistent cloud 

cover. A possible alternative is to use radar imagery to facilitate monitoring. Satellite-

based radar sensors, including Canada's RADARSAT, generate their own illumination 

and consequently they are able to acquire imagery at any time of the day or night. The 

imagery can also be acquired during stormy weather since the radar satellite's 

illumination is not obstructed by clouds. 

Radar backscattering from forested areas typically exhibits low spatial autocorrelation 

because these areas are structurally quite heterogeneous. On the other hand, freshly 

logged cut-blocks appear to be comparatively homogeneous on radar images. 

Consequently backscatter from these areas should exhibit higher spatial 

autocorrelation. Due to similar characteristics exhibited by windthrown areas within 

riparian management areas and along cut-block boundaries, it was postulated that the 

Getis statistic could be applied to multi-temporal R A D A R S A T images to detect both the 

increased backscatter and higher spatial autocorrelation associated with windthrow 

damage in these areas. 

The areas that were examined in this thesis are located on northern Vancouver Island in 

a triangular area between Port Hardy, Port McNeill, and Port Alice. The area is entirely 

forested and is under active management for timber production. Depending on location, 

existing stands of mature timber are comprised of one or more species of western 

hemlock, western red cedar, and Sitka spruce. Regenerated areas are dominated by 

western hemlock and western red cedar with wetter areas being reforested with Sitka 

spruce. 
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Four high spatial resolution R A D A R S A T images provided the subscenes used in this 

study. These images, with a pixel spacing of 3.125 metres and a resolution of 

approximately 8 metres, were acquired in Fine 2 Mode in December 1996, August 

1997, November 1998, and March 1999 on identical ascending orbits under similar 

rainy conditions. To better understand the behaviour of the Getis statistic with radar 

data, it was first used to detect increased levels of backscatter resulting from 

clearcutting. It was then applied to riparian zones to determine if it could detect 

increased backscatter resulting from windthrow damage. Each subscene was converted 

to a series of Getis value images by passing five kernels ranging from 3x3 to 11x11 in 

size over the image. A single Getis value representing the highest local spatial 

autocorrelation was selected for each pixel from the five Getis value images and then 

written to a maximum Getis (MaxGetis) value image. The associated MaxGetis Distance 

images indicated that, for the data used in this research, clearcut areas were just as 

heterogeneous as forested areas. Therefore, without an improvement in data 

homogeneity, it was not possible to determine the extent of disturbances such as 

clearcutting and windthrow on the premise that they exhibited high spatial 

autocorrelation over more extensive areas than adjacent forest. However, the 

characteristics of the MaxGetis image were such that the difference between areas of 

high and low backscatter was significantly enhanced and consequently multi-temporal 

composites of MaxGetis images were found to be especially useful for visualizing areas 

exhibiting high backscatter. 

Although thresholding MaxGetis difference images provided a means for determining 

where significant increases in backscatter had occurred, its reliability for detecting fresh 

windthrow damage or any other structural change in the landscape for that matter was 

thrown into doubt by the high number of apparent false alarms appearing in areas 

where no disturbance was known to have occurred. These false alarms arose as a 

result of a 95% thresholding level being applied to the difference image to isolate 

significant increases in MaxGetis values. Raising the threshold to 99% substantially 

reduced the number of false alarms although a substantial number remained. This led 

to the conclusion that the nature of the data used in this research does not allow 
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thresholded MaxGetis difference images to be used as a reliable means of detecting 

significant increases in backscatter due to some form of disturbance. 

This research also determined that backscatter emanating from windthrow areas is 

considerably weaker than it is from freshly logged areas, thus making it difficult to 

distinguish windthrow damage from forest. Consequently, it is suggested that further 

research is required to determine if other types of radar data, such as multi-look and 

fully polarimetric data, are more suitable for detecting windthrow damage. 
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Chapter 1 Introduction 

1.1 Background 
Under the British Columbia Forest Practices Code, a strip of vegetation must remain 

alongside any stream that passes through or beside an area where timber has been 

harvested. This so-called riparian management area consists of a riparian management 

zone that is up to 50 metres wide. It may also include an additional 20-30 metre wide 

riparian reserve zone if the stream is in a community watershed or if it provides habitat 

for fish. 

Figure 1 illustrates the position of the two zones in a situation where the stream forms 

the boundary for a cut-block on the right. Partial cutting is permitted in the riparian 

management zone; however, no harvesting of any kind is permitted in the riparian 

reserve zone (BCMOF and BC Environment, 1995). 
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Riparian Management Area 

Ripa.'ion Riparian 
Reserve Manac-Kmenl 

Riparian Maragemfint Area 

Figure 1: Riparian zones are required alongside streams to protect aquatic and streamside 
ecosystems (Source: Riparian Management Area Guidebook, 1995, B.C. Ministry of Forests). 

The function of these zones is to protect and sustain streamside and aquatic 

ecosystems. Undisturbed vegetation alongside streams is essential for maintaining 

water quality and preventing downstream sedimentation of spawning areas. Both zones 

provide food to a diverse range of resident animals and birds, while also serving as 

wildlife corridors. The riparian reserve zone in particular provides essential food and 

nutrients to fish and other aquatic inhabitants of the stream. 

On the coast of B.C., high winds and heavy rains are typical of winter storms. During 

such storms, individual trees in fully stocked stands rely on others around them to 

protect them from windthrow. However, once this protection is removed by timber 

harvesting, trees in riparian zones and along cut-block boundaries that become 
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exposed to high winds are at risk of windthrow, especially if the soil is unstable or 

saturated. The resulting damage can either be catastrophic or progressive. In either 

case, the protective function of the riparian zone may be seriously impaired or lost 

altogether. 

1.2 Monitoring Windthrow 
The problem of windthrow in riparian zones and along cut-block boundaries is known to 

be quite significant on northern Vancouver Island (e.g., Mitchell, 1995, Mitchell et al., 

2001). Although little can be done to forestall windthrow in existing riparian zones, there 

are two reasons for continuing to monitor their condition: 

• An understanding of soil types, seasonal weather patterns, prevailing winds and 

the influence that topography has on the latter can be integrated with data on the 

distribution and severity of windthrow damage in riparian zones. This information 

can be used to design cut-blocks and associated riparian zones so that the 

zones are more resistant to windthrow. 

• The data can be used by licensees and the Ministry of Forests to identify 

windthrown timber for possible salvage that could otherwise be lost to decay or 

fire. This reduces the potential fire hazard and prevents insect infestations from 

spreading from downed timber to nearby stands. 

Continuing research on the problem and the attendant development of practical 

guidelines to minimize windthrow damage in riparian zones established in the future in 

this area would be facilitated if the condition of the existing zones could be assessed at 

frequent intervals. However, frequent bad weather and the requirement to deactivate 

roads once they are no longer needed to access timber hampers monitoring the 

condition of riparian zones from the air and on the ground. Persistent cloud cover also 

makes it difficult to acquire aerial photography and imagery from satellites equipped 

with sensors operating in the visible portion of the electromagnetic spectrum. Despite 
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the ability to acquire 170 km by 183 km images of the area every 16 days at a very low 

cost (USD 600 per scene), only 14% of the LANDSAT images acquired over a period of 

6 years have been cloud-free and usable for monitoring (Peter Murtha, personal 

communication)1. Similar constraints would prevent the acquisition of imagery by higher 

spatial resolution satellites such as IKONOS, QuickBird, and T E R R A that also rely on 

incident sunlight. 

A possible solution to the monitoring dilemma is offered by RADARSAT, a radar satellite 

that is capable of imaging the same area from the same orbit every 24 days 

(RADARSAT International, 2000) 2. Unlike LANDSAT 7 which relies on incident light, 

R A D A R S A T provides its own illumination in the ' C microwave band (at 5.3 Ghz) and is 

able to acquire an image day or night under any weather conditions. It also has a higher 

resolution (~8 metres) than LANDSAT 7 (15 metres panchromatic, 30 metres multi-

spectral) and thus is potentially capable of detecting change at a smaller scale than 

LANDSAT. However, of greater significance is that radar data provide the ability to 

readily detect structural (physical) changes in the scene due to the nature of the electro­

magnetic energy transmitted by the sensor and its interaction with scene elements. 

Radar is actually an acronym for RAdio Detection And Ranging. Imaging radars are a 

specific type of radar that transmits electromagnetic waves as pulses with specific 

characteristics at an oblique angle towards a target area, such as the earth's surface, 

and receives the reflected energy or backscatter returning from that same area. Digital 

signal processing of the backscatter data uses the round-trip time and incidence angle 

of the transmitted electromagnetic pulses and their characteristics to construct an image 

(Henderson and Lewis, 1998; R A D A R S A T International, 1995). 

Variations in the strength or magnitude of backscatter are dependent on surface 

roughness, topography, inherent reflectivity of a target, surface moisture and the 

1 Professor Emeritus, Faculty of Forestry, University of British Columbia. 
2 R A D A R S A T has since been renamed RADARSAT-1 once development of RADARSAT -2 was 

announced, 
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moisture content of the target. Smooth water surfaces act as specular reflectors in that 

the electromagnetic wave is reflected in the direction opposite to that from whence it 

came. As the water surface roughens, more of the energy is reflected back towards the 

sensor. Interaction with a vegetation canopy is considerably more complex as a pulse 

may reflect off the surface of leaves and branches many times before exiting the canopy 

altogether. Some of the reflected energy returns to the sensor thus producing variations 

in tone in the resulting image. The degree of penetration into the canopy depends on 

the wavelength of the electromagnetic energy; the longer the wavelength (i.e. the lower 

the frequency of the electromagnetic wave), the deeper the penetration. C-band radars, 

of which R A D A R S A T is one, have limited canopy penetration. Surface moisture and 

vegetation moisture content also determine the strength of backscatter with wet 

vegetation returning more energy that dry vegetation. It is also important to note that 

man-made objects such as buildings are very strong reflectors and consequently they 

typically appear as bright objects (Henderson and Lewis, 1998; R A D A R S A T 

International, 1995). 

Topography also has a significant influence on the proportion of the incident energy 

returning to the sensor. Slopes facing the sensor will reflect more energy than slopes 

facing away from the sensor. Depending on the incidence angle, so-called radar 

shadows can be induced in slopes facing away from the sensor if they are sufficiently 

steep. Shadows can also by cast by trees, such as along the west boundary of some 

the cut-blocks in the images used in this research (Henderson and Lewis, 1998; 

R A D A R S A T International, 1995). 

RADARSAT. launched in November 1995, is Canada's first earth observation satellite. 

It has an electrically steerable antenna which allows it to collect data at incidence 

angles ranging from 10° to 60°. Depending on the level of detail and area of coverage 

required, backscatter data can be collected in one of seven beam modes: Fine, 

Standard, Wide, ScanSAR Narrow, ScanSAR Wide, Extended High, and Extended Low. 

Each beam mode has one or more beam positions defined by a near and far range 

incidence angle which in turn determines the swath width. The resolution of the data 
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collected by each beam mode ranges from less than 10 metres for Fine mode to 100 

metres for ScanSAR Wide mode. The base resolution is determined by the incidence 

angle and pulse duration. Signal processing techniques make use of the changing 

characteristics of the pulse over its duration to obtain a higher spatial resolution image 

than what would otherwise be obtainable from the pulse duration alone (RADARSAT 

International, 1995; 2000). 

The single-look R A D A R S A T Fine 2 mode data used in this research was acquired for 

A D R O (Application Development and Research Opportunity) Project 384 at an 

incidence angle range of 39-42°. The resolution of the data is 7.9 metres in the range 

direction (perpendicular to the satellite's orbital track) and 8.4 metres in the azimuth 

(along-track) direction. Four-look Standard 4 mode data were also obtained much less 

frequently for the same project at an incidence angle range of 36-42°. The resolution of 

these data are much lower than the Fine mode data at 23 metres in the range direction 

and 27 metres in the azimuth direction (RADARSAT International, 2000; Murtha, 

2000c). The Fine 2 mode data were chosen for this research for their higher spatial 

resolution and therefore greater opportunity to capture elevated levels of backscatter 

from small scale windthrow events. 

Figure 2 shows part of a R A D A R S A T Fine 2 mode (F2) image acquired on March 24, 

1999. The image was acquired on an ascending orbit with the illumination coming from 

the left. Forested areas are highly textured and dark grey in colour. Recently harvested 

cut-blocks, soggy from frequent and lengthy rainstorms occurring before and during the 

acquisition of this image, appear somewhat brighter. It is speculated that the slash and 

stumps, in combination with the exposed micro-topography, are responsible for a 

greater proportion of the incident energy being reflected back to the sensor thereby 

making the cut-blocks appear brighter than the surrounding forest. Murtha (2000b) has 

also reported a strong correlation between scene reflectivity and the type of landform 

upon which cut-blocks are situated. Cut-blocks situated on till-derived landforms are 

typically darker than those located on lacustrine sediments, even when very wet. In 
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other environments with less slash remaining after logging, cut-blocks are darker than 

adjacent forest areas, even under wet conditions (Leckie, 1997; Leckie etal., 1998). 

Figure 2: Portion of RADARSAT F2 image acquired on March 24,1999. 

Riparian zones located inside very wet cut-blocks typically appear on radar imagery as 

narrow, dark ribbons. The trees within the zone appear dark as a result of canopy 

volume scattering and radar shadows cast by the trees. Damage in them is revealed by 

brighter pixels in the areas where windthrow has occurred (Murtha, 1997) (Figure 3). 
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Figure 3: The riparian zone outlined in red on this image acquired on December 4,1996 cuts 
through a cut-block whose boundary is indicated in yellow. Recent windthrow in the middle 
and lower end of the zone is revealed by the brighter pixels. 

The objective of this thesis is to examine the effectiveness of a spatial autocorrelation 

statistic, called the Getis statistic, for detecting and defining the extent of windthrow 

damage in riparian management areas and along cut-block boundaries. Its 

performance will first be compared to that of existing methods for detecting structural 

changes in the landscape associated with the appearance of a freshly logged cut-block 

on a radar image acquired in November 1998. It is postulated that a patch of 

windthrown timber exhibits a signature similar to that of a freshly logged cut-block and 

consequently the Getis statistic should provide similar results. 

The remainder of this thesis is laid out as follows: 

• Chapter 2 reviews existing methods used for change detection and briefly 

describes the application of the Getis statistic to multispectral and passive 

microwave data. 

• Chapter 3 describes the study area, and the data and their preparation for 

analysis. 
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• Chapter 4 demonstrates the application of existing change detection 

methods and the Getis statistic for detecting change associated with the 

appearance of a new cut-block on a 1998 radar image. 

• Chapter 5 illustrates the application of the MaxGetis differencing technique 

to the detection of windthrow in riparian zones and along cut-block 

boundaries. 

• Chapter 6 discusses the techniques used and the issues that influence the 

success of the Getis statistic for change detection with the data used in 

this research. 

• Chapter 7 summarizes the results and makes suggestions for further 

research. 
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Chapter 2 Literature Review 

2.1 Change Detection Techniques 

Monitoring the condition of riparian zones with the aid of multi-temporal radar data is 

essentially a change detection problem. Windthrow damage in these zones is revealed 

by the appearance of bright pixels on a radar image acquired after the event. Figure 4 
illustrates progressive windthrow damage in the riparian zone outlined in Figure 3. The 

bright pixels within the riparian zone on the December 1996 image suggest windthrow 

damage has already occurred at the very top, middle, and bottom of the zone. 

Subsequent images show a progressive increase in the number of bright pixels in the 

riparian zone. That this is due to progressive windthrow damage has been 

independently confirmed in the field (Peter Murtha, personal communication)3. 

3 Professor Emeritus, Faculty of Forestry, University of British Columbia 

10 



Figure 4: Progressive windthrow damage incurred by a riparian zone in cut-block M5307 
near Rupert Inlet. These RADARSAT F2 images were acquired on December 4, 1996 (top 
left), August 25, 1997 (top right), November 24, 1998 (bottom left) and March 24, 1999 
(bottom right). 

Since windthrow is usually progressive, assessment of the severity of the problem in a 

particular riparian zone is best achieved using a series of images. A wide range of 

techniques have been developed for detecting change between two or more imaging 

dates. These include (Khorram, 1999; Jensen, 1996): 

1. Change Detection Using Write Function Memory Insertion. This method utilizes 

individual bands of data acquired on 2 or 3 acquisition dates to create a two- or 
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three-colour composite. Colour additive theory is then used to discern the 

location and extent of changes occurring between one date and the next. 

2. Image Algebra Change Detection. Change is identified between two dates of 

imagery by using simple image algebra, either by band ratioing or subtraction, 

followed by thresholding, to identify areas of change. 

3. Multi-date Composite Image Change Detection. Identical bands from two dates 

of imagery are combined into a single composite dataset. Principal components 

analysis or classification (either supervised or unsupervised) is then employed to 

identify clusters of pixels that can be correlated with change occurring between 

the two dates. 

4. Post-Classification Comparison Change Detection. Images acquired on two 

dates are classified according to the same rules and the two classified images 

are then compared using a GIS matrix analysis technique. 

5. Change Detection Using a Binary Change Mask Applied to Date 2. This method 

involves classifying the "before change" image (Date 1). A band from each of the 

Date 1 and Date 2 images are brought together in a new dataset and image 

algebra is used to locate areas of change. The area of change is then used as a 

mask on the Date 2 image and the area under the mask is then classified. This 

method has the advantage that it identifies the location of the change and 

identifies the cover type for each area of change. 

6. Manual On-Screen Digitization of Change. Change can also be identified by 

"heads-up" digitizing with both the "before change" and "after change" images 

displayed side by side on a computer monitor. 

All of these techniques were initially developed for detecting change on multispectral 

images. Despite the high level of inherent noise in radar data, variants of these 

techniques have been successfully adapted for detecting change with synthetic aperture 

radar data. These techniques are described in more detail in the following sections. 
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2.1.1 Multi-Temporal Composites 

The simplest means of detecting change between imaging dates is to construct a three 

colour red-green-blue (RGB) or multi-temporal composite. Three images acquired on 

three different dates are assigned in descending order to the red, green, and blue colour 

guns of a video monitor. Colour additive theory is then used to identify the interval 

during which the increase in backscatter associated with change has occurred. 

The duration and timing of the increase in backscatter determines the predominant 

colour of each individual pixel in the composite. If the pixel is bright on only one image, 

its colour will be the colour assigned to that particular image in the composite. Areas 

that are predominantly red indicate that the increase in backscatter occurred between 

the two most recent imaging dates. Areas that are predominantly yellow indicate that 

such an increase was sustained over the last two imaging dates. Areas that are bright 

on the images assigned to the red and blue colour guns will appear magenta while 

those bright on the images assigned to the blue and green colour guns will appear cyan. 

Areas bright on all three imaging dates will appear white. Decreases in backscatter can 

occur as a result of vegetation blocking the reflective surface. 

