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Abstract 

Advancements in video object segmentation technology and the availability of efficient 

object-based video representations, such as MPEG-4 [1], have resulted in the increased 

availability of arbitrarily shaped digital video content. While this enables many exciting 

applications, the process of locating and accessing a desired video sequence can still be 

challenging because of the large volume of data associated with even compressed video. 

This dissertation proposes generic methods for the retrieval of arbitrarily shaped 

video objects in the MPEG-4 compressed domain, using their shape, local motion, and 

color content. Considering that a one-minute long video sequence may contain more than 

1,500 frames, summarization of video content is necessary as a first step to efficiently 

retrieve video. Therefore, we first suggest a method for the summarization of arbitrarily 

shaped video objects. This is achieved by selecting the temporal instants of video objects 

-based on their compressed domain shape information- that efficiently represent the 

objects' salient content. 

Next, we propose to extend some well-proven still shape retrieval techniques to 

retrieve video objects in the compressed domain. We compute the Fourier and ART 

(Angular Radial Transform) descriptors on the shape approximations obtained from the 
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MPEG-4 shape coding modes. We also present a method to compute the shape distances 

between two video objects based on these still shape features. 

Unlike in the case of still objects, one of the key features that describe a video object 

is motion. Classification of video objects by their local motion is addressed in this thesis 

by presenting three new motion descriptors. These descriptors are computed based on the 

shape deformations of arbitrarily shaped video, and assume no prior knowledge about the 

video content. 

Color is one of the most widely used low level features in content-based retrieval. In 

this thesis, we also study efficient color content matching of arbitrarily shaped video, and 

in particular, color histogram computation in the MPEG-4 compressed domain. 

Our experimental results demonstrate that our techniques enable effective and low 

complexity content-based retrieval. Employing MPEG-4 compressed domain information 

not only obviates the need for full decompression of the bit stream, hence yielding 

substantial computational savings, but also allows our techniques to be more robust to 

segmentation errors. 

iii 



Table of Contents 

Abstract ii 

Table of Contents iv 

List of Tables viii 

List of Figures x 

List of Abbreviations xv 

Acknowledgments xvii 

Chapter 1 1 

Introduction 1 

1.1 Organization of the Thesis 6 

Chapter 2 9 

Background: MPEG-4 Object-Based Representation 9 

2.1 Overview of the MPEG-4 Standard 10 

2.2 MPEG-4 Visual Coding Standard 11 

2.2.1 Arbitrarily shaped video coding 12 

2.2.1.1 Texture coding 16 

2.2.1.2 Shape coding 19 

2.3 Summary 20 

Chapter 3 22 

Video Object Summarization 22 

3.1 Key VOP Selection Based on Shape Information 25 

3.1.1 Shape approximation in the MPEG-4 domain using I, P, and B VOPs 28 

iv 



3.1.2 Key VOP selection using the modified Hamming distance 31 

3.1.3 Key VOP selection using the Hausdorff distance 35 

3.2 Experimental Results 38 

3.2.1 Key VOP selection using IVOPs 42 

3.2.2 Key VOP selection using I, P, and BVOPs 43 

3.2.3 Comparisons with other methods 44 

3.3 Conclusions 49 

Chapter 4 51 

Retrieval of Arbitrarily Shaped Video by using Shape Features 51 

4.1 Shape Features 55 

4.1.1 Global shape features 56 

4.1.2 Fourier descriptors 56 

4.1.3 ART descriptors 58 

4.2 Shape Similarity Matching of Still Video Object Planes in the MPEG-4 

Compressed Domain 59 

4.2.1 Extraction of the global shape features 61 

4.2.2 Fourier descriptor extraction 61 

4.2.3 ART descriptor extraction 62 

4.2.4 Other compressed domain descriptors 64 

4.2.5 Feature normalization 64 

4.2.6 Retrieval of the video object planes 69 

4.2.6.1 Retrieval with the global shape features 70 

4.2.6.2 Retrieval with the Fourier descriptors 74 

4.2.6.3 Retrieval with the ART descriptors 78 

4.2.7 Efficient quantization and representation of the descriptor values 81 

4.3 Video Object Retrieval by Shape Features 86 

4.3.1 Reducing the video object content redundancies 87 

4.3.2 Retrieval results 88 

v 



4.4 Conclusions 91 

Chapter 5 93 

Local Motion Descriptors 93 

5.1 Fourier Transform Based Local Motion Descriptor 97 

5.2 Angular Radial Transform Based Local Motion Descriptor 100 

5.3 Angular Circular Local Motion (ACLM) Descriptor 101 

5.4 Experimental Results 104 

5.4.1 Fourier Transform based local motion descriptor 104 

5.4.2 ART based local motion descriptor 105 

5.4.3 ACLM descriptor 106 

5.5 Conclusions 112 

Chapter 6 115 

Similarity Matching of Video Objects using Color Feature 115 

6.1 DC Coefficient Extraction in the MPEG-4 Bit Stream 119 

6.2 Color Space Selection and Quantization 121 

6.3 Histogram Computation 122 

6.4 Detection and Compensation of the Chroma Keying Artifacts 124 

6.5 Color Retrieval Results 127 

6.5.1 Retrieval by employing various color spaces and number of quantization bins 

128 

6.5.2 Video Object Plane and Video Object retrieval results with and without chroma 

keying artifacts 129 

6.6 Conclusions 131 

Chapter 7 133 

Conclusions and Future Research Directions 133 

7.1 Summary of Thesis Contributions 137 

7.2 Future Research Directions 138 

Bibliography 140 

vi 



Appendix A Retrieval Performance Measures 152 

A. 1 Normalized Modified Retrieval Rank 155 

A.2 NMRR versus Precision/Recall 155 

Appendix B Video Object Database 158 

Appendix C Color Space Conversions 167 

C. 1 YC b C r to HSV Conversion 167 

C.2 YC b C r to MTM Conversion 168 

vii 



List of Tables 

Table 1-1: A summary of content-based visual retrieval systems 4 

Table 2-1: Shape coding modes in MPEG-4 20 

Table 3-1: Approximation of the shape coding modes for P and BVOPs 31 

Table 3-2: Selection of the values for the parameter <|> depending on the activity level of 

video objects 39 

Table 3-3. Temporal segments for the Weather, Bream, and Hall Monitor video objects. 

41 

Table 4-1: Mean and standard deviation values of the all shape features 68 

Table 4-2: The percentage of the ehminated irrelevant database items and the erroneously 

eliminated relevant items for different T g values for a number of feature 

vectors 73 

Table 4-3: The quantization ranges and the reconstruction levels of the Fourier and ART 

descriptors for L=16 85 

Table 4-4: The retrieval performance results for Fourier, ART, and a combination of the 

descriptors 89 

Table 5-1: Local motion retrieval results using the Fourier Transform based descriptor 

with various lengths 105 

Table 5-2: Local motion retrieval results for the News 1 video object query 110 

Table 5-3: Local motion retrieval results for the Children 1 video object query 110 

Table 5-4: Local motion retrieval results for the Hall Monitor 1 video object query... I l l 

viii 



Table 5-5: Retrieval performance, computation time, and descriptor size comparisons of 

the proposed local motion descriptors'in the compressed and uncompressed 

domains 114 

Table 6-1: NMRR values obtained by querying various video object planes and 

employing color histograms computed in three different color spaces 129 

Table 6-2: The retrieval performance results (in NMRR) when using different numbers of 

quantization bins for the H, V, and C color components of the MTM color 

histograms 129 

Table 6-3: Video object plane retrieval performance results (in NMRR) without any 

chroma artifacts, with chroma artifacts, and after compensation for the artifacts 

with the proposed method 130 

Table 6-4: Video object retrieval results (in NMRR) without any chroma artifacts, with 

chroma artifacts, and after compensation for the artifacts with the proposed 

method 131 

Table A-1. NMRR vs. precision/recall values for various retrieval performances 157 

ix 



List of Figures 

Figure 2.1: Example of an audio-visual scene 11 

Figure 2.2: MPEG-4 coding of arbitrarily shaped video objects 13 

Figure 2.3: VOP prediction in MPEG-4 13 

Figure 2.4: A basic block diagram of MPEG-4 video coder 14 

Figure 2.5: Various bit stream structures in MPEG-4 (a) without error resilience options, 

with data partitioning and resynchronization markers enabled in (b)IVOPs and 

(c)PVOPs 16 

Figure 2.6: Texture of a VOP in MPEG-4 17 

Figure 2.7: Prediction of intra coded macroblocks in MPEG-4... 18 

Figure 2.8: Shape of a VOP in MPEG-4 19 

Figure 3.1: Hierarchical representation of a video sequence in a frame-based framework. 

23 

Figure 3.2: An example of a frame-based video represented by several key frames 23 

Figure 3.3: Summarization of the foreground video object content with several key 

VOPs 24 

Figure 3.4: Flowgraph of the proposed key VOP selection algorithm 27 

Figure 3.5: Approximation of the shape of an IVOP by using the shape coding modes in 

MPEG-4. The "0", "1" and "2" values are assigned to the outside 

(transparent), boundary (intra), and inside (opaque) blocks, respectively 32 

Figure 3.6: (a) Shape of a key VOP, (b) Shape of a key VOP candidate, (c) The large 

Hamming distance between the two VOPs (shown in gray) caused by the miss-

x 



alignment (d) The small Hamming distance between the two VOPs using mass 

center alignment 33 

Figure 3.7: Approximation of the shape contour of an IVOP by using the shape coding 

modes in MPEG-4. The intra coded shape blocks in IVOPs are selected as the 

contour points 36 

Figure 3.8: The change in the number of key VOPs for different X\ values for the Bream 

video object 39 

Figure 3.9: The intra coded shape block activity for the Bream video object 40 

Figure 3.10: The key VOPs selected using the Hamming distance based algorithm for the 

Bream video object 45 

Figure 3.11: The key VOPs selected using the Hamming distance based algorithm for the 

Weather video object 46 

Figure 3.12: The key VOPs selected for the Hall Monitor video object using the 

Hamming distance based algorithm and with employing a video object activity 

level (<[>) dependent threshold 46 

Figure 3.13: The key VOPs selected using the Hausdorff distance based algorithm for the 

Bream video object 47 

Figure 3.14: The key VOPs selected using the Hausdorff distance based algorithm for the 

Weather video object 47 

Figure 3.15: The key VOPs selected using the Hausdorff distance based algorithm for the 

Hall Monitor video object 48 

Figure 3.16: The key VOPs selected for the Hall Monitor video object using the 

Hamming distance based algorithm and without employing a video object 

activity level ((()) dependent threshold 48 

Figure 3.17: The key VOP selection results for the Hall Monitor video object using the 

algorithm proposed in [61] 48 

Figure 4.1: The real part of the basis functions of the ART transform for eight angular 

and four radial functions 59 

xi 



Figure 4.2: Discrete probability distributions for the (a) uncompressed and (b) 

compressed domain global shape features 66 

Figure 4.3: Discrete probability distribution for the compressed domain specific shape 

features 67 

Figure 4.4: Discrete probability distribution for the Fourier descriptors in the 

(a) uncompressed and (b) compressed domains 67 

Figure 4.5: Discrete probability distribution for the ART descriptors in the 

(a) uncompressed and (b) compressed domains 68 

Figure 4.6: The query video object planes 70 

Figure 4.7: The distance histograms obtained by employing (a) compactness and 

eccentricity feature vector (R - [fc fe]) in the uncompressed domain, (b) the 

same feature vector in the compressed domain, and (c) inside intra density and 

pruned intra density feature vector (R - [/,• fp ]) in the compressed domain.72 

Figure 4.8: The retrieval performance using various numbers of the Fourier descriptors in 

the (a) uncompressed and (b) compressed domains 74 

Figure 4.9: The shape retrieval results for the VOP query, the 72th VOP of the Singing 

Girl video object, employing the Fourier descriptors in the uncompressed 

domains 76 

Figure 4.10: The shape retrieval results for the VOP query, the 72th VOP of the Singing 

Girl video object, employing the Fourier descriptors in the compressed 

domains 76 

Figure 4.11: The shape retrieval results for the VOP query, the 224th VOP of the 

Coastguard video object, employing the Fourier descriptors in the compressed 

domain 77 

Figure 4.12: The change in retrieval rate based on the number of angular and radial 

functions of the ART descriptors in the (a) uncompressed and (b) compressed 

domains 79 

xii 



Figure 4.13: The shape retrieval results for the VOP query, the 110th VOP of the Hall 

Monitor video object, employing the ART descriptors in the uncompressed 

domain 80 

Figure 4.14: The shape retrieval results for the VOP query, the 110th VOP of the Hall 

Monitor video object, employing the ART descriptors in the compressed 

domain 80 

Figure 4.15: The pdfs of the (a) Fourier and (b) ART descriptor values 82 

Figure 4.16: The change in the retrieval rate when different bit rates are employed to 

represent the (a) Fourier (b) ART descriptors 84 

Figure 4.17: Further summarization of the Bream video object into 3 VOPs with K-means 

clustering 88 

Figure 4.18: Example of query video objects 88 

Figure 4.19: The shape retrieval results for the News 1 video object query in the 

(a) uncompressed (b) compressed domains 90 

Figure 4.20: The shape retrieval results for the Children 1 video object query in the 

(a) uncompressed (b) compressed domains 91 

Figure 5.1: The binary shape maps of the 180th, 185th, and 190th VOPs of a video object 

divided into 4 angular and 2 circular segments 103 

Figure 5.2: Retrieval results of the ART based local motion descriptor obtained by 

employing different numbers of angular and radial (RAD) basis functions. 106 

Figure 5.3: Retrieval results of the ACLM descriptor obtained by using a various number 

of angular and circular (CIR) segments 108 

Figure 5.4: The change in retrieval accuracy versus computation time requirements when 

different upscaling factors are employed in the compressed domain 108 

Figure 5.5: The video objects classified as being similar in terms of their local motion to 

the query video object News 1 I l l 

Figure 5.6: The video objects classified as being similar in terms of their local motion to 

the query video object Children 1 112 

xiii 



Figure 5.7: The video objects classified as being similar in terms of their local motion to 

the query video object Hall Monitor 1 112 

Figure B.l: Akiyo video object 159 

Figure B.2: Bream video object 159 

Figure B.3: Children 1 video object 160 

Figure B.4: Children 2 video object 160 

Figure B.5: Coastguard 1 video object 161 

Figure B.6: Coastguard 2 video object 161 

Figure B.7: Fish 1 video object 161 

Figure B.8: Fish 2 video object 162 

Figure B.9: Fish 3 video object 162 

Figure B.10: Foreman video object 162 

Figure B. l l : Hall Monitor 1 video object 163 

Figure B.12: Hall Monitor 2 video object 163 

Figure B.13: News 1 video object 163 

Figure B.14: News 2 video object 164 

Figure B.15: Silent video object 164 

Figure B.16: Penguin video object 165 

Figure B.17: Sean video object 165 

Figure B.18: Singing girl video object 165 

Figure B.19: Weather video object 166 

Figure B.20: Stefan video object 166 

xiv 



List of Abbreviations 

A C L M Angular Circular Local Motion 

ANMRR Average Normalized Modified Retrieval Rank 

ART Angular radial Transform 

AVO Audio-Visual Object 

BVOP Bi-directionally coded Video Object Plane 

CIBR Content Based Image Retrieval 

DC Direct Current (The first DCT coefficient) 

DCT Discrete Cosine Transform 

DDL Description Definition Language 

FD Fourier Descriptor 

HSV Hue, Saturation, Value 

IDCT Inverse Discrete Cosine Transform 

IVOP Intra coded Video Object Plane 

JPEG Joint Photographic Experts Group 

LPE Low Pass Extrapolation 

MPEG Moving Picture Experts Group 



M T M Mathematical Transform to Munsell 

NMRR Normalized Modified Retrieval Rank 

pdf probability density function 

PVOP Predictively coded Video Object Plane 

QBIC Query By Image Content 

sec second 

V L C Variable Length Coding 

V M Verification Model 

VO Video Object 

VOP Video Object Plane 

X M experimentation Model 

xvi 



Acknowledgments 

First of all, I would like to thank Dr. Faouzi Kossentini for his very valuable 

supervision. My research would not have become a reality without his guidance, 

encouragement, and commitment. I would also like to express my gratitude to my 

supervisory committee members Dr. Rabab Ward, Dr. Mabo Ito, Dr. Hussein Alnuweiri, 

and Dr. Sid Fels, and to my university examiners Robert Woodham, Dr. Jim Little, Dr. 

Ian Cumming for their valuable feedback and constructive suggestions. 

I would like to thank all the members of Signal Processing and Multimedia Group 

for their friendship and for sharing their valuable technical knowledge with me. I would 

particularly like to acknowledge my colleagues and friends Adriana Dumitras, Anthony 

Joch, Shahram Shirani, Michael Gallant, Geoffrey Lefebvre, and Parvin Mousavi for their 

support and help with the subjective testing. I would also like to extend special thanks to 

Niranjan Damera-Venkata, Dave Tompkins, Wade Schwartzkopf, and Guner Arslan for 

making my visit to the University of Texas in Austin most enjoyable. I wish to express my 

gratitude to Dr. Alen Docef and our lab administrator Mehran Azimi for making life 

easier with their great technical support. 

xvii 



I would like to thank Arda, for his continuous support and confidence in me and to 

Carey, for being a great support when writing my thesis and for all his help with proof 

reading. 

Last, I would like to thank my parents and my sisters for being there for me during 

the hardest times, despite the fact they are at the other end of the world. I would like to 

dedicate this thesis to the memory of my father, Metin Culcu, who passed away in March 

2001, and whom I know is very proud of me right now and smiling down from Heaven. 

BERNA EROL 

The University of British Columbia 

December 2001 

xviii 



Chapter 1 

Introduction 

"Discovery consists in seeing what everyone else has seen and thinking 

what no one else has thought." 

Albert Szent-Gyorgi (1893-1986) 

The availability of low-cost visual data capturing devices has resulted in the creation 

of visual data at an ever increasing rate. Visual data, even in a compressed format, 

requires significant storage space. In the past, storage devices were quite expensive and 

visual databases were quite limited. Nowadays, the availability of affordable storage 

devices (less than $3 per gigabyte as of 2001) enables the storage of large amounts of 

visual data. As users have access to large amounts of content available from many 

sources, such as digital archives, personal and professional databases, the World Wide 

Web and broadcast data streams, managing this large amount of information becomes 

very difficult. Considering that the value of the information often depends on how easily 
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it can be found, retrieved, and accessed, there is a need for tools for efficient 

classification, identification, and retrieval of this information. Because digital video in the 

uncompressed form has very large storage requirements (50 gigabytes for 30 minutes 

NTSC resolution video), digital video is mostly available in the compressed forms, such 

as JPEG [2], JPEG 2000 [3], MPEG-1/2/4 [4][5][1], and H.263 [6]. Therefore, retrieval 

techniques that enable access and search capabilities directly in the compressed form, 

without requiring the decompression of the data, is greatly needed. 

One common technique for accessing visual data is to associate the visual data with 

keywords and use text-based search engines to access it. Although this technique has 

some advantages, such as capturing the semantic meaning, it may not be feasible for large 

databases since it requires human annotation, which is time consuming and costly. Also, 

subjective interpretation of the same content by different people may cause some 

inconsistencies. A picture can mean different things to different people. As Keister put it, 

"It is not so much that a picture is worth a thousand words, for many fewer words can 

describe a still picture for most retrieval purposes, the issue has more to do with the fact 

that those words vary from one person to another" [7]. 

The alternative to relying on annotation for retrieval is characterizing the visual data 

with some primitive features that are inherent to visual data itself, such as color, shape, 

texture, and motion. This technology is referred to as content-based image retrieval 

(CBIR). Retrieval based on low level visual features can automate the visual data 

management process and overcome the problem of language mismatch caused by human 
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annotation. Consequently, CBIR plays a crucial role in applications across diverse fields, 

such as medicine, publishing, design, education, entertainment, crime prevention, 

architecture, real estate, and broadcasting. One problem associated with CBIR, however, 

is that attaching semantic meanings to objects using primitive features is very difficult. 

Nevertheless, in many applications this problem can often be overcome by employing the 

query by example, where the user presents an image and asks the system to retrieve 

similar images, instead of entering the query with its semantic meaning. 

The problems in content-based visual data retrieval are becoming widely recognized 

and the search for solutions is an increasingly active area for research and development. 

Recent research efforts in the content-based access of visual data have led to the 

development of many commercial and prototype systems [8]-[26] and to the initiation of 

MPEG-7 [27]-[33], which standardizes a content description interface. An overview of 

some of the most notable visual retrieval systems is presented in Table 1-1. Though there 

has been a significant amount of work in the content-based retrieval of still images, the 

research in video retrieval is still in its infancy and many research areas remain to be 

explored. 

The existing research in the video retrieval area focuses mostly on frame-based video 

representation, where access to individual objects in a scene is either very limited or non­

existent. This is mainly due to the fact that segmentation and identification of objects in a 

video scene are very difficult and complex tasks. Nevertheless, in the last few years, great 

advances in this area have led to the development of many state of the art automatic and 
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semi-automatic segmentation algorithms [34]-[39]. Moreover, the most recent MPEG 

video coding standard, i.e., MPEG-4 [1], offers an object-based representation of video, 

where the arbitrarily shaped video objects in a frame are accessible individually in the bit 

stream. Efficient retrieval of arbitrarily shaped video objects is essential to support visual 

queries, such as when searching for a particular object with a given shape, color, motion, 

and texture. Besides retrieval, identifying and classifying video object characteristics can 

be useful in video communication applications as well. For example, after important video 

objects in a scene are identified, they can be coded with a better accuracy or transmitted 

in a more robust channel. 

