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Abstract 

Noise reduction is an important aspect of video processing. This thesis proposes 

a motion adaptive temporal-spatial noise reduction system. The three-step motion 

detection algorithm is the key for the system. First the pixel-to-pixel difference 

between two frames are compared to a threshold. This step gives a preliminary 

motion detection result for each pixel in the target frame. The preliminary motion 

detection results then go through the impulse pattern recognition module, where 

some false detections are corrected. The last step of the motion detection method is 

the spatial motion detection. It corrects those motion pixels that were mis-detected 

as still pixels in previous steps. Therefore, the pixel accurate motion detection 

results between the target frame and a reference frame is obtained. These results 

are used to control the operations of the temporal filter and the spatial filter. The 

temporal average filter only operates on the pixels that is not in motion to avoid 

motion artifacts. The edge adaptive spatial filter does little spatial filtering in 

the still areas of the picture to maintain the spatial resolution, while does more 

aggressive filtering in motion areas of the picture because the human eye is less 
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sensitive to the blurring of moving objects. Therefore, the maximum noise reduction 

effect is achieved. 

The proposed algorithm is implemented both in a hardware prototype using 

F P G A s and as a real-time software module on a V L I W DSP chip. Both prototypes 

made the intensive subjective evaluations of the algorithm possible. It is proved 

that the algorithm improves the picture quality about 6 dB, in terms of signal-to-

noise ratio and subjective estimation, for most of the noisy pictures. It introduces 

minimum artifacts. 
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Chapter 1 

Introduction 

1.1 Background 

Noise is an inherent feature of any video communication system. Noise arises in each 

step in the video circulation path. At the source, it may be generated as photon noise 

or thermal noise in television cameras or as film grain in cine cameras. Recorders add 

yet more noise as the signal effectively re-circulates around a noisy loop during post-

production. Finally the signal is transmitted to the end users via the distribution 

network where more noise is added. In the case of digital transmission, although 

the signal is less vulnerable to transmission noise, the loss in video encoding and 

decoding introduces visible impairments. The sum total of all these may affect the 

picture quality negatively. [2] [35] 

The importance of noise reduction is constantly growing with the ever-

increasing use of cable television. To protect the right of the subscribers, the FCC 
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regulated the baseline quality at the receiver end that any cable system has to meet. 

Delivering quality signal to subscribers is a difficult balancing act. It would have 

been a simple matter to deliver very high quality video if the cost was not a consid­

eration. To upgrade an old cable system to meet the F C C requirements, the cable 

operators may have to replace old amplifiers that are present in the field. This is 

very costly. In the past years, cable operators have spent huge amount of money 

deploying cost-effective hi-tech devices to improve the quality of video signal. As 

time goes by and the technology improves, F C C has also lifted the bar on minimum 

quality constantly. 

Having a noise reduction device, at a subscriber premise, is an alternative 

solution to the problem. Installing an inexpensive device at the subscriber's home 

is economical as network upgrade is much more expensive. The cost advantage of 

this solution becomes increasingly competitive as the cable industry is gradually 

migrating to digital. For quite a long period, the digital and analog services will 

coexist in the cable network. Embedded with such a function, a digital set-top box 

can decode digital programs, and remove video impairment while receiving analog 

programs. This can also narrow the gap of picture qualities between the digital and 

the analog signals. 

This thesis documents the work on searching for and implementing an algo­

rithm that removes commonly seen noise in cable television systems. This project is 

partially supported by Rogers Canadian Cable Foundation, an organization funded 
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by major cable operators in Canada. The goal of this project is to solve a real noise 

reduction problem in the cable networks. 

1.2 Video Signal Impairments 

Video signal in a cable systems experience many impairments. In the process of 

converting analog transmission to digital transmission, both analog and digital noises 

will arise in the network. 

1.2.1 Analog Video Noise 

The principal impairments for analog picture can be divided into two categories: 

coherent and non-coherent noise. [32] 

Coherent interference includes ingress of alien signals, reflections of signals 

from the impedance discontinuities of transmission line, cross modulation of video 

signals and cross modulation of the carriers of video signal. They give rise to pat­

terns on the screen called beats.[19] Two of the most commonly seen coherent in­

terferences are Composite Triple Beats (CTB) and Composite Second Order Beats 

(CSO). The CTB impairment is due to the cumulative effect of hundreds of third 

order inter-modulation beat products result of the non-linearity in cable amplifiers. 

Graininess or a similar texture effect characterizes this impairment over the entire 

picture. CSO also results from the nonlinear behavior in electronic components. In 

optic fiber cables, it results from the laser drivers of optical fiber links, and some-

3 



times the optical fiber itself. CSO patterns often look like moving diagonal bars or 

herringbones. [19] [40] 

Coherent impairments result in recognizable interference pattern superim­

posed on the picture. They are more objectionable than non-coherent impairments 

of equal strength. In cable systems, the noise level is expressed as a ratio of the 

visual carrier to the specific noise type in a television channel. This measure is 

called the Carrier-to-Noise Ratio (CNR) and is measured in decibels (dB). As of 

July 1, 1995, the F C C required the C N R of coherent disturbances to be 51 dB or 

higher. [40] 

The principle non-coherent picture impairment is thermal noise. Thermal 

noise behavior is a well-understood part of general communication theory. It is a 

consequence of the statistical nature of the movements of electric charges in con­

ductors. This noise is inescapable. If the intended analog signal is ever allowed to 

become weak enough in comparison with the noise signal, the signal will be polluted 

by the noise, yielding a snowy pattern in pictures. Hence, the common reference to 

thermal noise as snow noise in cable T V industry. 

The regulatory target value of C N R for thermal noise is 45 to 46 dB. Sub­

jective data were compiled in 1991 in a project sponsored by the Cable Television 

Laboratories, C A T V . The work indicates "perceptible but not annoying" C N R at 

about 47 to 50 dB. The "slightly annoying" category was within about 1 dB of 41 

dB.[40] 
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Impulse noise is another kind of the non-coherent impairments. It has short 

duration and high energy. It occurs most often in over-the-air transmission such as 

in standard broadcasting and satellite transmission. 

1.2.2 Digital Video Noise 

Digital signal is more robust against noise during transmission. However, the picture 

compression process at the encoder as well as the post-production stage and decom­

pression process at the user end may degrade the picture quality. This degradation 

results in impairments including blockiness, mosquito noise, blurring, contouring, 

color bleeding and ringing.[19] 

Most of the noise in digital images is caused by uneven resolution loss in the 

quantization process. Blockiness is one of the major disadvantages of block-based 

compression techniques, such as J P E G or MPEG.[16] Blockiness is represented by 

intensity discontinuities at the boundaries of adjacent blocks in the decoded image. 

It is caused by coarse quantization of D C T coefficients. When the quantization levels 

are not the same for adjacent blocks, a blockiness appearance will most likely arises. 

The mosquito effect is a temporal artifact and is visible mainly in smooth-textured 

regions as fluctuations of luminance/chrominance levels around high contrast edges 

or moving video objects. It is caused by having different quantization levels for the 

same smooth-textured area in consecutive pictures. 

This section gives a brief introduction of well-known video noises. Each kind 

has its unique characteristics. It is almost impossible to remove all these kinds of 
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noises by applying a single filter. This thesis is mainly focused on the improvement 

of thermal noise impaired pictures. Since thermal noise spread widely in all kinds 

of communication systems, the work of this thesis will have a broader application 

area than cable industry. 

1.3 Possible Applications of Noise Reduction 

Noise reduction can be widely implemented in consumer products such as in digital 

set-top boxes and in large screen television sets. As the technology progresses in 

every area of video processing, pictures of higher quality are provided to consumers. 

The consumers' viewing expectations become higher and the tolerance to poor pic­

ture quality becomes lower. This situation urges the manufactures to utilize all 

possible technologies to meet customers demand. 

Noise reduction also finds application into digital video. Digital video com­

pression techniques, which was optimized and popularized by the M P E G - 2 inter­

national standard, have been providing turnkey solutions for transfer from analog 

T V to digital T V . While M P E G - 2 is a very efficient video compression standard, it 

does not address video preprocessing and post-processing needed to further improve 

the quality of digital video image. It has been observed that the noise level in the 

input video has a big impact to the ultimate compression quality since the M P E G - 2 

compression scheme, especially the motion compensation process, is very sensitive 

to noise. Noise increases the entropy of the image sequence and therefore hinders 
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effective compression. Thus, filtering of image sequences for noise suppression is 

often a desirable preprocessing step. In post-processing, noise reduction filters may 

be used to remove digital artifacts, such as blockiness and mosquito noise, so that 

lower coding rate can be achieved without compromising picture quality; this means 

bandwidth savings. [18] 

Noise reduction is also a central issue in medical image processing. A n image 

from a medical imaging system is acquired to obtain a 2D representation of a 3D 

object for medical diagnosis. Unfortunately, most images are degraded by various 

distortions. Sometimes, these distortions result in inadequate object representation 

and make accurate image analysis difficult. Effective corrections of other distortions 

are often closely related to and based on successful noise reduction. Furthermore, 

noise reduction makes pattern recognition and image analysis for industrial and 

scientific applications more accurate and efficient.[17] 

1.4 Research Objectives and Challenges 

The objective of this research work is to find a noise reduction method that reduces 

some of the commonly seen noise, especially the thermal noise, in video signals and 

to improve the objective quality, as well as the subjective quality of the picture. 

The deliverable of the project is a noise reduction prototype, which implements the 

proposed algorithm. 

The evaluation of noise reduction involves two aspects, the effectiveness in 
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noise reduction as well as the minimization in the artifacts the algorithm introduces 

to the picture. Noise reduction inevitablely degrades the picture in one way or 

another. Many noise reduction schemes introduce varies artifacts to the processed 

picture. These artifacts become more evident when the pre-processed picture is 

relatively noise free. Therefore, the objective of the noise reduction system to be 

developed is to deliver superior performance in noise reduction as well as introduce 

minimal artifacts, especially for clean pictures. 

The algorithm has to be simple and easy so that it could be implemented 

in both hardware and software. Some noise reduction algorithms give good noise 

reduction results, but are so complicated that they are of little commercial value. 

One objective of this project is to develop an algorithm so that the implementation 

cost is low enough for the price-sensitive consumer market. While meeting the 

cost constraint, the performance should not be compromised. Achieving an optimal 

combination of cost and the effectiveness is another challenge to this project. 

