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ABSTRACT 

REGISTER FILE ARCHITECTURE OPTIMIZATION PN A 

COARSE-GRATNED RECONFIGURABLE A R R A Y 

This thesis investigates the impact of the global and local register file architecture on a 

reconfigurable system based on the ADRES architecture. The register files consume a significant 

amount of area on the reconfigurable device, and their architecture has a strong impact on the 

performance. We found that the global registers should be tightly connected to as many functional 

units as possible, while the connection of the local register files to their neighbours is less critical. 

We found that the global register file should contain 14 registers, while each local register file 

should only contain two registers. We used these results to propose two new architectures that 

demonstrate between -33% and 383% higher instructions per cycle per unit area compared to the 

original 4x4 and 8x8 array architectures, with 56% and 88% average improvement over a set of 

benchmarks for the new 4x4 and 8x8 array architectures, respectively. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation 
Coarse-grained reconfigurable architectures promise high computing parallelism and low power 

consumption. Published architectures such as MorphoSys [1], PipeRench [2], and ADRES [3] 

demonstrate higher computing performance than general-purpose processors and very long 

instruction word (VLIW) processors, especially in loop-intensive digital signal processing (DSP) 

applications. Coarse-grained reconfigurable architectures are more suitable for applications 

requiring datapaths than field-programmable gate arrays (FPGAs), which are more effective for 

random logic [2]. Compared to fine-grained reconfigurable architectures and FPGAs in 

particular, coarse-grained reconfigurable architectures have larger reconfigurable functional 

units which require fewer programming bits and routing resources within each block, leading to 

power, area and delay reductions inside each functional unit. These power savings are 

important, especially in mobile systems. 

As in any compute engine, the memory architecture has a significant effect on the performance 

of coarse-grained reconfigurable architectures [4]. MorphoSys [1] uses a frame buffer to stream 

image data. In REMARC [5], the MIPS microprocessor loads the data into the data register for 

the co-processor to access. The instruction memory is also significant; instructions can be stored 
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in instruction registers, in context registers, or in random-access memories (RAMs) [5, 6, 7, 8, 

9]. Furthermore, many coarse-grained architectures contain additional register files within the 

reconfigurable fabric for use as scratch-pad memory [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. 

One such coarse-grained reconfigurable architecture is A D R E S [3]. A D R E S , which is being 

developed at the Interuniversity Microelectronics Centre (IMEC) in Leuven, Belgium, contains 

both a general-purpose Very Long Instruction Word (VLIW) processor and a reconfigurable 

fabric. Estimates obtained using two area models described in this thesis wi l l show that 36% to 

62% of the area of the device is memory. O f this, just under half is devoted to register files used 

as scratch-pad memory and used to communicate between the V L I W processor and the 

reconfigurable fabric. Table 1.1 shows a breakdown of the area devoted to memory in our 

baseline ADRES-based architecture with 16 functional units and five contexts. Clearly, the area 

devoted to the register files is significant; hence, we would expect that the register file 

architecture would have a significant effect on the efficiency of the reconfigurable architecture. 

In this thesis, we show that this statement is true, and that we can design a significantly more 

efficient reconfigurable architecture by optimizing the register files. 

Table 1.1: Typical Contributions of Various Memory Resources to Chip Area 

ype of Memory Area Adjusted Area 

Register Files 

Data Global Register Files 10% 8% 

Register Files Predicate Global Register Files 2% 1% Register Files 
Data Local Register Files 13% 6% 

Register Files 

Predicate Local Register Files 2% 2% 

F U Output Registers F U Data Output Registers 3% 4% F U Output Registers 
F U Predicate Output Registers 1% 1% 

Context Memory 
Input Multiplexer Context Memory 4% 2% 

Context Memory Operation Code Memory 3% 2% Context Memory 
Immediate Data Memory 23% 12% 

Total 62% 36% 
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1.2 Research Goals 
This research consists of an experimental analysis of the register file architecture in one 

representative reconfigurable processor, an architecture based on the ADRES architecture from 

IMEC [3], as shown in Figure 1.1. This architecture contains two types of register files: global 

register files that can be accessed by some (or all) of the reconfigurable functional units on the 

fabric, and local register files, each of which is associated with a specific reconfigurable 

functional unit. In particular, we ask three questions for each type of register file: 

1) How big should each register file be? 

2) How should the register file be connected to the rest of the fabric? 

3) How many read and write ports should each register file have? 

0) 

1 -
ro SS , 

o 
CD 

General-Purpose VLIW Core 

Predicate Global 
Register File 

Data Global 
Register File 

FU FU FU * * * FU 

FU FU FU FU 

FU FU FU • • • FU 

: 
FU FU FU • • • ' FU 

y a 

?9 

TI 9L 
o "TJ 
2 c 
CD - i 
CO TJ 
CO O 
O CO 
-< CD 

Figure 1.1: Baseline Architecture Based on ADRES [3] 
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We will then use these answers to construct a modified version of the ADRES architecture 

which has -7% to 38% smaller area and runs code between -29% and 200% faster than the 

original architecture. Although the numerical results are specific to this processor, the trends 

that we observe may apply to other reconfigurable systems which have global or local register 

files. 

1.3 Significance 

The reduction in area offers several benefits. Since this reduction in area means fewer transistors 

are required, we can expect a higher number of chips to fit on each silicon wafer, higher yield 

resulting from the rarer occurrence of manufacturing chips that have a physical defect, and 

potentially lower power consumption. The first two make the chip more economical. The latter 

makes the chip more attractive for applications where power is limited or expensive, such as 

mobile applications that are powered by a battery. 

The performance gain that comes from an optimized register file architecture allows more 

applications to be executed on the reconfigurable system every second or more complex 

processing in real-time applications, where tight deadlines are imposed on each task. 

1.4 Organization of this Thesis 

The thesis is organized as follows. Background of the related research will be presented first in 

Chapter 2. In Chapter 3, we will describe our baseline architecture, shown in Figure 1.1, which is 

very similar to the ADRES architecture [3]. Chapter 4 will describe our experimental 

methodology and Chapter 5 will present experimental results illustrating the impact of various 

architectural parameters on both the area and performance of the device. Then in Chapter 6, we 
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will use the results from Chapter 5 to propose two new architectures that are significantly 

smaller and faster than the baseline architecture. Finally, the conclusions, future work, and 

contributions are stated in Chapter 7. 

1.5 Contributions of this Thesis 

The contributions of this thesis are as follows: 

1. We presented a methodology for evaluating ADRES-based reconfigurable architectures. 

This included the use of the IMPACT-I [73] and DRESC [74] compilers used for 

ADRES [3]. As well, the SCRAP tool used in [79] was enhanced to generate an X M L 

architecture file, modularized VHDL code that included global register files, and a 

parameterized area model that could produce area estimates that correlate well with 

Synopsys post-synthesis area estimates, but runs in less than a second. 

2. We performed experiments on the degree of connectivity of global and local register files 

to the functional units and found that shared connectivity of every functional unit to the 

global register files is vital to obtain high performance. 

3. We verified that increasing the number of read and write ports on global and local 

register files improves performance, but at the cost of significant area. 

4. We performed sweeps of the size of global and local register files and discovered in 

particular that only very few registers are needed in each local register file. This was 

attributed to the low utilization of local register files by the benchmark kernels. 

5. We constructed enhanced 4x4 array and 8x8 array architectures that applied this new 

knowledge about register files to achieve on average 56% and 88% higher instructions 

per cycle per unit area, respectively, compared to the baseline architectures. For 

individual benchmarks, the enhanced 4x4 array architecture increased the instructions per 
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cycle per unit area by -6% to 152% and the enhanced 8x8 array architecture increased the 

instructions per cycle per unit area by -33% to 383%. 

A portion of this work has been published in [16]. 



Chapter 2 

B A C K G R O U N D A N D P R E V I O U S W O R K 

In this chapter, the realm of reconfigurable custom computing is introduced with a particular 

emphasis on coarse-grained reconfigurable architectures. 

2.1 Reconfigurable Custom Computing 

Reconfigurable custom computers consist of programmable functional blocks that are connected 

by programmable routing, both of which are programmed using configuration bits [17]. They are 

reconfigurable because their hardware configuration can be modified and they perform custom 

computing because this flexible hardware configuration can be tailored to meet the needs of each 

specific application. This means that one such reconfigurable custom computer can give good 

performance, area, and power consumption for a wide variety of applications. Reconfigurable 

custom computing solutions possess some of the speed of dedicated hardware while also holding 

some of the programmability associated with software execution. According to Hartenstein [18], 

reconfigurable custom computing bridges the gap between the application-specific integrated 

circuits (ASICs) and microprocessors. 

Today, general-purpose processors are very popular in desktop and laptop computers. However, 

based on audio, image, video, and cryptography application benchmarks, Lee et al. [19] showed 

that more than 90% of memory accesses on general-purpose processors can be considered 
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overhead, which can be avoided in ASICs and systolic arrays, where data can be forwarded 

directly to perform the next operation. They also report potential instruction-level parallelism 

(ILP) from 6 to 558, opening up the possibility of significant speedups on certain applications. 

As well, the need to load instructions from memory, decode them, and then execute the 

instructions constitutes a significant overhead in processing time [17]. Moreover, sometimes the 

instruction set does not have a single instruction that performs the exact function that is required 

[17]. Multiple instructions may be required to implement a function that could be implemented 

as specialized logic that is much smaller and faster. 

Custom computing refers to a class of systems that contains exactly the type of logic that is 

required for an application. For example, some applications require more on-chip memory than 

others, while others require multipliers or Ethernet controllers. Custom computing is efficient 

because there is no wasted functionality and complex functions that may require multiple 

instructions on a general-purpose processor can be implemented in hardware that is more 

optimized in terms of speed, area, and power consumption. ASICs are an example of custom 

computers, where the circuit is designed specifically to perform a certain task. This circuit can 

therefore be well-optimized in terms of speed, density, and power. However, it is expensive and 

time-consuming to design and manufacture an ASIC for every different task that must be 

performed. To layout and fabricate such a chip typically requires two to five months [20] and 

can cost one million dollars for the mask set alone which is used in fabrication. 

Field-programmable gate arrays (FPGAs) are important to reconfigurable custom computing 

because they provide the flexible hardware building blocks that can be configured to perform 
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different functions. As an array of these blocks, FPGAs can be configured to implement digital 

circuits for a diverse range of applications including network routers and robotics controllers. 

Devices which can be used to implement reconfigurable custom computing include island-style 

FPGAs, FPGAs with fixed intellectual property (IP) logic cores, system-on-a-chip designs with 

embedded FPGA cores, fine-grained reconfigurable architectures, and coarse-grained 

reconfigurable architectures. Each of these will be discussed in the following subsections. Hard­

wired FPGAs are also described because they fit nicely in the discussion about the tradeoffs 

between programmable and fixed logic. We also mention very long instruction word (VLIW) 

processors because of their similarity to some coarse-grained reconfigurable architectures. 

Coarse-grained reconfigurable architectures will be described further in Section 2.2 and form the 

basis of the discussions in the thesis. 

2.1.1 Island-Style FPGAs 

Field-programmable gate arrays (FPGAs) consist of an array of programmable logic blocks that 

are interconnected by programmable interconnect. The programmable logic blocks can be 

configured to perform many different digital logic functions. The programmable interconnect is 

controlled by routing switches that connect wires together to form paths between the logic 

blocks. 

Designs using FPGAs enjoy short turn-around time, low non-recurring engineering cost, 

freedom from the complexities and risks of physical design, and flexibility to modify the 

functionality, making them favourable compared to ASICs in many situations. Where the turn-



around time is vital, production volume is low, or where simplicity of design effort is desired, 

FPGAs are an attractive option. Their applications have expanded from simple glue logic to 

large stand-alone designs. The price for this flexibility is that they have lower performance, 

lower logic density, and higher power consumption than ASICs [20]. 

One popular architecture that has formed the basic pattern of early commercial FPGAs [21, 22] 

and has been the subject of much academic research [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 

34, 35] is the look-up table (LUT)-based island-style FPGA architecture. The LUT-based island-

style FPGA architecture consists of a matrix of configurable logic blocks (CLBs) arranged like 
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islands in a sea of routing resources. Each CLB contains one or more LUTs, that act as 

programmable gates, and D flip-flops. The routing resources are organized in wires that form 

horizontal and vertical channels. These channels intersect at switch blocks and connect to the 

CLBs in connection blocks. Surrounding the entire matrix are input and output ports that 

interface the logic in the FPGA with the outside world. A typical island-style architecture is 

shown in Figure 2.1 and Figure 2.2. 
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Figure 2.2: Details of the LUT-Based Island-Style FPGA 

2.1.2 Addition of Fixed IP Cores 

In addition to general-purpose logic resources, state-of-the-art commercial FPGAs such as 

Altera's Stratix-II [36] and Xilinx's Virtex-4 [37] now include adders, multipliers, memories, 

processors, clock management circuitry, and support for many I/O standards. These fixed 

intellectual property (LP) cores lead to significant increases to performance, savings in area, 
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reductions in power, and simplifications of customer designs for applications in which these 

cores can be used. Figure 2.3 illustrates an FPGA with fixed logic cores. 