Feature type Name Developer Ref 

Color WebSEEk Columbia University [8] 
Color, texture BlobWorld UC, Berkley [9] Color, texture 

ImageRover Boston University [10] 
Color, texture 

WBISS (Wavelet based image 
indexing and searching) 

UC, Stanford [11] 

Color, texture, 
shape 

QBIC (Query by Image Content) IBM [12] Color, texture, 
shape Virage Virage Inc. [13] 

Color, texture, 
shape 

PhotoBook MIT [14] 

Color, texture, 
shape 

MARS University of Illinois [15] 

Color, texture, 
shape 

Nefertiti National Research Council [16] 

Color, texture, 
shape, location 

VRW (Visual Retrieval Ware) Excalibur [17] Color, texture, 
shape, location VisualSeek Columbia University [18] 

Color, motion JACOB University of Di Palermo [19] Color, motion 

Cue Video IBM [20] 

Color, texture, 
shape, location, 
motion 

NeTra-V UC, Santa Barbara [21] Color, texture, 
shape, location, 
motion 

VideoQ Columbia University [22] 

Table 1-1: A summary of content-based visual retrieval systems. 
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In this thesis, we propose methods for retrieval of arbitrarily shaped video objects in 

the MPEG-4 compressed domain using their low level visual content. In particular, we 

employ the objects' shape, local motion, and color features, since these are the main 

features that humans use to differentiate between visual objects. The proposed methods 

employ the MPEG-4 compressed domain framework mostly because of MPEG-4's 

support of an object-based representation. Employing the MPEG-4 representation also 

helps to separate the segmentation problem from the retrieval problem, thus providing a 

better framework for object-based video retrieval than MPEG-1/2 and H.263. To simplify 

the retrieval problem, we assume that arbitrarily shaped video objects are already 

segmented and MPEG-4 coded, and camera effects, such as zooming and panning, are 

already compensated for. 

The effectiveness of our proposed retrieval methods are evaluated by comparing 

their performance with the uncompressed domain counterparts as well as with some well 

known techniques in the literature. As a retrieval performance measure, we employ 

Normalized Modified Retrieval Rank (NMRR), a measure used in the core experiments 

conducted during the MPEG-7 standardization process [40]. 

The proposed algorithms are found to be computationally efficient. This should be 

expected since our algorithms perform processing on a low-resolution version of the 

video object obtained from the bit stream. Finally, although they are based on the MPEG-

4 compressed domain representation, our methods would be applicable to any object-

5 



based compressed domain representations as long as low-resolution shape and color data 

can be obtained from the bit stream without needing full decompression. 

1.1 Organization of the Thesis 

The remainder of this thesis is organized as follows. Since all of our algorithms operate in 

the MPEG-4 compressed domain, in the next chapter, we first provide an overview of the 

arbitrarily shaped video object representation in MPEG-4. Considering that an hour of 

video can contain more than one hundred thousand images, summarization of video 

content is necessary for efficient retrieval and browsing. This is typically done through the 

use of key frames in a frame-based retrieval system. In Chapter 3, we address the problem 

of summarization of arbitrarily shaped video object content. More specifically, we 

propose two algorithms for the selection of key video object planes (VOPs) that 

efficiently summarize the salient content of video objects. The algorithms are based on 

the shape information of video objects in the MPEG-4 compressed domain. The 

performance comparisons of these algorithms with the key VOP selection methods that 

exist in the literature and a discussion on their computational complexity are also 

presented in this chapter. 

In Chapter 4, we present efficient methods for the shape retrieval of MPEG-4 video 

objects. We achieve this by proposing new ways of computing some well known shape 

retrieval features directly in the compressed domain as well as proposing some new shape 

features that are inherently based on the MPEG-4 representation of shape information. 
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We also address the issues of compact representation and efficient quantization of these 

shape features. Moreover, we propose a new method for measuring the shape similarity 

between two video objects, which is based on comparing the still shape features of the 

key video object planes of video objects. Our experimental results show that the 

proposed compressed domain shape retrieval techniques offer excellent computational 

savings, more than two orders of magnitude in computation time in some cases, with only 

a small degradation in the retrieval performance compared to the uncompressed domain 

methods. 

Motion features play an important role in video retrieval. Chapter 5 first discusses 

the different types of motion that exist in video sequences, and then gives an overview of 

the existing motion retrieval techniques. We next propose three new motion features that 

describe the local motion of the video object within its bounding box. The three proposed 

descriptors are rotation and scale invariant, and based on the angular and circular area 

variances of the video object, the variances of the Angular Radial Transform coefficients, 

and the variances of the Fourier coefficients. The proposed descriptors can be derived 

directly from the M P E G -4 compressed domain. Tradeoffs associated with each of these 

descriptors are also presented in this chapter. Our experiments demonstrate that the 

ranking obtained by querying with the proposed local motion features closely match the 

human ranking. 

Color histograms are among the most widely used visual feature representations in 

content-based retrieval. When processing the image/video data in the JPEG/MPEG 
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compressed domains, the DC coefficients are used commonly to form color histograms 

without fully decompressing the image or the video bit stream. In Chapter 6, we address 

the issues arising from the adaptation of DC based color histograms for the arbitrarily 

shaped video objects in the MPEG-4 framework. More specifically, we discuss the color 

space selection, quantization, and histogram computation in consideration of the specific 

characteristics of the MPEG-4 video objects. The conversions between different color 

spaces employed in this chapter are given in Appendix C. Chroma keying is one of the 

most popular methods used to obtain arbitrarily shaped video objects. In some cases, it is 

possible that the chroma key value of the background results in an erroneous computation 

of the color histogram. In Chapter 6, we also suggest a method for detecting and 

reducing these potential color artifacts. The experimental results show that substantial 

retrieval performance improvements are achieved by employing the proposed method in 

the presence of such artifacts. Finally, Chapter 7 summarizes the research contributions of 

this dissertation and suggests some future research directions. 
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Chapter 2 

Background: MPEG-4 Object-Based 

Representation 

The MPEG-4 video coding standard enables higher interactivity with the visual content 

by allowing access to the individual objects in a video sequence [l][41]-[47]. 

Furthermore, MPEG-4 supports insertion of user data into the bit stream allowing the 

transmission of content related information, such as some precomputed features, along 

with the actual video data. These properties make MPEG-4 very well suited for content 

representation in multimedia databases. 

In this chapter, we first give a brief introduction to the MPEG-4 standard. Video 

object coding is then described in detail by presenting MPEG-4 texture and shape coding 

techniques. It is important to note that this chapter does not aim to provide a complete 

overview to video coding. Rather, we describe the MPEG-4 video coding tools that are 
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different than those of MPEG-1/2 [48] and H.263 [6] putting a special emphasis on the 

parts of MPEG-4 that we utilize for our compressed domain algorithms. 

2.1 Overview of the MPEG-4 Standard 

MPEG-4 achieves object-based representation by defining audio-visual objects and 

coding them into separate bit stream segments. An audio-visual object (AVO) consists of 

a visual object component, an audio object component, or a combination of these 

components. Some examples of AVOs include a sound recorded with a microphone, a 

speech synthesized from text, a person recorded by a video camera, or a 3D image with 

text overlay. MPEG-4 also supports the composition of a set of audiovisual objects into a 

scene -referred to as an audiovisual scene. An example of an audiovisual scene composed 

of natural and synthetic audio and visual objects is presented in Figure 2.1. 

MPEG-4 provides functionalities to make it possible to change the position of the 

AVOs, delete them or make them visible, or manipulate them in a number of ways 

depending on the nature of their characteristics. For example, if it is a visual object, the 

user can zoom and rotate it. If it is an audio object, the user can change its pitch, as well 

as his/her listening point. Also, the quality, spatial and temporal resolutions of the 

individual AVOs can be modified. For example, in a mobile video telephony application, 

the user can request a higher frame rate and/or spatial resolution for the talking person 

than those of the background objects. 

10 



The M P E G - 4 standard is composed of several parts, including the systems part [49] 

that addresses issues such as the multiplexing and composition of audiovisual data, the 

audio part [50] that describes the decoding of the audio data, and the visual part [1] that 

describes the decoding of the visual data. In this chapter, we focus on the description of 

the visual part of M P E G - 4 . 

The M P E G - 4 visual coding standard aims at providing standardized core processing 

elements that allow efficient storage, transmission, and manipulation of visual data 

[1][41]. Different representations and compression algorithms may offer optimum 

solutions for different applications, bit rates, and formats. Therefore, M P E G - 4 provides 

four different types of coding tools: Video object coding for coding of a natural and/or 

synthetic originated, rectangular or arbitrarily shaped video object, mesh object coding 

? Of 

Figure 2.1: Example of an audio-visual scene. 

2.2 MPEG-4 Visual Coding Standard 
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for coding of a visual object represented with a mesh structure, model-based coding for 

coding of a synthetic representation and animation of the human face and body, and still 

texture coding for wavelet coding of still textures. 

Since the MPEG-4 syntax is designed to be very generic, and includes many tools to 

enable a wide variety of applications, the implementation of a decoder that supports the 

full syntax will most often be impractical. Therefore, MPEG-4 defines a number of 

subsets of the syntax, referred to as "profiles", each targeting a specific group of 

applications. Coding of arbitrarily shaped video is supported in "core profile" of 

MPEG-4, which is the focus of this thesis. 

2.2.1 Arbitrarily shaped video coding 

A video object (VO) is an arbitrarily shaped video segment that has a semantic meaning. 

In the MPEG-4 framework, similar to the frame concept in MPEG-1/2 [48], a temporal 

instance of a video object is called a video object plane (VOP). MPEG-4 allows object-

based access to not only the video objects, but also VOPs. Each VOP is defined by its 

bounding box (the tightest rectangle around the video object), its texture (luminance and 

chrominance values), and its shape. Coding of a video object involves shape coding, 

motion compensated prediction to reduce temporal redundancies, and DCT based texture 

coding of the motion compensated prediction error data to reduce spatial redundancies as 

illustrated in Figure 2.2. 
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%t Arbitrary Shaped 
Video Object Plane 

Texture 
Coding 
(DCT) 

Shape 
Coding 

Motion 
Coding 
(MV) 

->• Bitstream 

Figure 2.2: MPEG-4 coding of arbitrarily shaped video objects. 

Video object coding is performed at the macroblock level. VOPs are divided into 

macroblocks, such that they are represented with the minimum number of macroblocks 

within a bounding rectangle. Similar to MPEG-1 and MPEG-2, MPEG-4 supports intra 

coded (I), temporally predicted (P), and bi-directionally predicted (B) VOPs, all of which 

are illustrated in Figure 2.3. 

B-VOP B-VOP P-VOP 

Forward 
prediction 

Backward 
prediction 

Figure 2.3: VOP prediction in MPEG-4. 
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Figure 2.4 shows the basic VOP encoder structure. The encoder consists of two 

main parts: 1) a hybrid of a motion compensated predictor and a DCT based texture 

coder, and 2) a shape coder. In the first part, motion estimation and compensation is 

performed (except for IVOPs) on the texture data. Then, the difference between the 

predicted data and the original texture data is DCT coded and quantized, followed by 

variable length coding (VLC). Motion information is also encoded using VLCs. Then, the 

VOP is reconstructed as in the decoder, that is, by applying inverse quantization and 

inverse DCT (IDCT), and adding the resulting data to the motion compensated prediction 

data. The resulting VOP is then used for the prediction of future VOPs. 

ITexture coder 
VOP in 

—tiDCT]—»[ Quantizer 

Scan/ 
Variable 
Length 

„ Coder „ 

Inverse 
[Quantizer] 

IDCT 

Bit stream 

Mode 
selection 

-J* 

Motion 
Vector 
Coder 

0 
Prediction 

Frame 
^Memory 

Motion 
Estimation 

Shape 
Coder 

Arbitrary 
shaped VOP ? 

/ 

Figure 2.4: A basic block diagram of MPEG-4 video coder. 
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The shape coder encodes the binary shape and the transparency information of the 

object. Since the shape of a VOP may not change significantly between the consecutive 

VOPs, predictive coding can be employed to reduce temporal redundancies. Thus, 

motion estimation and compensation are also performed for the shape of the object. 

Finally, motion, texture, and shape information is multiplexed with the headers to form 

the coded VOP bit stream. At the decoder end, the VOP is reconstructed by combining 

motion, texture, and shape data decoded from the bit stream. 

The bit stream is structured so that the texture, motion, and shape information are 

interleaved at the macroblock level as shown in Figure 2.5.a. MPEG-4 offers error 

resilience tools that change the bit stream structure so that it is less error prone [51] [52]. 

If "data partitioning" and "resynchronization markers" error resilience modes are enabled, 

macroblocks in a VOP are grouped into data packets separated by resynchronization 

markers. This allows greater random access to the bit stream. In the data packets of 

IVOPs, the shape information is separated from the texture data using the "dc marker". 

In PVOPs data packets, the motion and shape data are separated from the texture data 

using the "motion marker". These cases are illustrated in Figure 2.5.b and Figure 2.5.c. If 

these modes are enabled in the bit stream, it is possible to extract only the shape data 

without parsing the texture information. 
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VOP Header Macroblock Shape Motion Texture VOP Header 
Header Data Data Data 

i 

(a) 

VOP Header Video Packet Shape Data & Texture (DC) Texture Kcsvnc. 
Header DC Coeff. Marker Data Maikei 

(b) 

VOP Header Video Packet Shape & Motion Texture Re.svnc. 
Header Motion Data Marker Data Marker 

4 
(c) 

Figure 2.5: Various bit stream structures in MPEG-4 (a) without error resilience options, 

with data partitioning and resynchronization markers enabled in (b) IVOPs and 

(c) PVOPs. 

2.2.1.1 Texture coding 

Intra blocks, as well as motion compensation prediction error blocks, are texture coded. 

VOPs are divided into macroblocks as illustrated in Figure 2.6, each macroblock 

consisting of four 8x8 luminance and two 8x8 chrominance blocks. The macroblocks that 

are completely inside the arbitrarily shaped VOP are coded using a technique very similar 

to the technique used in H.263 [6], i.e. DCT, quantization, followed by VLC. The blocks 

that do not belong to the VOP are not coded. If a macroblock lies on the boundary of an 

arbitrarily shaped VOP, first the pixels that are outside the VOP are padded, and then 

coded with the same technique used to code the inside blocks. Padding is employed to 
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make the block pixels more uniform, in order to obtain more zero coefficients after DCT 

and quantization. For inter blocks, the region that is outside the VOP is padded with 

zeros. In intra blocks, padding is performed by employing the Low Pass Extrapolation 

(LPE) padding technique described in the MPEG-4 Verification Model (VM) [53] as 

follows. First, the mean value, p., of the pixels that are located in the object region is 

computed. Then the value jx is assigned to each pixel that is located outside the video 

object. Last, a low pass filter,/(/j) = \f(i,j-l)+f(i-lJ)+f(i,j+l)+f(i+lj)]/4, is applied to all 

the block pixels in raster scan order. It is important to note that LPE technique is not part 

of the standard, but it is a suggested technique in the MPEG-4 V M in order to improve 

the coding efficiency. 

Bounding 
box 

Inside 
block 

Figure 2.6: Texture of a VOP in MPEG-4. 

Another difference between texture coding in MPEG-4 and that of H.263 is that the 

DC and AC coefficients in MPEG-4 intra blocks can be predictively coded. That is, the 

DC coefficient is predicted from the DC coefficients of either the left or the above block 

based on the following rule. 
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If ( I dcA - dcB | < | dcB - dcc |) 

predict from the above block (block C) 

else 

predict from the left block (block A) 

where the dcA, dcB, and dcc are the DC coefficients of the blocks A, B, and C, as 

illustrated in Figure 2.7. Based on the prediction direction, the reconstructed DC value of 

the current block, dcx, is computed as follows, 

if (predict from block C) 

dcx- edcx+dcc 

else 

dcx= edcx+dcA 

where edcx is the prediction error of the DC value of the current block. Also, if the above 

block is selected for prediction, the AC coefficients of the first row of the current block 

are predicted using that of the above block, or alternatively, if the left block is selected 

for prediction, the AC coefficients of the first column of the current block is predicted 

using that of the block to the left. 

B 

Macroblock 
I 

Figure 2.7: Prediction of intra coded macroblocks in MPEG-4. 
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2.2.1.2 Shape coding 

The shape of a VOP is described by a binary alpha plane, which indicates whether or not 

a pixel belongs to a VOP. A binary alpha plane is divided into 16x16 blocks as illustrated 

in Figure 2.8. The shape data associated with each of these 16x16 blocks are transmitted 

in the bit stream, along with the texture information that corresponds to the same area. 

Three shape coding modes are possible for IVOPs: 1) Transparent, where all pixels in a 

16x16 block fall outside the object, 2) Opaque, where all pixels in a 16x16 block are 

located inside the object, and 3) Intra, where the pixels in a 16x16 block are at the 

boundary of the object. In intra shape coding, the pixels inside the boundary blocks are 

raster order scanned and the corresponding binary shape data is context-based arithmetic 

coded. Lossy shape coding is achieved by subsampling of the binary alpha plane by a 

factor of 2 or 4 prior to arithmetic encoding. 

Figure 2.8: Shape of a VOP in MPEG-4. 

Seven shape coding modes are supported for the P and BVOPs, as presented in 

Table 2-1. The transparent, opaque, and intra coding modes are the same as in the IVOP 

case. The four additional inter shape coding modes involve the transmission of motion 
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vectors and additional update (prediction error) information. In P and BVOPs, the intra 

shape coding mode is employed only if the current boundary block cannot be efficiently 

predicted. In inter shape coding, the boundary block is first predicted from the temporally 

previous or future VOP (depending on the VOP type) and then the difference between 

the current and the predicted shape blocks is context-based arithmetic coded. The shape 

motion vectors are also coded predictively using the motion vectors of the surrounding 

texture and shape blocks. 

Coding mode Coding type Used in 

0 MVDs=0 & no inter update P and BVOPs 

1 MVDs!=0 & no inter update P and BVOPs 

2 Transparent I, P and BVOPs 

3 Opaque I, P, and BVOPs 

4 Intra coded I, P, and BVOPs 

5 MVDs=0 & inter coded P and BVOPs 

6 MVDs!=0 & inter coded P and BVOPs 

Table 2-1: Shape coding modes in MPEG-4. 

2.3 Summary 

In this chapter, we presented an overview to the visual part of the MPEG-4 standard. We 

emphasized the coding tools used for arbitrarily shaped video object coding, which are 

supported in the MPEG-4 core profile. MPEG-4 does not address the problem of object 

segmentation; nonetheless, it isolates the segmentation problem from the retrieval 
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problem by enabling access to the individual objects in a video scene. Therefore, it 

provides an excellent framework for our compressed domain retrieval algorithms. 
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Chapter 3 

Video Object Summarization 

"If you would be pungent, be brief. " 

Robert Southey (1774 - 1843) 

Considering that digital video is a collection of still images, it is possible to employ still 

image retrieval techniques for video retrieval. Nevertheless, a direct application of such 

techniques to video is not trivial considering that a typical 30-minute video sequence may 

contain more than fifty thousand frames. Therefore, summarization of the video content is 

often necessary. In a typical digital video retrieval framework, a video sequence is 

represented by a hierarchical structure, where video sequences are divided into shots, 

which represent a continuous action in time and space, and then each shot is represented 

with one or several key frames as shown in Figure 3.1. Employing this representation, the 

salient content of hours of video can be summarized by a number of key frames as 

illustrated in Figure 3.2. These key frames can be used for efficient and fast browsing of 
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video sequences as well as retrieval using still image features such as shape, texture, and 

color. 

Video sequence 

Shots H i | | J 

Key frames 

Figure 3.1: Hierarchical representation of a video sequence in a frame-based framework. 

A number of methods have been suggested for key frame selection. Some of these 

algorithms are applied to uncompressed video, and they involve comparing color and 

motion histograms, computing pixel differences, and performing edge tracking [54] [55]. 

Other algorithms involve operations in the compressed domain (e.g., MPEG-1/2) and 

take into account the texture coding modes (intra, inter, etc.), motion vectors, and the 

significant changes in DC coefficients to detect shot boundaries and to select key frames 

[56]-[59]. 

Figure 3.2: An example of a frame-based video represented by several key frames. 
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While key frames provide a summary of the video content, they cannot provide an 

accurate description of the individual objects within a video scene. In an object-based 

framework, similar to key frames, key Video Object Planes (VOPs) can be used for the 

efficient summarization of the video object content. Figure 3.3 shows an example of three 

key VOPs that summarize a 300-frame video object sequence. Key VOPs can be useful 

for a number of applications as follows: 

• Efficient browsing of the video object sequences, for example summarizing the 

important actions of a person in a surveillance video. 

• Retrieval of video objects by using still image features, for example searching of a 

video object with a particular color and shape on the Internet. 

• Efficient representation of the video object content. For example, in a video telephony 

application where the bandwidth is limited, only the key VOPs that show the 

important actions of the speaker can be transmitted instead of the whole video 

sequence. 

WE AT HI I: 
FOREC \S.-Ji 

Figure 3.3: Summarization of the foreground video object content with several key 

VOPs. 
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Unlike in key frame selection, very little work has been reported on key VOP 

selection. Gunsel et al. proposed that the motion of the video object and its 

uncompressed shape data be used for temporal segmentation of video objects and key 

VOP selection [60]. However, such an algorithm is very computationally intensive, often 

making key VOP selection unpractical. Ferman et al. suggested an algorithm that uses the 

texture coding modes in the MPEG-4 compressed domain to extract the key VOPs [61]. 

Their proposed algorithm employs the percentage of intra coded macroblocks as a 

measure for significant change in the content. Although the algorithm is simple, the 

difficult problem of threshold selection has not been addressed. Moreover, the accuracy 

of using the percentage of intra coded macroblocks is too low for the effective selection 

of key VOPs. 

In this chapter, we propose a new and efficient key VOP selection method that can 

be computed based on two different distance measures. The proposed method utilizes the 

shape information of the video objects that can be obtained directly in the MPEG-4 

compressed domain. In the following sections, we present the motivation, 

implementation, experimental results, and the computational requirements of our 

proposed method. 

3.1 Key VOP Selection Based on Shape Information 

Typically, key VOPs should be selected such that they reflect significant changes in the 

shape, color, and texture content of a video object. Using the shape content of a video 
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object for key VOP selection has some advantages over using the color and/or the texture 

content. First, the texture and color of a video object remain generally consistent during a 

video object's lifespan. Actually, this fact is used in many spatio-temporal segmentation 

algorithms for video object segmentation [35]. The shape of a video object, however, 

may vary significantly due to the object's movement, structure (e.g., articulated, elastic), 

occlusion, etc. Therefore, a significant change in the content of a video object is more 

likely to be detected if the object's shape is considered. Second, using the shape of a 

video object instead of its color or texture is potentially more computationally efficient 

when processing in the compressed domain. The MPEG-4 bit stream structure is 

designed such that it is not possible to decode the texture information without having to 

decode the shape information [1]. On the other hand, the shape information can be 

extracted from the bit stream without having to decode the texture information when data 

partitioning is employed. In such a case, extracting the shape information from the bit 

stream requires very few operations. 

Because of the above reasons, our proposed key VOP selection method is based on 

the shape content of video objects. The main flow of the proposed algorithm is presented 

in Figure 3.4. Here, the first VOP of a video object is defined as a key VOP, then the 

distance between the key VOP candidate and the most recent key VOP is computed. If 

the distance is larger than a threshold then a new key VOP is defined. We employ the 

Hamming and the Hausdorff distance measures to find the distance between two shapes. 

