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A b s t r a c t 

Two novel optimized delay diversity (ODD) schemes for suboptimum equaliza

tion are proposed in this thesis. In [1, 2], an O D D scheme was proposed based 

on the Chernoff bound on the pairwise error probability (PEP) for maximum-

likelihood sequence estimation (MLSE) [3]. It was shown that the O D D scheme 

outperforms the generalized delay diversity (GDD) scheme proposed in [4] in 

frequency-selective fading channels. However, the M L S E scheme is too com

plex for most practical applications. Therefore, low-complexity equalization 

schemes such as decision-feedback equalization (DFE) [5] or even linear equal

ization (LE) [6] have to be used. In this work, two novel O D D schemes 

are investigated. The O D D transmit filters of the two novel schemes are 

optimized for correlated multiple-input multiple-output (MIMO) frequency-

selective Rayleigh fading channels with suboptimum D F E or L E employed at 

the receiver, respectively. A n equivalent discrete-time channel model contain

ing the D D transmit filters, the pulse shaping filters, the mobile channel, and 

the receiver input filters is first given. Then, the worst-case pairwise error 

probabilities (PEPs) for both D F E and L E are derived based on the discrete-

time channel model and the error variances of the two schemes. Finally, a 

stochastic gradient algorithm for optimization of the O D D filter coefficients is 

proposed. The algorithm assumes knowledge of the channel impulse response 

(CIR) at the receiver while only the statistics of the CIRs are required at 

the transmitter. The proposed algorithm takes into account the equivalent 

discrete-time channel, the operating signal-to-noise ratio (SNR), the modula

tion scheme, the length of the O D D transmit filters as well as the correlations 
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of the transmit and receive antennas. The resulting O D D filters are applied 

to G S M 1 [7, 8] and E D G E 2 [9, 10]. Simulation results show that the O D D 

filters obtained in this work achieve a lower bit error rate ( B E R ) than those 

obtained in [1, 2, 4] when D F E and L E are used at the receiver, respectively. 

The results of this thesis have been summarized in [11, 12]. 

J G S M : Global System for Mobile Communication 
2 E D G E : Enhanced Data Rates for G S M Evolution 
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C h a p t e r 1 

In t roduc t i on 

Multiple-input multiple-output (MIMO) wireless systems [13, 14, 15] have re

cently gained much interest due to the increasing demand for higher data 

rates in wireless communications systems. Space-time coding is the subject of 

current research activities. Space-time trellis codes (STTCs) and space-time 

block codes (STBCs) constructed for the flat-fading channel are discussed in 

[16] and [17, 18], respectively. S T T C proposed in [16] can be used in frequency-

selective channels as well, however, the coding gain diminishes due to the effect 

of multipath fading [19]. 

Although most of the initial research on space-time codes assumed flat fad

ing channels, more recently it has been shown that space-time codes can 

also lead to significant improvements for frequency-selective fading channels. 

Space-time coding schemes designed for frequency-selective fading channels 

that require processing of an entire burst of data have been proposed in 

[20, 21, 22, 23, 24]. The scheme in [20] is a generalization of Alamouti 's S T B C 

in [17], whereas the schemes in [21, 22] and [23, 24] are based on orthogo

nal frequency division multiplexing ( O F D M ) and single-carrier transmission 

combined with frequency domain equalization, respectively. 

These burst-based space-time coding schemes achieve good performance. How

ever, the channel is required to be constant over the entire data burst. In 

addition, if these schemes are used to upgrade existing systems from single an-
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tenna transmission to multiple antenna transmission, the burst structure and 

the receiver have to be modified. These disadvantages may make burst-based 

space-time codes less attractive for the upgrade of existing systems. 

Delay diversity (DD), which can be regarded as the simplest special case of 

a S T T C , was proposed in [25]. It uses multiple transmit antennas to achieve 

transmit diversity for flat fading channels. D D has the advantage that the over

all channel can be modeled as a single-input multiple-output (SIMO) system. 

Therefore, the same channel estimation, channel tracking, and equalization 

techniques as in the single transmit antenna case can be used. As a conse

quence, existing mobile communication systems can be upgraded easily with 

D D since the current burst structure does not have to be modified. A gener

alized delay diversity (GDD) scheme suitable for frequency-selective channels 

was proposed in [4]. A t high signal-to-noise ratios (SNRs), G D D achieves full 

diversity by delaying the transmitted data stream on transmit antenna nt, 

l<nt<NT, by (nt — 1)L symbols where NT and L are the number of transmit 

antennas and the length of the discrete-time channel impulse response (CIR), 

respectively. However, the resulting overall C I R may be excessively long im

plying high equalizer complexity. 

Based on a Chernoff bound on the pairwise error probability (PEP) for 

maximum-likelihood sequence estimation ( M L S E ) , optimized delay diversity 

(ODD) filters for correlated M I M O frequency-selective fading channels were 

obtained in [1, 2]. For the realistic case of low-to-moderate SNR, the resulting 

M L S E - O D D filters significantly outperform the G D D filters. In addition, the 

optimized filters do not only outperform the G D D filters of the same length 

but perform often better than G D D filters of larger length. As shorter filters 

lead to an equalizer with lower complexity at the receiver, the M L S E - O D D 

filters are preferable. 

However, in many situations the complexity of optimum M L S E is still too high 

even with the shorter M L S E - O D D filters [3, 26]. This is especially true when 

higher order modulation schemes, such as 8-ary phase-shift keying (PSK) [27], 
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are employed since the computational complexity of M L S E grows as M i _ 1 , 

where M is size of the modulation alphabet [27]. Therefore, in practice, sub-

optimum equalization strategies such as decision-feedback equalization (DFE) 

[5] or linear equalization (LE) [6] have to be adopted at the receiver. It is the 

aim of this work to obtain the O D D filters for correlated M I M O frequency-

selective fading channels assuming D F E or L E being used at the receiver. 

Based on an approximation of the worst-case P E P of the respective equalizer, a 

cost function that is suitable for the optimization of the O D D filter coefficients 

is derived for both D F E and L E , respectively. Since a closed-form solution for 

the optimization problem is not feasible, a stochastic gradient algorithm is 

used for the filter search. The resulting schemes are referred to as D F E - O D D 

and L E - O D D , respectively. We consider transmissions in the downlink di

rection and we adopt the system parameters of the global system for mobile 

communication (GSM) [7, 8] and enhanced data rates for G S M evolution sys

tem ( E D G E ) [9, 10] for numerical results. Simulation results show that when 

D F E or L E are employed at the receiver, the filters optimized for D F E and L E 

outperform the G D D filters proposed in [4] and M L S E - O D D filters proposed 

in [1, 2]. 

The outline of this work is as follows. In Chapter 2, we describe the adopted 

correlated M I M O frequency-selective Rayleigh fading model, and the G S M and 

E D G E power delay profiles. The D D filters, the G D D filters, and the O D D 

filters optimized for M L S E are briefly discussed in Chapter 3. In Chapter 

4, we give a review on the finite-length D F E and L E and explain how to 

obtain the equalizer filter coefficients based on the minimum mean-square error 

( M M S E ) criterion. In Chapter 5, we explain how the expected worst-case P E P 

is calculated by using the output error variance of D F E and L E with infinite-

length filters. We use the expected worst-case P E P obtained in Chapter 5 

to derive a stochastic gradient algorithm for optimization of the O D D filter 

coefficients in Chapter 6. In Chapter 7, we present the simulation results for 

the optimization and compare the proposed D F E - O D D filters and L E - O D D 
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filters with the MLSE-ODD filters and GDD filters. Finally, we summarize 

this work and draw some conclusions in Chapter 8. In Appendix A, DFE-

ODD filters and LE-ODD filters for some typical GSM and E D G E channels 

are presented. 

4 



C h a p t e r 2 

T ransmiss ion S y s t e m 

In this chapter, the overall transmission system consisting of signal mapper, 

D D filters, pulse shaping filters, correlated M I M O channel, receiver input fil

ters, equalizer, and demapper will be discussed. It will be first shown that the 

correlated M I M O channel with transmit antennas and NR receive antennas 

can be modeled by matrices with dimension NR X NT- We wil l then show that 

the overall channel model, continuous in time, can be obtained by convolving 

the correlated M I M O channel with the pulse shaping filters, and the receiver 

input filters. Furthermore, an overall discrete-time channel model is obtained 

by sampling and truncating the continuous-time CIR. Finally, an equivalent 

channel model containing the combined effect of the overall discrete-time chan

nel and D D filters is derived. 

2 . 1 C h a n n e l M o d e l 

The correlated M I M O frequency-selective Rayleigh fading channel model is 

adopted in this work. In a M I M O wireless link, the data stream is broken 

into separate signals and sent over different transmit antennas. The frequency 
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non-selective M I M O channel can be modeled by the following matrix [13]: 

Hc(t) = 
h2

c\t) h%(t) 

hhNT(t) 

h2

c

NT(t) 
(2.1) 

hN

c

R\t) hN

c«2{t) ... h%*N*(t) 

KQ711 (t) is the continuous-time Rayleigh fading channel gain between transmit 

antenna nt, l<nt<NT, and receive antenna nr, l<nr<NR, where NT and 

NR are the total number of transmit and receive antennas, respectively. The 

complex gain Kgnt (£) is a continuous-time zero mean Gaussian random process 

hj£nt(t) = h^nt(t) + jh%nt(t), (2.2) 

where h]rnt(t) and hqnt{t) are the real and imaginary parts of /i£r™'(£), re

spectively [27]. The envelope of the process, C" r m (*) = \hcr7lt(t)\, is Rayleigh 

distributed with probability density function (pdf) 

pc(x) = 
\e 2"o. 
CT0 (2.3) 

for x > 0 

0, for x < 0 

where a\ is the variance of the two quadrature channels. Since K}Tnt (t) and 

hq'nt(t) are assumed to be independent, the variance of /i£ r"'(£) is equal to 

2al 

The frequency non-selective model described by (2.1) is only valid when the 

signal bandwidth is much smaller than the coherence bandwidth of the chan

nel. If the signal has a bandwidth greater than the coherence bandwidth, the 

transmitted signal is subjected to different gains and phase shifts across the 

band. In such a case, the channel is said to be frequency-selective [27]. A 

frequency-selective channel causes intersymbol interference (ISI). The received 

signal wil l be the superposition of several transmitted signals. ISI can be mit

igated by employing an equalizer at the receiver side. M L S E , D F E , and L E 

are some of the equalization methods which are commonly used in practice. 

More details about equalizers will be discussed in Chapter 4. 



A frequency-selective M I M O model with L multipath components is shown 

in Figure 2.1. xnt(t) represents the signal transmitted by transmit antenna 

xa(t)-

XJV T ( 4 ) -

t t _t 
AV 

t t 

T2 

AV 

it 

t t t 

T L - l 

NR 

t t t 
(*) 

t t 

Af„ 

Figure 2.1: Frequency selective M I M O channel. 

nt, while ynr{i) represents the signal received by receive antenna nr. r\,l = 

1,. . . , L — 1, represents the delay of the multipath component I. Each matrix, 

Hl

c(t), I = 0,... ,L — 1, has dimension NR X NT and its elements can be 

written as [13, 27] 

Hlc(t) 

h, INT, 

h2

c

NT>1 

h, NRl,l 
c (t) hp2'® h, NRNT,l 

(t) 

(2.4) 

The matrices Hl

c(t) are independent for different Is, I = 0 , . . . , L — 1, and their 

elements, }i£nt,l{t), are continuous-time zero mean Gaussian random processes 

as defined in (2.2). 

The overall M I M O channel impulse response Hc(r,t) is also a matrix with 

dimension NR X NT- It relates to the matrices Hl

c(t) in the following way 

L - l 

Hc(T,t) = , £ H l

c ( t ) 8 ( T - n ) , (2-5) 
1=0 

where S(-) is the Dirac delta function [28] and r 0 is equal to zero. 

Therefore, the matrix elements in (2.4) and (2.5) are related by the following 

-VNnW 
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hn

c^(r,t) = Y:hnJnt'l(t)S(r-Tl). (2.6) 

The power delay profile [29] of the channel is defined as 

L - 1 

P(r) = I>r"')2*(T - n) (2.7) 

where ( a £ r ? W ) 2 is the variance of / i £ n t ' ' ( * ) , 

(an

c

rnt'ly = S\\hn

c

rnt\t)^ (2.8) 

In practice, (<T^rn'' ) 2 are normalized such that 

L - 1 

E / nrnt,l\2 -1 
( °C ) = 1 (2.9) 

i=0 

is true. 

For G S M and E D G E system, four different power delay profiles are specified 

[7]: rural area ( R A ) , hilly terrain (HT) , typical urban area (TU) and equal

izer test (EQ). For E Q , H T , and T U , it is assumed that the amplitudes of all 

propagation paths, hQr1lt'l(t), are continuous-time zero mean Gaussian random 

processes as described by (2.2). Their envelopes are Rayleigh distributed with 

pdf as defined in (2.3). For R A , it is assumed that the amplitudes of all prop

agation paths are continuous-time non-zero mean Gaussian random processes. 

The mean value is due to the line-of-sight (LOS) path between a transmit an

tenna and a receive antenna. This results in a Rician fading channel. In this 

work, the E Q , H T , and T U profiles are considered. 

Finally, it should be noted that if NT and NR are both equal to one, the M I M O 

channel in (2.4) reduces to a single-input single-output (SISO) frequency-

selective Rayleigh fading channel. Furthermore, if L = 1, the channel reduces 

to a frequency non-selective channel resulting in only scalar multiplicative dis

tortion of the transmitted signals. 

8 



2.2 C o r r e l a t i o n o f C I R C o e f f i c i e n t s 

In general, an i.i.d. model assuming rich uniform scattering will not be an ac

curate description of real-world multi-antenna channels [30], since in practice, 

insufficient antenna spacing and a lack of scattering cause the individual an

tennas to be correlated. Therefore, spatial correlation is assumed to occur at 

both the transmit and receive antennas in this work. Under this assumption, 

the matrix taps in (2.4) can be written as [30] 

where Hl(t), R = R1/2(R1/2)H, and S = S1/2(S1/2)H are the uncorrelated 

channel matrix taps, the receive correlation matrix and the transmit correlation 

matrix, respectively. The superscripts 1/2 and H denote the matrix square-

root and Hermitian transposition, respectively. Although not completely gen

eral, this simple correlation model has been validated through recent field 

measurements as a sufficiently accurate representation of the fade correlations 

seen in actual cellular systems [30, 31]. S and R are positive definite matrices 

with dimensions NT X NT and NR X NR, respectively. 

From now on, we assume the M I M O model defined in (2.5) to be a spatially 

correlated frequency-selective M I M O channel with matrix taps described by 

(2.10). For simplicity, we assume that the spatial correlation is identical for all 

matrix taps. Setups with up to three transmit and two receive antennas are 

considered in this work. Since matrices S and R have the same form, we will 

concentrate on the transmit correlation matrix in the following discussion. 

There is only one correlation factor for the two antennas case. The correlation 

matrix S can be written as 

where p\2 is the correlation factor between transmit antenna one and transmit 

Hl

c{t) = R^2Hl(t)(S^2) H (2.10) 

S = 1 Pn 

P12 1 
(2.11) 
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antenna two and it is defined by 

j 
Pl2 

8{hn

c

A\t)hnfM{t)} 
(2.12) 

(acrl'l)2((Tc2'1)2 

There are three correlation factors for the three antennas case, p\2, and 

p\3. They represent the correlation between transmit antenna one and transmit 

antenna two, between transmit antenna two and transmit antenna three, and 

between transmit antenna one and transmit antenna three, respectively. The 

resulting correlation matrix is a 3 x 3 matrix with elements 

S = 
P12 Pis 

Pl2 pis 

Pl3 P23 

(2.13) 

The square root of the correlation matrix can be calculated by using Cholesky 

decomposition such that S1^2 and R1^2 are lower triangular whereas (S1^2)11 

and {R}^2)H are upper triangular [32]. S1^2 for the two and three transmit 

antennas case can be written as 

s'/2 = 
Pn 

0 

t \2 12) 
(2.14) 

and 

S1'2 = Pu 

Pn 

0 

i - (Pi2)2 

o 

o 

1 _ (mo)2 _ (Paa-PiaPia) 2 

1 KPu) 

(2.15) 

respectively. Similar results can be obtained for the receive antennas by re

placing the correlation factors in the above matrices with the respective receive 

correlation factors. For future convenience, 

and 

Pt 

Pr = 

Pl2 Pl3 P23 (2.16) 

(2.17) Pl2 Pl3 P23 

are defined, where P t and pr are the correlation vectors for the transmit and 

receive antennas, respectively. 
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2 . 3 C o m p l e t e E q u i v a l e n t B a s e b a n d M o d e l 

The channel model presented in the previous section is only a part of the overall 

mobile communications transmission model. The other parts of the model are 

discussed in this section. A block diagram of the equivalent baseband system 

model is shown in Figure 2.2. 

ni(t) t = kT 

ourco — Mapper 

Figure 2.2: Overall transmission system. 

The binary input data sequence is first mapped to symbols belong to a linear 

modulation format such as M-ary phase-shift keying (PSK) or quadrature am

plitude modulation ( Q A M ) symbol. We consider G S M and E D G E in this work. 

Therefore, the mapped symbol is either a 2-PSK or an 8-PSK symbol depend

ing on whether G S M or E D G E is used. Note that G S M uses binary Gaussian 

minimum-shift keying ( G M S K ) , which can be approximated as filtered 2-PSK. 

E D G E improves spectral efficiency by employing 8-PSK modulation instead. 

However, other system parameters such as symbol rate and burst duration 

remain unchanged in order to enable a smooth transition from G S M to E D G E 

[33]. 

Before transmit pulse shaping, the modulated symbols, b[k], are first filtered 

by the D D transmit filters, Gnt(z). The D D transmit filters depicted in Figure 

2.2 are discrete-time filters, which can be realized as tapped delay lines. The 

filtering process is shown in Figure 2.3. 
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The filter is defined by 

Gnt{z) = J^- £ 9nt[n]z-\ nt = l,...,NT 

V „ = 0 

(2.18) 

where gnt[n] is the nth filter tap of the D D filter of transmit antenna nt. A l l 

D D filters have length N. In order to keep the total transmitted energy Es 

constant, a factor ^ES/NT is applied to each transmit antenna branch. As 

a result, the filtered symbols cnt[k] of antenna nt can be obtained from the 

modulated symbols b[k] by 

cnt[k) = \lj^- iP[k]*gnt[k}), 

where * refers to convolution. 

b[k] 

(2.19) 

Figure 2.3: D D transmit filters. 

