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Abstract

Two novel optimized delay diversity (ODD) schemes for suboptimum equaliza-
tion are proposed in this thesis. In [1, 2], an ODD scheme was proposed based
on the Chernoff bound on the pairwise error probability (PEP) for maximum-
likelihood sequence estimation (MLSE) [3]. It was shown that the ODD scheme
outperforms the generalized delay diversity (GDD) scheme proposed in [4] in
frequency-selective fading channels. However, the MLSE scheme is too com-
plex for most practical applications. Therefore, low-complexity equalization
schemes such as decision-feedback equalization (DFE) [5] or even linear equal-
ization (LE) [6] have to be used. In this work, two novel ODD schemes
are investigated. The ODD transmit filters of the two novel schemes are
optimized for correlated multiple-input multiple-output (MIMO) frequency-
selective Rayleigh fading channels with suboptimum DFE or LE employed at
the receiver, respectively. An equivalent discrete-time channel model contain-
ing the DD transmit filters, the pulse shaping filters, the mobile channel, and
the receiver input filters is first given. Then, the worst-case pairwise error
probabilities (PEPs) for both DFE and LE are derived based on the discrete-
time channel model and the error variances of the two schemes. Finally, a
stochastic gradient algorithm for optimization of the ODD filter coefficients is
proposed. The algorithm assumes knowledge of the channel impulse response
(CIR) at the receiver while only the statistics of the CIRs are required at
the traﬁsmitter. The proposed algorithm takes into account the equivalent
discrete-time channel, the operating signal-to-noise ratio (SNR), the modula-

tion scheme, the length of the ODD transmit filters as well as the correlations

il



of the transmit and receive antennas. The resulting ODD filters are applied
to GSM! [7, 8] and EDGE? [9, 10]. Simulation results show that the ODD
filters obtained in this work achieve a lower bit error rate (BER) than those
obtained in [1, 2, 4] when DFE and LE are used at the receiver, respectively.

The results of this thesis have been summarized in [11, 12].

1GSM: Global System for Mobile Communication
2EDGE: Enhanced Data Rates for GSM Evolution
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Chapter 1
Introduction

Multiple-input multiple-output (MIMO) wireless systems [13, 14, 15] have re-
cently gained much interest due to the increasing demand for higher data
rates in wireless communications systems. Space-time coding is the subject of
current research activities. Space-time trellis codes (STTCs) and space-time
block codes (STBCs) constructed for the flat-fading channel are discussed in
[16] and [17, 18], respectively. STTC proposed in [16] can be used in frequency-
selective channels as well, however, the coding gain diminishes due to the effect
of multipath fading [19].

Although most of the initial research on space-time codes assumed flat fad-
ing channels, more recently it has been shown that space-time codes can
also lead to significant improvements for frequency-selective fading channels.
Space-time coding schemes designed for frequency-selective fading channels
that require processing of an entire burst of data have been proposed in
[20, 21, 22, 23, 24]. The scheme in [20] is a generalization of Alamouti’s STBC
in [17], whereas the schemes in [21, 22] and [23, 24] are based on orthogo-
nal frequency division multiplexing (OFDM) and single-carrier transmission
combined with frequency domain equalization, respectively.

These burst-based space-time coding schemes achieve good performance. How-

ever, the channel is re(quired to be constant over the entire data burst. In

addition, if these schemes are used to upgrade existing systems from single an-




tenna transmission to multiple antenna transmission, the burst structure and
the receiver have to be modified. These disadvantages may make burst-based
space-time codes less attractive for the upgrade of existing systems.

Delay diversity (DD), which can be regarded as the simplest special case of
a STTC, was proposed in [25]. It uses multiple transmit antennas to achieve
transmit diversity for flat fading channels. DD has the advantage that the over-
all channel can be modeled as a single-input multiple-output (SIMO) system.
Therefore, the same channel estimation, channel tracking, and equalization
techniques as in the single transmit antenna case can be used. As a conse-
quence, existing mobile communication systems can be upgraded easily with
DD since the current burst structure does not have to be modified. A gener-
alized delay diversity (GDD) scheme suitable for frequency-selective channels
was proposed in [4]. At high signal-to-noise ratios (SNRs), GDD achieves full
diversity by delaying the transmitted data stream on transmit antenna 7y,
1<n;<Nr, by (n; — 1)L symbols where N7 and L are the number of transmit
antennas and the length of the discrete-time channel impulse response (CIR),
respectively. However, the resulting overall CIR may be excessively long im-
plying high equalizer complexity.

Based on a Chernoff bound on the pairwise error probability (PEP) for
maximum-likelihood sequence estimation (MLSE), optimized delay diversity
(ODD) filters for correlated MIMO frequency-selective fading channels were
obtained in [1, 2]. For the realistic case of low-to-moderate SNR, the resulting
MLSE-ODD filters significantly outperform the GDD filters. In addition, the
optimized filters do not only outperform the GDD filters of the same length
but perform often better than GDD filters of larger length. As shorter filters
lead to an equalizer with lower complexity at the receiver, the MLSE-ODD
filters are preferable.

However, in many situations the complexity of optimum MLSE is still too high
even with the shorter MLSE-ODD filters [3, 26]. This is especially true when
higher order modulation schemes, such as 8-ary phase-shift keying (PSK) [27],




are employed since the computational complexity of MLSE grows as M L-1
where M is size of the modulation alphabet [27]. Therefore, in practice, sub-
optimum equalization strategies such as decision-feedback equalization (DFE)
[5] or linear equalization (LE) [6] have to be adopted at the receiver. It is the
aim of this work to obtain the ODD filters for correlated MIMO frequency-
selective fading channels assuming DFE or LE being used at the receiver.
Based on an approximation of the worst-case PEP of the respective equalizer, a
cost function that is suitable for the optimization of the ODD filter coeflicients
is derived for both DFE and LE, respectively. Since a closed-form solution for
the optimization problem is not feasible, a stochastic gradient algorithm is
used for the filter search. The resulting schemes are referred to as DFE-ODD
and LE-ODD, respectively. We consider transmissions in the downlink di-
rection ahd we adopt the system parameters of the global system for mobile
communication (GSM) [7, 8] and enhanced data rates for GSM evolution sys-
tem (EDGE) [9, 10] for numerical results. Simulation results show that when
DFE or LE are employed at the receiver, the filters optimized for DFE and LE
outperform the GDD filters proposed in [4] and MLSE-ODD filters proposed
in [1, 2].

The outline of this work is as follows. In Chapter 2, we describe the adopted
correlated MIMO frequency-selective Rayleigh fading model, and the GSM and
EDGE power delay profiles. The DD filters, the GDD filters, and the ODD
filters optimized for MLSE are briefly discussed in Chapter 3. In Chapter
4, we give a review on the finite-length DFE and LE and explain how to
obtain the equalizer filter coefficients based on the minimum mean-square error
(MMSE) criterion. In Chapter 5, we explain how the expected worst-case PEP
is calculated by using the output error variance of DFE and LE with infinite-
length filters. We use the expected worst-case PEP obtained in Chapter 5
to derive a stochastic gradient algorithm for optimization of the ODD filter
coefficients in Chapter 6. In Chapter 7, we present the simulation results for

the optimization and compare the proposed DFE-ODD filters and LE-ODD



filters with the MLSE-ODD filters and GDD filters. Finally, we summarize
this work and draw some conclusions in Chapter 8. In Appendix A, DFE-
ODD filters and LE-ODD filters for some typical GSM and EDGE channels

are presented.




Chapter 2
Transmission System

In this chapter, the overall transmission system consisting of signal mapper,
DD filters, pulse shaping filters, correlated MIMO channel, receiver input fil-
ters, equalizer, and demapper will be discussed. It will be first shown that the
correlated MIMO channel with Nr transmit antennas and Ny receive antennas
can be modeled by matrices with dimension Ng X Np. We will then show that
the overall channel model, continuous in time, can be obtained by convolving

the correlated MIMO channel with the pulse shaping filters, and the receiver

'input filters. Furthermore, an overall discrete-time channel model is obtained

by sampling and truncating the continuous-time CIR. Finally, an equivalent
channel model containing the combined effect of the overall discrete-time chan-

nel and DD filters is derived.

2.1 Channel Model

The correlated MIMO frequency-selective Rayleigh fading channel model is
adopted in this work. In a MIMO wireless link, the data stream is broken

into separate signals and sent over different transmit antennas. The frequency



non-selective MIMO channel can be modeled by the following matrix [13]:

hE(t)  RE@) ... hET()
Ho(t) h%l: (t)  R2(t) ... hQCN:T(t) | 21
| hSRU(E) REFA(E) ... hGRNT(E)

h&™(t) is the continuous-time Rayleigh fading channel gain between transmit
antenna ng, 1<n;<Np, and receive antenna n,, 1<n,.<Npg, where Nr and
Np are the total number of transmit and receive antennas, respectively. The

complex gain hgy™(t) is a continuous-time zero mean Gaussian random process
B (E) = B + (), (2.2)

where h7"™(t) and h¢;™(t) are the real and imaginary parts of h&7™(t), re-
spectively [27]. The envelope of the process, ("™ (t) = |hg™ (t)|, is Rayleigh
distributed with probability density function (pdf)

x

Py
Ze *o, for x>0
0

pe(z) = ' , (2.3)
0, for <0

where of is the variance of the two quadrature channels. Since k7™ (t) and
hgy™(t) are assumed to be independent, the variance of hg™(¢) is equal to
202.

The frequency non-selective model described by (2.1) is only valid when the
signal bandwidth is much smaller than the coherence bandwidth of the chan-
nel. If the signal has a bandwidth greater than the coherence bandwidth, the
transmitted signal is subjected to different gains and phase shifts across the
band. In such a case, the channel is said to be frequency-selective [27]. A
frequency-selective channel causes intersymbol interference (ISI). The received
signal will be the superposition of several transmitted signals. ISI can be mit-
igated by employing an equalizer at the receiver side. MLSE, DFE, and LE
are some of the equalization methods which are commonly used in practice.

More details about equalizers will be discussed in Chapter 4.

6



A frequency-selective MIMO model with L multipath components is shown

in Figure 2.1. x,,(t) represents the signal transmitted by transmit antenna

To(t [ — —
zlét; : 1 : © | 79 : : TL-1
T, (1) > > [
lyy y'7 lyy ¢ lyy yi7 ! Nr
0 1 2 L-1
He(t) He(t) HE(t) He (1)
1 .. | Ng 1 .| Ng 1 .- | Ng 1 Npr
Y Y 1
__>y0(t)
> it
@ "_->yNR(t)

Figure 2.1: Frequency selective MIMO channel.

ng, while y,, (t) represents the signal received by receive antenna n,. 7, [ =
1,...,L —1, represents the delay of the multipath component {. Each matrix,
H.(t),1 =0,...,L — 1, has dimension Ng x Nr and its elements can be

written as [13, 27]

OO N )
21,1 22,1 2NTI
L= | oW e B 24
_ thl’l(t) hNR2l( £ hNRNTl( 1) -

The matrices H lc(t) are independent for different [s, [ = 0,...,L—1, and their
elements, hg”""l(t), are continuous-time zero mean Gaussian random processes

as defined in (2.2).
The overall MIMO channel impulse response H¢(7,t) is also a matrix with

dimension Np x Nr. It relates to the matrices H4(t) in the following way

L1
T,t) = lZ(:) ch(t)é('r - 1), (2.5)

where 6(+) is the Dirac delta function [28] and 7o is equal to zero.

Therefore, the matrix elements in (2.4) and (2.5) are related by the following



equation:
L—1
hg™(r,t) = 3 ke (E)s(r — 7). (2.6)
1=0

The power delay profile [29] of the channel is defined as

L-1
p(r) = Y (og™")?6(r — ), (2.7)

=0

where (o77™")? is the variance of %™ (t),

(o2 = & {|h’g"t»l(t)f} . (2.8)

nyng,l

In practice, (o5 ™")? are normalized such that

L-1

S(og™h)? =1 (2.9)

1=0
is true.
For GSM and EDGE system, four different power delay profiles are specified
[7]: rural area (RA), hilly terrain (HT), typical urban area (TU) and equal-
izer test (EQ). For EQ, HT, and TU, it is assumed that the amplitudes of all
propagation paths, hZf""l(t), are continuous-time zero mean Gaussian random
processes as described by (2.2). Their envelopes are Rayleigh distributed with
pdf as defined in (2.3). For RA, it is assumed that the amplitudes of all prop-
agation paths are continuous-time non-zero mean Gaussian random processes.
The mean value is due to the line-of-sight (LOS) path between a transmit an-
tenna and a receive antenna. This results in a Rician fading channel. In this
work, the EQ, HT, and TU profiles are considered.
Finally, it should be noted that if Ny and Ny are both equal to one, the MIMO
channel in (2.4) reduces to a single-input single-output (SISO) frequency-
selective Rayleigh fading channel. Furthermore, if L = 1, the channel reduces

to a frequency non-selective channel resulting in only scalar multiplicative dis-

tortion of the transmitted signals.



2.2 Correlation of CIR Coefficients

In general, an i.i.d. model assuming rich uniform scattering will not be an ac-
curate description of real-world multi-antenna channels [30], since in practice,
insufficient antenna spacing and a lack of scattering cause the individual an-
tennas to be correlated. Therefore, spatial correlation is assumed to occur at
both the transmit and receive antennas in this work. Under this assumption,

the matrix taps in (2.4) can be written as [30]
H(t) = R’ H'(t)(SV)", (2.10)

where H'(t), R = RY*(RY*)H and § = SY2(SY*)" are the uncorrelated
channel matrix taps, the receive correlation matrix and the transmit correlation
matrix, respectively. The superscripts 1/2 and H denote the matrix square-
root and Hermitian transposition, respectively. Although not completely gen-
eral, this simple correlation model has been validated through recent field
measurements as a sufficiently accurate represgntation of the fade correlations
seen in actual cellular systems [30, 31]. S and R are positive definite matrices
with dimensions Nr x Np and Ng x Npg, respectively.

From now on, we assume the MIMO model defined in (2.5) to be a spatially
correlated frequency-selective MIMO channel with matrix taps described by
(2.10). For simplicity, we assume that the spatial correlation is identical for all
matrix taps. Setups with up to three transmit and two receive antennas are
considered in this work. Since matrices S and R have the same form, we will
concentrate on the transmit correlation matrix in the following discussion.
There is only one correlation factor for the two antennas case. The correlation

matrix S can be written as

1 i
S = Pz | (2.11)
pia 1

where p!, is the correlation factor between transmit antenna one and transmit




antenna two and it is defined by
. £ {hnrll( )hgr2,l*(t)}
SN

There are three correlation factors for the three antennas case, ply, phs, and

(2.12)

pis. They represent the correlation between transmit antenna one and transmit
antenna two, between transmit antenna two and transmit antenna three, and
between transmit antenna one and transmit antenna three, respectively. The
resulting correlation matrix is a 3 X 3 matrix with elements
1 pla pls
S=|ps 1 o |- (213)
pis Pis 1
The square root of the correlation matrix can be calculated by using Cholesky
decomposition such that /2 and R? are lower triangular whereas (S'/2)H
and (RY*)H are upper triangular [32]. S /2 for the two and three transmit

antennas case can be written as

1 0 .
S12 — , (2.14)
P2 1 - (pi2)?
and
1 0 0
S'V? = \ Pia 1 = (pla)? 0 ) (2.15)
¢ Pha—piarls . )2 — {pha=piopis)? —p Pia)?
p13 1 (,012)2 \/1 p13 (p12)2

respectively. Similar results can be obtained for the receive antennas by re-
placing the correlation factors in the above matrices with the respective receive

correlation factors. For future convenience,
Pe=| piy Pis Pis (2.16)

and

Pr= I Pla Pl Pos | (2.17)

are defined, where p, and p, are the correlation vectors for the transmit and

receive antennas, respectively.




2.3 Complete Equivalent Baseband Model

The channel model presented in the previous section is only a part of the overall
mobile communications transmission model. The other parts of the model are
discussed in this section. A block diagram of the equivalent baseband system

model is shown in Figure 2.2.

erlH] n(t) t=kT
Gi(2) ha(t) — >—é- he(t) = >
calk] ma(t)
Source — Mapper o m—. hu?) ‘< >_é— () = Equalizer [ Demapper
Hc(T, t)
exa k] ‘ N, (t)
Gnr(2) ht(t) { >—é* hr(t) — >

Figure 2.2: Overall transmission system.

The binary input data sequence is first mapped to symbols belong to a linear
modulation format such as M-ary phase-shift keying (PSK) or quadrature am-
plitude modulation (QAM) symbol. We consider GSM and EDGE in this work.
Therefore, the mapped symbol is either a 2-PSK or an 8-PSK symbol depend-
ing on whether GSM or EDGE is used. Note that GSM uses binary Gaussian
minimum-shift keying (GMSK), which can be approximated as filtered 2-PSK.
EDGE improves spectral efficiency by employing 8-PSK modulation instead.
However, other system parameters such as symbol rate and burst duration
remain unchanged in order to enable a smooth transition from GSM to EDGE
[33].

