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ABSTRACT 

A method f o r the making of non l i n e a r barium tifcanate 

condensers f o r auaio frequencies i s described. Preliminary-

measurements on these condensers are given. 

An idealized theory f o r the behaviour of the non 

l i n e a r condensers i n a c a r r i e r a m p l i f i e r c i r c u i t i s developed. 

A c a r r i e r amplifier b u i l t on t h i s p r i n o i p l e i s described. A 

t h e o r e t i c a l l y possible power am p l i f i c a t i o n f o r t h i s amplifier 

of 1 8 0 i s derived. Experimental r e s u l t s obtained with the 

c a r r i e r a m p l i f i e r are given. A power ampl i f i c a t i o n of 7 ° was 

obtained. 

Conclusions on the possible applications of non 

l i n e a r condensers are drawn. 
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CONSTRUCTION, THEORY AND APPLICATION OF NON LINEAR  

TITANATE CONDENSERS 

CHAPTER I 

INTRODUCTION 

A non l i n e a r c i r c u i t element i s one whose inductance, 

resistance, transconductance or capacitance i s not a constant 

but depends on the voltage applied. Such elements are a l l mixers, 

i . e . i f two voltages are applied to them then c e r t a i n currents 

flow which depend simultaneously on both, voltages. This property 

of non l i n e a r c i r c u i t elements i s widely used. 

The magnetic amplifier which uses a non l i n e a r induc

tance has been discussed t h e o r e t i c a l l y and experimentally i n many 

papers ( 1 , 2 , 3 , 4 ) . 

The c r y s t a l r e c t i f i e r or non l i n e a r resistance has been 

widely used and thoroughly investigated as a high frequency mixer 

( 5 , 6 ) . 
Note: The references are t y p i c a l but not complete. 

1 . Lamm, A.U. "The Transductor, D.C. presaturated Reactor". Stock
holm Esselte Aktiebolag 1 9 4 3 . 

2. Boyajian, A. "Theory of D-C Excited Iron Core Reactors and Reg
ul a t o r s " . A.I.E.E.Trans, V o l . 4 3 , p . 9 1 9 , June 1 9 2 4 . Chicago,111 . 

3 . C a s t e l l i n i , R.R. "The Magnetic Amplifier", Proc.I.R.E., V o l . 3 8 , 
No 2, pp 1 5 1 - 1 5 8 . Feb. 1950 New York. 

4 . Greene, W.E. "Applications of Magnetic Amplifiers". E l e c t r o n i c s , 
Sept. 1 9 4 7 . 

5 . Herold, E.W. "Frequency Mixing i n Diodes". Proc.I.R.E., Vol.3 1 , 
No 1 0 , p 5 7 5 , Oct.1943, New York. 

6. Torrey, H.C. and Whitmer, C A . "Crystal R e c t i f i e r s " . M.I.T. 
Radiation Laboratory Series. McGraw-Hill, New York, 1 9 4 8 . 



The non l i n e a r transconductance i s u n i v e r s a l l y used as 

a modulator. 

The non l i n e a r capacitance has not however had wide use 

or t h e o r e t i c a l treatment because non l i n e a r condensers with marked 

non l i n e a r properties have u n t i l recently been impossible to make. 

But recently i t has been found that some of the compounds of 

titanium, notably barium titanate (BaTi03) are f e r r o e l e c t r i c at 

room temperature, i.e;. a graph of charge against voltage f o r a 

suitable condenser having BaTi03 as d i e l e c t r i c i s not a s t r a i g h t 

l i n e but i s a hysteresis loop, s i m i l a r i n shape to a hysteresis 

loop of a ferromagnetic material. A condenser of t h i s type i s 

ca l l e d a non l i n e a r condenser - i t s capacity i s a function of the 

voltage across i t . 

The physical theory f o r the marked d i e l e c t r i c behaviour 

of some of the compounds of titanium has received much recent 

attention (7,8,9,10). 

The research described i n t h i s thesis i s on the use of 

non l i n e a r condensers with BaTiOJ d i e l e c t r i c s , i n c i r c u i t s . 

7. Von Hippel, A., Breckenridge, R.G., Chesley, F.G., and Laszlo 
T i s z a . '•High D i e l e c t r i c Constant Ceramics". Ind. and Eng. Chem. 
Vol .38. No 11. pp 1097-1109, Nov. 1946, Easton, Pa. 

8. Jonker, G.H. and Van Santen, J.H. "Properties of Barium Titanate 
i n Connection with i t s Crys t a l Structure". Science, Vol.109, 
No 2843, PP 632-635, June 1949. 

9. Kay, H.F. and Rhodes, R.G. "Barium Titanate C r y s t a l s " . Nat. 
Vol. 160 p 126. July 1947. London. 

10. Wul, B.N. and Goldman, I . M . , " D i e l e c t r i c Constant of Barium 
Titanate as a Function of Strength of an Al t e r n a t i n g F i e l d , " 
Compt. Rend. Acad. S c i . Vol .49, PP 177-180, Oct. 1945 
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Dr. A. Tan der Z i e l , the d i r e c t o r of the work, has 

applied general mixer theory to non li n e a r condensers i n an audio 

c a r r i e r amplifier e i r c u i t ( l l ) and i n a high frequency (10 mega

cycles) mixer c i r c u i t (12). Very l i t t l e published experimental 

work on non l i n e a r condensers i n c i r c u i t s was found. Donley (13) 

did some q u a l i t a t i v e experiments on non l i n e a r condensers, with 

BaTiOj and SrTiOj d i e l e c t r i c s , of less than 100 mmfds i n a f r e 

quency t r i p l i n g c i r c u i t , a mixer at 20 megacycles, and a frequency 

modulator at 40 megacycles, but his r e s u l t s could not be used to 

check Van der Z i e l ' s theory. 

The primary object of t h i s research was to b u i l d the 

c i r c u i t s t h e o r e t i c a l l y analysed by Van der Z i e l i n order to check 

experimentally h i s analysis i n d e t a i l , and to revise i t i f necessary. 

The secondary purpose was to evaluate the usefulness of 

non l i n e a r condensers i n these and other c i r c u i t s . 

There follows a b r i e f summary of the work done: 

Non l i n e a r condensers suitable for use i n audio frequency 

c i r c u i t s were developed. F i r s t r e s u l t s showed that the condensers 

made were more suitable f o r experimental measurements i n a s l i g h t l y 

d i f f e r e n t amplifying c i r c u i t to that analysed by Van der Z i e l . An 

11. Van der Z i e l , A. Report to Defense Research Board of Canada. 
University of B r i t i s h Columbia. Jan. 1949. 

12. Van der Z i e l , A. "On the Mixing Properties of Non Linear 
Condensers", Jour. App. Phys. Vol .19, No 11, pp 999-1006, 
Nov. 1948. Lancaster, Pa* 

13. Donley, H.L., '^Effect of F i e l d Strength on D i e l e c t r i c 
Properties of Barium Strontium Titanate"., R.C.A. Rev. 
Vol . VIII, No 3, PP 539-553, Princeton, New Jersey, Sept. 1947. 



adaption of h i s theory was made and the conclusions of the theory 

thus changed have been checked experimentally with good but not 

complete agreement. An account of the main audio frequency pro

per t i e s of these non l i n e a r condensers i s now possible. 

No measurements have been done on the high frequency 

mixer, although the c i r c u i t was roughly b u i l t , but the r e s u l t s of 

the work at low frequencies should greatly a s s i s t work at high 

frequencies. 

CHAPTER I I 

MAZING OF NON LINEAR CONDENSERS FOR AUDIO FREQUENCIES 

At the beginning of the work i t was known that BaTiOj 

properly prepared has a marked hysteresis loop at 4800 volts per 

cm. (14) The problem was to use t h i s knowledge to make a condenser 

of capacity large enough f o r audio c i r c u i t s (.001 to .01 mfds), 

showing marked non l i n e a r i t y at voltages not exceeding JOOv A.C, 

having a breakdown voltage at le a s t above the voltage at which 

non l i n e a r i t y was marked.", and having some means of removing the 

heat generated by hysteresis losses. 