Multipliers 

Routing 
Resources 

Memory 

Configurable Logic Blocks I/O Ports 

Figure 2.3: FPGA with Fixed IP Cores 

2.1.3 Hard-Wired FPGAs 

Even with these fixed cores, FPGAs still have lower performance, density, and power efficiency 

than ASICs. Performance and power efficiency can be improved by hard-wiring the routing on 

the FPGA [38]. The routing inside the CLB can be hard-wired as well, either using vias [38, 39] 

or two metal layers [40]. Designs destined for hard-wired FPGAs are easy to prototype using an 

FPGA and then can be made into fixed logic later on. The density can also be increased because 
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the configuration memory can be eliminated [38]. To build on this concept, Altera's HardCopy II 

[41] converts the FPGA design into an ASIC made up of smaller cells, but customization is still 

performed using two metal layers. This further improves performance, density, and power 

efficiency. In essence, these two approaches allow the FPGA users to build fast and efficient, 

fixed logic without the cost of a full fabrication mask set or the complexities and risks of 

physical design. However, it requires approximately 8 weeks [40] and the FPGA is no longer 

reconfigurable. Though this is acceptable for custom computing, a hard-wired FPGA with fixed 

logic and routing cannot be used for reconfigurable custom computing. 

2.1.4 System-on-a-Chip Designs with Embedded Programmable Logic Cores 

The system-on-a-chip (SoC) design methodology involves the re-use and integration of off-the-

shelf intellectual property (LP) cores into the design of a single chip in efforts to reduce design 

complexity. These IP cores are designed and tested by third-party vendors to provide a specific 

functionality. The SoC designer would assemble a number of these LP cores together to construct 

a larger chip. Given the popularity of FPGAs and their reconfigurability, SoC designers are 

starting to embed FPGA-like programmable logic cores [42, 43, 44, 45, 46, 47, 48, 49] in chips 

along with fixed logic LP cores. Figure 2.4 gives an example of this. 

FPGA cores offer the flexibility to modify the chip's function when the specifications change, 

the possibility of producing a single chip that can be dynamically customized for a family of 

related applications, the opportunity to design a new chip by customizing only the embedded 

FPGA in platform-based design, and use of the programmable logic to perform on-chip tests 

[50]. As part of a reconfigurable computer, such a programmable fabric could possibly be 

configured during run-time as a custom functional unit [51, 52] or co-processor [53, 54]. 
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Figure 2.4: System-on-a-Chip Design with an Embedded Programmable Logic Core 

There are two broad categories of programmable logic cores: hard cores and soft cores. Hard 

cores [42, 43, 44, 45, 46, 47] are circuits of programmable logic described by a layout that is 

ready to be integrated with the rest of the logic on the chip. Like most FPGAs, the hard cores 

have customized layouts to maximize their density. Soft cores [48, 49] are circuits of 

programmable logic that are described using a high-level hardware description language (HDL), 

that can be synthesized along with the other logic on the chip using a standard computer-aided 

design (CAD) flow. This eliminates the need to add the programmable IP core in the physical 

layout stage. It also means the size of the soft core can be adjusted to what is needed. However, 

the soft cores are slower and consume significantly more area than the hard cores. 
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2.1.5 Fine-Grained Reconfigurable Architectures Coupled with a 

Microprocessor 

Fine-grained reconfigurable architectures have logic blocks that operate on bits that are 

connected by programmable logic. Components such as logic gates, LUTs, and flip-flops, which 

are used to implement Boolean logic functions, usually characterize these architectures [1]. 

While an FPGA fits this description, we describe in this subsection fine-grained reconfigurable 

architectures that have an FPGA-like fabric coupled with a microprocessor. 

Figure 2.5: Fine-Grained Reconfigurable Architecture 

As mentioned in the previous subsection, an embedded FPGA can be combined with a 

microprocessor to serve as a functional unit or a co-processor as shown in Figure 2.5. This has 

been researched substantially, even while FPGAs were still stand-alone devices. Programmable 

logic used as functional units [51, 52, 55, 56, 57] and co-processors [53, 54, 58, 59, 60, 61] in 

fine-grained reconfigurable architectures have delivered large increases in performance 

compared to microprocessors. For example, the reconfigurable functional unit in PRISC [51] 
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increased performance by 22%, while Splash [58] demonstrated a 2700 times speedup over a 

Sun Workstation on a DNA sequence matching application. 

Even though fine-grained reconfigurable logic is suitable for implementing functional units and 

co-processors, there are applications where custom processing capabilities are not needed. 

Rather, parallel processing on bytes or words using standard instructions are sufficient. An 

FPGA can do this, but its logic and routing flexibility exceed what is necessary. FPGAs are more 

efficient for implementing random logic than for applications with datapaths [2]. 

2.1.6 Coarse-Grained Reconfigurable Architectures 

Medium and coarse-grained reconfigurable architectures represent a class of programmable logic 

architectures that operate on data that are 4 to 32 bits wide. There are typically functional units 

resembling arithmetic logic units (ALUs) that operate on this data as well as interconnect that 

routes data in 4- to 32-bit wide buses. Like fine-grained reconfigurable architectures, medium 

and coarse-grained reconfiguralbe architectures have blocks with programmable functionality 

which communicate over programmable interconnect. 

Coarse-grained reconfigurable architectures are typically comprised of an array of configurable 

functional units (FUs) with programmable interconnect, as shown in Figure 2.6. They are similar 

to FPGAs except that larger functional units take the place of LUTs and the routing buses 

primarily carry words rather than bits. Compared to FPGAs, coarse-grained reconfigurable 

architectures require far fewer configuration bits, which can also be thought of as instruction 

memory. 

16 



Microprocessor 

Figure 2.6: Coarse-Grained Reconfigurable Architecture 

2.1.7 VLIW Processors 

Very long instruction word (VLIW) processors, like coarse-grained reconfigurable architectures, 

have multiple functional units. VLIW processors also have local memory in the form of one or 

more register files. They differ in the fact that VLIW processors usually have functional units 

that only communicate via the shared global register file while the functional units in 

reconfigurable architectures communicate through a programmable interconnect. This requires 

VLIW processors to have many read and write ports on the global register file, slowing down 

access speed [62]. This also results in a scalability bottleneck; VLIW processors typically have 

four or at most eight functional units [62], far fewer than the 16 or 64 functional units found in 

some coarse-grained architectures [1, 3, 5, 8, 9, 10]. To scale the VLIW processor further in 

terms of the number of functional units, one to four functional units are typically clustered so 

that each cluster has a separate register file. However, the communication between clusters is 

complex [62]. 
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2.1.8 Clustered VLIW Processor with a Reconfigurable Inter-Cluster Bus 

The clustered VLIW with a reconfigurable inter-cluster bus, illustrated in Figure 2.7, is able to 

scale well to a greater number of functional units [62]. These clusters communicate via a bus 

with a ring topology, with connection boxes associated with each cluster's register file. Again, 

the communication between functional units is restricted to shared register file access. In fact, 

this clustered VLIW is very similar to CRISP [13], a coarse-grained reconfigurable architecture, 

which has four functional units and a register fde in each slice. The functional units in CRISP 

can communicate directly with functional units in the same slice as well as through shared access 

to register files. Since the clustered VLIW architecture has programmable functional units and 

programmable interconnect, it too could be classified as a coarse-grained reconfigurable 

architecture. 
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Figure 2.7: Clustered VLIW Processor With an Inter-Cluster Bus (From [62]) 
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2 . 2 Coarse-Grained Reconfigurable Architectures 
This section delves deeper into the area of coarse-grained reconfigurable architectures and 

presents the applications, distinguishing features, example architectures, and architectural 

studies. 

2.2.1 Applications 

Coarse-grained reconfigurable architectures are suitable for accelerating loops by exploiting 

instruction-level parallelism (ILP) and loop-level parallelism (LLP). One area of interest has 

been digital signal processing (DSP) applications, which have many large loops in the form of 

fast Fourier transforms (FFTs), finite impulse response (FIR) filters, and correlations [63, 64, 

65]. Similarly, MorphoSys [1] was designed for image processing and another architecture [66] 

for parallel particle filtering. However, when there are many loop-carried data dependencies, the 

large number of functional units in these architectures cannot be fully utilized because there is 

not enough parallelism available in the loop [67]. This observation is similar to Amdahl's Law, 

which indicates that data dependencies in the form of sequential code restricts the maximum 

speedup available from parallel execution [68]. 

2.2.2 Distinguishing Features 

Some features that distinguish the coarse-grained reconfigurable architectures from one another 

are the nature of the functional units, the interconnect, and the register files. 

As summarized in Table 2.1, functional units (FUs) have granularities of 4 bits, 8 bits, 16 bits, or 

32 bits, and can perform addition, multiplication, and other operations. In the case of MorphoSys 

[1], functional units are wired to execute the same instruction across a row or down a column 
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like a single-instruction multiple-data (SIMD) processor. Another approach has been to fabricate 

a linear array of fixed-logic standard cells targeted for an application domain [70]. In the 

application domain of DSPs, specialized functional units have also been proposed [63, 64, 65, 

66]. 

Table 2.1: Coarse-Grained Reconfigurable Architectures Organized By Granularity of Functional Units 

Granularity of 
Functional Units 

Coarse-Grained Reconfigurable Architectures 

4 bits PipeRench [21, CHESS [7], D-Fabrix [69] 
8 bits PADDI [6],DReAM[15] 

16 bits MorphoSys [1], REMARC [5], PADDI [6], PADDI-II [10], 
Montium [14], DReAM [15], RaPiD [70] 

32 bits ADRES [3], RAW [8], MaRS [9], 
Kress A L U Array III [12], CRISP [13], Chameleon [71] 

The interconnect has 4- to 32-bit wide buses, which can be arranged in a mesh, where functional 

units communicate with their neighbours [1, 5, 7, 8, 11, 15], or like a crossbar [6, 10], in which 

the functional units communicate with many other functional units. There are direct FU to FU 

connections [1, 5, 7, 11, 12, 14, 15], buses that span several functional units [1, 2, 5, 7, 11, 14, 

15, 70], and network routers [8, 9]. Some architectures have several layers of routing, 

possessing elements of more than one style [1, 5, 7, 11, 14, 15]. 

The structure and connectivity of register files varies between different architectures. REMARC 

[5] contains local register files that are only accessible by a single FU. Input register files are 

found in [6, 10, 11, 14]. The presence of register files with read and write access shared between 
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functional units characterizes the architectures in [1, 5, 9, 13, 72]. This shared access enables 

communication between functional units in addition to temporary storage [9]. 

2.2.3 Examples of Coarse-Grained Reconfigurable Architectures 

In this subsection, we describe three architectures: RaPiD-I [70], MorphoSys [1], and ADRES 

[3]-

2.2.3.1 RaPiD-I 

The RaPiD-I architecture [70] consists of a linear array of functional units arranged in a manner 

similar to standard cells. There are 16 sets of functional units, each set containing two integer 16-

bit ALUs, one 16-bit x 16-bit multiplier, six 16-bit registers, and three small local memories. 

These functional units are connected by segmented 16-bit wide routing buses to form a linear 

datapath, as shown in Figure 2.8. The inputs and outputs come in the form of I/O streams at both 

ends of the datapath. These I/O streams are implemented as FIFOs that read and write data. 

The functional units within each cell are independent of one another. Each functional unit input 

has an input multiplexer that selects from eight 16-bit buses; each functional unit output can be 

configured to be registered and can drive up to eight 16-bit buses via tri-state buffers. Local 

memories can be configured to have input registers as well. 

There are ten 16-bit wide buses with varying segment lengths that span the length of the linear 

datapath. Just as there are switch blocks located at the intersections between horizontal and 

vertical routing channels in FPGAs, there are buffers and registers located between adjacent 
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segments of the same horizontal 16-bit bus. These buffers and registers allow two segments to be 

concatenated to form a longer segment, as well as pipeline stages to be inserted. 
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Figure 2.8: One of Sixteen Sets of Functional Units in the Rapid-I Architecture (From [70]) 

2.2.3.2 MorphoSys 

MorphoSys [1] is an image processing reconfigurable architecture. It consists of a reduced 

instruction set computer (RISC) processor, an array of 64 reconfigurable cells (RCs), a frame 

buffer, and a direct memory access (DMA) controller, as shown in Figure 2.9. With the layout 

specified in 0.35 pm fabrication process technology, the 8x8 array of reconfigurable cells takes 

up 96 mm2, roughly half of the chip. Simulations using HSPICE show that it has a clock speed of 

100 MHz. 

22 



Data Cache 

DMA 
Controller 

Tiny_RISC 
Processor 

Frame Buffer 

Reconfigurable 
Cell Array 

Context 
Memory 

T T 
i 

Figure 2.9: Block Diagram of MorphoSys Architecture (From |1J) 

Context 
Memory 

Input Data Input Data 

MUX A MUXB 

Constant 

ALU and 
Mutliplier 

Shift 

Output Register 

Output Data 

Register 
File 

T , ! , f , I 
RO R1 R2 R3 

Figure 2.10: Reconfigurable Cell in the MorphoSys Architecture (From [1]) 

23 



Each reconfigurable cell, illustrated in Figure 2.10, has a 28-bit fixed point A L U and a 16-bit x 

12-bit multiplier. There are two multiplexers for the two 16-bit inputs to the A L U and a 12-bit 

constant input. As well, a register file with four 16-bit registers is available to store data from the 

ALU's output register for subsequent use as an A L U input. 

