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Abstract 

Mass movement risk assessments are usually separated into two components: movement 

initiation and the travel distance of the event. The initiation point is the point on the slope where 

the mass failed. This position is hard to determine and a common assumption is that it is the 

highest elevation of the scar. The travel distance is the distance from the initiation point to the 

point where all material is deposited. This study concentrates on particular forms of mass 

movements, namely unconfined debris flows and debris slides. 

The parameters that characterize mass movements change over time. Usually, measurements are 

performed after the event, resulting in the data being of questionable precision. The reliability of 

any mass movement travel investigation is dependent on the accuracy of the measured values. 

The results obtained are dependent on the precision of the original data, and can affect 

predictions made from the data in two ways: uncertainties in model lack-of fit (data suitability) 

and uncertainties in data meaning. 

This study builds a new debris slide-flow travel distance prediction model with a narrow 

confidence interval that can take into account the vagueness of the variables. Fuzzy set theory 

has been applied in order to overcome uncertainties related to the true value of the parameters. 

The study was performed using data from the Arrow Forest District, British Columbia, Canada. 

A total of 38 events were measured, classified as unconfined debris slide - flow, traveling 

through forested terrain, and used to build and test the debris slide - flow travel distance 

prediction model. 

The relationship between debris slide-flow length and other debris slide-flow attributes (i.e. 

geomorphology, geology, canopy closure and species) was established using regression analysis 

on crisp sets. A new attribute was introduced to capture the debris slide-flow path. The new path 

variable is based on the one-to-one relationship that exists between the binary and decimal 

numeration systems. The path variable uses uniform sections of the debris slide-flow, called 

reaches, which are larger than 25 m, except for first and last reach. Each reach can have a value 0 

or 1 depending on the slope of the upstream reach. The first (uppermost) reach always has a 

value of 1. The values assigned to other reaches follows the rule that if the slope of the reach is 
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less that the slope of the reach immediately above it, it is assigned value of 0; if the slope of the 

reach is greater than that of the upstream reach, it is assigned a value of 1. The event stops if the 

slope is less than 20° or it reach the stream. The analysis of the crisp data set revealed that the 

new path variable, slope, azimuth, height of the stand, canopy closure and horizontal and vertical 

curvature are the significant variables (at a significance level of a=0.05) affecting debris slide-

flow travel distance. 

The significant variables supplied by the regression analysis using crisp sets were fuzzified in 

order to introduce the vagueness of reality. The fuzzified variables were used in a fuzzy 

regression analysis, based on non-linear programming. The same variables used in the regression 

analysis of crisp sets were used in the fuzzy analysis. The confidence interval for debris slide-

flow travel distance prediction model using the fuzzy sets was smaller than 40% of the event 

travel distance. 

The models for the crisp and fuzzy sets show similar trends. Each model predicts the debris 

slide-flow travel distance with more than 80% precision. The final model used for the prediction 

combines both models, thereby minimising the confidence interval and the variable fuzziness. 

The equations derived from the models can be implemented in management software that uses 

digitized contour maps. 
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4. Canopy closure 

5. Compact set 
6. Composite variable 

7. Confidence interval 
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9. Cook's distance 

10 Correlation 
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11 COVRATIO 
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15 Dependent variable 
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The ratio of a region's multi-annual mean precipitation (in mm m"2) to the 
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Martonne, 1926) 
A fact or statement (as a proposition, axiom, postulate, or notion) 
considered true without demonstration (based only on empirical 
observations or theoretical inferences) 
Horizontal direction expressed as the angular distance between the north 
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Variable obtained combining two or more transformed or untransformed 
raw variables 
A confidence interval gives an estimated range of values which is likely to 
include an unknown population parameter, the estimated range being 
calculated from a given set of sample data 
Landslide that has as its path a gully or channel 
Statistical test carried out to assess the influence of an individual 
observation on the dependant variable 
A correlation coefficient is a number between -1 and 1 which measures 
the degree to which two variables are linearly related 
Statistical test carried out to find the outliers in the data set related to the 
independent variables that can affect the regression 
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Mass of poorly sorted sediment, saturated with water, flowing down as a 
result of the gravitational forces; both solid and fluid processes influence 
the motion. 
Small, rapid movement of largely unconsolidated material that slides or 
rolls downward to produce irregular topography 
The predicted or response variable of the functional or stochastic relation 
Statistical test carried out to assess the influence of the outliers in the data 
set related to the dependent variable (detects changes in the coefficients 
when an observation is eliminated from analysis) 
Statistical test carried out to assess the influence of the outliers in the data 
set related to the dependent variable (detects the difference between 
predicted values determined first with all the observations in the analysis 
and second with one dropped) 
Includes any land, resources, environmental values, buildings, economic 
activities and/or people in the area that may be affected by the landslide 
hazard 
Surface that forms the lower boundary of displaced material below the 
original ground surface 
The lowest part of the landslide where the displaced material lies above 
original ground surface 
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21 Fine particle content 
22 Fuzzy number 

23 Fuzzy regression 
24 Fuzzy sets 
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26 Homoscedasticity 
27 Horizontal length 

28 Hypothesis 

29 Independent variable 

30 Influential 
observation 

31 Lack-of-fit 

32 Laminar flow 

33 Landslide 
34 Landslide initiation 

point 
35 Landslide path 
36 Landslide travel 

distance 
37 Membership 

function 
38 Modified variable 

39 Multi-collinearity 

40 Normal distribution 

The percentage of particles smaller than 0.002 mm (silt and clay) 
Fuzzy set with linear symmetric membership function, determined by its 
center (most likely value) and spread (difference between most likely and 
less likely value) 
Regression that uses fuzzy numbers 
Fuzzy logic is a superset of conventional (Boolean) logic that introduces 
the concept of partial truth - truth-values between "completely true" and 
"completely false". (A set with compounding elements having as the 
membership function co-domain the compact set [0, 1]) 
Statistical test carried out to find the outliers in the data set related to the 
independent variables that can affect the regression 
The condition of equal error variances 
The length of the landslide measured horizontally equals the product of 
slope length and slope cosine 
A theory that has been put forward, either because it is believed to be 
true or because it is to be used as a basis for argument, but has not been 
proved 
The predictor or explanatory variable of the functional or stochastic 
relation 
Observation that causes major changes in the fitted regression equation if 
it is excluded from the data set 
Test statistics used to assess the correctness of the functional part of the 
model 
Flow that moves in parallel layers with one layer of fluid sliding over 
another 
Any mass movement down the slope of rock, debris or earth 
Highest point of the landslide limited above by the undisplaced adjacent 
material 
The landslide trajectory 
The slope distance between landslide initiation point and landslide tip 

Function that associates a value between 0 and 1 (degree of belief) to any 
element of a set (set of interest) 
Variable used in regression analysis obtained from a raw variable using 
different functions or procedures 
Situation when the predictor variables are correlated among themselves 
(also known as inter-correlation) 
A continuous random variable X, taking all real values in the range (-°°, 
+°°) is said to follow a Normal distribution with parameters (I and a, 
written: X~N(p,, a2) if it has probability density function: 

exp •M 
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42. Plan/profile curvature 

43. Precipitation 
effectiveness index 

44. Probability of 
occurrence 

45. Raw variable 
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47. Regression assessment 

48. Regression significance 

49. Rheology 
50. Ridge regression 

51. Risk 

52. Risk assessment 
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54. Shearing stress 

55. Significance level 
56. Significant variables 

57. Single path landslide 
58. Slope length 
59. Soil specific weight 

60. Temperature efficiency 
index 

61. Tip 

62. Travel distance 

63. Turbulent flow 

64. Vulnerability 

An outlier is an observation in a data set that is far removed in 
value from the others in the data set 
The terrain curvature expressed in term of convexity/concavity of 
the horizontal/vertical profile 

12 p 
PE = ^l\5*(——7^)'0/9 where P- average monthly precipitation 

(inches) of each month and T-average monthly temperature (°F) 
The chance or probability that a landslide hazard will occur 

Variable expressed in international system units 
A linear portion of the event trajectory, having the same geology, 
constant slope, azimuth, width, volumetric behavior 
characteristics and confinement type 
Set of statistical tests used to evaluate the lack-of-fit of the 
regression function 
An estimated measure of the degree to which the relationship 
represented by the regression equation is representative for the 
population 
Science dealing with the deformation and flow of matter 
Method used to remedy the multi-collinearity problems of the 
regression equations by modifying the least square to allow biased 
estimators of the regression coefficients 
A characteristic of a situation or action wherein one or several 
uncertain undesirable outcomes are possible 
The process of quantifying and describing the risk associated with 
some situation or action 
Length of the last part of a mass movement characterized only by 
deposition 
Stress that slices matter into parallel sections that slide in opposite 
directions along their adjacent sides 
The probability of rejecting the null hypothesis when it is true 
Dependent variable used in regression analysis having the 
significance level smaller than an initial established value 
Landslide with trajectory described by a single continuous line 
The landslide length measured on the slope 
Ratio between weight of given volume of material and weight of 
equal volume of water at 4° C 

TE = ^—-—, where T is the mean monthly temperature 

measured in °F 
Point on the fan farthest from landslide initiation point 
Distance measured from the initiation point until all the moving 
material is deposited 
Flow that moves in a chaotic manner rather than in parallel sliding 
layers 
The degree of damage caused by a landslide hazard to the 
elements at risk 
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1 Introduction 

Landslides are natural phenomena occurring in steep terrain and involving down-slope mass 

movement. The material involved in the movement contains water, soil, rocks and organic 

debris. The motion speed varies from extremely slow (<16 mm/year) to extremely rapid (>5 

m/sec) depending on the movement type (Cruden and Varnes, 1996). Without exception any 

landslide poses a risk to downslope resources. If the mass movement is rapid then human life can 

also be threatened (Hansen, 1984). In Canada, over a period of 157 years from 1840 to 1996, a 

total of 40 landslide disasters were recorded. Of these 40 events, the most destructive were rock 

avalanches, rockslides and rock falls; they caused 233 deaths. Debris flows and debris 

avalanches were responsible for 65 deaths. The province with highest concentration of landslide 

disasters was British Columbia, having more than 50% of the events that occurred in Canada 

(Evans, 1997). 

What can be done to prevent these kind of catastrophic events? The first step is to identify the 

causes of such events. Work done to date enables the areas most susceptible to terrain failure to 

be identified. The most common mechanisms triggering landslides have been identified as 

intense rainfall, rapid snowmelt, water-level change, volcanic eruption and earthquakes 

(Wieczorek, 1996). All these activities are connected with local conditions and several 

algorithms using different input data and analysis techniques have been elaborated to identify 

areas susceptible to terrain failure (Turner and McGuffey, 1996; Soeters and van Westen, 1996). 

The types of analysis used in landslide investigations include inventory, heuristic analysis, 

statistical analysis and deterministic analysis. Regardless of the analysis type, the terrain 

attributes that are always considered are slope, geology and land use. As a result of the studies 

targeting landslide causes and their initiation processes, a series of guidebooks to be used in 
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current geomorphological and engineering practice have been developed (Hammond et al, 1992; 

Mapping and Assessing Terrain Stability Guidebook, 1999). 

Most studies of landslide travel distance have considered a small number of attributes describing 

the landslide path, with the most frequently used attributes being average slope or event 

geometry (Miao and Ai , 1988; Heim, 1989; Takahashi, 1991; Hammond et al. 1992; Cannon, 

1993; Carrara et al., 1995; Hansen, 1996; Corominas, 1996; Megahan and Ketcheson, 1996; 

Wieczorek, 1996; Wise, 1997; Lau and Woods, 1997; Atkinson and Massari, 1998; Hungr, 1999; 

Finlay et al., 1999; Robinson et al., 1999; Fannin and Wise, 2001). However, the trajectory of a 

landslide is determined by a complex suite of factors, and not simply the slope or geometry. 

Some of the attributes related to terrain geomorphology and flow are often completely ignored in 

analyses because of the difficulties associated with their mathematical or physical expression, 

such as the variation in terrain or granulometry along the landslide path or the occurrence of 

turbulent flow. 

Landslide investigation models are normally divided into two groups: landslide initiation and 

landslide travel distance processes. Landslide initiation is determined by local conditions but the 

travel distance is determined by a large number of attributes that describe the local and general 

conditions. Where the slide stops determines the risk associated with terrain failure. Therefore if 

the starting point is known, the terrain stability risk assessment is largely dependent on the travel 

distance of the mass involved in the movement. 

The precision of any model used to predict landslide travel distances usually determines how 

useful it is. This inference is based on the underlying assumption that data used in the modeling 

process are measured without error. For landslides, data are usually collected after the event has 
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occurred. Therefore, data suffer from uncertainty arising from the post-event modification of 

attributes. These uncertainties change the appropriateness of particular investigation methods, so 

the assumptions used to build landslide travel distance models based on data'with crisp meaning 

are of questionable validity. To redress this problem, techniques that consider the fuzziness of 

the data need to be used in the modeling process. 

The vagueness associated with the data can be resolved using different methods. The most 

popular methods are poly-logic (Zadeh, 1965) and errors in all variables (Adcock, 1877, 1878; 

Kummel, 1876, 1879). The latter method, also known as orthogonal regression, eigenvalue 

methods or total least square methods, is founded on dual-logic methodology. In this study, 

fuzzy sets are used to deal with uncertainties related to the data values. Fuzzy sets represent a 

new stage in data analysis due to the involvement of the poly-logic concept. 

1.1 Risk assessment of landslides 

Risk involves, at a conceptual level, the possibility of an undesirable outcome to occur plus the 

uncertainty related to the magnitude and timing of the occurrence of an adverse outcome. If 

either of these two elements is missing there is no risk. 

The most common approach defines risk as the product between the probability (P) that an 

undesired outcome (hazard) will occur and the consequences (C) of that occurrence. 

R=PxC (1.1) 

Terrain Stability Mapping in British Columbia (1997) defines a hazard as "a condition or event 

that puts something or someone, in a position of loss or injury or in a position of potential loss or 

injury". The probability that an adverse outcome will occur is called the probability of 
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occurrence and is defined as "the chance that a landslide will occur". The probability of 

occurrence is usually determined through landslide initiation models. 

A consequence is the result of the undesirable event that occurred. It is dependent on property or 

human life being affected (the element at risk) but is also related to their vulnerability to the 

landslide. Consequence is usually determined by the product between the elements at risk (E) 

and their vulnerability (V): 

C = E x V (1.2) 

If the initiation point of a landslide is known, the vulnerability depends only upon event travel 

distance. Therefore the elements used to calculate the travel distance identify the risk. In the 

event that the mass movement will hit the element at risk then the value associated with that 

element is affected. Consequence is therefore determined through landslide travel distance 

models. 

1.2 Goal of this study 

The goal of this study is to calculate the debris flow-slide travel distance. Three objectives will 

help achieve this goal: 

• Development of an empirical relation between debris slide-flow travel distance and path 

attributes; 

• Determination of as narrow a confidence interval for the predicted value as possible; and 

• Incorporation of uncertainty (vagueness) in the analysis. 
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2 Literature review 

The investigation of landslides has a relatively short history compared with other sciences 

studying threats to human lives and goods. Some of the first investigations related to landslides 

were undertaken at the start of 19th century and are related to the Rossberg event (1806) in 

Switzerland, and the Bindon event (1839) in England (Voight, 1978; Heim, 1989; Turner and 

Jayaprakash, 1996). In this section I review the literature on landside classification, debris flow 

initiation and debris flow travel distance. 

2.1 Landslide classification 

Mass movements have been described and interpreted using different vocabularies, and a range 

of classification systems (Innes, 1983). Even now, some scientists use old terms like sturzstorms 

(correctly spelt Sturzstrom), (incorrectly) translated as "downfall storm" (Corominas, 1996), for 

rock avalanches. Such hybridizations of English and German terminology appear to have limited 

value, especially because of the errors in their use and translation. In this study, the classification 

proposed by Varnes (1978) and Cruden and Varnes (1996) has been adopted. According to 

Hansen (1984) and Cruden (1991), a landslide is any downslope mass movement of rock, debris 

or earth. 

Table 2.1 Classification of mass movements, based on Hansen (1984) and Cruden and Varnes 
(1996). All are considered to be a form of landslide. 

Movement type 
Material type 

Movement type Rock Soil coarse particle 
predominant (debris) 

Soil fine particle 
predominant (earth) 

Fall Rock fall Debris fall Earth fall 
Topple Rock topple Debris topple Earth topple 
Slide Rock slide Debris slide Earth slide 

Spread Rock spread Debris spread Earth spread 
Flow Rock flow Debris flow Earth flow 
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This thesis focuses on particular forms of landslides as defined by Hansen and Cruden: debris 

flows, debris slides and their combinations. 

Based on the velocity of movement, landslides have been classified into seven classes (Hansen, 

1984; Cruden and Varnes, 1996), shown in Table 2.2. Debris flows and debris slides vary from 

rapid to extremely rapid movements (Resources Inventory Committee, 1997). 

Table 2.2 Landslide classification by speed of movement and possible destructive significance in 
populated areas (modified from Cruden and Varnes, 1996) 

Class 1 2 3 4 5 6 7 
Description Extremely 

slow 
Very slow Slow Moderate Rapid Very 

rapid 
Extremely 

rapid 
Typical 
velocity 

<16 
mm/year 

^mm/year
l y m /year 

1.6m/year -
13 m/month 

13 m/month 
- 1.8m/hour 

1.8 m/ hour 
- 3 m/ min 

3 m/min 
- 5 m/sec 

> 5 m/sec 

Possible 
destructive 
significance 

Construction 
possible 

with 
precautions 

Some 
structures 

undamaged 

Remedial 
construction 

can be 
undertaken 

Temporary / 
insensitive 
structures 

temporarily 
maintained 

Evacuation 
possible; 
structure 

and goods 
destroyed 

Some 
lives may 

be lost 

Many 
deaths; 
escape 

unlikely 

Landslide risk assessment is usually separated into two parts: landslide initiation and landslide 

travel distance. Each uses different procedures and mechanisms to explain landslide behaviour, 

including fluid mechanics (Takahashi, 1981, 1991; Innes, 1983; Leshchinsky and Huang, 1992; 

Hungr, 1995; Iverson, 1997), statistics (Chowdhury and Xu, 1993; Fannin and Wise, 1995; 

Corominas, 1996; Atkinson and Massari, 1996; Hungr, 1999;), topography (Montgomery and 

Dietrich, 1994; Wu and Sidle, 1995; Carrara et al, 1995) or vegetation (Greenway et al, 1984; 

Sidle et al, 1985; Wu et al, 1994; Watson et al, 1994; Helliwell, 1994). 
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2.2 Debris flow initiation 

The investigation of debris flow initiation must differentiate between the conditions required for 

an event to occur and the triggering activities (Innes, 1983). The minimum conditions for debris 

flows to occur are steep slopes, unconsolidated residual or transported material and high pore 

water pressures (Innes, 1983). Flows may be triggered by meteorological conditions or by a 

range of extrinsic factors, including earthquakes, volcanic eruptions, deforestation, and the 

excavation of a slope or its toe (Varnes, 1978; Wieczorek, 1996). 

Debris flow initiation is often investigated using fluid mechanics theory (Innes, 1983; Hungr et 

al., 1984; Takahashi, 1991; Iverson, 1997), but there are also models involving statistics 

(Atkinson and Massari, 1996), vegetation combined with a topographic index (Wu and Sidle, 

1995), and forest practices (Fannin et al., 1996). Most studies investigating debris flow initiation 

involve fluid mechanics combined with the specific application of a different area such as soil 

mechanics (Terzaghi, 1943; Takahashi, 1991; Iverson, 1997) or root strength (Wu and Sidle, 

1995). 

All studies include the determination of the event initiation slope, 6. Some rheological studies 

also include the degree of packing of the sediment (c*), density of the sediment (cr), density of 

the fluid (p) and internal friction of debris in the bed (<p) in the analysis. An example (from 

Takahashi, 1981, 1991; Innes, 1983) is given in Equation 2.1: 

tan<9= C*{°-P)

 tan<p (2.1) 
c*(a-p) + p 
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The greatest weakness of rheological studies is the difficulty associated with the measurement of 

the parameters that appear in the Equation 2.1. This problem makes modeling techniques that 

involve fluid mechanics unattractive for practitioners. 

If the infinite slope model is used to investigate debris flow initiation, then rheological 

parameters are substituted with a series of variables defined by physical dynamics (Nelkon, 

1974; Halliday and Resnick, 1986). The main mathematical tool used in risk analysis is the 

Factor of Safety (FS), defined as: 

'Resistant forces 
F S — 7 (2-2) 

'Driving forces 

The terrain is considered stable if FS is larger than 1. A series of models are used to calculate FS, 

ranging from the very simple (Powrie, 1997) that uses only slope (/5), soil depth (z), pore water 

pressure («), critical state strength (<p'crit) and soil unit weight (y): 

F S = ^ L ( l u 2 

tan/? yzcos1 (1 

to more complex models (Hammond et al., 1992) that use, in addition to the above variables, an 

apparent cohesion attributed to tree root strength (CV), saturated soil thickness (zw), tree surcharge 

(qo), soil cohesion ( C s ) , soil strength (ft), soil unit weight dry(%), moist (y) and saturated (ysat) 

and water unit weight (yw): 

FS = C r + C s + c o s 2 P[q° + r i z ~ Z w ) + Z^Y«" ~Yw)]tanV (2 4) 
sin fi cos /3[q0 + y(z - zw) + ysa, zw ] 

Regardless of the model used, the underlying assumptions used in the infinite slope model made 

the results unreliable. The infinite slope model is based on the following assumptions (Hammond 

etal, 1992; Powrie, 1997): 
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the failure surface is planar; 

the failure plan has infinite extent and is uniform; 

the failure plan and the phreatic surface are parallel to the ground surface; 

a single soil layer is considered; 

the soil is homogenous in all parameters used in calculation; and 

the two-dimensional analysis models reality (which has three dimensions). 

Because of these restrictive assumptions, FS can be either over- or underestimated (Iverson and 

Major, 1986). As an alternative, for event initiation, a series of models that consider a circular 

slip surface (Fellenius, 1927; Bishop, 1955) or noncircular slips (Morgernstern and Price, 1965; 

Janbu, 1973) have been used: 

Bishop's method: F S = ^ - ± h { l - r u ) ^ c r i t * J ^ g i n g (2-5) 
^ / i s i n a ' = 1 cosa + g 

1=1 

Janbu's method: FS= l- Y[(w-ub)tanprr,*—1 + t a n a—] (2.6) 
£ tanf c r , tana J 

^ w t a n a 1 + 

i=i 

where a: angle of inclination of slip surface to the horizontal; 

h : average height of a slice (in Bishop's method); 

b : slice width; 

w : weight of soil element; and 

ru: pore pressure ratio r = — . 
J* 

The main problems with these models are the assumptions that the soil has homogeneous 

properties in the area investigated and that the failure surface can be expressed by relatively 

simple functions. Even if some of the assumptions are relaxed (cf. Hammond et al., 1992), the 

models that use circular or non-circular failure surfaces will still predict with a low degree of 

accuracy. 



If statistical methods are used, the main tool that is applied is multiple regression analysis, with 

emphasis on the general linear model (Carrara et al., 1991; Wang and Unwin, 1992; Atkinson 

and Massari, 1996) or probability distributions fundaments (Bergado et al., 1988). 

Statistical models rely on the assumption that the predictor variables used in modeling are 

significantly correlated with event initiation and that the model covers for the gaps generated by 

using a limited number of variables for prediction. The ease of implementation of this model in 

current practice makes it very attractive. However, there is a large amount of uncertainty 

associated with the prediction. 

New methods are being developed both in mathematics and physics that lead to a more detailed 

and precise investigation, such as neural networks, operational research, fuzzy sets, Petri 

networks, catastrophic theory and games theory. Further studies combining different methods to 

address specific problems seem to be appropriate for debris flow initiation investigations. 

2.3 Debris flow travel distance 

After the debris flow initiation point has been established, there is a need to know how far the 

debris flow will travel. A series of models and theories have been developed and used to answer 

this question. The most popular methods used to predict debris flow travel distance are based on 

dynamics, rheology, hydrology, topography and statistics. 

The simplest model for debris flow travel distance is based on dynamics. An example of such a 

model is present in Equation 2.7 (Fang and Zhang, 1988): 
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2 
V max 

„ sin Bs _ 
/#(COSj0 ^f) (2.7) 

( ~^-S(rlmax ~ f ^max) 

where S : debris flow travel distance; 

vmax : maximum velocity of the mass movement; 

ju: mobility; 

(3: inclination of the sliding path; 

/ ' : kinetic friction; 

g : gravitational acceleration; and 

hmax, lmax '• maximum height and horizontal travel distance of the mass sliding's centre. 

Equation 2.7 has more of a didactic role than a practical one. The parameters that it involves 

describe the movement mechanism very poorly. However, the main reason that this type of 

equation is unattractive, apart from it being mechanically inappropriate, is that only three 

elements fully describe the travel distance: (3, h m a x and l m a x . The element at risk can be easily 

identified using Pythagoras' theorem or simple trigonometry. Therefore Equation 2.7 does not 

bring any new information to the analysis. In general, approaches to the prediction of debris flow 

travel distances that rely solely on dynamics provide unreliable results because of the restrictive 

set of assumptions used (e.g., homogeneous sliding material, the material moves downslope as a 

rigid mass, the kinetic friction is constant during the movement). 

Rheological approaches relax some of the constraints imposed on the moving material. The 

material is usually considered as having both rigid and fluid movement (e.g., the Bingham 

equation). An alternative model used in rheological approaches to debris flow travel distance is 
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the Bagnold equation (1954). Rheological models attempt to solve mass movement travel 

distance in a deterministic manner. This type of model (Takahashi, 1981,1991; Innes, 1983; 

Iverson, 1997) introduces variables that characterize the flow movement, such as viscosity, 

apparent density of the fluid when it incorporates suspended particles, and particle density. 

The theoretical framework used to determine debris flow travel distance is based on fluid 

kinematics. Two methods are generally used to describe the fluid motion by mathematical 

analysis: the Langrangian method and the Eulerian method. 

The Langrangian method describes the fluid based on the assumption that the motion of a 

particle is completely specified if the particle coordinates are known. The following set of 

equations is used in a three dimensional space: 

x = F{ (a,b,c,t) 
y = F2{a,b,c,t) (2.8) 
z = F3 (a,b,c,t) 

where x,y,z: the particle coordinates; 

a, b, c : independent variables; 

t: time; and 

Fi, F2, F3 : functions describing the particle motion. 

Equation 2.8 describes the spatial position (x, y, z) of any fluid particle at different times, 

reported relative to the initial position (xrj=a, )>o=b, zo=c) at the initial time t=to. 
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The Eulerian method describes the flow characteristics (e.g. velocity, acceleration) at various 

points on the fluid particle flow path in a different way. In three-dimensional space, the 

equations that are used are: 

u = f{(x,y,z,t) 

v = f2(x,y,z,t) (2.9) 

w = f3(x,y,z,t) 

where u, v, w : flow characteristics ( usually velocity) components; 

x, y, z '• three dimensional space components; 

t: time; and 

fi, fi, J3 - functions describing the relationship between flow characteristics and three 

dimensional space. 

The two methods are related by the following set of equations: 

dx 
u = — 

dt 

v = &- (2.10) 
dt ' 

w = — 
W dt 

The Lagrangian method yields a complete description of the fluid particle path, but the 

mathematical difficulties encountered in solving the set of Equations 2.8 make the method 

impractical. The fluid motion expressed in terms of flow velocity through time at various points 

is of great practical significance, therefore the Eulerian method is commonly used. The 

mathematical simplicity of the method is an added advantage, even if the method itself does not 

lead to a complete description of the fluid particle path (Pao, 1961). 
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In the one-dimensional flow case, the Eulerian method leads to the following dynamic equation 

for the steady flow of a non-viscous fluid: 

where p : fluid pressure; 

s : length; 

p: density of the fluid; 

z : elevation; 

v : fluid velocity; and 

g : gravitational acceleration. 

Equation 2.11 is termed Euler's equation for one-dimensional flow. If the fluid is homogeneous 

and incompressible, the integration of Euler's equation yields the relationship: 

which is known as Bernoulli's equation (Pao, 1961; Kaufmann, 1963). 

Real fluids are characterized by viscosity, which is mainly the result of inter-particle 

interactions. The most important role of viscosity in fluid motion is the shear strength, T i . Unlike 

elastic solids, where the shear strength depends on the magnitude of the deformation, the shear 

strength of a viscous fluid is proportional to the deformation rate of the fluid. Isaac Newton first 

formulated the law that governs fluid viscosity: 

(2.13) 
dy 

where ju: viscosity. 

(2.11) 

p v2 

— h gz H = constant 
p 2 

(2.12) 
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The simplest model determining debris flow travel distance assumes that the flow is laminar; the 

fluid is incompressible and occurs in a straight channel with parallel boundaries (Pao, 1961): 

L=-^b2 (2.14) 
12pV 

where L : debris flow travel distance; 

Ap : pressure drop between initiation and deposition point; 

V: average velocity of the fluid across a transverse profile; 

/j,: viscosity; and 

b : distance between the channel boundaries. 

This model is extremely simple and its reliance on the assumptions stated above make it of little 

practical value. Consequently, a more complex model has been developed. The improved 

version of Equation 2.14 is termed the Hagen-Poisseuille theory, and it explains the laminar flow 

of incompressible fluids in a circular channel. The debris flow travel distance determined using 

Hagen-Poisseuille equation could be stated as: 

L = -^E-Di (2.15) 
32pV 

where D is the diameter of the circular channel. 

For a semicircular channel of slope /?with radius D/2=R the flow velocity (u) is (Hungr et al., 

1984): 

p(R2-r2) n , n 
u- sin p ( Z . l o ) 

4p 
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Equations 2.15 and 2.16 are based on the assumptions that the fluid viscosity follows Newton's 

law of viscosity (Equation 2.13), and that there is no relative motion between fluid particles and 

boundaries (i.e. no slip of the fluid particles at the boundary). These results (Equations 2.15. and 

2.16) are more complex than Equation 2.14, yet do not introduce a significant amount of new 

information. 

In addition to the practical problems encountered with the modeling activity described above, 

there is an even more significant problem. None of the approaches consider variation in the 

terrain. There is always an assumption of a constant slope. Consequently, the models described 

above are difficult to use in practice. 

Johnson and Rodine (1984) substituted for Newton's viscosity law with a combination of rigid 

dynamics and fluid mechanics (the Bingham equation): 

where k : the shear strength of the material. 

Equation 2.17 yields the following formula for the velocity distribution within a viscous debris 

flow: 

T = k + ju 
du 

ay 
(2.17) 

u -
0.5ysm/3(T2-y2)-k(T-y) 

(2.18) 

where y: unit weight of the debris; and 

T: debris thickness. 
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If y>Tk, the critical thickness for a Bingham material, then Equation 2.18 is used. However, even 

this approach is difficult to use in practice because it does not consider variations in slope. 

R .A. Bagnold considered flows containing different particle sizes. He tried to explain the 

importance of the flow composition for the fluid movement (he assumed spherical, perfect 

elastic particles with uniform dimensions and uniform average dispersion). The equation for 

flow velocity using Bagnold's ideas is (Hungr et al., 1984): 

.-cj&P (2,9) 

where c : grain concentration per unit volume; 

0: particle diameter; and 

A : linear concentration of particles. 

Takahashi (1981, 1991) and Hungr et al. (1984) developed a debris flow travel distance model 

combining dynamics and fluid mechanics theory. The equation used to determine the event 

travel distance is: 

L= 

U=uu cos(0„ -6d) 1 + 
ghu cos du (pm + cu ka (a - pm)) 

2(pm +cu(o--pm)) 
(2.20) 

G=gcuCos9dtana(*-pJ_gs.ndd 

where ka : ratio between longitudinal section area of a moving earth block and square depth 

of the surface water flow behind the moving earth block ; 

a: angle of particle encounter, analogous to the kinetic friction angle; 

dd, &u '• slope deposition/upward section of the debris flow. 
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Statistical procedures have been used to overcome the difficulties involved in measuring 

rheological variables. Statistical methods try to express the debris flow travel distance using 

different attributes that are easy to measure, such as slope, azimuth, drainage area, vegetation 

type and species, geology or soil type. Statistical procedures (usually multiple regression) may 

be practical, but the results are uncertain because rheology is excluded. Simple models include a 

maximum of four predictor variables (Cannon, 1993; Megahan and Ketcheson, 1996; 

Corominas, 1996; Finlay et al., 1999; Fannin and Wise, 1995, 2001). The dependent variable is 

sometimes transformed (Cannon, 1993; Coromionas, 1996; Finlay et al., 1999), or different 

techniques may be used to infer debris flow travel distance (Megahan and Ketcheson, 1996; 

Fannin and Wise, 1995, 2001; Hungr, 1999). 

As debris flow travel distance depends on terrain configuration and debris flow properties, one 

way to express this is to consider the volume variation along the path. All the statistical studies 

that have used this method have included the volume of either a part or the whole event. This 

approach is affected by recursivity, as noted by Corominas (1996). Even though the results 

obtained using this recursive technique is invalid, the lack of options for expressing the terrain 

configuration have led to the use of this method in practice. 