The preparation developed for condensers s a t i s f y i n g 

these requirements has three main stages: 

1. Preparation of a Sample of Bulk D i e l e c t r i c 

The method used was very s i m i l a r to that used by Yon 

14. See Ref. 7. 



Hippel and h i s co-workers (15) with a few minor changes. 

Barium titanate i n dry powder form (obtained from 

Titanium A l l o y Manufacturing Co.) was pressed i n a l / 2 t t diam. 

press at 60000 l b s / s q . i n . to a thickness of about .5 mm. The 

discs were then placed on platinum f o i l i n an alundum crucible 

and passed through the following temperature cycle i n a high 

temperature furnace: 

An increase of 100°C per hour f o r nearly 13-1/2 hours 

to a temperature of 1350°C. 

A constant temperature of 1350°C for 6 hours. 

A decrease i n temperature at the cooling rate of the 

furnace. (The furnace took 36 hours to cool from 1350°C to room 

temperature). 

After the s i n t e r i n g cycle the d i e l e c t r i c was a hard 

yellow brown, b r i t t l e disc which had shrunk about 20% of i t s 

o r i g i n a l s i z e . The furnace used (diag.l) was made at the begin

ning of the work and was controlled with a Wheelco Chronatrol 

P o t e n t i o t r o l Model 23241, which controlled the power through a 

Superior E l e c t r i c Co. Powerstat No 1156. A disc which may be cut 

for any 24 hour temperature cycle i s the master control f o r the 

Pot e n t i o t r o l which controls the temperature i n s i d e the furnace to 

about 5°C. I t was found necessary to pl o t the r e l a t i o n between 

temperature at the sample and that given by the furnace thermo

couple since these are not p h y s i c a l l y at the same place. A blook 

diagram of the furnace and control i s given i n diagram 2. 

2. Grinding the d i e l e c t r i c to 0.1 mm. 

15. See Ref. 7. 
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To reduoe the voltage necessary f o r marked non-

l i n e a r i t y , to reduce the hysteresis losses, and to increase the 

capacity, as t h i n a d i e l e c t r i c as possible i s required. 

The technique used was borrowed from geologists who used 

i t to prepare t h i n rock samples. 

One side of the sintered d i s c was ground f l a t on a glass 

plate with carborundum and water and then polished on another glass 

plate with aluminum oxide and water. A t h i n f i l m of beeswax was 

melted on the f l a t side of the disc and allowed to harden. Grind

ing of the f l a t side was repeated. P a r t i c l e s of carborundum became 

embedded i n the wax which was forced into t i n y depressions on the 

surface of the d i s c . Grinding was continued u n t i l a l l wax except 

that i n the depressions had been removed, f i n a l removal of the 

wax being done on aluminum oxide. A coat of Dupont Conductive 

Coating No 4351 s i l v e r electrode paint was applied to the whole 

f l a t surfaee and allowed to dry. The di s c was heated to 600°C, 

held there f o r 10 minutes, and allowed to cool. This operation 

f i r e d the electrode to the d i e l e c t r i c . The wax technique was 

introduced to plug t i n y holes i n the d i e l e c t r i c to prevent flow 

of wet s i l v e r paint into them. 

The disc was next mounted s i l v e r e d side down with warm 

Canada balsam on a 1 " x 2" glass microscope s l i d e and the d i e l e c t 

r i c ground down and polished u n t i l thickness was .1mm. The waxing 

procedure was repeated and the upper electrode applied to the disc 

while s t i l l on the s l i d e . This electrode was applied i n 6 t r i a n g l e s 

(diag . 3 ) from which 6 condensers were made. This made a semi-

variable condenser from the whole disc and permitted a broken down 
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section to be removed. 

A f t e r the s i l v e r paint was dry the disc was c a r e f u l l y 

removed by heating from i t s monnt, cooled, and dipped i n benzene 

to remove the Canada balsam and the upper electrode f i r e d as 

before. 

Mechanically the disc could have been ground to . 0 3 mm. 

and s t i l l handled without breakage but i t was found that i f the 

discs were thinner than . 1 mm. e l e c t r i c a l breakdown had either 

occurred before any voltage was applied or d i d occur at low v o l t 

ages f o r a large percentage of the condensers made. This break

down was attributed to t i n y holes and flaws i n the d i e l e c t r i c into 

which the electrode paint flowed or which i n some other way caused 

breakdown. The waxing technique reduced the l i m i t i n g thickness 

from .2 mm. to .1 mm. 

In an e f f o r t to further reduce the l i m i t i n g thickness 

electrodes of t i n f o i l and gold were t r i e d without success. A 

search of the l i t e r a t u r e yielded a paper by Howatt and co-workers 

(16) on the f a b r i c a t i o n of t h i n ceramic sheets f o r capacitors. In 

t h i s paper a method was given for making sheets of minimum thickness 

.15 mm. having a breakdown voltage f o r BaTiC-3 o f about four times 

that found i n the above condensers. Their method included i n the 

o r i g i n a l mix before s i n t e r i n g bonding materials to remove flaws 

i n the f i n a l product. Their method however was complex and required 

s k i l l . I t was decided therefore to obtain whatever r e s u l t s could 

be obtained with the present technique before combining the two 

1 6 . Howatt, G.N., Breckenridge, B.G., and Brownlow, J.M., 
"Fabrication of Thin Ceramic Sheets for Capacitors", Jour. 
Am. Cer. S o c , Y o l . 3 0 , pp 237-242, 1 9 4 7 . 
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techniques. The combination i t i s thought would r e a l i z e the 

mechanical l i m i t of .03 mm. f o r the above mentioned d i s c s . 

Another method t r i e d to plug the holes was to separate 

by the t h i n d i s c without electrodes two l i q u i d s which formed a 

prec i p i t a t e as they met i n the holes of the d i e l e c t r i c . This 

method was used successfully with CaC03 but i t s breakdown voltage 

i s not s u f f i c i e n t l y high above that obtained by the waxing method. 

I t i s thought that t h i s method could be developed i f a material 

with a high breakdown value and which could be e a s i l y p r e c i p i t a t e d 

could be found. 

3. Attachment of Leads and mounting of Condensers. 

The condensers were mounted on a small copper block 

1-1/8" x l / 2 " x 3 / l 6 " with two countersunk holes 7/8" apart. A 

sheet of t i n f o i l was placed on the block and the disc, the oxide 

on the s i l v e r coat having been removed with emery, placed on the 

t i n f o i l with the divided electrode side up. A t h i n copper wire 

with a l i t t l e t i n f o i l wrapped on the end was placed on each upper 

electrode. The whole was heated u n t i l the t i n melted and sealed 

the d i s c to the block and a lead to each upper electrode. Solder 

may not replace t i n i n t h i s operation because solder tends to 

dissolve the s i l v e r electrode. Beeswax was melted to the upper 

electrode to seal the leads, (diag. 4 f o r d e t a i l s ) When a con

denser i s to be used i t Is screwed to a s o l i d copper (diag.5) which 

may be put i n a beaker of water for cooling. 

A summary of the properties of an average condenser of 

t h i s type i s now given: 
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Thickness . 1 mm. 
Area of d i e l e c t r i c used approximately . 6 sq.cms. 

Expected breakdown 2 5 0 v A.C. R.M.S. 

Recommended Max. Operating Volts 1 5 0 v A.C. R.M.S. 

Expected t o t a l capacity of 6 sections at low 

voltage . 0 0 8 mfd. 

Temperature r i s e caused by hysteresis heating very 

small on copper mount and base. I f copper base i s not 

used hysteresis heating causes temperature of d i e l e c t r i c 

to r i s e above 1 2 0°C (Curie Point f o r BaTiOj) and a l l non 

li n e a r properties are l o s t . 

Voltage necessary f o r marked non l i n e a r i t y 8 0 v A.C. R.M.S. 

These properties s a t i s f i e d a l l the requirements and i t 

was decided to proceed with tes t i n g before an attempt to improve 

these condensers was made. I t was o r i g i n a l l y planned to test con

densers made of various titanate compositions but time has not 

permitted t h i s to be done. 

