
GENETIC ALGORITHMS IN SYSTEM IDENTIFICATION AND

CONTROL

By

Kristinn Kristinsson

B. Sc. Electrical Engineering University of Iceland, 1986

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F A P P L I E D S C I E N C E

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

E L E C T R I C A L E N G I N E E R I N G

We accept this thesis as conforming

to the required standard

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

August 1989

© Kristinn Kristinsson, 1989

In presenting this thesis in partial fulfilment of the requirements for an advanced degree

at the University of British Columbia, I agree that the Library shall make it freely

available for reference and study. I further agree that permission for extensive copying

of this thesis for scholarly purposes may be granted by the head of my department or

by his or her representatives. It is understood that copying or publication of this thesis

for financial gain shall not be allowed without my written permission.

Electrical Engineering

The University of British Columbia

2075 Wesbrook Place

Vancouver, Canada

V6T. 1W5

Date:

Abstract

Current online identification techniques are recursive and involve local search tech

niques. In this thesis, we show how genetic algorithms, a parallel, global search tech

nique emulating natural genetic operators can be used to estimate the poles and zeros

of a dynamical system. We also design an adaptive controller based on the estimates.

The algorithms are shown to be useful for continuous time parameter identifications

and to be able to identify directly physical parameters of a system. Simulations and an

experiment show the technique to be satisfactory and to provide unbiased estimates in

presence of colored noise.

ii

Table of Contents

Abstract ii

List of Tables vi

List of Figures vii

Acknowledgement xi

1 Introduction 1

1.1 General introduction 1

1.2 "Standard" identification methods 1

1.3 Motivation for this work 2

1.4 Outline of this thesis 3

2 Genetic Algorithms 4

2.1 History of Genetic Algorithms 4

2.2 The algorithm 4

2.3 Coding '. 7

2.4 Reproduction 7

2.4.1 Ranking 9

2.5 Crossover 10

2.6 Mutation 11

2.7 Mathematical Foundations 11

2.8 Example 13

iii

2.9 Summary 14

3 System Identification 19

3.1 Background 19

3.2 Discrete time identification 21

3.2.1 Parameter identification 25

3.2.2 Pole-zero identification 25

3.2.3 Results 27

3.3 Recursive Least Squares estimation 31

3.3.1 Results 32

3.4 Continuous time identification 38

3.4.1 Results 39

3.5 Friction compensation 41

3.5.1 Results 43

3.6 Summary 44

4 Controller design 46

4.1 Controller 46

4.2 Parameter based design 48

4.3 Pole-zero based design 50

4.3.1 Multiple poles and zeros 53

4.3.2 Complex poles and zeros 53

4.3.3 Implementation 54

4.4 Results 54

4.4.1 Minimum phase plant 56

4.4.2 Nonminimum phase plant 64

4.4.3 Unrnodeled dynamics 65

iv

4.4.4 Persistently exciting signal 73

4.4.5 Recursive Least Squares 76

4.5 Summary 79

5 Experiment 82

5.1 Water level in a tank 82

5.2 Simulation results 83

6 Conclusions 87

Bibliography 89

A Genetic algorithms procedures 92

v

List of Tables

2.1 Fitness dependent reproduction 8

2.2 Reproduction 15

2.3 Crossover and mutation 15

3.4 Search space for a stable minimum phase system 28

3.5 Search space for continuous time parameters 39

4.6 Search space for nonminimum phase 65

4.7 Search space for unmodeled dynamics 68

vi

List of Figures

2.1 Genetic Algorithm 6

2.2 Ranking 10

2.3 Function with 11 local maxima 14

2.4 G A generations 16

2.4 G A generations (continued) 17

3.5 Window size = 5 22

3.6 Window size = 10 22

3.7 Window size = 20 23

3.8 Window size = 30 23

3.9 Number of trials = 1 24

3.10 Number of trials = 2 24

3.11 Number of trials = 3 24

3.12 Number of trials = 30 24

3.13 Parameters 26

3.14 Poles and zeros in the complex plane 26

3.15 Reparameterized complex plane 26

3.16 P R B S input and output of a system without noise 29

3.17 Pole-Zero estimate of a system without noise 29

3.18 Estimation of gain and delay of a system without noise 30

3.19 Pole zero locations 30

3.20 P R B S input and output with noise 33

vii

3.21 Parameter identification using RLS 33

3.22 Parameters locations 34

3.23 G A , pole zero identification 34

3.24 G A , parameters identification calculated from the pole zero identification 35

3.25 G A , parameters locations calculated from the pole zero identification . . 35

3.26 G A , parameters identification 36

3.27 G A , parameters locations 36

3.28 Continuous-time-system input and output 39

3.29 Continuous-time parameter estimates 40

3.30 Actual output and the output using the final estimates 40

3.31 Friction model 42

3.32 Motor input (/) and output (w) 43

3.33 Friction parameters identification 44

4.34 Two-degree of freedom controller 48

4.35 G A adaptive controller 49

4.36 Parameter Controller 50

4.37 Factorized Controller 55

4.38 Ladder 55

4.39 Reference input and output of a minimum phase system without noise . 56

4.40 Pole-Zero estimates for a minimum phase system without noise 57

4.41 Estimates of gain and delay for a minimum phase system without noise 57

4.42 Pole zero locations 58

4.43 Reference input and output of a minimum phase system with noise using

pole-zeros estimates 59

4.44 Pole-zero estimates for a minimum phase system with noise 60

v i n

4.45 Estimates of gain and delay for a minimum phase system with noise . . 60

4.46 Pole zero locations 61

4.47 Reference input and output of a minimum phase system with noise using

parameter estimates 62

4.48 Parameter estimates for a minimum phase system with noise 62

4.49 Estimates of gain and delay for a minimum phase system with noise . . 63

4.50 Parameters locations 63

4.51 Reference input and output for a nonminimum phase system 66

4.52 Parameter estimate for a nonminimum phase system 66

4.53 Gain and delay estimate for a nonminimum phase system 67

4.54 Pole zero locations for a nonminimum phase system 67

4.55 Input-Output for 3 parameters estimate with unmodeled dynamics . . . 68

4.56 Parameter estimate for unmodeled dynamics 69

4.57 Gain and delay estimate for unmodeled dynamics 69

4.58 Input-Output with dead beat control 70

4.59 Parameter estimate for unmodeled dynamics with dead beat control . . 70

4.60 Gain and delay estimate for unmodeled dynamics with dead beat control 71

4.61 Input-Output with desired pole = 0.7 71

4.62 Parameter estimates for unmodeled dynamics with desired pole = 0.7 . 72

4.63 Gain and delay estimate for unmodeled dynamics with desired pole = 0.7 72

4.64 Reference input and output of a system with window size = 30 73

4.65 Parameters for a window size = 30 74

4.66 Gain and delay for a window size = 30 74

4.67 Reference input and output of a system with window size = 60 75

4.68 Parameters for a window size = 60 75

4.69 Gain and delay for a window size = 60 76

ix

4.70 Reference input and output of a system using RLS 77

4.71 Parameter estimates for RLS 77

4.72 Parameter locations for RLS 78

4.73 Reference input and output of a system using G A to compare to RLS 79

4.74 Parameter estimates for G A to compare with RLS 80

4.75 Parameter locations for G A 80

5.76 Tank Input-Output 83

5.77 Parameter estimate for a tank 84

5.78 Estimated gain for a tank 84

5.79 Pole zero locations for a tank 85

x

Acknowledgement

I would like to use this opportunity for thanking all those that have made the completion

of this thesis possible. I would especially like to thank Prof. Guy A . Dumont, my thesis

advisor, for introducing the Genetic Algorithms to me and for his advice and guidance

in my research. I would also like to thank Ye Fu for providing the RLS routines and

Rob Ross for his assistance in operation the Pulp & Paper Centre's fxVAX computer.