Cannon (1993) used Equation (2.25) to determine debris flow travel distance on an elementary 

uniform terrain (cell): 

V -Vf 

log ' =0.141og/?-1.41ogjg + 2.16 (2.21) 

where Vj-Vf: volume change during debris flow movement on the cell; 

Vi: debris flow volume that enters in the cell; 

Vf: debris flow volume that leaves the cell; 

D : length of the debris flow path throughout the cell; and 

R : radius of the channel. 18 



Unfortunately, there is insufficient detail to ensure that Equation 2.25 meets all the assumptions 

required for the prediction of debris flow travel distance. In addition, the model assumes that 

methods to calculate entrainment and deposition are known, which is the not the case. Back 

analysis is used to determine the travel distance from Equation 2.25 (Duncan, 1996). As the error 

V- - Vf 
in estimating the dependent variable log ' 1 is 26% (Cannon, 1993) and the dependent 

variable is not a linear function but logarithmic one, back analysis has to be performed using 

probability theory. Therefore, the confidence interval associated with the travel distance 

prediction, D, will become wider than that supplied by the direct transformation of the dependent 

V -Vf 

variable, log ' 7 , in original units. This will provide an unreliable result for the predicted 

debris flow travel distance. 

Finlay et al. (1999) used Equation 2.26 to predict landslide travel distance for cut slope events: 

log L = 0.062 + 0.965 log H - 0.558 log fi (2.21) 

where L : landslide travel distance; 

H : height of failure of elevation difference between landslide scarp and toe; and 

fl: slope angle. 

The coefficient of determination for Equation 2.26 was 0.85 and the number of events (515 

debris flows) used in the analysis was quite large. As with Cannon (1993), insufficient details 

were given to infer whether all the regression assumptions were met. As the event travel 

distance, L, was transformed, the confidence interval associated with the predicted value, log (L), 

cannot be transformed back into the original units using an exponential function (Mihoc and 

Firescu, 1966). (Several methods used for inference based on transformed variables are 

presented at the end of this chapter.) As the dependent variable was not transformed back to the 
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original units, the confidence interval of the predicted landslide travel distance was very wide, 

making the use of the equation unattractive. 

In the same way as Finlay et al. (1999), Megahan and Ketcheson (1996) developed an equation 

based on multiple regression stepwise selection: 

log(L) = 0.637 + 0.554log(V) - 0.139\og{Obstr) + 0.50Uog(Gradient) + 0.l63log(SourceArea) (2.22) 

where Obstr : length of obstructions measured normal to fall line of the hillside per 30m slope; 

Gradient: hillside gradient; and 

SourceArea : run-off contributing area. 

The coefficient of determination of Equation 2.27 was 0.91. This value revealed that the 

confidence interval for the predicted value, log(L) was narrow. As the event travel distance was 

transformed, the confidence interval for the debris flow travel distance was too large to make the 

equation useful. 

Corominas (1996) used Equation 2.28 for prediction: 

l o g y = -0.1051ogV- 0.012 (2.23) 

The coefficient of determination is 0.763 for the 71 events considered in the study. The 

confidence interval associated with the predicted value refers to the transformed dependant 

variable, log (H/L), and not to the event travel distance. The relatively small coefficient of 

determination indicates that the confidence interval for the event travel would be quite large, as 

presented at the end of this chapter. 
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Hansen (1996) replied to Corominas' (1996) article with a comment that needs to be examined. 

He transformed back in original units the equation used to describe all events, (Equation 1 in the 

article, Equation 2.29 in thesis) that had a coefficient of multiple determination of 0.625: 

l o g y = -0.085 log V-0.047 (2.24) 

into Equation 2.30 (Equation 2 in the article): 

y = 0.897V- 0- 0 8 5 (2.25) 

This transformation: 

l o g - = -0.085logy-0.047 = » = eW-0Mi-OMi ^ H_ = e-o.047y-o.o85 = 0 . 8 9 7 y - 0 0 8 5 (2.26) 

is not allowed in stochastic dependency, which is based on probability distributions. The inverse 

application can be applied only to a bijective relation. As statistics do not use bijective relations, 

this transformation is invalid. 

Two studies have treated the confidence interval for the predicted value appropriately: Hungr 

(1999) and Fannin and Wise (2001). Both studies developed a regression equation to predict 

debris flow travel distance, with different predictor variables being used in each study. Hungr 

(1999) used terrain class, tributary drainage area to each reach and degree of lateral confinement 

of the flow path as predictors and predicted the volume. In contrast, Fannin and Wise (2001) 

used reach length, reach width, azimuth and slope as predictor variables and predicted the event 

volume on a reach-by-reach basis. 

These studies considered the terrain variation expressed as the volume variation along the path to 

determine the event travel distance. The probability distribution was used to calculate the 

predicted debris flow travel distance. Even though both methods use correct procedures to 
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determine the confidence interval, the value supplied for prediction is associated with a wide 

confidence interval. 

If linear regression is used for debris flow travel distance prediction, the dependent variable 

representing the event travel distance can be either transformed or not. When transforming back 

into the raw units, the following cases are possible: 

• if the correlation coefficient is 1, the transformation is the inverse of the transformation 

used (the dependency is no longer stochastic but functional); 

• re-transformation using a probability distribution (as done by Hungr, 1999; Fannin and 

Wise, 1995, 2001); 

• retransformation using a regression equation between the transformed and raw variable; 

• if the transformation is linear then the transformation into original units is the inverse of 

the original linear function used (which is also linear). 

2.4 Conclusion 

There has been a considerable amount of work done on the prediction of debris flow travel 

distance, with some studies focusing on runout (e.g. Hungr, 1995). From this, it is possible to 

conclude that rheological models are difficult to use in practice because of the problems 

associated with the measurement of the elements describing flow behaviour, because the 

assumptions are far from reality, and because of the failure to include terrain configuration in the 

analysis. Statistical models are easy to implement but the confidence intervals associated with 

the predicted values are too large to provide useful results; in some cases the confidence 

intervals are larger than 200% of the actual length (Neter et al., 1996). 
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3 Study area 

The BC Ministry of Forests, Research Branch, conducted an inventory of the landslides present 

in the Arrow Forest District. The area investigated amounts to about 1.4 million ha, of which 

about 900,000 ha is provincial forest and private land, with the rest comprising lakes, glaciers 

and rocks. The landslides are distributed between Castlegar in the south and Nakusp in the north, 

Arrow Lake in the west and Kootenay Lake in the east. 

Landslides were identified using aerial photographs with a scale of 1:20,000. When the study 

started, of the 1784 slides identified, 582 located in the southern part of the District had been 

mapped. These are shown in Figure 3.1. 

Camptai 

Legend 
• Landslides • Towns 

p 
TRIM map sheets 

Lakes 

0 5 10 20 kilometers 

Figure 3.1 Location of mass movements in the southern portion of the study area 
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Only the mass movements located in the south of the study area were included in this study. This 

selection was made because the central and northern events had not been mapped precisely when 

the study started. Therefore, the total number of events included in the sampling design was 582. 

3.1 Geology 

The geology of the study area is shown in Figure 3.2. 

1. Melamorphic rocks Monashe complex ( Protezoic to 4.Quartz monozonitic (Paleocene) lO.Quartzite (Proterozoic to lower Paleozoic) 
Paleozoic) . , „ . . . „ . 5.Granite. alkali-teldspar-granite (Paleocene to Eocene) 11.Limestone, slate silLstone. argile (Missipian to 
2. Metamorphic racks ( Carbonifer to Penman) 6,Granite granodiorile (Middle Jurassic) Permian) 
3. Metamorphic rocks (Carboniferous to Permian) 7.Garnodiorile (Cretaceus) 12,Mudstone, silLstone, shale fine clastic (Jurassic) 

8.Basaltic volcanic rocks (Jurassic) O.Limestone, slate, siltstone, argillite (Triassic) 
^.Basaltic volcanic rocks (Carbonifer to Permian) 14.Quartzite (Proterozoic to Cambrian) 

Figure 3.2 Geology of the study area (Ministry of Energy and Mines, BC, 2002) 
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A variety of rock types are found in the area, including intrusive, metamorphic and sedimentary 

types (Figure 3.2). Intrusive and metamorphic rocks dominate between Arrow Lake and 

Kootenay Lake; sedimentary rocks outcrop to the north and east of Silverton. In the Slocan 

watershed, intrusive acidic rocks occupy more than 70% of the surface, with granite and 

granodiorite being the most common. 

3.2 Soils 

The soils identified in the area are humo-ferric podzols and dystric brunisols. Their distribution 

is shown in Figure 3.3. 

1. Humo-ferric podzolic 
2. Dystric brunisolic 

3. Glacier or Rock 
4. Lakes 

Figure 3.3. Major soils distribution in the study area (Agriculture and Agri-food Canada, 2002). 
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The dystric brunisols consist of acidic brunisolic soils with a weak development of the organic-

mineral surface horizon. These soils occur on parent material with a low base status (i.e. granite, 

granodiorite). The humo-ferric podzols occur under forest vegetation and their properties are 

accentuated by coniferous forest species. Humo-ferric podzols typically develop from coarse- to 

medium-textured acidic lithologies. Soils are considered in this study because they supply the 

main material involved in mass movement and also as provide support for the vegetation. 

3.3 Climate 

The climate in the area is characterized by hot summers and cold winters. The temperature and 

precipitation data were obtained from several stations covering the perimeter and centre of the 

study area. The stations are located mostly in areas where mass movements are rare, and 

therefore the meteorological and climatic values characterizing the locations affected by 

landslides have to be derived by interpolation. The following stations were considered: Kaslo, 

South Slocan, New Denver, Nakusp, Castlegar A and B, and Kootenay NP West Gate. Details 

for each station are presented in Table 3.1. The climatic elements considered were: mean 

monthly temperature (°C), rainfall (mmm"2), snowfall (cmm"2) and overall precipitation (mmirf2). 

Table 3.1 Meteorological stations used to derive climatic data for the study area (Meteorological 
service of Canada, February 2002) 

Station name Station id Latitude (North) Longitude (West) Altitude (m) 
New Denver 1145460 117°22' 1219 
Kootenay West Gate 1154410 50°38' 116°04' 899 
South Slocan 1147620 49°27' 117°31' 457 
Kaslo 1143900 49°55' 116°55' 591 
Nakusp 1145300 50°15' 117°48' 457 
Castlegar A 1141450 49°20' 117°40' 495 
Castlegar B 1141457 4 9 o 2 i ' 117°47' 476 
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3.3.1 Temperature 

The average annual monthly temperature for the period 1940-1990 is presented in Table 3.2. 

Table 3.2 Mean monthly temperatures for the period 1940-1990 at sites in or close to the study 
area (from Meteorological service of Canada, February 2002). 

Station Month Year Station 
Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 

Year 

Kaslo -3.2 -0.6 2.6 6.9 11.4 15.3 18 17.9 12.8 7.2 1.6 -2.1 7.3 
Kootenay -9 -4.6 1.5 6.6 11.5 15.4 18 17.5 11.7 5.1 -2.2 -8 5.3 
S. Slocan -3.6 -0.7 3 7.9 12.4 16.3 19.2 19.2 13.8 7.6 1.7 -2.6 7.9 
Castlegar A -3.2 -0.7 3.7 8.3 13 16.9 19.9 19.8 14.4 7.8 1.9 -2.3 8.3 
Castlegar B -2.4 -0.2 3.9 8.4 12.8 16.8 19.8 19.6 14.2 8.1 2.4 -1.5 8.5 
New 
Denver -3.3 -0.7 3 7.3 12.1 15.9 18.6 18.7 13.4 7.3 1.8 -2.3 7.7 

Nakusp -3.2 -1.3 2.1 6.9 11.9 15.8 18.3 17.8 12.7 6.8 1.9 -2.1 7.3 

Average monthly temperature variation 

25 

Month 

—•— Kaslo —•— Kootenay S. Slocan 

- * - Castlegar B - • - N e w Denver — r — Nakusp 

Figure 3.4 Monthly average temperature variation for the period 1940-1990 (from 
Meteorological Service of Canada, February 2002). 

All the stations have the same pattern of temperature variation throughout the year, with a winter 

minimum below 0°C, and a summer maximum of about 20°C (Figure 3.4). 
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3.3.2 Precipitation 

The average monthly precipitation variation during the year is presented in Table 3.3. The values 

for rainfall and overall precipitation are in mm m"2 and for snowfall are in cm m"2. 

Table 3.3 Monthly precipitation at various sites in the study area (multi-annual average) (from 
Meteorological Service of Canada, February 2002). 

Station 
Month Year 

Station 
Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 

Year 

Kaslo 
Rainfall 32.5 37.9 47.8 47.2 53.2 64.9 51.4 51.4 51.5 64.3 79.4 46.1 627.7 

Kaslo Snowfall 76 34.6 11.7 0.8 0 0 0 0 0 0.8 24 76.9 224.7 Kaslo 

Overall 108.6 72.6 59.4 47.9 53.2 64.9 51.4 51.4 51.5 65.1 103.4 123 852.4 

Kootenay 
Rainfall 4.6 4.1 9.4 25.9 39.3 58 44.3 38.9 34.3 20.4 16.2 7.9 303.2 

Kootenay Snowfall 29.9 17.6 8.3 3.2 0.3 0 0 0 0.1 1.5 14.9 35 110.8 Kootenay 

Overall 34.5 21.7 17.8 29.1 39.6 58.1 44.3 38.9 34.4 21.9 31.1 42.8 414.1 

S. Slocan 
Rainfall 33.1 41.9 50.4 50.8 59 69 49.2 45.7 50.3 57.9 76 45.9 629.2 

S. Slocan Snowfall 65.2 23 7.6 0.4 0 0 0 0 0 1.4 20.8 67.6 186 S. Slocan 

Overall 98.3 64.8 57.9 51.2 59 69 49.2 45.7 50.3 59.3 96.8 114.2 815.9 
Castlegar 

A 

Rainfall 20.4 23.6 44.8 47.2 60.7 64.2 43.9 42 43.6 52.8 57.4 32.5 533.2 Castlegar 

A Snowfall 67.9 37.1 16.2 2.3 0.2 0 0 0 0 1.6 32 67.3 224.6 
Castlegar 

A 
Overall 74.5 57.4 59.6 49.9 60.9 64.2 43.9 42 43.6 54.4 88.5 92.9 731.9 

Castlegar 

B 

Rainfall 22.3 22.6 37.7 43.2 55.8 59.4 39.8 39.7 45.1 38.1 47.3 29.5 480.7 Castlegar 

B Snowfall 39.8 20.2 4.5 0.7 0 0 0 0 0 1 15 34.7 116 
Castlegar 

B 
Overall 62.1 43.2 42.3 43.9 55.9 59.4 39.8 39.7 45.1 39.2 62.3 64.2 597.1 

New 

Denver 

Rainfall 29.2 37.6 49.8 49.3 59.5 74.2 61 58.5 55.2 67.1 76.3 41.1 658.9 New 

Denver Snowfall 77.7 33.2 8.1 0.7 0 0 0 0 0 0.6 16.7 69.3 206.4 
New 

Denver 
Overall 106.9 70.8 57.9 50.1 59.5 74.2 61 58.5 55.2 67.8 93 111.2 866 

Nakusp 
Rainfall 23.3 33.7 46.3 48.3 59.6 79.8 63.2 55.9 61.7 62.3 68.7 38.7 641.6 

Nakusp Snowfall 88.1 33.4 6.6 0.6 0 0 0 0 0 0.9 20.3 65.6 215.5 Nakusp 

Overall 111.4 67.1 54.6 48.9 59.6 79.8 63.2 55.9 61.7 63.2 89 104.3 858.8 

All the stations have two maximum precipitation peaks, one in winter and one in summer (Figure 

3.5). The winter peak is larger than that in the summer for the northerly stations (Nakusp, Kaslo, 

New Denver) and the stations located in narrow valleys (South Slocan and Castelgar A). The 

summer maximum is larger than the winter maximum for the southerly stations (Kootenay, 

Castlegar B). The driest conditions occur at the East Kootenay station, where spring and fall 

precipitation is extremely low (350% less than overall maximum in the summer). 
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Average monthly precipitation variation 

0 2 4 6 8 10 12 14 

Month 

—•— Kaslo - • - Kootenay - * - S . S locan Cast legar A 
- *— Cast legar B - • — New Denver — i — Nakusp 

Figure 3.5 Mean monthly precipitation at various sites in the study area (from Meteorological 
Service of Canada, February 2002). 

Two stations, Nakusp and Castlegar B, have a third maximum in the fall. This is related to the 

uniformity of precipitation throughout the year; with the ratio between the overall minimum and 

maximum being less than 50%. 

3.3.3 Summary 

The de Martonne (1926) aridity index was calculated for each station in order to determine the 

climatic regions according to the de Martonne classification. The formula for determining this 

aridity index is: 

where P : average multi-annual precipitation in mm m"2; and 

T: average multi-annual temperature in °C . 

The climate information supplied by the seven stations in the area is presented in Table 3.4. 
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Table 3.4 de Martonne climate types. 

Station Aridity index Climate type 

Kaslo 49.2 Wet 
Kootenay 27.1 Wet 
S. Slocan 45.7 Wet 
Castlegar A 40.0 Wet 
Castlegar B 32.3 Wet 
New Denver 49.1 Wet 
Nakusp 49.6 Wet 

The precipitation effectiveness index and temperature efficiency index were calculated using the 

Thornthwaite (1931) classification system. The formulae for these indexes are: 

Precipitation effectiveness 

PE = f 115* (——)10/9 

T T + 10 
(3.2) 

where P: average multi-annual precipitation (inches) of each month; and 

T: average multi-annual temperature of each month (°F). 

Temperature efficiency 

Table 3.5 Thornthwaite climate types, using the climatic indices of Thornthwaite (1931). 

(3-3) 

Station Precipitation Temperature Seasonal distribution of Thornthwaite 
effectiveness efficiency precipitation climate types 

Kaslo 1511 40 Rainfall adequate in all seasons Wet micro-thermal 
Kootenay 987 29 Rainfall deficient in summer Wet taiga 
S. Slocan 1427 42 Rainfall adequate in all seasons Wet micro-thermal 

Castlegar A 1183 45 Rainfall adequate in all seasons Wet micro-thermal 
Castlegar B 861 46 Rainfall adequate in all seasons Wet micro-thermal 
New Denver 1478 41 Rainfall adequate in all seasons Wet micro-thermal 

Nakusp 1464 39 Rainfall adequate in all seasons Wet micro-thermal 

The Thornthwaite and de Martonne indexes are consistent with each other. Both indicate that the 

climate in the area is wet and favourable to forest vegetation. The extremely wet climate 

(PE>128, which is the upper limit for the Thornthwaite classification system) indicates that 

eluviation processes (washing away and depletion) in the soil will be relatively active when the 

forest cover is removed. This increases the risk of slope failure (Greenway, 1987; Selby, 1993). 

30 



3.4 Vegetation 

The forest vegetation of the Arrow Forest District is diverse. Douglas-fir {Pseudotsuga menziesii 

var. glauca) stands cover 26% of the area, fir (Abies sp.) 24%, pine (Pinus sp.) 18%, and larch 

(Larix sp.) 14% (Ministry of Forests, BC, 2002). Hemlock (Tsuga heterophylla), spruce (Picea 

sp.), western redcedar (Thuja plicata) and deciduous species (e.g. Acer sp., Betula sp., Populus 

sp., and Alnus sp.) are not as prevalent, but contribute significantly to the diversity of species 

found throughout the District. Coniferous species dominate 68% of the stands. 

The rooting habits vary among the different species. Most of the species encountered in the study 

area develop a shallow root system (e.g., Abies lasiocarpa, Picea engelmannii, Pinus contorta, 

Thuja plicata) because the soil depth is 20 -75 cm (Agriculture and Agri-food Canada, 2002). 

Depending on the soil condition, Pinus contorta can develop a taproot, but this may bend or 

become horizontal if it reaches a hardpan or water (Burns and Honkala, 1990). Pseudotsuga 

menziesii, Abies grandis and Larix occidentalis develop a deep and extensive root system, but if 

bedrock or water is close to the soil surface the lateral roots of Abies grandis and Pseudotsuga 

menziesii replace the taproot (Burns and Honkala, 1990). Because the soil in the region is 

relatively shallow (<75 cm), most species develop a lateral root system. Usually, shrubs have a 

smaller root spread than trees (Gray, 1995). Furthermore, shrubs have a smaller root tensile 

strength than trees (i.e. the roots of Vaccinium sp. have a tensile strength of 16MPa and the roots 

of Thuja plicata have a strength of 56 MPa)(Greenway, 1987). Therefore, the roots of trees are 

more important for soil strength. The contribution of shrubs or trees to terrain stability depends 

also on the soil characteristics, such as depth, structure and texture (e.g. if the soil is very 

shallow or rocky, shrubs can provide more stability than trees). Overall, woody vegetation is 

more effective for shallow landslide stabilization than herbs (Gray, 1994). 
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4 Methods 

4.1 Sampling design 

The landslides included in the Ministry of Forests inventory were classified as debris slides, 

debris flows and their mixtures, rock slides, rock falls and rock slides transformed into debris 

slides, slump (bedrock) and earth flows (following the Cruden and Varnes (1996) classification). 

Debris flows, debris slides and combinations of the two represent more than 95% of the total 

number (571) of the events. Because of this high frequency, only debris flows, debris slides and 

their combinations were considered in this study. The classification of events based on type is 

presented in Table 4.1. 

Table 4.1 Types of mass movements in the study area 

Type of movement Number of events Percentage 

Debris slide 423 72.7 
Debris flow 11 1.9 
Debris slide and debris flow (mixture) 137 23.5 
Rock fall and rock slide transformed into debris flow 1 0.2 
Rock slide 5 0.8 
Slump bedrock 1 0.2 
Slump superficial 4 0.7 
T O T A L 582 100 

Debris slides and flows may be confined or unconfined. Each of these events can develop into 

single-path or multi-path events. This study takes into account only events that were unconfined 

and had a single path, resulting in 435 events. 

A large number of elements were measured in the field in order to develop a relationship 

between different attributes of the debris slide-flows and their travel distances. Sampling was 

simple random sampling without replacement (SRS). This design was chosen because there were 

insufficient elements to calculate the stratum sample size in more complicated designs (e.g. 
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would need to estimate the within stratum variance). The values necessary to determine the 

sample size for SRS are: 

1. Population size, N; in this case N=435. 

2. Sampling error specified as a percentage, PV. 

3. Coefficient of variation, Cv. This was derived from other similar studies. 

The coefficient of variation is defined as 

Cv = 4 (4.1) 
x 

where s : standard deviation of the lengths of all events; and 

x : mean length of the sampled events. 

For a sample size greater than 20, the formula used to determine the sample size was (Cochran, 

1977) 

1 

1 PV2 

- + • 

(4.2) 

where n is the sample size; 

N: population size; 

C v : coefficient of variation; 

PV: precision desired; and 

t: value of the Student distribution for n-1 degrees of freedom (DF) and for oc=0.15. 

As the /-value depends on n, finding the sample size is an iterative process. The iterations stop 

when the /-value used to calculate the sample size and the /-value provided by Student's 

distribution for n-1 degrees of freedom are the same. 
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The goal of any sampling design is to provide a sample size that leads to as high a precision as 

possible within reasonable costs. Mathematically, the distance between the mean sample length 

and the true mean length of all the events, d, is expressed by: 

d = Lm-Am (4.3) 

where Lm- mean length of sampled events; and 

Am- true mean length of all the events. 

Another way of writing the above formula is 

d = Lm-Am=Lm*(l-^) (4.4) 

The above series of equations translate the question from being dimensional to a ratio. 

Consequently, establishing the percentage of sampling error, pv - (1 - ^ - ) , would lead to the 
L 

m 

desired distance between the mean of the sample length and mean length for all the events. As 

this study has an exploratory character, the percentage of sampling error was established at a 

value of 30%, PV=0.3. 

Three studies were used to identify the desired value for the coefficient of variation: Wise 

(1997), Megahan and Ketcheson (1996), and Fannin and Rollerson (1993). The studies 

performed by Wise and by Fannin and Rollerson dealt with mass movement events on the Queen 

Charlotte Islands, British Columbia. The Queen Charlotte Islands (53°00'N, 132° 30'W) have a 

temperate coastal maritime climate. Mean annual temperature is 8.1°C and mean annual 

precipitation is 1359 mm (Sandspit meteorological station). 

The study of Megahan and Ketcheson (1996) was carried out at Silver Creek, Idaho (44° 25'N, 

115°45'W). Mean annual temperature is 4.4°C and mean annual precipitation is 900 mm (close 
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to Deadwood Dam Idaho station #102385), both figures being similar to those from the Arrow 

Forest District (as shown in Tables 3.2 and 3.3). The values need in the sample size 

determination were taken from the above three studies as they have similar species, soil types, 

geology and climate with Arrow Forest District. 

Wise (1997) found the average length of open-slope, single-path events to be 250 m, with a 

standard deviation 200 m. The coefficient of variation was therefore 0.819. Using these values, 

the sample size determined using the above values for PV and a is 25. In the study by Fannin 

and Rollerson (1993), the average length of a type 1 event (single-path event that initiates on a 

relatively uniform planar slope) was 120 m, with a standard deviation of 100 m. The coefficient 

of variation was 0.82. These values also indicate that a sample size of 25 is required. 

Megahan and Ketcheson (1996) separated the events based on their source: culvert, rock drain or 

fill. The only events from their study considered in this research are those originating from 

culverts. Events originating from rock drains and fill had a very short average length (under 15 

m), making them incompatible with the Arrow District events. The mean length of events 

originating from culverts was 53.0 m, with a standard deviation of 40 m. Therefore, the 

coefficient of variation is 74.7% and consequently the required sample size is 21. 

Combining these results, the greatest required sample size is 25. Therefore the minimum number 

of events needed to develop a debris slide-flow travel distance model was taken to be 25. 

The events constituting a sample need to cover as much variability as possible (Elfving, 1952; 

Demaerschalk and Kozak, 1974, 1975; Marshall and Demaerschalk, 1986). In order to assure 

that this condition was fulfilled, the events were divided into different categories. The categories 
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were chosen based on their possible influence on debris slide-flow travel distance: slope (Heim, 

1989; Cannon, 1993; Hungr, 1995; Fannin and Rollerson, 1993; Corominas, 1996; Lau and 

Woods, 1997), geology - as an indicator of possible process (Finlay et. ai, 1999; Corominas, 

1996), and event surface as an indication of length. A number of classes were established for 

each category to ensure representation across the total number of events. 

Wise (1997) split unconfined mass movements into two groups based on volumetric behaviour: 

entrainment and deposition. Based on slope, each group was then separated into two classes: for 

the entrainment group the cut-off value was established at 30°, and for the deposition group it 

was set at 25°. Hungr (1999) used four classes of slope for unconfined events: 0-15°, 16-20°, 

21-30° and 31-50°. As the number of classes proposed by Hungr could lead to a large sample 

size, the number was reduced to three in this study: 0-25°, 26-35° , greater than 35°. These 

groupings were based on the necessity of covering as much variation as possible. The coverage 

in terms of the overall events considered in this study was: 

• 15% (64 events) in the first class (slope less than 25°); 

• 56% (242 events) in the second class (slope between 25° and 35°); and 

• 29% (129 events) in the third class (slope greater than 35°). 

The number of events on different geological classes is given in Table 4.2. 

Table 4.2 Distribution of events by bedrock lithology in the study area 

Rock type Number of events 

Quaternary 3 
Fine sedimentary (Mesozoic-Slocan group) 37 
Granite 291 
Fine-textured meta-sediments (Paleozoic-Lardeau) 12 
Gneiss 87 
Volcanic (Mesozoic-Rossland group) 5 
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The lithologies taken into account were granite (67%), gneiss (20%) and fine sedimentary (8%). 

The other lithologies were excluded from the sample, as inclusion would have increased the 

required sample size without adding much useful information. 

The Ministry of Forests inventory considered only the surface of the landslides. Because the 

shape of a reach comprising a debris slide-flow can be approximated with a rectangle (Wise, 

1997), there is a strong relationship between surface and length. The event's area can therefore 

be used to represent the travel distance of the debris slide-flow. In the Ministry of Forests 

inventory, events were classified into four groups: 0.02-0.05 ha, 0.05-0.2 ha, 0.2-1 ha and 1-5 

ha. Events with a surface area smaller than 0.05 ha identified using aerial photographs were 

checked in the field. A large number of them were found not to be debris slide-flows, and this 

class was therefore removed from the analysis. Consequently, three classes of event size were 

used: 0.05-0.2 ha, 0.2-1 ha and 1-5 ha. 

The final classification of events covered slope (three classes), geology (three classes) and size 

(three classes). The number of events in each class and category is given in Table 4.3. 

Table 4.3 Distribution of debris flow events in different categories. 

Size [ha] 

Geology 0.05-0.2 0.2-1 1-5 Geology 
Slope [°] Slope [°] Slope [°] 

<25° 25°-35° >35° <25° 25°-35° >35° <25° 25°-35° >35° 
Granite 25 106 38 6 43 50 3 3 1 
Gneiss 7 28 13 8 29 6 0 3 0 
Fine sedimentary 0 14 7 0 19 5 0 0 0 

As the established sample size (25) is small and unevenly distributed, a proportional allocation 

was considered for sampling. However, this would have led to a very small number of events 

(below 0.5) in some classes and a large number in others. Consequently, an equal allocation 
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procedure was chosen with the intent of having two events per class. However, some classes had 

only one event selected is because either the other events in the respective cell were incorrectly 

classified or the events were too inaccessible. The maximum survey time allocated for each 

event was one day; events that would have involved more time to survey were classed as 

inaccessible and dropped from the sample. A random selection of the events from each class was 

performed and the events selected are presented in Table 4.4. 

Table 4.4 Identification numbers of events to be sampled in each class1 

Geology 

Size [ha] 

Geology 
0.05-0.2 0.2-1 1-5 

Geology 
Slope [°] Slope [°] Slope [°; 

Geology 

<25° 2 5 ° - 3 5 ° >35° <25° 25° -35° >35° <25° 2 5 ° - 3 5 ° >35° 

Granite 
71-12 
74-20 

22-102 
31-4 

73-18 
73-28 

21-101 
21-102 

31-3 
61-18 

73-17 83-7 61-19 61-10 

Gneiss 
62-23D 
61-15 

52-26 
62-14 

51- 3 
52- 13 

52- 10 
53- 5 

52- 12 
53- 6 

52-30 
62-10 

~ 52-32 

Fine sedimentary 
94-30 
94-36 

94-34 
94-35b 

94-23 94-24 
94-26d 

4.2 Data set construction 

The elements to be measured were determined based on their potential ability to influence debris 

flow travel distance. They were established through a literature review, knowledge of the 

physical behaviour of mass movements, and experience. The elements that were measured are 

presented in Table 4.5. 

1 The first number is the map-sheet and the second the landslide (or landslide group) id on that map-sheet, e.g. 94-
35b is the second events from the 35 t h landslide group on the map sheet F094. 
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Table 4.5 Elements measured for each event 

Category Element Values 
Vegetation Stand composition Composition expressed in % canopy closure 

(i.e. 90% Hemlock 10% Cedar) 
Vegetation 

Canopy closure Percentage from 0% to 100%, in 10% steps 

Vegetation 

Average diameter of each species Continuous (cm) 

Vegetation 

Average height of each species Continuous (m) 

Geomorphology Plan curvature Plane, convex, concave Geomorphology 
Vertical curvature Plane, convex, concave 

Geomorphology 

Type of reach Entering, deposition or both 

Geomorphology 

Slope of the reach In ° (degrees) 

Geomorphology 

Azimuth of the reach In 0(degrees) 

Geomorphology 

Gully Presence vs. absence 

Geomorphology 

Position on the slope Top, middle, bottom 

Geometrical Length of each reach Continuous (m) Geometrical 
Width at the top part of the reach Continuous (m) 

Geometrical 

Width at the bottom part of the reach Continuous (m) 

Geometrical 

Depth of the top part of the reach 
measured at the V* of the width (see 
Appendix 2) 

Continuous (m) 

Geometrical 

Depth of the top part of the reach 
measured at the Vi of the width (see 
Appendix 2) 

Continuous (m) 

Geometrical 

Depth of the top part of the reach 
measured at the % of the width (see 
Appendix 2) 

Continuous (m) 

Risk The event reaches the stream or not Yes vs. No 

Terrain state Human activity Logging, road, absence 

Elements describing vegetation were measured following the procedures of Munteanu et al. 

(1980). Stand composition and canopy closure were estimated using a spherical densiometer. For 

diameter, the trees representing the average diameter for each species were identified visually, 

then measured. The measurements were made at 3-4 sampling points and included at least four 

trees at each sampling point. The average height (based on at least three trees at each sampling 

point) was also measured for the trees representing the average diameter category. 

Each reach, as defined by Wise (1997), was presumed to have linearity, uniformity of slope, 

azimuth, width and volumetric behaviour characteristics. This study includes two more 

restrictions regarding the definition of a reach: uniform geology over the path and consistent 
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flow confinement. A schematic debris slide with three reaches is presented in Figure 4.1 and 

Figure 4.2. 

Figure 4.1 Debris slide/avalanche with three reaches Figure 4.2 Profile of a three-reach event 

A reach in this study was defined as a linear portion of the event trajectory, having the same 

geology, constant slope, azimuth, width, volumetric behaviour characteristics and confinement 

type. The constancy of slope, azimuth, width, and volumetric behaviour characteristics, need to 

be defined more specifically. The limits where these elements could be considered as 

"unchanged" are location-dependent. Different parts of British Columbia can have different cut

off values defining a reach. These limits are precisely defined in the Section 4.5, where exact 

values have been assigned. Each event was surveyed for the elements, involving walking the 

entire length of each event. Two soil samples were taken from each reach, one from inside the 

event and one from outside. Specific weight and granulometry were determined. 
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4.3 Derived variables 

The variables derived from the field measurements include slope and horizontal length, average 

slope, area and volume of event. 

Slope length was calculated as the sum of the lengths of all individual reaches: 

£ = i > , (4.5) 

where L : slope length [m]; 

Li: z'-st reach slope length [m]; and 

k : number of reaches in the event. 