For transmit pulse shaping, the linearized impulse ht{t) corresponding to Gaus

sian Minimum Shift Keying ( G M S K ) with time-bandwidth (BT) product 0.3 

is employed [27]. Therefore, the transmit filter impulse response is given by 

12 



[33, 34, 35] 

I n s(t + kT), 0<t<5T 
ht(t) = I fc=o (2.20) 

I 0, else 

with 

sin [7r}g(r)dr], 0 < £ < 4T 

s(t) = 
o 

t-AT 
sin ( f - 7T / g(T)dr ) , 4T < t < 8T 

(2.21) 

0, else 

where T = 3.69/J.S is the symbol duration. The impulse g(t) of duration AT is 

given by 

- Q f 27T-0.3 t ~ ~* j), 0 < £ < 4 T , (2.22) 

v r y i m ^ ; ; 
where Q(-) denotes the complementary Gaussian error integral [27], 

+oo 

Q(t) = -j= j e - T 2 / 2 dr . (2.23) 

The continuous-time signals are transmitted over the correlated M I M O chan

nel HC(T, t) discussed in the last section. A t the receiver, the continuous-time 

received signal at antenna nr is impaired by additive white Gaussian noise 

(AWGN) nnr(t). The choice of the receiver input filter, hr(t), is up to the 

receiver designer. We assume a filter with square-root Nyquist frequency re

sponse. This allows us to model the channel noise after sampling as a spatially 

and temporally white discrete-time Gaussian random process. More will be 

said about the discrete-time channel model in Section 2.4. 

Two filters which have a square-root Nyquist frequency response are the 

whitened matched filter ( W M F ) [27], which belongs to the class of optimum 

receiver input filters [3], and the square-root raised cosine (SRC) filter [27, 29]. 

We use a fixed filter in this work, namely the SRC receive filter with roll-off 
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factor 0.3 [29]. This filter offers a similar performance as the optimum W M F . 

However, the implementation of the S R C filter is simpler because, in contrast 

to the W M F , it does not have to be adapted to a particular channel impulse 

response [33]. The discrete-time received signals are obtained by sampling the 

output of the receiver input filters at times t = kT. Finally, the receiver, as

sumed to have perfect knowledge of the overall CIR, performs equalization of 

the received signals and the demapper converts the detected symbols back to 

binary data. 

It should be noted that the D D transmit filters Gnt(z), the pulse shaping 

filters ht(t), and the receiver input filters hr(t), introduce additional ISI to the 

M I M O channel. In addition, the pulse shaping filters and receiver input filters 

introduce temporal correlation to the channel. 

2 . 4 E q u i v a l e n t D i s c r e t e - T i m e M o d e l 

The overall channel model discussed in the previous section is in continuous-

time and contains different blocks including the pulse shaping filters ht(t), the 

physical channel H(r,t), and the receiver input filters hr(t). It is convenient 

to derive an equivalent discrete-time model containing the combined effects of 

all these blocks. In this section, we will show how the discrete-time model can 

be obtained. 

In this work, block fading is assumed. That is, the wireless channel coefficients 

li£nt'l(t) defined in (2.4) are approximately constant during one burst but vary 

from burst to burst. In other words, the coefficients hcrnt'l(t) are time-invariant 

within each burst. This assumption is valid for small-to-moderate burst lengths 

and low vehicle speeds. Wi th this assumption, the time dependence of h7^nt'l{t) 
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can be dropped and (2.4) reduces to 

Hl

c = 
T 21,i 

12,1 
C 
22,1 
C 

h, NRl,l hNR2 
C C 

Now, the overall C I R can be obtained from 

1NT,1 

h2

c

NT'1 

h] NRNT,l 

c 

(2.24) 

hnrnt(t) = ht(t) * h£nt(t) * hr(t), (2.25) 

where 
L-1 

(2.26) 
(=0 

One can also obtain the above equation from (2.6). Since the channel is time-

invariant, £ in (2.6) is fixed and can be dropped from the equation. Therefore, 

the only variable left is r . Replacing r with t yields / i^ r n ' ( t ) . 

In principle, the overall C I R is of infinite length. However, in practice, it 

can be sampled and truncated to L consecutive taps which exhibit maximum 

energy [36]. Therefore, the sampled and truncated overall C I R can be written 

as 

KrnM = hnJnt{lT + to), / = 0 , . . . , L — 1 (2.27) 

where to is a small time delay. L and to are chosen so that only a negligible 

amount of power is disregarded. 

Wi th this discrete-time channel model, the T-spaced, sampled version of the 

received signal at receive antenna nr is 

NT L-1 

rnr[k] = £ Z) hnrnt[l]cnt[k + rinr[k], 
nt=l 1=0 

(2.28) 

where cnt[k] is defined in (2.19). Note that nnr[k] = nrlr(kT + t 0 ) in (2.28) is 

spatially and temporally white because the SRC receive filter autocorrelation 

function fulfills the first Nyquist criterion [27]. 
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Furthermore, (2.28) can be written as 

[E~ N t 

hnrnt[k] * b[k] * gnt[k] + nnr[k] 
V A T „ t = i 

h%[k]*b[k] + nnr[k] 
L+N-2 

= E hZ[l}b[k - l] + nnr[k], (2-29) 
(=0 

where h%*r [k] is the equivalent C I R with length L e q = L + N — 1 corresponding 

to receive antenna nr and is defined as 

Therefore, the overall discrete-time channel can be modeled as a S IMO system 

with equivalent CIR, h^r[k]. 
The discussions in this chapter are valid for both G S M and E D G E systems 

because they use the same frequency bands, transmit pulse shaping filters, 

and receiver input filters [7]. It should also be noted that the model is not 

restricted to G S M and E D G E systems, but is applicable to any system that 

employs linear single-carrier modulation. 

(2.30) 
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C h a p t e r 3 

De lay D i ve rs i t y ( D D ) 

A key feature of a M I M O system is its ability to use multipath propagation to 

increase data rate or to improve spatial diversity [13, 14, 15]. In this work it is 

not intended to use the M I M O channel to increase the capacity but for diversity 

reasons. In this chapter, we will review the different diversity techniques briefly 

and we will then concentrate on delay diversity, which is the form of diversity 

investigated in this work. 

3 . 1 D i v e r s i t y T e c h n i q u e s 

Diversity means that the receiver is provided with independently faded versions 

of the same information. If several replicas of the same information signal 

are transmitted over independently fading channels, the probability that all 

the signal components will fade simultaneously is very small [27]. In wireless 

communications, there are three main forms of diversity techniques which are 

widely used: frequency diversity, time diversity, and spatial diversity. 

Frequency diversity creates redundancy in the frequency domain by transmit

ting the same information-bearing signal on multiple carriers. This is reason

able because the multipath structure in different frequency bands is different 

for a frequency-selective channel. The drawback of frequency diversity is the 

extra spectrum required to achieve the diversity. This limits the number of 
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mobile users and the amount of bandwidth available to each user at a given 

time. 

Time diversity creates redundancy in the time domain by transmitting the 

same information signal at different points in time. It uses the fact that in 

a time-variant channel, the fading in different time intervals is different. The 

major drawbacks of time diversity are the waste of bandwidth due to repetition 

and the delay constraints making it hard to exploit. . 

The final type of diversity which is commonly used is spatial diversity. Spatial 

diversity creates redundancy in the spatial domain by using more than one 

antenna either at the transmitter or receiver side. It uses the fact that different 

antennas see different multipath characteristics. This form of diversity can 

be further broken into transmit diversity and receive diversity. One major 

drawback of spatial diversity is the requirement of deploying multiple antennas 

at either the transmitter or receiver side, which is not always possible due to 

size constraints or economic reasons. However, spatial diversity is attractive 

because no bandwidth expansion is required to achieve diversity. D D is a form 

of spatial diversity because the information signal is transmitted by different 

antennas. D D basically transforms spatial diversity into frequency diversity 

by increasing the length of the overall channel by N. 

3 . 2 G e n e r a l i z e d D e l a y D i v e r s i t y ( G D D ) 

As we have already mentioned in the last section, D D for M I M O systems 

introduces redundancy in the spatial domain to provide diversity. The block 

diagram of a D D transmitter with transmit antennas is shown in Figure 

3.1. 

In G D D , the filtered symbols cnt[k] are delayed versions of the data symbols, 

b[k]. The delay is achieved by employing NT discrete-time D D filters with 

gnt[k] = l for fc = (nt - l)D and gnt[k}=0 for k ^ {nt - 1)D. When D = 1, 

standard delay diversity (SDD) [37] results where the source symbol is delayed 
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b[k] 

Figure 3.1: Discrete-time block diagram of generalized delay diversity. 

by one symbol period for each antenna. SDD achieves full spatio-temporal 

diversity in flat-fading channels [37]. However, it has been shown that SDD 

fails to exploit full diversity over frequency-selective channels [4]. There has 

been some effort to improve the performance of SDD on frequency-selective 

channels in the context of channel equalization [38, 39, 40]. 

It has been shown in [4] that full spatio-temporal diversity can be achieved 

over frequency-selective channels if D is chosen to be equal to the length of 

the overall C I R L. The resulting G D D filters have a length of N = (NT-l)L+l 

and coefficients gnt[k]=l for k = (nt — 1)L and gnt[k}=0 for k ^ (n t — 1)L. 

3 . 3 O p t i m i z e d D D ( O D D ) f o r M L S E 

Although full diversity can be achieved by G D D , the resulting equivalent chan

nel is excessively long. In [1, 2], a cost function that is suitable for optimiza

tion of the D D transmit filter coefficients was derived based on a Chernoff 

upper bound on the P E P for optimum M L S E . It was shown that the shorter 

optimized D D filters achieve a better performance than the G D D filters at 

Gi(z) = M 
ci{k] 

G2{z) = Mz-D 
c2[k] 

GNt(Z) - ^j%z Es „-(NT-l)D 
CNT[k] 
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low-to-moderate SNRs. 

The P E P is the probability that the detector decides in favour of symbol ba[k] 

although bp[k] has been transmitted. According to [1, 2], the P E P of M L S E 

can be approximated by 

Pe(ba[k},bp[k}) (3-1) 
det (I^NRXL^NR + ^min 4̂ 2- C m 

where cr 2 is the noise variance of nnr[fc] in (2.28), /./vxiv is an identity matrix 

with dimension N x N, det{-} denotes the determinant of a matrix, and dmm is 

the minimum Euclidean distance of two adjacent signal points which depends 

on the used modulation scheme. Cm is called the modified code matrix in 

[1, 2] with dimension LEQNR x LNTNR and elements 

C m = INRXNR ® C'm 

where ® represents the Kronecker product, and 

(3.2) 

Pi [0] 

9i [1] 

9i[N-l] 

0 

0 

0 

0 

0 

9i[0] ... 

9i[l] ••• 

9i[N-l] ... 

3ivT[0] 

9Nt[1] 

9NT[N-1] 

0 

0 

0 

0 

0 

9Nt[0] 

9Nt[1] 

9NT[N-1] 

(3.3) 

In (3.1), $ is the covariance matrix of the used channel with dimension 

LNTNR x LNTNR and is defined by 

$ = £{hhH} (3.4) 

where £{•} is the expectation operator and h is the channel vector with ele

ments 

h = hi ... h NR (3.5) 

20 



where 

hr hnri[0] • • • Kri[L - 1] . . . hnrNT[0] ... hnrNT[L - 1] (3.6) 

w i t h d imension LNT X 1. T h e superscript T i n the above equations refers to 

vector or m a t r i x t ransposi t ion. 

In order to min imize (3.1), the cost function 

d = det L^NRXL^NR + d2

min-^Cm^C^j 

has to be m a x i m i z e d subject to the power constraint , 

t r ( C m C £ ) = NRNTL, 

(3.7) 

(3.8) 

where tr(-) refers to the trace operat ion. 

T h e m a x i m i z a t i o n of (3.7) does not have a closed-form solut ion and therefore, 

a steepest decent a lgor i thm has to be used to solve the o p t i m i z a t i o n problem. 

W i t h the fol lowing D D filter coefficient vector defined, 

l T 

9l[0] . . . 9l[N-l] gNT{0] ... gNr[N-l] 

del 

(3.9) 

i t was shown i n [1, 2] that the gradient of (3.7), is 

dd 
9am 
dd 

0*1 [i] 
= 

dd 

L 9g'NT[N~l\ J 

t r [ ( i L ^ N ^ N n + <*Cm3>C»y a (Cm*E» + £ U * C £ ) 

t r ((II^NRXL^N* + aC^C^y1 a (Cm<f>Eg + El2*Cl) 

t r ((IL^NRXL^NR + aCm$C») a ( C M ^ E N R N + E N T N $ C » ) 

(3.10) 

where 

a = d2 • — 
n 

(3-11) 

It should be noted that i t is the usual convention to calculate the derivative 

w i t h respect to the complex-conjugate coefficient vector g* rather t han deriva

tive w i t h respect to g i tself [41]. 
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Enuk in (3.10) can be obtained from Cm by replacing element gnt[k] of Cm 

with 1 and the remaining elements with 0. The gradient vector shown in (3.10) 

has dimension NNT X 1-

For a pre-defined number of iterations, the gradient vector is multiplied with a 

step size 5 and added to the current filter vector to obtain an improved vector 

g0[i + 1], where i is the iteration number, 

g0[i + l] =g\i] + 5 

dd 

dd 

dd 

\ 

(3.12) 

\ 9g'NT[N-l] ) 

At the end of each iteration, the normalization 

g[i + 1] = ,9o[i + 1] (3.13) 
g(?[i + i\g0[i + l]' 

is performed to ensure that the vector g has energy NT-

The D D scheme that uses filters which were optimized by the method described 

above is called M L S E - O D D . Simulation results for 2-PSK and 8-PSK in [1, 2] 

show that M L S E - O D D yields a lower B E R than G D D at low-to-moderate 

SNRs. This holds for M L S E decoding as well as suboptimum decoding includ

ing D F E [5] and decision feedback sequence estimation (DFSE) [42]. Also, the 

M L S E - O D D filters do not only outperform the G D D filters of the same length 

but perform often better than the longer G D D filters. 
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C h a p t e r 4 

Dec is ion-Feedback E q u a l i z a t i o n 

and L i n e a r E q u a l i z a t i o n 

Although M L S E - O D D obtained in [1, 2] yields better performance than G D D , 

optimum equalization at the receiver based on the Viterbi algorithm (VA) [43] 

requires an excessive computational complexity and is not feasible in many 

situations. The computational complexity of M L S E is directly related to the 

number of states of the underlying trellis diagram, which is given by Z = ML~l. 

Therefore, M L S E has a maximum complexity of Z = 2{>7~V) = 64 states for 

G S M as G S M uses binary G M S K and the longest channel specified is L = 7. 

In contrast, the complexity of M L S E is prohibitively high for E D G E , which 

uses 8-PSK as its modulation scheme. The T U channel is the shortest channel 

defined in the G S M and E D G E system with L = 4 and therefore, a full-state 

V A would require Z = 8( 4 _ 1 ) = 512 states which is far too complex for a 

practical implementation. Therefore, alternative equalization strategies such 

as D F S E , D F E , or even L E have to be employed at the receiver in practice for 

E D G E . In this work, we will concentrate on D F E and L E . A brief review of 

the two suboptimum equalization schemes will be given in the following two 

subsections and a comparison of the two schemes wil l be given at the end of 

this chapter. 
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4 . 1 D e c i s i o n - F e e d b a c k E q u a l i z a t i o n ( D F E ) 

A block diagram of a D F E scheme with NR receive antennas is shown in 

Figure 4.1. The equalizer consists of NR discrete-time feed-forward filters 

( F F F ) and one discrete-time feedback filter ( F B F ) . The idea of D F E is to use 

previous decisions to cancel the ISI. The inputs to each of the F F F s are the 

received symbols rnr[k] at each receive antenna. The inputs to the F B F are 

the previously detected symbols. A t each time instant, the output of the F B F , 

which is a weighted linear combination of the previous symbol decisions, is 

subtracted from the sum of the outputs of the F F F s to produce an estimate, 

b[k], of the current symbol, b[k\. This cancels the ISI produced by the previous 

symbols. The estimate b[k] is then passed through a threshold device which 

generates the current symbol decision b[k]. 

e[k\ 
ni[k] 

b[k] 

h?[k) FFF X h?[k) FFF X 

nNR[k] 

\rNR[k] 
FFFNR 

V " 
FFFNR 

b[k] 

Figure 4.1: Block diagram of D F E with NR receive antennas. 

In theory, the F F F s of D F E are of infinite length. However, F F F s of finite-

length are employed in practice. We have tried F F F s of different lengths for 

simulations and found that F F F s with a filter length that is four times the 

overall C I R yield comparable performance to infinite-length F F F s . Therefore, 

F F F s in this work are designed such that their lengths are four times the C I R 

lengths. 
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Since the most meaningful measure of performance for a digital communication 

system is the average probability of error, it is desirable to choose the F F F and 

F B F coefficients to minimize this performance index. However, the probability 

of error is a highly non-linear function of the filter coefficients and therefore, 

using the probability of error as a performance index for optimizing the filter 

coefficients is computationally very complex. Two performance criteria have 

found widespread use in optimizing the D F E coefficients. One is the zero 

forcing (ZF) criterion and the other is the mean-square error (MSE) criterion 

[27]. The former completely eliminates the ISI under a Z F constraint while 

the later minimizes the M S E between the true sample b[k] and the observed 

signal b[k] just prior to the decision threshold. Since the M S E criterion is 

more prevalent in practice and results in a better performance [44], it is used 

in deriving the filter coefficients in this work. The optimization of the D F E 

filters is usually carried out assuming that the past decisions are correct, thus 

simplifying the mathematics involved [5]. The same assumption is made in this 

work. Therefore, according to Figure 4.1, b[k] = b[k] and b[k] can be written 

as 
NR 0 NW 

b[k] = E E fnr[n]rnr[k - n] - E - n], (4.1) 
nr=l n=-(Nf-l) n=l 

where / „ r [n ] and w[n] are the coefficients of the F F F of receive antenna nT 

and the F B F , respectively, and Nf and Nw are their respective lengths. Nw is 

equal to Leq — 1 and therefore, the F B F is one tap shorter than the length of 

the equivalent CIR, h%[k] [27]. 

fnr\n] i ' s a n anti-casual filter meaning that its output depends on the future 

input values. Anti-casual filters are not realizable. However, this problem can 

be overcome by introducing a delay (Nf — 1) to the received symbols, rnr[k], 

at each receive antenna. 