1.5 Scope of the Thesis 

The thesis is a record of nearly three years of research and development of the noise 

reduction project. Chapter two is a review of some noise reduction filters previ­

ous researchers have developed. Advantage and drawbacks of different filters are 

discussed, as well as their performances to different types of noise. Chapter three 

discusses motion detection algorithms, which constitutes the most important part of 
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our developed system. Different motion detection algorithms are compared. Special 

attention is paid to the performance under noisy condition. Chapter four describes 

the proposed noise reduction algorithm in detail. Chapter five is the theoretical 

analysis of the proposed algorithm. The results are further validated by computer 

simulations. Chapter six documents the implementation of the proposed algorithm 

using FPGA hardware as well as DSP software. The design consideration and imple­

mentation optimization are also discussed. Chapter seven analyzes the measurement 

results obtained from the hardware prototype, and the subjective evaluation results 

on both the software and the hardware prototypes. The last chapter, chapter eight, 

concludes the thesis and recommends future work topics. 
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Chapter 2 

Noise Reduction Filters 

Noise reduction attempts to recover an underlying perfect image from a degraded 

copy. This problem is intractable unless one makes assumptions about the actual 

structure of the perfect image. Various noise reduction techniques make various 

assumptions, depending on the type of imagery and the goals of the restoration. In 

video processing, the assumption we make is that the noise signal is a random event 

whose variation is independent from that of the video signal. The noise signal is un-

correlated from pixel to pixel and from frame to frame. However, the image is highly 

correlated. The value of every pixel correlates with the values of its neighboring 

pixels, and with the value of the pixel in the consecutive frame with the same scan 

position. Therefore noise reduction of each pixel can be achieved through linear or 

nonlinear filtering on correlated pixels. 

Based on this assumption, various noise reduction algorithms are proposed 
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in the literature. [36] Different techniques are used to search for the right correlated 

pixels under noise condition, and several filtering schemes are proposed to cancel the 

noise. This chapter discusses these filters in three categories, spatial filter, temporal 

filter and temporal-spatial filter. 

2.1 Temporal Filtering 

Noise superimposed to video signals is a random event and varies independently from 

video signals. It is uncorrelated from frame to frame. However, the image is highly 

correlated in temporal domain, especially for stationary areas. Based on the fact 

that the picture differences for stationary areas of two consecutive frames are only 

caused by noise, temporal filters can reduce the noise in the video signals without 

impairing the spatial resolution.[35] Thus, averaging the signals that corresponding 

to successive pictures leads to noise reduction since the frame-to-frame difference is 

random with zero mean. 

Temporal noise filtering can be categorized into three types: Direct filtering, 

motion adaptive filtering and motion compensated filtering. 

2.1.1 Direct Filtering 

Direct filtering is the most straight forward implementation of temporal filtering. 

It filters pixels at the same raster position in two or more consecutive frames. The 

filter structure can be arranged as a transversal filter or a recursive filter. 
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Transversal Temporal Filtering 

Transversal filter is a Finite Impulsive Response (FIR) filter that operates in the 

time domain. A simple form of transversal temporal filter is frame averaging, where 

pixels occupying the same raster position in consecutive frames are averaged. The 

frame average filter can be expressed as: 

^ Tl—1 

nj=o 

where s(x, y, i) is the estimated value for pixel p(x, y, i), i.e. the noise reduced pixel, 

arid n is the number of history frames involved in the averaging. 

Direct temporal averaging is well-suited to stationary parts of the image, 

because averaging multiple observations of essentially the same pixel in different 

frames eliminates noise while resulting in no loss of spatial image resolution. It is 

well known that direct averaging in this case corresponds to the maximum likelihood 

estimation under the assumption of white Gaussian noise, and reduces the variance 

of the noise by a factor of n. 

In the implementation of a transversal filter, the history frames are obtained 

through a series of delay elements, each of length one picture period. These field or 

frame buffers are the main contributors to the filter cost. To achieve better noise 

reduction, more history frames axe needed. This means higher cost as more delay 

elements are used. Recursive filtering is thus proposed to reduce the memory cost 

while delivering the same noise reduction results. 
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Recursive Temporal Filtering 

A recursive temporal filter is a Infinite Impulse Response (HR) filter operates in 

the time domain. It only requires one picture delay element. To avoid gain at zero 

frequency, the filter is arranged as in figure 2.1. Here the effect of the subtractor, 

divider and adder is to form the output as a fraction 1/K of the input picture and a 

fraction 1 — (1/K) of the previous output picture, as shown in equation 2.2.[36][16] 

The amount of noise reduction is controlled by the feedback factor K. With 

this filter it is possible to obtain very high value noise reduction factor simply by 

increasing K. However, in digital implementation, each time K doubles, one extra 

bit is required to represent the value for K. The resolution for all the computation, 

such as multiplication, also have to increase by one bit. This brings more cost for 

implementation. [2] 

s(x,y,i) = j7P(x,y,i) + (1 - j;)8(x,y,i-l) (2.2) 

input 
1/K 

I 

output 

Delay 

Figure 2.1: Recursive Temporal Filter Structure 

Direct filtering does a good job in the stationary parts of the video im-
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ages, but introduces unacceptable motion artifacts to the moving part of the image. 

Therefore, it is seldom used in real implementations. Instead, motion adaptive and 

motion compensated temporal filtering are proposed to prevent motion artifacts. 

2.1.2 Motion Adaptive Filtering 

In motion adaptive filtering, the filter parameters are tuned according to a motion 

detection signal, such as the frame difference. The filter processes pixels in the 

stationary part of the picture, and usually turns off filtering when a large motion is 

detected, in an attempt to prevent artifacts.[25] [10] [34] 

The motion adaptive approach can be applied to both transversal and recur­

sive filter structures. For motion adaptive transversal filter, each pixel p(x, y, i—j)'m 

each history frames is weighted by a factor a,j(x,y,j), which is a function of 

the motion detection results. The filter is defined as: 

^ 71—1 

s(x,y,i) = - X i o ^ J / i i M ^ y ^ - i ) (2-3) 
J=0 

For the stationary parts of the image, aj(x,y,i) is equal to one. The value for 

a,j(x, y, i) approaches zero as motion increases. For large motion, a,j(x, y,i) is equal 

to zero, which means no filtering for the corresponding pixel. 

For recursive filter, the motion detection result controls the value oi K, as 

shown in equation 2.2. The K approaches to one as motion increases. When K 

equals to 1, there is no filtering for the corresponding pixel. 

It is obvious that the motion detection quality directly affects the perfor-
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mance of the motion adaptive filter. If a false detection occurs, i.e. a stationary 

pixel is detected as a motion pixel, the overall noise reduction performance decreases 

as filtering will be turned off for motion pixels. If a motion pixel is detected as sta­

tionary pixel, (i.e. a miss detection occurs) then motion artifacts will appear due to 

filtering this pixel. Different motion detection methods are developed trying to in­

crease the possibility of correct detection. These will be introduced in the following 

chapter. [1] 

Motion adaptive filtering prevents the appearance of motion artifacts, and 

greatly improves the overall noise reduction performance. However, the noise reduc­

tions in different parts of the picture are uneven. Noise is cleaned at the stationary 

parts, and appears in the motion parts. Motion compensated filtering is proposed 

to give even noise reduction to all parts of the picture. 

2.1.3 Motion Compensated Filtering 

Motion compensated filtering is a rather complicated process.[7][27][12] It is based 

on the assumption that the variations in the pixel gray levels over any motion 

trajectory is mainly due to noise. Noise in both the stationary and moving areas of 

the image can be effectively reduced by low-pass filtering over the respective motion 

trajectory at each pixel. 

Various filtering techniques, ranging from simple averaging to more sophis­

ticated adaptive filtering, can be employed given the motion compensated filter 

support. In the ideal case, where the motion estimation is perfect, direct averaging 
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of image intensities along a motion trajectory provides effective noise reduction. In 

practise, however, motion estimation is hardly ever perfect due to noise and sudden 

scene changes, as well as changing camera views. As a result, image intensities over 

an estimated motion trajectory may not necessarily correspond to the same image 

value, and the direct temporal average may result in artifacts. [36] 

One of the drawbacks for motion compensated filtering is its computational 

implementation. Motion search is a very computation intensive process. Take the 

most commonly used motion search method, block matching method, as an example. 

The block matching method divides the target frame into several blocks. For each 

target block, the method tries to find a matching block in a search window within 

the history frame based on certain matching criteria. Normally the search window 

is very large to get accurate motion search result, but this also brings significant 

amount of computation. 

2.2 Spatial Filtering 

Interframe noise filtering is another alternative for image noise reduction. Noise 

added to an image generally has a larger spatial frequency spectrum than the normal 

image components because of the spatial uncorrelatedness of the noise. Hence spatial 

filtering can be effective for noise cleaning. We can classify intra-frame noise filter 

into three categories, (i) Linear Shift-Invariant (LSI) filters, such as the weighted 

averaging filters and Linear Minimum Mean Square Error (LMMSE) filters, also 
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known as Wiener filters, (ii) nonlinear filters, such as median filters and other order 

statistic filters, and (iii) adaptive filters, such as directional smoothing filters and 

local space-varying L M M S E filters[36]. 

2.2.1 Linear Spatial Filtering 

Linear Shift-Invariant (LSI) noise filters can be designed and analyzed using fre­

quency domain concepts, and are easier to implement. The filters present a trade-off 

between noise reduction and sharpness of image details. This is because any LSI 

noise reduction filter is essentially a low-pass filter. It attenuates those frequencies 

which are higher than a certain cut-off frequency. As a result, the high frequency 

noise is eliminated, and unfortunately the high frequency content of the image is 

also attenuated, resulting in blurring of the image. 

Among all linear filters, the L M M S E filter gives the minimum mean square 

error estimate of the ideal image. That is, it is the optimal linear filter in the 

minimum mean square error sense. Loosely speaking, it determines the best cutoff 

frequency for low-pass filtering based on the statistic of the ideal image and the 

noise.[13] 

Wiener filter is another type of LSI filter. Noise can be reduced at the 

receiver side, using a Wiener filter estimator that estimates the transmitted video 

signal making use of the noise and image statistics. The advantage of this method 

is that it does not require changes in the transmitter. However, this technique is 

not easy to implement for most of real world channels as it requires knowledge of 
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the noise and image statistics which are normally nonstationary in nature. Clearly 

measurement of such statistics at the receiver side would complicate the system 

implementation. 

2.2.2 Non-linear Filtering 

The linear processing techniques previously described perform reasonably well on 

images with continous noise, such as additive uniform or Gaussian distributed 

noise, However, they tend to provide too much image smoothing for images with 

impulse-like noise. Nonlinear techniques often provide a better tradeoff between 

noise smoothing and the retention of fine image detail. 

Morphological filters are, perhaps, the most well known nonlinear filters for 

image processing. They are commonly used for multidimensional signal processing 

as they can rigorously quantify many aspects of the geometrical structure of a signal 

in a way that agrees with human intuition and perception. [26] 

The fundamental idea behind the morphological image-cleaning algorithm is 

to segment the residual image into features and noise, where the residual image is the 

difference between an original image and a smoothed version. [31] The features from 

the residual image are added back to the smoothed image. Ideally, this results in an 

image whose edges and other 1-D features are as sharp as the original image yet has 

smooth regions between them. Morphological operations include erosions, dilations, 

openings, closings. Erosion shrinks the processing area, whereas dilation expends the 

area. Opening suppresses the sharp capes and cuts the narrow isthmuses, whereas 

18 



closing fills in the thin gulfs and small holes of processed areas. [30] 

Rank-order filtering is another popular type of non-linear filters. [4] Median 

filters is the most commonly used rank-order filter as it causes no edge sharpness loss 

in the smoothed image.[15][5][ll] In one-dimensional form the median filter consists 

of a sliding window encompassing an odd number of pixels. The center pixel in the 

window is replaced by the median of the pixels in the window. The concept of the 

median filter can be extended easily to two dimensions by utilizing a two-dimensional 

window of some desired shape such as rectangle or discrete approximation to a circle. 