This technique has been used extensively to detect windthrow damage in riparian zones 

on northern Vancouver Island (Murtha, 1998a, 1998b, 1998c, 2000a, 2000b; Murtha 

and Mitchell, 1998). Both Radarsat Fine 2 mode and Standard 4 mode have been used, 

with the former being more effective for detecting damage. Data acquired during both 

the summer when the associated cut-blocks are relatively dry and the winter when the 

cut-blocks are relatively wet provided the best combination for detecting damage 

(Murtha, 1998b). The relative brightness of cut-blocks imaged on the same date has 

since been found to depend a great deal on the landform upon which the cut-block sits 

(Murtha, 1998b; Murtha, 2000c). A plausible link between landform and susceptibility to 

windthrow damage has also been established (Murtha and Mitchell, 1998). 
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Multi-temporal composites have also been used to detect landscape level change 

associated with widespread fires on Borneo. Pre- and post-fire multi-temporal 

composites were assembled for mapping fire damage using two speckle filtered images 

(pre-fire image assigned to the green gun, post fire image assigned to the blue gun) and 

channel 2 of a principal components analysis assigned to the red gun. Speckle is the 

'noiselike' characteristic of images produced by coherent imaging systems such as the 

synthetic aperture radar system used to collect the R A D A R S A T data discussed in this 

paper. It is a natural outcome of the incident electromagnetic wave interacting with 

point and distributed targets in the scene. Distributed targets, such as forested areas, 

are comprised of a great many discrete point scatterers. As electromagnetic waves 

interact with a distributed target, each scatterer generates a backscattering wave that 

exhibits a phase and amplitude that differs from that of the incident wave. The total 

returned modulation of the incident wave is the summation of these individual 

backscattered waves less any attenuation caused by propagation and scattering in the 

troposphere as the wave travels back to the receiving antenna. The constructive and 

destructive interference inherent in the summation of backscattered waves of different 

amplitude and phase within a resolution cell results in the variable brightness between 

adjacent pixels that is characteristic of speckle (Oliver and Quegan, 1998). The extent 

of the damage could be mapped after the pre- and post-fire composites had been 

brought into a GIS environment. Although the images were filtered to remove the 

effects of speckle, this method preserved the geomorphology and texture information at 

a relatively high spatial resolution (Ruecker and Siegert, 2000; Siegert et al., 1999; 

Siegert and Nakayama, 2000; Siegert and Rucker, 1999). Multi-temporal composites 

have also been used to locate deforested areas in Brazil (Kux et al., 1998). 

2.1.2 Differencing 

A very common practice used with multispectral imagery is to simply subtract an older 

image from a more recent image after the two images are registered. However, in a 

study involving single-look complex data in intensity format, Rignot and van Zyl (1993) 

found that changes will not be detected to the same degree in high intensity regions as 

in low intensity regions. This is due to the nature of the probability distribution function 
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of the difference image which is sensitive to the relative size of the difference between 

the mean intensity values of the two images as well as to the magnitude of the mean 

intensity level in the reference image. They also found that, because the variance of the 

distribution of the difference increases with intensity level, the probability of error in 

detecting change is higher in high intensity regions than in low intensity regions. In their 

view, both of these problems were sufficient to rule out the application of the difference 

method to radar data. 

2.1.3 Ratio Images 

An alternative to the difference method is the ratio method. The ratio method has a 

number of advantages over the difference method, the most significant one being that it 

is unaffected by calibration errors which are typically the same in repeat-pass imagery 

(Rignot and van Zyl, 1993; Oliver and Quegan, 1998). Dekker (1998) used the ratio 

method for detecting change using repeat-pass ERS-1 data. His approach is discussed 

at length in section 4.2.3. Weydahl (1991; 1992) used ratio images and thresholding to 

detect significant changes from one imaging date to the next using ERS-1 data. The 

ratio of two amplitude images was then converted to dB values and a probability of false 

alarm was computed to determine the appropriate threshold values. 

ERS-2 data have also been used in the Brazilian Amazon to detect change. However, 

the thresholded ratio image produced after the intensity (power) images were averaged 

and speckle filtered was not as complete as a thresholded Landsat image acquired 

about the same time. Much of the difference was attributed to localized topographic 

effects on the strength of the radar returns (Oliver and Quegan, 1998; Grover et al., 

1999). 

2.1.4 Backscatter Change Detection 

A number of researchers have focused on parcel- or region-based change detection. 

Couturier et al. (1999) mapped the extent of fire damage in the eastern part of Borneo 

using intensity differences derived from regions identified on multi-temporal E R S and 
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J E R S images. Ruecker and Siegert (2000) did much the same using a much larger 

number of ERS-2 images. 

Two other approaches stand out. In the first, Bao (1999) applied an autoregressive 

model to a set of images from which speckle noise had been removed using a 3-

dimensional wavelet shrinkage algorithm. He discovered that changes beyond a given 

range in the value of the two coefficients of a second order autoregressive model could 

be used to identify significant changes in backscattering intensity at the pixel level. 

A second approach that has been developed segments speckle-filtered images into 

objects of homogenous intensity using disc shaped templates fitted into regions 

generated by an edge filter. Two segmented images are then overlaid and areas that 

have the same intensity level are removed. Other areas are also removed if the 

difference in intensity in the overlapping area is within a defined tolerance (White, 

1991). Areas left over are deemed to have experienced significant change. 

2.1.5 Classification 

Various classification approaches have also been developed for change detection. A 

straightforward approach simply classifies two images, one acquired before the change 

of interest has occurred and the other afterwards, and maps the differences by 

overlaying the two classifications in a GIS environment (Dutra et al., 1999). However, 

more sophisticated approaches have taken advantage of the growing number of radar 

images available. Bruniquel et al. (1999) developed a method whereby a maximum 

likelihood classification map was extracted from a segmented image whose pixel values 

represented the widest difference in intensity among 8 ERS-1 and ERS-2 single-look 

complex images. Overlaying the maximum intensity difference image over a mean 

image derived from the source data enhanced visualization of these intensity 

differences. 

Other researchers have extended the ratio method to include classification of 

homogenous and near homogenous regions of intensity change. Siegert and Rucker 
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(1999) constructed single date R G B composites from two ERS-2 images acquired over 

eastern Borneo, one acquired before extensive fire damage occurred in the area and 

the other after. A Gamma MAP and 20x20 texture filtered image was assigned to the 

red gun, a Gamma MAP filtered image was assigned to the green gun and a Gamma 

MAP and 10x10 texture filtered image was assigned to the blue gun to create each 

composite. A ratio composite was generated to highlight the areas of significant 

change. A maximum likelihood classifier was then used to classify the ratio image. A 

more complicated approach involved the application of a Bayesian classifier to segment 

multitemporal radar data into regions of homogenous and similar backscatter changes 

(Rignot and Chellappa, 1992). Neural nets have also been applied to the whole process 

of change detection and, in a more restricted sense, to detecting and identifying objects 

that are indicative of significant change (White, 1991). 

2.1.6 Coherence 

Repeat-pass SAR imaging has facilitated the application of interferometry to detect 

change. The magnitude of the amplitude and phase correlation between two or more 

radar images of the same area is referred to as the degree of coherence or coherence 

magnitude (Touzi et al., 1999). The coherence magnitude is sensitive to movements of 

scatterers within a resolution cell amounting to about a half a wavelength of the radar 

signal (Bruniquel et al., 1999). Coherence is also significantly affected by topography 

and by both seasonal and local weather conditions (Castel et al., 2000). In general 

terms, coherence is low over forested areas and high over areas where scatterers are 

more stable over time. 

S A R interferometry uses single-look complex data acquired at two or more closely 

separated times. The satellite tracks themselves must also be close together, typically 

less than 600 metres (Coulson, 1995). The required orbital separation has been 

achieved with the ERS-1 satellite. However, the long 35-day repeat cycle usually results 

in significant decorrelation of both amplitude and phase. In recent years this problem 

has been overcome by operating the ERS-1 and ERS-2 satellites in tandem mode. In 

this mode, the two satellites acquire data of the same area a day apart (Coulson, 1995). 
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In one study the accuracy achieved in separating forested from non-forested areas with 

one ERS-1/2 tandem pair was 94%. Change detection could be achieved with two 

successive tandem pairs; however, the significant decorrelation over the 35-day interval 

mentioned earlier contributes to a lower accuracy in separating forested from non-

forested areas (Castel et ai, 2000). 

Repeat pass interferometry with Radarsat is not always possible because the satellite's 

orbital position is not accurately known or as well controlled. However, it has been 

determined that interferometry can be done with data acquired during a period of 

minimum longitudinal drift which occurs halfway through the 90 day interval between 

orbital boosts. Radarsat's fine beam mode is the most useful for interferometry as 

relatively large baselines are possible with the large chirp bandwidth and the wide range 

of incidence angles (Armour et al., 1997). Consequently it should be possible to 

separate forested areas from non-forested areas (i.e. clearcuts and withthrown areas) 

using one pair of Radarsat single look complex images acquired at the appropriate 

times. 

2.1.7 Summary 

The techniques described above are generally successful at separating forested areas 

from non-forested areas. However, the search continues for new and perhaps more 

successful approaches to the problem of reliably detecting structural change using 

multi-temporal radar data. One approach that has yet to be applied to multi-temporal 

radar data is the use of spatial autocorrelation to detect changes in the landscape. The 

next section describes how spatial autocorrelation has been applied for detecting 

change in multi-temporal optical imagery. 
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2.2 Spatial Autocorrelation 

Spatial autocorrelation is defined by Goodchild (1986) as the degree to which objects at 

some place on the earth's surface are related to other objects located nearby. 

Chrisman (1997) defines it more precisely as the degree of correlation between the 

value of a variable and that of its neighbours. He also defines it as the tendency of 

spatial data to vary smoothly over distance. Global measures of spatial autocorrelation, 

such as Moran's I index and Geary's c index, generate a single value that expresses the 

strength of the spatial autocorrelation of a variable over a whole region. In the context 

of this study, the region would be the entire image. Local measures of spatial 

autocorrelation, such as the local form of Moran's I index and the Getis statistic, provide 

a measure of spatial autocorrelation for each location of that variable using one or more 

defined neighbourhoods (Anselin, 1995; Ord and Getis, 1995). 

The Getis statistic is of particular interest as it can be used to assess the strength of 

inter-pixel relationships in defined neighbourhoods and indicate whether or not spatial 

autocorrelation is strictly local or more extensive in nature (Wulder and Boots, 1998, 

2001; LeDrewefa/ . , 2000). 

There are two forms of the Getis statistic, Gi (d) and G i * (d). Gi (d) excludes the value 

of the variable, /, while G i * (d) includes it. The "d" refers to the radius of the 

neighbourhood around the variable for which the Getis statistic is being computed. The 

Getis statistic was initially developed by Getis and Ord (1992) for use with point data. In 

that context, a radius of 10 metres around a particular point on a map that indicates the 

severity of a particular disease might, for example, enclose another four points with the 

same type of data. The Gi form of the Getis statistic would use the scores of those four 

points to compute the Getis statistic for the point at the centre of the neighbourhood 

whereas the G i * form would utilize all five disease scores to compute the Getis statistic 

for the point at the centre of the neighbourhood. A standardized version of the second 

form, Gi* , was later derived in the context of its application to raster data (Ord and 
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Getis, 1995). The G i * statistic (hereinafter referred to as the Getis statistic) is stated as 

follows (Ord and Getis, 1995): 

G*(d) = 
s{[(nS'u)-W;2]/(n-l)} 

j 
1/2 

(1) 

where 

(2) 

with x and s being the usual mean and standard deviation of the dataset, 

^ w ^ ( J ) x y being the sum of the products of the weight assigned to the pixel times the 

corresponding pixel value for all pixels within distance d of /, including that of /' itself (i.e., 

the entire neighbourhood), W* being the sum of the weights assigned to all pixels within 

the neighbourhood, 5,* being the sum of squared weights assigned to all pixels within 

the neighbourhood, and n being the total number of pixels in the dataset. In its 

application here, binary weights are used where the weight is one for all pixels within 

distance d of /' and zero otherwise. 

In its application to raster data, such as satellite imagery as discussed here, the Getis 

statistic is normally computed for each pixel in an image using a sampling window or 

kernel passed over the entire image. A 3x3 kernel is used to compute the Getis statistic 

for the centre pixel in the kernel using the values of all of the pixels within a distance, d, 

of 1 pixel as measured from the centre pixel. A 5x5 kernel is used for a of of 2 pixels 

while 7x7, 9x9, and 11x11 kernels are used to compute the Getis statistic using all of 

the pixels within a d of 3, 4, and 5 pixels of the centre of the kernel. A total of 9, 25, 49, 

81, and 121 pixels are therefore used to calculate the Getis statistic for the centre pixel 

in a 3x3, 5x5, 7x7, 9x9, and 11x11 kernel respectively. 

When a particular kernel size is used to compute the Getis value, a new image 

containing the Getis value for each pixel can be generated. High positive values of this 
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statistic indicate a clustering of high pixel values in the kernel whereas high negative 

values indicate a clustering of low pixel values. Clustering of the highest and lowest 

Getis statistics in the image reflect high local spatial autocorrelation among the 

associated pixels in the source data. However, a weakness of the Getis statistic is that it 

cannot be used to identify the strength of spatial autocorrelation among pixels with 

intermediate values since a mid-range Getis value could be the result of a clustering of 

intermediate valued pixels or a clustering of pixels that have a mix of values (Wulder 

and Boots, 1998). 

If the statistic is calculated using the five kernels mentioned above, a maximum Getis or 

MaxGetis value can be chosen from among the five Getis values computed for each 

pixel. The MaxGetis value indicates both the magnitude of the source data and the 

strength of local spatial autocorrelation of the data within the kernel. The size of kernel 

that generated the MaxGetis value indicates the extent of the local spatial 

autocorrelation around the pixel in the source data. The MaxGetis value is chosen by 

first ranking the Getis values by kernel size, converting each to an absolute value and 

then comparing the values in successive pairs starting with the values generated by the 

3x3 and 5x5 kernels. As soon as the magnitude of the first absolute value exceeds that 

of the second, the comparison stops. The actual Getis value corresponding to the 

bigger absolute value is then written to a MaxGetis image. For example, if the ordered 

list of Getis values for a particular pixel are -6, - 9 , 1 , 4 , 1 1 , the Getis value generated by 

the 5x5 kernel (-9) would be chosen as the MaxGetis value since it is followed by a 

smaller absolute value. By choosing the first maximum Getis value, maximum spatial 

autocorrelation is determined in the smallest possible neighbourhood or spatial domain 

(Mike Wulder, personal communication)4. The distance corresponding to the kernel that 

generated the MaxGetis value is written to a maximum Getis distance or MGD image. 

Aggregations of the same maximum Getis distances in the MGD image indicate areas 

of homogeneity in the source data whereas a mixture of these distance values indicate 

some degree of heterogeneity (Wulder and Boots, 1998). 

4 Research Scientist, Pacific Forestry Centre, Natural Resources Canada, Victoria, B.C. 
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The Getis statistic has been used in a number of remote sensing applications. It was 

used with LANDSAT TM data to assess the within channel and within species spatial 

autocorrelation trends in a managed forest area in New Brunswick (Wulder and Boots, 

2001) and with passive microwave imagery to determine maximum hemispheric snow 

extent and degree of snow cover variability (Derksen et al., 1998). It was also used to 

detect the extent of flooding in China (Chen etal., 1999). 

In the context of change detection, it has been used to differentiate healthy coral reefs 

from dead coral reefs using multi-temporal S P O T imagery (LeDrew et al., 2000; Holden 

et al., 2000). Being heterogeneous, the maximum Getis statistic for healthy coral areas 

was achieved using a 3x3 kernel. Dead or damaged coral appears as homogeneous 

areas on S P O T imagery and consequently the maximum Getis statistic in these areas 

was obtained by using a 9x9 kernel. In other words, a decline in the health of the coral 

was revealed by a widespread increase in the size of kernel responsible for generating 

the maximum Getis statistic. 

2.3 Developing a Change Detection Technique using the 
Getis Statistic 

It is postulated here that the standardized version of the Getis statistic can be used with 

multi-temporal Radarsat data to detect windthrow damage in riparian zones. The 

rationale for this is as follows. Cut-blocks on northern Vancouver Island are typically 

bright on R A D A R S A T images when the soil and overlying slash are soggy at the time of 

image acquisition (Figure 3 and Figure 4) (Murtha, 2000c). Under such conditions, 

pixels in an area of standing timber are darker than those in an adjacent clearcut area. 

When the standing timber is windthrown, the pixels at the location of the windthrow are 

noticeably brighter in an image acquired after the windthrow occurs (Figure 4). This 

localized change in brightness should be revealed by an increase in the maximum value 

of the Getis statistic computed for the affected pixels. It may or may not be 

accompanied by a change in the size of the kernel responsible for deriving this higher 

value. 
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Chapter 3 Methods 
The study area for this thesis was dictated by both the availability of multi-temporal 

radar data and the fact that monitoring the condition of riparian zones was already the 

subject of a long-term study funded by Grant #384 under the Canadian Space Agency 

Application and Development Research Opportunity (ADRO) programme (Murtha, 

1997, 1998a, 1998b, 1998c, 2000a, 2000b, 2000c). The study area on Northern 

Vancouver Island is ideal for monitoring with radar data in particular because it is 

frequently obscured by cloud cover, making it impossible to regularly assess forest 

conditions with optical data. 

3.1 Location and Climate 

The location of the study area is indicated in Figure 5. The cut-blocks and riparian 

areas examined here are situated within a triangular area with the corners located at 

Port McNeill, Port Hardy, and Port Alice. 

The study area is located within the Coastal Western Hemlock biogeoclimatic zone. 

This zone is dominated by western hemlock (Tsuga heterophylla (Raf.) Sarg.), western 

red cedar {Thuja plicata Donn), amabilis fir (Abies amabilis (Dougl.) Forbes) and Sitka 

spruce (Picea sitchensis (Bong.) Carr) (Klinka etal., 1991; Krajina, 1965). The climate is 

typically wet with relatively mild winters and somewhat drier but cool summers. The 

persistent cloud cover and attendant rainfall is a result of the westerly warm Pacific air 

flows being forced up over mountainous terrain on the west side of Vancouver Island. 
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The surficial geology consists of ground moraines, drumlinized till plains, till over 

bedrock, and glacio-marine and lacustrine deposits. Both the frequent precipitation and 

the surficial geology are considered to be responsible for cut-blocks being lighter in tone 

in the winter months when they are soggy and as dark or darker than the surrounding 

forest when dry in the summer (Murtha, 2000b). 

Figure 5: Map of study area showing footprint of the 4 RADARSAT images. 

3.2 Data Preparation 
The four R A D A R S A T datasets made available for this research through A D R O 384 are 

calibrated Level 1 Extra Fine Resolution (SGX) products generated by the Canadian 

Data Processing Facility (CDPF) of the Canadian Space Agency. The 3.125 metre pixel 

spacing of the S G X product was kept throughout all of the data processing steps. Such 

a small spacing fully utilizes the spatial resolution capabilities of the S A R instrument by 
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retaining all of its input image information. This is achieved at the expense of a 

significantly larger dataset size than other R A D A R S A T products (RADARSAT 

International, 2000). 

All of the datasets used in this research were processed and analysed using the 

EASI /PACE image processing software developed by PCI Geomatics. Single pixel 

registration of the datasets was done using ERMapper. 

When the C D P F generates a 16-bit product for distribution, it applies an output scaling 

gain and offset to the processed data in order to more fully utilize the dynamic range of 

the data. The degree of scaling and offsetting varies from one image to another, 

thereby making it difficult to ensure consistency when performing multi-temporal 

analysis of images acquired under different weather conditions. Removing the output 

scaling gain and offset reverts the data back to its original radar brightness values that 

were used as the base data in this research. These reverted data accurately represent 

the original, signal amplitudes received at the satellite antenna (RADARSAT 

International, 2000). 

