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Abstract 

The error performance of the Alamouti simple transmit diversity (STD) scheme in the 

presence of time-selectivity and channel estimation errors has been previously studied. 

In this thesis, results are obtained for two other scenarios: (1) non time-selective, spatially 

correlated Rayleigh fading with imperfect channel estimation and (2) time-selective, 

spatially correlated Rayleigh fading with perfect channel estimation. Exact expressions 

for the conditional bit error rates given the estimated channel gains are derived and 

approximations for average bit error rates over correlated Rayleigh fading are obtained 

using matrix transformations. 

It is found that STD performance generally degrades with increase in channel estimation 

errors, decrease in temporal correlation and increase in spatial correlation. The 

degradation is greatest with channel estimation errors, then time-selectivity and thirdly 

with spatial correlation. 
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1 Introduction 

The first and second generation (1G and 2G) cellular systems have enabled wireless voice 

communications. However, the data services in 1G and 2G systems are limited mostly to 

text messaging. Besides voice service, 3G systems are supposed to support higher data 

rates and make it possible to offer enhanced services such as web browsing, transmission 

of high quality images and videos, etc. 

Due to the nature of the voice and text messaging services, the requirements for downlink 

and uplink capacities are similar. However, the battery life of mobile stations (MS) 

restricts the maximum power at which a MS can transmit and results in a poor uplink than 

downlink. As a result, many enhancements have been introduced on the base station (BS) 

side, such as increasing the BS receiver sensitivity or exploiting receive diversity at the BS 

to improve the uplink. In 3G systems, the services are more data-centric than 

voice-centric. Most of the services, such as web browsing, picture downloading and 

video downloading, require more downlink capacity than uplink capacity. However, in 

3G systems, the uplink data throughput is higher than that of the downlink [ 1 ]. The data 

throughput on the uplink in macro cells is typically 1,040 kbps whereas that on the 

downlink is only 660 kbps. Therefore, improving the downlink capacity becomes more 

important in 3G systems. 

Because of the power, size, weight and cost limitations on the MS side, improving receiver 

sensitivity or implementing receive diversity to improve the downlink may not be practical. 
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However, on the BS side, since receive diversity has already been widely deployed, there 

are usually two receive antennas installed on the BS side. We can achieve transmit 

diversity on the downlink by duplexing the downlink transmission to the receive antennas. 

Since a BS can serve hundreds to thousands of MSs, the use of transmit diversity at the BS 

is a more cost-effective solution to improving downlink qualify. 

Much research work including techniques such as time diversity, frequency diversity, 

polarization diversity" [ 2 ], space-time coding [3], orthogonal transmit diversity [4], 

time switched transmit diversity [ 5 ], selective transmit diversity [ 5 , 6 ] and transmit 

adaptive array [ 4 ] has been carried out in order to achieve high-speed and reliable data 

transmission using transmit diversity. Some of these technologies have been proposed 

for 3G evolutions [ 7 ]. 

Previous works on transmit diversity can be classified into two categories: open loop 

diversity and closed loop diversity." Closed loop transmit diversity relies on feedback 

information from the MS while open loop transmit diversity does not use feedback 

information. Generally, the performance of closed loop transmit diversity is better, as the 

channel state information can be used to calculate optimal transmit weights, which makes 

it possible to maximize the desired received signal power at the desired MS and minimize 

the interference to other MSs. However, closed loop diversity requires the MS to send 

back channel information and this requires extra signalling overhead. 

Open loop diversity does not have this requirement. It is a "one size fits all" approach. 
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The advantages of this kind of diversity are two-fold: signalling overhead is lower and the 

MS receiver complexity is relatively low. Some of the open loop transmit diversity 

techniques, such as orthogonal transmit diversity (OTD), space-time spreading (STS) and 

space-time transmit diversity (STTD), have already been adopted in 3G standards. 

STTD has been included in the 3GPP standard [ 8 ] while the other two methods, OTD and 

STS, are part of the 3GPP2 standard [ 9 ]. STS is a variation of STTD. In STTD, the 

symbols are transmitted over two time slots using a single Walsh code; whereas in STS, 

the symbols are transmitted over a single time slot using two Walsh codes [ 1 0 ] . In 

STTD, the symbols are transmitted using the simple transmit diversity (STD) scheme 

proposed by Alamouti [ 1 1]. 

STD is well-known for its simplicity in decoding. It has been the subject of many studies 

with some focused on the BER performance of STD in different channel conditions. 

These studies include the performance of STD with imperfect channel estimation, STD in 

time-selective Rayleigh-fading channels and STD in spatially correlated Rayleigh fading 

[ 1 2 , 1 3 ] . They show that the performance of STD generally degrades as channel 

estimation errors, time-selectivity and spatial correlation increase. In [ 1 3 ], different 

detection strategies, such as maximum-likelihood (ML), decision-feedback (DF) and 

zero-forcing (ZF), are used to assess the BER performance assuming perfect channel 

estimation. The results show that the ML detector significantly outperforms the other 

two detectors. 
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In this thesis, we analyze the performance degradation of STD with the receiver structure 

in [ 1 1 ] in different channel conditions. 

1.1 STD Scheme 

Transmit Antenna 1 

Noise 

Channel 
Estimator 

h, 

Combiner 
Decision 

Device 
Combiner 

. w Decision 

Device 
Combiner 

w 

Decision 

Device 

Transmit Antenna 2 

Fig. 1.1 S T D scheme 

In the STD scheme, two information bits s0 and s] are sent simultaneously by transmit 

antennas 1 and 2 in two consecutive bit periods. It is assumed that the bandwidth of the 

signal is narrow compared to the channel coherence bandwidth and the channel coherence 

time is much larger than T, so that the channels can be considered as non 

frequency-selective and non time-selective [ 1 4 ] . In the first bit period, s0 is sent by 



8x 82 V + 
n0 

* — * * V + * 
Jr. .82 ~8i_ nT 

transmit antenna 1 and s{ is sent by antenna 2; in the second bit period, - s* and s*0 

are sent by transmit antennas 1 and 2 respectively. The signals r0 and rT at the receive 

antenna in these two bit periods can be expressed as 

(i.i). 

where g,, g 2 are samples of the channel gains from the two transmit antennas to the 

receive antenna and n0 and nT are samples of thermal noise and interference at the 

receive antenna at time 0 and time T. 

After both signals are received, the receiver combines the received signals using the 

estimated channel gains. It is assumed in [ 1 1 ] that the channel estimation is perfect, 

i.e., h\ = g, and h2 - g2. Then the combiner can generate two combined signals 

s0 and ?, as 

8 \ 8 2 ° (1.2) 
.82 -8ijlrT. 

Substituting (1.1) into (1.2), we obtain 

— ̂ - I |2 I |2 

\8i\ +\82\ 

0 

0 'so' + 81 82 n0 

|2 1 |2 + * * 
8i\ +\82\ _ .82-81. 

(1.3) 

The combined signals ?n and are then sent to a maximum likelihood detector to 

recover the original bits s0 and s{. It is shown in [ 1 1 ] that with perfect channel 

estimation, STD has the same BER performance as 2-branch MRC for a fixed value of the 

radiated power per transmit antenna. 



1.2 Generalized STD Expression 

In the original STD scheme, several assumptions are made: (1) the fading channels from 

the two transmit antennas to the receive antenna are spatially uncorrected; (2) each 

channel is frequency flat and non time-selective; (3) the channel estimator provides perfect 

channel estimations. To better reflect conditions in a real system, the.following model 

changes are introduced: 

Transmit Antenna 1 

Channel 
Estimator 

h i : " : -

Combiner 
Decision 

Combiner 
Device 

V . , ! ' ^ : : * 

Transmit Antenna 2 

Fig. 1.2 S T D in time-selective fading with imperfect channel estimation 

Due to time-selectivity, G> and G 2 may be different at time 0 and 

time T. To reflect this, they are denoted by G 1 0 , G 2 0 , GlT and G2T 

respectively. 

Due to spatial correlation, G I 0 and G 2 0 , GlT and G2T may not be 
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independent. 

The corresponding estimated channel gains are denoted by Hl0, H20, 

H1T and H2T, 

Following the STD scheme, we can rewrite (1.1) and (1.2) as 

8io 820 V + 
"n0~ 

* • — * * + * 
Jr. _8lT nT 

~?o~ A o h2T ' 

_n20 -h 
* 

JT. 

(1.4) 

(1.5) 

By substituting (1.4) into (1.5), we get the general expression for the signals at the output 

of the combiner as 

_ nio8io n2r82T nw820 n

2TglT 

n20810 ~ niT82T n2o820 ~*~ nvr8\T 
+ 

h w h2T 

h*20-hlT 

(1.6) 

Depending on various conditions, (1.6) can be simplified to different forms which can be 

used for signal detection and system performance evaluation. 

In the case of non time-selective and perfect channel estimation, we can rewrite (1.6) as 

0 
2 2 

Si + # 2 

0 
2 2 

81 + 82 

po + 
* 

81 82 n0 po + * u. 8*2 nT 

(1.3) 

which is the same expression as in [ 1 1 ]. The BER for spatially uncorrelated channels 

is given in [ 1 1 ] and the BER for spatially correlated channels is given in [ 1 2 ]. 

In the case of time-selective, spatially uncorrelated fading with imperfect channel 
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estimation, the expression of the signals from the combiner is the same as (1.6). In this 

case, the actual and estimated channel gains of channel 1 are independent of those of 

channel 2. Although the inter-channel interference term (h*wg2Q -h2Tg*lT)sl and 

(^20c?io - n\T§*2T)so
 a r e non-zero in contrast to (1.3), each of the four product terms within 

the parentheses are products of two independent random variables. So, the BER 

performance can be evaluated exactly as in [ 1 2 ]. 

For STD in non time-selective, spatially correlated fading with imperfect channel 

estimation and STD in time-selective, spatially correlated fading with/without channel 

estimation errors, the BERs are more difficult to obtain because the terms within the 

parentheses are products of two dependent random variables. In this thesis, we study the 

performance for two cases: (1) STD in non time-selective and spatially correlated fading 

with channel estimation errors; (2) STD in time-selective and spatially correlated fading 

with perfect channel estimation. 
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2 STD in Non Time-selective, Spatially Correlated 

Fading with Imperfect Channel Estimation 

This chapter evaluates the performance of STD with BPSK modulation in non 

time-selective, spatially correlated Rayleigh fading with imperfect channel estimation. 

The variance of any complex Gaussian random variable, i.e., X, will be defined as the 

variance of either its real or imaginary component, denoted as o \ in this thesis. 