It is obvious that a two-dimensional X x L median filter will provide a greater degree 

of noise suppression than sequential processing with L x l median filters, but two-

dimensional processing also results in greater signal suppression. Median filter does 

a good job in removing impulse noise. However, in the case of uniform noise, median 

filtering provides little visual improvement. 

2.2.3 Adaptive Filtering 

The goal of a spatial noise reduction scheme is to eliminate the spatially uncorrected 

noise from the spatially correlated image content. The easiest way to get this is via 

a spatial lowpass filter. To avoid blurring edges and lines, the filter has to be content 

adaptive. [9] 

The common approach in spatial noise filtering of image data is to define a 

rectangular window around the target pixel, often of size 3x3. Then the noise is 

reduced by filtering the target pixels and some selected neighboring pixels in the 
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window. 

A n alternative approach for edge-preserving filtering is the directional filter­

ing approach, where the filtering is carried along the edges, but not across them. 

The directional filtering approach may in fact be superior to adaptive L M M S E fil­

tering, since noise around the edges can effectively be eliminated by filtering along 

the edges, as opposed to turning the filter off in the neighborhood of edges. [28] 

2.3 Temporal-spatial Filtering 

It follows that in purely temporal filtering a large number of frames may be needed 

for effective noise reduction. This requires a large number of frame storage. It 

also follows that in pure spatial filtering, blurring is introduced if effective noise 

compression is achieved. Therefore, temporal-spatial filtering is proposed to provide 

a compromise between the number of frame storage needed and the amount of spatial 

blurring introduced. [21] 

A n image sequence can be considered as spatiotemporal data, since it is a 

time sequence of two-dimensional images. Thus, in image sequence filtering, we 

make use of not only the spatial correlation between pixels but also the temporal 

correlation between frames by employing three-dimensional spatiotemporal process­

ing techniques. [20] 

In spatiotemporal filtering, the local spatial statistics are replaced by their 

spatiotemporal counterparts. It is obvious that the non-stationary mean assumption 
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readily extends to the spatiotemporal domain. Further, provided that the motion 

estimation is accurate, and the filter supports are spatially uniform, the white resid­

ual signal with non-stationary variance assumption in the spatiotemporal domain is 

indeed a reasonable one since the image values over supports constitutes a uniform 

spatiotemporal region in this case. In addition, local ergodicity and white noise 

assumptions are extended to the spatiotemporal domain.[36] 

The motion compensated spatiotemporal L M M S E filter is an extension of 

spatial L M M S E noise filtering to the spatiotemporal domain. The derivation of a 

local L M M S E estimate for spatial filtering is based on two assumptions. 1) The 

image has a non-stationary mean, and the residuals (difference between the esti­

mated value and the true value) form a white process with non-stationary variance. 

2) The noise is a zero-mean white process that can be signal-dependent or signal-

independent, and the image and the noise processes are both locally ergodic. The 

second assumption , which is commonly used, allows replacing ensemble statistics 

with their local counterparts that can be estimated from the observed image. Ex­

periments demonstrated that the assumption of white residual with non-stationary 

variance is valid over uniform regions. 

The adaptive weighted averaging (AWA) filter is based on the premise that 

spatiotemporal motion-compensated averaging is an effective means of suppressing 

noise while preserving image sharpness, provided that the spatiotemporal filter sup­

port is uniform. [39] The AWA filter assigns a weight to each image value within the 
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motion-compensated spatiotemporal support, the value of which is a function of the 

difference between that image value and the noisy pixel that is being filtered. In 

cases when the spatiotemporal support is nonuniform due to highly detailed image 

structure and/or inaccurate motion estimation - and/or abrupt scene change from 

one frame to another - the AWA filter simply weights down the effect of those values 

that are decidedly different from the pixel being filtered, hence avoiding excessive 

blur or inefficient filtering. Therefore, compared to L M M S E filter, the AWA filter 

is better suited for efficient filtering of sequences containing segments with varying 

scene change. On the other hand, when the spatiotemporal support is sufficiently 

uniform, AWA approaches direct averaging. 
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Chapter 3 

Motion Detection in Video 

Signals 

Motion is subjectively a very important element of the video signal. A l l efficient 

signal processing algorithms have to account for motion while improving the picture 

quality. For the motion adaptive filter discussed in the previous chapter, motion 

detection results directly affect the filter performance, as incorrect motion detection 

may results in artifacts or poor noise reduction performance. 

In a simple motion detection scheme, motion is detected by computing the 

difference, or a function of it, between the intensity of the pixel and that of the cor­

responding pixel in the previous frame. However, this scheme is very sensitive to the 

presence of noise, as noise between two successive frames is incorrectly interpreted 

as motion. [3] Noise causes two types of errors, which we refer to as false detection 
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and miss detection. False detection refers to the kind of error where a still pixel is 

detected as a motion pixel. Miss detection refers to the error when a pixel in motion 

is detected as a still pixel. For a motion adaptive filter, miss detection results in 

motion artifacts, while false detection degrades the noise reduction performance. 

Therefore, for noise reduction filters, any motion detection algorithm is required to 

maintain low false detection and miss detection rates under noisy condition. 

Different approaches for motion detection, that utilize temporal and spatial 

correlations among motions, are discussed in this chapter. This discussion follows 

the introduction of the basic motion detection algorithm as it is the basis for all 

other improved methods. 

3.1 Basic Algorithm 

In a basic inter-frame motion detection algorithm, thresholding is used to segment 

a video frame into "motion" and "still" regions with respect to the previous frame. 

We define the frame difference Dij-\{x, y) between frames i and i — 1 as 

Di,i-i(x,y)=p(x,y,i)-p(x,y,i-l) (3.1) 

that is, the pixel by pixel difference between the two frames. Assuming that the 

illumination remains more or less constant from frame to frame, the pixel loca­

tions where Diti-i(x,y) differ from zero indicate "motion" regions, while where 

Di,i-i(x, y) equal to zero indicate stationary regions. However, the pixel difference 

at (x,y) hardly ever has a value of zero because of the presence of noise. [36] 
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In order to distinguish the nonzero differences that are due to noise from 

those that are due to motion or scene change, thresholding is used by computing 

miA-i{x,y) = < 
1 if | A , i - i ( a r , y ) | >T 

(3.2) 
0 otherwise 

where T is an appropriate threshold. The choice of the value of the threshold T 

is a compromise between immunity to noise and motion detection. The lower the 

T value, the more chance that a high intensity noise would cause a false motion 

detection. As the T value increases, motion resulting from small pixel variations 

value will be ignored, which causes miss detetions. This is the case e.g. when slow 

motion happens at a smooth motion boundary. 

3.2 Improvements to the Basic Algorithm 

Because of the above mentioned shortcoming, a basic algorithm relying on pixel 

by pixel difference and thresholding, as discussed in the above section, is seldom 

used for motion detection in real systems. However, since such a method is the 

most straight forward one for motion detection, it becomes the starting point of 

more sophisticate algorithms. These algorithms yield better i.e. noise insensitive 

motion detection results by adding pre-processing and post-processing to the basic 

algorithm. 
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3.2.1 Pre-processing of the Basic Algorithms 

The purpose of pre-processing of the basic algorithms is to reduce noise before 

computing the frame difference. [8] [22] Therefore, the motion detection results are 

less affected by noise. 

One of the approaches is to use a spatial filter as a pre-processor for motion 

detection. The noisy pictures are cleaned by linear or adaptive spatial filters before 

they are fed into the motion detector. A spatial filter is usually applied to a sliding 

window with the target pixel at the center of the window. There are two opposing 

factors governing the choice of the window size. The larger the window size, the 

more accurate is the measure of noise, as manifested by the lower variance of the 

output, and so the more readily can motion be detected correctly. O n the other 

hand, the larger the window size, the more likely the detector is to miss smooth 

motion in a small area. Therefore, pre-processing using a spatial filter improves the 

performance of the basic algorithm under noisy condition, but unfortunately at a 

cost of decreased motion sensitivity. In addition, the spatial filter artifacts may also 

cause motion detection mistakes. 

Michael et al. [29] described another pre-processing method. The pixel 

differences are first computed between the target frame and the history frame. The 

pixel differences in a sliding window centered at the target pixel are integrated to 

generate an average difference over the area. The average difference is then compared 

with a threshold. The objective here is to differentiate between noise and movement 
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under the assumption that the larger the number of picture points integrated, the 

more likely the noise will average to zero whereas motion remains unchanged. 

Roeder et al. [6] further group the pixel differences in the sliding window 

into overlapped subarrays, each of which includes the target pixel. Each of the 

subarrays is independently examined to determine if the magnitude of all of the pixel 

differences represented in a particular subarray exceed a predetermined threshold. 

If the condition is met in any one of the subarrays, the target pixel is considered as 

a pixel in motion. Compared with [29], this method improves the property of detail 

preservation, but it is less robust in heavy noise situations as less pixels are involved 

in the averaging. 

Koivunen [23] described a motion detection algorithm for television signal. 

This method is intended for motion adaptive signal processing, such as scan rate 

conversion and noise reduction. The algorithm, which is insensitive to channel 

noise, is called the MSB (most significant bit) motion detection method. Firstly, 

the 8-bit video intensity is limited to one bit by discarding the 7 least significant 

bits. Therefore, the picture becomes a binary image. Secondly, the binary image 

is organized into 2x2 non-overlapping blocks. Thirdly, the four bits in each block 

form a 4-bit codeword with each bit corresponding to a pixel sample. Lastly, the 

two codewords corresponding to two consecutive frames are compared. If there is 

a difference between the codewords, the corresponding pixels are considered to be 

motion pixels. 
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Compared to the basic method, this algorithm has better performance under 

noisy condition. The hardware simplicity is another advantage of this algorithm. 

It requires slightly more than 1/8 the memory required by most of the algorithms. 

However, the noise in-sensitivity of this method is not evenly distributed, and it 

depends on the pixel value. For a pixel with value less than 127, this method is 

more tolerable to negative values of noise than to positive ones, and the tolerance 

declines as the pixel value approaches 127. For a pixel with value greater than 127, 

this method is more tolerable to positive values of noise than to negative ones, and 

the tolerance increases as the pixel value departs away from 127. This method also 

reduces motion detection resolution to a quarter of the picture resolution. 

Al l pixel motion detection methods mentioned above do improve the meth­

ods' noise immunity for a motion area or on the boundary of a motion area, but 

what they sacrifice is the sensitivity of the small motion. 