As shown in Figure 2.11, the interconnect between the reconfigurable cells has three 

components: nearest neighbour, intra-quadrant, and inter-quadrant interconnect. Each 

reconfigurable cell is connected to its four nearest neighbours to form a two-dimensional mesh 

topology. Inside each quadrant of 4x4 reconfigurable cells in the 8x8 array, the reconfigurable 

cells are connected directly to the three other cells in the same row and the three other cells in 

the same column. Between quadrants, horizontal and vertical 16-bit buses called express lanes 

exchange data from the four reconfigurable cells in one quadrant to four reconfigurable cells in 

another quadrant that are in the same row or column. 

Unlike most reconfigurable systems where each functional unit has its own set of configuration 

bits, MorphoSys shares the same set of configuration bits between eight reconfigurable cells in a 

row, or alternatively, eight reconfigurable cells in a column. This technique is called context 

broadcast. The context memory can store up to 32 row or column contexts. New contexts can be 

loaded into available context memory while the reconfigurable array executes instructions from 

another set of contexts. Moreover, entire rows or columns can be disabled, so that data transfers 

require only one row or column of context. 
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Figure 2.11: MorphoSys Interconnect Architecture (From [1]) 

2.2.3.3 ADRES 

The ADRES architecture [3] consists of a reconfigurable array coupled with a general-purpose 

VLIW processor. Highly pipeline-able loops are identified by a compiler [73, 74] and executed 

on the reconfigurable array, while sequential code is executed by the general-purpose VLIW 

processor. The general-purpose VLIW processor and the reconfigurable unit communicate via 

two global register files. 
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ADRES differs from MorphoSys in at least five ways. First, ADRES contains a VLIW processor 

that is tightly coupled to the reconfigurable array by the shared global register files, unlike 

MorphoSys, which has a separate RISC processor. Second, MorphoSys has a frame buffer ~ 

something not found in ADRES. Third, every functional unit in ADRES can execute a unique 

instruction at any given time, whereas reconfigurable cells in MorphoSys execute the same 

instruction across a row or column. Fourth, ADRES has multipliers in some of its functional 

units, while every reconfigurable cell in MorphoSys includes a multiplier. Fifth, ADRES 

operates using 1-bit predicates and 32-bit data, while MorphoSys operates using 16-bit data. This 

suggests that ADRES can execute instructions conditionally using predication while MorphoSys 

cannot. 

A very similar architecture based on ADRES, shown in Figure 1.1, will be the framework of the 

experiments in this thesis. Its details will be given in Chapter 3. 

2.2.4 Architectural Studies 

In order to develop more efficient coarse-grained reconfigurable architectures, researchers have 

experimentally measured the impact of the functional unit architecture, the interconnect 

architecture, the memory interface architecture, and the register file architecture on the 

performance and density of a coarse-grained reconfigurable architecture. In this subsection, we 

consider each of these separately. 

First, the functional units in the coarse-grained reconfigurable architectures have been studied, 

particularly in terms of performance. Increasing the number of functional units can significantly 

reduce the number of instruction cycles required to execute a loop, but it was found that the 

26 



loop-carried data dependencies limit this speedup [2, 67]. Bansal et al. [67] found that dividing a 

functional unit into two smaller fully connected functional units, one of which performs 

multiplication while the other the remaining operations, results in a performance gain of 0 to 

13%. The performance gain is not observed, however, when the multiplication and arithmetic 

units cannot be used simultaneously in certain benchmark programs. Ienne et al. [75] state that 

predication support, which allows the execution of conditional //"statements, is fundamental to 

parallelism, and is therefore essential for obtaining the best results. Compton et al. [76] try to 

allocate just the appropriate amount of each type of functional unit for specific application 

domains. Goldstein et al. [2] have compared the computational density of functional units with 

granularities of 2, 4, 8, 16, and 32 bits, measured in bit-operations per unit time per unit area, and 

found that the computational density remained relatively constant for different granularities. 

While area can be optimized for functional units with larger word widths, the delay of the adder's 

carry chain also increases. Nevertheless, they predict that the computational density would 

increase linearly with increasing bit widths if logical operations were implemented rather than 

arithmetic operations. 

Second, the functional unit interconnect has been explored. Compton et al. [77] show how track 

placement for a segmented routing architecture can be assigned within 1.2% of the optimal 

spreading of wires, where the number of routing wires accessible to each node is balanced. By 

fully connecting functional units in clusters of four, Bansal et al. [67] increased the performance 

by 0 to 41% above the performance when the functional units are neither grouped into clusters 

nor fully connected. In a different study, Bansal et al. [78] found that connecting a functional 

unit to two other functional units in the same row and two in the same column is sufficient to 
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achieve good performance. Compared to connecting to only two functional units, one in the 

same row and one in the same column, connecting to four gives significantly higher 

performance. Connecting to six functional units gives only slightly higher performance. These 

experiments assumed the presence of row and column buses. In the absence of row and column 

buses, Wilton et al. [79] showed that connecting a functional unit to six functional units gives 

performance comparable to the performance achieved by fully connecting the functional units, 

but with much smaller area. 

The architecture of the memory interface has also been studied. Ienne et al. [75] showed that 

most basic blocks of dataflow, or code segments without control instructions, require very few 

memory accesses. Therefore, having one memory read and write port is only 15-20% slower 

than having an unlimited number of memory ports for the reconfigurable logic. Lee et al. [80] 

also showed that the inclusion of an address generator can improve performance, though its 

effect varies between different applications. 

As for register files, Tabrizi et al. [9] have explicitly referred to them as a second layer of 

communication between functional units. Colavin et al. [62] allocated two read ports and two 

write ports on a shared register file for inter-cluster communication and two read ports and one 

write port for the local cluster of functional units, based on empirical data. A more general study 

by Ienne et al. [75] showed that it is important for performance to have at least two or three write 

ports on the global register file for the reconfigurable logic to access, though this may be costly 

in terms of area. 
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2.3 Focus of this Thesis 

The goal of this research is to study the role of register files in coarse-grained reconfigurable 

architectures, which were introduced in Subsection 2.1.6 and explored further in Section 2.2. 

Chapter 3 describes the reconfigurable array of a coarse-grained reconfigurable architecture that 

is based on the ADRES architecture discussed in Subsection 2.2.3. Chapter 4 describes an 

experimental flow for conducting an architecture study on the register files similar to studies in 

Subsection 2.2.4. The results of the experiments are shown and discussed in Chapter 5. The 

knowledge gained about register files is then applied to create two new and improved 

architectures in Chapter 6. 

29 



Chapter 3 

FRAMEWORK 

In this chapter, we describe the framework upon which our study is built. 

To make our results concrete, we have performed our studies in the context of a specific 

reconfigurable architecture, ADRES [3]. As described in Chapter 2, ADRES contains an array 

of coarse-grained logic blocks integrated with a very long instruction word (VLIW) processor. 

Application code is mapped to the architecture by first using the IMPACT-I compiler [73], 

developed at the Center for Reliable and High-Performance Computing in the University of 

Illinois at Urbana-Champaign, to perform architecture-independent optimization and parallelism 

extraction, followed by DRESC [74] to perform architecture-dependent mapping. Section 3.1 

will describe the reconfigurable array of the ADRES-based architecture, Section 3.2 will 

describe the IMPACT-I and DRESC compilers, and Section 3.3 will state the architectural 

design space that will be explored in this thesis. 

3.1 Architecture 

In this section, the computation units, the register files, the interconnect, and the context memory 

of the reconfigurable array will be described in detail. 
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3.1.1 Computa t ion Uni ts 

The reconfigurable fabric consists of a heterogeneous array of configurable functional units 

(FUs). In this thesis, we will consider two array sizes: 4x4 and 8x8. Each FU can perform a 

subset of forty-five 32-bit operations in each clock cycle. A l l FUs can perform a variety of 

arithmetic (signed and unsigned), logic, shifting, and comparison instructions. One out of every 

four columns has FUs that can also perform 16-bit x 16-bit multiplication, as shown in Figure 

3.1. 
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Figure 3.1: Columns of Functional Units With Multipliers 

The FUs in the top row are different than the others. These FUs perform two tasks: they make 

up the functional units of the general-purpose VLIW processor when this processor is executing 

code, and act as additional configurable FUs when the device is executing parallel code on the 

31 



reconfigurable array. These FUs have direct connections to the two global register files through 

dedicated read and write ports. 

Figure 3.2 shows a single configurable functional unit (FU) in the baseline architecture. The 

important features of the FU are depicted in the figure, but the number of signals and read and 

write ports will vary between the different architectures that are discussed in this thesis. Each FU 

contains both a configurable A L U (the function of which can be specified using context 

memories, analogous to the configuration memories in an FPGA or the instruction memory in a 

microprocessor) and two local register files; these register files will be described in more detail 

below. 

O P Code 
and 

Immediate 
Data 

pred s r d src2 

Arithmetic 
Logic Unit 

(ALU) 
pred pred 
dst1 dst2 dst 

F U Predicate 
Output Register 

Input 
Multiplexer: 

Context 
Memory 

F U Data 
Output Register 

Figure 3.2: Configurable Functional Unit in the ADRES-based Architecture 
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3.1.2 Register Files 

As described above, this architecture has two types of register fdes: two local register files 

within each FU, and two global register files, as shown in Figure 3.3. 
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Figure 3.3: Global and Local Register Files in the ADRES-based Architecture 

First consider the two global register files. These register files are used for two purposes: (1) to 

transfer data between the general-purpose VLTW processor and the reconfigurable array, and (2) 

as scratch-pad memory for the functional units in the top row of the reconfigurable array when 

they operate as the general-purpose VLIW processor. There is one global register file (32 bits 

wide) to store data values, and one global register file (1 bit wide) to store predicate values. 
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As described above, in the baseline architecture, each data global register file is connected to 

each FU in the top row through two dedicated read ports, one for each data A L U input, and one 

dedicated write port. Thus, in a 4x4 array, each data global register file has eight read ports and 

four write ports; in an 8x8 array, each data global register file has sixteen read ports and eight 

write ports. 

Each predicate global register file is connected to the FUs in the top row through one dedicated 

read port and one dedicated write port. Thus, in a 4x4 array, each predicate global register file 

has four read ports and four write ports; in an 8x8 array, each predicate global register file has 

eight read ports and eight write ports. 

There are also two local register files within each functional unit. These register files can be 

used as scratch-pad memory by the functional units in the reconfigurable array, and can be used 

to transfer data between functional units. Each functional unit contains one 32-bit wide register 

file to store data values, and one 1-bit wide register file to store predicate values. 

The main difference between global and local register files is that global register files have 

multiple read and write ports to support the operation of the general-purpose VLIW processor 

while the local register files typically have one write port and possibly several read ports. 

Another difference is that the write enable signals on the global register files can be controlled 

by predicate signals generated by functional units, while the write enable signals of local register 

files are determined solely by values stored in configuration bits. 
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Note that the functional unit output registers can simply be viewed as local register files with one 

read port and one write port. There have been attempts to amalgamate the output register with 

the local register file, but the preliminary performance results have generally been disappointing. 

These results suggest that the DRESC compiler does not handle them this way. Since output 

registers and register files are specified differently in the architecture description, DRESC may 

assume different functions for them. 

3.1.3 Interconnect 

The functional units in the reconfigurable array communicate with the general-purpose VLIW 

processor via the two global register files. There are input multiplexers to each functional unit 

that receive data and predicate signals from other functional units. As well, the local register files 

may or may not be shared between different functional units, depending on the experiment. 

The FUs are interconnected using the "closest" architecture as described in [79] and shown in 

Figure 3.4, Figure 3.5, and Figure 3.6. The interconnect buses that carry these signals are in the 

form of direct connections, and there are no shared buses or segmented routing. In this 

interconnect architecture, each of the two data A L U inputs is driven by registered versions of 

four neighbouring data FU outputs including the data output from the local FU. The single 

predicate A L U input is driven by registered versions of seven neighbouring predicate FU outputs 

including the predicate output from the local FU. 
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In the baseline architecture, each local register file has one read port and one write port. As 

shown in Figure 3.2, the write port of each local register file is driven by the unregistered output 

of the A L U within the local FU. The read port of each local register file, however, is connected 

to six sinks: the two inputs of the A L U in the local FU, and one input in each of four 

neighbouring FUs (the four FUs diagonally adjacent to the local FU). These connections are 

shown in Figure 3.7. 
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Now we describe the interconnect of control signals. The loop stop signal, which is used to 

inform the VLIW processor that the reconfigurable array has finished a computation, is 

multiplexed from the three functional unit predicate output registers in the upper left corner of 

the functional unit array, as shown in Figure 3.8. 
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Figure 3.8: Generation of Loop Stop Signal 

As shown in Figure 3.9, the write enable signal for a write port on the data global register files is 

supplied by the predicate outputs of the same functional unit that supplies the input data; 

additional inputs to the write enable multiplexer come from the predicate outputs of the 

functional units immediately to the left, to the right, and below. Similarly, as shown in Figure 

3.10, the write enable signal for a write port on the predicate global register file is supplied by 

the predicate output register of the same functional unit that supplies the input data; additional 

inputs to the write enable multiplexer come from the predicate outputs of the functional units 

immediately to the left, to the right, and below. In Chapter 5, we will increase the number of 

functional units which supply potential data and predicate inputs to each write port; in these 

architectures, the additional functional units supply additional registered predicate outputs for the 

write enable multiplexer but the nearest neighbours of these additional functional units do not 

supply additional registered predicate outputs for the write enable multiplexer. 
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3.1.4 Context M e m o r y 

One set of configuration bits is required for each context. The configuration bits for a context 

represents the configuration during each clock cycle of a loop iteration and are selected using 

multiplexers. For the 4x4 array, 1 to 18 contexts are typically required for the set of benchmarks 

with approximately 2000 configuration bits in each context; for the 8x8 array, 1 to 8 contexts are 

typically required for the set of benchmarks with approximately 8000 configuration bits in each 

context. The number of required configuration bits remains constant throughout the lifetime of 

the loop, while the selected context is changed at every clock cycle. 