At last special thanks go to Dr. K . Natarajan who read the final draft of this thesis.

xi

Chapter 1

Introduction

1.1 General introduction

The area of system identification has been given a lot of attention over the years. Many

methods have been used and many extended versions exist, but all of them are based

upon eighteenth century mathematics which assumes smooth search space with ever

present derivatives.

In the last few years Artificial Intelligence and learning have been gaining lot of

popularity and have been entering many fields, but little has been done to apply them

in the field of system identification and control.

1.2 "Standard" identification methods

On-line system identification methods used to date are based on recursive implemen

tation of off-line methods such as least-squares, maximum-likelihood or instrumental

variable. All those methods are based on the same principle and a unified description

exists [23]. Those recursive schemes are in essence local search techniques that search

for zero gradient by going in a direction suggested by the local gradient. They go to the

nearest point that gives zero gradient and stay there. Nothing will get the methods to

search further as long as the gradient stays zero. It is therefore very difficult for those

methods to find a global maximum and they often fail in the search for global maxi

mum if the search space is not differentiable or linear in the parameters. Because of

1

Chapter 1. Introduction 2

the linearity condition they have difficulty locating directly poles and zeros or physical

parameters of a system.

Another aspect is that these methods are all serial. They go from one point in the

search space to another at every sampling instant, as a new input-output pair becomes

available. They are not capable of iterating more than once on each data they receive,

they need new data to direct the search.

1.3 Motivation for this work

Genetic algorithms are a parallel, global search technique that emulates natural genetic

operators. They search many points simultaneously and thus have the potential to

converge more rapidly. In every generation new artificial chromosomes are created

by taking parts of the fittest chromosomes of the previous generation and combining

them to make a highly fit chromosome. They do not need to assume that the search

space is differentiable or continuous because they go from one generation to another

with transition rules that are probabilistic. This means the algorithms do not have to

wait for new data, but can iterate a few times on each data they receive. They work

with a population of binary coded strings so they can explore the search space in each

generation and then direct the search to regions where there is a high probability of

finding improved performance. Genetic algorithms have also been shown to excel in

multimodal optimization [10], and thus have the potential to give unbiased estimates

in presence of coloured noise.

In this thesis, a Genetic Algorithm (GA) is implemented as an estimator for dis

crete time systems. The results obtained employing this new identification method

are particularly favourable and they are considered to be well suited to the adaptive

Chapter 1. Introduction 3

control problem. Although the use of G A has been gaining popularity, its use in adap

tive control has not been investigated. The algorithm is used on few discrete time

systems, both minimum and nonminimum phase and with or without colored noise. It

is used to identify either parameters or poles-and-zeros. The encouraging results are

then compared with Recursive Least Squares.

1.4 Outline of this thesis

This thesis is organised as follows:

Chapter 2. Genetic Algorithms are described and some of the simple genetic opera

tors are explained. The algorithm is then used to find the maximum for a function

with eleven local maxima.

Chapter 3. A G A for system identification is implemented both in discrete and con

tinuous time and simulations results are shown. The algorithm is also compared

to Recursive Least Squares algorithm.

Chapter 4. The pole placement controller design is outlined and simulations results

are shown using the G A to identify plants with either minimum phase or non-

minimum phase characteristic and unmodeled dynamics. One simulation is then

done using Recursive Least Squares for the identification for comparison.

Chapter 5. A n experiment with a water tank is explained and identification results

are shown.

Chapter 6. Conclusions and suggestions for further work are given.

Chapter 2

Genetic Algorithms

2.1 History of Genetic Algorithms

The algorithms come out of work done by John H . Holland and his students at the

University of Michigan. The underlying principles of genetic algorithms were first

published by Holland in 1962 [18]. The mathematical framework was developed in the

late 1960's and in 1975, Holland's pioneering book, Adaptation in Natural and Artificial

Systems was published [19]. The same year it was shown by one of his student that

Genetic Algorithms (GAs) are very useful in function optimization even on "difficult"

domains that are multimodal, noisy and high-dimensional [10]. In 1983, Goldberg used

G A to minimize power consumption in gas-pipelines and then combined a learning

classifier system with a G A to detect leakage in the system [13]. In the last four years

a lot of research has been devoted to G A , two conferences have been held [16,17] and

two books have been written on the subject [15,9]. Genetic Algorithms have proven

to be useful in many different applications [15], like function optimization, computer

network design, travelling salesman problem, pattern recognition and many more.

2.2 The algorithm

Genetic algorithms differ from other search techniques by the use of concepts taken

from natural genetics and evolution theory. They are different in four ways:

1. GAs work with coding of the parameters, not the parameters themselves.

4

Chapter 2. Genetic Algorithms 5

2. GAs search from a population of points, not a single point.

3. GAs only need fitness values. There is no requirement for derivatives or other

auxiliary knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

The parameters to be found by the G A , need to be coded as a finite length string over

a finite search space. As an example, consider a stable real pole, (magnitude less than

one) the search space would be on the interval [0,1] or if we want a resolution of 1/1000

the search space would be in the integer interval [0,1000] and with a binary coding

this would be coded as a 10 bit string. The algorithm works with a population of

strings, searching many peaks in parallel, hence reducing the possibility of ending at a

local minimum and missing the global minimum. The only available feedback from the

system is the value of the performance measure (fitness). Although transition rules are

probabilistic, the algorithm is not simply a random search. It is a randomized search

that is guided by the fitness values of each string. The algorithm uses information,

already in the population, about things that have worked well in the past. By use of

operators taken from population genetics the algorithm efficiently explores part of the

search space where the probability of finding improved performance is high.

A genetic algorithm in its simplest form consists of 3 steps: (see Figure 2.1)

1. Reproduction

2. Crossover

3. Mutation

In the next three sections these will be described in details.

Chapter 2. Genetic Algorithms 6

Randomly generated
initial population

r " O n e - ~|
generation

Reproduction

Crossover

Mutation

L I J

Figure 2.1: Genetic Algorithm

Chapter 2. Genetic Algorithms 7

2.3 C o d i n g

It has been shown that binary coding is in a certain sense the optimal coding [19].

Suppose we have the binary strings 1010010111 and 1110100110, by comparing them

we can see some similarity, 1 * 10* *011*, where * is a don't care. We call 1 * 10* *011*,

a schema (plural, schemata). A string can be an instance of 2 1 0 = 1024 schemata which

can be found by replacing any of the bits in the string by a don't care. The number

of possible schemata on the alphabet {*,0,1} for the binary coding is 3 1 0 = 59094 so

by carefully selecting the string all schemata could be represented by 58 strings. If the

coding is decimal we would need 3 decimal number to represent the same search space

as a 10 bit binary string would. A three bit decimal string would be an instance of

2 3 = 8 schemata but the number of possible schemata on the alphabet {*,0,1, . . . , 9}

would be l l 3 = 1331 so all schemata would have to be represented by 166 strings. So

binary coding would need 3 times fewer strings to explore the search space. Therefore

binary coding is chosen with each parameter corresponding to a fixed length binary

substring of j bits [0 , . . . , 2d — 1]. The value, (x), of the binary substring is mapped to

an interval of the real numbers [/6,u6] to give

y = -^—(Ub - lb) + lb (2.1)

With n parameters, the final string consists of n concatenated substrings.