The error term, e[k], denoted in Figure 4.1 can now be written compactly in 

vector form as 

e[k] = b[k] - b[k] = b[k] + wHb[k] - fHr[k], (4.2) 
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where the following definitions were used: 

/ = 

r[k] = 

w = 

b[k] = 

fl[-(Nf-i)] ... A[0] . . . fNR[-(Nf-i)] .. 

ri[k + (Nf-l)} . . . n[fc] . . . rNR[k + (Nf-l) 

w[l] w[2] ... w[Nw] 

fNR[0] 

lT 

rNR[k] 

b[k - 1] b[k-2] •... b[k - Nu 
(4.3) 

The vectors / , r[k], w, and b[k] have dimensions NfNR x 1, NfNR X 1, Nw x 1, 

and Nw x 1, respectively. 

Based on the assumption that the previous symbol decisions are correct, the 

M S E to be minimized is 

a2 = £{e[k]e*[k]} 

= £{(b[k] + wHb[k] - fHr[k}){b*[k] + b"[k]w - rH[k}f)} 

= £{\b[k]\2} + £{b[k]bH[k]w} - £{b[k]rH[k]f} 

+£{wHb[k]b*[k]} + £{wHb[k]bH[k]w} - wHb[k]rH[k]f} 

-£{fHr[k)b*[k}} - £{fHr[k]bH[k]w} 

+£{fHr[k]rH[k]f}. (4.4) 

The above equation (4.4) can be simplified by recalling (2.29) and using the 

following facts. 

• The input data are temporally uncorrelated, i.e., £{&[?']&*[&]} = of if 

j = k and = 0, otherwise. 

• The input data and noise are mutually uncorrelated. 

The terms in (4.4) can now be simplified to 

£{b[k]bH[k]w} 

£{b[k]rH[k]f} 

£{wHb[k]bH[k]w} 

£{wHb[k]b*[k]} = 0 

= alwHw 
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£{wHb[k]rH[k]f} 

£{fHr[k]b*{k}} 

8{fHr[k]bH[k]w} 

S{fHr[k}rH[k]f} 

= a2

bwHAf 

= elf"hf 

= alfHAHw 
2 

= a2

bfH[BBH + ^(I(NfNRMNfNR))}f 

(4.5) 

where hf, A, B, and T are defined as follows: 

0lf.lNw+1) h?[Nw] . . . ^ [ 0 ] . . . 0T

Nf-{Nw+1) . . - h%R[0] 

(4.6) 

with 

An — 

A = 

uNf-Nw 

VNf-Nw 

AX A2 . . . ANR 

Krm ... . 
0 h%*[Nw] . 

o o ^;[ivu 

(4.7) 

(4.8) 

B = 

^ [ 0 ] 

0 

0 

0 

h?[Nu 0 

o 

0 h$R[0] ... 

0 

0 0 0 

0 

0 

h?{0] 

0 

0 

0 

0 

0 

^q[i\y 

0 0 0 

0 0 0 

0 

(4.9) 

r = B B H + -^(I(NfNR)x(NfNR))- (4.10) 
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0/v in (4.6) and (4.8) refers to the zero vector with dimension N x 1. The 

dimensions oihf, A, B, and T are NfNR x 1, NwxNfNR, NfNRx(Nf + Nw), 

and NfNR x NfNR, respectively. 

After substituting (4.5) into (4.4), (4.4) becomes 

a2 = a2

b-a2

bhff + a2

bwHw-a2

bwHAf 

- o 2 J H h f - a2fHAHw + o2fHTf. (4.11) 

The coefficients of w can be obtained by differentiating (4.11) with respect to 

w* and setting the resulting expression to zero [41], 

^ - = a2w-a2Af = 0Nw. (4.12) 

The resulting F B F coefficients are 

w = Af. (4.13) 

The coefficients of / can be obtained in a similar way by differentiating (4.11) 

with respect to / * and setting the resulting expression to zero, 

da2 

= - o 2 h f - a2

bAHw + a2

bTf = 0NfNR. (4.14) 
df 

After substituting w in the above equation (4.14) with (4.13), (4.14) reduces 

to 

h r = Tf — AH Af 

= (r — A h A)f 

= [BBH + -%(I(NfNR)x(NfNR)) - AHA]f 

.2 
[CCH + -%(I(NfNR)x(NfNR))]f, (4-15) 

where 
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c = 

h?[0] 

0 

0 

0 

0 

0 

hlq[Nu 

0 

0 0 0 

0 

0 

0 

0 

h?[0] 

0 

0 

(4.16) 

and its dimension is NfNR x Nf. 

Finally, the F F F coefficients can be computed from 

r2 
/ = [CCH + ~J

2

l{I(NfNR)x(NfNR))} 1hf, (4.17) 

and this result can be used to obtain the F B F coefficients from (4.13). 

Al-Dhahir and Sayed obtained the same results in [45] using a different deriva

tion. 

4 . 2 L i n e a r E q u a l i z a t i o n ( L E ) 

L E is another suboptimum equalization technique that is commonly used in 

practice. It employs NR linear transversal filters to compensate for the ISI. 

The filter structure has a computational complexity that is a linear function 

of the channel dispersion length L [27]. A block diagram of a L E scheme with 

NR receive antennas is shown in Figure 4.2. Similar to D F E , the L E scheme 

consists of NR discrete time F F F s . The inputs to the F F F s are the received 

symbols r U r [k] at each receive antenna. The output of each F F F is a weighted 

linear combination of the received signals at the corresponding receive antenna 

nr. These outputs are summed together to form an estimate b[k] of the current 

symbol b[k]. The threshold device then uses this value to estimate the current 

symbol decision b[k]. 

29 



nNli [k] 

rNR[k] 

0 b[k] 

Figure 4.2: Block diagram of L E with NR receive antennas. 

Similar to D F E , the optimum F F F s of L E are of infinite-length. However, 

F F F s with length four times the overall C I R yield similar performance to the 

infinite-length F F F s . Therefore, the length of the F F F of L E in this work is 

assumed to be four times the overall CIR. The M S E criterion is used again for 

optimization. 

b[k] in Figure 4.2 can be written as 

NR 0 

Hk] = H fnr[n]rnr[k - n], 
n T = l n = - ( N f - l ) 

(4.18) 

where fnr[n] are the coefficients of the F F F of receive antenna nr. The length 

of the F F F is Nf. Similar to the D F E case, the F F F s of L E are anti-casual 

filters as well. This again can be solved by introducing a delay of (Nf — 1) at 

the input of each of the F F F s . 

The error term denoted in Figure 4.2 as e[k] can be written compactly in vector 

form as 

e[k] = b[k] - b[k] = b[k] - fHr[k], (4.19) 

where / and r[k] were already defined in (4.3). The M S E can now be written 

as 

a2 = £{e[k]e*[k}} 

= £{(b{k]-fHr[k]W[k]-rH[k]f)} 
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= £{\b[k]\2}-£{b[k]rH[k]f} 

-£{fHr[k}b*[k}} + £{fHr[k]rH[k}f}. (4.20) 

The above equation (4.20) can again be simplified by recalling (2.29) and using 

the same assumptions as in the D F E case. 

The terms in (4.20) can now be simplified to 

£{b[k]rH[k]f} = a2
bhff 

£{fHr[k]b*[k]} = oifHhf 

£{fHr[k]rH[k]f} = atfH[BBH + 4(I(NfNR),{NfNR))}f 

= vlfHTf, (4.21) 

where hf, B, and T were defined in (4.6), (4.9), and (4.10), respectively. 

Substituting (4.21) into (4.20) yields 

<x2 = a\ - oih»f - a!fHhf + alfHTf. (4.22) 

Differentiating the above equation with respect to / * and setting the resulting 

equation to zero yields the solution for the F F F coefficients, 

f = r~1hf. (4.23) 

4 . 3 P e r f o r m a n c e o f D F E a n d L E 

For the suboptimum equalizers discussed in the last two sections, the location 

of the zeros of the Z-transform of the discrete-time equivalent C I R fr^-M * s 

very important [46]. L E does not perform well when the equivalent channel 

has a spectral null since the noise power is enhanced at frequencies around the 

spectral null. In other words, if zeros are located close to the unit circle of 

the complex plane, the performance of L E degrades. D F E makes memoryless 

decisions and cancels the ISI caused by the previous symbols. Without the 

F F F s , its performance degrades if zeros are located outside the unit circle [46], 

31 



i.e., if the discrete-time equivalent C I R is not minimum phase. Therefore, 

allpass prefilters such as the F F F s depicted in Figure 4.1 which transform the 

equivalent C I R in its minimum phase equivalent should be employed if D F E 

is used at the receiver. Error propagation is another issue which needs to be 

considered when employing the D F E at the receiver. This is because when 

deriving the coefficients of the F F F s and F B F , the assumption that the past 

decisions are correct is usually made and this is certainly not true. However, 

despite error propagation, the performance of D F E is generally better than 

that of L E in wireless ISI channels. 
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C h a p t e r 5 

P E P E s t i m a t i o n 

In this chapter, the approximate worst-case P E P of D F E and L E will be cal

culated. The calculation of the P E P requires the error variances of the two 

schemes. In principle, the error variance in (4.4) and (4.20) can be used for 

this purpose for D F E and L E , respectively. However, the resulting expressions 

to be optimized require the inverse of large matrices making this approach im

practical because the optimization has to be carried out for a large number of 

samples. Since D F E and L E with F F F lengths four times the overall C I R yield 

comparable performances as their respective counterparts with infinite-length 

F F F s , the error variances of D F E and L E with infinite F F F lengths are used 

instead to estimate their respective P E P in this work. 

In the next two sections, we will calculate the S N R for D F E and L E , respec

tively. It wil l be seen later that the resulting expressions cannot be evaluated 

in closed-form. Therefore, numerical methods will be used to approximate 

the SNRs. In the last section of this chapter, the obtained SNRs are used to 

approximate the worst-case P E P s of D F E and L E , respectively. 
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5 .1 S N R f o r D F E 

According to [47], the error variance of D F E with infinite-length F F F s and 

multiple receive antennas is 

1/2T 

a2(h,g)=a2expl-T j In 

-1/2T 

2 NR 
eq/ c i27T/T 

n n r = l 

df\. (5.1) 

This error variance depends on the overall CIRs between all the transmit and 

receive antenna pairs h, and the D D filter coefficients g. H^(ej2n^T) is the 

Fourier transform of h^.[k] and it is, therefore, the frequency response of the 

equivalent channel of receive antenna nr [48]. It can be expressed as 

H?r(eJ2wfT) = C [ 0 ] + C [ l ] - e x p { - j 2 7 r / r } + . . . 

+h%[Leq - 1] • e x p { - j 2 7 r / T ( L e q - 1)}. 

The S N R also depends on h and g and can be written as 

SNR D F E (h ,<7) = 

(5.2) 

2 NR 

a2 

un n r =l 

R2 NR 

dx 

ab n r =l 
dx } . (5.3) 

A closed-form solution to the above SNRDFE^S1) expression does not seem to 

be possible. Therefore, a numerical method is used to calculate SNRDFE(̂ ,̂ )-

The definite integral in (5.3) can be approximated by numerical integration. 

There are four main methods for evaluating definite integrals numerically [49]: 

the Trapezoid Rule, the Midpoint Rule, Simpson's Rule, and the Romberg 

Method. A l l of these methods can be easily implemented on a small computer. 

Also, all these techniques require to calculate the argument in the integral at 

a set of equally spaced points in interval [a, b] where a and b are the lower 

and upper limits of the integral, respectively. In this work, the Midpoint Rule 

is used. The computational complexity for this method is slightly less than 
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t h o s e o f t h e o t h e r t h r e e . I t i n v o l v e s f o r m i n g a R i e m a n n s u m o f t h e a r e a s o f 
r e c t a n g l e s w h o s e h e i g h t s a r e t a k e n a t t h e m i d p o i n t s o f t h e s u b i n t e r v a l s [49]. 
T h e l o w e r a n d u p p e r l i m i t s o f t h e i n t e g r a l i n ( 5 . 3 ) a r e — 1 / 2 a n d 1 / 2 , r e s p e c 
t i v e l y . L e t t h e n u m b e r o f p o i n t s t o b e e v a l u a t e d w i t h i n t h i s i n t e r v a l b e 2 J V + 1 . 
N o w t h e i n t e g r a l i n ( 5 . 3 ) c a n b e a p p r o x i m a t e d b y 

N 

S N R D F E ( h , f f ) « - A e x p ^ £ I n 
" \s=-N 

' f * 
e x p £ I n 

rr2 N r , , ,2 
V E \H^Mi2^)\ 
ab nr = l 

2 NR 

1 
IN + 1 

„ i 

£ t + E 
N 

- 3 n 
^s=-N 

Vr2 N « , ,9 V E W 2 ^ ) 
° 6 n r = l 

2N + 1 

( 5 . 4 ) 

T h e f r e q u e n c y r e s p o n s e H^(e^2lT2t^+l) c a n b e c a l c u l a t e d b y 
2N+1 

Loq 1 f s i = E ^ [*] e x p { - ^ r r ^ - ^ - f c } . ( 5 . 5 ) 

R e c a l l t h a t h^r[k] i s t h e e q u i v a l e n t C I R d e f i n e d i n ( 2 . 3 0 ) w i t h l e n g t h Leq. T h e 
a b o v e e q u a t i o n c a n n o w b e w r i t t e n c o m p a c t l y i n v e c t o r f o r m a s 

Kq

r[k] = \I^Hnrg, 

w h e r e 
0 . . . hnrNT[0] 

o . . . KvNt{1] 

o . . . ; 

hnri[0] . . . KrNT[L-l] 

KAl] ••• 0 

. hnrl[L-l] . . . 0 

w i t h d i m e n s i o n (L + N - 1) x NNT. 

hnrl{0] 

hnA{l] 

hnA[L-l} 

0 

( 5 . 6 ) 

0 
0 
0 

hnrNT [0] 

hnrNT [1] 

• • hnr!MT [L — 1] 

( 5 . 7 ) 
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Now (5.5) can be written as 

wT

dHn^9 (5.8) 

with 

d = 1 e x p { - j 2 7 r ^ } e x P { - j 2 ^ } . . . e x p { - j 2 7 r % # } 

I 

Finally, the S N R of D F E with infinite-length F F F s can be easily calculated to 

SNR D F E -Nu(h,<7) = 
O-INT 

N 

n 
s=-N 

NR 

<rlE, I n r = l 

(5.9) 

2N+1 

(5.10) 

where the subscript, N U , stands for numerical. 

5 . 2 S N R f o r L E 

According to [27], the output noise variance of L E with infinite-length F F F s 

and multiple receive antennas is 

1/2T 
a2(h,g) = Ta2 j 

NR 
-df. 

nr = l 

The S N R depending on h and g can be written as 

SNR L E(h,<7) = 

NR 
-dx 

1/2 

/ 
-1/2 al Y, \H£(e*>") 

n r = l 

(5.11) 

(5.12) 

Again, a closed-form solution to the above expression does not seem to be 

possible. Therefore, the same numerical method as used in the D F E case 

is used to approximate the S N R expression. We again use 2N + 1 points 
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to evaluate the above integral in the interval [—1/2,1/2]. The S N R can be 

approximated by 

( 

SNR L E -Nu( fc , 0 ) = 
1 N r1 

2 « + lJ? S ( T ?g H S ( ^ ) 
nT = X \ 

( V 1 

1 JV 

" n r = l 1 1 / 

1 
(5.13) 

Substituting (5.8) into (5.13), the S N R of L E with infinite-length F F F s can be 

easily calculated from 

- l 

SNRLE-NU(̂ , Q) = 

\ 
1 JV 

2 N + t-*||9»(2H,»/«.] 9 +I 
\ 711 1 

1 

(5.14) 

5 . 3 P a i r w i s e E r r o r P r o b a b i l i t y 

The SNRS obtained in (5.3) and (5.12) from the last two sections are both 

biased [47]. The biased and unbiased output SNRs are related by 

SNRu = S N R B - 1, (5.15) 

where S N R u and SNRB stand for the biased and unbiased output SNR, re

spectively. To calculate the P E P of both D F E and L E , we assume that the 

error term, e[k], in Figures 4.1 and 4.2 are both Gaussian distributed, which 

is a good approximation in practice. W i t h this assumption, the P E P for two 

adjacent signal points of D F E and L E can be calculated by 

p E p . Q ^ £ f ^ , „ 1 6 ) 

where Q(-) is the complementary Gaussian error integral defined in (2.23) 

and is the squared minimum Euclidean distance between two adjacent 
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signal points and thus depends on the modulation scheme. For an M - P S K 

modulation scheme, d m i n can be calculated by using the following equation: 

d2

m-m = [2sin(7r/M)] 2 . (5.17) 

Therefore, for 2-PSK symbols, c?m i n = 4 while for 8-PSK symbols, d m i n = 

0.5859. It should be noted that the nearest neighbor signal points are consid

ered and therefore, the P E P presented above is the worst-case P E P . 

Since the SNRu of both D F E and L E depends on the overall channel h, and D D 

filters g, the P E P s of D F E and L E are both channel and D D filters dependent 

as well. Therefore, the worst-case P E P for D F E and L E can be finally written 

as 

P E P D r a ( f t . g ) = q( 1/^ S W R°7 ( f t- g )- 1 )) 
and 

P E P L E ( h , f l ) ^ ( ^ N R L f (5-19) 

respectively. 

The above expressions only give the worst-case P E P s for a specific equivalent 

channel and since mobile channels are random, the expectation operator is 

applied to both equations to arrive at the approximate average B E R . This will 

guarantee that the final O D D filter coefficients obtained are optimized for the 

average of the channels and not only to a specific one. Therefore, the average 

P E P s of D F E and L E are 

and 

^ { P E P L E ( f e , 9 ) } = ^ ( f - ' S N R f (5.21) 

respectively, where the expectation is with respect to the C I R vector h. 

Our goal is to minimize (5.20) and (5.21) with respect to the D D filter coeffi

cients, g. However, a closed-form solution to the minimization problem is not 

feasible. In the next chapter, a stochastic gradient algorithm for optimization 

of the O D D filter coefficients is proposed. 

38 



C h a p t e r 6 

Stochast ic G rad ien t A l g o r i t h m 

In this chapter, a stochastic gradient algorithm for optimization of the O D D 

filters for D F E and L E will be derived. Since we cannot carry out the expecta

tion operation of both (5.20) and (5.21), we first calculate the gradient vectors 

of (5.18) and (5.19) for a fixed channel, h. As we will see later in this chapter, 

a closed-form solution to the gradient vectors is not feasible and therefore, we 

have to rely on numerical methods to approximate the gradient vectors. We 

will then present the stochastic gradient algorithm to obtain the D D filter co

efficients and perform the averaging over the statistics of the channel. We refer 

the filters optimized by the proposed algorithm as D F E - O D D and L E - O D D , 

respectively. At the end of this chapter, some of the issues which affect the 

convergence behaviour of the stochastic gradient algorithm for the two novel 

O D D schemes will be discussed. 