CHAPTER I I I 

THE HYSTERESIS LOOP AND BASIC E 0 J J A T I 0 N OF  

THE NON LINEAR CONDENSER 

1 . The hysteresis loop. 

The hysteresis loops of the condensers made were observed 

at d i f f e r e n t A.C. and D.C. voltages across the condensers i n Sawyer 

and Tower's c i r c u i t ( 1 7 ) with a biassing addition (diag 6 ) . F u l l 
1 7 . Sawyer,C.B. and Tower,CH. "Rochelle S a l t as a D i e l e c t r i c " Phys. 

Rev. V o l . 3 5 No 3 PP 2 6 9 - 2 7 3 Feb. 1 9 3 0 . Minneapolis, Minn. 
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sized tracings from the scope face are given i n diagram 7 f o r a 

t y p i c a l specimen at 60 c.p.s. 60 c.p.s. was used for convenience. 

The approximate hysteresis loss for a given loop was 

calculated as follows: 

Let 7 be the D.C. Voltage required across the v e r t i c a l plate 

terminals to move the spot 1 inch. 

Let H be the corresponding horizontal voltage. 

I t i s assumed that a l l the applied voltage appears across 

N.L.C. 

. • l n V e r t i c a l d e f l e c t i o n means VC = V _ coulombs on N.L.C. 
T0~7 

l t t Horizontal d e f l e c t i o n means H(Ri + R 2 ) - 20 H vol t s 
Kg across N.L.C. 

Now V - 27, H = .54 

• • 1 sq.in. of scope face corresponds to 

( 2 0 H)(V) = ( 2 0 ) ( 5 4)(27) = 2 .9 joules. 
io7 io7 1 0 ? 

Consider the loop at 150v A.C. 0 Bias. 

Measured area = . 2 5 2 sq.ins. 

Energy Loss per cycle « ( . 2 5 2 ) ( 2 . 9) joules. 
(lO?) 

At 60 c.p.s. Power Loss - ( . 2 5 2 ) ( 2 . 9 ) ( 6 0 ) *; .045-watts. 
(lb>) 

At 10000 c.p.s. Power Loss - ( . 2 5 2 ) ( 2^9)(10000) •» 7.5 watts. 
(lO?) 

This l a t t e r c a l c u l a t i o n has assumed the hysteresis loop 

has the same area at 10000 c.p.s. as at 60 c.p.s. This was found 

to be nearly true (diag.8). Thus 7.5 watts i s approximately the 

power to be dissipated i n such a condenser i f i t i s to be run at 

150 v 10000 c.p.s. This power must be supplied by the c a r r i e r of 

the c a r r i e r a m p l i f i e r . 
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2. Basic Equation of the Non Linear Condenser. 

The problem i s to place the information contained i n the 

given hysteresis loops i n an equation which can be used to calculate 

the performance of the condensers i n c i r c u i t s . The problem w i l l 

be solved i f an expression f o r the current flowing i n a non l i n e a r 

condenser can be written as a function of the voltage across i t . 

Without bias the hysteresis loops are symmetrical about the horizon

t a l a x i s . Hence the current flowing i f a sine wave of voltage i s 

applied w i l l contain only odd harmonics. 

The non l i n e a r condenser without bias i s represented by 

a condenser C + i n p a r a l l e l with a r e s i s t o r R + (diag. 9 ) . 

C + has an equation: 

Q, - aV + bV? + cV^ (1) 
I e= ad7 + 3bV2<iv + ^eV^dV 

dT dT dT 
R + has an equation: 

I R - dV + eV3 + fV? .(2) 

where a,b,c,d,e,f ... are functions of the maximum value of A.C. 

Voltage (Vmax) applied to the condenser. a,b,c are s l i g h t l y 

dependent on frequency and d,e,f are strongly dependent on frequency. 

Thus t o t a l current into condensers i s 

I - adV + 3bV2dV + ^cV^-dV + dV + eV? + fV^ (3) 

dT dT dT 
The c o e f f i c i e n t s a,b,c,d, etc. could be found by an expansion of 

(3) into fundamental and harmonic currents for a sine wave of 

applied voltage and a Fourier analysis of an observed current wave. 

The exact solution of the problem involves tedious experimental 
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and t h e o r e t i c a l work. 

In the theory developed i n the present research (3) 

has been approximated t o: 

I = adV + 2bV2dV (4) 

dt dt 

where a and b are functions of Ymax. 

The neglection of dV represents a serious quantitative error i n 

the theory but not a serious q u a l i t a t i v e error. The present work 

was concerned i n the main with the qu a l i t a t i v e r e s u l t s of ( 4 ) . 

Thus the model used of the non l i n e a r condenser consists 

of a non l i n e a r capacity with the equation: 

Q, = aV + bY? 

where b must be negative from the shape of the hysteresis loop. 

I f a bias i s applied to the condenser even power terms 

are also introduced into (3) and even harmonic currents flow. I f 

the shape at the hysteresis loop can be al t e r e d u n t i l i t i s almost 

rectangular as has been done with ferromagnetics, then with suitable 

bias the model of non l i n e a r condenser could be al t e r e d to a capac

i t y with the equation: 

Q, m aV + bV 2 

I = adV + 2b7dV (5) 
dt d? 

This was the model used by Tan der Z i e l i n his two papers ( 1 8 ) and 

( 1 9 ) . 

Since the condensers which had been made were more 

r e a d i l y represented by (4) than by (5) even with large bias, i t 
1 8 . See Ref. 1 1 . 

1 9 . See Ref. 1 2 . 
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was decided to work out Van der Z i e l ' s theory using (4) rather 

than (j?)and attempt to b u i l d a c a r r i e r amplifier based on (4). 

This t h e o r e t i c a l and experimental work w i l l be described l a t e r . 

The measurements f o r the c a l c u l a t i o n of the c o e f f i c i e n t s 

a and b i n (4) as functions of Vjaax at 9000 c.p.s. w i l l next be 

given. This frequency was chosen as the c a r r i e r frequency rather 

than 10,000 c.pi-s. because some of the parts for the c a r r i e r 

amplifier tuned more r e a d i l y to 9000 c.p.s. 

CHAPTER 17 

DETERMINATION OF COEFFICIENTS IN BASIC EQUATION 

1 . Derivation of Equations for C o e f f i c i e n t s . 

The c o e f f i c i e n t s a and b could be found by the general 

method mentioned above but the method given below i s somewhat 

simpler. I 

The neglection of condenser losses i n (4) w i l l not 

a f f e c t the v a l i d i t y of the calculations f o r a and b since these 

are concerned only with oapacitive currents (provided d i s con

stant) . 

I f a voltage Vsin wt Is applied, to the non l i n e a r con

denser the r e s u l t i n g current i s : 

I ( t ) = a ay(t) + 3b ( V ( t ) ) 2 dV(t) 
dt at 

« waVcos wt + 3/4 bwV^cos wt - 3/4 bwY5cos3wt»..(6) 

Since only fundamental and 3rd harmonic currents are present a and 
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b can be determined i n terms of fundamental and 3rd harmonic 

currents i n a suitable c i r c u i t . An i d e a l c i r c u i t would have a 

generator of Vsin wt with zero impedance to 3rd harmonic. This 

i s d i f f i c u l t to make but an approximation to i t (diag 10) was 

constructed. The equivalent c i r c u i t from which calculations are 

made i s given i n diagram 11. 

Yoltage applied to non l i n e a r condenser i s : 

Vsin wt + V j Sin ( 3wt + 0) 

where « V 

Substitution of thi s voltage into 

I ( t ) - adV(t) + 3b ( V ( t ) ) 2 dV(t) 
dT ~~oT 

gives currents at fundamental and 3rd harmonic. 