I ai | • • • | a n |

(2.2)
| 10 - -01 | ••• | 01---11 I

2.4 R e p r o d u c t i o n

In the reproduction part of the algorithm it is decided which strings are going to survive

and which ones are going to disappear, based on what in biological terms, is known as

Chapter 2. Genetic Algorithms 8

number of
F(i) offsprings
100 0.50 1
10 0.05 0

200 1.00 1
300 1.50 2
210 1.05 1
290 1.45 1
310 1.55 1
280 1.40 2
120 0.60 1
180 0.90 0

Table 2.1: Fitness dependent reproduction.

the survival of the fittest principle. It is done by assigning a positive number, fitness

F(i), to each individual in the population. It must be positive because high fitness

individuals should receive more offsprings than low fitness individuals. Based on the

normalized fitness Fn(i), the number of offsprings for each individual is calculated.

The fitness function tells us how well the system, to optimize or control, is behaving

under a certain string. The fitness function can be any nonlinear, nondifferentiable,

discontinuous function, because the algorithm only needs a fitness value assigned to

each string.

The number of offsprings is chosen according to the string normalized fitness. The

fitness is normalized with the average value of the fitness,

£ . (0 = •
 F}'] (2-3)

1=1

so the strings with above average fitness will have more than 1 offspring and those

with below average fitness will have less than 1 offspring on the average (see Table

2.1). The strings are selected according to the expected value of the normalized fitness

or what has become known as Stochastic Remainder Selection without Replacement,

Chapter 2. Genetic Algorithms 9

[15]. That means the strings will receive number of offsprings equal to the integer value

of their normalized fitnesses and then the population is filled up by choosing another

offspring for each of the strings with probability equal to their fractional part until the

total number of offsprings are equal to the population size TV.

The algorithm keeps track of the best string in the population and if it is not in the

new population (because some other G A operators destroyed it) it randomly replaces

another string in the new population.

2.4.1 Ranking

It is important to regulate the number of offsprings an individual can get, to maintain

a diversity in the population. Especially for the first few generations, when a few

"super" individuals can potentially take over a large part of the population, thereby

reducing the diversity of the population. The presence of super individuals can be

sensed by monitoring the number of individuals that are going to receive 0 offsprings.

It is somewhat a better way than limiting the number of offsprings an individual can

get, because it could be desirable to give a good individual many offsprings as long as

the diversity is maintained.

To control the reproduction, ranking can be introduced [3]. Whenever a certain

ratio of the normalized fitness is going to receive 0 offsprings, the strings are sorted

according to their fitness values. Then, instead of calculating the normalized fitness as

in Equation 2.3, the normalized fitness is given to each string according to

„ ... 2 (m a x - l) w . , , x iV + l ,
F ^ = / y _ i + 1 - (ma* ~ VjfZi <2-4)

where max as shown in Figure 2.2 is a user defined value, 1 < max < 2, and N is the

population size. The range of the normalized fitness will then be [2-max,max]. This

means that no matter how big the fitness is for the best string its normalized fitness

Chapter 2. Genetic Algorithms 10

max

1

2-max - -

1 N rank(i)

Figure 2.2: Ranking

will never be more than max when ranking is in effect. The lowest ranking string will

similarly always be guaranteed 2 — max as its normalized fitness.

2.5 Crossover

Reproduction directs the search towards the best but does not create any new indi

viduals. The offsprings are identical to their parent. In nature, the offsprings are not

exact copy of the parents, they usually have two parents and then inherit their char

acteristic from both parents to make up a new individual. The main operator to work

on the parents is crossover, the main searching operator. This operator takes valuable

information from both parents and combines it to find a highly fit individual. To apply

this operator, two strings from the reproduced population are mated at random and

they are cut once randomly between two bits. The new strings are then created by

interchanging the tails. It means that parent A will get the tail cut from parent B as

it tail and vice versa. This can best be explained by an example. Suppose there are

Chapter 2. Genetic Algorithms 11

two strings

00000000 and 11111111

and assume a random number generator comes up with a 3 as the cutting place or

crossover site. Then the new strings will be

11100000 and 00011111

Reproduction and crossover give genetic algorithms much of their power. The search is

emphasized towards the best and new regions are explored by using information about

things that have worked well in the past.

2.6 Mutation

Even though reproduction and crossover come up with many new strings they do not

introduce any new information into the population at the bit level. They work with the

bits that are already in the population and do not get any new bits into the population.

The bits can only reproduce or die, so if at certain position all the bits have the same

value, there is no way that crossover and reproduction can get the lost bit back. To

insure against such a loss and as a source of new bits, mutation is introduced. In the

case of binary coding, the mutation operator simply flips the state of a bit from 0 to 1

or vice versa. But it should be used sparingly because it is a random search operator

that searches the space randomly and the algorithm is intended to be a randomized

searching algorithm, not a random search.

2.7 Mathematical Foundations

The theoretical properties of genetic algorithms can be studied using the theory of
schemata1 proposed by Holland [19]. The defining length of a schema, 6(h), is the

1see definition of schemata in Section 2.3

Chapter 2. Genetic Algorithms 12

length between its outermost denning positions, for example 6(0 *0) = 3 — 1 = 2 and

S(* — 3 — 3 = 0. The defining length is a measure of how often crossover may be

destructive for a particular schema. For the schema 0*0 there are two ways to destruct

it by cutting it, but the schema * * 0 can not be destructed by crossover, providing

both offsprings created by crossover are kept. The order of a schema, o(h), on the other

hand, is a measure of how often mutation will be destructive for a schema. The order

of a schema is the number of defining positions for a string, for example o(0 * 0) = 2

and o(* * 0) = 1, or in other words, mutation can possibly destruct schema 0 * 0 in

two places but schema * * 0 in one place. In other words, schemata with short defining

length and low order, stands the biggest chance of surviving into the next generation.

This can be written as the Schemata Theorem [19]

T h e o r e m 1 Consider a GA using both crossover and mutation. The expected pro

portion of each schema represented in the population changes in one generation from

m(h,t) to

m(h,t + 1) > m (M) : 7 ^ (l - - ro(M)) (X - *")° < f c)

Where pc is the probability of a particular mating to undergo a crossover and pm is

the probability of a single bit to mutate during a generation. The average fitness of

the strings at time t representing the schema h is denoted by F(h,t) and F(t) is the

average fitness of the population.

What it means is that the number of schemata at time t + 1 is greater or equal to the

number at time t multiplied by the expected number of offsprings less those schemata

that are destructed by crossover or mutation. In other words the schemata theorem

states that the algorithm is going to converge towards the best, but there is no guarantee

that it is converging to the optimum. As Goldberg [15] puts it (pp.74):

Chapter 2. Genetic Algorithms 13

"Convergent behavior without guarantee of optimality bothers many people

who approach genetic algorithms from other, more traditional, optimization

backgrounds. . . .the fact of the matter is that genetic algorithms have no

convergence guarantees in arbitrary problems. They do sort out interesting

areas of a space quickly, but they are a weak method, without the guarantees

of more convergent procedures. This does not reduce their utility. Quite

the contrary, more convergent methods sacrifice globality and flexibility for

their convergence."

