
Teleoperation from Movable Bases: 
Modeling, Analysis, Design and 

Experiments with a Hydraulic Motion 
Platform 

by 

Mohammad Reza Sirouspour 

B.Sc. (Electrical Engineering) Sharif University of Technology, Tehran/Iran, 1995 

M.Sc. (Electrical Engineering) Sharif University of Technology, Tehran/Iran, 1997 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

in 

THE FACULTY OF GRADUATE STUDIES 

(Department of Electrical and Computer Engineering) 

We accept this thesis as conforming 

to the recniired standard 

THE UNIVERSITY OF BRITISH COLUMBIA 

March 2003 

© Mohammad Reza Sirouspour, 2003 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make it 

freely available for reference and study. I further agree that permission for extensive 

copying of this thesis for scholarly purposes may be granted by the head of my 

department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department of BJeOrlcU & Co^pcAW ^ . 

The University of British Columbia 
Vancouver, Canada 

Date A?r/i o%/ 2O03 

DE-6 (2/88) 



Abstract 

There are manual control and teleoperation systems in which the operator is subject to base 

motion. Examples are aircraft piloting and joystick control of heavy hydraulic machines such 

as excavators. This thesis presents a new framework for the modeling, analysis, design and 

evaluation of controllers for teleoperation/manual control from movable bases. 

First, a general model for teleoperation/manual control from movable bases is presented. 

Second, models for the operator dynamics are introduced and identified experimentally. Third, a 

novel robust ^-synthesis based control system design approach is proposed that addresses robust 

stability and performance issues. The approach is illustrated by a prototype single-degree-of-

freedom manual control task in which the operator positions his/her base, a hydraulic motion 

simulator, using a force-feedback joystick. The designed controllers are robustly stable with 

respect to parametric uncertainties in the arm/joystick as well as the feedthrough dynamics, and 

achieve a desired level of performance based on relevant measures. The proposed methods are 

compared with controllers that ignore the base motion through analysis and a set of experiments. 

The robust controllers suppress the operator-induced oscillations and produce well-damped 

responses, whereas the fixed base controllers become unstable. 

Motivated by the need for high performance motion simulation in the evaluation of con­

trollers for feedthrough cancellation, the position control of mechanical systems driven by hy­

draulic actuators is studied. This includes single-cylinder hydraulic servo-systems and multiple-

degree-of-freedom hydraulic robots. Nonlinear dynamics of the actuators and nonlinear rigid 

body dynamics are considered in the model of hydraulic robots. For single-degree-of-freedom 

systems, valve dynamics are also included. Parametric uncertainties are allowed in these models. 

Using the backstepping technique, novel nonlinear and adaptive/nonlinear control laws are 

proposed that incorporate the system dynamics into their design. It is proven via Lyapunov 
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analysis that the closed-loop systems are stable and that the tracking errors converge to zero un­

der the proposed feedback laws. The effectiveness of these approaches is demonstrated through 

a series of simulations and experiments carried out with the UBC hydraulic motion simulator. 

Finally, a numerical approach is developed to optimize the feedback gains for a simplified 

version of the proposed nonlinear controllers for hydraulic servo-systems. 
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Chapter 1 

Introduction 

1.1 Background 

Despite significant advances in automatic control systems during the last few decades, the 

human operator still has an important role to play in many control applications. The presence 

of the operator is necessary in these applications mostly due to unstructured nature of the tasks 

they involve. Even though many of the low-level control activities are performed automatically, 

the operator has to carry out the high-level control actions. Piloted vehicles are good examples 

of such systems. Most modern aircraft are still controlled by human pilots and automobiles 

are driven by human drivers. Human operators employ joysticks to operate heavy hydraulic 

machines used in the construction, mining and forest industries, such as excavators, bulldozers, 

log-loaders, and feller-bunchers. 

The human operator is also an essential part of any telerobotic system. Applications include 

space exploration, underwater operations such as inspection and repair of deep water equipment, 

tele-surgery, operation in hazardous environments such as nuclear industry, mining and many 

others [82]. In conventional teleoperation systems, the operator utilizes an input device (master 

robot) to control the slave robot (usually located in a remote place) and to interact with the 

environment. Sensory information such as the operator's hand force, environment reaction 

forces, and master and slave positions are used to coordinate the master and slave operation. 

The examples cited here are similar in the sense that in all of them the human operator uses 

the provided sensory information and an input device to control the system. These applications 

1 



1.1 Background 2 

Reference 
O — Operator System Output 

Figure 1.1: A general manual control system. 

can be placed into the broad class of manual control systems. A simple block diagram of a 

typical human-machine control system is shown in Figure 1.1. Research in the area of classical 

manual control systems (e.g., aircraft piloting) has yielded models for the analysis of the closed-

loop behavior of the human operator [45,46,59,80,81]. Teleoperation systems have also been 

the subject of research during the course of the last two decades. Several control architectures 

have been proposed for these systems. Stability and performance of these architectures have 

been extensively studied [4,5,22,41,43,57,62,95,98,135]. 

In some teleoperation/manual control applications, the operator is exposed to base motion. 

For example, the operator of an excavator uses a joystick to control the bucket and to carry 

out an assigned task. As the bucket comes in contact with a hard environment, the excavator 

cab jolts back in response to the environment reaction forces. In an aircraft, the pilot is subject 

to base accelerations when he/she maneuvers the plane. Some other examples are operation of 

telescopic boom lifters, control of high speed vehicles over rough terrain or waves, control of 

fly-by-wire systems and operation of powered wheelchairs. 

The base motion can affect the performance of a teleoperation/manual control system in 

several ways. The relative motion between the operator and the task can disrupt vision acuity 

and hence adversely affect the operation. It may also interfere with the neuromuscular process. 

Such interferences could reduce the signal-to-noise ratio between intentional, task related muscle 

activities and random activities (increased remnant noise) [69,79]. The operator's body response 

to base accelerations can also generate unintentional forces at the hand/joystick interface and 

introduce involuntary commands in addition to the voluntary commands. This is referred to'as 

biodynamic feedthrough in joystick-controlled systems [31,51,55,124,125]. 

Biodynamic interferences can be classified as either open-loop or closed-loop. In open-

loop cases, the base acceleration is uncorrelated with the operator voluntary command and 
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is caused by external disturbances, e.g., in weapon aiming on-board moving platforms. In 

another category of teleoperation/manual control tasks, the base acceleration is a result of the 

operator command. Piloted aircraft and joystick-controlled hydraulic machines belong to this 

category. In these systems, the existence of a feedback path through the human body and the 

hand controller can not only degrade the performance but it may also cause instability. For 

example, biodynamic feedthrough has been known to contribute to the pilot-coupled oscillations 

(PCO) and roll-ratchet phenomena in aircraft [47,51,115], operator-induced oscillations in the 

operation of excavators [6], and the oscillatory fore and aft motion known as bucking in powered 

wheelchairs [8]. 

One of the objectives of this thesis is to study the effects of biodynamic feedthrough on 

teleoperation/manual control systems with movable bases. This includes development of new 

models that can be used in the analysis of such systems. The design of controllers that can 

achieve optimized performance and robust stability in the presence of base motion is also ad­

dressed by the thesis. The evaluation of the proposed control methods could be costly and 

time consuming if each application of interest were to be prototyped and tested. An alternative 

approach is to use high performance motion simulation to generate the base motion according 

to the dynamics of the teleoperation/manual control system of interest. 

This thesis proposes and develops an experimental testbed composed of a high performance 

motion simulator [99] (Figure 1.2) and a force-reflecting joystick [104] (Figure 1.3) to be used in 

the evaluation of control algorithms for feedthrough cancelation. This significantly reduces the 

time and cost associated with biodynamic feedthrough related experiments at the present time 

and in future. The motion simulator is a six-degree-of-freedom hydraulic Stewart platform. The 

use of hydraulic actuators and the parallel structure of this manipulator make it suitable for 

applications that require large accelerations and large forces. Hydraulic actuators, robots and 

machinery are widely used in construction and mining industries, as well as in motion simulators. 

They have rapid responses and high power-to-weight ratios. Traditionally, hydraulic systems 

are controlled by linear controllers based on local linearization of their nonlinear dynamics. 

The performance achievable by these controllers is limited because of conservative loop gains 

that sacrifice the performance of the system in favor of its stability. The proposed motion 

simulation testbed could be used to simulate a wide range of systems with different motion 
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Figure 1.2: The UBC motion simulator. Figure 1.3: The twin-pantograph joystick. 

dynamics. This motivates the development of high performance controllers that can faithfully 

reproduce the base motion in these applications. Therefore, the second part of this thesis is 

concerned with the position control of hydraulic actuators and robots. 

It is well known that the hydraulic actuators have highly nonlinear dynamics [83]. The 

nonlinear it ies are due to nonlinear flow/pressure characteristics, variations in the trapped fluid 

volume because of piston motion, and fluid compressibility. Other factors such as transmission 

nonlinearities, flow forces and their effects on the spool position, and friction contribute to the 

nonlinear behavior. The nonlinear dynamics along with dynamic uncertainties such as time 

varying hydraulic parameters make the high performance control of these actuators challeng­

ing. The control of robot manipulators driven by hydraulic actuators is even more difficult. In 

addition to nonlinear actuator dynamics, their second-order rigid body dynamics are also non­

linear. The problem becomes extremely challenging if uncertainties in the rigid body dynamics 

and the hydraulic actuator dynamics are also taken into account. The uncertainties arise from 
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unknown and time varying hydraulic parameters, and also variable payload and unknown rigid 

body parameters. The high performance control of rigid link electrically driven (RLED) robots 

has been extensively addressed in the literature, e.g. see [11,78,90,114,117]. Nevertheless, 

these state of the art controllers are not applicable to hydraulically driven manipulators. These 

controllers mostly neglect the actuator dynamics and assume that ideal torque/force source 

actuators are available for the control. Although this is a reasonable assumption for electri­

cal actuators, it is not valid for hydraulic actuators because they exhibit dominant nonlinear 

dynamics and resemble a velocity source rather than a torque/force source. 

Remark: It should be mentioned that the proposed hydraulic controllers have not been used in 

the feedthrough cancellation experiments presented in this thesis. The current hardware used 

to control the UBC motion platform has limited computational power. We have been able to 

evaluate the new hydraulic controllers by developing a custom communication link between the 

present hardware and a Pentium PC which serves as the controller (see Chapter 7 for details). 

However, major modifications are required before the entire system including the platform 

and the joystick controllers can simultaneously run on a PC with safety features comparable 

to those of the current system in place. The amount of work turned out to be beyond the 

scope of this thesis and therefore, it was decided to use the existing hardware and proportional 

hydraulic controllers in the feedthrough related experiments. The new hydraulic controllers can 

be employed in future experiments after making the required changes. This will not affect the 

generality of the proposed framework by the thesis as outlined in Chapter 4. 

1.2 Prior Work 

1.2.1 Modeling and Analysis of Manual Control/Teleoperation Systems 

Research in the area of human controlled machines has yielded several models for the human 

operator closed-loop behavior. McRuer et al. in [80,81] give a survey of so called quasi-linear 

crossover models of the human operator in single-axis tracking tasks. These models are based 

on experimental evidences that revealed the operator-machine open-loop gain follows a slope 

of —20dB/dec around its crossover frequency. The structural model of the human operator 

in [44-48] is an extension of the basic crossover model. This model assumes that the primary 
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equalization capabilities of the human operator occur through operation on a proprioceptively 

sensed, as opposed to a visually sensed variable. It also embodies the use of motion cues in 

the manual control and the neuromuscular dynamics of the operator's arm. Models for the 

neuromuscular dynamics are proposed in the literature, e.g. in [91]. 

While the basic crossover and the structural models of the human operator are presented 

in the frequency domain, the model proposed by Kleinman et al. in [59] is based on optimal 

control and estimation theories. The underlying assumption in this approach is that the human 

-operator adopts an optimal control strategy in manual pursuit tasks by trying to minimize some 

quadratic performance index. A Kaiman filter is employed to estimate the system states to be 

used by the optimal control law. Greene in [36,37] proposes a model for the human operator 

in tracking systems based on the so called sequential adaptive system theory. The reference 

input to be tracked is predicted linearly over discrete time intervals. An optimal second-order 

dynamics is obtained for the error between the predicted reference and the system output in 

each of the time intervals and used to predict the operator behavior. 

Teleoperation systems can be viewed as non-conventional manual control systems. They 

have found vast application in areas such as space technology, underwater exploration, mining, 

health, nuclear and toxic material handling, and the entertainment industry [43,82,101]. Several 

control architectures have been proposed for teleoperation system design. Many of the proposed 

controllers use two communication channels between the master and the slave. In position-

position approaches, the positions of the master and slave robots are used as reference commands 

for each other [95]. In the two-channel position-force approach, the master position is sent to 

the slave and the environment force is returned to the master [41,65,67,118]. In the force-force 

architectures, the hand and environment forces are sent to the slave and master, respectively 

[57]. To eliminate the lack of coordination between the master and the slave, inherent in such 

an approach, a position-based coordinating force has been proposed by [100]. 

The most commonly used notion of performance in teleoperation systems is transparency. 

By definition, an ideal teleoperation system should create a human-machine interface of such 

high fidelity that the human operator feels that he is directly interacting with the remote envi­

ronment and is performing the task. Perfect transparency is not achievable using two-channel 

teleoperation structures [41,62]. Al l four channels of information, i.e., master and slave posi-
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tions and hand and environment forces, must be communicated between the master and slave 

sides. This results in the four-channel bilateral teleoperation architecture [62,135]. Achieving 

ideal transparency also requires acceleration measurement. Yokokhji et al. in [135] proposes a 

modified definition of transparency in which the operator interacts with the environment via a 

virtual tool. This eliminates the need for acceleration measurement. 

The design of controllers for teleoperation systems is mainly a tradeoff between performance 

and stability [42,62,82,98]. Time delays in communication channels, nonlinear and uncertain 

master and slave dynamics, unknown and usually time varying dynamics of the human operator 

and the environment are among the factors that limit the achievable level of transparency. 

Several control methods have been proposed in the literature to address the tradeoff between 

stability and transparency. These include passivity-based controllers [4,5,85,86], designs based 

on i?oo techniques and //-synthesis loop shaping techniques [22,50,57,67,131], adaptive nonlinear 

controllers [140] and many others. 

In teleoperation systems, the human operator uses kinesthetic and visual sensory information 

to generate his/her control commands. Most of the reported works in the literature concerning 

modeling, analysis and design of teleoperation systems employ passive mass-spring-damper 

models for the operator (e.g. see [41,57,62,98]). Lee et al. in [64-66] use a more elaborate model 

of the operator in teleoperation. The model assumes that the operator intentional reaction to 

position and force tracking errors is produced by PD controllers acting on the corresponding 

errors followed by a delayed first-order dynamics representing the neuromuscular dynamics. A 

connection between the models for aircraft piloting and teleoperation systems is made in [94]. 

The authors employ the structural model [45] to model the operator behavior in a two-channel 

teleoperation system. 

1.2.2 Effect of Base Motion 

The motion of the operator's base can degrade the performance and stability of teleoperation 

or manual control systems. Lewis et al. [69] and McLeod et al. [79] survey the effects of whole-

body vibration on continuous manual control performance. The reviews are comprehensive 

and address the effects of vibration variables (frequency, magnitude, axis etc.), control system 

variables (e.g., physical characteristic of the hand controller, its gain, system dynamics and 
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display variables), and vibration duration. The outcomes of these studies show that the base 

motion can degrade vision acuity and increase noise in muscle activities. The human body/arm 

response to base acceleration can also generate involuntary commands known as biodynamic 

feedthrough or stick feedthrough and interfere with the execution of the task [69,79]. 

The biodynamic response of the operator is generally nonlinear and very complex to model. 

Jex et al. in [55] develop and validate a biomechanical model for an operator holding a pas­

sive joystick while subjected to base acceleration. They replace relevant body parts with their 

mechanical equivalents to derive a nonlinear model that can predict feedthrough transmission 

to the joystick and the operator's head. The complexity of this model and the difficulties as­

sociated with the identification of some of its parameters limit its application. Biodynamic 

interferences can be of open-loop or closed-loop nature [125]. Open-loop interferences occur 

in applications such as weapon aiming on-board moving platforms in which the base acceler­

ation is uncorrelated with the operator's action. In [68], the author experimentally identifies 

the spectrum of feedthrough interferences and uses the results to predict the performance of 

the operator in an open-loop feedthrough manual tracking experiment. The author also claims 

that the feedthrough response exhibits approximately a linear behavior in the specific experi­

ment conducted in this work. The open-loop and closed-loop feedthrough can be particularly 

troublesome if the system to be controlled has resonant modes within the frequency range that 

feedthrough content is significant [52]. 

In closed-loop biodynamic environments, such as in aircraft piloting or in joystick control 

of heavy hydraulic machines, the operator is exposed to base motions caused by his/her own 

action. Therefore, a feedback loop is established through the operator's body and arm, the 

hand controller and the dynamics of the controlled system. Serious stability issues may arise 

due to this loop. Feedthrough related oscillations have been reported in the operation of some 

aircraft [45,115,124,125] and joystick controlled hydraulic machines [6,31]. Arai et al. in [6] 

employ a feedthrough model similar to that introduced in [55] to numerically simulate the 

operation of an excavator and to show a potential oscillatory behavior due to biodynamic 

feedthrough. Idan et al. in [51] present a modified model of the human control behavior 

when subjected to closed-loop base accelerations using an ad hoc linear feedthrough model. By 

assuming that the crossover model is valid under the conditions of vehicle motion, the authors 
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show that instability can occur in aircraft piloting. 

To the best of the author's knowledge, the work by Velger et al. in [125] is the first attempt 

at feedthrough compensation. The authors propose an adaptive filtering technique to suppress 

oscillations due to biodynamic feedthrough in applications with open-loop feedthrough inter­

ference. They claim their method also works for closed-loop feedthrough interferences provided 

that a spectral separation can be made between the system response to operator commands 

and biodynamic interference. However, they only report experimental results for an open-loop 

case in [124]. The idea of active feedthrough cancelation is first introduced in [31]. The authors 

use a force-feedback joystick to feed forward the base acceleration to the joystick based on an 

acceleration feedback model identified for feedthrough dynamics. Arai et al. in [6] propose to 

increase the damping of the joystick in order to suppress feedthrough induced oscillation in 

the operation of excavators. The prefiltering methods proposed in [52] and references therein 

attempt to avoid exciting the system resonant modes by filtering the joystick output signal. 

These methods do not address performance and robustness issues. They also treat the opera­

tor's command as an exogenous signal which is obviously not the case if closed-loop feedthrough 

is present. 

1.2.3 Control of Hydraulic Actuators 

The traditional and widely used approach to the control of electrohydraulic systems is based 

on local linearization of the nonlinear dynamics about a nominal operating point, e.g. see 

[83,102]. These controllers sacrifice the system performance to achieve stability in the presence 

of variations in the operating point and uncertainty in the dynamics [126]. 

Adaptive and robust controllers based on linearized models have been proposed to address 

performance and robustness issues. In [14], Bobrow et al. develop an adaptive controller that is 

locally stable and is able to cope with the changes in system parameters such as flow constants, 

fluid bulk modulus and variable loading. [137] addresses the velocity control problem of nonlinear 

hydraulic servosystems using an adaptive model following control scheme. The valve dynamics 

are ignored and no experimental data is reported. A drawback of the preceeding methods is 

that they do not provide a global stability proof. 

Lu et al. in [77] introduce a robust controller for hydraulic servosystems using a linearized 
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model of the system. The controller requires acceleration measurement. In [132], Yanada et al. 

also develop a robust controller for an electrohydraulic servo motor using a linearized model of 

the system and a sliding mode control law to deal with nonlinearities. The valve dynamics are 

ignored in the design and acceleration measurements are required for the implementation of the 

controller. In [138], an approach employing variable structure control with integral compensa­

tion is presented for an electrohydraulic position servo control system to achieve accurate servo 

tracking in the presence of load disturbances and plant parameter variation. Again, accelera­

tion measurements are required for the controller implementation. Control action switching in 

variable structure control methods can also excite the system's unmodeled high-order dynamics 

and lead to instability which is another drawback of the proposed method. 

The use of control is proposed in [61] to robustly control the force exerted by a hydraulic 

servo-actuator on its environment. A linear model of the system is first obtained to relate the 

control command to the actuator output force. A robust controller is then designed to achieve 

force control and robust stability with respect to uncertainties in the actuator and environment 

dynamics. In [87], a class of linear models are obtained to represent the nonlinear hydraulic 

dynamics over the desired range of operation using the Golubev method [34]. A robust low-order 

controller is designed to achieve force tracking. 

Dynamic feedback linearization has also been used for the control of hydraulic actuators. 

Vossoughi et al. in [126] propose a control law for a single-degree-of-freedom rotational joint 

driven by a linear actuator based on this idea. The authors conclude that for low inertia 

and high bandwidth systems, the valve dynamics play an important role in the overall system 

performance and may not be ignored. The load acceleration and derivative of actuator pressures 

are required in the implementation of the controller if the valve dynamics are considered. To 

incorporate the effects of parametric uncertainties on the feedback linearization, the authors 

also develop a state space linear fractional representation of the linearized system. [21] adopts 

feedback linearization to control a load sensing hydraulic servo system. The output of interest is 

the angular velocity. Although good performance has been claimed for the proposed controller 

based on simulation results, the control law includes the acceleration and jerk feedback which are 

not easily accessible. [40] and [13] also employ the idea of feedback linearization with acceleration 

feedback. Uncertainties in the dynamics are neglected and no experimental results are presented 



1.2 Prior Work •11 

in these reports. 

Lyapunov-based methods have been proposed for force control of hydraulic actuators. In 

[3], a nonlinear sliding mode controller is developed for an active electro-hydraulic suspension 

system. In [2] and [75], nonlinear force controllers are proposed for electrohydraulic actuators. 

Adaptation laws are also introduced to accommodate uncertainties in the hydraulic parameters. 

However, the stability proof presented in these papers is incorrect since the unknown hydraulic 

parameters appear in some of the derivatives used in the proposed control laws. In [116], Sohl et 

al. present a force-based position control strategy for hydraulic actuators. The authors assume 

that electro-hydraulic valve dynamics in their experimental setup are fast enough to be ignored. 

Dynamic uncertainties are also neglected. 

Lyapunov-based controllers can guarantee the stability of tracking errors in nonlinear control 

systems. However, they offer very little insight into the performance and the transient behavior 

of the system. The optimal control of linear systems has been widely studied and is standard 

today [15,70]. The necessary and sufficient conditions under which a closed-loop nonlinear 

system becomes optimum have already been derived [70]. Nevertheless, synthesizing an optimal 

control law that satisfies these conditions is not easy and not always feasible [56]. Numerical 

methods can be used as an alternative approach to tackle this problem. There have been a few 

reports on the application of numerical routines to the optimization of nonlinear controllers, 

e.g. see [9,32]. 

1.2.4 Control of Hydraulic Robots 

Hydraulic robots present a highly challenging design task to a control engineer. They exhibit 

significantly nonlinear dynamics. In these manipulators, nonlinear actuators are used to drive 

the nonlinear rigid body dynamics. Uncertainties in the hydraulic and rigid body dynamics 

add to the complexity of the problem. 

The high performance control of rigid link electrically driven (RLED) robots has been the 

subject of wide research. These efforts have produced several solutions for the problem. Among 

them are the computed torque [78] and passivity-based controllers [11,90,92,121]. Control laws 

have been proposed that avoid velocity measurement with the aid of nonlinear observers [11,23, 

84]. There have been three underlying philosophies to deal with parametric and non-parametric 
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uncertainties in robot dynamics, namely adaptive control, robust control and robust/adaptive 

control schemes. Examples of adaptive control methods for RLED robots are given in [63,90, 

96,97,113,114,121,130]. Robust controllers for RLED robots may be found in [1,54,117,119]. 

Robust/adaptive control laws for RLED robots are introduced in [12,18] and other references. 

Efforts have been made to incorporate the electrical actuator dynamics into the design 

of high performance position tracking controllers for RLED robots. For example, Tarn et 

al. in [122], adopt feedback linearization to dynamically linearize the third-order nonlinear, 

dynamics of an RLED robot. The drawback of this approach is the requirement for acceleration 

measurements. [33] presents a nonlinear adaptive controller for RLED robot manipulators that 

incorporates the linear actuator dynamics. This controller also requires acceleration feedback. 

[39] proposes a cascade control strategy combining an adaptive scheme for rigid-link robot 

control with a variable-structure control law for actuator control. Lim et al. in [74] introduce 

an output feedback controller for RLED robots augmented with a velocity observer and an 

electrical current observer using an integrator backstepping procedure. [136] synthesizes an 

adaptive controller which is able to cope with uncertainties in the robot and motor dynamics. 

An adaptive nonlinear observer is designed to avoid acceleration measurement. In [133] a hybrid 

adaptive/robust control scheme is proposed for RLED robot manipulators in the presence of 

arbitrary uncertain inertia parameters of the manipulator and electrical parameters of the 

actuators. The controller needs the measurement of motor armature current. The authors 

modify their control in [134] such that the need for velocity measurement and boundedness 

of estimated inertia parameters is eliminated. An adaptive partial state-feedback controller 

utilizing a filter to generate link velocity tracking error information is proposed in [17]. 

While the dynamics of electric actuators are linear and usually fast enough to be ignored 

in the design of controllers for RLED robots, the actuator dynamics are highly nonlinear and 

dominant in hydraulic robots. This prevents the application of the state of art controllers 

designed for RLED robots to hydraulic manipulators. There are few reports in the literature 

that address the control of hydraulic robots. In [120], Tafazoli et al. propose an observer-based 

friction compensating controller for a hydraulic manipulator. L i et al. in [72] suggest the use of 

pressure feedback to improve performance and stability in the control of the University of British 

Columbia hydraulic platform. In [89], the authors establish a simplified model in standard 
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form suitable for the application of singular perturbation methods [58] but no experimental or 
simulation results are provided. A decentralized adaptive controller is proposed for hydraulic 
robots by Edge et al. in [28,29]. None of these approaches provides a proof of global stability, 
which is important from both a theoretical and a practical point of view. Only recently [16] 
proposed a controller for hydraulic robots that is provably stable in the Lyapunov sense. This 
work was performed at the same time as the work presented in this thesis. The result of 
our research was received by the IEEE Transactions on Robotics and Automation in April 3, 

2000 [109]. Bu et al. [16] presented their work in the IEEE International Conference on Robotics 

and Automation held on April 24-27, 2000. The differences between our approach and their 
controller will be outlined in Chapter 7. 

1.3 Thesis Outline 

This thesis is concerned with the modeling, analysis, design, and evaluation of teleopera­
tion/manual control systems with movable bases. A framework is proposed for the analysis 
of teleoperation/manual control systems in which the operator is subject to base motion. It is 
shown that the presence of closed-loop biodynamic feedthrough may cause instability in such 
systems. A /i-synthesis based control design approach is presented to achieve robust stability 
and optimized performance in teleoperation/manual control systems with movable bases. The 
methodology is illustrated by a design example. A model for feedthrough dynamics along with 
its uncertainty bounds are also obtained using the stochastic embedding approach. Motivated 
by a need for high performance motion simulation for feedthrough suppression experiments, 
the control of hydraulic systems is also addressed. A new nonlinear adaptive position controller 
for hydraulic servo-systems is proposed and evaluated experimentally. Numerical optimization 
of the controller for a simplified case is also studied. Finally, for the first time, provably sta­
ble adaptive/nonlinear controllers/observers for hydraulic robots are proposed and evaluated 
experimentally. This thesis is organized as follows: 

Chapter 2: Modeling of Teleoperation Systems with Movable Bases. This chapter 
introduces the concept of teleoperation/manual control from movable bases. It begins with 
a brief introduction to conventional teleoperation controller architectures. The general four-
channel teleoperation framework is then modified to include the effect of base motion. Results 
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from manual control theory are used to propose a new model that incorporates the human 

operator dynamics into the control loop. Relevant performance measures for the system are 

discussed. It is shown via analysis that the presence of closed-loop biodynamic feedthrough 

interferences may lead to instability in teleoperation/manual control systems with movable 

bases. 