3.2 Compilers 

This section introduces two compilers, IMPACT-I and DRESC, that are used to schedule and 

map C programs onto the ADRES-based architectures. Figure 3.11 shows where they fit in the 

compilation flow. 

IMPACT 

DRESC 

Figure 3.11: Compilation Flow 
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3.2.1 IMPACT-I 

When a C program is mapped to the ADRES-based architecture, it is first compiled using 

IMPACT-I. The IMPACT-I C compiler [73] was designed to perform optimizations for a 

parameterized processor that can execute multiple instructions at a time. This processor must be 

specified by its instruction set, architecture, and code scheduling model. IMPACT-I separates 

code into basic blocks that can be executed sequentially and applies code optimization 

techniques such as function inline expansion, loop unrolling, loop peeling, branch expansion, 

induction variable expansion, register renaming, global variable register allocation, operation 

combining, operation folding, memory disambiguation, inline target insertion, and speculative 

execution of instructions following a branch. Instructions can also be moved around in the code, 

and even pushed before or after branch instructions. IMPACT-I transforms the C code into an 

intermediate representation called "Lcode", which resembles a collection of assembly-level 

instructions to be mapped to the architecture. 

3.2.2 DRESC 

DRESC first partitions the Lcode into the loops that will be mapped to the reconfigurable array 

and the rest of the Lcode that will be mapped to the general-purpose VLIW processor [3]. The 

Lcode for the reconfigurable array is scheduled to exploit loop-level parallelism (LLP) while the 

Lcode for the general-purpose VLIW processor is optimized for instruction-level parallelism 

(ILP). DRESC identifies and allocates space in the global register files for the live-in and live-

out variables. These are the input and output variables of the loop that constitute the interface 

between the Lcode for the reconfigurable array and the Lcode for the general-purpose VLIW 

processor. 
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Taking the particular basic blocks from IMPACT-I that constitute loops, the DRESC compiler 

[74] uses a modulo-scheduling algorithm to schedule each loop on the target reconfigurable 

array, assigning each operation in the loop to a specific FU in a specific time slice and assigning 

each variable to one of the register files, where temporary storage is necessary. The DRESC tool 

takes into account the characteristics of the target architecture, including the capabilities of each 

FU, the size of each register file, and the interconnect between the FUs and the register files. 

This ensures that the resulting schedule can be implemented on the reconfigurable device. In 

essence, the DRESC tool performs the tasks of scheduling, placement, and routing 

simultaneously. DRESC uses techniques from the simulated annealing algorithm [81] and the 

Pathfinder routing algorithm [82] to perform these tasks. 

During mapping, DRESC attempts to minimize the iteration interval (II) of the scheduled loop. 

The iteration interval is the number of clock cycles between the initiation of successive iterations 

of the loop, as shown in Figure 3.12. As explained in [74], the II is equal to the number of 

contexts required in the configuration memory of the reconfigurable fabric. Therefore, the 

achievable II directly impacts the area of the architecture. Intuitively, if an architecture is more 

flexible (either because there are more registers or they are better located or connected to the 

computation units), the DRESC compiler will be able to find a schedule with a smaller value of 

II. On average, this means that if the fabric was constructed, a smaller number of contexts would 

be used, meaning less context memory is required, and thus smaller area is required. As 

explained in [74], the value of II also has a strong influence on the achievable instructions per 

cycle (IPC), which dictates the overall performance of the device. 
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In this way, DRESC takes the parallelized code from IMPACT-I and maps it to the ADRES-

based architecture. DRESC produces a schedule for the execution of each accelerated loop, as 

well as the assignment of each instruction to specific functional units. A l l of the information 

required for configuring the ADRES-based architecture, including register file accesses and 

multiplexer select lines, is generated by DRESC. 

3.3 Design Space Explored in This Thesis 

This section describes the design space explored in this thesis. In particular, it identifies the 

parameters that are varied in the experiments. 

3.3.1 Parameters 

Table 3.1 shows a list of the architectural parameters that describe the register files in the 

baseline architecture for both a 4x4 array and an 8x8 array. In Chapter 5, one parameter is 

varied at a time, and the impact on area and performance is measured. The range investigated 

for each parameter is also shown in Table 3.1. 

Besides the "closest" interconnect architecture, the "full" and "empty" interconnect architectures 

are also used in some experiments. The "full" architecture describes an array of functional units 

in which each functional unit is connected to every other functional unit. The "empty" 

architecture describes the opposite; each functional unit has no direct connection to any other 

functional unit, but only connections from each functional unit to the global register files, which 

is typical in general-purpose VLIW processors. 
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Table 3.1: Architectural Parameters Used in This Thesis 

Parameter Value in Baseline 
Architecture 

Range Considered in 
Chapter 5 

Global 
Register 
Files 

Number of FUs connected to 
each register file 

4 (4x4 array) 
8 (8x8 array) 

4 to 16 (4x4 array) 
8 to 64 (8x8 array) 

Global 
Register 
Files 

Number of read and write 
ports per register file 

4* (4x4 array) 
8* (8x8 array) 

4* to 16* (4x4 array) 
8* to 64* (8x8 array) Global 

Register 
Files 

Number of FUs with ports to 
the register file and to main 
memory 

4 (4x4 array) 
8 (8x8 array) 

4 to 16 (4x4 array) 
8 to 64 (8x8 array) 

Global 
Register 
Files 

Number of registers per 
register file 

16 (4x4 array) 
64 (8x8 array) 

4 to 48 (4x4 array) 
8 to 48 (8x8 array) 

Local 
Register 
Files 

Number of FUs connected to 
the read and write ports on 
each register file 

5 per read port 
1 per write port 

1 or 5 per read port 
1 or 5 per write port Local 

Register 
Files 

Number of read ports per 
register file 1 •1 to 6 

Local 
Register 
Files 

Number of registers per 1 ^ 
register file | Oto 16 

* There are twice as many read ports on the Data Global Register File. 

3.4 Summary 

In this chapter, the ADRES-based architecture has been described in detail. Then the capabilities 

of the LMPACT-I and DRESC compilers were presented in relation to how they are used to map 

C programs on the ADRES-based architectures. The chapter concluded with a discussion of the 

parameter values which will be varied when we explore the design space for the ADRES-based 

architectures. 
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Chapter 4 

EXPERIMENTAL METHODOLOGY 

This chapter describes the flow used to perform experiments on the ADRES-based architectures. 

The metrics chosen for evaluating the experimental results are also presented. 

4.1 Experimental Flow 

The design flow for mapping C programs to the ADRES architecture, using LMPACT-I and 

DRESC, have already been described in Chapter 3. This section will explain how the 

experimental architectures are incorporated into the overall flow. Then SCRAP, a tool useful for 

manipulating architectures, will be introduced along with the V H D L model that is included in 

SCRAP. Lastly, a description of the benchmark kernels will be given. 

4.1.1 Overall Flow 

In the overall flow shown in Figure 4.1, C benchmark programs are compiled using LMPACT-I 

and DRESC. DRESC uses an extensible Markup Language (XML) architecture description file 

during compilation. This same architecture description is used to estimate the area using an area 

model. Note that the area model is affected by the number of contexts, given by the iteration 

interval (II) produced by DRESC. After the instructions per cycle (LPC) is extracted from 

DRESC's output files and the area is estimated, we divide the LPC by the area estimate to 

compute the number of instructions per cycle per unit area. 
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4.1.2 SCRAP 

Steve's Coarse-grained Reconfigurable Architecture Program (SCRAP) is a tool that was 

developed to ease the specification of new architectures and to provide an area estimate. SCRAP 

contains an architecture generator and part of an area model. It takes as input a description in a 

custom SCRAP format and converts it into the standard X M L architecture description that is 

recognizable by DRESC. Manipulating the architecture in its own internal format, SCRAP then 

produces a V H D L description of the architecture. Enhancements made as part of this work 

include the generation of the X M L architecture description, the addition of global register files to 

the V H D L description, a transition to a modular VHDL description, and part of the area model. 
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With the new modular VHDL description, only the top-level entity is customized for each 

architecture, while the modules representing parameterized functional units, multiplexers, 

configuration memory, and registers are unchanged. 

4.2 V H D L Model 

A Very High Speed Integrated Circuits Hardware Description Language (VHDL) model was 

developed for the ADRES-based architecture and included in SCRAP. The VHDL model was 

specified at the register-transfer level (RTL), and synthesized using Synopsys using generic 

standard-cells. This section describes how the functionality of our architectures was specified. 

4.2.1 Functional Units 

The A L U in each functional unit was implemented using a switch-case block that performed 

different operations on the input data based on the operation code. While arithmetic, logical, 

shift, compare, predicate, and multiplication instructions were easy to specify, the division and 

remainder operations were left unimplemented. There are two reasons for this: (1) there is no 

standard synthesis of a divider available from Synopsys; and (2) the paper describing ADRES 

[3] does not mention the presence of dividers. For divisions by powers of two, an arithmetic shift 

right instruction would suffice. For other types of divisions, subroutines can use shifts, 

comparisons, and subtractions to perform long division one bit at a time. Note that certain 

commercial DSP processors do not perform integer division in a single cycle, but have single-

cycle instructions that can be used to perform long division one bit at a time [83, 84, 85]. 

Immediate data for each functional unit was stored in 32 bits of context memory. With several 

contexts and 16 or 64 functional units, one can see that this quickly becomes a significant 
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memory overhead. In fact, an estimated 12 to 23% of the chip area was occupied by this context 

memory for immediate data according to Table 1.1. 

4.2.2 Multiplexers 

Multiplexers were specified behaviourally in VHDL; Synopsys infers multiplexers and 

implements them. Multiplexers were used frequently as part of larger blocks such as the input 

multiplexers to functional units or the output multiplexers of register files and context memory. 

As for control signals that depend on multiplexers, constant 0 and constant 1 inputs were added 

to allow DRESC to directly specify the value of the control bit, such as the write enable signal 

for a register fde. 

4.2.3 Register Files 

Register files were implemented using D flip-flops, and the write and read logic using logic gates 

and multiplexers. Static random-access memory (SRAM) cells were not used, as it was not clear 

how to specify them in register-tranfer level (RTL). This will have a large impact on the area of 

the register files, since a D flip-flop may require 60 to 80 pm 2 compared to an S R A M cell which 

has an area that is closer to 10 pm 2. For register files with multiple write ports, it was assumed 

that each individual register would only be written by one write port at a time, as this is a 

restriction that must be enforced at compile time. 

4.2.4 Context Memory 

Context memory was implemented using D flip-flops arranged in the form of long chains of shift 

registers, one chain for each context. Each context is selected by a large multiplexer that chooses 

a set of configuration bits from the shift registers. The select bits for this multiplexer that control 
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the context are modeled as input ports to the chip; control circuitry is presently not implemented 

on the chip. Alternatively, SRAM cells could have been used to store the configuration bits 

instead of D flip-flops. Since SRAM cells are smaller than D flip-flops, this could result in area 

savings. Moreover, the output of the multiplexers are not currently registered, whereas adding a 

pipeline stage could potentially reduce 1 ns from the critical path at the cost of a small increase 

in area. The pipeline stage would be a good future enhancement, since the context changes every 

clock cycle, it would reduce glitches and hence glitch power, and the operation of the context 

memory is unaffected. However, it does not affect the functionality and so we leave it for now. 

4.2.5 Benchmarks 

Common DSP functions, including a fast Fourier transform (FFT), an inverse discrete cosine 

transform (IDCT) solver, and an MPEG-2 decoder were used as benchmark programs. These 

programs were compiled using IMPACT-I [73] and loops with high amounts of loop-level 

parallelism were extracted. Twenty such loops were obtained. 

4.3 Evaluation Metrics and Techniques 

This section describes the three metrics that we will use to evaluate our architectures: area, 

performance, and instructions per cycle per unit area. 

4.3.1 A r e a Est imat ion 

To estimate the area, we used a parameterized area model. In [79], the V H D L models of 

potential architectures were synthesized using Synopsys, and the area metric was obtained from 

this synthesized fabric. In this research, we consider larger architectures, and thus the flat 

synthesis of these architectures is not feasible. Instead, we use the following approximation. For 
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each component in the reconfigurable fabric (multiplexer, configuration memory, register, etc.) 

we created a parameterized model based on measurements obtained from Synopsys for a 0.18pm 

T S M C process. By adding the area contributions of each architectural component, we estimated 

the overall area of each potential architecture. To verify the accuracy of this approximation, we 

constructed and synthesized six full architectures as in [79]. In selecting these six architectures, 

we attempted to "span" the design space as much as possible. We then compared the post-

synthesis areas obtained from Synopsysy to the area estimates from our approximate scheme. 

As shown in Figure 4.2, the area estimates correlate well with the post-synthesis results. 
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Figure 4.2: Validation of Area Model 

There are at least four limitations to the area model. First, since branch, load, store, and other 

instructions were not implemented in the V H D L model, 0.02 mm 2 was added to the total chip 

area for each functional unit that required these instructions. Second, the absence of dividers in 
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the VHDL model means the area is underestimated by our area model. However, since this 

affects all of the architectures that we compare, the relative area efficiency of the different 

register file architectures can still be evaluated fairly. Third, register files and context memory 

are typically constructed from SRAM cells, instead of D flip-flops. Fourth, it does not take into 

consideration the possibility of sharing logic between the read and write ports [86]. 