The Hamming distance measures the point-by-point difference between two shapes, 
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whereas the Hausdorff distance measures the largest distance between the contours of 

two shapes [62]. 

VOP key=VOPf l r st 

* J VOPcandidate=VOP, next 

VOPkey = VOPcandidate 

F 

Figure 3.4: Flowgraph of the proposed key V O P selection algorithm. 

The computations of the Hamming and Hausdorff distances on the uncompressed 

shape masks of video objects are straightforward. The Hamming distance is equal to the 

number of different pixels between the two shape masks and the Hausdorff distance is 

equal to the maximum distance of two shape contours that are obtained from the two 

shape masks. In the MPEG-4 compressed domain, these distances are computed based on 

the shape approximations derived from the shape coding modes as described in the next 

section. The shape coding modes can be extracted from the MPEG-4 bit stream without 

full decoding of the bit stream. Besides saving computations, this approximation also 

makes the proposed algorithms less dependent on how lossy the shape information is 

coded. 
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3.1.1 Shape approximation in the MPEG-4 domain using I, P, and 

BVOPs 

Here, we propose that the shape and the boundary of the video object plane be 

approximated by employing MPEG-4 shape coding modes. As presented previously in 

Section 2.2, three shape coding modes are possible in the MPEG-4 IVOPs: transparent, 

opaque, and intra. In our VOP shape approximation, each 16x16 shape block is 

represented with one value indicating if the block is inside, outside, or at the border of the 

video object. The coding mode of a shape block in an IVOP directly gives the shape 

approximation value, i.e., opaque coded blocks are inside, transparent coded blocks are 

outside, and the intra coded blocks are at the boundary of the video object shape. The 

boundary of the video object can also be obtained easily by defining the intra coded shape 

blocks of IVOPs as contour points. Using this approximation, a sub-sampled (by a factor 

of 16) shape map of a video object plane can be extracted from the MPEG-4 IVOPs 

without full decompression. This property makes IVOPs ideal key VOP candidates for 

our key VOP selection algorithms. Nevertheless, there may be MPEG-4 bit streams that 

do not have periodic IVOPs or the temporal distance between consecutive IVOPs may be 

very large. In such cases, it may be necessary to consider P and BVOPs as key VOP 

candidates as well. However, in P and BVOPs, the shape blocks are coded predictively. 

Therefore, it may not be possible to determine whether a shape block is an inside, 

outside, or boundary block, without fully decoding and reconstructing the shape 

information. To address this problem, we next propose a method that allows the use of 
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the same approximation (i.e., inside, outside, or boundary) of a shape block in P and 

BVOPs. 

In MPEG-4, the shape of a P and BVOP is coded by using one of the seven possible 

coding modes that are summarized in Section 2.2.1.2. If the coding mode of a shape 

block in a P or BVOP is opaque, transparent, or intra, then the shape block is inside, 

outside, or at the boundary of the video object, respectively. If the coding mode of a 

shape block is one of the four inter modes, then it is not possible to indicate in an 

accurate way that the shape block belongs to inside, outside, or the boundary of the video 

object, without decoding the shape information of the reference and predicted shape 

blocks, and reconstructing the predicted shape block. However, we can predict where the 

shape block is located by considering each possible combination of the shape coding 

modes of the reference and predicted shape blocks, as summarized in Table 3-1. Our 

prediction rules are based on the following observations. If a shape motion vector and/or 

some update information is coded for a predicted shape block, then regardless of the 

shape coding mode of the reference block, the predicted shape block is very likely to be 

located at the boundary of the video object. If neither motion vectors nor update 

information is coded, then the shape block type will be expected to be exactly the same as 

that of the reference block. However, since the shape motion vector is coded predictively, 

this may not be always true. Therefore, this inter mode requires further analysis. The 

MPEG-4 variable length coding tables used for the shape coding modes have been 

constructed such that, if both the reference and the predicted block are opaque, then it is 
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most efficient to transmit the predicted block in inter mode with no motion vector and 

update information. Hence, if the reference block is opaque and the predicted block is 

inter coded with no update information being sent to the decoder, then the current block 

is likely to be an opaque block. On the other hand, if both the reference and the predicted 

blocks are transparent, then it is most efficient to transmit the current block as 

transparent. Therefore, if the shape of a predicted block is inter coded with no motion 

vector and update information, and its reference block is transmitted as transparent, then 

it is very likely that the predicted block belongs to the boundary of the video object. 

When reconstructing the approximated shape information of P and BVOPs, first, the 

approximation rules summarized in Table 3-1 are applied to each PVOP in a group of 

pictures so that all the inter modes of the PVOPs are mapped to one of the transparent 

(outside), opaque (inside), and intra (boundary) coding modes. Then, the same rules are 

applied to the BVOPs to approximate them from their reference I or PVOPs. If a 

predicted block does not have a corresponding reference block in its reference VOP, then 

we apply the copy rule of MPEG-4 [1]. That is, if the number of lines (respectively 

columns) is larger in the current VOP than in the reference VOP, the bottom line 

(respectively rightmost column) is replicated as many times as needed in the reference 

VOP such that all blocks in the predicted VOP have corresponding blocks in the 

reference VOP. 
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Block coding mode in the 
reference VOP 

Block coding mode in the 
predicted VOP 

Approximated block 
coding mode 

transparent, opaque, intra transparent transparent (outside) 

transparent, opaque, intra opaque opaque (inside) 

transparent, opaque, intra intra intra (boundary) 

transparent, opaque, intra MVDs!=0 &no inter 
update 

intra (boundary) 

transparent, opaque, intra MVDs=0 & inter coded intra (boundary) 

transparent, opaque, intra MVDs!=0 & inter coded intra (boundary) 

transparent MVDs=0 & no inter update intra (boundary) 

opaque MVDs=0 & no inter update opaque (inside) 

intra MVDs=0 & no inter update intra (boundary) 

Table 3-1: Approximation of the shape coding modes for P and BVOPs. 

3.1.2 Key VOP selection using the modified Hamming distance 

The Hamming distance between two shapes is defined as the number of different pixels 

between the shapes. In our proposed method, the shape of the VOP is first obtained by 

using the approximations described in the previous section, and the values "0", " 1 " and 

"2" are assigned to the outside, boundary, and inside shape blocks, respectively, as 

depicted in Figure 3.5. Then, a modified version1 of the Hamming distance between the 

two VOPs is computed as follows, 

1 For the Hamming distance measure, the distance between two pixels can be only 0 or 1. The distance 

between two pixels can here be 0, 1, or 2. 
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N M 

n=Om-0 
am,n am,n 

(3.1) 

where a 1 ^ is the shape approximation value of the key VOP candidate in the mth row 

and nth column (in number of blocks) of the binary alpha plane, a 2m, n is the shape 

approximation value of the temporally closest key VOP corresponding to the same 

location, and M and N are the width and height (respectively) of the VOP's bounding 

box. When the horizontal and/or vertical dimensions of the key VOP candidate are 

different from those of the key VOP, M and N are assigned to the larger dimensions, and 

the extended blocks are padded with "0". Because of the "0", "1" and "2" values assigned 

to outside, boundary, and inside blocks (respectively), the modified Hamming distance is 

larger when an outside block corresponds to a inside block than when an outside block 

corresponds to a boundary block, or vice versa. 

0 0 0 0 1 1 1 0 0 0 0 
0 0 0 1 1 2 1 0 0 0 0 
0 0 0 1 2 2 1 0 0 0 0 
0 0 0 1 2 2 1 1 0 0 0 
0 0 0 1 2 2 2 1 0 0 0 
0 0 1 1 2 2 2 1 0 0 0 
0 0 1 2 2 2 2 1 1 0 0 
1 1 1 2 2 2 2 2 1 1 1 
1 2 2 2 2 2 2 2 2 2 1 
1 2 2 2 2 2 2 2 2 2 1 
1 2 2 2 2 2 2 2 2 2 1 
1 2 2 2 2 2 2 2 2 2 1 
1 1 1 1 1 1 1 1 1 1 1 

Figure 3.5: Approximation of the shape of an I VOP by using the shape coding modes in 

MPEG-4. The "0", "1" and "2" values are assigned to the outside (transparent), boundary 

(intra), and inside (opaque) blocks, respectively. 

A problem here is that a slight spatial shift between two very similar shapes may 

result in a large Hamming distance. Consider the two alpha planes presented in Figure 
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3.6.a and Figure 3.6.D. Even though the shapes look almost the same, the Hamming 

distance between the two shapes is very large, as depicted in Figure 3.6.C The minimum 

Hamming distance between two shapes can be determined by computing the Hamming 

distance for every possible alignment of the two shapes. However, this would require a 

very large number of computations, making the algorithm impractical. Our experiments 

showed that aligning the mass centers of the two shapes provides a good approximation 

for the alignment corresponding to the smallest Hamming distance. This is depicted in 

Figure 3.6.d. Since the actual shape of a VOP is not available without decoding the bit 

stream, the mass centers are found by using the shape approximations. 

(a) (b) (c) (d) 

Figure 3.6: (a) Shape of a key VOP, (b) Shape of a key VOP candidate, (c) The large 

Hamming distance between the two VOPs (shown in gray) caused by the miss-alignment 

(d) The small Hamming distance between the two VOPs using mass center alignment. 

Recall that a new key VOP is selected when the distance between the approximated 

shape of a key VOP candidate and that of the key VOP is larger than a threshold. The 

threshold should be adaptive to 1) the activity level and 2) the size of the video object. 

First, the activity level of a video object needs to be considered because a threshold that 

is optimized for low activity video objects may result in an erroneous selection of every 
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single key VOP candidate as a key VOP in highly active video objects. Even though it is 

desired to have more key VOPs for video objects that are more active, the threshold 

needs to be increased in order to avoid selecting an excessive number of key VOPs for 

such video objects. Second, the threshold should be selected so as to maintain size 

invariance. This can be achieved by scaling it with the area of the VOP bounding box. We 

compute the threshold for each key VOP candidate as follows, 

Tx =A\ (j) minCMpA^) m i n ^ A ^ ) , (3-2) 

where A,i is an empirically determined parameter that is constant for all VOPs, <j) is 

determined by the activity level of the video object, M i and N i are the width and height 

(in number of blocks) of the key VOP (respectively), and M 2 and N 2 are the width and 

height of the key VOP candidate (respectively). In the cases where the heights and the 

widths of the current key VOP and key VOP candidate are different, the smaller 

dimensions are used to determine the area of the VOP. This way, if the dimensions of the 

current key VOP and the key VOP candidate are significantly different, then the threshold 

is made small enough so that it is likely to be exceeded. 

Since the parameter § depends on the activity level of the video objects, and the 

video objects may not have uniform activity levels throughout their lifespans, we need to 

divide the video objects into temporal segments with uniform activity levels. The activity 

level of a video object can be predicted by monitoring the number of intra coded shape 

blocks in the P and BVOPs, and defining a new segment when a significant change is 

detected. The number of intra coded shape blocks, y, can be obtained from the MPEG-4 
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bit stream without decoding the shape data. In order to provide size invariance, y is 

scaled with the area of the VOP. 

The gradient of y is used to determine the significant variations in y. We employ a 5-

point median filter in order to remove the spikes that correspond to sudden changes in y 

with very short duration. This is followed by a 3-point averaging filter to smooth the local 

changes. Then, the gradient is approximated by 

Ay = y[n] - y[n -1] , (3-3) 

where y[n] and y[n-l] are the numbers of intra coded shape blocks of the current P or 

BVOP and the temporally previous P or BVOP, respectively. A large gradient value 

indicates a significant change in y. Whenever the absolute value of the gradient of y is 

above a threshold T t s, a new temporal activity segment is defined. After thresholding, very 

small temporal segments are combined with the neighboring temporal segments to 

prevent having an excessive number of temporal segments. 

3.1.3 Key VOP selection using the Hausdorff distance 

The Hausdorff distance measure can also be used to measure the similarity between two 

shapes. It is defined as the maxmin function between two sets of points as follows [62], 

h(A,B) = msLx{ rmn{d(a,b)}}, ,~ ^ 
aeA beB K ' 

where a and b are the points of the sets A and B respectively, and d(a, b) is the Euclidean 

distance between these points. More specifically, the Hausdorff distance between the sets 

of points A and B is the maximum distance of the points in set A to the nearest point in 
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set B. The Hausdorff distance is not symmetric, i.e., h(A,B) may not be equal to h(B,A). 

Therefore, a more general definition of the Hausdorff distance is given by 

H(A,B) = max{h(A,B),h(B,A)}, (3.5) 

where h(A,B) and h(B,A) are the Hausdorff distances from A to B, and from B to A, 

respectively. 

Figure 3.7: Approximation of the shape contour of an IVOP by using the shape coding 

modes in MPEG-4. The intra coded shape blocks in IVOPs are selected as the contour 

points. 

Similar to the key VOP selection algorithm proposed in the previous section, the 

first VOP of a video object is declared as a key VOP, and whenever the Hausdorff 

distance between a key VOP candidate and its temporally closest key VOP is larger than 

an adaptive threshold, the key VOP candidate is selected as a new key VOP. As in the 

Hamming distance case, the contours of the key VOP and the key VOP candidate are 

aligned using their mass centers in order to make the Hausdorff distance invariant of 

spatial shifts. 

Finding the Hausdorff distance between the shape contours of the key VOP and the 

key VOP candidate involve a large number of Euclidean distance computations. 

36 



Moreover, extracting the contours of the VOP requires the decoding of the shape data. In 

order to avoid these computations, we approximate the contour of a VOP shape from the 

shape coding modes by defining the boundary shape blocks as the contour points. This is 

depicted in Figure 3.7. As a result, the number of contour points is significantly reduced, 

yielding a 16x16 times reduction in computations, besides not needing to decode the 

shape data. 

Unlike the threshold used in the Hamming distance based algorithm, the threshold 

used in this algorithm does not depend on the activity level of the video object. Our 

experiments showed that high activity video objects that have large numbers of intra 

coded shape blocks do not necessarily have large Hausdorff distances between the key 

VOPs and the key VOP candidates. This should be expected because, unlike the 

Hamming distance where all the points of the shape affect the distance between two 

VOPs, the Hausdorff distance is affected by only the two points that have the largest 

distance, one in the key VOP, and the other one in the key VOP candidate. The 

threshold, however, still depends on the size of the video object. Since the Hausdorff 

distance is based on the Euclidean distance, the threshold is scaled by the diagonal length 

of the VOP bounding box. The threshold is given by 

where A,2 is a pre-determined scale-factor that is constant for all VOPs, M i and N i are the 

width and height (in number of blocks) of the key VOP (respectively), and M2 and N 2 are 

the width and height of the key VOP candidate (respectively). If the widths and heights of 

(3.6) 
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the key VOP and the key VOP candidate are different, then the smaller dimensions are 

selected so as to make it more likely to declare a new key VOP if there is a significant 

size difference. 

3.2 Experimental Results 

The proposed key VOP selection algorithms are implemented in C++, and the Microsoft 

MPEG-4 decoder [63] is used for parsing and partial decoding of the MPEG-4 bit 

streams to obtain the shape coding modes. In this section, we present our key VOP 

selection results for three video objects: Hall Monitor, which is a surveillance video 

sequence, Bream, which is a sequence that shows a fish swimming and turning, and 

Weather, which is a sequence that shows an anchorwoman presenting the weather 

forecast. These sequences cover a variety of video objects, from the highly active Hall 

Monitor to the low motion Weather. The Hall Monitor video sequence was segmented 

after production, whereas the Bream and Weather video sequences were segmented 

during production using chroma keying. 

The threshold used in the Hamming distance based key VOP selection algorithm 

depends on the parameters X\ and (j), as well as the dimensions of the video object. While 

the dimensions of the video object are extracted from the MPEG-4 bit stream, the values 

of the parameters Xi and <)) are empirically determined. The parameter Xi indicates the 

percentage of the shape area that is allowed to be different before selecting a new key 

VOP. Selecting a lower value for X\ would result in a higher number of key VOPs and 
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vice versa. The change in the number of key VOPs for different values of A,i is presented 

in Figure 3.8 for the Bream video object. Our experiments show that setting the value of 

the parameter Xi to 0.25 and changing the value of the parameter ty from 1 to 1.5 

depending on the activity level of the video object, as presented in Table 3-2, result in key 

VOPs that represent efficiently the content of the video objects. 

0 -j , , I 1 1 

0 0.2 0.4 0.6 0.8 1 
Xl 

Figure 3.8: The change in the number of key VOPs for different A-i values for the Bream 

video object. 

Activity level (average percentage of 
intra coded shape blocks) 

1 0% to 29.9% 

1.2 30% to 69.9% 

1.5 70% to 100% 

Table 3-2: Selection of the values for the parameter (J) depending on the activity level of 

video objects. 

Since the parameter ty depends on the activity level of the video object segment, the 

video objects are divided into temporal segments with uniform activity levels prior to key 
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VOP selection. The value of the temporal segmentation threshold T t s is set to 0.01. 

Figure 3.9 shows the change in the percentage of intra coded shape blocks for the Bream 

video object. The two major peaks of the graph correspond to the two highly active 

segments of the video object, that is, where the shape of the video object changes rapidly. 

The temporal segments and their corresponding activity levels for the Weather, Bream, 

and Hall Monitor video objects are shown in Table 3-3. 

Bream 

1 | 0.5 
£ 3 0.4 
<D Cu 0.3 
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S. S o 

50 100 150 200 250 300 

VOP number 

Figure 3.9: The intra coded shape block activity for the Bream video object. 

Next, we present our key VOP selection results for video objects that are coded at 

15 VOPs per second, following the IPPPIPPP structure, with lossless shape coding, and 

using a constant quantizer value of 10 for texture. In this set of experiments, only IVOPs 

are considered as key VOP candidates. We also demonstrate the performance of the 

proposed algorithms in the case where very lossy coding for shape, i.e. downsampling by 

four, is employed. Moreover, we present a set of experiments that demonstrate the effects 

of the use of video object activity level parameter <|). In the second set of experiments, we 
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perform key VOP extraction from the IBBBPBBBPBBBP structured MPEG-4 bit 

streams, where I, P, and BVOPs are also considered as key VOP candidates. In the third 

set of experiments, we compare our key VOP selection results with the results of the 

uncompressed domain implementation of our algorithms and other available methods for 

key VOP selection. 

Video object Segment no start VOP 
no 

stop 
VOP no 

Activity level (average 
percentage of intra coded 
shape blocks) 

Weather 0 0 176 0.4% 
1 178 200 5.7% 
2 202 270 1.3% 
3 272 300 5.8% 

Bream 0 0 102 4.6% 
1 104 124 15.4% 
2 126 206 3.6% 
3 208 228 18.0% 
4 230 242 11.0% 
5 224 300 3.6% 

Hall Monitor 0 6 34 53.3% 
1 36 70 31.5% 
2 72 96 37.1% 
3 98 120 28.2% 
4 122 178 35.8% 
5 180 206 16.9% 
6 208 228 31.92% 
7 230 248 66.3% 

Table 3-3. Temporal segments for the Weather, Bream, and Hall Monitor video objects. 
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3.2.1 Key VOP selection using IVOPs 

Figure 3.10, Figure 3.11, and Figure 3.12 show the key VOPs selected for the IPPPIPPPI 

structured Bream, Weather, and Hall Monitor video object bit streams using the 

Hamming distance based algorithm and considering the IVOPs as key VOP candidates. 

The key VOPs extracted using the Hausdorff distance measure, by setting the value of the 

parameter X2 to 0.2, are presented in Figure 3.13, Figure 3.14, and Figure 3.15 for the 

Bream, Weather, and Hall Monitor video objects, respectively. As seen from the figures, 

both algorithms select key VOPs that provide a good summarization of the video objects. 

The performance of our proposed algorithms has very little dependency on the 

coding rate of the shape information. In the next experiment, we employ the most lossy 

coding possible for the MPEG-4 shape information, where the intra coded shape blocks 

are downsampled by a factor of four. In this case, the selected key VOPs for the Bream 

video object using the Hamming distance based algorithm are 0, 112, 128, 208, 224, 232, 

and 240. The key selected VOPs using the Hausdorff distance based algorithm are 0, 112, 

136, 200, 224, 232, and 240. These key VOPs are very similar to the ones shown in 

Figure 3.10 and Figure 3.13, for the Hamming and the Hausdorff distance based 

algorithms, respectively/Therefore, our proposed algorithms perform similarly when the 

video object shape is coded losslessly or in the most lossy mode possible. 

We next demonstrate the effects of the video object activity level ty when 

determining the threshold for the Hamming distance based algorithm. Since the Bream 

and Weather video objects have moderate activity levels, as given in Table 3-3, the 
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activity level parameter § in most of the temporal segments is equal to 1. Therefore it 

does not have any effect on the threshold computation. On the other hand, the activity 

level of the Hall Monitor video object is high in most of its temporal segments, as shown 

in Table 3-3. Consequently, the parameter 0 affects the decision threshold when 

computing the Hamming distance. If the parameter 0 is not employed when selecting key 

VOPs for the Hall Monitor video object, then the selected key VOPs are 6, 22, 62, 86, 

94, 134, 150, 166, 174, and 246, as shown in Figure 3.16. Because the Hall Monitor 

video object is highly active, using the threshold that is not scaled up with the parameter 

<|) results in the selection of an excessive number of key VOPs. When these key VOPs are 

compared to the ones presented in Figure 3.12, which were selected considering the 

activity level of the video object, it can be seen that they do not improve much the 

summarization of the salient content of the video object. Therefore, employing the 

activity level of video objects for key VOP selection prevents the selection of an 

excessive number of key VOPs for highly active video objects, while yielding a sufficient 

number of key VOPs that represent efficiently the salient content of a video object. 

3.2.2 Key VOP selection using I, P, and BVOPs 

In our next experiment, we extract key VOPs from the IBBBPBBBPBBB structured 

Bream video object bit stream, where not only IVOPs, but also P and BVOP types are 

considered as key VOP candidates. The selected key VOPs in this case are 0, 112, 120, 

128, 208, 224, 232, and 240 using the Hamming distance measure, and 0, 112, 120, 128, 

216, 228, 236, and 252 using the Hausdorff distance measure. The key VOPs selected 
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using the Hamming distance measure are identical to those presented in Figure 3.10, 

where only IVOPs were key~ VOP candidates. The key VOPs selected using the 

Hausdorff distance measure are very similar to the VOPs presented in Figure 3.13, 

although they are not exactly the same. This should be expected because, small prediction 

errors in P or BVOPs do not affect the Hamming distance significantly (since every block 

in a VOP is used for measuring the Hamming distance), while small prediction errors that 

may occur at the edge of P or BVOPs may affect the resulting Hausdorff distance (since 

the Hausdorff distance is measured between two points). 