2.1 System Model 

In the original STD scheme, the channel gains from two transmit antennas are assumed 

independent. Theoretically, the channels are spatially independent if the antenna spacing 

is greater than A/2. However, in reality, an antenna spacing of 50A and 100/1 are 

necessary at the BS [1 5 ]. If the antennas are allocated too close to each other, the 

channels can no longer be considered independent. In this section, we discuss the 

performance of STD when the channels are spatially correlated. 

Similar to the original STD scheme, we use two transmit antennas and one receive antenna, 

but here the two transmit antennas are very close to each other. We denote the gains of 

the two diversity paths as Gj and G 2 , which both are zero mean complex Gaussian 

random variables with variance aG . Gx and G 2 are spatially correlated with 

correlation coefficient ps. As to [ 1 6 ], ps is defined as 
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p, = (2.1) 
4E[\ GX I2 ]£[| G 2 | 2] 

Consequently, the covariance matrix of GX and G 2 , CG can be expressed as 

ol Ps°l (2.2) 

In the original STD scheme, the channel gains are known. However, in this model, the 

channel gains are unknown. They have to be estimated by channel estimator from the 

received signals. We denote the estimations of the channel gain G, and G 2 as H{ 

and H2, where Hl and H2 are zero mean complex Gaussian random variables. Each 

pair of Hi and G, are correlated. Following [ 1 7 ], we define Ht as ht = g,+z,, 

where Z, is the channel estimation error. Z(. is a zero mean independent complex 

Gaussian random variable with variance o\ and independent of G , , i.e., 

It can be shown that the variance of/7, is rj 2 = o 2
G + 6\. The correlation coefficient 

between G,. and Hi is defined as pe, where 

E[Z,. Z* ] = E[G,. z ; ] = E[G,. Z] ] = 0 ( i , j =1, 2 ) (2.3) 

Pe = 

£[G,.(G,.+Z,.)'] 
V(2cr2)(2tT2) 

(2.4) 

Therefore 
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o2H=o2

Glp2

e (2.5) 

and 

a\ = (1/'p2 -Y)02

G 

The covariance of Hl and H2 is expressed as 

E[ Hl Hi ]=E[(Gl+Zl)(G2 + Z2)*] = 2ps a2

G 

Now we can get the covariance matrix of Hi and H2 as 

C H = 
.Ps°C 

PsVG 

Pi 

(2.6) 

(2.7) 

(2.8) 

Similarly, we can prove 

E[G, H*2]=E[Gl(G2 + Z2)*] = 2ps <j2

G 

E[G 2 H'l]=E[G2(G1+Z1)'] = 2ps o2

G 

(2.9) 

(2.10) 

Consequently, we can write the covariance matrix of HY, H2, G[ and G 2 as 

C = 

p] 
PsOl ol PsOl 

Pi 
PsOl ol 

°l PsOl ol PsOl 

PsOl PsOl ol 

(2.11) 

If we rewrite (1.16) according to this model, we have 
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KS\+Ks\ h*g2-h2gl 
KSx-Kg'i h2g2+hxg\ 

K k2 n0 

+ h*2-hx 

* h*2-hx 

(2.12) 

2.2 Performance Analysis Based on Estimated Channel 

Gains 

Since H{ and H2 are zero mean complex joint Gaussian random variables, based on 

their covariance matrix (2.8) we can write the joint pdf of H, and H2 as [ 1 8 ] 

l- exp(-±xlc-JxH) 
2;r(detCH) / 2 2 

(2.13) 

where X 7 , = [H{ H2] is the transpose of X H , a 2x1 column vector of random 

variables HX and H 2 . 

Similarly, we can write the joint pdf of / / , , H 2 , G, and G 2 as 

1 
PH,,H2,G,,G2(h\>h2'8l'82^ ~ (2.14) 

(2;r)2(detC) / 2 

where X T = [//, H2 GX G 2 ] is the transpose of X , a 4x1 column vector of 

random variables H X , H 2 , Gj and G 2 . 

Now that we know the joint pdf PH],H2,G„G2(ni'n2'8\'82) M & PH^HSK'K)> W E C A N 

write the joint pdf of G, and G 2 given HX = / i , and 7/2 = h2 as [ 1 9] 

(hl,h2,gl,g2) 
PG,G2\H,,HS8gi82 ^ 1 ^ 2 ) — 

PH],H2 (Kh) 
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27ta2

Dyll-l 

:exp 
(81 ~ m i ) ~2Pd(8i-"Q(g2 -m 2 ) + (g 2 -m 2 Y 

2c72

Dd-p/) 
(2.15) 

where 

\-p]pl 
(2.16) 

p'e[ps(\-pi

e)K+(\-P:P:)h2] 

l-plpt 
(2.17) 

2 a-p;)(i-psve

2) <7D = 2 „4 (2.18) 

Pd = 
P,<\-P:) 

2 „ 2 i-p;p 
(2.19) 

This joint pdf is in the form of a bivariate Gaussian pdf given by [ 1 8 ]. Hence, given 

Hx = hx and H2 = h2, Gx and G2 are correlated complex Gaussian random 

variables with means m, and m2, variance <Jp and correlation coefficient pd. 

Following the conditioned pdf, we can express gx, g2 by hx, h2 as 

g, = mx + dx = ahx + bh2 + dx 

g2 = m2 + d2 = bhx + ah2 + d2 

(2.20) 

2 2 2 2 2 

where a = ^e ^s^e , b = ^e^s „ ."' and D,; D7 are zero mean correlated 

complex Gaussian random variables with variance cr̂  and correlation coefficient pd. 

According to STD scheme, the signals received at time 0 and time Tcan be expressed as: 
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r0 = gls0 + g2

s

i+no ( 2 2 1 ) 

where n0 and nT are samples of channel noises, which are zero mean independent 

complex Gaussian random variables with variance o2

N . 

After receiving r 0 and rT, the signal can be decoded based on the value of s0 and sx, 

where 

5 0 =Vo+Vr ( 2 2 2 ) 

When the real part of s0 is greater than 1, s0 = 1 is selected; otherwise, s0 =-1 is 

selected. The same decision rule applies to the decoding of 

B y using (2.19) ~ (2.22), we can write sQ as 

~ | [2 I |2 * 
s0 = (as0 + bsx)\hx\ + (as0-bsx)\h2\ +2bs0hih2 

+ h*(dxs0 + d2sx) + h2{d*2sQ - dx*sx) + hxn0 + h2nT (2.23) 

Since s0 and sx are either +1 or -1 with equal probability, the chances of sx = s0 

and sx = —s0 are equal. Therefore, we can calculate the B E R of S T D as 

Pe = \(Pe,sr-s0 + Pe,sr-s0) (2-24) 

When s0 = sx, the decision variable from (2.23) can be expressed as 

Re(? 0 ) = [(a + b)\hx\2 +(a-b)\h2\2 +2bRe(h*h2)]s0 • 

+ Re[hx(dx + d2)]s0 + Re[h2(d*2 -d\)]s0 
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+ Re[hx n 0 ] + Re[h2nT ] (2.25) 

When hx and h2 are given, it is shown in Appendix A that Rc[h* (Dx + D2 )]s0, 

Re[h2 (D*2 - D*x )]s0, Re[/i*Af0] and Re[/z2A^] are zero mean independent Gaussian 

random variables with variances 2(1 +pd)Gl\hx\2 , 2(1-pd)al\h2\2 , G2

N|/z,|2 and 

c r 2 | / i 2 | 2 respectively. Thus, Re(?0) is the sum of [(a + b ) ^ 2 +(a-b)\h2\2 + 

2bRe(hfh2)]s0 and a zero mean independent Gaussian random variable with variance 

[2(1 + pd )G2

D + G2

n ]\hx | 2 + [2(1 - pd )G2

D + G2

n ]\h2\2. 

When s0 = sx = 1, there is an error if the decision variable is less than 0. Thus, we can 

express the error probability as 

= Q 
f (a + b)\hx\2+(a-b)\h2\2+2bRe(hxh2) ^ 

^[2(1 +Pd)G2

D +G2

N)\hl\2 +[2(1-pd)G2

D +G2

N ]\h2\2 

(2.26) 

When s0 = sx = - 1 , and if the decision variable is greater than 0, there is an error. So, 

the error probability can be expressed as 

f -[(a + b)\h§+(a-b)\h2^+2bRe(hlh2)\ ^ 

^[2(1 + P d )G2

D +G2

N}\h$+ [2(1 - P i )G2

D + G%\h§ 

= Q 
(a + b)\hx\ + (a-b)\h2\ + 2bRe(hxh2) 

^[2(1 +Pd)G2

D +G2

N ]\hx\2 +[2(\-Pd)G2

D +G2

N ]\h2\2 

(2.27) 

This is the same as (2.26). 

Similarly, when sx =- s0, we can get the decision variable as 



Re(?0) = [(a-b)\hx\2+(a + b)\h2\2+2bRe(h*lh2)]s0 

+ Re[hx (dx -d2)]s0 + Re[h2(d2 + dx )]s0 
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+ Re[hx n0 ] + Re[h2nT ] (2.28) 

and the corresponding error probability as 

P = Q 

f I 12 I ,2 . ^ 

(a-b)\hx\ +(a + b)\h2\ + 2bRe(hxh2) 

j[2(l-pd)cr2

D +CJ2

n ]\hx\2 +[2(\ +Pd)(j2

D + <72

N ]\h2\2 

(2.29) 

Therefore, given estimated channel gains hx and h2, we can write the error probability 

as 

P = Qi 

(a + fc)|/i,|2 +(a-Z?)|^2|2 +26Re(/z,*/z2) 

[̂2(1 + )<x2 + C T 2 | 2 + [2(1 - pd )a2

D + G2

N ]\h2 

+Q (a - b)\hx | 2 + (a + 6)|/i 21 2 + 2b Re(hxh2) 

[̂2(1 - P D ) C J 2

d + a2

N ]\hx\2 + [2(1 + pd )a2

D + CJ2

n ]\h2 

(2.30) 

By the same method, we can derive the conditional error probability for sx. It is exactly 

the same expression as (2.30). Hence, for given hx and h2, the conditional error 

probability of STD in non time-selective, spatially correlated fading with channel 

estimation errors can be expressed as (2.30). Whenever we collect a pair of estimated 

channel gains from the channel estimator, we can calculate the error probability by (2.30). 