An adjusted area model was developed to address the third and fourth limitations. We introduce 

adjusted areas where the D flip-flops that occupy 60-80 pm 2 are replaced with hypothetical 

S R A M cells that are approximately the same size as a NAND gate and occupies only 10 pm . 

The adjusted areas will also model the sharing of logic between read and write ports by assuming 

that read ports do not require extra area when an equivalent number of write ports are already 

present. These adjustments to the area are intended to err towards lower areas so that the 

adjusted areas can provide a lower bound for the post-synthesis area of the register files. 

However, the adjusted areas are not intended for approximating areas of full custom layouts of 

these architectures, which may be twice as small, but the adjusted areas reflect a smaller 

percentage contribution due to memory, which is likely in full custom layouts. With the original 

area model providing an upper bound for the area contributions of register files and the adjusted 

area providing a lower bound, we can be confident that conclusions, that we find concerning 

register files, which hold for both area models are: 1) valid for register files constructed using 

S R A M cells; and 2) robust towards changes to the area model. 

4.3.2 Performance Measurements 

To quantify the performance of the device, we measured the maximum instructions per cycle 

(IPC) that could be achieved for each loop on each architecture. In simple pipelined reduced 
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instruction set computer (RISC) processors, the maximum possible instructions per cycle is one. 

This can be achieved by starting the execution of a new instruction at each successive clock 

cycle. In superscalar processors and very long instruction word (VLIW) processors, the 

instructions per cycle can often exceed one because they have several functional units to execute 

instructions in parallel. The reconfigurable array in ADRES usually achieves much higher 

instructions per cycle. 

This does not take into account differences in the clock cycle time of each architecture (different 

architectural options might have slightly different cycle times). However, we believe that the 

delay of the A L U dominates the critical path delay. The multiplication operation, in particular, 

consumed 7.4 ns of the 10.4 ns in the critical path of the baseline 4x4 array architecture. Since 

we do not modify the A L U in this thesis, we expect that all architectures investigated here have 

similar critical path delays. 

There are at least three ways to lower this minimum clock cycle time imposed by the multiplier. 

First, the multiplier can be pipelined. However, pipelining increases the complexity of the 

compiler, control logic must be added, and conditional execution necessitates the flushing of the 

pipeline [14]. These difficulties must be overcome to make pipelining possible and are beyond 

the scope of this thesis, which deals specifically with the architectures based on the ADRES 

architecture, which has single-cycle multipliers. Second, the multiplier can be implemented 

using custom layout to reduce the delay. However, custom layout can also be applied to all other 

parts of the circuit, so that the cycle time decreases by a similar factor. In such a situation, the 

relative contribution of the multiplier to the critical path delay would remain quite large. Third, 
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multipliers can be removed altogether. However, the experiments in this thesis pertain 

exclusively td ADRES-based architectures that have multipliers, so this third alternative would 

not be applicable to the framework chosen for this thesis. 

While performance enhancements can be made to the architecture model presented in this 

chapter by using custom layout, the relative performance is more important for this thesis, where 

architectural features are compared and studied. 

4.3.3 Instructions Per Cycle Per Unit Area 

We use the metric, number of instructions per cycle per unit area, to rank our architectures. The 

same metric, the number of instructions per cycle per mm2, or IPC/mm2, was used by Wilton et 

al. [79] in the evaluation of the interconnect architectures for ADRES-based architectures. It is 

similar to the functional density (D) metric, l/(area x time), introduced by Wirthlin et al. [87] 

and the computational density metric, (number of bit-operations)/(area x time), used for 

evaluating experiments with PipeRench [2]. Another metric used by Lee et al., performance/cost, 

not only divides the instruction count by area and time, but also takes cache misses into account 

[88]. 

This metric is similar to area-delay product, which is used to determine the best area-speed 

tradeoff [89]. However, area-delay product considers the minimum clock cycle time but not the 

number of cycles required to execute a program. 

55 



4.4 Summary 

In this chapter, the experimental flow was presented in conjunction with a tool called SCRAP 

and an associated VHDL model. Then an area model used to estimate area, the measure of 

performance that we are interested in, and the metric that balances performance and area, 

instructions per cycle per unit area, were discussed. 
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Chapter 5 

RESULTS 

In this chapter, we experimentally investigate the effects of changing the number of registers in 

each register file, the number of ports on each register file, and the manner in which the register 

files are connected to the functional units. 

5.1 Global Register Files 

This section presents results for the global register files. 

5.1.1 Degree of Connectivity 

We first consider the manner in which the these register files are connected to the rest of the 

device. In the baseline architecture, the global register files are connected to the top row of FUs 

only. Each FU in this top row has dedicated read and write ports to each of the two global 

register files. Table 5.1 compares the performance and area of this baseline 4x4 array 

architecture to an architecture in which more than just the top row of FUs are connected to each 

global register file. The number of read and write ports on the global predicate file were held 

constant at four, while on the global data register file, the number of read ports was held constant 

at eight and the number of write ports was held constant at four. Thus, as more FUs are 

connected to the register file, these FUs need to connect shared signals from the read ports to 
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their input multiplexers and connect their output signals to multiplexers at the write ports. In 

Table 5.1, if x FUs are connected to the register file, there are x/4 FUs sharing each port. 

As the table shows, increasing the reach of the global register file decreases the number of 

instructions per cycle required to complete the loop (averaged over all benchmark loops). This 

makes sense; the more paths there are between the global register files and the computing 

elements, the easier it is for DRESC to find an efficient schedule. The area required to 

implement the architecture goes up as the number of connections increases. As more 

connections are available, DRESC is able to find schedules which have a lower iteration interval 

(II), meaning less context memory is required (on average). This decrease in area is more 

significant than the small increase in size in the input multiplexers of the FUs and the additional 

area required for multiplexers at the write ports of the global register files. Combining the area 

and IPC results, we see that the most significant incremental improvement is achieved when the 

degree of connectivity is increased from four FUs to eight FUs, but connecting the global 

register files to as many FUs as possible results in the best IPC per unit area (this ratio is 

recorded in the fifth column of Table 5.1). This can also be observed from the results obtained 

using the adjusted area model in the two rightmost columns. Therefore, we recommend that all 

sixteen FUs in the 4x4 array be connected to the global register files by sharing eight read ports 

and four write ports on the data global register file and four read ports and four write ports on the 

predicate global register file. 
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Table 5.1: Impact of Changing the Number of FUs that can Connect to the Global Register Files (4x4 Array) 

Number of FUs IPC No. of 
Contexts 

Area 
(mm2) 

IPC / 
mm2 

Adjusted 
Area (mm2) 

IPC/ 
mm2 

4 FUs (Baseline) 7.23 7.2 2.10 3.45 1.44 5.03 
8 FUs 9.24 5.9 1.91 4.85 1.24 7.43 
12 FUs 9.58 5.8 1.90 5.05 1.23 7.76 
16 FUs 9.74 5.7 1.90 5.14 1.23 7.91 

Table 5.2: Impact of Changing the Number of FUs that can Connect to the Global Register Files (8x8 Array) 

Number of FUs IPC No. of 
Contexts 

Area 
(mm2) 

IPC/ 
mm 2 

Adjusted 
Area (mm2) 

IPC/ 
mm2 

8 FUs (Baseline) 13.59 3.8 6.48 2.10 3.74 3.63 
16 FUs 19.68 2.7 5.81 3.39 3.07 6.40 
24 FUs 20.40 2.5 5.73 3.56 3.00 6.81 
32 FUs 20.38 2.5 5.76 3.54 3.02 6.76 
40 FUs 20.40 2.5 5.79 3.53 3.03 6.73 
48 FUs 20.88 2.5 5.78 3.61 3.02 6.91 
56 FUs 21.90 2.4 5.71 3.84 2.94 7.44 
64 FUs | 20.85 2.5 5.83 3.58 3.06 6.82 

We repeated the experiment for an 8x8 array and obtained the results in 

Table 5.2. In this case, the number of read and write ports in the each register file was held 

constant at eight (except for the data global register which has 16 read ports). As with the 4x4 

array, we see that the most significant incremental improvement is achieved when the degree of 

connectivity is increased from eight FUs to sixteen FUs, but connecting the global register files 

to 56 FUs results in the best IPC per unit area. This table shows the same trends as Table 5.1, 

with the exception of the last entry, which corresponds to an architecture in which the global 

register files are connected to all 64 FUs. In this case, DRESC found schedules that are actually 

worse than the 56 FU case. We have observed that often the optimization algorithm within 

DRESC has problems dealing with architectures with too much flexibility; a better 

understanding of this is on-going work. However, with the exception of this point, the 
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conclusion is the same: the more connected the global register file, the better. Therefore, we 

recommend that 56 of the 64 FUs in the 8x8 array be connected to the global register files by 

sharing sixteen read ports and eight write ports on the data global register file and eight read 

ports and eight write ports on the predicate global register file. 

5.1.2 Number of Ports 

In this subsection, we vary the number of ports on the global register files. Note that the number 

of ports shown in the following tables are the number of predicate read ports, predicate write 

ports, and data write ports. There are twice as many data read ports as stated in the tables. 

Table 5.3: Impact of Changing the Number of Ports on the Global Register Files (4x4 Array) 

Number of Ports IPC No. of 
Contexts 

Area 
(mm2) 

IPC/ 
mm2 

Adjusted 
Area (mm2) 

IPC/ 
mm2 

4* (Baseline) 7.23 7.2 2.10 3.45 1.44 5.03 
8* 9.38 5.8 2.06 4.56 1.32 7.09 
12* 9.57 5.7 2.21 4.32 1.40 6.81 
16* 9.57 5.7 2.40 3.99 1.51 6.33 

* There are twice as many read ports on the data global register files. 

Table 5.4: Impact of Changing the Number of Ports on the Global Register Files (8x8 Array) 

Number of Ports IPC No. of 
Contexts 

Area 
(mm2) 

IPC/ 
mm2 

Adjusted 
Area (mm2) 

IPC/ 
mm2 

8* (Baseline) 13.59 3.8 6.48 2.10 3.74 3.63 
16* 21.40 2.5 6.69 3.20 3.56 6.01 
24* 22.29 2.3 7.65 2.91 4.12 5.41 
32* 22.56 2.3 8.72 2.59 4.78 4.72 
40* 23.35 2.2 9.71 2.41 5.37 4.35 
48* 23.35 2.2 10.77 2.17 6.02 3.88 
56* 23.35 2.2 11.83 1.97 6.68 3.50 
64* 23.35 2.2 12.89 1.81 7.34 3.18 
* There are twice as many read ports on the data global register files. 
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Table 5.3 shows the results for a 4x4 array. In these results, all FUs that are connected to the 

global register file have a set of dedicated read and write ports. The greatest improvement in the 

IPC per unit area is observed when the number of ports is doubled compared to the baseline case. 

However, compared to Table 5.1, we can see that there is very little increase in the achievable 

IPC (in fact, it is smaller in some cases, likely because of DRESC's difficulty dealing with very 

flexible architectures as described above). There is a significant area penalty, however, in 

increasing the number of ports. Therefore, we conclude that increasing the number of read and 

write ports to match the number of FUs connected to the global register file is not a good idea. 

Instead, sharing ports between multiple FUs results in a better performance per unit area. Table 

5.4 shows the results for an 8x8 array; the same trends apply. The adjusted area model also 

confirms these conclusions. Therefore, we recommend no increase in the number of read and 

write ports on the global register files, but to share existing read and write ports in the manner 

described in Section 5.1.1. 

5.1.3 Number of VLIW F U s 

The FUs in the top row of the reconfigurable array are connected to the global register files with 

read and write ports. These FUs also form part of the general-purpose VL IW processor and have 

access to main memory through load and store instructions. When we increase the number of 

FUs that have both the global register file ports and main memory ports, we give more FUs the 

same functionality as the top row FUs. Therefore, we refer to any FU connected to read and 

write ports on the global register files and main memory ports as "VLIW FUs". Although the 

implementation of the read and write ports for main memory are not defined in this thesis, the 

VLIW FUs can read and write from main memory using load and store instructions. The results 

of increasing the number of VLIW FUs are shown in Table 5.5 for the 4x4 array and in Table 5.6 
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for the 8x8 array. The "empty" interconnect architecture, as defined in Section 3.3.1, is also 

studied here because an architecture where every FU is connected to the global register files and 

to main memory without any other interconnect is just like a typical VLIW processor. 