3.2.3 Comparisons with other methods 

For comparison purposes, we also implement our proposed method employing the 

uncompressed (actual) shape data instead of the approximated shape data. Using the 

algorithm that is based on the Hamming distance, the selected key VOPs are 0, 240, 256, 

and 296 for the Weather, 0, 112, 128, 208, 224, 232, and 240 for the Bream, and 6, 22, 

54, 102, 142, 190, 230, and 246 for the Hall Monitor video objects. The uncompressed 

domain version of the Hausdorff distance based algorithm yields the key VOPs 0, 192, 

and 248 for the Weather, 0, 112, 136, 208, 224, 232, and 248 for the Bream, and 6, 14, 

22, 78, 110, 134, 182, and 246 for the Hall Monitor video objects. The key VOPs 

selected using the shape information in compressed domain are similar to the ones 

selected using the decompressed shape information. Therefore, processing in the 

compressed domain becomes very advantageous, since the same performance levels are 
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achieved using 16x16 times less computations and without requiring the decompression 

of the shape data. 

We also compare our key VOP selection algorithms with the compressed domain 

algorithm proposed by Ferman et al. [61]. Their key VOP selection algorithm is based on 

the texture coding modes of the PVOPs, and a key VOP is declared whenever the 

corresponding percentage of intra coded blocks exceeds a threshold. Using this 

algorithm, the key VOPs selected for the Hall Monitor video object are presented in 

Figure 3.17. As can be seen from the figure, unlike our key VOP selection algorithms 

(see Figure 3.12 and Figure 3.15), the algorithm proposed in [61] selects redundant key 

VOPs (see VOPs number 143, 160, and 175), while also failing to represent some 

important content changes, more specifically the VOP number 246. 

VOP0 VOP 112 VOP 120 VOP 128 

VOP 208 VOP 224 VOP 232 VOP 240 

Figure 3.10: The key VOPs selected using the Hamming distance based algorithm for the 

Bream video object. 
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VOP 0 VOP 208 VOP 248 

Figure 3.11: The key VOPs selected using the Hamming distance based algorithm for the 

Weather video object. 

VOP 6 VOP 22 VOP 62 VOP 118 VOP 142 VOP 246 

Figure 3.12: The key VOPs selected for the Hall Monitor video object using the 

Hamming distance based algorithm and with employing a video object activity level ((()) 

dependent threshold. 
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VOPO VOP 112 VOP 136 VOP 208 

Figure 3.13: The key VOPs selected using the Hausdorff distance based algorithm for the 

Bream video object. 

VOP 0 VOP 192 VOP 256 

Figure 3.14: The key VOPs selected using the Hausdorff distance based algorithm for the 

Weather video object. 
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VOP 6 VOP 22 VOP 46 VOP 78 VOP 102 VOP 142 VOP 246 

Figure 3.15: The key VOPs selected using the Hausdorff distance based algorithm for the 

Hall Monitor video object. 

VOP 6 VOP 22 VOP 62 VOP 86 VOP 94 VOP 134 VOP 150 VOP 166 VOP 174 VOP 246 

Figure 3.16: The key VOPs selected for the Hall Monitor video object using the 

Hamming distance based algorithm and without employing a video object activity level 

(<[)) dependent threshold. 

VOP 6 VOP 44 VOP 106 VOP 135 VOP 143 VOP 160 VOP 175 

Figure 3.17: The key VOP selection results for the Hall Monitor video object using the 

algorithm proposed in [61]. 
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3.3 Conclusions 

In this chapter, we presented a new, method for key VOP selection, using the Hamming 

and the Hausdorff distance measures, that efficiently summarize the salient content of 

video objects. As presented in the experimental results, the performance of the Hamming 

and Hausdorff distance based algorithms are similar. Measuring the Hausdorff distance is 

more computationally complex than measuring the Hamming distance. Nevertheless, even 

though the number of operations required is larger, the implementation of the Hausdorff 

distance based algorithm is simpler, since it does not require dividing the video objects 

into temporal segments with uniform activity levels. Therefore, depending on the 

application and available processing resources, either similarity measure one can be used 

for efficient key VOP selection. 

Using the proposed compressed domain shape approximations, the operations 

required to compute the Hamming and Hausdorff distances are reduced by approximately 

16x16 times compared to the uncompressed domain implementations. Also, since the 

decompression of the shape data is not required, the bit stream processing time is reduced 

significantly. Besides saving computations, using the shape approximations makes the 

proposed algorithms less dependent on the segmentation errors and how lossy the shape 

information is coded. 

In this thesis, we employ key VOPs for shape content matching, as presented in 

Chapter 4, and color content matching, as presented in Chapter 6, of video objects. In 
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these chapters, unless otherwise stated, we utilize the Hausdorff distance based algorithm 

and select the IVOPs as key V O P s for practical purposes. 
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Chapter 4 

Retrieval of Arbitrarily Shaped Video by 

using Shape Features 

"Hamlet: Do you see yonder cloud that's almost in 
shape of a camel? 

Polonius: By the mass, and 'tis like a camel, indeed. 

Hamlet: Methinks it is like a weasel. 

Polonius: It is backed like a weasel. 

Hamlet: Or like a whale ? 

Polonius: Very like a whale. " Hamlet. Act HI, Scene II 

William Shakespeare (1564-1616) 

Shape matching is an important part of content-based visual data retrieval as there is 

considerable evidence that humans recognize objects primarily by their shape [64] [65]. 

Retrieval of objects with their shape is a challenging task and much effort has been 

devoted to finding the shape features and similarity matching techniques that closely 

resemble human perception [74]-[84]. Consequently, a number of effective shape 
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representations were developed. These shape representation methods can be classified 

into the following two groups based on the way they describe the shape information [74]: 

1. Region based (internal) methods: Features that describe the region of the shape 

enclosed by a boundary, e.g., area, circularity, eccentricity, moment invariants, 

and major axis orientation [74]-[76], Zernike moments [67], Angular Radial 

Transform descriptors [85], etc. 

2. Boundary based (external) methods: Features that describe the contour of the 

object, e.g., Scaled Space representations [68][69], Fourier Descriptors [70]-

[72], etc. 

One of the most recognized content-based retrieval systems in the literature is QBIC 

from IBM [12]. In QBIC, the authors employ some global shape features, such as the 

area, circularity, eccentricity, major axis orientation, and a set of algebraic moment 

invariants to characterize and match the shape of the objects. In another system, NeTra, 

Deng and Manjunath propose to represent the shape using curvature, centroid distance, 

as well as Fourier descriptors [21]. Sclaroff and Pentland present a method in the 

Photobook system [14], where they define a stiffness matrix that describes how each 

point in the object is connected to other points. In their system, all shapes are first 

converted into this matrix and the eigenvectors of the matrix are employed for similarity 

matching. In another approach, Del Bimbo et al. study shape similarity by elastic 

matching of users' sketches, where they propose similarity measures that conform to the 

perception of similarity by humans [78]. In [79], Wang et al. attempt to combine global 
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and local shape features for effective shape retrieval. They employ elongation and 

compactness features for early elimination of the most dissimilar shapes, and then extract 

and match the salient points of the boundary of the visual objects. Mokhtarian et al. 

propose a Curvature Scaled Space shape descriptor that is computed by convolving a 

parametric representation of the curve with a series of Gaussian functions and extracting 

the resulting curvature zero crossing points [68]. In one of the most recent retrieval 

systems, MARS [84], Chakrabarti et al. propose to represent the shape with a bitmap 

divided into grids and employ an adaptive resolution technique where the resolution of 

the grid cells varies from one portion of the shape to another depending on weather it 

improves the quality of the representation. Furthermore, MPEG-7, the MPEG standard 

for content-based description, employs two shape descriptors; one is a contour based 

descriptor based on a Curvature Scaled Space representation, and the other one is a 

region based descriptor based on the Angular Radial Transform [85]. 

Most of the above features are rotation, translation, and size invariant, and are 

robust to small physical deformations (e.g., stretch) of the shape. They find use in many 

applications, including surveillance, chromosome classification, and efficient access to 

trademark, criminal investigation, photograph, and medical databases. Consequently, 

there were several attempts to employ some of these still shape features for video 

retrieval. For example, the VideoQ system [22] supports video retrieval with the shape 

content besides other content-based features. In VideoQ, the global shape features, i.e. 

eccentricity, first and second moments, and the area of the video object are employed for 
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efficient shape retrieval. In another retrieval system, NeTra-V, the shape features for each 

instant of the video objects are found by employing the Fourier descriptors of the 

curvature, centroid distance, and complex coordinate functions. These features are 

computed only for the subobjects in the Intra frames and the mean of these shape features 

is used for efficient video object retrieval. These systems show a degree of success at 

retrieving video objects with their shape, however they have some shortcomings as 

summarized below: 

• The current systems take frame-based compressed video as input, which needs to be 

decoded and segmented before accessing the shape information of the video objects in 

the video sequence. 

• In the existing systems, the shape of video objects is represented with one set of 

features, usually obtained by averaging the features that belong to each temporal 

instant of the video objects. While such a representation would work well for video 

objects that have constant shapes during their lifespan, it is insufficient if the shape of 

a video object changes significantly due to, for example, an object entering to or 

exiting from the scene, occlusion, or high motion. Therefore, new representation 

methods and shape distance measures are needed to more accurately match the video 

objects in consideration of the fact that their shape could vary significantly during 

their existence. 

In this chapter, we address the above problems by: 
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• Suggesting a method for computing several effective shape features that are derived 

from the MPEG-4 compressed domain shape information, 

• Proposing a technique and a similarity measure to compute the shape distances 

between video objects. 

The rest of this chapter is organized as follows. In the next section, we first discuss 

the compactness, eccentricity, Fourier, and Angular Radial Transform (ART) descriptors 

in detail. These shape descriptors are commonly used and are well proven to be effective 

for shape retrieval [21][22][85]. In Section 4.2, we propose methods to compute these 

descriptors directly in the MPEG-4 compressed domain. Moreover, we introduce two 

new MPEG-4 shape descriptors. The efficient quantization and compact representation of 

these features are also addressed. The effectiveness of these compressed domain features 

compared to their spatial domain implementations (obtained by fully decompressing the 

bit stream) is presented at the end of the section. In Section 4.3, we extend our proposed 

still shape retrieval methods to arbitrarily shaped video object retrieval through the use of 

key VOPs. Finally, we discuss the performance of our proposed methods in the last 

section. 

4.1 Shape Features 

In this section, we give an overview to the computation of some well known shape 

descriptors. 
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4.1.1 Global shape features 

Global shape features are widely employed by many shape retrieval systems, as they are 

easy to compute. Even though they do not accurately represent the shape of an object, 

they are very useful for efficiently eliminating the dissimilar shapes to the query shape in 

large databases. 

Compactness is a global shape feature that indicates how round the region of the 

I 2  

shape is, and it is defined by C = — , where / is the perimeter and A is the area of the 

A 

object's shape. 

The "eccentricity" feature defines the elongation of a shape. It has several 
definitions, but here we employ this feature as defined in [75], E = — , where (3 is the 

8 

length of the straight line segment joining the two contour points that are farthest from 

each other and S is the length of the line that is perpendicular to the major axis and of 

such length that a box could be formed that just encloses the boundary. 

4.1.2 Fourier descriptors 

Fourier descriptors are one of the most successful boundary representations as shown in 

the literature [39][71] and they are commonly used for shape retrieval [15][21]. They are 

generally computed using the ordered contour of the object's shape. In order to obtain 

the same number of Fourier descriptors for the query and database objects, the boundary 

of each object needs to be re-sampled to N samples. The re-sampled contour points are 

represented as complex numbers in an object-centered coordinate system as follows, 
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Zn ~(xn ~xm) + Kyn "^/n) ' (4.1) 

where xn and yn are the coordinates of the contour points, and xm and ym are the 

coordinates of the VOP mass center. Employing a mass-centered coordinate system 

provides translation invariance. The 1-D Fourier Transform of the contour is then 

computed as follows [70] [72], 

Ijnnk 

Z i 4 ^ z » e ~ 0<k<N, (4.2) 
™ n=0 

where N is the number of re-sampled contour points and z n represents the complex 

coordinates of the n t h contour point. The above equation results in N complex Fourier 

coefficients and the coefficients around 0 and N-1 provide a coarse representation of the 

shape where the coefficients around N/2 represent the finer details. Re-ordering of the 

coefficients is done so that the lower coefficient indices correspond to lower frequencies 

and the higher coefficient indices correspond to higher frequencies. 

The first coefficient Z o gives the mass center of the closed contour, which in our 

case is equal to zero since we already employ an object-centered coordinate system. Z\ 

gives the radius of the circle with an area equal to that of the shape. Here, we use Z j to 

scale the rest of the Fourier coefficients in order to provide scale invariance. The phase of 

the Fourier coefficient contains the rotation information of the contour. Using only the 

amplitude of the scaled Fourier coefficients and ignoring the phase information ensures 

the rotation invariance of the Fourier descriptors. As a result, the scaled amplitudes of the 
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M lowest frequency AC Fourier coefficients are employed to form a Fourier descriptor 

feature vector as follows, 

where F i . . . F M + i are the lowest frequency AC coefficients. 

4.1.3 ART descriptors 

ART descriptors are obtained from the Angular Radial Transform coefficients of the 

shape region. Employing ART based descriptors is an efficient way to represent shape, as 

they are easy to extract and match. Furthermore, since the ART descriptors describe the 

region of a shape, unlike their contour based counterparts such as Curvature Scale-Space 

and Fourier descriptors, they are capable of representing holes and unconnected regions. 

Consequently, an ART based representation was recently adopted by MPEG-7 [27]. The 

definition of the ART transform is given by [85] 

where Anm is an ART coefficient of order n and m, / (p, 6) is the binary shape map in 

polar coordinates, and Vnm(p,6) is the ART basis function, which is separable along the 

angular and radial directions as follows, 

F = [/I./2'/3'—/M] = 
N |*31 N \FM+l (4.3) 

^ i l ' N ' N ' " " W 

(4.4) 

{P,e)=Gm{0)Rn{p), (4.5) 

where Gm(0) and Rn(p) are the angular and radial basis functions respectively, and they 

are given by 
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n = 0 
(4.6) Gm(0) = — a n d * „ ( / > ) = - j ' . , 

The real parts of the 2-D ART basis functions are depicted in Figure 4.1 for eight 

angular and four radial functions. 

18833 • • »** • 
• I H ! 

8 m 
Figure 4.1: The real part of the basis functions of the ART transform for eight angular 

and four radial functions. 

The magnitudes of the ART coefficients are commonly employed as ART 

descriptors since they are rotation invariant as shown below. 

t2n rl. Anm = Jb t^nmMfMpdpde , and 

^nme eg Aa A 
"nm "nm 

(4.7) 

(4.8) 

(4.9) 

4.2 Shape Similarity Matching of Still Video Object Planes 

in the MPEG-4 Compressed Domain 

In this section, we propose techniques for computing the above shape features using the 

MPEG-4 compressed domain shape information. Recall that a video object is a collection 
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of video object planes. Therefore, before addressing the issues related to shape matching 

of video objects, we first look into extraction of shape features from the individual video 

object planes (VOPs). 

It is possible to obtain a rough approximation of the VOP shape by decoding only 

the MPEG-4 shape coding modes. Here, we construct the shape of the Intra coded VOPs 

(IVOPs) by defining the intra and opaque coded shape blocks as being inside the shape. 

On the other hand, the contour approximation is obtained by defining the intra and 

opaque coded blocks that have at least one transparent block (based on 4 connectivity) as 

boundary. Note that, since each 16x16 block of a binary shape map is represented with 

one shape coding mode (see Chapter 2), the resulting shape approximation is a 

downsampled version of the uncompressed shape map by a factor of 16 in both horizontal 

and vertical directions. Even though this approximation is not very precise, it is sufficient 

to compute some shape features with a reasonable accuracy. Moreover, it has the 

following advantages: 

1. Since only the shape coding modes are used for the approximation, full decoding of 

the bit stream and the reconstruction of the shape data is not necessary, saving 

memory and computation time. 

2. Additional computational savings are obtained as the shape features are computed for 

a downsampled version of the shape by a factor of 16 in both dimensions. 

3. Employing a rough approximation of the shape instead of the real shape data makes 

the shape features more robust to small segmentation errors. 
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4.2.1 Extraction of the global shape features 

In order to compute compactness, the perimeter and the area of an MPEG-4 object needs 

to be known. However, they cannot be obtained without decompressing the bit stream. 

We propose to compute the compactness of the shape of a VOP directly in the 

compressed domain using, 

c = V2 (4.10) 
O + 0.5*/' 

where rj is the number of approximated contour points, and O and I are the number of 

opaque and intra coded shape blocks in a VOP, respectively. 

We also compute the eccentricity feature on the approximated shape boundary 

extracted by the technique described in the previous section. The major and minor axes 

lengths are found by using this approximated boundary and their ratio is stored as the 

eccentricity of the shape. 

4.2.2 Fourier descriptor extraction 

Compressed domain Fourier descriptors are computed using the contour points obtained 

from the approximated boundary of the VOP. In order to compute the Fourier 

descriptors, first the extraction of the ordered contour points is needed. This is generally 

a trivial operation. However, because we employ a downsampled version of the real 

object contour in our approximation, there are potentially some contour points bordering 

with more than two other contour points. This would make the ordering of the contour 

points more challenging as there would be more than one possible contour path to follow. 
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In order to overcome this problem, we initially upsample the approximated VOP shape by 

4, extract the ordered object contour in the clock wise direction based on 8 connectivity, 

and then downsample the extracted contour points by 4 to their original size. 

Re-sampling to N points, in order to obtain the same number of Fourier descriptors 

for all the database objects, is done by first forming a boundary by linear interpolation 

using the ordered contour points, then re-sampling the boundary into N = 26 = 64 equally 

distanced points so that the Fourier transform can be performed efficiently using the Fast 

Fourier Transform. After computing the Fourier descriptors as described in Section 4.1.2, 

the first M Fourier descriptors are employed for shape retrieval. The value of M 

determines how accurately the shape is represented. Selecting a small M value results in a 

smaller size feature vector but reduces the retrieval accuracy. On the other hand, selecting 

a large value for M increases the storage requirements and also potentially increases the 

retrieval accuracy. However, it can also possibly make the feature vector more sensitive 

to segmentation errors and errors caused by our shape approximation. These tradeoffs 

are presented in detail in Section 4.2.6.2. 

4.2.3 ART descriptor extraction 

Here, we propose to compute ART descriptors using the approximated shape map 

obtained from the MPEG-4 bit stream by defining the intra and opaque coded shape 

blocks as being inside the shape. We find the discrete ART coefficients of the shape map 

as follows. First, the size of the binary shape data is normalized by linear interpolation to 

a predefined width, W, and height, H, to obtain the size invariant shape map I(x,y). The 
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mass center of the binary shape map is aligned with the center of I(x,y), i.e. I(W/2, H/2). 

Then, the discrete ART coefficients of the shape map of the video object plane k (VOPk) 

are computed by 

W/2 H/2 f 
Anm(VOPk)= £ X Vnm 

x=-W /2y=-H 12 
arctan —, -Jx2 + y' Z 

x 
[VOPk 

w H 
x + — ,y + — 

v 2 2j 
, (4.11) 

where Vnm(p,0) is the ART basis function as given in Equation (4.5) and IyoPk (•*' )0 ^S 

the shape map of VOPk-

The mass center of a VOP in the compressed domain is computed as follows, 

1 
0 + 0.5*/ 

X O 
Y0. 

+ -2Z L*7 
(4.12) 

where O and I are the number of opaque and intra shape coded blocks, X0, Y0 and Xi, Y/ 

are the x and y coordinates of opaque and intra coded blocks, respectively. Because of 

the alignment of the object center with the center of I(x,y), the ART coefficients are 

translation invariant. Interpolation of the shape to a predefined width and height prior to 

the transform makes the resulting coefficients scale invariant as well. Rotation invariance 

is ensured by employing the magnitude of the coefficients as shown in Section 4.1.3. 

In the MPEG-7 experimentation Model (XM) document [85], the suggested 

numbers of angular and radial functions for the ART descriptors are 12 and 3, 

respectively. These numbers are optimized mostly for shape data in the spatial domain, 

which typically has higher resolution than our shape approximation maps. Selecting small 

numbers for these parameters reduces the computational requirements significantly. This 

problem is addressed in more detail in Section 4.2.6.3. 
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4.2.4 Other compressed domain descriptors 

One of the main advantages of compressed domain processing is that it is possible to 

make use of some information about the data that were already extracted during the 

encoding process and made available in the bit stream. Motivated by that, we propose 

two new shape features that are directly based on the MPEG-4 representation of the 

shape information. The first feature, pruned intra density, IDP, gives a measure of the 

of intra coded shape blocks that need to be pruned from the VOP shape to obtain a 

closed contour, and w and h are the width and height of the VOP bounding box, 

respectively. This feature takes a large value if the shape boundary has a lot of 

irregularities and branches. 

The second compressed domain feature, inside intra density, ZD/, is defined as 

IDi - / ' —, where 7, is the number of intra coded shape blocks that do not have 

any transparent coded neighboring blocks based on four-point connectivity, and w and h 

are the width and height of the VOP bounding box, respectively. A large value of IDi is 

an indication of the presence of holes in the VOP shape. 

4.2.5 Feature normalization 

Normalization of the features to a predefined range is necessary when employing more 

than one feature since the dynamic range of the computed feature values could change 

shape boundary complexity and is defined by IDP = where Ip is the number 
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from one shape feature to the other drastically. A straightforward way of normalization is 

to scale the feature values with the dynamic range of the values of that particular feature. 

However, in that case, if there are some feature values that are significantly different than 

the rest of the values, then a very small range would likely to be allocated to represent 

most of the data. For example, if the obtained feature values are {0, 1, 2, 4.5, 5, 500}, 

when each value is scaled with the dynamic range of these values, i.e. 500, a very small 

range of values would represent most of the data. In order to overcome this problem, we 

consider the statistical distributions of the feature values and perform normalization 

accordingly. 