In case of ps = 0, no spatially correlated fading, we can have a = p2, b = 0, pd =0 

and o2

D = (1 - p])o2

G. So (2.30) reduces to 
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P. = Q Pe 
\2O2

D+CJ2

N 

(2.31) 

v 

It is the same result as in [ 1 2 ] for STD in non time-selective, spatially uncorrelated 

fading with imperfect channel estimation. 

In case of pe =1, with perfect channel estimation, we can have a = I, b = 0, pd = 0 

and a2

D =0. Then (2.30) reduces to 

which is the same result as in [ 1 2 ] for STD in non time-selective, spatially correlated 

fading with perfect channel estimation.. 

We can see from (2.31) and (2.32) that, given estimated channel gains hx and h2, the 

introducing of the channel correlation will not affect the BER performance; however, the 

introducing of the channel estimation error will degrade the performance. 

2.3 A p p r o x i m a t i o n of A v e r a g e B E R P e r f o r m a n c e 

Normally, given estimated channel gains Hx = hx and H2 = h2, if we know the error 

(2.32) 

probability Pe and the joint pdf of Hx and H2, p (hx,h2)[2 0 ], we can evaluate 

the average error probability over the fading channels as 

(2.33) 
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Since the error probability expression Pe in (2.30) has the terms with | hf \, \ h\ | and 

Re(/i,*/i2) inside the Q-function and Hl and H2 are jointly Gaussian, this makes it 

difficult to calculate the overall BER performance. To simplify the expression, we use 

the transformation technique discussed in [ 2 1 ] to convert the two correlated Rayleigh 

fading channels into two independent Rayleigh fading channels, then use the new channels 

to evaluate the performance of the model. 

Since we consider only BPSK modulation here, we can rewrite (1.1) as 

82 + 
n0 

Jr. .82 'Si. nT 

(2.34) 

and write the estimated channel gains as 

V Si +*i 

h2 .82+z2_ 
(2.35) 

According to [ 2 1 ], if we define the transformation matrix T as 

V2 41 
2 2 

Jl 
'2 2 . 

(2.36) 

then apply it to (2.34) and (2.35) 

42 42 
2 2 

fl 
2 2 . 

42 42 
2 2 

Jl fl 
2 2 J 

81 

82 
+ 

42 42 
2 2 

_42 42 
2 2 . 

42 42 
2 2 

Jl fL 
2 2 

' 42 42~ 8i +zx 

h2 

1 2 
Jl fL 

. 2 2 . 

.82 + z2. 

(2.37) 

(2.38) 

After simplifying (2.37) and (2.38) to the same form as (2.34) and (2.35), we can write 
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V 83 84 V + 
n3 

zzz + 
/ 4 . _#4 " ~ ^ 3 . 

(2.39) 

h3 ~83+z3 

h2 _84+z4_ 
(2.40) 

where fading channels 3 and 4 are new channels generated from the matrix transformation. 

Accordingly, R3, R4, G 3 , G 4 , N3, N4, H3, H4, Z 3 and Z 4 are new received 

signals, new channel gains, new noises, new estimated channel gains and new channel 

estimation errors. We can express them as 

r3 = ̂ (>"0+>V) 

83 = ^(81+82) 

84 2~^2 8\) 

n3 = — (n0+nT) 

42 , x 

h3 = ^ ( h 1 + h 2 ) 

K = : ^ ( h 2 - n i ) 

Z3 = ^-(Zi+Z2) 

Z4 2~(̂ 2 Zj) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

Since Gx, G 2 , A/ 0 , NT, Hx, H2, Zx and Z 2 are all zero mean Complex Gaussian 
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random variables, it is clear that the sums of these random variables, G 3 , G 4 , N3, N4, 

H3, H4, Z 3 and Z 4 are also zero mean complex Gaussian random variables. It is 

shown in Appendix B that they are statistically independent with variances of (1 + ps )<7G , 

(l-ps)crG, a2

N, <J2

n, (-\ + ps)a2

G, (\-Ps)a2

G, a\ and o\ respectively. It is 
P e Pe 

also shown in Appendix B that the correlation coefficient between new channel gains G, 

and new estimated channel gains Hi are 

1 + 
Pe3=Pe,- (2-51) 

V + PsPl 

Pe< = P e , T ] — ^ (2-52) 
Pe 

Because the new channels are independent, the new channel gains G, can be expressed 

exclusively by its channel estimations Hi. They can be written as 

83 = P ^ h 3 + d3 (2.53) 

84 = plK + d4 (2.54) 

where D 3 and D4 are zero mean independent complex Gaussian random variables with 

variances '~o2

m = (1 -p 2

3)<7c 3 and a2

D4. =. (l-p2

4)aG4. Both are independent of 

H3 and H4. 

Now we have converted two correlated channels G, and G 2 into two independent 

channels G 3 and G 4 . We can use the same performance evaluation method to evaluate 

the performance of these new channels. By using the method for getting (2.23), we can 
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prove the new combined signal ?0 is 

+ hl(d3s0 + d4s{) + h4(d*4s0 -d*3sx) + h*3n3 +h4n*4 (2.55) 

Then, as shown in Appendix C, the decision variable Re(?0) is the sum of 

pl3s0\h3\2 + pl4s0\h4\2 ±(p2

e4 - p2

e3)sx • Re(h*3h4) and a zero mean Gaussian random 

variable with variance (\h3\2
 + | / * 4 | 2 ) ( C T 2

3 +<J2

D4 + <72

n)±2R&(h3h*4)(a2

D4 -<J2

D3). We can 

write the conditional BER as 

P. = Q 
P r i N +PIA\K\ + ( P 2 4 - P 2

3 ) - R e ( ^ > 4 ) 
h3

2 + h4
 2)((72

D3 +<T2

D4+<T2

N) + 2Re(h3h*4)(cr2

D4 -a2

D3) 

+Q 

f 2 2 ^ 

P r f N +PeM - ( P 2 4 - P 2

3 ) - R e ( ^ > 4 ) • 
+ h4 )(cx2

D3 + a2

D4+a2

N)-2Re(h3h*4)(a2

D4 -a2

D3) 

f 
Q 

L V 

f 

+Q 

Pert + PcSt + (PeA ~ Pa )V4 COS(03 -94) 

4(r2
 + r2)(a2

D3 +CT2

D4+CT2

N) + 2r3r4 cos(03 - d 4 ) ( ( 7 2

D 4 -o\3) 

P*rl + Pl^l ~ (P24 ~ P « 3 V 4
 C 0 S ( ^ 3 ~ ̂ 4 ) 

v W + rl ) ( ^ D 3 + °D4 + °2N ) - 2r3r4 cos(03 - B4 )(o2

D4 - CJ2

D3 ) 

(2.56) 

Here we rewrite the estimated channel gain as hi = riexp(jdi) = rjcos(8i)+jrt 5111(61), 

i = 3, 4, where rt is Rayleigh distributed and 9i is uniformly distributed in (0, 2n). 

Because H3 and H4 are independent, we can write the pdf separately as 
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2(7 

^ 3 ( ^ 3 ) = —he xP 2al 

(2.57) 

1 

In 

(2.58) 

where 

1 
ak =(— + Ps)°c 

Pe 

ak = ( - T - A ) ^ c 
Pe 

(2.59) 

Then we can write the average BER as 

Pf = JT JT \T \l" P< PRJr3)pR/rJp0/63)p9f9Jd03d83dr3dr4 (2.60) 

As 83 and 84 are independent, we use 8 = 63-64 to reduce the average BER as 

p/=rrrp«y«3(r'^(r4^^ ( m ) 

Although we eliminate one integral in (2.61) and H3 and H4 are independent 

compared to Ht and H2 in (2.33), we still have to perform a triple integral in (2.61). 

It would be better if we can eliminate all integrals and get a closed-form expression for Pf. 

Although the method described in [ 1 6 ] can diagonalize a Hermitian quadratic form in 

complex Gaussian variables and then get the corresponding pdf, it is shown in Appendix H 

that a closed-form expression is difficult to obtain. 
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We noticed that the STD scheme gives the best performance when two channels are 

spatially independent. As a result, in a real system, all efforts will be made to minimize 

the spatial correlation between channels to achieve the best performance. In that case, 

the performance of STD over small spatial correlation is more significant than that of big 

correlation. 

In the case of small spatial correlation, that is, when ps « 1 , we have found that p e 3 and 

P e 4 are very close to pe. Although the actual condition for peJ and pe4 to equal 

pe is ps = 0 or pe =1, the difference between pej and pe is very small when ps 

« 1 or pe » 0. Therefore, to simplify the analysis, when the spatial correlation is 

very small, i.e., P s « l or the channel estimation is almost perfect, i.e., P e » 0, we use 

approximations to complete the analysis. Therefore, we rewrite (2.51) and (2.52) as 

(2.62) 

(2.63) 

and, (2.53) and (2.54) as 

(2.64) 

g 4 ~ PeK+d4 
(2.65) 

Consequently, the variances of / / , , H2, D 3 and D4 can be simplified to 
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2 _ ° G 3 
U H 3 ~ 7 

(2.66) 

CT 2 = 
u HA 1 

(2.67) 

(2.68) 

(2.69) 

By substituting (2.62) and (2.63) to (2.55), we can rewrite (2.55) as 

? 0 ~ / ^ e - ^ O C|̂ 312 +|^4|2) + ^3*(̂ 3'S'o + ^4^1 ) + / l 4 (^4*^0 ~ ^3 ^ ) + ^3 "3 + ̂ 4«I (2.70) 

Now the decision variable Re(?0) is the sum of p2(|/*3|2 + | /J 4 | 2 )S 0 and a zero mean 

Gaussian random variable with variance (|/*3|2 +|/z4|2)(2<72
 + C T 2 ) + 

4 p s ( l - p2

e)<JG Re(h3h*4) ~ (\h3\2 +|/i4|2)(2cr2j +cr 2). Thus, we can write the conditional 

error probability given h3 and h4 as 

Pe = Q 

^ 2 / 1 , |2 I, | 2 . ^ 

^ 3 | 2 + | / I 4 | 2 ) ( 2 C T 2 + C T 2 ) 

= Q 
\P^H+\K\ ) 

2aD + aN 

= Q(^2K(\h3\2+\h4\2) 

(2.71) 

where 
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K = 
2(2<j2

D+o2) 2[2(l-p 2 )cr 2 +CT^] 
(2.72) 

ju = K(\h3\2+\h4\2) (2.73) 

We know that after approximation, H3 and H4 become zero mean independent 

complex Gaussian random variables with variances 2a2

G31p2 and 2oG41p2

e . We can 

write the covariance matrix of H3 and H4 as 

C H34 

^ G 3 

P\ 

0 ^ G 4 

Pi 

(2.74) 

If the pdf of M = K(\H3

 2 + H4

 2) is fM (//), then from [ 1 6 ] , its Laplace transform can 

be written as 

P(S) = ff—L_ (2.75) 

where r,. = 2KAt, At are the eigenvalues of (2.74) as 

* 3 = 
(1 + P S P 2 ) C T 2 

(2.76) 

^4 = (2.77) 

From [ 2 2 ] fM(ju) can be written as 

/«G") =Y,d J exp(s jfi), a>0 (2.78) 
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where dj are the poles and Sj are the residues of (2.75). Then the average error 

probability can be calculated as 

Pf = Q(^2pT)fM(p)dp (2.79) 

By using [2 3, 2 4 ], we can reduce (2.79) to 

P f 2(r 3-r 4) l + n i + r„ 
(2.80) 

where 

T 3 = 2 ^ = p2(l + psp2)cj2. 