Before transmit pulse shaping, the modulated symbols, b{k], are first filtered
by the DD transmit filters, G,,(z). The DD transmit filters depicted in Figure
2.2 are discrete-time filters, which can be realized as tapped delay lines. The

filtering process is shown in Figure 2.3.
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The filter is defined by

> gn[n)z ", ng=1,...,Np (2.18)

where g,,[n] is the nth filter tap of the DD filter of transmit antenna n,. All
DD filters have length N. In order to keep the total transmitted energy Ej
constant, a factor \/m is applied to each transmit antenna branch. As
a result, the filtered symbols c,,[k] of antenna n, can be obtained from the
modulated symbols bk] by

ol = 1/ 375 (18] g ), (219)

where * refers to convolution.

L 4

A
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N
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Figure 2.3: DD transmit filters.

For transmit pulse shaping, the linearized impulse h;(t) corresponding to Gaus-
sian Minimum Shift Keying (GMSK) with time-bandwidth (BT) product 0.3

is employed [27]. Therefore, the transmit filter impulse response is given by

12




33, 34, 35]

3
I1 s(t+ kT), 0<t<5T
he(t) = #=0 (2.20)
0, else
with
t
sin ng(T)dr) , 0<t<4T
0
t—aT
4]
0, else

where T' = 3.69us is the symbol duration. The impulse g(¢) of duration 47T is
given by

1 t—

¢t — 3L
- Q (27r : 0.3—2>) , 0<t<4T, (2.22)
- T4/In(2)

where Q(-) denotes the complementary Gaussian error integral [27],

+o0
Q(t) = \/% / e~ 2 dr. (2.23)

The continuous-time signals are transmitted over the correlated MIMO chan-
nel Hc(7,t) discussed in the last section. At the receiver, the continuous-time
received signal at antenna n, is impaired by additive white Gaussian noise
(AWGN) n,,(t). The choice of the receiver input filter, h.(t), is up to the
receiver designer. We assume a filter with square-root Nyquist frequency re-
sponse. This allows us to model the channel noise after sampling as a spatially
and temporally white discrete-time Gaussian random process. More will be
said about the discrete-time channel model in Section 2.4.

Two filters which have a square-root Nyquist frequency response are the
whitened matched filter (WMF) [27], which belongs to the class of optimum
receiver input filters [3], and the square-root raised cosine (SRC) filter [27, 29].
We use a fixed filter in this work, namely the SRC receive filter with roll-off
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factor 0.3 [29]. This filter offers a similar performance as the optimum WMF.
However, the implementation of the SRC filter is simpler because, in contrast
to the WMF, it does not have to be adapted to a particular channel impulse
response [33]. The discrete-time received signals are obtained by sampling the
output of the receiver input filters at times ¢t = k7. Finally, the receiver, as-
sumed to have perfect knowledge of the overall CIR, performs equalization of
the received signals and the demapper converts the detected symbols back to
binary data.

It should be noted that the DD transmit filters G,,(z), the pulse shaping
filters h(t), and the receiver input filters k. (t), introduce additional ISI to the
MIMO channel. In addition, the pulse shaping filters and receiver input filters

introduce temporal correlation to the channel.

2.4 Equivalent Discrete-Time Model

The overall channel model discussed in the previous section is in continuous-
time and contains different blocks including the pulse shaping filters h;(t), the
physical channel H(7,t), and the receiver input filters h,(¢). It is convenient
to derive an equivalent discrete-time model containing the combined effects of
all these blocks. In this section, we will show how the discrete-time model can
be obtained.

In this work, block fading is assumed. That is, the wireless channel coefficients
hr™H(t) defined in (2.4) are approximately constant during one burst but vary
from burst to burst. In other words, the coefficients hyy ™" (t) are time-invariant
within each burst. This assumption is valid for small-to-moderate burst lengths

neng,l

and low vehicle speeds. With this assumption, the time dependence of A5 ™" (t)
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can be dropped and (2.4) reduces to

) l )
pibt 2t pgmt
l
o pibt o opB2t o Rt (2.24)
c= . . . : :
thl’l thQ’l thNT,l

Now, the overall CIR can be obtained from

Py (£) = hio(t) % RET(t) % he(t), (2.25)
where
L-1
her(t) = S hg™ts(t — 7). (2.26)

=0

One can also obtain the above equation from (2.6). Since the channel is time-
invariant, ¢ in (2.6) is fixed and can be dropped from the equation. Therefore,
the only variable left is 7. Replacing 7 with ¢ yields hg™(t).

In principle, the overall CIR is of infinite length. However, in practice, it
can be sampled and truncated to L consecutive taps which exhibit maximum
energy [36]. Therefore, the sampled and truncated overall CIR can be written

as

P 1] = hE™ (T + to), 1=0,...,L—1 (2.27)

where ty is a small time delay. L and ¢, are chosen so that only a negligible
amount of power is disregarded.

With this discrete-time channel model, the T-spaced, sampled version of the
received signal at receive antenna n, is

Np L—-1
Tug (k] = D2 D by [en [k — U] + 1, [E], (2.28)

ng=1 1=0
where c,, [k] is defined in (2.19). Note that n,, [k] = n,, (KT + to) in (2.28) is
spatially and temporally white because the SRC receive filter autocorrelation

function fulfills the first Nyquist criterion [27].
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Furthermore, (2.28) can be written as

]]\”;T X_le oy K] % B] % G, [K] + 7, [K]

= k2 [k] * b[k] + nun, (K]

= L%_Q heA[lblk — 1] + n,, [, (2.29)
=0

T [k] =

where AZ3 [k] is the equivalent CIR with length Leq = L + N — 1 corresponding

to receive antenna n, and is defined as

hor k] = > hongn (K] * gn,[K]. (2.30)

Therefore, the overall discrete-time channel can be modeled as a SIMO system
with equivalent CIR, h22[k].

The discussions in this chapter are valid for both GSM and EDGE systems
because they use the same frequency bands, transmit pulse shaping filters,
and receiver input filters [7]. It should also be noted that the model is not
restricted to GSM and EDGE systems, but is applicable to any system that

employs linear single-carrier modulation.
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Chapter 3

Delay Diversity (DD)

A key feature of a MIMO system is its ability to use multipath propagation to
increase data rate or to improve spatial diversity [13, 14, 15]. In this work it is
not intended to use the MIMO channel to increase the capacity but for diversity
reasons. In this chapter, we will review the different diversity techniques briefly
and we will then concentrate on delay diversity, which is the form of diversity

investigated in this work.

3.1 Diversity Techniques

Diversity means that the receiver is provided with independently faded versions
of the same information. If several replicas of the same information signal
are transmitted over independently fading channels, the probability that all
the signal components will fade simultaneously is very small [27]. In wireless
communications, there are three main forms of diversity techniques which are
widely used: frequency diversity, time diversity, and spatial diversity.

Frequency diversity creates redundancy in the frequency domain by transmit-
tiné the same information-bearing signal on multiple carriers. This is reason-
able because the multipath structure in different frequency bands is different
for a frequency-selective channel. The drawback of frequency diversity is the

extra spectrum required to achieve the diversity. This limits the number of
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mobile users and the amount of bandwidth available to each user at a given
time.

Time diversity creates redundancy in the time domain by transmitting the
same information signal at different points in time. It uses the fact that in
a time-variant channel, the fading in different time intervals is different. The
major drawbacks of time diversity are the waste of bandwidth due to repetition
and the delay constraints making it hard to exploit. .

The final type of diversity which is commonly used is spatial diversity. Spatial
diversity creates redundancy in the spatial domain by using more than one
antenna either at the transmitter or receiver side. It uses the fact that different
antennas see different multipath characteristics. This form of diversity can
be further broken into transmit diversity and receive diversity. One major
drawback of spatial diversity is the requirement of deploying multiple antennas
at either the transmitter or receiver side, which is not always possible due to
size constraints or economic reasons. However, spatial diversity is attractive
because no bandwidth expansion is required to achieve diversity. DD is a form
of spdtial diversity because the information signal is transmitted by different
antennas. DD basically transforms spatial diversity into frequency diversity

by increasing the length of the overall channel by N.

3.2 Generalized Delay Diversity (GDD)

As we have already mentioned in the last section, DD for MIMO systems
introduces redundancy in the spatial domain to provide diversity. The block
diagram of a DD transmitter with Np transmit antennas is shown in Figure
3.1.

In GDD, the filtered symbols ¢, [k] are delayed versions of the data symbols,
blk]. The delay is achieved by employing Nr discrete-time DD filters with
gn,[k]=1 for k = (n, — 1)D and g,,[k]=0 for k& # (n; — 1)D. When D = 1,
standard delay diversity (SDD) [37] results where the source symbol is delayed
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Figure 3.1: Discrete-time block diagram of generalized delay diversity.

by one symbol period for each antenna. SDD achieves full spatio-temporal
diversity in flat-fading channels [37]. However, it has been shown that SDD
fails to exploit full diversity over frequency-selective channels [4]. There has
been some effort to improve the performance of SDD on frequency-selective
channels in the context of channel equalization [38, 39, 40].

It has been shown in [4] that full spatio-temporal diversity can be achieved
over frequency-selective channels if D is chosen to be equal to the length of
the overall CIR L. The resulting GDD filters have a length of N = (Np—1)L+1
and coefficients g, [k]=1 for k = (n, — 1)L and g,,[k]=0 for k # (n, — 1)L.

3.3 Optimized DD (ODD) for MLSE

Although full diversity can be achieved by GDD, the resulting equivalent chan-
nel is excessively long. In [1, 2], a cost function that is suitable for optimiza-
tion of the DD transmit filter coefficients was derived based on a Chernoff
upper bound on the PEP for optimum MLSE. It was shown that the shorter
optimized DD filters achieve a better perforfnance than the GDD filters at
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low-to-moderate SNRs.

The PEP is the probability that the detector decides in favour of symbol b, [k]
although bg(k] has been transmitted. According to [1, 2], the PEP of MLSE
can be approximated by

1

P.(b,|k], bslk ) o~ )
( [ ] ﬁ[ ] det (ILeqNRXLeqNR —+—dfmnécmrbcﬁ)

(3.1)

where o2 is the noise variance of n,, [k] in (2.28), Inxy is an identity matrix
with dimension N x N, det{-} denotes the determinant of a matrix, and d;, 1s
the minimum Euclidean distance of two adjacent signal points which depends
on the used modulation scheme. C., is called the mociiﬁed code matrix in

[1, 2] with dimension LegNg x LNy Ng and elements
Cm = INRXNR ® C»’,n, . (32)

where ® represents the Kronecker product, and

alo] .. 0 w0 - 0
a1l 0 VAL 0
: ’ 0 : 0
Co=|aN-1 - al ... ouN-1 "~ gv[0]
0 . @l ... 0 T gnll]

0 .o [N =1] 0 o gng [N 1]

(3.3)
In (3.1), ® is the covariance matrix of the used channel with dimension

LNyrNgp x LNyNp and is defined by
® = £{hh"}, (3.4)

where £{-} is the expectation operator and h is the channel vector with ele-

ments
T

h=|hl Bl ... BL | (3.5)
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where

T

hnr = hnrl[o] NN hnrl[L — ].] Ce. h/nTNT[O] R hnrNT[L — ]_] (36)
with dimension LNr x 1. The superscript T" in the above equations refers to
vector or matrix transposition.

In order to minimize (3.1), the cost function

1
d=det [ I +d% —
( LeqNRXLeqNR min 40_721

Cmcbcﬁ) (3.7)
has to be maximized subject to the power constraint,
tr(CrCH) = NgNrL, (3.8)

where tr(-) refers to the trace operation.
The maximization of (3.7) does not have a closed-form solution and therefore,
a steepest decent algorithm has to be used to solve the optimization problem.

With the following DD filter coefficient vector defined,

T
g={ a0l .. alN-1 . onl0 . oen V-] B9
. . . ad .
it was shown in [1, 2] that the gradient of (3.7), Ere is
- - r -1
o - ((ILeqNRxLCqNR +aCn®CH) " o (Cr®E! + En@cg))
-1
I r ((ILQqNRxLeqNR +aCn®CH) " o (Ch@EY + qu»C,’,{))
-1
Er ik ((ILCqNRxLeqNR +aCn@CH) " o (Ch®EY y + ENTNq)cf,{)) |
(3.10)
where
|
2
=, 3.1
o dmm 452 ( )

It should be noted that it is the usual convention to calculate the derivative

with respect to the complex-conjugate coefficient vector g* rather than deriva-

tive with respect to g itself [41].




E,, , in (3.10) can be obtained from C,, by replacing element g,,[k] of C,,
with 1 and the remaining elements with 0. The gradient vector shown in (3.10)
has dimension NNy x 1.

For a pre-defined number of iterations, the gradient vector is multiplied with a
step size § and added to the current filter vector to bbtain an improved vector

golt + 1], where i is the iteration number,

goli + 1] =gfi] +4- 5 . (3.12)

ad
Bg}’VT [N-1]

At the end of each iteration, the normalization

gli+1] = \/ggf[i - ]1\][;0[1, - 1]90[1' +1] (3.13)

is performed to ensure that the vector g has energy Np.

The DD scheme that uses filters which were optimized by the method described
above is called MLSE-ODD. Simulation results for 2-PSK and 8-PSK in [1, 2]
show that MLSE-ODD yields a lower BER than GDD at low-to-moderate
SNRs. This holds for MLSE decoding as well as suboptimum decoding includ-
ing DFE [5] and decision feedback sequence estimation (DFSE) [42]. Also, the
MLSE-ODD filters do not only outperform the GDD filters of the same length
but perform often better than the longer GDD filters.
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Chapter 4

Decision-Feedback Equalization

and Linear Equalization

Although MLSE-ODD obtained in [1, 2] yields better performance than GDD,
optimum equalization at the receiver based on the Viterbi algorithm (VA) [43]
requires an excessive computational complexity and is not feasible in many
situations. The computational complexity of MLSE is directly related to the
number of states of the underlying trellis diagram, which is given by Z = M¥~1,
Therefore, MLSE has a maximum complexity of Z = 2(""Y = 64 states for
GSM as GSM uses binary GMSK and the longest channel specified is L = 7.
In contrast, the complexity of MLSE is prohibitively high for EDGE, which
uses 8-PSK as its modulation scheme. The TU channel is the shortest channel
defined in the GSM and EDGE system with L = 4 and therefore, a full-state
VA would require Z = 8¢~ = 512 states which is far too complex for a
practical implementation. Therefore, alternative equalization strategies such
as DFSE, DFE, or even LE have to be employed at the receiver in practice for
EDGE. In this work, we will concentrate on DFE and LE. A brief review of
the two suboptimum equalization schemes will be given in the following two
subsections and a comparison of the two schemes will be given at the end of

this chapter.
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4.1 Decision-Feedback Equalization (DFE)

A block diagram of a DFE scheme with Ny receive antennas is shown in
Figure 4.1. The equalizer consists of Np discrete-time feed-forward filters
(FFF) and one discrete-time feedback filter (FBF). The idea of DFE is to use
previous decisions ﬁo cancel the ISI. The inputs to each of the FFFs are the
received symbols 7, [k] at each receive antenna. The inputs to the FBF are
the previously detected symbols. At each time instant, the output of the FBF,
which is a weighted linear combination of the previous symbol decisions, is
subtracted from the sum of the outputs of the FFFs to produce an estimate,
b[k], of the current symbol, b[k]. This cancels the ISI produced by the previous
symbols. The estimate b[k] is then passed through a threshold device which

generates the current symbol decision b[k].

elk]
1 [k] ——
o N
r (k] L/~
—»  h]1[K] >0 » FFF,
Sl : : ; X blk)
N Np [k] H{ 'H - ;F
rNp K
Lol RS K] % LN
FBF

Figure 4.1: Block diagram of DFE with Np receive antennas.

In theory, the FFFs of DFE are of infinite length. However, FFFs of finite-
length are employed in practice. We have tried FFFs of different lengths for
simulations and found that FFFs with a filter length that is four times the
overall CIR yield comparable performance to infinite-length FFFs. Therefore,
FFFs in this work are designed such that their lengths are four times the CIR

lengths.