Figure 4.2 shows the discrete probability distribution of the compactness and 

eccentricity values. Figure 4.3 illustrates the probability distribution of the pruned intra 

density and inside intra density features. The probability distributions of the Fourier and 

ART descriptors are presented in Figure 4.4 and Figure 4.5, respectively. The 

compactness and eccentricity feature values show the characteristics of Gaussian 

distribution whereas the rest of the feature values are better modeled with an exponential 

distribution. 

For a Gaussian source with mean p and standard deviation a, the normalization is 

1 x — ii ' 
achieved by x = —. The value of m affects the probability of x being in the range of 

ma 

[-1 1]. In particular, for m=l this probability is 68%, for m=2 it is 95%, and for m=3 it is 

99%. We employ m=3 for to normalize compactness and eccentricity features. 
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The probability distributions of rest of the features can be represented by exponential 

distribution function, ae_<xx, where a is a constant and the mean and standard deviation 

are equal to 1/oc. In this case, the probability of the feature value being in the range of 

0<X<2G is 

o=\la 21a 
P(0<x<=2a) = \ a e a * dx = -e'0**1 \ =-e a + ls0.86, (4.13) 

0 0 

21a -ar-

and the normalization to the [-11] range is performed by x - x-cr 

The mean and standard deviation values needed for normalization of our shape 

features are given in Table 4-1. As can be seen from the figures and the table, the 

distribution, mean, and standard deviation of the compressed domain features are very 

similar to those of the uncompressed domain features. 
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Distribution of Global Feature Values: 
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Figure 4.2: Discrete probability distributions for the (a) uncompressed and (b) 

compressed domain global shape features. 
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Distribution of Global Feature Values: 
Compressed domain 

•Inside intra density 

•Pruned intra density 
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Feature value 

Figure 4.3: Discrete probability distribution for the compressed domain specific shape 

features. 

Probability distribution for Fourier 
descriptors: Uncompressed domain 

0.2 0.4 
Feature value 

0.6 

(a) 

Probability distribution for Fourier 
descriptors: Compressed domain 

0.2 0.4 
Feature value 

0.6 

(b) 

Figure 4.4: Discrete probability distribution for the Fourier descriptors in the 

(a) uncompressed and (b) compressed domains. 
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Figure 4.5: Discrete probability distribution for the ART descriptors in the 

(a) uncompressed and (b) compressed domains. 

Shape feature Domain Mean Standard deviation 

Compactness uncompressed 3.965 1.943 

Eccentricity uncompressed 2.281 2.095 

Fourier descriptors uncompressed 0.040 0.086 

ART descriptors uncompressed 0.095 0.121 

Compactness compressed 11.96 6.406 

Eccentricity compressed 1.996 1.69 

Inside intra density compressed 0.394 0.346 

Pruned intra density compressed 0.244 0.424 

Fourier descriptors compressed 0.035 0.077 

ART descriptors compressed 0.095 0.1 

Table 4-1: Mean and standard deviation values of the all shape features. 
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4.2.6 Retrieval of the video object planes 

In this section, we provide some experimental results that show the performance of our 

proposed shape descriptors in the case of individual video object plane retrieval. The 

computation times presented here are obtained by using a Pentium 233 MHz. computer 

with 128 MBs of memory. Our database is formed by encoding 20 video objects with two 

or three different spatial resolutions. The contents of these video objects are shown in 

Appendix B. The resulting database contains more than 50 MPEG-4 video object bit 

streams with more than 2000 Intra coded video object planes. The results presented here, 

unless otherwise specified, are obtained by averaging the retrieval results for the four 

VOP queries shown in Figure 4.6. As can be seen from Figure 4.6, these query VOPs 

cover a good variation of shapes. For each given query, the ground truth VOPs (i.e. the 

most similar VOPs) are marked manually. Then the results of our retrieval algorithm are 

compared to these ground truth VOPs. 

We employ the Normalized Modified Retrieval Rank (NMRR) measure to evaluate 

the performance of the compressed domain Fourier and ART descriptors. The NMRR 

measures how many of the correct items are retrieved as well as how highly they are 

ranked among the retrieved items for a given query. ANMRR is the average NMRR over 

a set of queries. The NMRR and ANMRR values are in the range of [0, 1]. Lower values 

represent a better retrieval rate. The specific formulas of these measures can be found in 

Appendix A. 
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Bream VOP 0 Singing girl VOP 72 Coastguard VOP 224 Hall monitor VOP 110 

Figure 4.6: The query video object planes. 

4.2.6.1 Retrieval with the global shape features 

We first employ the global shape features to eliminate the most irrelevant shapes and 

refine the query results by employing the Fourier and/or the ART descriptors. Recall that 

we propose to use two global shape features, compactness and eccentricity. In this case, 

our global feature vector is R = [fc fe], wherefc and/e are the normalized feature values 

of compactness and eccentricity, respectively. Alternatively, we can also employ the 

feature vector R - [/,• fp ], where and fp are the normalized inside intra density and 

pruned intra density feature values, respectively. The distance between the query feature 

vector, Rq, and the database feature vector, Rd , is computed by employing the L 2 norm 

d = Rq -Rd (i.e. Euclidean distance). If the distance between the query feature vector, 

Rq, and the database feature vector, Rd , is larger than a threshold, T g , then the database 

VOP is concluded to be irrelevant. If the distance is smaller than T g , then more accurate 

and more computationally complex features are employed for further refinement. 
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Figure 4.7 shows the distribution of the relevant and irrelevant database items versus 

the query distance for various global feature vectors. The number of relevant and 

irrelevant database items is found by performing queries with the four VOPs shown in 

Figure 4.6. The effectiveness of a global feature vector is determined by its ability to 

ehminate a large number of irrelevant database items without eliminating the relevant 

database items. The threshold T g is selected such that it is small enough to save a 

significant amount of computations by marking most of the database items as irrelevant 

and at the same time it is large enough to prevent erroneous elimination of the relevant 

database items. The percentage of the eliminated irrelevant database items versus 

erroneously eliminated relevant items for different T g values is presented in Table 4-2. 

Although it depends on the computation/accuracy requirements of the application, here 

we select T g such that the probability of erroneously excluding a relevant item is less than 

5%. Therefore, in average, we eliminate 88%, 64%, and 52% of the database items by 

employing [fc fe ] in the uncompressed domain and the compressed domain, and 

Ui fp] i n t n e compressed domain, respectively. Computational time required to process 

one VOP employing eccentricity and compactness features in uncompressed domain is 67 

msec. Using our compressed domain compactness and eccentricity descriptors, the 

computational time is greatly reduced to 0.4 msec, and when inside intra density and 

pruned intra density features are employed, computation time is reduced to 0.3 msec. 
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Figure 4.7: The distance histograms obtained by employing (a) compactness and 

eccentricity feature vector (R = [fc fe ]) in the uncompressed domain, (b) the same 

feature vector in the compressed domain, and (c) inside intra density and pruned intra 

density feature vector (R = [ft fp ]) in the compressed domain. 
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Feature vector T g 
% of eliminated 
database items 

% of erroneously 
eliminated relevant items 

R = [fc fe]inthe 

uncompressed domain 

0.1 96 18 

0.2 88 3 

>0.3 82 0 

R = [fcfe]mtht 

compressed domain 

0.1 92 26 

0.2 78 16 

0.3 70 6 

0.4 64 1 

0.5 58 0.5 

>0.6 51 0 

R=[fifp] mthe 
compressed domain 

0.1 99 85 

0.2 98 68 

0.3 94 42 

0.4 87 28 

0.5 80 21 

0.6 72 17 

0.7 63 8 

0.8 52 5 

0.9 42 4 

1 32 4 

Table 4-2: The percentage of the eliminated irrelevant database items and the erroneously 

eliminated relevant items for different TE values for a number of feature vectors. 
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4.2.6.2 Retrieval with the Fourier descriptors 

Recall that we re-sample the video object boundary into 64 equally distanced points prior 

to Fourier Transformation and employ the scaled and re-ordered magnitudes of the first 

M Fourier coefficients as our Fourier descriptors. Selecting a large M would result in 

representing the finer details of the shape information, therefore better shape retrieval. 

Nevertheless, a larger number of Fourier descriptors require more storage bits. 

Moreover, representing the finer shape details accurately may make the retrieval 

algorithm more sensitive to the compressed domain shape approximation errors. 

Retrieval Performance of FD in the 
Uncompressed Domain 

0.4 

0.3 -

0.2 -

0.1 

0 n 1 1 

12 16 20 24 28 32 

number of descriptors 

Retrieval Performance of FD in the 
Compressed Domain 

0.4 

S 0.2 
< 0.1 

0 
4 8 12 16 20 24 28 32 

number of descriptors 

(a) (b) 

Figure 4.8: The retrieval performance using various numbers of the Fourier descriptors in 

the (a) uncompressed and (b) compressed domains. 

The change in ANMRR with the number of Fourier descriptors employed for 

retrieval is presented in Figure 4.8.a and Figure 4.8.b for both the uncompressed and 

compressed domains, respectively. Recall that the lower values of ANMRR represent a 

better retrieval rate. As can be seen from the figures, selecting 8 Fourier descriptors, 
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where NMRR=0.034 in the uncompressed domain and NMRR=0.17 in the compressed 

domain, offers a good tradeoff between the descriptor size and the retrieval performance. 

Next, we present some example query results employing the first 8 Fourier 

descriptors. Our first query is the 72th VOP of the Singing Girl video object. There are 

twelve ground truth VOPs that are marked as similar to the query item in a database of 

more than 2000 VOPs. The first 12 retrieved VOPs are presented in Figure 4.9 and 

Figure 4.10, for employing the uncompressed and compressed domain Fourier 

descriptors, respectively. The NMRR measures are 0.12 for the uncompressed and 0.29 

for the compressed domain features. As can be seen from the figure, even the VOPs that 

are considered as mismatch, e.g., the VOP from the Hall Monitor video object (ranked 

12th in Figure 4.9), the VOP from the Stephan video object (ranked 10th in Figure 4.10), 

have in fact very similar shapes to the query. Also, the query VOP from the Stephan 

video object that is ranked 11th in Figure 4.10 is similar to the query, when rotated by 

180° (i.e. upside down). This also demonstrates the rotation invariance of this shape 

feature. Another example that demonstrates the rotation invariancy is given in Figure 4.11 

where the retrieval results for the 224th VOP of the Coastguard video object is presented. 

Even though they are marked as mismatch, the VOPs that are ranked 63rd and 89th are 

very similar in shape to the query VOP when they are rotated by 90°. 
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7 8 9 10 11 12 

Figure 4.9: The shape retrieval results for the VOP query, the 72th VOP of the Singing 

Girl video object, employing the Fourier descriptors in the uncompressed domains. 
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Figure 4.11: The shape retrieval results for the V O P query, the 224 m V O P of the 

Coastguard video object, employing the Fourier descriptors in the compressed domain. 

As can be observed from the retrieval performance results presented in Figure 4.8, 

Figure 4.9, and Figure 4.10, retrieval with the descriptors computed in the uncompressed 

domain has better accuracy. Our experiments show that the compressed domain 

descriptors may fail to correctly classify shapes if the resolution of the video object is 

very small. This problem could be solved by computing the uncompressed domain 

descriptors if the video object is smaller than a certain size. The main advantage of using 

the compressed domain descriptor is the substantial reduction in number of computations. 

The computation time required computing and matching one V O P shape in the 

compressed domain is approximately 13 msec, which is more than an order of magnitude 

77 



smaller than the 392 msec, required for performing the same operation in the 

uncompressed domain. 

4.2.6.3 Retrieval with the ART descriptors 

The number of angular and radial functions of the ART descriptor determines how 

accurately the shape is represented. Using a smaller number results in less accurate 

description but also in a more compact descriptor and faster feature extraction and shape 

matching. The retrieval performance achieved by using different numbers of angular and 

radial functions is presented in Figure 4.12 for the uncompressed and compressed domain 

ART descriptors. As can be observed from the figure, for the uncompressed domain 

implementation, employing 8 angular and 2 radial functions (ANMRR=0.067), 4 angular 

and 3 radial functions (ANMRR=0.099), and 6 angular and 3 radial functions 

(ANMRR=0.057) offer the best tradeoff for the descriptor size and the retrieval 

performance. Here, we favor the retrieval accuracy and use 6 angular and 3 radial 

functions for the ART descriptors. In the compressed domain, as shown in Figure 4.12.b, 

clearly employing 6 angular and 2 radial functions (ANMRR=0.109), and 6 angular and 3 

radial functions (ANMRR=0.069) offer the best tradeoffs. Here, we adopt 6 angular and 

3 radial functions for the retrieval in the compressed domain as well. 
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Figure 4.12: The change in retrieval rate based on the number of angular and radial 

functions of the ART descriptors in the (a) uncompressed and (b) compressed domains. 

Next, we present the shape retrieval results obtained by querying the 110th VOP of 

the Hall Monitor video object. There are 8 ground truth VOPs marked as similar to the 

query VOP item in more than 2000 VOPs. Figure 4.13 and Figure 4.14 show the first 8 

retrieved VOPs using the ART descriptors (with 6 angular and 3 radial functions) in the 

uncompressed and compressed domains, respectively. The NMRR value for the 

uncompressed domain implementation is 0.078 and that of the compressed domain 

implementation is 0.033. Extracting and matching the compressed domain descriptors 

require 39 msec, per VOP versus the 210 msec, required by uncompressed domain 

descriptors. The compressed domain features offer excellent computational savings with 

only a small decrease in the retrieval accuracy. 

79 



Query VOP 

rank: 1 

i 11" 
t 

3 

«1 
7;\ 

8 

Figure 4.13: The shape retrieval results for the VOP query, the 110th VOP of the Hall 

Monitor video object, employing the ART descriptors in the uncompressed domain. 
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Figure 4.14: The shape retrieval results for the VOP query, the 110th VOP of the Hall 

Monitor video object, employing the ART descriptors in the compressed domain. 

80 



4.2.7 Efficient quantization and representation of the descriptor values 

The shape features that are described in the previous section can be extracted from the bit 

stream at the time of the query or they can be computed prior to the query and attached 

to the MPEG-4 bit stream as user data. Computing the features offline and storing them 

for future queries is a commonly used method in database applications. It was shown in 

the literature that for coding of an average resolution video object, the number of bits 

required to represent a video object plane in MPEG-4 is approximately 10 Kbits [41]. 

Representing the Fourier and ART descriptors (which are float numbers) with 4 bytes 

each, and storing 8 Fourier and 18 ART descriptors in the bit stream would require 832 

bits of side information. This corresponds to almost 10% of the coded video information. 

If these descriptors are quantized and only the quantization values are stored in the 

memory, or the bit stream, then great savings in memory would be possible. For example, 

if the descriptors are quantized into 16 levels, then the Fourier and ART descriptors can 

be stored into 4 (instead of 32) and 9 (instead of 72) bytes respectively, requiring only 

104 bits of side information. 

One solution here is to employ uniform quantization, without considering the 

probability distribution of these values. The ART and Fourier descriptor values show an 

exponential distribution with a steep curve as presented in Figure 4.4 and more than half 

of the descriptor values he within 10% of the dynamic range. Therefore, if uniform 

quantization is employed, only a small range of the bits will be actually used to represent 

a large range of descriptor values. This would result in a degradation in the retrieval 
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performance. A better solution is to employ non-uniform quantization based on the 

probability distributions of Fourier and ART descriptor values. 

In order to design a non-uniform quantizer for the Fourier and ART descriptors, we 

first need to find the continuous probability density functions (pdf) associated with the 

each descriptor. The pdf of these descriptors can be modeled in the form of exponential 

distribution, i.e. ae'0*, where E(X)=l/a and o2(X)= 1/oc2. We find the values for the 

parameters aF, which defines the pdf of the Fourier descriptors and aA, which defines 

the pdf of the ART descriptors, by using non linear regression function of MATLAB, 

which is based on minimizing the sum of squares of the residuals and employing the 

Gauss-Newton algorithm with the Levenberg-Marquardt modifications for global 

convergence [86]. The resulting values for aF and aA are 23 and 10, respectively. The 

corresponding pdf functions are presented in Figure 4.15. 

0.2 0.4 0.6 0.8 

Fourier descriptor value 

0.2 0.4 0.6 0. 

ART descriptor value 

(a) (b) 

Figure 4.15: The pdfs of the (a) Fourier and (b) ART descriptor values. 
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The most efficient quantizer is the one that assigns equal probability to each of the 

quantization bins. Given that the Fourier and ART descriptor probability density 

functions are modeled by a e _ a t and the number of desired quantization levels is L, the 

optimum quantization ranges can be found by 

ai+} i C4 14^ 
\ae~acdx = - 0<i<L, q0=0, K ' ' 

ii 

where qi and q i +i are the lower and upper boundaries of the quantization ranges, 

respectively. The optimum reconstruction levels of the quantizer should be selected such 

that P(qi<x<=XR) = P(XR <x<=qi+i), i.e. the probability of a descriptor value being 

between the lower quantization bound and the reconstruction level (XR) is equal to it is 

being between the reconstruction level and the upper quantization bound. Given this 

constraint, the reconstruction levels, XR, for each quantization range are found by 

XR ai+l M I O 
J ae~axdx= J ae'^dx => ( 4 - i 3 ) 

Ii XR 

_e-axXR +e-axqi =_e-axqi+\ +e~axXR = > 4 ^ 

_ In 2 - \n(e~axqi + e'00"1™ ) (4 17) 
XR . 

a 

The number of quantization bins, L, is optimized based on the tradeoff of retrieval 

performance and descriptor size. L should be selected such that the number of bits to 

represent each level should be nmiimal without causing much degradation in the retrieval 

rate. The change in the retrieval rate for different quantization step sizes employing the 

83 



Fourier descriptors is illustrated in Figure 4.16.a. Here, using 4 bits to represent one 

descriptor corresponding to L=16 offers a compact representation of the descriptor with 

rranirnal quality degradation. The retrieval rate and the quantization step size tradeoff for 

the ART descriptors is presented in Figure 4.16.b. As can be seen from the figure, 

selecting the number of descriptor bits to be 3 (i.e. L=8) or 5 (i.e. L=32) appears to offer 

a good tradeoff between the storage requirements and the retrieval rate. Alternatively, we 

can use 4 bits per descriptor, where it would be possible to save two descriptors in a byte 

and the storage of and access to the data would be potentially easier. The quantization 

ranges and the reconstruction levels of the Fourier and ART descriptors for L=16 are 

presented in Table 4-3. 

Retrieval rate vs. memory Retrieval rate vs. memory 
requirements for the Fourier requirements for the ART descriptors 

2 3 4 5 6 2 4 6 . 8 
number of bits per descriptor number of bits per descriptor 

( a ) ( b ) 

Figure 4.16: The change in the retrieval rate when different bit rates are employed to 

represent the (a) Fourier (b) ART descriptors. 
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Fourier Descriptors ART Descriptors 

quantizer 
lower bound 

quantizer 
upper bound 

reconstruction 
level 

quantizer 
lower bound 

quantizer 
upper bound 

reconstruction 
level 

0 0.0028 0.0014 0 0.0065 0.0032 

0.0028 0.0058 0.0043 0.0065 0.0134 0.0098 

0.0058 0.009 0.0074 0.0134 0.0208 0.017 

0.009 0.0125 0.0107 0.0208 0.0288 0.0247 

0.0125 0.0163 0.0144 0.0288 0.0375 0.033 

0.0163 0.0204 0.0183 0.0375 0.047 0.0421 

0.0204 0.025 0.0227 0.047 0.0575 0.0521 

0.025 0.0301 0.0275 0.0575 0.0693 0.0633 

0.0301 0.0359 0.0329 0.0693 0.0827 0.0758 

0.0359 0.0426 0.0392 0.0827 0.0981 0.0901 

0.0426 0.0506 0.0464 0.0981 0.1163 0.1068 

0.0506 0.0603 0.0552 0.1163 0.1386 0.1269 

0.0603 0.0728 0.0661 0.1386 0.1674 0.152 

0.0728 0.0904 0.0807 0.1674 0.2079 0.1856 

0.0904 0.1205 0.1029 0.2079 0.2773 0.2367 

0.1205 inf 0.1507 0.2773 inf 0.3466 

Table 4-3: The quantization ranges and the reconstruction levels of the Fourier and ART 

descriptors for L=16. 
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4.3 Video Object Retrieval by Shape Features 

Similar to a video sequence being a collection of two dimensional still images (frames), an 

arbitrarily shaped video object is a collection of two dimensional video object planes. 

Therefore, still shape matching techniques can be used to retrieve video objects. Here, we 

propose to find the shape similarity of two VOs via comparing the shape feature vectors 

of their VOPs using a new similarity measure. The proposed distance measure requires 

that for every VOP of VOA, we find the smallest distance to any key VOP in VOB. Then 

the summation of these distances is divided by the number of key VOPs in VOA to obtain 

the distance between two video objects. This distance measure is asymmetric, i.e. the 

distance from VOA to VOB is not equal to the distance between VOA to VOB. Therefore, 

we define the final distance as the maximum of two distances as follows, 

d(VOA,VOB) = max-|-]r min {dvop{VOPbi,VOPa)\ 
N . VOPaeVOA ( 4 l g ) V 

M 
77Z nun {dvop(VOPak,VOPb)} 
M k VOPbeVOb

 y k 

where M and N are the number VOPs of video object A (VOA) and video object B (VOB), 

respectively. dvop{VOPa,VOPb) is the shape distance between VOPa and VOPb, and 

computed as dvop (VOPa, VOPb) = Ra-Rb , where Ra and Rb are the shape feature 

vectors of the VOPa and VOPb, respectively. 
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4.3.1 Reducing the video object content redundancies 

Considering that there may be hundreds of VOPs even in several seconds long video 

objects, the computation of the distance between two video object shapes could be very 

computationally intensive. Here, we propose to compute the above distance measure on a 

subset of VOPs. A straightforward way to obtain such a subset would be temporally 

sampling the IVOPs in a video object. However, using this method, some important 

changes of the video object shape content could be missed. A much efficient way of 

obtaining a subset of VOPs would be employing one of the key VOP extraction 

algorithms described in Chapter 3 as they select the VOPs that represent the salient shape 

content of the video object. 

The number of key VOPs obtained by these algorithms depends on how much 

change there is in the shape of a video object during its existence [87]. However, in some 

cases it might be desired to have an upper limit to the number of VOPs to be compared in 

order to limit the number of computations. We can achieve this by employing the K-

means clustering algorithm [75] and using the already computed shape feature vectors for 

classifying the key VOPs as presented in Figure 4.17. The computational overhead 

introduced by summarization of the video content could be omitted considering that it 

needs to be performed only once when adding a video object to the database. 
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5 

Figure 4.17: Further summarization of the Bream video object into 3 VOPs with K-means 

clustering. 