To convert the digital number data in the S G X product back to its original radar 

brightness values, the following formula was used in the PCI Xpace program, 

S A R B E T A (PCI Geomatics 2000): 

{3°J=[(DNJ

2+A3)/A2J] 

where DNj is the digital number of the j t h pixel in a range line 

/3°j is the corresponding radar brightness value in power format 

A2j is the scaling gain value for the j t h pixel 

A3 is the fixed offset value 

Radar brightness data can be expressed in three formats: power (intensity), decibel, 

and amplitude. Of the three, amplitude format data are the most appropriate for 
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arithmetic operations. These data are characterized by a fairly wide, relaxed Rayleigh 

distribution curve with all values above zero. Power format data are also larger than 

zero; however, the data are confined to a much narrower exponential distribution that 

gives the corresponding image a fairly dark appearance. Decibel format data are on a 

logarithmic scale and consequently the distribution can include both positive and 

negative values. Computing certain statistics such as the mean will yield an incorrect 

result and therefore these data are not used for change detection unless the data are 

ratioed (PCI Geomatics, 2000; Oliver and Quegan, 1998). 

Much of the research reported in peer reviewed journals utilizes radar data that are 

expressed in terms of the backscatter coefficient, a 0 . These values usually account for 

the angle of illumination only and assume that the terrain is at the earth ellipsoid (PCI 

Geomatics, 2000). However, the correct approach is to take account of both the 

illumination angle and the local incidence angle as governed by the slope of the terrain 

(Raney et al., 1994). The illumination incidence angle is available from the SAR leader 

file that accompanies the R A D A R S A T data; however, the local incidence angle can only 

be derived from a digital elevation model (DEM). Although a D E M was available for the 

entire study area, the cut-blocks and associated riparian zones that are discussed here 

are all situated on relatively flat ground. In addition to this, the orbital track and the 

direction the satellite was travelling were identical during acquisition of the four datasets 

utilized in this research. All of these factors suggested that there was no need to 

transform the radar brightness data further to backscatter coefficient values. In fact, 

inconsistencies between datasets could have arisen had the data been corrected for 

slope and registered to local forest cover maps. 

Relevant information concerning the data used in this research is summarized in Table 

1. All of the data were acquired in Fine 2 mode on ascending orbits between 0215 and 

0230 Coordinated Universal Time (UTC). The local time of acquisition is 8 hours earlier 

(6:15 to 6:30 pm on the day before) (Murtha, 2000b). 
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Date of Acquisition Weather during 
Acquisition 

Mean Brightness of 
Forested Area 

December 4, 1996 Heavy rain, strong winds 0.328386 

August 25, 1997 Light rain 0.342076 

November 24, 1998 Rain 0.405267 

March 24, 1999 Showers 0.322444 

Table 1: Date and weather at time of acquisition of RADARSAT data used in this research. 

Although acquired at different times of the year, the weather conditions during data 

acquisition were similar. Of particular importance is the moisture content of materials 

that interact with the incident radar wave, and their density and position relative to other 

scatterers nearby. Noted before was the observation that soggy cut-blocks are typically 

brighter than the surrounding forest. At other times, much drier cut-blocks are either 

indistinguishable or even darker than the surrounding forest (Murtha, 2000b). 

The brilliance of soggy cut-blocks likely results from the incident energy being bounced 

between pieces of wet slash and off very wet humus and soil, and again off sodden 

slash, vegetation, tree stumps, rocks, and other debris. Similar responses are seen 

when the incident energy double-bounces off the ground and nearby tree trunks along 

the edge of riparian zones and road rights-of-way facing the satellite. Because the 

forested areas are much darker in comparison, the images that should be used for this 

particular kind of change detection are those in which the scene is quite wet during data 

acquisition (i.e., the cut-blocks are bright and the riparian zones and forested areas are 

relatively dark). The four datasets listed in Table 1 appear to meet this requirement. It 

should be noted that the mean radar brightness (and standard deviation) of a well 

defined even-textured forest area northeast of the Port Hardy diesel generating station 

was quite a bit higher during the 1998 acquisition than at other times (Table 1). This 

suggests that another dataset with a mean radar brightness closer to the other three 

27 



should have been substituted for the 1998 dataset. Unfortunately, a suitable 

replacement was not available. 

3.3 Registering the Datasets 

Once the digital number data in the delivered products were converted to radar 

brightness values, the 1997, 1998, and 1999 datasets were registered against the 1996 

dataset. It has been determined that the data processing at the C D P F is so 

geometrically consistent that for the area of the study all of the datasets could be 

registered without orthorectification using just one pixel (Peter Murtha, personal 

communication).5 A target common to all of the datasets is a steel tank at the Port 

Hardy diesel generating station. Enlargements of the target were printed on transparent 

plastic sheets and then fitted on a light table. The UTM coordinates of the registration 

pixel in the 1996 dataset were then assigned to the matching pixels in the other three 

datasets. Once registration had been completed, the datasets were subsetted into 

several smaller ones ranging in size from 256 pixels by 256 lines to 1024 pixels by 1024 

lines. 

Cut-block and riparian zone boundaries were either sketched by hand or scanned and 

fitted to the imagery rather than fitting the imagery to existing mapping. This approach 

ensured that pixels properly overlaid one another; had orthorectification been done, 

there was a possibility that the process could have distorted the shape of the images, 

leading to problems with image differencing. 

Once the datasets had been subsetted, one of the subsets was subjected to available 

change detection methods. This established some results that were used as a 

benchmark to compare the results obtained from the application of the Getis statistic to 

change detection. 

5 Professor Emeritus, Faculty of Forestry, University of British Columbia 
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Chapter 4 Evaluating Change 
Detection Approaches 

4.1 Comparing Change Detection Approaches 
As indicated earlier, the main objective of this thesis is to determine how effective the 

Getis statistic is in detecting windthrow damage in narrow riparian zones. To do so 

requires a benchmark against which the results can be evaluated. Such a benchmark 

can be established by applying existing change detection methods to the source data. 

The subject of the benchmarking described in this section is cut-block S501 that makes 

its first appearance on the 1998 R A D A R S A T image. 

The cut-block is situated just north and east of the Port Hardy diesel power plant (Figure 

6). Its boundaries above and below road R400 were transferred from a logging 

completion map produced in July 1998. The east bank of the Keogh River is clearly 

visible northeast of the cut-block. Although the two access roads in the cut-block north 

of R400 appear in the 1995 aerial photograph, harvesting did not commence until after 

the August 25, 1997 R A D A R S A T image was acquired. Harvesting was completed in 

late June 1998, well before the second R A D A R S A T image was acquired on November 

24 t h of that year. 
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Figure 6: 1995 aerial photograph showing the approximate boundary of the cut-block as 
taken from a logging completion map. 

Portions of the 1997 and 1998 images that were used to evaluate the change detection 

methods are shown in Figure 7 and outlined in Figure 6. Both of the images in Figure 7 

have a dimension of 256 pixels by 256 lines. 

The cursor (white cross) is resting on road R400 in the 1997 image; it and the Rupert 

Main Line meet at the lower right edge in both images. Although there are noticeable 

variations in radar brightness in some areas such as those circled in white, the cut-block 

is considered to be the only significant structural change to have occurred in the 

landscape between the times the two images were acquired. 
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Figure 7:1998 (left) and 1997 images of the area in and around cut-block S501. 

The 1997 image on the right is appreciably darker in the area where the cut-block is in 

the 1998 image. However, the 1998 image has greater contrast with the east bank of 

the Keogh River showing up as a ribbon of bright pixels. There is also a distinct shadow 

along the west boundary of the cut-block in the 1998 image. Although both images were 

acquired under similar weather conditions, there is considerable variability in brightness. 

Figure 8 shows that the radar brightness values, ranging from just above 0 to a little 

over 2, are Rayleigh distributed (Oliver and Quegan, 1998). The coincidence of the two 

histograms is remarkable, given that the 1998 image appears to contain a greater 

proportion of bright pixels. 
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4.2 Change Detection Using Established Techniques 

Detecting changes in the landscape with R A D A R S A T images acquired on separate 

dates can be done with a multi-temporal composite of three images, by image 

differencing or by ratioing two images. 

4.2.1 Multi-temporal Composites 

A simple method used for detecting change involves the construction of a multi-

temporal composite of three images acquired on different dates and the application of 

colour theory to interpreting colour and brightness at each pixel location. The 

composite image in Figure 9 was constructed by assigning the 1998 data to the red 

colour gun, the 1997 data to the green colour gun and the 1996 data to the blue colour 

gun. Areas of high backscatter in 1998, 1997, and 1996 are indicated by the bright red, 

bright green and bright blue pixels respectively. Areas bright in both 1998 and 1997 are 

yellow while areas bright in both 1997 and 1996 are cyan. Areas indicative of high 

backscatter in 1996 and 1998 are magenta while areas bright at all three times are 

white. 
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Figure 9: Multi-temporal composite image showing areas of high backscatter in 1998 (red), 
1997 (green), and 1996 (blue). 

When interpreting multi-temporal composites of forested areas, one must be aware of 

the scattering mechanisms at work in the landscape being imaged. In these areas, C-

band radar is characterized by canopy volume scattering, whereby the coherent 

electromagnetic energy emitted by the antenna on the satellite penetrates the canopy of 

the vegetation only a short distance before it is scattered in all directions. The 

proportion of the incident energy reflected back to the antenna from a particular target 

can vary considerably from one imaging date to the next. Some of these variations may 

be due to slight changes in the orbital track and altitude of the satellite and the 

incidence angle at which the data are acquired. Other variations may be introduced by 

a shift in the position of scatterers and by changes in the dielectric constant of the 

materials interacting with the electromagnetic energy (Villasenor et al., 1993). A 

combination of these factors may be responsible for the highly variable and somewhat 

inconsistent pattern of bright pixels in the composite shown in Figure 9. 

A distinct pattern of bright pixels can be associated with structural change in the scene. 

For example, red pixels in the composite identify targets that were bright in 1998 but not 

in 1996 or 1997. The majority of these pixels are associated with the highlighted cut-

block that first appears in the 1998 image. When a stand is harvested, the usual canopy 

volume scattering of the incident energy is replaced by a double bounce of this energy 
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off pieces of slash, the ground and stumps. This double bounce effect increases the 

strength of the signal return. In the case of the 1998 image, the strength of the return 

was further enhanced by an increase in the dielectric constant of the surface materials 

and soil resulting from heavy rainfall before and during image acquisition (Murtha, 

2000c; Villasenor et al., 1993). 

Despite the obvious correspondence of the majority of red pixels in the composite to the 

new cut-block on the 1998 image, it can be argued that it is not always possible to 

associate increases in backscatter with structural change. Aside from the many bright 

red pixels that are inside the cut-block area, there are also a significant number outside 

of that area. Bright green and bright blue pixels are also numerous and widespread. 

However, very few of the three colours of pixels overlap as evidenced by the low 

number of white pixels in the composite. Undoubtedly, some of these bright pixels are 

indicative of structural changes in the landscape. However, there are simply too many 

of them for all to be associated with such change. Consequently, any indication of 

structural change in the landscape, such as windthrow damage in riparian zones, would 

always have to be verified in the field or by some other data source. Without such 

verification, the technique can only be said to work consistently where extensive change 

has occurred as in the case of the cut-block discussed here. 

4.2.2 Image Differencing 

When dealing with multi-spectral data collected by a satellite such as LANDSAT, the 

location and extent of change can be determined by simply subtracting a recent image 

from one acquired earlier. The two images must first be carefully registered to use this 

technique effectively. To accommodate a certain degree of variability in the data 

acquired at two widely separated times, a threshold is applied to the difference image in 

order to identify areas where significant changes in radiometric brightness have 

occurred. The distribution of this difference image is usually nearly normal and 

consequently the standard deviation of the difference data can be used to set the 

threshold level (Eastman, 2001). 
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Although Rignot and van Zyl (1993) determined that the difference method is not 

suitable for application to radar data (see Section 2.1.2), the method was applied to the 

radar data to examine how it behaves in relatively flat terrain. A difference image 

derived from the 1997 and 1998 intensity format data is shown in Figure 10. 

the corresponding histogram on the right. A normal curve has been overlaid on the 
histogram to show that the data in the image on the left is not normally distributed. 

The difference image shows a distinct rise in the strength of the signal returned to the 

sensor in the area where the cut-block appears for the first time in the 1998 image. It 

also shows a number of clusters of bright pixels outside the cut-block area. At first 

glance these appear to be located at random. However, there is in fact a distinct pattern 

of bright pixels along the east bank of the Keogh River. 

A frequency distribution of the difference values is also shown in Figure 10. The 

frequency of each discrete difference value has been converted to a per cent based on 

the total number of pixels in the image. This facilitates the overlay of a normal curve on 

top of the frequency distribution. Since the frequency distribution of the image in Figure 

10 is not normal, the standard deviation of the difference values cannot be used as a 

threshold value for identifying where significant change has occurred. In any case, it 

appears that any thresholding applied to this image may confuse logging-induced 
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increases in backscatter in the cut-block with increases in backscatter in the 

undisturbed area outside the cut-block. 

4 . 2 . 3 Image Ratioing 

As an alternative to differencing, the ratio of two images could be taken and appropriate 

threshold levels applied to reveal significant changes on the ratio image. Unlike image 

differencing, image ratioing is unaffected by calibration errors (as long as they are the 

same for both images) and by slope-induced effects on backscattering (providing that 

both images have the same imaging geometry) (Rignot and van Zyl, 1993; Oliver and 

Quegan, 1998). The images used here meet these requirements. 

Although a simple ratio image is possible, the scale of relative change is not symmetric 

about 1 (the no change value) because ratio image data exhibit a steep negative 

exponential distribution. The solution is to perform a logarithmic transformation of the 

ratio image thereby converting the data into dB format. For amplitude format data, the 

appropriate formula is f = 20 logio(r) where r is the ratio between two pixels (Rignot and 

van Zyl, 1993; Dekker, 1998). The logarithmically scaled ratio image derived from the 

1997 and 1998 amplitude images appears in Figure 11. 

Figure 11: Logarithmically scaled ratio image of the 1997 and 1998 amplitude data. 
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The shape of the cut-block below the road can be inferred by the pattern of bright pixels 

along the road and the radar shadow along the west boundary. Bright areas above the 

road are relatively small and only marginally brighter than other pixels in the image. 

Thresholding this image could either lead to the identification of changes that are not 

there or to some changes being missed altogether (Dekker, 1998). It may be possible 

to overcome this problem by applying an adaptive speckle filter to the ratio image before 

thresholding it. The resulting threshold bitmaps can then be overlaid on the image 

shown in Figure 11. This approach is the basis of the C H D E T change detection 

algorithm in PCI Geomatic's P A C E Radar Analysis Module. The ratio image can either 

be filtered by an averaging filter or an extended Kuan Minimum Mean Square Error filter 

(MMSE) adapted for detection of structures (Dekker, 1998). Figure 12 shows the 

1998/1997 logarithmically scaled ratio image filtered with the Kuan M M S E filter using a 

7 x 7 kernel. 

Figure 12: Logarithmically scaled ratio image filtered with a 7 x 7 Kuan MMSE filter. 

The appearance of Figure 12 is unlike other speckle filtered images commonly seen in 

the literature. However, it resembles a ratio image filtered in the same way in Dekker's 

(1998) paper and therefore it was concluded that the filtering performed by the PCI 

Geomatics software was done correctly. 
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To set the threshold variables in the C H D E T algorithm, the variance and standard 

deviation of the logarithmically scaled image must be computed. Unlike a non-scaled 

ratio image, the variance of a logarithmically scaled ratio image is only dependent on 

the number of looks (Dekker, 1998). The formula for the variance is (Dekker, 1998): 

where L is the number of looks and £(n, m) is the Rieman zeta-function (Hoekman, 

1991). For a ratio image generated from one-look images, £(2, 1) is simply — 
6 

(Hoekman, 1991). Consequently, the standard deviation of the logarithmically scaled 
ratio image derived from the 1997 and 1998 one-look data is 7.877 dB. The positive 

threshold bitmaps corresponding to this threshold level applied to the filtered image 

have been overlaid on the logarithmically scaled ratio image in Figure 13. Only those 

pixels that have at least 3 neighbours with a value higher than the threshold level are 

included in the bitmap coverage. As expected, all of the bright pixels located within the 

cut-block area are over the threshold level. This could lead to a conclusion that the 

algorithm works relatively well with data processed in this way. However, what is 

troubling is the considerable number of pixels beyond the cut-block area that are equally 

bright, indicating significant increases in backscatter in areas where structural change is 

200 C(2,L) w i t h a 2 , £ ) = ^ - | V 
6 k=\ In2 (10) 

not known to have occurred. 
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Figure 13: Bitmaps corresponding to +1 standard deviation overlaid on the logarithmically 
scaled ratio image. 

The significance of such errors associated with correctly identifying structural changes 

in the scene can be characterized by the probability of false alarm (PFA). The 

conditional probability distribution of a logarithmically scaled ratio image closely 

approximates that of the normal distribution, even for a ratio image derived from 1-look 

images (Dekker, 1998; Dekker, personal communication)6. A frequency distribution 

graph of the image in Figure 13 with a normal curve superimposed on it suggests that 

this is indeed the case (Figure 14). Appropriate values corresponding to different levels 

of the probability of false alarm can now be extracted from a normal table to calculate a 

threshold level corresponding to a specific PFA. 

6 Research Scientist, T N O Physics and Electronics Laboratory, The Hague, Netherlands. 
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Figure 14: Frequency distribution of the logarithmically scaled ratio image with the normal 
curve superimposed on it. 

The threshold level of 7.877 dB corresponds to a P F A of approximately 16%. For a 

smaller P F A of 5%, the thresholds would be 1.645a or ±12.958 dB, the critical value of 

1.645 being obtained from a normal distribution table. Figure 15 (left) shows the bitmaps 

overlaid on the ratio image that correspond to a threshold of 12.958 dB. As was the 

case with thresholding at the lower level of 7.877 dB, the size and number of bits was 

thinned by setting the minimum number of neighbours to 3. On the right is the same 

bitmap coverage generated with the minimum number of neighbours set to 0. 
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Figure 15: Positive threshold bitmaps corresponding to a PFA of 5% overlaid on the 
logarithmically scaled ratio image. The bitmaps on the right are unthinned while those on 
the left have been thinned by setting the minimum number of neighbours to 3 in the 
CHDET algorithm. 

The bitmaps in Figure 15 are considerably less extensive than in Figure 13 and are now 

entirely confined to the cut-block area where structural change is known to have 

occurred. The apparent reduction of false alarms is a desirable outcome; however, the 

bitmaps now only indicate where highly significant change has occurred. Even at a PFA 

of 16%, the CHDET algorithm does not adequately reveal the known extent of change 

associated with harvesting the cut-block. At best, the algorithm reveals the location of 

the most significant change in the scene. The nature and extent of this change would 

have to be inferred from other data sources or by a field reconnaissance. Regardless of 

the results obtained here, the CHDET algorithm has proven to be successful for 

detecting change in urban areas (Dekker, 1998). Improved methods for detecting 

change in more challenging areas such as forested scenes are still being actively 

pursued (Couturier et al; 1999). 