Since the most meaningful measure of performance for a digital communication .
system is the average probability of error, it is desirable to choose the FFF and
FBF coefficients to minimize this performance index. However, the probability
of error is a highly non-linear function of the filter coefficients and therefore,
usiflg the probability of error as a performance index for optimizing the filter
coefficients is computationally very complex. Two performance criteria have
found widespread use in optimizing the DFE coefficients. One is the zero
forcing (ZF) criterion and the other is the mean-square error (MSE) criterion
[27]. The former completely eliminates the ISI under a ZF constraint while
the later minimizes the MSE between the true sample b[k] and the observed
signal b[k] just prior to the decision threshold. Since the MSE criterion is
more prevalent in practice and results in a better performance [44], it is used
in deriving the filter coefficients in this work. The optimization of the DFE
filters is usually carried out assuming that the past decisions are correct, thus
simplifying the mathematics involved [5]. The same assumption is made in this

work. Therefore, according to Figure 4.1, b[k] = b[k] and b[k] can be written

s y Ng 0 Nu
blk] = Z_:l . (Z )fnr[nlrnr[k —n] - Z_:lw[n]b[k —nl, (4.1)

where f,,.[n] and w[n] are the coeflicients of the FFF of receive antenna n,
and the FBF, respectively, and Ny and N,, are their respective lengths. IV, is
equal to Leq — 1 and therefore, the FBF is one tap shorter than the length of
the equivalent CIR, A3 [k] [27].

fn,[n] is an anti-casual filter meaning that its output depends on the future
input values. Anti-casual filters are not realizable. However, this problem can
be overcome by introducing a delay (N; — 1) to the received symbols, . [k],
at each receive antenna.

The error term, e[k], denoted in Figure 4.1 can now be written compactly in

vector form as

elk] = blk] — b[k] = blk] + wblk] — frK], (4.2)
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where the following definitions were used:

o= [AEM=1] O dede D) e 0]
rll] = :rl[k+(Nf——1)] mE] o e (N =1)] ... rglH ]T
w = :w[l] wl2] ... w[Nw]]H

blk] = :b[k—l] k-2 ... b[k— N, }T (4.3)

The vectors f, r[k], w, and b[k| have dimensions NyNgx 1, NyNpx 1, N, x 1,
and N, x 1, respectively.
Based on the assumption that the previous symbol decisions are correct, the

MSE to be minimized is

o = E{elkle’[k]}
= E{(bk] + w'blk] — £7r[K]) (0" [K] + b" [Klw — ¥ [K]£)}
= E{[blk]I*} + E{blk]b" [Klw} — E{blk]r" [k] £}
+E{wblk]" K]} + € {w b[K]b" [klw} — wblk]r" k] £}
—E{F kb K]} — E{f"r[K]b" [Klw}
+E{f r[klr ™[k £} | (4.4)

The above equation (4.4) can be simplified by recalling (2.29) and using the

following facts.

e The input data are temporally uncorrelated, i.e., E{b[j]b*[k]} = of if
J =k and E{b[j]b*[k]} = 0, otherwise.

e The input data and noise are mutually uncorrelated.

The terms in (4.4) can now be simplified to

E{[k)b [Klw} = E{wbk]p*k]} = O
E{blkr"k]f} = othff
E{wb[k]b? [k]w} = oiww
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E{wlbklr¥[k]f} = ofw"Af
E{frklb* K]} = offfhy
E{frkb klw} = olffA"w

e{firikrt k) f} = o—ZfH[BBH+-‘f;g(IWfNR)x(N,NR))]f

= o2 fiTf (4.5)

where hy, A, B, and I' are defined as follows:

T
hy= 071\1/f—(Nw+1) hi[Nw) ... h[0] ... Of:f’f—(NwH) o b [0]
(4.6)
A=| A A, .. ANR] (4.7)
with _
OFw HFIG] o oml ]
oT 0 K9[N, ... hs[2
A, = | N nr.[ | "T.H (4.8)
0w, 0 00 B[N
A0l RN 0 . 0 0 0]
0 A0 ... RN - 00 0
0 . : : : 0
0 0 0 0 h3[0] Ay (V)
B =
L (U - .
0 R[] ... RGN . 0 o0 0
i 0 0 0 0 A h?\(}R [O] . h?\?R [Nw] §
(4.9)
", %
I'=BB" + ?(I(NfNR)X(NfNR))' (4'10)

b
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Oy in (4.6) and (4.8) refers to the zero vector with dimension N x 1. The
dimensions of hy¢, A, B, and I" are NyNg x 1, N, x NyNg, NyNp x (N¢+N,),
and NyNgr x Ny Np, respectively.

After substituting (4.5) into (4.4), (4.4) becomes

o = o} - aghﬁf + olwfw - clwlAf

—ai f 'y — o fH A w + o7 FT F. (4.11)

The coefficients of w can be obtained by differentiating (4.11) with respect to

w* and setting the resulting expression to zero [41],

2
0o =oiw — 0jAf =O0n,. 4.12
ow* b

The resulting FBF coeflicients are
w=Af. (4.13)

The coefficients of f can be obtained in a similar way by differentiating (4.11)

with respect to f* and setting the resulting expression to zero,

90° _
oF

After substituting w in the above equation (4.14) with (4.13), (4.14) reduces

—aghf—agAHw—i—afI‘f:ONfNR. (414)

to

h; = T'f - A"Af
= (I - A7A)f
2
an
= [BB"+ —g(waNR)x(NfNR)) — AT A|f

2
On

= [cCH + U—E(I(NfNR)x(Nme)]f, (4.15)

Q

where
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[ R0] ... RN, 0 ... 0]
0 hS0] ... ASNG] .0
0 0 0 0 . RS[O)
c=| (4.16)
RO ... RSN 0 .0 |
0 RZI] ... BLINJ .0
. . .
0 0 0 0 ... &[] ]

and its dimension is NyNg x Ny.

Finally, the FFF coefficients can be computed from

2
(o _
f=[cc?+ ;_‘bQ‘(I(NfNR)x(NfNR))] hy, (4.17)
and this result can be used to obtain the FBF coefficients from (4.13).
Al-Dhahir and Sayed obtained the same results in [45] using a different deriva-

tion.

4.2 Linear Equalization (LE)

LE is another suboptimum equalization technique that is commonly used .in
practice. It employs Np linear transversal filters to compensate for the ISI
The filter structure has a computational complexity that is a linear function
of the channel dispersion length L [27]. A block diagram of a LE scheme with
Npg receive antennas is shown in Figure 4.2. Similar to DFE, the LE scheme
consists of Ny discrete time FFFs. The inputs to the FFFs are the received
symbols 7,,.[k] at each receive antenna. The output of each FFF is a weighted
linear combination of the received signals at the corresponding receive antenna
n,. These outputs are summed together to form an estimate b[k] of the current
symbol b[k]. The threshold device then uses this value to estimate the current

symbol decision b[k].
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Figure 4.2: Block diagram of LE with Npg receive antennas.

Similar to DFE, the optimum FFFs of LE are of infinite-length. However,
FFFs with length four times the overall CIR, yield similar performance to the
infinite-length FFFs. Therefore, the length of the FFF of LE in this work is
assumed to be four times the overall CIR. The MSE criterion is used again for
optimization.
b[k] in Figure 4.2 can be written as

5 Ng 0

=Y Y fulnira k-, (4.18)

nr=1n=—(N;~1)

where f,, [n] are the coefficients of the FFF of receive antenna n,. The length
of the FFF is N;. Similar to the DFE case, the FFFs of LE are anti-casual
filters as well. This again can be solved by introducing a delay of (N; — 1) at
the input of each of the FFFs.
The error term denoted in Figure 4.2 as e[k] can be written compactly in vector

form as

elk] = blk] — b[k] = b[k] — FAr[K], (4.19)

where f and 7[k] were already defined in (4.3). The MSE can now be written

02 = Efelkle’[k])
= E{(b[k] — £Hr(k])(b*[k] - v [K]F)}
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= E{[blK]I} — E{vlk]rT (k] £}
—E{FMr k)b (K]} + E{f T [k]rT k] £} (4.20)
The above equation (4.20) can again be simplified by recalling (2.29) and using

the same assumptions as in the DFE case.

The terms in (4.20) can now be simplified to

{blk)r" [] £}
E{fTr K K]} = oiffhy
E{fHrkrf K f} = affH[BBH+j—;;(I(N,NR)x(N,NR))]f

= o2firf, (4.21)

ophf f

where h;, B, and T' were defined in (4.6), (4.9), and (4.10), respectively.
Substituting (4.21) into (4.20) yields

o? = o} —oth f — ol f¥h; + ol FIT f. (4.22)

Differentiating the above equation with respect to f* and setting the resulting

equation to zero yields the solution for the FFF coefficients,

F=T"thy. (4.23)

4.3 Performance of DFE and LE

For the suboptimum equalizers discussed in the last two sections, the location
of the zeros of the Z-transform of the discrete-time equivalent CIR h&i[k| is
very important [46]. LE does not perform well when the equivalent channel
has a spectral null since the noise power is enhanced at frequencies around the
spectral null. In other words, if zeros are located close to the unit circle of
the complex plane, the performance of LE degrades. DFE makes memoryless
decisions and cancels the ISI caused by the previous symbols. Without the

FFFs, its performance degrades if zeros are located outside the unit circle [46],
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i.e., if the discrete-time equivalent CIR is not minimum phase. Therefore,
| allpass prefilters such as the FFFs depicted in Figure 4.1 which transform the
equivalent CIR in its minimum phase equivalent should be employed if DFE
is used at the receiver. Error propagation is another issue which needs to be
considered when employing the DFE at the receiver. This is because when
deriving the coefficients of the FFFs and FBF, the assumption that the past
decisions are correct is usually made and this is certainly not true. However,
despite error propagation, the performance of DFE is generally.better than

that of LE in wireless ISI channels.
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Chapter 5

PEP Estimation

In this chapter, the approximate worst-case PEP of DFE and LE will be cal-
culated. The calculation of the PEP requires the error variances of the two
schemes. In principle, the error variance in (4.4) and (4.20) can be used for
this purpose for DFE and LE, respectively. However, the resulting expressions
to be optimized require the inverse of large matrices making this approach im-
practical because the optimization has to be carried out for a large number of
samples. Since DFE and LE with FFF lengths four times the overall CIR yield
comparable performances as their respective counterparts with infinite-length
FFFs, the error variances of DFE and LE with infinite FFF lengths are used
instead to estimate their respective PEP in this work.

In the next two sections, we will calculate the SNR, for DFE and LE, respec-
tively. It will be seen later that the resulting expressions cannot be evaluated
in closed-form. Therefore, numerical methods will be used to approximate
the SNRs. In the last section of this chapter, the obtained SNRs are used to

approximate the worst-case PEPs of DFE and LE, respectively.
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5.1 SNR for DFE

According to [47], the error variance of DFE with infinite-length FFFs and

multiple receive antennas is

1/2T
o2(h,g) = olexp{ —T / In 1+— Z | Hz3( eﬂ’ffT)\ df v, (5.1)
—1/2T n ne=1

This error variance depends on the overall CIRs between all the transmit and
receive antenna pairs h, and the DD filter coefficients g. Hg(e?*™/T) is the
Fourier transform of h2i[k] and it is, therefore, the frequency response of the

equivalent channel of receive antenna n, [48]. It can be expressed as

Hﬁf(eﬂ"fT) = hS0] + ASd[1] - exp{—j2nfT} +.
+h$z(7l‘[L¢q — 1] - exp{—j2n fT(Leq — 1)} (5.2)

The SNR also depends on h and g and can be written as

a
St =
1/2 2 Ng
= exp /ln —g Z ’Heq (e7*™) ] T
1/2 0_2 Ng ' 5
= Do /ln Iy |ER )| | de g (53)
n ~1/2 b ny=1

A closed-form solution to the above SNRppg(h, g) expression does not seem to
be possible. Therefore, a numerical method is used to calculate SNRppg(h, g).
The definite integral in (5.3) can be approximated by numerical integration.
There are four main methods for evaluating definite integrals numerically [49]:
the Trapezoid Rule, the Midpoint Rule, Simpson’s Rule, and the Romberg
Method. All of these methods can be easily implemented on a small computer.
Also, all these techniques require to calculate the argument in the integral at
a set of equally spaced points in interval [a,b] where a and b are the lower
and upper limits of the integral, respectively. In this work, the Midpoint Rule

is used. The computational complexity for this method is slightly less than

34




those of the other three. It involves forming a Riemann sum of the areas of
rectangles whose heights are taken at the midpoints of the subintervals [49].
The lower and upper limits of the integral in (5.3) are —1/2 and 1/2, respec-
tively. Let the number of points to be evaluated within this interval be ZN.-% 1.
Now the integral in (5.3) can be approximated by

02 N 2 1
SNR. h ~ 2 1 —" Heq '727T2N 1
DFE( 7g) 0_721 exp {SEN n 13 + §1| + ) 2N+1
1
2 N 2 2N+
9% Tn j2m
= 2 1 Heq J 2N+1
2 {exp SEN n Ub +nrz_:1‘ ] }
2 N 2 Ngr
o . 2
- Z—{ 1 |%+ 3 | ]}
s=—N b ny=1
(5.4)
The frequency response H, eq( 2N+1) can be calculated by
Leg—1 s
H%(e J27r2N+1 Z hed (k] exp {-—j27r = k} . (5.5)
e 2N +1

Recall that h¢?[k] is the equivalent CIR defined in (2.30) with length Leq. The

above equation can now be written compactly in vector form as

@M=V£?Mm (5.6)

where
hotl)] 0 i hawgl0] . 0
a0 hawll] - 0
: 0 . : - 0
H'n"‘ = hnrl[L B ]‘] B hnrl[O] et hnrNT [L - 1] B h‘l‘L,-NT [0]
0 o hall .. 0 bl
0 o haalL—=1] .. 0 o D =1] |

with dimension (L + N — 1) x NNr.

35




Now (5.5) can be written as

. s E
Hyi(*e) = |- dH,,g (5.8)
T NT
with
d= [ 1 exp {>—j27T2NS+1} exp {~j27r21\2,“°'+1} ... exp {_jQW(L;N:Lll)s} ] '
(5.9)

Finally, the SNR of DFE with infinite-length FFFs can be easily calculated to

1
0.2Es N G.QN Np 2NF1
SNRpre-nu(h, g) = UfNT { II a:%ET +g" (Y HEd"dH.,|g
n s ne=1
10)

s=—-N

where the subscript, NU, stands for numerical.

5.2 SNR for LE

According to [27], the output noise variance of LE with infinite-length FFFs

and multiple receive antennas is

1/2T
on

o’(h,g) = To} df. (5.11)

o W&\ prear jomfTy|2 o o2
—1j21 o} Y |Hn(e?™T)|" 4+ 02

ner=

The SNR depending on h and g can be written as

2

g,
SNRLE(h’vg) = 0_2(’: g)
1
- R (5.12)
/ 52
Nr n. 2 de
-1200 > \Hﬁf(eﬂ”) + 02

ne=1
Again, a closed-form solution to the above expression does not seem to be
possible. Therefore, the same numerical method as used in the DFE case

is used to approximate the SNR expression. We again use 2N + 1 points
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to evaluate the above integral in the interval [-1/2,1/2]. The SNR can be

approximated by

-1

1 N o2
SNRig-nu(h,g) = ON + 1 Z Nn .n R
s=—N o'g Z Hﬁ?(eﬂwm + 0'7%

T ~1

1 X 1

— _ Z (5.13)
N . s
2N+1S=——N§§- g ‘Hﬁ?(ejme)Q"'l
" ne=1

Substituting (5.8) into (5.13), the SNR of LE with infinite-length FFFs can be

easily calculated from

-1

SNRs ol g) = |~ 3" 1
LE—-NU ) = 7
2N +1 < o2E, Nr
=N x99 (n > Hf,deHnr> g+1

(5.14)

5.3 Pairwise Error Probability

The SNRs obtained in (5.3) and (5.12) from the last two sections are both
biased [47]. The biased and unbiased output SNRs are related by

SNRy = SNRg — 1, (5.15)

where SNRy and SNRp stand for the biased and unbiased output SNR, re-
spectively. To calculate the PEP of both DFE and LE, we assume that the |
error term, efk|, in Figures 4.1 and 4.2 are both Gaussian distributed, which
is a good approximation in practice. With this assumption, the PEP fof two
adjacent signal points of DFE and LE can be calculated by

(5.16)

2

2
PEP = Q ( —dminSNRU> ,

where @Q(-) is the complementary Gaussian error integral defined in (2.23)

and d2 . is the squared minimum Euclidean distance between two adjacent

min
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signal points and thus depends on the modulation scheme. For an M-PSK

2 .
min

modulation scheme, dZ. can be calculated by using the following equation:

a2, = [2sin(n/M))*. (5.17)

min

Therefore, for 2-PSK symbols, d?

2., = 4 while for 8-PSK symbols, dZ; =
0.5859. It should be noted that the nearest neighbor signal points are consid-
ered and therefore, the PEP presented above is the worst-case PEP.

Since the SNRy of both DFE and LE depends on the overall channel h, and DD
filters g, the PEPs of DFE and LE are both channel and DD filters dependent

as well. Therefore, the worst-case PEP for DFE and LE can be finally written

s |
PEPorg(h.g) = O (\/dﬁin(SNRDFQE(h,g) B 1)) (5.18)
and
PEPLg(h,g) = Q <\/ dr?nin(SNRLg(h’g) - 1)) , (5.19)
respectively.