Horizontal length was calculated as the sum of the horizontal lengths of all individual reaches: 

^=E(A*cos«p,.) (4.6) 
'=i 

where Lhor' horizontal length [m]; 

Li: /-st reach slope length [m]; 

cos^ ; : cosine of the slope of reach i, (pt; and 

k; number of reaches in the event. 

Average slope was calculated as the slope of the event as a whole: 

<p = arccos ( ^ i ) (4.7) 
L 
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where <p : average slope of the event [°]; 

arcos: the inverse of cosines (the arc of cosine); and 

Lhon L: as above. 

The area of the debris flow was defined as the sum of the scoured areas of all reaches. The area 

can be expressed on the slope or projected onto a horizontal plane, with slope area being 

expressed as: 

A _ ^ . m ^ L ( 4 . 8 ) 

2 

where A: slope area [m ]; 

Wtf. width at the top of reach /[m]; 

Wbf. width at the bottom of reach i[m]; and 

Lefi, k: as above. 

Horizontal area, Ahor, is expressed by: 

* Wt +Wb ^=EL-*cos^.* ' ' (4.9) 
1=1 2 

where Lefi, fy, Wtt, Wbi are as above. 

The volume of the slide was defined as the sum of the volume of all reaches: 

Voltot = %Li*->—-L = 
1=1 ^ 

= X A * W t i * ( d l i ' ° 2 5 + d"'°'5 + d " ' ° , 7 5 ) + W b ' * { d m + d h i ' ° 5 + d m ) 

1=1 8 

(4.10) 
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where Voltot: volume of the debris flow as a whole [m ]; 

Sti, Sbi: cross-sectional area of the top/bottom part of reach z[m2]; 

^H;O.25> <4;O.5> 4/;o.75: depth at top of reach i at 0.25, 0.5, 0.75 of the reach's width [m]; 

4p,o25'4«o.5'̂ fcro.75: depth at bottom of reach / at lA, Vi, % of the reach's width [m];and 

U, k : as above. 

The volume at the initiation point was defined as the volume of the first reach, with the initial 

volume being expressed by: 

Vol\ —L * * ^ " ; 0 2 5 + ^'l'0-5 + ^";0.75 ) + * (^fcl;0.25 ~*~ ^b\;0.5 + f̂rl;0.75 ) , ^ ^ js 

where all the elements are as above but for 

The magnetic azimuth was measured in the field with a compass. In 2001, the magnetic 

declination for the Arrow district area was 18° East (Natural Resources Canada, 2002). As the 

azimuth used in the model has to be in agreement with the TRIM maps, the geographic azimuth 

was used. 

These derived variables were considered as raw data because they express some of the attributes 

of debris flows. 

43 



4.4 Data characterization 

The data collected for each event are presented in Appendix 1. Table 4.6 presents the basic 

statistics for the 38 events. 

Table 4.6 Summary statistics. 

Elements Average Median Minimum Maximum Standard 
deviation 

Number of reaches/event 2.7 2 1 12 2.23 
Slope length [m] 249.5 108.8 25.8 1341.7 329.32 
Horizontal length [m] 209.8 82.95 21.6 1200 287.30 
Width at initiation point [m] 21.5 12.25 2.2 168.7 29.79 
Slope initiation point [°] 36.9 38 18 53 6.53 
Average slope [°] 34.9 34.5 18 53 7.92 
Depth initiation [m] 1.2 1.1 0.1 3 0.60 
Canopy closure [%] 0.8 0.9 0 1 0.29 
High of the stand -first reach [m] 25.5 28 0 45 11.92 
Diameter of the stand-first reach [cm] 22.7 23 0 50 11.01 
Slope surface [m2] 4416.2 1754.5 333 24708 5786.68 
Horizontal surface [m2] 4101.1 1482 251 22113 5337.14 
Volume of first reach [m3] 1096.4 543 49 10021 1810.85 
Volume of whole event [m3] 4545.1 1113 192 36446 7801.43 

The values reveal the great heterogeneity amongst the data, with the standard deviation being 

greater than the mean for almost all the elements. This indicates that the sampling captured the 

variability within the population. 

The debris slide-flows vary from a small-scale, 192 m 3 (event 73-18) to a medium scale events, 

36,446 m 3 (event 61-10) (Innes, 1983). Slope lengths vary from 25.8 m to 1341.7 m. This level 

of variation suggested that regression analysis would be useful to analyze the data 

(Demaerschalk and Kozak, 1974, 1975). 
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4.5 Reach characterization 

A reach, as defined in Section 4.3, presumes uniformity of geology, slope, azimuth, width, 

volumetric behaviour, confinement type and trajectory. This definition is too broad to be 

functional and limits to the variation of the attributes are required. Slope, azimuth and width 

require ranges. The remaining attributes are easy to identify, as they are class variables. The 

trajectory of a reach should be linear in order to fulfill energetic conditions. (In a Euclidean 

space, the smallest amount of energy dissipation occurs on a linear trajectory). 

A reach, as part of an event, is defined according to its relations with the event as a whole and 

with its neighbours. The variation of those attributes that required limits is presented in 

Anpendix 1, Table A. 1.4. 

The values in the tables from Appendix 1 suggest a reach be defined according to: 

• The minimum difference between two adjacent reaches must be at least 3° in slope or 20° in 

azimuth. Only four events failed to fulfill this condition. These values were considered 

because events 61-10 and 62-10 do not respect these conditions and were dropped as outliers 

during the model-building process using different statistical procedures (such as studentized 

deleted residuals and hat matrix leverage) and quantitative analysis. Event 21-101 did not 

influence the overall model and 94-26d was used only for testing purposes. 

• The maximum difference in slope between two reaches must be smaller than 26° (the value is 

area-dependent - the determination is based on the data set), except when one reach is the 

fan. If the difference is more than 26°, the down-stream reach can have a slope greater than 

46° (104%), making it extremely unstable. Given this, initiation of the terrain failure can 

occur in one of the intermediate reaches and not at the first reach. The rest of the reaches, 
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from the real failure point to the present, presumed, initiation point, can appear only after the 

loss of the basal support. 

The length of the first reach or fan must be greater than 10 m. Only one event falls outside 

this criterion. Event 61-18 is only 37.2 m, and the fan represents more than 20% of the total 

length. These, together with the real length of the first reach (8.5m), justify setting the 

minimal cut-off value for the fan and first reach as 10m. 

The length of any reach, except the fan and the first one, must be greater than 25m. Two 

events break this rule. For 61-10, the minimum length is 24.8 m, which can be considered 

sufficiently close to 25. Event 73-12 is an outlier in many respects, including this criterion. 

The maximum length of a reach must be less than 200 m. Two events did not meet this 

requirement; both events are outliers in many respects, including this criterion. The 

maximum length rule is not applied if the reach has a slope larger than 45°. 

The ratio between the length of two adjacent reaches must be greater than 20% and smaller 

than 500%, except when one is the fan. In such a case, the ratio must lie between 16% and 

625%. This means that a reach cannot be five times longer or shorter than any adjacent reach, 

except fans. Two events do not fulfill this rule. The 31-3 event has one extremely long reach, 

20 times longer than the adjacent one, suggesting that the reach was incorrectly identified in 

the field. For event 52-30, the value is 19%, very close to the minimal value of 20%. 

The stopping rule for the event is related to the slope. Based on the statistics of the data set, if 

the slope is less than 18°, then the event stops (Table A. 1.4.). There are 99% of the 

intermediate reaches that have slopes greater than 18°, making the selected cut-off value 

consistent. This ensures that the event will not cross a portion of forested terrain with a slope 

less than 18° and a length greater than 25 m. This means that when the event reaches a slope 

smaller than 18°, only one reach is added to the path variable. 
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Events 51-3, 52-12, 73-18 and 83-7 all stop on slopes greater than 18°. They can be 

explained as follows: 

> Event 51-3 was halted by very dense forest. 

> Event 52-12 is very short and wide; the length-width ratio is 15%. This, 

correlated with the shallowness of the event, suggests that there was 

insufficient energy to maintain the event movement. 

> Event 73-18, which was caused by a road, is short (31.5 m) and stops on a 44° 

slope. The environmental conditions are similar to those of event 52-12; the 

soil is shallow (maximum 50 cm depth) and the forest is very dense. These 

conditions suggest that initiation occurred during heavy rain (to raise the pore 

water pressure to a critical level), but the momentum developed by the initial 

sliding volume was insufficient to ensure further travel. 

> Event 83-7 stops on a slope of 23°. The slide started in a clearcut area, and 

stops in dense forest, suggesting that the presence of the forest was the critical 

factor halting movement. 

Two reaches have intermediate reaches with slopes less than 18°. 

> Event 61-10 has two reaches with slopes of 15° and 12°, respectively. The 

situation is identical to the 21-101 event, with the reaches having triangular 

profiles determined by rocks. 

The width uniformity criterion expresses the variation of a reach's width along its path. 

A way to present this criterion is to calculate the ratio between the width of the top and 

the bottom of the reach. If this ratio is close to 1 then it can be inferred that width does 

not vary along the reach path. This approach is very simplistic and can misrepresent the 

width uniformity along the reach (i.e. a regular reach can have a ratio of width top to 
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width bottom of 0.85, as in Figure 4.3, but an event represented by only one reach can 

have for the same ratio the value 0.5, formed by a trapezoidal shape). 

Width bottom 
= 0.5 

Width bottom 
= 0.85 

Width top Width top 

Figure 4.3 Comparison of the ratio of width bottom to width top for two types of reaches 

To solve this problem, the uniformity determined from the width is transformed into a 

uniformity of the lateral angle of the trapezoid representing the reach, y Figure 4.4. The 

angle is determined using Equation 4.12: 

r^arctanC 1^"^"- 1) (4.12) 
2*L 

where y: lateral angle of the trapeze; 

Wtop, Wbottom •' width of the top and bottom of the reach; and 

L: slope length of the reach. 

The criterion can be stated as: the width of a reach is uniform if the lateral slope 

angle is less than 15°, except on a fan. Three reaches do not fulfill the condition. 

Reach 2/event 62-14 and reach 1/event 94-30 have angles greater than 15° as 

bedrock outcrops transformed the sections from relative ellipsoids to a triangular 

Figure 4.4 Lateral angle, y, of a reach with trapezoidal shape 
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shape. Reach 1/event 83-7, which starts in a clearcut, is very wide. When the 

event reaches closed forest, the path becomes very narrow. 

These criteria determine a debris slide-flow's trajectory. The elements that bound the values of 

the variables are the effective and relative length of a reach, the slope variation between reaches, 

the azimuth variation between reaches, the stopping rule, and the variation in width. 

The selected cut-off values are area-dependent. This means that different geographical areas can 

have different cut-off values. Their identification requires suitable field sampling and a similar 

procedure to that described above. 

4.6 Defining the path as a variable 

Each event can be represented on a contour map, as shown for event #21-101 in Figure 4.5. 

Event 21-101 

/ \ / Stream.shp 
A /Slide.shp 
/ V Road.shp 

Contourjine.shp 
I I Contour.shp 

N 

0.3 0.3 !6 Kilometers 

Figure 4.5 Event 21-101 
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The profile of an event is represented by the reach succession along the debris slide-flow 

trajectory. The longitudinal profile of event 21-101 is presented in Figure 4.6. 

140 -r 

0 50 100 150 200 250 300 350 400 
Length [m] 

Figure 4.6 Longitudinal profile of event 21-101. 

A major challenge is to express the profile of an event with a single number. A possible solution 

for this problem is founded in numbers theory. The quantification of terrain variation along the 

debris slide-flow path is based on the correspondence between binary and decimal numeration 

systems as stated in Theorem 1 (Creanga, 1965): 

Theorem 1. The transformation from one numeration system to another numeration system is a 

bijective function. 

The theorem ensures that a number in a numeration system can be expressed in only one way in 

any different numeration system. The decimal system is used in statistics and non-linear 

programming calculations. If the path variable is expressed in any other numeration system, 

theorem 1 ensures that its expression in the decimal system is unique. 

The binary system was used to express the debris slide-flow path as a single number. Each reach 

can have a value 1 or 0 according to its neighbouring reaches. The first reach has a value of 1. 
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The remaining reaches obey the following rule: the reach has the value 0 if the slope of the reach 

immediately above it is greater, and 1 if the opposite holds. An additional rule is that if the event 

ends in a stream there is no value assigned to the reach containing the stream. 

For example, event 52-13 in Figure 4.7 has the following slope values: 

Reach 1: 33° 

Reach 2 : 28° 

Reach 3 : 33° 

Reach 4: stream 

As the event ends in a stream there is no digit for the final reach. If the event had ended in a fan 

with a slope angle of less than that of reach three, then the assigned value would be 0. 

120 j 

100 
JE 80 
c 
o 60 -
(0 > o 40 --
LU 

20 --

0 1 
0 20 40 60 80 100 120 140 160 180 

Length [m] 

Figure 4.7 Profile of event 52-13 

The binary coding for event 52-13 is 1 0 1. The first 1 is for the first reach. As the slope of the 

second reach is less than that of the first, the assigned value is 0. The slope of the third reach is 

33°, greater than the slope of the second reach (28°), and the assigned value is therefore 1. The 

stream has a slope of 0°, less than reach three, but as a stream is present, no value is assigned to 

it. This means that no extra digits are attached to the binary coding. 
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A value obtained in this way has to be transformed into the decimal system to be interpreted with 

the remaining variables. Theorem 1 ensures that for each number in the binary system, there is 

one and only one corresponding number in the decimal system. The decimal system number can 

therefore represent the coding of an event. As the binary system identifies each event path based 

on reaches, two different debris slide-flows are represented by two different numbers (Figure 

4.8). 

Profile view of an event with 4 reaches 

600 -i 1 

500 — 
J 400 . • 

| 300 

I 200 — / -

100 

0 100 200 300 400 500 

Horizontal distance 

Path codification: 10 10 110 10 

Decimal system: 10 26 

Figure 4.8 Two different debris slide-flows coded by two different numbers 

The coding explains the variation in the debris slide-flow in two ways, by the variation of the 

slope along the path (based on the binary coding), and by the variation of the direction of flow 

(expressed by azimuth) along the path (based on reach characterization). The slope variation 

explained by the binary coding crudely characterizes the energy variation along the debris slide-

flow path. If the slope increases, the assigned value for the corresponding reach is 1 and 

therefore the binary number is greater. The supplementary conditions required to codify an event 

state that a reach have to be longer than 25 m and the event stops when a reach has a slope less 

than 18°. 

Profile view of an event with 5 reaches 

700 T 

Horizontal distance 
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The variation in azimuth is incorporated into the binary coding due to the reach characterization 

and definition. Two reaches are considered different if the difference between their azimuths is 

greater than 20°. However, a change in azimuth occurs because a reach has to follow the greatest 

slope, meaning the largest kinetic energy variation. A new reach identified as a change in the 

azimuth is perceived at the energetic level as an increase in kinetic energy of the mass movement 

(Figure 4.9). Therefore a new reach results in a higher number in the binary coding and 

consequently in the decimal system, consistent with the energetic variation of the event. 

Figure 4.9 Azimuth variation consistent with kinetic energy of the mass movement 

The path variable is dependent only on the terrain. Its value represents the terrain variation along 

the trajectory of the debris slide-flow. The cut-off values represent slope morphology in relation 

to terrain stability. 

* 
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4.7 Hypotheses 

Information from geomorphology, geology, physics and biology was combined to develop the 

following hypothesis: 

There is a significant relationship between the debris slide-flow travel distance and 

geomorphology, geology, tree species, stand characteristics, canopy closure and soil attributes. 

The geomorphological attributes considered were debris slide-flow travel path, slope, azimuth, 

plan and profile curvature, and position on the slope. The soil attributes that were included were 

variation of granulometry, fine particle content, and specific weight. The average height and 

diameter of the stand at the initiation point (first reach) was used to indicate the stand 

characteristics that influence the event travel distance (e.g. root strength and structure, stand 

mass) 

The identification of quantifiable attributes enabled a more flexible approach to the testing of the 

general hypothesis. The next step was therefore to test the significance of each attribute over the 

debris slide-flow travel distance. A series of secondary hypotheses were developed as the first 

step in the testing of the general hypothesis. 

A new variable, which quantifies the trajectory of the event, and which has been termed here the 

path variable, should have a significant influence on the debris slide-flow travel distance 

(Corominas, 1996). The hypothesis that the path variable influences debris slide-flow travel 

distance was tested. 
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The average slope of the debris slide-flow, a, determined by Equation 4.13, 

( * 
2/-*sin(a,.) 
1=1 a - arctan (4.13) 
]T/,.*cos(a,) 
1=1 

<2,: slope of individual researches comprising the event; and 

/,: length of individual reaches comprising the event. 

is the most widely studied attribute characterizing debris slide-flow events. This variable has 

been considered when inferring the relative importance of different attributes on travel distance 

(Terzaghi, 1943; Heim, 1989; Cannon, 1993; Corominas, 1996; Hungr, 1999; Finlay et al, 

1999). The hypothesis that the average terrain slope influences debris slide-flow travel distance 

was tested. 

Together with the average slope, fan slope and slope of the first reach were introduced into the 

analysis because of their possible influence on event travel distance (Pao, 1961; Corominas, 

1996). The hypothesis that there is a significant relationship between slope of the fan, slope of 

the first reach and debris slide-flow travel distance was tested, as was the hypothesis that initial 

volume has a significant influence on the debris slide-flow travel distance (Cannon, 1993; 

Corominas, 1996; Fannin et al, 1996). 

As northerly aspects have a different water regime than southerly ones, aspect may have an 

influence on travel distance. This is because an increase in pore water pressure can reduce the 

stability of the terrain (Greenway, 1987; Wise, 1997). In addition, species composition varies 

with aspect (Hosie, 1969; Burns and Honkala, 1990; Selby, 1993). Each species has unique 

rooting habits and therefore the stability of the terrain varies according to the species association 
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(Chirita, 1974; Burns and Honkala, 1990; Wu et al, 1994). The hypothesis that aspect has a 

significant influence on the debris slide-flow travel distance was tested. 

Water flow on a slope increases towards its base (Viessman and Lewis, 1996; Powrie, 1997). 

Given the role of pore-water pressure on the stability of a slope (Terzaghi, 1943; Kenyey,1984; 

Powrie, 1997), the hypothesis that debris slide-flow initiation point is correlated with the travel 

distance of the flow was tested. 

Terrain curvature influences the local microclimate by reducing or accelerating water flow on the 

slope (Corominas, 1996; Viessman and Lewis, 1996, Megahan and Ketcheson, 1996). The local 

topography of the reach can help fulfill conditions for the triggering of the event, and the terrain 

curvature influence on debris slide-flow's travel distance was tested. 

The rooting habit of each species influences terrain stability (Sidle, Pearce and O'Louhlin, 1985; 

Wu et al, 1994; Watson et al, 1994; Helliwell, 1994). There are differences in root structure 

between single-species stands and mixed species stands (Stanescu et al, 1997). The influence of 

the roots on travel distance was tested. 

Slope stability can be reduced if the mass of vegetation on a slope is large (Greenway, 1987). 

Consequently, there may be a relationship between travel distance of the debris slide-flow and 

the mass of the vegetation on the slope at the time of failure. The mass of the stand can be 

represented by the combination of species, canopy closure, diameter and height. The average 

stand height and diameter influence on debris slide-flow travel distance was tested. 
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Gross precipitation is the precipitation falling above the stand canopy. It is similar to the 

precipitation in an open area when there are no forest edge or topographic effects. The gross 

precipitation is separated into rainfall interception loss, throughfall and stemflow. The 

interception loss (I) is the portion of the precipitation retained by canopy surface. For different 

types of forest, there exists a linear relationship between interception loos and gross precipitation 

during a rainfall (Hashino et al, 2002): 

I=aR + P (4.14) 

where R : rainfall; 

a : empirical constant approximately the ratio between interception loss and gross 

rainfall. Gash (1979) showed that cc-— where e average interception rate and 
r 

T average rainfall intensity; and 

(3 : an empirical constant indicating the intercepted rainwater remaining on leaves and 

branches when the rain stops (e.g. P=l.3-2.0 mm for coniferous trees (Rutter et al., 

1975; Gash, 1979). 

Tree foliage intercepts 10% to 25% of precipitation and up to 100% of light rainfall (Greenway, 

1987). The interception loss is usually greater for conifers (20% to 40%) than for hardwoods 

(10% to 20%) (Zinke, 1967). The amount of interception loss depends on factors such as species, 

stand age, annual precipitation, meteorological factors such as wind speed, vapour pressure 

deficit, and canopy structure (Rutter et al, 1971; Xiao et al, 2000). 

The quantity of water reaching the ground influences the water regime of the soil (Innes, 1983; 

Greenway, 1987). The soil water volume can be directly related to the risk of failure (Terzaghi, 

1943; Kenney, 1984; Powrie, 1997). I therefore tested whether stand canopy closure influences 

travel distance. 
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The substrate influences the development of soil and vegetation. As the nature of the soil and 

vegetation influences slope stability (Chirita, 1974; Traci, 1985), the bedrock geology may be an 

important factor influencing slope stability, and this was tested. 

A series of studies (Innes, 1983; Takahashi, 1991; Iverson, 1997) have presented the importance 

of soil granulometry on the travel distance of debris slide-flows. The significance of the 

relationship between soil granulometry, soil fine particle content, soil specific weight at the 

initiation point and debris slide-flow travel distance were all examined using simple linear 

regression. 

Logging activities can influence mass movement activity (Sidle, 1992, 2000; Rollerson et al, 

2001). The length that a debris slide-flow travels depends on whether it is in a clearcut area or in 

forest (Robinson et al, 1999). Watson et al (1994) found that 50% of the root strength of 

harvested trees was lost in 1̂ 1 years after harvesting, depending on the species and climatic 

region. The critical period for terrain stability is the period between when soil strength is reduced 

through the decay of the roots of the harvested trees and soil strength starts to increase through 

the development of the rooting systems of the new stand. This period of reduced soil strength 

occurs 3-15 years after harvesting (Robinson et al, 1999). Using only events that travelled 

through the forest, except for the first reach, I examined the influence of terrain on travel 

distance. 

All the above hypotheses were tested using the statistical methods, described in Section 4.9. 
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4.8 Assumptions 

A number of assumptions have to be made in order to test the hypotheses. The underlying 

assumption of this study is: 

The mass movement travel distance can be fully explained by mass movement attributes. 

This assumption requires that a number of attributes be attached to the event. These attributes 

completely describe the behaviour of the mass movement in time and space. It is impossible to 

identify all the attributes, so the most important have to be selected. Their selection is 

determined by the starting set of attributes used in the study. One set can lead to some significant 

attributes while another set can lead to a different group. For example choosing slope, gully 

profile and soil granulometric properties as predictor variables can lead to a result. If the 

predictor variables include slope, species and terrain curvature the result is different, but not 

necessarily wrong. The selection of the initial set of attributes is based on experience, 

interpretation of the laws of physics, deduction, and previous studies performed in the area of 

interest. The larger the number of attributes considered, the more accurate are the results. An 

overlapping set of initial attributes considered by different studies (e.g. slope and volume 

(Corominas, 1996), volume and obstruction length (Megahan and Katcheson, 1996), slope, 

transverse radius of channel curvature, volume (Cannon, 1993) and slope and height of failure 

(Finlay et al, (1999)) is recommended to allow inferences about the significance of different 

attributes acting in different combinations. The variation of the significance of attributes 

depending on which combination is used can be assessed by adding new attributes to the initial 

set. In this respect, this study considered a series of variables taken into account by studies 

performed by Greenway et al. (1984), Fannin and Rollerson (1993), Corominas (1996), Megan 
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and Ketcheson (1996), Turner and McGuffey (1996), Wise (1997), and Finlay et al. (1999), such 

as slope, azimuth, and volume. Some studies have also considered certain rheological attributes 

(e.g., McLellan and Kaiser (1984), Fang and Zhang (1988)), which have been used together with 

slope. In statistical analyses, the importance of the rheological attributes is reduced when they 

are used together with geomorphological attributes (Neter et ah, 1996; Iverson, 1997) as 

rheology is considered constant along event path. Therefore, rheological attributes (e.g. dynamic 

friction coefficient, uplift pressure) were not used here. 

The set of attributes used in this study improved the studies listed above in the categories: 

• geomorphology: introduction of a succession of different slope angles along the event 

trajectory (path variable), terrain curvature and position on the slope; 

• slope vegetation: introduction of species structure, stand characteristics (average height 

and diameter); and 

• event geometry: depth at VA, VI and % of the width. 

There are two constraints that impede recording all the attributes: the limited time given for any 

study and the availability of suitable methods. Because of these two constraints it is impossible 

to record all attributes that describe a mass movement. Therefore, new assumptions have to be 

made that are consistent with the assumption that a mass movement is explained by its attributes. 

Usually, any landslide study assumes that the measured attributes represent the actual values. 

Although some studies recognize this to be false, subsequent calculations ignore the implications 

of using data that have imprecise meaning. Usually, operating with these kinds of data and 

ignoring their vagueness, leads to unreliable results. The assumption that builds the vagueness of 

the attribute values into the calculation is that some attributes are measured with low accuracy. 
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Particle size distribution (PSD) type and grading, and soil specific weight are usually measured 

with low accuracy because they cannot be measured in a continuous manner along the event 

path. In this study, I assumed that soil granulometric properties are constant throughout 

individual reaches. This is known to be incorrect given the spatial variability of soils (Iverson, 

1997). 

The assumption that governs most landslide investigations is that the attributes do not change 

from the moment of occurrence until the moment when their value is measured. This study 

includes into the analysis the fuzziness represented by the evolution of a landslide following the 

event. The assumption is that the attributes that characterize the event do not change through 

time (from the occurrence until the moment of the inventory). 

The question that usually arises during data collection is: Has there been modification of the 

landslide from its occurrence until the moment when the measurement was made? If the 

measurements are made soon after the event occurs, this assumption tends to hold (Petley, 1984). 

However, if the data are collected long after the event, some of the attributes may have changed, 

such as the length and width of event (Petley, 1984; Wise, 1997). This is because erosion of the 

landslide scar is accelerated in the absence of vegetation. The same process also affects the side-

walls of the event, leading to the calculation of false volumes involved in the initial motion. If 

the soil is well-developed and the vegetation around the event path is unaffected by the landslide, 

the rate of erosion of the scar and sides may be low. In this study, all events had occurred within 

the last 20 years, and forest vegetation existed around the landslide path. 

The measurements made in the field assume that the initiation point of a landslide is the point 

with the highest elevation. Theoretically, this is not always true as a landslide can start at a point 
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situated below the top of the back scarp. Many factors can lead to this: natural erosion of the scar 

and the occurrence of a new event are two of the most common factors (Abramson et al, 1996; 

Cruden and Varnes, 1996). This uncertainty over the precise position of the real initiation point 

has to be included in the analysis. The assumption that deals with this uncertainty is that the 

event starts at the actual initiation point. 

If the event starts from a point situated below the actual initiation point then the conditions for 

occurrence were met in a place other than that identified as the point of initiation. This 

assumption states that all the causes of the slope failure are located at the initiation point. If this 

assumption is not met then two conclusions can be drawn: 

1. the conditions of occurrence at the actual initiation point were not fulfilled; and 

2. the attributes characterizing the event are incorrect (unnecessary reach(es) were 

considered). 

The data set used in this study does not come from long-term, detailed monitoring, and therefore 

the assumption that the landslides started at the measured initiation point has to be made. 

The last assumption is related to the trajectory of the event. From energetic perspective, the 

landslide energy increases if the slope increases. This is because the potential energy is in a one-

to-one relationship with slope: if slope increases then the energy increases, when no deposition 

of the moving material occurred. This is stated in the energy conservation equation (assuming 

constant mass): 

mv2 

E = Ec + Ep= — + mgM (4.15) 

where E : total energy; 
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EC,EP : kinetic and potential energy; 

m : mass in movement; 

v : speed of the movement; 

Ah : elevation change of the movement; and 

g : gravitational acceleration. 

The assumption that is made in order to meet the relationship between energy and slope is that 

the unconfined event path follows the greatest slope trajectory. 

In the case of landslides, some local elements can influence the event trajectory dramatically. 

This means that at the local level, the path cannot fulfill the assumption (e.g. a large rock, or a 

tree can deflect the landslide trajectory in a direction that does not have the greatest slope). 

However, after such a point is passed, the trajectory always follows the steepest slope. 

The set of five assumptions listed above constitutes the framework for hypothesis testing. The 

first assumption represents the epistemological background of the study. Its validity provides 

sense and creates the foundation for the mathematical tools to be applied during the data 

analysis. 

The last four assumptions are related to the physical part of the mass movement process. 

Usually, techniques involving the vagueness of the data lead to low-precision models. There are 

two types of mathematical models that attempt to involve data uncertainties in the analysis: 

theories based on dual logic (Blackburn et al., 2001), and theories based on poly-logic 

(Lukasievicz, 1963). Theories based on dual logic assign an error to each value. A variable can 

have any value in the interval defined by the error, with the same likelihood. These theories have 

been discussed by Adcock (1877, 1878) and Kummell (1876, 1879) and developed latterly by 
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Koopmans (1937) and Levin (1964). Poly-logic theories have gained a large impetus from fuzzy 

sets theory. The core of fuzzy sets is that the likelihood of a value can vary from zero to 

certainty. Fuzzy set theory tries to reduce the impact of the real data on the analysis by including 

a variable degree of belief for each value, in comparison to dual logic that has only two degrees 

of belief (Zadeh, 1965; Nahorski, 1992). 

4.9 Steps in building the debris slide-flow travel distance prediction model 

4.9.1 Overview 

Several steps are necessary to build a debris slide-flow travel distance prediction model. First the 

attributes significant related with event travel distance have to be established. The techniques 

used to identify these attributes are supplied by statistical methods. As statistical methods use 

variables, the attributes in the mathematical procedures used to develop the model will be termed 

variables. 

The most desirable relationship for a precise model involves unmodified variables. Therefore a 

preliminary analysis was performed on the raw variables. This analysis represented a part of the 

hypothesis testing described in Section 4.7. Usually, the non-transformed variables are not 

correlated with the debris slide-flow travel distance (Cannon, 1993; Megahan and Katcheson, 

1996; Corominas, 1996; Finlay et al, 1999; Fannin and Wise, 2001). 

The next step in identifying the significant variables is to identify transformations that make their 

correlation with debris slide-flow travel distance significant. These transformations are functions 
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that can involve one or more variables. The most desirable case is that each function is 

determined by a single variable. As the functions defined for compact sets of real numbers are 

usually, for certain intervals, bijective (one-to-one relationship), the relationship of the raw 

variable to the transformed one is easy to interpret. 

A series of transformations involve more than one variable and represent their interaction. These 

transformations usually express more powerfully the correlation between the transformed 

interaction and the dependent variable. In order to identify these transformations, two difficulties 

have to be overcome: 

• identification of the association of the variables that makes the correlation strong; and 

• identification of the function that links the selected variables. 

Usually, the combination of variables is dependent on the function that connects them. 

Information regarding the association between the variables can be drawn from the literature. If 

no existing information is applicable, then new associations have to be derived. Another 

approach is based on information provided by plotting the variables on scatter graphs. Building a 

new composite variable consisting of a combination of other transformed variables is one of the 

most difficult actions in modeling. The significance of the transformed variables is determined 

similar to the raw ones. 

The debris slide-flow travel distance prediction model can include raw or transformed variables. 

The significance of the travel distance equation should be tested using the same procedure as for 

the raw variables. The equation must be tested for outliers and for influential cases. As the model 

will be used for further inferences, a series of assumptions have to be met (Neter et al, 1996). 
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These assumptions are related to the normal distribution, homoscedasticity and absence of 

correlation errors. 

The next stage in the development of the model consists of selecting the significant variables for 

the significant model, using stepwise, backward or forward methods. 

The significant variables supplied by the selection procedures described above were used in the 

fuzzy regression analysis. Fuzzy regression analysis is based on triangular fuzzy numbers 

(Tanaka et al, 1982). To use fuzzy regression, the variables supplied by the regression analysis 

using crisp sets have to be fuzzified. The fuzzification process is based on the limitations of 

human operators and devices and the variation through time of the variables. The resulting 

model is based on the non-linear programming of Tanaka et al. (1982), later improved by 

Tanaka et al. (1989), Heshmaty and Kendel (1985), Wang and Li (1990), Bardossy (1990), 

Nather and Albrecht (1990), Savic and Pedrycz (1991), Fruhwirth-Schnatter (1992), Wang and 

Ha (1992), Tanaka and Ishibuchi, (1992), Watanabe and Imaizumi (1993), Romer and Kandel 

(1995), and Hong et al. (2001). 

The two models (crisp and fuzzy), were tested on a data set different to that used in the modeling 

process. This constituted the model's validation (Snee, 1977). For each case, the confidence 

intervals for the predicted values were calculated. The final model was the one with smallest 

confidence interval for the predicted debris slide-flow travel distance. 

66 



4.9.2 Selecting the significant variables 

The process of selecting significant variables was based on the significance of the linear 

regressions. A simple linear regression was performed for each pair of variables: debris slide-

flow travel distance and predictor variable. If the regression was significant it meant that the 

relationship between the variable and the debris slide-flow travel distance was significant. 

Consequently that variable was introduced into the final model as a predictor variable. This 

process was identical for each variable, raw or transformed. The significance of the regressions 

represented the mathematical evidence to support/reject the hypotheses presented in Section 4.7. 

The least squares method (LSM) was used to find the relationship between the dependent and 

independent variables. This method was preferred as it provides extremely good results if all the 

assumptions are fulfilled (Ciucu, 1963; Mihoc and Firescu, 1966). The Gauss-Markov theorem 

ensures that there is no bias and minimum variance of the estimators when using L S M (Netter et 

al, 1996). The mathematical formulas that were used are presented in Neter et al (1996, section 

2.7 and appendices A5-A6). The significance level was established as a = 0.05. The significance 

level used in past debris flow studies has varied from a = 0.2 (Wise, 1997) to a = 0.05 (Megahan 

and Ketcheson, 1996). 