Main terms at fundamental frequency are: 

In j t ) » waVcos wt + 3/4 bw v3cos wt 

Main terms at 3rd harmonic frequency are: 

I ^ t ) • 3aw V j cos (3wt + 0) - 3bwv3 00s 3wt 

In complex notation: 

I x = j (waV + 3/4- bw V?) (7) 

13 - j (3aw V 5 - 3/4 bw V 2 V +) 

but I3 = -Vj 
"IT 

zll = J'(3aw V 5 - 3/4 bw V 2 V*). (8) 
R 

where V - V e ^ , V3 - VjeJ^wt+tf), Y + - VeJ3wt 

From (7) - waV + 3/4 bwV? (71) 

From (8) i t can be shown that: 
1+ 9a2w2R «? R2 b2 w2y6 ( 9 j 

IS" - "v§2 
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(7^) and (9) may now be solved simultaneously to give: 

(Because Y j « T some expressions nave been eliminated) 

a - \ n 2 - 4mt\ 

where m 

2m 
w 2 R 2 V 2 

2 I ; L R 2 W V 

t = i^2 - v 5
2 

.(10) 

where 

b = -q. - J q 2 * 4pr 

2p ^ 

P 8 3 ^ W 2 R 2 V 8 ) 

q = |1 wR 2Y 5
2 I-jV 5 j 

) 

.(11) 

r = V j 2 V 2 + 91"!* V^R* ) 

(10) and (11) are the required expressions for a and b i n terms 

of quantities whose measurement next w i l l be described. When the 

measured quantities were substituted i n these expressions one of 

the two possible values for a and b was eliminated because b had 

to be negative. 

A l l values appearing i n the above equations are peak 

values. Volts, Amps, Ohms were used. 

Since the flow of fundamental current i n the above c a l 

culations i s independent of the fundamental current may be 

measured i n a separate c i r c u i t to that shown above. This was done. 

The following measurements were done on a t y p i c a l con

denser of capacity that desired f o r the c a r r i e r amplifier (.004j>mfd). 

2. Measurement of 3rd Harmonic Current flowing i n a non l i n e a r 

condenser with varying Fundamental Voltage. 

Diagram 10 gives the c i r c u i t used. 

2^2 
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The circuit, was tuned to p a r a l l e l resonance at 

fundamental frequency by c 1 . 

The voltage at Z was observed on a calibrated o s c i l l o 

scope which was part of the tuned c i r c u i t , a correction made for 

the presence of the fundamental and the 3rd harmonic current (I^) 

through the series tuned c i r c u i t calculated. A t y p i c a l wave form 

observed at Z i s shown i n diagram 12 with the harmonic composition 

assigned to i t . The peak d e f l e c t i o n was observed and converted 

to v o l t s . One h a l f of the peak fundamental voltage calculated at 

Z was subtracted and the remaining voltage converted to R.M.S. 

value. D i v i s i o n by the reactance of the c o i l gave the required 

value of 3rd harmonic current. 

Example: R.M.S. Volts at E at 9000 c.p.s. - 70 

Oscilloscope S e n s i t i v i t y » 44 Volts per inch. 

Max Observed Deflection = l / 2 Total D e f l e c t i o n 

on Scope « 1.6 i n s . 

Peak Voltage - ( 1 . 6 )(44) = 70.4 volts 

Calculated fundamental peak voltage across c o i l 

»(D(70)(1.414) - 12.4 v o l t s 
to") 

Peak Obs. - 1/2 peak fundamental «* Peak 

3rd Bar. •» 64 .2 v o l t s 

R.M.S. 3rd Har. Current - ( 6 4 . 2 ) ( 1 0 0 0)(l) 
( 1 . 4 1 4 H W L )(3) 

« 9 . 6 m-as 
The r e s u l t s f o r voltages at E from 0 to 150 are given with the 
re s u l t s of the next sections i n diagram 15. 
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3. Measurement of Fundamental ourrent flowing i n non l i n e a r 

condenser with varying Fundamental voltage. 

Diagram 13 gives the c i r c u i t . 

The Voltages at E and Y were observed on a Cossor 

double beam oscilloscope and the capacitive and resistance com

ponents of fundamental current flowing i n the non li n e a r conden

ser calculated from the vector diagram 14. 

Example: R.M.S. Volts at E at 9000 c.p.s. - 70 

© from double beam oscilloscope - 27.5® 
V - lb.O v 

I = (V y)(wC) =30.6 m-as 
Let V x - V E - (V y) cos 0 - 70 - 18 cos 27-5 - 54.0 

V 2 - (T y ) S i n e = l b s i n 27.5 - 8.3 

Tan 0 - V2 - 8.3 = .1537 
7T 5370" 

0 = 8.7° 

• y r = 9 O - e - 0 = 53-8° 

Resistive Current I R - I cos"v|r > (30.6)(,59) - l b . l m-as 

Capacitive Current I 0 * I sin-\^= (30 . 6)(.807) - 24 . 7 m-as 

Voltage across condenser = V 2 cosee 0 » 8jjŜ  = 55 v o l t s 

The r e s u l t s from these observations and calculations 

are given i n diagram 16. The values of capacity and resistance 

f o r the non l i n e a r condenser are shown i n diagram 17. I t can be 

seen that the neglection of the condenser resistance w i l l i n t r o 

duce a serious quantitative error i n the theory. Further at low 

voltages t h i s resistance i s non l i n e a r and w i l l introduce a further 

error. 
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4. Calculation of a and b. 

The data for the c a l c u l a t i o n of a and b from formulas 

(10) and (11) has now been assembled. 

The constants used are given here: 

w = ( 5 . b 5 ) ( l 0 4 ) 

w2 = ( 3 . 2 ) ( l 0 9 ) 

R - 80 

V j = IjR 

I i i l3» V, are taken from diagrams 15 and 16 and converted to peak 

value s. 

The values of a and b f o r voltages from 0 to 120 at 

9000 c.p.s. are given i n diagram 18. 

Addition to Chapter IV. 

The following two sections are added to Chapter IV 

because they are o f f the main l i n e of t h e o r e t i c a l and experimental 

r e s u l t s discussed i n th i s thesis but are most clos e l y connected to 

the discussion of Chapter IV and should not be omitted. 

5 . Audio O s c i l l a t o r and Power Amplifier. 

This unit was designed as the source of the c a r r i e r for 

the c a r r i e r a m p l i f i e r . I t has a push p u l l output capable of 

d e l i v e r i n g 18 watts and i s variable from 5000 c.p.s. to 15000 c.p.s. 

Since i t i s a standard o s c i l l a t o r and amplifier i t s design w i l l not 

be discussed. C i r c u i t i s given i n diagram 19. One h a l f of the 

output was used for measurements described i n sections 2 and 3 of 

thi s chapter. 

6. Measurement of 2nd Harmonic current flowing i n biassed non 

l i n e a r condensers. 
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A f t e r i t had been decided to b u i l d an amplifier based 

on equation (4) t h i s measurement assumed secondary importance 

since i t would have been the decisive measurement of an ampli f i e r 

based on equation (j?). 

Both sides of the push p u l l output of the audio amp

l i f i e r were used i n the c i r c u i t of diagram 20. The two condensers 

were matched as c l o s e l y as was possible i n the group of condensers 

available and placed i n series from plate to plate of the 6L6S. 
Adjustment of R and C balanced the condensers with respect to the 

fundamental and the fundamental current flowing through series 

tuned c i r c u i t 1 could be reduced to zero. 3rd harmonic current 

flowing from X to ground could not also be matched with respect 

to the 3rd harmonic. 

The voltage E to D was held f i x e d during the experiment 

at 200v R.M.S. at 9000 c.p.s. and the voltage B to ground observed 

for each value of bias on the condensers. The 2nd harmonic current 

from both condensers flowed through c i r c u i t 2 and could be c a l 

culated when the voltage at B was known. The c i r c u i t had to be 

retimed for each bias s e t t i n g . The r e s u l t s are given i n diagram 

21. 

The non coincidence of the curves f o r increasing and 

decreasing bias i s not considered s i g n i f i c a n t . I t may be caused 

by s l i g h t permanent e l e c t r i f i c a t i o n . The small residual 2nd 

harmonic current at zero bias had a 90° phase s h i f t to the current 

r e s u l t i n g from biassed condensers and was p a r t l y caused by de

tuning of the main c i r c u i t ( t h i s point i s not yet understood) and 

p a r t l y by a small amount of D.C. r e c t i f i c a t i o n i n the condensers. 
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The condensers were found to have a D.C. resistance of about 

3 Megohms and to give 1 microamp of D.C. r e c t i f i e d current when 

lOOv A.C. was across them at 9000 c.p.s. The r e s i d u a l 2nd 

harmonic current at zero bias., was however small and was not 

further investigated. 