The above expressions only give the worst-case PEPs for a specific equivalent
channel and since mobile channels are random, the expectation operator is
applied to both equations to arrive at the approximate average BER. This will
guarantee that the final ODD filter coefficients obtained are optimized for the
average of the channels and not only to a specific one. Therefore, the average

PEPs of DFE and LE are

2in(SNRpre(h,g) — 1)> } (5.20)

€ {PEPpre(h,g)} =& {Q (\/ i 2

and

S{PEPLE<h,g>}=8{Q(\/df“i“(SNR”;(h’g)‘”)},  (s2)

respectively, where the expectation is with respect to the CIR vector h.

Our goal is to minimize (5.20) and (5.21) with respect to the DD filter coeffi-
cients, g. However, a closed-form solution to the minimization problem is not
feasible. In the next chapter, a stochastic gradient algorithm for optimization

of the ODD filter coefficients is proposed.
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Chapter 6

Stochastic Gradient Algorithm

In this chapter, a stochastic gradient algorithm for optimization of the ODD
filters for DFE and LE will be derived. Since we cannot carry out the expecta-
tion operation of both (5.20) and (5.21), we first calculate the gradient vectors
of (5.18) and (5.19) for a fixed channel, h. As we will see later in this chapter,
a closed-form solution to the gradient vectors is not feasible and therefore, we
have to rely on numerical methods to approximate the gradient vectors. We
will then present the stochastic gradient algorithm to obtain the DD filter co-
efficients and perform the averaging over the statistics of the channel. We refer
the filters optimized by the proposed algorithm as DFE-ODD and LE-ODD,
respectively. At the end of this chapter, some of the issues which affect the
convergence behaviour of the stochastic gradient algorithm for the two novel

ODD schemes will be discussed.

6.1 Gradient Vector

Since both (5.18) and (5.19) involve the Q-function and their only difference

is the argument in the square root, for convenience, we introduce

yx = &(SNRx(h,g) — 1), (6.1)
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where the subscript “x” stands for “DFE” and “LE”, respectively, and

&2,
a=-m (6.2)

It should be noted that y, depends on both h and g, but we use yy instead
of y.(h,g) for convenience. Now the general PEP4(h,g) expression can be

written as ,
PEP,(h,g) = Q(V). (6.3)
The following expression results when the above expression is differentiated

with respect to g*:

0
SPEP.(h,g) = 9 )

og*

8 1 7 —t2/2 )
= — — dt

ag* | Var / €

g ( 2’”\/@

0 1 Ooe‘“/2du
" o \vEr) o

_1 e—yx/2> a
= UYx- 6.4
<\/87r Vix ) 09" (64)
The fundamental theorem of calculus [49],

g(z)

[ £t = f (9(@)) Zg(x), (6.5)

was used for the last equality in (6.4).

Finally, an expression that can in principle be used for the optimization of the
DFE-ODD filters and LE-ODD filters is obtained by substituting (6.1) back
into (6.4). |

6.2 Gradient Vector for DFE-ODD

The gradient vector for (5.18) can be obtained by substituting (6.1) into (6.4)
and completing the resulting derivative. In the following derivation, the de-

pendence of the SNR on h and g is dropped for convenience. This leads to
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the following equation:

0
PEP h
8g" pre(h, g)

-1 exp(—a(SNRDFE - 1)/2) 3
\/8_77 . \/Oé(SNRDFE — 1) ag* ypre

( —1 exp(—a(SNRppg — 1)/2)aSNRprE
V3T \Jo(SNRppg — 1)

5 1/2
Xag* (—/ In

1/2

2

Ng
ne-=1

Op

_ ( —1 exp(—a(SNRprg — 1)/2)aSNRprE
N \/(SNRpgE — 1)

Np . 2
e 0 S |psa(erf

ny=1

X dz. (6.6)

N .

-1/2 [%’?4— 5 |H§?(eﬂ'2m)|2]
npy=1

At this point it should be clear that a closed-form solution to the above ex-

pression is not feasible because both SNRppg and the integral in the above

expression cannot be computed in closed-form. To compute (6.6) numerically,

SNRprg can be approximated by (5.10) and the integral can be approximated

by using the same approach as in Section 5.1. The resulting gradient vector

becomes
ga—*PEPDFE(h,g) I exp(—a(éNRDFE—NU —1)/2)aSNRpre-ny
7 \vET (2N + 1)\/a(SNRDFE—NU - 1)
N
x ( ) Hf,deHnr> g
ny=1

X (6.7)

Nyr=

s=-N [%g% + gt ( %1 HE deHnr> g}
6.3 Gradient Vector er LE-ODD

The gradient vector for (5.19) can be computed in a similar way as for DFE by
substituting (6.1) into (6.4) and completing the resulting derivative. Again,
the dependence of the SNR on h and g is dropped in the following derivation
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for convenience. The following expression results:

0 pEpio(hg) = ( 1 exp(—a(SNRLE—l)/Q)) 9

og* V81 [a(SNRig — 1) g~ "
_ —a exp(—a(SNRpg — 1)/2)
V81 /a(SNRig — 1)
-1
1/2 )
xaa* / N Tn dz
9" i o? 2—:1 | Hed(e2m)|* + 1
_ —a exp(—a(SNRg — 1)/2)
\/g \/OZ(SNRLE - 1)
1/2
X — / % —a ! dz
Lip G Y | H () + 1
" ne=1
-2
1/2

x/ 1 dz

2 Np .
“ip &Y |H3(e727) | 4 1
" n,.=1

_ [ —(SNRug)? exp(—a(SNRig — 1)/2)
\/8? a(SNRLE - 1)

1/2 _9_ E!ZL % HQQ(ejQWI)
ag* 0’% =1 T .
>< ™

N 1> dz. (6.8)

2
N
s (4 > IHS‘E(eﬂ”)I2+1>
" np=1

-

Again a closed-form solution to the above expression is not possible and there-
fore, a numerical method is used to approximate (6.8). SNRrg can be ap-
proximated by (5.13) and the integral can be approximated by using a similar

approach as used in Section 5.1. The resulting gradient vector is

0 _ —OZ(SNRLE_Nu)2 exp(—a(SNRLE_NU - 1)/2)
ogr el g) = ( (2N +1) V87 /a(SNReg_nu - 1) )

o2E, Np
v [ (Foan (¥ miaran,) e+ 1)
X Z T

2 N, 2
s=—N <L:%]€;g ( > HY d”dHnR> g+ 1>

nyp=1
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_ (—a(SNRLE—NU)2 exp(—a(SNRLg-nU —1)/2))
(2N + 1) V8 \/a(SNRLE—NU —1)

N
opBe ( s HY deHnR> g

O'%NT noz1

= N
s==N (;’§§; g ( fl HY de,HnR> g+ 1)

" Ny=

: [69)

6.4 Adaptive Algorithm

If the equivalent channel h is fixed, we can use the steepest descent algorithm
to optimize the ODD filters. However, since wireless channels are random, we
have to use a stochastic gradient algorithm to perform the filter search. A
brief review of the steepest descent algorithm will be given first. Then we will
describe the stochastic gradient algorithm, which is used in this work. The

following two equations describe the steepest descent algorithm

ali+1] = gl -6 | 5PEP(h gl (6.10)
gli+1] = \/ggf[z'+f][;0[z'+1]g°[i+”‘ (6.11)

The algorithm runs for a pre-defined number of iterations with a pre-defined
step size, 6. Eq. (6.10) describes the operation of the algorithm for each
iteration 7. The negative sign in (6.10) refers to a minimization problem.
A time index 7 is introduced to the vector g to indicate that a new vector
containing the ODD filter coefficients is obtained at the end of each iteration.
At the end of each iteration, the new vector g[i + 1] is normalized to ensure
. that the new vector has an energy of Np. This is mathematically shown in
(6.11).

The stochastic gradient algorithm is similar to the steepest descent algorithm
explained above except that the fixed channel condition is removed. In other
words, the equivalent channel h is allowed to change for each iteration. In
fact, for each iteration a new channel is generated according to the statistical

properties of the wireless channel described in Chapter 2. This allows the
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algorithm to adapt to the statistics of the wireless channel rather than to a
specific one. In this way, the averaging over the statistics of the channel is

done implicitly. The resulting stochastic gradient algorithm is given by,

gofi +1] = g[i]—a[—g‘Z—*PEPx<hm,g[z‘]> , (6.12)
gli+1 = \/ggl[i+]1\][§0[i+1]go[i+1]. (6.13)

The new notation hli] is introduced to indicate that a new channel is used for
each iteration. The number of channels that are used for the results in this
work is 100,000. These channel samples are generated by a program taken

from the previous work [1, 2].

6.5 Convergence of the ODD Schemes

The proposed stochastic gradient algorithm runs for a certain numbers of iter-
ations before it converges. Ideally, the shorter the time it takes the algorithm
to produce the filters with good performance, the better. There are a few fac-
tors which affect the convergence time of the algorithm and the performance
of the resulting ODD filters, e.g., the number of iterations that shall be per-
formed, the initial filter coefficients, N, N, and 6. However, convergence time
is not very crucial here because in practice, the ODD filters have to be opti-
mized only once for each base station, since we consider transmissions in the
downlink direction and the channel statistics for a given base station do not
significantly change with time. Nonetheless, it is still desirable to choose the
right parameters such that the resulting algorithm does not take too long to
converge yet providing good performance.

Because of the relatively involved nature it seems to be difficult to provide a
convergence proof for the proposed stochastic gradient algorithm. However,
our simulation results suggest that the stochastic gradient algorithm always
converges if the parameters such as N and § are chosen properly. The var-

ious factors that affect the convergence behaviour of the algorithm and the
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performance of the resulting ODD filters will be discussed in the following

sections.

6.6 The Influence of §

An appropriate step size § has to be chosen before running the proposed al-
gorithm. It is found that although ¢ affects the convergence time, it does
not affect the performance of the converged ODD filters. In Figure 6.1, the
E{PEPprr(h,g)} vs. the iteration number 7 of the stochastic gradient al-
gorithm for 2-PSK transmission over an EQ profile with L = 7, Ny = 2,
Ngr = 2, p, = [0.5], and p, = [0.7] is shown. The filters were optimized for
10log,o(Es/No) = 10 dB. E{PEPpgg(h, g)} was calculated over 100,000 chan-
nel samples using (5.10) and (5.20) at 10 dB. For the results in this section,
we use N = 10 and we initialize the algorithm with GDD filters with N = 3.
In other words,

T
goj=]11 0 0 0 0 1 (6.14)

for this case. The influence of N, initial filter coefficients, and N will be
discussed in each of the subsequent sectiokns, respectively.

For the step size of the algorithm we adopted § = 2, § = 4, and § = 10.
If § is chosen properly, it is expected that E{PEPppg(h,g)} decreases with
increasing number of iterations. When 6 = 2 is used, the number of iterations
required for the algorithm to converge is about 40,000. On the other hand,
ilf d = 10 is used instead, only about 10,000 iterations are required for the
algorithm to converge.

In Figure 6.2, we consider the EQ profile with 8-PSK modulation, Ny = 2,
Ng =1, N =3, N =10, p, = [0.5], and DFE employed at the receiver. The
filters were optimized for 10log,o(Es/No) = 15 dB and E{PEPprg(h,g)} at 15
dB is shown in the figure. For the step size, we adopted § = 0.1, 0.2, and 2.
_ The same observation as in the previous case is made, i.e., convergence time

decreases with increasing 4. It is also noted that for the § = 2 curve, there are
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E(PEPc(h, @)}at 10 dB

Iterations (x1000)

Figure 6.1: £{PEPprg(h,g)} vs. number of iterations for 2-PSK transmission
over EQ channel with L = 7, N = Np =2, N = 3, N = 10 p, = [0.5],
p, = [0.7], and DFE at the receiver.

ripples at iteration 4 = 6000, 11000, 160000, 26000, and 36000. This behaviour
is inherited from our stochastic gradient algorithm because a new channel is
used for each iteration and as a result, the algorithm will not converge to a
specific value if a relatively large § is used. Consequently, a large ¢ results
in larger ripples. This is evidenced in this figure where the smaller Js, i.e.,
0 = 0.1 and 0.2, do not result in noticeable ripples. It should be noted that
the algorithm may not even converge if § is too large.

The same observation can be made for the LE-ODD scheme. Figures 6.3
and 6.4 use exactly the same setup in Figures 6.1 and 6.2, however, with LE
employed at the receiver and the filters were optimized for 10log,o(E/No) = 15
dB and 1016g10(Eb/N0) = 20 dB, respectively. E{PEPprg(h,g)} at 15 dB and
20 dB is shown in Figures 6.3 and 6.4, respectively. One can see that ¢ affects

the convergence time and the amount of ripple after convergence in the same
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Iterations (x1000)

Figure 6.2: E{PEPppg(h, g)} vs. number of iterations for 8-PSK transmission
over EQ channel with L=7, Npr =2, Np =1, N =3, N = 10, p, = [0.5], and
DFE at the receiver.

way that it does for the DFE cases.

6.7 The Influence of N

In order to compute (5.10), (5.14), (6.7) and (6.9), a suitable value for N has to
be chosen. In theory, one would want to choose N as large as possible because
a larger N gives a more accurate approximation of the integrals. However, a
larger N also translates into a higher complexity since more points need to be
evaluated for the integral. As we have already mentioned, convergence time is
not very important because, in practice, the ODD filters have to be optimized
only once for each base station. Nevertheless, it is still desirable to choose a
value for V such that the resulting expressions are not too complex to evaluate

yet providing accurate result. It is the goal of this section to investigate the
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Figure 6.3: £{PEP_g(h,g)} vs. number of iterations for 2-PSK transmission
over EQ channel with L = 7, Nt = Np =2, N =3, N = 10, p, = [0.5],
p, = [0.7], and LE at the receiver.

influence of N on the performance of the resulting ODD filters.

To do this, different Ns were used to generate the ODD filters for a specific
channel setups. We show the average simulated BERs of the ODD schemes
with N = 3 and different values of N for different power delay profiles. The
ODD filters were optimized for 10log,o(Es/No) = 10 dB and 15 dB for DFE
and LE, respectively. We use the channel model described in Chapter 2 and
at least 10000 CIRs have been randomly generated in accordance with the
respective power delay profile for each 10log,,(Ey/Np) value simulated. The
BER vs. N results are shown in Figure 6.5. The top graph shows the BER
simulation results for 2-PSK transmission over EQ, TU, and HT with DFE
employed at the receiver, respectively. In all cases, two transmit antennas and
one receive antenna are used. The correlation factors used for EQ, TU, and

HT are 0.5, 0.5, and 0.7, respectively. The graph plots the average simulated
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Figure 6.4: £{PEPyg(h,g)} vs. number of iterations for 8-PSK transmission
over EQ channel with L =7, Np =2, Np =1, N =3, N = 10, p, = [0.5], and

LE at the receiver.

BER at 10log;o(Es/No) = 10 dB for all three cases. It is noticed that different
values of N do not result in a big difference in the BER except for the EQ
profile where N = 1 yields inferior performance.

The bottom graph shows the BER at 15 dB vs. N results for LE with the
same channels used in the DFE cases. It can be seen that also in this case,
N does not affect the BER except for the EQ profile, where N = 1, 2, 3, and
4 suffer from a performance penalty. Therefore, a relatively small value of N
~ can be used. This is desirable because a small N speeds up the optimization
process.

It is interesting to find out that a small N yields comparable result to a large
N. The main reason to this is that we consider E{PEP«(h,g)} instead of
PEP,(h, g) for a specific channel. To illustrate this, we consider the EQ profile
with 8-PSK, Ny = 2, Np =1, N = 3, p, = [0.5], and DFE employed at the
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Figure 6.5: Simulated BER vs. N for DFE and LE.

receiver. We evaluate PEPppg(hli], g) according to (5.18) at 10logo(£s/No) =
15 dB with g = [1,0,0,0,0, 1] for 50 independent channels, i.e., ¢ =1,...,50,
using N = 5 and 100, respectively. The result is shown in Figure 6.6.

It can be seen that different Ns indeed give different PEPprg(h[i], g) values.
Obviously, PEPprg(hli],g) calculated using N = 100 is more accurate than
the one calculated using N = 5. However, if we use the same Ns to compute

E{PEPpre(h, g)} over 100,000 samples, their values are

E{PEPprg/(h, g)}ll\—,=5 = (.00323044820091, (6.15)
and

E{PEPprr(h,g)} y_10o = 0.00314907825794, (6.16)
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Figure 6.6: PEPppg(hli], g) vs. i for 8-PSK transmission over EQ profile with
Ny =2, Nrp=1, N =3, p, =[0.5], and DFE employed at receiver. Solid line:
N = 5. Dashed line: N = 100.

respectively. The difference is less than 2.6%. Therefore, we conclude that
although it may not be a good idea to use a small N to evaluate PEP,(h, g),
it is acceptable to use a relatively small N to run the stochastic gradient
algorithm and evaluate E{PEP(h, g)} because the averaging compensates for

the error which a small N causes. In the following, we use N = 10.