The raw variables were first tested for significance correlation with event travel distance. The 

raw variables were then individually transformed and their significance relationship with event 

travel distance tested. The last step was to build transformed variables that included more than 

one independent variable. The type of transformation was supplied by plotting the debris slide-

flow length against each variable. The significant variables were then used to build the debris 

slide-flow travel distance prediction model using crisp sets. 
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4.9.3 Identifying and testing the model using crisp sets 

The correlations between dependent and independent variables were tested using all 38 

observations. The data set was divided into a data subset used to build the model, called the 

estimation data, and a data subset used to test the model, called the prediction data. To split the 

data set, its size must be larger than 2p+25, where p is the number of variables used in the model 

(Snee, 1977). As there were 38 events, the regression equation cannot include more than seven 

predictor variables. The size of the estimation data subset is recommended to be larger than p+15 

(Snee, 1977). The remaining data represented the prediction data subset. The data set 

identification was based on the significance analysis of the raw variables. 

The method recommended by Snee (1977) was applied, with some modifications. These were 

based on the idea that the prediction data subset has to be as different as possible from the 

estimation data subset. The overlap between the two data subsets can only be related to the 

dependent variable; this means that the debris slide-flow travel distance for the prediction subset 

has to be within the range of the estimation data subset. 

The transformed and significant raw variables were all used in the multiple regression analysis. 

The predictor variables for the regression equation were chosen based on their individual 

significance in relation to debris slide-flow travel distance as well as using a subjective 

interpretation of the information available in the literature. The significant multiple regression 

equation selected the significant independent variables using different procedures: stepwise, 

backward and forward selection. If these procedures supplied the same results then the model for 

predicting debris slide-flow travel distance was represented by the resulting regression equation. 
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Inference based on multiple regression results requires that a series of statistical assumptions 

have to be met. The model therefore had to be adjusted to fulfill these assumptions. This could 

lead to the inclusion of variables that were not significantly correlated with the debris slide-flow 

travel distance but which resulted in a model that met the assumption requirements. The three 

assumptions that have to be met by the regression equation are that the errors are normally 

distributed, that they show homoscedasticity, and that the observations are independent. In 

addition to these assumptions, a series of conditions have to be met. The model should not be 

affected by multicollinearity and there should be no outliers of the dependent variable or the 

independent variables. These assumptions and requirements were tested, always with a 

significance level of a = 0.05 (the lowest reported in the literature on terrain stability). 

4.9.3.1 Normal distribution of the errors 

This condition has to be fulfilled to make inferences based on the regression equation 

coefficients and also on the confidence intervals of the predicted value. Several tests can be 

applied to check if the assumption of normality is violated, with the most commonly used being 

the Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling tests. The 

tests are presented in Conover (1999). Emphasis in this analysis was placed on Kolmogorov-

Smirnov and Shapiro-Wilk tests (Craiu, 1998; Conover, 1999). 

4.9.3.2 Errors involving homoscedasticity 

Homoscedasticity means that the error variance is the same for all observations in the sample, 

and therefore that the variance of the dependent variable is the same for all observations in the 

sample. If heteroscedasticity is present, the spread of the predicted variable depends on the 

69 



values of the predictor variables (Rutemiller and Bowers, 1968; Breusch and Pagan, 1979). In 

this case, even if the regression coefficients are unbiased and consistent, they are not efficient 

(i.e. they do not have minimum standard error). The presence of heteroscedasticity was 

determined using White's test (White, 1980), with a significance level of a = 0.05. 

4.9.3.3 Errors are not correlated 

If the errors are serially correlated then the least squares procedure, used to estimate the 

regression equation coefficients, has the following undesirable consequences (Berk, 1977; 

Bernstein et al, 1988; Neter et al, 1996). The regression equation coefficients do not have the 

minimum variance (from Gauss-Markov theorem), the errors' variance can be underestimated by 

mean square errors (MSE), the confidence intervals based on the t distribution are no longer 

strictly applicable, the tests involving the F distribution cannot be used, and the variance of the 

regression equation's coefficients determined using least squares method (LSM) can 

underestimate the real variance of the estimated regression coefficients. First order error serial 

correlation was considered. This means that the equations to be tested were: 

L = a0 + ^ at.* X. + £j initial regression equation 
(4.16) 

£ • = p* £ ._ , + Uj first order serial correlation 

where L : dependent variable (debris flow travel distance); 

Xi: independent variables; 

Ej: error of the observation i t h ; 

Oo, Oi: estimated regression equation coefficients; 

Uj: error term for the £}•; and 

p: parameter expressing the errors serial correlation. 

70 



The test used to check whether the errors were serially correlated was described by Durbin and 

Watson (1950) and Durbin (1970). The Durbin-Watson statistic, d, is calculated from: 

5>,-«,-.)2 

d=^~i (4.17) 

1=1 

where e,: error of the i t h observation. 

The test is based on the distribution of the Durbin-Watson statistic, d. Durbin-Watson bounds are 

dependent on the level of significance (already established at a=0.05), the number of 

observations and the number of predictor variables. If d determined using the above calculation 

is larger than the upper Durbin-Watson bound then the errors are independent, if d is smaller 

than lower bound then the errors can be correlated and if d is between the upper and lower 

bounds the test is inconclusive. If the test is inconclusive then the Theil-Nagar test was used 

(Theil and Nagar, 1961). 

4.9.3.4 Model multi-collinearity 

The multi-collinearity test is used to detect one or more collinear relations among the set of 

predictor variables. Multi-collinearity is extremely problematic in regression analysis, leading to 

local solutions instead of global ones. Some of the problems supplied by multi-collinearity are 

presented in Figure 4.10. 
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Figure 4.10 Exact collinearity. The coefficients of the regression are undetermined. A change of 

the regression's parameters plane do not change the errors sum of squares (Belsley et al, 1980). 

A series of studies have developed techniques to detect the subset of independent variables 

involved in collinear relations. Chatterjee and Price (1977) used ridge regression and the 

variance inflation factor (VIF). The VIF is used in determining the biasing constant used in ridge 

regression. The equation for VIF is: 

VIFk=(\-R2
kyl (4.18) 

where VIFk : VIF for the independent variable k; 

R k '• coefficient for multiple determination when Xk is regressed on the other p-1 

independent variables in the model; 

p : number of independent variables; and 

k : a natural number from 1 to p. 
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Neter et al. (1996) recommend 10 as a cut-off value for VIF. If the VIF > 10, multi-collinearity 

is present, and the least squares is not the best method to us in the regression coefficient 

determination. 

4.9.3.5 Identifying and assessing the outliers 

Outliers are events clearly separated from the rest of the data. Outliers often involve large 

residuals and can therefore have a strong impact on regression equation estimation if the least 

squares method is used. These events have to be studied individually, so that a decision can be 

made as to whether they should be retained or eliminated from the analysis. 

Studentized-deleted residuals, based on single row effect investigation (Belsley et al, 1980), 

were used to identify outlying values of the dependent variable. The equations used to calculate 

this statistic were: 

Student, = e: 

n-p-l 
-10.5 

SS£(1-/*,.)-£,. 
(4.19) 

where : the i t h error; 

SSE: sum of squares of errors 

hu : the / t h diagonal in the hat matrix H = X(X'X) _ 1 X' 

Studentized-deleted residuals were used because they have equal variances (homoscedasticity) 

and can be easily related to the t-distribution. However, the Studentized deleted residuals, 

StudenU, can conceal some influential data that have relatively small values for residuals. To 

assess the Studentized-deleted residuals, their relationship with the t-distribution was used 

because StudenU follows the t distribution with n-p-1 degrees of freedom. The Bonferroni test 
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was used and therefore the critical value was tx_ann.n_p_x. The significance level was a = 0.05. If 

the Studenti < tx_ann.n_p_x then the i t h observation is not an outlier of the dependent variable. 

Outliers can also be identified in the set of independent variables. Two tests were used to 

determine if an individual observation was an outlier of the independent variables: hat matrix 

leverage (H) and COVRATIO. The hat matrix leverage statistic, hu, supplies an indication 

regarding the outliers in the independent variables. The cut-off value for hat matrix leverage is 

2p 
— where p is the number of independent variables and n is the number of observations 
n 

(Belsley et al.; 1980). If hu < — then the i t h observation is not an outlier of the independent 
n 

variables. 

The COVRATIO statistics are determined using Equation 4.20. 

det(s2

(i) (X 'X m )- ' ) 
COVRATIO = ^ — ^ — - (4.20) 

det (s 2 (X'X)-1) 

where ŝ : errors variance estimated after deleting the i t h observation; 

s : errors variance; and 

X(i): X matrix without the i t h observation. 

The cut-off value proposed by Belsley et al. (1980) is: 

\covratio-l\=— (4.21) 
n 

If the | covratio -11 < — then the i t h observation is not an outlier of the independent variables. 

The influence of all the events identified as possible outliers on the regression equation estimates 

needs to be assessed. An influential observation is one whose exclusion from the data set would 

cause major changes to the regression equation estimates. The tests carried out to assess the 
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influence of an individual observation are based on its omission from the data set. The tests used 

are: 

• DFFITS - the difference between the fitted value y,. for the i t h event when whole data set 

is used in fitting the regression function and the predicted value yi{i) for the i t h event 

obtained when the i t h event is omitted in fitting the regression function (Belsley et al, 

1980; Neter etal, 1996); 

• Cook's distance measure (Cook, 1977, 1979; Belsley et al, 1980; Neter et al, 1996); and 

• DFBETAS - the difference between the corresponding estimated regression coefficients 

determined using the whole data set and also when the i t h event is omitted (Belsley et al, 

1980; Neter et al, 1996). 

The DFFITS statistics is calculated using the formula (Belsley et al, 1980; Neter et al, 1996): 

DFFITS = e, 
n-p-l 

SSE(l-h„)-eS 

0.5 f i. \ 
0.5 

= student; (4.22) 

The general cut-off value for DFFITS is 2 / - (Belsley et al, 1980) or 1 (Neter et al, 1996). If 
V n 

DFFITS < 1 or DFFITS < 2 1— then there are no individual events that have a significant 
V n 

influence on the regression. 

Cook's distance measure considers the influence of the i l event on all predicted events from the 

data set. Cook's distance, Dj, is calculated using the formula (Cook, 1979; Belsley et al, 1980; 

Neter et al, 1996) 

D = _ f j _ * _ ^ _ 

' PS2 d-Kf 
(4.23) 
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Cook's distance measure, D;, is related to the F distribution. The value of Dj is compared to the 

F P in.p corresponding percentile value. When the percentile value is less than 20%, then the i t h 

observation has only a small influence on the fitted value (Neter et al, 1996). If a , determined 

using the formula F(a; p, n-p) = D;, is smaller than 0.2, then there is no evidence of a particular 

event having a significant influence on the fit of the regression equation. 

The D F B E T A S statistic is the scaled measure of the change in each parameter estimate (Belsley 

et al, 1980; Neter et al, 1996). D F B E T A S is calculated by deleting the ith observation using the 

equation: 

where (X'Xfjj: the j j element of the ( X ' X ) " 1 ; and 

bay : j t h coefficient calculated deleting the i t h observation. 

Different authors recommend distinct cut-off values in the D F B E T A S assessment. Belsley et al. 

2 
(1980) recommended a cut-off value —== and Neter et al. (1996) recommend a cut-off value of 1 

for small- to medium-size data sets. If D F B E T A S is smaller than the selected cut-off value, then 

the i t h observation is not an influential case. 

If an outlier that is also influential is not obviously erroneous it requires further examination. 

Such cases provide useful information about the adequacy of the model. The elimination from 

the analysis of outlying influential observations that are not clearly erroneous should be done 

rarely and with caution. The final decision over the data set structure is made using robust 

regression (Rouseeuw and Leroy, 1987; Hoaglin et al, 1985; Neter et al, 1996). The robust 

DFBETAS = (4.24) 
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regression procedure diminishes the influence of the outlying events when L S M are used. Of the 

many procedures developed for robust regression, this study used the iteratively re-weighted 

least square method. The weighted function used is the bi-square function, w (Rouseeuw and 

Leroy, 1987; Cleveland and Devlin, 1988), expressed by: 

[ 1 - ( W 2 f | a M ' 6 8 5 (4.25) 
0 |w|> 4.685 

where u is calculated using the Beaton-Tukey (1974) method: u = 

Robust regression is an iterative process. The iterations stop when convergence of the assigned 

weights is obtained. Cases whose final weights are relatively small are considered outlying, and 

therefore require investigation. If there was no evidence that the outlying events have to be 

dropped from the data set, they were kept and the final regression equation built using crisp sets 

was the one supplied by the robust regression. 

4.9.4 Regression function assessment in relation to the debris flow ending point 

Events that ended in a stream are usually assessed separately from those that did not. The new 

variable that quantifies the path in relation to terrain morphology solved this problem. Using the 

new approach, the two cases were studied together. However, a separate analysis was performed 

to show the validity of combining the data. This was done by first identifying the regression 

equations modeling each type of event, i.e. one equation for events that ended in a stream and 

one equation for events that did not. As the goal of this method was to check the equation 

modeling both type of events, the two functions that predicted debris flow travel distance for 

events that ended and did not end in streams used the same set of predictor variables supplied by 

the final model for crisp sets from Section 4.9.4.2. 
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4.9.4.1 Regression function for events that end/do not end in a stream 

The first step in the analysis was to test the significance of each equation built for events that 

ended/did not end in streams using the above variables. The hypotheses to be tested initially 

were: 

HO: There is no significant relationship between the debris flow travel distance (for events that 

end in a stream/do not end in a stream) and the predictor variables of the model built using 

crisp sets; 

HI: There is a significant relationship between the debris flow travel distance (for events that 

end in a stream/do not end in a stream) and the predictor variables of the model built using 

crisp sets; 

These hypotheses were tested using the F distribution, as described in Section 4.9.2. This test 

requires that the assumptions of homoscedasticity of the errors, normal distribution of the errors, 

and independency of observations are met. These assumptions were checked using the same 

methods as in Section 4.9.3. The models obtained for each of the two cases were also checked 

for outliers using robust regression, as described in Section 4.9.3.4. 

4.9.4.2 Inferences about the two regression functions 

The Fisher distribution was used to test the difference between the two regression equations 

obtained in Section 4.9.4.1. A modified Levene test ( Levene, 1960) can be used to verify if the 

variances of the error terms for the two models are equal, as it does not depend on the error terms 
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being normally distributed. The absolute errors were used for each regression equation. The 

elements needed to perform the Levene test are: 

d,=\eiX-ex\ d, = ^ 

(4.26) 

where en : errors of the regression function built from events that did not end in a stream; 

e-a: errors of the regression function built from events that ended in a stream; 

e{,e2: error means for the regression functions of the events that did not end/ended in a 

stream; and 

ni, ri2: number of events that did not end/ended in a stream: ni+ri2 -n. 

The pooled variance s2 is determined with the equation: 

n, + n2 - 2 

The Levene test is based on the t distribution and t statistics, which are calculated from: 

h= d r d \ (4-28) 
s I— + — 

The critical t value for a=0.05 and n DF is ti-o/2; n - 2 - If IL< t critic the null hypothesis cannot be 

rejected and there is no difference between the variances of the two regression lines. 

The assessment of the difference between the two regressions functions is based on the class 

variable technique (Neter et al, 1996); the set of two equations being identified with a class 

variable. Using this concept, a new equation can be built: 
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yi =fi(X,) + ct *f2{Xi) + Ci = ̂ a n x n + ct]Tai2Xi2 + = ]T a,,.*,. + £ a ^ x , + et (4.29) 
1=1 1=1 i=i 1=1 

where y,: debris flow travel distance; 

/ / : regression function for the events that did not end in a stream (in terms of variables); 

f i : regression function for the events that did not end in a stream (in terms of variables); 

Xt: set of independent variable; and 

ci: a variable defined in the following way; 

{1 if tfie event ends in the stream 

0 if the event do not ends in the stream 
Ei: error term; and 

an = an and a2,= c,-*a,-2. 

The significance of the regression is ensured by the variable selection. The level of significance 

for the test is established at a = 0.05. The F test is used and the DF associated are p2+l for the 

numerator and n-pi-p2-2 for the denominator, where pi and p 2 are the number of variables in the 

regression function for the events that did not end in a stream (pi) and ended in a stream (p2). If 

the F-value determined using the hypotheses constrains F c a i c < F , ^ . ^ > n _ p _2 then the 

functions describing the events that ended/did not end in a stream are not significantly different. 

If this is the case, then a single function can be used to explain both types of events. 

Information about the difference between the functions that model the travel distance for events 

that ended/did not end in stream can be obtained by a check of the significance of the 

corresponding coefficients in the model mixing the functions for the two types of events and a 

summary of the statistics for each type of event. 
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This test was the final assessment in the process of regression building using crisp sets. The final 

debris flow travel distance prediction model was represented by the function fulfilling all the 

assumptions and conditions described above. 

4.9.5 Regression model built using fuzzy sets 

The goal of a regression analysis is to describe how the dependent variable is related to the 

independent variables. Because the relationship is investigated using a data set, the regression 

rarely describes the precise relationship between the variables (Bardossy, 1990). There are two 

causes for modeling errors, omitting independent variables and choosing the wrong regression 

function (linear, logarithmic, etc). 

The reason that fuzzy regression is used in modeling natural processes such as landslides is 

related to the uncertainty of the data (e.g., the soil granulometry). The regression parameters can 

be crisp sets as the uncertainties are related only to the data values. This means that the modeling 

process involves fuzzy data and crisp parameters: data with uncertain values and parameters with 

precise values. The use of fuzzy sets partially solves the second factor that can lead to modeling 

errors: choosing the wrong regression function (Klir and Yuan, 1995). The fuzzy approach can 

therefore solve two problems simultaneously, namely uncertainties associated with the data 

values and lack of fit caused by using the wrong regression function. The fuzzy set theory used 

to develop the landslide travel distance model is presented in Appendix 3. 
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4.9.5.1 Fuzzifying the variables from the final crisp set model 

The variable fuzzification is based on three aspects of the data. The variable can vary through 

time, from the event occurrence to the moment of measurement. This change over time needs to 

be considered in the model as the initial values are not known exactly. Secondly, the data are 

collected directly (by walking the length of the event) or by using instruments such as a 

clinometer or compass. Both methods do not provide exact results because of the limitation 

imposed by human error and by the instruments. Thirdly, the debris flow measurements are 

'inaccurate. The process of data collection using maps or aerial photographs can lead to incorrect 

values (Robinson et al, 1999). Considering these three points, the fuzzification can be done as 

percentages around the measured value or by adding or subtracting a certain value from the 

measured value. 

Possible variation through time of the variables and difficulties in data collection (if maps are 

used) have to be considered in order to express reality. As the fuzzy sets used are symmetrical 

triangular fuzzy numbers (Appendix 3), the fuzzification process has to follow a series of rules 

(Zadeh, 1965; Klir and Yuan, 1995; Nguyen and Walker, 2000). The vagueness of a value has to 

be the same in both directions: larger or smaller. The likelihood of any value around the 

measured one must follow a linear function. The fuzzified variables must be used in the 

regression analysis, not the crisp variables. The process of crisp variable fuzzification is based on 

the Zadeh extension principle (see Appendix 3). 

The fuzzification process permits as large as possible a spread for the predictor variables and as 

small as possible a spread for the predicted variable. The arithmetics of fuzzy sets reveal that if 

the spread of the predictor variables is large that of the predicted one is larger. Following a 
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comparison with the confidence intervals supplied by the crisp sets, the spread of the dependent 

variable was established as 20% (i.e. +/- 20%) from its value. This ensures a level of confidence 

of the model of at least 80% from the predicted debris flow travel distance. 

The spread of the independent variables is determined in relation to the the maximum variation 

of a variable due to error in recording, limitations of the instruments used in data recording and 

evolution of the debris flow from its occurrence until the time of data collection, and by ensuring 

that the mathematical requirements from the fuzzy regression calculations are fulfilled. The 

actual spread of the value assigned to each independent variable is determined as a percentage of 

its crisp value and is presented in Section 5.5. Fuzzified variables were used in the fuzzy 

regression analysis. 

4.9.5.2 Fuzzy regression analysis 

The fuzzy regression method is presented in the Appendix 3. The variables used in the regression 

analysis were supplied by the fuzzified variables of the final regression equation using crisp sets. 

The non-linear programming set of equations used in fuzzy regression estimation includes, 

besides mixed transformed variables (variables built as a product of two or more individual 

variables), the individual variables compounding the mixed variables (i.e. together with the 

mixed variable slope * stand height, slope and stand height will also appear separately). The 

equations proposed by Tanaka et al. (1982), Tanaka and Ishibuchi (1992) and Klir and Yuan 

(1995), which are the basis of the fuzzy linear regression analysis of this study, are expressed as: 

m n 

minimize £ | S j - ^ \ a t \su| (4.30) 
j=i 1=1 
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subject to 
n n 

-Y}ai\sn+Yjaixn-yj+sJ 
n ' = 1

 n ' = 1 foral l j6{l ,m} (4.31) 

i=l 1=1 

where y,-: dependent variable ( debris flow travel distance); 

Xi: independent variables; 

a,-: regression equation coefficients (crisp numbers); 

n : the number of variables; 

m : the number of events studied; 

: spread of the fuzzy i t h variable from the j t h event; and 

Sj: the spread of run out distance for the j t h event 

The membership function (Zadeh, 1965) does not appear in these equations. This is because the 

minimum value of the membership function in the Tanaka et al. (1982) model is 0. This implies 

that the degree of certainty associated with each predicted value is larger than 0. The goal of the 

model is to provide as large a degree of certainty as possible (for u. = 1, fuzzy sets become crisp 

sets). As the study has an exploratory character, the minimum degree of certainty was 

established as 10%. The degree of certainty associated with a certain value can be understood as 

the equivalent of the significance level from crisp set theory. The significance level u.= 0.1 is 

larger than the significance level a = 0.05, as the objective of the study is to produce a model 

with a small confidence interval and with a high degree of certainty. The comparison between 

the models, built using crisp or fuzzy sets, is made by selecting the same value for the 

significance level and degree of certainty, a = u, = 0.05. 
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Two more groups of constraints were added to the above equations. The first group of equations 

restricts the confidence interval to values that are strictly positive. This constraint does not exist 

in the model built on crisp sets, as it sets a confidence interval that could include negative 

numbers. The mathematical expression of this condition is: 

i>,*,7-Ekky>0 (4.32) 
;=i i=i 

where the symbols are as above. 

The second group of conditions forces the predicted value to be greater than the lower bound of 

the measured fuzzified debris flow travel distance. The conditions imposed by Tanaka et al. 

(1982) ensure the overlapping of the measured and predicted fuzzified values for the dependent 

variable (Figures 3, 4 and 5 from Appendix 3). The condition expressed in Equation 4.35 

increases the overlapping area. In geometrical terms the condition can be represented as: 

Predicted Left bound Right bound 
Value measured value measured value 

Figure 4.11 Forcing the predicted value to be larger than the lower bound of the fuzzified 
measured value. 

In mathematical terms this condition can be represented by: 

n 

2X*,v - L i e f t > 0 (4.33) 

where Lleft : lower bound of the measured fuzzified value 
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If the predicted value is larger than the upper bound of the fuzzified measured value, as in Figure 

4.12, then a similar condition states that: 

lLaiXij-Lrish, <0 
1=1 

where Lright: upper bound of the measured fuzzified value. 

(4.34) 

Lower bound 
measured value 

Upper bound Predicted value 
measured value 

Figure 4.12 Forcing the predicted value to be smaller than the upper bound of the fuzzified 
measured value. 

As the two conditions described above are extremely restrictive, leading to a confidence interval 

for the predicted value smaller than 40% for the event's travel distance, there is usually no 

feasible solution for the whole set of equations. As a result, only one of the above two sets of 

conditions can be selected in the modeling process, expressed by: 

YjaiXiJ-Lleft >0 (4.35) 
i=i 

There are two reasons for selecting this condition. From the point of view of risk it is better to 

overestimate the travel distance than underestimate it. This means that the predicted travel 

distance should be larger than the lowest possible value determined for the travel distance. 

Secondly, the lower boundary condition ensures that the predicted value can have only positive 

values. 

The complete set of functions involved in the debris flow travel distance prediction model using 

fuzzy sets is: 
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m n 

subject to 

minimize J | ~ J l a>I su I (4-36) 
y=l i=l 

- J l a,- I +Yjaixij<yj + S j =Lrigh[ 

, = 1 , = 1 f o r a l l J G { l , m } (4.37) 
J l a i I •Sy + J a i * < 7 ~sj =Lleft 
i=l 1=1 

J « , - * « , - J k k y > 0 (4.38) 
i=l i=l 

J a , . ^ - L t e / , >0 (4.39) 
i=i 

The parameters supplied by the above restrictions represent the coefficients of the final model 

used in the debris flow travel distance prediction based on fuzzy set theory. The formula used for 

n n n 

the confidence interval, CI, of the predicted value was: CI=J<2,je,y ± Ja,-^, =y(. ± J a . ^ . 
i=l 1=1 i=l 

4.9.6 Regression assessment 

The performance of the models determined using crisp or fuzzy sets needs to be assessed. As 

described in Section 4.9.3, the data set was split into two subsets, one for estimation and the 

other for prediction. The function coefficients were determined using the estimation data subset 

and the model was assessed using the prediction data subset. The prediction data subset also 

included the events identified as outliers by the statistical analysis on the crisp sets and 

eliminated from the estimation data subset. 

The predicted values for the debris flow travel distances were calculated using the models 

supplied by both the regression analysis on crisp sets and the regression analysis on fuzzy sets. 

The confidence intervals for the values determined crisp sets were: 
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^' y i —t\-all\n-p S predict ,, 
(4.40) 

s2pre** =MSE* (1 + X'. ( X ' Z ) _ 1 Xt) 

where y,-, X'., X' , X , X ; are as above; 
s2predict '• variance for the predicted value; and 

MSE : mean square error for the multiple regression equation. 

n 
For fuzzy sets, the confidence intervals were expressed by: CI- y, ±^jajsij 

1=1 

If the actual values fell within the confidence interval predicted by the models then the functions 

proposed to predict the debris flow travel distance were considered as being correctly estimated. 

If the number of events that were incorrectly estimated was proportionally larger than selected 

significance level, then the models were considered to be poor. In such an event, the regression 

analysis would need to be repeated, starting with the selection of the transformed variables. 

The events that did not fall into the confidence interval had to be analyzed individually. 

Information from analysis of the wrongly predicted events was used to improve the performance 

of the model. If the analysis indicated that such a step was necessary, some adjustment to the 

functions used in the prediction had to be made. 

A regression assessment using a completely different data set represented the final test in the 

process of model validation. The final model was chosen in relation to two features. If the data 

were considered to be accurate then the crisp set model was used, provided that the CI was 

smaller than that supplied by the fuzzy set function. The selected model was the one with the 

smaller confidence interval, except when the data accuracy was reduced, in which the case the 

fuzzy model was used regardless of the confidence interval. The selection process for the model 

that best fitted the data and the data accuracy is presented in Figure 4.13. 
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D A T A 

Accurate data 
High degree of certainty associated 

with each value 

Inaccurate data 
Low degree of certainty associated 

with each value 

Model determined 
using crisp sets has CI 

smaller than model 
using fuzzy sets 

Model determined using 
crisp sets has CI larger 
than model using fuzzy 

sets 

Use model 
determined using 
crisp sets theory 

Use model determined using fuzzy sets theory 

Figure 4.13 Flow chart for selecting the prediction function. 
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4.10 Risk assessment 

After establishing the model used to determine the travel distance of the event, the risk was 

assessed as follows: 

a) identification of the initiation point of the event; 

b) prediction of the event travel distance and its confidence interval; 

c) a check of the position of the element at risk (E) 

i. if the distance from the debris flow initiation point and the position of element at risk 

was smaller than the upper limit of the confidence interval, the vulnerability (V) was 

considered as 100%, with the significance level or degree of certainty established; 

ii. if the distance from the debris flow initiation point and the position of element at risk 

was greater than upper limit of the confidence interval, the vulnerability was 

considered to be 0%, with the significance level or degree of certainty established; 

d) determination of the risk ( R ) using the following equation (Covello and Merkhofer, 1993; 

Mapping and Assessing Terrain Stability Guidebook, 1999): 

PxE if the position of the element at risk is smaller than upper CI limit of the traveldist. (4.43) 

where P : probability of event occurrence; 

C : consequences. 

The E-value depends on the nature of the element at risk and was therefore uninfluenced by the 

debris flow's initiation point or travel distance. The above equation is very simple and is 

completely determined by the initiation point of the debris flow. 

R=PxC=PxExV= 

if the position of the element at risk is larger than upper CI limit of the traveldist. 
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5 Results 

This chapter explains how the debris flow travel distance prediction model was built. The 

calculations were performed using SAS version 8.2 for statistics and non-linear programming 

and MS E X C E L version 2000 for data manipulation. 

5.1 Significance of the correlation between debris flow travel distance and 
the raw variables 

The first step in building the model was to determine the raw variables that were significantly 

correlated with debris flow travel distance. This was done by performing a simple linear 

regression analysis for each of the independent variables. As trends and relationships were 

difficult to identify, the analysis was performed using the whole data set, i.e., the 38 events. The 

results of the simple linear regression analyses are summarized in Table 5.1. 

Eight variables were correlated with debris flow travel distance: path, terrain curvature expressed 

by the combination of plan and profile curvature, stand height and diameter, soil fine particle 

percentage, and terrain state represented by main and secondary human activities considered 

together. The rest of the variables considered in analysis were not correlated with debris flow 

travel distance at the selected a level (0.05). 
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Table 5.1 Pearson's correlation coefficients between debris flow travel distance and selected 
predictor variables. 

Variable Coefficient of 
correlation 

F calc Pr>F H o 

Path variable 0.36 20.33 0.0001 Rejected 
Average slope 0.03 1.1 0.3 Accepted 
Fan slope 0.02 0.76 0.39 Accepted 
First reach slope 0.002 0.09 0.76 Accepted 
Initial volume 0.02 0.55 0.46 Accepted 
Azimuth 0.07 2.82 0.1 Accepted 
Position on slope 0.07 2.86 0.1 Accepted 
Plan curvature 0.06 1.1 0.34 Accepted 
Profile curvature 0.02 0.44 0.64 Accepted 
Terrain curvature - plan and profile 
curvature (separate) 

0.08 0.75 0.56 Accepted 

Terrain curvature - plan and profile 
curvature (interacting) 

0.45 2.94 0.01 Rejected 

Species 0.04 0.52 0.67 Accepted 
Stand height 0.13 5.33 0.027 Rejected 
Stand diameter 0.13 5.44 0.025 Rejected 
Canopy closure 0.001 0.04 0.84 Accepted 
Geology 0.05 0.96 0.39 Accepted 
Particle side distribution (PSD) type 0.02 0.32 0.72 Accepted 
PSD grading 0.12 2.34 0.11 Accepted 
Soil fine particle content 0.08 3.1 0.08 Rejected 
Soil specific weight 0.02 0.9 0.35 Accepted 
Terrain state (main human activity) 0.02 0.48 0.62 Accepted 
Terrain state (main and secondary 
human activities considered separate) 

0.62 10.46 0.0001 Rejected 

Terrain state (main and secondary 
human activities considered interacted) 

0.64 6.49 0.0001 Rejected 

Two sets of class variables represented terrain curvature and terrain state. To determine the 

correlation's significance between debris flow travel distance and the class variables, two cases 

were considered, the variables alone (Equation 5.1), and interactions amongst the variables 

(Equation 5.2). 

L = f (plan curvature, profile curvature) 

L = f (main human action , secondary human action) 

L = f (plan curvature*profile curvature) 

L = f (main human action * secondary human action) 
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For terrain curvature, each case led to a different conclusion. Plan and profile curvature, when 

considered as separate variables, were not correlated with travel distance, but a correlation was 

present when they were considered as interacting variables. Only the variable representing the 

interaction between plan and profile curvature was considered in the model-building process. 

The variables representing terrain state were significant whether they were considered separately 

or as interactive variables. In both cases, the influence of the main human activity was not 

significant. These variables were not used in the model building process. 

Variables that were not correlated with debris flow travel distance were included in the analysis 

in a transformed form. The transformations were performed to improve variable correlation with 

event travel distance. 

5.2 Transforming the raw variables 

The analysis performed on the raw variables revealed that the variable with the highest 

influence, based on correlation coefficients, was the path variable. It is possible to test whether 

there is a variable transformation that would increase the significance level of any of the 

correlation coefficients; trigonometric (sine and cosine), logarithmic and power functions 

(positive and negative exponential) functions were used to modify the raw variables. The graphs 

in Appendix 7 indicate the transformation types that were used to increase the correlation 

between variables. 

Slope at the initiation point ((j)) can be expressed as a raw variable (in degrees), but it can also be 

transformed. A sine function was selected for this study as the sine function shows the variation 
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of elevation in relation to slope distance. The transformation leading to a new variable for slope 

is sin (0). 

Azimuth expresses the aspect of the debris flow. As mentioned in Chapter 4, water regimes vary 

from southerly expositions to northerly ones. This study considered northerly aspect as having 

wet regimes, southerly expositions as having dry regimes, and easterly and westerly expositions 

as neutral (intermediate). A cosine function was chosen because it has the following properties: 

• for cases of 0 or 360° its value is 1; 

• for cases of 180° its value is -1; and 

• for cases of 90° or 270° its value is 0. 