3.2.2 Post-processing of the Basic Algorithm 

Post processing of motion detection aims to correct the false detection and missed de­

tection caused by noise based on the knowledge of the characteristics of a noise model 

and a motion model, hence to improve the overall motion detection performance. [24] 

After applying the basic motion detection algorithm, Gaussian noise appears 

as impulse noise on the two-dimensioal matrix of motion detection results. When 

applying post filtering to the matrix, it is desirable to remove any single or non-

connecting motion elements, since they are most likely caused by misinterpreted 
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noise. Edges and corners of the matrix should be preserved. 

One of the systems described by Michael et al. [29] is to use a majority logic 

gate to post-process the motion detection results obtained by the basic algorithm. 

The input for the gate is the detection results of a matrix centered at the target 

pixel. Each entry in this matrix corresponds to a decision as to whether or not the 

pixel is a motion pixel. The size of the matrix is usually taken as 3x3 or 5x5. If 

the majority of the detection results in the matrix indicate motion pixels, the target 

pixel is considered in motion. This method eliminates any motion detection results 

with a disconnected area. e.g. single motion pixel being surrounded by non motion 

pixels, and vice versa. However, this method also smoothes the edge of the motion 

objects. 

Median filter is well known for its edge preserving property. When applied to 

a binary motion detection signal, the median filter cancels out any single inconsistent 

decisions, resulting in a smooth decision field with adequate resolution. Median filter 

is a suitable choice for motion detection post-processing filter. 

3.3 Summary 

The basic method employing frame intensity difference and thresholding is the ba­

sis for all motion detection methods. This method is extremely noise sensitive. 

Some pre-processing methods have been proposed to improve the noise immunity of 

the basic algorithm. However, motion sensitivity of the algorithm is compromised. 
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Other methods try to post-process the basic method results based on the assump­

tion that the motion affected pixels are spatially and temporally correlated and the 

noise corrupted pixels appear randomly. These post processing methods prove to 

be effective. Our motion detection method that will be proposed in chapter 4 falls 

also under this category. 
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Chapter 4 

The Proposed Algorithm 

This chapter describes in detail the proposed noise reduction algorithm. The al­

gorithm is based on the techniques described in the two previous chapters. To 

efficiently reduce noise, a three dimensional temporal-spatial filter that is based on 

pixel averaging is developed. To avoid motion blur artifacts and spatial blur arti­

facts, a sophisticate motion detection for the temporal filter and an edge detection 

and motion adaptivity scheme for the spatial filter are developed. Compromises on 

implementation complexity are also taken into consideration at the same time. [33] 

Throughout the discussion in this chapter, we will use the following expres­

sion conventions. The variables for a signal pixel are expressed in lower case indi­

cates. A upper case variable indicates a two-dimensional matrix. The size of the 

matrix equals to the size of the processed picture. Each element in the matrix is 

the variable with the same letter, but in lower case, for one pixel in the picture. 
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For example, P* indicates one frame, and p(x, y, i) is a pixel in the picture whose 

position is at (x,y). The motion indicator for pixel p(x,y,i) in frame P{ with respect 

to its corresponding pixel in frame Pj_i is mi(x,y,i), and M l denotes the motion 

indicators for all the pixels in frame Pj with respect to frame Pj_i. 

4.1 Functional Block 

The algorithm consists of three major functional blocks: a motion detector, a tem­

poral filter and a spatial filter. Figure 4.1 illustrates the block structure of the 

proposed algorithm. 

input 

Frame 
Delays 

Temporal 
Filter 

. . . ME 

IT 
Motion 

Detection 
Ma 

output 

Figure 4.1: Block Diagram of Proposed Algorithm 

The processing of the algorithm is frame based. Thus for interlaced video, 

such as interlaced television signal, the two interlaced fields are assembled to form 

one frame. The frame to be processed is called the target frame, and the pixel to be 

processed is called the target pixel. Each frame consists of a two-dimensional array 
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of pixels. Each pixel has one parameter to represent its luminance value and two 

parameters to represent its chrominance values. 

The temporal filter in the proposed algorithm is a transversal filter. The filter 

structure is chosen to be transversal not to be recursive because the recursive filter 

structure involves high resolution multiply and division which is costly to implement 

in hardware. Therefore, several history frames are required for temporal filter to 

get decent noise reduction results. The number of the frames involved in the filter 

is a compromise between the temporal noise reduction and the implementation cost 

for memory. The proposed algorithm decided to use four frames in the processing, 

which theoretically brings maximum 6 dB noise reduction. 

The digitized video signal first passes through three frame buffers to obtain 

the four frames. The target frame is the most recent frame. Let us denote the 

target frame as P$, and the three history frames are denoted as Pi-i, Pi-2 and 

Pj_3 respectively, with Pj_i being the nearest frame to Pj. The pixels in the target 

frame is denoted as p(x, y, i), and pixels in the three history frames are denoted as 

p(x,y,i — 1), p(x,y,i — 2) and p(x,y,i — 3) respectively, where x and y represents 

the pixel's horizontal and vertical position at the frame. 

The motion detector computes the motion indicators for Pj with respect 

to Pi~i, Pi-2 and Pj_3 respectively. Therefore, for each pixel in the target frame 

p(x,y,i), there are three motion indicators m\{x,y,i), rn.2(x,y,i) and mz{x,y,i) 

that indicate the motion statuses of pixel p(x, y, i) with respect to pixel p{x, y,i — l), 
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p(x,y,i — 2) and p(x,y,i — 3). The temporal filter averages the input four frames 

depending on the value of three motion indicator signals as will be discussed in later 

section 4.3. The resultant filtered frame P[ is then processed by the spatial filter to 

create noise reduced frame P"j. It is noted that the spatial filter is controlled by 

motion index value M / l j as will be discussed in section 4.4. 

4.2 Mot ion Detection 

For our proposed motion adaptive noise reduction algorithm, the performance of 

motion detector plays an important role. If the motion detector creates too many 

false detections, the noise reduction will be not as effective because the false de­

tected noisy pixels will not be filtered by temporal filter. On the other hand, if 

the motion detector creates too many miss detections, the picture will be degraded 

after noise reduction because the miss detected motion pixels will be filtered by the 

temporal filter, causing motion artifacts. The proposed motion detection algorithm 

is composed of three steps in series: difference thresholding, impulse pattern recog­

nition and spatial motion detection. The first step preliminarily detects whether or 

not a pixel is a motion pixel. The impulse pattern recognition corrects the falsely 

detected still pixels, and the spatial motion detection corrects the miss detected 

motion pixels. 
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4.2.1 Difference Thresholding 

Difference thresholding is a preliminary method to detect if the difference between 

corresponding pixels in two frames is caused by motion or noise. It is based on 

the assumption that the difference caused motion has much larger value than the 

difference caused by noise. 

Each pixel in the target frame is compared with pixels in the previous frames 

at the same raster position. The pixel difference dk(x, y, i) between two pixels 

p(x, y, i) and p(x, y,i — k) is defined as: 

dk(x,y,i) = p(x,y,i) -p(x,y,i-k) fc = l ,2,3 (4.1) 

The pixel difference dk(x,y,i) is then compared with a threshold T\. If 

dk(x,y,i) is greater than the threshold T i , then the pixel p(x,y,i) is considered 

as in positive motion with respect to p(x,y,i — k). If dk{x,y,i) is less than the 

threshold —Ti , then the pixel p(x, y, i) is considered as in negative motion with 

respect to p(x, y,i — k). Otherwise, the pixel p(x, y, i) is a still pixel with respect to 

p(x,y,i — k). Thus the preliminary motion estimator mdk{x,y,i) is defined as 

1 Xdk(x,y,i)>T1 

0 i f - T i ^ c f e O c . y . O ^ T ! (4.2) 

-1 if dk(x,y,i) < - T i 

where 1 indicates the pixel is in positive motion, —1 indicates the pixel is in neg­

ative motion and 0 indicates the pixel is still. The preliminary motion estimator 

mdk{x,y,i) = < 
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mdk(x,y,i) indicates whether or not the corresponding pixel is affected by motion 

and the polarity of the motion. 

The selection of threshold T i is important. The higher the threshold is set, 

the less chances that a noisy pixel is mistaken as.motion pixel, i.e. better noise 

immunity. However, the higher threshold also means that more small motion will 

be ignored, which results in miss detection. If the threshold is set too low, then the 

noisy pixels have higher possibility to be detected as motion pixels, depending upon 

the noise level. 

Therefore, we set the threshold Ty to be adaptive to noise level. Thus a 

fixed percentage of noisy pixels will be detected as motion. Consider a picture with 

additive Gaussian noise of iV(0, cr), the threshold is set as a function of the standard 

deviation of the Gaussian noise, i.e. 

T i - ko~ (4.3) 

In this design, k is set as 2. When k is 2, approximately 95% of pixels in a still image 

area have a temporal difference less than the threshold. A false motion detection 

occurs with a probability of about 5%. Statistically speaking, only one pixel in every 

20 pixels has the chance to exceed the threshold. 

Some may think that the noise level is hard to measure in real time. In fact, 

for television signal, the noise level can be obtained by a simple filter over the quite 

lines of the channels. 
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4.2.2 Impulse Pattern Recognition 

As discussed in the previous section, the preliminary motion estimators obtained by 

difference thresholding contain false detections and miss detections. The impulse 

pattern recognition scheme aims to distinguish those pixels that are corrupted by 

high energy noise but are detected as motion pixels from the real motion pixels. 

After the thresholding operation, only a small percentage iof noisy pixels are 

mis-detected as motion pixels. These pixels usually appear randomly across the 

picture because of the spatial uncorrelation of the noise. Their value usually are 

markedly different from their neighbors. On the contrary, motion ususally affects 

all the pixels in an area. Therefore, motion pixels are correlated to their surrounding 

pixels. This is the assumption that the impulse pattern recognition scheme is based 

upon. 

The impulse pattern recognition operates on a 5x3 sliding window over a pre­

liminary motion estimators matrix MDk{,k =1,2,3. The center of the operation 

window corresponds to the target pixel. The operation looks at the target prelimi­

nary motion estimator md^x, y, i) and its neighboring motion vectors. If the target 

motion estimator indicates the pixel is still, the operation keeps the motion estima­

tor unchanged. If the motion estimator indicates that the target pixel is in motion, 

the operation will look at the correlation of the target pixel's motion estimator with 

its neighboring motion estimators in the operation window. If the target motion 

estimator is correlated with any of the motion estimator in the window, the target 
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pixel is consider in motion. Otherwise, the target pixel is considered still. Thus a 

false detection is found. For two preliminary motion estimators to be correlated, 

they have to be the same values, as defined in equation 4.2. 

The operation of impulse pattern recognition can be expressed as: 

1 if md~k(x, y, i) / 0 and Corr(mdk(x, y, i)) = 1 
mpk(x,y,i) = { fc = 1, 

0 if either or both mdk{x, y, i) = 0 or Corr(mdk(x, y, i)) = 0 
(4.4) 

where 1 indicates that the target pixel is a motion pixel, while 0 indicates that 

the target pixel is still. The output of impulse pattern recognition operation is 

the intermediate motion estimator mpk{x,y,i). The function Corr(mdk{x,y,i)) 

is a pattern recognition operation on the 5x3 window. If the preliminary motion 

estimators in the window matche any of the six patterns shown in Figure 4.2, the 

function CorrQ output is equal to 1; otherwise it equals to 0. The value 1 indicates 

that the target motion estimator correlates to at lease one motion estimator in the 

window, while 0 indicates that the target motion estimator is not correlated to any 

of its neighbors. The target pixel, in this case, is likely corrupted by a high energy 

noise. 