4.2.4 Summary 

Several existing change detection methods were used to detect the presence of 

significant change in a forested area due to timber harvesting in one cut-block. The 

three-colour composite revealed the highly inconsistent nature of the three data sets 

under examination (Figure 9). One indication of how different the three images are is 
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the very low proportion of pixels that are bright on all three images. Coincident pixels 

that are bright in all three images would appear white on the composite. Care had been 

taken to co-register the images using a strong point target at the nearby Port Hardy 

power plant. Therefore, a higher degree of coincidence of bright pixels would be 

expected, especially along the east bank of the Keogh River where the illumination from 

the left double bounces off the exposed water, ground surface and neighbouring tree 

trunks. That it does not makes it more difficult to sort out what is and what is not 

structural change in the multi-temporal composite. The apparent ambiguity in the data 

makes it difficult to successfully map where structural change has occurred. 

There was moderate success with thresholding the filtered logarithmically scaled ratio 

image, however, the probability of false alarm had to be lowered to 5% in order for 

significant change to be limited to the cut-block area where the only structural change is 

known to have occurred. The CHDET algorithm is therefore potentially useful for 

indicating where significant change has occurred; however, a secondary data source or 

a field visit would be required to adequately map the extent of the change that is not 

revealed by the algorithm. 

It should be noted that the results discussed above used a rather small 256 pixel by 256 

line dataset. The same procedures were also applied to a 1024 pixel by 1024 line 

dataset of the same area. The larger dataset revealed that cut-block S501 constituted 

the only area where extensive physical changes in the scene appeared to have 

occurred. Consequently the cut-block stands out rather well on multi-temporal 

composites. The C H D E T algorithm produced an identical result since the threshold level 

is the same for both sizes of datasets. As was the case with the smaller dataset, the 

most readily apparent CHDET threshold bitmaps were confined to the S501 cut-block 

area. Bitmaps outside of this area were practically impossible to see due to their very 

small size. 

The CHDET algorithm was also applied to three larger cut-blocks located near the head 

of Rupert Inlet, some 10 km west of cut-block S501. Logging in cut-block M5307 
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commenced soon after the 1996 image was acquired and was completed by the time 

the 1998 image was taken. Logging in cut-blocks C99 and 594 first appears on the 1998 

image and was completed by the time the 1999 image was acquired. In all cases, image 

pairs were selected for optimal detection of structural change in the cut-blocks. 

Application of the C H D E T algorithm to logarithmically scaled ratio images of these three 

cut-blocks produced results similar to those generated for cut-block S501 (Table A-1 , 

Appendix A). In all cases, the probability of false alarm was set to 5% and the minimum 

neighbour parameter was set to 3. The bitmaps indicated that the majority of pixels 

exceeding the threshold were confined mostly to areas disturbed by logging. However, 

their numbers were simply too small to accurately map the extent of the logging itself. 

Judging by the number of threshold bitmaps outside of the cut-blocks, one would still be 

unsure of which correctly identified structural change and which identified a false alarm. 

Although the number of probable false alarms is quite low, the appearance of so many 

bitmaps outside of the disturbed areas suggests that a more effective means of 

detecting structural change is required. 

The methods examined in this section provide a basis for comparing their performance 

against the results obtained in the next section where the Getis statistic is used as a 

change detection tool. 

4.3 Change Detection using the Getis Statistic 

In Section 4.2, it was shown that existing methods for detecting change on radar images 

were not entirely successful when applied to the single-look, high spatial resolution 

R A D A R S A T images of the study area. This section will evaluate the performance of the 

standardized form of the Getis statistic as an alternative for detecting both large- and 

small-scale changes on these images. 

An EASI (Engineering Analysis and Scientific Interface) script (Getis EASI) was written 

in PCI Geomatics' Geomatica image processing software to generate Getis statistics 
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images using the data from one radar brightness image. The EASI scripting language 

provides a convenient method for passing the centre of an odd-size symmetric sampling 

window or kernel over every pixel in a radar brightness image and calculating a Getis 

statistic or value at that location. The equation used in the Getis EASI script to compute 

the Getis value is given in Section 2.2. In its application in that script, all of the pixels in 

the kernel are used in the computation of the Getis value and each pixel in the kernel is 

assigned a weight of one. Pixels at the edge of the image are replicated outwards as far 

as necessary to ensure the kernel is filled with data. Five kernels (3x3, 5x5, 7x7, 9x9, 

and 11x11) are used to generate five Getis value images from one radar brightness 

image. 

Another EASI script (MaxGetis EASI) subsequently examined the five Getis values at 

each pixel location and chose the highest Getis value that occurred in the smallest 

spatial domain. The distance value associated with the kernel that generated the 

MaxGetis value was written to a MaxGetis Distance image. The MaxGetis image is 

essentially a spatial autocorrelation map while the MaxGetis Distance image can be 

used to assess the extent of spatial autocorrelation associated with each pixel in the 

source data as well as to determine the degree of homogeneity of these data. 

The next few sections will examine the utility of the Getis value, MaxGetis and MaxGetis 

Distance images for determining the extent of structural change within the same areas 

examined in the previous section. 

4.3.1 Getis Value Images 

Figures Figure 16, Figure 17, Figure 18, Figure 19, and Figure 20 show the Getis value 

images generated by the Getis EASI program using the data from the 1997 and 1998 

images first shown in Figure 7. The magnitude of the Getis values in these images 

closely corresponds with the magnitude of radar brightness values in the source data. 

Getis values tend to be highly positive where radar brightness values within the kernel 

are both very high and homogeneous. Conversely, the Getis values are highly negative 

where radar brightness values within the kernel are both very low and homogeneous. 
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The Getis statistic is unusual in that high spatial autocorrelation is indicated only by 

those values that are at both ends of the Getis value distribution. Consequently a 

potentially serious weakness of the Getis statistic is the inability to differentiate Getis 

values computed from homogeneous radar brightness values of intermediate value from 

those that are computed from a heterogeneous mix of values within the kernel. 

However, this is of no concern here since the indicator of change is a brightening of 

clusters of radar brightness values in areas where trees have either been windthrown or 

removed by timber harvesting. These events replace the relatively weak volume 

scattering returns typical of closed canopy forest and no return in radar shadow areas 

with stronger radar returns generated by an array of newly created targets exposed to 

the radar sensor including ground vegetation, stumps, large pieces of slash, tree boles 

and root balls. 

As indicated earlier, the Getis statistic is a tool for evaluating the strength of spatial 

autocorrelation over localized areas. Since the pixel spacing of the R A D A R S A T data 

used in this study is 3.125 metres, a 3x3 kernel computes the Getis value for the centre 

pixel using the B° data from 9 pixels that cover an area that is just over 9 metres on a 

side. At the other extreme, the 11x11 kernel computes the Getis value for the centre 

pixel using a total of 121 pixels in a kernel that measures roughly 34 metres on the side. 

The magnitude of the Getis value for a particular pixel relative to others around it 

indicates both the magnitude of the source data and the strength of the spatial 

autocorrelation associated with that pixel. 

The calculation of the Getis value using progressively larger kernels is responsible for 

the increased fuzziness of features in the output images shown below. The fine detail of 

bright features that is obvious in the source data, such as the one circled on the 1998 

images on the left, is lost as the kernel grows larger. It is even degraded to a small 

extent in the image generated by the 3x3 kernel. The visibility of very small clusters of 

bright pixels against a dark background slowly diminishes until it is lost altogether once 

the kernel size reaches 9x9. This stands to reason as the value of the Getis statistic 
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calculated for the centre pixel in the kernel is influenced by the radar brightness values 

of a progressively larger number of neighbouring pixels as the kernel increases in size. 

Consequently, the series of Getis value images shown below appear to be the source 

image subjected to ever larger averaging filters. Despite the blurring, however, it is 

possible to perceive the extent and location of the cut-block on all of the images on the 

left. 

Figure 17: Getis value images generated by a 5x5 kernel using the 1998 (left) and 1997 
(right) radar brightness data. 
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Figure 18: Getis value images generated by a 7x7 kernel using the 1998 (left) and 1997 
(right) radar brightness data. 

Figure 19: Getis value images generated by a 9x9 kernel using the 1998 (left) and 1997 
(right) radar brightness data. 
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Figure 20: Getis value images generated by an 11x11 kernel using the 1998 (left) and 1997 
(right) radar brightness data. 

Because of the blurring effect, kernel size should play a significant role in determining 

the scale or size of features that will be retained after the Getis EASI program 

processes the source data. If the Getis value images themselves are used for detecting 

small scale changes by differencing two images, then a 3x3 or 5x5 kernel would appear 

be the most appropriate because small scale features are better preserved than in the 

images generated with the larger kernels. Larger kernels, particularly the 11x11, may be 

more desirable for revealing larger scale changes in the landscape such as the 

appearance of whole cut-blocks in a set of multi-temporal R A D A R S A T images. Another 

consideration may be to use larger kernels to overcome the undesirable influence of 

speckle noise on the detection of small and medium scale changes in the landscape. 

Of the Getis value images shown above, those generated by the 3x3 kernel (Figure 16) 

most closely resemble the source images shown in Figure 7 and would be the images 

of choice for detecting change by visual means. However, appearances can be 

deceiving. Although the histograms in Figure 21 have roughly the same shape as those 

of the source data (Figure 8), the range of values is wider and drops further below zero. 

That the corresponding Getis value images exhibit the same appearance as the source 

images is a function of how the image processing software displays them. In both 

cases, the full range of data has been rescaled to a range of zero to a number that 

48 



corresponds with the bit depth of the graphics card driving the video screen. This 

rescaling, combined with linear enhancement to improve overall brightness and 

contrast, can lead to erroneous comparisons being made between images whose 

source data have a somewhat different range of values. Consequently, the information 

content of the Getis value images (and the MaxGetis images discussed later) will be 

assessed quantitatively. First, the data will be examined through profiling. Change will 

then be assessed by differencing Getis value data generated by the same sized kernel. 

This will be followed by thresholding the difference images. 
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Figure 21: Histograms of the 1997 and 1998 Getis value images generated by a 3x3 kernel. 

4.3.1.1 Profiling 

Profiling facilitates the comparison of pixel values from two or more images in the same 

PCI database. A line is drawn through the area of interest and the images from which 

the data are to be obtained are selected. A graph is then generated to show the pixel 

values under that line. 
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To illustrate how this works, a yellow line has been drawn in Figure 16 through a portion 

of the cut-block west of road R400. Figure 22 is the resulting graph that compares the 

Getis values computed from the 1997 data by the 3x3 and 11x11 kernels with the 

corresponding source data, the 1997 radar brightness data. Figure 23 shows the 

corresponding profiles for the 1998 radar brightness data. 

Sample Profile of Selected Channelfs) 

Distance (m) 

Figure 22: Profile of pixel values on the 1997 radar brightness image (black), 3x3 Getis 
value image (red), and 11x11 Getis value image (blue). 

These profiles show the extent to which the source data have been altered in their 

conversion to Getis values. The black lines show the relatively low dynamic range of 

the radar brightness values while the red and blue lines show the highly dynamic Getis 

values that were generated by the 3x3 and 11x11 kernels respectively. Although the 

profiles indicate the values of single pixels directly under the line, adjacent pixels that 

are within the confines of the kernel contribute to the asynchronous fluctuations in the 

Getis values along the profile. Clusters of bright and dark pixels within the 3x3 kernel 

are responsible for the sharp peaks and valleys seen in the Getis values generated by 

that kernel. The differential between the peaks and the valleys in the 11x11 data is not 

as great because the clusters of bright and dark pixels that are highly influential in a 3x3 

kernel are generally smaller than the 11x11 kernel itself. The larger kernel size blurs the 
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image considerably and consequently bright and dark areas become larger and more 

homogeneous in appearance thus resulting in the flattened peaks and valleys. 

In Figure 22, the 11x11 profile is generally below that of the 3x3 profile reflecting the 

source image's generally dark appearance in the cut-block area. In Figure 23, the 

opposite is the case since the cut-block area is noticeably brighter overall after logging. 

As a consequence, the Getis calculations in the 11x11 kernel are influenced by more 

extensive groupings of bright pixels in the disturbed area. 
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Figure 23: Profile of grey (pixel) values on 1998 radar brightness image (black), 3x3 Getis 
value image (red), and 11x11 Getis value image (blue). 

The profiles in Figure 22 and Figure 23 appear to suggest that the magnitude of spatial 

autocorrelation, as exhibited by the highest absolute Getis value, is for the most part the 

greatest in the 11x11 data. However, the MaxGetis data (discussed in Section 4.3.1.3) 

show that this is generally not the case unless the source data are from relatively 

homogeneous areas of the image such as water bodies and radar shadow areas. In 

heterogeneous areas of the image, the first peak in the absolute Getis values normally 

occurs in a kernel much smaller than 11x11. 
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4.3.1.2 Thresholding 
Thresholding has been discussed earlier in the context of differencing and ratioing radar 

brightness data. There it was used with limited success to differentiate areas of 

significant change on the 1998-97 difference image of the same cut-block and 

surrounding area. 

The Getis value images themselves suggest that differencing followed by thresholding 

may yield better results than differencing radar brightness images because the former 

exhibit greater overall contrast. This contrast stretch is reflected in the wider range of 

grey level values in the histograms of the Getis value images (compare Figure 8 and 

Figure 21). Despite the stretch, the 3x3 Getis value images are remarkably similar to 

the source images, right down to the brightness inconsistencies noted between the 

1997 and 1998 source images (compare Figure 7 with Figure 16). 

Difference images were created from the 1997 and 1998 images processed by the 3x3 

and 11x11 kernels (Figure 24). In both instances, the location and extent of the cut-

block can be deduced after the cut-block boundary has been added to the image. In 

fact, the cut-block is more easily discerned in the image produced from the 3x3 Getis 

value data than it is in the image created by simply differencing the radar brightness 

data (Figure 10). It is also easily discerned as a bright, large scale feature on a much 

higher contrast image generated from the 11x11 Getis value data (Figure 24, right). 
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Figure 24: Getis value difference images generated from the 3x3 data (left) and the 11x11 
data (right). 

To differentiate the extent of significant change, a threshold can be applied to difference 

data. In practice, thresholding identifies a population of pixels on the difference image 

that have a value higher than a certain critical value on the x-axis of the image's 

histogram. Pixels in this population reflect the greatest spread in grey value between a 

bright pixel on one image and a dark pixel in the same location on the second image. 

Since Getis values extend below zero, significant change in a Getis difference image 

usually results from the subtraction of a negative Getis value, corresponding to a dark 

pixel, from a positive Getis value corresponding to a bright pixel. 

An examination of the frequency distributions in Figure 25 suggests that standard 

deviation-based thresholding may not be appropriate as both distributions deviate 

somewhat from the normal. After some trials, it was determined that a 95% threshold 

value produced consistent results upon which comparisons could be made. This value 

is the point along the x-axis of the difference distribution at which the area under the 

curve amounts to 95% of the total. Pixels with values higher than this critical value 

would then be considered to be indicative of 'significant' change (Jensen, 1996). It is 

important to note that the 95% threshold level implies that 5% of the total area of the 

image would then be flagged as indicative of significant change. The distribution of the 

thresholded image relative to where change is known to have occurred greatly 
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influences the degree to which false alarms are generated by this method of 

thresholding. 

-19.4-12.0 -7.6 -3.2 1.2 5.6 10.0 14.4 

Getis Difference Value 

Figure 25: Frequency distributions of the 3x3 (left) and 11x11 Getis difference images with a 
normal curve overlaid on them in black. 

The results of applying a 95% threshold to the 3x3 and 11x11 Getis value difference 

images are shown in Figure 26. Thresholding the 11x11 difference image at this level 

produced the results that were expected as the substantially larger bitmaps are almost 

entirely confined to the area where structural changes in the landscape are known to 

have occurred. The size of the larger bitmaps goes up only slightly when the threshold 

is lowered to 90%. However, isolated bitmaps begin to appear in areas beyond the cut-

block boundary where structural change is not known to have occurred. Further fine 

tuning in this instance may lead to an ideal threshold value between 90 and 95%. 
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Figure 26: 3x3 (top) and 11x11 (bottom) Getis value difference images with 95% threshold 
bitmaps overlaid on them (left). Images on the right show the bitmap coverages after 5x5 
mode filtering. 

Initially, the result of thresholding the 3x3 difference image was not as encouraging. 

First of all, the combined area of the bitmaps inside the cut-block area was considerably 

less than 5% of the total area of the image although a sufficient number are present to 

visually deduce the location and extent of the cut-block. The balance of the bitmap 

area, distributed among a high number of very small bitmaps, lay outside of the cut-

block in areas where structural change is not known to have occurred. Consequently, 

many of these bitmaps could be the result of a false alarm. Later trials with speckle 

filtered data (Section 4.3.3) suggested that speckle noise may be partly responsible for 

generating many of these apparent false alarms, not only outside of the cut-block area 
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but inside as well. Consequently, it was decided that some means of removing the 

smallest bitmaps was needed to reduce the number of these apparent false alarms. 

The C H D E T algorithm explored in section 4.2.3 offers an attractive option to retain only 

those bitmaps that have a specified minimum number of neighbours within a kernel. 

After thresholding has been completed in that algorithm, the bitmap coverage is 

processed iteratively until the number of neighbours remains constant around each bit 

in the bitmap coverage. It thereby reduces the number of very small bitmaps in images 

that have been generated by oversampling the sensor data (PCI Geomatics, 2000). 

Unfortunately, this minimum number of neighbours feature is not available outside of the 

CHDET algorithm program. However, a mode filter applied to the bitmap coverage 

produced almost the same result. While the minimum neighbour algorithm preserves 

the original geometry of the larger bitmaps, the mode filter alters the appearance of 

these bitmaps somewhat by smoothing their edges and filling internal holes. These 

alterations can be kept to a minimum by mode filtering the bitmaps no more than once. 

The images on the right in Figure 26 show the effect of mode filtering the 95% threshold 

bitmaps with a 5x5 kernel. The images clearly emphasize where significant change has 

occurred in areas bigger than about 245 m 2 . Even single bitmap pixels remaining after 

one round of mode filtering indicate a significant area where change has occurred. In 

this way, mode filtering clears up some of the ambiguities associated with thresholding 

Getis value difference images derived from unfiltered source data. 

The mode filtered 95% threshold bitmaps derived from the 3x3 and 11x11 Getis value 

difference images appeared to indicate significant areas of change along the east bank 

of the Keogh River east of the cut-block. However, the nature of these changes is 

unknown. 

Thresholding the 5x5, 7x7, and 9x9 difference data produced bitmaps that were 

transitional both in terms of their number and size. The thresholded 7x7 image is shown 

in Figure 27. The location and size of the cut-block is easily discernible on the left; 
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however, there are a significant number of what might be false alarms outside of the 

cut-block. Their number was considerably reduced after the bitmap coverage was 

mode filtered with a 5x5 kernel (Figure 27, right). 

Figure 27: 7x7 Getis value difference image with 95% threshold bitmaps on the left. On the 
right are the same bitmaps mode filtered by a 5x5 kernel. 

As Figures Figure 26 and Figure 27 show, there is a definite trend when Getis value 

images generated by ever larger kernels are differenced and thresholded. As the kernel 

increases from 3x3 to 11x11, the proportion of the total threshold bitmap area increases 

in the cut-block area where the only known structural change in the scene has occurred. 