CHAPTER V 

THEORY 0E A DIELECTRIC CARRIER AMPLIFIER 

The theory given follows the pattern of Van der Z i e l 1 s 

analysis (20) but i s applied to a condenser having: 

Q. = aV + bV3 

rather than Q. = aV + bV 2 

1. P r i n c i p l e of Amplification 

A large voltage at high frequency (ang f r e q . w) and a 

small voltage at low frequency (ang f r e q . p) are applied to a 

non l i n e a r condenser of the type described above. Currents of 

frequency 2w + p and 2w - p flow. The p o t e n t i a l power contained 

i n these side bands i s greater than the low frequency input power. 

The p o t e n t i a l power amplification may be r e a l i z e d i n a suitable 

c i r c u i t by the addition of a small current at angular frequency 

2w at the correct phase and the detection of the r e s u l t i n g mod

ulated s i g n a l . Some of the c a r r i e r power has been transferred 

to the low frequency s i g n a l . 

2. Derivation of the currents flowing when two signals are 

applied to a non l i n e a r condenser. 

20. See Ref.11. 
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Let Y Sin wt and. P S i n pt ( V » P , w>^p) 

be applied to a non l i n e a r condenser having 

K t ) = a a v(t) 4- 5 b ( v ( t ) ) 2 a v(t) 
a t a t 

In t h i s case V(t) - V Sin v/t + P Sin pt 

By substitution i t can be shown that: 

I ( t ) = aw V cos wt + ap P cos pt + ^ b j ^ l . wY^ 0os wt + 

wP2V cos vrt BiwY^ Cos Jwt - wY2P cos ( 2w + p)t 
— r 4 — — r 

- pPY2 cos ( 2w + p ) * + wV2p cos ( 2w - p)t - pPV2 Cos( 2W-P)" 6 

4 
- wP̂ V" cos (w + 2p)"fc - pVP 2 cos(w + 2p)* - wP2y cos(w" 2p)* 

""4" 2 2 

+ pVP 2 cos (w - 2p)t + ppy2 cos pt + pP? cos pt 
2 T ~ 

- pP^ cos 3ptJ 

Of these the mixed currents of greatest size are: 

3bf-w72P cos(2w + p)* - pPV*2 cos(2w + p)* 
L ~~T~ 4 

+ wV2P cos( 2w - p)* - pPV 2 cos(2w - p)*) 
2". 4 - 1 

Since w » p these become approximately: 

3b( -wVfP cos ( 2w + p)"t + wV2P eos( 2w - p)*) (12) 
2 2 

These are the currents upon which amplification i s based. Since 

they are inaepenaent of the sign of V a fcalancea c i r c u i t may be 

aesignea where the high frequency i s appliea to the conaensers i n 

push p u l l , the low frequency i n p a r a l l e l , ana these output currents 

fea into a loaa i n p a r a l l e l . The high frequency may thus be 

eliminated from the output c i r c u i t . The equivalent c i r c u i t of 

such a c a r r i e r amplifier i s given i n diagram 22. 
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3. Analysis of Carrier Amplifier Equivalent Circuit. 
(1) Assumptions made in c i r c u i t : 

(a) The non linear condensers are identical.. Hence no 
fundamental or 3rd harmonic currents flow from A to B. 

(b) The 2nd harmonic impedance between A and B i s R]_+j2wL-|_ 
and between B and E and B and D is R2« The low frequency 
impedance between A and B i s high and capacitive ( i t w i l l 
be considered infinite) and between B and E and B and D 
i s low ( i t w i l l be considered zero) 

(c) The low frequency generator presents a high impedance to 
2nd harmonic and no side band currents flow into the low 
frequency generator. 

(d) Both generators have zero internal impedance. Matching 
of practical generators w i l l be considered later after 
the impedance seen by the ideal generators have been found. 

(e) The 3rd harmonic voltage from D to E i s neglected. 
(2) Circuit Voltages. 

Across either non linear condenser there are six main 
voltages. ( V » P , w » P ) complex form 

1. V Sin wt V -
2. P Sin(pt +^) P = Pe3(pt + f) 

3. VxSinU 2w + p)t + 0) Vl= Y i ej((2w + p)t + 

4. V ^ S i n U 2w - p)t + fifS V - V l l e J ( ( 2 w - p)t • r jfL) 

5. VgSinU 2w + p)t + ©) v 2 = Y 2 e j ( ( 2w + p)t + ©) 

6. V ^ S i n U 2w - p)t + 01) Vglas V 2
1e(( 2w - p)t + ei) 

(3) Derivation of Mixed Currents. 
These are applied to a condenser having: 
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I - a dY + 3bV 2 dY 
I t dT 

Prom the f i r s t term the currents i n complex form are: 
ja(wV + p p + (2w + p ) ( Y x + Y 2) + (2w - pKY-j 1 + Y 2 1 ) ) (13) 
From the second term the main currents i n trigonometric form are: 

( V 1 , T 2 , V 1

1 , V 2 ? - . « v ) 
3bfwY3 cos wt * wV3 cos 3wt 

+ pPY2 cos (pt +4") + wY^P cos (( 2w - p)t - ^ r ) 

+ WY2Y I C O S ( p t + 0) + w Y 2 j_i C O S (pt - 01) + w Y 2 y ? cos (pt + ©) 
2~ ~ T " ~ T ~ ~ 

+ W Y 2 Y P 1 cos(pt - 61) + (2w + p)YiY 2 cos((2w+p)t+#) - ( 2w+p)ViY2cos( pt-
2 I ZX ) ("~2T) 

+ ( 2w - pjV-^V 2 C O S ( ( 2 W - p)t +'&-) - ( 2vy - p j Y ^ Y ^ o s (pt - j f 1 ) 

+ ( 2w + P ) Y Q Y 2 c o s ( ( 2 w + p)t + e) - ( 2w + p)YpY 2 cos (pt + e) 
( 2 ) ( 4 . ) 

+ ( 2 w - pjv^v 2 cos ( ( 2 w - p)t + e1) - (2w - p) Y9H* cos (pt - e 1 )! 
( 2 ) * ( 4 ) J 

C o l l e c t i n g a l l currents of angular frequency P from both terms and 
using complex notation: 
Ip = japP + J | b p l ! ( 2P + Y ±

1 + + + Y 2
1 + + - TX* - Y 2

+ ) (14) 

where Y x
+ - V-je^P*^) 

y l + + . V l l e j ( p t - . j ^ - ) 
V2l++= Y 2 l e ^ P t - @ 1 ) 

S i m i l a r l y for angular frequency 2w+P: 
l2w+p - J ' a ( 2 w + p ) ( Y i +Y2) .+ i 3 b Y 2(-wP^+ ( 2w + p)(Y x + Y 2 ) ) # v . ( l $ ) 
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where P+ = Pe^^2w + p)t + T*) 

For angular frequency 2w - p 

I|w-p » ja(2w-p)(V 1
1+Y 2

1) + j|bY 2(wP 1 + + +( 2w-p)( V ^ + V ^ ) ) (l6) 

where pl++ - Pe^( ( 2w-p)t-^) 

(4) Derivation of output Power. 