6 . 1 G r a d i e n t V e c t o r 

Since both (5.18) and (5.19) involve the Q-function and their only difference 

is the argument in the square root, for convenience, we introduce 

y x = a ( S N R x ( r i , <?)-!) , (6.1) 
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where the subscript "x" stands for " D F E " and " L E " , respectively, and 

« = % ( 6 - 2 ) 

It should be noted that yx depends on both h and g, but we use y x instead 

of yx(h,g) for convenience. Now the general PEP x(/i,<7) expression can be 

written as 

PEPK(h,g) = Q(y/iu). (6.3) 

The following expression results when the above expression is differentiated 

with respect to g*: 

PEPx(h,g) = ^ - Q ( v

/ ^ ) 
dg' x v Og 

d 
OO 1 

U I e~t2'2dt 
^7T J dg* 

d ( 1 T V " / 2 

dg* \y/2^J 2ju~ I du 

Vx- (6.4) 
,VSir sjy~x ) dg 

The fundamental theorem of calculus [49], 

g(x) 

~ J f(t)dt = f(g(x))^g(x), (6.5) 
a 

was used for the last equality in (6.4). 

Finally, an expression that can in principle be used for the optimization of the 

DFE-ODD'f i l t e r s and L E - O D D filters is obtained by substituting (6.1) back 

into (6.4). 

6 . 2 G r a d i e n t V e c t o r f o r D F E - O D D 

The gradient vector for (5.18) can be obtained by substituting (6.1) into (6.4) 

and completing the resulting derivative. In the following derivation, the de

pendence of the S N R on h and g is dropped for convenience. This leads to 
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the following equation 

d 
dg* 

- P E P DFE1 h,g) = 
- 1 e x p ( - a ( S N R D F E - l ) /2 ) \ d 

2/DFE 
8TT ^ / a ( S N R D F E - 1) / d9 

1 e x p ( - a ( S N R D F E - l ) / 2 ) a S N R D F E 

8TT ^(SNRDFE - 1) 

_d_ 
dg* 

1/2 

/ 
-1/2 

In 
a2 N r , 

- f + E \ H ^ X ) \ 
a b n r = l 

dx 

- 1 e x p ( - a ( S N R D F E - l ) / 2 ) a S N R D F E 

x 

8TT 

1/2 

/ -
-1/2 

y/ct (SNR; 
NR 

n r = l 

DFE — 1) 
2 

§ 1 + £ | # n V 2 ™ ) | 2 

° i n r = l 

=-dx. (6.6) 

At this point it should be clear that a closed-form solution to the above ex

pression is not feasible because both SNRQFE a n d the integral in the above 

expression cannot be computed in closed-form. To compute (6.6) numerically, 

SNRDFE can be approximated by (5.10) and the integral can be approximated 

by using the same approach as in Section 5.1. The resulting gradient vector 

becomes 

( - 1 e x p ( - a ( S N R D F E _ N U - l ) / 2 ) a S N R D F E _ N U ^ 

dg* P E P D F E ( M ) 
8TT (2iV + l ) ^ / a ( S N R D F E _ N U - l ) 

x E 
NR 
£ HldHdHnr I g 

n r = l I 

-N ° \ N T + 9 » ' £ H»dHdHnr ) g 
n r = l 

(6.7) 

6 . 3 G r a d i e n t V e c t o r f o r L E - O D D 

The gradient vector for (5.19) can be computed in a similar way as for D F E by 

substituting (6.1) into (6.4) and completing the resulting derivative. Again, 

the dependence of the S N R on h and g is dropped in the following derivation 
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for convenience. The following expression results: 

dg* 
PEPLE(h,g) = 

- 1 e x p ( - a ( S N R L E - l ) / 2 ) \ <9 

8TT ^(SNRLE - 1) j d & 

a exp(-a(SNRL E - l ) / 2 ) \ 

8^ ^(SNRLE - 1) ) 

_d_ 
8g* 

1/2 - „ 
f °n 

U i / 2 a\ E \H%(e?*™)\2 + l j 
\ nr=l / 

-dx 

-a e x p ( - a ( S N R L E - l ) /2 ) 

^(SNRLE - 1 ) , 

1/2 / 
d X dg* 

x 

2 - N R 

^ E | i C ( e ^ ) | 2 + l 
" n r = l 

-2 
1 

-1/2 

1/2 I-
- i / 2 % E | K 3 ( e ' 2 ~ ) | 2 + l 

n n,.=l 

a ( S N R L E ) 2 e x p ( - a ( S N R L E - l ) /2) 

1/2 

/ 
-1/2 

V 

^ / a ( S N R L E - 1) 

( 2 NR , 2 \ 

^ E H%(e?2™)\ +1 
n n r =l y 

^ E ra^)i2 + i 
° n nr = l J 

dx. (6.8) 

Again a closed-form solution to the above expression is not possible and there

fore, a numerical method is used to approximate (6.8). SNRLE can be ap

proximated by (5.13) and the integral can be approximated by using a similar 

approach as used in Section 5.1. The resulting gradient vector is 

d D T ? D . / - a ( S N R L E _ N U ) 2 e x p ( - a ( S N R L E _ N U - l ) / 2 ) ^ 
— — F b r L E n,fl = —p— x—7= / = 
d9* v . ( 2 J V + l ) v ^ F ^ / a ( S N R L E _ N U - 1) ) 

N 

x E 
s=-7V 

nT=\ dg- i ff2jvT; 

NR 
E HH

nd"dHnR | g 
n r =l 
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/—OJ(SNRLE-NU)2 exp(-a(SNR L E _ N U - l ) / 2 ) 

\ (2JV + l ) v ^ F ^(SNRLE.NU - 1) ) 
\ 

($feg» (J£H»d»dHnR}g+l ) 
2 (6-9) 

6 . 4 A d a p t i v e A l g o r i t h m 

If the equivalent channel h is fixed, we can use the steepest descent algorithm 

to optimize the O D D filters. However, since wireless channels are random, we 

have to use a stochastic gradient algorithm to perform the filter search. A 

brief review of the steepest descent algorithm will be given first. Then we will 

describe the stochastic gradient algorithm, which is used in this work. The 

following two equations describe the steepest descent algorithm 

The algorithm runs for a pre-defined number of iterations with a pre-defined 

step size, 8. Eq . (6.10) describes the operation of the algorithm for each 

iteration i. The negative sign in (6.10) refers to a minimization problem. 

A time index i is introduced to the vector g to indicate that a new vector 

containing the O D D filter coefficients is obtained at the end of each iteration. 

A t the end of each iteration, the new vector g[i + 1] is normalized to ensure 

that the new vector has an energy of NT- This is mathematically shown in 

The stochastic gradient algorithm is similar to the steepest descent algorithm 

explained above except that the fixed channel condition is removed. In other 

words, the equivalent channel h is allowed to change for each iteration. In 

fact, for each iteration a new channel is generated according to the statistical 

properties of the wireless channel described in Chapter 2. This allows the 

gS +1] g[i\-5 — P E P x ( / i , s [ i ] ) (6.10) 

(6.11) 

(6.11). 
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algorithm to adapt to the statistics of the wireless channel rather than to a 

specific one. In this way, the averaging over the statistics of the channel is 

done implicitly. The resulting stochastic gradient algorithm is given by, 

The new notation h[i] is introduced to indicate that a new channel is used for 

each iteration. The number of channels that are used for the results in this 

work is 100,000. These channel samples are generated by a program taken 

from the previous work [1, 2]. 

6 . 5 C o n v e r g e n c e o f t h e O D D S c h e m e s 

The proposed stochastic gradient algorithm runs for a certain numbers of iter

ations before it converges. Ideally, the shorter the time it takes the algorithm 

to produce the filters with good performance, the better. There are a few fac

tors which affect the convergence time of the algorithm and the performance 

of the resulting O D D filters, e.g., the number of iterations that shall be per

formed, the initial filter coefficients, N, N, and 5. However, convergence time 

is not very crucial here because in practice, the O D D filters have to be opti

mized only once for each base station, since we consider transmissions in the 

downlink direction and the channel statistics for a given base station do not 

significantly change with time. Nonetheless, it is still desirable to choose the 

right parameters such that the resulting algorithm does not take too long to 

converge yet providing good performance. 

Because of the relatively involved nature it seems to be difficult to provide a 

convergence proof for the proposed stochastic gradient algorithm. However, 

our simulation results suggest that the stochastic gradient algorithm always 

converges if the parameters such as N and 5 are chosen properly. The var

ious factors that affect the convergence behaviour of the algorithm and the 

(6.12) 

(6.13) 
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performance of the resulting O D D filters will be discussed in the following 

sections. 

6 . 6 T h e I n f l u e n c e o f 5 

A n appropriate step size 5 has to be chosen before running the proposed al

gorithm. It is found that although 5 affects the convergence time, it does 

not affect the performance of the converged O D D filters. In Figure 6.1, the 

£ { P E P D F E ( ^ , g)} vs. the iteration number i of the stochastic gradient al

gorithm for 2 - P S K transmission over an E Q profile with L = 7, NT — 2, 

NR = 2, pt = [0.5], and pT = [0.7] is shown. The filters were optimized for 

101og10(£; fe/7Vo) = 10 dB. £{PEPDFE(/i, g)} was calculated over 100,000 chan

nel samples using (5.10) and (5.20) at 10 dB. For the results in this section, 

we use N = 10 and we initialize the algorithm with G D D filters with N = 3. 

In other words, 

9[0} = 1 0 0 0 0 1 (6.14) 

for this case. The influence of N, initial filter coefficients, and N will be 

discussed in each of the subsequent sections, respectively. 

For the step size of the algorithm we adopted 5 = 2, 5 = 4, and 5 — 10. 

If 5 is chosen properly, it is expected that ^{PEPDFEC 1 ,g) } decreases with 

increasing number of iterations. When 6 = 2 is used, the number of iterations 

required for the algorithm to converge is about 40,000. On the other hand, 

if 5 = 10 is used instead, only about 10,000 iterations are required for the 

algorithm to converge. 

In Figure 6.2, we consider the E Q profile with 8 - P S K modulation, NT = 2, 

NR = 1, JV = 3, N = 10, pt = [0.5], and D F E employed at the receiver. The 

filters were optimized for 101og 1 0(£ ,

6/A^o) = 15 dB and £{PEPDFE(h,g)} at 15 

dB is shown in the figure. For the step size, we adopted 5 = 0.1, 0.2, and 2. 

The same observation as in the previous case is made, i.e., convergence time 

decreases with increasing 5. It is also noted that for the 5 = 2 curve, there are 
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Iterations (x1000) 

Figure 6.1: £ { P E P D F E ( ^ , d)} vs. number of iterations for 2 - P S K transmission 

over E Q channel with L = 7, NT = NR = 2, N = 3, N = 10 pt = [0.5], 

pr = [0.7], and D F E at the receiver. 

ripples at iteration % = 6000, 11000, 160000, 26000, and 36000. This behaviour 

is inherited from our stochastic gradient algorithm because a new channel is 

used for each iteration and as a result, the algorithm wil l not converge to a 

specific value if a relatively large 8 is used. Consequently, a large 8 results 

in larger ripples. This is evidenced in this figure where the smaller 8s, i.e., 

8 = 0.1 and 0.2, do not result in noticeable ripples. It should be noted that 

the algorithm may not even converge if 8 is too large. 

The same observation can be made for the L E - O D D scheme. Figures 6.3 

and 6.4 use exactly the same setup in Figures 6.1 and 6.2, however, with L E 

employed at the receiver and the filters were optimized for 101og10(£ ,(,/A^o) = 15 

dB and 101og 1 0(£ f e/iVo) = 20 dB, respectively. £ { P E P D F E ( 7 i , g)} at 15 dB and 

20 dB is shown in Figures 6.3 and 6.4, respectively. One can see that 8 affects 

the convergence time and the amount of ripple after convergence in the same 
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Figure 6.2: CSJPEPDFEC1-, fl1)} vs. number of iterations for 8-PSK transmission 

over E Q channel with L=7, NT = 2, NR = 1, N = 3, N = 10, pt = [0.5], and 

D F E at the receiver. 

way that it does for the D F E cases. 

6 . 7 T h e I n f l u e n c e o f N 

In order to compute (5.10), (5.14), (6.7) and (6.9), a suitable value for N has to 

be chosen. In theory, one would want to choose TV as large as possible because 

a larger N gives a more accurate approximation of the integrals. However, a 

larger N also translates into a higher complexity since more points need to be 

evaluated for the integral. As we have already mentioned, convergence time is 

not very important because, in practice, the O D D filters have to be optimized 

only once for each base station. Nevertheless, it is still desirable to choose a 

value for N such that the resulting expressions are not too complex to evaluate 

yet providing accurate result. It is the goal of this section to investigate the 
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Figure 6.3: £{PEPLE(^, g)} vs. number of iterations for 2-PSK transmission 

over E Q channel with L = 7, NT = NR = 2, N = 3, N = 10, pt = [0.5], 

pr = [0.7], and L E at the receiver. 

influence of N on the performance of the resulting O D D filters. 

To do this, different Ns were used to generate the O D D filters for a specific 

channel setups. We show the average simulated B E R s of the O D D schemes 

with N = 3 and different values of N for different power delay profiles. The 

O D D filters were optimized for 101og 1 0(£ f c/A /o) = 10 dB and 15 dB for D F E 

and L E , respectively. We use the channel model described in Chapter 2 and 

at least 10000 CIRs have been randomly generated in accordance with the 

respective power delay profile for each 101og 1 0(£'h/A 7o) value simulated. The 

B E R vs. iV results are shown in Figure 6.5. The top graph shows the B E R 

simulation results for 2-PSK transmission over E Q , T U , and H T with D F E 

employed at the receiver, respectively. In all cases, two transmit antennas and 

one receive antenna are used. The correlation factors used for E Q , T U , and 

H T are 0.5, 0.5, and 0.7, respectively. The graph plots the average simulated 

48 



10 

ca 

o 
CM 

CO 
D) 
s£ 

_ J 
CL 
LU 
CL 
LU 

10 

I 
- V - 5=0.02 
- e - 5=0.05 

5=0.1 

- V - 5=0.02 
- e - 5=0.05 

5=0.1 

20 30 40 50 60 70 
Iterations (x1000) 

90 100 

Figure 6.4: £ { P E P L E ( ^ , 9 ) } V S . number of iterations for 8-PSK transmission 

over E Q channel with L = 7,NT = 2,NR = 1,N = 3,N = 10, pt = [0.5], and 

L E at the receiver. 

B E R at 101og10(Sfc/A^o) = 10 dB for all three cases. It is noticed that different 

values of N do not result in a big difference in the B E R except for the E Q 

profile where N = 1 yields inferior performance. 

The bottom graph shows the B E R at 15 dB vs. N results for L E with the 

same channels used in the D F E cases. It can be seen that also in this case, 

N does not affect the B E R except for the E Q profile, where N = 1, 2, 3, and 

4 suffer from a performance penalty. Therefore, a relatively small value of N 

can be used. This is desirable because a small N speeds up the optimization 

process. 

It is interesting to find out that a small N yields comparable result to a large 

N. The main reason to this is that we consider £ { P E P x ( / i , g)} instead of 

P E P x ( / i , g) for a specific channel. To illustrate this, we consider the E Q profile 

with 8-PSK, NT = 2, NR = 1, TV = 3, pt = [0.5], and D F E employed at the 
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Figure 6.5: Simulated B E R vs. N for D F E and L E . 

receiver. We evaluate P E P D F E ( M I ] > 9) according to (5.18) at 101og 1 0(JSb/A 7

0) = 

15 dB with g = [1,0,0,0,0,1] for 50 independent channels, i.e., i = 1 , . . . , 50, 

using N = 5 and 100, respectively. The result is shown in Figure 6.6. 

It can be seen that different Ns indeed give different P E P D F E ( M I ] , 9) values. 

Obviously, PEP D F E ( f t . [ i ] , g) calculated using TV = 100 is more accurate than 

the one calculated using TV = 5. However, if we use the same Ns to compute 

£ { P E P D F E ( A ) 9)} over 100,000 samples, their values are 

and 

£{PEPDFE(h,g)}\N=5 = 0.00323044820091, 

£{PEPDFE(h,g)}\N=w0 = 0.00314907825794, 

(6.15) 

(6.16) 
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Figure 6.6: P E P D F E ( M * L 9) v s - * f ° r 8-PSK transmission over E Q profile with 

NT = 2, NR = 1, N = 3, pt = [0.5], and D F E employed at receiver. Solid line: 

N = 5. Dashed line: N = 100. 

respectively. The difference is less than 2.6%. Therefore, we conclude that 

although it may not be a good idea to use a small N to evaluate PEP x(/i,<7), 

it is acceptable to use a relatively small N to run the stochastic gradient 

algorithm and evaluate £{PEP x (fa. , g)} because the averaging compensates for 

the error which a small N causes. In the following, we use N — 10. 

6.8 T h e I n f l u e n c e o f t h e I n i t i a l O D D F i l t e r 

C o e f f i c i e n t s 

The proposed gradient search method requires an initial filter vector g[0] to 

start from. The initial filter coefficients may affect the performance of the re-
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suiting O D D niters and the convergence time of the algorithm. B y randomly 

choosing some initial filter vector and comparing the performance of the result

ing final filter coefficients, it is found that the initial filter vector chosen does 

not play a big role in the performance of the resulting O D D filters. Also, the 

initial filter vector chosen does not affect the convergence time significantly. 

Therefore, the G D D filter is always used as the initial filter vector in this work 

for convenience. For example, in a NT = 3 and TV = 3 case, the initial filter 

vector would be set to 

9[0} = 1 0 0 0 1 0 0 0 1 (6.17) 

To illustrate the point, we initialize the algorithm with two different g[0]s 

and evaluate £ { P E P D F E ( h , ff)} at 10 dB for every 1000 iterations for the E Q 

profile with 2-PSK, NT = 2, NR = 2, N = 3, pt = [0.5], pr = [0.7], and D F E 

employed at the receiver. 5 = 10 was used to optimize the O D D filters. The 

two initial filter vectors considered are 

1 r l T 

and 

g[o] = 

V3 111111 
lT 

1 0 0 0 0 1 

(6.18) 

(6.19) 

The filters were optimized for 101og 1 0(£' b/A /o) = 10 dB and the results are 

shown in Figure 6.7. 