Table 5.5: Impact of Changing the Number of FUs that can Connect to the Global Register Files and Main 
Memory (4x4 Array) 

Interconnect 
Architecture 

Number of 
VLIW FUs IPC No. of 

Contexts 
Area 

(mm2) 
IPC/ 
mm 2 

Adjusted 
Area (mm2) 

IPC/ 
mm2 

Closest [79] 

4 FUs 
(Baseline) 7.23 7.2 2.10 3.45 1.44 5.03 

Closest [79] 8 FUs 9.74 5.7 2.11 4.62 1.38 7.07 Closest [79] 
12 FUs 9.90 5.5 2.36 4.21 1.55 6.40 

Closest [79] 

16 FUs 9.90 5.5 2.62 3.78 1.73 5.71 
Empty 16 FUs 9.66 5.9 2.53 3.81 1.66 5.80 

Table 5.6: Impact of Changing the Number of FUs that can Connect to the Global Register Files and Main 
Memory (8x8 Array) 

Interconnect 
Architecture 

Number of 
VLIW FUs IPC No. of 

Contexts 
Area 

(mm2) 
IPC / | Adjusted 
mm2 Area (mm2) 

IPC/ 
mm2 

Closest [79] 

8 FUs 
(Baseline) 13.59 3.8 6.48 2.10 3.74 3.63 

Closest [79] 

16 FUs 21.30 2.5 6.85 3.11 | 3.72 5.73 

Closest [79] 
24 FUs 24.59 2.2 7.90 3.11 4.37 5.62 

Closest [79] 32 FUs 27.75 1.9 8.94 3.10 5.02 5.53 Closest [79] 
40 FUs 30.33 1.8 11.08 2.74 6.36 4.77 

Closest [79] 

48 FUs 30.99 1.8 11.21 2.76 1 6.49 4.77 

Closest [79] 

56 FUs 30.99 1.8 12.42 2.49 7.30 4.25 

Closest [79] 

64 FUs 30.99 1.8 13.63 2.27 | 8.11 3.82 
Empty 64 FUs 22.54 2.4 13.63 1.65 | 8.15 2.77 

Table 5.5 shows the same general trend as Table 5.3. As for FUs which are connected to global 

register file ports and main memory ports, the IPC of the 4x4 array increases to just below 10. As 
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well, the area remains fairly constant from four VLIW FUs to eight VLIW FUs. When the 

number of VLIW FUs is increased even more, the area increases, but the IPC does not increase 

significantly. Clearly all of the architectures outperform the baseline architecture. While the 

results in this subsection give better performance than in Subsections 5.1.1 and 5.1.2, 

comparable IPC can be achieved in these previous subsections with smaller area. This is also 

confirmed by the results obtained using the adjusted area model. 

In the 8x8 array case, Table 5.6 shows the same trend as Table 5.4. The IPC increases as the 

number of VLIW FUs increases. When the number of VLIW FUs increases to 40 FUs, the IPC 

begins to saturate. Having more than 40 VLIW FUs increases the area without any significant 

improvement to the IPC. The most striking difference between Table 5.6, where the number of 

VLTW FUs increases, and Table 5.4, where the number of FUs connected to global register file 

ports increases, is the maximum possible IPC. With many VLIW FUs with both global register 

file ports and main memory ports, architectures can achieve an IPC of 30, while architectures 

having many FUs with global register file ports only can reach an IPC of 23, which is 25% 

smaller. This 33% performance boost from adding main memory ports confirms the observation 

by Ienne et al. [75] that having only one memory port results in 15-20% slower performance 

than having many memory ports. While there is a corresponding increase in area, making it less 

favourable than the shared connectivity discussed in Subsection 5.1.1, increasing the number of 

VLIW FUs is still an option for increasing performance if area is allowed to increase. 

Table 5.5 and Table 5.6 show the results for the "empty" interconnect architecture where every 

FU is a VLTW FU. As shown in the tables, this architecture has a higher IPC than the baseline 
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architecture. In the 4x4 array results in Table 5.5, the architecture with the "empty" interconnect 

architecture performs worse than having 8, 12, or 16 FUs with the "closest" interconnect 

architecture. The area overhead is also greater than the 8 and 12 FU cases, but smaller than the 

16 FU case. In the 8x8 array in Table 5.6, the architecture with the "empty" interconnect 

architecture occupies the most area and has the worst LPC per mm2. Therefore, the "empty" 

interconnect architecture is inferior to the "closest" interconnect architecture for comparable 8x8 

arrays because it requires much more area. This comparison between the "closest" and "empty" 

interconnect architectures demonstrates how important the programmable interconnect is to 

achieving high performance, especially for arrays with larger numbers of FUs. This is also 

confirmed by the results obtained using the adjusted area model. 

We recommend no increase to the number of VLIW FUs beyond the baseline case, where the top 

row of FUs in the reconfigurable array have read and write ports on the global register files and 

read and write ports for main memory. As well, we recommend that the "empty" interconnect 

architecture not be used for 4x4 and 8x8 array architectures. 

5.1.4 Register File Size 

Figure 5.1 shows the impact of the number of registers in each global register file on the 

performance and area of a 4x4 array. For a very small number of registers, DRESC is unable to 

find efficient loop implementations, leading to low IPC values and many contexts (and hence 

large area). As the number of registers increases, the LPC increases; however, beyond 16, the 

increase is outweighed by the extra area required for the registers. With 12 or 16 registers in each 

register file, results in terms of LPC per unit area within 2% of the maximum achieved when 

there are 14 registers. 
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Figure 5.1: Impact of Changing the Number of Registers in Each Global Register File in the 4x4 Array 
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Figure 5.2: Impact of Changing the Number of Registers in Each Global Register File in the 8x8 Array 
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Figure 5.2 shows the results for an 8x8 array. In this case we see that 14 registers in each global 

register file are sufficient to achieve peak performance. Intuitively, we might have thought that a 

larger array would prefer a larger number of global registers than a smaller array, yet the best 

choice of register file size is the same in both cases. This may be because in the larger array, 

there are more FUs, and hence more local register files. The larger number of local register files 

may mean that smaller global register files are suitable. 

We recommend having 14 registers in each global register file for both the 4x4 and 8x8 array 

architectures. 

5.2 Local Register Files 
This section presents results for the local register files. As shown in Figure 3.2, there are two 

local register files in each FU: one 32-bit wide register file to store data values; and one 1-bit 

wide register file to store predicate values. 

5.2.1 Degree of Connectivity 

As described in Chapter 3, in the baseline architecture, the local register files are connected to 

the computing resources as follows. The input of each local register file (within a FU) is driven 

by the unregistered output of the A L U within the local FU. The read port of each local register 

file, however, is connected to six sinks: the two inputs of the A L U in the local FU, and one input 

in each of four neighbouring FUs (the four FUs diagonally adjacent to the local FU). 

We evaluated the performance and area for this baseline architecture and three other 

architectures. Architecture 1, shown in Figure 5.3, is less connected than the baseline 
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architecture, shown in Figure 3.7; in Architecture 1, each local register file read port drives only 

the two inputs to the local ALU; it does not drive ALUs in neighbouring FUs. Figure 5.4 shows 

Architecture 2, in which the write port of each local register file are connected to the output of 

the local A L U as well as the outputs of four neighbouring ALUs, while the read port of the 

register file is connected to only the local ALU. Architecture 3 is the most flexible; it contains 

the flexible register write port connection pattern of Architecture 2 and the flexible register read 

port connection pattern of the baseline architecture. 
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Figure 5.3: Local Register File Connection Pattern for Architecture 1 
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Figure 5.4: Local Register File Connection Pattern for Architecture 2 

From Table 5.7, with the exception of Architecture 1, we can see that all architectures provide 

roughly the same IPC, and there is only a small difference in the area. Results for an 8x8 array 

are shown in Table 5.8. In this case, there was a larger improvement in performance when both 

the read port and the write port were connected to multiple FUs. These observations also apply 

to the results obtained using the adjusted area model. 
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Table 5.7: Impact of Changing the Local Register File Connection Pattern (4x4 Array) 

Local Register File 
Connection Pattern IPC No. of 

Contexts 
Area 

(mm2) 
IPC/ 
mm2 

Adjusted 
Area (mm2) 

IPC/ 
mm2 

Architecture 1 6.01 13.3 3.03 1.98 2.36 2.55 
Baseline 7.23 7.2 2.10 3.45 1.44 5.03 
Architecture 2 7.25 7.2 2.15 3.37 1.47 4.94 
Architecture 3 7.21 7.2 2.21 3.26 1.53 4.73 

Table 5.8: Impact of Changing the Local Register File Connection Pattern (8x8 Array) 

Local Register File 
Connection Pattern IPC No. of 

Contexts 
Area 

(mm2) 
IPC/ 
mm2 

Adjusted 
Area (mm2) 

IPC / 
mm 2 

Architecture 1 11.95 4.4 6.67 1.79 3.93 3.04 
Baseline 13.59 3.8 6.48 2.10 3.74 3.63 
Architecture 2 13.16 4.0 6.68 1.97 3.85 3.42 
Architecture 3 14.29 3.6 6.67 2.14 3.84 3.72 

Comparing the global register file results in Table 5.1 and 

Table 5.2 to the local register file results in Table 5.7 and Table 5.8, we see that the impact of 

increasing the connectivity of the global register file has a much larger impact on the 

performance of the array than does increasing the connectivity of the local register files. It is 

clear that the global register files, which serve as the storage locations for input and output 

variables for each loop, as well as a central repository, play a critical role in the storage and 

sharing of data. This is less true of the local register files. 

We recommend that the degree of connectivity found the baseline 4x4 array architecture be used, 

which have the flexible connection pattern for the read ports of the local register files. For the 
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8x8 array architecture, we recommend using the flexible connection patterns for both read ports 

and write ports of the local register files, which characterizes Architecture 3. 

5.2.2 Number of Ports 

In the previous results, although the register file read and write ports may have multiple sources 

and sinks, there is only one read port and one write port on each register file. Table 5.9 shows 

the impact of changing the number of read ports in the baseline 4x4 array architecture. Since, in 

the baseline architecture, the read port drives up to six A L U inputs, the register file could 

potentially make use of up to six read ports. As Table 9 shows, however, one read port provides 

sufficient performance. Table 5.10 shows that this also holds for an 8x8 array, but two read 

ports is also a good choice. These observations also apply to the results obtained using the 

adjusted area model, except that having two read ports is clearly the better choice for the 8x8 

array according to the adjusted area model. Therefore, we recommend having one read port per 

local register file in the 4x4 array architecture and two read ports per local register file in the 8x8 

array architecture. 

Table 5.9: Impact of Changing the Number of Read Ports on the Local Register Files (4x4 Array) 

Number of 
Read Ports LPC No. of 

Contexts 
Area 

(mm2) 
IPC/ 
mm2 

Adjusted 
Area (mm2) 

IPC/ 
mm 2 

1 (Baseline) 7.23 7.2 2.10 3.45 1.44 5.03 
2 7.20 7.2 2.18 3.31 1.44 4.99 
3 7.16 7.3 2.26 3.18 1.51 4.75 
4 7.28 7.2 2.30 3.17 1.54 4.74 
5 7.36 7.0 2.35 3.13 1.57 4.68 
6 7.22 7.2 2.43 2.97 1.64 4.40 
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Table 5.10: Impact of Changing the Number of Read Ports on the Local Register Files (8x8 Array) 

Number of IPC No. of Area IPC/ Adjusted IPC/ 
Read Ports IPC Contexts (mm2) mm2 Area (mm2) mm2 

1 (Baseline) 13.59 3.8 6.48 2.10 3.74 3.63 
2 13.90 3.7 6.61 2.10 3.68 3.78 
3 13.76 3.8 6.84 2.01 3.84 3.58 
4 13.59 3.8 7.07 1.92 4.00 3.39 
5 13.73 3.8 7.23 1.90 4.10 3.35 
6 13.55 3.8 7.42 1.83 4.26 3.18 

5.2.3 Register File Size 

Figure 5.5 and Figure 5.6 show the impact of the number of registers in the local register files on 

IPC, area, and IPC per unit area for the 4x4 and 8x8 arrays, respectively. As the figures show, 

only a small number of registers are required in each local register file. In the 4x4 array, two 

registers are sufficient according to area estimates obtained using the area model; using the 

adjusted area model, we find that having two, three, or four registers produce results within 1% 

of the maximum IPC per unit area. In the 8x8 array, having one or two registers per local register 

file both produces results within 1% of the maximum LPC per unit area according to the area 

estimates obtained using the area model; using the adjusted area model, having one to five 

registers per local register file produces results within 3% of the maximum IPC per unit area. 

We recommend having two registers per local register file for both the 4x4 and 8x8 array 

architectures. 
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Figure 5.5: Impact of Changing the Number of Registers in Each Local Register File in the 4x4 Array 

Figure 5.6: Impact of Changing the Number of Registers in Each Local Register File in the 8x8 Array 
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5.2.3.1 Interconnect and Register File Size 

In this subsection, we will consider how the local register file size interacts with the interconnect 

architecture and the size of the reconfigurable array. 

Two different interconnect architectures are studied: "closest" and "full". Since the previous 

experiment suggested that only two registers per local register file were required to achieve the 

maximum IPC, the architectures tested had 0, 1, or 2 registers per data local register file and 0, 1, 

or 2 registers per predicate local register file. We tested the following combinations: 2 registers 

per data local register file and 2 registers per predicate local register file; 2 and 1; 2 and 0; 1 and 

1; 1 and 0; and 0 and 0. The number of rows and columns of functional units in the 

reconfigurable array was also varied. The sizes studied were 4x4, 4x6, 4x8, 6x4, 6x6, 6x8, 8x4, 

8x6, and 8x8. A l l of these architectures had four read ports for each local data register file and 

local predicate register file. While these different array sizes provided a large family of 

architectures, the focus is on the interaction between the interconnect architecture and the size of 

the local register files. 