2(\-p))o2

G+o2

N 

(2.81) 

T4 = 2KA4 

p2(l-psp2)<j2 

2(\-p2

e)e2

G+o2

N 

(2.82) 

This is the approximate BER for STD with spatially correlated fading and channel 

estimation error when ps « 1 or pe » 0 . 

In the case of pe =1, (2.81) and (2.82) reduce to 

(1 + P J C T 2 

(2.83) 

(2.84) 

The result is the same as in [ 1 2 ] for STD in non time-selective, spatially correlated 

fading with perfect channel estimation. 
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In the case of ps = 0, (2.81) and (2.82) reduce to 

r = r 
1 3 1 4 

2 2 

2l\-p))o2

G+ol 
(2.85) 

We can write fM(ju) as [ 1 6 ] 

fM(ju) = ^ e x p ( - ^ ) 
A 3 1 3 

(2.86) 

Then (2.79) can be reduced to 

P<=-
•\2 

2 + l r 3 

i + r , 
(2.87) 

This result is exactly the same as shown in [ 1 2 ] for STD in non time-selective, spatially 

uncorrelated fading with imperfect channel estimation. 
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2.4 Numerical Results 
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Fig. 2.1 Comparison of approximate analytic B E R to simulation results 

(approximation: solid lines; simulation: dotted lines) 

The approximate and simulated BER curves are plotted as a function of the average SNR, 

defined as the ratio of the variance of the channel gain to the variance of the additive 

Gaussian noise, i.e.,• aGJ(72

N , for different (pe, ps) values.. As expected from the 

analysis in Section 2.3, the approximate BER agrees very well with the values from 

simulation when ps is close to 0 and pe is close to 1. Moreover, the approximate and 

simulation results are close for all (pe, ps) values plotted. The largest percentage error 

is about 6% and occurs for (pe = 0.9, ps = 1). For SNR values greater than about 25 
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dB, the approximate and simulated values agree very closely for any (pe, ps) value. 
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Fig. 2.2 Comparison of approximate analytic B E R to results in [ 1 2 ] 

(approximation: solid lines; simulation: dotted lines; 

result from [ 1 2 ] : dashed lines) 

Compared to the BER expression in [ 1 2 ], (2.80) gives the same result when ps = 0 or 

pe = 1. For other values of (pe, ps), it is shown in Fig. 2.2 that the method discussed 

in Section 2.3 gives more accurate results. 
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Fig. 2.3Simulated B E R curves as a function of average S N R for different (pe, ps) 

values 

In the case of spatially correlated fading with channel estimation error, the BER increases 

as ps increases from 0 to 1 and as pe decreases from 1 to .0.. The BER degradation 

for pe = 1 - A with ps fixed is larger than for ps = A with pe fixed. As shown 

in Fig. 2.3, for pe = 1, ps = 0 and a target BER of 10"3, there is about 0.6 dB 

degradation when ps increases to 0.5 and about 2.1 dB degradation when ps increases 

to 0.8. The degradation is about 3.2 dB when pe decreases from 1.0 to 0.99; if pe 

continues to decrease, i.e., to 0.9, the target BER cannot be attained. We can also see 

from Fig. 2.3 that for each pe value, there is a performance floor which occurs at ps = 0. 
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This is the best BER performance STD can achieve for a given pe value. The exact 

expression for this BER floor is given by (2.87). 

It can be-observed from Fig. 2.3 that the spatial correlation influences the BER 

performance more as the channel estimation error increases. For a target BER of 10 3 and 

pe =1, the degradation is about 0.6 dB and 2.1 dB when ps changes from 0 to 0.5 and 

0.8 respectively. When pe = 0.99, the degradations increase to 1.3 dB and 6.9 dB 

respectively. 

The worst BER performance of STD occurs as pe approaches 0. In such a case, the 

channel estimations become random and the BER approaches 0.5. 

In the analysis above, for each BER curve, we assume that the channel estimation 

correlation coefficient pe is fixed. However, the changes of SNR will affect the 

accuracy of the channel estimation. The influence of SNR to pe varies with different 

channel estimation models. In a simple model described in Appendix I, we can see that 

P e = . * -. By using this result together with the analytic results from Section 2.3, 

V SNR 

we can plot the BER curves for this model as a function of SNR where pe changes with 

SNR. 
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Fig. 2.4 Approximate analytic B E R curves as a function of average S N R 

(p = -\=: clotted lines; p„ = , 1 : solid lines) 
V2 I 1 1 + -

SNR 

Fig. 2.4 shows with the increase of SNR form 0 dB, pe = increases from 
1 + -

SNR 

V2 
and the performance is continuously improving. The channel estimation becomes 

perfect when the SNR increases to infinity. 
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3 S T D in Time-selective, Spatially Correlated Fading 

with Perfect Channel Estimation 

In this chapter, we analyze the performance of STD in time-selective, spatially correlated 

fading channels with perfect channel estimation. 

3.1 System Model 

We combine the time-selective fading from [ 2 5 ] together with the spatially correlated 

fading mentioned before, but without channel estimation error in this model. For each 

spatial channel, the channel gain is constant over one symbol duration but can be changed 

in the successive symbol period. We denote the channel gains from two transmit 

antennas to the receive antenna as G 1 0 , GiT, G 2 0 and G2T. They are zero mean 

complex Gaussian random variables with the same variance <JG. G 1 0 and G i r , and 

G 2 0 and G2T are spatially correlated with the correlation coefficient ps. Meanwhile, 

G 1 0 and G1T , and G 2 0 and G2T are correlated with the time-selective correlation 

coefficient pt. Appendix D shows that the correlation coefficient between G 1 0 and 

G2T , and between G 2 0 and GlT are ps p, . Thus, we can express the 2x2 

covariance matrix of G 1 0 , G 2 0 , GlT and G2T as 
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< Ps°G P,°l PsPPl 
Ps°G °2G PsP^l P,°l 

PsP,02G Ol Ps°2G 

PsPt°l PPl Ps°G 

(3.1) 

We already know the covariance matrix of G 1 0 and G 2 0 is 

Ps°l 
PS°G 

(3.2) 

By using the linear transformation [1 8 ] of G 1 0 , G 2 0 together with two new complex 

Gaussian random variables, we can, express GiT and G2T by G 1 0 and G 2 0 . 

Appendix E shows that we can write them as 

8IT = P,8w+V\ ' (3-3) 

82T = P,8z0+v2 (3.4) 

where V, and V2 are zero mean correlated complex Gaussian random variables with 

variance = (l-p?)crG and correlation coefficient ps. 

Following the STD scheme, the received signals at time 0 and time T can be written as 

r0 = 8 WS0 + <?20̂ 1 ~*~ n0 (3.5) 

(3.6) 

Then the combined signals s0 and ?, can be got from 

•̂ o = 8\oro + 8irRT (3-7) 

"̂ 1 — c?20r0 8\TRT (3.8) 
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Based on the values of the combined signals, we can use maximum-likelihood to decode 

the information bits s0 and s,. If the real part of ?0 is greater than 0, .s0 = 1 will be 

chosen; otherwise, s0 = -1 will be selected. Similarly, the same decoding rule applies 

to recover s,. 

3.2 Performance Analysis 

When there is no channel estimation error, the estimated channel gain. Htj is equal to the 

channel gain Gtj. Therefore, we can simplify (1.6) as 

(3.9) 

Now we consider the case for sQ first. From Appendix E, we can represent G 2 0 and 

GlT by G 1 0 and G2T as 

1 I 2 1 I 2 * * r- - l * -
~n0~ 

* 
so = | < ? i o | 

* 
+ |<?2r| 

* 
81082O 

1 I 2 

— 8\T82T 
1 1 2 

+ 810 t 
* 

?2T ~n0~ 
* 

Jl. _<?10<?20 — 8\T&2T |<?2o| + \8\T\ 8IT _ nT 

8IT =a8w +b82f+w\ 

820 =bgw+ag2T+w2 

(3.10) 

where 

a = p, 

b = ps 

l - p 2 p 2 

1-P, 2 

1 - P 2 P 2 

(3.11) 

Wx and W2 are zero mean correlated complex Gaussian random variables with variance 

< = (1-P, 2) 
( 

——^J-r \jr and correlation coefficient 0 = -p<p,. 
i-Psp?; 
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By substituting (3.10), s0 in (3.9) can be expressed as 

^ .1 2 2, , * * \ * * 
^0 = ( | £ l O <?2T )S0 + (<?10<?20 ~ 8\T§2T)S\ + 8\0n0 + §2TNT 

= (|Slof +|«?2r| 2) J0 +^(klo| 2
 -|«?27-|2)*1 +(S 10W2 ~82TWl)S\ + 8wH0 +82THT 

(3.12) 

When sl = s0, the decision variable Re(?0) can be written as 

R e ( ? o ) = [(l + *0|<?io|2 +Q--b)\82r\2]so +Re(g*0w2 -g2Tw*)s0 + Re(g*0n0 + g2TnT) 

(3.13) 

Appendix F shows that Re(g*0W2 - g2TWx), Re(g*0A/0) and Re(g2TNj) are zero 

I 12 I |2 

mean independent Gaussian random variables with variances [g 1 0 + g2r -

2pw Re(g 1 0g 2 r)]<7 2 , |g 1 0| 2O"^ and I g ^ V 2 , respectively. Thus Re(?0) is the sum of 

[(l + £>)|g10|2 + (1 —^)|g2r|2],so a n < ^ a n z e r 0 m e a n Gaussian random variable with variance 

(|<?iof +|<?2r | 2 ) (° 'w +<?l)-2Pw

Re(g\o82T)(7l • Given the channel gains gl0 and g2T, 

the conditional error probability can be written as 

P = Q 
(l + % 1 0 | 2 + ( l - % 27" 