From c i r c u i t : 

T i = - I i U i + 2jwLl) ) 

V 2 » -I2R2 ) 
Y1 = -2I 2(R 1 + 2jwLi) j (17) 

Since I - L • 2 I 2 because c i r c u i t i s balanced 

Substitution of (17) i n t o (15) with the assumption 

2w + f « 2w y i e l d s the equation f o r I 2 at 2w + P*: 

Ij, - - j 3 bw V 2 P+  

2 l l - 4w2Lx( 2a + 3bY2j + jw( 2Rx + R 2 U 2*+%W) . r ( l 8 ) 
I f the absolute value of I 2 i s to be a maximum than: 

1 - 4w 2L 1( 2a + 3bV 2) - 0 

2wL]_ - 1  
2w( 2a+3bT2) (19) 

I f (19) be used i n (18) 

I 2 = - 3 b Y 2 P+  
2(2Ri+R 2)(2a+3bV 2) (20) 

S i m i l a r l y for I 2 at 2w - p i . e . I 2 * 

I 2 1 - 5b V 2 P 1** ( a ) 
2( 2Ri+R 2)( 2a+3bV2) 

The maximum possible power available from both side band 

frequencies for an input voltage P i n R i and both R 2 can be 

calculated to be: 
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Po = 9b 2 V4 p 2 .(22) 
2( 2Ei+R2)( 2a+3bV2)2 

I 2 and I2 1 nave'been converted to R.M.S. for t h i s derivation. 

( 22) gives the maximum possible power available for reconversion 

to angular frequency P . 

Of t h i s power the amount available i n S-|_ i s : 

P = 9b2 P2 y4 H I ( 2 3 ) 

( 2R 1+R 2 ) 2 ( 2 a + 3 b V 2 ) 2 

This i s the p r a c t i c a l l y useful output power. 

(5) Derivation of Input Currents. 

From ( 2) 

where x = 

From ( 21) 

Thus 

I 2 = -xP + 

JbYJL 
2( 2Ri+R 2)( 2a+3bV2) 

I g 1 = x P! + + 

IT - 2Io = -2xP + 

IT. 1 - 212 1 - 2 x P 1 + + 

From (17) V 2 - xR^"1" 

T g 1 - -x R 2 P 1 + + 

V! = 2x(R x + 2jwLi)P + 

Vj} m -2x(R]_ + 2jwL ! ) p l + + 

From t h i s i t can be shown that: 

V 2
+ 8 8 2R2P ) 

Y l + - 2x(R 1+2jwL 1)P 
7^1++ m -2x(Rx+2jwLi)P 

Substitution of (24) int o (14) y i e l d s : 

Ip - P( j(ap+2 bV 2p) - j 3 bpY2 x(2Ri + R 2 + 4 J W L T J ) 
2 2 

.(24) 
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This i s the low frequency current supplied to one condenser 

only. For both condensers t h i s must be m u l t i p l i e d by 2. 

Substituting f o r x gives: 

IT - 2 I p - P( 2a+3bV2) - J9b2pV*( gJRi+RgH-jwLi)) 

2( 2R1+R2K 2a+3bV2) ) 

When I«j i s resolved i n t o i t s r e a l and imaginary components 

there r e s u l t s the low frequency r e s i s t i v e and capacitive 

input currents: ( (19) i s used) 
XJj m 9Pb2pV4 . (25) 

2w( 2R1+R2M 2a+3bV2) 2 

Ic = P( jp( 2a+3bY2) - j 9 b2 p ) ( 2£) 
2( 2a+3bV2) ) 

(6) Derivation of Power Gain 

From (25) the low frequency input power i s : 
*E - 9 b 2 P2p y* ( 2 < 7 j 

4w( 2Ri+R2) ( 2a+3bT2) 2 

D i v i s i o n of (22) by (27) gives the maximum possible power gain: 

G - g° = *>l . . . . ( 2 8 ) 

(28) i s the end r e s u l t of the theory. I t gives the maximum 

possible power gain under i d e a l conditions f o r t h i s type of 

amp l i f i e r . I t can be shown that the power gain but not power 

input or output i s independent of the tuning condition (19) 

In the amplifier to be described i n the next chapter w - 90 
P 

Thus maximum possible power gain = 180 

(7) Discussion of the theory. 
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Tlie theory as given y i e l d s the following conclusions: 
I f most of the output power i s to be used In R]_ and not 

i n R 2 then R 2 must be as small as possible r e l a t i v e to RT.. I f a 
large output power i s desired RT_ and R 2 must be small from (22) but 
fo r a given R 2 there i s a value of R i where a maximum of power i s 
used i n RT_. 

The low frequency input capacitive current given by (26) 
shows that i t i s not effected by the output c i r c u i t . 

The low frequency input r e s i s t i v e current i s strongly 
effected by the output c i r c u i t . As the output power increases 
so does the input power. Thus input c i r c u i t matching depends on 
the output c i r c u i t . The impedances seen by the low frequency 
generator are given by ( 2 5 ) and ( 2 6 ) and a p r a c t i c a l generator 
must be matched to these. 

The high frequency generator sees a capacitive impedance 
which can be found from the f i r s t term of (13) and the f i r s t term 
of the following expansion. I t also sees a small r e s i s t i v e com-
ponent since i t must supply the power for the power gain. 
4. Qualitative Effects of Inclusion of Condenser Losses i n 

Amplifier Equivalent C i r c u i t . 
A complete analysis could be done with the non l i n e a r condensers 
i n section 3 of t h i s chapter shunted by appropriate r e s i s t o r s . 
Such an analysis i s quantitatively more complete than that given 
above but does not bring forward r e s u l t s which cannot be predicted 
q u a l i t a t i v e l y by a simple discussion of the c i r c u i t . The theor
e t i c a l picture i s further complicated by the non l i n e a r i t y of the 
r e s i s t o r s at low voltages (diag 17). 
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The following general conclusions about the i n c l u s i o n 

of condenser losses are drawn. 

Since the currents flowing through the shunting r e s i s t o r s 

flow through L]_ the tuning condition ( 1 9 ) w i l l be a l t e r e d . 

The low frequency signal input impedance w i l l contain 

an a d d i t i o n a l resistive.element representing the energy fed by 

the low frequency generator' to hysteresis losses. I f the greatest 

power gain i s to be achieved this input power must be small 

r e l a t i v e to the input power of ( 2 7 ) . Hence R± and therefore R 2 

should be as small as possible but given Rg, R i must not f a l l , 

below a c e r t a i n value. 

The high frequency input signal w i l l have to supply 

considerably more power than indicated by the i d e a l i z e d theory. 

It must supply the hysteresis losses for the.,.high frequency high 

voltage s i g n a l . These can be calculated from diagram 1.7. 

Losses i n condenser hysteresis at side band frequencies 

w i l l also reduce the power gain achievable i n p r a c t i s e . 

The above theory and conclusions were checked.in an 

amplifier which was a physical r e a l i z a t i o n of diagram 2 2 . 

CHAPTER VI 

- EXPERIMENTAL RESULTS FROM CARRIER .AMPLIFIER 
; •• . 1 ; 

1. C i r c u i t . 

The c i r c u i t was similar to that used for measurement, 

of 2nd harmonic current and i s given i n diagram 2 3 . As before 
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the non lin e a r condensers were balanced with respect to fund

amental by R and C. Unless otherwise stated the following 

setting up procedure was used i n tests on the amplifier: 

The high frequency was tuned to 9000 c.p.s. and the 

low frequency to 100 c.p.s. 

The c i r c u i t was tuned with c 1 . 

The condensers were matched u n t i l the voltage at Y was 

a minimum. 

C i r c u i t 2 was tuned u n t i l side band current was a 

maximum. 

Since a l l these adjustments are not independent they 

were repeated u n t i l a l l held simultaneously. 

About l/2 hour warm-up time was required for conditions 

i n the c i r c u i t to s t a b i l i z e . Since non linear condensers are highly 

voltage sensitive f l u c t u a t i o n s i n l i n e voltage were always obser

vable but were not s u f f i c i e n t to necessitate use of voltage 

regulated supplies. 

2. Measurement of Output Power. 

The measurement of sideband current or output power 

was done as follows: • 

A calibrated oscilloscope was placed from B to ground. 

When the c i r c u i t was operating the side bands were observed. The 

condensers were biassed to a few volts u n t i l a l i t t l e less than 

100 per cent modulation existed. 

(Theory quickly shows that biassing does produce 2nd 

harmonic i n the correct phase to give a normal modulated s i g n a l . 
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I f i n the expansion Q, = f ( ^ ) for a non l i n e a r condenser there i s 

a term proportional to Y 2
 a n a y gj_ n j _ s applied then the 2nd 

harmonic current has the phase Sin 2 wt. From equation ( 1 2 ) the 

sideband currents have the phase 1 cos ( 2w + p)*. This i s the 

correct phase r e l a t i o n ) . 