Figure 5.7 shows the results. This figure was obtained by plotting the architectures in a 

scatterplot, where the x-axis represents the area and the y-axis represents the average achievable 

IPC. Two data points have been removed because the results for the two architectures were 

incomplete due to DRESC's inability to produce the output file. Figure 5.7 shows that the choice 

between the "closest" and "full" interconnect architectures affects LPC and area in a way that 

applies to different sizes of the local register files and the size of the reconfigurable array. From 
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the scatterplot, it appears that "full" architecture achieves higher IPC than the "closest" 

architecture. This confirms results published by Wilton et al. in [79]. 

Effect of Interconnect Topology on IPC and Area 

o 
CL 

20 

18 

16 

14 

12 

10 

8 

6 

4^ ir 

• 
• • • • 

• • 

y*£*v ' 
• • • 

4 6 

Area (sq. mm) 

• Closest 

A Full 

10 

Figure 5.7: Effect of Interconnect Architecture on IPC and Area 

Figure 5.8 shows results for a superset of the architectures shown in Figure 5.7 with the same 

two data points omitted. The architectures represented in the scatterplot are classified by the size 

of the data and predicate local register files. Similar to the previous set of architectures, these 

architectures have array sizes of 4x4, 4x6, 4x8, 6x4, 6x6, 6x8, 8x4, 8x6, and 8x8. Some of these 

architectures have the full interconnect architecture and some have the closest interconnect 

architecture. As well, each local register file has four read ports. Unlike the architectures in 
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Figure 5.7, some of these architectures have write ports on the global data register file and the 

global predicate register file. Like the baseline architecture, some of these architectures have one 

row of V L I W FUs , while others have more V L I W FUs , as discussed in Subsection 5.1.3. The 

scatterplot shows that the area and performance are governed by factors such as array size and 

interconnect to a greater degree than by the sizes of the local register files. It also suggests that 

the best sizes of local register files vary depending on these other factors. 
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Figure 5.8: Effect of Local Register File Size on IPC and Area 

5.2.3.2 Register Utilization 

It is surprising that such a small number of local registers should be included within each register 

file, especially considering the larger number of local registers (4 to 128) reported for other 

architectures (see Table 5.11). To gather insight into this, the register utilization of the local 
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register files was extracted from the loop scheduling and mapping information, and recorded in 

Table 5.12 and Table 5.13. These tables show the total number of variables stored in all of the 

local register files, the average number of variables stored in each local register file, and the peak 

number of variables stored in any single local register file in the 4x4 and 8x8 arrays. These 

results were gathered for an architecture with 128 registers per local register file, so as to 

maximize the local register file utilization. DRESC failed to produce one of the output files for 

benchmarks one, three, and five for the 4x4 array architecture, so the corresponding slots in 

Table 5.12 indicate n/a. 

Table 5.11: Number of Local Registers in Each Configurable Functional Unit in Various Published 
Architectures 

Published Local Registers 
Architectures PerFU 

MorphoSys [1] 4 
REMARC [5] 12 

PADDI [6] 12 
PADDI-II [10] 12 
DReAM [15] 16 
Montium [14] 16 

MaRS [9] 16 
CRISP [13] 32 

MATRIX [11] 128 

Table 5.12 shows that the peak number of local data registers used from a single register file (the 

most highly utilized register file in the 4x4 array) is eight registers. It also shows that the local 

predicate register file usage is much lower, with at most four registers being used from a single 

register file. In this set of benchmarks, 0 to 53 data variables and 0 to 12 predicate variables are 

stored in local register files. The peak usage of a single register file ranges from 0 to 8 for the 

data register files and 0 to 4 for predicate register files. These low utilizations explain the why 
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increasing the size of the local register files does not significantly improve performance. Table 

5.13 shows similar results for the 8x8 array, except that total number of variables used in the 

array is greater. 

Table 5.12: Per Benchmark Register Utilization (4x4 Array) 

Total Number Peak Number 
of Variables in of Variables 

Benchmark Kernels A l l Local RFs in a 
Local RF 

data pred data pred 

LDL ldl 1 n/a n/a n/a n/a LDL 
fnorm 2 2 0 1 0 

FFT radix4 3 n/a n/a n/a n/a 
IDCT vertical 4 53 0 8 0 
8x8 horizontal 5 n/a n/a n/a n/a 

dequantize 
intra 6 2 1 1 1 

dequantize 
non-intra 7 3 1 1 1 

saturate 8 24 12 6 4 
add block 
non-intra 9 17 4 4 1 

MPEG-2 
Decoder 

add block 
intra 10 6 4 2 1 

MPEG-2 
Decoder clear block 11 0 0 0 0 MPEG-2 
Decoder fast idct 12 27 0 4 0 

13 17 0 6 0 
14 4 1 2 1 

form 
component 
prediction 

15 15 0 2 0 
form 

component 
prediction 

16 8 0 3 0 form 
component 
prediction 17 13 0 3 0 

form 
component 
prediction 

18 6 0 2 0 
19 34 0 6 0 
20 15 0 3 0 
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Table 5.13: Per Benchmark Register Utilization (8x8 Array) 

Total Number Peak Number 
of Variables in of Variables 

Benchmark Kernels A l l Local RFs in a 
Local RF 

data pred data pred 

LDL ldl 1 105 0 6 0 LDL 
fnorm 2 2 0 1 0 

FFT radix4 3 26 0 4 0 
IDCT vertical 4 80 0 6 0 
8x8 horizontal 5 58 10 4 2 

dequantize 
intra 6 3 1 1 1 

dequantize 
non-intra 7 3 0 1 0 

saturate 8 22 12 2 3 
add block 
non-intra 9 12 4 2 2 

MPEG-2 
Decoder 

add block 
intra 10 10 3 2 2 

MPEG-2 
Decoder clear block 11 0 0 0 0 MPEG-2 
Decoder fast idct 12 28 0 2 0 

13 13 0 2 0 
14 0 0 0 0 

form 
component 
prediction 

15 10 0 2 0 form 
component 
prediction 

16 10 0 2 0 form 
component 
prediction 17 8 0 2 0 

form 
component 
prediction 

18 4 0 1 0 
19 24 0 3 0 
20 6 0 2 0 

With the clear difference in usage between data and predicate register files, further area savings 

could possibly be obtained by having fewer predicate registers than data registers. On the other 

hand, since their area cost is relatively small, having larger predicate register files may be an 

inexpensive way to improve performance. Initial results have shown that varying the size of the 
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predicate register files without varying the s i z e of the data register files has a small impact on 

both area and performance. 

We may select the peak number of registers used by the benchmarks, found in columns four and 

five of Table 5.12 and Table 5.13, as the number of registers to have in each local register file to 

ensure that the register file size does not restrict the achievable IPC. In the 4x4 array, there 

would be eight registers per data local register fde and four registers per predicate local register 

fde. In the 8x8 array, there would be six registers per data local register file and three registers 

per predicate local register file. Since this represents the maximum usage of the local register 

files, local register files in these architectures do not need to be any larger. However, this is 

usually unnecessary because DRESC can assign the variables to available local registers in other 

functional units or to available global registers without reducing the performance in terms of 

IPC. 

We may also choose to have enough local registers across the reconfigurable array to store the 

total number of variables listed in columns two and three of results in Table 5.12 and Table 5.13. 

In the 4x4 array, there would be four registers per data local register file and one register per 

predicate local register file. In the 8x8 array, there would be two registers per data local register 

file and one register per predicate local register file. However, this does not guarantee that there 

are sufficient local registers to achieve the maximum IPC, as there may be particular local 

register files that need more registers than others. 
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It is possible to further reduce the size of the local register files. Having insufficient local register 

files will not directly cause DRESC to fail to schedule the loop for an architecture. If there is no 

place to store the variables, DRESC could find another schedule with a larger iteration interval 

(II) and a lower IPC. However, the maximum number of iteration intervals is restricted by the 

number of contexts that can be stored in the limited context memory. 

We have shown that the maximum potential utilization of local register files is small. However, 

these results do not indicate the best choice for the local register file size, but the peak register 

file usage establishes an upper bound. The best choice must be found by experiments such as 

those performed in Section 5.2.3. 

5.3 Summary 
In this chapter, we experimentally measured the impact of architecture parameters related to the 

global and local register files on the area and performance of our coarse-grained reconfigurable 

array. We found that increasing the number of shared connections to the global register files 

improved performance significantly and even reduced the area. Adding more VLIW FUs boosts 

performance by up to 33%. As well, low utilization of the local register files explain why one or 

two registers in each local register file are sufficient to achieve good performance. 

Our recommendations concerning the register file architecture are summarized in Table 5.14. 

While the optimal value of each parameter may be sensitive to interactions with other 

modifications to the baseline architecture, we do not conduct a new set of experiments to tune 

the parameters starting from these recommendations because of three reasons: 1) we are more 

interested in general trends rather than absolute parameter values; 2) absolute parameter values 
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for this specific ADRES-based architecture may not be relevant to other coarse-grained 

reconfigurable architectures or different implementations of the ADRES architecture; and 3) the 

variation is expected to be small. 

Table 5.14: Recommendations for Architectural Parameters 

Parameter Value in Baseline 
Architecture Recommended Value 

Global 
Register 
Files 

Number of FUs connected to 
each register file 

4 (4x4 array) 
8 (8x8 array) 

16 (4x4 array) 
56 (8x8 array) 

Global 
Register 
Files 

Number of read and write 
ports per register file 

4* (4x4 array) 
8* (8x8 array) 

4* (4x4 array) 
8* (8x8 array) Global 

Register 
Files 

Number of FUs with ports to 
the register file and to main 
memory 

4 (4x4 array) 
8 (8x8 array) 

4 (4x4 array) 
8 (8x8 array) 

Global 
Register 
Files 

Number of registers per 
register file 

16 (4x4 array) 
64 (8x8 array) 14 

Local 
Register 
Files 

Number of FUs connected to 
the read and write ports on 
each register file 

5 per read port 
1 per write port 

5/read port, 1/write port 
(4x4 array) 

5/read port, 5/write port 
(8x8 array) Local 

Register 
Files Number of read ports per 

register file 1 1 (4x4 array) 
2 (8x8 array) 

Local 
Register 
Files 

Number of registers per 
register file 4 2 

* There are twice as many read ports on the Data Global Register File. 

The results have shown that similar trends are noted with both the area estimated directly with 

our area model and the area determined after adjusting for the size of SRAM cells and read ports. 

This demonstrates the robustness of our findings. We also found that the adjusted area was 

significantly smaller but followed the same general pattern. This highlights the fact that memory 

is a key aspect of our area model that needs to be refined, while indicating that there is good 

fidelity between the two area models. 
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Chapter 6 

ENHANCED ARCHITECTURES 

In this chapter, we use the recommendations from Chapter 5 to propose two new architectures, 

one containing a 4x4 array and one containing an 8x8 array. These architectures are optimized 

to have a good performance-area tradeoff. We also want to construct high-quality architectures 

for comparison in future research. 

We use the unadjusted area model in this chapter. Although it may be inaccurate in terms of 

SRAM cell size or read port sizes, it is based on numbers obtained from Synopsys, unlike the 

adjustments that were made to test for robustness. As well, the results from Chapter 5 show that 

the unadjusted area model gives more conservative results and has good fidelity with the 

adjusted area model. 

6.1 New 4x4 Array Architecture 
In this section, we propose a new 4x4 array architecture and compare it against the baseline 

architecture. 

6.1.1 Selected Parameters 

Our new 4x4 array architecture has the following parameters: 
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1. A l l sixteen functional units are connected to the global register files using shared read 

and write ports. 

2. The predicate global register file has four read ports and four write ports; the data global 

register file has eight read ports and four write ports. 

3. The global register files each have 14 registers. 

4. The local register files each have one read port and one write port. 

5. The local register file's read port is connected to five neighbouring functional units 

including its local functional unit. 

6. The local register files each have two registers. 

6.1.2 Results 

Table 6.1 shows a comparison between the enhanced 4x4 array (new) architecture and the 

baseline (old) architecture broken down by benchmark loop. As the table shows, the enhanced 

architecture achieves -6% to 100% higher IPC for individual benchmarks and 32% higher IPC 

on average, over the set of benchmarks, than the baseline architecture. The enhanced architecture 

also requires -1% to 29% less area for individual benchmarks and 16% less area on average, over 

the set of benchmarks, than the baseline architecture. The LPC per mm2 is -6% to 152% higher 

for individual benchmarks and 56% higher on average, over the set of benchmarks, in the 

enhanced architecture than in the baseline. 

The average IPC per mm2 for the enhanced architecture is higher than that of all other ADRES-

based 4x4 array architectures reported in Chapter 5 for the unadjusted area model. The highest 

average IPC per mm2 reported in Chapter 5 was 5.14 for an architecture in Section 5.1.1. In this 

architecture, all sixteen functional units were connected to the global register files using shared 
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using shared read and write ports. This indicates that sharing the global register file ports with all 

sixteen functional units generated 49% of the average 56% improvement, while reducing the size 

of the global and local register files generated the remaining 7% improvement. Therefore, the 

degree of connectivity to the global register files is of critical importance to the register file 

architecture. 