V ^ k i o T + | « ? 2 7 - | 2 X<^ + < J l ) - 2 P w

 R e (c? io< ? 2 r ) ° ' i 
(3.14) 

Similarly, when s'x = --s0, the conditional error probability can be written as 

= Q 
a-b)\gw\2+(\+b)\g 2T\ 

V ( k i o | 2
 +\82T\2)(PI +&l)-2Pw Re(<?io<?2r)^ 

(3.15) 
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Because the chances of sx = s0 and s{ = —s0 are equal, given gl0 and g2T, the 

conditional error bit of s0 can be expressed as 

Pe,s0 = \ Q\ 

(l + ^)|g 1 0 | 2+(l-fc)|g 2 r | 2 

+-Q 
2 * 

V'(|«ioT +\82T\2)(°1 +o2

N)-2pwRe(gl0glT)(7] 

(l-b)\gl0\2+(l + b)\g2Tf (3.16) 
J(\8io\2 +\82T\2)(°W +°2N)-2PW ^(8w81T)^W 

Similarly, given giT and g10, we can prove that the conditional error probability of st 

is 

P.* = -Q i 
2 

(i+b)\g20\2+a-b)\8lT 

a-b)\g20\2+(i+b)\g IT 

<J(\8TD\2 +\8IT\2)(.°W +°2N)-2PW Re(82o8lT)^ 

(3.17) 

When ps = 0, we have a = pt, b = 0, p w = 0and c 2 = (1 - p,2 )oG. Thus, we can reduce 

(3.16)to 

P = Q 
e,s0 *Z 

8w 
2 

+ 82T 

2 

(1 -p2)o 2 +a2 

G N 

(3.18) 

This is the same result shown in [ 1 2 ] for STD in time:selective, spatially uncorrected 

fading with perfect channel estimation. 

When p,= 1, we have a = 1, b = 0, pw = -ps and 0^=0. Then we can reduce (3.16) 
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to 

P = Q 
2 2 

+ 82T (3.19) 

which is the same result shown in [ 1 2 ] for STD in non time-selective, spatially 

correlated fading with perfect channel estimation. 

From (3.18) and (3.19) we can see that given the channel gains glQ and g2T, introducing 

the spatial correlation will not increase the BER; however, introducing the time-selective 

correlation will degrade the BER performance. 

V 810 820 V + 
n0 

_<?2r ~ 8IT _ 
+ 

nT 

3.3 Average Performance Approximation 

In case of STD in time-selective, spatially correlated fading with perfect channel 

estimation, with BPSK modulation, (1.4) can be rewritten as 

(3.21) 

As in section 2.3, if we use the transformation technique to simplify the analysis, we can 

apply the transformation matrix T in (2.36) to both sides of (3.21) and get the new 

received signals as 

r/r 1 r 0 0 T c 1 r„ 1 
(3.22) 

#30 840 V + " " 3 " 

/ 4 _ _8AT ~ 83T _ 

+ 
. n 4 . 

where channel 3 and channel 4 are new channels generated from the matrix transformation 
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of channel 1 and channel 2. Correspondingly, R3, R4, G 3 0 , G 4 0 , G3T, G4T, N3 

and A 4̂ are random variables for new received signals, new channel gains and new 

channel noises after the transformation. The samples of the new channel noises are the 

same as in (2.45) and (2.46). The samples of new channel gains are 

As in Section 2.3, we can prove that all these new random variables are zero mean 

complex Gaussian random variables. The new channel noises N3 and N4 are 

statistically independent with the same variance o 2

N . Appendix G shows that the gains 

of channel 3 and channel 4 are statistically independent. Therefore, the covariance of 

each channel can be expressed as 

<?30 <?40 _ V2 <?10+<?27- <?20 8 IT 

SAT 83T J \_82T~810 8IT + 820 
(3.23) 

(3.24) 

(3.25) 

where 

(3.26) 

°GA = (I-PSP<)02G (3.27) 

"'3 1 , 
1 + 

(3.28) 

file:///_82T~810
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P,A = j 1 - ^ ( 3 - 2 9 ) 

Hence the channel gains can be written as 

SIT = A 3 < ? 3 0 + v 3 ( 3 - 3 ° ) 

840 = P,484T+V4 (3-31) 

where V3 and V4 are zero mean independent complex Gaussian random variables with 

variances 

<*V3 = 0--p,3)^G3 = : G (3-32) 
l + A A 

0V 4 = ( I - P M ) ^ = • ° G (3-33) 
L~P,P, 

where V3 and V4 are independent of G 3 0 and GAT. 

If we substitute (2.30) and (2.31) into (3.9), we get 

r** I 12 1 12 * * * * 
^0 = (|<?30| "Hi) 47" I ^ 0 + (<?30<? 40 _ 8 37 8 4T^S] + 8 30N3 +8 4TN4 

= (|g3of + k 4 r | 2 K + (A 4 - A 3 ) < ? 3 0 c?4r^ + ( < ? 3 0 v4 -<?4r v3 )* i +<?3o" 3 +c§4r"I (3-34) 

As in Section 2.3, if we look at the case of small spatial correlation, we can assume that 

pl3 and pt4 are very close to pt.. The condition for this assumption is that ps «1 

and p t » p s . By using pl3 ~ pl4 ~ p,, we can rewrite (3.30) ~ (3.34) as 

S 3r = A S 3 o + v 3 (3-35) 
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8 40 ** P,84T+V4 (3.36) 

(3.37) 

? o = (\8w\2 ^84T\2)sv+(8wVA-gATvl)sx+gl0n3+g4TnA (3.38) 

Because V3 , V4 , A/3 and A/4 are independent, given g 3 0 and g 4 r ' , the BER 

expressions from (3.38) are the same for all combinations of the BPSK signals sQ and 

sx. They can be expressed as 

P. = Q 

( | |2 | ,2 ^ 
|<?3o| "*"|c?47'| 

yj(CTv+CT2

N)(\g30\2 +\gAT\2) 

= Q 
830 84T 

ov +<yN 

Q^lK^g^ +\g4T\2)^j 

(3.39) 

where 

K = 
1 1 

2 (o - , z +^) 2 [ ( l - p , 2 ) o - 2 + ^ ] 
(3.40) 

0 = ^ ( | c ? 3 0 r + k 4 7 - | 2 ) (3.41) 

We know that G 3 0 and G4T are zero mean independent Gaussian random variables with 

variances (1 + psp, )crG and (1 - pspt )aG . Thus, we can write the covariance matrix of 
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G 3 0 and G 4 r as 

0 

0 

{\-psp,)a2

G 

(3.42) 

Its eigenvalues are 

A3 = (l + psp,)a2

c 

K = (l-PsP<)v2c 

(3.43) 

(3.44) 

By using the same method in section 2.3,. given ps «1 and' pt » ps, we can obtain 

the approximation of the average BER of STD in time-selective, spatially correlated 

fading with perfect channel estimation as 

P f 2(r 3-r 4) L V i+n 
l -

i+r„ 
(3.45) 

where 

I* =2**3 = 
(l + PsPt)G2

c 

(\-p2)a2

G +cr, 
(3.46) 

r 4 = 2 ^ 4 = ^ ( 1 - f ; ^ 
{\-p2)a2

G+a2

N 

(3.47) 

When p = \, (3.46) and (3.47) reduce to 

r 3 = <X + P,Xrl (3.48) 

r 4 

<X-P,)<rG (3.49) 
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The result is the same as in [ 1 2 ] for STD in non time-selective, spatially correlated 

fading with perfect channel estimation. 

When ps = 0, (3.46) and (3.47) reduce to 

r = r = 
1 3 1 4 (\-p2)a2

G+cr2

N 

(3.50) 

As in Section 2.3, we can obtain the exact BER expression as 

1- ^ 
l + r, 

2 + l r 3 

l + r, 
(3.51) 

which is the same as shown in [ 1 2 ] for STD in time-selective, spatially uncorrelated 

fading with perfect channel estimation. 
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3.4 Numerical Results 

Average SNR (dB) 

Fig. 3.1 Comparison of approximate analytic B E R to simulation results 

(Approximation: Solid Lines; Simulation: Dotted Lines) 

The approximate and simulated BER curves are plotted in Fig. 3.1 as a function of the 

average SNR for different (p t, ps) values. As expected from the analysis in Section 3.3, 

the approximate BER agrees very well with the values from simulation when ps is close 

to 0 and pt is much greater than ps. Moreover, the approximate and simulation results 

are close for p < —. 
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15 20 
Average SNR (dB) 

Fig. 3.2 Simulated B E R curve as a function of average S N R for different (p,, ps) 

values 

In the case of time-selective, spatially correlated fading with perfect channel estimation, 

for a fixed ps, the BER increases as p, decreases from 1 to 0.1 When ps is small, 

for a fixed pt, the BER increases with ps. The BER degradation for pt = 1 - A when 

ps is fixed is larger than the degradation for ps = A when pt is fixed. As shown in 

Fig. 3.2, for a target BER of 10"3 for pt = 1, there is about 1.3 dB degradation when ps 

changes from 0 to 0.7 and about 10 dB degradation when ps changes to 1. For the 

1 Although pt changes from 1 to 0, when pt = 0, the channel changes so fast that the gains are independent in two 

consecutive symbol periods. Thus, when pt is small, the assumption that the channel is constant over one symbol 
interval is not valid. 
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same target BER for ps = 0, when p, changes from 1 to 0.99, there is about 1.3 dB 

degradation; when pt changes to 0, the degradation is more than 25 dB. 

Average SNR (dB) 

Fig. 3.3Simulated B E R curve as a function of average S N R for different (p,,ps) 

values (zoomed) 

When ps becomes bigger, for instance, ps is equivalent to pt or even bigger, from 

the simulated BER curve, we observe that the BER decreases with ps. However, this 

occurs only when the average SNR exceeds certain thresholds. As shown in Fig. 3.3, for 

p, = 0.9, when the SNR is small, the BER for ps =1 is bigger than ps = 0.9; when the 

SNR increases to about 14.5 dB, the BER for ps = 1 is the same as ps = 0.9. As the 

SNR continues increasing, the BER for ps = 1 becomes smaller than the BER for ps = 
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0.9 and eventually, becomes smaller than all other smaller ps cases. If we look at the 

extreme case, i.e., ps = 1, we can write (3.9) as 

Ji 

In (3.52), when SNR increases to infinity, the only interference is the inter-channel 

interference. Compared to (3.9), the signal to noise ratio changes from 

(|G | 2 + L I 2) 2 (\g \2+\g I 2) 2 

. -^P—— to 1 0

 2 — — , which is always equal or greater than 1. This 
I <?io<?2o ~8\T82T I (|<?io| _ |<?i7-| ) 2 

explains why for high SNR values, STD performance improves as ps increases. 