As this proportion changes, the number of small bitmaps drops and the size of larger 

bitmaps increases. This is in response to a suppression of very small bright targets 

whose significance is lost as they become outnumbered by an ever increasing number 

of darker pixels in the kernel. The opposite effect occurs where large clusters of bright 

pixels occur. In these areas, the outnumbered dark pixels at the centre of large kernels 

are converted to bright pixels in the Getis value image, thus contributing to a filling-in 

and "spreading" of clusters of bright pixels. Thus, as the kernel size increases, 

significant clusters of bright pixels are emphasized at the expense of small point targets. 

This suggests that the Getis value images generated by the larger kernels may not be 

suitable for detecting small isolated windthrow events if these are signified by small 

bright point targets in the source data. 
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Ratioing is another change detection technique that was explored earlier with the radar 

brightness data. The same procedure was attempted with Getis value images; 

however, this did not produce anything meaningful because the 32-bit Getis values 

range from negative to positive. Ratioing two negative and two positive numbers both 

yield a positive fraction, thereby leading to results that are confusing. 

4.3.1.3 MaxGetis Images 

As indicated earlier, a MaxGetis EASI script was developed to select the maximum 

Getis value from among the five generated for each pixel in an image and to write the 

selected values to a MaxGetis image of the same size and shape. Although Getis 

values were generated for all pixels in the source images, the kernel processing 

algorithm used in the EASI script replicated pixel data along the edges of the images to 

ensure kernels were completely filled with data. For some purposes, such as image 

filtering, the consequent generation of artificial data from replicated data does not have 

a serious impact. However, it was deemed essential in this application that all Getis 

values considered in the selection of the MaxGetis value be derived from non-replicated 

data. To ensure that this would be the case, the values for the five outermost pixels in 

each Getis image were discarded. This action left a narrow band of grey pixels around 

the edge of the MaxGetis images seen in the figures below. 

The logic behind the selection of a MaxGetis value can be illustrated with the data in 

Table 2. It shows the five Getis values computed for 10 pixels under the yellow line 

shown in Figure 16. The table also shows the MaxGetis value derived by the MaxGetis 

EASI script. The MaxGetis EASI script first converts all five Getis values to an absolute 

value. It then conducts a series of pair-wise comparisons. If the first number in the pair 

is larger than the second, the Getis value generated by the kernel corresponding to the 

first number is written to the MaxGetis image. If the second number is bigger, then it 

and the next number are compared in the next pair-wise comparison. The pair-wise 

comparisons continue until a Getis value corresponding to either the first value in the 
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comparison or, when the comparisons have been exhausted, the 11x11 Getis value is 

written to the MaxGetis image. 

The selection of the MaxGetis value in this manner is consistent with the observation 

that Getis values closer to the negative and positive ends of the distribution indicate 

higher spatial autocorrelation than those closer to the mid-range value of zero (Wulder 

and Boots, 1998). To illustrate how this observation is put into practice in the MaxGetis 

EASI script, consider the first pixel in Table 2. The Getis value of -0.727894 generated 

by the 3x3 kernel represents a higher degree of spatial autocorrelation than the value 

generated by the 5x5 kernel, 0.431740. Although the absolute values of the data 

generated by the second through fifth kernel steadily increase, the value generated by 

the 3x3 kernel is higher than that generated by the next largest kernel. Selecting the 3x3 

Getis value as the MaxGetis value therefore preserves a localized maxima in spatial 

autocorrelation. In the case of the second pixel, the absolute value continues to 

increase from the first kernel on until it reaches a maximum with the 11x11 kernel. At 

this point, the pair-wise comparisons are exhausted and the 11x11 Getis value is 

selected as the MaxGetis value. 

3x3 
Getis Value 

5x5 
Getis Value 

7x7 
Getis Value 

9x9 
Getis Value 

11x11 
Getis Value 

MaxGetis 
Value 

-0.727894 0.431740 0.913595 1.738873 j 3.636315 -0.727894 
0.167225 -0.452083 -0.526995 1.106282 3.095275 3.095275 
0.519464 -1.120023 -0.348780 1.221612 2.215084 -1.120023 

-0.330167 -1.067662 -0.936104 0.234050 1.583690 -1.067662 
0.085204 0.334647 -0.324215 -0.342095 0.458235 0.334647 
1.004708 0.209331 -0.504218 -0.626444 -0.307791 1.004708 

-0.291433 -1.077540 -1.980569 -1.879974 -1.361409 -1.980569 
-1.922766 -2.331922 -2.868374 -2.981281 -2.240482 -2.981281 
-2.645383 -3.231967 -3.735220 -4.008456 -2.554649 -4.008456 
-2.277489 -3.172531 ^.173574 -3.507102 -1.850815 -4.173574 

Table 2: Example showing which Getis Value is chosen as the MaxGetis Value. 

The MaxGetis images generated from the 1997 and 1998 Getis value images of cut-

block S501 and its surrounding area are shown in Figure 28. The sharp detail that is 
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characteristic of the source images shown in Figure 7 is largely absent in both of these 

images. Instead, they exhibit extensive areas of very bright and very dark pixels where 

24-28% of the Getis values were generated by the 11x11 kernel. The intervening areas 

are quite variable and blurry, reflecting the influence of Getis values generated by a 

diverse mix of kernels. Although more than 30% of the Getis values were generated by 

the 3x3 kernel which earlier showed the least propensity for producing a blurry image 

(see Figure 16), they were so scattered over both images that their contribution towards 

preserving the detail of the source images was minimal. 

Figure 28: MaxGetis images generated from the 1998 (left) and 1997 source data. 

The histograms of the two MaxGetis images are shown in Figure 29. The black 

vertical line rising out of the valley in the histograms indicates the position of the 

zero MaxGetis value on the x-axis. The double hump of these histograms is a 

characteristic feature of all MaxGetis images generated by the EASI script. It 

arises from the decision rule described earlier that is used to select the maximum 

Getis value from the five computed for each pixel in the source image. 
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Figure 29. Histograms of the 1997 and 1998 MaxGetis images. 

Although not obvious, the two MaxGetis images include Getis values associated with 

the brightest pixels in the source data. These pixels, with a p° value greater than 0.95, 

are aggregated in clusters on the images in Figure 7. Approximately 1,800 pixels are 

associated with these clusters in each of the two images. Since the clusters are quite 

small, the 3x3 and 5x5 kernels generated 71% and 78% of the associated Getis values 

that appear on the 1998 and 1997 MaxGetis images respectively. However, only 37% 

and 30% of these pixels retain their comparatively high brilliance in the 1998 and 1997 

MaxGetis images. The remainder lose their brilliance because they are either attached 

to the edges of bright clusters or are scattered throughout the source images as small, 

isolated clusters averaging three pixels in size. In those cases, a predominance of 

darker pixels in the kernel has a dampening effect on the magnitude of the Getis value. 

These pixels either lose their brilliance altogether or acquire an intermediate value that 

has the effect of blurring transitions between adjoining bright and dark clusters of pixels. 

In other areas, the apparent contrast of the source image is enhanced. This is a result 

of smoothing done by larger kernels where closely spaced bright or dark pixels 
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predominate over extensive areas. The effect of this smoothing is illustrated in Figures 

Figure 30 and Figure 31. Not only are the bright and dark areas more homogeneous on 

the MaxGetis images than in the source images on the left, they also appear to be 

brighter or darker in the respective areas. 

Figure 30:1997 p° image (left) and the MaxGetis image of the same area. 

Figure 31:1998 p° image (left) and the MaxGetis image of the same area. 
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Although much of the detail seen in the source images is lost during the creation of the 

MaxGetis image, the localized optimization of spatial autocorrelation enhances the 

differentiation of significant areas of both high and low backscatter. This suggests that 

MaxGetis images could perhaps be suitable for detecting change using the image 

differencing and thresholding approaches applied to the Getis value images described 

earlier. To determine if this might be the case, a difference image was created from the 

1997 and 1998 MaxGetis images (Figure 32). This image shows the S501 cut-block 

with considerably less ambiguity than on the 3x3 difference image in Figure 24. 

Figure 32 also shows that the distribution of values in the MaxGetis difference image 

does not fit the normal distribution overlaid in red on the histogram. Consequently, 

thresholding the image to identify significant increases in backscatter must use the 

same procedure applied to the Getis value difference images. Figure 33 (left) illustrates 

the result of applying a 95% threshold to the MaxGetis difference image. It shows 

remarkably fewer apparent false alarms outside of the cut-block area than the 

thresholded 3x3 difference image (Figure 26). Mode filtering the bitmaps in Figure 33 

(left) removed only the smallest of them outside of the cut-block area (Figure 33, right). 

Figure 32:1998-1997 MaxGetis difference image and corresponding histogram. 
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Figure 33: 95% threshold applied to the 1998-1997 MaxGetis difference image (left). On the 
right are the same bitmaps mode filtered with a 5x5 kernel. 

An analysis of the interactions between the MaxGetis values whose differences 

exceeded the 95% threshold level shows that almost 60% were between the 1998 

MaxGetis values generated by the 11x11 kernel and the 1997 MaxGetis values 

generated by all five kernels. This suggested that the magnitude of the MaxGetis values 

and the extent of spatial autocorrelation were quite variable in the 1997 MaxGetis image 

in areas that exhibited high MaxGetis values and extended areas of high spatial 

autocorrelation in the 1998 MaxGetis image. 

It is important to note that once spatial autocorrelation has been optimized in the 

MaxGetis image, it does not play any further role during image differencing. The image 

differencing applied here is at the pixel level and consequently the spatial arrangement 

of MaxGetis values is what governs the outcome of image differencing and 

thresholding. The assumption made here is that differencing will detect significant 

increases in pixel brightness in the 1998 B° image, i.e. pixels that were bright in the 

1998 image where they were previously dark in the 1997 image will make up the bulk of 

pixels identified by thresholding as experiencing a significant increase in the Getis 

value. 
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To determine if the location of the 95% bitmaps were reasonable, the mode filtered 

bitmaps were overlaid as polygons on multi-temporal composites of the MaxGetis and 

B° images in Figure 34. The 1998, 1997, and 1996 images of each were assigned to the 

red, green, and blue colour guns, respectively. The overlay on the B° composite 

indicates that generating the 1997 and 1998 MaxGetis images followed by differencing 

and thresholding appears to have captured the most significant increases in backscatter 

as signified by the clusters of bright red pixels. These clusters are more pronounced on 

the MaxGetis composite on the left in Figure 34. The cut-block itself is more readily 

discernible on the MaxGetis composite than it is on the B° composite, making the former 

particularly useful for visual detection of change. However, it is important to note that 

not all of the clusters of bright pixels visible in the B° composite were captured by the 

mode filtered threshold bitmaps nor were they captured by the unfiltered threshold 

bitmaps. It also became apparent that many of the small bitmaps removed by mode 

filtering and some of the larger ones that survived the filtering are not associated with 

clusters of bright red clusters in the B° composite. Consequently the bitmaps cannot be 

used to consistently identify areas where backscatter has increased by more than the 

threshold value. 

Figure 34: Multi-temporal composites of MaxGetis and radar brightness images 

The Getis value-based techniques described here were also applied to the three cut-

blocks described in section 4.2.5. Table A-2 (Appendix A) shows that the largest 
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proportion of the cut-block captured by the unfiltered 95% threshold bitmaps was on the 

11x11 Getis value difference image while the lowest proportion was on the 3x3 Getis 

value difference image. The proportion captured on the 11x11 Getis value difference 

image was the highest because a large kernel tends to brighten pixels around the edges 

of some clusters, thereby enlarging associated threshold bitmaps (compare Figures 

Figure 26, Figure 27, and Figure 33). The proportion captured by thresholding on the 

MaxGetis difference image is much closer to that of the 3x3 difference image; however, 

they are far fewer in number and much closer to the size and number of bitmaps on the 

7x7 Getis value difference image. The MaxGetis difference image also appears to 

contain a fairly low number of apparent false alarms. 

Dataset size has a significant influence on the total threshold bitmap area inside 

disturbed areas. This is illustrated by cut-block S501 for which difference images were 

generated using 256 line by 256 pixel and 1024 line by 1024 pixel datasets (Table A-2). 

Although both sets of data were subsets of much larger B° images, the slight differences 

in global mean and standard deviation between a small dataset and a large dataset 

derived from the same parent image did have an effect on the magnitude of the Getis 

values. In the case of the two datasets derived from the 1998 6° image, the mean and 

standard deviation were somewhat lower in the larger dataset. The opposite was the 

case for the datasets derived from the 1997 B° image. These had a corresponding effect 

on the magnitude of the Getis value computed for each pixel. However, of greater 

influence on the total threshold bitmap area inside S501 was the threshold value itself. 

This value was lower in the larger dataset resulting in a much higher proportion of the 

cut-block being covered by the threshold bitmaps, a desirable result. However, this was 

also accompanied by a greater proportion of the area immediately surrounding the cut-

block also being covered by the threshold bitmaps. This was not a desirable result since 

it merely increased the number of apparent false alarms, particularly as S501 was the 

only area of disturbance evident in both the small and large datasets. 

A s expected, the number of apparent false alarms was much lower in datasets that 

contained more than one recently logged cut-block. This observation, as well as the 
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increased bitmap area in S501 resulting from the use of larger datasets, demonstrates a 

weakness in the thresholding approach used here. Thresholding at 95% simply means 

that the brightest 5% of pixels in the difference dataset will be highlighted by the 

threshold bitmaps, regardless of whether or not any actual disturbance had been 

responsible for the increase in backscatter. The solution would be to raise the threshold 

level to reduce the number of false alarms at the expense of perhaps not detecting all of 

the known structural change. This was attempted with the 1024 line by 1024 pixel 

MaxGetis difference image containing the S501 cut-block. The result was that a 

threshold of 99% considerably reduced the number of apparent false alarms without 

seriously affecting the size of the bitmaps in the cut-block area. In fact, the bitmaps in 

the cut-block area were quite similar in shape and number to those generated by the 

95% threshold level on the 256 line by 256 pixel MaxGetis difference image. A similar 

result was obtained by thresholding the 1024 line by 1024 pixel MaxGetis difference 

image containing the M5307 cut-block at 99%. However, the ideal threshold limit for the 

1024 line by 1024 pixel dataset containing cut-block 594 appeared to be 97.5%. Since 

95% thresholding followed by mode filtering seemed to be the most effective at picking 

up all of the significant change while at the same time reducing the number of apparent 

false alarms, the decision was made to conduct thresholding in riparian areas and along 

cut-block margins at the 95% level. 

An examination of the mean and standard deviation within cut-blocks found them to be 

always higher than in the entire difference dataset generated from either Getis value or 

MaxGetis difference images (Table A-2). The higher mean was due to the prominence 

of bright pixels within the cut-blocks whereas the higher standard deviation was 

attributable to the smaller number of pixels in the cut-blocks relative to the whole 

dataset and the wide array of very bright and very dark pixels in these features. This 

suggests that change could perhaps be detected by evaluating significant changes in 

the mean and standard deviation of the population of pixels within a feature that is 

tracked over time. 
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This section has demonstrated that MaxGetis difference images and multi-temporal 

composites are both potentially useful for identifying where significant increases in 

backscatter have occurred as a result of a disturbance. In addition, MaxGetis images 

enhance backscatter differences in multi-temporal images through local optimization of 

spatial autocorrelation, while at the same time reducing the prevalence of apparent false 

alarms. 

The next section evaluates the utility of the maximum Getis distance (MGD) data for 

detecting local changes in the extent of spatial autocorrelation and data homogeneity 

from one imaging date to the next. 

4.3.2 Maximum Getis Distance Images 

The MaxGetis EASI script also creates a Maximum Getis Distance (MGD) image at the 

same time a MaxGetis image is produced. The MGD image indirectly indicates which 

kernel generated the maximum Getis value. Values in the M G D image range from 1 to 5 

with each value corresponding to the radial distance over which the maximum Getis 

value was attained. As indicated earlier, the practical method used for computing the 

Getis value over a particular distance was to use a kernel. Therefore, 3x3, 5x5, 7x7, 

9x9, and 11x11 kernels were used to compute the Getis value over radial distances of 

1, 2, 3, 4, and 5 pixels from the centre of the kernel. 

The significance of MGD images is that they can be used to determine if spatial 

autocorrelation is localized or spatially extensive. They can also be used to determine if 

the extent of spatial autocorrelation has changed in a particular area over time (Wulder 

and Boots, 1998; Holden et al., 2000). If the MaxGetis value for a particular pixel in the 

source data is generated by a kernel smaller than 11x11, then the extent of spatial 

autocorrelation is usually confined to a local area and the region is considered to be 

heterogeneous. However, if it is generated by an 11x11 kernel, then the extent of spatial 

autocorrelation may extend much further resulting in a region that is homogeneous. 

When the M G D values are displayed as an image, the extent and heterogeneity of 

spatial autocorrelation can be visualized. 
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Figure 35 shows the M G D images generated from the 1997 and 1998 (3° images of cut-

block S501. The various kernels that contributed the MaxGetis values to the 1997 and 

1998 MaxGetis images are coded as yellow (3x3), magenta (5x5), blue (7x7), green 

(9x9), and red (11x11). 

Immediately noticeable on the two MGD images are the extensive areas in red. The 

majority of the red area corresponds to radar shadow areas in the source data while the 

remainder corresponds to sizable areas populated by closely spaced bright pixels. 

Spatial autocorrelation is spatially extensive in both of these areas, reflecting the 

relatively homogeneous nature of the corresponding source data. In other areas 

populated by a mixture of distance values, the extent of spatial autocorrelation is much 

more limited thus reflecting the heterogeneous nature of the source data in these areas. 

mi 

Figure 35.1998 (left) and 1997 Maximum Getis Distance images. 

The 1997 MGD image shows homogeneous areas in red in the middle of cut-block 

S501 outlined in white that later appear to be heterogeneous in the 1998 M G D image. 

Conversely, areas in the cut-block that are heterogeneous on the 1997 MGD image 

apparently became homogeneous after the cut-block was logged. However, in both 

cases the homogeneity of the source data was largely due to the low radar returns from 

areas obscured from the sensor. In the 1998 MGD image, the homogeneous area along 
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the west boundary of the cut-block was the result of a radar shadow cast by the timber 

left standing along that boundary. The extensive homogeneous area further east on the 

1997 M G D image disappeared after logging, suggesting that this area was in a radar 

shadow before it was logged. 

Aside from these areas, it appears from the M G D data that the clear-cut area on the 

1998 6° image is just as heterogeneous as it was when it appeared as a forested area 

on the 1997 B° image. This is borne out by the coefficient of variation images in Figure 

36. The two images were generated by passing a 5x5 kernel over the two MGD images 

and calculating the coefficient of variation for the centre pixel. The 25 pixels in the 

kernel were used to compute a local standard deviation and mean. The coefficients of 

variation were then grouped into classes: 0-20% (red), 20-40% (green), 40-60% (blue), 

and 60% and over (magenta). Both of these images indicate that the extent of spatial 

autocorrelation is highly variable in both before and after the cut-block was logged. 

Based on the MGD data, the coefficient of variation of the cut-block area as a whole is 

roughly the same in the two images, 61% on the 1998 M G D image and 62% on the 

1997 MGD image. 

Figure 36. 1998 (left) and 1997 coefficient of variation images derived from the 
MGD images. 
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Figure 37 provides a close-up view of a portion of the two M G D images. A mode filtered 

95% threshold bitmap derived from the 1998-1997 MaxGetis difference image is 

overlaid in vector format7. 

p i 

Figure 37: MGD values over a portion of the 1998 (left) and 1997 MGD images. 