Chapter 3: Identification of Biodynamic Feedthrough and Arm/Joystick Dynam­

ics. This chapter is concerned with the modeling and identification of feedthrough dynamics. 

First, it presents a system identification approach to feedthrough modeling. A model within 

the framework of the stochastic embedding approach is considered for the feedthrough dynam­

ics. This approach allows for two sources of uncertainty, measurement noise and stochastic 

unmodeled dynamics. Quantitative properties of prior assumptions on the noise and the under-

modeling can be estimated from the data. Identification experiments are carried out to identify 

a nominal feedthrough response. The method also generates appropriate confidence regions 

for the estimated response. The resultant model can be used in the robust control design for 

feedthrough cancellation. The identified response is compared with that of a simple acceleration 

based model and conclusions are drawn. A model for arm/joystick dynamics is presented and 

identified. 

Chapter 4: Controller Design for Suppression of Biodynamic Feedthrough. This 

chapter proposes a novel approach for the design of active controllers that robustly cancel the 

effect of closed-loop biodynamic feedthrough interferences. The methodology is illustrated via 

an example. A single-degree-of-freedom manual control task is considered in which the operator 

uses a force-feedback joystick to position his/her base. The acceleration feedback based model 

is used for biodynamic feedthrough. It is shown analytically that a control approach that 

neglects the base motion can cause instability, /i-synthesis-based controllers are developed that 

robustly stabilize the system with respect to uncertainties in the arm/joystick and biodynamic 

feedthrough dynamics. The controllers also optimize performance measures defined to shape 

the admittance of the joystick and to ensure motion tracking between the joystick and the base. 

Experimental results are presented to show the effectiveness of the proposed control approaches. 

Chapter 5: Adaptive Nonlinear Control of Hydraulic Servo-systems. In this chapter, 

the backstepping approach [60] is employed to develop a new Lyapunov-based position tracking 
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controller for hydraulic servo-systems. The first-order electro-hydraulic valve dynamics, nonlin­

ear hydraulic pressure dynamics and load dynamics are incorporated in the design of controller. 

The tracking errors are shown to converge to zero using Lyapunov analysis. An adaptive version 

of the controller is also proposed to cope with parametric uncertainties in the hydraulic dynam­

ics. The effectiveness of the proposed controllers is demonstrated via numerical simulations and 

experimental studies. 

Chapter 6: Numerical Optimization of a Single Cylinder Hydraulic Servo-system. 

This chapter presents a numerical approach to the optimization of the proposed nonlinear 

position tracking controller for hydraulic actuators. A simplified model of the system that 

ignores the parametric uncertainties and the valve dynamics is used for this purpose. This 

produces a feedback linearizing controller parameterized by the feedback gains, and guarantees 

the convergence of the tracking errors to zero. A performance index that captures some features 

of the transient response of the system and also penalizes measurement noise amplification in 

the controlled variables is defined. Various optimization techniques are used to optimize the 

performance index over the set of allowable controller gains. The results of numerical simulations 

with the optimized controller are given at the end of the chapter. 

Chapter 7: Adaptive Nonlinear Control of Hydraulic Robots. This chapter ad­

dresses high performance position tracking control of hydraulic robots. The backstepping design 

methodology is adopted to develop a novel nonlinear controller for hydraulic manipulators that 

incorporates both rigid body and actuator dynamics. The controller is also extended to com­

pensate for parametric uncertainties in the system dynamics, including hydraulic and rigid 

body dynamics. Nonlinear observers are proposed to avoid acceleration measurements. The 

controller-observer closed-loop dynamics are proven to be stable in the Lyapunov sense and con­

sequently the tracking errors converge to zero. It is also shown that the tracking errors remain 

bounded in the presence of Coulomb friction in the actuators. Simulation and experimental 

results obtained from the application of the proposed controllers to the UBC hydraulic Stewart 

platform are presented to show the effectiveness of the approach. 

Chapter 8: Conclusions. This chapter concludes the thesis by summarizing its results and 

contributions. Some recommendations for continuation of the work in future are also made. 

Parts of this work have been published in the IEEE Transactions on Control Systems Tech-
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nology [105], the IEEE Transactions on Robotics and Automation [109], Springer Experimental 

Robotics VII[107], Springer Experimental Robotics V777[lll], and have been presented in IEEE 

International Conference on Robotics and Automation [104,106,108,110]. 



Chapter 2 

Modeling of Teleoperation Systems 

with Movable Bases 

2.1 Overview 

In conventional teleoperation systems, the operator uses a fixed-base hand controller, the master 

arm, to remotely control the slave robot and complete the assigned task. Visual, kinesthetic 

and sometimes auditory feedback are provided to the human operator in order to assist him/her 

in performing the task. This chapter introduces the concept of teleoperation/manual control 

from movable bases. In some applications such as joystick control of heavy hydraulic machines 

or aircraft piloting, the operator is subject to base motion. This motion can degrade the 

performance of the system by interfering with the operator's action, a phenomenon referred to 

as biodynamic feedthrough. Feedthrough interference can cause instability if the base motion 

is due to the operator's command [6,115,125]. The chapter begins with a brief introduction to 

a conventional teleoperation controller architecture. The architecture is modified to include the 

effect of base motion. A new model is proposed that incorporates models for the operator control 

behavior from the manual control literature into the conventional four-channel teleoperation 

framework. Relevant performance measures for the system are discussed. It will be shown 

analytically that the presence of a feedback loop through the operator's body may lead to 

instability in teleoperation/manual control systems with movable bases. 

17 
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2.2 A Bilateral Four-Channel Teleoperation Architecture 

Any teleoperation system involves some basic elements; a master manipulator (usually a hand 

controller) a slave robot, communication channels, and controllers. The operator uses the master 

device to operate the slave manipulator and to interact with the environment. The position and 

force information are usually communicated between the master and slave to coordinate their 

operation. Several control architectures have been developed for teleoperation systems. Among 

them, two channel approaches, i.e., position-position [95], position-force [41] and force-force [57] 

methods. Figure 2.1 shows a general teleoperation system which is referred to as a four-channel 

control architecture [62]. In this approach, the master position and the applied force by the 

operator are transmitted to the slave side through controllers C\ and C^. The slave position 

and environment force are sent back to the master side via controllers C4, C3, respectively. 

ZM and ZS are the impedances of the master and slave manipulators and ZE represents the 

environment dynamics. 

In some applications, the ideal teleoperation system should create a man-machine interface 

of such high fidelity that the human operator cannot detect that he/she is remote from the 

task. This is denoted as perfect transparency [62]. The level of transparency achievable by a 

teleoperation system depends largely upon the performance of the master, the slave and the 

controllers. Ideally, the master should be able to simulate any environment encountered by the 

slave, from free-space to infinitely stiff obstacles, i.e. 

xa = xm (position tracking) (2.1) 

fh = ~fe (force tracking) (2.2) 

In some systems it might be desirable to perform force and motion scaling between the mas­

ter and slave manipulators [131]. The above definition can be easily modified for this purpose. 

It should be pointed out that this notion of transparency is not applicable to applications such 

as aircraft piloting. There is no environment force in such manual control systems. 

The modeling, analysis and design of fixed-base teleoperation systems have extensively been 

addressed in the literature [4,5,22,41,43,57,62,95,98,135]. In order to investigate the effect 

of the master's base motion on a teleoperation system, ZBF m Figure 2.1 has been added to 
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Figure 2.1: A modified four-channel teleoperation configuration. 

the standard four-channel model in this thesis. The base motion excites the operator's body 

dynamics and induces a force at the hand/joystick interface. This is the rationale for including 

the impedance term ZBF in the model. The underlying assumption here is that the base 

motion is due to the slave motion. This is the case in joystick-piloting of aircrafts where the 

operator uses a joystick (master) to maneuver the plane (slave). In the case of joystick control 

of excavators, the base (cab) motion is generated in response to both slave (bucket) motion 

and environment force (exerted on the bucket by the ground). The model in Figure 2.1 can 

be modified to accommodate this by adding another block that generates a reaction force in 

response to fe. If fe is a function of xs, the block can be assimilated by ZBF- The modeling of 

feedthrough dynamics, ZBF, and its identification will be discussed in Chapter 3 of this thesis. 

2.3 Models for Manual Control Systems 

Research in the area of manually controlled vehicles has yielded several models for the behavior 

of the human operator in closed-loop systems. A human operator model based on classical 

control theory [51] is shown in Figure 2.2. In this figure, the operator is modeled by the linear 

describing function Yp and additive remnant noise n. The plant to be controlled is Yc and 

the tracking error is displayed to the operator. Several experimental studies [51,80,81] have 
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Figure 2.2: Crossover model of human-machine system. 

revealed that a suitable operator model is given by, 

e-jurd ^TL + 1 

jwTN + 1 jufTj + 1 
(2.3) 

where e~iWTd is the effective time delay of the human operator, 1/(JWTJV + 1) models the 

neuromuscular lag, and G(JLJ) = (JLJTL + 1)/(JLJTI +1) is an equalization term that enables the 

adjustment of the model to a wide variety of plant dynamics Yc(ju). It has been experimentally 

established that the operator adapts himself in accordance with the crossover model, which 

states that the overall transmission YpYc maintains a slope of -20 dB/dec in the region of 

crossover [51,80,81]. . 

YpYc(ju) « ̂ e " ^ (2.4) 

The crossover frequency C J c , along with phase margin and input bandwidth, are important pa­

rameters in determining man-machine system performance. The remnant noise n(t) is defined 

as the portion of human operator control signal which is uncorrelated with the reference r(t). 

Based on the crossover model, one may conclude the plant dynamics which have an effective 

integral form around the crossover frequency are easier to control since they require less adap­

tation by the operator. This provides an interesting guideline for the teleoperation controller 

design as will be pointed out later in this chapter. 

The structural model presents a more elaborate description of the operator behavior in 

manual control systems. This model was originally developed to describe the pilot behavior in 

aircraft control [45,46]. A slightly modified block diagram of the structural model of the human-
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Operator Model 

Figure 2.3: Structural model of human-machine system. 

machine system is given in Figure 2.3. This is an extension to the basic quasi-linear crossover 

model. The key feature of this model is the inner proprioceptive feedback loop through Zpp. In 

the forward path of this model, elements Y J V M and Yps are intended to represent the open-loop 

dynamics of the neuromuscular system driving the joystick and the dynamics of the joystick, 

respectively. The feedback part of the model includes Zpp, whose input is the proprioceptively 

sensed joystick output. Zpp and its location in the model are central to the philosophy of 

the structural model, i.e., that the primary equalization capabilites of the human pilot occur 

through operation upon a proprioceptively sensed, as opposed to visually sensed, variable. Y J V M 

is assumed to have the following form [45,46]: 

Y J V M = 
W J V M 

s 2 + 2(LJNMS + ul 
(2.5) 

J V M 

A number of parameters are assumed to be constant between different tasks and operators. 

Typical values for these parameters are = 0.2s, OJNM = 10 rad/sec, and C JVM — 0.7 [46]. 

The proprioceptive feedback transfer function, Zpp , is chosen according to the crossover model 

which requires 

YpYc(juj) « -±e~r*a for cv (2-6) 

where 

YP = Kuc~T"s Y n m Y f s 

1 + YNMYFS Zpp 
(2.7) 
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Figure 2.4: A teleoperation system within the framework of manual control. 

The human operator bandwidth, LJC, is believed to be somewhere around 2.0 rad/sec but this 

could be altered by the operator in a limited way [46]. It is also common to select Zpp in the 

form of K{s + a), K, or K/(s + a) depending on the form of the vehicle dynamics [45,46]. 

A limitation of the human operator models discussed here is that they are only valid under 

steady state conditions of operation and after allowing the operator enough time for learning 

and experiencing the process under control. During transient periods in performing the tasks, 

none of these models is valid. The models also need to be tuned for different operators even 

when they are performing the same task under the same conditions. 

2.4 Teleoperation as Manual Control 

The four-channel teleoperation architecture and the structural model of the human operator in 

manual control systems were introduced earlier in this chapter. A new model for teleoperation 

systems is proposed here by combining these models as shown in Figure 2.4. In this figure: 

Zh: represents the passive biomechanical dynamics of the human operator's arm. Second-order 

mass-spring-damper models have been used in the literature for these dynamics [19,26,57,65]. 

This will be discussed in detail in Chapter 3. 

Zpp: is a term that models the operator active control of the joystick based on the sensed 

joystick position. It is assumed that the operator generates a force to correct a deviation in the 

joystick position from a desired position. Note that the operator may actively change the mass, 

spring and damping of his/her arm [19,49] which can be modeled by Zpp. Other forms for 
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Zpp have been proposed in [45,46] within the context of the structural model (i.e., K(s + a), 

K, or K/(s + a)). 

Zp: models the operator reaction to the sensed force at the hand/joystick interface. A control 

action in the form of force is produced to compensate for the difference between the desired 

and the actual force. Lee et al. in [65] proposed a PD-type controller for this purpose although 

other types of controllers may also be used. 

Z B F : is included in the model to represent the effect of base motion in the form of biodynamic 

feedthrough. 

Z e : models the dynamics of the environment that the slave is in contact with. 

Y N M : is the operator's neuromuscular dynamics. 

K o e _ T d S : models the operator response to the visual tracking error between the actual and the 

desired position of the slave, assuming the operator is provided with visual information about 

the task. This is chosen according to [45,46]. KQ may be replaced by a PD controller as in [65]. 

Y M and Y S : are the dynamics of the master and slave, respectively. It should pointed out that 

local controllers CM and CS in Figure 2.1 have been embedded in YM and YS. 

C i , C2, C3, and C4: are the teleoperation controllers to be chosen by the control designer, 

r: is the desired slave position, 

n: is an additive remnant noise. 

f£: is the operator's control signal to compensate for the visual tracking error, 

fbf: is the biodynamically induced force due to the base motion, 

fh: is the total hand force applied to the joystick. 

xm: is the master (joystick) position. 

xs: is the slave (base) position. 

Remark: Note that the relative importance of Zpp and Zp depends on the type of the hand 

controller used and also the mode of operation. For example, in force-sensing joysticks, the 

master motion range is usually small and the operator controls the interaction force. If a 

joystick with a relatively large workspace is used for teleoperation in free motion, Zpp becomes 

dominant. However, if the slave is in contact with a rigid environment, the operator controls 

the force through Zp. In other modes of operation, a combination of both may be employed. 

In Figure 2.4, the effective controlled element YQ is a combination of the master, the slave 
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and the teleoperation controllers. The proposed model allows for the use of results from manual 

control theory in the analysis and design of teleoperation systems. For example, as stated earlier, 

it has been found that the human operator follows a control strategy dictated by the crossover 

model. This can be used to design the teleoperation controllers such that the crossover behavior 

is achieved with minimal control effort by the operator (i.e., Zpp ~ 0, and Zp « 0). This can 

be obtained if 

YPYC = K0e-i"r* | i ~ f ^ L e - J " T d u ^ ^ ( 2 8 ) 

h 3^ 

The above design objective, if achieved, would improve the handling quality as defined in [46]. 

It is assumed that the values of and ljc are constant. Note that the operator visual feedback 

gain, Krj, required to achieve the crossover model, is dictated by the dynamics of the master 

and slave and also the teleoperation controllers. The tradeoff is between a large control effort 

by the operator for large values of Ko and increased sensitivity and noise to signal ratio for 

small values of Ko- Obviously, other performance measures such as position and force tracking 

between the master and slave (transparency) are still applicable within this framework. An 

effective way of improving the performance in teleoperation and manual control systems is to 

shape the impedance of the master device. This leads to the definition of another performance 

measure based on the error between the desired and actual impedances of the master which 

will be used later in Chapter 4. 

2.5 Stability in Presence of Biodynamic Feedthrough 

The presence of biodynamic feedthrough can cause instability in a teleoperation/manual control 

system that is stable in the absence of feedthrough dynamics. In order to show the potential in­

stability due to biodynamic feedthrough, the model in Figure 2.4 is reconfigured as in Figure 2.5. 

It should be mentioned that some of the blocks in this figure have no physical meaning and they 

have been combined to simplify the analysis. Note that the outer vision-based feedback loop 

has been removed in this figure. This loop that includes the operator as visual controller has a 

low OdB crossover frequency such that it does not affect the stability of the overall system unless 

there is a significant delay in the loop. As can be seen in Figure 2.5, biodynamic feedthrough 
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appears as an additional feedback loop in the system. It is not difficult to show that 

^eq — , IT , T , r , r \ , r r \ ^^> 1 - (L x + L 2 + Lz + Li) + L 2 L 4 

where 

L\ = -Ym (Zh + ZPFYNM) (2.10) 

L2 = -C{YmYa (C3Ze + C 4 ) (2.11) 

Lz = C2YmYs (C3Ze + C 4 ) (Zh + ZPFYNM) (2.12) 

L4 = —ZpYfifM (2-13) 

A = C{YmYs (2.14) 

P 2 = C2YS (2.15) 

The closed-loop characteristic equation is given by 

1 + ZBFGeq = 0 (2.16) 

The position tracking between the master and slave is not affected by biodynamic feedthrough. 

Xs{s) Ys[ClYm + C2] 
Xm(s) YM [1 - C2YS (C3ZE + C4)] 

It can also been shown that: 

Xs _ Y^MGeq _ YNMYS {C\YM + C2) 

(2.17) 

F* l + GEQYBF 1-(L1+L2 + L3 + L4 + L5 + L6) + L2L4 

Xm YNMYTU [1 - C2YS (CzZe + C4)] 

F* ~~ 1 - (Li + L 2 + L 3 + L 4 + L5 + L 6 ) + L 2 L 4 

with 

(2.18) 

(2.19) 

L5 = -C{YsYm,ZBF 

Le = —C2YSZBF 

(2.20) 

(2.21) 
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Figure 2.5: The teleoperation system without vision feedback. 

Note that (2.18) and (2.19) are affected by the base motion. 

A simple acceleration based model is employed for biodynamic feedthrough [31,45,115] for 

the purpose of analysis here. In this approach, the effect of base acceleration on the master 

motion with respect to the base is modeled as an inertial force acting on the master (joystick). 

ZBF(S) = 
u)lfmbfs2 

s2 + 2(bfU)bfS + u2

f 

(2.22) 

where mb/ is the biodynamic feedback mass that can be equal to the total mass of the arm 

and master device. Inclusion of a second-order low-pass filter in the model reflects the fact 

that the compliance of the arm-master interface prevents high frequency feedthrough forces 

from being conveyed to the joystick. The identification of this model is discussed in Chapter 3. 

Note that the model neglects the effect of body and shoulder motion on the arm and master. 

In Chapter 3, a system identification approach to the modeling of feedthrough dynamics will 

be proposed that considers this. In the analysis presented here, the values of Ubf and (bf are 

assumed to be known and the stability of system is investigated as mbf varies. It is also assumed 

that: 

Zpp = 0, Zp = 0: As stated earlier, these gains model the operator's active control behavior. 

They vary from one operator to another and they may not even be constant for a single operator 

under different circumstances. For the purpose of stability analysis, one can assume that the 

operator does not intentionally destabilize the system. It is plausible to presume that the 

operator would stop controlling the joystick if his/her actions generate instability. While it is 
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always possible that the operator improves the stability through active control, assuming no 

active control leads to a worst case analysis. 

Zh = 0: There is no loss of generality due to this assumption since Zh may always be included 

in Ym. 

Z e = 0: The slave is assumed to be in free motion. 

2.5.1 A two-channel position-position architecture 

The first case studied here is a typical two-channel position-position teleoperation architecture. 

The above assumptions simplify the characteristic equation in (2.16) to the following: 

It is further assumed that 

rnms -f- oms •+• Km 

Y ° = 2 A ±h (2-25) 
mssz + oss + ks 

Ci = ks C 4 = -km C2 = 0 (2.26) 

Using (2.22)-(2.26) the characteristic equation (2.23) can be written as: 

1 +

 mbf ulfs mmms ( 3 2 + 2 ^ 0 , ^ + 0 , ^ ) 

= 0 (2.27) 

Although it is possible to derive an exact range of m^f for which the system remains stable 

(e.g., by applying the Routh stability test), this will not be done here because of its limited 

application. To show the possibility of instability, the following numerical values are used for 
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Figure 2.6: Nyquist of a typical two-channel position-position architecture with biodynamic 
feedthrough. 

the system parameters: 

mm = 1kg 6 m = 2 x 0.7 x 30N.s/m km = 30 2N/m 

ms = 10kg bs = 10 x 2 x 0.7 x 20N.s/m ks = 10 x 20 2N/m 

ubf = 2TT x 30rad/sec ( b f = 0.7 (2.28) 

The Nyquist diagram of the system with these values is plotted in Figure 2.6. According to 

this diagram, the system is stable for —5.01 < mbf < 23.1. A negative value of mbf can be 

interpreted as negative correspondence between the positions of the master and slave. It is worth 

noting that the system is more prone to instability for negative values of mbf. The Nyquist 

diagram also shows that the presence of a time delay in the loop would produce instability for 

smaller values of positive mbj. The root loci of the system for positive and negative mbfs are 

given in Figures 2.7(a) and 2.7(b), respectively. Note how two of the closed-loop poles move 

toward the unstable region as \mbf\ increases. 
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Figure 2.7: Root locus of a typical two-channel position-position architecture with biodynamic 
feedthrough. 

2.5.2 A four-channel architecture 

A typical four-channel teleoperation system is considered now. Again, the slave is assumed to 

be in free motion. Obviously, C3 is irrelevant in this case since there is no environment force 

(i.e., Ze = 0). For this case, the characteristic equation is given by: 

1 + 
ubfs 

mmms ( s 2 + 2 C 6 / W 6 / a + w 2 ^ 

ks + C 2 {mms2 + bms + km) 

83 + ( bm. + JiA 82 + ( 1 ha- 4. bm bs \ „ 1 km bs , ha-Jh 
' ms mm rns j mm ms ms mm 

= 0 (2.29) 

A l l parameters are chosen to be the same as those in the previous example in (2.28). The 

feedforward force gain from the master to the slave is selected C 2 = 5. The force is scaled up 

by a factor of five to compensate for the difference between the master and slave masses. The 

Nyquist diagram of the system in this case is presented in Figure 2.8. In this case, the system 

becomes unstable for m&/ < —2.37. The system remains stable for all positive values of mbf. 

This would change if there was time delay in the loop. It is also worth noting that the value 

of \mbf\ for which instability occurs is less than that of the previous case. Similar conclusions 

can be deduced from the root locus plots in Figures 2.9(a) and 2.9(b) 
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Figure 2.8: Nyquist of a typical four-channel teleoperation architecture with biodynamic 
feedthrough. 

(a) mbf < 0 . (b) mi,/ > 0 . 

Figure 2.9: Root locus of a typical four-channel teleoperation architecture with biodynamic 
feedthrough. 

2.6 Conclusions 

This chapter proposed a framework for modeling and analysis of teleoperation/manual con­

trol systems with movable bases. First a modified four-channel teleoperation architecture was 

introduced. The effect of base motion was modeled by applying an inertial force to the mas­

ter device in response to slave (base) motion. The model was further refined by using results 
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from manual control theory. The proposed model links the analysis and design of teleoperation 

systems to that of manual control systems. The chapter concluded with the analysis of the 

stability of typical two-channel and four-channel teleoperation architectures in the presence of 

biodynamic feedthrough. The Nyquist and root locus methods were employed to demonstrate 

potential instability due to feedthrough interferences. Although the position tracking between 

the master and the slave is not affected by base motion, the feedthrough dynamics can change 

the perceived dynamics of the controlled system and therefore affect the task completion. 



Chapter 3 

Identification of Biodynamic 

Feedthrough and Arm/Joystick 

Dynamics 

3.1 Overview 

In Chapter 2, a general model for teleoperation/manual control from movable bases was pre­

sented. The biodynamic feedthrough was represented by the impedance Zbf that converts the 

base position to an unintentional force acting on the joystick. This chapter is concerned with 

developing models for biodynamic feedthrough. The problem has been considered by other 

researchers before. The most comprehensive model has been proposed by Jex et al. in [55]. 

Although the model can be useful for simulation, it can be hardly used in analysis and design 

because of its nonlinearity, complexity and the difficulties with its identification. Feedthrough 

models based on the bobweight effect have been presented in a few reports, e.g. in [31,45,46,115]. 

Similar linear models have been proposed and employed by [51] and the references therein. 

A popular approach to modeling is system identification based on the input-output data [76]. 

Identification for robust control has been a subject of research. The goal is to obtain an estimate 

of the system transfer function using a finite set of noisy measurements. The error bounds on the 

estimated transfer function must also be calculated. Classical methods [76,123] assume that the 

structure of the system model is known by the identification process and the uncertainty only 

32 
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arises from measurement noise. However, this is not always true as in the case of biodynamic 

feedthrough, the actual form of the model is unknown. The estimation in such cases may be 

biased because of the unmodeled dynamics. Therefore, another source of uncertainty can be 

a mismatch between the actual model of the system and the model used in the identification 

(undermodeling) [123]. There have been two classes of identification methods for robust control 

that address this problem. In the so called hard bound methods, the undermodeling is assumed 

to be deterministic and using some prior knowledge about noise and the unmodeled dynamics, 

hard bounds are obtained for the estimation errors [38,123,129]. These approaches usually yield 

conservative error bounds [35]. The second group of techniques, soft bound methods, assume 

that the undermodeling has some a priori known stochastic structure parameterized by some 

parameters [35,123]. The noise and undermodeling parameters can be identified using the data 

set in the stochastic embedding approach proposed by Goodwin et al. in [35]. The parameter 

values are used to estimate the error bounds on the estimated nominal transfer function. 

In this chapter, first, a system identification-based approach to feedthrough modeling is 

proposed. To begin with, a slightly revised version of the system configuration in Figure 2.4 is 

presented. A model within the framework of stochastic embedding is developed for biodynamic 

stick feedthrough. The results of the identification experiments using this model are presented. 

The modeling and identification of feedthrough dynamics based on the bobweight effect and 

using the least squares estimation is also addressed in this chapter. The resulting model is 

simpler and produces responses comparable to those of the stochastic embedding approach. A 

mass-spring-damper type model is used and identified for the lumped arm/joystick dynamics. 

The experimental setup is composed of the UBC motion simulator (Figure 1.2) and the twin-

pantograph joystick (Figure 1.3). The experiments are performed along the z-axis (vertical 

axis). A schematic of the system is given in Figure 4.1. More details about the setup and its 

components will be presented in Chapter 4. 

3.2 System Identification Using Stochastic Embedding 

This section explains the identification of feedthrough dynamics within the framework of stochas­

tic embedding. The input and the output of the feedthrough model are specified. The prior 

assumptions on measurement noise and the stochastic structure of unmodeled dynamics are 
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Figure 3.1: The modified model structure. 

stated. The estimation of the nominal feedthrough response, the noise and undermodeling 

parameters, and the uncertainty affiliated with the identified response are discussed. 

The system configuration presented in Figure 2.4 of Chapter 2 incorporates the effect of 

feedthrough as a force acting on the joystick. In practice, this model cannot be identified be­

cause its output is not measurable (i.e., there is no force sensor attached to the joystick used 

in this research). Figure 3.1 introduces a solution that eliminates this problem. In this con­

figuration, the output of the biodynamic feedthrough block is the feedthrough-induced joystick 

displacement, which can be measured. It is worth noticing that this model decouples changes 

in the feedthrough dynamics from those in the lumped arm/joystick dynamics. The problem is 

treated in the discrete time domain here. The final results can be transformed to the continuous 

time domain for use in the //-synthesis design. 