It is seen that the algorithm converges to the same £ { P E P D F E ( h . , g)} value 

independent of the g[0]s used. In other words, the resulting performance of 

the O D D filters optimized with different g[0]s are essentially the same. It 

is also noted in the graph that although the algorithm converges faster with 

initial filter vector set to 

g[o) = 
x/3 

lT 

1 1 1 1 1 1 (6.20) 

the improvement is not significant. 

In Figure 6.8, we consider the E Q profile with 8-PSK modulation, NT = 2, 

NR = 1, N = 3, pt = [0.5], and D F E employed at the receiver. The filters were 
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Iterations (x1000) 

Figure 6.7: ^ { P E P D F E ( ^ , ^ ) } V S . number of iterations for 2-PSK transmission 

over E Q channel with L = 7, NT = NR = 2, N = 3, 8 = 10, pt = [0.5], 

pr = [0.7], and D F E at the receiver. Circles: g[0] = [1 0 0 0 0 1] T . Triangles: 

g[0] = l/V3[l 1 1 1 1 1] T . 

optimized for 101og10(£(,/7Vo) = 15 dB with 8 = 0.1. We initialize the algorithm 

with the filter coefficients defined in (6.18) and (6.19). Again, O D D filters 

optimized with different g[0]s yield almost exactly the same £ { P E P D F E ( ^ , d)} 

after convergence. Also for this case, the algorithm initialized with (6.18) 

converges faster than the-one initialized with (6.19). 

Similar observations can be made for the L E - O D D scheme. Figures 6.9 and 

6.10 again show the ^ { P E P L E ^ , #)} as a function of the iteration number, 

i. The same system parameters as used in Figures 6.3 and 6.4 are valid for 

Figures 6.9 and 6.10, respectively, however, with L E employed at the receiver. 

The O D D filters of Figure 6.9 were optimized for 10log 1 0(£ b/ ./Vo) = 15 dB 

with 8 = 10 while those of Figure 6.10 were optimized for 101og1 0(/ih/No) = 20 

dB with 8 = 0.05. In both figures, one can see that although g[0] affects 
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Figure 6.8: £{PEPoFE(h,g)} vs. number of iterations for 8-PSK transmission 

over E Q channel with L = 7, NT = 2, NR = 1, TV = 3, 5 = 0.1, pt = [0.5], 

and D F E at the receiver. Circles: g[0] = [1 0 0 0 0 1] T . Triangles: g[0] = 

1/V3[1 1 1 1 1 1] T . 

the convergence time, the resulting O D D filters initialized with different g[0]s 

always yield similar performance after the filters converge. 

It is worth mentioning that the converged O D D filters do not necessarily have 

to be the same filters even though they yield similar £ { P E P D F E ( ^ , g)} values. 

In fact, it can be inferred from (5.10), (5.14), (5.18), and (5.19) that for a given 

vector x of length NNT, g = e^x yields the same average B E R for any phase 

6. Since we are mostly interested in the performance of the O D D filters and 

we can be sure that the algorithm converges in less than 100,000 iterations as 

long as we choose a proper 5, we always use the G D D filters to initialize the 

algorithm in this work for convenience. 
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Figure 6.9: £/{PEPLE(^, <?)} vs. number of iterations for 8-PSK transmission 

over E Q channel with L = 7, NT = NR = 2, JV = 3, 5 = 10, pt = [0.5], 

pr = [0.7], and L E at the receiver. Circles: g[0] = [1 0 0 0 0 1] T . Triangles: 

g[0] = l / x / 3 [ l 1 1 1 1 l ] r . 

6 . 9 T h e I n f l u e n c e o f N 

Unti l now only filters of length N = 3 have been considered. It is interesting to 

compare the performance of the various O D D schemes using filters of different 

lengths. Figure 6.11 and 6.12 show the average simulated B E R s vs. the filter 

length N with D F E and L E employed at the receiver, respectively. We consider 

2-PSK transmission over the E Q profile with NT = 2, NR = 1, and pt = [0.5] 

for both cases. 

The D F E - O D D filters of Figure 6.11 were optimized for 101og 1 0(£i/iVo) = 1° 

dB, while the L E - O D D filters of Figure 6.12 were optimized for 101og 1 0 (£ l 6/A^ 0 ) 

= 15 dB. The average B E R s at 10 dB and 15 dB are shown in Figure 6.11 and 

6.12, respectively. For the D F E - O D D case shown in Figure 6.11, increasing the 
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Figure 6.10: £ { P E P L E ( ^ , g)} vs. number of iterations for 8-PSK transmission 

over E Q channel with L = 7, NT = 2, NR = 1, N = 3, 6 = 0.05, pt = [0.5], 

and L E at the receiver. Circles: g[Q] = [1 0 0 0 0 1] T . Triangles: g[0] = 

1/A/3[1 1 1 1 1 1]T-

D F E - O D D filter length does not improve the performance of the filter. The 

filter with a length of 7 yields almost exactly the same result as the filter with 

a length of 1. We will see why the performance of the filter does not improve 

with N in the next chapter when we examine the filter coefficients. For the L E 

result shown in Figure 6.12, the performance of the L E - O D D filters improves 

with increasing N. 

In general, longer D F E - O D D and L E - O D D filters achieve a better performance. 

However, they also increase the required computational complexity at the re

ceiver, since larger Ns correspond to longer equivalent CIRs which in turn 

require longer equalizer filters. The results also suggest that the D F E - O D D 

and L E - O D D filters of length N > 1 perform better than both the M L S E -

O D D and G D D filters with longer lengths when D F E or L E are employed at 
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Figure 6.11: Simulated B E R of D F E vs. N for 2-PSK transmission over E Q 

channel with L = 7, NT = 2, NR = 1 and pt = [0.5]. 

the receiver. This is desirable because the complexity of the receiver decreases 

with decreasing N. It is also interesting to note that the performance de

grades when long M L S E - O D D or G D D filters are used. In fact, both G D D 

and M L S E - O D D filters achieve a better performance with N = 1 than with 

jV = 7 for both D F E and L E . This shows the importance of an appropriate 

optimization of the D D filters for different equalization strategies. 

Appendix A tabulates the D F E - O D D and L E - O D D filters for several different 

practically interesting channel profiles with different number of antennas and 

correlation factors. 

57 



10" I I I ! 
- e - GDD 
— H — MLSE-ODD (15 dB) . 
-V- LE-ODD(15 dB) 

- e - GDD 
— H — MLSE-ODD (15 dB) . 
-V- LE-ODD(15 dB) 

- e - GDD 
— H — MLSE-ODD (15 dB) . 
-V- LE-ODD(15 dB) 

r • y ^ 
1 1 1 I 'I I I I 1 1 1 

1 2 3 4 5 6 7 
N (ODD filter length) 

Figure 6.12: Simulated B E R of L E vs. N for 2-PSK transmission over 

channel with L = 7, NT = 2, NR = 1 and pt = [0.5]. 
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C h a p t e r 7 

S imu la t i on Resu l t s 

In this chapter, we present some simulation results for the proposed D F E -

O D D and L E - O D D schemes. The D F E - O D D and L E - O D D filter coefficients 

are obtained by using the stochastic gradient algorithm described in Chapter 

6. The D F E - O D D and L E - O D D filters will be compared with the M L S E -

O D D filters obtained in [1, 2] and the G D D filters proposed in [4]. Correlated 

M I M O frequency-selective Rayleigh fading channels presented in Chapter 2 

are considered and simulations are carried out with a program taken from 

the previous work [1, 2]. The program was enhanced by introducing receive 

antenna correlation and L E at the receiver and by extending D F E to the case 

of multiple receive antennas. Suboptimum equalization strategies, D F E and 

L E , are used at the receiver. The D D filters in this chapter have a length of 

N = 3, since in general, larger Ns do not improve performance significantly. 

7 .1 D e c i s i o n - F e e d b a c k E q u a l i z a t i o n 

Figures 7.1 and 7.2 show the 2-PSK simulation results when D F E is employed 

at the receiver with different power delay profiles and different numbers of 

antennas. Settings with up to three transmit antennas and two receive anten

nas are considered. Practical antenna correlations are considered where the 

receive antenna correlation factor is equal to or greater than the transmit an-
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tenna correlation factor due to the smaller size of the mobile receiver. For each 

simulation result, the case with no transmit diversity (NT = 1) is shown as 

dashed line as well for reference. The O D D filters were optimized for a certain 

Eb/No value. The results show that the D F E - O D D filters perform better than 

both the G D D and M L S E - O D D filters at the Eb/N0 for which the filters were 

optimized. Usually, we optimize the filters for 10\og10(Eb/No) = 10 dB un

less for simulations with poor B E R performance at 10 dB , where we optimize 

the filters for a higher S N R ratio. The Eb/N0 value for which the filters were 

optimized is indicated in parenthesis in the legend of each graph. 

The achieved gain by the D F E - O D D filters compared to the M L S E - O D D and 

G D D filters in most of cases is small. A relatively large gain is obtained for 

the E Q profile with NT = 2 and NR = 2. The gain that the D F E - O D D filters 

achieve over the M L S E - O D D filters is about 1 dB at B E R = 10~ 4. The results 

suggest that for 2-PSK transmission, the performance advantage of M L S E -

O D D over G D D is not only preserved for D F E , but its performance is indeed 

close to that of the D F E - O D D scheme. 

A careful look at the filter coefficients of the different O D D schemes indicates 

that the O D D filters are practically identical among the different transmit 

antennas for both M L S E - O D D and D F E - O D D schemes. As an example, the 

M L S E - O D D and D F E - O D D filter coefficients for 2-PSK transmission over the 

E Q profile with NT = 2, NR = 1, and pt = [0.5] are tabulated in Table 7.1. 

Both O D D filters were optimized for 101og10(JE?()/A'o) = 10 dB. One can see 

that the filter coefficients of both transmit antennas are almost identical for 

M L S E - O D D and D F E - O D D schemes, respectively. According to (2.30), the 

equivalent channel with the D F E - O D D filters shown in Table 7.1 is 

h%[k] = ]j^{hn[k] * gi[k] + h12[k] * g2[k}} . (7.1) 

This is very different from the equivalent channel resulted from the G D D filters 

where the equivalent channel is simply the sum of channel h\\[k\ and delayed 

version of /ii2[&]- It is clear from Figures 7.1 and 7.2 that the D F E - O D D 
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Table 7.1: M L S E - O D D and D F E - O D D comparison: 2-PSK, E Q , L = 7,NT = 

2, NR = 1, and ^ = [0.5]. 

O D D niters T x 5i[0] 

M L S E i = 1 0.77439 0.61059 -0.16582 M L S E 

i = 2 0.77340 0.61412 -0.15718 

D F E i = 1 -0.21956+0.04205i 0.82452-0.14587i 0.49187-0.083461 D F E 

i = 2 -0.23189+0.036661 0.81385-0.155361 0.49833-0.10027i 

filters yield much better performance than the G D D filters. The M L S E - O D D 

filters obtained are different from the D F E - O D D filters, however, like the D F E -

O D D filters, the M L S E - O D D filters are essentially identical for both transmit 

antennas. This explains why M L S E - O D D yields better performance than G D D 

as well. It has been already pointed out in Section 6.8 that different filters can 

yield the same average B E R . 

It is also interesting to look at the filter coefficients optimized for 2-PSK trans

mission over the E Q profile with NT = 2, NR = 2, pt = [0.5], and pT = [0.7]. 

The filters were optimized for 101og 1 0(£'( )/A ro) = 10 dB and the filter coeffi

cients are shown in Table 7.2. It is noted that the energy is concentrated in 

the last taps of the O D D transmit filters. W i t h those filter coefficients and 

using (2.30), one can see that the resulting equivalent channel, h^r[k], is almost 

simply the addition of the two overall channels, /inri[fc] and hnr2[k] with the 

normalizing term multiplied to the result. It can be inferred that N = 1 

would give almost the same results as N = 3. This explains why increasing 

the filter length, N, does not improve the performance of the resulting O D D 

filters for some setups such as the one shown in Figure 6.11. 

For the O D D filters shown in Table 7.2, we should expect their performance 

to be similar to the no diversity case where there is only one transmit and two 

receive antennas. However, the simulation result depicted in Figure 7.2 shows 

that the D F E - O D D filters tabulated in Table 7.2 perform much better than 

the no diversity case. This is due to the fact that, in addition to the diversity 
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Table 7.2: D F E - O D D filter coefficients: 2-PSK, E Q , L = 7, NT = 2, NR = 2, 

pt = [0.5], and pT = [0.7]. 

O D D Filters T x 9iM ft[l] 9i [2] 

D F E i = 1 -0.09381-0.00623i 0.17003+0.00522i 0.97966+0.04984i D F E 

i = 2 -0.08377-0.00061i 0.19674+0.01227i 0.97534+0.05329i 

gain the O D D filters achieve, there is also a power gain due to the positive 

correlation factor, pt = [0.5], used between the two transmit antennas. This 

is shown mathematically as'follows: 

£{|/C rM|2} = s 

= A ! { s { i ̂ 1 w i 2 } + s { 2 R e { ^ 1 ww}} 
+ s {\hnr2[k}\2}} 

= + 2 R e {pi^LTl[k]aLr2[k}} + < r 2[fc]}(i 7-2) 

where 

£ {\hnrnM2} = <lrnt[k], (7-3) 

and the correlation factor p\2 was defined in (2.12). 

B y looking at (7.2), one can immediately see that in addition to the energy 

contributed by the two overall channels, £ | | / in r i [&] | 2 } and £ {|/inr2[&]|2}, there 

is also an extra term, 2Re j p * 2 i [ k \ ° h n 2[fc]}- ^ * n e correlation factor p\2 is 

zero, the resulting power will be the same as the one where there is no diversity. 

On the other hand, if p\2 is a positive number, there will be a power gain and 

in contrast, if p\2 is negative, a power loss results. This explains why although 

the D F E - O D D filters have their energy concentrated in one tap, it achieves a 

relatively large gain over the no diversity case. 

Figures 7.3 and 7.4 show the 8-PSK simulation results with the same system 

parameters as used for Figures 7.1 and 7.2, respectively. The results again 

indicate that the D F E - O D D filters perform better than both the G D D and the 

M L S E - O D D filters at the E^/NQ values for which the filters were optimized. 
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Table 7.3: M L S E - O D D and D F E - O D D comparison: 8-PSK, E Q , L = 7,NT = 

3, NR = 2,pt = [0.5,0.7,0.5], and P r = [0.7]. 

O D D Filters T x 9M <*[!] ft [2] 

M L S E i = 1- -0.13491 0.63120 0.76379 M L S E 

i = 2 -0.12665 0.63319 0.76357 

M L S E 

i = 3 -0.13160 0.63274 0.76310 

D F E i = 1 0.01288+0.001871 0.04592-0.00349i 0.99885+0.00019i D F E 

i = 2 -0.05947-0.001411 0.08640+0.006131 0.99446+0.00043i 

D F E 

i = 3 -0.02954+0.00119i 0.05766-0.00481i 0.99788-0.00288i 

The gain is minimal for the NR = 1 cases except for the E Q profile. The figures 

for the E Q profile with one receive antenna indicate that the gain increases 

with SNR. 

The D F E - O D D filters achieve a 1.7 dB gain over the G D D filters at 10" 4 for 

the E Q profile with NT = 2 and NR = 2. It is also noted that the M L S E - O D D 

filters are inferior to the G D D filters for this setup and some other setups. The 

D F E - O D D filters have a 2 dB advantage at B E R = 10~ 3 over the M L S E - O D D 

filters for the E Q profile with NT = 3 and NR = 2. Although the D F E - O D D 

filters are better than the other filters for the T U profiles with two receive 

antennas, the gain is negligible. 

We have also compared the M L S E - O D D and D F E - O D D filters for the 8-PSK 

modulation scheme. Similar to the 2-PSK modulation scheme, the coefficients 

of the O D D filters are practically identical for all the E Q profiles and for the 

other profiles if the filters were optimized for a low S N R ratio. This is true for 

both M L S E - O D D and D F E - O D D schemes. This is not surprising because the 

P E P depends only on d m i n and S N R of the equalizer. As an example, the D F E -

O D D filters optimized for E Q profile with NT = 3,NR = 2, pt = [0.5,0.7,0.5], 

and pr = [0.7] for 101og1 0(£'{ )/A /o) = 10 dB is considered. Table 7.3 summarizes 

the result. 
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7 . 2 L i n e a r E q u a l i z a t i o n 

Figures 7.5 and 7.6 show the simulation results for 2-PSK and L E - O D D with 

different numbers of antennas and power delay profiles. The L E - O D D filters 

perform better than both the M L S E - O D D and G D D filters for all examples 

considered. The gains that the L E - O D D filters achieve over the M L S E - O D D 

and G D D filters are quite significant in some cases. For example, for 2-PSK 

simulation over the E Q profile with NT = 3, NR = 1, and pt = [0.5,0.5,0.5], 

the L E - O D D filters provide a 6 dB gain over the G D D filters at B E R = 10" 3 . 

Similar gains are achieved for the two receive antennas cases. For example, 

for the 2-PSK simulation of the E Q profile with JV r = 3, NR = 2, pt = 

[0.5,0.7, 0.5], and pr = [0.7], a gain of almost 7 dB is achieved by the L E - O D D 

filters over the G D D filters at B E R = 1 0 - 3 . It is also noted that the M L S E -

O D D filters perform badly when L E is employed at the receiver and in many 

cases, their performance is worse than that of the G D D filters. For example, 

in Figure 7.6, the G D D filters are 5 dB better than the M L S E - O D D filters at 

B E R = 10~ 2 for 2-PSK transmission over the H T profile with NT = 2,NR = 2, 

pt = [0.5], and pr = [0.7], 

We examine again the filter coefficients similar to the D F E - O D D case. For 

all the E Q profiles considered and some other profiles, the O D D filters for the 

transmit antennas are practically identical and with the energy concentrated in 

one tap. For instance, the L E - O D D filters optimized for 101og10(£^6/iVo) = 15 

dB for 2-PSK transmission over the E Q profile with NT = 2, NR = 1, and 

pt = [0.5] are shown in Table 7.4. There are cases where the filter coefficients 

are different among the antennas. For example, the L E - O D D filters optimized 

for 101og 1 0 (£ 6 / iVo) = 15 dB for 2-PSK and the H T profile with NT = 3, 

NR = 1, and pt = [0.2,0.5, 0.2] are shown in Table 7.5. 