From the simulation results, we also observe that the SNR threshold for performance 

reversal decreases as pt decreases. For instance, for ps = 1, the SNR threshold for 

performance reversal is about 14.5 dB when pt = 0.9; however, when pt =0.1, the 

threshold decreases to about 2.5 dB. 

k i o f + k i r f | S i o f - | S i r | 2 

I I2 I I2 I I2 I I2 

<?io| — |<?i7- |c?io| <?ir 
+ 

* 
8 IT + * * 

J l . .810 ' 8 IT _ 
(3.52) 
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4 Conclusion 

4.1 Main Thesis Contributions 

This thesis presents a performance study of STD in non time-selective, spatially correlated 

fading with imperfect channel estimation and STD in time-selective, spatially correlated 

fading with perfect channel estimation. 

• In the case of STD in non time-selective, spatially correlated fading with imperfect 

channel estimation, the error probability conditioned on the estimated channel gain is 

derived. A simple, approximate expression for the average BER over Rayleigh 

fading is given. A comparison with simulation results show that the approximate is 

quite accurate over a wide range of (pe, ps) values. The results also show that the 

channel estimation error has a bigger impact on STD performance than spatial 

correlation. 

• In the case of STD in time-selective, spatially correlated fading with perfect channel 

estimation, the error probability conditioned on the channel gain is derived. A 

simple, approximate expression for the average BER over Rayleigh fading is given 

for (ps « 1 and pt » ps). It is found that time-selectivity has a bigger impact 

on STD performance than spatial correlation. ' 
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• From the results of STD in time-selective, spatially uncorrected fading with channel 

estimation error in [ 1 2 ], it was found that the channel estimation error has a bigger 

impact on STD performance than time-selectivity. Combining this with our results, 

it can be deduced that STD performance is affected primarily by channel estimation 

errors, secondly by time-selectivity and thirdly by spatial correlation. 

4.2 Topics for Further Study 

• It would be useful to extend the derivation of the conditional error probability of 

STD to the general time-selective, spatially correlated fading with imperfect channel 

estimation scenario. Although it is possible to build the system model by 

introducing channel estimation error in Section 3.1 and using the same method to 

derive the conditional BER, the derivation of the joint pdf of G 1 0 , G 2 0 , GlT and 

G2T given Hl0 , H20, HlT and H2T requires a Gaussian distribution that 

involves 8x8 and 4 x 4 covariance matrices to be solved and is thus awkward to 

deal with. 

• A new combing scheme to cancel the inter-channel interference from the temporal 

and spatial correlation. 

• A n average BER expression over correlated Rayleigh fading and generalized fading, 

e.g. Ricean, Nakagami, etc.. 
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Appendix A Derivation of the Means and Variances of 

Random Variables in (2.7) 

In Chapter 2, the decision variable in (2.7) is expressed as 

Re(? 0 )= [(a + b)^2 +(a-b)\h2\2 +2bR6(h*h2)]s0 

+ Re[h*(dx + d2)]s0 + Re[h2(d*2 -d*)]s0 

+ Re[h*1n0] + Re[h2nT] (2.7) 

When . hx and h2 are given, the first term in (2.7) 

[(a + fr)|/z,|2 +(a-b)\h2\2 +2bRe(h*h2)]s0 is determinate. For the rest, it is a sum of 

four random variables Re[h*(D, + D2)]s0 , Re[h2(D*2 -D*)]s0 , Re[/z*A 0̂] and 

Re[h2N*T]. 

It is shown below that the means of ti[(D, + D2), h2(D*2-D*), h*N0 and h2N*T are 

zero. 

E[h*(Dl+D2)] = h*lE[(Dl+D2)] = hl\E[D[] + E[D2])=0 (A.l) 

E[h2(D*2 - D\)] = h2E[{D*2 - D;)] = 0 • ' (A.2) 

E[h;N0] = h;E[N0] = 0 (A.3) 

E[h2N*T]=h2E[NT] = 0 (A.4) 

Thus, the mean of Re[h*(D, + D2)]s0, Re[h2(D*2 -D*)]s0, Re[h*N0] and Re[h2N*T] 

are zero too. 
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Next we prove that these random variables are independent of each other. 

As we know, N0 and NT are statistically independent of any random variables, when 

h{ and h2 are fixed, Re^'TV,,] and Re[h2Nj] are independent and they are also 

independent of Re[h* (D{ + D2 )]s0 and Re[/z2 (D*2 - D* )]s0 . The variances of 

Ret^A/J and Re[/z2A^] are 

E{Re2[h;N0]}=\h?\(J2

N (A.5) 

^ { R e ^ V V ^ H ^ K (A.6) 

Now we need to prove that Re[/i* (Dx + D2 )]s0 and Re[h2 (D*2 - D*x )]S0 are independent. 

Or that Re[/i,* (D, + D2)] and Re[h2 (D2 - D*x)] are independent, as s0 is either+1 or 

- 1 . 

Because D and Z)2 are zero mean correlated complex Gaussian random variables, we 

can express d{ and d2 as 

dx = +]yx (A.l) 

d2 = x2 +}y2 (A.8) 

where , y,, x2 and y 2 are samples of zero mean correlated real Gaussian random 

variables with variances <J2

D and correlation coefficient pd . The variances and 

covariances can be expressed as 

E[X2] = E[Y2] = a2

D (A.9) 
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E[XtYj] = 0 (1,7 = 1,2) (A.10) 

E[XxX2] = E[YxY2) = Pdcr2

D (A.l l) 

Then we have 

dx +d2 = (xx +x2 ) + j(yx +y2) (A. 12) 

d2-dx=(x2-xx) + j(y2-yx) (A.13) 

Similarly, if we denote /i, by its real and imaginary parts as ht — U, + jwt, we can have 

Reft* (dx +d2)] = ux (xx + x2) + w, (yx + y2) (A. 14) 

Re[h2(d2 -dx)*] = u2(x2 -xx) + w2(y2 - yx) (A. 15) 

The covariance of Reft* (Dx + D2)] and Reft (D*2 - Dx)] can be expressed as 

£[Reft*(D, + D 2 ))Reft(D 2 -D,)*)] 

= £ { [ M l ( X 1 + X 2 ) + w 1 (F 1 +F 2 ) ] [ M 2 (X 2 -X 1 ) + w 2(F 2-y i)]} = 0 (A.16) 

The result shows that Reft* (Dx + D2)] and Reft (D 2 - £)*)] are independent. The 

variances of Re[hx(Dx + D2)] and Reft(D 2 -£>*)] can be expressed as 

£{Re 2 f t*(D 1 + D 2 ) ]} 

= E[uf(Xx +X2 + 2X XX 2) + w2 (Y2 + Y2 + 2YXY2) + 2uxwx(X x +X2)(Yl + Y2)] 

= 2(1 + pd)(w2 + w2)a2

D = 2(1 + pd)\ h2 I <To (A.17) 

£{Re 2[/z 2(D 2-D 1)*]} 
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= E[u\(X2 + X2 - 2 X 2 X X ) + w\(Y2

2 + Y2 -2Y2YX) + 2u2wx(X2 -X , ) (Y 2 -F,)] 

= 2(\-pd)(u2

2+w2

2)a2

D = 2(l-pd)\h2\a2

D (AAS) 

Thus, we have proved that the decision variable Re(?0) is a Gaussian random variable 

with mean [(a + b)|/i,|2 +(a-b)\h2f +2bRe(h*h2)]s0 and variance [2(1 + pd) \ h2 \ a2

D + 

2 ( l -p , ) | / * 2

2 |<x 2 ] s0 + (\ hi\ + \h2 \)a2

N. 
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Appendix B Derivation of the Variances and Correlation 

Coefficients of Matrix Transformed Spatially 

Correlated Fading 

Originally, G, and G 2 are zero mean correlated complex Gaussian random variables 

with variance oG and spatial correlation coefficient ps. After matrix transformation, 

two new zero mean complex Gaussian random variables G 3 and G 4 are generated. 

From (2.41) and (2.42) we know that 

• V2 : 

g3 = — (8i +82) (2.41) 

8, = —^82 ~8i) (2.42) 

We can calculate the covariance of G 3 and G 4 as 

£[G 3 G 4 ] = E ^ ( G 1 + G 2 ) ^ ( G 2 * - G ; ) 

±E\G2\ 2 -\GX\ 2 +Gfi*2-GlG2] = 0 (B.l) 

The result shows that G 3 and G 4 are uncorrected and statically independent. We can 

calculate their variances as 

< = ^E[G3G;] =X-E ^ ( G , + G 2 ) ^ ( G ; + G 2 * ) (B.2) 
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< = \E[GAG;] =X-E ±-(G2-GX)^-(G2-GX) = (\-ps)<72

G (B.3) 

The original channel noises N0 and NT are zero mean independent complex Gaussian 

random variables with variance o2

N. Based on (2.43) (2.44) 

V2 
« 3 = ^ - K + « 7 - ) 

(2.43) 

V2 
n4= — (nT -nQ) 

(2.44) 

we can calculate the covariance of N3 and N4 as 

£[/VX] = E = 0 (B.4) 

They are also uncorrelated and statically independent. Their variances are 

o2

N = -E[N3N;] = -E 
A j 2 - 2 

V2 V2 . 
• = 0- (B.5) 

< = \E[NX] = \E V2 V2 . (B.6) 

Same way, we can prove that Z 3 and Z 4 are zero mean independent complex Gaussian 

random variables with variance <rz . 

It can be shown that G, and Z, are independent. 