G A have been shown to behave well on multimodal functions, although there is no

known necessary and sufficient condition under which a function is genetically opti-

mizable. However, numerous studies have shown that functions on which G A fail are

pathological, and generally fail to be optimized by any other known technique except

exhaustive search [4]. In a recent study by Goldberg [14] it has been shown that even

though the algorithm is misled, it will converge for a wide range of starting conditions

(initial population) and under unfavorable conditions.

2.8 Example

Suppose we have the function

(1 - cos2nt) sin2lint (2.5)

and wish to find the maximum on the time interval [0,1]. The function has 11 local

maxima, the global one being in the middle as shown in Figure 2.3. By not knowing

the underlying function itself, but only the values of it, it is very difficult to locate the

maximum. If the direction of steepest gradient is followed the maximum will be the

one closest to the starting point. The G A on the other hand should be able to find the

maximum by climbing more than one peak at a time.

Chapter 2. Genetic Algorithms 14

rt rt

1.6 -

o. o.e 0 .4 o.e O .B 1.0

Figure 2.3: Function with 11 local maxima

Assume the interval [0,1] is coded as 10 bit binary string and the population size is

10. The initial population is chosen randomly and the binary string then mapped onto

the time interval. The fitness is read from Figure 2.3. The average fitness is calculated

and the number of offsprings for each individual found (see Table 2.2). Crossover and

mutation are done by choosing mates and crossover site, both at random. Mutation

is applied by mutating every bit of the new population with probability equal to pm

(approx. 1/1000), see Table 2.3. After three generations the algorithm is able to find

a solution within 3.5% of the maximum, as can be seen in Figure 2.4. It is not until

after 12 generations it finds The Maximum, but that is one of the underlying principles

of the algorithm that it does its best while learning to do better.

2.9 Summary

Because the algorithm works with a population of strings, it is given more chance to

locate the global maximum in a multimodal search space. It is in fact searching many

points (peaks) in parallel and exchanging information between the peaks. The initial

Chapter 2. Genetic Algorithms 15

para fitness normalized off
meters fitness springs

1000001101 0.513 1.61 2.18 2
0011110101 0.239 0.78 1.05 2
0000001110 0.014 0.00 0.00 0
1100010111 0.773 0.85 1.16 1
1000110111 0.554 0.17 0.24 0
0101011011 0.339 0.80 1.16 1
1111010111 0.961 0.03 0.04 0
1001100101 0.599 1.67 2.26 2
0111010011 0.457 0.01 0.01 0
0101001011 0.324 1.40 1.89 2

av. 0.74

Table 2.2: Reproduction

reproduction mate x-site new
generation

10-00001101 3 2 1011110101
100-0001101 8 3 1001100101
00-11110101 1 2 0000001101
00111101-01 10 8 0011110111
110001-0111 7 6 1100110101
01010110-11 9 8 0101011011
100110-0101 5 6 1001100111
100-1100101 2 3 1000001101
01010010-11 6 8 0101001011
01010010-11 4 8 0101001001

Table 2.3: Crossover and mutation

Generation 3 Generation 1

CTl

Generation 14 Generation 12

Generation 11 Generation 9

Chapter 2. Genetic Algorithms 18

population is generated randomly and the population size is kept constant throughout

the process. The algorithm only requires payoff information (fitness) for each of the

string, without the need for assumptions such as differentiability, thus making it very

useful for discontinuous surfaces.

Genetic algorithms are inherently parallel. Indeed, all strings or individuals in a

population evolve simultaneously without central coordination. To realize their full

potential, they must be implemented on parallel computer architectures.

Chapter 3

System Identification

3.1 Background

Although a variety of techniques have been developed for system identification, none

has proven to be effective in all domains. It would be nice to have a method that is

sufficiently robust, that is, could be used on a broad class of problems. GAs have been

used on a variety of problems as have been reported in [16,17,15,14]. In this chapter

the algorithms are going to be applied to both discrete and continuous time systems.

But first we look at some previous work in this area.

Etter et. al. [11] studied the system below and modelled it as having only two poles.

y(t) = 1 + 1 0 g 1

 u(t) (3.6)

They identified o,\ and a 2 with the input as a white noise and used population size of

11. They showed that the G A did better in locating the true values than a random

search did.

Das and Goldberg [8] worked with system of the form

M O = ^ £ ^ £ (« (<) + <(«)) (3.7) 1 + a^q 1 + a2q

with 60 = —0.2, bi — 0.1, b2 — 0.4, at = —1.6 and a 2 — 0.95. The system they used

was non-minimum phase and very oscillating (£ = 0.04). They successfully identified

the five parameters with the input as a P R B S signal and e(t) as Gaussian noise with

variance equal to 10% of the input.

19

Chapter 3. System Identification 20

Smith and DeJong [22] used G A to calibrate a nonlinear model of US. migration

patterns.

There has been one application of G A for continuous time systems. Goldberg [12]

identified mass-spring system with small damping (£ = 0.05)

mx(t) + cx{t) + kx{t) = f(t) (3.8)

where m — 1.0, c = 0.1 and k = 1.0. The force function, /(<), was a two step staircase

function and he identified directly the parameters of the continuous time system, m,c

and k.

A l l the applications so far have been on open loop systems and for the discrete time

systems have identified the parameters of the models which RLS can easily do. Nobody

has seen the ability of the G A to identify directly the poles and zeros. When estimating

poles and zeros with conventional estimation methods the problem is that the system

is no longer linear in the parameters. Standard algorithms do not identify directly the

poles and zeros. They change the system into a concatenation of second order systems

and then calculate the poles and zeros for each 2nd order block [24]. GAs on the other

hand can directly identify the poles and zeros. There is really no difference from GA's

point of view whether it is identifying the poles and zeros or the parameters. A l l it

needs is a fitness value to assign to each string. The advantage of knowing the poles

and zeros is simpler controller design as can be seen in Chapter 4.

GAs could also be used to identify physical parameters, like Goldberg did in [12]

for a mass-spring system. For instance, using this method the friction coefficient in a

motor drive could be identified directly. Traditionally discrete time estimation is used

which results in coefficients that are nonlinearly dependent upon the sampling time.

Because of GAs ability to deal with nonlinearity they can be used to identify continuous

time systems.

Chapter 3. System Identification 21

The simulations were performed on Pulp and Paper Centre /nVAX. Programs were

written in P A S C A L for the Genetic Algorithm and in F O R T R A N for the RLS part.