During the identification experiments, the operator does not exert any intentional force on 

the joystick (i.e., fh — 0 in Figure 3.1). By adopting the stochastic embedding approach, it is 

assumed that the input-output relationship is governed by the following difference equation: 

y(k) = GT {z~l) u{k) + v{k) (3.1) 

where GT {z~l) is a rational transfer function, y(k) and u(k) are the output and input (i.e., 

joystick displacement xm and the platform displacement xs in Figure 3.1) at the fc'th sample 

time and v(k) is measurement noise. The sequence v(k) is a zero mean i.i.d (independent 

identically distrubuted) random process. u(k) is a quasi-stationary sequence [76] and is assumed 

to be independent from v(k). It is further assumed that the transfer function GT{Z~1), or 
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equivalently Gx(e can be written in the following form: 

GT (e~ju) = G (e-^, 6) + GA (e"^) (3.2) 

where the first term is the nominal transfer function and the second term, usually referred to 

as undermodeling, is a realization of a zero mean random process, i.e., 

E{GA{e-Ju)} = 0 (3.3) 

E{GT (e~Ju)} = G (e-*u, 9) (3.4) 

Note that the nominal part, G (e _ : , w ,0), is parameterized in terms of some unknown pa­

rameter vector 6 to be estimated. Assuming a general fixed denominator model for this term, 

A i ( e - * " ) A 2 ( e - * " ) ••• \> {e~ju) 9 = A (e-ju) 6 (3.5) 

r iT 

with 6 = ff1 Q2 ... 0p . Several fixed denominator models have been proposed in the 

literature including FIR, Laguerre and Kautz models [123,127-129]. FIR models are the simplest 

among these and their parameters are the impulse response samples. The problem with FIR 

models is that if the system has poles close to the unit circle, the number of parameters to 

be used becomes unacceptably large. This is normally the case if the sampling frequency is 

high compared to the system modes. Kautz models are particularly suited for the systems that 

have highly resonant modes [127-129]. Experimental data revealed that Laguerre models are 

suitable for the modeling of biodynamic feedthrough for the problem subject of this research. 

The discrete Laguerre model set is given by 

vT a2z-1 

1 — az' 
z — a 
1 - az~l 

k-l 
-1 < a < 1. (3.6) 

The Laguerre parameter, a, should be chosen close to the dominant pole of the system to be 
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identified. The nonparametric part of the transfer function G&{z l) can be modeled by 

G^{z-l)=D{z-l)L\{z-1) (3.7) 

where 

A ( ^ ) = Hnkz-
k=l 

(3.8) 

(3.9) 

It can be shown that G&.{z l) as defined above spans the orthogonal complement of G(z 1,6) 

[129]. Now, the model of system in (3.1) can be rewritten in the following form: 

y{k) = <f{k)9 + CT{k)n + v(k) (3.10) 

where 

CT(k) = 

vi m ••• vm 

Ai(z-1)w(A;) X2(z-1)u(k) ••• A ^ " 1 ) ^ * ; ) 

D{z~l)u(k - 1) D(z-1)u(k~2) ••• D{z~1)u{k - m) 

(3.11) 

(3.12) 

(3.13) 

The input-output*relationship given in (3.10) can be converted into a stacked matrix format. 

Y = §0 + *?? + V (3.14) 
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with 

Y = 1/(1) y(2) • • 3/(JV) 

$ = 
m • • 4>{N) 

= C ( i ) C(2) • • W) 

V = v(l) «(2) • •• v(N) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

The Least Squares criterion may be used to estimate the unknown parameters vector 9. 

9N = arg min 0 (Y - Y (0 ) ) T (Y - Y{9)^ = ($ T $) _ 1 $TY 

It is not difficult to show that the covariance of the estimation error is given by [35] 

Pe = E{(9N - 9){9N - 9f} = ( $ $ T ) - 1 $ r ( * C 7 ) * T + C „ ) $ ( $ r $ ) - 1 

where 

(3.19) 

(3.20) 

Cv = E{rmT} Cv ± E{VVT} (3.21) 

It can also be shown that the modeling error in the frequency domain is given by [35] 

GT (e~ju) - G (e~iu, 0/v) = (II - Afttf) n - ACIV (3.22) 

p-j2t*> . . . p-jmw where = ($ T $) $ T and n = D(e~^) 

bounds in the frequency domain the following must be defined 

^Re{GT{e-n-G{e-i",9N)} 
g(e 3 ) = 

Im{GT{e-iu) - G(e-Ju,0N)} 

To obtain the error 

(3.23) 
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Then, 

P j M = E{g{e-n~g{e-nT) = r ( e - ^ ) T r T ( e - ^ ) (3.24) 

where 

and 

T = 
fi(*C„¥T + cv)nT -mCr, 

Cr, 
(3.25) 

Re{A (e"^) ,n(e-^)} 

Im{A (e-ju),U(e-Ju)} 
(3.26) 

Using (3.24) and assuming a Gaussian distribution for g{e~^) one can construct confi­

dence ellipses in the complex plane at each frequency around the estimated nominal frequency 

response, i.e. 

~g{e-nTP^~g{e-n ~ X\2) (3.27) 

and x 2 is a Chi-square distribution. 

3.2.1 Estimating Measurement Noise and Undermodeling Parameters 

The undermodeling and measurement noise covariances are used in the covariance of the pa­

rameter estimates in (3.20) and also in the covariance of the frequency domain errors (3.24). In 

practice, these quantities are unknown and must be identified based on available data. To this 

end, the following assumptions are made: 

C„ = E{mf} = o-pmxm Cv = E{VVT} = a2

vINxN (3.28) 

A modified version of the estimation method proposed in [35] and [123] is presented here. 

This approach is applicable to large data sets whereas the method proposed in these references 
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is restricted to small size data sets [123]. By applying QR factorization to (3.14) may be 

written as 

and therefore, 

Y = P-INXP P-ZNXN- 9 + ^ri + V (3.29) 

RiY = Ri^T] + RjV (3.30) 

Note that (3.30) is of dimension N — p and if used in a maximum likelihood identification, it 

would lead to matrix inversion of order of N — p at each optimization step. This could be 

computationally expensive [123]. To avoid this problem, we propose another QR factorization 

to be performed on R2^, i.e. 

Using (3.30) and (3.31), 

X2N 

PmX7 
(3.31) 

W2 ( jv-p-mxi) = XTRTY = X2R2V 

(3.32) 

(3.33) 

Note that 

PWl 4 E {WXW7} = a2PPT + a2

vXTRTR2Xl 

PW2 = E {W2W2

T} = o2

vXTRTR2X2 = a2

vM 

(3.34) 

(3.35) 

with M = XTRTR2X\. The log-likelihood of vectors W\ and W2 are given by (assuming 

Gaussian distribution) 

I {Wx\ol,ol) = ~ ln(27r) - ^ln(det(PW l)) - \W[P^\W X (3.36) 
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I (W2\ol) = - N P m ln(27r) - I [(N -p - m) ln(a2) + ln(det(M))] -
(3.37) 

(3.36), (3.37) can be used to find the maximum likelihood estimation of unknown parameters 

a2, and a 2 . An initial estimate of cr2 is found from (3.37), 

a2

v = —— W£ M~1W2 (3.38) 
N —p-m 

One may either accept this as the estimate of cr2 and maximize (3.36) with respect to cr2 or 

use this as an initial estimate and maximize (3.36) with respect to a 2 and <r2. This problem is 

not necessarily convex. The optimization routine should be repeated with a few initial estimates 

to increase the chance of reaching a global maximum point. 

3.3 Identification Experiments 

The experimental setup used in the feedthrough identification experiments is the same as the 

one that will be used in the feedthrough cancellation experiments (see Figures 4.1 and 4.2). A 

single subject was used in the identification experiments throughout the rest of this chapter. 

The operator (the author) was seated on the UBC motion simulator while holding the gravity 

compensated joystick. He was instructed to relax his arm and not to try to control the joystick 

but to keep his grasp on the joystick handle while the platform was moving. Therefore, one 

may assume that fh = 0 in Figure 3.1. The platform was excited with a reference position 

command obtained by applying a fifth-order Butterworth filter with bandwidth of fbw = 5Hz 

to a white noise. Several runs of experiment were carried out each of which lasted for 100s. 

The platform position and acceleration and also the joystick position were measured using the 

installed sensors. The sampling rate was chosen to be / s = 42.67Hz. The following parameters 

were used in the identification 

a = 0.9 p = 18 m = 50 N = 2136 



3.3 Identification Experiments 41 

Table 3.1: Identification results. 

experiment 1 experiment 2 experiment 3 experiment 4 
zp(rms) m 0.011 0.011 0.011 0.011 
Zj(rms) m 0.016 0.017 0.015 0.016 

az(rms) m/s 2 3.97 4.01 4.05 4.09 
av 0.0141 0.0167 0.0149 0.0124 
an 

0.0224 0.0350 0.0173 0.0233 
0.0084 0.0095 0.0072 0.0074 

The value of a in the Laguerre models should be chosen such that it is close to a dominant 

pole of the system to be identified [127]. However, since the actual dynamics are unknown, 

a reasonable guess was made for this dominant pole and a was selected accordingly, p, the 

number of Laguerre bases was selected such that the resultant prediction time domain error 

is minimized. This was done by trial and error where p was increased until there was no 

significant improvement in the model prediction error. A 50s window of the data was selected 

from each set of data to carry out the identification. Note that the low frequency content of 

the feedthrough response is not reliable due to the drift in the joystick position. The high 

frequency content of the measurements is also noisy. Therefore, the measurement data were 

pre-filtered with a band-pass filter with low and high frequencies of / j = 0.6Hz and fh = 10Hz, 

respectively. Function fmincon from the Matlab Optimization Toolbox ® was employed to find 

the maximum likelihood estimates. The routine converged fast in all cases (less than 15 steps) 

and the same results were obtained from different initial points. The estimation results from 

four separate experiments are summarized in Table 3.1. In this table, av and av have been 

introduced in (3.28) and ape is the root mean square prediction error. zp(rms) and az(rms) are 

the RMS values of the platform displacement and platform acceleration, respectively. Zj(rms) 

is the RMS joystick displacement measured during the experiments. The estimation results are 

consistent among these four experiments. The predicted output (joystick displacement) and 

the actual output profiles from one of the experiments are shown in Figure 3.2. 

The estimated Laguerre, noise and undermodeling parameters were used to estimate the 

nominal feedthrough response, G {e~^w,6jf) and the confidence ellipses in the complex plane. 
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Figure 3.2: The actual and predicted joystick displacements in one of the experiments. 

The estimation results from the experiments were combined together using [76], 

4 

6N = PeY^Pe^N (3-39) 
i = i 

where 

^(iX 1) (3-4°) 
Similarly, for the covariance of the frequency domain errors, 

Figures 3.3(a)-3.3(d) show the G(e^u, 0N), G(e-Ju, 6N) and also the 99% confidence ellipses 

for four different experiments. Based on these results, the confidence ellipses describe the 

uncertainties in the biodynamic feedthrough response very well with the exception of experiment 

2 at low frequencies. 

The uncertainty ellipses cannot be directly incorporated into the //-synthesis design frame­

work. One way to tackle this problem is first to circumscribe these ellipses with circles defined 
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Figure 3.3: Estimated biodynamic feedthrough response and its uncertainty ellipses. 

by R(OJ). Then, a stable continuous transfer function, WU(CJ), can be fitted to R(CJ) such that 

\Wu(u)\ ^ R(w) (3.42) 

This approach leads to the feedthrough model shown in Figure 3.4 which can be used in the 

//-synthesis design framework. Obviously, there is some conservatism in this approach because 

of the loss of phase information in the error bounds. A stable transfer function can also be fitted 

to G(e~:'0J, 0JV). Matlab provides functions for the frequency domain fitting. Following the above 

approach, 12'th order stable transfer functions were fitted to the estimated biodynamic response 

and error bounds on its magnitude, respectively. The results are presented in Figures 3.5(a)-
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Figure 3.4: Feedthrough model with uncertainty block. 

3.5(d). As it can be seen, all four estimated biodynamic feedthrough responses are within the 

uncertainty bounds. The numerator and denominator of the estimated feedthrough response, 

G(s,Qpj) in descending powers of s are as follows: 

num(l — 6) 4.81e-9 -1 .35e-7 -2.88e - 5 -2.49e - 5 2.0e - 3 1.140e - 2 

num(7 — 13) = 0.3882 0.5446 14.78 6.77 214.83 19.94 1084.2 

den(l - 6) = 

den(7 - 13) = 

1.0e-8 8.81e- 7 3.55e - 5 6.02e - 4 4.9e - 3 3.25e - 2 

0.1388 0.4926 1.184 2.277 2.744 2.360 0.7153 

Remark: As stated earlier, one subject has been used in the above experiments and therefore, 

the resultant uncertainties only account for the changes in that specific operator dynamics. An 

alternative approach would be to carry out experiments with different subjects and fuse the 

resultant models and error bounds. This has not been done in this research partly because of 

concerns about potential undesirable effects of the high base accelerations in the experiments 

on human subjects. Nevertheless, it should be stressed that the design approach presented in 

the next chapter of this thesis is robust with respect to uncertainties in the operator related 

dynamics. Moreover, models obtained through identification experiments with several subjects 

can be easily incorporated in the control synthesis framework proposed by this thesis in future. 



3.4 Arm/Joystick and Acceleration Based Feedthrough Models 45 

CD 
3 " 
I 
0) 

o 

2 
1.8 
1.6 
1.4 
1.2| 
1 

0.8' 
0.6 
0.4 
0.2 
0 

j 
..; t.\.St....:. / 

/ ':/* : 

• ifr'yl 
• . G 

« ' / < : : mean 
->> i; 

i 1 

f t -
JJV ; ; ; ; ; ; Errc jr Bounds 

L_i i i i i i i i 

3 4 5 6 7 
Frequency (Hz) 

(a) Experiment 1. 

8 9 10 

3 4 5 6 7 
Frequency (Hz) 

(c) Experiment 3. 

CD 
3 " 
I 
(5 

4 5 6 7 
Frequency (Hz) 

(b) Experiment 2. 

0.6 
0.4 
0.2 

o 

1.6 
/ : . ' 

1.4 if. / 
" / 

CD 1.2 
.'•/ ''••> 

3 " I 1 
k: 1 1 ' 

1 ' • 

|G
(e

 

0.8 II > 
I I I 
'dl i 

: G 

4 5 6 7 
Frequency (Hz) 

(d) Experiment 4. 

Figure 3.5: Estimated magnitude of the biodynamic feedthrough response and its uncertainty 
bounds. 

3.4 Arm/Joystick and Acceleration Based Feedthrough Models 

In this part of the thesis the modeling and identification of the arm/joystick dynamics is ad­

dressed. Also, a simpler model is proposed for biodynamic feedthrough that only considers the 

bobweight effect of the joystick and arm. 

The arm/joystick subsystem is modeled as a mass-spring-damper system with uncertain 

parameters mm, bm and km (see Figure 3.6). 

fh~ Urn - fbf 

" * m ^ 4- bms + kr, 
(3.43) 
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Figure 3.6: Simplified model of the arm/joystick and biodynamic feedthrough. 

where fh is the exogenous hand force and um is the applied force by the motors and fbf, to 

be introduced in (3.45) below. m m = m + #m, bm = b + Sb and km = k + 5k are the effective 

mass, damping and stiffness of the arm/joystick subsystem, respectively, m, b and k are their 

nominal (estimated) values and 5 values represent uncertainty. One may write 

1 1 ms2 + bs + k 
mms2 + bms + ms2 + bs + m mms2 + bms + km 

1 1 
ms2 + bs + k i + 6ms2+8hs+6k 

ms2+bs+k 
(3.44) 

which leads to the block digram representation of the arm/joystick given in Figure 3.7. 

Mass-spring-damper models have been used by other researchers to represent an operator's 

arm passive dynamics, e.g., in [26,57,65]. The arm parameters are posture dependent and vary 

from one operator to another. This has been modeled by the parametric uncertainty in (3.43) 

and (3.44). 

As an alternative to the stochastic embedding approach to the feedthrough modeling, a 

simple acceleration based model is presented here. Similar models have been used by other 

researchers [31,45,51,115]. The model was introduced in Chapter 2 and is given here again. 

uj2

fmbfs2 

fbf = 2 , 0 / ; — y x s = Ga(s)mbfxs 

sz + 2(bfOJbfs + ui^f 

(3.45) 

where mbf = mj + Smf is the biodynamic feedback mass that is usually equal to the total 

mass of the arm and joystick (mbf — mm). 5mf represents the uncertainty associated with the 
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Figure 3.7: The arm/joystick model with uncertain parameters. 

feedthrough mass. In other words, the base acceleration has an equivalent effect of an inertial 

force acting on the joystick. This force is proportional to the total mass of arm and joystick. 

The second-order lowpass filter in (3.45) makes the design problem that will be defined in 

Chapter 4 well-posed. 

Remark: The above model neglects the transmission of motion to joystick through the chain 

formed by operator's body, shoulder, arm, and joystick. Therefore, its accuracy may degrade in 

the presence of a large base acceleration. Also, only parametric uncertainties are allowed here, 

whereas the stochastic embedding approach generates unstructured uncertainty bounds. 

The nominal values of the arm/joystick parameters can be estimated through identification 

experiments along the z-axis of the joystick (see Figure 4.1). One can write 

mmz + bmz + kmz + fn — fz 
(3.46) 

where mm, bm, and km are the lumped mass, damping and stiffness of the arm/joystick defined 

in (3.43). fg is the gravitational force and fz is the applied force along the z direction. 

A work-space PD position controller augmented with a gravity compensation term was 

implemented to control the joystick (see Appendix C). The x and 6 motions were locked by 

the controller. A band-limited noise (bandwidth=4.6Hz) was applied to the controller as the 

position command while the operator was holding the handle. The operator was instructed 

to relax his arm during the experiments each of which lasted 80 seconds. The applied motor 

torques (i.e. motor currents), and angular position of the motor shafts were measured. These 

measurements were used to compute the arm/joystick position and the applied work-space force 
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Figure 3.8: Arm/joystick identification results: (a) measured position, (b) computed velocity, 
(c) computed acceleration, (d) measured and estimated applied force. 

using the device kinematics (Figures 3.8.a, 3.8.d). 

The velocity and acceleration were computed by transforming the position signal to the 

frequency domain, applying juo and (jui)2 and converting them back to the time domain. A 

lowpass filter was used in the frequency domain to reduce the effect of noise (see Figures 3.8.b, 

3.8.c). Finally, the Least Squares technique was employed to estimate the unknown parameters 

m m , bm, km, and fg. Several runs of experiments were carried out and the estimated parameters 

were consistent across the runs. The estimated parameters are as follows: 

m = 1.45kg b = lO.ON.s/m k = 72.0N/m fg = 11.0N (3.47) 

Remark: The nominal feedthrough mass my is assumed to be the same as m which is the total 

mass of the arm and joystick. 

It is also worth noting that the dynamic mass m is slightly larger than the static mass fg/g-

This might be due to the fact that the operator tends to hold the joystick against gravity. 

The measured and estimated work-space forces in one of the experiments are compared in 

Figure 3.8.d. 
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Remark: The uncertainties in the mass, spring and damping parameters can be determined 

based on engineering judgment. These parameters are generally posture dependent and they 

also vary among the different operators. 

3.5 Comparison of the Feedthrough Models 

The frequency responses of the two identified feedthrough models have been compared in Fig­

ure 3.9. In the acceleration-based model (3.45), LJhf = 2TT x 12rad/sec and Cb/ = 0.7 were 

chosen. For this model, the following has been plotted in order to compare the two responses. 

Despite some differences, it is interesting to observe that the identified feedthrough responses 

demonstrate a similar trend, i.e. the magnitudes of the frequency responses increase at low fre­

quency and then they flatten and start to decrease at high frequency. It should be pointed 

out that the level of base acceleration excitation in the stochastic embedding approach exper­

iments was sufficiently high that it generated a significant body excitation and hence motion 

feedthrough via the shoulder and arm. This can explain the differences between the responses. 

Figure 3.10 compares the responses when the acceleration-based model is adjusted by a 50% 

increase in the estimated feedthrough mass my and the damping b. These responses reveal 

much more similarity in this case. The increase in effective feedthrough mass and damping is 

explainable by the excitation of a larger part of the operator's body in the stochastic embedding 

experiments. However, as will be seen in Chapter 4, the level of platform acceleration due to 

feedthrough-induced oscillations in our experiments is such that the simple acceleration-based 

model sufficiently describes the phenomenon for feedthrough cancellation. 

3.6 Conclusions 

This chapter addressed the modeling and identification of feedthrough and arm/joystick dynam­

ics. The existing biomechanical models for feedthrough dynamics are nonlinear, complex and 

Xm(s) Ubfmfs2 

(3.48) 
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Figure 3.9: The identified feedthrough responses. 
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Figure 3.10: The compensated identified feedthrough responses. 

do not consider uncertainties associated with human dynamics. This limits their application 

to the control synthesis. Two models were introduced for biodynamic feedthrough. First, the 

stochastic embedding methodology was adopted to estimate a nominal feedthrough response 

using experimental data. A feature of this approach is that it also provides an estimation of 

the errors associated with the identified transfer function. It should be noted that implicit 

assumption is that the nonlinearities and uncertainties in the feedthrough dynamics can be 
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accounted for by the stochastic embedding framework. Second, an acceleration-based model 

was introduced that considers the bobweight effect of the arm/joystick in response to the base 

acceleration. 

A linear mass-spring-damper model with uncertain parameters was employed for the lump 

arm/joystick dynamics. The parameters were identified experimentally using the Least Squares 

technique. The identified lump arm/joystick mass was also used as the effective feedthrough 

mass in the second feedthrough model. 

It was found out that the stochastic embedding based approach and the acceleration based 

feedthrough model produce comparable responses. While the former is more accurate in pres­

ence of large base accelerations, the latter is simpler and will result in lower order controllers if 

used in the design. 



Chapter 4 

Controller Design for Suppression of 

Biodynamic Feedthrough 

4.1 Overview 

In Chapter 2 of this thesis, it was shown that the performance and the stability of teleopera­

tion/manual control systems with movable bases can be degraded by biodynamic interference. 

This chapter is concerned with the design of controllers for such systems. A novel approach is 

proposed for the design of controllers that robustly suppress feedthrough induced oscillations. 

The methodology is illustrated via an example. A single-degree-of-freedom manual control task 

is considered in which the operator uses a force-feedback joystick to position his/her base. It 

is shown analytically that a control approach that ignores the base motion can result in insta­

bility. Then, //-synthesis-based controllers are proposed that robustly stabilize the system with 

respect to uncertainties in the arm/joystick and biodynamic feedthrough dynamics. The con­

trollers also achieve a high level of performance based on the admittance shaping of the joystick 

and the motion tracking between the joystick and the base. Experimental studies demonstrate 

excellent responses of the system under the designed controllers. HQQ and //-synthesis based 

approaches have been used by other researches for the design of controllers in conventional 

fixed base teleoperation systems. For example, Kazerooni et al. in [57] proposed a two-channel 

force-force teleoperation controller using HQO design. Leung et al. in [67] employed //-synthesis 

to develop a teleoperation system that is robust with respect to variations in time delay in 

52 
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the communication while optimizing performance specifications. An application of opti­

mization to motion scaling in teleoperation is also given in [131]. However, the novelty of the 

present work lies in addressing the instability and reduced performance caused by closed-loop 

biodynamic feedthrough interference in manual control and teleoperation systems with movable 

bases. Uncertainties associated with the operator dynamics are also dealt with by the proposed 

framework. 

This chapter is organized as follows. First, the prototype manual control task that is the 

subject of this research and the experimental setup are introduced. Next, the problem is 

formulated as a //-synthesis robust performance design problem. The stability of the system 

under a fixed base PD-type controller that neglects the base motion is analyzed. Then, the 

identified arm/joystick and feedthrough dynamics from Chapter 3 are used in the design of the / i -

synthesis based controllers. These controllers are successfully implemented on the experimental 

setup and the results are given. The chapter concludes with some remarks on the effectiveness 

of the proposed approaches. 

4.2 Problem Statement 

Closed-loop biodynamic interference occurs in situations in which operators are subjected to 

accelerations due to their action. For example, when a pilot uses a joystick to maneuver the 

aircraft the resultant aircraft acceleration can interfere with the voluntary control command 

through the pilot's arm dynamics. Similarly, the operator of an excavator employs a joystick 

to manipulate the environment and the environment forces induce cab accelerations that affect 

the operator's action. Details of these interactions differ from case to case, however, there 

are principal similarities between all cases. In this chapter, a single-degree-of-freedom manual 

control task is considered (see Figure 4.1). The operator uses a force-feedback joystick to 

position his/her base along the vertical axis. This relatively simple task highlights the problems 

associated with biodynamic feedthrough and is used to illustrate the proposed method for 

feedthrough cancelation. 

The experimental setup is shown in Figure 4.2. The components of this system are as 

follows. 
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SCREEN IMAGE 

Figure 4.1: Schematic of the manual control task. 

Motion Platform: 

The UBC motion simulator [99] is used to simulate the base motion. This simulator is driven 

by six hydraulic cylinders. Each cylinder is capable of exerting forces in excess of 4000 N at 

1 m/s, and over 8000 N at zero rod speed. This enables the platform to generate accelerations 

higher than lg. The hydraulic actuation system is equipped with Rexroth J^WRDE three-

stage proportional valves connected in a three-way configuration. Low friction Teflon seals are 

used in the hydraulic cylinders. The platform motion is controlled by link-space P controllers 

that use the link length measurements. The workspace position command is translated to a 

link-space command using the platform inverse kinematics (see Appendix B). A single-axis 

accelerometer is used to measure the platform acceleration along the z-axis. The output of the 

sensor is passed through a low-pass filter with bandwidth of 20Hz to remove noise and high 

frequency components of the acceleration due to vibration. For safety reasons and also to avoid 

singularities, the platform motion range is restricted to ±20cm, in x, y, z, and ±20° in roll, 

pitch and yaw coordinates, respectively. This has been done by imposing limits on the allowable 

reference position commands in the realtime control code. The platform controller runs on a 

Themis Sparc 5® board under VxWorks® operating system with a sampling rate of 256Hz. 

The code accepts position commands in work-space coordinates and returns the measured link 

lengths. The actual position of the platform in workspace coordinates is calculated by employing 

the forward kinematics which use the measured link lengths (see Appendix B). 

Remark: In this particular example, a simple P controller suffices for the control of the platform. 
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Figure 4.2: Experimental setup. 

In fact, the resultant closed-loop dynamics are treated as the dynamics of the system to be 

controlled. Obviously, if the application of interest has base motion with frequency content 

beyond the bandwidth of the P controller, higher performance position controllers must be 

employed to simulate this motion. This will be addressed later in the thesis. 

Joystick: 

The joystick used in our experimental setup is a slightly modified version of the one in [104]. 

It has three degrees of freedom allowing for planar translation and rotation. The endpoints 

of two pantographs that move in different parallel planes are coupled by means of a linkage 

connected to the interface handle. The device is powered by four 90W Maxon RE35 DC 

motors. Maxon GP 32A planetary gearheads with 1-4.8 ratio are employed to increase the 

force/torque capability of the device. Each of the four joint angles is measured by a digital 

optical encoder with a resolution of 0.09 degrees. The encoders are placed on the motor side of 

the shafts to improve the measurement resolution. Identification experiments were performed 

to estimate the joystick inertial parameters. The parameters are used to compensate for gravity 
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(see Appendix C). 

The joystick is controlled in work-space coordinates. The redundancy in actuation is ex­

ploited to minimize the norm of the motor torques vector (motor currents). For the purpose 

of the experiments, the x and 9 coordinates are locked using PD controllers. The joystick 

controller is implemented using the Matlab Real-time Workshop® toolbox and Tornado® 2.0 

development environment. The realtime code runs on a PC under the VxWorks® 5.4 operating 

system with a sampling frequency of 1024 Hz. 