4.3.2 Retrieval results 

In this section, we demonstrate the effectiveness of our proposed video object shape 

matching method. We perform our experiments on a database of more than 50 video 

object bit streams. We compare only the key VOPs of the query and database video 

objects. These key VOPs are found by using the Hausdorff distance based algorithm that 

is proposed in Chapter 3. Then these key VOPs are clustered such that not more than 5 

VOPs represent a video object. The ANMRR values presented here are found by 

averaging the NMRR values obtained by querying 8 video objects, mcluding the ones 

shown in Figure 4.18. 

Children 1 VO Hall monitor 1 VO News 1 VO Coastguard 2 VO 

Figure 4.18: Example of query video objects. 
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The proposed Fourier and ART descriptors can be used individually or together for 

efficient retrieval. Table 4-4 presents the retrieval performance for each case. As can be 

expected, combining the Fourier and ART descriptors generally provides better retrieval 

performance than employing them individually. Also in Table 4-4, we compare the results 

obtained using our proposed VO shape distance measure (see Section 4.2.1) with the 

distance measure commonly used in the current systems, i.e. averaging of the feature 

vectors. As can be seen from the table, our proposed method consistently results in better 

retrieval performance. 

VO shape 

distance measure 

Domain Fourier descriptors 

ANMRR 

ART descriptors 

ANMRR 

Combined 
descriptors 

Proposed Key 
VOP comparison 

Compressed 0.194 0.139 0.134 Proposed Key 
VOP comparison 

Uncompressed 0.123 0.130 0.103 

Averaging Compressed 0.213 0.266 0.190 Averaging 

Uncompressed 0.172 0.181 0.168 

Table 4-4: The retrieval performance results for Fourier, ART, and a combination of the 

descriptors. 

Figure 4.19 and Figure 4.20 present some example query results using the Fourier 

and ART descriptors together in both uncompressed and compressed domains. Note that 

each of the query and database video objects contains approximately 300 VOPs and only 

the representative VOPs are shown in the figures. Also note that the key VOP selection is 

performed separately on the each different resolution of the video object that is present in 

the database, resulting in a different set of key VOPs for the each resolution of the video 
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object. Extracting and matching the Fourier and ART descriptors require 52 msec, in the 

compressed domain and 602 msec, in the uncompressed domain for each VOP. 

Considering that these features only need to be computed and matched for the key VOPs 

and there are a maximum of 5 key VOPs per video object, it would take approximately 

260 msec, to process one video object in the compressed domain and approximately 3 

seconds to process it in the uncompressed domain. The compressed domain processing 

clearly provides a very good computational advantage. 

Figure 4.19: The shape retrieval results for the News 1 video object query in the 

(a) uncompressed (b) compressed domains. 
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Figure 4.20: The shape retrieval results for the Children 1 video object query in the 

(a) uncompressed (b) compressed domains. 

4.4 Conclusions 

Matching of video objects based on their shape information is a very important 

component of any video object retrieval system. In this chapter, we proposed a method to 

compute some effective shape features in the compressed domain. Besides addressing the 
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issues related to the retrieval and computational performance tradeoffs, we also 

addressed the efficient quantization and the compact representation of the proposed 

shape features. Moreover, we proposed a technique to extend the use of our still shape 

retrieval methods to arbitrarily shaped video object retrieval through the use of key 

VOPs. Our experiments show that compressed domain ART descriptors offer better 

retrieval rates than those of the Fourier descriptors. The ART descriptors can be used 

individually or together with Fourier descriptors for efficient shape retrieval based on the 

computation, storage, and accuracy requirements of the target applications. In either 

case, these compressed domain features offer excellent computational savings, i.e. 

approximately 99% in the case of Fourier and 90% in the case of ART descriptors, with 

only a small degradation in the retrieval performance compared to their uncompressed 

domain counterparts. 
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Chapter 5 

Local Motion Descriptors 

"[The body is] a marvelous machine... a chemical laboratory, a power­

house. Every movement, voluntary or involuntary, full of secrets and 

marvels!" 

TheodorHerzl (1860-1904) 

Unlike still images, video has a temporal dimension that we associate with some motion 

information. We use this information as one of the key components to describe video 

sequences, for example "in this video my daughter was waving" or "part of this video 

contains my son playing basketball". Consequently, motion features play an important 

role in content-based video retrieval. We can classify the types of motion features into 

three groups as follows: 

• Global motion of video or camera motion (e.g. camera zoom, pan, tilt). 

• Global motion of the video objects within a frame (e.g. an object is moving from left 

to the right in the scene). 
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• Local motion of the video object (e.g., a person is raising his/her arms). 

The camera operation analysis is generally performed by analyzing the directions of 

the motion vectors that are present in the compressed video bit stream [88] [89] or the 

motion vectors obtained by optical flow techniques in the spatial domain [90]. For 

example, panning camera motion is likely to be present if most of the motion vectors 

inside a frame are in the same direction. Similarly, zooming camera motion can be 

identified by detecting if the motion vectors at the top/left of the frame have opposite 

directions than the motion vectors at the bottom/right of the frame [91] [93]. 

Global motion of video objects is typically represented with their motion trajectories, 

which are formed by tracking the location of video objects (generally the object's mass 

center or some selected points on the object) over a sequence of frames. Forming motion 

trajectories generally requires segmentation of video objects in a video scene. In MPEG-

4, the location information of the video object bounding box (the upper-left corner) is 

already available in the bit stream making the formation of the trajectory a simple task 

[94]. The classification and matching of object motion trajectories is a challenging issue 

as the trajectories contain both the path and the velocity information of the objects. In 

[95], Little et al. proposed to extract separate curves for the object path and speed, and 

match these two components separately. Furthermore, Rangarajan et al. demonstrated 

two-dimensional motion trajectory matching through scale-space [96] and Chang et al. 

proposed to match the motion trajectories via a wavelet decomposition [97]. 
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Most available content-based video retrieval systems in the literature employ camera 

motion features and/or global object motion for retrieval by motion. For example, the 

Jacob [19] system supports queries using common camera motion changes, such as pan, 

zoom, and tilt. Another retrieval system, VideoQ, employs a spatio-temporal 

segmentation algorithm in order to retrieve individual objects with their global motion 

inside a scene [22]. It allows the user to specify an arbitrary polygonal trajectory for the 

query object and retrieves the video sequences that contain video objects with similar 

trajectories. Similar to VideoQ, NeTra-V supports spatio-temporal queries and utilizes 

motion histograms for global camera and video object motion retrieval [21]. Moreover, 

the content-based description standard MPEG-7 [27]-[33] supports motion descriptors, 

in particular camera motion, which characterizes the 3-D camera operations, motion 

trajectory, which captures 2-D transitional motion of objects, parametric motion, which 

describes the global deformations, and motion activity, which specifies the intensity of 

action. 

On the other hand, processing database queries such as "find soccer video sequences 

where the player is scoring" and "find a video sequence where people are salsa dancing" 

would be possible only by enabling the retrieval of video objects with their local motion. 

The current research in detecting the local motion of video objects has been restricted 

mostly to specific domains. Stalidis et al. employed a wavelet-based model using 

boundary points of MRI images to describe the cardiac motion in [101]. Miyamori et al. 

proposed to classify of the actions of tennis players by using 2-D appearance-based 
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matching [102]. Hoey et al. suggested a method for classification of motion, which is 

based on representation of flow fields with Zernike polynomials in [103]. Their method is 

applied to the classification of facial expressions. In [104], Fujiyoshi et al. presented a 

process to analyze human motion by first obtaining the skeleton of the objects and then 

determined the body posture and motion of skeleton segments to determine human 

activities. Human motion classification was also studied by other researchers, including 

Little et al. in [105], where they proposed to recognize individuals by periodic variation 

in the shape of their motion, and by Heisele et al in [106], where they suggested 

discriminating pedestrians by characterizing the motion of the legs. Moreover, Cutler et 

al. propose to characterize the local motion by detecting periodicity of the motion by 

Fourier analysis on the gray scale video [107]. Most of the work in this area focuses on 

"recognizing" the motion of specific objects and they assume prior knowledge about the 

video content. 

In this chapter, we propose three generic (content independent) descriptors that 

describe the local motion of video objects for video retrieval. Motivated by the fact that 

any significant motion of video objects within their bounding box would very likely result 

in changes in their shape, our motion descriptors are based on the shape deformations of 

video objects. Recall that the Fourier and Angular Radial Transform (ART) coefficients 

efficiently describe shape information as presented in Chapter 4. Here, we first propose to 

employ the variances of Fourier and ART coefficients to identify the changes in the shape 

of video objects. Our Fourier coefficient variance based descriptor captures the 
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deformations at the object's boundary whereas the ART coefficient variance based 

descriptor captures the changes in the object's region. An important point to note here is 

that the location information is distributed among the transform coefficients after 

performing either the Fourier or ART transforms. Therefore, the exact location of the 

object motion would not be captured in these descriptors. To address this issue, we 

propose a third descriptor, the Angular Circular Local Motion (ACLM) descriptor, which 

is extracted by dividing the video object area into a number of angular and circular 

segments and computing the variance of each segment over a period of time. All the 

proposed descriptors here can be derived directly from the MPEG-4 compressed domain 

or computed using the binary shape masks of the video objects in the spatial domain. 

The rest of this chapter is as follows. In the next three sections, we describe the 

three proposed local motion descriptors, as well as their extraction and matching in the 

uncompressed and compressed domains. Section 5.4 presents the experimental results 

that illustrate the retrieval performance of our methods and the tradeoffs associated with 

extracting the proposed features in different domains. A comparison of the proposed 

descriptors and conclusions are given in Section 5.5. 

5.1 Fourier Transform Based Local Motion Descriptor 

Fourier coefficients efficiently represent the boundary of arbitrary shaped objects as we 

presented in Chapter 4. As the shape of a video object changes with time, the magnitude 

of these coefficients would also vary. Considering that the amount of variation in different 
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Fourier coefficients corresponding to different frequencies would be a good classifier of 

different types of motion, we propose a motion descriptor based on the variances of the 

Fourier coefficients. The computation of our proposed descriptor is as follows. We first 

compute the complex Fourier coefficients of individual VOPs as described in Chapter 4 in 

either the compressed or uncompressed domains. Next, a Fourier vector, 

F = [FiF2F3F4 ...FM], is formed for each VOP, where Fm is the m* Fourier 

coefficient. Then the proposed local motion descriptor is computed by 

where K is the number of VOPs in a video object, F ^ is the mean Fourier vector and 

Fk is the Fourier vector of the kth VOP. The mean Fourier vector, FM„ is the average of 

the feature vectors of all VOPs in a video object. 

Recall that the complex Fourier coefficients of individual VOPs are rotation and 

scale variant and their scaled magnitude is employed in still shape retrieval in order to 

provide rotation and scale invariance. Here, the above variances are computed prior to 

any scaling on both real and complex components of Fourier coefficients. This way, any 

size changes and rotation of the individual VOPs would be captured by our descriptor. 

Nevertheless, it is still desired that the final motion descriptor is invariant of the video 

object size and rotation. We provide scale invariance by dividing each element of Fa2 

(5.1) 

(5.2) 

k=0 
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with max | f i (VOPk)2 h w n e r e FiQ/OP^) is t h e first n o n z e r o Fourier coefficient of 
VOPk^VO 

the k t h V O P . Note that FiiVOP^) gives the radius of the circle with an area equal to that 

of the k t h V O P . Rotation invariance is ensured by employing the magnitude of the 

resulting complex coefficients as shown below: 

2 jnnk 
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(5.7) 

The number of Fourier coefficients, M , employed to compute our proposed 

descriptor determines the type of motion we capture. Employing a lower number would 

allow capturing of only very low frequency motion, i.e. the type of motion that would 

affect the shape of the video object globally. Selecting a high number of descriptors 

would make it possible to capture the motion more accurately, but would potentially 

make the feature more sensitive to segmentation noise. 
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5.2 Angular Radial Transform Based Local Motion 

Descriptor 

We already demonstrated the effectiveness of the ART coefficients in shape retrieval in 

Chapter 4. Here, we propose to use the variances of the ART coefficients, computed 

using each VOP of a video object, to describe the object's local motion. 

Using the ART coefficients, the proposed local motion descriptor matrix, R, is 

computed as follows, 

R = 

a 0,0 

V o 

.a, 0,m' a, 

...a n,m a 

aN-l,0 -aN-l,m - aN-l,M~l 

(5.8) 

1 £ - 1 
anm=—2Z (Anm (VOPk ) - Mnm) > 

K k=0 

1 K-l 
Mnm =— 22Anm(VOPk), 

K k=0 

(5.9) 

(5.10) 

where K is the number of VOPs in a video object, N and M are the number of angular and 

radial ART functions, respectively, and Anm(VOPk) is the ART coefficient of order n and 

mof thek t h VOP. 

Here, similar to the Fourier descriptors, the rotation variant complex ART 

coefficients are employed for the variance computation in order to capture the rotation of 
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video objects. Finally, the magnitudes of these variances are used as rotation invariant 

descriptors. 

5.3 Angular Circular Local Motion (ACLM) Descriptor 

The variance of the object area offers valuable information about the amount of shape 

deformation or local motion present in a video object. Motivated by this fact, we propose 

to divide the shape mask of a video object into M angular and N circular segments and 

use the variances of the pixels that fall into each segment to describe the local motion. 

Unlike the Fourier and ART based descriptors, where the location information is 

distributed among the transform coefficients, this descriptor captures the location as well 

as the type of the object's motion. 

After the video object is divided into M angular and N circular segments, as 

illustrated in Figure 5.1, we first compute the variances for each angular circular segment 

in the temporal direction using the VOPs of the video objects. Then the local motion 

feature matrix is formed for each video object as follows: 

0,0 a, 
.2 
0.M-1 

R = cr 
.2 
n,0 

(5.11) 
n,m ••• n,M-l 

tf-1,0 N-l,m N-lM-l 
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2 where M and N are the number of angular and circular sections, respectively. (Tnrn is the 

normalized variance of the pixels that fall into the segment (n,m) and computed as 

follows, 

2 
n2 L_ K~l 

S(n,m) K k=0 

Z(Pn,m-/"n,m) - (5.12) 

1 K ~ l 

/^n,m „ X ^n,m » (5.13) 
k=0 

@m+l Pn+1 /c i A\ 

?n,m = I 2ZVOPk(p,8), V-L*> 

9=9m p=pn 

where K is the number of the VOPs of the video object, VOPk is the binary shape map of 

the video object at kth instant, VOPk (p,9) is the value of the binary shape mask in VOPk 

at the position (6,p) in the polar coordinate system centered at the mass center of 

VOPk. S(n,m) is the area, 0m is the start angle, pn is the start radius of the angular 

circular segment (n,m) and they are defined as 
. 7t(p2

n+x-P2n) a In yOmax (5.15) 
S(n,m) = — , 0m = mx—, p = n x r m a x , 

M M N 

where M and N are the number of angular and circular sections, respectively. Pm^ is 
found by 

'max = max 
VOPfreVO 

\PvOPk J' (5.16) 
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where VOPk is the kl video object plane of the video object, and PvOPfc * s t n e r a c uus of 

the tightest circle around VOPk that is centered at the mass center of VOPk. 

In the uncompressed domain, the value of the binary shape map is "1" for pixels that 

fall inside the video object and "0" for pixels that fall outside the video object. In the 

compressed domain, it is "1" for the opaque coded shape blocks, "0.5" for the intra 

coded shape blocks, and "0" for the transparent coded shape blocks. This way, the intra 

coded shape blocks are counted as half of the opaque coded blocks in the variance 

computation. 

VOP 180 VOP 185 VOP 190 

segment (n,m) 

Figure 5.1: The binary shape maps of the 180th, 185th, and 190th VOPs of a video object 

divided into 4 angular and 2 circular segments. 

The proposed descriptor is scale invariant since the number of angular and circular 

segments is the same for all video objects and the size of each segment is scaled with Pmax. 

Rotation invariance is obtained as follows. We first re-order the feature matrix R so that 

the angular segment with the largest variance is in the first column of R. This is achieved 

by first summing the columns of R to obtain the lxM projection vector A and then 

103 



finding the maximum element of A, which corresponds to the angular segment m that has 

the largest variance. Finally, we circularly shift to the left the columns of R by m to obtain 

a rotation invariant feature vector. 

5.4 Experimental Results 

Here, we demonstrate the performance of each of our proposed local motion descriptors. 

Our database contains over 50 MPEG-4 video object streams and the NMRR measure 

(see Appendix A) is employed to evaluate the performance of our descriptors. The 

average NMRR values presented in this section are obtained by averaging the retrieval 

results of 12 query video objects that have a large variety of local motions. The ground 

truth objects are decided by having human subjects rank the video objects for their local 

motion similarity to the query video objects. As in the previous chapter, computation 

times presented here are obtained by using a Pentium 233 MHz. computer with 128 MBs 

of memory. 

The results presented in the following sections are obtained by computing these 

descriptors using the IVOPs of video objects. The similarity distance between two shapes 

is measured by computing the Euclidean distance between their local motion descriptors. 

The distance is computed on the square roots of the variance based descriptors. 

5.4.1 Fourier Transform based local motion descriptor 

Table 5-1 shows the retrieval performance of the proposed Fourier coefficient based local 

motion descriptor with various numbers of Fourier coefficients. Note that the smaller 
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ANMRR values represent a better retrieval performance. Employing a larger number of 

coefficients improves the retrieval performance but also increases storage requirements. 

As can be observed from Table 5-1, using the first 10 coefficient variances offers a good 

tradeoff between retrieval performance and descriptor size. In addition, we observe that 

computing this descriptor in the compressed domain results in a small decrease in the 

retrieval performance. Nevertheless, processing in the compressed domain offers 

significant computational advantages considering that the computation time required to 

compute the descriptor for one video object is 0.72 seconds in the compressed domain 

compared to 26.36 seconds in the uncompressed domain. 

Number of Fourier 
coefficients 

ANMRR-

uncompressed domain 

ANMRR-

MPEG-4 domain 

5 0.170 0.271 

10 0.139 0.237 

20 0.119 0.232 

32 0.122 0.227 

Table 5-1: Local motion retrieval results using the Fourier Transform based descriptor 

with various lengths. 

5.4.2 ART based local motion descriptor 

The retrieval performance achieved by using different number of angular and radial 

functions when computing the ART descriptors is presented in Figure 5.2. As can be 

observed from the figure, employing 4 angular and 2 radial basis functions offers a good 
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tradeoff between the retrieval performance (ANMRR=0.18) and the compactness of the 

descriptor. The ANMRR is equal to 0.20 for using the same number of basis functions in 

the MPEG-4 compressed domain, which is only slightly higher (indicating slightly lower 

retrieval performance) than that of the uncompressed domain. The computation time of 

this descriptor per video object is 15.34 seconds in the uncompressed domain and 2.5 

seconds in the compressed domain. 

0.4 n 
ART Based Local Motion Descriptor 

0.3 

0.2 

0.1 

RAD=3 
RAD=2 

n i i r 

0 2 4 6 8 10 12 14 
number of angular basis functions 

Figure 5.2: Retrieval results of the ART based local motion descriptor obtained by 

employing different numbers of angular and radial (RAD) basis functions. 

5.4.3 A C L M descriptor 

Retrieval performance results using the Angular Circular Local Motion (ACLM) 

descriptor with various number of angular and circular segments are presented in Figure 

5.3. Employing a large number of angular and circular bins results in a better retrieval 

performance but with the cost of more bits required for representing the descriptor. The 
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highest retrieval rates here (i.e. lowest ANMRR) are obtained by using 6 angular and 3 

circular segments (ANMRR=0.090) and 8 angular and 2 circular segments 

(ANMRR=0.089). The ANMRR values obtained by extracting this descriptor directly 

from the MPEG-4 compressed bit stream are 0.26 for 6 angular and 3 circular segments 

and 0.27 for 8 angular and 2 circular segments. The time required to compute the 

compressed domain descriptor for one video object is 0.29 sec, and that of the 

uncompressed domain descriptor is 20.54 sec. 

Even though the computational requirements of the compressed domain descriptor is 

2 orders of magnitude lower than that of the uncompressed domain, the decrease in the 

retrieval rate (increase in ANMRR from 0.09 to 0.26) may not be acceptable in some 

applications. One way to improve the retrieval performance in the compressed domain is 

to upsample the shape approximation before dividing it into angular circular segments. 

This way, more pixels would fall into each segment, making the variance computation 

more accurate and more robust to shape approximation errors. On the other hand, 

computing this descriptor on an upscaled version of the shape approximation would take 

more computation time. This tradeoff is depicted in Figure 5.4, where we plot the 

required computation time and the retrieval rate for employing different numbers of 

upscaling factors. Employing an upscaling factor of 4 results in a good retrieval rate 

(ANMRR=0.16) with computation time less than 0.5 seconds. 
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Figure 5.3: Retrieval results of the ACLM descriptor obtained by using a various number 

of angular and circular (CIR) segments. 

Retrieval Accuracy in the Compressed Domain 
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Figure 5.4: The change in retrieval accuracy versus computation time requirements when 

different upscaling factors are employed in the compressed domain. 

Some query examples using 6 angular and 3 circular segments are presented in 

Figure 5.5, Figure 5.6, and Figure 5.7. Note that the dimensions given in the parentheses 

are not the dimensions of the video objects, but dimensions of the video sequences that 
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they are extracted from. The dimensions of the video objects are different for each VOP 

of the video object. The first query, shown in Figure 5.5, is a very low motion 

anchorperson video object, News_l, which is coded in two different resolutions in our 

database. As presented in Table 5-2, using the ACLM descriptor, the two different 

resolutions of the News_l video object are retrieved as the first two items. The other 

highly ranked two anchorperson video objects, illustrated in Figure 5.5, are also 

characterized by low motion. The Coastguard video object, ranked in 7th, 8th, and 9th, is 

also an object without any articulated parts (a boat object and its waves) and with 

moderate local motion. The second query is the video object obtained from a video 

sequence showing two children playing with a ball as shown in Figure 5.6. Here, we 

query the local motion of the child on the left. As can be seen from the results presented 

in Table 5-3, the three different resolutions of the two children video objects are ranked 

the highest among the retrieved video objects. Our last query, Hall Monitor 1, is the 

video object of a walking man captured by a surveillance camera as shown in Figure 5.7. 