The patterns are designed to list all the possible cases of an isolated motion 

estimators. It is noted that in cases B, C, E, F of Figure 4.2, two consecutive motion 

estimators with same value are also considered as isolated motion estimators. It is 

because that in analog system, high energy noise tends to have relatively longer 
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Figure 4.2: Patterns for impulse pattern recognition 

duration. It often affect two consecutive pixels after the video signal is digitized. 

4.2.3 Spatial Motion Detection 

The spatial motion detection scheme detects the motion pixels that are impaired by 

noise so that are mistaken as still pixels. 

The basic idea for spatial motion detection is that motion will not affect an 

isolated pixel, instead, it affects all the pixels in an area. If majority of a pixel's 

surrounding pixels are in motion, the pixel has a large opportunity to be also in 

motion. 

The spatial motion detection calculates a motion index value on an raxn 

window over the intermediate motion estimators matrix MPki, k = 1,2,3 obtained 

by impulse pattern recognition. The intermediate motion estimator for the target 

pixel is at the center of the operation window. In our algorithm, the window size is 
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chosen to be 3x3. Each motion estimator in the window is multiplied by a weighting 

factor. These weighted elements are then added together to form the motion index 

for the target pixel, as show in Equation 4.5. 

m n 
2 2 

mik(x,y,i) = ^ ^2 w(p,q,i)mpk{x -p,y - q,i) k ^ 1,2,3 (4.5) 

The weighting factors w(p, q, i) can be properly adjusted for better performance 

according to the specific application. In our algorithm, the weighting factor for a 

pixel are inversely proportional to the distance between this pixel and the target 

pixel. 

The motion index is then compared with a threshold T2. If the motion index 

is higher than the threshold, the target pixel is considered as in motion. The spatial 

motion detection operation can be expressed as Equation 4.6. 

{ 1 if either or both mik(x, y, i) > T2 or mpk(x, y, i) = 1 
A; = 1,2,3 

0 otherwise 

(4-6) 

where mk(x,y,i) is the final motion indicator obtained from the motion detection 

algorithm. The threshold T2 can be adjusted for specific application. 

After motion detection, each pixel p(x, y, i) in frame Pi has three motion indi­

cators mi(x, y, i), 7 7 1 2 ( 2 , y, i) and 7 7 1 3 ( 2 , y, i), where 7 7 1 1 ( 2 , y, i) indicates if the target 

pixel is in motion with respect to its corresponding pixel in Pi-i, and 7 7 1 2 ( 2 , y,i) 

indicates if the target pixel is in motion with respect to its corresponding pixel in 

Pi-2, and so on. These motion indicators are used to control the temporal filter. 
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The motion index mii(x,y,i) is passed to spatial filter to parameters timing. 

4.3 Temporal Filter 

The temporal filter in the proposed algorithm is a motion adaptive transversal av­

erage filter. There are four frame involved in the temporal average. Theory proves 

that average filter is the most effective for Gaussian noise. Therefore, the average 

filter is chosen for temporal noise reduction. The target frame is averaged with some 

or all of the three history frames pixel by pixel. Whether or not each pixel in the 

history frames will be counted in the average is decided by the motion indicator of 

the corresponding pixel. 

The temporal filtering is expressed as, 

Avg4(x, y, i) if mi{x, y, i) = m2(x, y, i) = m3(x, y, i) = 0 

Avg3(x, y, i) if m i (a:, y, i) = m2{x, y, i) = 0, m 3(x, y, i) = 1 
(4.7) 

Avg2(x, y, i) if mi (x, y, i) = 0, m2(x, y, i) = 1 

p(x,y,i) if mi(x,y, i ) = 1 

where p(x, y, i) and p'(x, y, i) are the present and the estimated values of the target 

pixel respectively, and mfc(z, y, i) is the motion indicator of the target pixel p(x, y, i) 

with respect to the pixel p(x, y, i — k) in history frame Pi-\. The averaging functions 

p'(x,y,i) = < 
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are defined as 

Avg4(x, y,i) = \ \p(x, y, i) + p(x, y,i-l)+ p(x, y,i-2) + p(x, y, i - 3)] 

Avg3{x, y, i) = g \p{x, y, i) + p{x, y,i-l)+ p(x, y, i - 2)] (4-8) 

Avg2(x, y, 0 = 5 [P(2;> V» 0 + p{x, y, * - 1)] 

After processed in the temporal filter, the resultant video signals are sent 

into the spatial filter. 

4.4 Spatial Filter 

The spatial filter is an edge adaptive filter. It operates on a mxn sliding window 

over the picture. In this design, we choose the window size as 3x3. Each pixel in the 

window is first compared with the target pixel. If the absolute value of the difference 

between two pixels is less than a threshold T3, the pixel is marked as support pixel. 

The filter computes the average of all the support pixels, and uses this value to 

replace the target pixel value. Therefore, the spatial filter preserves fine detail and 

edge while reducing the noise effectively. The spatial filter is defined as: 

m n 

P" (x, y, i) = v
 2 I 2 — » (4.9) 

Ep = _^Sg =_|C (p,9 ,0 

where p" (x, y, i) is the noise estimated value for the target pixel. The decision factor 

ciPi 9> i) for each pixel p'(x — p,y — q, i) in the window is defined as: 

c(p,q,i) 
1 if\p'(x,y,i)-p'{x-p,y-q,i)\<T3 

(4.10) 

0 otherwise 
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The choice for the level of T3 is a trade off between preserving the fine details 

and reducing the noise. Aggressive spatial filtering (high value for T3) may cause 

smoothing effects, which appears as blurring of the picture. To avoid degrading 

the picture quality, a common practice is to sacrifice noise reduction by setting the 

threshold to a fairly low level. 

Based on the facts that the human eye is less sensitive to blurring when the 

picture is in motion, the proposed algorithm varies the T3 level as a function of the 

motion index value obtained in equation 4.5. For picture areas which are still or have 

low motion, the motion index value is expected to be low, and vice versa. When the 

motion index value is low, the threshold is set to a low level. Therefore, the spatial 

filter does little noise reduction on still parts of the picture, and tries to preserve 

all the fine details. Although a small threshold results in less noise reduction, the 

overall noise reduction on these still parts are maintained because the temporal filter 

achieves its maximum noise reduction in the still parts of the picture. As motion 

index increases, more aggressive spatial noise reduction is done on the motion parts. 

Experiments also found that motion adaptive temporal filter creates a clear 

boundary between unprocessed and processed part of the picture at the edge of the 

moving objects, which tends to be very annoying to viewers. By applying a spatial 

filter whose processing intensity gradually increases from still parts to moving parts 

of the picture, the boundary created by temporal filter will be smoothed out. This 

is also called "soft boundary" in some noise reduction techniques. 
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4.5 Operations on Chrominance Signal 

Chrominance signal normally has less resolution than luminance signal as human 

eyes are less sensitive to color resolution. For example, the resolution for chromi­

nance signal is half that of the luminance signal for digital T V . 

A simplified version of the noise filter for luminance is applied to the chromi­

nance signal. The chrominance filter shares the same motion indicator with the 

luminance signal for the same pixel. Instead of using a variable threshold in the 

spatial filter, the spatial filter for chrominance signal uses a fixed threshold which is 

set to a very low level because aggressive noise reduction may cause artifacts such 

as color bleeding. 
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Chapter 5 

Theoretical Analysis and 

Simulation Results 

As a motion adaptive temporal-spatial noise filter, the most innovative part of our 

proposed algorithm is the motion detection algorithm. In this chapter, the theoret­

ical reasoning behind all the motion detection steps are discussed. The computer 

simulation results are presented as verification of the analysis. 

5.1 Motion Detection Analysis 

The motion detection method in our proposed algorithm aims to accurately detect­

ing motion status of each pixel in a noisy environment. We use two scales, the miss 

detection rate and the false detection rate, to evaluate a motion detection algorithm. 
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A B 

Figure 5.1: A . Picture Difference Between Two Clean Frames; B. Picture Difference 
Between Two Gaussian Noise Corrupted Frames 

For clean pictures, frame difference are the motion detection results between 

the two frames. Figure 5.1 A shows the picture difference between two consecutive 

clean frames. The pixels in the white areas are pixels whose pixel difference are 

greater than zero. These pixels are considered in motion. However, this motion 

detection scheme no longer works in noisy environment. Figure 5.IB shows the 

picture difference of the same frames but corrupted by Gaussian noise. It shows 

that both motion and noise cause the difference between two frames. The motion 

information is buried in the Gaussian noise. Therefore, motion detection for noisy 

picture is essentially a feature extraction and picture restoration problem. 

Let us define the difference between two noise corrupted frames Pi and P j _ i 

as Di, where Di is a two-dimensional matrix, as shown Figure 5.IB. In the basic 
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motion detection method, each element of Di is then compared with a threshold 

T l . If the absolute value of the pixel difference is greater than the threshold, the 

pixel is considered in motion, otherwise, the pixel is considered still, as defined 

in equation 4.2. This process converts Di into a binary matrix MDi, as shown in 

5.2A. The Gaussian noise superposed on Di becomes impulse like noise on MDi. The 

thresholding causes two kinds of detection errors. Miss detection occurs when a pixel 

whose pixel difference caused by motion is lower than the threshold is considered as 

still pixel. False detection occurs when a high energy noise corrupted pixel whose 

picture difference is higher than the threshold is detected as in motion. 

The goal of the post-processing is to correct the errors made by the threshold­

ing method. It is equivalent to removing the impulse like noise from the intermediate 

motion estimator MDi. 

The proposed motion detection post-processing methods, the impulse pattern 

recognition and the spatial motion detection, are methods using adaptive nonlinear 

scheme. The spatial noise detection scheme is applied on the impulse pattern recog­

nition results. Their design is based on the knowledge of the noise model and the 

characteristics of motion. 

The impulse pattern recognition method aims to decrease the false detection 

rate. After thresholding, the noisy pixels whose pixel differences exceed the threshold 

are the source causing the false detection. The impulse pattern recognition scheme 

removes these false detection pixels based on the difference of the spatial distribution 
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of the noise and motion. 

If the threshold is set as twice the standard deviation of the noise, which is 

assumed as Gaussian distributed, 95% of the noise will be below the threshold, and 

only 5% of the noise corrupted pixel will be over the threshold and are misdetected as 

motion. Since the noise is randomly distributed across the image, after thresholding 

the picture differences, the noise becomes impulse like because it is uncorrelated in 

the spatial domain. Statistically, one is every 20 still pixels has the chance to be 

misdetected after thresholding. 