The joystick controller communicates with the platform controller and a graphical display 

via the UDP socket protocol. The UDP protocol has been chosen as opposed to TCP/ IP 

because it has less overhead and allows for higher communication rates. The drawback is that 

some packets may be lost during the data exchange. A local dedicated switch has been used 

in the experimental setup so the traffic and data loss are minimal and more or less constant 

communication frequencies are achievable. The data exchange is monitored by the software 

such that if the number of subsequent missed packets exceeds a predefined value the system 

shuts down gracefully. This never occured during the experiments. The data exchange rates 

between the joystick and the platform and the joystick and the display are 128 Hz and 64 Hz, 

respectively. The joystick controller also communicates with its Simulink® block diagram which 

runs on a host PC under Windows NT®. This allows for data logging and change of parameters 

during the experiments. 

Graphical Display: 

A graphical display was developed in order to assist the operator in performing the tracking 

task (see Figure 4.1). Two frames, one representing a random target, the other showing the 

position of the platform, were displayed. The operator was asked to move the platform using 

the joystick such that it tracked the target frame. The graphical display ran on a PC under 

Windows 2000® that projected the display image on a rear projection screen in front of the 

operator. 

A general model for the analysis of teleoperation/manual control systems with movable 

bases was proposed in Chapter 2. To simplify the design problem, the operator-related active 

feedback gains, i.e. Zpp and Zp in Figure 2.4, are assumed to be zero. The passive impedance 

of the operator's arm is considered in the design. The assumption here is that the operator 
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does not try to destabilize the system. Instability due to the outer vision-based feedback loop 

is unlikely in this case because of the small time delay and relatively low crossover frequency of 

this loop. 

A schematic of the manual control system is given in Figure 4.1. The following assumptions 

are made and will be used throughout this chapter: 

Al. The arm/joystick subsystem is modeled as a mass-spring-damper system with uncertain 

parameters m m , bm and km are in (3.43) and (3.44) (see Figure 3.6). The nominal values of the 

parameters were identified in Chapter 3. 

A2. Two models for biodynamic feedthrough were developed in Chapter 3. The acceleration 

based feedthrough model is used for control synthesis here. In fact, it turned out that the level 

of body excitation due to feedthrough-induced oscillations is within the range that this simple 

model can sufficiently describe the effect of feedthrough. This assumption has been validated by 

the success of the designed controllers in the suppression of the oscillations as will be seen later. 

Nevertheless, this can be specific to the prototype design problem studied in this chapter. The 

model based on the stochastic embedding could be employed as an alternative in applications 

with larger base excitation. 

A3. The hydraulic actuators are modeled as velocity sources by ignoring the hydraulic res­

onances and the valve dynamics [83]. Therefore, the closed-loop behavior of the platform 

controller may be approximated by first-order linear dynamics if a proportional controller is 

used. 

xs = —x* , (4.1) 

where tp, the closed-loop time constant, is known and xSref is the position reference command 

to the platform controller. A typical step response of the UBC motion simulator under such 

controller is given in Figure 7.12 of Chapter 7 which validates the above assumption. 

Remark: A good estimate of the closed-loop dynamics of the controlled element (the hydraulic 

platform) is available here. In general, these dynamics could be subject to parametric and 

non-parametric uncertainties. The relevant uncertainties can be easily incorporated into the 

proposed control synthesis framework. 
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4.3 Robust Control Problem Formulation 

In order to assist the operator in accomplishing the task, controllers must be designed to 

coordinate the motion of the joystick with that of the platform. The two main objectives for 

the design are: 

1. To establish kinematic correspondence between the motion of the joystick and that of the 

platform. This is enforced by making the following error small: 

e i = wei [xs - ck(s)xm] (4.2) 

where the tracking error is weighted by the frequency dependent gain WEI. In general, 

Cfc(s) can be any stable rational transfer function. For example, a constant Cfc(s) corre­

sponds to position mode control strategy and a velocity mode controller is obtained by 

choosing Cfc(s) = Cfc/s. The gain WEI is a stable rational transfer function that can be 

chosen to emphasize a frequency range in which a small tracking error is desired (i.e., by 

increasing the gain over that frequency range). 

2. To facilitate manual control through the shaping of the perceived admittance of the 

arm/joystick. This is achieved by making the following error small: 

e2 = WE2 (YDfh - xm) (4.3) 

where xm is the joystick position, fh is the hand force, WE2 is a stable rational transfer 

function, and Yd is a desired admittance that may be found through human factors 

studies. Similarly, WE2 can be designed such that it enforces the admittance shaping over 

a certain range of frequency. 

Figure 4.3 shows a block diagram of the proposed control system. The controller to be 

designed is displayed by block K(s) in this figure. This system can be viewed as a two-channel 

bilateral teleoperation system with a movable base. It is assumed that the master (joystick) 

and slave (base) positions and also the base acceleration are measured. The master-side control 

action, um, is the applied force/torque to the joystick by the motors. The slave-side control 

action, us, is the position command to the base controller. 
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Figure 4.3: System block diagram. 

In addition to performance measures e\ and e2, two more outputs um and us have been 

defined in Figure 4.3. These terms penalize excessive control inputs over given frequency ranges. 

Um = WUmUm Us = WUsUs (4.4) 

Measurement noise (n m , ns, na) is also included in the model to prevent noise amplification 

and regularize the design problem. Frequency-dependent stable rational gains on the input 

signals, i.e. Wf, Wnm, Wns and Wna are used to emphasize the frequency ranges at which their 

energy is concentrated. Communication delays are lumped into one block and are represented 

by e~TdS, a term that will be replaced by its Pade approximation in the controller design. 

Remark: The implicit assumption is that the time delay is relatively small and known. This is 

a reasonable assumption for some target applications of this research, e.g. aircraft piloting and 

operation of hydraulic machines such as excavators. Therefore, the communication delay is not 
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(a) (b) 

Figure 4.4: (a) Controller in the //-synthesis framework, (b) Robust performance problem. 

a major issue here. In applications with large and varying time delay, a similar approach to 

that presented in [67] can be adopted. The system model in Figure 4.3 can be easily modified 

to include an unstructured uncertainty block associated with the communication delay. This 

will not be done in this thesis because it could lead to a more conservative design. 

The system shown in Figure 4.3 is redrawn in a standard //-synthesis configuration in Fig­

ure 4.4(a). This diagram contains the exogenous input vector d, the output vector e, the 

control input vector u, the measurement vector y, the open-loop transfer function Gop(s), the 

perturbation block Apert, and the controller block K(s), where the following have been defined: 

d = 

w 

u = 

fh nm ns na 

W\ W2 VJ3 104 

T 
I 

e = 

z = 

ei e 2 um i/ sj 

- i T 

z\ z2 z% Z4 
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The open-loop plant, Gop(s), has 10 inputs and 11 outputs. The exact form of Gop can be 

derived from Figure 4.3 and will not be presented here. Function sysic from the ^-Analysis 

and Synthesis Toolbox ® has been used to find a state-space realization of the plant dynamics 

Gop for the controller synthesis. The order of the plant dynamics will depend on the frequency 

weights used and will be given for each design case later in this chapter. 

The set of systems to be controlled is described by the following linear fractional transfor­

mation (LFT) 

{FU(G0P, Apert) : max a(Apert(ju)) < 1 j (4.5) 

where Fu(Gop, Apert) denotes the transfer function from the exogenous input d, to the output e 

when the upper block of Gop is closed with the perturbation block A p e r t . The design objective 

is to find a stabilizing controller K, such that for all such perturbations Apert, the closed-loop 

system is stable and satisfies 

\\FL (Fu(Gop, A^t), K) lU < 1 (4.6) 

Where FL(-,K) is the transfer function from d to e when the loop is closed with the controller 

K(s). Also, || • Hoo denotes the norm, i.e., 

||G(s)||oo = supa(G(jw)) (4.7) 

G(s) is assumed to be stable and a(-) is the maximum singular value. Clearly, 

FL (Fu(Gop, Apert), K) = Fv {FL(Gop, K), Apert) (4.8) 

Therefore, the design objective can be equivalently stated as to find a nominally stabilizing 

controller K, such that for all Apert, max d(AverAjuj)) < 1, the closed-loop system is stable 

and satisfies 

\\Fu (FL(G0P,K), Apert) Hoo < 1 (4.9) 
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This problem can be posed as a robust stability problem. By introducing the virtual perturba­

tion block A p e r y, an augmented uncertainty structure can be formed (see Figure 4.4(b)), 

A := *pert 0 
• t-*pert t ' - i p e r t j *-±perf t 

0 Apery-

Then the controller K achieves robust performance if and only if 

(4.10) 

max nA(FL(Gop,K)(juj)) < 1 (4.11) 

where the structured singular value / / A is defined as follows 

LIA(M) := 
max {CT(A) : A G A , det(J - M A ) = 0} 

(4.12) 

unless I — MA is nonsingular for all A, in which case HA(M) := 0. 

The controller K is the solution to the following //-synthesis optimization problem [139] 

min max /j,A (FL (Gop, K)(ju)) 
stabilizing 

(4.13) 

4.4 Controller Design Assuming a Stationary Base 

In this section, it will be shown that a design that achieves the control objectives while ignoring 

the base motion could potentially lead to instability if the base does move. The desired joystick 

admittance is assumed to be 

YD = 
1 

mds2 + bds + kd 

(4.14) 

and the desired kinematic correspondence is a position scaling by ck. For simplicity, it is 

assumed that md = m so no acceleration measurements of the joystick would be required. The 

following control laws can achieve the control objectives for a frequency range below the platform 

controller bandwidth, when no perturbations are present and the base does not move (see 
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Figure 4.3). 

fh + 

mds2 +bds + kd V + 1 

mfs2 mfs2 

Figure 4.5: Simplified block diagram of the system. 

Um{s) = Cm{s)Xm(s) = [(bd - b)s + kd-k] Xm(s) 

Us(s) = Ci(s)Xm(s) = ckXm(s) 

(4.15) 

(4.16) 

We will refer to this controller as the fixed base controller throughout the rest of this chapter. 

Note that this controller is a special form of the more general control block K(s) in Figure 4.3. 

The control gain Cm(s) in (4.15) changes the admittance of the joystick to YD- The position 

of the joystick, scaled by ck, is sent to the platform as a reference command. It should be 

pointed out that the effective admittance of the joystick would be different from YD because of 

the presence of biodynamic feedthrough. 

Figure 4.5 shows a simplified block diagram of the system using the controller given in (4.15) 

and (4.16). According to this figure, the closed-loop characteristic equation can be written as 

1 + LG = 1 + 
(TPS + l)(mds2 + bds + kd) 

-TdS _ = 0 (4.17) 

where LG is the loop gain. To further simplify the analysis, let rd = 0. Using the Nyquist 

criterion, it can be shown that the closed-loop system remains stable as long as 

ckmf > -bd 

md 

bd + kdTp 

(4.18) 

and the frequency of oscillations when the poles are on the jw-axis is UJQ = \Jbd

m^^'-

Similarly, if a position-velocity kinematic correspondence is desired, ck is replaced with 
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In this case, the characteristic equation is given by 

1 + LG = 1 + 0 (4.19) 
(TPS + l)(mds2 + bds + kd) 

For stability (assuming no time delay) 

ckm; > -bd 1 + 
kdr2 

(4.20) 
md + bdTp 

with undamped oscillation frequency WQ = 

Therefore, in the absence of time delay, the system remains stable for all positive c^my, 

whether position or rate control is used. In practice, there is always some delay in the loop. 

It is not difficult to show that the system can become unstable for both positive and negative 

Cktrif in this case. Note how increasing the damping of the joystick (with respect to the base) 

improves the stability in both cases. 

4.5 Robust Controller Design 

The Matlab fx-Analysis and Synthesis Toolbox® [30] was used to solve the robust control problem 

defined earlier (4.13). The toolbox implements the D — K iteration technique [139]. This 

technique does not provide an exact solution to (4.13). Instead, it uses a two-step iterative 

procedure to minimize an upper bound on u.A over a set of discrete frequencies. Therefore, the 

resulting controller is not necessarily optimal-in the sense of (4.13). Both position-mode and 

velocity-mode controllers have been developed. The identified arm/joystick and feedthrough 

parameters from Chapter 3 are used in the following design problems. 
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4.5.1 Position-mode controller: 

The following parameters were used in this case: 

md = 1.45kg 

kd = 88N/m 

f>mf = Sm, \\Sm\\ < 0.5 X 1.45kg 

\\Sb\\ < 0.4 x lO.ON.s/m 

tp = 0.04s 

cjbf — 27T x 12rad/sec 

bd = 15N.s/m 

rrif = 1.45kg 

ck = -1.0 

\\6k\\ < 0.2 x 72N/m 

rd = 0.08s 

Cbf = 0.7 (4.21) 

Note that Ck = —1.0 which means that when the joystick is pulled up the platform moves down 

and vice-versa. The platform time constant has been chosen based on the specification of the 

platform position controller. The value of time delay is based upon the estimated network 

communication delay between the joystick and the platform. 

The weights used in the fj, — synthesis design are as follows: 

Wei = 500 We2 = 2000 

Wnm = 

Wf = 

5.3 x 10~3s 
5.3 x 10-3s + 1 
3.5 x lQ- 4(s + 0.1) 

3.5 x 10-3s + 1 
5 

5.3 x 10~4s 
W u s 5.3 x 10-3* + 1 

(0.02s +1) 2 
(4.22) 

Note that Wei and We2 have been chosen constant. Considering the lowpass behavior of 

the desired admittance and the platform dynamics, more emphasis is placed on the admittance 

shaping and the position tracking at low frequency. The control signal weights Wum and Wus 

have highpass forms. This penalizes high frequency control actions which are not desirable. 

Measurement noise is usually concentrated at high frequency and therefore, the noise weights 

Wnm, Wns and Wna have been selected to be larger in high frequency. Finally, the operator 

intentional force command is a low frequency signal which explains the lowpass form of Wf in 

(4.22). The breakpoint frequencies and the gains in the above filters have been chosen based on 
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rough specifications of the sensors used in the experimental setup, allowable range for the control 

signals, and the expected bandwidth of the operator's force input. They have been further tuned 

through trial and error to achieve a satisfactory design. The above gains produce an open-loop 

plant, Gop(s), with 23 states. The resulting problem, defined in (4.10) and (4.13), is a mixed-// 

synthesis problem since both real (the actual uncertainties) and complex (performance block) 

perturbation blocks exist in the model. A controller with 61 states was obtained after five D — K 

iterations using function dkit from the //-synthesis toolbox. Interestingly, the controller K(s) 

turned to have a special structure. The resulting controller can be decoupled into two control 

gains Cm(s) = f=44 and Ci(s) = A l l the other gains between the measured signals xm, 
Xm{S) Xm(S) 

is, xs and the control signals um and us were effectively zero. The fact that the robust controller 

does not use platform position measurements is due to the absence of any uncertainties in the 

platform model and the use of a local platform controller. Introduction of a disturbance signal 

at the input or output of the platform model would change this. However, this is not a concern 

in the design problem presented in this chapter. One may also expect that the controller would 

use the acceleration measurement to partially cancel biodynamic feedthrough. This turned out 

not to be the case here for the reason explained below. 

Model order reduction: 

In order to be able to implement the controllers, their orders must be reduced. First, state-space 

balanced realizations were obtained for the controllers using function sysbal from the Control 

Toolbox®. Then, function hankmr was applied to the balanced models to reduce the orders 

based on the Hankel norm. This removed the uncontrollable and unobservable modes without 

altering the input-output relationships. The orders of the reduced controllers were chosen by 

comparing the original and reduced-order frequency responses. It was noticed the reduced-

order controllers have a few very high frequency modes that are far beyond the frequency range 

of interest. This could complicate their implementation because of the limited sampling rate. 

Therefore, the reduced-order controllers were transformed to their modal canonical forms using 

canon from the Control Toolbox®. Then, function modred was employed to remove these modes 

without affecting the dc gains. The resulting Cm and C\ are of order eight and six, respectively. 

The poles and zeros of the reduced order C m are as follows: 
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Figure 4.6: Frequency responses of the original, the reduced-order, and the fixed base controllers 
(position mode). 
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Figure 4.7: Robust (reduced-order) controller. 

Poles: 

Pi,2 = -16.49 ± jl6.28 

p3,4 = -15.38 ±;31.10 

p5,6 - -36.47 ±;104.66 

p7,8 = -103.12 ± ^62.31 

C = 0.71 

C = 0.44 

C = 0.33 

C = 0.86 

wn — 23.17rad/sec 

uin — 34.69rad/sec 

ujn = 110.83rad/sec 

cun = 120.48rad/sec 
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Zeros: 

Similarly, for controller C\, 

Poles: 

zx = -414.67 

z2 = -200.24 

*3,4 = -74.66 ± J147.37 

z5fi = -8.65 ±,769.84 

z7,8 = - 1 . 5 9 ± J2.39 

Pi = -9.7 

P2,3 = -18.89 ±j26.06 

Pi = -61.20 

p 5 ,6 = -39.15 ±jl05.98 

C - 0.59 

C = 0.35 

ujn = 32.19rad/sec 

ujn = 112.98rad/sec 

Zeros: 

zi = -8.32 

z2 = -23.72 

z3A = -28.00 ± j51.51 

z5>6 = -67.84 ± J92.48 

The continuous controllers were discretized using the bilinear transformation and a sampling 

rate of fs — 1024Hz for the implementation. The frequency response of the controllers are 

given in Figures 4.6(a) and 4.6(b) where the reduced-order controllers match very well with 

the original ones up to frequencies around 30Hz. It is noticeable from Figure 4.6(a) that the 

robust controller Cm has a slope close to 40dB/dec within the frequency range 3 — 30rad/sec. 

Considering the bandwidth of the platform closed-loop dynamics (« 25rad/sec), Cm behaves as 

acceleration feedback and compensates for the biodynamic feedthrough in this range. This can 
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explain why the controller is not using the platform acceleration measurement. These figures 

also contain the frequency response of the fixed base controller used for comparison. This 

controller was chosen according to Section 4.4: 

° M = 0.0071 + 1 Ci(*) = c* = -1 

Note that a first-order lowpass filter has been added to the PD-type controller Cm to reduce 

noise in the control action. The robustness of the designed controller is compared with that 

of the fixed base controller in Figure 4.7(a) which shows the upper bounds on ̂ A p e r t for the 

two controllers. According to this figure, the fixed base controller is not robust with respect 

to uncertainties and can become unstable (i.e., fJ.Apert > 1)- I n fact, for ck = —1 the nominal 

system under the fixed base controller is very close to instability. If larger ck (in magnitude 

sense) had been used (e.g., ck = —2), even the nominal system would be unstable. The use of 

Cfc = — 1 enables us to compare the time domain responses of the controllers. 

The performance of the robust controller is presented in Figure 4.7(b) where Yd, xm/fh, and 

%slfh are compared. From these figures it is clear that both of the performance objectives, i.e. 

the admittance shaping of the joystick and the position tracking between the joystick and the 

platform are met over a reasonable range of frequency. 

4.5.2 Feedthrough Cancellation Using Acceleration Compensation 

Considering the simple biodynamic feedthrough model used in this chapter, it might seem 

reasonable to cancel the feedthrough by adding an inertial term rhbfXs to the master control 

command. Then, a robust control law can be designed for the system with acceleration feed­

forward to account for uncertainties. The design parameters are all the same as those given in 

(4.21) and (4.22) except the uncertainty in the feedthrough mass which has been increased to 

\\Smf\\ < 0.8 x 1.45kg 

A controller with 57 states was obtained in this case. The orders for Cm and C\ were reduced 

to six and five, respectively. The frequency responses are shown in Figures 4.8(a) and 4.8(b). 

The upper bound on the fJ,Apert f ° r such controller is plotted in Figure 4.9(a) (ck = — 1). The 
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Figure 4.8: Frequency responses of the original, the reduced-order (with acceleration compen­
sation) . 

nominal performance of this controller is shown in Figure 4.9(b). For the design example of 

this paper, a fixed base PD type controller with acceleration compensation can generate more 

or less the same result as the robust controller with acceleration compensation. Nevertheless, 

numerical experiments revealed that the fixed base controller is not robust with respect to 

variations in the feedthrough and the arm/joystick dynamics. The stability margins of the 

fixed based controller reduce as the desired position correspondence gain, ck, is increased. The 

robust controller designed earlier has the advantage of not using acceleration measurement over 

the robust controller with acceleration compensation. Nevertheless, the latter controller can 

provide better performance and larger stability margins for higher values of c^. The presence of 

uncertainty and disturbances in the controlled element (base) dynamics will force the controller 

to use the base acceleration measurement. 

4.5.3 Velocity mode controller: 

A robust controller was designed to achieve a position-velocity correspondence between the 

joystick and the platform. This type of control strategy is employed in applications where a 

joystick with limited motion range controls a slave with a large workspace such as in excavators. 

The following parameter values were used in the design 

md = 1.45kg bd = 20N.s/m 

kd = 170 N/m cfc = 
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(a) Robustness. (b) Frequency responses. 

Figure 4.9: Robust controller with acceleration compensation. 

The design weights Wei and We2 are 

2500(s + 0.01) 
W « - (. + 26) M ' « = 5 0 0 

while the rest of the parameters were chosen as in (4.21) and (4.22). Note a highpass Wei has 

been selected in this case. This is because ck is very large at low frequency (and therefore the 

error) and a highpass Wei enforces the desired kinematic correspondence over the frequency 

more evenly. The open-loop plant has 25 states in this case. The application of D-K iterations 

produced a controller of order 67. As in the case of the position-mode control, all channels 

except Cm and C\ turned out to be practically zero. Model order reduction techniques generated 

controllers of order five and four for Cm and C i , respectively. Their frequency responses are 

shown in Figures 4.10(a) and 4.10(b). The poles and zeros of Cm are as follows: 
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Poles: 

pi = -26.26 

p 2 3 = -23.96 ± J33.36 

pA 5 = -30.32 ± J57.74 

C = 0.58 

C = 0.46 

ojn = 41.08rad/sec 

u)n = 65.22rad/sec 

Zeros: 

Similarly, for controller C i , 

Poles: 

zi = -301.12 

z2 = -195.14 

z3 = -3.38 

24,5 = -19.62 ± j51.60 

pi = -0.01 

P2 = -8.71 

P3 4 = -14.59 ± J35.42 C = 0.38 ujn = 38.31rad/sec 

Zeros: 

zi = -44.19 

z2 = -7.54 

23,4 = -14.59 ± J34.42 

The fixed base controller, whose frequency responses are also given in Figures 4.10(a) and 

4.10(b), is chosen as follows 

Cm{s) = 
10s + 98 

0.0022s + 1 
Cx(s) = 10 (4.23) 
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Figure 4.10: Frequency responses of the original, the reduced-order, and the fixed base con­
trollers (velocity mode). 
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Figure 4.11: (a) Performance of the robust controller (velocity mode). (b)Upper bounds on 
HApert (velocity mode). 

The frequency response of the controller is shown in Figure 4.11(a). It clearly displays a good 

performance as both objectives, i.e., the admittance shaping and the kinematic correspondence, 

have been achieved. 

The robustness of the controller is compared with that of the fixed base controller in Fig­

ure 4.11(b). The proposed controller remains stable in the presence of bounded uncertainties 

defined earlier whereas the fixed base controller can become unstable. 
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Figure 4.12: Responses of the controllers with c\. = —1.0. 

4.6 Experimental Results 

Experimental studies were carried out to evaluate the effectiveness of the proposed controllers. 

The author of this thesis was the subject of the experiments presented here. Similar experiments 

were conducted using another test subject as will be explained later in this section. 

In the first set of the experiments, the operator was instructed to move the platform in 

step-wise and sinusoidal motions. The graphical display was not used in these experiments. 

Both the position-mode and velocity-mode controllers were examined. 

Position mode controller. 

The robust controller demonstrated an excellent response as can be seen in Figure 4.12(a). 

Note that the sinusoidal motion in part of this experiment is intentional and is performed to 

show the tracking behavior of the system. The fixed base controller performed poorly and 

exhibited a nearly unstable response as shown in Figure 4.12(b). The operator had to loosen 

the grasp on the joystick in order the stop the oscillations. Figure 4.13(a) shows the robustness 

of the proposed controller to changes in ck where the position command to the platform were 

multiplied by 1.1. Note how this has worsened the response of the PD controller. The response 

of the robust controller with acceleration compensation was also examined. According to Figure 

4.13(b) this controller also performs well and suppresses the biodynamic interferences. 

Velocity-mode experiments: 

The velocity mode controllers were also evaluated experimentally. It can be observed from 
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Figure 4.14(a) that the fixed base controller demonstrates a highly undamped oscillatory re­

sponse and, in fact, it can easily be destabilized by a small change in the system parameters. 

The proposed robust rate-mode controller performed very well and exhibited a highly robust 

behavior in the experiments. Figure 4.14(b) shows a.typical response of this controller. It 

should be noted the motion seen in this plot is executed voluntarily by the operator. 

The nominal arm/joystick and feedthrough parameters were obtained using identification 

experiments performed on the author. The operator dynamics are used in the design of the 

controllers. However, these parameters may vary from one operator to another. To investigate 

the robustness of the system with respect to the variations in the operator dynamics, similar 

experiments were performed with another graduate student in our lab and without changing 

the controller. Similar behavior to that presented here was observed. Dynamic variations may 

even occur for a single operator. To study the robustness with respect to such changes, the 

operator was instructed to loosen and to firm his grasp on the joystick during some parts of 

the experiments. This can alter the effective mass, damping and stiffness of the operator. The 

robust controller consistently produced well-damped responses in all cases. 

The operator performance in manual tracking under the proposed position-mode robust 

controllers was also investigated. It should be stressed that there is no intention to draw any 

general conclusions here since the system has not been tuned to improve the manual tracking 

performance. Moreover, any study in this regard must involve different subjects with enough 

training time allowed. Each experiment lasted four minutes during which the operator was asked 

to track a random target on the graphical display. The random target motion was generated 

by low-pass filtering of a white noise. The following results were obtained for two different 

variances of the random target motion: 

(i) oref = 0.0204m xref = 0m /;,„, = 0.75Hz 

o-err = 0.009m x e r r « 0.0m td — 0.437sec 

(ii) oref = 0.0150m xref — 0m fbw = 0.75Hz 

o~err = 0.0062m x e r r « 0.0m td = 0.453sec 
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Figure 4.13: (a) Response of the controllers with ck 
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Figure 4.14: Response of controllers in the velocity mode. 

where oy e/, a e r r , xref, and xerr are the standard deviation and means of the target motion 

and the tracking error, respectively, fbw is the bandwidth of the low-pass filter, tj is the 

tracking time delay that is mostly due to the operator's delay in tracking the target. This was 

computed by correlating the platform motion with that of the random target. The time delay 

was compensated in the calculation of the tracking errors. Figure 4.15 shows a small portion 

of the tracking behavior in Case (i) (time delay has been removed). 
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Figure 4.15: The manual control tracking behavior. 

4.7 Conclusions 

This chapter addressed the problem of closed-loop biodynamic feedthrough in joystick-controlled 

systems. A prototype single-degree-of-freedom manual control task was selected for this pur­

pose. The simple acceleration based feedthrough model from Chapter 3 was found to be suf­

ficient for the level of base excitation due to feedthrough-induced oscillations in the design 

example. It was shown via analysis that the feedback loop established through the feedthrough 

dynamics can cause instability if a controller is designed by ignoring the base motion. The 

//-synthesis based controllers proposed in this chapter suppress biodynamic feedthrough, are 

robust with respect to variations in the system parameters, and at the same time perform well, 

although perhaps not optimally. The controllers were implemented and evaluated experimen­

tally. The results demonstrated the effectiveness of the proposed approach. Robust controllers 

can be designed using the other feedthrough model developed in Chapter 3 and the design 

framework presented here for applications with larger base acceleration. 