For Figures 7.7 and 7.8, the same system parameters as for Figures 7.5 and 7.6 

were used but with the 8-PSK modulation scheme. It can again be observed 

that the L E - O D D filters perform better than the M L S E - O D D and G D D filters. 
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Table 7.4: L E - O D D filter coefficients: 2-PSK, E Q , L = 7, NT = 2, NR = 1, 

Pt = [0-5]-

O D D Filters T x 9M 

L E i = 1 0.06807+0.03627i -0.21697-0.08106i 0.881049+0.40516i L E 

i = 2 0.06011+0.02640i -0.22893-0.11567i 0.883002+0.38756i 

Table 7.5: L E - O D D filter coefficients: 2-PSK, H T , L = 7, NT = 3, NR = 1, 

pt = [0.2,0.5,0.2]. 

O D D Filters T x 9i[0] 9iW ^ [2] 

L E i = 1 0.17537-0.19031i -0.41813+0.28345i 0.47755-0.67067i L E 

i = 2 -0.47094+0.63133i -0.31984+0.43845i 0.23695-0.17017i 

L E 

i = 3 0.06916-0.24311i -0.21881+0.28746i 0.58868-0.677531 

However, even though the L E - O D D filters achieve a considerable gain over the 

other two schemes, the performance is still unacceptable for the one receive 

antenna case. For example, the B E R the L E - O D D filters achieve for the 8-

P S K simulation of the H T profile with NT = 2, NR = 1, and pt = [0.7] 

at 101og10(jE&/iVo) = 25 dB is 4 x 10~ 2. This is because wireless channels 

usually contain zeros close to the unit circle of the z-transform of the equivalent 

C I R and therefore, L E does not perform very well in wireless channels. The 

performance is even worse if higher modulation schemes, such as 8-PSK, are 

employed. However, the performance of L E can be significantly improved by 

using multiple receive antennas [50]. For example, the B E R achievable with 

L E - O D D for the 8-PSK and the H T profile with NT = 2, NR = 2, pt = [0.5], 

and pt = [0.7] at 101og 1 0 (£ 6 / /V 0 ) = 25 dB is 1 x 10~ 3. 

Similar to the 2-PSK case, the M L S E - O D D filters also perform badly for 8-

P S K if L E is employed at the receiver. Moreover, it is also noted that the 

setups with no transmit diversity yield better results than those with multiple 

transmit antennas and M L S E - O D D filters employed in most cases. 
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7 . 3 F u t u r e W o r k 

In the B E R simulations, the assumption that the receiver has perfect channel 

state information (CSI) is made. In practice, a least sum of squared errors 

(LSSE) channel estimation algorithm can be used to estimate the CSI from a 

known training sequences [51]. However, the impact of the channel estimation 

errors on the B E R performance is unknown. Therefore, channel estimation 

errors can be taken into account in the future work. Also, we assume M M S E -

D F E and M M S E - L E at the receiver, it wil l be interesting to compare their 

performance with Z F - D F E and Z F - L E where the ISI is completely eliminated 

in these two schemes. Finally, it is brought to the author's attention that the 

Kiefer-Wolfowitz finite-difference stochastic approximation algorithm and the 

simultaneous perturbation stochastic approximation (SPSA) algorithm can be 

used for the optimization problem. Interested readers are referred to [52] for 

an introductory treatment of the two algorithms. 
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2PSK-Simulat ion: B E R lor D F E , channel: EQ. L=7.1^=2, N R =1, p=[0.5] 2PSK-Simulat ion: B E R (or D F E , channel: E Q . L=7,1^=3. N R =1. p =[0.5, 0.5, 0.5] 
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Figure 7.1: 2-PSK simulations for G D D , M L S E - O D D , and D F E - O D D filters. 
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2PSK-Simulat ion: B E R for DFE, channel: EQ, L=7, ^ = 2 . N R =2, p =[0.5], p =[0.7] 2PSK-Simu1ation: B E R (or D F E , channel: E Q , L=7, N,=3, N R =2, p =[0.5.0,7. 0.5], p =[0.7] 
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Figure 7.2: 2-PSK simulations for G D D , M L S E - O D D , and D F E - O D D filters. 
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SPSK-Simulat ion: B E R lor D F E , channel: E Q , L=7,1^=2, N R = 1, p =[0.5] BPSK-Simulat ion: B E R lor D F E , channel: E Q , L=7,1^=3, N R =1, p =[0.5,0,5. 0.5] 
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Figure 7.3: 8-PSK simulations for G D D , M L S E - O D D , and D F E - O D D filters. 
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8PSK-Simula l ion: B E R for D F E , channel: EQ, L=7, 1^=2, N R=2, p=[0.5], p =[0.7] 8PSK-Simula t ion: B E R lor D F E , channel: E Q , L=7, I y 3 , N R =2, p =|0 S, 0,7, 0.5|, p =[0.7] 
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Figure 7.4: 8-PSK simulations for G D D , M L S E - O D D , and D F E - O D D filters. 
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2PSK-Simulat ion: B E R lor LE, channel: EQ, L=7.1^=2, N R =1. p=[0.5] 2PSK-Simula l ion : B E R (or LE, channel: E Q , L=7,1^=3, N R =1, p =[0.5,0.5,0.5] 
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Figure 7.5: 2-PSK simulations for G D D , M L S E - O D D , and L E - O D D filters. 
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ZPSK-Simulat ion: B E R for LE, channel: EQ, L=7,1^=2, N R =2, p=[0.5], p =[0.7] 2PSK-Stmulat ion: B E R lor LE.channe l : E Q , L=7,1^=3, N R =2,p =[0.5,0.7,0.5],p =(0.7] 
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Figure 7.6: 2-PSK simulations for G D D , M L S E - O D D , and L E - O D D niters. 
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Figure 7.7: 8-PSK simulations for G D D , M L S E - O D D , and L E - O D D filters. 
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8PSK-Simulat ion: B E R for LE, channel; EQ. L=7,1^=2. N R =2. p =(0.5], p =[0.7] aPSK-Simulalion: BER for LE, channel: EQ, L=7, ^ = 3 , NR=2, p =(0.5, 0.7, 0.5], p =[0.7] 
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Figure 7.8: 8-PSK simulations for G D D , M L S E - O D D , and L E - O D D filters. 
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C h a p t e r 8 

Conc lus ions 

In this work, D D filters have been optimized for Rayleigh fading frequency-

selective correlated M I M O channels with L E and D F E at the receiver. A 

discrete-time correlated M I M O channel was developed for optimization pur

poses. The optimization takes into account the statistical properties of the 

overall CIR, which includes the influence of transmit pulse shaping and analog 

receive filtering. Based on the variance of D F E and L E , we have designed a 

stochastic gradient algorithm to calculate the D F E - O D D and L E - O D D filters, 

which minimizes the expected worst-case P E P of D F E and L E , respectively. 

A l l the integrals in this work are approximated by numerical methods as they 

cannot be computed in closed-form. It was shown that the proposed algorithm 

is not sensitive to the approximation error due to the numerical methods even 

with a relatively small N. Furthermore, it was shown that although the result

ing O D D filters may be different, the proposed stochastic gradient algorithm 

always converges regardless of the choice of the initial filters g [0] if the step size 

5 is chosen properly. We also investigate the effect of the D D filter length N on 

the performance. It was found that while in general, the performances of the 

D F E - O D D and L E - O D D filters improve as N increases, this is not necessarily 

true for suboptimum G D D and M L S E - O D D filters. Simulation results for the 

G S M / E D G E system have shown that the proposed D F E - O D D and L E - O D D 

filters outperform previously proposed G D D and M L S E - O D D filters if D F E 
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and L E are used at the receiver. Please refer to [11, 12] for a summary of this 

work. 
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A p p e n d i x A 

O p t i m i z e d F i l t e rs 

Various L E - O D D and D F E - O D D filters are given i n this appendix . T h e filters 

are op t imized for the three common Ray le igh fading setups: H i l l y Ter ra in 

( H T ) , T y p i c a l U r b a n ( T U ) and the Equal izer Test channel ( E Q ) [7]. T h e filters 

are op t imized for different E^/NQ values for the 2 - P S K m o d u l a t i o n scheme 

used i n G S M and the 8 - P S K modula t ion scheme used i n E D G E . A n t e n n a 

correlations are assumed at bo th the t ransmit and receive antennas. 
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A . l F i l t e r s f o r 2 - P S K 

A . l . l D F E , E Q , L = 7, N T = 2, N R = 1, pt = [0.5] 

101og 1 0 (£ f c / iVo) T x 9i[0] 9iW ft [2] 

7.5 i = 1 -0.17227+0.03835i 0.44370-0.09334i 0.85510-0.17909i 7.5 

i = 2 -0.18714+0.035471 0.43638-0.09639i 0.85406-0.18596i 

10 i = 1 -0.21956+0.04205i 0.82452-0.14587i 0.49187-0.08346i 10 

% = 2 -0.23189+0.03666i 0.81385-0.15536i 0.49833-0.100271 

12.5 i = 1 -0.11420+0.17268i 0.56998-0.69853i 0.24788-0.28789i 12.5 

i = 2 -0.14172+0.14803i 0.52646-0.71232i 0.23800-0.34177i 

A . l . 2 L E , E Q , L = 7, NT = 2, NR — 1, pt = [0.5] 

101og 1 0 (^/ iVo) T x 9i[0] ft[l] 9i [2] 

10 i = 1 0.13958+0.12510i 0.17690-0.94905i 0.13626+0.11960i 10 

i = 2 0.13181+0.120721 0.16817-0.95304i 0.13471+0.115521 

12.5 i = 1 0.08382+0.11826i 0.32925-0.92205i 0.08516+0.11469i 12.5 

i = 2 0.08208+0.12016i 0.32388-0.92428i 0.08304+0.11286i 

15 i = 1 0.06807+0.03627i -0.21697-0.081061 0.881049+0.40516i 15 

i = 2 0.06011+0.02640i -0.22893-0.11567i 0.883002+0.38756i 
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A.1.3 D F E , H T , L = 7, N T = 2, N R = 1, pt = [0.5] 

10\ogw{Eb/N0) T x 9M ft [2] 

7.5 i = 1 -0.23616-0.02688i -0.29269+0.59417i -0.17127+0.68954i 7.5 

i = 2 0.29971-0.20668i -0.03195+0.50253i -0.27415+0.733991 

10 i = 1 0.05315-0.40275i 0.24078-0.2037H 0.84750+0.13127i 10 

i = 2 -0.61674+0.21735i -0.17647+0.21828i 0.60406+0.35876i 

12.5 i = 1 0.04554-0.80935i -0.15888-0.42513i -0.35625-0.09993i 12.5 

i = 2 0.13123-0.71911i 0.20828-0.04093i 0.27554+0.58709i 

A.1.4 L E , H T , L = 7, N T = 2, N R = 1, pt = [0.5] 

1 0 1 o g 1 0 ( £ V i V o ) T x ft[0] ft[l] ft [2] 

10 i = 1 -0.05905+0.026747i -0.76465+0.6230H 0.13389-0.07104i 10 

i = 2 -0.03780+0.06107i -0.76883+0.60626i 0.13764-0.13135i 

12.5 i = 1 0.04949-0.19029i -0.60830-0.66190i 0.38983+0.035281 12.5 

i = 2 -0.20620+0.04030i -0.68391-0.58904i 0.04236+0.37331i 

15 i = 1 -0.31806+0.41997i -0.00510-0.791431 -0.13277-0.28009i 15 

i = 2 0.25904+0.62643i 0.30438-0.59883i 0.28877+0.07646i 
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A.1.5 D F E , T U , L = 5, N T = 2, N R = 1, pt = [0.7] 

101og 1 0(£ f e/JV 0) Tx <7i[0] ft[l] 9i [2] 

7.5 i = 1 0.76994+0.12108i 0.59542+0.09465i -0.16521-0.0419H 7.5 

i = 2 0.76110+0.12696i 0.61000+0.10757i -0.14418-0.01223i 

10 i = 1 0.71985-0.41982i 0.48179-0.24766i -0.04784+0.09910i 10 

i = 2 0.71075-0.36802i 0.45808-0.25187i -0.28076+0.08544i 

12.5 i = 1 0.42193-0.16657i -0.12618-0.28206i -0.62005-0.5606H 12.5 

i = 2 -0.00949+0.49943i -0.29810-0.00489i -0.67871-0.44826i 

A.1.6 L E , T U , L = 5, N T = 2, N R = 1, pt = [0.7] 

101og10(Eb/iVo) Tx ft[0] ft[l] 9r [2] 

10 % = 1 -0.07229-0.05087i -0.74224-0.63929i 0.13795+0.11637i 10 

i = 2 -0.06676-0.07136i -0.74057-0.64293i 0.12771+0.111121 

12.5 i = 1 -0.03636-0.02420i 0.37261+0.91917i -0.09051-0.07866i 12.5 

i = 2 -0.05605+0.02594i 0.35846+0.92642i -0.06135-0.07540i 

15 i = 1 0.17111+0.24026i -0.12231-0.04661i 0.75062+0.57657i 15 

i = 2 -0.12510-0.20391i -0.15448-0.14633i 0.76405+0.56010i 
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A.1.7 D F E , E Q , L = 7, NT = 2, NR = 2, pt = [0.5], pr = 

[0.7] 

101og 1 0(£ b/iVo) Tx #[0] ft[l] ft[2] 

5 i = 1 -0.18350-0.040811 0.43106+0.07100i 0.86755+0.14550i 5 

i = 2 -0.18441-0.03003i 0.41947+0.07719i 0.87060+0.15886i 

7.5 i = 1 -0.12613-0.00603i 0.26142+0.00620i 0.95647+0.02910i 7.5 

i = 2 -0.12224-0.00216i 0.26487+0.01053i 0.95584+0.03388i 

10 i = 1 -0.09381-0.00623i 0.17003+0.00522i 0.97966+0.04984i 10 

i = 2 -0.08377-0.000611 0.19674+0.01227i 0.97534+0.05329i 

A.1.8 L E , E Q , L = 7, NT = 2, NR = 2, pt = [0.5], pr = [0.7] 

lQ\og10(Eb/N0) Tx ft[0] 9i[l] ft [2] 

7.5 i = 1 0.23496+0.03957i -0.63086+0.69887i 0.23554+0.0367H 7.5 

i = 2 0.22771+0.04220i -0.62872+0.70367i 0.23196+0.04608i 

10 i = 1 0.08454+0.00583i -0.27241-0.0227H 0.95523+0.0750H 10 

i = 2 0.08571+0.00750i -0.27012-0.01695i 0.95616+0.071421 

12.5 i = 1 0.10868+0.000181 -0.30941-0.01468i 0.94385+0.03725i 12.5 

i = 2 0.10785+0.00832i -0.30764-0.00180i 0.94511+0.02050i 
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A.1.9 D F E , H T , L = 7, NT = 2, NR = 2, pt = [0.5], pr = 

[0.7] 

101og 1 0 (£ f e / %) Tx ft[0] ft [2] 

7.5 i = 1 0.73151+0.28678i 0.30871+0.0639H -0.43947-0.30023i 7.5 

i = 2 0.71030+0.29291i 0.55522+0.28103i 0.04665+0.14233i 

10 i = 1 -0.41407+0.46663i 0.04899+0.06622i 0.66014-0.41016i 10 

i = 2 0.07640-0.22484i 0.34835-0.30388i 0.71759-0.463671 

12.5 i = 1 0.73812-0.09951i -0.17331-0.07247i -0.63046-0.11180i 12.5 

i = 2 0.90202-0.06247i 0.33367+0.0485H 0.23366+0.11906i 

A.l .10 L E , H T , L = 7, NT = 2, NR = 2, pt = [0.5], pr = 

[0.7] 

101og1 0(^/iVo) Tx ft[0] ft[l] ft[2] 

7.5 i = 1 0.13690-0.05755i -0.17800+0.9619H 0.12069-0.08019i 7.5 

i = 2 0.10397-0.06593i -0.19638+0.96415i 0.12090-0.04555i 

10 i = 1 0.16582+0.14273i 0.03294-0.93139i 0.20881+0.19990i 10 

i = 2 0.15478+0.05308i 0.07847-0.97557i 0.10873+0.05932i 

12.5 i = 1 -0.21810+0.05372i -0.63839-0.635171 -0.09900+0.358831 12.5 

i = 2 0.15072-0.0581H -0.36357-0.70939i 0.50002+0.29745i 
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A . l . l l D F E , T U , L = 5, iV T = 2, NR = 2, pt = [0.7], 

Pr = [0-7] 

101og 1 0(£ 6/JV 0) Tx ft[0] ft[l] ft [2] 

7.5 i = 1 -0.21454+0.04096i 0.55464-0.12424i 0.77307-0.17772i 7.5 

i = 2 -0.20364+0.05122i 0.56560-0.12428i 0.76986-0.166961 

10 i = 1 0.27431-0.77981i 0.12590-0.30033i -0.05967+0.4550H 10 

i = 2 0.28051-0.87383i 0.10035-0.37223i -0.05004-0.08124i 

12.5 i = 1 -0.29542+0.3342H -0.21820-0.06972i -0.31669-0.80515i 12.5 

i = 2 0.43391+0.05076i 0.12376-0.23683i -0.18298-0.839201 

A . l . 1 2 L E , T U , L = 5, NT = 2, NR = 2, pt = [0.7], pr = 

[0.7] 

101og10(£;fc/iVo) Tx ft[0] ft[l] ft [2] 

7.5 i = 1 0.96408-0.22426i -0.13927+0.02874i 0.00476+0.00402i 7.5 

i = 2 0.96514-0.19055i -0.17396+0.03315i 0.02610-0.01255i 

10 i = 1 0.17634-0.08452i -0.11122+0.95596i 0.17458-0.0711H 10 

i = 2 0.16957-0.0746H -0.11628+0.956891 0.16961-0.088061 

12.5 i = 1 0.94250+0.14928i -0.26990-0.02592i -0.11373+0.05440i 12.5 

i = 2 0.94614+0.15800i -0.17607-0.03374i 0.21601-0.03249i 
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A.l .13 D F E , E Q , L = 7, NT = 3, NR = 1, pt = [0.5,0.5, 0.5] 

101og 1 0(£ b/iVo) Tx ft[0] ft[l] 9i [2] 