6.8 The Influence of the Initial ODD Filter

Coefficients

The proposed gradient search method requires an initial filter vector g[0] to

start from. The initial filter coefficients may affect the performance of the re-
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sulting ODD filters and the convergence time of the algorithm. By randomly
choosing some initial filter vector and comparing the performance of the result-
ing final filter coefficients, it is found that the initial filter vector chosen does
not play a big role in the performance of the resulting ODD filters. Also, the
initial filter vector chosen does not affect the convergence time significantly.
Therefore, the GDD filter is always used as the initial filter vector in this work
for convenience. For example, in a Ny = 3 and N = 3 case, the initial filter

vector would be set to

g[0] = 100010001T. (6.17)
To illustrate the point, we initialize the algorithm with two different g[0]s
and evaluate E{PEPprg(h,g)} at 10 dB for every 1000 iterations for the EQ
profile with 2-PSK, Ny =2, Np =2, N = 3, p, = [0.5], p, = [0.7], and DFE
employed at the receiver. § = 10 was used to optimize the ODD filters. The
two initial filter vectors considered are

g[()]:-%[llllll

T
, (6.18)

and
T.

'mm=[100001 (6.19)

The filters were optimized for 10log,y(Ey/Ny) = 10 dB and the results are
shown in Figure 6.7.

It is seen that the algorithm converges to the same E{PEPprg(h,g)} value
independent of the g[0]s used. In other words, the resulting performance of
the ODD filters optimized with different g[0]s are essentially the same. It
is also noted in the graph that although the algorithm converges faster with

init_ial filter vector set to

T

gm=% 111111], (6.20)

the improvement is not significant.
In Figure 6.8, we consider the EQ profile with 8-PSK modulation, Ny = 2,
Ngr =1, N =3, p, = [0.5], and DFE employed at the receiver. The filters were
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Figure 6.7: £{PEPprg(h,g)} vs. number of iterations for 2-PSK transmission
over EQ channel with L = 7, Np = Ng = 2, N = 3, § = 10, p, = [0.5],
p, = [0.7], and DFE at the receiver. Circles: g[0] = {1000 0 1]". Triangles:
glo]=1/v3[111111)7.

optimized for 10log,4{ Ey/No) = 15 dB with 6 = 0.1. We initialize the algorithm
with the filter coefficients defined in (6.18) and (6.19). Again, ODD filters
optimized with different g[0]s yield almost exactly the same E{PEPprg(h,g)}
after convergence. Also for this case, the algorithm initialized with (6.18)
converges faster than the-one initialized with (6.19).

Similar observations can be made for the LE-ODD scheme. Figures 6.9 and
6.10 again show the E{PEP_g(h,g)} as a function of the iteration number,
2. The é,ame system parameters as used in Figures 6.3 and 6.4 are valid for
Figures 6.9 and 6.10, respectively, however, with LE employed at the receiver.
The ODD filters of Figure 6.9 were optimized for 10log,o(F»/No) = 15 dB
with ¢ = 10 while those of Figure 6.10 were optimized for 10log,o(Es/No) = 20
dB with 6 = 0.05. ‘In both figures, one can see that although g[0] affects
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Figure 6.8: £{PEPprg(h,g)} vs. number of iterations for 8-PSK transmission
over EQ channel with L = 7, Np =2, Np =1, N =3, § = 0.1, p, = [0.5],
and DFE at the receiver. Circles: g[0] = [1000 0 1]7. Triangles: g[0] =
1/v3[111111)7.

the convergence time, the resulting ODD filters initialized with different g[0]s
always yield similar performance after the filters converge.

It is worth mentioning that the converged ODD filters do not necessarily have
to be the same ﬁlters even though they yield similar E{PEPprr(h, g)} values.
In fact, it can be inferred from (5.10), (5.14), (5.18), and (5.19) that for a given
vector « of length NNz, g = e/« yields the same average BER for any phase
9. Since we are mostly interested in the performance of the ODD filters and
we can be sure that the algorithm converges in less than 100,000 iterations as
long as we choose a proper §, we always use the GDD filters to initialize the

algorithm in this work for convenience.
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Figure 6.9: £{PEP_g(h,g)} vs. number of iterations for 8-PSK transmission
over EQ channel with L = 7, Ny = Ngp = 2, N = 3, § = 10, p, = [0.5],
p, = [0.7], and LE at the receiver. Circles: g[0] = [L 00 0 0 1]7. Triangles:
glo]=1/v3111111]", -

6.9 The Influence of N

Until now ohly filters of length N = 3 have been considered. It is interesting to
compare the performance of the various ODD schemes using filters of different
lengths. Figure 6.11 and 6.12 show the average simulated BERs vs. the filter
length N with DFE and LE employed at the receiver, respectively. We consider
2-PSK transmission over the EQ profile with N7 = 2, Ng = 1, and p, = [0.5]
for both cases.

The DFE-ODD filters of Figure 6.11 were optimized for 10log,o(£y/No) = 10
dB, while the LE-ODD filters of Figure 6.12 were optimized for 10log;o(Es/No)
= 15 dB. The average BERs at 10 dB and 15 dB are shown in Figure 6.11 and
6.12, respectively. For the DFE-ODD case shown in Figure 6.11, increasing the
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Figure 6.10: £{PEP_g(h, g)} vs. number of iterations for 8-PSK transmission
over EQ channel with L =7, Np =2, Np =1, N =3, § = 0.05, p, = [0.5],
and LE at the receiver. Circles: g[0] = [100001]7. Triangles: g[0] =
1/vV3[111111)7,

DFE-ODD filter length does not improve the performance of the filter. The
filter with a length of 7 yields almost exactly the same result as the filter with
a length of 1. We will see why the performance of the filter does not improve
with N in the next chapter when we examine the filter coeflicients. For the LE
result shown in Figure 6.12, the performance of the LE-ODD filters improves
with increasing V.

In general, longer DFE-ODD and LE-ODD filters achieve a better performance.
However, they also increase the required computational complexity at the re-
ceiver, since larger N's correspond to longer equivalent CIRs which in turn
require longer equalizer filters. The results also suggest that the DFE-ODD
and LE-ODD filters of length N > 1 perform better than both the MLSE-
ODD and GDD filters with longer lengths when DFE or LE are employed at
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Figure 6.11: Simulated BER of DFE vs. N for 2-PSK transmission over EQ
channel with L =7, Nr = 2, Ng =1 and p, = [0.5].

the receiver. This is desirable because the complexity of the receiver decreases
with decreasing N. It is also interesting to note that the performance de-
grades when long MLSE-ODD or GDD filters are used. In fact, both GDD
and MLSE-ODD filters achieve a better performance with N = 1 than with
N = 7 for both DFE and LE. This shows the importance of an appropriate
optimization of the DD ﬁlters for different equalization strategies.

Appendix A tabulates the DFE-ODD and LE-ODD filters for several different
practically interesting channel profiles with different number of antennas and

correlation factors.
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Figure 6.12: Simulated BER of LE vs. N for 2-PSK transmission over EQ
channel with L =7, Np =2, Ng =1 and p, = [0.5].
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Chapter 7

Simulation Results

In this chapter, we present some simulation results for the proposed DFE-
ODD and LE-ODD schemes. The DFE-ODD and LE-ODD filter coefficients
are obtained by using the stochastic gradient algorithm described in Chapter
6. The DFE-ODD and LE-ODD filters will be compared with the MLSE-
ODD filters obtained in [1, 2] and the GDD filters proposed in [4]. Correlated
MIMO frequency-selective Rayleigh fading channels presented in Chapter 2
are considered and simulations are carried out with a program taken from
the previous work [1, 2]. The program was enhanced by introducing receive
antenna correlation and LE at the receiver and by extending DFE to the case
of multiple receive antennas. Suboptimum equalization strategies, DFE and
LE, are used at the receiver. The DD filters in this chapter have a length of

N = 3, since in general, larger Ns do not improve performance significantly.

7.1 DeciSion—Feedback Equalization

Figures 7.1 and 7.2 show the 2-PSK simulation results when DFE is employed
at the receiver with different power delay profiles and different numbers of
antennas. Settings with up to three transmit antennas and two receive anten-
nas are considered. Practical antenna correlations are considered where the

receive antenna correlation factor is equal to or greater than the transmit an-
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tenna correlation factor due to the smaller size of the mobile receiver. For each
simulation result, the case with no transmit diversity (Nr = 1) is shown as
dashed line as well for reference. The ODD filters were optimized for a certain
E,/Np value. The results show that the DFE-ODD filters perform better than
both the GDD and MLSE-ODD filters at the E},/Ny for which the filters were
optimized. Usually, we optimize the filters for 10log;q(Es/No) = 10 dB un-
less for simulations with poor BER performance at 10 dB, where we optimize
the filters for a higher SNR ratio. The E;/N, value for which the filters were
optimized is indicated in parenthesis in the legend of each graph.

The achieved gain by the DFE-ODD filters compared to the MLSE-ODD and
GDD filters in most of cases is small. A relatively large gain is obtained for
the EQ profile with Ny = 2 and Ni =2. The gain that the DFE-ODD filters
achieve over the MLSE-ODD filters is about 1 dB at BER = 10™*. The results
suggest that for 2-PSK transmission, the performance advantage of MLSE-
ODD over GDD is not only preserved for DFE, but its performance is indeed
close to that of the DFE-ODD scheme.

A careful look at the filter coefficients of the different ODD schemes indicates
that the ODD filters are practically identical among the different transmit
antennas for both MLSE-ODD and DFE-ODD schemes. As an example, the
MLSE-ODD and DFE-ODD filter coefficients for 2-PSK transmission over the
EQ profile with Ny = 2, Ng = 1, and p, = [0.5] are tabulated in Table 7.1.
Both ODD filters were optimized for 10log,o( E»/No) = 10 dB. One can see
that the filter coefficients of both transmit antennas are almost identical for
MLSE-ODD and DFE-ODD schemes, respectively. According to (2.30), the
equivalent channel with the DFE-ODD filters shown in Table 7.1 is

hetlk] = Jﬁ‘;{hn[k] * g1[k] + hiolk] * go[k]} - (7.1)

This is very different from the equivalent channel resulted from the GDD filters
where the equivalent channel is simply the sum of channel hq;[k] and delayed

version of hjp[k]. It is clear from Figures 7.1 and 7.2 that the DFE-ODD
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Table 7.1: MLSE-ODD and DFE-ODD comparison: 2-PSK, EQ, L =7, Ny = °
2, Np =1, and p, = [0.5].

ODD filters | Tx gi[0] gi[1] g:[2]
MLSE =1 0.77439 0.61059 -0.16582
1=2 0.77340 0.61412 -0.15718

DFE 1 =1|-0.21956+0.04205i | 0.82452-0.14587i | 0.49187-0.083461

i =2 |-0.23189+0.03666i | 0.81385-0.15536i | 0.49833-0.100271

filters yield much better performancé than the GDD filters. The MLSE-ODD
filters obtained are different from the DFE-ODD filters, however, like the DFE-
ODD filters, the MLSE-ODD filters are essentially identical for both transmit
antennas. This explains why MLSE-ODD yields better performance than GDD
as well. It has been already pointed out in Section 6.8 that different filters can
yield the same average BER.

It is also interesting to look at the filter coefficients optimized for 2-PSK trans-
mission over the EQ profile with Nr = 2, Ng = 2, p, =10.5], and p, = [0.7].
The filters were optimized for 10log,,(E,/Ny) = 10 dB and the filter coeffi-
cients are shown in Table 7.2. It is noted that the energy is concentrated in
the last taps of the ODD transmit filters. With those filter coefficients and
using (2.30), one can see that the resulting equivalent channel, h%%[k], is almost

simply the addition of the two overall channels, h,, 1[k] and h,, 2[k] with the

Es
N

normalizing term multiplied to the result. It can be inferred that N =1
would give almost the same results as N = 3. This explains why increasing
the filter length, N, does not improve the performance of the resulting ODD
filters for some setups such as the one shown in Figure 6.11.

For the ODD filters shown in Table 7.2, we should expect their performance
to be similar to the no diversity case where there is only one transmit and two
receive antennas. However, the simulation result depicted in Figure 7.2 shows
that the DFE-ODD filters tabulated in Table 7.2 perform much better than

the no diversity case. This is due to the fact that, in addition to the diversity
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Table 7.2: DFE-ODD filter coefficients: 2-PSK, EQ, L =7, Ny =2, Np = 2,
=[0.5], and p, = [0.7].

DFE i=11-0.09381-0.00623i | 0.17003+0.00522i | 0.97966+0.049841

i =2 |-0.08377-0.00061i | 0.19674+0.012271 | 0.97534+0.053291

gain the ODD filters achieve, there is also a power gain due to the positive

correlation factor, p, = [0.5], used between the two transmit antennas. This
is shown mathematically as follows:

e{jrainl} - {\\F wrt (K] + P2 [K]) }

= e (I} + € {2Re {hos K10l )
+ & { [ 2lk]"}}
= {0+ 2Re {phe oT, ) + O }672)

where
E {|hnnlk]*} = 0% 0 (7.3)
and the correlation factor pl, was defined in (2.12).
By looking at (7.2), one can immediately see that in addition to the energy
. contributed by the two overall channels, £ {lhnrl[k] |2} and £ {Ihmg[k‘HZ}, there
is also.an extra term, 2Re { oy \/m } If the correlation factor p, is
zero, the resulting power will be the same as the one where there is no diversity.
On the other hand, if p}, is a positive number, there will be a power gain and
in contrast, if p¢, is negative, a power loss results. This explains why although
the DFE-ODD filters have their energy concentrated in one tap, it achieves a
relatively large gain over the no diversity case.
Figures 7.3 and 7.4 show the 8-PSK simulation results with the same system
parameters as used for Figures 7.1 and 7.2, fespectively. The results again
indicate that the DFE-ODD filters perform better than both the GDD and the
MLSE-ODD filters at the F,/Ny values for which the filters were optimized.
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Table 7.3: MLSE-ODD and DFE-ODD comparison: 8-PSK, EQ, L =7, Ny =
3, Np =2, p, =[0.5,0.7,0.5], and p, = [0.7].

ODD Filters | Tx - gi[0] g:[1] - gi2)
MLSE 1=1 -0.13491 0.63120 0.76379
1 =2 -0.12665 0.63319 0.76357
1=3 -0.13160 0.63274 0.76310
DFE 1 =11 0.01288+0.00187i | 0.04592-0.003491 | 0.99885+0.000191
1 =2 | -0.05947-0.00141i | 0.08640+0.00613i | 0.99446-+0.000431
1 =3 -0.02954+0.00119i | 0.05766-0.00481i | 0.99788-0.002881

The gain is minimal for the Ni = 1 cases except for the EQ profile. The figures
for the EQ profile with one receive antenna indicate that the gain increases
with SNR.

The DFE-ODD filters achieve a 1.7 dB gain over the GDD filters at 10~* for
the EQ profile with Ny = 2 and Ng = 2. It is also noted that the MLSE-ODD
filters are inferior to the GDD filters for this setup and some other setups. The
DFE-ODD filters have a 2 dB advantage at BER = 1073 over the MLSE-ODD
filters for the EQ profile with Ny = 3 and Np = 2. Although the DFE-ODD
filters are better than the other filters for the TU profiles with two receive
antennas, the gain is negligible. |

We have also compared the MLSE-ODD and DFE-ODD filters for the 8-PSK
modulation scheme. Similar to the 2-PSK modulation scheme, the coefficients
of the ODD filters are practically identical for all the EQ profiles and for the
other profiles if the filters were optimized for a low SNR ratio. This is true for
both MLSE-ODD and DFE-ODD schemes. This is not surprising because the
PEP depends only on d2,
ODD filters optimized for EQ profile with Ny = 3, N = 2, p, = [0.5,0.7,0.5],
and p, = [0.7] for 10log,o(E}/No) = 10 dB is considered. Table 7.3 summarizes

and SNR of the equalizer. As an example, the DFE-

the result.
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7.2 Linear Equalization

Figures 7.5 and 7.6 show the simulation results for 2-PSK and LE-ODD with
different numbers of antennas and power delay profiles. The LE-ODD filters
perform better than both the MLSE-ODD and GDD filters for all examples
considered. The gains that the LE-ODD filters achieve over the MLSE-ODD
and GDD filters are quite significant in some cases. For example, for 2-PSK
simulation over the EQ profile with Ny = 3, Ng = 1, and p, = [0.5,0.5,0.5],
the LE-ODD filters provide a 6 dB gain over the GDD filters at BER = 1073.
Similar gains are achieved for the two receive antennas cases. For example,
for the 2-PSK simulation of the EQ profile with Np = 3, Ngp = 2, p, =
[0.5,0.7,0.5], and p, = [0.7], a gain of almost 7 dB is achieved by the LE-ODD
filters over the GDD filters at BER = 1073, It is also noted that the MLSE-
ODD filters perform badly when LE is employed at the receiver and in many
cases, their performance is worse than that of the GDD filters. For example,
in Figure 7.6, the GDD filters are 5 dB better than the MLSE-ODD filters at
BER = 1072 for 2-PSK transmission over the HT profile with Nr = 2/ Ng = 2,
p, = [0.5], and p, = [0.7].