This means that for northerly aspect, the cosine function assigned a value of 1, for southerly 

aspect a value of -1, and for east and west aspect, a value of 0. A power function was applied to 

accentuate the information. The only restriction that needed to be applied to the power function 

was that it had to be an odd number in order to preserve the sign. After a series of tests, the 

number that seemed to be appropriate for this investigation was five. The transformed variable 

can therefore be expressed by: 

CAZ=(cos(azimuth))5 (5.3) 

Canopy closure is an indicator of terrain state. This study considered only the canopy closure of 

the first reach. The analysis performed in Section 5.1 revealed that there was no significant 

correlation between the debris flow travel distance and canopy closure of the first reach. 

Transformation of the variable might therefore increase the significance level or even make it 

significant. Figure 7 from Appendix 7 and a series of attempts to derive an appropriate 
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transformation indicated that a suitable function for improving the relationship between debris 

The height of the stand at the initiation point was correlated with the debris flow travel distance 

(see Section 5.1). Stand height varied from 0 to 50 m. This large range of values, when 

compared to the values for transformed azimuth (from -1 to 1), makes the variable coefficients 

comparison inappropriate (Bernstein et al, 1987; Neter et.al, 1996). This was considered 

undesirable and a further transformation of stand height undertaken, as linear transformations 

leaves the collinearity diagnostics little altered (Belsley et al, 1980). The most common 

transformation is normalization; this study relayed on the idea of normalization, but did not use 

the mean or standard deviation in the calculation. This did not affect the results, as transformed 

height was not used to infer height; rather, it was used in the inferences related to debris flow 

travel distance. The new height variable, codified ht, is where h is stand height at the first 

to 10 

reach. The number 1 was added to avoid zero values for height. The number 10 was selected as 

supplying the largest correlation coefficient with debris flow travel distance. 

The transformed variables height and slope of the first reach were combined to form a new 

variable. The new combined variable should be more significant than either alone, and should 

also be more strongly correlated with debris flow travel distance. A series of tests were 

performed to establish the best combination. The selected function represents the interaction 

between slope of the first reach and stand height: 

flow travel distance and canopy closure was 
1 

where k is stand canopy closure 
fc + 0.01 

h + 1 
)5 *(l + sincp) 

10 
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The correlation between the new variable expressing the debris flow path and event travel 

distance can be improved if further transformations are applied. As Figure 1 from Appendix 7 

does not offer sufficient information regarding the functions to be used, several attempts were 

made to improve the transformation, resulting in the following transformation: 

(log(V^ + D ) L 2 

Table 5.2 Correlations between the transformed variables and debris flow travel distance. 

Variable Coefficient of 
correlation 

F calculated Pr > F ca lcu lated Ho 

Transformed slope 0.003 0.13 0.72 Not-rejected 
Transformed azimuth 0.03 1.3 0.29 Not-rejected 
Transformed canopy closure 0.02 0.81 0.37 Not-rejected 
Transformed stand height 0.13 5.33 0.03 Rejected 
Interaction slope at the first 
reach and stand height 

0.28 14.23 0.0006 Rejected 

Transformed path variable 0.68 76.1 <0.0001 Rejected 

Variable transformations had different effects on their correlation coefficients and significance. 

Slope modification improved the correlation coefficient only 1.5 times. However this 

transformation, combined with another one, stand height, was used further in fulfilling the 

multiple linear regression assumptions. The azimuth modification reduced the correlation 

coefficient 2.5 times. The canopy closure modification improved the correlation coefficient 200 

times in relation to raw canopy closure. Although some of these transformations reduced the 

correlation coefficient, they helped to fulfill the multiple linear regression assumptions. 

The results obtained for transformed stand height did not differ from those based on 

untransformed stand height. This is not surprising, as the transformation is linear and therefore 

the modification only influenced the coordination system. The goal of this transformation was 

not to increase the level of significance but to scale the height variable to a level similar to the 

other variables. 
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The correlation for the variable representing the interaction between slope at the first reach and 

stand height (R = 0.28) was at least twice as strong as either individual component variable, and 

was therefore used in the regression analysis. 

The transformed path variable was correlated with debris flow travel distance (Table 5.1), as was 

the untransformed variable. However, the correlation coefficient increased from R 2 = 0.35 for the 

untransformed variable to R =0.68 for the transformed variable. 

5.3 Selection of the estimation and prediction data sets 

The simple linear regression building process using raw or transformed variables was performed 

using the whole data set. The results from Section 5.1 show that there is no significant 

correlation between geology and debris flow travel distance. The division procedure was 

presented in Section 4.9.3. Two subsets were used, each having a different geology. Three 

geological types were represented in the data set: granite, gneiss and fine sedimentary. As the 

size of the estimation data set should be bigger than p+15, it had to contain two types of geology. 

The predication set therefore had to contain the third geological type, based on the requirements 

established in Section 4.9.3. The estimation data set contained the events that occurred on granite 

and gneiss and the prediction data set had the events occurring on fine sedimentary rocks. Under 

the conditions required for regression, the travel distance of the events on fine sedimentary rocks 

must be within the range defined by the events that have occurred on granite and gneisses. The 

debris flows in the estimation data had travel distances ranging from 25.8m to 1341.7 m. The 

debris flows in the prediction data set had distances ranging from 43.3 m to 131.6 m, and so the 

above condition was fulfilled. 
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The separation of the data set led to the following structure: 

Estimation data set • 30 events 

• Events on granite or gneiss 

Prediction data set • 8 events 

• Events on fine sedimentary lithologies 

5.4 Debris flow travel distance model built using crisp sets 

The estimation data set that was used to build the model contained 30 observations. The 

regression analysis was separated into a preliminary regression analysis which identified the 

regression equation required to predict the debris flow travel distance and checked the regression 

analysis requirements (multi-collinearity and influential observations), and a final regression 

analysis that checked the assumptions and requirements of the estimated equation in relation to 

the results of the preliminary analysis. 

5.4.1 Preliminary regression analysis 

The preliminary regression analysis applied the results presented in Section 4.9 to the estimation 

data set. For the preliminary analysis, the assumptions needed for inference were not verified 

because there is no need to fulfill these requirements to test the regression equation for multi-

collinearity and influential observations (Chatterjee and Price, 1977; Belsley et al, 1980; Neter 

et al, 1996). Four tests were performed: regression equation significance, multi-collinearity, 

identification of the outliers and influential observations, and remedial measures for outliers and 

influential observations. 
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Sections 5.1 and 5.2 supplied the variables considered in the regression analysis: 

• transformed path variable: (logC^/path +1))1'2- coded LPATH; 

• transformed azimuth: (cos(azimuth))5 - coded CAZ; 

• transformed variables representing the interaction between slope of the first reach and 

stand's height: (^-^-)5 * (1 + sin <p) - coded TST; and 
10 

• interaction between plan and profile curvature and transformed canopy closure. 

Path, azimuth, slope and stand height transformation does not have physical meaning but are 

done aiming statistical significance and theoretical assumption fulfilling. 

The last variable was a combination of categorical and continuous variables. The quantification 

of the categorical variables used a binary logic system. This composed variable led to a set of 

nine variables. As the alternative plane for plane curvature combined with the plane for vertical 

curvature does not exist in the data set, this interaction was eliminated from the set of nine 

variables. Consequently the interaction between plane and profile curvature and transformed 

canopy closure was represented by eight variables (Table 5.3). 

Table 5.3 The eight variables representing the interaction of plane curvature, profile curvature 
and canopy closure (k). 

Variable Plan curvature Profile curvature Variable value 

codification concave convex plane concave convex plane 

Cvcv 1 0 0 1 0 0 if plane curvature is concave and vertical 

curvature is concave then the variable has the 

value l/(k+0.01) else is 0 
Cvcx 1 0 0 0 1 0 if plane curvature is concave and vertical 

curvature is convex then the variable has the 

value l/(k+0.01) else is 0 

Cvp 1 0 0 0 0 1 if plane curvature is concave and vertical 

curvature is plane then the variable has the value 

l/(k+0.01) else is 0 
Cxcv 0 1 0 1 0 0 if plane curvature is convex and vertical 

curvature is concave then the variable has the 

value l/(k+0.01) else is 0 
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Variable Plan curvature Profile curvature Variable value 

codification concave convex plane concave convex plane 

Cxcx 0 1 0 0 1 0 if plane curvature is convex and vertical 

curvature is convex then the variable has the 

value l/(k+0.01) else is 0 

Cxp 0 1 0 0 0 1 if plane curvature is convex and vertical 

curvature is plane then the variable has the value 

l/(k+0.01)else is 0 

Pcv 0 0 1 1 0 0 if plane curvature is plan and vertical curvature 

is concave then the variable has the value 

l/(k+0.01) else is 0 

Pcx 0 0 1 0 1 0 if plane curvature is plane and vertical curvature 

is convex then the variable has the value 

l/(k+0.01) else is 0 

The total number of variables involved in the analysis was 11, representing the event path, the 

event azimuth, the slope of the first reach, stand height and eight combinations of plane and 

profile curvature and canopy closure at the first reach. 

5.4.1.1 Testing the significance of the multiple regression 

The F value calculated for the multiple regression analysis was 11.71, which was compared with 

F critic = 2.051. This revealed that the multiple regression equation was related to the debris flow 

travel distance (P < 0.0001). The multiple coefficient of determination was R2=0.88. This meant 

that further investigations based on the above regression analysis could be performed reliably. 

The coefficients associated with each variable, together with the significance test and VIF 

determined using the estimation data set, are presented in Table 5.4. The VIF for any parameter 

estimate was smaller than 10 and therefore the model was not affected by multi-collinearity. 
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Table 5.4 Parameter estimates of the regression equation. 

Variable Parameter Estimate t Value Pr > |t| Variance Inflation 

Intercept. -67.39. -0.98 0.3389 0 

L P A T H 138.41 2.73 0.0138 2.69511 

TST 0.21 5.23 <.0001 1.59004 

CAZ 76.02 1.10 0.2875 1.46401 

cvcv 0.37 0.22 0.8254 1.08028 

cvcx 1.24 0.68 0.5072 1.31053 

cyp 50.16 0.71 0.4864 1.21761 

cxcv 295.68 2.85 0.0107 2.21196 

cxcx -246.16 -2.55 0.0199 1.35959 

exp -113.79 -1.03 0.3189 1.15782 

pev 0.73 0.44 0.6680 1.07611 

pcx -45.83 -0.46 0.6512 1.25344 

The significance associated with each parameter estimate revealed that the path variable, slope at 

the first reach combined with stand height and two of the eight variables representing 

interactions among plane, profile curvature and canopy closure were strongly significant. A 

further selection of the significant variables could have led to the elimination of one of the above 

variables. However, at this stage of the study, the selection procedure was not applied as the 

regression had first to be tested for outliers and influential observations. 

5.4.1.2 Identification of outliers and influential observations 

The next step in the investigation was to identify outliers in the data set that might affect the 

regression. Three tests were used, namely Studentized deleted residuals for the dependant 

variable (debris flow travel distance), hat matrix leverage, and COVRATIO values for 

independent variables. The values for these three statistics are presented in Table A.8.1. 

The cut-off value for determining outliers in the dependent variable was 2 (Belsley et al, 1980). 

The Studentized deleted residuals indicated that three observations were larger than the cut-off 
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value: 31-3, 52-30 and 62-10. These events needed to be further investigated to see if they had a 

significant influence on the regression function. 

The Belsley et al. (1980) theory was used to identify outliers in the independent observations. 

The cut-off values derived using this theory were: 

2p 2*11 
• for hat matrix leverage — = = 0.733 

b n 30 

• for C O V P v A T I O the cut-off value | c o v r a / / o - l | = ^ - = ^ - = l.l 
n 30 

The values for hat matrix leverage indicated that there were four events larger than 0.7333 that 

required further investigation: 61-10, 62-23, 62-23b, 74-20. The values for C O V R A T I O 

indicated that there were 13 observations larger than 1.1 that required further investigation: 

events 31-4, 51-3, 52-12, 52-16, 52-32, 61-10, 61-15, 61-19, 62-23, 62-23b, 64-20, 73-18 and 

74-20. Three procedures were used to test the influence of these outliers: DFFITS, Cook's 

distance and D F B E T A S . The values for these statistics are presented in Table A.8.2. 

The cut-off value for DFFITS was 2.1— = 2.1— = 1.211. The events identified as influential when 
V n V 30 

using the DFFITS criterion were 31-3, 52-30, 62-10, 62-23, 62-23b, 74-20. 

Cook's distance measure is related to the F distribution. The value of D i was compared to the 

Fp,n-p corresponding percentile value. I f the percentile value was less than 20%, the i t h 

observation had little influence on the fitted value. The critical value to fulfill this condition was 

F(o.2,n,i9) = 1.531. Three observations were considered as influential when using this criterion: 

62-23, 62-23b and 74-20. 
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For the DFBETAS criterion, Belsley et al. (1980) recommends the following number as a cut-off 

value: 

2 2 
- = = - = = 0.3651 

4n V30 

Neter et al. (1996) proposed a cut-off value of 1 for small- to medium-size data sets. Given the 

size of the datasets used in this study, I have adopted this recommendation. Table 5.6 indicates 

that there are six influential events: 21-102, 31-3, 52-30, 62-23b, 73-28 and 74-20. 

These results indicated that there were six events that should be considered as outliers and which 

were also influential: 31-3, 52-30, 62-10, 62-23, 62-23b and 74-20. They required further 

investigation to see whether applying remedial measure procedures could reduce their influence 

on the regression analysis. The analysis revealed that the remaining observations identified as 

outliers were not influential. They did not require further examination as they would not have to 

be eliminated from the estimation data set. 

5.4.1.3 Remedial measures for outliers and influential observations 

The remedial measures used for the six events were based on robust regression (Section 4.9.3.5). 

The results of the robust regression procedure are presented in Table 5.5. 

Table 5.5 Robust regression weight. 

Id 21-101 21-102 • 31-3 31-4 51.-3 52-10 52-12 52-13 52-16 52-26 

weight 0.983 0.992 0.000 0.983 0.891 0.994 0.984 0.984 0.958 0.925 

id 52-30 52-32 •. 53-5 53-6 6i-io ; 61-15 61-18 61-19 62-10 62-14 

weight 0.927 0.999 0.754 0.983 0.000 0.999 0.874 0.997 0.000 0.919 

id 62-23 62-23b . 64-20 73-12 73-17 73-18 73-18b 73-28 74-20 83-7' 

weight 0.999 1.000 0.996 0.000 0.632 0.953 0.949 0.994 1.000 0.917 
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Four events had weights close to 0: 31-3, 61-10, 62-10 and 73-12. If further investigation were to 

reveal that there were recording errors or inadvertent variable definitions, the four events could 

be eliminated from the estimation data set. Event 31-3 was identified as an outlier in relation to 

the dependent variable and influential using DFFITS and DFBETAS criteria. The event had one 

of the reaches 67 times longer than the adjacent reach. This suggested that the event was 

erroneously recorded. The event was therefore eliminated from the estimation data set. The 

investigation of event 61-10 indicated that the reach characterization from Section 4.5 did not 

apply to this event because the minimum slope difference between two adjacent reaches was 

smaller than the selected cut-off value, 3°. The corresponding difference in azimuth was only 

18°, not 20°, the established cut-off value. Secondly, there was an intermediate reach with a 

length smaller than the selected cut-off value of 25 m. This debris flow was dropped from the 

estimation data set as the event did not fulfill the reach definition and was also an outlier. Event 

62-10 had similar problems to 61-10; there were two reaches that did not fulfill the requirements 

established for reach definition, namely that the slope difference between adjacent reaches was 

smaller than 3° and the azimuth of the respective reaches did not differ by more than 20°, the 

established cut-off value. This debris flow was dropped from the estimation data set because the 

event did not fulfill the reach definition and was an outlier and an influential case. Event 73-12 

had a second reach that was 14.4 m long and therefore did not fulfill the reach definition (Section 

5.1). As the difference between the established cut-off value, 25 m, and actual length was large, 

this event was eliminated from the analysis. Events 52-30, 62-23, 62-23b and 74-20 had weights 

in the robust regression greater than 0.999. Their investigation revealed no errors in data 

recording or problems related to reach definition. This indicated that these events should be kept 

in the estimation data set. 
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5.4.2 Final regression analysis 

The final regression analysis was based on the modified estimation data set, which had 26 

observations. This was more than the minimum number of events required to ensure the desired 

percentage of variation (PV=30%) and significance level (cc=0.15) established in Chapter 4. The 

final model built using crisp sets was used in the debris flow travel distance prediction. As the 

model had to fulfill all the assumptions of regression analysis, the analysis of the regression 

significance, outliers, influential case identification and assumptions is presented below. 

5.4.2.1 Multiple regression significance 

The significance of the regression equation using the reduced estimation data set is presented in 

Table 5.6. 

Table 5.6 Regression significance. 

Analysis of Variance 

Source DF 
Sum of 
Squares 

Mean 
Square F Value P r > F 

Model 11 1007625 91602 50.01 <.0001 

Error 14 25641 1831 

Corrected Total 25 1033266 

As the probability that F c r i t i C < F c aic = 50.01 is less than 0.0001, the multiple regression analysis 

was significant, and the independent variables and debris flow travel distance are correlated. The 

coefficient of determination was R =0.975. As a reduced data set was used, an increase in 

significance and the coefficient of determination was expected. The regression coefficients are 

presented in Table 5.7 together with the VIF. 
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Table 5.7 Parameter estimates for the final regression. 

Variable Parameter Estimate t Value Pr > |t| Variance Inflation 

Intercept -140.348 -5.16 0.0001 0 
L P A T H 257.426 10.31 <.0001 2.830 

TST 0.035 2.00 0.0652 2.608 

CAZ 43.649 1.89 0.0801 1.836 

cvcv 0.337 0.73 0.4763 1.108 

cvcx 0.212 0.40 0.6950 1.471 

cvp -8.473 -0.41 0.6893 1.143 

cxcv 212.106 6.72 <.0001 1.494 

cxcx -42.636 -1.35 0.1969 1.950 

cxp 11.753 0.35 0.7328 1.439 

pcv 0.683 1.49 0.1584 1.101 

pcx 20.523 0.72 0.4842 1.375 

The model was not affected by multi-collinearity; all VIF values were smaller than 10, the 

selected cut-off value. The variable significance was tested using the t-distribution. The path 

variable, and one of the class variables representing interaction between plan, profile curvature 

and canopy closure, were significant at a=0.05. This indicated that a further selection of the 

significant variables was needed. 

5.4.2.2 Identification of the outliers and influential observations 

The regression analysis performed on the reduced estimation data was checked for outliers and 

influential observations using the same statistics as were used for the preliminary regression 

analysis. The cut-off values were recalculated for the new estimation data set as the elimination 

of the four events modified the original estimation data set size. The new cut-off values were: 

• for hat matrix leverage — = ^ — ^ = 0.846 
6 n 26 

• forCOVRATIO | covrarib.-l |=i£=A!H = 1.269 
n 26 

• for DFFITS 2 /Z - 2 / i l - i 3 
\ n V 26 

• for Cook's distance the corresponding F distribution critical value is F(o.2,n,i5)=1.5866 

• for DFBETAS max ( _ L = - | = = 0.39, 1) = 1 
Vw V26 
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The results given in table A.8.3 reveal that there was only one outlier for the dependent variable, 

73- 17; the rest of the events had the corresponding studentized deleted residuals smaller than 2, 

the cut-off value. Different results were obtained for the independent variables: 

• Hat matrix leverage identified events 52-30, 62-23, 62-23b, and 74-20 as outliers; 

• Covratio identified events 21-101, 21-102, 31-4, 52-10, 52-12, 52-13, 52-16, 52-30, 52-

32, 53-6, 61-15, 61-19, 62-23, 62-23b, 64-20, 73-28 and 74-20 as outliers. 

The outliers identified with the above procedures were examined for their influence on the 

regression analysis, which was tested using DFFITS, Cook's distance and DFBETAS (Table 

A.8.4.). 

There were several influential observations. The results were quite similar even when different 

procedures were used. The DFFITS procedure identified 51-3, 52-30, 62-23, 62-23b, 73-18 and 

74- 20 as influential events. Cook's distance procedure identified 62-23, 62-23b and 74-20 as 

influential events. The DFBETAS procedure identified 52-30, 62-23, 62-23b, 73-18 and 74-20 as 

influential events. 

Robust regression was again used to explore the outliers and influential cases (Table 5.8). Events 

identified as influential only were not eliminated from the analysis. 

Table 5.8 Robust regression weights. 

.Event 21-101 ; 21-102 ;. 31-4 51-3 .52-10 52-12 52.-13 52-16 52-26 

Wight 0.987 0.984 0.996 0.899 0.997 0.977 0.981 0.958 0.933 

Event 52-30 52-32' . ' 53-5 ' 53-6 61-15 61-18 61-19 62-14 62-23 

Weight 0.984 0.999 0.751 0.984 0.990 0.884 0.998 0.915 1.000 

Event 62-23b 64-20 73-17 73-18 73-18b 73-28 74-20 83-7 

Weight 1.000 0.996 0.609 0.939 0.947 0.995 1.000 0.913 
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All events had a weight greater than 0.6. This indicated that all outliers that were influential 

could be kept in the reduced estimation data set. Therefore the regression function obtained 

using the data set with 26 observations could be used for further inferences if the multiple linear 

regression assumptions were met. 

5.4.2.3 Distribution of errors 

The distribution of the errors was checked for normality using the procedures described in 

Section 4.9.3.1. The results are presented in Table 5.9. 

Table 5.9 Tests for the distribution of errors. 

Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.977 P r < W 0.8188 

Kolmogorov-Smirnov D 0.109 P r > D >0.1500 
Cramer-von Mises W-Sa 0.035 P r > W - S a >0.2500 
Anderson-Darling A-Sa 0.246 Pr > A -Sa >0.2500 

There is no evidence to reject the null hypothesis; therefore the errors were considered to be 

normally distributed. 

5.4.2.4 Homoscedasticity of the errors 

The assumption of error homoscedasticity was verified using White's test (Section 4.9.3.2); the 

results are presented in Table 5.10. 

Table 5.10 Test the errors homoscedasticity. 

Test of First and Second Moment Specification 

D F Chi-Square Pr > ChiSq 

26 24.97 0.5207 
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As the null hypothesis could not be rejected at the established significance level, a=0.05, the 

errors were considered to be homoscedastic. Fulfilling this assumption ensured that the 

inferences based on the regression function had the smallest confidence interval of all the 

possible estimates (Gauss-Markov theorem). 

5.4.2.5 Correlation amongst the errors 

Correlation amongst the errors was tested using the Durbin-Watson procedure (Section 4.9.3.3); 

the results are presented in Table 5.11. 

Table 5.11 Error correlation using Durbin-Watson procedure. 

Durbin-Watson D 2.397 

Number of observations 26 

1ST order autocorrelation -0.231 

The null hypothesis could not be rejected at the selected significance level (oc=0.05) and the 

errors were considered to be non-correlated. The Durbin-Watson procedure showed that there 

was no evidence to infer that there was a correlation between two consecutive errors (no time-

series correlation). As the debris flows were selected randomly and any two of them not on the 

same slope, it could be considered that there was no spatial correlation among events. The no-

correlation assumption provided information related to the Gauss-Markov theorem 

requirements: it ensured that the results could be applied to the estimation data set. 
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5.4.2.6 Selection of the significant variables 

The regression function established and tested in Section 5.4 contained variables that were not 

correlated with the debris flow travel distance, so further selection of the significant variables 

were needed. The selection procedures used to select the significant variables were backward 

selection, forward selection, and stepwise selection. The significance level for a variable to stay 

in the model was established as 0.1 (used in backward and stepwise selection procedures). The 

significance level for a variable to enter into the model was 0.1 (used in forward and stepwise 

selection procedures). If all the selection procedures supplied similar results the variable would 

be selected based on the information presented by the selection procedures. If the results varied 

from procedure to procedure, the variable selection would be based on judgement. 

Table 5.12 Backward selection of the significant variables. 

Variable 
Parameter 
Estimate 

Standard 
Error Type IISS F Value Pr > F 

Intercept -122.69 18.44 70185 44.27 <.0001 

L P A T H 247.65 18.72 277427 174.99 <.0001 

T S T 0.04 0.01 10577 6.67 0.0178 

C A Z 38.31 17.46 7633.28068 4.81 0.0402 

cxcv 213.84 28.26 90754 57.25 <.0001 

cxcx -52.87 26.59 6269.61060 3.95 0.0606 

All continuous variables and two components of the class variables were significant (Table 

5.12). As class variables could not be separated in the selection process, the proposed function 

based on backward selection procedure was: 

L = f (path, first reach slope * stand height, azimuth, first reach plan curvature * profile curvature * canopy closure) 

where L = predicted debris flow travel distance. 
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Table 5.13 Forward selection of the significant variables. 

Variable 
Parameter 
Estimate 

Standard 
Error Type II SS F Value Pr>F 

Intercept -134.69 19.65 91346 46.99 <.0001 
LPATH 274.23 17.39 483316 248.62 <.0001 
CAZ 43.40 19.09 10046 5.17 0.0331 
Cxcv 185.59 28.76 80940 41.64 <.0001 

The transformed path, transformed azimuth and one component of the class variable were 

significant (Table 5.13). The class variable cannot be separated in the selection process and 

therefore all the components had to be included in the final regression. Consequently the 

proposed function based on forward selection procedure was: 

L = f (path, azimuth, first reach plan curvature * profile curvature * canopy closure) 

Table 5.14 Stepwise selection of the significant variables. 

Parameter Standard 
Variable Estimate Error Type II SS F Value Pr >F 

Intercept -134.69 19.65 91346 46.99 <.0001 
LPATH 274.23 17.39 483316 248.62 <.0001 
CAZ 43.40 19.09 10046 5.17 0.0331 
cxcv 185.59 28.76 80940 41.64 <.0001 

The results of stepwise selection presented in Table 5.14 were identical to the results of the 

forward selection procedure. The proposed function was: 

L = f (path, azimuth, first reach plan curvature * profile curvature * canopy closure) 

A comparison of the results from the three selection procedures suggested that the path variable, 

azimuth, the interaction among plane and profile curvature with canopy closure were correlated 

with the debris flow travel distance and that the variable representing interaction between slope 

of the first reach with first reach stand height is correlated with debris flow travel distance only if 

backward selection procedure was used. As the slope of the first reach defines the initial energy 

of an event, the variable representing the interaction between the first reach slope and stand 

height was kept in the model. 
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The variables used in the final regression analysis that led to the final debris flow travel distance 

model built on crisp sets were: 

• transformed path variable: (\ogQpath +1))12 - codified L P A T H ; 

• transformed azimuth: (cos(azimuth))5 - codified C A Z 1 ; 

• transformed variables representing the interaction between slope of the first reach and 

h +1 
stand height: (-j^-)5 * C1 + s i n <P) - codified TST 2 ; and 

• interaction among plan and profile curvature and transformed canopy closure. 

TST variable is introduced in the model to fulfill the regression analysis assumptions. 

5.4.2.7 Debris flow travel distance prediction model built using crisp sets 

Based on the selection procedures presented in the preceding section, the final model selected for 

prediction debris flow travel distance was: 

L=-140.35+257.42*LPATH+0.03*TST+43.65*CAZ+ curvature3 + <?, (5.4) 

Curvature=0.34*cvcv+0.2*cvcx-8.5*cvp+212.1*cxcv-42.6*cxcx+11.75*cxp+0.7*pcv+20.5*pcx 

where the symbols are the same as in the previous section. 

The final debris flow travel distance prediction model fulfilled all the assumptions and 

requirements necessary to build a regression equation. The variables that dominate the model are 

L P A T H and cxcv. The model built using crisp sets used only data with a precise meaning, with 

no vagueness being associated with any of the values. 

1 C A Z has for north and south exposition value 1, respectively - 1 , and for east west value 0. The power function 
accentuates the exposition influence on event travel distance. 
2 TST varies between 0 for height 0 and 105 m for height 45 m and slope 45° (for heights less than 20 m, the 
influence of TST on travel distance is insignificant). The reason to keep this variable in the model is that help in 
fulfilling all the linear regression assumptions. 
3 Curvature presents the influence of interaction between local terrain configuration and stand canopy closure (e.g. 
when terrain is convex for plane curvature and concave for profile curvature the event travel distance increase) 
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5.4.2.8 Regression assessment in relation to debris flow termination 

The results of the regression assessment for debris flow termination were based on the methods 

presented in Section 4.9.4. Two types of procedure were used. Firstly, informative procedures 

using regression equations for each type of event (ended/did not end in a stream) included a 

descriptive statistical summary for each type of event and a check of the significance of the 

corresponding coefficients in the model mixing the functions for the two types of events. 

Secondly, an exact procedure based on class variable techniques was adopted. The informative 

procedures offered only guides about the regression function built for the two types of events; 

their results could not be used for inferences. The result of the exact procedure could be used to 

infer the difference between the model predicting the events that ended in a stream and the 

model predicting events that did not end in a stream. 

The regression analysis for the events that did not end in a stream had a multiple coefficient of 

determination R2=0.989. The probability that F regression =76.63 > F c r i t i c a i was 0.0001, so at a 

significance level a=0.05, the relationship was significant. 

Table 5.15 Regression equation parameters estimate for events that did not ended in a stream. 

Parameter Standard 
Variable Estimate Error t Value Pr > |t| 

Intercept -90.38 44.50 -2.03 0.08 

LPATH 205.63 48.74 4.22 0.00 

TST 0.06 0.04 1.64 0.14 

CAZ 76.94 28.05 2.74 0.03 

cvcv 0.16 0.57 0.28 0.79 

cvcx 0.68 0.66 1.02 0.34 

C V P -35.78 37.68 -0.95 0.37 

cxcv 224.82 98.58 2.28 0.05 

cxcx -86.48 81.89 -1.06 0.32 

exp -23.31 42.96 -0.54 0.60 

pcv 0.52 0.57 0.91 0.39 
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The regression equation for events that did not end in a stream was therefore: 

L=-90.38 + 205.63*LPATH + 0.06*TST + 76.93*CAZ + curvature + (5.5) 

Curvature = 0.16*cvcv+0.67*cvcx - 35.78*cvp +224.82*cxcv-86.48*cxcx -23.3*cxp +0.52*pc; 

where the symbols are as previously stated. 

For events that ended in a stream, the multiple coefficient of determination R 2 was =0.91. The 

probability that F regression =7.65 > F critical was 0.01, indicating a significant relationship. The 

parameter estimates are presented in Table 5.16. 

Table 5.16 Parameter estimates for regression equation modeling the events that ended in a 
stream 

Variable 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept -114.06 56.19 -2.03 0.09 

LPATH 205.56 42.68 4.82 0.00 

TST -0.02 0.03 -0.73 0.49 

CAZ -9.71 26.30 -0.37 0.72 

cvcv 72.11 33.44 2.16 0.07 

cvcx 38.63 41.13 0.94 0.38 

cvp 49.31 31.89 1.55 0.17 

cxCx 49.71 34.78 1.43 0.20 

pcx 41.74 35.00 1.19 0.28 

The regression equation for the events that ended in a stream was therefore: 

L=-114.05 + 205.56*LPATH - 0.02*TST-9.71*CAZ + curvature + et; (5.6) 

Curvature = 72.11 *cvcv+38.63*cvcx+49.31 *cvp+49.71 *cxcx+41.74*pcx; 

where the symbols are as stated previously. 
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As before, the assumptions of normal distribution of the errors, homoscedasticity of the errors, 

and observation independency had to be satisfied. 

The distribution of errors was tested using Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von 

Mises and Anderson-Darling tests (Table 5.17). 

Table 5.17 Statistics for testing the normality assumption. 

Tests for Normality 

Test Events not ending in a stream Events ending in a stream Test 
Statistic p Va ue Statistic p Value 

Shapiro-Wilk W 0.9532 Pr<W 0.4477 W 0.9121 Pr<W 0.1462 

Kolmogorov-
Smirnov 

D 0.1750 Pr>D 0.1268 D 0.1528 Pr>D >0.1500 

Cramer-von Mises W-Sq 0.0603 Pr > W-Sq >0.2500 W-Sq 0.0677 Pr > W-Sq >0.2500 

Anderson-Darling A-Sq 0.3650 Pr>A-Sq >0.2500 A-Sq 0.4565 Pr > A-Sq 0.2347 

The proposed models fulfilled the assumption that the errors were distributed normally. The test 

used to check the homoscedasticity assumption was that of White (1980) (Table 5.18). 

Table 5.18 White test for homoscedasticity. 

Events did not end in stream Events ended in stream 

DF Chi-Square Pr > ChiSq DF Chi-Square Pr > ChiSq 

25 18.87 0.8032 17 14.74 0.6141 

As there was no evidence to infer that the errors were heteroscedastic, the assumption that the 

errors have constant variance was fulfilled for each equation modeling events that ended/did not 

ended in stream. 

Correlation amongst the errors was tested using the Durbin-Watson test (Table 5.19). There was 

no evidence that the errors were correlated for both equations modeling events that ended/did not 

end in a stream. 
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Table 5.19 Durbin-Watson auto-correlation test. 

Event type Events did not end 
in stream 

Events ended in 
stream 

Durbin-Watson D 2.522 1.395 
Number of observations 19 15 
1st order autocorrelation -0.332 0.204 

Outliers and influential observations were examined through Beacon-Tukey bi-weight robust 

regression using IRLS (Table 5.20). The results indicated that there were no outliers or 

influential cases that needed to be removed from the data set. 

Table 5.20 Weights of the Beacon-Tukey test. 