7.5 i = 1 -0.23974+0.00142i 0.78495-0.0080U 0.57121+0.00526i 7.5 

i = 2 -0.23186-0.00050i 0.78371-0.001351 0.57607-0.01365i 

7.5 

i = 3 -0.24163+0.00392i 0.77692-0.010661 0.58125-0.00486i 

10 i = 1 -0.21781-0.03046i 0.85938+0.12754i 0.43695+0.076831 10 

i = 2 -0.21300-0.03218i 0.85819+0.13335i 0.44363+0.05014i 

10 

i = 3 -0.22881-0.03858i 0.85207+0.12592i 0.44590+0.07384i 

12.5 i = 1 -0.18390-0.08864i 0.75949+0.49572i 0.27235+0.24816i 12.5 

i = 2 -0.14673-0.08439i 0.76758+0.50154i 0.33671+0.13137i 

12.5 

i = 3 -0.18510-0.15730i 0.78577+0.44837i 0.30212+0.17679i 

A.1.14 L E , E Q , L = 7, NT = 3, NR - 1, pt = [0.5, 0.5,0.5] 

101og 1 0(£ 6/iVo) Tx ft[0] ft[l] 9i [2] 

7.5 i = 1 0.11021-0.07524i 0.04591+0.98228i 0.07679-0.09652i 7.5 

i = 2 0.08844-0.07898i 0.04052+0.98239i 0.11871-0.071561 

7.5 

i = 3 0.12773-0.10245i 0.05729+0.97406i 0.11009-0.09481i 

10 i = 1 0.16379-0.12804i 0.17315+0.94270i 0.13275-0.14312i 10 

i = 2 0.14484-0.13580i 0.17416+0.93710i 0.18458-0.13426i 

10 

i = 3 0.17107-0.15537i 0.19397+0.92990i 0.15555-0.1416H 

12.5 i = 1 0.11021-0.07524i 0.04591+0.98228i 0.07679-0.09652i 12.5 

z = 2 0.08844-0.07898i 0.04052+0.98239i 0.11871-0.07156i 

12.5 

i = 3 0.12773-0.10245i 0.05729+0.97406i 0.11009-0.0948H 
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A.1.15 D F E , H T , L = 7, NT = 3, NR = 1, pt = [0.2,0.5,0.2] 

101og10(£;b/iVo) Tx ft[0] 9i[l] ft [2] 

7.5 i = 1 0.77743-0.31386i 0.35059-0.16708i -0.36774+0.10503i 7.5 

i = 2 0.27931-0.14547i 0.65393-0.16086i 0.66319-0.08663i 

7.5 

i = 3 0.77888-0.30980i 0.31808-0.16603i -0.39691+0.10532i 

10 i = 1 0.48941-0.18505i -0.17272+0.01104i -0.81429+0.18224i 10 

i = 2 -0.52011+0.32493i -0.54858+0.26297i -0.48095+0.15000i 

10 

i = 3 0.52886-0,19294i -0.17474+0.00514i -0.78329+0.19740i 

12.5 i = 1 0.37376+0.01367i 0.060962-0.01622i -0.73651-0.56008i 12.5 

i = 2 -0.33054+0.59334i -0.44017+0.28713i -0.50895+0.058891 

12.5 

i = 3 0.642386+0.13415i -0.20026-0.33440i -0.55359-0.33309i 

A.1.16 L E , H T , L = 7, NT = 3, NR = 1, P t = [0.2, 0.5, 0.2] 

101og10(£ f c/iVo) Tx ft[0] ft[l] ft [2] 

10 i = 1 -0.26091-0.68386i 0.04811+0.62810i -0.09214+0.24279i 10 

i = 2 0.13860-0.75424i 0.39578+0.02826i 0.40134-0.3056H 

10 

i = 3 -0.29347-0.66315i 0.03370+0.64160i -0.08595+0.23223i 

12.5 i = 1 -0.18965+0.80146i 0.19846-0.50888i 0.14242+0.05527i 12.5 

i = 2 -0.27347+0.10642i -0.04924-0.59433i -0.32562-0.67247i 

12.5 

i = 3 -0.13472+0.80492i 0.21602-0.51304i 0.12141+0.09662i 

15 i = 1 0.17537-0.190311 -0.41813+0.28345i 0.47755-0.67067i 15 

i = 2 -0.47094+0.63133i -0.31984+0.43845i 0.23695-0.170171 

15 

i = 3 0.06916-0.2431H -0.21881+0.28746i 0.58868-0.67753i 
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A. l .17 D F E , T U , L = 5, NT = 3, NR = 1, pt = [0.7, 0.5, 0.7] 

10logw(Eb/N0) T x ft[0] ft[l] 9i [2] 

7.5 i = 1 -0.07380+0.37627i 0.50537+0.11104i 0.76324-0.05198i 7.5 

i = 2 -0.22630+0.032331 0.49522-0.02762i 0.83399-0.07866i 

7.5 

i = 3 -0.32411-0.34911i 0.40691-0.19547i 0.75164-0.06577i 

10 i = 1 -0.16557-0.68118i 0.19601-0.07134i 0.55384+0.39791i 10 

i = 2 -0.25526-0.2263H 0.21731+0.18726i 0.68304+0.5786U 

10 

i = 3 -0.20991+0.34070i 0.19010+0.40397i 0.54726+0.58399i 

12.5 i = 1 -0.16447-0.76864i 0.07085-0.16586i 0.45629+0.37604i 12.5 

i = 2 -0.26690-0.30450i 0.06959+0.08760i 0.61048+0.67145i 

12.5 

z = 3 -0.16556+0.31825i 0.10983+0.34126i 0.46982+0.72253i 

A.1.18 L E , T U , L = 5, NT = 3, NR = 1, pt = [0.7,0.5,0.7] 

1 0 1 o g 1 0 ( E b / i V o ) T x ft[0] ft[l] 9r [2] 

10 i = 1 0.16271-0.01436i -0.98007+0.10960i -0.02450+0.01304i 10 

i = 2 0.15016-0.02612i -0 .98203+0.1055H -0.02845+0.02103i 

10 

i = 3 ' 0.08946+0.00122i -0.99191+0.07279i -0.05013-0.01725i 

12.5 i = 1 -0.11555+0.08092i 0.55515-0.79174i -0.18728+0.09988i 12.5 

i = 2 -0.07097-0.00537i 0.55436-0.81833i -0.12631+0.04464i 

12.5 

i = 3 -0.06099-0.13352i 0.56938-0.80593i -0.06433-0.02436i 

15 i = 1 0.52660+0.08515i 0.05008-0.19959i 0.19722+0.79637i 15 

i = 2 0.05422+0.04557i -0.07646-0.26915i 0.26961+0.91870i 

15 

i = 3 -0.50239-0.00589i -0.16116-0.23306i 0.17854+0.79712i 
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A.1.19 D F E , E Q , L = 7,NT = 3, NR = 2,pt = [0.5, 0.7, 0.5], 

Pr = [0.7] 

101og 1 0 (£ ; f e / iVo) T x 9i[0] ft[l] gl [2] 

2.5 i = 1 -0.19801+0.00868i 0.60710-0.03063i 0.76876-0.01460i 2.5 

i = 2 -0.25260-0.00535i 0.58305+0.00760i 0.77195-0.01583i 

2.5 

i = 3 -0.22208+0.00705i 0.60295-0.02143i 0.76585-0.01029i 

5 i = 1 -0.19474-0.00497i 0.84338+ 0.009171 0.50066+0.003611 5 

i = 2 -0.22473-0.0040H 0.84835+0.00953i 0.47922+0.00644i 

5 

i = 3 -0.21241-0.00503i 0 .84719+0.0038H 0.48692+0.00429i 

7.5 i = 1 0.04988-0.00864i 0.32847+0.02012i 0.94294+0.00215i 7.5 

i = 2 -0.20375-0.01680i 0.46259+0.01033i 0.86246+0.01636i 

7.5 

i = 3 -0.12224-0.01483i 0.35576+0.00714i 0.92634+0.01057i 

A.1.20 L E , E Q , L = 7, NT = 3, NR = 2, P t = [0.5, 0.7, 0.5], 

Pr = [0.7] 

1 0 1 o g 1 0 ( £ f e / J V 0 ) T x 9i[0] 5*[1] ft [2] 

2.5 i = 1 0.03731+0.01196i -0.13236+0.00929i 0.98680-0.08416i 2.5 

i - 2 -0.01066-0.01267i -0.17974+0.003161 0.98184-0.05841i 

2.5 

i = 3 0.00862-0.00640i -0.13947+0.01163i 0.98709-0.07709i 

5 z = 1 0.19943+0.00017i -0.30472-0.00403i 0.93115+0.01754i 5 

i = 2 -0.08390+0.00305i 0.00723-0.00127i 0.99631+0.01608i 

5 

i = 3 0.01911+0.00072i -0.22720-0.00334i 0.97356+0.013401 

7.5 z = 1 0.08284+0.00308i -0.25056-0.00250i 0.96452+0.00657i 7.5 

i = 2 0.07586-0.00230i -0.26996+0.00777i 0.95974+0.01420i 

7.5 

i = 3 0.07581+0.0018H -0.26132-0.00600i 0.96224+0.00449i 
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A.1.21 D F E , H T , L = 7,NT = 3,NR = 2, pt = [0.5, 0.5, 0.5], 

Pr = [0.7] 

10\ogw(Eb/NQ) T x 9i[0] 9i [2] . 

5 i = 1 -0.18139-0.06826i 0.55671+0.19758i 0.71808+0.31279i 

i = 2 -0.15954-0.04358i 0.57525+0.23273i 0.72520+0.2483H 

i = 3 -0.17035-0.08724i 0.55347+0.20652i 0.72902+0.28795i 

7.5 i = 1 -0.03245+0.04722i 0.52247+0.32323i 0.61241+0.49418i 

i = 2 -0.44941-0.03879i 0.31895+0.36094i 0.62971+0.40985i 

i = 3 -0.07328-0.37803i 0.45937+0.19233i 0.63360+0.44973i 

10 i = 1 0.21172+0.05055i 0.38404+0.11407i 0.80053+0.38894i 

z = 2 -0.38911+0.1218H 0.10392+0.25045i 0.79600+0.355841 

i = 3 -0.24423-0.39886i 0.13585-0.11011i 0.76585+0.405161 

A.1.22 L E , H T , L = 7, NT = 3, N R = 2, pt = [0.5, 0.5, 0.5], 

A - = [0-7] 

1 0 1 o g 1 0 ( £ ; 6 / ^ o ) T x 9i[0] 9i[l] 9l [2] 

5 i = 1 0.00370+0.00688i -0.14947+0.02359i 0.97099-0.18496i 5 

i = 2 0.00055-0.00569i -0.13047+0.03084i 0.97338-0.18580i 

5 

i = 3 0.00704-0.00219i -0 .14291+0.0261H 0.97176-0.18580i 

7.5 i = 1 0.17019-0.13767i 0.08738+0.96396i 0.09601-0.07758i 7.5 

i = 2 0.12896-0.08807i 0.10359+0.95615i 0.16747-0.15037i 

7.5 

i = 3 0.12487-0.10205i 0.09338+0.96187i 0.16990-0.10585i 

10 i = 1 0.04755+0.02787i -0.26237+0.07367i 0.86635-0.41489i 10 

i = 2 0.07303-0.04608i -0.08218+0.13423i 0.87808-0.44356i 

10 

i = 3 0.01357-0.0474H -0.22070+0.08006i 0.86050-0.44943i 
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A.1.23 D F E , T U , L = 5, NT = 3, NR = 2, pt = [0.5, 0.2, 0.5], 

Pr = [0-7] 

1 0 1 o g 1 0 ( £ y i V o ) T x ft[0] ft[l] ft [2] 

7.5 i = 1 0.51407-0.6407H 0.16865+0.00539i -0.02593+0.54414i 7.5 

i = 2 0.09847-0.35249i -0.05767+0.274001 -0.19989+0.86470i 

7.5 

i = 3 -0.38296+0.07315i -0.25797+0.36465i -0.29111+0.75082i 

10 i = 1 0.17036-0.4700H 0.26527-0.14546i 0.81149+0.0042H 10 

i = 2 -0.40610-0.09202i 0.14758+0.05268i 0.86370+0.23683i 

10 

i = 3 -0.75652+0.34594i -0.10397+0.17833i 0.42749+0.28747i 

12.5 i = 1 0.13501-0.70466i 0.09940-0.2582H 0.61544+0.17294i 12.5 

i = 2 -0.27531-0.20073i 0.10123+0.18158i 0.72354+0.56318i 

12.5 

i = 3 -0.56974+0.37882i -0.06275+0.13787i 0.40215+0.58926i 

A.1.24 L E , T U , L = 5, NT = 3, NR = 2, pt = [0.5, 0.2, 0.5], 

Pr = [0-7] 

1 0 1 o g 1 0 ( E 6 / i V o ) T x 9i[0] ft[l] ft [2] 

7.5 i = 1 0.36811-0.1358H 0.82641+0.24173i -0.08705-0.311561 7.5 

i = 2 0.16612+0.04909i 0.85057+0.33306i -0.33818-0.14569i 

7.5 

i = 3 -0.14912+0.1939H 0.66592+0.334851 -0.62013+0.00507i 

10 i = 1 0.27097-0.66299i -0.13068+0.43108i -0.04284+0.53130i 10 

i = 2 0.37652-0.83892i -0.15969+0.35148i 0.02069-0.07053i 

10 

i = 3 0.29993-0.69771i -0.05778+0.13252i 0.10637-0.62533i 

12.5 i = 1 0.65385-0.45705i -0.14783+0.13047i 0.47703-0.31168i 12.5 

i = 2 0.15155-0.09325i -0.29422+0.17940i 0.78727-0.47937i 

12.5 

i = 3 -0.39497+0.28155i -0.29692+0.22183i 0.64691-0.45702i 
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A . 2 F i l t e r s f o r 8 - P S K 

A .2.1 D F E , E Q , L = 7, iV T = 2, N R = 1, pt = [0.5] 

W\ogw{Eb/N0) T x 9i[0] 9i [2] 

10 i = 1 0.77307+0.12397i 0.57891+0.09718i -0.20113-0.04429i 10 

i = 2 0.78021+0.13694i 0.56487+0.097811 -0.20756-0.02805i 

15 i = 1 -0.09967-0.00538i 0.21515+0.01119i 0.96923+0.06493i 15 

i = 2 -0.10562-0.00354i 0.23502+0.02224i 0.96343+0.07009i 

20 i = 1 0.11964-0.00744i 0.18609+0.00153i 0.96992-0.10130i 20 

i = 2 -0.30671+0.07724i -0.01180+0.01749i 0.94552-0.07429i 

A .2.2 L E , E Q , L = 7, 7VT = 2, 7Vfl = 1, p t = [0.5] 

1 0 1 o g 1 0 ( £ ; 6 / i V o ) T x ft[0] ft [2] 

10 i = 1 0.99127-0.0872H -0.09677+0.00676i -0.01936-0.00165i 10 

i = 2 0.99101-0.08424i -0.10159+0.01174i -0.01806+0.00333i 

15 i = 1 0.21053+0.0056H -0.47997-0.82343i 0.21734-0.00037i 15 

i = 2 0.22096+0.00091i -0.46845-0.82852i 0.21278+0.00207i 

20 i = 1 0.07514+0.03982i -0.23317-0.10755i 0.88291+0.38380i 20 

i = 2 0.07467+0.02283i -0.24275-0.09689i 0.87897+0.39114i 
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A.2.3 D F E , H T , L = 7, NT = 2, NR = 1, pt = [0.5] 

1 0 1 o g 1 0 ( £ 6 / i V o ) T x ft[0] ft[2] 

10 i = 1 0.75875+0.05593i 0.63604+0.04753i -0.11951-0.0089i 10 

i = 2 0.75519+0.05223i 0.64149+0.04140i -0.11686-0.00944i 

15 i = 1 0.81519-0.09895i 0.40567-0.131831 -0.34955-0.14676i 15 

i = 2 0.80263-0.12213i 0.54729-0.00110i -0.03242+0.20073i 

20 i = 1 0.64057-0.58920i -0.03681-0.28644i -0.28053-0.28357i 20 

i = 2 0.69377-0.45026i 0.13703+0.20258i -0.02245+0.50560i 

A.2.4 L E , H T , L = 7, NT = 2, NR = 1, p £ = [0.5] 

l O l o g . o l ^ / i V o ) T x ft[0] ft[l] ft [2] 

10 i = 1 0.99539-0.07229i -0.03823+0.000261 -0.05003+0.00408i 10 

i = 2 0.99575-0.0677H -0.03969+0.00456i -0.04796+0.00307i 

15 i = 1 -0.04035-0.08208i -0.63778+0.75666i -0.03008-0.1069H 15 

i = 2 -0.00603-0.10935i -0.59718+0.78890i -0.00347-0.09495i 

20 i = 1 0.28542-0.06199i -0.59977-0.68502i 0.29276+0.00244i 20 

i = 2 0.26139-0.02829i -0.59290-0.70928i 0.26506-0.07748i 
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A.2.5 D F E , T U , L = 5, NT = 2, NR = 1, pt = [0.7] 

1 0 1 o g 1 0 ( £ b / 7 V 0 ) T x 9i[0] ft[l] ft [2] 

10 i = 1 -0.15337+0.00539i 0.61899-0.02253i 0.76946-0.02692i 10 

i = 2 -0.13894+0.0008H 0.62560-0.01139i 0.76743-0.01550i 

15 i = 1 -0.06814+0.29184i 0.40449+0.20080i 0.81635+0.19956i 15 

i = 2 -0.43424-0.41026i 0.20380-0.08765i 0.76019+0.12656i 

20 i = 1 0.14704+0.28166i 0.24739+0.06094i 0.90522-0.12128i 20 

i = 2 -0.69983-0.1867H -0.18906-0.11101i 0.62266-0.19898i 

A.2.6 L E , T U , L = 5, NT = 2, NR = 1, pt = [0.7] 

1 0 1 o g 1 0 ( £ ; 6 / i V o ) T x ft[0] ft[l] ft [2] 

10 i = 1 -0.05875+0.00496i -0.01919+0.00076i 0.99716-0.0428H 10 

i = 2 -0.05438+0.00154i -0.01883-0.00102i 0.99700-0.05178i 

15 i = 1 -0.00025-0.01333i -0.09612+0.01798i 0.98379-0.149751 15 

i = 2 -0.00359+0.01525i -0.10046+0.00409i 0.98507-0.13883i 

20 i = 1 -0:27960+0.20792i -0 .07632+0.2826H 0.03602-0.88972i 20 

i = 2 0.30032-0.31258i 0.054411+0.16027i 0.07548-0.8819H 
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A.2.7 D F E , E Q , L = 7, NT = 2, NR = 2, pt = [0.5], pr = 

[0.7] 

101og10(£ f c/iVo) Tx ft[0] 9i[l] 9i [2] 