In the proposed algorithm, the impulse pattern recognition is applied to a 

5x3 sliding window over the pixel difference matrix. It is safe to assume that there 

is only one pixel in the window that has the chance be affected by noise. Therefore, 

if more than two motion pixels are detected in the window, we consider that the 

target pixel is affected by motion. 

One exception stands when the noise has very high energy. It is found that 

in analog signal, if the noise peak is very high, it also affects the pixel adjacent 

to it. Therefore, if two consecutive pixels are detected as motion pixels, and their 

surrounding pixels are not in motion, we decide that both pixels are affected by 

noise. This exception is reflected in the pattern design shown in figure 4.2. 

After the impulse pattern recognition is applied on MDi, the intermediate 

motion estimator matrix MDi is transformed into another binary matrix M P j , as 

shown in figure 5.2C. Compared to MDi, many isolated motion pixels are removed. 
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The spatial motion detection applied on MP{ aims to correcting those miss 

detections. It is based on the observation that the probability of a pixel being in 

motion is related to the motion status of its surrounding pixels. The more of its 

surrounding pixels are in motion, the more likely that the pixel is a motion pixel. In 

proposed algorithm, the spatial motion detection operates on a 3x3 sliding window 

on matrix MP{. It is essentially a majority detector of the pixels in the window. The 

results of the spatial motion detection Mi is the outcome of the motion detection, 

as shown in figure 5.2D. 

5.2 Computer Simulation Results 

The computer simulations are conducted on sample pictures to evaluate the perfor­

mance of the motion detection method. 

Here, we compare our motion detection post-processor with a median filter. 

Median filter is the most popular example of nonlinear filters based on order statis­

tics. Median filtering is believed to be ideal for impulse noise reduction. It is able to 

preserve picturer edge and details, while suppressing isolated noise. [?] It thus forms 

a good choice of post-processing filter for motion detection. For an array X of n 

elements, a median filter can be defined as 

med(Xi) — < 
Xv+X if n = 2v + 1 

(5.1) 
±(Xv+Xv+l) iin = 2v 
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where Xi,X2, ...Xn are random variables arranged in ascending order of magnitude 

Xi < X2 < ... < Xn (5.2) 

The following table shows the miss detection and false detection rates for 

different motion detection post-processing filters. 

Processing Miss Detection Rate False detection Rate 

Proposed Method Impulse Pattern Recognition 0.0372 0.0048 Proposed Method 
Spatial Motion Detection 0.0359 0.0052 

Median Filter 0.0550 0.0159 

Table 5.1: Motion Detection Post-processing Filters Performance 

It shows that the proposed motion detection post-processing filters perform 

as designed. They deliver better performance than median filter in terms of false 

detection rate and miss detection rate. The impulse pattern recognition greatly 

reduced the false detection rate compared to median filter. Although the false de­

tection rate slightly increased after the motion detection results from the impulse 

pattern recognition are further processed by the spatial motion detection, the miss 

detection rate dropped. Experiments found that the spatial motion detection re­

covered those isolated motion objects, such as the highlight of moving ball, from 

being detected as high energy noise corrupted still objects. This greatly improves 

the subjective performances because the motion artifacts of highlight objects are 

extremely annoying. 
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C D 

Figure 5.2: A . Motion Detection Results After Difference Thresholding; A . Motion 
Detection Results After Median Filter; C. Motion Detection Results After Impulse 
Pattern Recognition; D. Motion Detection Results After Spatial Motion Detection 
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Chapter 6 

Prototype Implementation 

Evaluation of any noise reduction algorithm is not complete if it is not done in 

a real-time environment. Computer simulation may give accurate picture quality 

improvement results in terms of SNR improvement, but it is hard to perform subjec­

tive evaluation based on computer simulation results. Besides, noise reduction filter 

may behave differently in different scenes. Computer simulations can only cover a 

small portion of the the real world situation. Therefore, prototypes that run in real 

time were build to implement the proposed algorithm so as to conduct objective 

and subjective evaluation in real time. 

As the most important application for the proposed algorithm lies in con­

sumer products, the cost becomes a very crucial issue. The biggest challenge in 

prototype implementation is thus to simplify the design so as to reduce the cost. 

Different implementation platforms have their strengths and drawbacks, thus the 
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proposed algorithm is modified to give the best performance in each platform. The 

design considerations are discussed for implementations on both F P G A s and DSPs. 

6.1 Implementation on F P G A 

For consumer product, the noise reduction is usually integrated in an Application 

Specific Integrated Circuit (ASIC) chip, such as a video decoding chip for digital 

set-top boxes and advanced television sets. Function modules in an ASIC chip are 

normally tested and emulated using an F P G A s before it is ready for mass produc­

tion. A n F P G A prototype also provides good reference for the final gate count for 

an ASIC implementation. Therefore, the proposed algorithm is first implemented 

using FPGAs.[14][38][37] 

6.1.1 Prototype Description 

The F P G A prototype resides in a chassis with especially design backplane. The 

system consists of four plug-in Printed Circuit Boards (PCB)s to the backplane. 

The algorithm is implemented in the F P G A s on the PCBs. The prototype takes a 

digitized video signal input in CCIR601/656 format, and outputs a composite analog 

video signal. The logic connection of the prototype is illustrated in Figure 6.1. Each 

block in the diagram represents one plug-in card. The inter-board connection is 

implemented by the backplane on the chassis. 

The backplane for the chassis is especially designed for video processing. It 
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Figure 6.1: Block Diagram for Hardware Prototype 

can support up to eight plug-in cards. It has a 30-bit serial bus for parallel luminance 

and chrominance baseband video signals. The baseband video is transmitted from 

board to board via this bus. It also has an 8-bit serial control bus which support 

control signal exchange between boards. A l l the boards share a global clock and 

a power supply bus. The global clock bus is impedance controlled and terminated 

during P C B layout to ensure high speed clock signal transmission with low skew. 

The first board decodes the CCIR601/656 signal to luminance and chromi­

nance baseband signals. It then extracts the synchronization signals, such as the 

field signal, horizontal sync and vertical sync signals. Al l these functions which only 

take 32 flip-flops are implemented in a small scale F P G A chip. 

The motion detection and the temporal filter are implemented in the second 

board. The input video signal from the video bus are first fed into three frame 

buffers. These along with the present frame form four video frames. The frame 

buffers are controlled by sync signals transmitted from the first board via the control 

bus. The motion detection and temporal filter are implemented in one F P G A chip. 
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The spatial filter is implemented on the third board. The signal processed 

by temporal filter is passed to the board via data bus, and the motion detection 

results are carried on the control bus. Dedicated line buffer chips are used to form 

the 5x3 window for spatial filter. 

The fourth board functions as a D / A convertor. It takes the filtered digital 

video signal and converted it into baseband composite analog video signals using 

Philips N T S C encoder chip. 

6.1.2 Design Consideration and Algorithm Optimization 

The proposed algorithm is implemented in Altera Flex series F P G A . The programs 

are written in Altera Hardware Description Language (AHDL). The challenge is 

to convert the equations into logic designs that efficiently fit into the F P G A archi­

tecture. For most parts, the program is a straight forward digital circuit design. 

Synchronized timing design is used to ensure timing consistency, and some tech­

niques, such as mathematic approximation and multiplexing, are used to reduce the 

gate count.[17] 

Mathematical Approximations 

For the Flex F P G A architecture, arithmetic operations, like multiplication and di­

vision, are difficult to implement and use many gate counts. Adders and subtractors 

on the other hand are easy to implement, and there exist many reference designs 

for these functional units. Therefore, it is advantageous to use adders to implement 
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the function of multiply or divide operations. 

For the temporal filter, the average of 2,3,and 4 pixel values has to be cal­

culated. For the spatial filer, the average of 1 to 9 pixels has to be calculated. 

Therefore, we do not need a general purpose divider. As long as the circuit can 

calculate a division by a number from 1 to 9, the filters can be implemented. In 

logic design, multiplication and division by 2 n is easy to implement as it can be 

achieved by left or right shifting the number by n bits. Based on the theory that 

any number between 0 and 1 can be represented by a series of fractions, as shown 

in Equation 6.1, 

0 0 1 

i-0 

We write some of the division operations as in Equation 6.2 when n is 2. 

l _ l , l , l , l , l 
3 — 2 T ~ r 2 T ~ r 2 T ~ r 2 f f " r 2 T O 

1 _ 1 i 1 i 1 4 . 1 

1 _ 1 , 1 , 1 4 . 1 i 1 (6.2) 

I — 1 -1- 1 -1- 1 

g — 2 T + 2 T + 2 ^ " + " 2 T O ' ~ , " 2 T r " , " 2 r 2 ' 

The division is implemented using 5 adders. The approximation is based on the 

knowledge that the quotient has 8-bit resolution. As long as the approximation error 

is less than one bit, this approach will not introduce any noise into the operation. 
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Multiplexing 

One of the technique to reduce the gate count is to increase the processing speed. 

Therefore the gate resource can be used by different functional modules in a time 

share manner. For example, in this design, both chrominance signals Cr and Cb 

undergo the same processing. The straight forward implementation is to use two 

identical functional modules for each signal. However, since the chrominance signal 

has half the resolution as the luminance signal, the clock rate of the processing for 

chrominance signal is also half that of the luminance clock rate. In this design, the 

two chrominance signals are multiplexed into one signal stream and go through a cir­

cuit that operates at the luminance clock rate. After the processing, the multiplexed 

signal is demultiplexed and downsampled into the regular chrominance sample rate. 

In this way, the gate count for the chrominance processing is cut to half. 

The multiplexing technique will certainly reduce the cost as less gate count 

means a smaller die size is needed for the silicon. However, there is a limit for the cost 

saving. The multiplexing technique requires higher clock speeds. When the speed 

increases to above certain level, better semiconductor manufacture technologies have 

to be required to deal with the power consumption and timing reliability issues. 

This may increase the silicon manufacture cost. In addition, multiplexing increases 

the complexity of the design, which means more effort is required in the design, 

simulation and testing. 

In the implementation for the proposed algorithm, both mathematical ap-
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proximation techniques and multiplexing techniques brought gate count reduction to 

this design. The proposed algorithm implemented in FPGA occupies about 120,000 

gates, excluding the gates for memories. 

6.2 Implementation On VLIW based DSP 

The emergience of the Very-Long Instruction Word (VLIW) media processors made 

it possible to implement complicated video processing in software. The VLIW ar­

chitecture is an alternative for exploiting instruction-level parallelism in programs, 

that is, for executing more than one basic (primitive) instruction at a time. These 

processors contain multiple functional units. They fetch from the instruction cache 

a Very-Long Instruction Word containing several primitive instructions, and dis­

patch the entire VLIW for parallel execution. These capabilities are exploited by a 

compiler which generates codes that have grouped together independent primitive 

instructions that are executable in parallel. The processors have relatively simple 

control logic because they do not perform any dynamic scheduling nor reordering 

of operations (as is the case in most contemporary superscalar processors). VLIW 

has been described as a natural successor to RISC, because it moves complexity 

from the hardware to the compiler, allowing simpler, faster processors. However, 

the programming for this kind of processor becomes more difficult. 
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6.2.1 Implementation Platform 

There axe few V L I W chips available in the market. These include TI's C62x family, 

Philips' TriMedia TM1300 familiy and Equator's M A P - C A . Compared to the M A P -

C A , the C62x family lacks a high bandwidth I /O port, and the TriMedia chip does 

not provide adequate computational power. Therefore, the M A P - C A is chosen for 

the implementation platform. Our noise reduction algorithm is implemented as a 

software module for digital settop boxes based on the M A P - C A processor. 