Events not ending in a stream Events ending in a stream 
Event Weight Event Weight 
21-101 0.94 21-102 0.96 

51-3 0.95 31-4 0.99 
52-12 1.00 52-10 0.96 
52-30 0.99 52-13 0.99 
53-5 0.64 52-16 1.00 
53-6 1.00 52-26 0.88 
61-10 1.00 62-14 0.94 
61-15 1.00 64-20 0.99 
61-18 0.80 73-17 0.94 
61-19 0.37 73-18b 0.92 
62-23 0.97 73-28 0.99 
62-23b 0.99 94-23 0.97 
73-18 1.00 94-26d 0.95 
74-20 0.99 94-34 0.99 
83-7 0.95 94-34b 0.93 
94-24 0.52 
94-30 0.76 
94-35b 1.00 
94-36 0.93 

These results indicated that the assumptions required for the tests performed in this Section were 

met. 
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Inferences about the two regression functions 

The inferences regarding the two functions modeling events that did not end/ended in a stream 

were separated into two categories: informative and exact. The results supplied by the 

informative procedure provided information about the two functions but the results were 

unreliable. In contrast, the results supplied by the exact procedure were reliable. 

Two informative procedures were used to assess the differences between the functions modeling 

events that ended/did not end in a stream. The summary statistics using the overall function are 

presented in Tables 5.25 and 5.26. The variable used for this statistics was: 

Ldif = L - L p r e d where L - debris flow travel distance 

L Pred - predicted debris flow travel distance 

L d i f expresses the difference between the actual and predicted value of the debris flow travel 

distance. L ^ f statistics were calculated using the final function from Section 5.4.2.7 for both 

types of events. If the statistics were not significantly different, then the regression function 

could detect the termination point of the debris flow, regardless of whether or not a stream was 

present. 

Table 5.21 Summary statistics for the variable Ldif. 

Analysis Variable: L - L p r e d 

Event type -N Mean Std Dev Minimum Maximum 

Not ending in a stream 14 0.48 31.36 -41.05 69.44 

Ending in a stream 12 0.56 34.18 -85.41 40.04 

117 



The difference between the predicted and actual debris flow travel distances for events that did 

not end in streams was not significantly different to 0 (Table 5.21). As 

0 479 

tcalc = 3 1 3 5 9 7 = 0 - Q 5 7 ^ 2 . 1 6 = f c „ - , , c = f 0 9 7 5 ; 1 3

 m e r e
 w a s n 0 evidence to reject the hypothesis that the 

Vl4 

difference between predicted and actual travel distance was different from 0. The same 

conclusion was reached for events that ended in streams (Table 5.22), as supported by the t-

values: 

tcaic = 3 4 ° f 7

5

7

9

Q = 0 .0566^2.201=r c r , .„ . c =r 0. 9 V 5. 1 1 

Vl2 
The variances of the two types of events were also not significantly different: 

P = 

1 calc 

r 34.1779 a 2 

= 1.1878<3.40 = F c r i , c = F 0 . 9 7 5 ; 1 U 3 . 
31.3598 

The results of the procedure that tested the parameter estimates of the combined equation are 

presented in Table 5.26. The coefficients of the mixed equation obtained using the procedure 

described in Section 4.9.4.2 are also presented in Table 5.26. The 'c' in front of the variables 

transforms them according to the procedure explained in Section 4.9.4.2. If the coefficients 

representing the events that ended in streams in the mixed function were not significantly 

different from zero, then the mixed function made no difference between events that ended or 

did not end in streams. 

The variables cccxp, ccpcv and ccpcx did not enter into the model because they led to a singular 

matrix with determinant zero. The results were not affected by their elimination because the 

information provided by them was null or redundant. The coefficients corresponding to the 

equation modeling the events that ended in streams were not significantly different from 0 

(a=0.05). This.indicated that there was a possibility that all of them, simultaneously, were not 

significantly different from 0. 
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Table 5.22 Significance of the mixed equation coefficients 

Parameter Estimates 

Variable DF Parameter Estimate Standard Error t Value Pr > |t| 
Intercept 1 -90.38 38.39959 -2.35 0.0337 

Lpr 1 205.63 42.05758 4.89 0.0002 

TST 1 0.06 0.03235 1.90 0.0785 

CAZ 1 76.94 24.20635 3.18 0.0067 

Cvcv 1 0.16 0.49352 0.33 0.7498 

Cvcx 1 0.68 0.57070 1.19 0.2553 

Cvp 1 -35.78 32.51505 -1.10 0.2897 

Cxcv 1 224.82 85.05677 2.64 0.0193 

Cxcx 1 -86.48 70.65725 -1.22 0.2412 

Cxp 1 -23.31 37.06980 -0.63 0.5397 

Pcv 1 0.52 0.49309 1.05 0.3102 

Pcx 1 41.74 47.51549 0.88 0.3945 

C 1 -23.67 85.41406 -0.28 0.7857 

Clpr 1 -0.08 71.60667 -0.00 0.9992 

CTST 1 -0.08 0.04733 -1.69 0.1127 

C C A Z 1 -86.65 43.13926 -2.01 0.0643 

Ccvcv 1 71.95 45.40680 1.58 0.1354 

Ccvcx 1 37.95 55.84517 0.68 0.5078 

Ccvp 1 85.09 54.14919 1.57 0.1384 

Ccxcx 1 136.19 84.98430 1.60 0.1314 

The F distribution was used to test the difference between the two regression equations obtained 

in Section 5.4.2. The use of the F distribution for testing requires the equality of the variances of 

the error terms of the two models. A modified Levene test was used to check this condition. The 

Levene procedure uses the absolute errors for each regression equation. The elements needed to 

perform the Levene test are presented in Table 5.23. 

Table 5.23 Elements used to perform Levene test. 

Regression function for events not ending in a stream Regression function for events ending in a stream 

4 =1 % - yt 1 25.98 d2 =19i - yt 1 18.92 

X (di{ - d~{)2 8936.28 l(di2-d2)2 1221.78 
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The pooled variance s 2 was: 

2 _ ~̂ ')2 +S(rf'2 ~ d ^ 2

 = 8936.28 + 1121.78 _ ^ 
n , + n 2 - 2 19 + 15-2 

where n t , n 2 are the number of observations in each category (events that ended/did not end in a 

stream). 

The Levene test is based on the t distribution and the calculated value of t L was 1.147 

d.-d, 25.98 -18.92 , , _ 
tL = — , ' 2 = , =1.147.: 

s — + — 17.82, /— + — 
\ n , n 2 V19 15 

The critical t value for oc=0.05 and 32 degrees of freedom is 2.035. As tL< t c n7,- c, there was no 

evidence to infer that the variances of the two regression lines were different. 

The two functions fulfi l led all the assumptions and requirements needed to test the simultaneous 

significance of the mixing function's coefficients, and the analysis, based on the methods 

outlined in Section 4.9.4.2 are shown in Table 5.24. 

Table 5.24 Significance of the coefficients of the combined function. 

Test coefficients: Results for Dependent Variable slope length 

Source DF Mean Square F Value Pr >F 
Numerator 8 2922.69530 1.44 0.2619 
Denominator 14 2025.17572 

As the probability that the calculated F value was greater than F critical = 0.2619 > 0.05, the 

coefficients were not significantly different from 0 and the combination of the two equations was 

not significantly different from any of the individual composing equations that were studied. 

This meant that the equations proposed in Section 5.4.2 could be used for both types of events. 
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5.5 Fuzzification of the selected variables 

Fuzzy regression analysis is based on non-linear programming (Tanaka et al, 1982). 

Consequently, this study considered other variables together with the significant ones identified 

using crisp sets (Section 5.4.2.6). The newly added variables were the continuous variables that 

entered into the composition of TST. The following ranges were established for the fuzzy 

numbers based on the rules provided in Section 4.9.5.1: 

• 20% for the actual slope length of the debris flow. This value was selected to provide as 

narrow a confidence interval as possible. A cut-off value of 80% precision is generally 

considered acceptable (Corominas, 1996; Wise, 1997); 

• 40% for the transformed path variable (LPATH). As L P A T H does not have a real 

meaning this value was selected based on the error allowed in the path identification 

process. The selected spread of the L P A T H allowed an error of three reaches in 

identification of path reaches for long events and one reach for short ones; 

• 10% for the transformed variable representing the slope of the first reach (codified st). 

This spread allowed an error of 10% for small angles and 15% for large ones; 

• 30% for the transformed variable representing the interaction between slope at the 

initiation point and stand height at the first reach. In terms of real measurements this 

spread allowed 75% error in determining the stand height (assuming no error in 

measuring slope at the initiation point); 

• 20% for the transformed stand height at the first reach. In terms of real variables, this 

allowed an error of 20% of the stand height (codified ht); and 

• 20% for the transformed canopy closure at the first reach. This spread allowed an error of 

16% from the real canopy closure. 
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5.6 Debris slide-flow travel distance model built using fuzzy sets 

Section 4.9.5.2 presented the methods used to determine the debris slide-flow travel distance 

model using fuzzy sets. As fuzzy regression does not involve any assumptions or supplemental 

forecast constraints the estimated equation represents the final model for debris flow travel 

distance prediction. The fuzzy regression based on the fuzzified data set was: 

L=-193.8+196.68*LPATH+0M8*TST+252J*st-U8*ht+46.52*CAZ +curvature (5.7) 

Curvature=0.59*cvcv+0.07cvcx+4.77*cvp+150.16*cxcv-5.7*cxp+0.23*pcv+21.47*pcx 

where the symbols are as defined in Sections 5.4.2.6 and 5.5. 

The optimization technique used to perform the non-linear programming problem was quasi-

Newtonian (Simmons, 1975; Bazaraa et al., 1993) A total of 114 iterations were performed to 

reach the convergence point, the solution of the non-linear programming problem. The 

convergence criterion of the objective function, the difference between two iterations, was 

satisfied. 

The minimum of the objective function was 1835.2, and the bias was 
26 

* » 275 061 
bias = — = : — =-10.58 where y,-: actual value of the debris flow travel distance 

26 26 J 

yt: predicted debris slide-flow travel distance 

Compared to the crisp regression, where the bias was 0, this did not seem to be very good. 

However, the procedures are completely different. The crisp regression was determined 

minimizing the squared errors, which led to a bias equal to 0 (Gauss-Markov theorem), whereas 

the fuzzy regression was calculated minimizing the confidence interval of the predicted value. 
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The next step was to use t statistics to determine whether the bias of the model built using fuzzy 

sets was significantly different than 0. 

bias -10.58 
calc sbias 66.13327 

= -0.81568 

V26 

t critic = t 0.975;25 = 2.056 

As t calc < t critic the bias was not significantly different than 0. 

5.7 Regression assessment 

The debris flow travel distance prediction models obtained above had to be assessed for their 

forecasting performances (using the procedures outlined in Section 4.9.6). The regression was 

evaluated using the prediction data set, which contained eight events. The regression was also 

tested on the events eliminated from the prediction data set as outliers and influential cases. The 

results of the regression function developed using crisp sets are presented in Table 5.25 

Table 5.25 Confidence limits of predicted travel distance using crisp sets. 

Event Lower Predicted Upper confidence Actual value 
confidence limit value limit 

31-3 131.6 267.3 403.1 1169.6 
61-10 1308.9 1554.7 1800.5 1341.7 
62-10 458.3 605.2 752.0 915.1 
73-12 161.2 283.2 405.3 91.6 
94-23 -58.8 61.5 181.9 115.0 
94-24 39.8 149.4 259.0 98.7 
94-26d -71.9 51.9 175.6 131.6 
94-30 -63.4 31.7 126.9 102.9 
94-34 -34.0 65.4 164.8 120.0 
94-34b -63.7 32.3 128.4 135.0 
94-35b -60.7 34.4 129.6 43.3 
94-36 -16.7 148.7 314.0 116.0 
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The model predicted seven of the eight events correctly, which is within the established limits. 

The model correctly predicted only one from the set of four outliers. This made the crisp model 

sensitive to the correct identification of the variables. The events identified as outliers are 

discussed in more detail below. 

The results of the test data regression analysis performed using the fuzzy sets are presented in 

Table 5.26 

Table 5.26 Assessment of the fuzzy regression analysis. 

Event 
Fuzzy low 

actual length 
Actual 
length 

Fuzzy up 
actual length 

Fuzzy low 
predicted 

Fuzzy 
predicted 

Fuzzy up 
predicted 

31-3 935.68 1169.6 1403.52 130.306 248.51 366.72 

61-10 1073.36 1341.7 1610.04 761.893 1214.77 1667.65 

62-10 732.08 915.1 1098.12 316.805 533.63 750.45 

73-12 73.28 91.6 109.92 113.608 245.70 377.79 

94-23 92.00 115.0 138.00 69.073 152.80 236.52 

94-24 78.96 98.7 118.44 109.615 202.60 295.59 

94-26d 105.28 131.6 157.92 71.628 154.96 238.29 

94-30 82.32 102.9 123.48 36.809 102.85 168.89 

94-34 96.00 120.0 144.00 91.942 176.79 261.64 

94-34b 108.00 135.0 162.00 33.996 101.84 169.68 

94-35b 34.64 43.3 51.96 50.502 117.31 184.12 

94-36 92.80 116.0 139.20 52.580 155.59 258.60 

The fuzzy model predicted 100% correctly for the test data set. For the outliers, it correctly 

predicted two of the four events. 

An analysis of the incorrectly predicted outliers revealed that several factors were at play. For 

event 31-3, the reach definition was violated (one of the reaches was 67 times larger than the 

adjacent one). Supplemental reaches are needed, with the number of reaches for the same 
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distance being at least six. This would have led to a correct answer being derived by the fuzzy 

model. For event 62-10, the reach definition was also violated (one of the reaches being too long 

[299 m]). This reach should have been split in two smaller ones. The fuzzy regression correctly 

predicted the event, but the crisp set model forecasted outside the confidence interval. If one 

reach had been added to the event, the model using crisp sets would have predicted correctly. For 

event 73-12, there were too many reaches for a short distance, violating the requirement for a 

minimum length of a reach. For the distance involved, there should only have been two reaches, 

but four were recorded. The fuzzy model would have had a correct result if only three reaches 

had been identified. 

Given these results, the model built using fuzzy set methods was considered to be robust, even to 

outliers. The only condition that had to be imposed was to respect the reach definition. 
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6 Discussion and conclusions 

6.1 Discussion 

The analysis of the correlation between the raw variables and debris flow travel distance 

revealed a series of interesting observations. The simple linear regression from Section 5.1 

showed that slope morphology, expressed by LPATH, has a greater effect on travel distance than 

all the other terrain attributes. The path analysis presented a correlation coefficient of 0.68, 

indicating that debris flow travel distance and terrain morphology co-vary together more than 

two thirds from their total variation. This result is consistent with other studies (Corominas, 

1996; Finlay et al., 1999). The importance of slope morphology in relation to the other attributes 

was confirmed via simple linear regression utilising the remaining variables. 

The average slope analysis produced a non-significant correlation with debris flow travel 

distance. Initially, this result seemed to be in contradiction with theory (Corominas, 1996; Wise, 

1997), given that it suggests that event travel distance does not depend on the terrain slope, but a 

closer examination of the results in Table 5.1 revealed that they are consistent with the laws of 

geometry. 

Debris flow travel distance predicted using only the slope (Fang and Zhang, 1988) was based on 

the equation: 

L - ^ - (6.1) 
sin (p 

where L : debris flow travel distance; 

AH: elevation difference between start and end points of debris flow; and 

(f>: average slope. 
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However, debris flow travel distance depends not only on slope but also on the elevation 

difference (Figure 6.1). As the travel distance depends on two elements, slope and elevation 

difference, the variation of one element will not necessarily lead to variation of travel distance. 

AH 
Figure 6.1 Dependency of debris flow travel distance on average slope. 

Consequently, slope alone cannot explain debris flow travel distance; the elevation difference is 

also required. The analysis also showed that there was no correlation with the travel distance for 

the slope of the first reach or the fan (last reach). The statistical approach demonstrated that the 

stochastic analysis is consistent with the functional theory represented by Equation 6.1. 

Two studies have stressed the influence of the initial volume on debris flow travel distance: Wise 

(1997) and Fannin and Rollerson (1993). However, these studies considered events that did not 

end in streams, and this constraint is invalid for the model developed in this study. Different 

results might be expected in this study, as the sampling design included events that both ended 

and did not end in streams. In fact, there was no correlation between volume at the initiation 

point and debris flow travel distance (Table 5.1). For 55% of the events that started on the lower 

parts of slopes, the initial volume was greater than 40% of the volume of the whole event. Events 

that started on the lower parts of slopes had a short length as the termination point (in some cases 
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the stream) was usually close to the point of initiation. Regardless of the slope position, events 

that involved a large part of their volume in the first reach generally did not have a long path. 

Slide azimuth alone did not influence debris flow travel distance; different events with the same 

azimuth had different lengths. For example, event 21-101 with azimuth 289° had a length of 

359.2 m, whereas event 64-20 with an azimuth 292° had a length of only 97.8 m (for more 

examples please refer to Appendix 1). 

Subsurface water flow tends to vary according to slope position: the closer to the top of the 

slope, the smaller the quantity of water moving through the soil (Viessman and Lewis, 1996). In 

the Arrow Forest District, this is not always the case, as there can be significant water flow 

coming off of shallow slopes above the main valley-side slopes. This has been identified as a 

management problem, especially where road construction has concentrated the flow of 

subsurface water (Jordan, 2002). Increased water flow through the undisturbed soil increases the 

pore water pressure and therefore the effective stress is reduced (Terzaghi, 1943; Kenney, 1984; 

Viessman and Lewis, 1996; Powrie, 1997). There was no correlation between the debris flow 

initiation point on the slope and debris flow travel distance (Table 5.1). For example, a 

significant number of short events initiated mid-slope: 67% of the mid-slope events were less 

than 100 m long. This analysis has shown that the travel distance was not dependent upon slope 

position. 

Terrain curvature influences the local hydrological conditions (Viessman and Lewis, 1996). As 

the index of terrain curvature that was used in this study only characterized the first reach, it was 

unlikely that any correlation with the debris flow travel distance would be significant. This was 

confirmed by the results presented in Table 5.1. However, the interaction between plane and 
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profile curvature was significantly correlated with debris flow travel distance (Table 5.1). This 

suggests that the local curvature of the first reach significantly influenced travel distance. This 

may be related to slope hydrology since for the same slope, vegetation, soil and geology, local 

hydrological conditions are influenced by canopy closure, plane and profile curvature (Viessman 

and Lewis, 1995, and Bernoulli's law)1. 

Vegetation influences terrain stability through the interception of precipitation and by the 

contribution of the roots to soil strength (Sidle et al, 1985; Greenway, 1987; Selby, 1993; 

Watson et al, 1994; Wu et al, 1995; Mapping and Assessing Terrain Stability Guidebook, 

1999). The stand dendrometric attributes considered in this study were the average height and 

diameter of the dominant tree layer measured at the first reach (Selby, 1993). Stand composition 

did not vary more than 30% for each species along the paths of individual debris flows, except 

around the first reach. The average stand height and diameter did not vary more than 20% from 

one reach to another, except within the first reach. Both average stand height and diameter were 

correlated with the event travel distance (Table 5.1). This correlation is an indication of the 

relationship between terrain state as expressed by stand parameters and travel distance. As the 

elements describing the stand considered in this study characterized only the first reach, their 

influence must be correlated with other variables explaining the terrain variation along the event 

trajectory (Corominas, 1996). The influence of the vegetation species around the first reach on 

event travel distance was shown in Table 5.1. No correlation was observed between tree 

composition around the first reach and debris flow travel distance. While stand characteristics 

likely played a non-significant role once a failure has occurred, these characteristics influenced 

the probability of terrain failure (Traci, 1985; Watson et al, 1994). 

1 For the same horizontal distance, total head variation is larger for terrain profile that is concave than for convex 
one. 
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Stand canopy closure is another element considered in terrain stability analysis (Selby, 1993; 

Mapping and Assessing Terrain Stability Guidebook, 1999). Canopy closure is usually 

considered in the debris flow initiation investigations as a class variable (Greenway, 1987; 

Selby, 1993). No correlation was found between canopy closure and travel distance in this study 

(Table 5.1), but canopy closure may be important when is considered in combination with other 

attributes, such as terrain configuration and vegetation type (Gray, 1994). Canopy closure was 

measured only for first reach and therefore its contribution on travel distance is reflected in water 

quantity that reaches the ground. When statistics is used to analyze the relation between event 

travel distance and different attributes, canopy closure can help in fulfilling the regression 

analysis assumptions and requirements (Neter et al., 1996). 

Finlay et al. (1999) concluded that slope geology influences travel distance; however the 

function developed in this study excluded geology. Finlay et al. (1999) did not present any 

information regarding the significance of the relationship between geology and debris flow travel 

distance. Usually, the techniques used to establish the correlation between qualitative variables 

(such as geology) and travel distance is based on a regression equation that uses class variables, 

i.e. transformed dependent variables (Neter et al., 1996). However, as transformation of the 

dependent variable can give rise to the problems described in Chapter 2, the information 

supplied by studies using this technique must be interpreted with caution. More studies are 

needed to clarify the relationship between geology and debris flow travel distance. 

Rheological studies have stressed the importance of soil granulometric properties on terrain 

stability (Terzaghi, 1943; Innes, 1983; Hungr et al, 1984; Takahashi, 1991; Iverson, 1997). The 

size of the particles involved in the mass movement was less than 20 cm (which includes 

cobbles). In this research several statistical tests were performed to determine whether there was 
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a correlation between soil granulometry properties and debris slide - flow travel distance. The 

data set from Appendix 1 presents a relatively constant PSD (particle size distribution) along the 

path for both control and event soil samples, only sand, sand-gravel or gravel. The results show 

that the PSD type and grading did not have a significant influence on the debris flow travel 

distance (Table 5.1). The PSD should be seen as a class variable, and in this case the used data 

set contain only one category (because of PSD uniformity) therefore is no relationship between 

event travel distance and granulometry. This result is useful for the rheological models because 

Galileo's equation1 can be used as a tool to determine the event travel distance (Innes, 1983; 

Hungr et al., 1984; Takahashi, 1991). However, as this research was essentially exploratory, 

more investigation is needed before it can be inferred that PSD type and grading does not 

influence debris flow travel distance. 

Logging activities have a large impact on debris flow initiation and travel distance (Fannin et al., 

1996; Sidle and Wu, 1997). The data set used to build the debris flow travel distance model 

contained only events that occurred in the stand, with the exception of the first reach. For the 

events considered in this study, the forestry actions in the first reach did not influence debris 

flow travel distance (Table 5.1). It would seem that logging activities on the first reach (like 

clearcuting or roads) influence the factors affecting debris flow initiation mechanisms, but have 

an non-significant influence on the travel distance of the subsequent event over un-logged 

terrain. 

The model built using statistics indicated the strong predictive capability of the set of 

transformed variables. The transformed variables selected for building this model revealed the 

same patterns as the non-transformed variables. The only difference is that the correlation 

1 The final velocity of a solid (vf) depend on the initial velocity (Vj), acceleration (a) and the distance between initial 
and final position (Al): Vf2=V;2+2aAl 

131 



coefficient between the independent variables and debris flow travel distance was greater for the 

transformed variables than for the raw variables. As the co-domain of the transformed variables, 

except for TST, varied over the same range of values (from 0 to 100), the regression coefficients 

indicated the relative significance of the dependent variables (Freedman et al, 1991; Neter et al, 

1996). The most important variable for predicting the debris flow travel distance was the event 

path. 

The transformed variables led to a regression equation with a coefficient of determination of 

0.975. Considered independently, only two variables were correlated with debris flow travel 

distance: path variable and stand height. Considered together, the set of seven variables achieved 

good predictability (as expressed by the coefficient of determination) and reliable inferences (as 

expressed by the fulfillment of the assumptions required for the regression. 

As the debris flow travel distance prediction model was built using statistics procedures, the 

resulting equation had an intercept. There were two reasons for this approach. Firstly, as the goal 

of the study was to build a model with as narrow a confidence interval as possible, the Gauss-

Markov theorem assumptions must be fulfilled. The Gauss-Markov theorem assumptions could 

not be fulfilled if the model was built without an intercept. Secondly, if all the variables had a 

value of 0 (implying no event, a plan surface and no vegetation) the intercept should be 0. Under 

such conditions, the predicted length would be: 

L predicted = -140.35+43.65+curvature = -96.7+curvature (6.2) 

If the surface is planar, there is no horizontal or vertical curvature. However, as this combination 

did not exist in the model (the data set did not have any event with this combination), any 

coefficient can be assigned to the plan-plan variable. Equation 6.2 demonstrates that when the 
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coefficient of the plane-plane curvature is 0.967 (at canopy closure 0), the curvature has a value 

of 96.7. This value leads to an intercept equal to 0, and consequently the model can be 

considered to have no intercept. However, this rationale is only valid for this case; further 

investigations might assign a different value to the plan-plan variable. 

The regression equation can only be used for predictions in the data range defined by the 

estimation data set (Table 6.1). 

Table 6.1 Input data range used in debris flow travel distance prediction. 

Variable Lower limit allowed for Upper limit allowed for 
prediction (using proposed prediction (using proposed 

model) model) 
Debris slide-flow travel distance [m] 25 770 
Path [reaches number] 1 7 
Azimuth [°] 2 357 
Slope [°] 18 53 
Stand Height [m] 0 45 
Canopy closure [%] 0 100 
Plane curvature [class] Plane, convex, concave 
Profile curvature [class] Plane, convex, concave 

The model built using the crisp set regression equation conforms to the laws of physics. When 

the coefficient value shows the importance of the effects of the variables on event travel 

distance, the coefficient value (i.e. positive or negative) presents information related to the 

relationship between the model and the laws of physics. 

The path variable coefficient has a positive value in all models that use a regression equation for 

debris flow travel distance prediction. This means that the larger the L P A T H value, the larger the 

event travel distance. The path variable is large if the upstream reach slope is smaller than the 

downstream reach (for the same number of reaches). A positive path variable coefficient value 

therefore demonstrates that the proposed equation is consistent with the law of energy 

conservation: if the energy of the mass movement increases along the event path, the debris flow 

travel distance will also increase. 
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TST varies from 0 to 3328, which explains the small coefficient compared with the coefficients 

for the rest of the significant variables (at least 1000 times smaller). The maximum influence of 

TST on event travel distance was 100 m. The coefficient for the variable expressing the 

interaction between slope and stand height at the first reach (TST) had a positive value. The 

positive coefficient is consistent with the physics of mass movements: where the slope increases, 

the event travel distance increases (Newton et al. 2002). However, the positive correlation 

between debris flow travel distance and stand height at the first reach indicates that the larger the 

stand height, the larger the travel distance will be. The data set in Appendix 1 reveals that stand 

diameter and height were recorded where the canopy closure was greater than that 0.5. Where 

the initiation point was surrounded by forest cover (canopy closure greater than 0.5) the water 

quantity required to initiate mass movement was greater than if there were no vegetation (Selby, 

1993). Therefore, for the same event path, travel distance would be larger for debris flows 

starting within a stand than for those starting in a clearcut. This is because debris flow initiation 

conditions are more difficult to achieve in forested terrain than in clearcuts (Sidle et al, 1985; 

Greenway, 1987; Selby, 1993). In forested terrain, when debris flow initiation conditions are 

fulfilled at the initiation point, down-slope hydrological conditions required for terrain failure are 

also achieved (principle of continuity combined with Pascal's law) (Pao, 1961; Kaufmann, 

1963). 

The C A Z variable varies from -1 to +1, as cosine varies from -1 to +1. As the C A Z co-domain is 

close to the L P A T H range (0-3), therefore the absolute value of the coefficient also 

demonstrates the importance to the independent variables on debris flow travel distance (Tucker, 

1962; Freedman et al, 1991). As C A Z coefficient is smaller than L P A T H , this indicates that 

C A Z is less significant than LPATH. This result confirms the analysis presented in Section 5.2: 

L P A T H was correlated with debris flow travel distance, but C A Z was not. 
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The value of the C A Z coefficient is consistent with geomorphological theory (Selby, 1993). The 

positive coefficient demonstrates that events with a northerly exposure have travel distances 

larger than those with a southerly exposure; at a maximum, an event would be 87.3 m longer on 

a northern face than for southerly exposure. The reason likely lies in the difference between the 

water regime on the two exposures; southerly faces have more sun, and therefore 

evapotranspiration is more intense than on northerly faces. 

The terrain curvature coefficients vary according to the relative influence of the variables on 

event travel distance (Tucker, 1962; Freedman et al., 1991). The largest coefficients are 

associated with the variables with the highest correlations. The coefficients correspond to the 

cxcv and cxcx variables that make the function consistent with the selection procedures used in 

Section 5.4.2.6. The value of the coefficient indicates the intrinsic properties of the terrain 

morphology at the first reach. There are two variables with negative coefficients: cvp and cxcx. 

These present the possibility that vertical curvature controls the event length, whereas the 

combination of profile and plan curvature controls the absolute value. This suggests that the 

energy variation of events is more controlled by the profile curvature than by the plan curvature. 

This would be consistent with hydrology along the path: concave shapes have a wetter regime 

than plan or convex ones (Powrie, 1997). This wet regime is a significant element in debris flow 

triggering and travel distance (Takahashi, 1991; Selby, 1993). 

The model was further investigated using the Pearson correlation coefficients presented in 

Appendix 6. The path variable, TST and C A Z coefficients from the regression equation were 

consistent with the Pearson correlation coefficient, all of them being positive. The class variables 

quantifying the terrain curvature presented consistent model equation coefficients and Pearson 

correlation coefficients only for cvp, cxcv, cxcx (see Table 5.3). However, for the remaining 
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class variables, the Pearson correlation coefficient signs did not match the model equation 

coefficient signs. This requires further explanation. Firstly, none of the variables with opposite 

coefficient signs were correlated with the dependent variable. Therefore the information supplied 

by these variables does not contribute significantly to the modification of the dependant variable. 

Secondly, the opposite sign demonstrates that the information corresponding to the respective 

variables is also supplied by different variables (Bernstein et al., 1987). This means that the 

significant variables provide the same information as the ones with opposite signs for the 

Pearson correlation coefficients and model equation coefficients. Therefore, the use of non

significant variables in the final crisp set regression model is based only on the need to preserve 

the class variable as a whole (Neter et al., 1996). 

Pearson correlation coefficients for the raw variables are also presented in Appendix 6. The 

results show that the transformation of the path variable into L P A T H increases the correlation 

between the raw path variable and debris flow travel distance, from 0.84 to 0.93. The remaining 

variables used in the regression were not correlated with event travel distance in their 

untransformed state. These results were also produced by simple linear regression analysis, with 

the exception of stand height at the initiation point (due to the data set used). The simple linear 

regression performed earlier in this Section used the whole data set (38 events), whereas the 

Pearson coefficients were determined using the reduced estimation data set from Section 5.4.2. 

Further examination reveals some interesting trends in these results. Slope, stand height and 

canopy closure around the first reach are all strongly correlated with each other. This means that 

if they were all correlated with the. event travel distance (which they are not), they would supply 

essentially the same information. The difference in the sign of the Pearson correlation coefficient 

demonstrates the lack of correlation between slope of the first reach and event travel distance; 
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the negative value suggests travel distance increases as slope decreases, although the non-

significance of the coefficient means that any relationship can dismissed. However, this 

demonstrates that the interpretation of the Pearson correlation coefficient and simple linear 

regression analysis is only useful for significant relationships (Freedman et al., 1991; 

Mendenhall, 1984). 

The azimuth of the event as a whole is correlated with debris flow travel distance. This means 

that the variables characterizing the entire event, path and azimuth, have a stronger impact on the 

travel distance than the variables describing local terrain properties (i.e. initial slope, stand 

height, canopy closure, plan and profile curvature). However, the variables describing local 

terrain properties are useful in fulfilling the mathematical assumptions required for regression 

analysis. As the transformed variables are more significant than the raw variables, they supply 

useful information for prediction in the model. 

The fuzzification process aimed to capture the variability of attributes over time, including both 

intrinsic variability and the limitations of human operators and instruments (Zadeh, 1965). 

Variation in each variable was initially interpreted independently. Where the non-linear 

programming algorithm used to solve the fuzzy approach did not supply a convergent feasible 

solution, the initial variable variation was adjusted to fulfill the mathematical requirements 

needed for convergence and feasibility. 

As a result of backwards erosion of the head scarp, the length of a debris flow continues to 

increase from the moment of occurrence until the moment when data about it are collected. The 

initial event length is therefore smaller than the measured value. Data recording is also 

imperfect, especially measurements taken using a hipsometer while walking the length of the 
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event, which tend to exaggerate the total length of the event. These two opposing trends 

determine the procedures for assigning the fuzzy value for the event length. The most likely 

value for the debris flow travel distance is the measured one (assumption two). The most 

unlikely value is determined by subtracting and adding the spread of the fuzzy number to the 

most likely value. Both the non-linear programming convergence requirements and the minimal 

confidence interval of the predicted debris flow travel distance were considered in establishing 

the spread of the fuzzy number. 

Wise (1997) found a maximum coefficient of determination of 0.828 for unconfined events. This 

coefficient of determination led to confidence intervals larger than 20% for event length. 

Corominas (1996) obtained a correlation coefficient of 0.763 between dependent and 

independent variables for debris flows. This value also provided confidence intervals for the 

predicted values that were larger than 20% of the event length. For the purpose of this research, 

the variation of the value assigned for the debris flow travel distance was established at 20%, to 

fulfill the non-linear programming convergence requirement and also ensure the smallest 

confidence interval for the predicted value (Cannon 1993; Corominas, 1996; Megahan and 

Ketcheson, 1996; Wise, 1997; Finlay et al. 1999). 

As the predictor variable, the transformed path variable should have as large a variation as 

possible. Even if the path identification were inaccurate, the model would still have to predict 

correctly. Path recognition varies with event length. Consequently, for short events, the path 

variable could change within a reach; for long events, the path could vary within three reaches. 