Table 6.1: Per Benchmark Comparison Between Results for Enhanced and Baseline Architectures with a 4x4 
Array 

Benchmark Kernels 
Perfoi 

(D 
rmance Number of 

Contexts 
Area 

(mm2) 
I P C / 
mm 2 Benchmark Kernels 

new old new old new old new old 

L D L ldl 1 8.94 9.47 18 17 3.72 3.69 2.41 2.57 
L D L 

fnorm 2 5.00 4.38 7 8 1.95 2.23 2.56 1.97 
FFT radix4 3 9.88 7.18 8 11 2.11 2.71 4.67 2.65 

IDCT 8x8 vertical 4 10.33 9.30 9 10 2.27 2.55 4.54 3.65 
IDCT 8x8 horizontal 5 11.08 11.08 13 13 2.92 3.04 3.80 3.65 

MPEG-2 
Decoder 

dequantize 
intra 6 8.50 5.67 2 3 1.15 1.41 7.37 4.01 

MPEG-2 
Decoder 

dequantize 
non-intra 7 9.50 6.33 2 3 1.15 1.41 8.24 4.47 

MPEG-2 
Decoder 

saturate 8 11.14 8.67 7 9 1.95 2.39 5.70 3.63 

MPEG-2 
Decoder 

add block 
non-intra 9 11.00 7.33 4 6 1.47 1.90 7.46 3.85 

MPEG-2 
Decoder 

add block 
intra 10 10.00 8.00 4 5 1.47 1.74 6.78 4.60 

MPEG-2 
Decoder 

clear block 11 8.00 4.00 1 2 0.99 1.25 8.05 3.19 MPEG-2 
Decoder fast idct 12 9.88 9.88 8 8 2.11 2.23 4.67 4.44 

MPEG-2 
Decoder 

form 
component 
prediction 

13 10.25 6.83 4 6 1.47 1.90 6.95 3.59 

MPEG-2 
Decoder 

form 
component 
prediction 

14 6.50 4.33 2 3 1.15 1.41 5.63 3.06 

MPEG-2 
Decoder 

form 
component 
prediction 

15 9.50 8.14 6 7 1.79 2.06 5.30 3.94 

MPEG-2 
Decoder 

form 
component 
prediction 

16 8.25 5.50 4 6 1.47 1.90 5.60 2.89 

MPEG-2 
Decoder 

form 
component 
prediction 17 10.80 9.00 5 6 1.63 1.90 6.61 4.73 

MPEG-2 
Decoder 

form 
component 
prediction 

18 10.00 6.00 3 5 1.31 1.74 7.61 3.45 

MPEG-2 
Decoder 

form 
component 
prediction 

19 11.17 7.44 6 9 1.79 2.39 6.23 3.11 

MPEG-2 
Decoder 

form 
component 
prediction 

20 10.75 6.14 4 7 1.47 2.06 7.29 2.97 
Arithmetic Mean 9.52 7.23 5.9 7.2 1.77 2.10 5.38 3.45 

84 



While improvements were reported for most benchmarks, benchmark one experienced a 

decrease in IPC and an increase in area, due to its need for one more context. This is probably 

caused by the reduction in the sizes of the global and local register files, which may make it 

more difficult for DRESC to find an efficient schedule. 

6.2 New 8x8 Array Architecture 
In this section, we propose a new architecture based on an 8x8 array of functional units. 

6.2.1 Selected Parameters 

This architecture has the following parameters: 

1. Fifty-six of the 64 functional units are connected to the global register files using shared 

read and write ports. 

2. The predicate global register file has eight read ports and eight write ports; the data 

global register file has sixteen read ports and eight write ports. 

3. The global register files each have 14 registers. 

4. The local register files each have two read ports and one write port. 

5. The local register file's read ports and write port are connected to five neighbouring 

functional units including its local functional unit. 

6. The local register files each have two registers. 

6.2.2 Results 

Table 6.2 shows a comparison between the enhanced 8x8 array (new) architecture and the 

baseline (old) architecture broken down by benchmark loop. As the table shows, the enhanced 

architecture achieves -29% to 200% higher IPC for individual benchmarks and 42% higher IPC 
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on average, over the set of benchmarks, than the baseline architecture. The enhanced architecture 

also requires -7% to 38% less area for individual benchmarks and 23% less area on average, over 

the set of benchmarks, than the baseline architecture. The IPC per mm2 is -33% to 383% higher 

for individual benchmarks and 88% higher on average, over the set of benchmarks, in the 

enhanced architecture than in the baseline. 

Table 6.2: Per Benchmark Comparison Between Results for Enhanced and Baseline Architectures with an 
8x8 Array 

Benchmark Kernels 
Perfo finance 

PC) 
Number of 
Contexts 

Area 
(mm2) 

IPC/ 
mm 2 Benchmark Kernels 

new old new 
8 

old new old new old 

L D L ldl 1 20.12 20.12 
new 

8 8 8.37 9.14 2.40 2.20 L D L 
fnorm 2 17.50 8.75 2 4 4.37 6.60 4.00 1.33 

FFT radix4 3 19.75 13.17 4 6 5.71 7.87 3.46 1.67 

LDCT 8x8 vertical 4 15.50 18.60 6 5 7.04 7.24 2.20 2.57 LDCT 8x8 horizontal 5 20.57 28.80 7 5 7.71 7.24 2.67 3.98 

MPEG-2 
Decoder 

dequantize 
intra 6 17.00 8.50 1 2 3.71 5.33 4.58 1.59 

MPEG-2 
Decoder 

dequantize 
non-intra 7 9.50 9.50 2 2 4.37 5.33 2.17 1.78 

MPEG-2 
Decoder 

saturate 8 26.00 15.60 3 5 5.04 7.24 5.16 2.16 

MPEG-2 
Decoder 

add block 
non-intra 9 22.00 14.67 2 3 4.37 5.97 5.03 2.46 

MPEG-2 
Decoder 

add block 
intra 10 40.00 13.33 1 3 3.71 5.97 10.79 2.23 

MPEG-2 
Decoder clear block 11 8.00 8.00 1 1 3.71 4.70 2.16 1.70 MPEG-2 
Decoder fast idct 12 19.75 19.75 4 4 5.71 6.60 3.46 2.99 

MPEG-2 
Decoder 

form 
component 
prediction 

13 20.50 10.25 2 4 4.37 6.60 4.69 1.55 

MPEG-2 
Decoder 

form 
component 
prediction 

14 13.00 6.50 1 2 3.71 5.33 3.51 1.22 

MPEG-2 
Decoder 

form 
component 
prediction 

15 28.50 14.25 2 4 4.37 6.60 6.51 2.16 

MPEG-2 
Decoder 

form 
component 
prediction 

16 16.5 11.00 2 3 4.37 5.97 3.77 1.84 

MPEG-2 
Decoder 

form 
component 
prediction 17 27.00 13.50 2 4 4.37 6.60 6.17 2.04 

MPEG-2 
Decoder 

form 
component 
prediction 

18 15.00 10.00 2 3 4.37 5.97 3.43 1.68 

MPEG-2 
Decoder 

form 
component 
prediction 

19 22.33 16.75 3 4 5.04 6.60 4.43 2.54 

MPEG-2 
Decoder 

form 
component 
prediction 

20 14.33 10.75 3 4 5.04 6.60 2.84 1.63 
Arithmetic Mean 19.64 13.59 2.9 3.8 4.97 6.48 3.95 2.10 
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The average IPC per mm2 for the enhanced architecture is higher than that of all other ADRES-

based 8x8 array architectures reported in Chapter 5 for the unadjusted area model. The highest 

average IPC per mm 2 reported in Chapter 5 was 3.84 for an architecture in Section 5.1.1. In this 

architecture, 56 of the 64 functional units were connected to the global register files using shared 

read and write ports. This indicates that sharing the global register file ports with 56 of the 64 

functional units generated 83% of the average 88% improvement, while reducing the size of the 

global and local register files, adding a flexible connection pattern for the write ports of the local 

register file, and adding a second read port to each local register file combined to generate the 

remaining 5% improvement. Therefore, the degree of connectivity to the global register files is 

of critical importance to the register file architecture. 

While improvements were reported for most benchmarks, benchmarks four and five experienced 

decreases in IPC and increases in area, due to their need for one or two more contexts. This is 

most likely caused by the reduction in the sizes of the global and local register files, which may 

make it more difficult for DRESC to find an efficient schedule. 

6.3 Comparison Between the New 4x4 and 8x8 Array Architectures 
From Table 6.1 and Table 6.2, we see that the 8x8 array has both higher performance and a 

larger chip area than the 4x4 array. Since the 8x8 array has four times as many functional units 

and register files as the 4x4 array, it might have been expected to have four times the 

performance and occupy an area that is four times as large. Instead, the performance and the area 

of the 8x8 array are roughly double and triple that of the 4x4 array, respectively. The 

performance is most probably limited by the parallelism available in the benchmark loops. It is 

possible that loop unrolling would expose more parallelism and lead to greater increases in 
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performance. The area, on the other hand, shows an interesting side effect of increasing the IPC. 

Even though more area was required for additional functional units and other architectural 

elements that increase the IPC, this was partially offset by the corresponding decrease in the 

iteration interval (II), which is equal to the number of contexts. Because fewer contexts are 

required, less area is needed for configuration memory. The LPC per mm2 was -8% to 152% 

higher, and 36% higher on average, in the 4x4 array than in the 8x8 array for the benchmark 

loops tested. 

6.4 Summary 

In this chapter, two enhanced architectures were presented, which combined the best aspects of 

the ADRES-based architectures reported in Chapter 5. The enhanced 4x4 array architecture has 

an IPC per unit area that is -6% to 152% higher than the baseline 4x4 array architecture and 56% 

higher on average. The enhanced 8x8 array has an LPC per unit area that is -33% to 383% higher 

than the baseline 8x8 array architecture and 88% higher on average. The degree of connectivity 

to the global register files was also shown to be the greatest contributor to the improvements and 

is therefore of critical importance to register file architectures. When they were compared against 

each other, the enhanced 8x8 array architecture had better performance, but the enhanced 4x4 

array architecture demonstrated -8% to 152% higher IPC per unit area and 36% higher IPC per 

unit area on average. 
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Chapter 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

In this thesis, we have investigated the impact of the global and local register file architecture on 

a reconfigurable system based on the ADRES architecture from the Interuniversity 

Microelectronics Centre (IMEC). The register files consume a significant amount of area on the 

reconfigurable device, and their architecture has a strong impact on the performance. Starting 

with a baseline architecture, we considered the global and local register files separately, and 

found that: 

• The global register files should be tightly connected to as many functional units as possible. 

Not all functional units need dedicated read and write ports, however. 

• A global register fde depth of 14 provides the best performance per unit area, for the 

assumptions made for this architecture. 

• The local register files should be connected to several neighbours, although the importance 

of this is small compared to the importance of providing wide access to the global register 

files. 

• One read port and one write port are sufficient for each local register file, but it is also good 

to have two read ports. 
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• The local register files should be small; two registers per register file is sufficient. 

Using these results, we developed two new register file architectures that have on average 56% 

higher performance per unit area for a 4x4 array and on average 88% higher performance per 

unit area for an 8x8 array compared to baseline 4x4 and 8x8 array architectures. On individual 

benchmarks, the new 4x4 array had -6% to 152% higher performance per unit area than the 

baseline 4x4 array and the new 8x8 array had -33% to 383% higher performance per unit area 

than the baseline 8x8 array. The sharing of the global register file ports with all or most of the 

functional units contributed most of the improvements to the instructions per cycle per unit area. 

Although the numerical results are specific to this processor, the trends that we observe may 

apply to many other reconfigurable systems that have global or local register files. 

7.2 Future Work 

This section describes some further work that could enhance the understanding of the structure 

and connectivity of register files in coarse-grained reconfigurable architectures. 

First, the interaction between the register files and the main memory interface and the 

interconnections between functional units in the array can be investigated in more detail. The 

results in this thesis have shown that adding more functional units with both global register file 

ports and main memory ports can boost performance up to 33%, though at the cost of larger area. 

Second, the "closest" and "full" interconnect architectures can be investigated to see how the 

optimal number of local register files is dependent on the interconnect architecture. As well, the 

register utilization for different interconnect architectures can be studied. 
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Third, the value of register files versus the value of other architectural elements can be 

compared. The number of functional units, the interconnect architecture, and the number of main 

memory ports have all been shown to significantly increase performance. In this thesis, we have 

tried to optimize the performance per area ratio. Having done that, we can change the problem to 

achieving a certain level of performance with the minimum area, or achieving the maximum 

performance with a specified area. 

7.3 Contributions of This Work 

The contributions of this thesis are as follows: 

1. We presented a methodology for evaluating ADRES-based reconfigurable architectures. 

This included the use of the IMPACT-I [73] and DRESC [74] compilers used for 

ADRES [3]. As well, the SCRAP tool used in [79] was enhanced to generate an X M L 

architecture file, modularized VHDL code that included global register files, and a 

parameterized area model that could produce area estimates that correlate well with 

Synopsys post-synthesis area estimates, but runs in less than a second. 

2. We performed experiments on the degree of connectivity of global and local register files 

to the functional units and found that shared connectivity of every functional unit to the 

global register files is vital to obtain high performance. 

3. We verified that increasing the number of read and write ports on global and local 

register files improves performance, but at the cost of significant area. 

4. We performed sweeps of the size of global and local register files and discovered in 

particular that only very few registers are needed in each local register file. This was 

attributed to the low utilization of local register files by the benchmark kernels. 
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5. We constructed enhanced 4x4 array and 8x8 array architectures that applied this new 

knowledge about register files to achieve on average 56% and 88% higher instructions 

per cycle per unit area, respectively, compared to the baseline architectures. For 

individual benchmarks, the enhanced 4x4 array architecture increased the instructions per 

cycle per unit area by -6% to 152% and the enhanced 8x8 array architecture increased the 

instructions per cycle per unit area by -33% to 383%. 

A portion of this work has been published in [16]. 
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