These two close-ups clearly show that the majority of the MaxGetis values within the 

bitmap area on both the 1997 and 1998 MaxGetis images were contributed by the 

11x11 kernel. The bitmap itself indicates that the difference between the 1998 and 1997 

MaxGetis values exceeded the 95% threshold level, i.e., the 1998 MaxGetis values 

were more than 10 units higher than what they were in the 1997 MaxGetis image. In 

some areas, the increase in MaxGetis value was accompanied by an increase in the 

size of kernel (area in green in Figure 38). However, in other areas the significantly 

higher Getis values were attained with either a smaller kernel (area in blue in Figure 38) 

or a kernel of the same size (area in red in Figure 38). 

7 The location of this bitmap has been circled in Figure 33. 
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correlated with changes in MaxGetis values indicates that M G D images can only be 

used to visually assess changes in the homogeneity of the underlying source data. 

Increased homogeneity was observed in some areas that experienced an increase in 

MaxGetis values over the threshold limit; however, there were other similar areas that 

experienced increased heterogeneity when they were no longer obscured from the 

sensor. Therefore, it was concluded that MGD images cannot be reliably used for 

detecting structural changes in the landscape. 

4.3.3 Speckle Filtered Data 

Several references have already been made to the influence that speckle may have on 

the success of change detection involving both the source data and the data that have 

been transformed by the Getis statistic. In many quantitative applications of radar data, 

including change detection, the objective is to remove the unfavourable influence of 

speckle in such a manner that it preserves the underlying texture and fine structures in 

the image. A great many speckle filters have been developed in an attempt to do just 

that. While a review of the subject is beyond the scope of this paper, a recent 

performance evaluation of more than 30 different speckle filters applied to a standard 

set of SAR images shows that the maximum a posteriori (MAP) filter, based on a 
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Gamma distributed model of texture and speckle and further enhanced for local 

detection of structures, performs the best since it preserves both texture and fine 

features in the scene (Fjortoft era/., 2000). 

With this advice, the 1997 and 1998 radar brightness data of the cut-block area was 

filtered using a Gamma MAP filter enhanced for detection of local structures. Structure 

detection was carried out by the filter software using second order statistics. The limit 

set for searching for structures was four pixels from the centre of the kernel (Edmond 

Nezry, personal communication)8. Although not shown here, the 1997 and 1998 

speckle filtered images exhibit greater contrast than the corresponding (3° images. 

Although they are distinctly blurry, fine details such as road rights-of-way are well 

preserved. A better-looking product would probably have resulted had the data been 

multi-look rather than single-look (Edmond Nezry, personal communication)9. 

Figure 39 shows the MaxGetis difference image derived from the speckle-filtered radar 

brightness data. The difference image itself is not as sharp as the one in Figure 32; 

however, there is greater contrast overall. This makes it easier to identify areas where 

significant increases in radar brightness have occurred. It also results in much the 

same bitmap coverage as in Figure 33 (right) when the data have been thresholded at 

95% (Figure 39, right). Very small, isolated bitmaps that were thought to represent false 

alarms in the unfiltered MaxGetis difference image are almost completely absent. Mode 

filtering therefore removed only a few of the smallest bitmaps and trimming some of the 

larger bitmaps (Figure 40). 

Senior Scientist, ParBleu Technologies Inc., Montreal 

'ibid. 
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Figure 39: MaxGetis difference image derived from speckle filtered data (left) with 95% 
threshold bitmaps overlaid on the right. 

Figure 40: MaxGetis threshold bitmaps from Figure 39 mode filtered with a 5x5 kernel. 

The difference image generated from the 11x11 data appears in Figure 41. This image 

is much smoother in appearance than the equivalent image generated from non-filtered 

data. Gone are the peculiar vertical and horizontal banding seen in the right-hand image 

in Figure 26. The 95% threshold bitmaps on the right in Figure 41 are remarkably similar 

to the mode filtered bitmaps overlaid on the right in Figure 26. They are also quite 

similar in appearance to the mode filtered threshold bitmaps in Figure 40. 
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Figure 41: Difference image (left) generated from 1997 and 1998 11x11 Getis value images 
and overlaid with the 95% threshold bitmaps on the right. The 11x11 Getis value images 
were generated from speckle filtered data. 

Although MaxGetis and 11x11 difference images derived from speckle filtered data 

produced much cleaner looking threshold bitmaps than those derived from unfiltered 

data, it was noted earlier that the Getis statistic already appears to behave as a filter 

when it transforms radar brightness data to Getis values. Speckle filtering the data 

beforehand could erase signs of small scale change associated with windthrow in 

riparian zones and along cut-block margins. Since the desire here is to detect such 

changes wherever possible, the decision was made not to undermine the performance 

of the Getis statistic by speckle filtering the data. Instead, mode filtering would be used 

as a post-processing method to reduce the number of apparent false alarms associated 

with very small bitmaps in MaxGetis difference images derived from unfiltered data. 

4.3.4 Change in the Next Period 

Logging in the S501 cut-block was the only event between late August, 1997 and late 

November, 1998 that effected significant structural change in the area examined thus 

far. This activity substantially increased backscatter on such a large area that the 

majority of the 95% MaxGetis difference threshold bitmaps were confined to the cut-

block area. However, no further anthropogenic changes are known to have occurred in 

the cut-block or surrounding area after logging was completed in the cut-block. This 
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raised the possibility that incremental changes of a less extensive nature, perhaps 

brought about by windthrow, could be detected in a subsequent image. 

With this in mind, the 1999 6° image of the same area was converted to a MaxGetis 

image. Part of the east boundary of the S501 cut-block runs quite close to the Keogh 

River. However, it is set far enough west from the river's edge to accommodate the 

required riparian zone. The exposure of the trees along this boundary and the fact that 

they are on soft ground suggests there may be a significant risk that windthrow damage 

could be sustained during winter months when strong south-westerly winds cross the 

open area of the cut-block. 

Again image differencing and thresholding at the 95% level, followed by 5x5 mode 

filtering, was used to assess increases in backscatter between late November, 1998 

and late March, 1999 when the two R A D A R S A T images were acquired. The challenge 

was to correctly identify significant structural changes in the landscape in places where 

one would expect to find them. Of particular interest was any indication of increased 

backscatter in the riparian zone along the east boundary of the cut-block that might be 

attributable to windthrow. 

Figure 42 shows the 1998 and 1999 radar brightness images. Careful examination of 

these two images reveals significant differences in the detail, composition, shape and 

brightness of certain clusters of pixels in areas where no change in backscatter had 

been expected. One example is highlighted with a yellow circle in the two images. The 

expectation had been that this area would be somewhat similar in appearance in both 

images considering that both R A D A R S A T images were acquired in winter, well before 

any vegetation of any significant size could have become established after logging. It 

was also expected that the backscatter from areas outside of the cut-block boundary 

which have not been disturbed would have been similar as weather conditions at the 

time the two images were acquired were essentially the same. 

76 



Figure 42:1999 (left) and 1998 p° image of the cut block area. 

The 1998 and 1999 MaxGetis images were somewhat better for perceiving differences 

between the two B° images (Figure 43). Because the MaxGetis images have enhanced 

differences between bright and dark areas on the (3° images, they are better for spotting 

some of the areas where a significant increase in radar brightness has occurred. Some 

of the brighter areas have been circled in yellow on the 1999 image. 

Figure 43: 1999 (left) and 1998 MaxGetis images of the cut-block area. 

Both of these MaxGetis images were combined in a multi-temporal composite in Figure 

44. The 1999 image has been assigned to the red colour gun while the 1998 image has 
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been assigned to both the green and blue colour guns. The composite shows that 

areas brighter on the 1999 image are red while areas brighter on the 1998 MaxGetis 

image are cyan. Areas bright at the time both images were acquired are white. The 

latter signature is particularly evident along the east bank of the Keogh River. 

While the multi-temporal composite is helpful in identifying areas where significant 

increases in brightness have occurred, its effectiveness for change detection is 

compromised by the large number of distinctly red pixel groups scattered everywhere 

on the image. 

A more effective approach is to generate a MaxGetis difference image. The 1999-98 

MaxGetis difference image is shown on the right in Figure 44. It is overlaid in yellow by 

the 95% threshold bitmap vectors from the 1998-97 MaxGetis difference image. The 

95% threshold bitmaps generated from the 1999-98 difference image are overlaid in 

red. All of the overlays have previously been mode filtered with a 5x5 kernel. 

Figure 44: Multi-temporal composite of the 1999 and 1998 MaxGetis images of the cut-
block area (left) and the 1999-98 difference image on the right. 

Both the red bitmaps and the yellow polygons reveal that the backscattering 

characteristics of particular areas in the landscape were quite different at the time the 

1998 and 1999 R A D A R S A T images were acquired. The red bitmaps indicate areas 
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where the backscatter was significantly higher in the 1999 data than it was in the 1998 

data. Many of the larger red bitmaps can be easily correlated with patches of bright red 

pixels on the MaxGetis multi-temporal composite on the left in Figure 44. Raising the 

threshold to 99% reduced the size and number of bitmaps; however, bitmaps still 

existed wherever the 95% bitmaps were fairly large. 

Since there was no further disturbance in the cut-block after the 1998 image was 

acquired, it was a surprise to see a significant increase in backscatter from that area. 

Equally surprising was the significant decline in 1999 MaxGetis values within the yellow 

polygons, the same areas in which significant increases in backscatter had been found 

on the 1998 data. Had the areas inside the yellow polygons been bright at the time the 

1999 image was acquired, the expected colour would have been grey, i.e. similar to that 

of the area inside the west boundary of the cut-block, and not black as seen in the 

MaxGetis difference image. The cause of many of these anomalies may be localized 

differences in soil and surface moisture at the time the two images were acquired 

(Leckie, 1998). However, it is plausible that in areas of standing timber, localized 

increases in backscatter could arise as a result of windthrow exposing stems of both 

standing and windthrown trees to the incident radar wave. In this situation, the 

increased backscatter could be the result of standing and fallen tree stems acting as 

corner reflectors. It has also been observed that increased HH-polarized backscatter 

does occur from horizontally oriented tree trunks (Leckie, 1998). It is therefore possible 

that the bitmap circled in black in Figure 44 signifies increased backscatter due to 

windthrow since it occurs on the exposed side of the riparian zone established along the 

Keogh River. 
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Chapter 5 Testing the MaxGetis 
Differencing Technique 

The previous chapter demonstrated that the Getis statistic could perhaps provide a 

viable means of detecting both large- and small-scale structural change in the 

landscape. The best results were obtained by differencing two co-registered MaxGetis 

images, thresholding the difference image at 95% and then mode filtering the change 

bitmaps to eliminate the smallest ones that were considered to be largely false alarms. 

The results of applying this approach to four areas where windthrow is known to have 

occurred will be described in this chapter. The first two areas, Strip 31a and Strip 16, 

are riparian zones that were established to protect streams running through the middle 

of their respective cut-blocks. The other two cases involve sizable areas where 

windthrow occurred after the cut-block had been logged. Since one of these areas has 

been salvage logged while the other has not, an opportunity was provided to compare 

the strength and consistency of backscatter from areas that have experienced different 

levels of disturbance. These two cases also provided an opportunity to model damage 

detection in riparian zones that are located along cut-block boundaries. The results of 

applying the MaxGetis differencing technique to six other riparian zones where 

windthrow damage has been reported will also be discussed briefly. 

5.1 Strip 31a 

Strip 31a, first illustrated in Figure 3, is a riparian zone that cuts through the middle of 

cut-block M5304. The red-green-blue multi-temporal composites (MTC) of the B° and 

MaxGetis images in Figure 45 clearly show a dark riparian zone cutting through a 
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comparatively bright cut-block. The cut-block itself is predominantly blue which is 

consistent with its highest reflectivity in the 1996 image, the first image acquired after 

logging had been completed in 1995. Clusters of red, yellow, and green pixels within 

and adjacent to the riparian zone are in areas that were dark on the 1996 image but 

were brighter on images acquired later. Bright clusters of red and yellow pixels within 

the zone are apparently indicative of windthrow damage that occurred between the time 

the 1996 and 1999 images were acquired (Peter Murtha, personal communication) 1 0. 

Figure 45: Multi-temporal composite of the 1999, 1997, and 1996 p° images (left) and the 
equivalent as a MaxGetis multi-temporal composite. 

The 1999-96 MaxGetis difference image with its 95% threshold bitmaps overlaid in red 

is shown on the left in Figure 46. Without the bitmaps, the riparian zone appears as a 

bright ribbon running through a much darker cut-block. Mode filtering these bitmaps 

removed many of the small ones while at the same time preserving the larger ones 

(Figure 46, right). The cyan, magenta, and yellow polygons were created from the 

mode-filtered 95% threshold bitmaps generated from the 1997-96, 1998-97, and 1999-

98 MaxGetis difference images. The high degree of overlap between the 1999-96 

bitmaps in red and the 1999-98 bitmaps shown as yellow polygons suggests that much 

of the significantly increased backscatter in the riparian zone occurred between 1998 

1 0 Professor Emeritus, Faculty of Forestry, University of British Columbia 
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and 1999. On their own, the red bitmaps appear to correlate reasonably well with the 

bright red and yellow clusters in the riparian zone in Figure 45, left. Although this could 

be construed as being consistent with the location of the reported windthrow, the 

presence of significant bitmaps in the adjacent cut-block suggests that other factors 

may be responsible for the increased backscatter in the riparian zone. 

Figure 46: 1999-96 MaxGetis difference image (left) overlaid with 95% threshold bitmaps. 
On the right, the same difference image has been overlaid with the mode filtered 1999-96 
bitmaps in red and the mode filtered bitmaps from the 1997-96, 1998-97, and 1999-98 
difference images as cyan, magenta, and yellow polygons. 
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5.2 Strip 16 

Strip 16, shown on the 1995 aerial photograph in Figure 47, is located in cut-block S505 

close to the Port Hardy Airport. 

Figure 47: Aerial photo showing location and condition of Strip 16 in 1995. 

Although the photograph clearly shows that Strip 16 existed after logging had been 

completed in 1995, it was reported that the riparian zone had been decimated by the 

time the December 1996 image was acquired (Murtha, 2000b). An examination of the 

four R A D A R S A T images acquired between December 1996 and March 1999 appears 

to confirm this. There is no definite band of dark pixels where the riparian zone should 
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be as was the case with Strip 31a. However, a 25-metre resolution LANDSAT image, 

acquired in August 1997 and shown in Figure 48, suggests that there were perhaps 

some trees remaining at the eastern end of Strip 16. This is more strongly supported by 

a 15-metre resolution A S T E R image of the same area acquired in November 2000 

(Figure 48). In addition, a somewhat darker pixel at the western end of Strip 16 on the 

LANDSAT image indicates the possibility a few trees may have been still standing in 

that area in 1997. A careful examination of the 1996 and 1997 R A D A R S A T images 

shows a rather dark patch in that area which could be a radar shadow cast by some 

trees. The same area is somewhat brighter on the 1998 image and very bright on the 

1999 image. The significant brightening in 1999 could perhaps be due to the 

disappearance of the radar shadow as the trees were blown over. The pixels at the 

location of this supposed windthrow event show up quite clearly in red on the multi-

temporal composite in Figure 49, consistent with the substantially higher reflectivity of 

this area on the 1999 image. The A S T E R image acquired a year later confirms that 

there are no standing trees at the west end of the riparian zone. Consequently, it was 

assumed that the changes in reflectivity recorded in that area on the RADARSAT 

images were due to a windthrow event that occurred after the 1997 R A D A R S A T image 

was acquired. 
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Figure 49: Multi-temporal composite of the 1999,1997, and 1996 p° images. 

The multi-temporal composite in Figure 49 also shows two other bright red patches of 

pixels at the eastern end of Strip 16. There are also some bright red patches of pixels 

along the east boundary of the cut-block, both north and south of Strip 16. These may 

also be indicative of windthrow damage in Strip 16 and the riparian zones situated along 

the cut-block boundary. 

Of the several MaxGetis difference images thresholded at 95%, the 1999-96 and 1998-

97 difference images provided a bitmap that matched the location of the increased 

brightening at the western and eastern ends of Strip 16. Figure 50 shows the 1999-96 

mode filtered bitmaps overlaid on the difference image and on the aerial photograph. 

The particularly bright patches of pixels seen at both ends of the riparian zone in Figure 

49 are indeed highlighted by fairly large red bitmaps. However, very few bitmaps match 

up with the bright red patches of pixels seen along the east boundary on the multi-

temporal composite. 
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Figure 50: 1999-96 MaxGetis difference image with mode filtered 95% threshold bitmaps 
overlaid in red. The bitmaps have been overlaid on the aerial photo on the right. 

Also evident in Figure 50 are a large number of sizable bitmaps scattered throughout 

the cut-block as well as in adjacent areas that have well established advanced 

regeneration. The associated pixels on the 1999 B° image are indeed much brighter 

than the corresponding ones on the 1996 B° image. This is in spite of the fact that the 

cut-block is generally darker on the 1999 B° image due to increased scattering from 

vegetation that has become established in the intervening period. Raising the threshold 

to 99% reduced the number of these bitmaps without removing the significant ones in 

Strip 16; however, a considerable number of large bitmaps remained in the general 

area. Surprisingly, the bitmaps generated from the 1998-97 difference image were 

considerably larger and more prevalent in the cut-block. The presence of so many large 

bitmaps in both the 1999-96 and 1998-97 difference images raised doubts about 

whether or not the increased backscatter at both ends of Strip 16 was in fact due to 

windthrow or to some other factor that was also responsible for increased backscatter in 

the adjacent areas. 
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5.3 Edge Blowdown 

Further south of Strip 16 is a cut-block that suffered serious windthrow damage in early 

1997 along the eastern half of its northern boundary (Peter Murtha, personal 

communication) 1 1. The attendant change in spectral signature of the normally green 

forest in that area is outlined in Figure 51 on a LANDSAT image acquired in August 

1997. Also visible but less obvious is a right-of-way for a road that was under 

construction at the time to salvage the timber. 

Figure 51: 1997 LANDSAT image showing location of new cut-block and road right-of-way 
leading to it. 

A multi-temporal composite of the 1999 (red), 1997 (green), and 1996 (blue) 

R A D A R S A T images shows the boundary of the cut-block in red and the extent of the 

blowdown within the green boundary (Figure 52). 

1 1 Professor Emeritus, Faculty of Forestry, University of British Columbia 
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Figure 52: Multi-temporal composite of the RADARSAT p° images showing the same 
blowdown damage in the northeast corner of the cut-block. 

The preponderance of red pixels in the blowdown area in Figure 52 indicates that the 

majority of the increased backscatter from that area occurred after the 1997 radar data 

were collected. This was unexpected since the 1997 R A D A R S A T image was acquired 

in the same month as the LANDSAT image and therefore it was expected that the 

blowdown area in the multi-temporal composite would be dominated by bright yellow 

pixels in response to elevated backscatter levels in both 1997 and 1999. However, 

when the radar images are viewed separately, the blowdown area is generally quite 

dark on both the 1996 and 1997 RADARSAT images. Therefore it is reasonable for that 

part of the composite to be dominated by red pixels. 

The 1997-96 MaxGetis difference image in Figure 53 suggests that there was a 

substantial increase in backscatter in 1997 in the blowdown area in a very small area. 

Since such increases have occurred in presumably undisturbed areas nearby, as 

indicated by the bitmaps in Figure 54, it is not certain that the increased backscatter 

from the blowdown area can in fact be attributed to windthrow. 