The average number of reaches for short events, with length less than 200 m, is two. The 

analysis of reach distribution demonstrated that one reach error ensures that more than 80% of 

the events had between one and three reaches. If the event was larger than 500 m, its path was 
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difficult to identify accurately, as both event trajectory and map scale influence accurate reach 

identification. As this study had an exploratory nature regarding the path variable, a maximum 

number of three reaches were allowed for event path misidentification. This value allowed a 

variation of L P A T H from 35 - 55% of the L P A T H value. The variation in L P A T H value was 

established at 40% (of the L P A T H value) required to fulfill the non-linear programming 

conditions. 

The variation of the first reach slope depended on the slope value; for steeper slopes the errors in 

identification can also be high. This is because of the difficulties encountered in precisely 

measuring distances on maps. When contours were close, there was a greater error in the 

determination of plan length. Since the cosine function had a circular variation, the difference 

between shallow and steep slopes should not have been very large. This study therefore 

considered that the errors in the slope identification could vary from 10 - 15% of the actual slope 

of the first reach. The non-linear programming conditions forced the variation associated with 

the cosine of the slope to be in a range of 10% of the slope cosine. 

The method used to measure average stand height in the field resulted in a 10% variation from 

the real average value (Munteanu et al., 1980). However, since stand height varies with the 

sampled trees, an increase in variation was considered. The total stand average variation was 

established at 20% of the measured average stand height for the purpose of this model. As the 

relationship between the raw and transformed stand heights was linear, the variation of the 

transformed height was also 20% from the transformed value. The variation of TST was 

determined in relation only to the non-linear programming requirements. The transformed 

variable was allowed to vary within a range of 30% of the measured value. 
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Canopy closure at the first reach was very difficult to measure, especially when it had low 

values. Measured canopy closure typically varies within a range of 10% from the real value 

(Munteanu et al., 1980). As several ecosystems could be present in the area around the first 

reach, canopy closure was allowed to vary by more than 10%. The non-linear programming 

requirements indicated that a variation of the transformed canopy closure of 20% would fulfill 

the mathematical conditions. Translated back to the raw variable, this allowed a variation in 16% 

of the canopy closure at the first reach. 

The azimuth was not fuzzified because the symmetrical triangular fuzzy number could lead to a 

value for the cosine of greater than 1, contradicting the cosine definition. Azimuth was the only 

un-fuzzified variable in the model. 

More predictor variables were considered in the fuzzy set model than for the crisp set model. 

This was because of the non-linear programming method that was adopted. In order to supply as 

precise a model as possible, a large number of independent variables had to be considered 

(Chvatal, 1983; Winston, 1994). The non-linear programming method considered the same seven 

variables used in the crisp set modeling but also incorporated ht1 and st1, the components of TST. 

These two variables increased the precision of the fuzzy set prediction model. The coefficient 

signs for the fuzzy set model were the same as for the crisp set model. The new variable, st, had 

a coefficient consistent with the physics of the processes involved: steeper slopes associated with 

longer events. Although the coefficient for stand height was larger than 1, its influence on event 

travel distance was not important (the maximum influence was 5.5 m). The negative sign for the 

relationship between stand height at the initiation point and event travel distance can be 

discounted, as the relationship was not significant. 

1 ht is the transformed average stand height (h) using equation: ht=(h+l)/10 and st is the transformed slope of the 
first reach (((>) using equation st=sin<J). 
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The regression equation used for debris flow travel distance prediction was determined using a 

sample of 38 events from the total of 582 inventoried. If crisp sets were used, a larger data set 

would lead to a better estimation of the coefficients and also to a narrower confidence interval 

for predicted debris flow travel distance (McClave and Dietrich, 1991; Craiu, 1997). For the 

fuzzy sets model, a larger data set would have as a consequence a larger number of constraints 

and therefore a more precise identification of the feasible region (Chvatal, 1983; Winston, 1994). 

A better identification of the feasible region would also lead to a more precise solution for the 

convergence point, and consequently a more accurate debris flow travel distance prediction. 

For the crisp set model, because the dependent variable is the unmodified event travel distance, 

there is no bias; the least squares method used by the Gauss-Markov theorem provides unbiased 

estimators. The Gauss-Markov theorem also demonstrates that the estimated equation 

coefficients provide the smallest confidence intervals for the predicted variable. 

The situation is different for the fuzzy set model. As each value is associated with a degree of 

uncertainty, the application of crisp set algorithms would have led to a large confidence interval 

for the predicted value (Dubois and Prade, 1980; Klir and Yuan, 1995; Nguyen and Elbert, 

1999). To reduce the confidence interval associated with the predicted value, different 

techniques are required. The work of Tanaka et al. (1982) minimized the confidence interval but 

did not consider the degree of bias of the estimators. The bias of the fuzzy set model was only -

10.58, representing 4% of the average debris flow travel distance. As the bias of the fuzzy set 

equation was not significantly different from 0, there is not sufficient evidence to infer that the 

fuzzy regression is biased. The two equations obtained using different procedures from set 

theory were comparable: both were unbiased and provided the minimum confidence interval for 

the predicted value. The assessment of the two regression equations, based on crisp and fuzzy 
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sets, demonstrated that both models performed extremely well; the predicted values fell within 

the established confidence intervals. The fuzzy set model predicted 100% of the events from the 

prediction data set, whereas the crisp set model incorrectly predicted one event. 

The fuzzy set approach supplies a more precise model than the crisp set approach for events 

shorter than 150 m. The crisp set regression equation had negative values for the lower limit of 

the confidence interval for 78 % of debris flows with a travel distance of less than 150 m. 

However, for longer events, the crisp set model had a narrower confidence interval. The model 

determined using the fuzzy set is more robust than the crisp set model. In this regard the fuzzy 

set model is more valuable and its results more trustworthy than the crisp set model. 

The narrow confidence interval for predicted debris flow travel distance led to a precise 

identification of the element at risk. The probability of misidentification of the element at risk 

was less than 5%, the type I error level selected in Chapter 5, for both models. Therefore using 

equations 5.4 and 5.6 to assess the risk associated with terrain failure will decrease the 

probability of misidentification of an element at risk. 

6.2 Conclusions 

The debris flow travel distance model is based on regression analysis, using the unmodified 

event travel distance as the predictor variable. The regression equation predicts the debris flow 

travel distance with a high degree of precision (coefficient of determination R2=0.975 or event 

travel distance spread 20% from its value), regardless of whether the model was based on a crisp 

or fuzzy set approach. As all the assumptions of regression analysis are met and the equation 
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predicts values within the established confidence interval (a=0.05), the model is robust, 

regardless of the skewness of the initial dataset. 

Compared to other debris flow travel distance models (Cannon, 1993; Corominas, 1996; 

Megahan and Ketcheson, 1996; Wise, 1997; Hungr, 1999) the equation proposed here 

incorporated a larger number of terrain attributes. A reduced set of terrain attributes can explain 

only a small part of the phenomena occurring in the debris flow process and leaves a series of 

processes un-investigated (i.e. geomorphological attributes do not explain the rheology). 

Incorporating a large number of attributes in the model made the prediction more accurate than 

the one produced by models that use fewer attributes, or a subset of the larger one (Luckasievicz, 

1963). Statistically, more predictor variables lead to larger determination coefficients and 

smaller means square error associated with the predicted hyperplane equation (Neter et al, 

1996). This reduction in means square error represents the increase in prediction accuracy 

(McClave and Dietrich, 1991). 

In addition, a newly designed variable that describes the event path enabled this debris flow 

travel distance model to include both event types, ending and not ending in a stream, in the same 

analysis. This created more flexibility with two effects on debris flow travel prediction. Firstly, 

the model considered events that conformed to the real terrain variation and which did not 

impose any restriction based on the termination point. Secondly, examining both types of events 

simultaneously enabled the sample size of the estimation data set to be increased, and 

consequently the confidence interval of the predicted length was narrower. 

The event path was based on reach definition. If a larger number of events had been inventoried, 

a better definition of the reach boundaries established in Section 4.5 would have been achieved. 
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As these limits are area-dependent, and the values can vary from region to region, a more exact 

definition of a reach should consider the physics of mass movements. 

The fuzzy set theory used in this study was shown to be a powerful tool for quantifying the 

uncertainties related to the data values. For events with short travel distances, the results 

supplied by the fuzzy set model are better than those one provided by the crisp set model. 

The variable that to describe terrain variation, LPATH, uses attributes related only with terrain 

morphology. The elemental terrain variation unit is the reach. Because of that the LPATH 

capture the terrain variation from debris slide-flow perspective. 

LPATH represents the terrain morphology by a single number. The quantification process is 

based on the assumption that reach limits and succession are correct identified. Because has a 

dynamic character, as a result of comparison between two successive slope and not to a certain 

value, the binary codification capture the terrain variation to each specific site. This feature 

makes the codification attractive because it is suitable to any type of terrain variation. 

The set of variables required to determine the debris flow travel distance do not include the 

position of the initiation point. To calculate the travel distance only maps that describe the 

profile morphology (path variable, local plan and profile curvature) stand characteristics (canopy 

closure, average height) and azimuth are required. Therefore the model is easy to implement in 

any software that works with this type of information, such as Arcview 3.2 or ArcGIS 8.0. As 

the debris flow travel distance model is represented by a set of two equations and a logical 

operator (IF) that decides what type of equation is applied (based on fuzzy or crisp set), the 

necessary calculations are fast and consequently the results are obtained in real time. 
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6.2.1 Recommendations for future research 

The models developed here have brought into focus two issues related to the investigation of 

terrain stability, namely the quantification of terrain variability and the uncertainties related to 

the data values. 

As the quantification of terrain variability is based on the reach definition, which in turn is 

determined by the local conditions, a more precise identification of reaches is recommended. 

This could focus on efforts to eliminate the constraints imposed by the regression analysis 

approach. A more dynamic definition, determined by the geomorphological attributes of the 

event trajectory, could be a goal of future investigations based on terrain variation. 

The goal of the debris flow travel distance prediction model was to provide as narrow a 

confidence interval as possible. For the crisp set model, this goal was achieved by a regression 

equation with a coefficient of determination very close to 1. For the fuzzy set model, a narrow 

confidence interval for the predicted value was achieved by the small spread of the dependent 

variable, event travel distance. A more precise approach is to establish the spread of the debris 

flow travel distance as a fuzzy number for each event in metric units, not in percentages. 

Soil fine particle content plays an important role in terrain stability investigation (Iverson, 1997) 

and this study revealed that there is significant correlation between soil fine particle content at 

the initiation point and debris flow travel distance (Table 5.1). As the granulometry was not 

considered along the path, its influence on the event length requires further investigation, 

directed especially to quantification of the granulometry variation along debris flow trajectory. 

This is important for valley-confined flows, where debris lying in the channel may be entrained 

in the flow. It is obviously not important for events that move over the vegetation surface. 
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Table A . 1.2. Geology and granulometry for the event soil sample 
id Start point Geology Path Slide Weight Slide Type Slide Grad Slide Fine 

21-101 m G 18 2.600 s u 3 
21-102 b G 1 2.649 gs 9 6 

31-3 t G 4 2.458 sg w 10 
31-4 t G 2 2.609 gs u 2 
51-3 b N 1 2.567 gs g 4 

52-10 b N 1 2.638 gs g 1 
52-12 m N 1 2.617 gs u 5 
52-13 m N 5 2.593 s g 13 
52-16 m N 20 2.707 sg g 8 
52-26 b N 2 2.604 sg g 2 
52-30 t N 106 2.604 gs g 13 
52-32 m N 8 2.411 gs u 11 
53-5 m N 4 2.609 sg w 4 
53-6 m N 4 2.648 gs u 1 

61-10 m G 2344 2.603 gs g 7 
61-15 b N 2 2.617 sg w 9 
61-18 b G 2 2.596 gs u 13 
61-19 m G 44 2.756 sg g 2 
62-10 m N 68 2.684 gs g 6 
62-14 b N 3 2.605 sg g 3 
62-23 m N 1 2.643 gs g 3 

62-23b m N 1 2.694 gs u 2 
64-20 b G 2 2.606 gs g 2 
73-12 m G 12 2.601 gs u 6 
73-17 b G 1 2.627 gs g 3 
73-18 b G 1 2.577 gs g 3 

73-18b b G 1 2.552 gs u 2 
73-28 b G 2 2.621 gs u 5 
74-20 m G 5 2.651 sg u 2 
83-7 m G 2 2.763 sg g 11 

94-23 b Fs 2 2.518 gs u 6 
94-24 b Fs 3 2.608 gs u 2 

94-26d b Fs 2 2.639 gs u 9 
94-30 b Fs 1 2.622 gs u 2 
94-34 b Fs 2 2.643 s u 7 

94-34b b Fs 1 2.619 gs u 5 
94-35b m Fs 1 2.615 gs u 10 
94-36 b Fs 3 2.724 gs u 9 

Where b (m, t) represents the event starting point on the slope: bottom (middle, top); 

Geology: G-granite; N-gneiss and Fs-fine sedimentary; 

PSD type for event soil sample: g-gravel; gs-gravel sandy; sg-sandy-gravel; s-sand; 

PSD grading for event soil sample: g-gap graded; u-uniform graded and w-well graded 

Slide fine - percentage of silt and clay in the event soil sample. 



Table A. 1.3. Human activity and granulometry for the control soil sample 
id Contr Weight Contr Type Contr Grad Contr Fine Clearcut 

21-101 2.6 s u 3 0 
21-102 2.677 s u 8 0 

31-3 2.577 sg w 11 0 
31-4 2.527 9 u 2 0 
51-3 2.577 9 u 4 0 
52-10 2.67 s u 8 0 
52-12 2.682 9 u 7 1 
52-13 2.656 sg 9 7 0 
52-16 2.707 sg 9 8 0 
52-26 2.604 sg 9 2 0 
52-30 2.636 sg 9 9 0 
52-32 2.629 gs 9 6 0 
53-5 2.632 sg 9 9 0 
53-6 2.419 9 u 4 0 

61-10 2.603 gs 9 7 0 
61-15 2.646 sg 9 5 0 
61-18 2.61 gs u 3 0 
61-19 2.757 sg 9 4 0 
62-10 2.652 sg 9 8 0 
62-14 2.753 sg 9 7 0 
62-23 2.664 sg 9 3 1 

62-23b 2.679 gs 9 2 1 
64-20 2.573 gs 9 7 0 
73-12 2.528 g u 5 0 
73-17 2.629 gs u 3 0 
73-18 2.364 sg w 22 0 

73-18b 2.552 gs u 2 0 
73-28 2.671 s 9 • 8 0 
74-20 2.725 s 9 8 0 
83-7 2.565 gs u 4 1 

94-23 2.518 gs u 5 0 
94-24 2.608 gs u 2 0 

94-26d 2.639 gs u 9 0 
94-30 2.673 gs u 5 0 
94-34 2.643 sg u 9 0 
94-34b 2.619 gs u 7 0 
94-35b 2.615 9 u 14 0 
94-36 2.781 9 u 2 0 

Where PSD type for control soil sample: g-gravel; gs-gravel sandy; sg-sandy-gravel; s-sand; 

PSD grading for control soil sample: g-gap graded; u-uniform graded and w-well graded 

Contr fine - percentage of silt and clay in the control soil sample; 

Clearcut - presence or absence of the clearcut at the first reach. 
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Table A. 1.4. Elements characterizing t ie debris I lows 
Event Minimum 

slope 
difference 

Maximum 
slope 

difference 

Minimum azimuth 
difference, 

corresponding 
Minimum slope 

difference 

% length 
adjacent 

reach 

Minimum 
length 

(intermediate 
reaches) 

Minimum 
length fan/first 

reach 

Slope to 
stop 

Maximum angle of the 
lateral sides of 

trapezoid 

21-101 2 7 3 25 79.5 28.6 0 7 
21-102 0 0 0 100 0 75.8 0 9 

31-3 6 6 25 5 17.3 13.4 0 7 
31-4 4 4 20 53 55.4 28.5 0 5 
51-3 0 0 0 100 0 143 32 1 

52-10 0 0 0 100 0 55.5 0 2 
52-12 0 0 0 100 0 25.8 33 0 
52-13 5 5 44 42 41.4 50.4 0 1 
52-16 6 8 8 36 34.9 52.5 0 5 
52-26 14 14 20 65 30.2 46.1 0 9 
52-30 3 26 14 19 30.9 32.1 12 5 
52-32 2 7 41 26 66.1 75.8 0 5 
53-5 2 4 22 22 65 15.5 18 5 
53-6 6 10 15 44 77.3 34.2 0 4 

61-10 2 17 18 21 24.8 39.5 2 8 
61-15 0 0 0 20 0 10 0 13 
61-18 0 0 0 28 0 8.5 0 8 
61-19 7.5 13 6 25 133 43.7 14 9 

62-10 2 4 6 47 88.8 . 25 0 2 

62-14 8 8 32 50 0 26.4 0 19 

62-23 0 0 0 100 0 93.2 18 2 

62-23b 0 0 0 100 0 58.6 0 1 

64-20 0 0 0 100 0 11.6 12 10 

73-12 5 22 52 39 14.4 18.3 5 9 

73-17 0 0 0 100 0 109.6 0 1 

73-18 0 0 0 100 0 31.5 44 9 

73-18b 0 0 0 100 0 35.8 0 6 

73-28 0 0 0 100 0 11.3 0 12 

74-20 7 7 8 61 41.6 41.9 20 3 

83-7 9 9 33 16 0 17.8 23 20 

94-23 0 0 0 100 0 115 0 2 

94-24 0 0 0 100 0 98.7 0 1 

94-26d 1 1 8 35 0 34.9 0 4 

94-30 9 9 3 48 0 33.6 0 18 

94-34 0 0 0 100 0 15 0 2 

94-34b 0 0 0 100 0 120 0 2 

94-35b 3 3 38 68 0 25.4 0 7 

94-36 15 15 9 81 0 52.2 0 1 
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Appendix 3 Basic concepts in fuzzy sets theory 

1. Elements of set theory 

In traditional set theory, termed crisp set theory, based on dual logic an element can or cannot 

belong to a set. 

Suppose X is the universe of discourse i.e. the set of all possible elements with respect to a property. 

A crisp set A is represented by the membership function p: X —>{0,1} defined as following if an 

element of X, xe X, belong to A then p,(x£ A)=l if not then p. (xe A)=0. Therefore a crisp set can be 

expressed as a set of ordered pairs 

{(x,pA)| xeX and P-A:X—»{0,1} is the membership function of element x to set A} 

Example: 

True sentence: 2 is an even number => [iA (2) = 1 where A is the set of even numbers 

False sentence: Bold eagle is a mammal =» juA (bold eagle) = 0 where A is the set of mammals. 

A fuzzy set is represented in a similar manner with the crisp sets, the only difference being in the co 

domain, which is transformed from the discrete set {0,1} to the continuous interval [0,1]. Similar 

with crisp sets the fuzzy sets are expressed as a set of ordered pairs 

{(X,|0,A)| xeX and PA:X —> [0,1] is the membership function of element x to set A} 

Example: Temperature is around 22°C. 

f0 .5x-10 if XG [20,22) 

if x = 22 
if xe (22,24] 

1 If X=[0,50] 

sin(45x-900) 

This means that the range of temperatures is from 0°C to 50°C. 

When this range changes, the membership function also can change: 
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fO.Lc-1.2 if XE [12,22) 

if x = 22 
if xe (22,42] 

1 IfX=[-100, 500] 

sin(4.5;c-9) 

The above examples show that membership function is dependent on X, the universe of discourse. 

2. Basic concepts on fuzzy sets 

2.1. a-cuts, support of a fuzzy set and normal fuzzy set. 

A very useful tool in dealing with fuzzy sets is the concept of a-cuts. 

For any fuzzy set A, defined on the universe of discourse X, and any real number ae [0,1], the a-cut 

is defined as the crisp set -j x| J J ^ X ^ O C \ . The notation of an a-cut set is usually aA. 

An important property of a-cuts is that the order of a values is inversely preserved by the inclusion 

of sets corresponding to each a-cut. In formal mathematical language this can be expressed as: 

For any ai<a2, with ai, a 2 e [0,1] 

0 | A D a ! A 

This property is equivalent with the following equalities: 

" 'Au" 2 A = a ' A 
a ' A u " 2 A = ° 2 A 

The support of a fuzzy set A, which has the universe of discourse X, is the crisp set containing all 

the elements from X that have the membership function strictly larger than 0. 

The height of a fuzzy set A is the largest membership value of the elements of A. 

A normal fuzzy set is a fuzzy set having the height equal with 1. 

When a fuzzy set is not normal, dividing the membership function to its maximum height can 

normalize it. 
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2.2. Convexity 

The concept of convex fuzzy set is a natural generalization of the classical concept of convex crisp 

sets. A fuzzy set on real set (R) is convex if all its a-cuts are convex crisp sets (crisp sets convex in 

classical sense). A result very useful in possibility theory is the following theorem: 

Theorem 1. A fuzzy set A on R" is convex if and only if for any xi, x 2 e R" and all Ae [0,1] 

u.A(A*,+(l-A)x2)> min[u.A(xi), HA(X2)]. 

3. Basic operation on fuzzy sets 

The basic operations on fuzzy sets are similar with the one defined on crisp sets: union, intersection, 

inclusion and complement. In conventional set theory these operation are defined in the following 

manner using characteristic function: 

A crisp set A is empty A = 0 if and only if (iff) P:A(X)=0 for any xe X. 

Suppose A, B are two crisp sets with characteristic function [IA and p:B. Two crisp sets are equal, 

A=B, iff A and B are subset of X and U.A(X) = |iB(x), for any X G X . A crisp set A is included in a 

crisp set B, A c B , iff A and B are subsets of X and HA(X) < u.B(x) for any xe X. 

AuB={xeX| xe A or xeB}={xeX||a,A(x)=l or piB(x)=l }={xeX|u,A(x)*0 or u,B(x)*0} 

AnB={xeX| xeA and xeB}={ xeX|u,A(x)=l and u,B(x)=l }={xeX| p:A(x)*0 and u.B(x)*0} 

A ={xeX| x£ A}= {xeX|p.A(x)=0}={xeX|u.x(x)=l-|aA(x)} 

The same operations are translated to fuzzy sets: 

A fuzzy set A is empty, A=0, if and only if (iff) |J,,i(x)=0 for any xe X. 

232 



Suppose A and B are two fuzzy sets. 

Two fuzzy sets are equal, A=B, iff A and B are subset of X and \iA(x) = p.B(x), for any xe X. 

A fuzzy set A is included in a fuzzy set B, AcB, iff A and B are subsets of X and \xA(x) < p:B(x) for 

any xe X. 

Au5={xeX|(u/i(x)^0 or p,B(x)#0}={xeX| \iALs=max(\iA(x),\xB(x))} therefore \iAuB = max(m,p^) 

Anfi={xeX| PA(X)*0 and p,B(x)*0}={xeX| \iAnB =min(p,A(x),pB(x))} therefore \xAnB = m i n ^ M 

A ={xeX|px(x)=l-p./4(x)} therefore ^_ = 1 - \iA 

These operations are called standard fuzzy operation. To generalize these concepts a more general 

definition was used. 

3.1. Fuzzy sets intersections 

The fuzzy intersection of two sets A and B is defined as a binary operation on [0,l]x[0,l]. 

Suppose that i is a function defined as follows 

i: [0,l]x[0,l] -> [0,1]. 

By definition 

W4nB(x) = l[M-A(x),U.B(x)]. 

For example the function / can be defined as i(x,y)=min(x,y)=X+^ ^X——, where x, y e[0, 1], 

which lead to the standard fuzzy intersection. 

To define the binary operation i as fuzzy intersection it should satisfy the following requirements 

(Klir and Yuan, 1995): 
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Axiom i l . Boundary condition 

/(a, 1 )=a for any ae [0,1 ] 

Axiom i2. Monotonicity 

For any a, b, d e [0,1], with b < d then i(a, b) < i(k, d) 

Axiom i3. Commutativity 

For any a, b e [0,1], i(a,b) = /(b,a). 

Axiom i4. Associativity 

For any a, b, d e [0,1], i'(a,/(b,d)) = i(i(a,b),d). 

The set of axioms enounced above define a set of functions known as t-norms. 

An additional axiom is usually stated: 

Axiom i5. Function / is continuous. 

The standard fuzzy intersection is a special case of t-norm, which has the property 

/(a,a)=a, for any ae [0,1] (idempotency). 

Examples of fuzzy intersection functions are 

Yager class /(a,b)=l-min{ l,[(l-a)w+(l-b)w]1Av}, for any a, b e [0,1]; 

Algebraic product: *'(a,b)=a*b, for any a, b e [0,1]; 

Bold intersection (or bounded difference) 

/(a,b)=max(0, a+b-1), for any a, be [0,1]; 

Which is the Yager intersection with w=l: JY(a,b)=l-min(l,2-a-b). 

a when b = 1 
Drastic intersection: i(a,b) = \ b when a = l for any a, b e [0,1]; 

otherwise. 0 
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3.2. Fuzzy sets union 

In the same manner as the fuzzy sets intersection was defined, the fuzzy sets union would be also 

defined. The fuzzy union of two sets A and B is defined as a binary operation on [0,l]x[0,l]: 

u: [0,l]x[0,l]->[0,l]. 

By definition 

HAUB(X) = M[^A(X),HB(X)]. 

For example the function u can be defined as u(x,y)=max(x,y)= X + X——, where x, y £ [0, 1], 

which lead to the standard fuzzy union. 

The function defining a fuzzy union has to satisfy following axioms (Klir and Yuan, 1995): 

Axiom ul. Boundary condition 

w(a,0)=afor any a£ [0,1]; 

Axiom u2. Monotonicity 

For any a, b, de [0,1] with b < d, then w(a,b) < w(a,d). 

Axiom u3. Commutativity 

For any a, b£ [0,1], then w(a, b) = u(b, a). 

Axiom u4. Associativity 

For any a, b, de [0,1], then w(a, w(b, d)) = u(u(a, b), d). 

These properties define a class of functions named t-conorms. 

An additional axiom is usually stated: 

Axiom u5. Function u is continuous. 
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The standard fuzzy union is a special case of t-conorms which has the property w(a, a)=a 

(idempotency). 

Examples of union functions are: 

Yager class: ww(a, b) = min [1, (aw + bw) 1 / w] where we (0,«>). 

Standard fuzzy union is a Yager t-conorm with w=°°. 

Probabilistic sum (sometimes called algebraic sum): u(a, b) = a + b - ab for any a, be [0,1]; 

Bold union (or bounded sum): u(a, b)= min (1, a+b) for any a, be [0,1]; Yager for w=l 

Drastic union: u(a,b) = 

a when b = 0 
b when a = 0 for any a, be [0,1]. 
1 otherwise. 

3.3. Fuzzy set complement 

Let c:[0,l] —> [0,1] be a function which assign a value C ( | I A ( X ) ) to each membership grade U,A(X). 

p.^(x)=c(|j.A(x)) 

To define the function c as a complement it should satisfy the following requirements (Klir and 

Yuan, 1995): 

Axiom c l . Boundary condition 

c(0)=l and c(l)=0 

Axiom c2. Monotonicity 

For any a, be [0,1] if a<b then c(a) > c(b). 
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If c is involutive, meaning the c(c(a))= a for any ae [0,1] then c is also bijective. 

Examples of involutive fuzzy complements are: 

Yagger class: Cw(a)=(l-aw)1/w, where we (0,oo) 

Sugeno class: (L\(a)=———, where XE (-1,°°) 
l-Aa 

The standard complement is a particular case of Yager fuzzy complement: w=lor Sugeno fuzzy 

complement: X=0. 

3.4. Disjunctive sum of fuzzy sets 

The disjunctive sum is the name for the logical operation known as "exclusive OR". The definition 

of fuzzy disjunctive sum is based on its crisp definition 

A@B=(AnB)Kj(AnB) 

The representation of the disjunctive sum is presented in Figure 1. 

•••••1 

• H H 
• H i 

• • I P \ 

Figure 1. Disjunctive sum for crisp sets 

For fuzzy sets this definition become 

MAQB (*) = max{min [uA (x),l - jub (x)} min [l - fxK (x), jub (*)]} 
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The basic idea of exclusive OR logic operation is eliminating the common are from the union of A 

and B. A new operator can be defined having in mind the above idea: 

/W*Hr^(*) - j" i»(*) l 

This operator lead to a different result than the disjunctive sum defined previously and therefore is 

has a different name: disjoint sum. 

3.5. Difference of two fuzzy sets 

For crisp sets the difference is defined as 

A-B=AnB 

The idea of difference between two sets is eliminating from first set the element that are common 

with the second set. 

For fuzzy sets are two way of defining the difference: 

Simple difference- based on crisp sets definition 

juA_B - min(juA (x),l - juB (*)) if for intersection is used standard fuzzy intersection 

Bounded difference - based on the difference underlying idea 

MABB = max(0,/7A (x) - juB (x)) 
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3.6. Cartesian product of fuzzy sets 

The Cartesian product applied to fuzzy set is based on Cartesian product of crisp sets. 

If juAi(xl),juA2(x2),...,juA (xn) are the membership function of Aj, A2,., An fuzzy sets and any ;c,eA,-, 

ie {l,n} then 

MAIXA2*..XA„ (xl,x2,..,xn) = min(MAS U , ) , / ^ 2 (x2),..,MA„ O J ) 

3.7. Distance in fuzzy set 

A distance is defined as a function that has the following properties: 

d(A,B)> 0 for any A, B e X c R 

d(A,B)=d(B,A) for any A, B e X c R 

d(A,C)<d(A,B)+d(B,C) for any A, B, C e X c R 

d(A,A)=0 for any A e X c R 

A large number of functions fulfill the above requirements but usually three types of distances are 

used: Euclidean, Hamming and Minkowski distance. 

• Euclidean distance is defined as 

• An addition distance based on Euclidean distance, when card (X) = n is finite, is defined. 

The new distance is called relative Euclidean distance and has the equation: 

e(A,B) = /^(^(x^-f igCX;)) 2 where A, B are fuzzy sets on R (A, B eX). 

8(A,B) = 
e(A,B) 

where card(X) = n 
Vn 
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• Hamming distance, also named the distance between class sets, is defined as 

d(A,B)= i > A ( X i ) - M x , ) | 
i=l,x ieX 

This distance shows how different are two sets in regarding with their components. 

• As for Euclidean distance, a relative Hamming distance is defined: 

8(A, B) = d ( A , B ) where card(X) = n. 
n 

• Minkovski distance is a generalization of Hamming distance and Euclidean distance. It is 

defined as 

d w ( A , B ) = 
r V / w 

£ | | x A ( x ) - p B ( x ) | v for WE [1,°°] 

For w=l Minkovski distance become Hamming distance and for w=2 become Euclidean distance. 

4. Extension principle 

To work with function defined on fuzzy sets a rule regarding the membership function in the co-

domain have to be done. Zadeh established the rule, known as Extension principle in 1965. The 

extension principle has the following enunciation: 

Let consider X and Y two fuzzy sets and f a function from A , a fuzzy subset of X ( A c X ) , to B, a 

fuzzy subset of Y ( B c Y ) . 

Then the membership function of p-B(y) is defined as 

M y ) = ™ x M x ) 
xef (y) 

where f '(y) is the set of points in X which are mapped into Y by f. 
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5. Fuzzy numbers 

A fuzzy number is defined as a fuzzy set A on R which has the following properties (Klir and Yuan, 

1995): 

A more relaxed definition is given by Lee (2002), which replaces the boundarness and closeness of 

the intervals conditions with the convexity requirement. The definition that would be used in this 

study is the one provided by Klir and Yuan (1995). 

The operations with fuzzy numbers are based on two properties: 

• each fuzzy set can be uniquely represented by it's a-cuts; 

• a-cuts of a fuzzy number are a closed interval on R. 

The basic operations defined on close intervals are: 

addition [a,b]+[c,d]=[a + c,b + d] 

substraction [a,b]-[c,d]=[a - d,b - c] 

multiplication [a,b]*[c,d]-[min(ac,ad,bc,bd),max(ac,ad,bc,bd)] 

division [a,b]l[c,d]=[a,b]*[ll d ,11 c]=[min(a / c,a / d,b / c,b / d) ,max(a / c,a / d ,b / c,b / d)] 

An operation > between two fuzzy numbers A and B is defined, using a-cuts, as a(A>B) = aA>aB 

If > is one of the four operation defined above on closed intervals, the result is also a fuzzy number 

and is expressed as A>B= IL(A>5) with the membership function determined by the extension 

• A is a normal fuzzy set; 

• a A is a closed interval for every ae (0,1]; 

• The support of A must be bounded. 

ae[0,l] 

principle: 
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MA>B(Z)= S U P min[//A(*),//FI()0] for all ze R. 
z=xt>y 

For the basic arithmetic operations defined for closed intervals the above equation are: 

MA+B(X)= S U P mint^A(x),^iB(y)] 
Z=x+y 

JUA_B (x) = sup min[>A (x), fiB (y)] 
z=x-y 

juA*B (x)=sup mm[juA (x), juB (y)] 
z=x*y 

JUA/BW = S U P mrn[>A(x),juB(y)] 
z=xl y 

The most used shape for a fuzzy number is the triangle. A triangular fuzzy number is a fuzzy 

number represented by three points and the functions among theses points are linear. The notation 

for a triangular fuzzy number is A=(ai, a2, ^) and its membership function is 

x-a. 
a , - a, 

a3-x 
a3 — a2 

ax<x<a2 

a2< x<a3 

Triangular fuzzy number A=(3,15,20) 
1.2 -

I 1 

CO 
> 0.8 
a 
(A 0.6 

a> 
JQ 0.4 
E 
a) 
S 0 2 

1 0 x value 1 5 

Fig.l. Triangular fuzzy number 

A symmetric triangular fuzzy number is a triangular fuzzy number with property a2-ai = a3-a2. 
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6. Possibility theory 

Possibility theory is that part from fuzzy set theory, which defines the degrees of belief that a given 

element belongs to a fuzzy set. To formalize the theory a series of definitions are made. 