The query results for this object are presented in Table 5-4. The three different 

resolutions of the video object are ranked the highest and another walking man video 

object from the same sequence, Hall Monitor 2, is ranked immediately after. The fish 

object, which has large moving fins and a tail as depicted in Figure 5.7, is ranked 7th. The 

different resolutions of a video object that contain a person playing tennis are ranked 8th 

and 9th. As can be seen from these query examples, the ACLM descriptor successfully 

classifies the local motion of the video objects. 
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Rank Video object Query 
distance 

1 News 1 (360x240) 0.00 

2 News 1 (180x120) 6.68 

3 Akiyo (360x240) 11.07 

4 News 2 (360x240) 12.55 

5 Akiyo (180x120) 14.06 

6 News 2 (180x120) 19.52 

7 Coastguard 2 (352x288) 27.12 

8 Coastguard 2 (176x144) 27.63 

9 Coastguard 2 (528x432) 27.68 

Table 5-2: Local motion retrieval results for the News 1 video object query. 

Rank Video object Query distance 

1 Children 1 (352x288) 0.00 

2 Children 1 (176x144) 4.00 

3 Children 1 (528x432) 8.57 

4 Children 2 (176x144) 55.04 

5 Children 2 (352x288) 55.23 

6 Children 2 (528x432) 55.41 

Table 5-3: Local motion retrieval results for the Children 1 video object query. 
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Rank Video object Query 
distance 

1 Hall Monitor 1 (360x240) 0.00 

2 Hall Monitor 1 (540x360) 2.89 

3 Hall Monitor 1 (180x120) 10.23 

4 Hall Monitor 2 (180x120) 46.85 

5 Hall Monitor 2 (360x240) 50.25 

6 Hall Monitor 2 (540x360) 50.31 

7 Fish 1 (352x240) 84.59 

8 Stefan (176x144) 90.31 

9 Stefan (352x244) 90.80 

Table 5-4: Local motion retrieval results for the Hall Monitor 1 video object query. 

News 1 VO News 2 VO Akiyo VO 

Coastguard 2 VO 

Figure 5.5: The video objects classified as being similar in terms of their local motion to 

the query video object News 1. 
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Children 1 VO Children 1 VO 

Figure 5.6: The video objects classified as being similar in terms of their local motion to 

the query video object Children 1. 

Hall Monitor 1 VO Hall Monitor 2 VO 

15 
V 

•3 

Stefan VO 

I t m 

Fish VO 

Figure 5.7: The video objects classified as being similar in terms of their local motion to 

the query video object Hall Monitor 1. 

5.5 Conclusions 

In this chapter, we proposed three local motion descriptors for efficient retrieval of video 

objects. Our descriptors are based on the shape deformations of the objects as the 

changes in an object's shape offer valuable information about its local motion. These 
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descriptors can be extracted using the uncompressed domain shape masks or compressed 

domain shape approximations. The corresponding computation times, descriptor sizes, 

and the resulting retrieval performances for all three descriptors are summarized in Table 

5-5. As presented in the previous section, the retrieval ranking obtained by employing our 

descriptors closely matches with the human ranking. According to the ANMRR scores 

obtained, the ACLM descriptor offers the best retrieval rate, in both compressed and 

uncompressed domains. That is mainly because this descriptor preserves the location of 

the motion (as the object is divided into angular/circular segments), where this 

information is distributed among the coefficients in the ART and Fourier based 

descriptors. Nevertheless, matching of the ACLM descriptor is more complex as 

presented in Section 5.3 and it requires 18 bytes (assuming that 1 byte is used to 

represent each descriptor value) to represent, where Fourier and ART based descriptors 

require 10 and 8 bytes, respectively. The computation time of the ACLM descriptor is the 

shortest compared to the other two in the compressed domain. Overall, the ACLM 

descriptor offers better tradeoffs than the other two descriptors. Nevertheless, if the ART 

and Fourier coefficients of the VOP shape data is already computed and attached to the 

video objects as metadata for shape retrieval, then the extra computations required to 

compute the local motion descriptors based on the ART and Fourier coefficients would 

be minimal. In that case, employing the Fourier and ART based descriptors could be 

more advantageous. 
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Fourier based 
descriptor 

ART based 
descriptor 

ACLM descriptor 

Domain comp. uncomp. comp. uncomp. comp. uncomp. 

ANMRR 0.24 0.13 0.20 0.18 0.16 0.09 

computation 
time (sec) 

0.72 26.4 2.5 15.3 0.45 20.5 

descriptor 
size 

10 10 8 8 18 18 

Table 5-5: Retrieval performance, computation time, and descriptor size comparisons of 

the proposed local motion descriptors in the compressed and uncompressed domains. 
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Chapter 6 

Similarity Matching of Video Objects 

using Color Feature 

"Has anybody seen my Mopser? 

A comely dog is he 

With hair the colour of a Charles the Fifth 

And teeth like ships at sea." 

Walter de la Mare (1873-1956) 

Color features are commonly used for visual data retrieval, as they are relatively simple to 

extract, not much sensitive to noise, and invariant to image scaling, translation, and 

orientation [108]. They are also relatively easy to associate with some semantic 

information. For example, if one would like to retrieve nature images from a visual 

database, he/she can search the database for images with dominant green or brown 

colors. Alternatively, if one is looking for a brick house in a real estate database, he/she 

can query the database with a picture of another brick house, where the color of the 
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query image would be automatically extracted by the system and houses with similar 

colors can be retrieved. 

The most commonly used color features in current systems include dominant color, 

average color, and color histograms. The dominant color feature captures one or several 

most common colors in an image. Although it provides a compact representation of the 

color content, capturing only a few dominant colors may not be sufficient in some 

applications, say for instance if one is searching for a small object in an image (for 

example a yellow flower). The average color descriptor is typically found by computing 

the mean value of the colors of all the pixels in an image. Again, this is a compact 

representation, but the accuracy would not be satisfactory in many applications. Also, 

averaging all the colors may result in an average color that does not represent the image 

accurately, for example if the image contains blue and yellow colors the average color 

would be green. 

Color histograms, on the other hand, indicate the number of occurrences of a 

particular color intensity value in an image, and they work very well in quantifying global 

color content in visual data. Therefore, they have been employed by many image/video 

retrieval systems [12] [21] [22] [109], which differ primarily in their approaches to color 

space selection, quantization, and histogram distance computation problems. For 

example, VideoQ [22] employs a color histogram that is based on HSV color space and 

uniform quantization of color values. In NeTraV [21], the RGB color space is employed 

and the colors are vector quantized into 256 bins using the Generalized Lloyd Algorithm. 
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In QBIC [12], the image is first represented with an RGB color histogram consisting of 

4096 bins. Each color channel is then transformed to the Munsell color system using the 

MTM transform. Color histogram representation is also standardized by MPEG-7 [27], 

where the histogram is formed in the HSV color space and a scalable number of color 

quantization bins are employed. 

As digital images and video are becoming available mostly in the compressed 

formats, several researchers have suggested methods for obtaining color histograms from 

the coded bit stream without requiring full decompression and subsequent reconstruction 

of the visual data [110][111]. Their methods are based primarily on the idea that, in block 

based coding, the mean value of each 8x8 pixel block can be computed by a simple 

scaling of the first DCT coefficient (DC). These average color values can then be used to 

form a color histogram. Because the DC coefficient can be obtained from the bit stream 

without full decompression [112][113], this method makes it is possible to extract color 

histograms from the compressed bit streams very efficiently. 

In this chapter, we discuss the problems arising from the adaptation of DC based 

color histogram representation to arbitrarily shaped MPEG-4 video objects, which can be 

summarized as follows: 

• Extraction of the DC coefficient based histogram from the MPEG-4 video bit 

stream is more complex than extraction from the MPEG-1/2 and H.263 bit 

streams, mainly due to the MPEG-4 bit stream structure and the predictive 

coding of DC coefficients. 

117 



• Unlike frame-based video sequences, video objects generally have low 

resolution, small variations in color, and their color content usually remains 

consistent. Therefore, a color histogram representation that is optimal for the 

frame-based video is not necessarily optimal for the object-based video. 

• When the chroma-keying technique2 is used to obtain video objects, the chroma 

key value can penetrate into the object. This would happen particularly if the 

video object shape is not accurately extracted prior to the MPEG-4 encoding 

and/or the MPEG-4 encoder does not employ the LPE padding technique 

described in the MPEG-4 verification model [53]. As a result, the chroma color 

of the background could contribute to some color artifacts that would eventually 

affect the color histogram of the video object. 

In this chapter, we first present a description of the extraction of DC coefficients 

from the MPEG-4 bit stream without full decompression. Then, a discussion of the 

selection of color spaces and quantization accuracy are given in Section 6.2. In Section 

6.3, we present a color histogram computation method for MPEG-4 video objects. In 

Section 6.4, we propose a method for detecting and compensating for the chroma keying 

artifacts that may occur at the boundaries of the video objects. Experimental results and 

conclusions are given in Section 6.5 and Section 6.6, respectively. 

2 Chroma keying is one of the most popular methods to obtain arbitrarily shaped video objects, where the 

video object is separated from the background by placing it in front of a screen with a unique color. 
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6.1 DC Coefficient Extraction in the MPEG-4 Bit Stream 

In most of the current image and video coding standards, such as JPEG [2], MPEG-1/2 

[4][5], and H.263 [6], each frame is divided into 8x8 blocks, followed by DCT, 

quantization, zigzag scan, and run length coding. In Intra coded frames (I-frames), the 

mean value of each of the 8x8 luminance and chrominance blocks can be obtained by a 

simple scaling of the first DCT coefficient (DC) of the corresponding block as described 

next. 

The definition of the 2-D DCT transform for an 8x8 block is given by [76]: 

F(k,l) = 
c(k) c(l) 1 1 

Z Z /0".7')cos| 
/=0;=0 

(2i + l)k7T 
16 cos 

\2j + \)ln 
16 

(6.1) 

where c(x) = 
— if x-0 
J^2 and f(i,j) is the value of the pixel at the location (i,j). 
1 otherwise 

Therefore, the DC coefficient is computed as follows: 

7 7 
Z I 
i=0y=0 

DC . F(m . s^M ± ± niJ)cJ^U 
V 16 J 

(2j +PCM 
16 

(6.2) 

1 7 7 7 7 

4 V 2 V2 i = Q j = Q 8 - = 0 ;- = 0 

(6.3) 
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Considering that the mean value, M, of the 8x8 block is found by 

1 7 7 

M = — ]T ]T /(i, 7), the relationship between the DC value and the mean of the block 
6 4 i=0;=0 

can be written as 

DC = ± i £ / ( i , j ) = 8Af=> Jlf ( 6 ' 4 ) 

8 i=07=0 8 

Taking into account that the chrominance values are shifted by 128 prior to coding, 

the mean of C b block, Mcb, and the mean of C r block, Mcr, are found by 

M C b = ^ ^ - l 2 S , M C r = ^ ^ - 1 2 8 , (6.5) 

where DCCb and DCCr are the DC coefficients of the C b and C r blocks, respectively. 

In MPEG-1/2 and H.263 I-frames, the DC coefficient can be obtained by simply 

performing parsing of the headers and run length decoding. However, in MPEG-4, an 

extra step is required as the DCT coefficients of macroblocks are predictively coded even 

in intra VOPs. In intra macroblocks, the DC coefficients are predicted from the DC 

coefficient of either the left or the above block as presented in Chapter 2. Therefore, the 

DC coefficient needs to be reconstructed first by summing with the prediction value 

followed by dequantization to obtain DCy, DCcb, and DCcr. These values are then used in 

Equations (6.4) and (6.5) to compute the mean values of the 8x8 luminance and 

chrominance blocks for color histogram computation. 

Parsing of the MPEG-4 bit stream in order to extract the DC information is also 

more complex than parsing of the MPEG-1/2 and H.263 bit streams. Recall that in 
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MPEG-4, the shape information is placed before the texture information in the bit stream. 

Therefore, arithmetic decoding of the shape is required before obtaining the DC 

coefficient. Nevertheless, reconstruction of the shape data is not necessary. Also in 

MPEG-4, if the data packetization option is utilized, the shape information and the DC 

coefficients of intra coded VOPs are separated from the AC coefficients with a unique dc 

marker bit sequence. This provides better error protection for the MPEG-4 DC 

coefficients, making the color histogram more robust to the potential bit stream errors. 

6.2 Color Space Selection and Quantization 

In histogram computation, the proper choice of color space and quantization method is 

very important, as they can have a profound effect on the retrieval performance of the 

system. Video in MPEG-4 domain is represented in YC b C r color space, as in MPEG-1/2. 

While YC b C r representation is good for efficient compression, it is not a desirable 

representation in visual retrieval as it is not a perceptually uniform color space. 

Perceptual uniformity means that two colors that are equal in distance in a color space are 

perceived as equal in distance by viewers. The RGB color space, which is commonly used 

for display purposes, has a linear relation with the YC b C r color space, it is therefore also 

non uniform. The other two color spaces typically employed to form color histograms are 

HSV (Hue, Saturation, Value) and MTM (Mathematical Transformation to Munsell). 

The HSV color space, which is adopted for the MPEG-7 color histogram descriptor, 

more closely resembles human perception, but it is again a non uniform color space [74]. 

121 



Munsell is a perceptually uniform color space that very closely represents the human way 

of perceiving colors [74][114][115]. The C L E . L*a*b* method commonly used to 

obtain a quantitative expression for the Munsell space of color classification. On the other 

hand, Miyahara et al. showed in [114] that the Mathematical Transformation to Munsell 

(MTM) offers the best method for Munsell space representation. In the MTM space, the 

colors are represented by Hue (H), Value (V) and Chroma (C) components that can be 

calculated from the R, G, B or Y, C b , C r values using a non linear transform. The 

conversions from the YC b C r space to HSV and MTM spaces are given in Appendix C. 

Another important issue in color histogram computation is the quantization of 

colors. Using the entire color space (approximately 16 million colors) without 

quantization clearly increases the storage and computation requirements. In a typical 

retrieval system, each of the components of a color space is divided into a number of 

color bins prior to histogram computation. Uniform quantization is commonly employed, 

especially in the absence of information regarding the color distribution of the target 

image/video databases. The best results with uniform quantization are obtained when 

applied to a perceptually uniform color space. 

6.3 Histogram Computation 

We obtain the color histograms of individual VOPs by using only the color components 

that correspond to the blocks that are either completely inside (i.e., opaque) or on the 

boundary (i.e., intra) of the video object planes. This information is extracted directly 
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from the MPEG-4 bit stream. On average, only half of the pixels in a boundary block lie 

in a video object. Therefore, when computing the color histograms for individual VOPs, 

we count the color components of the boundary blocks as half of the color components 

of the opaque blocks. 

After constructing the histograms for the individual VOPs, the histogram for video 

objects can be formed by using one of the following techniques commonly used for 

frame-based video: 

• Average histogram: Obtained by accumulating the histogram values over a range of 

frames and normalizing that by the number of frames. 

• Median histogram: The bin values of this histogram are computed by taking the 

median values of each corresponding histogram bin of the individual frames. 

• Intersection histogram: This histogram contains only the colors that are common to 

all the frames. 

According to the literature, employing the average histogram yields the best results 

for frame-based video retrieval [116]. Video object color generally remains consistent 

during its lifespan, and in most cases an average histogram accurately represents the 

video object color content. The median histogram is most useful when there are some 

frames in a video sequence that differ significantly from the others - which is usually not 

the case for video objects. Also, there is an increased computational cost associated with 

the median operation because of the sorting performed for each bin. The intersection 

histogram is also not very suitable for video object color representation. This is because 
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when objects are entering to/exiting from a scene or when they are occluded, only a small 

part of their color range is visible: The intersection histogram would only capture these 

colors. In conclusion, considering the characteristics of arbitrarily shaped video objects, 

the average histogram is clearly the most appropriate choice to represent their color 

histograms. 

The average histogram can be computed using the individual histograms of all the 

IVOPs in an MPEG-4 video object. A better alternative that reduces the computational 

requirements would be to compute the histogram on a temporally sampled subset of 

IVOPs or on key VOPs that represent the salient content of the video object. 

6.4 Detection and Compensation of the Chroma Keying 

Artifacts 

Although there have been great advances in the area of video segmentation, chroma 

keying remains one of the most popular methods to obtain semantic video objects without 

requiring a high degree of supervision. In chroma keying, the foreground object is 

separated from the background by placing the object in front of a color screen that has a 

unique chroma key value (typically blue or green) and defining the pixels that belong to 

the screen as outside the video object. Ideally, the coded video object should not contain 

any pixels from the background. However, if an MPEG-4 encoder does not approximate 

the video object shape very accurately and/or it does not perform the Low Pass 

Extrapolation (LPE) padding technique prior to DCT (which is defined in the MPEG-4 
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verification model [53] but not part of the MPEG-4 standard [1]), the boundary blocks of 

the video object could contain some severe chroma keying artifacts. These artifacts could 

result in chroma DC values (DCCb and DC C r ) of the boundary blocks that include the 

chroma key color along with the actual video object color, resulting in an inaccurate 

computation of the color histogram. 

In order to overcome this problem, we propose that the existence of such artifacts be 

detected and then compensated accordingly. Our experiments show that if a video object 

plane has any chroma artifacts, it is likely to affect all the blocks on the video object 

boundary. Therefore, if such effects are detected in one or several boundary blocks, it is 

reasonable to assume that the most of the boundary blocks of the video object have such 

artifacts. We propose to detect the chroma artifacts at the decoder, assuming no apriori 

information about the encoder, by decoding the texture and the shape of the first 

boundary block of the video object plane and then computing the mean chroma values 

(C b and C r) for the pixels that are inside and outside the video object area using the shape 

mask for that particular block. If the difference between the chroma values corresponding 

to the inside and outside of the video object is very small, then it could be concluded that 

the segmentation was performed properly and that the L P E technique was employed 

prior to encoding. Then the DC values of the boundary blocks correctly reflect the real 

video object color and no further processing is required. However, if the inside and 

outside mean chroma values differ significantly, then we define the chroma key values 

(Kcb, Kcr) as equal to the mean chroma values of the outside pixels. 
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After chroma keying artifacts are detected and the chroma key values are 

determined, the average colors of the boundary blocks are adjusted to reduce the chroma 

artifacts. Considering that, on average half of the pixels in a boundary belong to the inside 

of the object and the other half belongs to the outside of the object, the following 

approximations can be made to find the actual mean value of the pixels inside the video 

object: 

M c b - VCb + Kcbt M c r „ VCr + Kcr ^ (6.6) 

VCb = 2MCb ~ KCb, VCr « 2MCr - KCr, 

where Ma and MCr are the average values of the 8x8 C b and C r blocks extracted from the 

bit stream, KCb and KCr are the approximated chroma key values, and VCb and Vo are the 

approximated mean chrominance values of the video object pixels in the corresponding 

8x8 blocks. 

It is possible to make this approximation even more accurate by considering the 

coding modes of the luminance blocks corresponding to the chrominance blocks. In 

MPEG-4, as in MPEG-1/2, chrominance values are typically downsampled by two in 

both vertical and horizontal directions and a 16x16 luminance block spatially corresponds 

to a 8x8 chrominance block. Therefore, by looking at the coding modes (intra coded/not 

coded) of each of the 8x8 luminance blocks in a macroblock, we can predict with a better 

accuracy what percentage of the chroma block lies in the video object border. For 

example, if 3 out of 4 luminance blocks are not coded, then it is likely that more than 

75% of the chroma pixels in the corresponding block are outside the video object. Taking 
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the coding modes of the luminance blocks into consideration, the following 

approximation can be made to find the mean value of the chrominance pixels inside the 

video object. 

M r , ° - 5 a {VCb + KCb) + (4 ~ a) KCb ^ (6.7) Cb ^ 

8Mcb-8Kcb+aKCb 

C b ~ a 

where a is the number of intra coded luminance blocks in a boundary macroblock, MCb is 

the average chrominance value corresponding to that macroblock, KCb is the chroma key 

value, and VCb is the mean chrominance values of the pixels that belong to the video 

object in a boundary block. VCr is also found by using a similar approximation. Finally, we 

compute the video object color histogram by using the approximated VCb and VCr values 

of the chrominance components, along with the unmodified luminance component, MY. 

6.5 Color Retrieval Results 

In this section, we present color retrieval results obtained by querying video objects as 

well as individual VOPs. Retrieval performance is measured by NMRR and ANMRR 

measures that are described in Appendix A. Our database consists of more than 50 

MPEG-4 bit streams containing more than 2000 Intra coded color VOPs. The color 

histograms of the video objects are found by averaging the color histograms of their key 

VOPs. The histogram distances between two VOs or two VOPs are computed using the 
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L l norm, which demonstrated superior performance for measuring the histogram 

distances [116][117]. 

6.5.1 Retrieval by employing various color spaces and number of 

quantization bins 

Here, we present the retrieval performance levels when employing HSV, MTM, and 

YCbCr color spaces and different numbers of quantization bins. Our experiments are 

performed by querying MPEG-4 video object planes. We uniformly quantize each of the 

color components to reduce the number of histogram bins. Since hue has most of the 

color information that humans can recognize [118], we allocate a larger number of bins to 

the hue (H) color component when quantizing the HSV and MTM color spaces. 

Table 6-1 presents the color retrieval performance comparison employing histograms 

computed in the three different color spaces. Using the YC b C r color representation does 

not require conversion to another color space, however it gives the lowest retrieval 

performance. Using the MTM representation, which matches most closely human 

perception, clearly offers a superior retrieval performance. Table 6-2 shows the retrieval 

results when different numbers of quantization bins are used to represent the color 

components of the MTM space. As can seen from the table, employing a 128-bin 

histogram offers the best tradeoff between retrieval performance and memory 

requirements. 
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Query video 
object plane 

HSV 

128 bins: H:8 S:4 V:4 

MTM 
128 bins: H:8 V:4 C:4 

YCbCr 
125 bins: Y:5 Cb:5 Cr:5 

Bream 0.0007 0.0004 0.0097 

Fish 0.0876 0.0249 0.2400 

Stefan 0.0116 0.0208 0.1303 

Singing girl 0.2686 0.2006 0.2715 

Average 
NMRR 

0.0912 0.0617 0.1629 

Table 6-1: NMRR values obtained by querying various video object planes and 

employing color histograms computed in three different color spaces. 