We examine again the filter coefficients similar to the DFE-ODD case. For
all the EQ proﬁle.s considered and some other profiles, the ODD filters for the
transmit antennas are practically identical and with the energy concentrated in
one tap. For instance, the LE-ODD filters optimized for 10log;,(Es/No) = 15
dB for 2-PSK transmission over the EQ profile with Ny = 2, Ng = 1, and
p, = [0.5] are shown in Table 7.4. There are cases where the filter coefficients
are different among the antennas. For example, the LE-ODD filters optimized
for 10log,o(Es/No) = 15 dB for 2-PSK and the HT profile with Ny = 3,
Ngr =1, and p, = [0.2,0.5,0.2] are shown in Table 7.5.

For Figures 7.7 and 7.8, the same system parameters as for Figures 7.5 and 7.6
were used but with the 8-PSK modulation scheme. It can again be observed

that the LE-ODD filters perform better than the MLSE-ODD and GDD filters.
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Table 7.4: LE-ODD filter coefficients: 2-PSK, EQ, L =7, Np =2, Np =1,

p, = [0.5].
ODD Filters | Tx 9:[0] g:[1] g:[2]
LE 1 =11 0.06807+0.03627i | -0.21697-0.08106i | 0.881049+-0.405161
i1 =2 0.06011+0.02640i | -0.22893-0.11567i | 0.883002+0.387561

Table 7.5: LE-ODD filter coefficients: 2-PSK, HT, L = 7, Ny = 3, Ng = 1,

p, =1[0.2,0.5,0.2).
ODD Filters | Tx g:[0] g:[1] 9:[2]
LE 1=11] 0.17537-0.19031i | -0.41813+0.28345i | 0.47755-0.670671
1 =2 | -0.47094+0.63133i | -0.31984+0.43845i | 0.23695-0.17017i
i=3| 0.06916-0.24311i | -0.21881+0.287461 | 0.58868-0.677531

However, even though the LE-ODD filters achieve a considerable gain over the
other two schemes, the performance is still unacceptable for the one receive
antenna case. For example, the BER the LE-ODD filters achieve for the 8-
PSK simulation of the HT profile with Ny = 2, Ng = 1, and p, = [0.7]
at 10log;o(Ey/No) = 25 dB is 4 x 1072, This is because wireless channels
usually contain zeros close to the unit circle of the z-transform of the equivalent
CIR and therefore, LE does not perform very well in wireless channels. The
performance is even worse if higher modulation schemes, such as 8-PSK, are
employed. However, the performance of LE can be significantly improved by
using multiple receive antennas [50]. For example, the BER achievable with
LE-ODD for the 8-PSK and the HT profile with Ny = 2, Ng = 2, p, = [0.5],
and p, = [0.7] at 10log;o(Es/No) = 25 dB is 1 x 1073.

Similar to the 2-PSK case, the MLSE—ODD filters also perform badly for 8-
PSK if LE is employed at the receiver. Moreover, it is also noted that the

setups with no transmit diversity yield better results than those with multiple

transmit antennas and MLSE-ODD filters employed in most cases.
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7.3 Future Work

In the BER simulations, the aSSumpfion that the receiver has perfect channel
state information (CSI) is made. In practice, a least sum of squared errors
(LSSE) channel estimation algorithm can be used to estimate the CSI from a
known training sequences [51]. However, the impact of the channel estimation
errors on the BER performance is unknown. Therefore, channel estimation
errors can be taken into account in the future work. Also, we assume MMSE-
DFE and MMSE-LE at the receiver, it will be interesting to compare their
performance with ZF-DFE and ZF-LE where the ISI is completely eliminated
in these two schemes. Finally, it ‘is brought to the author’s attention that the
Kiefer-Wolfowitz finite-difference stochastic approximation algorithm and the
simultaneous perturbation stochastic approximation (SPSA) algorithm can be

used for the optimization problem. Interested readers are referred to [52] for

an introductory treatment of the two algorithms.
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Figure 7.5: 2-PSK simulations for GDD, MLSE-ODD, and LE-ODD filters.
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Figure 7.6: 2-PSK simulations for GDD, MLSE-ODD, and LE-ODD filters.
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Figure 7.7: 8-PSK simulations for GDD, MLSE-ODD, and LE-ODD filters.
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Figure 7.8: 8-PSK simulations for GDD, MLSE-ODD, and LE-ODD filters.
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Chapter 8

Conclusions

In this work, DD filters have been optimized for Rayleigh fading frequency-
selective correlated MIMO channels with LE and DFE at the receiver. A
discrete-time correlated MIMO channel was developed for optimization pur-
poses. The optimization takes into account the statistical properties of the
overall CIR, which includes the influence of transmit pulse shaping and analog
receive filtering. Based on the variance of DFE and LE, we have designed a
stochastic gradient algorithm to calculate the DFE-ODD and LE-ODD filters,
which minimizes the expected worst-case PEP of DFE and LE, respectively.
AH the integrals in this work are approximated by numerical methods as they
cannot be computed in closed-form. It was shown that the proposed algorithm
is not sensitive to the approximation error due to the numerical methods even
with a relatively small N. Furthermore, it was shown that although the result-
ing ODD filters may be different, the proposed stochastic gradient algorithm
always converges regardless of the choice of the initial filters g[0] if the step size
J is chosen properly. We also investigate the effect of the DD filter length N on
the performance. It was found that while in general, the performances of the
DFE-ODD and LE-ODD filters improve as N increases, this is not necessarily
true for suboptimum GDD and MLSE-ODD filters. Simulation results for the
GSM/EDGE system have shown that the proposed DFE-ODD and LE-ODD
filters outperform previously proposed GDD and MLSE-ODD filters if DFE
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and LE are used at the receiver. Please refer to [11, 12] for a summary of this

work.
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Appendix A
Optimized Filters

Various LE-ODD and DFE-ODD filters are given in this appendix. The filters
are optimized for the three common Rayleigh fading setups: Hilly Terrain
(HT), Typical Urban (TU) and the Equalizer Test channel (EQ) [7]. The filters
are optimized for different E,/N, values for the 2-PSK modulation scheme

used in GSM and the 8-PSK modulation scheme used in EDGE. Antenna

correlations are assumed at both the transmit and receive antennas.




A.1 Filters for 2-PSK

Al1.1 DFE,EQ,L=7 Nyr=2, Ng=1, p, = [0.5]

10log;o(Es/No)

Tx gi[0] gi(1] 9i(2]
75 7=11-0.17227+0.03835i | 0.44370-0.093341 | 0.85510-0.17909i
1=2|-0.18714+0.03547i | 0.43638-0.09639i | 0.85406-0.185961
10 1 =11-0.21956+0.042051 | 0.82452-0.14587i | 0.49187-0.083461
1 =21-0.23189+0.036661 | 0.81385-0.155361 | 0.49833-0.100271
12.5 1=11-0.11420+0.17268i | 0.56998-0.698531 | 0.24788-0.28789i
i =21-0.14172+0.148031 | 0.52646-0.71232i | 0.23800-0.341771

A1.2 LE,EQ,L=7 Nr=2, Np=1, p, =[0.5]

10logyo(Es/No) | Tx 9i[0] g:(1] 9:(2]
10 1 =110.139584-0.12510i | 0.17690-0.94905i | 0.13626+0.11960i
¢ =210.13181+0.120721 | 0.16817-0.953041 0.13‘471%—0.115521
12.5 =1 10.08382+0.11826i | 0.32925-0.92205i | 0.08516+4-0.11469i
¢ =2 0.08208+0.12016i | 0.32388-0.92428i | 0.08304+0.112861
15 i =11 0.0680740.036271 ‘—0.21697—0.0810& 0.881049+0.405161
i =210.0601140.02640i | -0.22893-0.11567i | 0.88300240.387561




A.1.3 DFE,HT,L=7 Nr=2, Ng=1, p, = [0.5]

101ogyo(£y/No) | Tx 9:[0] g:(1] 9:[2]
7.5 i =11 -0.23616-0.02688i | -0.29269+0.59417i | -0.171274-0.689541
i=2| 0.29971-0.206681 | -0.03195+0.50253i | -0.27415+0.73399i
10 1=11 0.05315-0.402751 | 0.24078-0.203711 | 0.84750+0.131271
i=21-0.6167440.217351 | -0.17647+0.21828i1 | 0.60406+-0.358761
12.5 i =11 0.04554-0.809351 | -0.15888-0.425131 | -0.35625-0.099931
i=2| 0.13123-0.71911i | 0.20828-0.04093i | 0.27554+0.587091
A.l4 LE,HT,L=7,Nr=2, Np=1, p,=[0.5]
10log;o(Es/No) | Tx 9:[0] g:(1] 9:[2]
10 i =11 -0.0590540.026747i | -0.76465+0.62301i | 0.13389-0.07104i
1 =21 -0.03780+0.06107i | -0.76883+0.60626i | 0.13764-0.13135i
12.5 =1 0.04949-0.190291 | -0.60830-0.66190i | 0.38983+0.03528i
1 =2 | -0.2062040.04030i | -0.68391-0.58904i | 0.04236+0.373311
15 1 =1 -0.31806+0.41997i | -0.00510-0.79143i | -0.13277-0.28009i
i=2| 0.25904+0.626431 | 0.30438-0.59883i | 0.28877-+0.07646i




A.1.5 DFE,TU,L=5 Ny=2, Np=1, p, = [0.7]

10logyo(Es/No) | Tx 9i[0] g:[1] 9:[2]
7.5 1 =11 0.76994+0.121081 | 0.59542+4-0.09465i | -0.16521-0.04191i1
i=21 0.76110+0.12696i | 0.61000+0.10757i | -0.14418-0.01223i
10 1=11] 0.71985-0.41982i | 0.48179-0.24766i | -0.04784+40.099101
i =21 0.71075-0.36802i | 0.45808-0.25187i | -0.28076+-0.085441
12.5 i =11 0.42193-0.166571 | -0.12618-0.28206i | -0.62005-0.560611
1 =2 | -0.00949+0.49943i | -0.29810-0.00489i1 | -0.67871-0.448261

A.1.6 LE, TU,L=5 Npr=2, Np=1, p, =[0.7]
10logyo(Es/No) | Tx 9i(0] gi1] 9:(2]
10 i=1| -0.07229-0.05087i | -0.74224-0.63929i | 0.13795+0.11637i
i=2| -0.06676-0.07136i | -0.74057-0.64293i | 0.127714-0.11112i
12.5 i =1 -0.03636-0.02420i | 0.37261+0.91917i | -0.09051-0.07866i
i =2 | -0.05605+0.02594i | 0.35846+0.92642i | -0.06135-0.07540
15 i=1|0.17111+0.24026i | -0.12231-0.04661i | 0.75062+0.57657i
i=2| -0.12510-0.20391i | -0.15448-0.14633i | 0.76405+0.56010i
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A.1.7 DFE,EQ,L =7, N =2, Np=2, p, =

[0.7]

[05]? Pr =

g:[0]

g:[1]

g:[2]

5

-0.18350-0.040811

0.43106+0.071001

0.86755+0.145501

-0.18441-0.030031

0.41947+4-0.07719i

0.87060+0.158861

7.5

-0.12613-0.006031

0.26142+-0.006201

0.956474-0.029101

-0.12224-0.002161

0.26487+0.010531

0.95584-+0.033381

10

-0.09381-0.00623i

0.17003+-0.005221

0.97966+0.04984i1

-0.08377-0.000611

0.19674+0.012271

0.97534+0.053291

A.1.8 LE,EQ,L=7, Nr=2, Np=2, p, = [0.5], p, = [0.7]

10logyo(Es/No) | Tx 4:[0] 9i(1] 9:(2]
7.5 i =1 |0.23496+0.03957i | -0.630864-0.69887i | 0.23554+0.03671i
i =21 0.2277140.04220i | -0.628724-0.703671 | 0.23196+0.04608i
10 i =1 0.08454+0.00583i | -0.27241-0.022711 0.955234—0.075011
1 =2 | 0.085714+0.007501 | -0.27012-0.016951 | 0.956164-0.07142i
12.5 i =1 |0.10868+40.00018i | -0.30941-0.01468i | 0.94385+0.037251
i =2 | 0.107854-0.00832i | -0.30764-0.00180i | 0.945114-0.02050i




A.19 DFE,HT,L =17, Ny =2, Ng=2, p, = [0.5], p, =

[0.7]
10logy(Es/No) | Tx 9:[0] gi(1] 9i(2]
7.5 1=11] 0.7315140.28678i | 0.30871+0.06391i | -0.43947-0.30023i
1 =2 0.7103040.29291i | 0.55522+0.28103i | 0.04665+0.14233i
10 i=11-0.414074+0.46663i 0.04899+0.066221 0.66014-0.41016i
1=2 | 0.07640-0.22484i1 | 0.34835-0.30388i | 0.71759-0.463671
12.5 1=11 0.73812-0.09951i | -0.17331-0.07247i | -0.63046-0.111801
1=2| 0.90202-0.062471 | 0.33367+0.04851i | 0.233664-0.119061

A.1.10 LE, HT,L =17 Nyr =2, Np =2, p, = [0.5], p, =

0.7]
101ogyo(Es/No) | Tx g:[0] gi1] 9i2]
7.5 i=1| 0.13690-0.05755{ | -0.17800+0.96191i | 0.12069-0.08019i
i=2| 0.10397-0.065931 | -0.19638+0.96415i | 0.12090-0.045551
10 i=1|0.16582+0.14273i | 0.03294-0.93139i | 0.20881+0.19990i
i =2 | 0.15478+0.05308i | 0.07847-0.97557i | 0.10873+0.05932i
12.5 i=1-0.21810+0.05372i | -0.63839-0.63517i | -0.09900-+0.35883i
i=21 0.15072-0.05811i | -0.36357-0.70939i | 0.50002+0.29745i




A.1.11 DFE, TU, L =5, Ny = 2, Ngp = 2, p, = [0.7],
p,=0.7]

10logyo(Es/No) | Tx 9:(0] g:(1] (2]

75 i =1|-0.21454+0.04096i | 0.55464-0.12424i | 0.77307-0.17772i

i =2 | -0.20364+0.05122i | 0.56560-0.12428 | 0.76986-0.16696i

10 i=1| 0.27431-0.77981i | 0.12590-0.30033i | -0.05967+0.45501i

i =2 0.28051-0.87383i | 0.10035-0.37223i | -0.05004-0.08124i

12.5 i =1 |-0.20542+0.33421i | -0.21820-0.06972i | -0.31669-0.80515i

i =2 | 0.4339140.05076i | 0.12376-0.23683i | -0.18298-0.83920i

A.1.12 LE, TU, L =5, Np =2, Np =2, p, = [0.7], p, =
0.7]
101ogyo(Ey/No) | Tx 9i0] gi1] 9i2]
7.5 i=1| 0.96408-0.224261 | -0.13927+0.02874i | 0.00476+0.00402i
i =2 0.96514-0.19055i | -0.17396+0.033151 | 0.02610-0.012551
10 i=1] 0.17634-0.08452i | -0.11122-+0.95596i | 0.17458-0.07111i
i=2| 0.16957-0.07461i | -0.11628+0.95689i | 0.16961-0.08806i
12.5 i=10.94250+0.14928i | -0.26990-0.02592i | -0.11373+0.05440
i=2|0.94614+0.15800i | -0.17607-0.03374i | 0.21601-0.03249i




A.1.13 DFE,EQ,L=7, Nr=3, Np=1, p, =[0.5,0.5,0.5]

101og;o(Es/No) | Tx 9:[0] g:(1] 9:(2]
7.5 i=11-0.23974-+0.00142i | 0.78495-0.00801i | 0.5712140.00526i
i =2 | -0.23186-0.00050i | 0.78371-0.00135i | 0.57607-0.01365i
i =3 | -0.24163+0.00392i | 0.77692-0.01066i | 0.58125-0.00486i
10 i=1] -0.21781-0.030461 | 0.85938+0.12754i | 0.43695+0.07683i
i =2 | -0.21300-0.03218i | 0.85819+0.13335i | 0.44363+0.05014i
i =3 -0.22881-0.03858i | 0.85207-+0.12592i | 0.44590+-0.07384i
12.5 i =1/ -0.18390-0.08864i | 0.75949+0.49572i | 0.27235+0.24816i
i=2| -0.14673-0.08439i | 0.76758+0.50154i | 0.33671+0.13137i
i =3 | -0.18510-0.15730i | 0.78577+0.44837i | 0.30212+0.17679