3.2 Discrete time identification

Consider the system

A{q-')y{t) = 2?(<f > (« - d) + C{q-X)e{i) (3-9)

Where A,B and C are polynomials in the backward shift operator, q'1, i . e. y(t — 1) =

q~1y(t) and y,u and e are the output, input and noise respectively. The noise e(t) is a

normally distributed random sequence with zero mean and a unit variance (cr^). The

polynomials A and C are assumed to be monic. The objective is to estimate A(q~1),

B(q~1) and the delay d, when given the input u(t) and the output y(t). The estimates

are denoted by Two sequences e(t) and n(t), can be defined, for calculating how

well the estimates fit the system, as:

Mq-'M*) = Biq-'Ht - d) + e(t) (3.10)

or

v(t) = y(t)-m (3 . i i)

with

Aiq-^yit) = Biq-'Ht - d)

Then we try to minimize i?[e2(f.)] or E[n2(t)}. The first case corresponds to the least-

squares case and has a search space which is quadratic, the second is akin to the

Instrumental Variable (IV) case and has a highly nonlinear search space.

Depending on the method used, the fitness function is chosen as

= X > "(*(«-*))' (3-12)
i=0

Chapter 3. System Identification 22

G e n e r a t i o n s

Figure 3.5: Window size = 5 Figure 3.6: Window size = 10

or as

F(t) = Y,M-(v(t-i)Y (3.13)
t = 0

where M is a bias term needed to ensure a positive fitness as explained in Chapter

2 and w is the window size or the number of time steps the fitness is accumulated

over, with a effect akin to that of the forgetting factor in R L S . The effect of different

window sizes can be seen in Figures 3.5 to 3.8 where the algorithm is run on a system

with P R B S input and colored noise. For the moment just assume that the figures

show some parameters of a second order system. From these figures it can be seen

that the variance of the parameter estimates reduces as the window size increases. But

there is a price to pay for increasing the window size. Implementing these fitness

functions is expensive in terms of C P U time. Because of the nature of the algorithm, (i.

e. coding, probabilistic transfer rules, etc.) no recursive version of the fitness function

exists. So at every generation the algorithm has to calculate the estimated output for

the whole window which makes the execution time proportional to the window size.

There is also an advantage of not having a recursive fitness function. That means that

Chapter 3. System Identification 23

B

< ~ •, '<) f i r . ;"i !
: ; ;; i n . j ; , . : •-. : : <\X i

i i : rt\:r' i r : . ! ! ! ; ! :IL 0.7170
: ' ! ! ij ' i ' 1

, i ' i "

'I '' i *|; i: i i ;i ' I'i'ii*-| i !??
1 '* :| J. ^ ?• ':: i i j ' ^ ' • •; ': * -' ; : : :
\i t(- •'. i; : ; • "•:

• i (*• • • i * • 3 "' i '

va
lu

e

'o i' 1 ! J f M h ;

E
st

im
at

ed

i j i i i i l i i t j i |

W^il 1 rljUlUir-Kl •0.7010 Irtj Li L J | f_|j ;
 :" i

•.0OOOEO3

G e n e r a t i o n s

Figure 3.7: Window size = 20

1B0. SOO.

G e n e r a t i o n s

Figure 3.8: Window size = 30

the algorithm does not have to wait for new input-output data before coining up with

new estimates. It can actually iterate as often as one likes for each sample but there

is some upper limit because of time constraints and in the window the input has to

be persistently excited (see Chapter 4, Section 4.4.4) for the algorithm to converge to

a certain value. Figures 3.9 to 3.11 show parameter estimates for different number of

trials (generations per sample) for a system with P R B S input and no noise. It is seen

that the algorithm actually needs fewer generations (200,175,150) to converge as the

number of trials increases from 1 to 3 and hence number of data points (200,87,50).

But there should be some limit on number of trials as can be seen from Figure 3.12

where the algorithm uses 30 trials for each data it needs about 2250 generations to

converge or 75 samples.

Chapter 3. System Identification 24

G e n e r a t i o n s

Figure 3.9: Number of trials = 1 Figure 3.10: Number of trials = 2

- -7.1IMOC-03

G e n e r a t i o n s G e n e r a t i o n s

Figure 3.11: Number of trials = 3 Figure 3.12: Number of trials = 30

Chapter 3. System Identification 25

3.2.1 Parameter identification

The system of Equation 3.9 can be described by the following polynomials

A{q~l) = 1 + a l 9 - 1 +--- + anq-n

B(q-') = 6 0 (l + 6 i g - 1 + --- + M - n) (3 - 1 4)

C{q-1) = 1 + c1q-1 + • • • + cnq~n

The G A can be used to identify the parameters in A and B and the delay, using either

Equation 3.12 or 3.13 as a fitness function. For a second order stable system it gives a

search space for ai and a2 of the form seen in Figure 3.13. If the system is also inversely

stable the search space for f>i and b2 is of the same form too.

3.2.2 Pole-zero identification

Because they do not require linearity in the parameters, genetic algorithms can directly

identify the poles and zeros of the system. In pole-zero form, the plant can be written

as:

(3.15)

Biq-1) = b0{l-ziq-1){l-z1q-1)-..{l-zmq-l){l-zmq-1)

Where m = n/2 if n is even and m = (n + l) /2 if n is odd. The parameters, p m and

zm will be zero if n is odd. It can also be reparameterized so that a complex conjugate

poles or two real poles will be represented by two parameters.

A{q-i) = (l - (a 1 ± / 3 1) g - 1) - . . (l - (a m ± / ? m) g - 1)
(3.16)

B{q~') = M l - (7 l ± t f l) g - 1) - " (l - (7 m ± * n x) ? - 1)

The parameters Pi and Si can be either imaginary (complex conjugate poles) or real

(two real poles). Because the signs on (3 and 8 are of no importance we can use the signs

to decide if the numbers are imaginary or real, negative will mean complex number and

Chapter 3. System Identification 26

a 2

•2

-2 \

-2

2 i?e

_ , _ _ , Figure 3.14: Poles and ze- Figure 3.15: Reparameter-
rigure 3.13: Parameters . ., , , . , , ,

ros in the complex plane lzed complex plane

(3.17)

positive will mean real numbers. As an example

l + 2 9 - 1 - f 0 g - 2 = (l - (_ l + l) g - 1) (l - (- l - l) 9 - 1) = [-1,+1]

l + 2 g - 1 + 2 g - 2 = {l-{-l+jl)q-i){l-(-l-ji)q-i) = [-1,-1]

That gives search space for a stable system of the form seen in Figure 3.15. Where the

lower half plane excluding the real axes, represents the complex conjugate poles and

the upper half plane represents the real axes.

If the parameters for a second order system are given by [23] (see Figure 3.13) :

Aiq-1) = l.O-l.bq'1 + 0.7q~2

B(q-X) = 1.0(1.0+ 0.5g- 1 + 0.0g- 2)

C(q-X) = 1 .0- 1.0?"1 + 0.2g- 2

The poles and zeros are (see Figure 3.14) :

A\q~x) = 1.0 - (0.75 i j O . 3 7) ? - 1

Biq-1) = 1.0(1.0- (-0.25 i-0.25)?- 1)

or (see Figure 3.15) :

' 0.75 + j'0.37

(3.18)

(3.19)

pit2 = [0.75,-0.37] = p x , 2 =
0.75 - j'0.37

(3.20)

Chapter 3. System Identification 27

and the zeros
f -0.5

z l i 2 = [-0.25,+0.25] = zi,2 = < (3.21)

(0.0

For a stable minimum phase plant, the poles and zeros are inside the unit circle (Figure

3.14), therefore the search space can be limited to be the unit circle or a box enclosing

the unit circle. For a nonminimum phase plant some of its zeros will be outside the

unit circle, so one has to decide how big the search space is going to be depending on

a priori knowledge of the system.