A sketch of a typical'waveform at B i s given i n diagram 

24. The distance x was measured and converted to v o l t s . From 

the theory of an amplitude modulated signal one quarter of t h i s 

voltage i s due to one sideband. The current at one sideband i s 

r e a d i l y calculated by the d i v i s i o n of t h i s voltage by the imped

ance from B to ground. The power i n one sideband i s given by the 

square of the current times the resistance i n series tuned c i r c u i t 

2. 

Example: 2" t o t a l d e f l e c t i o n required 20v R.M.S. at 18000 c.p.s. 

. x measured = . 8 3 ins. 

wL = impedance B to gnd. = 2830 ax. 

RT_ = 110 ohms. 

Sideband current = ( . 8 3 ) ( 2Q)(1000) = 1.47 m-as 
14)12b30) 

Power i n R i at 1 Sideband = ( 1.47) 2 ( 1 1 0 ) = 236 microwatts. 
( 1 0 0 0 ) ( ) 

Power i n R-j_ at both sidebands = Power Output of 

Amplifier =472 microwatts. 
3 . Measurement of Low Frequency input power-

For t h i s measurement i t was e s s e n t i a l to remove a l l 

voltages except low frequency voltages at Y. 

The voltages at X and Y and the microammeter reading 
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were observed. YR was the voltage drop across R l . The current 

from X to Y as a function of V R was c a r e f u l l y plotted independ

ently. Hence the vector diagram 25 could be drawn since the 

lengths of a l l sides of the t r i a n g l e were known and the angle 

Q calculated. This gave the phase r e l a t i o n between the voltage, 

between Y and ground and the current flowing into the c i r c u i t at 

Y. The capacitive and r e s i s t i v e components of the current could 

be found and the power input calculated. The capacitive and 

r e s i s t i v e currents flowing into the c i r c u i t without the non l i n e a r 

condensers were measured i n the same way and subtracted from the 

res u l t s obtained with non l i n e a r condensers. The low frequency 

power and capacity currents flowing into the non l i n e a r condensers 

were thus found. 

Example: Y x = 2.42 volts 

Yy = 1.60 volts at 100 c.p.s. 

A = 2b.O microamps 

= I . 0 9 volts (from c a l i b r a t i o n curve). 

S = 1 (Yx + Yy + Y R ) = 2 .555 
2 

S- Y y = .955 

S - VR = 1 . 465 

VyY r - 1.745 

Sin g. - f ( S - VyHS - Y R ) \ 1 / 2 . ( - 9 5 5 ) ( I . 4 6 5 ) = .895 

2 ( Vy-v^. j -ii.-JiJ) 

ai, = 1270 e - 55 

Resistive Current = ( 2 6 . 0 )(cos 53) = 1 5 . 6 microamps. 

Capacitive Current = ( 2 6 . 0)(Sin 53) = 20.6 microamps. 

Low frequency Power Input = ( 1 . 6 ) ( 1 5 . 6 ) = 25 microwatts. 
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From these the power, capacitive current- and r e s i s t i v e current 

fed into the c i r c u i t without non lin e a r condensers must be sub

tracted but the method of measurement of these i s i d e n t i c a l and 

i s not given. 

4. .Variation of Output Sideband Current with Low Frequency Voltage. 

The following were held constant: 

High Frequency = 9000 c.p.s. 

High Frequency Volts per condenser - 40 and 120 

R-L = 110 ohms. 

Low Frequency 100 c.p.s. 

The voltage at Y was varied and the output at B observed. 

Results: Diagram 26. 

Equation (26) predicts a l i n e a r v a r i a t i o n . The observed curve i s 

ce r t a i n l y very nearly l i n e a r with a tendency to be'concave down

ward which increases at the lower value of high frequency voltage. 

This point was not investigated further since t h i s bending might 

have been caused by a zero error i n the voltmeter. 

3* V a r i a t i o n of Output Sideband Current with Frequency of Low 

Frequency Input. 

The following were held constant: 

High Frequency = 9000 c.p.s. 

High Frequency Volts per condenser = 40 

R x = 110 ohms 

Low Frequency Voltage .= 1.5 v o l t 

The low frequency was varied and the output at B 

observed. 

Results: Diagram 27. 
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Equation ( 2 6 ) predicts a horizontal straight l i n e . ' 

The curvature of the observed curve i s more l i k e l y to 

have occurred from experimental than t h e o r e t i c a l error. I t was 

not investigated further. 

6 . Variation of Output Power with R T _ . 

The following were held constant: 

High Frequency = 9 0 0 0 c.p.s. 

High Frequency Volts per condenser = 40 and 1 2 0 . 

Low Frequency = 1 0 0 c.p.s. 

Low Frequency Volts =1.5 

R 2 = D.C. Resistance of one half of T = 7 0 ohms. 

R^ v/as varied and output at B observed. 

Results: Diagram 2 8 . 

Equation (23) i s also plotted and has used values of a and b 

given i n diagram 1 8 . The experiment was repeated f o r L - i = 0 i n 

which case ( 2 3 ) becomes: 

P = 9 w 2 b 2 V4 P 2 Ri , , 
- — - ( 2 9 ) 
l+( SRx+Rg) 2( 2 a + 3 b V 2 ) 2 W 2 

Experiment and theory are given for t h i s case i n diagram 2 9 . 

In the l a t t e r case agreement between theory and practise 

i s good but i n the former agreement i s poor. The absolute agree

ment between theory and practise within about 20f» i s not considered 

important since experimental error could possibly be t h i s great. 

But i n diagram 28 the errors greatly exceed t h i s f i g u r e . No 

explanation i s given f o r t h i s divergence. I t would seem incorrect 

to discard the theory e n t i r e l y since agreement i s good i n diagram 

29 and c e r t a i n l y the experimental curves are greatly d i f f e r e n t i n 
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diagram 28 to diagram 29 and the g e n e r a l q u a l i t a t i v e f e a t u r e s o f 

the t h e o r e t i c a l curves show the same d i f f e r e n c e s . Nor w i l l the 

c o n s i d e r a t i o n of condenser l o s s e s save e q u a t i o n (23) f o r t h i s w i l l 

lower r a t h e r than r a i s e the t h e o r e t i c a l c u r v e s . 

I t i s thought t h a t the next approach to t h i s problem 

should be the c a r e f u l a l t e r a t i o n of LT_ and the p l o t t i n g of output 

pov/er as a f u n c t i o n of as LT_ i s changed from zero to the t u n i n g 

c o n d i t i o n o f ( 19) which i s c o n s i d e r e d to h o l d f o r diagram 2 8 . 

The apparatus would have to be a l t e r e d f o r t h i s because a t p r e s e n t 

L i i s n ° t e a s i l y c o n t r o l l e d . 

S ince t h e f a c t o r between theory and p r a c t i s e from 

diagram 28 a p p a r e n t l y depends on V, the v a r i a t i o n of output power 

as a f u n c t i o n of V f o r f i x e d R^ was next done. R i = 110 was chosen 

s i n c e the power output was ; g r e a t e s t f o r small r e s i s t a n c e s , t h i s 

being the r e s i s t a n c e of tuned c i r c u i t 2 without,any added r e s i s 

t ance. 

7« V a r i a t i o n of Output Power w i t h High Frequency V o l t a g e . 

The f o l l o w i n g were h e l d constant:' 

High Frequency = 9000 c.p.s. 
Low Frequency = 100 c.p.s. 

Low Frequency v o l t s = 1 . 3 

Rx = 110 ohms R2 = .70 ohms. 

The h i g h frequency v o l t a g e was v a r i e d and the output 

a t B observed. 

R e s u l t s : Diagram 3 0 . 

E q u a t i o n (23) i s a g a i n p l o t t e d . 
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Th e shape of the. • two curves agrees w e l l except at low 

voltages. The divergence here may be assigned u n t i l extension of 

the theory to TDhe neglection i n the theory of the non l i n e a r i t y of 

the resistance component of the condensers at low voltages shown 

in diagram 1 7 . This i s the reason the low voltage t h e o r e t i c a l 

points are not weighted as heavily i n diagram 3 0 . 