Query video 256 bins: 128 bins: 64 bins: 32 bins: 
object plane H:16 V:4 C:4 H:8 V:4 C:4 H:4 V:4 C:4 H:4 V:2 C:2 

Bream 0.0003 0.0004 0.0728 0.0202 

Fish 0.0411 0.0249 0.0425 0.0194 

Stefan 0.0302 0.0208 0.1841 0.1900 

Singing girl 0.0666 0.2006 0.3349 0.3812 

Average NMRR 0.0346 0.0617 0.1586 0.1527 

Table 6-2: The retrieval performance results (in NMRR) when using different 

numbers of quantization bins for the H, V, and C color components of the MTM 

color histograms. 

6.5.2 Video Object Plane and Video Object retrieval results with and 

without chroma keying artifacts 

Next, we demonstrate the performance of our proposed technique in the presence of 

chroma keying artifacts. All the results presented here are obtained by utilizing the MTM 

color space and 128-bin uniform quantization for the color histograms of the VOPs. The 
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video object histograms are formed by histogram averaging on their key VOPs. The key 

VOPs are found using the Hausdorff distance based algorithm we proposed in Chapter 3. 

Table 6-3 demonstrates the retrieval results for several video object plane queries 

from the video objects Children, Stefan and Hall Monitor. The first column shows the 

results when there are no chroma keying artifacts. The second column gives the retrieval 

performance when the query VOP and several hundred VOPs in the database are coded 

with simulated chroma keying artifacts. Simulation of such artifacts was achieved by 

simply imposing a blue background against the objects and encoding the video objects 

with no LPE padding. As seen from Table 6-3, chroma keying artifacts result in poor 

retrieval performance. After applying the proposed technique to reduce these effects, the 

retrieval performance improves significantly as presented in the last column of the table. 

Similar experiments are conducted for the video object sequences as well and the results 

are presented in Table 6-4. Again, significant performance gains are obtained by 

employing the proposed method for reducing the chroma keying artifacts. 

Query VOP Without artifacts With artifacts With reduced artifacts 

Children 1 0. 0022 0. 0777 0. 0087 

Stefan 0. 0509 0.1172 0. 0835 

Hall monitor 2 0. 0118 0.5886 0. 2946 

Average NMRR 0. 0216 0. 2612 0.1289 

Table 6-3: Video object plane retrieval performance results (in NMRR) without any 

chroma artifacts, with chroma artifacts, and after compensation for the artifacts with the 

proposed method. 
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Query video object Without artifacts With artifacts With reduced artifacts 

Children 1 0. 0000 0. 6396 0. 3333 

Stefan 0. 0741 0. 0410 0. 0370 

Hall monitor 2 0. 0250 0. 4250 0. 1500 

Average NMRR 0. 0330 0. 3685 0.1734 

Table 6-4: Video object retrieval results (in NMRR) without any chroma artifacts, with 

chroma artifacts, and after compensation for the artifacts with the proposed method. 

6.6 Conclusions 

In this chapter, we discussed the issues arising from the use of the DC based color 

histogram technique in the MPEG-4 compressed domain. Compared to extraction from 

the MPEG-1/2 and H.263 bit streams, extracting the color histogram from the MPEG-4 

bit stream requires more computations, due mainly to the intra DC prediction. 

Nevertheless, the MPEG-4 bit stream offers more protection to the DC coefficient, 

making the histograms more robust if the bit stream is susceptible to errors. 

We employ the color histogram feature for color retrieval, as it offers a more 

complete representation than the other available color features. Because they contain 

more information, color histograms generally require more storage than the other color 

descriptors. While this would be a consideration in image database applications, the 

overhead introduced by employing color histograms in our case is negligible, since the 

video data typically requires considerably more storage. 
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Our experimental results show that the color histogram technique works best for 

video object retrieval when the MTM color space is employed. Using the YC b C r space 

also offers reasonable retrieval performance without requiring color space conversion. In 

the presence of chroma keying artifacts, the computed color histograms may contain the 

chroma key value (generally a very distinct color), causing a significant drop in the 

retrieval performance. As presented in Section 6.5.2, great improvements in retrieval 

performance are obtained by employing our proposed method to compensate for such 

artifacts. 
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Chapter 7 

Conclusions and Future Research 

Directions 

Efficient retrieval of video is becoming increasingly important as video content becomes 

available from a growing number of different sources. Classifying and retrieving 

arbitrarily shaped video is of particular importance, since it is an enabling technology for 

many multimedia applications ranging from surveillance to broadcasting, education to 

medicine. This thesis proposed techniques for automatic, generic, effective, and low 

complexity content-based retrieval of arbitrarily shaped video, specifically targeting the 

MPEG-4 object-based compressed domain representation. 

In this thesis, we first summarized MPEG-4 object-based video coding, as most of 

our algorithms are based on this representation. Next, we presented a method for 

summarization of arbitrarily shaped video content through selection of key video object 

planes. Our method is based on computing the Hausdorff or Hamming distances on the 
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shape approximations obtained from the compressed bit stream. Experimental results 

demonstrated that our proposed algorithm selects key video object planes that efficiently 

represent the salient content of video objects. 

Next, we focused on shape retrieval of video objects and video object planes. We 

gave a brief overview of Fourier and ART descriptors as well as some global shape 

features, and presented a method to extract these features directly from the compressed 

bit stream without full decompression. In addition, two new compressed domain shape 

features were proposed. Processing in the compressed domain and using our proposed 

shape feature extraction techniques, we demonstrated computational savings as high as 

two orders of magnitude. Compact representation of these shape features is also 

important, especially if they are computed prior to querying and are stored in the video 

bit stream or in a database. We designed efficient quantizers for these features based on 

their statistical distributions, which resulted in compaction of the feature vectors by a 

factor of eight. We also proposed a domain independent measure to find the distance 

between two video objects based on their key video object planes. Using this technique, 

we achieved significantly better video object retrieval performance compared to the other 

existent techniques in the literature. 

We proposed three new descriptors for retrieval of video objects by their local 

motion, which are based on the variances of the ART and Fourier coefficients, and the 

variances of angular circular segments of video objects. When compared to human 

ranking, these descriptors demonstrated their ability to successfully classify local object 
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motion in both compressed and uncompressed domains. The angular circular local motion 

descriptor had very low complexity and performed more robustly in both domains. 

Nevertheless, it was concluded that employing ART and Fourier coefficient variances as 

local motion descriptors can be more advantageous in terms of complexity in cases where 

coefficients were already computed , e.g. for shape retrieval, and exist in the video stream 

as metadata. 

We also presented color content matching of arbitrarily shaped MPEG-4 video 

objects. Specific issues arising from computation of the DC coefficient based color 

histogram in the MPEG-4 compressed domain were discussed. We presented color 

retrieval results employing YC b C r , HSV, and MTM color spaces and various quantization 

parameters on an MPEG-4 database. We also proposed a method to detect and 

compensate for chroma keying artifacts that may exist in the bit stream depending on the 

segmentation technique used to obtain the video object and the MPEG-4 encoding. 

Employing our method in the presence of such artifacts resulted in significant retrieval 

performance gains. 

The effectiveness and excellent computational tradeoffs associated with our 

proposed shape, local motion, and color retrieval techniques make them suitable for 

arbitrarily shaped video database applications, especially for those containing MPEG-4 bit 

streams. Our video object summarization algorithm can also be used for fast browsing of 

video content in databases and storyboard generation. The shape, color, and motion 

features we employ can be made MPEG-7 standard compliant by coding with the 
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Description Definition Language (DLL). Once these features are computed and coded in 

an MPEG-7 bit stream, they can be utilized by other database applications supporting the 

MPEG-7 standard. 

Besides database applications, our techniques are potentially useful in video 

communications as well. For example, in a wireless video telephony application where 

bandwidth is limited, rather than the whole video sequence, key video object planes that 

demonstrate the speakers' key actions can be transmitted. In a digital camera application, 

only the video object planes that efficiently summarize the video object content need to 

be stored, resulting in significant memory savings. Moreover, if some video objects in a 

video sequence are identified as being important -using their shape, color, or motion 

content- for a particular application, they can be coded with a better accuracy than the 

rest of the video objects, or transmitted in a more robust channel, providing 

communication efficiency. 

Although we employed the MPEG-4 object-based representation in this thesis, most 

of our techniques can potentially be applied to other object-based representations as well. 

Here, the MPEG-4 compressed bit stream is mostly utilized to obtain a low resolution 

version of the object shape information. Therefore, as long as we can obtain a low 

resolution version of the object's shape and color information from a compressed bit 

stream without full decompression, our techniques would be applicable to such domain. 
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7.1 Summary of Thesis Contributions 

The main contributions of this dissertation can be summarized as follows: 

• A video object content summarization algorithm in the MPEG-4 compressed 

domain. Our algorithm has a demonstrated ability to find the object planes that 

efficiently summarize the salient content of arbitrarily shaped video. 

• A method to compute some commonly used shape features in the compressed 

domain. This method demonstrated computational savings of more than two 

orders of magnitude with only a small degradation in the retrieval performance 

compared to the uncompressed domain implementations. 

• Three generic (i.e. content independent) features to describe the local motion of 

video objects. These descriptors demonstrated the ability to successfully classify 

local object motion in both compressed and uncompressed domains. 

Other important contributions of this thesis are as follows. 

• A distance measure to compute the shape distance between two video objects 

based on the still shape distances of their representative video object planes. 

Employing this measure resulted in a significant retrieval performance 

improvement. 

• A method to detect and compensate for the potential chroma keying artifacts in 

MPEG-4 video objects that may cause erroneous color histogram computation. 

This method was shown to result in significant retrieval performance gains in the 

presence of such artifacts. 
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7.2 Future Research Directions 

Object-based video retrieval is an emerging research area, which has been driven by the 

increasing availability of arbitrarily shaped video content, due to the recent 

standardization of the MPEG-4 object-based representation and the advancements in the 

segmentation technology. Although some of the techniques used in image and video 

retrieval are applicable to content-based matching of video objects, there are many issues 

specific to arbitrarily shaped video retrieval that remain to be explored. In this thesis we 

addressed some of these issues with a special emphasis on compressed domain 

processing. We envision the possible research directions that would extend the work of 

this thesis as follows. 

• Combining multiple features: Content matching by using all or a subset of the 

suggested shape, motion, and color features could potentially lead to better 

retrieval accuracy. However, selection of the most effective set of features and the 

weighing their importance in distance computation are still issues that need to be 

addressed. 

• Compact representation: Efficient coded representations of the color, shape, and 

motion descriptors of video objects need to be developed in order to reduce the 

storage overhead of these descriptors. For example, this can be achieved by 

exploiting the possible redundancies in the descriptors of temporally close VOPs. 
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Efficient indexing: As the database size increases, proper indexing of content-

based features becomes very important, as it will have a direct effect on retrieval 

speed. 

Optimization for specific applications: Although our proposed techniques are 

generic, such that they do not assume any prior information about the video 

content, they can be further optimized for specific applications containing a 

particular type of video content (for example, head and shoulder sequences, 

sports, and surveillance sequences), possibly resulting in better retrieval 

performance in those domains. 

Retrieval of video scenes: The techniques we proposed for retrieval of individual 

video objects can be extended to the retrieval of video scenes, which are typically 

composed of one or more video objects. 
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Appendix A 

Retrieval Performance Measures 

Typically, performance of a retrieval system is evaluated by first having human subjects 

mark the relevant database items (which are also referred to as ground truth items) for a 

given query and then measure the level of agreement between human evaluators and the 

system ranking of the relevant database items. Estabhshing a generic metric that would be 

applicable to a wide variety of content for measuring the similarity in the human and 

system ranking is still an open research issue. 

In traditional information retrieval, performance of document classification is 

measured by precision and recall metrics [74]. Recall measures the ability of the system 

to retrieve all documents that are relevant as follows, 

_ „ relevant and correctly retrieved , A ^ 
Recall = - . (A. 1) 

all relevant 
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Note that, if all database items that are relevant to the query item are retrieved, recall 

would take its maximum possible value, i.e. "1". On the other hand, precision measures 

the ability of the system to retrieve only the documents that are relevant and it is given by 

_, . . relevant and correctly retrieved 
Precision = . lA.z; 

all retrieved 

Here, if all the retrieved items are relevant to the query item, precision would be 

equal to "1". 

Although precision and recall measures are simple to compute and are useful in 

assessing the performance of retrieval systems where a large test set is available, they 

have the following limitations. 

• Precision and recall metrics do not consider the ranking of the relevant items. 

For example, let's assume that for a given query human subjects marked 10 items 

as relevant (ground truth items) and the retrieval systems A and B output 50 

items as relevant, including the 10 ground truth items. Clearly, 40 items 

outputted by the retrieval systems are not relevant to the query. Lets say system 

A ranks the ground truth items in the first 10 and system B ranks the relevant 

items in the last 10, i.e. from 40 to 50. Clearly, system A shows a superior 

performance. However, precision and recall measures would be identical in both 

cases, as they do not consider ranking. 

• Precision and recall measures require large databases in order to accurately 

measure the retrieval performance. Performing subjective tests and marking the 

ground truth items in large databases is very time consuming and costly. 
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• In retrieval, typically a threshold is used to eliminate the items that are not 

relevant to the query item. That is, if the distance between the query and 

database item is larger than a threshold, it is not retrieved. Precision and recall 

values very much depend on this threshold value. For example, two identical 

systems could have inconsistent precision and recall rates for the same query, if 

the threshold values are chosen differently. 

There have been some attempts in the literature to propose metrics that would 

overcome these limitations [78]. However, most of these metrics are customized for 

specific retrieval applications. 

Recall that MPEG-7 is aimed towards standardizing content-based description 

interface. Similar to the previous MPEG standards, MPEG-7 also had a competition 

stage where different technologies competed for the best performance. In order to 

measure the retrieval performance, a new metric, Normalized Modified Retrieval Rank 

(NMRR), was employed in various core experiments [40]. NMRR not only indicates how 

much of the correct items are retrieved, but also how highly they are ranked among the 

retrieved items, making this measure more robust even for small databases. Also, because 

of the way this measure is defined, the dependency on a threshold value (that is used to 

eliminate irrelevant items) is removed. These properties make the NMRR metric very 

suitable to measure the performance of our proposed techniques. Next, we present a 

detailed description on the computation of NMRR. 
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A.l Normalized Modified Retrieval Rank 

The Normalized Modified Retrieval Rank (NMRR) is given by 

rN^n)Rank(k)^ 

NMRR(n) = V 
£ 1 NG(n) 

NG(n) 
0-5 — (A.3) 

K + 0.5-0.5* NG(n) 

where NG(n) is the number of ground truth items marked as similar to the query item n, 

Rank(Jc) is the ranking of the ground truth item k by the retrieval algorithm. K equals to 

min(4*NG(n), 2*GTM), where GTM is the maximum of NG(n) for all the queries. A rank 

of (K+l) is assigned to each of the ground truth images that are not among the first K 

retrieved items. 

The NMRR is in the range of [0 1] and the smaller values represent a better retrieval 

performance. Average NMRR (ANMRR) is defined as the average NMRR over a range 

of queries. 

A.2 NMRR versus Precision/Recall 

Considering that the NMRR is a relatively new metric and some readers may be more 

familiar with precision and recall metrics, we provide some example retrieval results and 

present the relevant NMRR, precision, and recall values. In our example, we assume that 

there are 10 items in a database that are relevant to the query (i.e. marked as similar to 

the query by subjective testing) and that 20 items are retrieved in total by the retrieval 
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system. Table A. l shows the different NMMR rates and corresponding precision and 

recall values for various retrieval performance levels. Note that the maximum value of the 

precision here is 0.5, as twice as many items as the ground truth items are retrieved in all 

cases. The table also shows the hits, misses, false alarm rates, and the ranking of the 

relevant items that correspond to each NMRR value. Here, "hits" refers to the number of 

relevant items that are in the first 20 retrieved items. Considering that, in this example, 

there are 10 items marked as relevant to the query, when "hits" takes a value of 10, this 

means that all the relevant items are retrieved. The "Misses" column refers to the number 

of relevant items that are not ranked in the first 20. The "False alarm rate" column, on the 

other hand, corresponds to the number of falsely retrieved (irrelevant) items ranked in the 

top 10. 

As can be observed from the corresponding hits, misses, and false alarm rates, when 

the NMRR values are smaller than 0.1, the retrieval performance is very close to the ideal 

case, i.e., almost all the relevant items are retrieved correctly. When the NMRR values 

are between 0.1 and 0.2, the retrieval performance is still very good, as more than 80% of 

the items are correctly retrieved. The NMRR values above 0.4 correspond to poor 

retrieval performance. 
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N M R R Recall Precision hits* ** 
misses false alarm 

*** 
rate 

ranking of the relevant items 

0 1 0.5 10 0 0 1,2,3,4,5,6,7,8,9,10 

0.01 1 0.5 10 0 1 1,2,3,4,5,6,7,8,10,11 

0.05 1 0.5 10 0 2 1,2,3,4,5,6,7,8,13,14 

0.08 0.9 0.45 9 1 1 1,2,3,4,5,6,7,9,10 

0.10 0.9 0.45 9 1 1 1,2,3,4,5,7,8,9,10 

0.14 0.9 0.45 9 1 3 1,2,3,4,5,6,7,13,14 

0.16 1 0.5 10 0 5 1,2,3,4,5,11,12,13,14,15 

0.19 0.8 0.4 8 2 3 1,2,3,4,5,8,9,11 

0.21 0.9 0.45 9 1 2 1,2,4,6,7,8,9,10,19 

0.25 0.8 0.4 8 2 3 1,2,5,6,7,8,9,13 

0.29 1 0.5 10 0 5 1,3,5,7,9,11,13,15,17,19 

0.35 0.7 0.35 7 3 5 1,2,3,6,8,12,14 

0.42 0.5 0.25 5 5 5 1,2,3,4,5 

0.63 0.3 0.15 3 7 7 1,2,3 

0.65 1 0.5 10 0 10 11,12,13,14,15,16,17,18,19, 
20 

0.9 0.5 0.25 5 5 10 16,17,18,19,20 

1 0 0 0 10 10 -

Table A-1. N M R R vs. precision/recall values for various retrieval performances. 

* Correctly retrieved items (i.e. relevant to the query) in top 20. 

** Relevant items that are not retrieved (i.e. missed) in top 20. 

*** Falsely retrieved items (i.e. not relevant to the query) in top 10. 
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Appendix B 

Video Object Database 

Our database contains video objects obtained by employing automatic and semi­

automatic post-production segmentation tools, as well as employing chroma keying 

technique where the foreground object is separated from the background by placing the 

object in front of a color screen that has a unique chroma key value (typically blue or 

green). The representative VOPs of the database video objects are presented in Figure 

B . l to Figure B.20. As can be seen from the figures, our database covers a good variation 

of shapes and motion. Nevertheless, because it is desired that similar database items exist 

in the database for some queries, the database is selected such that some of the video 

objects in the database show similarity. 
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V O P O 

Figure B . l : Akiyo video object. 

VOP 112 VOP 120 VOP 128 

VOP 224 VOP 232 VOP 240 

Figure B.2: Bream video object. 
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VOP 5 VOP 22 VOP 27 VOP 89 VOP 282 VOP 299 

Figure B.3: Children 1 video object. 
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VOP 2 VOP 32 VOP 58 VOP 299 

Figure B.5: Coastguard 1 video object. 

VOP 10 VOP 107 

Figure B.6: Coastguard 2 video object. 

VOP 8 VOP 107 VOP 146 VOP 299 

Figure B.7: Fish 1 video object. 
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VOP 7 VOP 32 VOP 72 VOP 174 

Figure B.8: Fish 2 video object. 

VOP 4 VOP 16 VOP 60 VOP 92 VOP 137 VOP 233 

Figure B.9: Fish 3 video object. 

VOP1 VOP 30 VOP 90 VOP 135 

Figure B.10: Foreman video object. 
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VOP 6 VOP 22 VOP 62 VOP 86 VOP 94 VOP 134 VOP 150 VOP 246 

» 

Figure B. l l : Hall Monitor 1 video object. 

VOP 85 VOP 122 VOP 161 VOP 181 VOP 291 VOP 314 

Figure B.12: Hall Monitor 2 video object. 

VOP0 

Figure B.13: News 1 video object. 
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VOPO 

VOP 4 VOP 16 VOP 52 

Figure B . l5 : Silent video object. 
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VOPO VOP 206 

l l 

Figure B.16: Penguin video object. 

VOP 6 

Figure B.17: Sean video object. 

VOPO VOP 18 VOP35 VOP 58 VOP 117 VOP 151 

Figure B.18: Singing g i r l video object. 
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Figure B.19: Weather video object. 

Figure B.20: Stefan video object. 
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Appendix C 

Color Space Conversions 

In this section, we present the color space conversions from the YC b C r to the HSV and 

MTM (Mathematical Transformation to Munsell) spaces. More information regarding to 

these color spaces can be found in [26][74][114][115]. 

C.l YC b C r to HSV Conversion 

The HSV color space consists of Hue (H), Saturation (S), and Value (V) components. H 

represents the dominant spectral tone of the color, S indicates how dominant the color is 

and V represents the brightness of the color. Converting the Y (luminance), C b 

(chrominance b), and Cr (chrominance r) components to the H, S, and V components 

requires a non linear transformation as given below. 

R = Y+ 1.403 C r, (C.l) 

G = Y-0.344C b-0.714C r , (C.2) 
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B = Y+ 1.773 C b , (C3) 

H = acos\ 

S =1 

±((R-G) + (R-B)) 

j(R-G)2 +(R-B)(G-B) 

3 
rmn(R,G,B), 

R + G + B 
„ R+G+B 

(CA) 

( C 5 ) 

( C 6 ) 

C.2 Y C b C r to M T M Conversion 

The MTM color space is formed by Hue (H), Value (V) and Chroma (C) components, 

which are computed from the Y, C b , and Cr components in three steps as follows. 

Step 1: Linear conversion to X, Y, Z: First convert the Y, C b , and Cr components to R, 

G, and B components using the equations B.l , B.2, and B.3. Then perform the following 

conversion: 

"0.608 0.174 0.200 R 

Y = 0.299 0.587 0.144 G (C7) 

Z 0.000 0.066 1.112 B 

Step 2: Non linear conversion concerned with the human visual system is performed as: 

H, = V(Xc)-V(Y), 

H 2=V(Z c)-V(Y),and 

H 3 = V(Y), 

(C.8) 

(C9) 

(CIO) 

where V(n)=l 1.6nl/3 - 1.6n , and n= X c , Y, and Z c 
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Step 3: Finally, the F£, V, and C components are computed as follows: 

H = atan 
0.4 H2 

V = 0.23 H3, and 

C = ̂ H^ +0.16//2

: 

(C.11) 

(C.12) 

(C.13) 
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