Chapter 5 

Adaptive Nonlinear Control of 

Hydraulic Servo-systems 

5.1 Overview 

Electrohydraulic actuators are widely used in industrial applications. They can generate very 

high forces, exhibit rapid responses and have a high power-to-weight ratio compared with their 

electrical counterparts. However, it is well-known that they exhibit significant nonlinear be­

havior which makes controller design a challenging task. In this chapter, the backstepping 

approach [60] is employed to develop a new Lyapunov-based position tracking controller for 

hydraulic servo-systems. Load, hydraulic and first-order valve dynamics are incorporated in 

the design of the controller. An adaptive version of the controller is also presented to adapt 

for uncertainties in the hydraulic parameters. Stability of the proposed control laws is proven 

via Lyapunov analysis. The chapter is organized as follows. First, the dynamic equations of an 

electrohydraulic servo-system driving a mass load are presented. The nonadaptive and adap­

tive control laws are proposed next. Before the actual implementation of the controllers, their 

performance is investigated in simulation. Finally, the experimental results are presented and 

conclusions are drawn about the performance of the proposed controllers. 

78 
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Figure 5.1: A hydraulic servo-system with three-way valve configuration. 

5.2 System Dynamics 

The differential equations governing the dynamics of a hydraulic actuator are given in [83]. 

The experimental hydraulic setup used in this research is connected in a three-way valve con­

figuration as shown in Figure 5.1. For such a system, the control pressure dynamics are given 

by 

Vt 

-jPc = Qi + Q{ps - pc) - Vt (5.1) 

where Vt is the trapped fluid volume in the control side, 8 is the effective bulk modulus, pc is 

the control pressure acting on the control side, ps is the supply pressure acting on the rod side, 

qi is the load flow, and Q is the coefficient of total leakage. Vt can be approximated by 

Vt a A(x - L) (5.2) 

where A is the piston area, x is the actuator length and L is the actuator stroke length. The 

load flow, qi, is a nonlinear function of control pressure and valve spool position and is given by 
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Qi=< 

c(xv - d)y/p^ 

c(xv + d)y/pa -pc + c(xv - d)^/p~c 

c(xv + d)y/ps -pc 

xv < —d 

—d < xv < d (5.3) 

Xy > d 

and 

c = cdw (5.4) 

where cd is the effective discharge coefficient, w is the port width of the valve, p is the density of 

the fluid, d is the valve underlap length and xv is the valve spool position. In the ideal case in 

which the valve dynamics can be neglected, xv is the control command. However, in practice, 

xv is the response of the valve to a command signal. In particular, in the system that we have 

experimented with, the valve dynamics can be approximated by a first-order system: 

1 1 
Xy -\ U (5.5) 

In our experimental setup, described later in this chapter, a single hydraulic actuator drives a 

mass connected to its rod end in the vertical direction. Thus, the load dynamics are 

pcA - psa = mx + ff(x) - mg (5.6) 

where m is the total mass of the actuator and the load, / / (£) is the friction force (a nonlinear 

function of the actuator velocity) and g is the gravitational acceleration. A is the area of the 

piston and a is the annulus area. Equations (5.1),(5.5),(5.6) completely describe the fourth-order 

nonlinear dynamics of the system under study. The corresponding state space representation 

of these dynamics follows. By defining 

X = Xi X2 X3 X4 tC CC 'PC (5.7) 



5.3 Controller Design 81 

Valve Hydraulic Load 
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Figure 5.2: Block diagram of the hydraulic servo-system, 

one can write (assuming q = 0) 

h{xux2) +gz{xi,X3,x±) (5.8) 

5.3 Controller Design 

The nonlinear system described by (5.8) is in so called pure feedback form (see Figure 5.2). 

This special form allows the use of the recursive backstepping procedure for the controller 

design [60]. The method basically provides a recursive framework to construct a Lyapunov 

function and corresponding control action for system stabilization. In the rest of this chapter, 

this idea is adopted to design a nonlinear controller for position tracking in single cylinder 

hydraulic servo-systems. 

5.3.1 Non-adaptive Case 

First, the system parameters are assumed to be known. Let = X{ — xf, i = 1, • • • ,4 and 

e = x — xd. The design procedure is started by defining the following Lyapunov-like function 

Vi = \m (x2 - xd

2) 2 +l-kl(x1- xf) 2 (5.9) 

Xl 

X2 

X3 

£ 4 

X2 
A 1 
—x3 ff(x2) + 
m • m 

Px2 , B + x\ — L A(x\ — L) 
1 1 

X4 H u 

- —Ps 
m 

qi(x3,Xi) 
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where xf = x^ and x1^ = i i d are the desired actuator position and velocity, respectively. The 

derivative of (5.9) is given by 

Vi = (-ff + Ax3 + mg- aps - mxfj (x2 - x$) + fa (xi - xfj (xi - xf) (5.10) 

With X3 = xf + e3, and the following choice of xf: 

w 1 
A A aps 

- mg + ff + fa (xf - xij + k2 (x* _ ^2) + "^1 (5-H) 

V\ becomes 

Vi = -^2e | + Ae2e3 (5.12) 

Now, in order to go one step ahead, V2 is defined as 

V2 = V1 + ^{x3-xi)2 (5.13) 

By taking the derivative of (5.13) and using (5.12) 

(5.14) 
V2 = Vi+ 73 (x3 - ^3) ( * 3 - = Vi + 7ae 3 (/s + 33 - 4) 

= -k2e\ + 73e 3 ( — + h + 53(^4) + #3(2:4) - ff3(4) - £ 3 
V 73 

If is chosen as the solution of the following algebraic equation 

gz{,xux3,xi) = - / 3 + X 3 - — - k3e3 (5.15) 
73 

then (5.14) is simplified to 

V2 = -k2e\ - i3k3e\ + j3g3e3 (5.16) 
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with g3 = g3(x\,x3,£4) — g3(xi,x3,xf). Let V3 be defined as follows 

V3 = V2 + ^74 (x4 -xfj = ^ (hel + me2, + 7363 + 74e|) (5.17) 

By taking the derivative of V3, one may write 

V3 = V2 + 74e4 ( -—Xi + — K - xf = -k2el - -y3k3e\ + 7 4 e 4 

1 1 -d , 73 53 
•—X4 H u — xA H e3 

r e re 74 e4 

To make V3 negative, (5.18) suggests the following choice for the control law u 

(5.18) 

U = Tp 
+d 73 93 

74 e4 

1 
e3 — K4e4 H Xi (5.19) 

which renders V3 into 

V3 = -k2e2 - j3k3e3 - jikie4 (5.20) 

with k\, k2, k3, £ 4 , 7 3 , 7 4 > 0. In the control law given above, 

r 93 ,. 93(^1, x3,Xi) - g3(xi,x3,X4 - ei) dg3 

hme4_>0 — = hnie^o = ^— 
ei ei oxi X4 

(5.21) 

Note that (5.17) is a Lyapunov function for the system defined by (5.8), and the control 

law given by (5.11),(5.15),(5.19) renders its derivative negative semidefinite. It can be shown 

that e = 0 is the largest invariant set in E = je 6 fi|p3(e) = O J . So, using LaSalle's principle 

[112], the tracking errors, which include position and velocity tracking errors, converge to zero 

asymptotically. The proposed control law requires measurements of the actuator position and 

velocity, control pressure, and the valve spool position. The derivative terms in the control law 

(i.e. if, xf) can be obtained in terms of the system states. Nevertheless, the expressions are long 

and complex and may not be suitable for real-time implementation. Numerical differentiation 

was found to be adequate for this purpose. 
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5.3.2 Adaptive Case 

In the controller development in the previous section, it was assumed that all of the system 

parameters are known. However, this assumption is not always valid. Sometimes, it may be 

necessary to identify some of these parameters off-line or estimate them using on-line adaptive 

schemes. The proposed controller was found to be more sensitive to changes in the hydraulic 

parameters than those in the load parameters. Therefore, these parameters might be estimated 

on-line. To develop an adaptive version of the controller, equations (5.1)-(5.3) are rewritten in 

the following form: 

X3 = Olfs + 02<?3 (5.22) 

where 0 = 
iT 

13 /3c is the actual parameter vector, and 

fl — x2 
J3 ~ xi-l 

A(x!-L) 

33 = (x\-d)y/x~3+(xi+d)sjps-xz 
A{x\-L) 

(x4+d)yjpa— X 3 
A{xi-L) 

Xi < —d 

—d < Xi < d 

X4 > d 

Now, V2 in (5.13) is redefined as 

where 6 = 6 — 6 and 6 is the estimate of 6. The derivative of (5.25) is given by 

V2' = Vi + 7 3 e 3 (01/3 + 0293 + 0293 - 4) - -reJA ~ loA62 

be calculated using (assuming (jj^) — 0) 

• H fa If dff , \ / A 1 , . , a \ m 

can 

m... 
x\d 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 



5.3 Controller Design 85 

and 

. . d fcx . 1 fdff 

m \ J m ox2 

+ - * ( 4 ) (5.28) 

or, equivalently 

Let x\ be certainty equivalent to (5.15), i.e. 

93 =g'3(xi,x3,xi) = 
V2 

&lf3+X3

 e2 - £363 
73 

(5.30) 

is used as if the parameter estimate errors were all zero. This choice of xf renders t° 

Vi = -k2e2

2 - k3l3e\ + 7 3 e 3 61/3 + ^ 3 + ^ 3 ~ leAh - leAh (5.31) 

The derivative of x4 can be computed as follows 

£4 1 [ - h k - ^ - i h + i ^ - h ^ ) ^ e2dg'3

d/dxi[ 

dx\ m m dx2 

dg'f , (k2 1 dff 

m m dx2 

di 
dx3 

•3 , V s + W a ) ^ _ g , Q f h l _ f M § i § 2 

dx3 

0 2 ^ / + - - . 
0x3 \ m m ox2 

+ k3)f'z 0, 

_U& + !»_±»k + h \ g,h + p { x ) - - ( i 2 - y 
V 5x3 m mdx2 J 73 

(5.32) 

The system state equations in (5.8) and (5.29) have been used in the derivation of (5.32). 

Similarly, V3 is redefined as 

V3' = Vi + \lAel (5.33) 
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By taking the derivative of V 3 , one may write 

V3 = V2 + 74e4 •— x4 + — u - a + Oifii + 62P2 
Te Te 

Using the parameter adaptation laws given by 

•Si = ^ [ 7 3 / ^ 3 + 74/81 (eue2,x) e4] 
02 = ^ [l3g'3e3 + 7 4 /3 2 (Oi,02,x) e4] 

(5.34) 

(5.35) 

(5.36) 

and the control law 

u = TP 

_ L 1 73 £3 n . ' 
a H £ 4 ^#263 — K 4 e 4 

Te 74 e4 

The derivative of V3' becomes 

(5.37) 

V3' = -k2e\ - 73̂ 363 - 74fc4e4 (5.38) 

Note that V3' is a Lyapunov function for the closed-loop system. Therefore, the tracking errors 

converge to zero. However, the control and adaptation laws given here do not guarantee that 

the parameters converge to their actual values. For parameter convergence, the conditions of 

persistent excitation must be met [112]. 

5.4 Simulation Results 

Simulations have been performed to investigate the performance of the proposed nonlinear con­

trollers. The simulation results have also been used to tune the controller for the experimental 

studies discussed in the next section. The results obtained from simulation are presented in 

this section. The following values have been used for the system parameters. 

A = 1.14 x l (T 3 m 2 a = 6.33 x lCT 4m 2 L = 1.37m ps = 1500psi d = 55.4 x l (r 6 m 

c = 1.15 x I O - 4 = 700Mpa m = 30kg r e = 0.0035sec 
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Figure 5.3: Position tracking with / = 6Hz Figure 5.4: Actuator force tracking with / = 
(simulation). 6Hz (simulation). 

The friction was modeled as viscous damping with b = 1000 N.s/m (ff = 6x2). The controller 

gains were chosen as 

h = 400 x 10 3N/m k2 = 4000N.s/m k3 = 400s~l k4 = 800s-1 

7 3 = ICT 1 0 74 = 15 x 107 

5.4.1 Nonadaptive Controller 

The position tracking performance of the proposed controller (nonadaptive) is compared with 

that of a standard PD controller for a sinusoidal reference trajectory with / = 6 Hz in Fig­

ure 5.3. The PD controller has been optimized to reduce the position tracking error. The 

nonlinear controller clearly outperforms the linear one. It tracks the reference trajectory al­

most perfectly whereas the linear controller exhibits a large tracking error. In the controller 

design, the control pressure (or, equivalently, the actuator output force) was an intermediate 

virtual control command. Figure 5.4 presents the force tracking behavior of the actuator. The 

force tracking error, seen in this figure, is due to the velocity estimation error. Actually, the 

effect of piston motion in (5.1) is canceled by (5.15) and because of the low compressibility of 

the fluid (huge /?), the performance offeree tracking is sensitive to this nonlinearity cancelation. 

To improve the performance, one should increase the pressure feedback gain &3. However, noise 

in the pressure loop can excite the high frequency modes and lead to system instability if a 
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Time (s) Time (s) 

Figure 5.5: The step response of the con- Figure 5.6: Position tracking error for the 
trailers (simulation). adaptive controller (simulation). 

high pressure feedback gain is used. The step responses of the nonlinear and linear controllers 

are compared in Figure 5.5. Again, the proposed controller has better performance, especially 

a much smaller settling time compared with the PD controller. It should be pointed out that 

during the first rise phase both controllers saturate and therefore they behave almost identically. 

5.4.2 Adaptive Controller 

To investigate the effectiveness of the adaptive controller, another set of simulations were per­

formed. The following adaptation gains were used to implement (5.35) and (5.36): 

7 f l l = 0.25 x 10~1 4 7o2 = 0.25 x 10~6 

A multiple frequency reference trajectory was employed to excite the system. It was found 

that the controller is only sensitive to the ratio c = 62/61, not the parameters themselves. In 

fact, the parameter estimations converge to values with the same ratio as the ratio of actual 

parameters, depending on their initial values. In the first simulation case, the initial estimates of 

the parameters were chosen to be 50% and 100% off from their actual values, respectively. The 

results are shown in Figure 5.7 (a, b). Solid lines represent the actual values of the parameters. 

In the second case, only one parameter was mismatched, and its adaptation law was active 

exclusively in each time. As a result the parameters converged to their actual values. The 
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Figure 5.7: The estimated parameters (simulation). Solid lines show the actual values. 

results are specified as Case 2 in Figure 5.7 (a, b). The tracking errors converge to zero in both 

cases. Figure 5.6 shows the position tracking error in the first case. 

5.5 Experimental Results 

The proposed controller was also implemented on one of the hydraulic actuators used in the 

UBC hydraulic motion simulator [99]. Necessary modifications were made in order to perform 

single cylinder experiments, as seen in Figure 5.8. The hydraulic actuation system is equipped 

with a Rexroth 4WRDE three-stage proportional valve connected in a three-way configuration. 

Low friction Teflon seals are used in the hydraulic cylinders. The computing setup consists of a 

VME-based real-time system running Vx Works on a Themis Sparc 5 board. Actuator length, 

valve spool position and supply and control pressures are measured through installed sensors. 

The schematic diagram of the controller is shown in Figure 5.9. In this figure, N\(-), A^ - ) 

and Ns(-) have been defined in (5.11), (5.15) and (5.19), respectively. A l l derivatives required 

in the control law were implemented by a — /3 filters [10]. The control update frequency was 

/ = 1 kHz. The actual system parameters are all the same as those given in the simulation 
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Figure 5.8: The experimental setup. 

section. The controller gains were selected as: 

ki = 400 x 10 3N/m k2 = 10 x 103N.s/m A;3 = lOOs"1 kA = 300s-1 

During the experiments, it was found that it is difficult to increase the pressure feedback 

gain &3. Increasing this gain allows the noise to excite the high frequency modes of the system 

and can lead to instability. Both adaptive and fixed-parameter controllers were implemented. 

Adaptive controllers slightly improved the tracking performance but the parameters did not 

converge to constant values. Bounds on parameter estimations were used to avoid instability 

due to parameter drift. The very stiff pressure dynamics make the pressure control loop sensi­

tive to measurement noise and prevent parameter convergence. It should be pointed out that 

the parameter convergence is not guaranteed by the proposed controller. The hydraulic param­

eters used in the nonadaptive controller were identified by an off-line least-squares estimation 



5.6 Conclusions 91 

u Valve Cylinder Load 

N3(-) 

d/ d/ 
/dt /dt 

N 2Q 
3Cn 

* W * W 

Figure 5.9: The schematic of the controller. 

technique. The nonlinear controller performance is compared with a standard PD controller in 

Figures 5.10-5.12. The PD controller was tuned to obtain a good tracking performance while 

keeping the system stable. Figure 5.10 displays the position tracking for a reference trajectory 

with / = 2Hz. The nominal position of the load is at / = 2.35m which is not shown in this figure. 

The nonlinear controller clearly outperforms the PD controller despite its poor force tracking 

as shown in Figure 5.11 (the maximum tracking errors are 5% and 28% for the controllers, 

respectively). In Figure 5.12 the controllers are compared in tracking a / = 4 Hz reference 

position trajectory. Again, the superiority of the nonlinear controller is clearly observed where 

the peak tracking errors are 17% and 55% for the two controllers. 

5.6 Conclusions 

In this chapter, the position control problem of a hydraulic actuator was addressed. The highly 

nonlinear behavior of the system limits the performance of classical linear controllers used for 

this purpose. The backstepping design strategy was adopted to develop a nonlinear controller 

that considers the valve dynamics. An adaptation algorithm was also proposed for on-line 

identification of hydraulic parameters. The control laws proposed in this chapter require mea­

surements of the actuator position and velocity, control pressure, and the valve spool position. 

It was found that the proposed controller outperforms a tuned PD controller both in simulation 

and experiments. Despite the fact that the stiff pressure dynamics makes the inner pressure 
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Figure 5.10: The position tracking with / = Figure 5.11: Actuator force tracking with / = 
2Hz. 2Hz. 
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Figure 5.12: The position tracking with / = 4Hz. 

control loop sensitive to system uncertainties, excellent position tracking performance is ob­

tained. The method has the potential to be extended to the control of hydraulic manipulators 

incorporating the actuator dynamics. This will be demonstrated later in the thesis. 



Chapter 6 

Numerical Optimization of a Single 

Cylinder Hydraulic Servo-system 

6.1 Overview 

In Chapter 5 of the thesis a nonlinear position tracking controller was proposed for single 

cylinder hydraulic systems. The proposed controller guarantees the convergence of the tracking 

errors to zero if proper gains are used. However, it does not provide any information on the 

transient response of the system and the selection of the feedback gains for the improvement of 

this response. The gain tuning is usually performed by trial and error. This chapter proposes 

a numerical approach to the optimization of the nonlinear controller. Numerical methods for 

solving optimal control problems have been reported in the literature, e.g. see [9] and [32]. 

However, this work differs from them in the way it formulates the suboptimal control problem 

and finds its solution. A simplified version of the position tracking controller presented in 

Chapter 5 is used here. The valve dynamics and the hydraulic parametric uncertainty are 

ignored in the model. These assumptions lead to a feedback linearization based control law 

parameterized by the feedback gains. A performance index that captures some features of the 

transient response of the system is defined. This index also includes a term that penalizes 

measurement noise amplification in the controlled variables. Various optimization techniques 

are utilized to optimize the performance index over the set of controller gains that stabilize the 

system. The response of the system under the suboptimal nonlinear controller is simulated and 

93 
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the results are presented. Note that the above assumptions have been made to simplify the 

problem and demonstrate the solution. The approach can be extended to the optimization of 

the original nonlinear controller laws. 

The chapter is organized as follows. First, the simplified dynamics, the control law, and 

the subsequent closed-loop dynamics are presented. Then, the formulation of the suboptimal 

control problem is discussed. The evaluation of the performance index and its gradient are 

briefly explained next. The optimization routines used in this thesis and the results of their 

application to the problem under study are also presented. Conclusions about the approach are 

drawn at the end. 

6.2 System Dynamics 

The schematic of the system under study is shown in Figure 6.1. This is similar to the model 

discussed in Chapter 5 with some minor modifications. Gravity is not considered and the load 

is taken to be a mass-spring-damper system. The mass-spring-damper dynamics are governed 

where r is the force exerted by the actuator, m is the mass, b is the damping and k is the 

stiffness of the load and x, x and x are the position, velocity and acceleration of the actuator, 

respectively. The hydraulic dynamics are also simplified by ignoring the valve underlap and the 

electrohydraulic servo-valve dynamics. The effect of valve dynamics on the system response will 

be investigated later in the simulation studies. Valve saturation is also neglected in the design. 

The load flow is given by: 

Here, u is the control command (valve spool position). The rest has been defined in Chapter 5 

by 

mx + bx + kx = T (6.1) 

(6.2) 
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Figure 6.1: Single-rod hydraulic servo-system, 

in (5.1) and (5.3). Note that force dynamics can be written as: 

T = + — — p f f l ( T r « ) = f(x,x) +g{x,r,u) (6.3) 
x — L x — L 

(6.1) and (6.3) describe a third-order nonlinear dynamic system. 

6.3 Control Law and Closed-loop Dynamics 

To derive the control law, the desired actuator force is chosen as 

rd = mxd + bxd + kxd - kpe - kde (6.4) 

where xd, xd and xd are the desired acceleration, velocity and position trajectories, respectively. 

e = x — xd and e = x — xd are the position and velocity tracking errors. The constant coefficients 
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kp and kd are design parameters. By substituting (6.4) in (6.1), 

me + (b + kd)e + (k + kp)e = f (6.5) 

where f = r — T d is the force tracking error due to the presence of the actuator dynamics. 

Consider the following nonlinear feedback law 

u = - {-f(x, x) + Td - kTf) 
9 

(6.6) 

and 

9={ 

Pc I T+pag 
x - L y A if u d < 0 

PC 
x — L 

(6.7) 

with 

ud = ~f{x,x) +fd- kTf (6.8) 

and 

... , ... . , . , kd(k + kp) fkd(b + kd) \ . kd_ 
Td = m x d + bxd + kxd H —e + kp ) e r m \ m I m 

(6.9) 

Equations (6.4) and (6.5) have been used in the derivation of (6.9). 

Upon defining X = [xj, x2, xz\T = [e, e, f]T, it is not difficult to show that the error dynam­

ics under the proposed control law have the following forms 

Xi — x2 

x2 = -pixi - p2x2 -I xz 

m 
(6.10) 

X3 - -P3X3 
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or equivalently, 

X(t) = A0(p)X(t) 

Parameters p\, p2 and pz are defined as 

k + kp b + kd 
Pi = P2 = ~ ~ Pz = kT 

(6.11) 

m m 
(6.12) 

and 

0 1 0 

A0(P) = -Pi -Vi J_ 
m 

(6.13) 

0 0 -P3 

The poles of the closed-loop system are the solutions of the following equation: 

det (si - A0) = (s + vz) (s2 + P2S + pi) =0 (6.14) 

Clearly, the tracking errors are stable and converge to zero if all three parameters are fixed and 

positive. It should be pointed out that the special form of the dynamics has allowed the use of 

a feedback linearizing controller and has simplified the problem. 

The proposed control law requires the measurement of the actuator position, velocity and 

output force (obtained from the supply and control pressure measurements). In the above 

formulation, measurement noise has not been considered. In practice, feedback signals are 

contaminated with some level of noise. The state equations are now modified to consider the 

noise, assumed to be zero-mean colored Gaussian, as follows. 

Xm — X -\~ XJI 

Xjyi — X -\- VJI 

I'm = T -\- TN 

E{x2

n} = oln E{vl} = oln E{rt} = o. Tn 

(6.15) 

(6.16) 

(6.17) 

(6.18) 
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and 

xn = -—xn + — nx (6.19) 
Tx Tx 

1 1 
vn — vn H nv 

Tv Tv 

T n = - — T n + —nT (6.20) 

where nx, nv and nT denote zero-mean white Gaussian noise. This will affect T& in (6.4) as 

follows: 

Td

n = mxd + bxd + kxd - kp(e + xn) - kd(e + vn) 

— Tfi k p X f i ^dVu 

(6.21) 

Corresponding changes in (6.9) produce 

• n • kdk (kdb , \ kd Td = Td-\ xn + kp\vn nT (6.22) 
m \ m J m 

Since / and g in (6.6) are nonlinear functions of the states, nonlinear noise terms appear 

in these quantities and make the analysis complicated. To tackle this problem, the following 

linear approximations are made 

A6(x + vn) _ ABx AB 
f = j—, ~ F 7Vn ( 6 - 2 3 ) 

x — L + xn x — L xd — L 
gn~9 (6.24) 

Using (6.20)-(6.24) in the feedback law (6.6) and after performing some manipulations, we 
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obtain the error dynamics 

X\ =X2 

X2 = ~ 
k + k„ b + kd 1 

-Xi %2 -\ X3 m m m 

is = - kTx3 + 

+ 

kkd 
m 

AP , kdb 

kfkp j X4 

Xd — L m 
1 1 

±4 = X4 H nx 

r~x Tx 
1 1 

x5 = x5 -I nv 

1 1 
xe = XQ H nT 

kTkd - kp ] x5 - ( — + kT } xe m 
(6.25) 

with [xi,x2,x3,X4,X5,x^\ = [e,e,f,xn,vn,TN] . The state equations can also be written in 

matrix form 

X(t) = A(p)X(t) +BN A = 
A0{p) Ai2{p) 

0 A22 

(6.26) 

with 

A12 (p) = 

0 

0 

0 

0 

kTkp _f r + ~ir kTkd kp 

A22 = 

xd-L ^ m 

0 0 

0 - 7 - 0 
Tv 

B = 

0 0 

Tx 7~v TT 

TT 

(6.27) 

(6.28) 

(6.29) 
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6.4 Suboptimal Control Problem 

Under the proposed control law, the tracking errors are stable and converge to zero whenever 

the parameters p\, p2 and/>3 are positive. Nevertheless, the transient response of the closed-loop 

system is determined by these parameters and they should not be chosen arbitrarily. Moreover, 

the presence of measurement noise prevents the application of very large feedback gains. Also, 

in practice, the valve opening would saturate if very large inputs are commanded. To define a 

performance measure that quantifies the transient behavior of the closed-loop system and the 

above limitations, the response of the system to a position step input is considered. The goal 

is to move the actuator from rest at some known initial position to rest at some other known 

position within time tf while minimizing a performance index that will be defined shortly. This 

problem can be stated as 

Despite the presence of noise, the problem is first treated as a deterministic optimization 

problem with the performance index 

mi ry . s > 0 J(p) s-t 

X(t) = A0(p)X(t) 

Xo - x 0 - x d 0 kxd + kp(x0 - xd) (6.30) 

*(*;) = [0,0, O f (desired final state) 

J(P) = Jx(p) + Juip) + Jtf(p) (6.31) 

where 

(6.32) 

(6.33) 

Jtf(p)=X(tf) >THX(tf) (6.34) 

and Q, H and r are all positive. This formulation of the performance index has been widely used 
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in the optimal control literature [15,70]. Jx penalizes the tracking errors during the transition 

control commands and therefore discourages valve saturation. It is possible to introduce the 

effect of noise into the performance index without recourse to stochastic optimization. To this 

end, the steady state response of the closed-loop system under noise excitations is considered. 

That is the response of the dynamical system described by (6.26) when time approaches infinity. 

It can be shown that the state vector becomes a stationary random process with zero mean and 

covariance matrix P given by the solution of the Lyapunov equation [7] 

A new term is added to the performance index that penalizes for the first three diagonal elements 

of this matrix (the covariances of e, e and f, respectively). Therefore, the overall performance 

measure is modified as 

period and Jtf does the same thing for the final state. The introduction of Ju penalizes excessive 

AP + PAT + BBT = 0 (6.35) 

(6.36) 

J(p) = Jx + Ju + Jtf + Ji n (6.37) 

with Jn defined as 

Jn = rxP(l, 1) + r„P(2,2) + r T P(3, 3) (6.38) 

and rx, rv and r T are all positive. 

Remark: The magnitude of the step input is assumed to be fixed and the initial velocity and 

the output force of the actuator are assumed to be zero. 
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6.5 Evaluation of the Performance Index and its Gradient 

Three terms in the performance index, namely, Jx, Jtf and J„, are computed analytically. It 

can be shown that (see Appendix A) 

Jx = XTu*t{V*QV). UtX0 (6.39) 

Jtt = xTut*eA*tfV*HVeAtfUtX0 
(6.40) 

and 

Jn = rxP(l, 1) + r„P(2,2) + r TP(3, 3) (6.41) 

where 

P = V(UtBBTUr). 
A, + A* 

V* (6.42) 

and "O-O" denotes component-wise product of two matrices. In (6.39), (6.40) and (6.42) Ut, 

V, Ut and V, are matrices of the left and right eigenvectors of AQ and A, respectively. Also, Â  

and Ai are the eigenvalues of Ao and A. 