88 



Figure 53. 1997-96 MaxGetis difference image of the blowdown area overlaid with 
mode filtered 95% threshold bitmaps. 

As Figure 51 shows, the LANDSAT image revealed the extent of the blowdown very 

well because dead trees exhibit a distinct spectral signature that allows them to be 

separated from living trees. Radar sensors operate on an entirely different principle in 

that they record the strength of backscatter from features in the landscape. Therefore, 

to explain the rather weak backscatter from the area, it is speculated that the radar 

signal interacted with the windthrown trees in much the same manner as it does with 

standing trees that also return low levels of backscatter. It is not until later when the 

trees were removed that suitable conditions were created for much higher levels of 

backscatter to be returned to the sensor (i.e., when there is a clear shot to the ground 

and there are sufficient targets to reflect the radar signal back to the sensor). 

From this example, one could conclude that windthrown trees are not easily detectable 

since radar returns from these targets appear to be quite weak. However, significant 

increases in backscatter due to the salvage logging are easily detected as illustrated by 

the large bitmaps on the 1999-96 and 1998-97 MaxGetis difference images in Figure 

54. The bitmaps on the 1998-97 MaxGetis difference image indicate that the salvage 

logging appeared to have been completed before the 1998 radar image was acquired. 
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Figure 54:1999-96 MaxGetis difference image (left) and 1998-97 MaxGetis difference image 
with mode filtered 95% threshold bitmaps. 

The bitmaps in Figure 54 were generated by thresholding the difference image at 95%. 

Raising the threshold to 99% slightly reduced the size of the bitmaps in the blowdown 

area while considerably reducing the number of minor bitmaps elsewhere. However, 

neither image shows the extent of the disturbance as well as the LANDSAT image. 

Nevertheless, its significance is clearly flagged by the bitmaps, although the disturbance 

detected was logging rather than windthrow. 

5.4 Edge Blowdown at M5307 

The last area examined in detail was the northeast corner of cut-block M5307. Logged 

just before the 1997 R A D A R S A T image was acquired, it is located to the south of cut-

block M5304 where Strip 31a is situated. A multi-temporal composite of the 1999, 1997, 

and 1996 MaxGetis images, assigned to the red, green, and blue colour guns 

respectively, shows the cut-block boundary in red and a second boundary in green 

demarcating the area where the blowdown is known to have occurred (Figure 55, left) 

(Peter Murtha, personal communication) 1 2. 

Professor Emeritus, Faculty of Forestry, University of British Columbia 
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The cut-block area is dominated by patches of bright red, green, and yellow pixels while 

the blowdown area features distinct areas of red, green, and blue pixels. The red, 

green, and blue pixels indicate that the highest MaxGetis values were on the 1999, 

1997, and 1996 MaxGetis images respectively. Although blurry, the colouration in the 

blowdown area correlates quite well with the distribution of similarly coloured pixels on 

the B° composite in Figure 55, right. 

Figure 55: Multi-temporal composites of the 1999, 1997, and 1996 MaxGetis (left) and B° 
(right) images of the northeast corner of cut-block M5307. 

Figure 56, left, illustrates the extent of bitmaps generated from three MaxGetis 

difference images that used the 1999 image as a reference. The cyan polygons 

correspond with the extent of the 95% threshold bitmaps generated from the 1999-98 

MaxGetis difference image while the white and black polygons correspond with the 

extent of the bitmaps generated at the same threshold level from the 1999-97 and 1999-

96 MaxGetis difference images. 
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Figure 56: The 1999-1997-1996 MaxGetis multi-temporal composite overlaid with threshold 
bitmap vectors derived from various MaxGetis difference images to highlight areas of 
significant change. On the right are the same bitmap vectors after 5x5 mode filtering. 

As expected, the 1999-96 MaxGetis difference image bitmaps (outlined in black) are 

largely confined to the cut-block which in 1999 still exhibited much higher backscatter 

than that captured by the 1996 RADARSAT image. However, the extent of the bitmaps 

in the cut-block area is significantly less than that obtained by thresholding the 1997-96 

difference image. The reduced extent of high backscatter may be due to a rise in 

canopy volume scattering as vegetation progressively obscured slash, stumps, and 

other logging debris which had earlier been responsible for larger areas exhibiting 

strong radar returns on the 1997 image. 

The bitmaps within the blowdown area indicate that the 1999-97 MaxGetis difference 

image generated the most extensive 95% threshold bitmaps (outlined in white in Figure 

56, left). Thresholding the 1999-98 and 1999-96 MaxGetis difference images also 

generated bitmaps in the same general area (1999-98 in cyan, 1999-96 in black). 

However, when checked against two-colour composites of the respective (3° images, 

they did not correspond with any of the high backscatter pixels in the 1999 image. 

Figure 57 shows that 95% threshold bitmaps generated from the 1999-98 and 1998-97 

MaxGetis difference images were not consistent with those derived from the 1999-97 
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MaxGetis difference image. All three MaxGetis images show that the northeast corner 

of the blowdown area was bright only on the 1998 image; on the other two images, that 

corner is rather dark, even in 1999. The high backscatter in 1998 is also quite evident in 

the cut-block where a substantial number of bitmaps were generated from the 1998-97 

MaxGetis difference data. However, the cut-block area is noticeably darker in the 1999 

image. This led to the conclusion that some factor other than windthrow is probably 

responsible for the high backscatter from the blowdown area in 1998 since the elevated 

level of backscatter is not present in the 1999 data. 

Figure 57: The 1999-1998-1997 MaxGetis multi-temporal composite overlaid with the 1999-
97 (white), 1999-98 (cyan), and 1998-97 (black) threshold bitmap polygons to highlight 
areas of significant change on the 1999 image. On the right are the same bitmap polygons 
after 5x5 mode filtering. 

Figure 57 also shows that the left half of the blowdown area exhibited the highest 

reflectivity in 1996 as indicated by the dark blue pixels in that area. The same area is 

quite dark on the 1997, 1998, and 1999 images. Taking a cue from the low reflectivity of 

the area immediately above, the explanation may be that once the trees had fallen, 

fewer scattering elements were visible to the satellite because of steep terrain obscuring 

the area. However, this explanation has not been verified in the field. 
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In summary, the blowdown in the area adjacent to the northeast corner of cut-block 

M307 could not be identified with certainty because higher levels of backscatter from 

both the eastern half of the blowdown area and adjacent areas recorded in the 1998 

data were followed by noticeably lower levels in the 1999 data. There was also 

insufficient information available to confirm that reduced levels of backscatter in the 

western half of the blowdown area were the result of windthrow reducing the number of 

scatterers visible to the sensor. 

5.5 Other Areas 

Six other riparian areas were examined to determine if there were significant MaxGetis 

value differences that could perhaps be associated with windthrow damage. Strips 17 

and 18 are located along the east boundary of cut-block S505, running north and south 

off the eastern end of Strip 16. The other four are located a short distance away to the 

southeast. Strips 13 and 25 are situated along the southwest and eastern boundaries 

of a cut-block that was logged in 1995. Strip 26 runs through the middle of another cut-

block nearby that was also logged in the same year. Strip 28 is situated along the 

eastern boundary of a cut-block that was logged several years before. 

The 1999-96 difference image was chosen for the sake of consistency since it was used 

for Strip 16. Except for Strip 17, less than 10% of the area of each of the six riparian 

zones showed significant increases in MaxGetis values between the 1996 and 1999 

image (Table A-3, Appendix A ) 1 3 . Although windthrow to varying degrees has been 

reported in all of these riparian areas (Peter Murtha, personal communication) 1 4, it is not 

known how well the location of the pixels exceeding the 95% threshold level agree with 

the specific location of windthrow or if they indeed indicate any disturbance at all. 

Although some of the bitmap area did correspond with areas that exhibited high 

backscatter in the 1999 image, there was a significant area that did not, an issue that is 

discussed further in the next chapter. 

The proportions shown in the table would be lower had the bitmaps been mode filtered. 

Professor Emeritus, Faculty of Forestry, University of British Columbia 
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Table A-3 also shows that the mean MaxGetis difference value within some of the 

features examined here is generally higher than for the image as a whole. However, in 

Strips 16, 25, and 26 the mean is very close to that of the image itself. In these cases, 

the areas were not easily distinguished from the surrounding area. This highlighted the 

need to overlay riparian zone and cut-block boundaries first before any meaningful 

interpretations could be made of high backscatter from any particular area. The only 

area where there was a sizable clustering of bright pixels that could be associated with 

a known disturbance with certainty was in the edge blowdown area described in Section 

5.3. In that case, the data suggest that it was the salvage logging that was responsible 

for the elevated backscatter and not the windthrow itself. 

The few examples discussed in this chapter indicate that the radar data used here could 

not be used to reliably detect windthrow in areas where it might occur because it was 

uncertain that factors responsible for elevated backscatter in adjacent undisturbed 

areas were not also responsible for elevated backscatter levels from areas where 

windthrow may or may not have occurred. In one area where windthrow had occurred, 

a LANDSAT image detected the spectral signature of dead timber in the windthrow 

area; however, a radar image acquired at about the same time did not record any 

significant increase in backscatter from that area. It was only later when salvage logging 

had been completed that the affected area returned elevated levels of backscatter to the 

radar sensor. However, this one example cannot be used to rule out windthrow causing 

elevated levels of backscatter from areas being monitored for such a disturbance. 

Furthermore, it was found that the MaxGetis differencing and thresholding method did 

not reliably identify all areas that were bright on one image and correspondingly dark on 

an image acquired under similar conditions earlier. Had it been more consistent, it could 

have been used to identify areas which experienced significant increases in 

backscatter. These bitmaps could have acted as flags indicating the possibility of 

windthrow in areas where it is expected it could occur. The next chapter discusses 
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some of the issues that may have influenced the lack of success in identifying 

windthrow damage with the aid of the Getis statistic. 
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Chapter 6 Discussion 
This thesis set out to evaluate the utility of the Getis statistic for detecting and mapping 

the extent of windthrow damage in riparian management areas using multi-temporal 

radar images acquired under wet conditions. Intact riparian zones and forested areas 

are typically much darker on these images than adjacent freshly logged areas because 

of considerable canopy volume scattering losses and significant areas of radar-induced 

shadow. On an image acquired after the event, windthrow has been characterized in 

some instances by a significant brightening of pixels in the area where it has occurred 

(Murtha, 1998a, 1998b, 1998c, 2000a, 2000b). It was postulated that the Getis statistic, 

designed to detect both an increase in the magnitude of values and degree of spatial 

autocorrelation associated with them, could be used to detect the event and its extent. A 

predicted increase in spatial autocorrelation associated with windthrow was based on 

the premise that a group of pixels associated with standing timber exhibit 

heterogeneous values, and therefore low spatial autocorrelation, while brighter areas 

associated with windthrow damage and logging activity exhibit comparatively 

homogeneous pixel values and therefore higher spatial autocorrelation. It was 

suggested that the increased brightness and higher spatial autocorrelation could be 

used to detect and map the extent of windthrow damage. 

Based on trials first conducted with cut-block S501, it was found that the Getis statistic 

could indeed be used for detecting large-scale structural changes in the landscape 

caused by timber harvesting. In its application here, the Getis statistic behaved 

somewhat like an averaging filter with the enhancement of both bright and dark areas 

being an added effect. Highly positive Getis values were associated with bright areas in 

the image whereas highly negative Getis values were associated with dark areas. Areas 
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of increased brightness in the cut-block were effectively revealed by differencing two 

MaxGetis value images. This was found to be sufficient to perceive the location and 

extent of the freshly logged area. The difference image could also be thresholded at 

95% to reveal the area where the most significant increases in MaxGetis value had 

occurred in the cut-block between one imaging date and the next. The results obtained 

from this approach were considered more meaningful for detecting change than the 

next best alternative, the CHDET algorithm, because no data were lost to speckle 

filtering. The absence of such filtering allowed thresholding to capture most of the 

significant increase in scene brightness that had occurred between two imaging dates. 

However, thresholding did not adequately identify the extent of the disturbance that 

could be perceived by eye because not all areas exhibited significantly higher MaxGetis 

values. 

Unexpectedly, a corresponding increase in the extent of high spatial autocorrelation did 

not occur in the cut-block, something that was presumed to occur and would be useful 

for mapping the extent of structural change. For many pixels, it was found that the size 

of kernel which generated the MaxGetis value could just as easily decrease as increase 

after the trees had been removed. In fact, the proportion of MaxGetis values contributed 

by the various kernels was about the same in the cut-block area before and after 

logging with the majority being split between the 3x3 and 11x11 kernels. It also revealed 

that freshly logged areas could be as heterogeneous as forested areas for this type of 

radar data. 

MaxGetis differencing and thresholding of the S501 cut-block appeared to offer 

promising results for detecting a significant proportion of structural change known to 

have occurred in the scene and therefore the approach was adopted in the work that 

followed. However, this initial success was largely due to the fact that almost all of the 

change detected by differencing and thresholding such a small dataset (256 line by 256 

pixel) was confined to the cut-block area. An assessment of significant change in the 

following period, as well as with changes associated with timber harvesting and 

windthrow on all of the other images that were 1024 pixels by 1024 lines in size, 
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demonstrated that thresholding MaxGetis difference images produced an unacceptably 

high number of what can only be described as false alarms since no structural change 

could be associated with the majority of them. The number of apparent false alarms 

varied from one set of images to another depending on the extent of structural change 

in the scene, i.e., a set of images with one recently logged cut-block had a far higher 

number of apparent false alarms than another set that had several recently logged cut-

blocks. 

The most obvious source of the problem may be the threshold level itself. A 95% 

threshold level means that 5% of the pixels on the difference image will be identified as 

representing significant change irrespective of the reason for the significant increase in 

MaxGetis value. Raising the threshold level would be an obvious solution, however, it 

was found in all cases that raising it to as high as 99% did not entirely eliminate false 

alarms. There were still a considerable number of instances where there was a 

significant increase in MaxGetis value with no known structural change associated with 

them. 

Part of the problem can be attributed to MaxGetis differencing itself. MaxGetis values 

range from positive to negative with 90% of the values typically distributed between -6 

and +8, although the range can be wider and more asymmetrical in some datasets. 

Depending on the spatial arrangement of MaxGetis values, it is possible to obtain 

significant differences between MaxGetis values at the 95% threshold level of 7.5 for 

pixels that appear to be grey on one MaxGetis image and black on another. The same 

could arise between pixels that are very bright on one image and not so bright on the 

other. The MaxGetis values relate back to the corresponding values on the 3° image 

from which the MaxGetis values were generated. In some cases, the MaxGetis value is 

higher or lower than what would be suggested by the (3° value simply because the 

MaxGetis value for that pixel is influenced by the B° values of the adjacent pixels in the 

kernel. 

99 



Another contributor may have been speckle noise, something that is inherent in all radar 

data, particularly in datasets where higher spatial resolution is provided at the cost of 

lower radiometric resolution (Raney, 1998). It was decided early on that the data should 

not be speckle filtered, lest it alter data necessary for detecting small scale changes that 

would commonly be associated with isolated windthrow events. The way in which the 

Getis value is computed for each pixel in the image certainly suggests that it would be 

suitable for application to unfiltered radar data, since the kernel method of processing 

the data would reveal the nature of the data in the absence of speckle 1 5 . This was 

supported with the observation that the slightly larger bitmaps generated from speckle 

filtered data are quite similar in number and appearance to those derived from unfiltered 

data. The relatively minor reduction of small bitmaps in the speckle filtered difference 

data suggests that speckle noise did not seriously interfere with the consistent detection 

of significant increases in MaxGetis value. However, it did indicate that speckle noise 

may be responsible for some of the apparent false alarms. 

Some of the false alarms may have also been generated as a result of the data being 

single look. Due to Gaussian scattering within a particular resolution cell or pixel, the 

true reflectivity of a target can only be reliably determined from a large number of 

measurements or samples (Raney, 1998). For the 6° amplitude format data used here, 

these measurements will have a Rayleigh distribution, the same distribution that 

characterizes the entire image (Oliver and Quegan, 1998). Since the reflectivity of a 

pixel is derived from just a single sample (or look), its observed brightness can vary 

considerably from one image to the next due to Gaussian scattering of the incident 

radar wave (Raney, 1998). This variability is further compounded by the pulse repetition 

frequency (PRF) of the radar instrument. For the R A D A R S A T data used here, the P R F 

is around 1254 Hz. This parameter influences the perspective from which the satellite 

'sees' the target each time the backscatter data are acquired. Consequently, the target 

In fact, the 5x5 Getis value images appeared to be identical in appearance to the Gamma M A P 

filtered images. 
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could conceivably be dark on one image and bright on the next, leading to a potential 

false alarm in the difference image. 

Despite the fact that all four parent images were acquired under similar conditions, 

weather, and other factors may have had more of an influence on backscatter than 

initially thought. Seasonal and environmental factors, particularly phenological state and 

moisture content of the vegetation, as well as variability in soil and surface moisture 

conditions, are known to greatly influence backscatter signal strength. They can also 

influence the characteristics of speckle noise in the data (Leckie, 1998). It is certainly 

possible that local surface wetness was sufficiently different at each of the times the 

data were acquired. This could certainly vary across the area during a particular scene 

acquisition, leading to localized brightening and darkening which may in itself generate 

false alarms. 

Perhaps a more fundamental issue that influenced the appearance of backscatter in 

multi-temporal B° composites was one particular characteristic of the radar data used in 

this research. All of the B° images are quite grainy with strings and blocks of bright and 

not-so-bright pixels separated by valleys filled with dark pixels. This pattern of 

graininess, quite unlike the more homogeneous optical data collected by satellites such 

as LANDSAT, differs significantly among images as can be seen in Figure 4 on page 

11. It is particularly obvious when rapidly flipping back and forth between two B° images 

on a computer screen. When three images are put together into a multi-temporal 

composite, the graininess is preserved in the arrangement of the pixels (see Figure 55, 

right). The brightness and colour of each pixel in the composite is very much dependent 

upon the strength of the backscatter recorded in all three images at that particular pixel 

location. Although converting B° to Getis value images reduces this effect, the inherent 

graininess of the data could significantly influence the outcome of MaxGetis image 

differencing. 

The stability of the RADARSAT sensor is itself not in question. The calibration and 

stability of the sensor is verified continuously using RADARSAT-1 Precision 
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Transponders and multi-temporal analysis of data collected over a large swath of 

Amazonian rainforest (Srivastava et al., 2003). A recent analysis of 780 datasets 

acquired over that area showed that the R A D A R S A T sensor is remarkably consistent in 

all beam modes, the radiometric error being no more than about ±0.5 dB. A noticeable 

annual cyclic variability of lesser magnitude was thought to be due to inherent variations 

in backscatter from the site or variability in instrument gain (Luscombe, 2003). 

In the end, the number of apparent false alarms was arbitrarily reduced so that the 

analysis could more correctly identify where extensive increases in backscatter had 

occurred. The method used here was to post-process the bitmap coverage so that only 

bitmaps over a certain size would be retained. The reasoning behind this was that the 

larger ones were always correlated with structural change while the smaller ones 

removed in the post processing were not in the vast majority of cases. The preferred 

method would have been to use something similar to the MINNEIGH feature in the 

CHDET algorithm. However, this functionality was not available outside of that 

algorithm. Consequently, two alternative approaches were evaluated. 