3.2.3 Results

Parameter settings

The crossover rate is chosen so as to give some of the population the opportunity to

survive into the next generation without any changes. The mutation rate is chosen such

that on the average one string in the population is mutated. Unless stated otherwise

the genetic parameters have therefore been chosen as follows [8] :

Pc = 0.8

pm = 0.01 (3.22)

population — 100

Second order systems were used so six parameters needed to be identified, that is d and

60 and then either parameters, bi,&2> ai and a 2 or poles-zeros, a i , / ? i , 7 i and h\. The

delay is coded as two bit string to give 4 choices for the delay and the other parameters

are coded as 7 bit strings, making totally a 37 bit string, which leaves the search space

with 2 3 7 = 1.37 1 0 n alternatives. The parameters have been concatenated as follows

M|o a |o 2 |6 1 |6 2 |6 0 | (3-23)

Chapter 3. System Identification 28

or

M |ai|/?i|7il*ilM (3.24)

depending on whether poles-zeros or parameters were identified. Upper and lower

bound on the parameters are defined (see Figures 3.13 and 3.14) and the resolution of

the coding is calculated using Equation 2.1.

lower bound upper bound # of bits resolution
d 1 4 2 1
b0

0.0 2.0 7 0.016
CLi,bi -2.0 2.0 7 0.032
0-2, b2

-1.0 1.0 7 0.016
ai,/?i»7i»*i -1.0 1.0 7 0.016

Table 3.4: Search space for a stable minimum phase system

Ident i f i ca t ion w i t h PRBS

A P R B S signal is used as an input for the system of Equation 3.18. The P R B S input

has a period of 127 with the bit interval equal to four times the sampling interval. The

G A is run for 600 generations and 3 trials are used for each input-output data so 200

samples will be used. The window (forgetting factor) has been set as 30, i . e. the fitness

function is calculated for the current input-output and the 30 previous samples.

Figure 3.16 shows the output for the P R B S signal when there is no noise in the

system (cr2 = 0). Figures 3.171 and 3.18 show the estimated parameters for each

generation using instrumental variable criterion as given in Equation 3.13. The values

of the estimates of the last generation are written at the right hand side of the graphs.

After about 150 generations or 50 samples the algorithm comes up with unbiased

estimates for all parameters except the zeros. Parameters —ji and 8i should both be

0.250 so a bias of 0.321 for 6\ seems rather big. But if bi and 62 are calculated we

Estimation of — Q i , / ? i , — 71,6X

Chapter 3. System Identification
29

3

3
O

C3

O.OO 6 0 . l O O . 160 .

N u m b e r o f s a m p l e s

Figure 3.16: P R B S input and output of a system without n o i s e

in

T3

- • 0.2130

•7 . I000E-02

ISO. 3 0 0 . 4 6 0 .

G e n e r a t i o n s

Figure 3.17: Pole-Zero estimate of a system without noise

Chapter 3. System Identification 30

Chapter 3. System Identification 31

get 0.426 and 0.050 respectively (true values 0.50, 0.0). The steady state gain of the

system is 7.5 so Equation 3.13 is less sensitive to changes in the zeros than the poles

and it should also be emphasized that the algorithm does not necessarily converge to

T H E optimum. "It does its best while learning to do better." Figure 3.19 show how

the poles and zeros move around in the complex plane for each generation where the

initial generation is at the back and the final generation is in front. The unit circle is

also plotted every 100 generations together with the estimates at that point.

3.3 Recurs i ve Least Squares es t imat ion

The actual process, or the system, is assumed to be described by an equation of the

form

where e(t) is a white noise with zero mean and a variance o~\ and the polynomials

A(q~1), B(q~1) and C(q~1) are given as

A(q->)y(t) = B(q-*)u(t) + Ciq-'Mt) (3.25)

Aiq-1) = 1.0 + a jg- 1 + • • • + anaq-n«

Biq-1) = q~l(1.0 + b i q - l + -.- + bnbq-n>)

Ciqr1) = i.o

(3.26)

Now introduce the parameter vectors 9 and 6 and a vector, <p(t), with the previous

inputs and outputs

9 = [a-^, - • • ,ana,l,bx, - • • ,bnb]

0 = [a 1 , . . . , a n . , l , & i , - " , & n „] T (3- 2 7)

tp{t) = [-y{t-l),---,-y{t-na),u{t-l),---,u(t-nb-l)]T

The output of the model (A(q x) and B(q J)) can then be written as

(3.28)

Chapter 3. System Identification 32

so the system output can be written as

y(t) = y{t) + *(t) (3.29)

Least squares is a prescription that one should take the value of 6 which makes the

sum of the squares of the e(t), J^^=1 e2(tf) as small as possible. It can be shown [23] that

the LS estimate of 0 is

£ = ($ r $) - 1 $ T y (3.30)

where

Y =

<P(N)T

The estimate of 0 can be made recursive by

2/(1)

y(N)

(3.31)

Kt+i =

Pt+1 = (l - J W f + 1) f

(3.32)

£t+i = yt+i - pf+iOt

where A is the forgetting factor. For numerical stability, the P matrix is factorized as

Pt = sts? (3.33)

where 5" is an upper-triangular matrix and St is then updated at each iteration [6].

3.3.1 Results

The Recursive Least Square (RLS) algorithm is run for the system of Equation 3.25

with the polynomials A, B and C described by Equation 3.18 with the noise variance,

o\ = 1.0. The forgetting factor is set to 0.9 to resemble a window for the GA of 30

Chapter 3. System Identification 33

3

a o
"3
fl

O.O BO. -40. 6 0 . 6 0 . l O O . 1 2 0 . 140 . 160 . I S O . ZOO.

N u m b e r o f s a m p l e s

Figure 3.20: P R B S input and output with noise

a)

-O
<L>

50. 100. 100.

N u m b e r of s a m p l e s

Figure 3.21: Parameter identification using R L S

Chapter 3. System Identification

- 2 J

Figure 3.22: Parameters locations

> -o
CO

s

7 . 1 0 0 0 E - 0 2

Figure 3.23: G A , pole zero identification

Chapter 3. System Identification 35

Figure 3.25: GA, parameters locations calculated from the pole zero identification

Chapter 3. System Identification 36

Figure 3.27: GA, parameters locations

Chapter 3. System Identification 37

steps (0.93 0 = 0.04) and a 1 ; a 2 , &i and b2 are then identified.2 Figure 3.21 shows the

result using the input shown in Figure 3.20. It can be seen that the estimates have

rather large variance especially b\ and b2 (the long dashed and dotted line respectively).

Their value after 200 samples is 1.3957 and 0.6088 respectively but 10 samples before

their values were 0.4214 and 1.2141 respectively so it is difficult to say what value they

are converging to. The estimates for ai and a2 have also a variance but much smaller

and they converge to biased estimates with the final estimates as -1.1543 and 0.4974

respectively. Figure 3.22 shows plot of a2 as a function of and b2 as a function of

bx with the time axis running out of the page and the triangle for a stable estimates

plotted every 50 samples.