A.1.14 LE,EQ,L=7, Nr=3, Npe=1, p, =[0.5,0.5,0.5]

101og,o(Es/No)

9:[0]

g:(1]

9:(2]

7.5

0.11021-0.075241

0.04591+0.98228i

0.07679-0.09652i

0.08844-0.07898i1

0.04052+-0.982391

0.11871-0.071561

0.12773-0.102451

0.05729+0.974061

0.11009-0.094811

10

0.16379-0.12804i

0.17315+0.942701

0.13275-0.14312i

0.14484-0.135801

0.17416+0.93710i

0.18458-0.134261

0.17107-0.155371

0.19397+0.92990i

0.15555-0.141611

12.5

0.11021-0.075241

0.04591+-0.98228i

0.07679-0.096521

0.08844-0.078981

0.04052+0.982391

0.11871-0.071561

0.12773-0.102451

0.05729+0.97406i

0.11009-0.094811




A.1.15 DFE,HT,L=7, Ny =3, Np=1, p, =[0.2,0.5,0.2]
101ogyo(Es/No) | Tx 9i[0] gi(1] 9:(2]
7.5 i=1| 0.77743-0.31386i 0.35059-0.167081 | -0.36774+0.105031
1 =21 0.27931-0.145471 0.65393-0.160861 0.66319-0.086631
1=31| 0.77888-0.30980i 0.31808-0.16603i | -0.396914+0.10532i
10 1=11 0.48941-0.185051 —0.17272+0.01104i -0.81429+0.182241
1 =21 -0.52011+0.32493i | -0.54858+40.26297i | -0.48095+0.150001
1 =231 0.52886-0.19294i | -0.17474+0.005141 | -0.783294-0.19740i
12.5 1=11 0.37376+0.013671 | 0.060962-0.01622i | -0.73651-0.560081
1 =21 -0.33054+0.59334i | -0.440174+0.28713i | -0.50895-+0.05889i
7 =31 0.642386+0.13415i | -0.20026-0.33440i | -0.55359-0.33309%1

A.1.16 LE,HT,L =7, Nr=3, Ng=1, p,=[0.2,0.5,0.2]

101ogyo(Es/No) | Tx 9:(0] gi(1] 9i(2]

10 i=1| -0.26091-0.68386i | 0.04811+0.62810i | -0.09214+0.24279i
i=2| 0.13860-0.75424i | 0.39578+0.02826i | 0.40134-0.30561i
=3 -0.29347-0.66315i | 0.03370+0.64160i | -0.08595+0.23223i

12.5 i =1|-0.18965-+0.80146i | 0.19846-0.50888i | 0.14242+0.05527i
i =2 |-0.27347+0.10642i | -0.04924-0.59433i | -0.32562-0.67247i
i =3 |-0.13472+0.80492i | 0.21602-0.51304i | 0.12141+0.09662i

15 i=1| 0.17537-0.19031i |-0.4181340.28345i { 0.47755-0.67067
i =2 |-0.47094+0.63133i | -0.31984+0.43845i | 0.23695-0.17017i
i=3| 0.06916-0.24311i | -0.21881+0.28746i | 0.58868-0.67753i




A.1.17 DFE,TU,L=5, Ny =3, Np=1, p, =[0.7,0.5,0.7]
101logyo(Eb/No) | Tx 9:[0] gi1] gi[2]
7.5 1 =1-0.07380+0.37627i | 0.50537+0.11104i | 0.76324-0.051981
i=2|-0.226304+0.03233i | 0.49522-0.02762i | 0.83399-0.078661
1 =31 -0.32411-0.349111 | 0.40691-0.195471 | 0.75164-0.065771
10 1=11| -0.16557-0.681181 | 0.19601-0.07134i | 0.55384+0.39791i
1 =21 -0.25526-0.22631i | 0.217314+0.18726i | 0.68304+-0.578611
1 =3 | -0.20991+0.34070i | 0.19010+0.40397i | 0.54726+0.58399i
12.5 1 =11 -0.16447-0.76864i | 0.07085-0.165861 | 0.45629+0.376041
1 =2 | -0.26690-0.304501 | 0.06959+0.08760i | 0.61048+0.67145i
1 =31-0.16556+0.31825i | 0.10983+0.34126i | 0.46982+0.72253i

A.1.18 LE, TU,L=5, Np=3, Np=1, p, =[0.7,0.5,0.7]

101og;o(Ey/No) | Tx 9i[0] gi(1] 9i(2]
10 i=1| 0.16271-0.01436i | -0.98007+0.10960i | -0.02450+-0.01304i
i=2| 0.15016-0.02612i | -0.98203+0.10551i | -0.02845+0.02103i
i =3 | 0.08946+0.00122i |-0.991914-0.07279i | -0.05013-0.01725i
12.5 i=11-0.11555+0.08092i | 0.55515-0.79174i | -0.18728+0.09988i
i=2| -0.07097-0.00537i | 0.55436-0.81833i | -0.12631+0.04464i
i=3| -0.06099-0.13352i | 0.56938-0.80593i | -0.06433-0.02436i
15 i =1 0.52660+0.08515i | 0.05008-0.19959i | 0.19722+0.79637i
i =2 | 0.05422+0.04557i | -0.07646-0.26915i | 0.26961+0.91870i
i=3| -0.50239-0.00589i | -0.16116-0.23306i | 0.17854+0.79712i




A.1.19 DFE,EQ,L=17,Nr=3, Np=2, p, = [0.5,0.7,0.5],

pr = [0.7]
101ogyo(Es/No) | Tx g:[0] gi(1] g:[2]
2.5 i=11-0.19801+0.00868i | 0.60710-0.03063i | 0.76876-0.01460i
i=2| -0.25260-0.005351 | 0.58305+0.00760i | 0.77195-0.01583i
i =3 | -0.22208+0.007051 | 0.60295-0.02143i | 0.76585-0.01029i
5 =11 -0.19474-0.00497i | 0.84338+ 0.00917i | 0.50066+-0.00361i
i=2| -0.22473-0.00401i | 0.84835+0.00953i | 0.47922+0.00644i
i =31 -0.21241-0.00503i | 0.84719+0.00381i | 0.48692+0.00429i
7.5 i=1/ 0.04988-0.00864i | 0.32847+0.02012i | 0.94294+0.00215i
i =2 | -0.20375-0.01680i | 0.46259+0.01033i | 0.86246+0.01636i
i =31 -0.12224-0.01483i | 0.35576+-0.00714i | 0.92634+0.01057i

A.1.20 LE,EQ,L =7, Nr =3, Ng=2, p, =[0.5,0.7,0.5],

pr = [0.7]
10logyo(Es/No) | Tx 9i[0] gi(1] 9i(2]

2.5 1 =1 0.03731+0.01196i | -0.13236+0.00929i | 0.98680-0.084161
i =2 -0.01066-0.01267i | -0.17974+0.003161 | 0.98184-0.058411
i=3| 0.00862-0.00640i |-0.13947-+0.01163i | 0.98709-0.07709i

) =11 0.1994340.00017i | -0.30472-0.00403i | 0.931154-0.017541
1 =2 | -0.08390+0.003051 | 0.00723-0.00127i | 0.99631+-0.01608i
1 =3 | 0.01911+0.00072i | -0.22720-0.00334i | 0.973564-0.01340i

7.5 ¢t =1 0.08284+0.00308i | -0.25056-0.00250i | 0.964524-0.006571
1 =2 0.07586-0.002301 | -0.26996+0.00777i | 0.95974+-0.01420i
i =3 0.07581+0.00181i | -0.26132-0.00600i | 0.96224+0.004491
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A.1.21 DFE,HT,L =7, Ny =3, Ng =2, p, = [0.5,0.5,0.5,

pr = [0.7]
10logyo(E5/No) | Tx gi[0] gi1] gil2]
5 i=1| -0.18139-0.06826i | 0.55671+0.19758i | 0.71808+0.31279i
i =2 | -0.15954-0.043581 | 0.57525+0.23273i | 0.72520+0.24831i
i =3 | -0.17035-0.08724i | 0.55347+0.20652i | 0.72902+0.28795i
7.5 i=1-0.03245+0.04722i | 0.52247+0.32323i | 0.61241+0.49418i
i=2| -0.44941-0.03879i | 0.31895+0.36094i | 0.62971+0.40985i
i=3| -0.07328-0.37803i | 0.45937+0.19233i | 0.63360+0.44973i
10 i=1| 0.21172+0.050551 | 0.38404+0.11407i | 0.80053+-0.38894i
i =2 |-0.38911+0.12181i | 0.10392+0.25045i | 0.79600+0.35584i
i=3| -0.24423-0.39886i | 0.13585-0.11011i | 0.76585+0.40516i

A.1.22 LE, HT,L =17, Nr =3, Ng=2, p, = [0.5,0.5,0.5],

p, = [0.7]
1010g;o(Es/No) | Tx 4i[0] gil1] 9i(2]
5 i =1 | 0.003704+0.00688i | -0.14947+0.02359i | 0.97099-0.18496i
i =2 | 0.00055-0.005691 | -0.13047+0.03084i | 0.97338-0.18580i
i =3 | 0.00704-0.00219i | -0.14291+0.02611i | 0.97176-0.18580i
7.5 i=1] 0.17019-0.13767i | 0.08738+0.96396i | 0.09601-0.07758
| i=2| 0.12896-0.08807i | 0.10359+0.95615i | 0.16747-0.15037i
i =3 | 0.12487-0.10205i | 0.09338+-0.96187i | 0.16990-0.10585i
10 i =10.04755+0.02787i | -0.26237+0.07367i | 0.86635-0.41489
i =2 0.07303-0.04608i | -0.08218+0.13423i | 0.87808-0.44356i
i =3 0.01357-0.04741i | -0.22070+0.08006i | 0.86050-0.44943i




A.1.23 DFE,TU,L =5, Ny =3, Np =2, p, = [0.5,0.2,0.5],

pr = 1[0.7]
10logyo(Ep/No) | Tx 9:[0] gi1] 9i2]

7.5 1 =11 0.51407-0.64071i 0.16865+0.00539i -0.025934-0.544141
1 =2 0.09847-0.35249i | -0.05767+0.27400i | -0.19989+0.864701

i =3 | -0.38296+0.07315i | -0.25797+0.364651 | -0.29111+0.75082i

10 i=1| 0.17036-0.47001i1 0.26527-0.145461 | 0.81149+0.00421i
1 =2 | -0.40610-0.09202i | 0.14758+0.05268i | 0.86370+0.236831

1 =3 | -0.75652+0.34594i | -0.1039740.17833i | 0.42749+4-0.287471

12.5 1=11 0.13501-0.70466i 0.09940-0.258211 | 0.61544+0.17294i
=21 -0.27531-0.200731 | 0.10123+0.18158i | 0.72354+0.56318i

1 =3 -0.56974+0.37882i | -0.06275+0.13787i | 0.40215+4-0.589261

A.1.24 LE, TU, L =5, Ny =3, Ng =2, p, = [0.5,0.2,0.5],

pr = 0.7]

101ogyo(£s/No)

g[0]

gi[1]

gi[2]

7.5

0.36811-0.13581i

0.82641+4-0.24173i

-0.08705-0.311561

0.16612+4-0.049091

0.85057+0.333061

-0.33818-0.14569i

-0.149124-0.193911

0.66592+0.334851

-0.62013+0.005071

10

0.27097-0.662991

-0.130684-0.431081

-0.04284+-0.531301

0.37652-0.83892i

-0.15969+-0.35148i

0.02069-0.07053i

0.29993-0.697711

-0.05778+4-0.13252i

0.10637-0.625331

12.5

0.65385-0.457051

-0.14783+4-0.130471

0.47703-0.31168i

0.15155-0.093251

-0.294224-0.179401

0.78727-0.479371

-0.394974-0.281551

-0.29692+-0.221831

0.64691-0.457021
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A.2 Filters for 8-PSK

A.2.1 DFE,EQ,L=7, Nr=2, Np=1, p, =[0.5]

101ogo(Es/No) | Tx 9:[0] gi1] 9i[2]
10 ¢ =11 0.77307+0.12397i | 0.578914-0.09718i | -0.20113-0.044291
i=121 0.78021+0.13694i | 0.56487+40.09781i | -0.20756-0.028051
15 1 =11 -0.09967-0.005381 | 0.21515+-0.01119i | 0.96923+0.06493i
1 =2 | -0.10562-0.00354i1 | 0.23502+0.02224i | 0.963434-0.070091
20 1 =1 0.11964-0.00744i | 0.18609+0.00153i | 0.96992-0.101301
1 =21-0.30671-+0.077241 | -0.011804-0.01749i | 0.94552-0.074291

A.2.2 LE,EQ,L=7 Nr=2, Ng=1, p, =[0.5]

10logyo(Es/No) | Tx 9i[0] gi(1] gi[2]
10 4 =11 0.99127-0.08721i | -0.09677+0.00676i | -0.01936-0.001651
1 =2 0.99101-0.08424i | -0.10159+4-0.01174i1 —0.01806+0.00333i
15 i=110.210534+0.00561i | -0.47997-0.82343i | 0.21734-0.000371
i =2 0.22096+0.00091i | -0.46845-0.82852i | 0.21278+0.002071
20 i1 =110.0751440.03982i | -0.23317-0.107551 0.882.91+0.38380i
1 =21 0.07467+0.022831 | -0.24275-0.096891 | 0.87897+0.391141




A.2.3 DFE,HT,L=17, Ny =2, Np=1, p, = [0.5]

10logyo(Ep/No) | Tx 9:(0] g:(1] 9i[2]
10 1=110.75875+0.05593i | 0.63604+40.047531 | -0.11951-0.00891
1 =2 0.75519+0.05223i | 0.64149+0.04140i | -0.11686-0.00944i
15 t=11| 0.81519-0.09895i | 0.40567-0.13183i | -0.34955-0.14676i
1 =2 0.80263-0.12213i | 0.54729-0.00110i | -0.032424-0.200731
20 1=1] 0.64057-0.58920i | -0.03681-0.28644i | -0.28053-0.283571
1 =21 0.69377-0.450261 | 0.1370340.20258i | -0.022454-0.50560i1

A.24 LE,HT,L=7, Ny=2, Np=1, p,=[0.5]

10logo(Eb/No) | Tx 9:[0] gi(1] 9:[2]
10 i =11 0.99539-0.072291 | -0.03823+40.000261 | -0.05003+0.00408i
1 =2 0.99575-0.06771i | -0.03969+0.00456i | -0.04796+0.00307i
15 i =1 | -0.04035-0.08208i | -0.63778+0.75666i | -0.03008-0.10691i
1 =2 | -0.00603-0.10935i | -0.597184-0.78890i —0.00347-0.09495i
20 ¢t =11 0.28542-0.06199i | -0.59977-0.68502i | 0.29276+0.002441
1=2 0.26139;0.02829i -0.59290-0.709281 | 0.26506-0.077481
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A.2.5 DFE,TU,L=5 Nr=2, Ng=1, p, =[0.7]

101ogyo(Ey/No) | Tx 9i[0] gi1] gi2]
10 i=1|-0.15337+0.00539 | 0.61899-0.02253i | 0.76946-0.02692i
i =2 | -0.13894+0.00081i | 0.62560-0.01139i | 0.76743-0.01550i
15 i=1|-0.06814+0.29184i | 0.40449-+0.20080i | 0.81635+0.19956i
i=2| -0.43424-0.41026i | 0.20380-0.08765i | 0.76019+0.12656i
20 i=1] 0.14704+0.281661 | 0.24739-+0.06094i | 0.90522-0.12128i
i=2| -0.69983-0.18671i | -0.18906-0.11101i | 0.62266-0.19898i

A.26 LE, TU,L=5 Np=2, Ng=1, p,=[0.7]

101ogo(Es/No) | Tx 9:[0] g:(1] 9:(2]
10 i =11-0.05875+0.004961 | -0.01919+0.000761 | 0.99716-0.042811
i =21 -0.05438+0.00154i | -0.01883-0.001021 | 0.99700-0.051781
15 =11 -0.00025-0.01333i | -0.09612+0.01798i | 0.98379-0.149751
¢ =2 | -0.00359+0.01525i | -0.10046+0.004091 | 0.98507-0.138831
20 i =1 |-0.27960+0.20792i | -0.07632+0.28261i | 0.03602-0.88972i
i =2 0.30032-0.31258i | 0.054411+0.16027i | 0.07548-0.88191i
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A.2.7 DFE,EQ,L =17, Nr=2, Np=2, p, = [0.5], p, =