A fuzzy measure on pair (X,f), where J-a family of nonempty subsets of X , is a function that has 

the following properties: 

/(0)=O and/(X)=l 

for any A, Be Jand A c B then f(A) <f(B) 

for any increasing sequence A; CA2 c . . . in IF, if (̂ JA, e f, then l i m / ( A ( ) = / ( ^ j A i ) 
1=1 i — * i=i 

for any decreasing sequence A1DA2D... in f, if f"") A e then lim/(A|.)=/'(f>) A) 
i'=l , _ > i=l 

A belief measure is a function, Bel, defined on all the subsets of set X (called power of X , #(X)) 

with the following properties: 

Bel: 2<X)-> [0 ,1]; 

Bel(0)=O and Be/ (X)= 1; 

Bel(A{ u A 2 u . . .u AJ>J)fle/(A .)-J)5e/(A. n A i )+ . . .+( - l ) n + 1 5e / (A, n A 2 n . . . n A,) 

For every A e 2(X), Bel(A) can be interpreted as the degree of belief that a certain element from X 

belong to the set A. 

As a property of belief measure 

Bel(A) + Bel(A)<l 
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A plausibility measure is a function, PI, defined on all the subsets of set X with the following 

properties: 

PI: HX) ^ [0,1]; 

P/(0)=Oand PI (X) = 1; 

Pl(AxnA2 n...nAa)<J^Pl(AJ)-J^Pl(AJ u Ak)+...+(-1)B+1P/(A, u A 2 u . . . u A J 
7 ./'<* 

A series of properties follow from the above definitions of Belief and Plausibility measure for any 

Ae TQQ 

Pl(A) + Pl(A)>\ 

Pl(A) + Bel(A)=\ 

Pl(A) + Bel(A)=\ 

Pl(A)>Bel(A) 

The belief and plausibility measure are uniquely determined if a function having certain properties is 

used. This function is called basic probability assignment and has the following properties: 

m: <P(X)-> [0,1] 

£ / n ( A ) = l 
AeP(X) 

The equations used to define belief and plausibility measure using basic probability assignment are: 

Bel(A)= ^m(B) 
B J t c A . , where A, Be 2>(X) 

P/(A)= 5>(fl) 
B\Ar>B*<t> 

An element A of power set of X , T(X), such that m(A)> 0 is called focal element of m. A focal 

element is a subset of X for which the available evidence focuses. If X is a finite set, then basic 

probability assignment function can be characterized by a finite series of its focal elements. 
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A body of evidence is a pair (7, m), where 7 represent a set of focal elements and m the 

corresponding basic probability assignments. 

Total ignorance is represented in terms of basic probability assignment by m(X)=l and m(A)=0 for 

any A^X. 

If the focal elements of a body of evidences are nested the belief and plausibility measure gain the 

following property: 

Bel (A nB) = min [Bel (A), Bel (B)] 

PI (AuB) = max [PI (A), PI (B)] 

for any A, B e 2(X). 

If the body of evidence is nested the belief measure is known as necessity measure and plausibility 

measure as possibility measure. 

The necessity and possibility measure can be defined also using fuzzy measure. 

A fuzzy measure on <X,0 (C- a nonempty family of subsets of X) with the following property 

Nec(C] A,)=inf Nec(At) for any family {A,- | ie 1} in Csuch that Pi A. e C, where I is an arbitrary 
1 6 / 16 / 

index set, is called necessity measure. 

A fuzzy measure on <X,0 (C- a nonempty family of subsets of X) with the following property 

Pos(\^j At)=sup Pos (At) for any family {A, | ie 1} in C such that {JA( e C, where I is an arbitrary 
fe/ , e / iel 

index set, is called possibility measure. 
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The necessity and possibility measures have the following properties: 

Nec(A nB) = rmn[Nec(A), Nec(B)] 

Pos(AuB)=max[Pos(A), Pos(A)] 

Nec(A) + Nec(A)<l 

Pos(A) + Pos(A)>l 

Nec(A) + Pos(A) = l 

min[Nec(A),Nec(A)]=Nec(AnA)=0 

max[Pos( A), Pos( A)]=Pos (A u A)=1 

if Nec(A) > 0 then Pos(A) =1 

if Pos(A) < 1 then Nec(A) = 0 

for any A, B e T(X) (Klir and Yuan, 1995) 

7. Fuzzy linear regression with fuzzy data 

This type of fuzzy linear regression assumes that the data are fuzzy numbers but the regression 

coefficients are crisp. Tanaka et a/.(1982) proposes as a way to solve the regression equation 

possibility theory. The theory proposed by Tanaka use as a basis symmetric triangular fuzzy 

numbers. 

The traditional crisp regression equation based on Cotes (1722) assumption is 

n 

y = ^ a , - JC ( . + e{ where y: dependent variable 
i=i 

xi: independent variables 

a,-: regression equation coefficients 

n : the number of variables 

ef. error 
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The model propose by Tanaka include the error term in the vagueness of the predictor variables. 

Therefore the fuzzy regression equation is 

n 

Y -^jaiXi where Y: dependent variable symmetric triangular fuzzy number 

1=1 

xi: independent variable symmetric triangular fuzzy number 

a,-, n : as above 

A fuzzy symmetric triangular number a can be written as 

a=(ai,a2,oc3) = (a2,s) 

where ai, a 2 , a.3 are the point defining the triangular fuzzy number 

s = a2-ai=0C3-a2 because a is a symmetric fuzzy number. 

As in crisp regression equation the aim of is to calculate the coefficients aj, ci2, ... , an such that the 

linear fuzzy function fits the fuzzy data as best as possible. 

In crisp sets a series of methods were developed to find the coefficients- absolute values criterion 

(or Li), least square (or LQ), maximum likelihood etc. For fuzzy sets the equation have to fulfill two 

goodness criteria (Tanaka et al, 1982; Klir and Yuan,1995) to be "the best": 

• The total difference between the area of the actual fuzzy number and the areas of the 

predicted fuzzy number has to be minimal; 

• The predicted fuzzy number and the actual fuzzy number have to be compatible at least to 

certain level he [0,1]. 

The compatibility is defined as 

com(Yl,Y2)=suptmn[Y1(y),Y2(y)] where Yj, Y2: fuzzy numbers. (Al) 
yeR 
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For a data set containing m e N observation, and neN variable, xi, ie {l,n} the above relation are 

written as following: 

Xy = <xy,Sij> for je {l,m} and ie{l,n) 

Yj = <yj,Sj> actual dependent fuzzy number 

n 
The total spread of the predicted fuzzy number is ^ | a ; | 

i=l 

The two goodness criteria lead to a non-linear programming problem. 

The spread criterion is written in mathematical terms as 

m rt 

minimize £ | sJ.- £ | a,. | stj | (A2) 

7=1 1=1 

This criterion ensures that the spread between the actual fuzzy number and the predicted one is 

close. Condition A2 avoids situation like the ones presented in Figure 2 and leads to solutions like in 

Figure 3. This means that the predicted fuzzy value has to overlap with the actual fuzzy value 

ensuring a minimum oc-level for both. When two fuzzy numbers overlap there is the possibility that 

one of them has a very large spread compared with the other one (fig.2). Condition A2 eliminates 

this kind of solutions. 

Figure 2. Comparing the spread of two fuzzy numbers (undesired case) 
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Figure 3. Comparing the spread of two fuzzy numbers (desired case) 

0 10 20 30 40 50 60 70 
Length [m] 

The compatibility criterion (second criterion) ensures that between the predicted fuzzy value and the 

actual fuzzy one is an overlapping. If the selected compatibility level is h £ (0,1] then the equation 

used is: 

com^,Y2)=supminCF,(y),Y2(y)] > h (A3) 

The solid line from Figure 4 shows the maximum level of compatibility between the two fuzzy 

numbers. The compatibility level ensures that the predicated values has a degree of belief at least as 

high as established level; as large is the compatibility level as close to actual value is the predicted 

one. 

Fig. 4. Compatibility between two fuzzy numbers 

In mathematical terms the above condition is written as following: 
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It ll 

-Y,\ai\sij+yZaixu-yj+sJ 
i = l i = l 

n n 

Yj\ai\sij+Yjaixij-yj-si 

1 = 1 1 = 1 for all jefl, mj (A4) 

The above equation written for all m observations lead to 2m equations. 

The final non-linear programming problem is 

m n 

minimize £ | s., - £ | a,,\ stj | (A5) 

ri n 

-yZ\ai\su+yLaixu-yj+sj 
1=1 i=i subject to 1 1 ' ' for a l l y m j 

i=i 
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Appendix 4: Prediction and confidence intervals for the crisp set 
regression equation. 

Event Actual length Predicted length Lower Conf. limit Upper conf. limit 

52-12 25.8 6.7 -99.6 112.9 

73-18 31.5 64.4 -55.2 184.1 

73-18b 35.8 5.1 -105.5 115.6 

61-18 37.2 84.8 -11.9 181.6 

52-10 55.5 66.4 -39.8 172.5 

62-23b 58.6 59.1 -70.7 188.9 

61-15 62.1 75.2 -32.9 183.4 

21-102 75.8 93.1 -21.5 207.7 

52-26 76.3 113.4 12.1 214.7 

62-14 80.2 120.2 20.0 220.5 

31-4 84.9 76.1 -44.5 196.7 

62-23 93.2 93.8 -36.0 223.6 

53-5 94.4 163.8 67.8 259.8 

64-20 97.8 107.0 1.0 213.0 

73-28 108.0 99.2 -12.7 211.2 

73-17 109.6 24.2 -73.9 122.2 

83-7 130.4 92.7 -4.0 189.4 

51-3 143.0 102.0 -11.7 215.6 

74-20 150.8 149.9 20.1 279.7 

53-6 180.3 164.6 68.6 260.6 

52-13 189.7 172.2 73.8 270.5 

52-16 343.6 369.1 252.4 485.8 

21-101 359.2 342.8 237.9 447.8 

52-32 530.4 535.0 413.6 656.3 

61-19 719.1 712.6 600.6 824.6 

52-30 773.9 753.6 628.0 879.3 



Appendix 5: Prediction and confidence intervals for the fuzzy set 
regression equation. 

Event Fuzzy low 
limit 

Actual value 
travel distance 

Fuzzy up 
limit 

Fuzzy model low 
limit 

Fuzzy 
model 

Fuzzy model 
up limit 

21-101 287.4 359.2 431.0 144.8 287.4 429.9 

21-102 60.6 75.8 91.0 37.7 106.5 175.3 

31-4 67.9 84.9 101.9 68.1 152.2 236.3 

51-3 114.4 143.0 171.6 52.1 114.4 176.7 

52-10 44.4 55.5 66.6 51.1 111.0 170.9 

52-12 20.6 25.8 31.0 6.6 65.9 125.1 

52-13 151.8 189.7 227.6 83.4 181.9 280.4 

52-16 274.9 343.6 412.3 239.1 390.3 541.5 

52-26 61.0 76.3 91.6 80.4 156.1 231.8 

52-30 619.1 773.9 928.7 382.8 619.1 855.4 

52-32 424.3 530.4 636.5 299.9 452.9 605.9 

53-5 75.5 94.4 113.3 77.1 171.9 266.8 

53-6 144.2 180.3 216.4 90.7 187.0 283.3 

61-15 49.7 62.1 74.5 50.9 136.3 221.6 

61-18 29.8 37.2 44.6 44.6 119.6 194.6 

61-19 575.3 719.1 862.9 370.6 575.3 780.0 

62-14 64.2 80.2 96.2 46.5 134.5 222.5 

62-23 74.6 93.2 111.8 14.1 74.6 135.1 

62-23b 46.9 58.6 70.3 7.0 70.5 133.9 

64-20 78.2 97.8 117.4 84.0 165.2 246.4 

73-17 87.7 109.6 131.5 27.2 87.7 148.2 

73-18 25.2 31.5 37.8 37.8 105.6 173.4 

73-18b 28.6 35.8 43.0 7.2 72.3 137.4 

73-28 86.4 108.0 129.6 70.8 152.1 233.4 

74-20 120.6 150.8 181.0 23.1 120.6 218.2 

83-7 104.3 130.4 156.5 36.3 111.4 186.4 
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Appendix 6: Pearson's correlation coefficients for raw and 
transformed variables 

Pearson correlation coefficients for transformed variables (used in the regression) 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum Label 

Lef 26 178.73462 203.29939 4647 25.80000 773.90000 Lef 

Lpr 26 1.07180 0.57682 27.86676 0.64416 2.89420 

TST 26 525.18201 781.50639 13655 0.0000131 3328 

CAZ 26 0.05497 0.50147 1.42927 -0.98791 1.00000 

cvcv 26 4.04911 19.57479 105.27690 0 100.00000 

cvcx 26 3.96877 19.58966 103.18790 0 100.00000 

Cvp 26 0.15583 0.44092 4.05147 0 1.40845 

cxcv 26 0.09225 0.33123 2.39855 0 1.40845 

cxcx 26 0.10532 0.37982 2.73825 0 1.63934 

Cxp 26 0.08556 0.30424 2.22467 0 1.23457 

Pcv 26 3.92650 19.59728 102.08900 0 100.00000 

Pcx 26 0.12364 0.35141 3.21477 0 1.23457 
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Pearson Correlation Coefficients, N = 26 
Prob > |r| under HO: Rho=0 

Lef lpr 1ST CAZ CVCV CVCX cvp CXCV CXCX exp pcv pcx 
Lef 1.00000 0.92962 

<.0001 
0.30533 

0.1293 
0.46935 

0.0156 
-0.12424 

0.5454 
-0.02346 

0.9094 
-0.02509 

0.9032 
0.61203 

0.0009 
-0.14608 

0.4764 
-0 .14043 

0.4938 
-0.08461 

0.6811 
-0.19525 

0.3391 

' P r 0.92962 
<.0001 

1.00000 0.36539 
0.0664 

0.37863 
0.0565 

-0.15481 
0.4502 

0.05632 
0.7847 

0.05113 
0.8041 

0.36718 
0.0650 

-0 .10619 
0.6057 

-0.21684 
0.2873 

-0.14948 
0.4661 

-0.22924 
0.2600 

TST 0.30533 
0.1293 

0.36539 
0.0664 

1.00000 0.09908 
0.6301 

-0.14234 
0.4879 

-0.13052 
0.5251 

-0.09793 
0.6341 

-0.16245 
0.4278 

0.49211 
0.0107 

0.08803 
0.6689 

-0.13835 
0.5003 

0.00321 
0.9876 

CAZ 0.46935 
0.0156 

0.37863 
0.0565 

0.09908 
0.6301 

1.00000 -0.02041 
0.9212 

-0.41934 
0.0330 

0.10922 
0.5953 

0.22386 
0.2716 

-0.16695 
0.4150 

0.17513 
0.3922 

-0.02285 
0.9118 

-0.26345 
0.1935 

cvcv -0 .12424 
0.5454 

-0.15481 
0.4502 

-0.14234 
0.4879 

-0.02041 
0.9212 

1.00000 -0.04358 
0.8326 

-0.07603 
0.7120 

-0 .05992 
0.7712 

-0.05965 
0.7722 

-0 .06050 
0.7691 

-0.04310 
0.8344 

-0.07569 
0.7132 

cvcx •" -0 .02346 
0.9094 

0.05632 
0.7847 

-0.13052 
0.5251 

-0.41934 
0.0330 

-0.04358 
0.8326 

1.00000 -0.07446 
0.7177 

-0.05868 
0.7758 

-0 .05842 
0.7768 

-0.05926 
0.7737 

-0.04222 
0.8378 

-0.07413 
0.7189 

cvp -0 .02509 
0.9032 

0.05113 
0.8041 

-0.09793 
0.6341 

0.10922 
0.5953 

-0.07603 
0.7120 

-0.07446 
0.7177 

1.00000 -0.10237 
0.6188 

-0.10191 
0.6203 

-0.10337 
0.6153 

-0.07364 
0.7207 

-0.12932 
0.5289 

cxcv 0.61203 
0.0009 

0.36718 
0.0650 

-0.16245 
0.4278 

0.22386 
0.2716 

-0.05992 
0.7712 

-0.05868 
0.7758 

-0.10237 
0.6188 

1.00000 -0 .08032 
0.6965 

-0.08146 
0.6924 

-0.05804 
0.7782 

-0.10192 
0.6203 

cxcx -0.14608 
0.4764 

-0 .10619 
0.6057 

0.49211 
0.0107 

-0.16695 
0.4150 

-0.05965 
0.7722 

-0.05842 
0.7768 

-0.10191 
0.6203 

-0.08032 
0.6965 

1.00000 -0.08110 
0.6937 

-0.05778 
0.7792 

-0.10146 
0.6219 

exp • -0 .14043 
0.4938 

-0.21684 
0.2873 

0.08803 
0.6689 

0.17513 
0.3922 

-0.06050 
0.7691 

-0.05926 
0.7737 

-0.10337 
0.6153 

-0.08146 
0.6924 

-0 .08110 
0.6937 

1.00000 -0.05860 
0.7761 

-0.10291 
0.6169 

pcv. -0.08461 
0.6811 

-0.14948 
0.4661 

-0.13835 
0.5003 

-0.02285 
0.9118 

-0.04310 
0.8344 

-0.04222 
0.8378 

-0.07364 
0.7207 

-0 .05804 
0.7782 

-0.05778 
0.7792 

-0 .05860 
0.7761 

1.00000 -0.07332 
0.7219 

pcx -0.19525 
0.3391 

-0.22924 
0.2600 

0.00321 
0.9876 

-0.26345 
0.1935 

-0.07569 
0.7132 

-0.07413 
0.7189 

-0.12932 
0.5289 

-0 .10192 
0.6203 

-0.10146 
0.6219 

-0.10291 
0.6169 

-0 .07332 
0.7219 

1.00000 

Pearson correlation coefficients for raw variables 

Simple Statistics 

Variable N ' ;Meah" Std Dev Sum Minimum Maximum Label 
Lef 26 178.73462 203.29939 4647 25.80000 773.90000 Lef 

Path 26 9.23077 21.79231 240.00000 1.00000 106.00000 Path 

s i r - . 26 34.65385 5.76154 901.00000 18.00000 44.00000 St 

az 26 188.53846 105.23316 4902 0 344.00000 

H 26 23.76923 12.57078 618.00000 0 45.00000 H 

K 26 0.78462 0.31073 20.40000 0 1.00000 K 

254 



Pearson Correlation Coefficients, N = 26 
Prob > |r| under HO: Rho=0 

Lef Path St az H K 
Lef 1.00000 0.84167 

<.0001 
-0.03752 

0.8556 
0.23633 
0.2451 

0.16680 
0.4154 

0.13396 
0.5141 

Path 0.84167 
<.0001 

1.00000 0.04845 
0.8142 

0.36154 
0.0696 

0.30362 
0.1316 

0.13227 
0.5195 

St -0.03752 
0.8556 

0.04845 
0.8142 

1.00000 0.09592 
0.6411 

0.50143 
0.0091 

0.54430 
0.0040 

az 0.23633 
0.2451 

0.36154 
0.0696 

0.09592 
0.6411 

1.00000 0.14614 
0.4762 

0.32370 
0.1067 

II 0.16680 
0.4154 

0.30362 
0.1316 

0.50143 
0.0091 

0.14614 
0.4762 

1.00000 0.59094 
0.0015 

K 0.13396 
0.5141 

0.13227 
0.5195 

0.54430 
0.0040 

0.32370 
0.1067 

0.59094 
0.0015 

1.00000 
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Appendix 8. Result tables 

Table A.8.1 Statistics used to identify the outlier observations (whole dataset) 

Event Studentized deleted residuals Hat Diag H COV RATIO 

21-101 0.74 0.15 1.61 

21-102 -1.29 0.50 1.28 

31-3 6.23 0.58 0.00 

31-4 0.56 0.71 5.52 

51-3 0.27 0.48 3.64 

52-10 -0.45 0.18 2.12 

52-12 -0.33 0.32 2.71 

52-13 0.59 0.11 1.76 

52-16 0.08 0.35 3.02 

52-26 -0.35 0.14 2.13 

52-30 -3.76 0.51 0.00 

52-32 -0.43 0.62 4.61 

53-5 -0.57 0.08 1.72 

53-6 -0.03 0.08 2.16 

61-10 -0.17 0.79 9.30 

61-15 -0.5643 0.3590 2.4790 

61-18 -0.2345 0.0963 2.1137 

61-19 0.6178 0.3131 2.2144 

62-10 2.2535 0.3711 0.1371 

62-14 -0.5833 0.1504 1.8425 

62-23 -0.5630 0.9998 8979.317 

62-23b -0.1964 0.9997 6262.330 

64-20 0.4263 0.3092 2.5301 

73-12 -0.5095 0.1513 1.9505 

73-17 0.5650 0.1112 1.7871 

73-18 -0.2703 0.6665 5.6551 

73-18b 0.9757 0.3918 1.6975 

73-28 -1.6379 0.3790 0.5510 

74-20 0.4397 0.9998 9557.203 

83-7 0.0766 0.0888 2.1700 



Table A.8.2. Statistics used to determine the influential observations (whole dataset) 

Event DFFITS Cook DFBETAS Event DFFITS Cook 
L P A T H T S T C A Z cvcv C v c x c v p c x c v c x c x . c x p p c v p c x 

21-101 0.3161 0.009 0.2099 -0.1595 -0.0669 -0.0569 -0.1077 -0.1392 -0.2193 -0.0031 -0.0196 -0.0482 -0.0712 

21-102 -1.2800 0.132 0.1796 -0.3172 -0.2881 -0.0624 -0.1870 -0.0406 -0 .1740 0.0515 0.0542 -0.0618 -1.1123 

31-3 7.3309 1.445 -3.4200 6.8106 -0.6937 -0.1681 0.1347 0.0110 1.7014 -3 .7303 -1.7499 -0.1613 -1.6314 

31-4 0.8872 0.068 0.0315 -0.0629 0.1355 0.0154 0.0598 -0.0121 -0.0004 0.7910 0.0088 0.0153 0.0614 

51-3 0.2605 0.006 -0.0099 -0.0123 0.1112 -0.0001 0.0428 -0.0237 0.0106 0.0209 0.1923 0.0002 0.0248 

52-10 -0.2117 0.004 0.0663 0.0232 -0.1433 0.0382 -0.0252 0.0779 -0.0143 0.0150 0.0774 0.0417 0.0286 

52-12 -0.2248 0.004 0.0725 -0.0006 0.0877 0.0200 0.0386 -0.1792 -0.0409 0.0289 0.0090 0.0198 0.0454 

52-13 0.2082 0.004 0.0617 -0.1112 -0.0410 -0.0526 -0.0761 -0.0922 -0.0998 -0.0168 -0 .0390 -0.0571 -0.0739 

52-16 0.0552 0.000 0.0152 -0.0161 0.0142 0.0011 0.0040 0.0366 -0.0094 0.0107 0.0027 0.0011 0.0073 

52-26 -0.1421 0.002 0.0208 0.0352 -0.0853 0.0324 -0.0098 0.0616 0.0116 0.0064 0.0492 0.0313 0.0231 

52-30 -3.8068 0.699 -1.0647 -2.1722 -1.0445 -0.2242 -0.4305 0.8485 1.0268 0.8741 0.4385 -0.2220 -0.0882 

52-32 -0.5534 0.027 0.3513 -0.0964 -0.0870 0.0373 -0.0544 -0.0514 -0 .5153 0.0587 0.0894 0.0358 0.0473 

53-5 -0.1716 0.003 -0.0071 0.0297 0.0362 0.0516 0.0554 0.0744 0.0578 0.0486 0.0513 0.0503 0.0775 

53-6 -0.0101 0.000 -0.0004 0.0016 0.0023 0.0027 0.0036 0.0043 0.0034 0.0029 0.0030 0.0029 0.0046 

61-10 -0.3365 0.010 -0.1722 0.0230 0.1196 -0.0227 0.0516 0.0017 -0 .0453 -0.0111 -0.0584 -0.0216 -0.0094 

61-15 -0.4223 0.015 0.0315 -0.0629 0.1355 0.0154 0.0598 -0.0121 -0.0004 -0.2592 0.0088 0.0153 0.0614 

61-18 -0.0766 0.001 0.0066 0.0241 0.0140 0.0223 0.0261 0.0301 0.0175 0.0169 0.0230 0.0242 0.0344 

61,-19 0.4171 0.015 -0.0311 -0.0709 0.2588 -0.0176 0.0860 -0.0720 0.2179 0.0523 -0.0553 -0.0163 0.0408 

62-10 1.7310 0.204 0.7717 -0.0871 0.6445 0.1430 0.2423 0.8524 -0.5001 0.2344 0.0824 0.1408 0.3374 

62-14 : -0.2454 0.005 0.0174 -0.0079 0.1684 0.0607 0.1142 0.0504 0.0527 0.0940 0.0466 0.0596 0.1242 

62-23 -42.2972 154.968 0.0847 -0.1033 -0.0617 -0.0742 -0.1017 -0.1252 -0 .1382 -0.0436 -0.0568 -40.1312 -0.1033 

62-23b -11.1805 11.005 -0.0168 -0.0523 0.0049 -10.6114 -0.0452 -0.0779 -0.0384 -0.0347 -0.0597 -0.0546 -0.0709 

64-20 0.2852 0.007 0.0371 -0.0595 0.0592 -0.0036 0.0135 -0.0266 -0 .0266 0.0327 -0.0014 -0.0034 0.2480 

13-12 -0.2151 0.004 -0.1244 0.1351 0.0101 0.0451 0.0625 0.1013 0.1359 -0.0107 0.0220 0.0440 0.0451 

.73-17 0.1998 0.003 -0 .0510 -0.0491 -0.0468 -0.0599 -0.0672 -0.0647 -0 .0195 -0.0511 -0.0625 -0.0639 -0.0948 

73-18 -0.3822 0.013 -0.0099 -0.0123 0.1112 -0.0001 0.0428 -0.0237 0.0106 0.0209 -0.3467 0.0002 0.0248 

73 -18b . 0.7831 0.051 0.0635 -0.1268 -0.3914 -0.0447 -0.1933 0.0299 -0.0844 -0 .0356 0.0499 -0.0448 0.4414 

73-28 • -1.2795 0.125 0.5002 -0.4108 0.3251 0.0251 0.0676 -1.1187 -0 .3415 0.2551 0.0714 0.0251 0.1700 

74-20 32.6403 92.948 0.0722 -0.3500 -0.1063 0.0501 27.9864 0.1555 0.0477 0.2300 0.1695 0.0482 0.1188 

83-7 0.0239 0.000 -0.0043 -0.0035 -0.0046 -0.0077 -0.0079 -0.0091 -0.0041 -0.0073 -0 .0080 -0.0067 -0.0114 

263 



Table A.8.3. Statistics for identifying the outliers (reduce data set) 

Event Studentized deleted residuals Hat Diag H Cov Ratio 

21-101 0.446 0.307 2.927 

21-102 -0.595 0.559 4.003 

31-4 0.381 0.725 7.760 

51-3 1.459 0.533 0.844 

52-10 -0.302 0.338 3.381 

52-12 0.535 0.340 2.837 

52-13 0.431 0.148 2.410 

52-16 -0.960 0.617 2.789 

52-26 -0.979 0.218 1.326 

52-30 1.380 0.875 3.768 

52-32 -0.204 0.748 9.277 

53-5 -1.845 0.094 0.165 

53-6 0.374 0.094 2.363 

61-15 -0.381 0.389 3.487 

61-18 -1.199 0.111 0.778 

61-19 0.204 0.489 4.585 

62-14 -1.045 0.193 1.146 

62-23 -1.051 1.000 5530.163 

62-23b -0.792 1.000 5410.017 

64-20 -0.254 0.334 3.443 

73-17 2.537 0.141 0.023 

73-18 -1.459 0.700 1.313 

73-18b 0.967 0.451 1.926 

73-28 0.277 0.488 4.426 

74-20 1.642 1.000 1467.102 

83-7 0.929 0.110 1.265 



Table A.8.4. Statistics to identify the influential cases for final regression (reduce dataset) 

Event DFFITS Cook DFBETAS Event DFFITS Cook 
LPATH TST CAZ cvcv cvcx cvp cxcv cxcx exp pcv pcx 

21-101 0.2974 0.01 0 . 2 4 5 7 -0.1796 -0.1111 -0.0174 -0.1283 -0.0822 -0.1646 0.0726 0.0685 -0.0127 -0.0074 

21-102 -0.6698 0.04 0 . 2 1 5 8 -0.2559 -0.1889 -0.0123 -0.1481 -0.0337 -0.1141 0.1271 0.1173 -0.0130 -0.4698 

31-4 0.6187 0.03 0 . 0 2 6 3 -0.0746 0.1045 0 . 0 1 0 0 0.0468 0.0015 -0.0324 0.4902 0.0157 0 . 0 1 0 0 0.0598 

51-3 • 1.5584 0.19 - 0 . 2 6 4 0 -0.0247 0.7943 -0.0511 0.3697 -0.0871 -0.0677 0.0976 0.8496 -0.0466 0.1326 

52-10 -0.2157 0.00 0 . 1 2 7 5 -0.0305 -0.1635 0 . 0 4 9 8 -0.0593 0.0596 0.0098 0.0398 0.1080 0 . 0 5 14 0.0410 

52-12 0.3840 0.01 - 0 . 0 9 2 5 0.0277 -0.0789 -0.0338 -0.0373 0.3008 0.0493 -0.0528 -0.0327 -0.0331 -0.0705 

52-13 0.1794 0.00 0 . 0 8 2 1 -0.1064 -0.0437 -0.0371 -0.0754 -0.0727 -0.0915 0.0226 -0.0004 -0.0406 -0.0404 

52-16; -1.2179 0.12 - 0 . 6 2 0 7 0.5671 -0.2302 -0.0948 -0.0139 -0.7675 0.3880 -0.4660 -0.2641 -0.0923 -0.3306 

52-26 -0.5168 0.02 0 . 2 0 2 7 0.0257 -0.3632 0 . 1 3 8 7 -0.1035 0.1803 0.0996 0.0483 0.2293 0 . 1 3 3 6 0.0945 

52-30- 3.6455 1.04 0 . 5 6 6 1 2.1153 0.1666 0 . 2 9 0 4 0.1725 -0.2350 -0.2081 -1.3061 -0.4371 0 . 2 8 4 5 -0.2084 

52-32 -0.3518 0.01 0 . 0 9 19 -0.0735 0.0307 0 .0101 -0.0028 -0.0153 -0.3233 0.0571 0.0317 0 . 0 0 9 9 0.0395 

53-5 ' -0.5940 0.03 0 . 0 0 2 5 0.0127 0.1157 0. 1 828 0.1889 0.2620 0.1728 0.1836 0.1816 0 . 1 7 8 5 0.2815 

53-6 0.1207 0.00 - 0 . 0 0 0 1 -0.0009 -0.0259 -0.0327 -0.0423 -0.0527 -0.0344 -0.0385 -0.0365 -0.0359 -0.0577 

61-15 -0.3037 0.01 0 . 0 2 6 3 -0.0746 0.1045 0 . 0 1 0 0 0.0468 0.0015 -0.0324 -0.1124 0.0157 0 . 0 1 0 0 0.0598 

'61-18 -0.4245 0.01 0 . 0 7 19 0.0693 0.0296 0 . 1 3 8 0 0.1205 0.1849 0.1064 0.0924 0.1439 0 . 1 4 7 2 0.1964 

61-19 0.2001 0.00 0 . 0 9 19 -0.0735 0.0307 0 .0101 -0.0028 -0.0153 0.0681 0.0571 0.0317 0 . 0 0 9 9 0.0395 

62-14. -0.5106 0.02 0 . 0 3 0 0 -0.1049 0.3377 0 . 1 1 5 6 0.2358 0.1323 0.0242 0.2287 0.0986 0 . 1 1 3 8 0.2725 

62-23 -81.6501 551.48 0 . 2 6 9 3 -0.2408 -0.1845 -0.1314 -0.2625 -0.2460 -0.2885 -0.0059 -0.0256 -76.3511 -0.1684 

62-23b -49.5174 209.93 - 0 . 2 0 6 5 -0.1004 0.1373 -46.3313 -0.1426 -0.3861 -0.2223 -0.1840 -0.3467 -0.2964 -0.3597 

64-20' -0.1795 0.00 - 0 . 0 3 4 7 0.0574 -0.0359 0 . 0 0 1 1 -0.0055 0.0116 0.0339 -0.0415 -0.0115 0 . 0 0 1 0 -0.1548 

73-17 1.0277 0.06 - 0 . 4 1 7 5 -0.0141 -0.0455 -0.3515 -0.2245 -0.3920 -0.1038 -0.3162 -0.4225 -0.3667 -0.5205 

73-18. -2.2264 0.38 - 0 . 2 6 4 0 -0.0247 0.7943 -0.0511 0.3697 -0.0871 -0.0677 0.0976 -1.8846 -0.0466 0.1326 

73-18b 0.8753 0.06 0 . 2 4 5 9 -0.2238 -0.4938 -0.0177 -0.2918 -0.0123 -0.0647 0.0567 0.1647 -0.0194 0.4709 

73-28/ 0.2697 0.01 - 0 . 1 0 7 1 0.1270 -0.0168 -0.0062 0.0157 0.2197 0.0713 -0.0889 -0.0490 -0.0060 -0.0461 

74-20. ' 124.8502 1158.65 0 . 0 5 3 6 -0.7046 -0.4351 0 . 1 8 6 4 100.7551 0.4733 0.3069 0.6367 0.5539 0 . 1 7 9 3 0.3700 

83-7'. 0.3258 0.01 -0.1109 0.0328 -0.0186 -0.1154 -0.0759 -0.1340 -0.0444 -0.1265 -0.1413 -0.1023 -0.1724 

2 6 5 