5 i = 1 -0.13228+0.09978i 0.50446-0.33889i 0.64513-0.43246i 5 

i = 2 -0.15324+0.09152i 0.49823-0.34310i 0.64376-0.43333i 

7.5 i = 1 -0.16983+0.12964i 0.47578-0.32329i 0.65298-0.44393i 7.5 

i = 2 -0.19122+0.11773i 0.46686-0.32852i 0.65291-0.44430i 

10 i = 1 -0.14288+0.19545i 0.48178-0.63251i 0.34074-0.43943i 10 

i = 2 -0.15245+0.19354i 0.47894-0.63011i 0.33591-0.44726i 

A.2.8 L E , E Q , L = 7, NT = 2, NR = 2, p t = [0.5], pr = [0.7] 

ioio g l o (^/iv 0 ) Tx 9M 9i[l\ ft [2] 

5 i = 1 0.13228+0.23208i -0.41366-0.83953i -0.09813-0.20755i 5 

i = 2 0.10961+0.25710i -0.41160-0.84130i -0.09359-0.189551 

7.5 i = 1 0.08253+0.10897i -0.56487-0.81374i 0.00577+0.00590i 7.5 

.i = 1 0.07335+0.11903i -0.55963-0.81679i 0.00285+0.01058i 

10 i = 1 0.21458-0.00291i -0.50618-0.80927i 0.20691+0.00194i 10 

i = 2 0.19977+0.00813i -0.50008-0.81721i 0.20509+0.00741i 
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A.2.9 D F E , H T , L = 7, iV T = 2, NR = 2, pt = [0.5], pr = 

[0.7] 

10\og10(Eb/N0) T x ft[0] ft[l] 

7.5 i = 1 -0.14443-0.02017i 0.60840+0.13182i 0.75406+0.1503H 7.5 

i = 2 -0.13579-0.0342H 0,61694+0.11327i 0.75172+0.14786i 

10 i = 1 0.01059+0.10282i -0.49808+0.84440i 0.16767+0.00975i 10 

i = 2 -0.05536-0.18889i -0.52766+0.67873i 0.05457-0.46817i 

12.5 i = 1 0.11270+0.15151i 0.43013+0.29455i 0.73224+0.39547i 12.5 

i = 2 -0.48927-0.39234i 0.14103+0.00762i 0.67821+0.35603i 

A.2.10 L E , H T , L = 7, NT = 2, NR = 2, pt = [0.5], pr = 

[0.7] 

101og 1 0 (£? 6 / iVo) T x ft[0] ft[l] ft[2] 

7.5 i = 1 -0.02930-0.00380i -0.09165-0.01035i 0.98352+0.15267i 7.5 

i = 2 -0.03216-0.00614i -0.08790-0.01762i 0.98349+0.15372i 

10 i = 1 0.05977-0.04460i -0.39632+0.91044i 0.05686-0.07239i 10 

i = 2 0.03777-0.05610i -0.41048+0.90612i 0.05318-0.05522i 

12.5 i = 1 0.51814+0.05356i -0.45558+0.69859i 0.16604+0.07418i 12.5 

i = 2 0.16422+0.08400i -0.45670+0.71140i 0.49407+0.08489i 
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A.2.11 D F E , T U , L = 5, NT = 2, NR = 2, pt = [0.7], 

Pr = [0-7] 

1 0 1 o g 1 0 ( £ f c / i V o ) T x 9i[0] 9i[l] ft[2] 

10 i = 1 0.76507+0.18314i 0.56595+0.12647i -0.20289-0.06060i 10 

i = 2 0.76139+0.19114i 0.56844+0.15248i -0.19033-0.03390i 

12.5 i = 1 0.52613-0.60181i 0.33748-0.42785i -0.19634+0.15974i 12.5 

i = 2 0.53733-0.58138i 0.40986-0.39454i -0.11538+0.19055i 

15 i = 1 -0.05937-0.3007i 0.27731-0.15674i 0.88224-0.161961 15 

i = 2 -0.33861+0.34410i 0.18392+0.08958i 0.85099-0.03017i 

A.2.12 L E , T U , L = 5, NT = 2, NR = 2, pt = [0.7], p r = 

[0.7] 

1 0 1 o g 1 0 ( £ ; 6 / i V o ) T x 9i[0] 9i[l] ft[2] 

10 i = 1 0.94954+0.2792H -0.13587-0.04430i 0.00160+0.00011i 10 

i = 2 0.94824+0.28757i -0.13067-0.03164i 0.00760+0.00354i 

12.5 i = 1 0.96856+0.16783i -0.17778-0.03783i 0.02558+0.00500i 12.5 

i = 2 0.96651+0.18539i -0.17268-0.0236H 0.03259+0.00725i 

15 i = 1 0.97927-0.02942i -0.19543+0.00274i 0.04440+0.00105i 15 

i = 2 0.97535-0.01354i -0.21483+0.00882i 0.04772-0.00219i 
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A.2.13 D F E , E Q , L = 7, NT = 3, NR = 1, pt = [0.5, 0.5, 0.5] 

101og 1 0 (E f e / iVo) T x 9i[0] ft[l] ft [2] 

10 i = 1 -0.23518+0.01855i 0.70488-0.06084i 0.66406-0.05300i 10 

i = 2 -0.23829+0.02169i 0.70444-0.05708i 0.66345-0.05555i 

10 

i = 3 -0.23440+0.02107i 0.70405-0.06098i 0.66457-0.0596U 

15 i = 1 -0.16852+0.10660i 0.73745-0.50949i 0.33545-0.21049i 15 

i = 2 -0.19469+0.11813i 0.73265-0.49401i 0.34197-0.22446i 

15 

i = 3 -0.15215+0.13356i 0.73227-0.52249i 0.30517-0.23805i 

20 i = 1 -0.24368+0.00730i 0.72977-0.56783i 0.28725-0.05534i 20 

i = 2 -0.25426+0.05202i 0.70395-0.52642i 0.32290-0.23603i 

20 

i = 3 0.02353+0.30396i 0.65121-0.61533i 0.09297-0.30937i 

A.2.14 L E , E Q , L = 7, A^ r = 3, NR = 1, pt = [0.5, 0.5, 0.5] 

1 0 1 o g 1 0 ( £ b / 7 V o ) T x ft[0] ft[l] ft[2] 

10 i = 1 0.99133-0.02959i -0.12781+0.00155i 0.00545+0.00402i 10 

i = 2 0.99042-0.02721i -0.13519+0.006081 0.00027-0.00430i 

10 

i = 3 0.99069-0.03586i -0.13124+0.00424i 0.00083+0.00085i 

15 i = 1 0.97491+0.02556i -0.21329-0.01178i 0.05685+0.00639i 15 

i = 2 0.97303+0.03013i -0.22171+0.00285i 0.05528-0.00950i 

15 

i = 3 0.97363+0.01117i -0.21973-0.00574i 0.05955+0.00718i 

20 i = 1 0.04311+0.050751 -0.23088-0.16349i 0.80090+0.52354i 20 

i = 2 0.03345+0.000511 -0.30530-0.16776i 0.78051+0.5180H 

20 

i = 3 0.14186+0.09607i -0.14755-0.12429i 0.82173+0.50813i 
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A.2.15 D F E , H T , L = 7, NT = 3, NR = 1, pt = [0.2, 0.5,0.2] 

1 0 1 o g 1 0 ( £ b / i V o ) T x ft[0] ft[l] ft [2] 

10 i = 1 0.64442-0.31570i 0.57160-0.36763i 0.04423-0.14568i 10 

i = 2 0.48989-0.342351 0.01163+0.15438i -0.52776+0.58336i 

10 

i = 3 0.63790-0.35444i 0.57163-0.36393i 0.03542-0.08361i 

15 i = 1 -0.42434-0.2995H -0.07818+0.09268i 0.64297+0.54966i 15 

i = 2 0.61840+0.04696i 0.56302+0.15275i 0.45455+0.26163i 

15 

i = 3 -0.50253-0.27729i 0.16244+0.13198i 0.56124+0.55837i 

20 i = 1 -0.17177-0.54650i 0.33685+0.19246i 0.70395+0.16056i 20 

i = 2 0.01659+0.73367i 0.20285+0.26403i 0.51450+0.293041 

20 

z" = 3 -0.22102-0.27016i -0.26244-0.37736i 0.74948+0.32431i 

A.2.16 L E , H T , L = 7, iV T = 3, NR = 1, pt = [0.2, 0.5, 0.2] 

1 0 1 o g 1 0 ( £ ; 6 / i V o ) T x ft[0] ft[l] . ft [2] 

10 i = 1 -0.19980+0.0019H -0.24956-0.01608i 0.93194+0.17035i 10 

i = 2 0.28912-0.02927i 0.23860+0.01404i 0.91106+0.16853i 

10 

i = 3 -0.18967+0.00097i -0.24265-0.02056i 0.93830+0.15592i 

15 i =.1 0.78604+0.15619i -0.57050+0.02639i -0.08672+0.15509i 15 

i = 2 0.37433-0.34267i -0.42391-0.43766i -0.07604-0.60450i 

15 

i = 3 0.77873+0.15857i -0.58023+0.05607i -0.10110+0.13565i 

20 i = 1 0.45928-0.20142i -0.83664+0.13278i 0.09743+0.1463U 20 

% = 2 0.91225-0.27274i 0.26467+0.03874i 0.14702+0.01563i 

20 

i = 3 0.51371-0.19236i -0.78103+0.12652i 0.01306-0.270021 
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A.2.17 D F E , T U , L = 5, NT = 3, NR = 1, pt = [0.7, 0.5, 0.7] 

10 l o g 1 0 
T x ft[0] 9i[l] 9i [2] 

10 i = 1 0.48839+0.610001 0.37969+0.44818i -0.14194-0.15557i 10 

i = 2 0.50972+0.60487i 0.39644+0.43526i -0.08510-0.14304i 

10 

i = 3 0.48991+0.5854H 0.36640+0.516951 -0.09290-0.08457i 

15 i = 1 0.24413-0.57565i 0.31920-0.087391 0.48996+0.50936i 15 

i = 2 -0.11639-0.27560i 0.077810+0.24238i 0.47499+0.78745i 

15 

i = 3 -0.55752+0.034841 -0.10728+0.21485i 0.22881+0.76022i 

20 i = 1 0.29537-0.07458i 0.17315-0.11670i 0.92346-0.10396i 20 

i = 2 -0.36629+0.025041 0.03099+0.06879i 0.92449-0.06949i 

20 

i = 3 -0.83773+0.03746i -0.33215-0.01507i 0.43067-0.027771 

A.2.18 L E , T U , L = 5, NT = 3, NR = 1, pt = [0.7, 0.5, 0.7] 

101og 1 0 (£ ; f e / iVo) T x 9i[0] 9i [2] 

10 i = 1 0.11198+0.14658i 0.61493+0.73294i -0.15052-0.16727i 10 

i = 2 0.12386+0.14094i 0.62632+0.71835i -0.15095-0.18358i 

10 

i = 3 0.12044+0.13066i 0.62266+0.72936i -0.14418-0.1672H 

15 i = 1 -0.01608-0.13367i -0 .03668+0.9888H 0.00690-0.05229i 15 

i = 2 0.06816-0.08365i -0.01635+0.98532i 0.12817-0.02828i 

15 

i = 3 0.14720-0.13250i -0.05042+0.97674i 0.03691+0.05332i 

20 i = 1 0.62912-0.06913i -0.11445+0.12288i 0.66212-0.36447i 20 

i = 2 0.06738-0.03834i -0.23381+0.15257i 0.81818-0.4966H 

20 

i = 3 -0.48364+0.03519i -0.30093+0.13016i 0.68239-0.43783i 
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A.2.19 D F E , E Q , L = 7, NT = 3, NR = 2, pt = [0.5,0.7,0.5], 

Pr = [0-7] 

101og 1 0 (£ f c / 7Vo) T x 9M 9i [2] 

5 i = 1 -0.06041+0.000591 0.11577+0.00085i 0.99142+0.00588i 5 

i = 2 -0.06627-0.00088i 0.10956+0.00082i 0.99175+0.0064H 

5 

i = 3 -0.06473-0.00011i 0.11350-0.00147i 0.99142+0.00184i 

7.5 i = 1 0.06153+0.00029i 0.06647-0.00262i 0.99579+0.01406i 7.5 

i = 2 -0.08841+0.00194i 0.18056+0.00075i 0.97952+0.01110i 

7.5 

i = 3 -0.04205+0.00042i 0.09331-0.00137i 0.99470+0.00983i 

10 i = 1 0.01288+0.00187i 0.04592-0.00349i 0.99885+0.00019i 10 

i = 2 -0.05947-0.00141i 0.08640+0.00613i 0.99446+0.00043i 

10 

i = 3 -0.02954+0.001191 0.05766-0.00481i 0.99788-0.00288i 

A.2.20 L E , E Q , L = 7, NT = 3, NR = 2, p t = [0.5,0.7,0.5], 

p r = [0.7] 

1 0 1 o g 1 0 ( £ ; 6 / i V o ) T x 9i[0] ft[l] 9i [2] 

7.5 i = 1 0.13800+0.005751 -0.31196-0.00297i 0.93999+0.00492i 7.5 

i = 2 0.14483-0.00229i -0.33265+0.00377i 0.93173+0.01498i 

7.5 

i = 3 0.13577+0.00527i -0.32250-0.00376i 0.93672+0.00848i 

10 i = 1 0.15181+0.019501 -0.32291-0.02298i 0.93194+0.05707i 10 

i = 2 0.16659+0.001201 -0.36423-0.01653i 0.91264+0.07999i 

10 

i = 3 0.15271+0.01635i -0.34491-0.02608i 0.92282+0.07193i 

• 15 i = 1 0.18068+0.09159i -0.29846-0.14428i 0.84432+0.36904i • 15 

i = 2 0.17588+0.06350i -0.46342-0.20018i 0.74761+0.38895i 

• 15 

i = 3 0.21857+0.06145i -0.30859-0.12590i 0.84604+0.34869i 
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A.2.21 D F E , H T , L = 7,NT = 3,NR = 2, pt = [0.5, 0.5,0.5], 

Pr = [0-7] 

1 0 1 o g 1 0 ( £ 6 / i V o ) T x 9i[0] 9iW ft[2] 

5 i = 1 -0.10591-0.19576i 0.45035+0.77557i 0.18136+0.3365H 5 

i = 2 -0.10827-0.18542i 0.45340+0.78114i 0.19076+0.31897i 

5 

i = 3 -0.10831-0.18642i 0.43811+0.78846i 0.18226+0.32662i 

7.5 i = 1 -0.05584-0.19301i 0.32648+0.86795i 0.08943+0.30283i 7.5 

i = 2 -0.06687-0.1694H 0.32626+0.87966i 0.11839+0.26938i 

7.5 

i = 3 -0.06244-0.17681i 0.31063+0.87979i 0.11131+0.28622i 

10 z = 1 0.00513-0.15517i 0.25205+0.92945i 0.01216+0.21988i 10 

i = 2 -0.03731-0.09155i 0.25585+0.94269i 0.10971+0.15510i 

10 

i = 3 0.00563-0.14488i 0.24046+0.92812i 0.10349+0.22146i 

A .2.22 L E , H T , L = 7, NT = 3, NR = 2, pt = [0.5,0.5,0.5], 

Pr = [0-7] 

1 0 1 o g 1 0 ( £ 6 / i V o ) T x 9M 9iW 9i[1] 

5 i = 1 0.30551-0.09195i -0 .19609+0.8696H 0.30801-0.093071 5 

i = 2 0.30019-0.15743i -0.13390+0.88076i 0.28360-0.10486i 

5 

z = 3 0.26786-0.10913i -0.22409+0.87162i 0.30176-0.123891 

7.5 z = 1 0.32184-0.13966i -0.13934+0.86741i 0.30493-0.110101 7.5 

i = 2 0.30271-0.15565i -0.10355+0.87384i 0.30460-0.13052i 

7.5 

i = 3 0.26604-0.13865i -0.15086+0.87578i 0.30525-0.16454i 

10 z = 1 0.10710+0.09070i -0.32145-0.07039i 0.93130+0.06855i 10 

z = 2 0.12956-0.01504i -0.31410-0.00437i 0.93656+0.0846H 

10 

z = 3 0.14344-0.05759i -0.29128+0.02151i 0.93768+0.10752i 
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A.2.23 D F E , T U , L = 5, NT = 3, NR = 2, pt = [0.5,0.2,0.5], 

Pr = [0-7] 

1 0 1 o g 1 0 ( £ 6 / i V o ) T x ft[0] ft[l] ft [2] 

5 i = 1 -0.56894+0.541871 -0.40502+0.2703H 0.16618-0.34345i 5 

i = 2 -0.56550+0.5203H -0.45105+0.43756i 0.09856-0.06974i 

5 

i = 3 -0.51810+0.44690i -0.45879+0.53568i -0.01133+0.18516i 

7.5 i = 1 -0.65839-0.23858i -0.44073-0.36952i 0.04167-0.420801 7.5 

i = 2 -0.79409-0.26637i -0.47999-0.1077H 0.21643+0.09820i 

7.5 

i = 3 -0.67084-0.25497i -0.33134+0.07972i 0.27294+0.54252i 

10 i = 1 -0.77118+0.2166H -0.47601+0.04700i -0.34858-0.08972i 10 

i = 2 -0.82370+0.31966i -0.26854+0.13049i 0.33609-0.131271 

10 

i = 3 -0.52721+0.19898i 0.03183+0.090131 0.81957-0.04046i 

A.2.24 L E , T U , L = 5, NT = 3, NR = 2, pt = [0.5,0.2, 0.5], 

Pr = [0-7] 

1 0 1 o g 1 0 ( E b / i V o ) T x 9i[0] ft [2] 

5 i = 1 -0.16497-0.20804i 0.609578+0.7013H 0.15653+0.20390i 5 

i = 2 -0.18409-0.22086i 0 .59959+0.7034U 0.17110+0.18372i 

5 

i = 3 -0.18720-0.19415i 0.59660+0.71026i 0.17646+0.18900i 

7.5 i = 1 -0.05932-0.19817i 0.35960+0.90248i 0.00121+0.11588i 7.5 

i = 2 -0.07152-0.20849i 0.35481+0.90172i 0.04587+0.10163i 

7.5 

i = 3 -0.09765-0.17547i 0.34292+0.90832i 0.08177+0.10174i 

10 i = 1 0.04027-0.08809i -0.89588+0.17185i 0.21508-0.3350H 10 

i = 2 -0.00621+0.00145i -0 .93839+0.2860H 0.19028-0.03709i 

10 

i = 3 -0.07676+0.09515i -0.90637+0.32579i 0.12267+0.205821 
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