The first was SIEVE, a tool commonly used to post-process bitmaps generated by 

classification algorithms. This tool amalgamates small bitmaps under a specified size 

into adjacent bitmaps of another class. It preserves the geometry of bitmaps over the 

specified size, an attractive feature; however, narrow bitmaps that are only one pixel 

wide are also retained if they contain a sufficient number of adjoining pixels. Retaining 

such narrow bitmaps (one pixel wide is equivalent to just over 3 metres) was considered 

to be undesirable in this application and therefore SIEVE was dropped in favour of the 

second approach. 

The second approach makes use of the mode filter. This filter closely mimics the 

MINNEIGH functionality in that it takes into account the number of neighbours that a 

particular pixel has before removing the pixel from the coverage. In its implementation 

here, the bitmap segment was converted to an image plane. In this state, the bitmap 

pixel had a value of 1 and the pixels in between the bitmaps had a value of 0. Although 
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the mode filter can use a kernel from 1x3 to 7x7 in size, trials suggested that the most 

useful size was 5x5. Using a 5x5 kernel centred upon a particular pixel, the mode 

filtering program counted the number of neighbouring pixels within the kernel that had a 

value of 1. If the number was 12 or more, the centre pixel was retained. Unlike 

MINNEIGH, which is run iteratively until changes in the bitmap coverage no longer 

occur, the mode filter was run only once in its application here. The 5x5 kernel removed 

a substantial number of small bitmaps while smoothing the edges and filling in holes in 

the larger bitmaps. This effect on larger bitmaps was considered inconsequential as the 

bitmaps were to have been used to indicate where backscatter had increased 

significantly from one imaging date to the next. However, the number of apparent false 

alarms remained far too great to be acceptable for reliable detection of structural 

change in the landscape. Therefore, it was concluded that differencing Getis and 

MaxGetis images and thresholding the resulting difference images was inappropriate for 

the type of radar data used in this research. 

Since areas that exhibited elevated levels of backscatter did not exhibit a greater 

degree of homogeneity than forested areas as originally thought, it appeared that the 

Getis statistic had no value whatsoever for change detection. However, structural 

features, areas of high backscatter and contrast are all enhanced on multi-temporal 

MaxGetis composites and consequently they are much easier to interpret than multi-

temporal B° composites. Therefore, these could potentially be quite useful for visual 

detection of change in areas where it is expected to occur. 
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Chapter 7 Conclusion 

7.1 Suggestions for Further Research 

By comparing the spectral signature of dead trees in a blowdown area on a 

LANDSAT image against the extent and magnitude of backscatter captured from 

the same area at about the same time on a R A D A R S A T image, it was 

determined that windthrow damage generally did not exhibit noticeably higher 

backscatter than adjacent standing trees in the data used here. This of course 

does not rule out the possibility that such damage can be detected more 

effectively by other types of radar data. Fine 2 Mode, single look R A D A R S A T 

data was used here because it was the highest spatial resolution data available 

and therefore offered the greatest opportunity to detect small, isolated windthrow 

events in riparian zones. Other data at approximately the same spatial resolution 

could be obtained by the C-band Advanced Synthetic Aperture Radar (ASAR) 

instrument on board the ENVISAT satellite (European Space Agency, 2002). 

These data can be collected in W , V H , and HV polarization in addition to the HH 

polarization of the R A D A R S A T Fine 2 Mode data used here. Similar data at 3 

and 10 metres resolution could also be obtained from RADARSAT-2 , due to be 

launched in 2005 (RADARSAT International, n.d.). Data collected at a 

polarization other than HH may be more sensitive for detection of increased 

backscatter associated with windthrow damage and therefore its potential for 

detecting windthrow damage should be evaluated. 

Multi-look data at a higher spatial resolution than previously available could also 

be acquired by RADARSAT-2 . Multi-look data reduce uncertainty over the true 

magnitude of backscatter from a target by averaging several samples obtained 
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from different vantage points and therefore they have a potential for providing 

more consistent measurements of backscatter from areas being monitored on a 

continuous basis. Previously available multi-look data have had a maximum 

spatial resolution of 30 metres which is more appropriate for differentiating 

change at the cut-block scale. However, the forthcoming availability of 10 metre 

resolution "multi-look fine" imagery from RADARSAT-2 could perhaps be usable 

for monitoring small scale windthrow events, provided these areas exhibit 

significantly higher backscatter than adjacent forest areas. 

If exploratory studies suggest that other types of data are able to detect 

significantly higher backscatter resulting from windthrow, then a rigorous field-

based approach should be undertaken over several years to correlate elevated 

levels of backscatter in riparian zones and along cut-block boundaries with 

windthrow damage and other factors. A selection of riparian zones identified on 

the local licensee's cutting permit development plan maps should be monitored 

from before the associated cut-block is logged to several years after. Since 

surface and soil moisture have a significant influence on the characteristics and 

level of backscatter returned to the satellite, the radar data used in the study 

should all have been acquired under similar weather conditions. Data acquired 

during the winter appear to be the best for the North Vancouver Island area since 

the soil is typically saturated and the vegetation is frequently quite wet thus 

ensuring that cut-blocks are highly visible. A number of weather stations should 

be established in the immediate area to record weather conditions at the time the 

images are acquired. Soil and humus moisture content should also be measured 

in the riparian zones and adjacent cut-blocks at the time of image acquisition. 

Site conditions can conveniently be captured by camera. Vertical and oblique 

aerial photos taken with a hand-held digital camera taken from a helicopter or 

light aircraft should be taken just prior to the radar data being acquired. To 

facilitate registration of both aerial photos and radar images, registration markers 
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and trihedral corner reflectors should be set up and their positions determined 

with a G P S receiver. 

Once a radar image has been received from the agency responsible for acquiring 

it, the forest cover map showing the location and extent of the riparian zones 

being monitored should be registered to the image and the location of areas 

exhibiting high backscatter should be digitized. The registration of the map to the 

image can then be reversed so that the correct ground coordinates of the high 

backscatter areas can be obtained. A G P S receiver can then be used to visit the 

areas on the ground so that factors that may be responsible for the elevated 

backscatter, such as soil and surface moisture conditions; density, phenological 

state and morphological characteristics of vegetation; configuration and 

characteristics of scatterers; and microtopography, can be determined. 

Although MaxGetis multi-temporal composites are useful for visualizing areas 

exhibiting high backscatter, the characteristics of radar data are such that the 

Getis statistic does not provide any additional benefits that would allow it to be 

used for detecting and mapping the extent of structural changes in the 

landscape. Consequently, some other approach will be required. 

7.2 Summary of Results 

The research conducted for this thesis was principally concerned with 

determining the effectiveness of the Getis statistic for detecting structural change 

in the landscape associated with timber harvesting and windthrow. Both of these 

types of disturbance were presumed to be detectable by an increase in 

backscatter in the area in which they occurred. Elevated levels of backscatter 

can be visually perceived in multi-temporal composites or by thresholding 

difference images. One established method for elucidating significant increases 

in backscatter applied a threshold to a speckle filtered, logarithmically scaled 

ratio image. However, it was found that this approach did not capture the full 
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extent of timber harvesting in a cut-block chosen for testing change detection 

methods. 

Based on results obtained from the same test cut-block, Getis value difference 

images proved to be more helpful than logarithmically scaled ratio images for 

determining the extent of the increased backscatter caused by timber harvesting. 

Difference images generated from the 11x11 Getis value images appeared to 

reveal the greatest extent of change in the test cut-block. However, such a large 

kernel also tended to obscure small scale changes. Difference images generated 

from MaxGetis value images appeared to be better as they enabled optimal 

detection of both small and large scale changes in backscatter. Thresholding 

these images to highlight areas where backscatter had increased significantly 

also appeared to provide more promising results, particularly after the 95% 

threshold bitmaps had been mode filtered to reduce the number of very small 

bitmaps associated with apparent false alarms. However, changes in the 

distance over which the highest local spatial autocorrelation associated with the 

maximum Getis value for a particular pixel were inconsistent and resulted in the 

finding that the pattern of backscatter from freshly logged areas was not 

homogeneous as originally presumed but that it was just as heterogeneous as it 

was from forested areas. The lack of homogeneity therefore made it impossible 

to map the extent of the disturbance. Reducing speckle noise through filtering 

was also determined to be inappropriate because it diminished the magnitude of 

differences between pixels needed for detecting small scale changes. 

Despite the initial success in using MaxGetis images to reveal the location and 

extent of significant increases in backscatter caused by logging in the test cut-

block, applying the technique to other images to detect structural change resulted 

in a significant number of false alarms, even after the thresholds had been raised 

to 99%. The prevalence of these false alarms made it difficult to be sure that the 

significant increases in backscatter that emanated from riparian zones were in 

fact due to windthrow, especially after it was discovered that blowdown evident 
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on a LANDSAT image was not particularly evident on a R A D A R S A T image 

acquired at about the same time. Therefore, it was concluded that thresholding 

MaxGetis difference images was not a reliable means of detecting significant 

increases in backscatter due to windthrow. However, it was found that multi-

temporal composites of MaxGetis images could be particularly useful for 

interpretation of features and visualizing macro scale changes in the landscape 

attributable to logging and road construction due to their enhancement of 

contrast and structure in the scene. 
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Table A-1. Feature-based threshold results for datasets processed by the C H D E T algorithm. 

Feature Dataset Feature Imaging Data Arithmetic Thresholding Proportion of Proportion of 

Size Size Dates for Format Operation Applied Pixels in Feature Pixels in Feature 

Cutblock (pixels) (pixels) Arithmetic After Arithmetic Exceeding Positive Exceeding Positive (pixels) 
Operations Operation Threshold (%) and Negative Operations 

Threshold (%) 

Cutblock S501 
(Small dataset) 

65,536 18,930 1998, 1997 dB Filtered log ratio 1.65o (PFA 5%) 3.0 4.0 Cutblock S501 
(Small dataset) 

65,536 18,930 1998, 1997 dB Filtered log ratio Cutblock S501 
(Small dataset) 

65,536 18,930 1998, 1997 

Cutblock S501 
(Large dataset) 

1,048,576 18,930 1998, 1997 dB Filtered log ratio 1.65a (PFA 5%) 3.0 4.0 Cutblock S501 
(Large dataset) 

1,048,576 18,930 1998, 1997 dB Filtered log ratio Cutblock S501 
(Large dataset) 

1,048,576 18,930 1998, 1997 

Cutblock 594 1,048,576 46,971 1999, 1996 dB Filtered log ratio 1.65a (PFA 5%) 2.7 3.9 Cutblock 594 1,048,576 46,971 1999, 1996 dB Filtered log ratio Cutblock 594 1,048,576 46,971 1999, 1996 

Cutblock M5307 1,048,576 40,698 1998, 1996 dB Filtered log ratio 1.65a (PFA 5%) 5.3 5.7 Cutblock M5307 1,048,576 40,698 1998, 1996 dB Filtered log ratio Cutblock M5307 1,048,576 40,698 1998, 1996 

Cutblock C99 1,048,576 32,889 1999, 1997 dB Filtered log ratio 1.65a (PFA 5%) 3.0 5.1 Cutblock C99 1,048,576 32,889 1999, 1997 dB Filtered log ratio Cutblock C99 1,048,576 32,889 1999, 1997 
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Table A-2. Feature-based threshold results and summary statistics for Getis format data. 

Feature Dataset Feature Imaging Data Arithmetic Thresholding Proportion of Following Mean Standard Resulting 
Size Size Dates for Format Operation Applied Pixels in Feature Statistics Deviation (a) Dataset 

Cutblock (pixels) (pixels) Arithmetic After Arithmetic Exceeding Positive Apply To Normally (pixels) (pixels) 
Operations Operation Threshold (%) Distributed? 

Cutblock S501 
(Small dataset) 

65,536 18,930 1998, 1997 3x3 Getis Difference 95% 11.1 Whole Dataset 0.003 0.991 yes Cutblock S501 
(Small dataset) 

65,536 18,930 1998, 1997 3x3 Getis Difference 
Feature 0.341 1.110 yes 

Cutblock S501 
(Small dataset) 

65,536 18,930 1998, 1997 

11x11 Getis Difference 95% 15.8 Whole Dataset 0.013 0.480 no 

Cutblock S501 
(Small dataset) 

65,536 18,930 1998, 1997 

11x11 Getis Difference 
Feature 0.325 0.600 no 

Cutblock S501 
(Small dataset) 

65,536 18,930 1998, 1997 

MaxGetis Difference 95% 12.1 Whole Dataset 0.007 1.031 no 

Cutblock S501 
(Small dataset) 

65,536 18,930 1998, 1997 

MaxGetis Difference 
Feature 0.423 1.163 no 

Cutblock S501 
(Large dataset) 

1,048,576 18,930 1998, 1997 3x3 Getis Difference 95% 16.7 Whole Dataset 0.000 0.913 yes Cutblock S501 
(Large dataset) 

1,048,576 18,930 1998, 1997 3x3 Getis Difference 
Feature 0.442 1.151 almost 

Cutblock S501 
(Large dataset) 

1,048,576 18,930 1998, 1997 

11x11 Getis Difference 95% 42.1 Whole Dataset 0.000 0.348 yes 

Cutblock S501 
(Large dataset) 

1,048,576 18,930 1998, 1997 

11x11 Getis Difference 
Feature 0.425 0.623 no 

Cutblock S501 
(Large dataset) 

1,048,576 18,930 1998, 1997 

MaxGetis Difference 95% 20.4 Whole Dataset -0.001 0.936 no 

Cutblock S501 
(Large dataset) 

1,048,576 18,930 1998, 1997 

MaxGetis Difference 
Feature 0.548 1.202 no 

Cutblock 594 1,048,576 46,971 1999, 1996 3x3 Getis Difference 95% 11.3 Whole Dataset -0.0011 0.896 no Cutblock 594 1,048,576 46,971 1999, 1996 3x3 Getis Difference 
Feature 0.251 1.050 almost 

Cutblock 594 1,048,576 46,971 1999, 1996 

11x11 Getis Difference 95% 24.0 Whole Dataset -0.003 0.391 no 

Cutblock 594 1,048,576 46,971 1999, 1996 

11x11 Getis Difference 
Feature 0.248 0.603 no 

Cutblock 594 1,048,576 46,971 1999, 1996 

MaxGetis Difference 95% 13.3 Whole Dataset -0.007 0.909 no 

Cutblock 594 1,048,576 46,971 1999, 1996 

MaxGetis Difference 
Feature 0.326 1.107 no 

Cutblock M5307 1,048,576 40,698 1998, 1996 3x3 Getis Difference 95% 19.0 Whole Dataset 0.000J 0.911 no Cutblock M5307 1,048,576 40,698 1998, 1996 3x3 Getis Difference 
Feature 0.541 1.162 almost 

Cutblock M5307 1,048,576 40,698 1998, 1996 

11x11 Getis Difference 95% 44.6 Whole Dataset 0.001 0.380 yes 

Cutblock M5307 1,048,576 40,698 1998, 1996 

11x11 Getis Difference 
Feature 0.531 0.601 no 

Cutblock M5307 1,048,576 40,698 1998, 1996 

MaxGetis Difference 95% 23.3 Whole Dataset 0.003 0.917 no 

Cutblock M5307 1,048,576 40,698 1998, 1996 

MaxGetis Difference 
Feature 0.679 1.197 no 

Cutblock C99 1,048,576 32,889 1999, 1997 3x3 Getis Difference 95% 14.9 Whole Dataset 0.000 0.874 no Cutblock C99 1,048,576 32,889 1999, 1997 3x3 Getis Difference 
Feature 0.420 1.050 yes 

Cutblock C99 1,048,576 32,889 1999, 1997 

11x11 Getis Difference 95% 37.6 Whole Dataset 0.001 0.360 almost 

Cutblock C99 1,048,576 32,889 1999, 1997 

11x11 Getis Difference 
Feature 0.411 0.566 no 

Cutblock C99 1,048,576 32,889 1999, 1997 

MaxGetis Difference 95% 18.2 Whole Dataset 0.000 0.881 no 

Cutblock C99 1,048,576 32,889 1999, 1997 

MaxGetis Difference 
Feature 0.524 1.092 no 
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Table A-3. Proportion of pixels in riparian zones and blowdown areas indicating significant change on MaxGetis difference images. 

Feature 

Riparian Zone or 
B l o w d o w n Area 

Dataset 
Size 

(Pixels) 

Feature 
Size 

(Pixels) 

Imaging Dates 
for MaxGetis 

Difference Image 

T h r e s h o l d i n g 
A p p l i e d 

T o Difference 
Image 

Proportion of 
Pixels in Feature 

Exceeding Positive 
Threshold (%) 

Fol lowing 
Statistics 
Apply T o 

Mean Standard 
Deviation (a) 

Strip 31a 1,048,576 3160 1999, 1996 95% 12.1 Whole Image -0.001 0.909 Strip 31a 1,048,576 3160 1999, 1996 95% 12.1 
Feature 0.365 1.032 

Strip 31a 1,048,576 3160 1999, 1996 95% 12.1 

Strip 16(S505) 1,048,576 922 1999, 1996 95% 8.9 Whole Image -0.001 0.943 Strip 16(S505) 1,048,576 922 1999, 1996 95% 8.9 
Feature 0.051 1.077 

Strip 16(S505) 1,048,576 922 1999, 1996 95% 8.9 

Edge Blowdown 1,048,576 1731 1999, 1996 95% 23.6 Whole Image -0.001 0.943 Edge Blowdown 1,048,576 1731 1999, 1996 95% 23.6 
Feature 0.827 1.023 

Edge Blowdown 1,048,576 1731 1999, 1996 95% 23.6 

Edge Blowdown (M5307) 1,048,576 1649 1999, 1997 95% 3.3 Whole Image 0.000 0.881 Edge Blowdown (M5307) 1,048,576 1649 1999, 1997 95% 3.3 
Feature 0.100 0.763 

Edge Blowdown (M5307) 1,048,576 1649 1999, 1997 95% 3.3 

Strip 17 (S505) 1,048,576 986 1999, 1996 95% 14.1 Whole Image -0.001 0.943 Strip 17 (S505) 1,048,576 986 1999, 1996 95% 14.1 
Feature 0.324 1.078 

Strip 17 (S505) 1,048,576 986 1999, 1996 95% 14.1 

Strip 18 (S505) 1,048,576 888 1999, 1996 95% 7.5 Whole Image -0.001 0.943 Strip 18 (S505) 1,048,576 888 1999, 1996 95% 7.5 
Feature 0.367 0.920 

Strip 18 (S505) 1,048,576 888 1999, 1996 95% 7.5 

Strip 13 1,048,576 1106 1999, 1996 95% 8.7 Whole Image 
Feature 

-0.001 
0.278 

0.953 
0.950 

Strip 25 1,048,576 4515 1999, 1996 95% 6.2 Whole Image -0.001 0.953 Strip 25 1,048,576 4515 1999, 1996 95% 6.2 
Feature -0.006 0.998 

Strip 25 1,048,576 4515 1999, 1996 95% 6.2 

Strip 26 1,048,576 1029 1999, 1996 95% 7.8 Whole Image -0.001 0.953 Strip 26 1,048,576 1029 1999, 1996 95% 7.8 
Feature -0.049 1.260 

Strip 26 1,048,576 1029 1999, 1996 95% 7.8 

Strip 28 1,048,576 2733 1999, 1996 95% 5.7 Whole Image -0.001 0.953 Strip 28 1,048,576 2733 1999, 1996 95% 5.7 
Feature 0.139 0.918 
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