Remark: Once Ut, V are computed, the upper (3 x 3) blocks of these matrices represent Ut and 

V. It is assumed that A does not have any degenerate eigenvalues. 

The term corresponding to the control effort in the performance index, Ju, has to be com­

puted numerically. Once X(t) is calculated, u(t) can be derived from (6.6) and then used in an 

integration routine to compute Ju. In this work, function "quad" from Matlab was employed 

for this purpose. 

The optimization algorithms used in this thesis also require the gradient of the performance 

index with respect to the parameters at each point. The expressions for the gradient have been 

derived in Appendix A. It should be mentioned that the computation of the gradient involves 

taking the partial derivatives of eigenvalues and eigenvectors with respect to parameters, i.e., 

^ and J^ . This is addressed in [73] and [53]. 
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Table 6.1: Performance of the optimization routines. 

SRI BFGS DFP Conj. Grad. 
Steps 
Time (s) 

32 30 13 21 
21.2 27.3 61.2 108.4 

6.6 Optimization Results 

The optimization problem defined by (6.30) is a constrained optimization problem in principle. 

Nevertheless, the solution is always located in the stable region. This is because of the fact 

that any unstable pole can generate large tracking errors that would never converge to zero and 

hence would significantly increase the performance index. Therefore, unconstrained optimiza­

tion routines were implemented to solve the problem. Special care was taken to prevent the 

algorithms from leaving the stable region in the intermediate steps. This is important since Jn 

is not denned in the presence of any unstable modes. The algorithms used in this thesis are 

SRl/Trust Region, BFGS, DFP and Conjugate Gradients [88]. 

The performance index defined in (6.37) has some parameters to be specified (see (6.32)-

(6.34) and (6.38)). For simplicity, the matrices Q and H are chosen to be diagonal. In matrix 

Q a small weight is given to velocity tracking errors so the system can have a fast response. 

The other two terms are selected in such way that they roughly normalize their corresponding 

tracking errors. In matrix H all tracking errors have been treated in the same way. The velocity 

coefficient is not small here since a zero velocity is desired at the final time tf. Furthermore, 

rx, rv are selected in accordance to measurement noise covariances to scale them to the same 

order. Noise in the force tracking error is not important so a small weight is given to it. 

In order to properly weight Jx, Jtf, Ju and Jn in the performance index, an iterative scheme 

is employed. At the minimum point p one may write 

It is reasonable to scale each component of the gradient at this point in such way that they 

roughly contribute the same amount to the change in the performance. Therefore, once a 

solution is found each term is scaled based on the norm of its gradients and the problem is 

(6.43) 
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solved again using the new values. This process continues until the norms of the final gradients 

are within the same order of magnitude. Several cases of simulations have been carried out. 

The results follow. 

6.6.1 Case 1 

The initial and final positions of the piston, XQ and xd and also the control time horizon, tf, are 

selected based on the author's experience. The covariance and bandwidth of the measurement 

noises are chosen based on the specifications of hydraulic experimental setup used in Chapter 5. 

The numerical values used in this case are as follows: 

XQ — 1.9m 

xd = 0 

o-2

Vn = 10" 2m 2/s 2 

TT = 1/600S 

Xd = 1.93m 

tf = 0.1s 

<?2

Tn = 1600N2 

rx = 5x 108m~2 

xd = 0 

r = 4 x 10 7 m _ 2 /s 

TX = l/170s 

r„ = 2 x 10 3s 2/m 2 

xd = 0 

cr? = 4 x 10 _ 8 m 2 

TV = l/180s 

TV = 0.0125N"2 

Q = 5 

10 5 m" 2 s- 1 

0 

0 

0 0 

10- 4m" 2s 0 

0 l N - 2 s 

H 

25 x 10 8m" 2 0 0 

0 10 6m- 2s 2 0 

0 0 25 x 10 3N~ 2 
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The parameters of the hydraulic servo-system represent those of the experimental setup. These 

parameters have been denned earlier in this chapter. 

A = 1.14 x 10 _ 3 m 2 a = 6.33 x 10 _ 4 m 2 

cd = 0.432 w = 5.7 x 10"3m 

p = 858.2kg/m3 L = 1.37m 

b = ON s/m k = ON/m 

P s = 1200 x 6894.757Pa 6 = 700 x 106Pa 

m = 40kg 

All of the optimization algorithms started at the following initial point 

r i r 

Po = 3000 250 400 Jo = 228334 

and they all converged to following solution point. 
P 4678.43 121.93 278.33 

T 
J = 73.937 

The results are compared in Table 6.1 in terms of their execution time and the number 

of the steps before convergence. To investigate whether the solution is a local minimum or 

not, the optimization routines were run from a number of other starting points and they all 

converged to the same minimum point even though the rates of convergence were different. 

The profiles of the performance index and its components obtained from running SRl/Trust 

Region optimization method are shown in Figure 6.2. The trajectory of the parameters in the 

parameter space from the initial point to the final point is drawn in Figure 6.3. 

The responses of the system with the optimized gains are presented in Figures 6.4-6.7. 

Clearly, the system exhibits a very fast response with no overshoot and reasonable noise in the 

controlled variables and the goals of the optimization are all achieved. 

Remark: In Figures 6.3-6.13 the step input is commanded at time to = 0.1 sec so the actual 

final time is tf = to + 0.1 = 0.2 sec. 

The predicted measurement noise covariances obtained from the solution of the Lyapunov 
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Figure 6.2: Profile of the performance index Figure 6.3: The trajectory of parameters 
(SRI). (SRI). 

equation match their numerical estimates obtained from simulation very well. Note that small 

discrepancies are due to the approximation of nonlinear noise effects in the analytical model 

and also numerical approximation errors. 

al = 1.4818 x I O - 8 (simulation) 

al = 3.933 x I O - 5 (simulation) 

CT2 = 2.0371 x 103 (simulation) 

a2

x = 1.2108 x I O - 8 (predicted) 

al = 4.0489 x 10-5(predicted) 

a2

T = 2.318 x 103 (predicted) 

6.6.2 Case 2: Effect of initial position 

The nonlinear control law proposed here linearizes the dynamics and the closed-loop behavior 

of the system under this feedback law should not depend on the operating point of the system. 

To show this, the initial and the desired final position of the actuator are chosen to be different 

from those of the previous case. 

XQ = 1.6m Xd = 1.63m 

The system responses in this case are shown in Figures 6.8-6.11. The only noticeable differ­

ence is an increase in the amount of noise specially in the force signal. This is can be explained 
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Figure 6.4: Position of the actuator (case 1). Figure 6.5: Velocity of the actuator (case 1). 
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Figure 6.6: Force tracking of the actuator (case 
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Figure 6.7: Control command (case 1). 

by the decrease in the trapped oil volume in the control side of cylinder (Vt = A(x — L)) that 

increases sensitivity to velocity measurement noise (see 23 in (6.25)). It is worth noticing that 

part of the induced noise is independent of the feedback gains. Therefore, if the controller is to 

be used with small rod strokes, the velocity measurement (estimation) noise must be small. 

6.6.3 Case 3: Effect of valve dynamics 

In the modeling of the hydraulic servo-system earlier in this chapter, the electro-hydraulic valve 

dynamics were ignored. The effect of a second-order linear valve dynamics with oje = 400rad/sec 
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Figure 6.8: Position of the actuator (case 2). Figure 6.9: Velocity of the actuator (case 2). 
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Figure 6.10: Force tracking of the actuator 
(case 2). 
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Figure 6.11: Control command (case 2). 

and Ce = 0.7 on the performance of the controller designed above can be seen in Figures 6.12-

6.13. There is a small overshoot in the position response and the settling time is longer, but 

the system behavior is still satisfactory. Obviously, the valve dynamics may not be ignored if 

slow servo-valves are used. The presence of these dynamics can even lead to instability if they 

are neglected in the design. 
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Figure 6.12: Position of the actuator (case 3). Figure 6.13: Control command (case 3). 

6.6.4 Case 4: Effect of change in time horizon 

Optimization was performed with the same parameters as in Cases 1&2 except that tf = 0.15 sec 

in this case. Only SRI was used to solve the problem and the outcomes follow 

Po = 

P = 

^ P.T.I 

3000 250 400 

2515.97 92.13 382.97 

= 23.0s 

Jo = 65225 

J = 39.432 

k(steps) = 36 

The system responses with the optimized gains are given in Figures 6.14-6.17. As it might 

have been expected, the system has a slower response (except for force errors) (Figures 6.14-

6.16). Consequently, smaller valve openings are commanded during the transient (see Fig­

ures 6.7, 6.17). 
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6.6.5 Case 5: Effect of step length 

To investigate the effect of the step length, XQ — Xd, on the optimal gains, optimization was 

performed with a step length of 1cm as opposed to 3cm in the previous cases. 

Po 

P = 

3000 250 400 

4760.05 123.18 268.09 

ipfc — 15.85 

Jo = 26219 

J = 14.35 

k(steps) = 35 

Interestingly, the optimal gains are almost the same as those obtained with a 3cm step. 

This suggests that the linear terms in the objective function, i.e. J x , Jtj and Jn dominate the 

nonlinear term Ju. This in fact turned out to be the case. For example, if one repeats the 

optimization in Case 1 without Ju included in the objective function, one would end up with 

the following optimal gains 

P 4725.0 122.62 277.11 (6.44) 

which are almost the same as those obtained when Ju was included. Several numerical experi­

ments with different scenarios revealed that Jn can also play the role of Ju in many cases and 

prevent large control command so Ju could be removed from the objective function without 

significant change in the outcome. However, it turned out that Ju cannot replace Jn in the 

objective function. 

6.7 Conclusions 

In this chapter, the suboptimal control of hydraulic servo-systems was addressed. Instead of 

deriving the control law based on the optimality conditions, which is very difficult, a numerical 

approach was proposed. First, a simplified version of the nonlinear controller in Chapter 5 was 

derived by ignoring the valve dynamics and the parametric uncertainty. The resulting controller 

stabilizes the system and produces zero steady-state tracking errors. Then, the controller was 

parameterized in terms of the position, velocity and force feedback gains. A performance index 
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Figure 6.14: Position of the actuator (case 4). Figure 6.15: Velocity of the actuator (case 4). 
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Figure 6.16: Force tracking of the actuator 
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Figure 6.17: Control command (case 4). 

was defined based on the transient response of the system to a position step input and also the 

steady state response to Gaussian measurement noise. The controller was successfully optimized 

with respect to the feedback gains using unconstrained optimization algorithms. Simulation 

studies demonstrated excellent responses for the controller with the optimized feedback gains. 

Interestingly, the optimized gains are comparable with their corresponding gains in Chapter 5 

obtained through trial and error. 



Chapter 7 

Adaptive Nonlinear Control of 

Hydraulic Robots 

7.1 Overview 

The high performance control of single cylinder hydraulic actuators was addressed in Chapters 5 

and 6 of this thesis. This chapter is concerned with the position control of robot manipulators 

driven by hydraulic actuators. In this chapter, the backstepping design methodology [60], [93] 

is adopted to develop a novel nonlinear controller for hydraulic manipulators. The method 

has become increasingly popular in the control community. For some recent applications of 

this method see [103], [25]. Both rigid body and actuator dynamics are incorporated into 

the design. The controller is also extended to compensate for parametric uncertainties in the 

system dynamics, including hydraulic and rigid body dynamics. Two types of observers are 

developed to avoid the use of acceleration feedback in the proposed adaptive control laws. The 

first observer is an extension of the passivity-based observers proposed in [11], to the case in 

which the system parameters are unknown. The concept of sliding observers [23] is also adopted 

to develop a robust acceleration observer. The tracking errors are proven to converge to zero 

asymptotically using Lyapunov analysis. It is shown that these errors remain bounded in the 

presence of Coulomb friction in the actuators. The bounds on the tracking errors are adjustable 

by the controller gains. To the best knowledge of the author, this is the first time that provably 

stable controllers are reported and evaluated for hydraulic robots. 

112 



7.2 Manipulator/Actuators Dynamics 113 

The main differences between this work and the adaptive controller introduced in [16] (si­

multaneous to this work) are the following: (i) the adaptive controller / adaptive observer 

proposed here uses the same set of estimated rigid body parameters in the observer and con­

troller, as opposed to the use of two distinct sets of parameter estimates and adaptation laws 

in [16]; and (ii) the introduction of an adaptive control method with a robust observer that 

is simpler to implement because it has reduced computational complexity. The form of the 

control laws and the observers are different from those of [16]. Position, velocity and hydraulic 

pressure measurements are required for the implementation of the proposed controllers. 

The chapter is organized as follows. System dynamics, including rigid body and hydraulic 

dynamics are presented first. A nonlinear controller is proposed assuming that the dynamics are 

known exactly. Next, the adaptive control of hydraulic robots is addressed for the case in which 

the robot dynamics are subject to parametric uncertainty. Numerical simulations are performed 

to evaluate the proposed controllers and also to find proper control gains for experimentation. 

The proposed control laws are implemented on the UBC motion simulator and the results are 

presented here. The chapter ends with some concluding remarks. 

7.2 Manipulator/Actuators Dynamics 

The dynamics of a n-link robot with rigid links are governed by a second-order nonlinear 

differential equation 

where q G Rn is a vector of generalized joint positions and T G Rn is a vector of generalized 

joint torques. D(q) G #"x" i s the manipulator mass matrix, C(q,q) G Rnxn contains Coriolis 

and centripetal terms and G(q) G Rn represents gravitational effects. Unlike electrically driven 

manipulators, hydraulic robots exhibit significant nonlinear actuator dynamics. Assuming a 

three-way valve configuration, these dynamics can be written in the following form, 

D(q)q + C(q,q)q + G(q)=T (7.1) 

T = f(q,q) + 9(q,T,u) (7.2) 
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where u is the control command vector and / , g are nonlinear functions of q, q and r. The 

detailed expressions for / and g are given in Appendix B. 

The matrices describing the rigid body dynamics in (7.1) satisfy the following properties [11]: 

(*) xT (t>(q) - 2C(q, q))x = 0 Vx G Rn 

{ii) C(q,x)y = C(q,y)x Vq,x,y e Rn 

{iii) 3Dm,DM s.t. 0 < Dm < \\D(q)\\ < DM < oo Vg € Rn (7-3) 

(iv) 3CM s.t. \\C(q,x)\\<CM\\x\\ Vq,x£Rn 

(v) 3GM s.t. \\G(q)\\ <GM Vq£Rn 

which are exploited in deriving the proposed control laws. According to (7.1) and (7.2), the 

overall actuator/manipulator dynamics are governed by a set of third-order nonlinear differential 

equations. " . 

7.3 Nonadaptive Controller 

In this section, the backstepping design methodology [60] is adopted to derive a nonlinear posi­

tion tracking controller for hydraulic manipulators in the case in which the system parameters 

are known. 

Theorem 1: Consider the system described by (7.1), (7.2) with the control law given by the 

solution u of the following algebraic equation: 

g(q, r, u) = -f(q, q) - T~ls + fd- KTf (7.4) 

and 

Td = D(q)qr + C(q, q)qr + G(q) - Kpe - Kds (7.5) 
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with 

e = q~qd, qr = Qd - Ae, 
(7.6) 

s = (j - qr = e + Ae, f = r - rd 

where Kp, Kd, KT, F and A are positive definite diagonal matrices, and qd G Rn and qd G Rn 

are the desired joint position and velocity trajectories, respectively. 

Then 0 is an exponentially stable equilibrium point of the state x = 

(7.2), (7.4), (7.5). 

T T ~T 
e s T 

T 
of (7.1), 

Remark: From the expression of g from Appendix B, it can be seen that (7.4) can be easily 

solved for u. 

Proof: Substituting (7.5) into (7.1) yields the following error dynamics, 

D(q)s + C(q,q)s + Kds + Kpe = f (7.7) 

Note that the effect of actuator dynamics emerges as a non-zero f, as the controller reduces 

to a passivity-based controller [112] in the absence of actuator dynamics. Let V\ be defined as 

V1=l-sTD{q)s+l-erKpe (7.8) 

By taking the derivative of Vi , 

Vi = sTD(q)s + l-sTD(q)s + eTKpe 
2

 x (7-9) 
= sT [f - D{q)s - C(q, q)s- Kds - Kpe] + -sTD(q)s + eTKp (s - Ae) 

Therefore, the derivative of Vi along trajectories of the closed-loop system becomes 

Vi = -sTKds - eTAKpe + sTf (7.10) 

where (7.7), (7.6) and the properties given in (7.3) have been used. Following the backstepping 
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methodology, V2, which is a Lyapunov function for the closed-loop system, is defined as 

V2 = Vr + ^fTTf (7.11) 

with T > 0 diagonal. Note that: 

a m | |x | | 2 < V2 < aM\\x\\2, am,aM>0 (7.12) 

with 

am = ^mm{Dm,cr(Kp),a(r)} (7.13) 

aM = ^mzx{DM, a(Kp), a(T)} (7.14) 

and cr(-) and CT(-) denote the minimum and maximum singular values, respectively. By taking 

the derivative of (7.11) 

V2 =Vi + fTT(i - fd) = -sTKds - eTAKpe + fTT [T^s + f(q, q) + g(q, r, u) - fd] (7.15) 

Using the control law (7.4), one can write 

V2 = -sTKds - eTAKpe - fTVKTf < -B\\x\\2 (7.16) 

with B > 0. Therefore, the system is exponentially stable in the Lyapunov sense. This means 

that the position tracking error converges to zero exponentially. Furthermore, since s = e + Ae, 

the velocity tracking error is also exponentially stable. Note that in the realization of (7.4) one 

needs to compute fd which is equal to 

T d = D(q)qr + D{q)qr + C(q,q)qr + C{q,q,q)qr + G(q) - Kpe - Kds (7.17) 

Since qr = qd — Ae, s = e + Ae and C are functions of q, link accelerations appear in the 

proposed control law. However, if r is measured through pressure sensors, the link accelerations 

q can be obtained from position, velocity and pressure measurements and using the robot rigid 
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body model, i.e., 

g = X>(g)- 1[r-C(g,g)g-G(?)] (7.18) 

Thus q, q and r are required to implement the proposed control law which leads to exponentially 

stable tracking errors. 

Remark: Since the system dynamics are fully known and the states are assumed to be measured, 

feedback linearization could also be used to derive a stabilizing controller. 

7.4 A d a p t i v e C o n t r o l l e r s 

The control law derived in the previous section requires full knowledge of the system parameters. 

However, the manipulator rigid body dynamics are uncertain and subject to changes, e.g., due 

to an unknown variable payload. It is also difficult to measure some of the manipulator's 

parameters. Moreover, the hydraulic parameters are usually unknown and time varying. In 

this section, the nonlinear controller proposed in the previous section is extended to compensate 

for parametric uncertainty in the system dynamics. To deal with uncertainties in rigid body 

dynamics, the linear parameterization of manipulator dynamics is used [112]: 

where Y(q, q, q) is a regressor matrix and 6 6 Rm is the vector of unknown parameters (see 

Appendix B). Similarly, as shown in Appendix B, the hydraulic dynamics (7.2) can be written 

as 

D{q)q + C(q, q)q + G(q) = Y(q, q, q)9 (7.19) 

r = fo (q, q)ji + 90 {q, T, u)j2 
(7.20) 
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T -

where 71 = 7! " •• 7? , 72 = 721 • •• 72

n are two sets of hydraulic parameters and fo, 

go are defined as 

fo(q,q) = diag{f0

i(qi,qi)} 

g0(q,T,u) = diag{gl{ql ,T\U1)} 
(7.21) 

In the non-adaptive controller, (7.18) was used to compute joint accelerations from joint posi­

tions and velocities and hydraulic pressure measurements. This can not be done if D(q), C(q,q) 

and G(q) are not known. To deal with this problem novel adaptive and robust observers are 

introduced. The following Lemma [141] will be used in the stability proofs. 

Lemma 1: Consider the scalar function a = (9 - 9)T(p - 9), with 9,9, p £ Rn and a1 <9l <bl. 

If 9 = K,(a, b, p)p, where n(a, b, p) is a diagonal matrix with entries 

Kx(a,b,p) = { 

0 if 9{ < a\ pi < 0 

0 H9{ >b\ pi >0 

1 otherwise 

(7.22) 

then a < 0. 

7.4.1 Adaptive Controller/ Adaptive Observer 

The first solution is an adaptive controller using an adaptive passivity-based observer. Before 

stating the result, the following notation must be defined: 

qr = Qd ~ Ai(<? - qd) =qd~ Ai(e - q) 

q0 = q-A2{q-q) = q - A2q 

si=q-qr = e + Ai(e - q) 

S2 = q-q0 = q + A2<7 

(7.23) 

where q € Rn is the estimated value of q, e = q — qd, and q — q — q are position tracking and 

observation errors, respectively. A i , A 2 > 0 are diagonal. Note that in the definitions of qr and 
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cj0, q has been replaced by qd and q. This will be shown to eliminate the need for acceleration 

feedback. 

Theorem 2: 

Consider the system described by (7.1), (7.2), the observer dynamics 

q = z + A2q 

z = b{q)~l \T - C(q, q)q0 - G{q) + Lpq + KdSl + K'ds2 

where 

TD = D(q)qr + C(q, qr)qr + G(q) - Kd(si - s2) - Kpe 

= Yi(q, qr, qT)6 - Kd(si - s2) - Kpe 

Yi(q, qr, qr)0 = D{q)qr + C(q, qr)qr + G(q) 

Y2(q, q, q0, q0)Q = D{q)q0 + C(q, q)q0 + G{q) 

and with hydraulic parameter adaptation law 

7 i = K 7 1 r 7 1

1 r T / 0 ( ( j , ( 7 ) f 

72 = K 7 2 r - 1 r T n(^ ) {td - f0{q,q)ji - i v 1 ^ - KTf) 
Ŷ2 

(7.24) 

and the controller obtained by solving the following algebraic equation 

9o(q,r,u)j2 = fd - f0{q,q)ji - r T

_ 1 s i - KTf (7.25) 

(7.26) 

with unknown rigid body parameter adaptation law 

• § = -K9T-1 [Y?(q, qr,qr)Sl + Y?(q, q, q0, q0)s2] (7.27) 

where 

(7.28) 

(7.29) 

where Il(^-) = diag{Jrj}. Then, if the conditions given below in (7.30) are satisfied, 0 is an 
72 2̂ 
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asymptotically stable equilibrium point of the state x 

(a) a(Kp)a(Lp)a(Ai)a(A2) > ^a2(iYp)ff2(Ai) 

(b) o(Kd) > CMqdm 

, , OLM (a(Kd) - CMqdm\2 ^ T , T7- (7.30) 

{d) \\x(0)\\ < • / Q m (^Kd) - CMqdm\2 _ VPM - Vp„ 
3O>M \ CMO-(AI) J aM 

where 

a m = ^mm{Dm,a(Kp),a(Lp),g:(rT)} 

« M = ^ max{D M , cf(Kp),a{Lp),a(TT)} (7.31) 

vPm < \ ( 0 r r0 + 7 f r 7 1 7 i + 7 2 T r 7 2 7 2 ) < vPM 

Here, a{.) and a(.) denote the maximum and minimum singular values of their matrix argument, 

respectively, and qdm is an upper bound on the norm of the desired velocity. The projection 

gains Kg, K 7 1 and defined as in (7.22). Al l of the gains used in the controller and 

observer, i.e., Kp, Kd, K'd, Lp, F, T 7 l , T 7 2 , TT, and KT are constant positive definite diagonal 

matrices. 

Remark 1: In the above formulation, D, C and G are the estimated dynamical matrices corre­

sponding to 9. Note that the controller and observer use the same set of estimated parameters 

which compares favorably to the approach proposed in [16] in which different parameter esti­

mates are employed in the controller and observer. 

Remark 2: The use of projection gains K in the adaptation laws guarantees that the estimate 

of each parameter remains in a predefined interval [a,b]. In particular, if TV becomes zero the 

control law u in (7.25) is undefined. This can be avoided by using a1 > 0 for the estimation of 7^. 
Furthermore, the parameter estimates can not drift because of the upper and lower bounds on 

their values. Therefore, parameter adaptation is robust against unmodeled disturbances [141]. 
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Proof : By substituting (7.26) into (7.1) the following error dynamics are obtained 

D{q)Sl + C{q, q)si + Kdsx + Kpe =Kds2 - C(q, Sl)(q - Si) - Yi(q, qr, qr)6 + f (7.32) 

The observer closed-loop dynamics could also be written as 

D(q)s2 + C(q,q)s2 + Kds2 + Lpq = -Kdsi - Y2(q,q,q0,q0)6 (7.33) 

where (7.1) and (7.24) have been used in deriving (7.33). 

Now, let the Lyapunov-like function V\ be defined as: 

Vi =l-Sl
TD{q)Sl + \eTKpe + \slD(q)s2 + \qT Lpq + ±FT0 

The derivative of V\ along the trajectory of the closed loop system is then given by 

(7.34) 

Vi = sf -C{q,q)s1 - K d s i - Kpe + Kds2 - C{q,si){q - sx) - Yi(q,qr,qr)9 + f 

+ ^sfb(q)si + eTKp{si - Aie + Axq) + s~[-C(q, q)s2 - K'ds2 - Kdsx - Lpq 

1 
Y2{q, q, q0, <?o)0] + q1 Lp(s2 - A2q) + -si D(q)s2 + 61 TO slt){q)s2 + ¥ \ 

= -siTKdSi - s2

TKds2 - eTKpAxe - qTLpA2q + eTKpAxq + sx

Tf + 6T[-Ye - Yx

T{q, qr,qr)si 

-Y2

T{q,q,q0,q0)s2]-siTC(q,si){q-si) 

(7.35) 

With the adaptation law given in (7.27) and using Lemma 1, we have that 

Vi < -siTKdsi - s2

TK'ds2 - eTKpA1e - qTLpA2q + eTKpA±q + sff - sJC{q, si){qd - Axe + Axq) 

< ~ {a{Kd) - CM{qim + a{Kx)\\e\\+o^m\\)) INI* ~ <L{K'd)\\s2\\2 - a(Kp)a(M)\\ef 

- o{Lp)o{A2)\\q\\2 + o{Kp)o{A{)\\e\\\\q\\ + sx

Tf 

= ̂ (IMI,ll9ll,ll«ill,NII) + *rr 
(7.36) 
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Note that since 

- ^ ( ^ ( A O H e l l 2 - o(Lp)a(A2)\\q\\2 + a{Kp)a{^)\\e 

a{Kp)a{Kx) 

-\cf{Kp)a(Ki) 

-ia ( t f P )<T(Ai) 

a{Lp)a(A2) \m 
(7.37) 

the condition given in (7.30.a) and the inequality 

e + MW < CMP(AI) 
(7.38) 

guarantee that 

H{\\el \\q\\, I M , INI) < - « ( l | e | | 2 + IkT + Uf + M2) (7.39) 

with a > 0. (7.38) enforces (7.30.b), i.e. 

Qi{Kd) > CMqdm (7.40) 

Note that 

|e|| + Ikll < V3\\x\ (7.41) 

Also from 

amll^ll2 + VPm <V2< aM\\x\\2 + Vf VM 
(7.42) 

where V2 will be defined shortly, and assuming V2 < 0, we have that 

\x\\<J^-\\xW + VpM Vpm (7.43) 

This along with (7.38) and (7.41) lead to the conditions given in (7.30.c) and (7.30.d). 