Diagram 3 0 generally supports the v a l i d i t y of equation 

( 2 3 ) . 

The low frequency input c i r c u i t was next investigated. 

8. V a r i a t i o n of low Frequency Input Currents with High Frequency 

Voltage. 

The following were held constant: 

High Frequency =9000 c.p.s. 

Low Frequency = 1 0 0 c.p.s. 

Low Frequency Volts = 1 . 6 

R l = 1 1 0 ohms R2 = 70 ohms. 

Results: Diagrams 3 1 and 3 2 . 

Equations ( 2 5 ) and ( 2 6 ) are plotted for comparison i n 

diagrams 3 1 and 3 2 respectively. 

The wide divergence between theory and experiment 

i n diagram 3 1 was expected since the low frequency input r e s i s 

t i v e current w i l l be very sensitive to the neglection of conden

ser losses. At low high-frequency voltages the t h e o r e t i c a l 

points must again be l i g h t l y regarded. I t i s impossible to t e l l 

how much of the discrepancy would be eliminated by i n c l u s i o n of 

condenser losses. The negative slope of the experimental curve 

at low high frequency volts i s probably caused by non l i n e a r i t y 
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of condenser resistance. 
The agreement "between theory and practise for. the 

capacitive input current probably occurs because these currents 

i n theory are almost independent of condenser losses. 

9 . Power Gain as a function of High Frequency Voltage. 

The experimental curve of diagram 33 was obtained by 

passing a smooth curve through the input r e s i s t i v e current plots 

and through the output power plots (not given but similar to 

diagram J>Q), and obtaining the r a t i o of output to input power. 

.The corresponding t h e o r e t i c a l curve i s a horizontal 

l i n e at height 135>f ( l80)( 2R\ )\, on the v e r t i c a l axis (from 

no loss theory). (R2 +2Ri)J dropping of the 

experimental curve to zero at low- v o l t s was expected since the 

output power i s n e g l i g i b l e r e l a t i v e to condenser losses at low 

frequency, but the subsequent behaviour of the curve cannot have 

any t h e o r e t i c a l explanation u n t i l an exhaustive analysis of non 

l i n e a r condensers has been done. However 70 of the t h e o r e t i c a l l y 

available 135 i s not considered unreasonable. 

1 0 . General Discussion of Results. 

Although at least one experimental r e s u l t (diag . 2 8 ) 

cannot be explained by the theory even with a-''qualitative d i s 

cussion of condenser losses, nevertheless the conclusions 

concerning the design of an amplifier, of the type described, 

drawn at the end of Chapter 5 have been confirmed by experiment;, '> 

The magnitudes of the various input and output impedances must 

s t i l l be determined by experiment i f exact magnitudes are 

necessary. However the general method given i n t h i s thesis 
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predicts magnitudes to within about a factor of two. 

I t must be emphasized however that neither theory 

nor experiment has been'exhaustive. Power gain has been checked 

at only one output load r e s i s t o r , and the frequency of the high 

frequency voltage has been kept at a l l times at 9000 c.p.s. This 

was done because of the number oftuning changes necessary i f th i s 

frequency was changed. 

CHAPTER VII 

CONCLUSIONS 

1. Possibly the most important conclusion from the work done 

i s that non l i n e a r condensers- can In practise be used as power 

amplifiers as predicted by theory. 

2. The greatest disadvantage of the condensers used i n t h i s 

research was t h e i r high losses. These losses make their theor

e t i c a l analysis complex and reduce t h e i r usefulness. 

The losses resulted i n : 

(a) Bulky cooling equipment. Because of the high temperature 

dependence of the c h a r a c t e r i s t i c s of the non l i n e a r condenser 

constant temperatures are e s s e n t i a l . 

(b) Reduction of achievable power gain. 

(c) A very low o v e r a l l e f f i c i e n c y defined as t o t a l output power 

divided by t o t a l input power. This was of the order of .1%. 

- Two main l i n e s of development could reduce these losses. 
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(a) The d i e l e c t r i c could be made thinner. Two possible methods 

were suggested i n Chapter I I , Sec.2. I f a given capacity and 

a given f i e l d strength i n the d i e l e c t r i c are required then 

the losses vary as the square of the d i e l e c t r i c thickness. A 

reduction of the present d i e l e c t r i c thickness by a factor of 

three which i s considered possible for audio frequency con

densers would reduce the losses by a factor of nine. 

(b) The area of the hysteresis loop might be reduced by physical 

and chemical research. Combinations of materials might be 

superior to barium t i t a n a t e . 

3.. As the condenser losses are reduced a more detailed check of 

the theory as given w i l l be possible. In i t s present form i t i s 

s u f f i c i e n t for broad p r a c t i c a l design of an- amp l i f i e r . On the 

other hand the theory could be extended without great d i f f i c u l t y 

to include the condenser losses. 

I t should be mentioned .that ;the. extension of .Van der 

Z i e l ' s t h e o r e t i c a l method was done independently by the author 

afte r Dr. Van der Z i e l had l e f t the University of B r i t i s h Columbia, 

and has not been completely checked by anyone. 

4. Van der Z i e l ' s analysis (21) using 

Q, ,= aV + bV 2 ' \ ; 

as the basic non l i n e a r condenser equation gave as a t h e o r e t i c a l l y 

possible power amplification (w) 2 as against 2(w) derived i n t h i s 

•'.(F) (?) 
thesis for a non l i n e a r condenser with the equation 

Q, = aV + bV^  
21. See Ref. 11. 



In p r i n c i p l e then the development of condensers obeying the 

former r e l a t i o n (rectangular hysteresis loops) would seem more pro:-

mising. In the present condensers however the c o e f f i c i e n t of Y 2 

i n the expansion for Q, i s small (Chapter IY, Section 6 ) , and the 

input power at low frequency to overcome feedback would be much . 

smaller r e l a t i v e to the hysteresis component of input power than 

i n the amplifier tested. However the greater possible gain might 

overcome t h i s to give a greater o v e r a l l than that achieved i n 

t h i s work. However disadvantages would be the necessity of 

about 100 v o l t s of bias and the need to feed the low frequency 

input i n push p u l l . Unfortunately time did not permit experi

ments on t h i s type of amplifier. 

5. The use of non l i n e a r condensers at high frequencies was not 

investigated. That they can be used at high frequencies was 

shown by Donley(22) i n q u a l i t a t i v e experiments at 20 megacycles 

and 40 megacycles. He used low voltages and a very t h i n chip as 

d i e l e c t r i c to give him about 100 m.m.fds. or l e s s . He did not 

report overheating. 

6. Since power amplification has been demonstrated possible with 

non l i n e a r condensers feed back may i n p r i n c i p l e be used to i n 

crease the amplification. I t could be increased u n t i l low f r e 

quency o s c i l l a t i o n s were present provided a frequency control was 

supplied. 

7. D i e l e c t r i c amplifiers have a l l the advantages of magnetic 

amplifiers of ruggedness, and i n d e f i n i t e l i f e t i m e ( t h i s has not 

been v e r i f i e d ) , and the lack of heaters.  

22. See Ref. 13. 



In p r i n c i p l e , i n analogy with condensers and c o i l s , i t 

would seem d i e l e c t r i c could be made more e f f i c i e n t than magnetic 

amplifiers. 

8. As a D.C. amplifier the d i e l e c t r i c amplifier might be most 

usef u l . The input power necessary to bias non l i n e a r condensers 

would be small since no hysteresis losses would be present. The 

the o r e t i c a l gains are i n f i n i t e for both types of d i e l e c t r i c amp

l i f i e r mentioned i n section 4 of this chapter, and a very high, 

power gain might be achieved even with the present condensers 

which apparently have a r e l a t i v e l y low D.C. resistance. The 

non l i n e a r i t y property might be used d i r e c t l y as an automatic 

control. The temperature dependence of the properties of non 

line a r condensers and the jump to a l i n e a r condenser at the 

Curie temperature may also f i n d a p p l i c a t i o n . 
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