To compare those results with the G A , the G A is run identifying the same parame

ters as those identified by the R L S . That means that the gain, b0 and the delay, d, are

assumed to be known so there are only four parameters to be identified. Using same

parameter settings as in Table 3.4 it gives a total string length of 28 bits, so the popu

lation size has been set to 50. The G A is run twice, first identifying the poles and zeros

and secondly identifying the parameters. The results of the pole-zeros identification is

shown in Figure 3.23, it is then converted into the parameters, Figure 3.24 and a 3-D

figure is plotted, Figure 3.25. The parameters estimation is shown in Figure 3.26 and

the corresponding 3-D figure is shown in Figure 3.27. It can be seen that in both cases

the poles have almost zero bias, they are only limited by the resolution of the search

space. They converge in about 50 generations for the pole-zero identification but in

about 100 generations for the parameters identification or about twice as fast for the

pole-zero identification than for the parameters. The zeros converge slowly for both

cases but the final estimates are close to the true values (0.5 and 0.0) in both cases.

If G A is then compared to the RLS it can be seen that the RLS needs more than 50
2True values from Equation 3.18 are -1.5, 0.7, 0.5 and 0.0 respectively.

Chapter 3. System Identification 38

samples for the poles to converge but the zeros do not converge, whereas the G A needs

between 50 and 100 generations for the poles to converge which means that with 3 trials

per sample it needs between 17 and 33 samples and the zeros are slowly converging.

So in terms of number of samples the G A converges faster. But as mentioned earlier

the fitness function for the G A can not be calculated recursively so the algorithm has

to calculate the outputs for all the window and to calculate every output it involves

(?ia + rif, + 1) multiplications and (n a + rif,) additions. The difference in bias of the

estimates are mostly caused by different objective (cost) function, the RLS uses a

simple least square whereas the G A uses IV alike objective function.

3.4 Continuous time identification

Consider n-th order system with a differential operator s = ^ and unknown coefficients

a; and bi

y(t) = V " + 6 n <t) (3-34)

The goal is to estimate directly the unknown coefficients a '̂s and 6j's using the knowl

edge of the continuous time input and output. Current techniques would find a model

of the process with filtered input and output and then use any suitable method like

R L S for identification of the parameters of the model and consequently the parameters

of the continuous time system [20]. One way to do the estimation using the G A would

be to find the parameters 0 (0 — [d a, • • •, d n , 61 ? • • •, bn]T) such that the area of the dif

ference between the actual output y and the output of the model y over a time window

W is the smallest.

min / (y(t) - y(tj))2 (3.35)
e Jw

At every sampling time T„ the area is calculated for previous W seconds, putting the

initial conditions of y equal to the initial conditions of y at time kT, — W. As in the

Chapter 3. System Identification 39

fr' -
M i , • f«<
"i * J J">' ii»i»»!! I'! J '

11' ' • " 1 1 . 1 ' I « " ' I I

11, n;;II r i i '

I.

i i i i i i i i' !• ii 'i II iiI, n II " i" 'i i' i' ' i " j , i , i' i i i " i i' *i H I' II
«i"iii i "I'II n mi
»'•.'! I'll1!! II Mil

II H ' ! i l .' , 11' '11' 1 !i i'",'' ii ' i .1 Ii ii i ' ' i ' '
i , i ' ' 1 1 ' ' 1 ' 1 1 ' ' ' ' i i ' i ' i ' i

H .1 i pi I. i i i' s ii i ' i n ii ', " i' ' i i i h ii
»'!!!!-':'!!!!!..!!!!.!!!!! !! ' ! ' II1

» i ' i ! ! : •' 'I

1 /

i n i! i i 1" ii
n1

ll 'I " I •
I'l".

" ' ' ! ' ' 111 " i 1 " i' I' ii 'j i' i"'i:i'!i'i ji "in1:1;;«:
•'« I f ' I1 'l I V 'i

,I'II'I ,̂,VIII|I'I1'
'i ^'!::i;'!!'.'i!':>•'!'.'

I I "

:i ;i nr.i >: ii ' i I * *!! l! \i)'t '•!!! "> *)V<
51" 1 i " If!'"!: i 1 1 .

1 1 1 /1

O.O 10 . SO. 3 0 . 4 0 . 6 0 . 6 0 . TO. 8 0 9 0 . 1 0 0 .

T i m e

Figure 3.28: Continuous-time-system input and output

discrete time case, the algorithm can be run several times for each sampling time.

3.4.1 Results

This has been implemented in ACSL using the PASCAL subroutines from previous

implementations of the algorithm. A second order system has been used with the

transfer function:
y(t) 0.0/1+ 1.0

u{t) s2 +0.5s+ 1.0 ['

The GA is used to find all four parameters of the plant. The search space has been

defined as in Table 3.5. The total string length is 36 bits so the GA parameters have

lower bound upper bound # of bits precision
oi, a2,h,b2 0.0 12.775 9 0.025

Table 3.5: Search space for continuous time parameters

Chapter 3. System Identification 40

12.

O. ' ' 1 1 • 1 ' ' 1 1 ' '
0.0 60. lOO. ISO. 200. BBO. 300. 360. 400. 460. BOO. B60. 600.

G e n e r a t i o n s

Figure 3.29: Continuous-time parameter estimates

0.4

0.3

0.2

0.1

O.O

— . 2 -

- .3 I 1 1 1 1 1 1 1 1 . 1
o.o to. eo. 30. 40. BO. eo. 70. eo. 90. 100.

T i m e

Figure 3.30: Actual output and the output using the final estimates

Chapter 3. System Identification 41

been set the same as in Equation 3.23. The input u(t) has been chosen as (see the

dashed line in Figure 3.28) :

u(t) = 0.08 sin 0.5* + sin 3.0* (3.37)'

The input is chosen so as to excite the system both above and below the natural

frequency and they should have about the same amplitude in the output for the pa

rameters to converge to the true value. The sampling time T, is 0.5 seconds and the

window is chosen as 8 seconds. The parameter estimates are shown in Figure 3.29.

The convergence is slow but they approach the actual values and the estimate after

450 generations, i. e. 150 sampling intervals is

0.000. + 1.050
s2 + 0.6005 + 1.025 ' j

which has a natural frequency, a;n = 1.01 and a damping ratio, £ = 0.30 instead of

1.0 and 0.25 respectively. If both the actual output and the output using the final

estimates are plotted (Figure 3.30) one can see that the response is almost identical

excluding the transient.

3.5 Friction compensation

Now look at the estimation of physical parameters, namely the friction of a motor. A

motor with friction torque T/ and a load disturbance torque TJ can be described by the

following model,

J ^ = KI{t)-Tf(i) + Tl(t) (3.39)

where J is the total moment of inertia, K is the current constant and / is the motor

current. Neglecting the load disturbance and introducing

m = «(0 + ^ (3-40)

Chapter 3. System Identification 42

Figure 3.31: Friction model

the motor model can be written as

J ^ = Ku(t) + {ff(u>)-Tf(u,)} (3.41)

If the estimates are good the term inside the bracket is going to vanish and the model

looks like a frictionless motor.

Many models for the friction have been suggested but a model used in [5] has been

adopted. The model is:

aiu> + / ? i iv > 0
z>(o,) = { (3.42)

a2iv + j32 iv < 0

Therefore the estimation of Tf(iv) requires estimation of four parameters, on, a2

and f32. Only two of them can be estimated at a given time depending on whether

the angular velocity iv is greater than zero or less than zero. G A can be applied to

this problem ones the objective function has been defined. Assuming it is required

to minimize the error between the actual angular velocity and the estimated one, the

fitness function becomes

minj (u>(t) -<v{t))2dt (3.43)

where W is a time window over which the objective function is calculated.