0.7]
10logyo(Ey/No) | Tx 9i[0] gi[1] 9i[2]
5 i=1-0.13228+0.09978i | 0.50446-0.33889i | 0.64513-0.43246i
i =2 -0.15324+0.09152i | 0.49823-0.34310i | 0.64376-0.43333i
7.5 i=11-0.16983+0.12964i | 0.47578-0.32329i | 0.65298-0.44393i
i =2 [-0.19122+0.11773i | 0.46686-0.32852i | 0.65291-0.44430i
10 i=11-0.14288+0.19545i | 0.48178-0.63251i | 0.34074-0.43943i
i =2 |-0.15245-+0.19354i | 0.47894-0.63011i | 0.33591-0.44726i

A28 LE,EQ,L=7, Nr=2, Np=2, p, = [0.5], p, = [0.7]

10logyo(Ey/No) | Tx 9:[0] gi{1] 9i(2]
5 i=110.13228+0.23208i | -0.41366-0.83953i | -0.09813-0.207551
1 =20.10961+40.25710i | -0.41160-0.84130i | -0.09359-0.189551
7.5 1 =1 | 0.0825340.10897i | -0.56487-0.81374i | 0.00577+0.005901
i =2 |0.07335+0.11903i | -0.55963-0.81679i | 0.00285+0.010581
10 i =11 0.21458-0.00291i | -0.50618-0.80927i | 0.20691+0.001941
1 =2 | 0.1997740.00813i | -0.50008-0.81721i | 0.20509+-0.007411
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A.2.9 DFE,HT,L =17 Nyr=2, Ng =2, p,=[0.5], p, =

[0.7]
1010g,0(Es/No) | Tx g:[0] gil1] ail2]
7.5 1= -Q.14443—0.02017i 0.608404+0.13182i1 0.75_406+0.150311
i =21 -0.13579-0.03421i | 0.61694+0.113271 | 0.75172+0.147861
10 1= 0.01059+4-0.102821 | -0.49808+0.84440i | 0.16767+0.009751
3 =2 | -0.05536-0.18889i | -0.527664+0.678731 | 0.05457-0.46817i1
12.5 1= 0.112704-0.151511 | 0.4301340.29455i | 0.73224+40.39547i
g = -0.48927-0.392341 | 0.141034-0.007621 | 0.67821+0.35603i

A.2.10 LE, HT, L =17, Ny =2, Np =2, p, = [0.5], p, =

0.7]
101ogyo(Es/No) | Tx g:[0] gi(1] 9i(2]

7.5 i =1 |-0.02930-0.00380i | -0.09165-0.01035i | 0.98352+0.15267i
i =2 -0.03216-0.00614i | -0.08790-0.01762i | 0.98349+0.15372i

10 i=1| 0.05977-0.04460i | -0.39632+0.91044i | 0.05686-0.07239i
i=2| 0.03777-0.05610i | -0.41048+0.90612i | 0.05318-0.05522i

12.5 i =1 0.51814+0.05356i | -0.45558+0.698591 | 0.16604-+0.07418i
i =2 | 0.16422+0.08400i | -0.45670+0.71140i | 0.49407+0.08489i

101




A.211 DFE, TU, L =5, Ny = 2, Nz = 2, p, = [0.7],
pr=10.7]

10log,o(Es/No) | Tx g:[0] g:[1] 9:[2]

10 i =11 0.76507+0.18314i | 0.565954+0.126471 | -0.20289-0.06060i

7 =21 0.76139+0.19114i | 0.56844+0.15248i | -0.19033-0.033901

12.5 t=11| 0.52613-0.601811 0.33748-0.427851 | -0.19634+0.15974i1

1 =2 0.53733-0.58138&i 0.40986-0.394541 | -0.11538+0.190551

15 1 =11 -0.05937-0.30071 0.27731-0.156741 0.88224-0.16196i

7 =21-0.33861+0.34410i | 0.183924-0.0895&81 | 0.85099-0.030171

A.212 LE, TU, L =5, Ny = 2,

Ng =2, p,=[07), p, =

[0.7]
10logyo(Eb/No) | Tx 4i[0] gi(1] 9:(2]
10 i =110.94954+0.27921i | -0.13587-0.04430i | 0.00160+0.000111
i =21 0.94824+0.28757i | -0.13067-0.031641 | 0.007604-0.003541
12.5 i=110.96856+0.16783i | -0.17778-0.037831 | 0.02558+0.005001
i =21 0.96651+0.18539i | -0.17268-0.02361i | 0.03259+0.007251
15 i=11 0.97927-0.02942i | -0.19543+-0.00274i | 0.04440+-0.001051
1=2| 0.97535-0.013541 0.04772-0.002191

-0.21483+0.00882i
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A.2.13 DFE, EQ, L =7, Ny =3,

Np =1, p, = [0.5,0.5,0.5]

10 loglo(Eb/NO)

9:[0]

gi[1]

9:[2]

10

-0.23518+0.018551

0.70488-0.060841

0.66406-0.053001

-0.23829+-0.021691

0.70444-0.057081

0.66345-0.055551

-0.23440+0.021071

0.70405-0.060981

0.66457-0.059611

15

-0.16852+0.106601

0.73745-0.509491

0.33545-0.210491

-0.19469+-0.118131

0.73265-0.494011

0.34197-0.22446i1

-0.15215+0.133561

0.73227-0.52249i

0.30517-0.238051

20

-0.24368+-0.00730i

0.72977-0.567831

0.28725-0.055341

-0.25426+0.052021

0.70395-0.526421

0.32290-0.236031

0.023534-0.30396i

0.65121-0.615331

0.09297-0.309371

A.2.14 LE,EQ,L=7, Nr=3, Np=1, p, =[0.5,0.5,0.5]

101og;(Ey/No) | Tx 9i0] gi1] 9i(2]
10 i=1| 0.99133-0.02959i | -0.12781+0.00155i | 0.00545+0.00402i
i=2| 0.99042-0.02721i | -0.13519+0.00608i | 0.00027-0.00430i
i =3 0.99069-0.03586i | -0.13124-+0.00424i | 0.00083+4-0.00085i
15 i=10.9749140.02556i | -0.21329-0.01178i | 0.05685+0.00639i
i =2 |0.97303+0.03013i | -0.22171+0.00285i | 0.05528-0.00950i
i=3|0.97363+0.01117i | -0.21973-0.00574i | 0.05955+0.00718i
20 i=1|0.043114+0.05075i | -0.23088-0.16349i | 0.80090+0.52354i
i=2|0.03345+0.00051i | -0.30530-0.16776i | 0.78051+0.51801i
i =3 |0.14186+0.09607i | -0.14755-0.12429i | 0.82173+0.50813i
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A.2.15 DFE,HT,L =17, Nr=3,Np=1, p, =[0.2,0.5,0.2]

10 loglo(Eb/NO)

9:[0]

g:(1]

9:[2]

10

0.64442-0.315701

0.57160-0.367631

0.04423-0.145681

0.48989-0.342351

0.01163+0.15438i

-0.5277640.58336i

0.63790-0.354441

0.57163-0.36393i

0.03542-0.083611

15

-0.42434-0.299511

-0.07818+-0.092681i

0.64297+0.549661

0.61840+0.046961

0.56302+0.152751

0.45455+0.261631

-0.50253-0.27729i

0.16244+0.13198i

0.56124+0.558371

20

-0.17177-0.546501

0.33685+-0.192461

0.70395+0.160561

0.01659+0.733671

0.20285+0.26403i

0.51450+0.293041

-0.22102-0.270161

-0.26244-0.377361

0.749484-0.324311

A.2.16 LE,HT,L=7, Nyr=3, Np=1, p, =[0.2,0.5,0.2]

101ogyo(Es/No) | Tx 9:[0] (1] gil2]
10 i=1|-0.19980+0.00191i | -0.24956-0.01608i | 0.93194+0.17035i
i=2| 0.28912-0.02927i | 0.23860+0.01404i | 0.91106+0.16853i
i =3 | -0.18967-+0.00097i | -0.24265-0.02056i | 0.93830+0.15592i
15 i =1 0.78604-+0.15619i | -0.57050+0.02639i | -0.08672+0.15509i
i=2| 0.37433-0.34267i | -0.42391-0.43766i | -0.07604-0.60450i
i =3 0.77873+0.15857i | -0.5802340.05607i | -0.10110-0.13565i
20 i=1| 0.45928-0.20142i | -0.83664-+0.13278i | 0.09743+0.14631i
i=2| 0.91225-0.27274i | 0.26467+0.03874i | 0.1470240.01563i
i=3| 0.51371-0.192361 | -0.78103+0.12652i | 0.01306-0.27002i
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A.2.17 DFE,TU,L =5, Nr=3, Np=1, p, =[0.7,0.5,0.7]

101logyo(Eb/No) | Tx 9:[0] gill] 9:[2]
10 1=1 0.48839+0.61000i | 0.37969+0.44818i | -0.14194-0.15557i
1=2| 0.509724+0.60487i | 0.39644+0.435261 | -0.08510-0.143041
1 =3 0.48991+40.58541i | 0.3664040.51695i | -0.09290-0.084571
15 1 =11 0.24413-0.57565i1 0.31920-0.087391 | 0.48996+0.509361
1 =21 -0.11639-0.275601 | 0.077810+0.24238i | 0.47499+0.78745i1
1 =3 -0.55752+0.03484i | -0.10728+40.214851 | 0.2288140.76022i
20 1 =11 0.29537-0.074581 0.17315-0.116701 | 0.92346-0.103961
1 =2 |-0.36629+0.02504i 0.03099+0.0‘6879i 0.92449-0.06949i
1 =3 -0.83773+0.037461 | -0.33215-0.015071 | 0.43067-0.02777i

A.2.18 LE,TU,L=5, Nr=3, Np=1, p,=[0.7,0.5,0.7]

10logyo(Eb/No) | Tx 9i[0] gi(1] 9i[2]
10 ‘ 1=11 0.11198+0.14658i | 0.61493+0.73294i -0.15052—0:16727i
1=21 0.12386+0.140941 | 0.62632+40.718351 | -0.156095-0.18358i1
1 =3 | 0.12044+0.13066i | 0.62266+0.729361 | -0.14418-0.16721i
15 1 =11} -0.01608-0.133671 | -0.03668+40.98881i | 0.00690-0.052291
1 =2 | 0.06816-0.083651 | -0.01635+0.985321 | 0.12817-0.02828i
1 =3 0.14720-0.132501 | -0.05042+0.97674i | 0.03691+0.05332i
20 1=1} 0.62912-0.06913i —0.11445+0.12288i 0.66212-0.364471
1 =2 0.06738-0.038341 |-0.23381+0.15257i | 0.81818-0.49661i1
¢t =3 | -0.48364+0.03519i | -0.30093+0.130161 | 0.68239-0.43783i
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A.2.19 DFE,EQ,L =7, Ny =3, Np =2, p,=[0.5,0.7,0.5],
pr=0.7]

].0 loglo(Eb/No)

9:[0]

g:[1]

(2]

5

-0.06041+0.0005%1

0.11577-+0.00085

0.99142+-0.00588i

-0.06627-0.000881

0.10956+0.00082i

0.99175+0.006411

-0.06473-0.000111

0.11350-0.001471

0.99142+0.001841

7.5

0.06153+-0.000291

0.06647-0.002621

0.99579+0.014061

-0.08841+0.001941

0.18056-0.00075i

0.979524-0.011101

-0.042054-0.00042i

0.09331-0.001371

0.99470+-0.009831

10

0.01288+-0.001871

0.04592-0.003491

0.99885+0.000191

-0.05947-0.001411

0.086404-0.006131

0.99446+-0.000431

-0.02954+0.00119i

0.05766-0.004811

0.99788-0.002881

A.2.20 LE,EQ,L=17, Nr =3, Np=2, p, = [0.5,0.7,0.5],
pr = 10.7]
10logyo(Es/No) | Tx 9i[0] gi1] 9:[2]
7.5 i=1{0.13800+0.00575i | -0.31196-0.00297i | 0.93999+0.00492i
i=2| 0.14483-0.00229i | -0.33265+0.00377i | 0.93173+0.01498i
i =31 0.13577+0.00527i | -0.32250-0.00376i | 0.93672+0.00848i
10 i=110.15181+0.01950i | -0.32291-0.02298i | 0.93194+0.05707i
i =2 |0.16659+0.00120i | -0.36423-0.01653i | 0.9126440.07999
i =3 |0.152714+0.01635i | -0.34491-0.02608i | 0.9228240.07193i
15 i=10.18068+-0.09159i | -0.29846-0.14428 | 0.84432+0.36904i
i =12 | 0.17588+0.06350i | -0.46342-0.20018i | 0.74761+0.38895i
0.21857+0.06145i | -0.30859-0.12590i | 0.84604-+0.34869i




A.2.21 DFE,HT,L="7,Ny=3,Ng=2,p,=][0.5,0.5,0.5],

pr =

[0.7]

9:[0]

gi(1]

9i(2]

)

-0.10591-0.19576i

0.45035+0.775571

0.18136+0.336511

-0.10827-0.18542i

0.453404-0.781141

0.19076+-0.318971

-0.10831-0.186421

0.43811+4-0.788461

0.18226+-0.326621

7.5

-0.05584-0.193011

0.32648+0.867951

0.08943+-0.30283i1

-0.06687-0.169411

0.32626+-0.879661

0.11839+0.269381

-0.06244-0.176811

0.31063+0.879791

0.11131+40.286221

10

0.00513-0.155171

0.25205+0.929451

0.01216+0.219881

-0.03731-0.091551

0.25585+0.942691

0.10971+0.155101

0.00563-0.14488i

0.24046+0.92812i

0.10349+0.221461

A.2.22 LE, HT, L =7, Np = 3,

Ng =2, p, = [0.5,0.5,0.5],

P =[07]
10logyo(Es/No) | Tx 9i(0] gi1] g:(2]
) ¢=11 0.30551-0.09195i | -0.19609+0.86961i | 0.30801-0.09307i
i =2 0.30019-0.15743i —0.13390+0.88076i 0.28360-0.10486i1
i =231 0.26786-0.10913i | -0.22409+4-0.87162i | 0.30176-0.123891
7.5 i=11 0.32184-0.139661 | -0.13934+-0.86741i | 0.30493-0.110101
1 =21 0.30271-0.155651 | -0.10355+0.87384i | 0.30460-0.130521
1 =31 0.26604-0.138651 -0.15086+0.87578i 0.30525-0.164541
10 ¢ =110.10710+0.090701 | -0.32145-0.070391 | 0.93130+0.068551
1 =21 0.12956-0.01504i | -0.31410-0.004371 | 0.93656+0.08461i
i =231 0.14344-0.05759i -| -0.29128+4-0.02151i | 0.93768+0.107521
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pr =

[0.7]

A.2.23 DFE,TU,L =5 Npr=3,Ng=2, p,=[0.5,0.2,0.5],

| 101log,o(E/No)

9:[0]

g:(1]

9:[2]

5

-0.568944-0.54187i1

-0.40502+-0.270311

0.16618-0.343451

-0.56550+0.520311

-0.45105+0.437561

0.09856-0.069741

-0.518104-0.446901

-0.45879+0.53568i

-0.011334-0.185161

7.5

-0.65839-0.23858i

-0.44073-0.369521

0.04167-0.420801

-0.79409-0.266371

-0.47999-0.107711

0.21643+0.098201

-0.67084-0.254971

-0.331344-0.07972i

0.27294+4-0.542521

10

-0.771184-0.216611

-0.47601+-0.047001

-0.34858-0.089721

-0.82370+-0.319661

-0.26854+-0.130491

0.33609-0.131271

-0.527214-0.198981

0.03183+0.09013i

0.81957-0.040461

A.2.24 LE, TU,L=5, Nr =3, Np=2, p, = [0.5,0.2,0.5],
pr=10.7]
10logyo(Es/No) | Tx 9:[0] (1] gi[2]
5 i =11 -0.16497-0.20804i | 0.609578+0.70131i | 0.15653+0.203901
i =2 -0.18409-0.220861 | 0.59959+0.70341i | 0.17110+4-0.18372i
i =31 -0.18720-0.194151 | 0.59660+0.710261 | 0.17646+0.18900i
7.5 7=11 -0.05932-0.198171 | 0.35960+4-0.902481 | 0.001214-0.11588i
1 =21 -0.07152-0.208491 | 0.354814-0.90172i 0.04587+0.1016311
i =31 -0.09765-0.175471 | 0.34292+4-0.90832i | 0.08177+40.101741
10 i =11 0.04027-0.08809i | -0.89588+0.171851 | 0.21508-0.335011
i =2 |-0.006214+0.001451 | -0.938394-0.28601i | 0.19028-0.037091
1=231-0.07676+0.095151 | -0.90637+0.325791 0.12267+0.2_0582i
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