EiGtf] = E V2 V2 . 
^ - ( G 2 ± G , ) ^ - ( Z 2 ± Z 1 ) = 0 i = 3,4 (B.7) 
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From (2.38) we know that Hi is the sum of G, and Z,, / = 3,4 

h3 

A. J4+Z4. 
(2.38) 

Therefore, the variance of Ht is the sum of the variances of G, and Z ( . That is, 

J _ - ^ = iiaaL.,2 (B.8) 

2 2 

0> +cr7 

= ( 1 - A ) ^ + l~AP E -2 
„ 2 ° C (B.9) 

The covariance of G, and i / , can be expressed as 

E[G3H;] = £ [ G 3 ( G ; + Z 3 * ) ] = 2ol (B.10) 

£[G4H4*] = 2<rl (B.ll) 

Now we can obtain the correlation coefficients of G. and //, as 

g[G 3/y 3] _ 1+A 
A 3 - 1 - P M " ^ (B.12) 

PE4 = A > J r - ^ 7 (B.13) 
P - A P 2 
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Appendix C Derivation of the Means and Variances of 

Random Variables in (2.55) 

In Chapter 2, the combined signal s0 in (2.55) is expressed as 

+ h*3{d3s0 + d4si) + h4(d*4s0 -d*3sx) + h*3n3 + h4n4 (2.55) 

The correspondent decision variable is Re(?0). When hx and h2 are given, the first 

three terms of R e ^ ) are determinate, as p2

3s^hj\2 + p2

4s0\h4\2+(p2

4-p^s^-Reihlh^. 

The rest part is variable; it is the real part of the sum of four random variables, expressed 

as Re[hl(D3s0 + D4sx) + h4(D*4s0 -D 3*5,) + h3N3 +h4N*4]. 

When sx = s0, the variable part can be expressed as 

Re[/i*(D3 + D4)s0 + h4(D*4 -D*3)s0 + h*3N3 +h4N*4] 

= Re[(/i3* - hi )D3]s0 + Re[(/z3* + ti4 )D4 ]s0 + Re(/z3*yV3) + Re(h4N*4) (C.l) 

Because D3, D4, N3 and N4 are zero mean independent complex Gaussian random 

variables, it is obvious that the mean of the variable part in (C.l) is zero and 

Re[(/z3 -h*4)D3]s0 , Re[(/*3 +h*4)D4]s0 , Re(/z3;V3) and Re(h4N*4) are statistically 

independent. 

As in Appendix A, we write the samples of and D4 as 

d3 = x3 + j y 3 (C.2) 
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d4 = xA +jy 4 (C.3) 

where x3, y3, x4, y4 are samples of zero mean independent real Gaussian random 

variables with variances cr2

D3 and a2

D4 respectively. 

If we substitute ht by its real and imaginary parts as ht = w,. + jwt, we have 

Re[(/** - h\ )d3 ] = Re-fl^ - u4)- j(w3 - w4 )Jx3 + jy3)} 

= (w 3 - u4 )x3 + (w3 - w4 )y3 (C.4) 

Re[(h3*+hl)d4] = Re^(u3+u4)-j(w3+w4)Jx4 + jy4)} 

• • = (u3 +u4)x4 +(w3 + w4)y4 (C.5) 

The variances of Re[(/i3* -h*4)D3]sQ and Re[(h*y +h*4)D4]s0 are 

E{Re[(h*3 -h*4)D3]s0}2 = E[(u3 -u4)2X2 +{w3 - w4)2Y2 + 2(u3 -u4)(w3 -w4)X3Y3] 

= (u2 + w3 +u2

4 +w2

4 - 2u3u4 - 2w3w4)CJ2

D3 

+ \h4\2-2Re(h3h*4)]a2

D3 (C.6) 

E{Rc[(h*3 + h*4)D4]s0}2 = E[(u3+u4)2X2

4+(w3 + w4)2Y2+2(u3+u4)(w3+w4)X4Y4] 

2 2 2 2 2 

= (u3 + w3 + u4 + w4 + 2u3u4 + 2w3w4)(TD4 

= [\h3\2 +\h4\2 .+ 2Re(h3h*4)](T2

D4 (C.l) 

The variances of Re [^A^] and Re[h4N*4] have already been shown in Appendix A, as 
.2 I „ 2 , I .2 I ̂ 2 
h2 | <72

N and \h2 \a2

N respectively. 
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So when sx = s0, the decision variable Re(s0) is a Gaussian random variable with 

mean [pUh3\2 + pl4\h4\Z+(p2

e4 -p2

e3)Re(hlh4)]s0 and variance 

(N2
 +M2)(°'D3 + 0 " D 4 + 2Rt(h3h*4){a2

D4 -<J2

m). 

By using the same method, we can prove that when s{ = —s0, the decision variable 

Re(?0) is a Gaussian random variable with mean [p e

2

3|/i 3| 2 + p 2

4 |^ 4 | 2 -

( P ^ - P ^ R ^ X ) ] ^ a n d variance (\h3\2 + \h4\2){a2

D3 +<J2

D4 +<J2

N )-

2Rz{h3h*4)(o2

D4-(J2

D3). 
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Appendix D Derivation of the Correlation Coefficient 

Between Time-selective, Spatially Correlated 

Channel Gains 

In this model, the channel gain G 1 0 is correlated with both G 2 0 and G 1 7 . . When 

setting up the model, we first generate G 1 0 , then use G 1 0 to generate G 2 0 and G i r . 

Therefore the expression of g20 and glT given gw can be written as 

820 = Ps8w+u0 (D- 1) 

8 IT = P,8w+Vx (D.2) 

where U0 and Vl are zero mean independent complex Gaussian random variables with 

variances o2

v = (1 - p] )aG and crv - (1 - p] )crG. U0 and V{ are independent of 

G w 

Then the covariance of G 2 0 and G, r is given by 

E[G20G;T] = E(pSGi0+u0)(p,G;0+v;) 

= 2psp,G2

G (D.3) 

Thus the correlation coefficients of G 2 0 and G L T can be expressed as 

E[G20G;T] _ 2psp,a2

G 

= PSP, (D.4) 

• A/£[|G 2 0! 2]^[|G 1 /.| 2] ' . 42°c • 2al 

Similarly, if we start with G 2 0 , we can also get the correlation coefficient of G 1 0 and 
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G2T as pspt. 
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Appendix E Linear Transformation of Jointly Gaussian 

Random Variables 

From [1 8 ] we know that a linear transformation of a set of jointly Gaussian random 

variables results in another set of jointly Gaussian random variables. If we have a set of 

jointly Gaussian random variables, denoted as X, which is a n x l column vector with 

nx 1 mean vector mx and nxn covariance matrix Cx, by using 

Y = AX (E.l) 

where A is a nxn non-singular matrix, we can transform X into a new set of jointly 

Gaussian random variables Y, which is a n x l column vector with n x l mean vector 

my and nxn covariance matrix Cy. Correspondingly, the transformation of the mean 

vector and the covariance matrix can be done by 

mv = Amx (E.2) 

C Y = AC X A T (E.3) 

Where A T denotes the transpose of A. 

Frist transformation case: 

In case of representing G i r and G2T by G l 0 and G 2 0 , a set of jointly Gaussian 

random variables is defined as 

x T = [£io 820 £1 « 2 1 (E-4) 
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where E, and E 2 are zero mean independent Gaussian random variables with variance 

<7G . Ej and E 2 are independent of Gw and G 2 0 . By using the linear 

transformation, we can transform X into a new set of jointly Gaussian random variables 

^ — [#10 82O 8\T §27"] (E.5) 

with the desired means and variances. 

Because the means of the random variables in our model are all zero, we only need to look 

after the transformation of covariance matrix in (E.3). 

From the previous definition, we can write the covariance matrixes of X , Y as 

(E.6) 

C Y = 

Ps<rl 0 0 " 

ps<yl ol 0 0 
0 0 ol 0 
0 0 0 < 

ol PsOl . P,ol PsP,0l 

ol PsP,0l " P.OI 
p,o2c PsP,0l ol PsOl 

PsPVl P.OI PsOl ol 

Using Maple®[ 2 6 ], we can find a A that complies with (E.3)~(E.5). 

A = 

1 0 
0 1 

0 
0 

0 
0 
0 P l 0 VTPF 

0 p, P s ^ p J V(l-A2Xl-A2) 

If we use (E.8) to rewrite (E.l), we can get 

8IT = P,8w+^-Pl 

(E.7) 

(E.8) 

(E.9) 
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SIT = PISIQ +Ps^~P?£\ PsX17A*)e2 (E.10) 

If we replace the two zero mean independent complex Gaussian random variables E, and 

E 2 by two correlated complex Gaussian random variables V, and V2, we can rewrite 

the expression as 

8 IT = P,8w+V\ (3-3) 

SIT = P , S 2 0

+ V 2 (3-4) 

where V, and V2 are zero mean complex Gaussian random variables with variance cr2 

= (1- pf)crc and correlation coefficient ps. They are independent of G 1 0 and G 2 0 . 

Second transformation case: 

When representing GlT and G 2 0 by G 1 0 and G2T, we write X, Y, Cx and Cy as 

(E.H) 

Y T = [g 1 0 SIT Sir £20 ] ( E - 1 2 ) 

cx = 

io SIT «1 £ 2 ] 

IO SIT <?ir &20 ] 

PsPt^G 0 0 

P,P,°l ° l 0 0 

0 0 0 

0 0 0 

(E.13) 

< PsP,02G P,<r2G Ps°G 

P.PPl 02G Ps°G Pt°2G 

P.OI ps<yc 
K ° l PsP<°2G 

Ps02G- Pl°G PsPl°G . <• 

(E.14) 

and can get a A as 
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A = 

0 

1 0 0 0 
0 1 0 0 
a b c 0 
b a d e 

0 
0 

/ ( l -p 2 ) ( l -p 2 ) 

0 

0 • 

0 

V r i r » 

(E.15) 

Thus, we can express GlT and G20 as 

= Agio + ̂ 2 T + « 1 (E.16) 

(E.17) 

Similarly, if we replace E, and E 2 by a new pair of correlated Gaussian random 

variables W, and W2, we can rewrite (E.16) and (E.17) as 

S i r = agw+bg2T+wx (3.10) 

§20 = bgw+ag2T+w2 (3.11) 

where TV, and W2 are zero mean correlated complex Gaussian random variables with 

variance <7^ = c2aG and correlation coefficient pw = -pspt, 
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Appendix F Derivation of the Mean and Variances of 

Random Variables in (3.13) 

In (3.13) we need to evaluate the sum of four random variables, Re(g*l0W2), Re(g2TWx), 

Re(g*wN0) and Re(g2TNj). We know that W,, W2, N0 and NT are zero mean 

Gaussian random variables. Therefore, their sum in (3.13) is also zero mean. 

From Appendix A, we know that Re(g*0iV0) and Re(g2TNj) are zero mean 

independent Gaussian random variables with variances \gw\ CTN and \g2T\ aN 

respectively... They are independent of any other random variables. 