Following the backstepping approach, V2, which is a Lyapunov function for the system 
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dynamics, is defined as 

v2 = V l + brTvrT+l-^v, (7.44) 

r i r r 
where 71 = -yi . . . ^« and 72 = 1̂ 

errors. By taking the derivative of (7.44) 

are the vectors of hydraulic parameter 

V2 = Vi + fTTT [f0(q, qhi + g0(q, r, u)<y2 ~ fd] + 7?T 7 l 7i + JTr7272 

< tf(||e||, ||9||, | |si||, ||s2||) + T ^ r i V 1 * ! + Mq,9)71 + 9o{q,r,u)l2 - Td] 

- Ii r n i l -ffirtl* 

(7.45) 

By employing the control law given in (7.25), one can show after some manipulation that 

Using the adaptation laws given in (7.29) and Lemma 1, the derivative of V2 becomes 

V2 < H(\\e\\, \\q\\, ||Sl||, ||S2||) - fTTTKTf < - 7 ( | | e | | 2 + ||g||2 + | | S l | | 2 + | | S 2 | | 2 + ||r||2) (7.47) 

Thus the position and velocity tracking errors converge to zero asymptotically. 

Remark 1: for the parameter convergence the condition of persistency of excitation must be 

satisfied [112]. 

Remark 2: Inspection of (7.26) reveals that rd does not contain q. This means that the ac­

celeration term q does not appear in fd and hence in the control law. This is achieved by the 

particular definition of qr in (7.23) and also by using s\ — s2 = q0 — qr instead of s\ in (7.26). 

In summary, the proposed controller requires q, q and r to be measured. 

Remark 3: In order to implement the observer proposed in (7.24), D~l(q) must exist. This can 

be guaranteed by choosing proper bounds on the estimates of the rigid body parameters. 

Remark 4-' To guarantee the stability of the closed-loop system, the gains must satisfy the re­

quirements given in (7.30.a)-(7.30.c). Furthermore, the initial tracking error must be within the 

V2 < H(\\e\\, \\q\\, \\Sl\\, \\s2\\) - TTYTKT~T + [f0(q,q)VTf - T 7 l 7 l 

+ 7 J [r T n(^)(r d - /o(<z,g)7i - r T - x s i - KTf) - r 7 2 7 2 

72 

(7.46) 
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attraction region specified by (7.30).d and therefore the system is semiglobally asymptotically 

stable. The attraction region and can be enlarged by proper selection of the controller and 

the observer gains. While the controller is guaranteed to be stable, in practice the parameters 

should be tuned to achieve a desired performance. 

Remark 5: The observer proposed here is an adaptive model based observer. It uses the model 

of rigid body dynamics and the input to this subsystem, T, to estimate its states. However, 

since the model parameters are unknown, the adaptation laws have been proposed to cope with 

the uncertainty in the model. 

7.4.2 Adaptive Controller/ Robust Observer 

In this subsection, an adaptive/nonlinear controller utilizing a sliding type observer [23] is 

proposed that yields globally asymptotically stable tracking errors. 

Before stating the result the following variables are defined: 

where A > 0 is diagonal. 

Theorem 3: Consider the system described by (7.1),(7.2) and the following observer: 

Qr = qd- Ae, s = g — qr = e + Ae (7.48) 

z = T0q + A0sgn(q) - WT(q, qr,0)s + q (7.49) 

with 

W(q, qr, 9) = -t>(q)A + C(q, qr) - Kd (7.50) 

q- = D'1 [r-Cq- G] (7.51) 

where z = q is the observed velocity. D, C and G are constant matrices (rough estimates of 

dynamical matrices). Let the control law be given by the solution u of the following algebraic 
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equation 

9o(q, T, u)j2 = TD- fQ(q, q)ji -TT

 1s- KTf (7.52) 

where 

Td = D(q)(qr + Aq) + C(q, 'q)qr + G{q) - Kd(s - q) - Kpe 

= D{q)qr + C(q,q)qr + G(q) - Kds - Kpe + t)(q)A^ - C(q,qr)'q + Kdq 
(7.53) 

and let the adaptation laws be given by 

0 = -KQTQ 1YT(q, q, qr, qr)s (7.54) 

and 

71 = « 7 i r i ^TMQ,^ 

7 2 = K 7 2 r 2 - 1 r T n(^) {fd - f0(q,q)ji - rT-ls - KTT) 
72 

(7.55) 

for the rigid body and hydraulic parameters, respectively. Then, 0 is an asymptotically stable 
r i r 

equilibrium point of the state x = rp -JIT „rp 

e s q T . In the above equations, Kp, Kd, A0, 

Tg, T I , T2, !>, and KT are positive definite diagonal matrices. 

Remark : TD does not contain any velocity terms. This can be seen from: 

qr + Aq = qd - A{q - qd) + A(q -q)=qd- A(q - qd) 

s-q = q - q r - q + q = q-qr 

(7.56) 

Proof: By substituting (7.53) into (7.1) the following closed loop dynamics are obtained 

D(q)s + C{q,q)s + Kds + Kpe = -Y(q,q,qr,qr)9 - W(q,qr,0)'q + f (7.57) 
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Define the Lyapunov-like function V\ to be 

Vi = \eTKpe + ^sTD(q)s + \ f il + ^9TT e9 (7.58) 

The derivative of Vi becomes 

Vi = sT [-Y(q, q, qr, qr)9 - W{q, qr, 9)q - C{q, q)s - Kds - Kpe + f 

1 - T r • ~ •• 
+ -sTD(q)s + eTKp(s - Ae) + q q-T0q- A0sgn(q) + WT(q, qr, 9)s - \ + eTre9 

(7.59) 

which can be written in the following form: 

Vi = -sTKds - eTKpAe - qTT0q - q [q - q + A0sgn(q)} + 9T \ve9 - YT(q, q, qr, qr)s 

With the adaptation law given in (7.54), V\ becomes 

(7.60) 

F i = -s1 Kds - e1 KpAe - q T0q + S + sTf (7.61) 

where S = — q [q — q + A0sgn(q)]. Note that 

q-q = [D-1 - D-\q)} r - D~l [C - C(q, q)] q - D~l [0 - G(q)] (7.62) 

Therefore, \\q — is bounded above by 

\q ~ q\\ < O-Q +ai\\q\\2 cr2||-r|| +c73||c7| (7.63) 

with Oi > 0. The properties given in (7.3) have been exploited in deriving (7.63). The following 

choice of A G makes £ < 0 

A 0 = diag{Al

0] 

A^ = A0 + Ai||ci||2 + A 2 | |T|| + A3|M 

(7-64) 

(7.65) 
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and Ai > ak for i = 1 , • • • , n, k = 0, • • • , 3. The rest of the proof is the same as before and will 

not be presented here. 

Note that there are no limitations on the norms of the initial state tracking errors in this 

approach. However, chattering phenomena which are inherent in sliding mode systems can 

affect the stability. For example, if high frequency dynamics (e.g. valve dynamics) are excited, 

instability could result. The problem could be solved by using a piecewise linear approximation 

to sgn(-). 

Remark: The observer proposed in (7.49), (7.50) and (7.51) is a robust model based observer. 

It employs a rough model of the rigid body dynamics and the input to these dynamics, r, 

to calculate a rough estimate of acceleration used in (7.49). The switching term in (7.49) 

compensates for the error due to the uncertainty in the rigid boy dynamics. 

7.4.3 Effect of Friction 

In the controllers proposed in this chapter, friction in the hydraulic actuators has been neglected. 

It is easy to handle viscous friction because it behaves as additional damping in the system. In 

the presence of Coulomb friction one may write (for the second controller/observer): 

V2 < -a||x||2 + ||X||T/: m (7.66) 

where Tfm is an upper bound for the Coulomb friction. Note that 

* l l > = R0^V2<0 (7.67) 
a 

Using (7.67) and considering the fact that 

Pm\\xf + Vm < V2 < M\xf + VM 
(7.68) 

one can show that the tracking errors are bounded by 

(7.69) 
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Table 7.1: The parameters used in the simulations 

Hydraulic Parameters 
Parameter A (m2) a (m2) M m ) Ps (psi) 

Value 1.14 x I O - 3 6.33 x IO" 4 1.37 m 1500 
Parameter d (m) c 8 (Mpa) -

Value 55.4 x 1(T6 1.5 x 10~4 700 -

Rigid Body Parameters 
Parameter Mp (kg) Ix (kg-m2) Iy (kg-m2) h (kg-m2) 

Value 250 45 45 43 

Clearly, the error bound can be adjusted by the controller gains. The first controller/observer 

can be treated similarly and this will not be discussed here. 

7.5 S i m u l a t i o n R e s u l t s 

Simulations have been performed to investigate the effectiveness of the proposed controllers 

and obtain guidelines for experimentation. For this purpose, a realistic model of the experi­

mental setup, a hydraulic Stewart-type platform, has been used (see Appendix B). The system 

parameters were selected based upon their actual values and are given in Table 7.1. 

In the simulations and experiments conducted in this thesis, a task-space control strategy 

has been followed. The advantage of this approach is that the dynamical matrices have simpler 

forms in these coordinates for parallel manipulators such as the Stewart platform. However, the 

forward kinematics problem must be solved on-line to convert the measured link positions to 

robot positions in task-space coordinates. Newton's method was utilized for this purpose (see 

Appendix B). The control algorithms and the robot dynamics were all implemented using the 

Matlab™ Simulink Toolbox. The implementation block diagram of the controllers are shown 

in Figures 7.5, 7.6. 

The system parameters were initially set to values different from those used in the model to 

investigate the ability of the controllers to cope with parametric uncertainties. The reference 

trajectory was chosen to be xd = 0.02sin(27r<) + 0.01 sin(47rf) + 0.01sm(67ri), yd = 0, z& = 

0.02 sin(27rt) + 0.01 sin(47r<), Vd = 0.0873 sin(27rt) + 0.0349 sin(47rt), Bd = 0.0524 sin(27rt) + 
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Figure 7.1: Position tracking errors for the controller with robust observer (simulation). 
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Figure 7.2: Parameter estimation errors for the controller with robust observer (simulation). 

0.0175 sin(47ri), 4>d = 0.0524 sin(27ri) + 0.0175 sin(47ri). Positions and angles are expressed in 

meters and radians, respectively. The tracking errors clearly converge to zero in all coordinates 

for both controllers as shown in Figures 7.1 and 7.3, respectively. The profiles of the parameter 

estimates are given in Figures 7.2 and 7.4. The parameter adaptation laws were activated after 
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Figure 7.3: Position tracking errors for the controller with adaptive observer (simulation). 
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Figure 7.4: Parameter estimation errors for the controller with adaptive observer (simulation). 

t = 0.5 s. Both rigid body and hydraulic parameters converge to their actual values even 

though the parameter convergence is not guaranteed in theory. The estimates of Ix, Iy reach 

their boundaries during some periods of the simulation as seen in Figures 7.2, 7.4. 

In summary, the controller with the robust observer compares favorably to the one with 

adaptive observer since it requires fewer computations and performs similarly. 
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Figure 7.5: Controller with adaptive observer. 
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Figure 7.6: Controller with robust observer. 

7.6 Experimental Results 

The proposed control methods were experimentally evaluated using the University of British 

Columbia motion simulator [99] (see Figure 7.7). This simulator is driven by six hydraulic 

cylinders. Each cylinder is capable of exerting forces in excess of 4000 N at 1 m/s, and over 

8000 N at zero rod speed. The hydraulic actuation system is equipped with Rexroth 4 WRDE 
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Figure 7.7: The experimental setup. 

three-stage proportional valves connected in a three-way configuration. Low friction Teflon seals 

are used in the hydraulic cylinders. The installed sensors measure the actuator lengths, the 

valve spool positions, and the pressures both in the control and supply sides of the cylinders. 

High bandwidth valves with a bandwidth around 50 — 80Hz have been used in the setup so 

the dynamics of the valves may be ignored. The actuator velocities which are required in the 

control laws are estimated from the measured actuator lengths using fixed gain Kalman filters. 

Off-line experiments were performed to identify the initial values of the parameter estimates. 

The computational setup was a PC running VxWorks™ 5-4 and a Sparc le board running 

VxWorks™ 5.2 (see Figure 7.7). The Sparc le performs the I/O and safety functions and 

the controller runs on the PC. The controller was implemented using the Matlab Real Time 

Workshop™ toolbox targeting Tornado™ 2.0. Data between the PC and the V M E board 

are communicated trough a custom parallel I/O communication protocol. Using this setup a 

control frequency of 512 Hz was successfully achieved. The same controller block used in the 

simulation studies was utilized to control the platform. 

Only the results of the experiments with adaptive controller/robust observer are presented 

here while similar performance was observed for the other controller. Figure 7.8 shows the 
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Figure 7.8: Position tracking (1Hz) along z coordinate (experiment). 

tracking behavior of the nonlinear controller compared with that of a well-tuned P controller 

in tracking the reference trajectory Zd = —2.34 + 0.05sin(27ri) m (the bias is not shown). The 

maximum tracking errors are 4% and 43% for the nonlinear and P controller, respectively. The 

response of the system to a 2Hz reference trajectory was also examined and is presented in 

Figure 7.9. In this case Zd = —2.34 + 0.02 sin(47ri) m whereas the maximum tracking errors are 

14% and 69%. Similar results were obtained in the other coordinates. For example, Figure 7.10 

shows the tracking results along the ip axis where \j>& = 0.09 sin(27rt) rad with 4% and 41% max­

imum tracking error for the nonlinear and P controller, respectively. Figure 7.11 demonstrates 

the tracking result when 9d — 0.09 sin(27rt). In all of these cases the proposed adaptive non­

linear controller clearly outperforms the well-tuned P controller and exhibits excellent tracking 

performance. Note that due to the friction in the actuators, tracking errors do not converge to 

zero but remain bounded as claimed earlier. 

During the experiments, the estimated parameters did not converge to fixed values, contrary 

to what was observed in the simulations. Friction is an important factor which could introduce 

tracking errors and prevent the parameters from converging. The proposed controllers may 

be interpreted as cascade combinations of passivity-based position controllers and actuator 

force controllers. The very stiff dynamics of hydraulic actuators make the force (pressure) 

control loop sensitive to velocity estimation errors (or velocity measurement noise) and pressure 

measurement noise. This limits the level of the pressure feedback gains and may deteriorate force 

tracking and subsequently parameter estimation, especially for the hydraulic parameters. Other 
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Figure 7.9: Position tracking (2Hz) along z coordinate (experiment). 
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Figure 7.10: Position tracking (1Hz) along ip coordinate (experiment). 

factors such as unmodeled dynamics, e.g. valve and leg dynamics, and insufficient excitation 

could also prevent parameter convergence. Moreover, it should be stressed that the parameter 

convergence is not even guaranteed in theory, so the experimental results do not contradict 

the theoretical arguments. The adaptation was found to be helpful in improving the tracking 

performance. The projection gains used in the adaptation laws proved effective in preventing the 

large parameter swings that can occur especially during start-up transients. The step response 

of the controller along the z axis is also compared with that of the P controller in Figure 7.12. 

As it can be seen, the nonlinear controller exhibits a much faster response with some overshoot. 



7.7 Conclusions 135 

0.1 

0.08 

0.06 

I 0 0 4 

nj 0.02 

c o 
o 
•= -0 .02 CO 
( £ -0 .04 

-0.06 

-0.08 

~ ° ' 1 0 0.5 1 1.5 

Time (sec.) 

Figure 7.11: Position tracking (1Hz) along 9 coordinate (experiment). 

-2.326 

-2.328 

-2.33 

g~-2.332 

c 
. 9 -2.334 
'55 o 
Q_ -2.336 

-2.338 

-2.34 

-2.342 
24.9 25 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 

Time (s) 

Figure 7.12: Step response along z coordinate (experiment). 

7.7 Conclusions 

This chapter addressed the control problem of hydraulically driven manipulators. The nonlinear 

dominant actuator dynamics prevent the use of standard robot control methods. In fact, inclu­

sion of actuator dynamics in the design is of critical importance in hydraulic robots. While most 

of the reported work in the literature considers the control of single-rod hydraulic actuators, this 

research proposed novel nonlinear controllers for hydraulic manipulators using backstepping. A 

realistic model of the system was utilized in developing these Lyapunov-based controllers. To 

deal with parameter uncertainties, the controllers were augmented with adaptation laws. The 

need for acceleration feedback was eliminated by proposing adaptive and sliding-type observers. 
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Parameter drift was avoided using projection gains. Simulations and experiments were carried 

out with a hydraulic Stewart platform to investigate the effectiveness of these approaches. The 

results demonstrated excellent position tracking behavior and satisfactory transient responses 

for these new controllers. The controllers proposed here can be applied to a broad class of 

hydraulic robots, i.e. serial, parallel, and hybrid manipulators. 



Chapter 8 

Conclusions 

In this chapter, the results of the thesis and its contributions are summarized. Some recom­

mendations for future work are also made. 

8.1 Thesis Contributions 

This thesis is concerned with the modeling, analysis, design and evaluation of controllers for 

teleoperation/manual control systems with movable bases using a hydraulic motion simulator. 

The contributions of the thesis can be classified as follows. 

1. Modeling and Analysis of Teleoperation/Manual Control Systems with Mov­

able Bases: A framework for modeling and analysis of teleoperation/manual control 

systems with movable bases was proposed. A modified four-channel teleoperation control 

architecture was introduced that considers the base motion. This model was refined using 

results from conventional manual control systems. The resulting model places the analy­

sis and design of teleoperation systems and that of manual control systems into a unified 

framework. The stability of typical two-channel and four-channel teleoperation architec­

tures in the presence of biodynamic feedthrough was investigated using this framework. 

2. Design of Controllers for Teleoperation/Manual Control Systems with Mov­

able Bases: The performance and the stability of teleoperation/manual control systems 

with movable bases can be degraded by biodynamic interferences. This thesis addressed 

137 
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the design of controllers for such systems. A novel approach was proposed that robustly 

suppresses feedthrough induced oscillations. The methodology was illustrated by means of 

a prototype manual control task. It was shown analytically that a control design that ig­

nores the base motion can result in instability. Controllers based on /i-synthesis were then 

proposed to robustly stabilize the system with respect to uncertainties in the arm/joystick 

and biodynamic feedthrough dynamics. The controllers also provide a high level of per­

formance based on position tracking between the base and joystick, as well as admittance 

shaping of the joystick. Experimental studies in position and rate modes demonstrated 

excellent system responses under the new robust controllers compared to those of the 

fixed base controllers. While the /^-synthesis based controllers exhibit very well-damped 

behavior, the controllers designed by ignoring the base motion tend to destabilize the sys­

tem and produce highly oscillatory responses. The design approach proposed in the thesis 

is general, and with some minor modifications is applicable to any teleoperation/manual 

control system with a movable base. 

3. Adaptive Nonlinear Control of Hydraulic Robots: High performance control of 

hydraulic robots is more difficult than that of their electrical counterparts because of the 

dominant nonlinear actuator dynamics. The problem becomes challenging if uncertainties 

in the dynamics are also considered. This thesis studied the position control of robot 

manipulators driven by hydraulic actuators. A realistic model of the system that includes 

the actuator dynamics and the rigid body dynamics was used in the control synthesis. 

For the first time, a position controller was proposed that guarantees the stability of the 

closed-loop system and the convergence of the tracking errors to zero. Adaptive variations 

of the control law were also proposed to deal with the uncertainties. Two-types of observers 

were developed to avoid acceleration measurement, namely an adaptive passivity-based 

observer and a robust sliding type observer. The proposed methods prevent the parameter 

estimates from drifting. The stability of the controller/observers closed-loop dynamics was 

proven using the Lyapunov analysis. Position, velocity and pressure measurements are 

needed to implement the control laws. The performance of the controllers was evaluated 

by numerical and experimental studies carried out using the UBC hydraulic Stewart 

platform. The proposed approaches reduced the peak sinusoidal position tracking errors 
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by a factor of between five and ten compared to well-tuned proportional controllers in the 

experiments. 

4. Adaptive Nonlinear Control of Single-Actuator Hydraulic Servo-systems: High 

performance position control of electrohydraulic actuators was addressed by this thesis. 

This is a difficult problem particularly due to the nonlinear nature of the system dynam­

ics. The backstepping design approach was employed to develop a novel Lyapunov-based 

position tracking controller for hydraulic servo-systems. Load, hydraulic and first-order 

valve dynamics were incorporated in the design of the controller. An adaptive version of 

the controller was also proposed to cope with uncertainties in the hydraulic parameters. 

The stability of the system under the proposed control laws was proven via Lyapunov 

analysis. Position, velocity, hydraulic pressure and spool position measurements are re­

quired in the control laws. The proposed controllers were evaluated in simulation and 

experiments. They demonstrated excellent position tracking behavior compared to well-

tuned PD controllers, and improved the tracking errors by a factor of between three and 

six in the experiments. 

5. Modeling and Identification of Biodynamic Feedthrough: Two models were intro­

duced and identified for biodynamic feedthrough. The acceleration based model proved 

effective in describing the feedthrough effects for the particular design example studied in 

this research. However, this model may not be accurate enough in applications where is 

large base acceleration. In this thesis, the stochastic embedding technique was employed 

to identify a feedthrough response based on experimental data. This approach also pro­

vides error bounds for the identified response. The estimated model and the frequency 

domain uncertainty bounds can be incorporated in the design of robust controllers for the 

suppression of biodynamic feedthrough using the framework presented in this thesis. 

6. Optimization of a Nonlinear Controller for Hydraulic Servo-systems: A numer­

ical approach to the optimization of the proposed nonlinear position tracking controllers 

for single-actuator hydraulic servo-systems was introduced. A simplified model of the 

system that ignores the valve dynamics and the dynamic uncertainties was used in the 

control synthesis. This reduces the controller to a feedback linearization control law, pa-
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rameterized by the feedback gains, that guarantees convergence of the tracking errors to 

zero. A performance index that captures some features of the system step response of 

the system and its response to measurement noise was defined. The controller was suc­

cessfully optimized with respect to the feedback gains using unconstrained optimization 

algorithms. Simulation studies demonstrated excellent responses for the controller with 

the optimized feedback gains. 

8.2 Future Work 

The work of this thesis may be continued in one or more of the following directions: 

1. The feedthrough cancellation design problem discussed in this thesis was a single-degree-

of-freedom task. The proposed approach can be employed to suppress feedthrough induced 

oscillations in multi-degree-of-freedom applications, e.g. the control of excavators. The 

high performance nonlinear controller can also be used to simulate the base motion for 

applications that involve high frequency base motions. 

2. The proposed identification based approach to feedthrough modeling may be used in 

robust feedthrough cancellation especially in applications with large base accelerations. 

The current model has been obtained from experiments performed with one subject. In 

order to further validate the model, the experiments must be carried out using several 

subjects. The results can be combined to obtain a nominal feedthrough response and its 

associated uncertainties. 

3. The feedthrough cancellation framework can be modified to allow for uncertainties in the 

plant dynamics and variations in communication time delay. 

4. The combined teleoperation/manual control framework proposed here can be used to 

design controllers that improve performance in fixed base teleoperation applications. For 

example, using the model presented in Chapter 2, one may design teleoperation controllers 

that facilitate the crossover behavior of the operator. 

5. The suboptimal nonlinear controller proposed for hydraulic servo-systems needs to be 

evaluated experimentally, although the optimized gains are not very different from the ones 
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found through manual tuning. The inclusion of the valve dynamics in the optimization of 

the controller can also be studied. Extension of the approach to the control of hydraulic 

robots could also be pursued. 

6. The valve dynamics were ignored in the proposed adaptive nonlinear controllers for hy­

draulic robots. These dynamics may be considered in the design of provably stable con­

trollers for such manipulators. 
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Appendix A 

Evaluation of the Objective Function 

and its Gradient 

In Chapter 6, a suboptimal nonlinear controller was proposed for hydraulic servo-systems. 

The optimization is performed by numerically minimizing a performance index over all allowable 

control gains. This appendix addresses the computation of the performance and its gradient 

which are required by the optimization routines. 

A.1 Objective Function 

There are terms in the objective function defined by (6.37), i.e. J x , Jtf and J„, that can be 

computed analytically. Consider the following dynamics 

X{t) = A{p)X(t) + BN X(0) = XQ (A-l) 

Assume that matrix A is diagonalizable (i.e., it does not have any degenerate eigenvalues), that 

is 

UtAV = A; A = diag{Xi} i = 1,..., n (A-2) 
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where Â  is the i'th eigenvalue of matrix A and 

V = Vi v2 ... vn 

Avk = Xkvk (A-3) 

u\A = Xku{ (A-4) 

contain the right and left eigenvectors of A, respectively. The solution X(t) of (A-l) is given 

by [20] (if N = 0) 

X(t) = eAtX0 (A-5) 

or 

X(t) = VeAtUtX0 (A-6) 

Jx can be calculated using the solution X(t) 

Jx = j f* ' X(tfQX(t)dt = XTUI ^J*1 e A * * V * Q V e A t d ^ U*X0 

/ (V*QV). 
Jo 

dt UtX0 

= xTut*(V*QV). UtX0 

(A-7) 

In (A-7), "*" is conjugate transpose and "().[]" denotes component-wise product of two matrices. 

Similarly, Jtf is given by 

Jtf = X(tf)THX{tf) =xTeATtfHeAtfX0 

=xTu;eAHfV*HVektfUtXQ 

(A-8) 
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In order to compute J„, one needs to find the covariance matrix P of the state tracking errors 

= / eAtBBTeATtdt = / VeAtUtBBTU*teA'tV*dt 
Jo Jo 

= V(UtBBTUl). 

= V{UtBBTu;). 

Jo 
V* (A-9) 

A; + A * 
V* 

and 

Jn = rxP(l, 1) + rvP(2,2) + r T P(3, 3) (A-10) 

To compute J u , one has to use a numerical integration routine. Once X(t) is calculated, 

u(t) can be derived from (6.6) and then used in an integration routine. In this thesis, function 

quad from Matlab® is employed for this purpose. 

Remark 1: For the evaluation of Jx, Jtf and Ju all matrices have a (3 x 3) reduced form. 

However, to compute Jp full (6 x 6) matrices must be used. Once Ut and V are found for A in 

(6.26), the upper diagonal blocks of these matrices correspond to AQ in (6.11) and can be used 

in the computation of Jx, Jtf and Ju. 

Remark 2: Only first three diagonal terms of P are required in Jn. This has been exploited to 

reduce the computation. 

A.2 Gradient of Objective Function 

The optimization routines that are used in this research require the gradient of the objective 

function at each point. This section briefly describes how these gradients are calculated. To 

this end, the derivatives of eigenvalues and eigenvectors with respect to each parameter must be 

computed first. Only the results are presented here and the detailed derivations can be found 

in [53, 73]. Assuming vk's and u^'s are the right and left eigenvectors of matrix A with the 
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following properties 

Avk = Xkvk fc = l , . . . , n (A-H) 

ut

kA = Xkut

k k = l,...,n (A-12) 

v*kvk = 1 ukVj = Skj (A-13) 

then the derivative of each eigenvalue with respect to parameter pm is given by 

d\k f dA , . , ., 
= uk—vk (A"14) dpm Kdp, m 

The derivatives of the right eigenvectors using {v\,..., vn} as basis vectors can be expressed as 

follows 

dv- n 

a ^ = 5>^ (A"15) 

where 

aik={ Xi~Xk kdp™ * (A-16) 

Similarly, for the left eigenvectors 

du. 

and [jij] = -[aij]T. 

Remark: In general the eigenvalues and eigenvectors are complex-valued. Since v^vk — 1, one 

may write 

9 Kvk) = P-vk + vtp-=0 (A-18) 
dpm" * dpm * K8p, m 

From here reference [73] concludes that §^-vk = 0 which , clearly, is true only if §^^k 1S r e a i -
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Reference [53] makes the same assumption and points out this problem but it does not give the 

solution for the case in which this assumption does not hold. Despite the fact that the computed 

derivatives of the eigenvectors may not be always correct, the derivatives of the performance 

measure obtained using the above formulas were found to be correct. This was validated by 

comparing the results with those calculated through numerical differentiation. Since we are 

only concerned with the derivative of performance measure, the above results are employed in 

the implementation. 