The M A P - C A processor consists of a V L I W core, programmable co-processors, 

on-chip memories, and I /O interfaces. The V L I W core executes four operations in 

parallel and supports partitioned SIMD operations for 8, 16, 32, and 64-bit data 

types. There are 128 32-bit registers usable separately or in pairs as 64-bit registers, 

32 1-bit predicate registers and 8 special 128-bit registers. Co-processors on the 

M A P - C A helps accelerate serial operations like variable length encoding/decoding 

and video filtering.Several audio/video interfaces are supported, including CCIR601/656 

input and output. These I /O functions execute in parallel with the C P U and elim­

inate the need for several external ASICs with their associated cost and bandwidth 

issues. A glueless S D R A M controller supports access up to 133 MHz S D R A M . 

The M A P - C A digital signal processor supports a 128 M B memory size. A 32-bit 

33/66MHz PCI bus interface is also supported. 

The M A P - C A processor operations are primarily 3-oprand RISC operations. 

As in a typical RISC architecture, load and store operations are the only means 
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of referencing memory. The M A P - C A DSP has four functional units: two I-ALUs 

and two IG-ALUs. Each I -ALU contains a load-store unit, an integer A L U , and 

a branch unit. Each I G - A L U contains an integer/graphics unit and a multimedia 

operation unit. The I -ALU and I G - A L U support different operations, but many 

integer and logic operations are implemented in both units. This overlap allows the 

compiler to schedule more operations in parallel and make more efficient use of all 

the functional units. 

6.2.2 Design Considerations and Software Description 

Programming of V L I W DSPs requires skills. Straight-forward implementation may 

not fully take advantage of the processing parallelism. Optimization in code struc­

ture and coding techniques can sometimes cut the processing cycle count to as low 

as 20%. This section discusses a few techniques to reduce the cycle count. 

Memory Structure 

There are three levels of memories in the M A P - C A processor: a register file includes 

128 32-bit registers, 32 K B data cache and 32KB instruction cache, and on-board 

memory. Both instruction and initialization data are stored in the on-board memory. 

During the execution of the software, these data axe fetched from the memory to 

some of the registers, and a copy is saved in cache. The cache is a temporal storage 

space embedded in the processor. It stores recently used data and instructions. It 

takes much less time for the processor to fetch data from the cache than from the 
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on-board memory. The register file is the fastest memory for operation. For RISC 

like DSPs, all operations have to be done in the registers. A l l data involved in the 

operation have to be loaded into the registers first with load/store instructions. 

When some data are required by the program, the processor will first look 

in the register file. If they are in the register file, the operation is applied on the 

data. If they are not in the register file, the processor will look for the data in 

the cache. If the data are in cache, the data axe loaded from the cache to registers 

for operation. If the data are not in the cache, it is called a cache miss. When a 

cache miss occurs, the processor has to halt to wait for the data fetching from the 

on-board memory. New data to be fetched from memory will be saved as a copy in 

the cache. If the cache is full, some old data in the cache will be copied back into 

memory, and removed from the cache. 

Based on the memory structure, the software design should consider the data 

flow between memory, cache and register files. The data exchange should be kept 

minimal so as to reduce data cache miss. If the temporal filter and the spatial filter 

are implemented in serial the data cache miss will be significant. After the whole 

frame is processed by temporal filter, the intermediate results from the temporal 

filter are refreshed out of cache and copied back to the on-boaxd memory. They 

should then be moved back to cache when needed for spatial filtering. Instead of 

following this process, we divide each frame into small blocks such that each block 

data can fit in the data cache. The complete noise reduction process is done on each 
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block before the processing moves to the next block. This structure may increase 

the software complicity as the boundary of each block has to be specially treated. 

However, it is worth doing since the data cache missed and the instruction cache 

misses are dramatically decreased. The total cycles used by the software are also 

decreases. The software therefore is able to process real-time video. 

Under this memory structure, cache coherency is another important issue 

to consider when sharing data with co-processors, such as input and output ports. 

The co-processors do not have access to data cache. They only access the on-board 

memory. If a co-processor needs to read data that the DSP core just processed, it 

is the program's responsibility to copy the data in the cache back to the memory. 

Synchronization with Co-processors 

There are several co-processors for the V L I W core, such as the video-in, the video-

out and the data streamer. They are optimized for certain applications to help 

improve the overall performance. The communication and synchronization between 

the core processor, the internal co-processor and the external devices are via inter­

rupts and buffers. 

The M A P - C A DSP has a flexible interrupt structure. Interrupts and excep­

tions internal to the core are reflected directly in the system registers. A l l other 

interrupts from on-chip devices and PCI interrupts from external devices are gath­

ered by an on-chip interrupt controller. The interrupt controller also provides a 

number of software interrupts. Routing, masking and prioritization of interrupts is 
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completely software programmable. Each of the interrupts handled by the interrupt 

controller can be individually masked, or routed to one of four core interrupts or 

to one of two PCI interrupt signals. It is up to the program to set the interrupt 

priority and mask other interrupts. 

Each co-processor can trigger interrupts when some pre-determined events 

happen. Once an interrupt occurs, the software reads the system register to decide 

what devices triggered the interrupt, and calls the corresponding interrupt service 

routine to handle the interrupt. The programmer can set a flag in the interrupt ser­

vice routine to report an event, or use the timing information the interrupt provides 

to control the flow of the program. 

Buffering is another commonly used technique to exchange bulk data between 

processors. The idea for ping-pong buffering is to make both core processor and 

the co-processor working at the same time, but on different data. In this design, 

Ping-Pong buffers are used to transfer data between DSP core and the I /O co­

processors. While the video-in co-processor is feeding data into buffer 1, the core 

processor operates on buffer2. When the video-in co-processor fills the bufferl, it 

then goes on to fill buffer2. The DSP then goes ahead to process the data just filled 

in bufferl. This way, both processors can work in parallel so that improves the data 

throughput of the processing. Unlike hardware implementation where the processing 

has constant delay, the delay for the software processing varies from frame to frame. 

If the buffer size is well chosen, this jitter in the delay can be smoothed out while 
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maintaining the constant data throughput. 

A l g o r i t h m Opt imizat ion 

Programming style plays an important role in code efficiency for V L I W program­

ming. It is known that code branching and jumping dramatically decrease the code 

efficiency, and that the V L I W processor does not perform well on bit operation. 

Based on these characteristic of the VILW architecture, some operations of our 

proposed algorithm are modified. 

In the isolated pattern recognition routine part of the motion detection al­

gorithm, the proposed method is a pattern match operation on six patterns. This 

operation is simple when implemented in F P G A s , but takes much computational 

power on V L I W processors because of the frequent code branchings and bit extrac­

tions for bit operations. Therefore, instead of the pattern matching operation, we 

use Maximum and Minimum rank statistic filters. These give equivalent results but 

take much less cycle to compute. 

Recall that in the edge adaptive spatial filter, all the pixels in the sliding 

window are compared with the central pixel to determine if this pixel is involved 

in the averaging. After the comparison are carried, the processing jumps to differ­

ent branches depending on the comparison results. To avoid the coding branching 

caused by the jump, all the pixels follows the same operation no matter what the 

comparison results are. A l l the pixels are included in the average after the pixel 

values axe multiplied by the comparison results. If the pixel is over threshold, the 
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comparison result is zero, so the weighted pixel becomes zero after the multiplica­

tion. This way, a mathematic computation replaces the condition judgement which 

causes code jump. This is a frequently used technique in the V L I W programming. 

By applying the above mentioned techniques in code structure, data access 

pattern and algorithm optimization, the proposed noise reduction is able to run on 

the M A P - C A chip in real time. 
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Chapter 7 

Objective and Subjective 

Evaluation 

The evaluation of noise reduction on real video presented in real time consists of two 

parts: objective and subjective evaluation. For objective evaluation, the hardware 

prototype was tested in by standard T V measurement equipment Tektronix VM700. 

Subjective evaluation were conducted on both hardware and software prototypes 

on sample noisy pictures and live video feed. A quantized subjective evaluation 

approach is also investigated in this chapter. 

7.1 Experiment Setup 

The experiment setup for objective evaluation is illustrated in Figure 7.1. The video 

source is generated from S O N Y Betacam video cassette recorder. The baseband 
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composite video signal passes through a Tektronix 1430 random noise generator, 

which adds thermal noise into the video signal. The noise impaired video signal is 

fed into a video A / D converter, the output of which is a parallel digital signal in 

CCIR601 format. The digital signal is split into two paths. In one path the signal is 

converted back into analog format by WardLabs D / A converter. In the other path, 

the signal is processed by our noise reduction, before it enters the WardLabs D / A 

converter which is identical to the one in path one. 

SONY 
Betacam 

0 

Noise 
Generator 

T e l e v i s i o n 

Probe Tektronix 
VM700 

Figure 7.1: Illustration of Experiment Setup 

Figure 7.2 shows the waveform of one line of N T S C video, illustrating how 

noise generator inserted noise into video signal. In each scan line, a portion of video 

signal is superimposed by noise. 
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Figure 7.2: Waveform of One Line of Noise Corrupted N T S C Video Signal 

7.1.1 Proper Measurement Settings 

The noise is measured by Tektronix N T S C video measurement equipment VM700. 

The input to the equipment goes through a gate in time domain, which truncates 

a portion of the signal in each scan line. The gate position in this test is shown 

in Figure 7.2 by the two parallel vertical lines. The signal between these lines are 

measured, which in this case is the noise corrupted part. 

There are several filter settings in the equipment. The following sections 

discuss how the setting affects the test result. Figure 7.3 shows the noise signal 

measured by VM700 without any filter enabled. The noise signal is a broadband 

white signal, and the level decays around 4.2 MHz. 
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Figure 7.3: Noise Measurment Without Filter 

Lowpass Filter 

There are two low pass filters to choose from. One lowpass filter has the cut-off 

frequency at 4.2 MHz, and the other cut-off frequency is at 5.0 MHz. Since the 

NTSC signal bandwidth is 4.2 MHz, we choose 4.2 MHz lowpass filter setting as we 

are only interested in the noise reduction in the valid video bandwidth. 

Figure 7.4 shows the noise spectrum after the lowpass filter is turned on. It 

is noted that the noise outside the 4.2 MHz band is cut out. 
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Figure 7.4: Noise Measurement with Lowpass Filetr at 4.2MHz 

F ( s c ) Trap Notch Filter 

The F(sc) trap filter is a notch filter to take out the color carrier. By turning on the 

filter, only luminance signal is examined. Although noise reduction also operates on 

chrominance signal, the effects of the luminance signal and chrominance signal are 

not linearly combined. The resultant lumiance signal of the notch filter is a better 

representation of the effects of real noise reduction if the .F(sc) trap filter is turned 

on. 