For W, and W2, we know that they are correlated. Therefore, we analyze them as one 

term Re(g*wW2 - g2TWx)We express the samples of -W and W2 as 

Wl. = x \ +J v i (F-l) 

w2 = x2 +jy 2 (F.2) 

where x{, yt, x2 and y2 are samples of zero mean real Gaussian random variables 

with variance cr^ and correlation coefficient pw, i.e., 

E[Xf] = E[Yi

2] = a2

w (F.3) 

E[X.Y.] = 0 i, y = l,2 (F.4) 

E[XlX2] = E[YlY2] = pwcr2

w (F.5) 

If we substitute gi} by its real and imaginary parts as g.. = utJ +.jvtj, we have 
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Re(g*0W2 -g2TW*) = (ul0x2 - K 2 r X j ) + (v 1 0y 2 -v2Tyl) (F.6) 

Then the variance of Re(g*i0W2 - g2TW*) is 

£ [ R e 2 ( g l > 2 - g 2 X ) ] 

= £[(u 1 0X 2 - u 2 r X , ) 2 +(v10F2 - v 2 r y , ) 2 +2(w 1 0X 2 -MjrX^Cv^Kj -v 2 r F,)] 

= ( M 2

0 + u\T -2uwu2Tpw)al + (vf0 + v\T - 2 v w v 2 T p w ) a l 



68 

Appendix G Derivation of the Variances and Correlation 

Coefficients of Matrix Transformed 

Time-selective, Spatially Correlated Fading 

Before transformation, G 1 0 , G 2 0 , G i r and G2T are zero mean complex Gaussian 

random variables with variance o2

G. Their covariance matrix is expressed in (3.1) as 

PS°2G 

P,°l 

P,<*1 

PsPt°G 

P,02G 

P,°l 

P,P,°l 
_2 

Ps<?G 

PsP^G 

P,<7G 

Ps°l 
(3.1) 

psp,<yG 

After matrix transformation, four new zero mean complex Gaussian random variables 

G 3 0 , G 4 0 , G 3 T and G 4 r are created by (3.23) 

£ 3 0 840 

_SAT 83T. 2 
810 + 82T 

8ir ~ 8w 

820 8\T 

8\T + 820 
(3.23) 

The variance of G 3 0 can be written as 

° G 3 0 = - ^ b 3 o G 3 o ] 

= —E 
2 (G10 + G2T ) ( G 1 0 + G2T ) 

(G.1) 

Similarly, the variances of G 4 0 , G3T and GAT can be proved as o2

GA, (T̂  and cr^ 

respectively, where al

GA = (l-psp,)<JG. 
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The covariances of G 3 0 and G 4 n , G 3 0 and G 3 T can be written as 

£[G 3 0 G 4 0 ] = £ V2 V2 . 
— (G 1 0 + G 2 r ) — (G 2 0 - G i r ) 

= E[GWG20 -GlTG2T -GwGlT + G20G2T] =0 (G.2) 

E[G30G3T] = E V2 V2 . 
— (G 1 0 + G 2 r ) — ( G i r + G 2 0 ) 

= 77 ̂ b io^o + GlTG2T + Gl0GlT + G20G2T ] 

(G.3) 

The correlation coefficient between G 3 0 and G 3 r is 

P* = 
£T_G30G3r] P,+Ps 

^E[\Gi0\2]E[\G,T\2] 1 + PsP, 
(G.4) 

Similarly, we can prove the covariance and the correlation coefficient between G 4 0 and 

GAT as 

E[GA0G;T] = 2(p,-ps)cTG (G5) 

P,4 = 
Pt-Ps 
\-P",P, 

(G.6) 

Because the rest of the covariances between new channels are 0, the new covariance 

matrix can be written as 
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0 

(P,+Ps)°G 
0 

0 

0 

(P,-P,)°G 

(P,+Ps)°G 

0 

(l + PsPt)a2 

0 

0 

(P,-P,)°c 
0 

Since channel 3 and channel 4 are uncorrelated, we can write (G.7) separately as 

{\ + PsP,)G2

c (P,+Ps)°2C 

SP,+Ps)vl (l + PsPl)CT2

G_ P,1°G} 

(1-PSP,)°G (Pt-PS)<7G A 4 < 

SP,-Ps)cl (J-PsP<)°2G_ (JQ 

(G.8) 

(G.9) 



71 

Appendix H Distribution of Hermitian Quadratic Form 

Using (2.23), we can write the decision variable for s0 as • ' ' 

/ = Re(s0) = (asQ + bsx)\hx\ + (as0-bsx)\h2\ + bsQ(hxh2 + hxh2) 

+ (h*dl + hxdx)s0 + (h*d2 + hxd2)sx + (h2d*2 + h2d2)sQ 

- (h2dx + h*2dx )sx + (h* + hx )n0 + (h2 + h2 )n*T 

= ZT* F Z (H.1) 

where Z = [HX H2 Dx D2 N0 NT]T, a 6x1 column matrix of six jointly distributed 

complex Gaussian variables, with covariance matrix R 

1 2 2 

Pe 

and 

R = 

2 1 2 
Ps°G 

Pe 
0 

0 

0 

0 

F = 

0 

0 

0 

0 

0 0 0 0 

0 0 0 0 

ol p d ° l 0 0 

Pd°2D ol 0 0 

0 0 ol 0 

0 0 0 ol 

as0 + bsx bs0 

1 

2 0 

1 

2 1 

1 
— s 
2 
1 
— s 
2 

bs0 as0 - bsx 

1 

2 0 

1 

2 1 

1 
— s 
2 
1 
— s 
2 

1 

2 0 

1 
s \ 

2 1 

0 0 

1 
2 1 

1 

2 

1 

2 0 
0 0 

1 
2 1 

1 

2 
0 

1 

. 2 

0 0 

0 

0 

1 

. 2 
0 0 0 0 0 

(H.2) 

(H.3) 
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It is clear that both F and R are Hermitian. Thus a unitary 6x6 matrix, U, 

"V2 V2 

U 

2 
V2 
2 
0 

0 

0 

0 

2 
V2 
2 
0 

0 

0 

0 

0 

0 
V2 
2 

V2 
2 
0 

0 

0 
0 

_V2 
2 

V2 
2 
0 
0 

0 

0 

0 

0 

2 
V2 

0 

0 

0 

0 
_V2 

2 
V2 

(H.4) 

can be formed with the 6 eigenvectors of R as its columns, such that 

U T * U = I 

U T * R U = A 

U A U T * = R 

(H.5) 

(H.6) 

(H.7) 

where I is the identity matrix and A is a diagonal matrix with the six eigenvalues of R. 

A = 

„ 2 ° C 

0 
0 
0 
0 
0 

0 0 0 0 0 
P.p] a2 

•) G 0 0 0 0 
Pe 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

(H.8) 

There is an infinity of matrices that allow a factorization of A in the form 

(H.9) 
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One such factorization is the "square-root" matrix. 

T = 

Or 0 

0 
0 
0 
0 

PsPe 0 

0 
0 
0 
0 

4X + Pd0D 

0 
0 
0 

0 

0 

0 0 

0 0 

0 
0 

0 
0 

ON 

0 

0 
0 
0 

(H.10) 

Thus, Z can be transformed into W, a new set of Gaussian random variables, in which the 

random variables are statistically independent with covariance matrix I. 

W = ¥ 1 U T Z = 

Hx+H2 

V 
Pe H2 -Hx 

^-psp2e<yG ^ 
1 D. + D, 

1 D2-Dx 

1 N0 + NT 

1 NT-NQ 

(H.ll) 

The inverse of (H.ll) is 

Z = U* *FW (H.12) 

The quadratic form of (H.l) becomes 

/ = WT* (TT* U T F If ¥ ) W = W'1' T W (H.13) 

where 
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T = ¥ T * U T F U * ¥ = 

a p 7 s £ 0 

P <r V 9 0 I 

r V 0 0 0 0 

s 9 0 0 0 0 
£ 0 0 0 0 0 
0 i 0 0 0 0 

a -

P 

l + P s P e - c r 2 ( a + b)s0 

Pe 

.2 „4 
PsPe 7 

2 <*GbSl 

(H.14) 

(H.15) 

(H.16) 

7 = 
4(\ + PSP

2

E)(\ + PD) 
2pe 

4(\+PsP

2

e)d-Pd) 

2Pe 

(TGCJDS0 

aGaDsx 

£ = ^+~PS 

2Pe 
°G°N 

(H.17) 

(H.18) 

(H.19) 

1 P'2

P< a2

G(a-b)s0 (H.20) 

77 = 
j a - P s P

2 ) ( i + P d ) 

2pe 

aGaDsl 
(H.21) 

0 = 
2P, 

(H.22) 

i = V i - p , y 
2p e 

oGoN 
(H.23) 

Since T is also Hermitian, it can be diagonalized in a form 

T = SOS T * (H.24) 

where S is a unitary matrix of orthonormalized eigenvectors of T, and O is the diagonal 
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matrix of its eigenvalues, (j>i. Thus, one can introduce the transformation 

X = ST* W (H.25) 

in terms of which the quadratic form is diagonal, 

/ = X T * O X = X^kT- (H-26) 

and the covariance matrix of X is still I. 

Since the Hermitian quadratic form f here is in a zero mean complex Gaussian process, the 

characteristic function of/, defined as a Fourier transform on its pdf, is 

Gf(%) = ^—i (H.27) 
f * det(I-2/-£R*F) 

with its pdf given as the inverse 

PFU) = ̂ -r e x P W £ / ) Gf(t)dt (H.28) 
2n J-°° 

We can derive Gf(£) here, but due to its complexity, it is difficult to obtain the pdf by 

inverse Fourier transform. 
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Appendix I Derivation of Channel Estimation Correlation 

Coefficient as a Function of SNR 

In a simple model, with a transmitted signal s, i.e., a B P S K signal, the received signal r 

can be represented by 

r = gs + n CIA) 

where G is the channel gain, which is a zero mean complex Gaussian random variable 

with variance aG and N is the additive Gaussian noise, which is also a zero mean 

complex Gaussian random variable with variance <72

N . 

If we use pilot symbols, we can obtain an estimate of g as 

8=- = 8+- (1-2) 
s s 

Thus G is a zero mean complex Gaussian random variable with variance 

CT2

6=CTG+CT2

N. (1.3) 

The correlation coefficient pe between G and G can then be obtained as 

E[GG*] _ E[(G + N)-G*] _ E[\G\2] 
Pe = 

V £ [ | G | 2 ] - £ [ | G | 2 ] T]E[\G\2]-E[\G\2] JE[\G\2]-E[\G\2] 

2a2 
'G 

V2(c7 2+<7 2)-2a 2 f a l l a l Vl + l / S N R 
(1.4) 

where SNR = <72

G I <72

N, 
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