At this stage everything is ready for the evaluation of the gradient of the performance 

measure. The partial derivative of the state tracking errors with respect to parameter pm is 

given by 

dX(t) __d_ 
dpm dPn 

(eAtX0) 

,deKt. 

dV 
Opm 

eMUtX0 + Ve At 
dp, 

+ V^UtXQ + VeAtUt

dX° 
dpr> dprj 

(A-19) 

where 

de At 

dpn = te At -— and -— = diag{-—} 
OPm Opm OPm 

(A-20) 

and 

dX0 

dpi 0 0 me(0) 
8XQ 

dp2 
= 0 

dX0 

dp3 
= 0 (A-21) 

Using (A-7), Ĵ j- is computed as follows 

^=2Re^XlU*t{V*QV). 

d 
+ XQ1U;—{V*QV) 

OPm 

+- Aj (6 1 ) (Kdpm

X° + U t dpm) } 

UtXQ 

+ X T U ; i v . Q V ) . A _ _ U t X i 

(A-22) 
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with 

_d_ 

dprr A* + A,-

-1 
(A* + A , ) 2 

( e ( \ - _ i) 1 + 
A* + A^ 

<9A* d\i 
+ 3Pm 3pmJ 

and 

(A-23) 

d dV* dV dV* !' dV* 
-£-{V*-QV) = -^-oy + V*Q^— = °A-QV + w—QV 
OPm OPm OPm Opm \Opm 

(A-24) 

dJt -Q^- can be obtained by taking the partial derivative of (A-8) with respect to pm. 

with 

dJt 

dpn 
= « « { W " V ^ ( ^ . + 1 7 , ^ ) } 

+ X?Ut-£- (eK*tiV*HVeMf) UtX0 

dp, 

dpn 
(eAHfV*HVeAtf) =^—{V*HV). 
\ ) dpm 

+ {V*HV). tfe 
dX* dXi 

+ d p ™ dp 

(A-25) 

(A-26) 

The partial derivative of covariance matrix P is required in the calculation of J^- and is given 

by 

dP 
dpm 

--V{UtBBTUl). 

d 

-1 
A, + A* OPm Opm Xi + X* 

v* 

+V^-A{U'BBTU;)- -l 
A, + A* 

V* 

(A-27) 

and 

d 
dprr 

(UtBBTUt*). 
-1 

Ai + A* dpn 

{UtBBTU*t) . 
-1 

Ai + A* 

(UtBBTun-
dXi + dX) 

{h + X*)2 \dpm dp 

(A-28) 
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Once is found, is computed using 

OPm dpm dpm dpm 

Remark: In general the dimension of the system is six in the presence of noise. However, as it 

was mentioned earlier,for the calculation of J-̂ -, and J^- only the upper diagonal blocks 

of matrices of V, Ut, and are used. Furthermore, for the special problem under study, 

many of the matrices are sparse and calculation can be performed more efficiently if special 

care is taken. These facts have been partially considered in the implementation. 

To derive Ĵ *-, one may write 

dJu 0 ( flf / i x 2 , \ n flf du 

dpm dpn 

^ f ru(t)2d?J = 2r I ' u-^dt (A-30) 

Therefore, the problem comes down to the calculation of Using (6.4), 

| ^ = -me - kp-p- - kd^- (A-31) 
dpi dpi dpi 

= ~kPlT- - me- kd-K— (A-32) 
dp2 dp2 dp2 

— - -k — - kd— 
dp3 P dp3 dp3 

k P i r - - k d ^ - (A-33) 

Similarly, by taking the partial derivatives of (6.9) with respect to p;'s 

drd kd{k + kp) de . ( kd{b + kd)\ de kd f 

— = kde + me-[kp — (A-34) 
dpi m dpi V m J dpi m dpi 

^ = !^LtMp. + ik + ^)e+( 
dp2 m dp2 \ m yJ dp2 rn dp2 

(A-35) 
dfd _ kd(k + kp) de + /kd(b + kd) _ fc \ de_ _ kd df_ (A-36) 
dp3 m dp3 \ m J dpz m dp3 

The partial derivatives of / and g used in the feedback law given in (6.6) are also required. 

df df de df de , . 0_. 
+ ^ T 7 r - ( A " 3 7 ) dpm de dpm de dpr, 
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where 

Similarly, 

with 

and 

de 
dl 
de 

ABx 
(x - L)2 

AB 
x — L 

dg dg de dg_df_ dg drd 

dpm de dpm Of dpm drd dp,, 

de = < 
-J^Vir+Ps^/A iiud<0 

I ~ {x-Lf VPs ~ (T + Psa)/A i f u d > 0 

dg_ = dg_ 
df drd 

= < 

Pc 
2A(x-L)y/{T+psa)IA 

-pc 

if ud < 0 

if u d > 0 
[ 2 / t ( i - L ) - v / p s - ( T + p a a ) / / l 

Finally, the derivatives of u with respect to p '̂s are computed as follows 

(A-38) 

(A-39) 

(A-40) 

(A-41) 

(A-42) 

dg du 
—u + g— 
dpi dpi 

_ did dg du 
—u + g— 
dpi dpi dpi dpi 
dg _ du 
dp2 ^dp2 

_ did dg _ du 
dp2 ^dp2 dp2 dp2 
dq du 
opz dpz 

_ did _ K dq du 
opz dpz dpz dpz 

-k 

df_ 
dpi 
df 
dp2 
df 
dp3 

(A-43) 

(A-44) 

(A-45) 

This completes the computation of the gradient of the objective function. 



Appendix B 

Stewart Platform Kinematics and 

Dynamics 

In this appendix, the kinematic and dynamic equations of the UBC hydraulic Stewart 

platform are derived. These are required in the implementation of the control laws proposed 

in Chapter 7. First, the kinematics of the robot are presented. This contains the inverse 

kinematics, the Jacobian matrix and the forward kinematics. The rigid body dynamics in 

workspace coordinates are also introduced. A linear-in-parameters formulation of the rigid 

body dynamics, needed in the proposed adaptive controllers, is developed. This appendix 

concludes by presenting the hydraulic actuator dynamics. 

B . l Platform Kinematics 

The Stewart platform is a parallel manipulator widely used in conventional motion simulators. 

The schematic of the UBC motion simulator, an inverted ceiling mounted Stewart platform is 

shown in Figure B . l . The kinematics of the UBC Stewart platform have been derived in [71] 

and [27]. 

B . l . l Inverse Kinematics 

Two coordinate frames, namely {P} and {B} are assigned to the mobile platform and the 

stationary base as shown in Figure B . l . The platform configuration is specified by the position 

160 
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and orientation of frame {P} with respect to frame {B}. Let q = ^x y z ^ Q <̂>j be 

the generalized position of the platform in the workspace. Here, x, y and z are the Cartesian 

coordinates of {P} with respect to {B} and ip, 9 and <f> are the platform roll, pitch and yaw 

angles, respectively. The platform orientation with respect to the base frame {B} is determined 

by the following rotation matrix 

bRp(iP,9,<P) = 

cos <p — sin ̂  0 

sin <fi cos c/> 0 

0 0 1 

1 0 0 

0 cos ip — sin i / ' 

0 sin ip cos ip 
(B-l) 

cos 9 0 sin 9 

0 1 0 

- sin 9 0 cos 9 

cos 9 cos </> sin cp sin 9 cos <p — cos ip sin 0 cos ip sin f? cos (p + sin i/> sin cf> 

cos 0 sin c/> sin ip sin 0 sin <fi + cos t/' cos <j> cos T/I sin t9 sin <p — sin ̂  cos 4> 

— sin (9 sin ip cos 0 cos ip cos 0 

The i'th actuator vector bdi, which is the vector from the center of the i'th base attached 

joint B{ to the center of the i'th platform attached joint Pi can be written as 

b

a i =b RpPpi + bdp - % (B-2) 

with bdp = x y z and ppi, bbi are defined in Figure B . l . In the UBC Stewart platform, 

"Pi = Vp cos 'ypi Tp sin 'Ypj 2 (B-3) 

and 

rb cos jbi rbsm-ybi 0 (B-4) 

The values of the angles are given in Table B - l . 

The link lengths can be computed as functions of the platform generalized position vector 
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B e f̂ n Z\ B c _ _ _ B B 

A \Platform 

1 p 

'XP 

Figure B . l : The schematic of the UBC Stewart platform. 

q using 

k (B-5) 

B . l . 2 Platform Jacobian 

The link and workspace velocities can be related through the Jacobian matrix of the robot, i.e., 

I = J(q) (B-6) 

file:///Platform
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Table B - l : Platform and base actuator endpoint angles. 

i 7pi Ibi 
A 7 p = 53.4° lb = 7.75° 
B 120° - 7 p 120° - 7 6 

C 120° + 7 p 120°+76 
D -120° - 7 p -120° - 7 6 

E 120° + 7 p 120° + 7 6 

F -Iv -76 

where bu)p is the platform angular velocity vector expressed in frame {B}. This vector can be 

written in terms of the derivatives of the platform's rotation angles as 

OJp = T 

with 

cos 9 cos cp — sin cp 0 

cos 9 sin cp cos cp 0 

- s in0 0 1 

It can be shown that [71] 

/ = 

IA 

IB 

ic 

ID 

IE 

IF 

{0R/PA + % - bbA)T [(bR/pA) x (»dp - bbA)]T 

{bR/PB + % - bbBf [{bR/pB) x {% - bbB)f 

(bRpppp + b d p - b b F ) T [ {»R/pF) x (% - b b F ) f 

bdn 

'UJN 

(B-7) 

(B-8) 

(B-9) 

This completes the derivation of the Jacobian matrix. 
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B.l .3 Forward Kinematics 

In general, there is no known closed-form solution to the forward kinematics of the Stewart 

platform. Dieudonne et al. in [24] use Newton's method to solve the forward kinematics 

problem numerically. This approach is adopted in this thesis. 
n T 

Let q = 

sider the foi 
x y z ip 9 <p be the generalized workspace position of the platform. Con-

owing nonlinear function 

N(q) = 

\bRpPpA + b d p - b b A \ - l A 

\bRp

ppF + bdp - bbF\ - lF 

(B-10) 

Clearly, the solution to N(q) = 0 is the solution to the forward kinematics problem. This is a 

nonlinear algebraic equation and can be solved by the Newton's iterative method, i.e., 

Qk+i 
fdN(qk)Y\u 

= Ik - — Q N{qk \ dqk J ) (B-ll) 

Note that 

dN(q) 
8q 

= J(q)L (B-12) 

with 

L = 
hx3 0 

0 T 
(B-13) 

and T was defined in (B-8). It is worth noticing that the iteration in (B-ll) involves inversion 

of a variable Jacobian matrix at each of its steps. However, it turned out that if the initial 

estimate is sufficiently close to the actual of value of q, a constant J can be used. Hence, 

one inversion is required in each step of the forward kinematics calculation. This significantly 

speeds up the computation time which is important from implementation point of view. In 

this thesis, the realtime control of the platform is performed in the workspace. Therefore, the 

forward kinematics must be run at each control sample time (fs = 512Hz). Considering this 
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sample rate, the platform position from the previous sample time is a very good candidate 

for the initial guess of the position at the current sample time. The forward kinematics was 

successfully computed in realtime with the above control update rate. 

B.2 UBC Motion Simulator Dynamics 

The dynamics of the UBC motion simulator can be separated into the rigid body and the 

hydraulic actuator dynamics. These dynamics are presented below. 

B.2.1 Platform Rigid Body Dynamics 

The full rigid body dynamics of the UBC Stewart platform have been derived in [71]. A 

simplified dynamics that ignore the leg dynamics has also been given in this reference. A 

slightly modified version of the simplified dynamics is used in this thesis. In the workspace 

coordinates, the dynamics of the platform are governed by: 

D(q)q + C{q,q)q + G=(JL)TT (B-14) 

where J and L have been defined in (B-9) and (B-13). The mass matrix D(q) has the following 

form 

D(q) = 
Mphx3 0 

0 TTbIpT 
(B-15) 

with Mp being the platform mass. Matrix C represents the Coriolis and centrifugal effects and 

can be written as 

C(q,q) = 
0 0 

0 C 2 2 

(B-16) 

with 

c22=TTS(bcjp)bIpT + T10IpT (B-17) 
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and bIp is the platform inertia matrix with respect to the base frame which is given by 

b j b T> pj b T>T 
*p — Jr^p 1p 

(B-18) 

where 

Ix 0 0 

0 Iy 0 (B-19) 

0 0 Iz_ 

is the platform inertia in the platform attached frame {P}- The derivative of T is given below 

T = 

— sin 9 cos (f>9 — cos 9 sin (jxf> cos </>(/> 0 

— sin 9 sin cf>9 + cos 9 cos <f>(j) — sin 0 

- cos 99 0 0 

(B-20) 

Also, uip is the angular velocity vector of the platform defined earlier and 

S(bujp) = 

Finally, the gravity induced term is given by 

0 

U)z 0 

-U)y 0 

(B-21) 

G 0 0 Mpg 0 0 0 (B-22) 

Note that (B-14) is not exactly as (7.1). Nevertheless, since J is a function of the platform 

position and is known, the controllers can be easily modified to be used in this case. The rigid 

body dynamics may be written in the linear-in-parameters form. 

D(q)q + C(q, qi)q2 + G = Y6xi(q, qi,q2, q)0 (B-23) 
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Mp Ix Iv Iz 
is the vector of unknown parameters. The derivation of Y is where 9 = 

fairly straightforward and only the final results are presented here. 

where 

*6x4 (9,91,92,9) = 

x 

y 

z + g 

0 

0 

0 

0 

0 

0 

0 

0 

0 

o y*(i,i) r,(i,2) y*(i,3) 

0 Y9(2,\) Ye(2,2) Ye(2,3) 

0 yfl(3,l) Yfl(3,2) yfl(3,3) 

(B-24) 

Ye = TT(YD+Yc) (B-25) 

with 

y c ( l , 1) = r2ir3l(vyujy - VZOJz) + ujyr3i(vxru + vzr31) - u>zr21{vyr21 + vxrn) 

Yc(l, 2) = vzr32{u}yr32 - wzr22) + vxr12(uyr32 - uzr22) + vyr22(uyr32 - uzr22) 

Yc(l, 3) = vxri3(ujyr33 - uzr23) + vyr23{u)yr33 - uzr23) + vzr33(ujyr33 - uzr23) 

yc(2,1) = vyr21(uzrn - uxr3X) + vzr31(uzrn - uxr3i) + vxru(uzrn - uxr3\) 

Yc(2,2) = r12r32(vzujz - vxu)x) - 0Jxr32(vzr32 + vyr22) + u)zn2{vxri2 + vyr22) 

Yc{2,3) = vxri3{ujzr13 - w x r 3 3 ) + vyr23(uzr13 - ojxr33) + vzr33(u>zrl3 - uxr33) 

y c(3,l) = -uiyrn(vzr3i +vyr21) + wxr2i(vyr21 + vzr3{) + vxrn(uxr2\ - u)yru) 

Yc(3, 2) = vzr32(u>xr22 - uyri2) + vxri2(uxr22 - uyri2) + vyr22(uxr22 - uyr12) 

y c(3, 3) = r13r23(vxujx - vyu>y) + wxr23(vzr33 + vyr23) - uyrn{vzr33 + vxrr3) 
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Yb(l , 1) = otxr\i + % r n r 2 i + a z r u r 3 i 

Yb(l , 2) = ctxr\2 + ayri2r22 + a.zrx2r32 

YD(l, 3) = axr\z + ayri3r23 + azr\zrzz 

YD(2,1) = axrnr2i + ayr2l + azr2XrZx 

YD(2,2) = axr12r22 + ayr\2 + a z r 2 2 r 3 2 

YD(2,3) = a x r i 3 r 2 3 + ayr23 + a z r 2 i r 3 3 

Yb(3,1) = a x r n r 3 i + ayr21r3l + a.zr\x 

YD(3, 2) = a x r 1 2 r 3 2 + ayr22r32 + a 2 r | 2 

YD (3,3) = a x r i 3 r 3 3 + ayr23r33 + azrl3 

(B-35) 

(B-36) 

(B-37) 

(B-38) 

(B-39) 

(B-40) 

(B-41) 

(B-42) 

(B-43) 

In the above formulas, 

and 

Furthermore, 

It is also assumed that 

w x 

Uy = T e\ 

UZ_ A 

vx Tp2 

Vy = T e2 

vz 02 

i> 

= T e 9 

az '<i> 

(B-44) 

(B-45) 

(B-46) 

bRp(il>,0,<f>) = [rij\ (B-47) 
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The linear-in-parameters form of the rigid body dynamics obtained here are used in the adaptive 

control of the UBC motion simulator in Chapter 7. 

B.2.2 Actuator Dynamics 

The dynamics of the Stewart platform hydraulic actuators are presented in this Appendix. A 

three-way valve configuration is assumed to be used in the actuators, as shown in Figure B.2. 

For such configuration, the control pressure dynamics are governed by [83] 

jPc = qi + ci(ps-Pc)-Vt (B-48) 

where Vt is the trapped fluid volume in the control side, B is the effective bulk modulus, pc is 

the control pressure acting on the control side, ps is the supply pressure acting on the rod side, 

qi is the load flow, and c; is the coefficient of total leakage. The load flow, qi, is a nonlinear 

function of the control pressure and the valve spool position and is given by 

c(u — d)y/p2 u < —d 

c(u + d)y/ps -pc + c(u - d)y/p~c -d<u<d (B-49) 

c(u + d)y/ps — pc u> d 

and c = c^ioy | , where Cd is the effective discharge coefficient, w is the port width of the valve, 

p is the density of the fluid, d is the valve underlap length and u is the valve spool position which 

is the control command. Note that the actuator output force is T = pcA—psa. Therefore, using 

(B-48) and (B-49), the dynamics of the z'th hydraulic actuator can be written in the following 

form (assuming c/ « 0) 

f i = -4̂ ? + - Ai9J( r*' u*) = A^t fWteV."*) (B-5°) 
qi _ i% qi _ i% 

where / is the actuator stroke length. For a Stewart platform, there are six actuators driving 
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Figure B.2: A typical three-way valve configuration, 

the system. The actuator subsystem dynamics can be represented in matrix form as follows 

f = f{q,q)+g(q,T,u) (B-51) 

where u is the control command vector and / , g are nonlinear functions of q, q and r. These 

vectors are obtained by stacking T\ fl and gl from above. Note that (B-50) can be rewritten 

in the following form which is suitable for adaptive control: 

TL = i\m\ql) + f2gi{qiyy) (B-52) 

where 7* = Bl Blj , fo = -fzp, a n ( l 9b = c.(g1'_ti) (does not depend on c|, see (B-49)). 

These equations can also be expressed in matrix form as 

T = fo (q, 9)71 + 9o (q, r, u)j2 
(B-53) 



Appendix C 

Joystick Kinematics and Control 

In this appendix, the kinematic equations of the twin-pantograph interface used in this 

thesis are derived. A linear-in-parameters model for the effect of gravity is also obtained. The 

parameters of this model are identified experimentally. The model along with the identified 

parameters are used to compensate for the effect of gravity on the joystick. The control of 

the joystick in the workspace coordinates is also addressed. To exploit the redundancy in the 

actuation, a minimum-torque solution for the problem is developed. 

C l Joystick Kinematics 

A schematic of the twin-pantograph force-feedback joystick is shown in Figure C l . As can 

be seen from this figure, the device is formed by connecting two ideal pantographs through a 

handle bar. Each of the pantographs has two degrees of freedom. The resultant manipulator 

has only three degrees of freedom due to the kinematic constraint in its closed chain structure. 

Therefore, there is one degree of redundancy in the actuation of the interface. 

Point C in Figure C l is where the operator grasps the joystick. The device position in the 

workspace coordinates is determined by the following vector: 

The end points of the two pantographs and the joystick workspace position can be related as 

XC - xc yc (j) (C-l) 

171 
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follows 

Pb = x5i + ysj = {xc - \lb cos <f>) i + (yc- Xlb sin 4>) j 

Pe = xei + yej = [xc + (1 - X)lb cos 0] i + [yc + (l- X)lb sin 0] j 

(C-2) 

(C-3) 

with A and lb denned in Figure C l . Equivalently, the workspace positions can be expressed in 

terms of the endpoint positions. 

^ t a n - 1 

\xs - x 5 

Xc = X5 + Xlb COS (f> 

yc = V5 + A/(, sin <f> 

(C-4) 

(C-5) 

(C-6) 

By taking the derivatives of (C-2) and (C-3), 

Xe = JcXc (C-7) 

where Xe = 
X5 V5 x& y6 

and J c is a Jacobian matrix relating the workspace velocities 

to the endpoint velocities. 

J, c(4x3) 

1 0 Xlb sin 4> 
0 1 — Xlb cos 4> 

1 0 -(1 - A)/hsin<?!> 

0 1 (1 - X)lb cos (j> 

(C-8) 

Now, the Jacobian matrix relating the endpoint velocities to the joint velocities of a single 

pantograph must be found. Note form Figure C l that 

P1 = fa cos 6i + d)i + (h sm9i) j 

P2 = (h cos92) i + (h sm92) j 

(C-9) 

(C-10) 

(C-ll) 
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Figure C l : The schematic of the twin-pantograph force-feedback joystick. 

The vector connecting points P i and P2 is computed as follows 

P12 = P i - P 2 = x12i + 2/12.7 = [h (cosflx - cos62) + d]i + h (sinfli - sin02)J' (C-12) 

The magnitude of P12 is given by 

P 1 2 | 2 = d2 + 2l'f + 2hd (cos 0X - cos 92) - 2l{ cos(6>i - Q2) (C-13) 

Vector 1̂ in Figure C l can be computed as 

hi = pi (-yui + xuj) (C-14) 
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with 

P i 
\hi\ 
\Pu\ 

(C-15) 

Note that 

I/,!2-/2 | P l 2 1 2 (C-16) 

therefore, one can write 

Pi 
ll 1 

/ I^12|2 4 

The position of Point #5 in terms of joint variables 6\ and 02 is given by 

(C-17) 

P 5 = x5i + y5j = P2 + X- (Pi - P 2) + h1 = ^(P1+ P 2) + hx (C-18) 

Similarly, Point #6 can be expressed in terms of joint variables 03 and #4. 

P 6 = s6* + y 6 ; = P 4 + i (P3 - P4) + / i 2 = \{Pz + Pi) + h2 
(C-19) 

The Jacobian matrix Je\ relating the joint velocities to the endpoint velocities can be written 

as 

Jel = 
801 802 

dy5 

dOi 802 

(C-20) 
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with 

0 * 5 _ i 0 * i 18x2 dp, { ) + (dy2_dm) ( c _ 2 1 ) 

00i ~ 2 00i 2 901 00i 1 2 / 2 y U P l V50i 90! ; V ; 

_ 10xi 10x2 dp,, ) + (dm _ dm\ 
062 ~ 2 002

 + 2 002

 + 002 { V 2 V l > P l \d02 de2) K ' 

& - 5 & ^ + ^ - - > + « ( £ - £ ) ( c ' 2 4 ) 

Furthermore, 

£ = £ - » <c-25) 

§t=° (°-26» 
| i = 0 ^ = - l i S m f c (C-27) 
a0i Ct/2 

^ = 0 I ^ c o s 0 2 (C-28) 
001 002 

and 

0 P i _ q d\p12\ 
dO, 2 |P 1 2 | 4

P i 00i 
•' - 0 P i = q d\p12\2 

002 2 | F i 2 | V l 502 

The followings are also needed in the calculation of the above partial derivatives 

0 | P r ' 2 

(C-29) 

(C-30) 

001 

M 
O02 

0 l p r l 2 

= -2/idsin0i + 2l{ sin(0i - 02) (C-31) 

= 2/idsin0 2 - 2l\ sin(0x - 02) (C-32) 

This completes the derivation of Je\. Similar steps can be taken to compute J e 2 . The endpoint 
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velocities can be related to the joint velocities as follows 

Using (C-7) and (C-33), 

where 0 = 0\ 62 03 04 

x5 

2/5 

±6 

2/6 

Jel 0 

0 J e 2 

(C-33) 

0 = Je

 lJcXc = ^ ( 4x3 ) C (C-34) 

and J is a Jacobian matrix relating the workspace velocities to 

the joint space velocities. 

C.2 Gravity Compensation 

In order to remove the effect of gravity on the joystick, a gravity compensation term is proposed 

here. It is assumed that base of the joystick is horizontal in this derivation. This is in fact 

the case in the feedthrough cancelation experiments carried out in this research. The resultant 

gravity compensation would not be accurate if the platform rolls, pitches or yaws. 

As it is shown in Figure C l , the joint masses are replaced with point masses mi-m^. The 

handle bar is represented by an equivalent point mass rn-j at a distance ctlb from Point #5. The 

masses of the links are negligible compared to those of the joints. Note that since 7715, me and 

m-j always lie on a line, they may be replaced by a single point mass 77x7 along that line. Hence, 

7715 and m6 are ignored in the gravity compensation. 

To begin, the gravity force in the joint space due to masses m\ and 777.2 are calculated. 

Tgi = mig 

T92 = m2g 

dyi dyi dyi dy\ 
30i d92 80s 804 

8y2 8y2 8y2 8y2 

80! 802 893 804 

77li<7£i COS #1 0 0 0 

0 77l2<?/l COS 02 0 0 

(C-35) 

(C-36) 



C.2 Gravity Compensation 177 

Similarly, for Points #3 and #4 

Tg4 = 17149 

dy3 dy3 dy3 9y3 

dOi ae2 de3 d6i 

dyi dyj dyi dyi 
86i 902 d03 d9i 

0 0 mzgh cos 63 0 

0 0 0 m-4gli cos 64 

(C-37) 

(C-38) 

The effect of the handle bar is introduced by the following generalized workspace force vector 

fg7 I) rn-jg —Qm-jgly, cos cp (C-39) 

with 3 = A — a. The total generalized workspace force required to balance the joystick can be 

computed as 

U = hg + J T {Tgl + Tg2 + T f f 3 + Tg4) (C-40) 

where J is the device Jacobian in (C-34). Interestingly, this work-space force does not corre­

spond to a unique motor torque vector (i.e. due to redundancy in actuation). A minimum-norm 

solution for the equivalent joint space torque can be computed as follows 

Tg = j(jTjy1fg (C-41) 

C.2.1 Identification of the Parameters 

The values of parameters m\, rri2, 7713, 7714, m^ and Q are required for the gravity compensation. 

A Least Squares based identification approach is used to estimate these unknown parameters. 

A workspace PD controller was implemented on the device. The joystick was positioned in 

different locations in the workspace using this controller. The required work-space force to hold 

the joystick against gravity and the joint angles were measured at each point. 

The workspace gravity force at the &'th point may be written as 

fg(k) = Y(k)C (C-42) 

with 6{k) = e1(k),e2(k),e3(k),e4(k) and £ = mi9 rnzg rri4g m7g 3m7g 
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Also, 

Y(k) = J1 

Zicos0i(&) 0 

0 h cos 0 2 (AO 

0 

0 

0 

0 

0 

0 

li cos 03 (A;) 

0 

0 

0 

0 0 

0 0 

0 0 

+ 

0 h cos 04 (A;) 0 0 

0 0 0 0 0 0 

0 0 0 0 1 0 

0 0 0 0 0 -Z 6 cos </>(*;) 

(C-43) 

The measurements from N = 300 different points were stacked and the parameter estimates 

were found using the Least Squares technique, i.e., 

y ( i ) 

fgW. Y(N)_ 

s!= \ = ; \C = YNC 

The followings were obtained from the experiment (A = 2): 

rrng = 0.2054N m2g = 0.5319N m3g = 0.2414N 

mAg = 0.320172N m7g = 5.7695N B = 0.8165 

(C-44) 

(0-45) 

The discrepancies in the estimated mass of similar joints are likely to be due to friction in the 

joints and the gearheads. The estimated parameters were successfully used to compensate for 

the effect of gravity. 

To control the joystick in the workspace coordinates, the following minimum-norm torque 

solution is employed 

TC = J{JTJ) l[fg + fC (C-46) 
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where fc is the desired generalized control force in the workspace coordinates. 