Figure 7.5 shows the noise spectrum after the low pass filtering and color 

carrier notch filtering. This is the conventional setting to measure noise reduction 

for N T S C luminance signals. This setting is used for all the measurements in the 

test. 
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7.1.2 A / D and D / A Converters Performance Analysis 

Two A / D converters may be used in the testing. One is a S O N Y A / D convertor 

and the other is a Miranda A / D convertor. To estimate how the A / D and the D / A 

convertors affect the picture quality in these tests, we measure the noise level before 

and after the signals pass through the A / D and the D / A convertors as shown in 

Table 7.1. The data in the column noise are obtained by putting the VM700 probe 

at position 1 in Figure 7.1 and data in columns SONY and Miranda are obtained 

by putting the VM700 probe at the position 2 in Figure 7.1 while using the SONY 

and Miranda A / D convertors. 
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Noise (dB) S O N Y (dB) Difference (dB) Miranda (dB) Difference (dB) 

20 23.9 3.9 23.7 3.7 

25 28.9 3.9 28.5 3.5 
30 33.8 3.8 33.5 3.5 
35 38.9 3.9 38.7 3.7 

40 44.1 4.1 44.1 4.1 

45 49.1 4.1 49.5 4.5 
50 52.8 2.8 54.1 4.1 
55 54.8 -0.2 57.5 2.5 

60 57.2 -2.8 59 -1 

Table 7.1: Noise Reduction by A / D Convertors 

Normally when the signal goes through a system, its noise level increases as 

the circuits also introduce noise. However, the measured data show that the noise 

level decreases after the signal goes through the A / D and D / A convertors. We found 

out that A / D convertors carry out noise reduction on the signal. A n A / D convertor 

separates the color signal from the composite video signal by detecting the phase 

of the color burst. A noise corrupted color burst may result in serious color phase 

noise or color shift in the digitized image. Therefore, a common practice for A / D 

convertor is to first apply a simple filter on the input signal, so that it could get a 

relatively clear color burst to ensure the accuracy of color separation. 

Figure 7.6 shows how the noise reduction introduced by A / D convertors 

varies as the inserted noise level increases. Both A / D convertors achieve around 4 

dB noise reduction when the noise level is less than 45 dB. When the SNR is higher 

than 45 dB, which means the picture quality gets better, both A / D convertors do less 

noise reduction. When the noise introduced by the processing circuitry overrides the 

noise reduction effects, the noise level becomes worse than the input level. The figure 
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also shows that the Sony A / D converter has a relative even noise reduction profile 

when the noise input ranges from 20 dB to 45 dB, and does less noise reduction 

when picture quality is high. It shows that the Sony A / D convertor has better 

performance for this noise reduction test. Therefore, the Sony A / D convertor is 

used in the following measurements. 

\ 60 
Nojse Level 

(dB) 

Figure 7.6: Noise Reduction Caused by A / D Convertors 

7.2 Measurement Result and Analysis 

To measure the noise reduction achieved solely by our noise reduction circuits, we 

must eliminate the noise reduction influence of the A / D convertor. The filtered 

data axe obtained by putting the VM700 probe at position 2 in Figure 7.1 and the 

unfiltered data are obtained by putting the VM700 probe at position 3 in Figure 

7.1. The filtered and unfiltered data axe shown in Table 7.2. 
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Unfiltered (dB) Filtered (dB) Improvement (dB) 
30.8 31.1 0.3 
31.7 32.8 1.1 
32.8 34.3 1.5 
33.8 35.3 1.5 
34.7 37 2.3 
35.8 38.9 3.1 
36.8 40.2 3.4 
37.4 42 4.6 
38.9 43.2 4.3 
39.6 44.3 4.7 
40.6 45.7 5.1 
41.3 46.4 5.1 
42.6 47.5 4.9 
43.7 48.4 4.7 
44.7 49.2 4.5 
46 49.8 3.8 
47.1 50.9 3.8 
47.8 51.2 3.4 
48.5 51.7 3.2 
49.4 51.9 2.5 
50.5 52.1 1.6 
51.6 52.3 0.7 
52.3 52.8 0.5 

Table 7.2: Noise Reduction Measurement Results 

Figure 7.7 shows how the noise reduction results vary as the input noise level 

changes. The results show that the implementation matches the design expectations. 

The prototype reduces the noise when the input noise is in the range of 30 to 50 

dB. When the input noise is heavy, ie. the SNR is low, the algorithm does little 

noise reduction because the picture is too corrupted with noise and thus the motion 

detection and the edge detection processes may fail to perform well. When the 

picture is clean, the algorithm also does little noise reduction. The performance 

peaks when the input noise level is around 41 dB. This is below what the F C C 



regulations require for picture quality. By applying the noise reduction, the picture 

quality can be lifted to meet the FCC requirement. (Presently 45 dB) 
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Figure 7.7: Noise Reduction Caused by A/D Convertor 

7.3 Subjective Noise Reduction Results 

60 

The ultimate performance evaluation for noise reduction is the subjective reaction of 

viewers. Considering the human visual system, which is a nonlinear system, a lot of 

visual phenomena can not be described totally by an objective criterion. Therefore, 

subjective tests are important for a fair evaluation of video filters.[3] 

For noise reduction, a subjectively better picture implies two aspects. One 
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is that the picture is cleaner than the original picture, which means the noise is 

smoothed out. The other aspect is that the picture should not be degraded after 

processing. This implies that the picture details and textures are well kept, no 

smearing edges are introduced and no motion lagging artifacts are visible. 

The subjective testing conducted on both prototypes includes two different 

settings. One is to play a pre-recorded video tape, and run the signal through 

our noise reduction system. The tape had video sequences corrupted with different 

kinds of noise at various levels. The other one is to feed the live transmission signal 

into the noise reduction system and observe the noise reduction for many different 

scenes. 

The first test is best used for observing how the noise reduction prototypes 

perform with different noise kinds and levels. Snow, C T B , CSO, blockiness and 

mosquito noise are tested. The results show that the noise reduction prototypes 

perform the best for snow noise. The prototypes also deliver moderate noise reduc­

tion on C T B noise, but are less effective for C S O noise. For digital noise, they give 

an improved result on mosquito noise partly because the mosquito noise has similar 

characteristics as snow noise. Clean signal is also run through the prototypes. It 

is found that the noise reduction algorithm introduce no artifacts into the clean 

picture. It is one of the most outstanding merits of this algorithm. 

The live television feed tested the noise reduction's performance for a very 

large numbers of different scenes. The results show that our noise reduction al-
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gorithm is most effective for movie and news contents with slow motion, and for 

cartoon with not much detail and texture. Commercials, sports and action movies 

are the toughest contents to deal with. The noise reduction is not as impressive on 

these contents. However, there is no lagging and ghosting motion artifacts found 

during the process. 

Efforts were also made to find a quantitive scale for subjective evaluation. 

A set of reference video with the same content but with different noise levels are 

used for the evaluation. The reference sequences are fed into the noise reduction 

prototype and displayed on one monitor, and the original pictures are displayed on 

another monitor. The viewers are asked to match the processed video to one of the 

sequence in the original reference that they think have the same subjective picture 

quality. The difference in the noise levels between the input video and the matched 

reference video are considered as the improvement made by the noise reduction 

system. The tests were conducted on randomly selected visitors to the lab during 

an open house session. A l l viewers preferred the processed video to the original 

picture. The noise reduction of the subjective evaluation varies from 3 dB to 6dB 

on snow noise and mixed C T B and snow noise corrupted pictures. 

Both hardware and software prototypes are compared with other existing 

noise reduction products in the market. There are three types of video noise re­

duction available. One kind of products are P C based softwares, such as Synthet-

icAperture's video Finesse. Although some of the products claim better picture 
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quality improvement than the proposed algorithm, they can not process the picture 

in real time. The other category includes the high end devices for professional video 

production. These products usually utilize sophisticated algorithms and give good 

results, but they also have high costs which range from three to twenty thousand 

dollars. There are also some companies put noise reduction into their consumer 

products. Both Sony and Panasonic have integrated noise reduction into their T V 

sets. However, our proposed algorithm gives better visual improvement than those 

products. If implemented in ASIC, compares to a noise reduction chip used by 

Panasonic which utilizes die size of 19.5 mm2 in 0.6 pm technology, our proposed 

algorithm has similar cost, but yields high noise reduction. 
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Chapter 8 

Conclusion and Future Work 

Suggestion 

Noise reduction is an important aspect of video viewing. It improves the picture 

quality so that the viewer has better viewing experience. Based on previous work 

on noise reduction, this thesis proposes a motion adaptive temporal-spatial noise 

reduction filter. With its 3-step motion detection algorithm, high resolution yet 

noise insensitive motion detection results are achieved. Therefore, the filter is able 

to achieve intensive noise reduction while introducing minimum motion artifacts. 

In addition to computer simulation on some typical images, a hardware and 

a software prototypes axe built so that subjective evaluation can be done on real­

time video sequences. Both objective measurements and subjective evaluations are 

conducted on the noise reduction algorithm. The measurements show that the 
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algorithm improves the picture quality up to 5 dB when the picture C N R is in 

the range of 30 dB to 55 dB. Subjective evaluation also reveal that this algorithm 

introduces the least artifact compared with other noise reduction devices in the 

market, and improves the C N R up to 6 dB in the subject evaluation. 

The prototypes also show that the filter can be implemented in consumer 

products with an acceptable cost. If implemented in an ASIC chip, the total gate 

count is about 120,000 excluding the memory. It can also be implemented as a 

real-time software module on V L I W DSP based platform without extra hardware 

cost. 

8.1 Future Work Suggestion 

Although the work done for this thesis achieved the goals set before the project, 

there are a few areas worth further research. 

A more sophisticated motion search algorithm can be integrated with this 

noise reduction filter. The current filter only adopted motion detection because 

motion search is significantly more complicated and requires higher cost for imple­

mentation. In the future, this cost will be greatly reduced as the technology in the 

semiconductor industry improves and the DSP chips acquire higher speeds. With 

the motion search implemented, better temporal noise reduction can be achieved. 

More research can be conducted for pre/post-processing for digital video. 

The proposed algorithm is focused at analog noise reduction, and it may not be 

80 



optimal for digital noise reduction. Research on how noise reduction affects the 

video coding efficiency and digital noise characteristic will help improve the noise 

reduction algorithm so that better performance in digital applications is obtained. 

Further research can be also carried on recursive temporal filtering. The 

proposed algorithm does not consider recursive temporal filter because of the com­

plexity in the hardware implementation. However, implementations using DSPs are 

becoming relatively easy as recent DSPs provide computations such as multiplica­

tions and divisions. Research may be done on how the feedback factor K in the 

recursive filter affects the noise reduction performance, and how should the value of 

K changes as the motion and input noise level varies. 
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