Chapter 3. System Identification 43

(3.44)

O. B. 10. 16. 20. 26. 30. 36. *0. 46. 60.
T i m e

Figure 3.32: Motor input (I) and output (w)

3.5.1 Results

The parameters of the friction model have been chosen as :

Q l = 0.1 Bx = 0.4

a 2 = 0.2 32 = -0 .2

and the motor is assumed to have K = 1.0 and J = 0.1. The parameters that are

identified are a l 5 /?!, a 2 , — f32 and they are assumed to lie between 0 and 1.2775 which

with a string length of 9 gives precision of 0.0025 for each one of them. When the

output is greater then zero a i and f3i are identified and when the output is less than

zero the other two, a 2 and j32 are identified. Therefore two populations are maintained,

one for cti and /?i and the other for a 2 and (32. The string length in each population is

18 so the population size is chosen as 50 for each one of them. The time window W

for the integral of Equation 3.43 is chosen as 2 seconds and there are 3 trials for each

Chapter 3. System Identification 44

>
co -»->
ea

s

Figure 3.33: Friction parameters identification

sample which is sampled at the rate of 5 per second. The input is a square wave with

period equal to 12 seconds, which can be seen together with the output in Figure 3.32.

Figure 3.33 shows the estimated parameters using G A and the final value that the G A

comes up with is:

dj = 0.100 0X = 0.400
(3.45)

d 2 = 0.205 -32 = 0.180

which have almost zero bias. The algorithm takes less than 100 generations to find

approximate estimates for each one of the populations and further refinements are

then found along the way.

3.6 S u m m a r y

In this chapter it has been demonstrated how GAs can be used to estimate both con

tinuous and discrete time systems and for identifying parameters, poles and zeros or

Chapter 3. System Identification 45

physical parameters of a system. The G A has proven to be a. robust algorithm, whereas

in all the applications the basic algorithm (procedures) stays the same. The only dif

ference between these different applications is a different routine to calculate the fitness

function.

In all the applications shown in this chapter, the G A has been able to converge

towards the actual values of the parameters. In most cases it gives unbiased estimates

but in some cases it takes time, like the identification of the zeros, primarily because

the objective function is not as sensitive to changes in the zeros as changes in the poles

and the G A is only looking for a good solution not necessarily the best.

In comparison to some widely known identification technique, RLS, the G A perform

as well or even better in terms of number of samples required to converge. But G A

can also easily be used on problem where RLS is difficult or even not possible to use

because of the requirement of linearity in the parameters of the system.

C h a p t e r 4

Con t ro l l e r design

4.1 C o n t r o l l e r

There are a large variety of adaptive design techniques. In this thesis I have chosen to

use an indirect scheme and I am not identifying the stochastic part, so an adaptive pole

placement design has been chosen. It is a simple design method that makes use of the

knowledge about the poles and zeros to obtain a desired transfer function or desired

response.

A SISO plant is described by an A R M A X 1 model:

*>=S-(<)+3£(<) (4-46)

The control law for a two-degree of freedom pole-placement controller (Figure 4.34)

can be written as

R(q)u(t) = -S(q)y(t) + T(q)yT(t) (4.47)

where yT is the reference signal and R is assumed to be monic. To simplify the writing

in the analysis that follows, the arguments of polynomials are suppressed. If Equation

(4.47) is written in terms of the system input u(t) and then put into Equation (4.46)

the closed loop system becomes

TB . . qdRC , . /

xAuto Regressive A(q), Moving Average C(q), eXternal signal B(q)

46

Chapter 4. Controller design 47

The desired closed loop transfer function is given by

H(q) = f=g (4,9)

or
TB B m

q*AR + BS Am

 (4 - 5 0)

By choosing the desired closed loop transfer function and estimating the plant, the

controller design has been reduced to finding the polynomials R, S and T that satisfy

Equation 4.50. Some of the process zeros can be cancelled in the design.

If B is factorized as B = B+ B~, where B+ is cancelled stable process zeros and

B~ is uncancelled process zeros, Bm must be written as, Bm = B~B'm The parts of B

that are not factors of Bm must be factors of qdAR + BS so B+ must be a factor of

R. Therefore R must be written as R = B+R. Generally the degree of qdAR + BS is

higher than Am so there must be some cancellation on the transfer function. So the

Diophantine equations becomes

qdAR + B~S = A0Am (4.51)

and T can be found from

T = B'mAot0 (4.52)

where tf0 is to ensure proper gain and A0 is the observer polynomial that is cancelled

in the transfer function [1]. In order to design the controller we need to solve the

Diophantine Equation 4.51 for R and S. In order to find a unique solution the degree

of S has to be less than the sum of d and degree of A. We choose degS = deg A + d — 1.

Using the causality conditions (degR > degS) the degree of A0 can be found from

Equation 4.51 to be

degA0 > 2(degA + d) - degAm - degB+ - 1 (4.53)

Chapter 4. Controller design 48

Vr
T

+
T o 1_

R

U B
A

Figure 4.34: Two-degree of freedom controller

The degree of R can be found from Equation 4.51 as

degR = degA0 + degAm — deg A — d (4.54)

This procedure assumes that the true plant A, B is known. When the true plant is not

known, one can use the G A to do the estimation of the plant A, B and then design an

indirect adaptive control scheme as shown in Figure 4.35.

4.2 Parameter based design

By assuming that we have knowledge of A and B~ and that A0 is chosen we can solve

Equation 4.51 for R and S. Define n = deg A, m = degB~, fc = degA0 and j = degAm,

then

A(q) = qn + a1qn~1 + • • • + o n

B~{q) = b0(qm+b1qm-1 + --- + bm)
Ao{q) = g f c + a i 0 g f c _ 1 + ••• + «fc0

Am(q) = q3 + aiwq3"1 H h ajw

S(q) = s0qn*d-1 •\-s1qn+d-2 + • • • + J n + r f - i

R(q) = q><+J-»-<t + ryqk+3-»-d-1+ --. + rk+j_n_d

(4.55)

Chapter 4. Controller design 49

r "TSSTfivTATO"

Control
design

Parameters

Figure 4.35: G A adaptive controller

In matrix form 4.51 can be written as

1 0 0 0

ax '•• 0 :

• • ' . 1 0

an a x 1

0 '•• : h

0 0 a n :

0 ••• 0 bm

': ! 0

0 ••• 0 0

... o

... o
0 0

••• 0

'•• 1

h

0 bm

1

rk+j-n-d

boSo

boSn+d-i

1 0 0

0

\ ' • . 1

Ofco 0 \ 0

0 '•

0 0

1

a JW

(4.56)

where the upper right hand zero matrix has degAa — (degA + d — degAm + degB~ — 1)

number of rows and the lower left hand zero matrix has d number of rows. If A and

B~ have no common factors, Equation 4.56 can be solved for r< and S;, to design the

Chapter 4. Controller design 50

1
H*

1
B + *

U

)
1

H*
1

B + *

(4.57)

Figure 4.36: Parameter Controller

controller. Equation 4.50 in the backward shift operator (<j~a) becomes

fj-{j-degBm-(n+d-degB))'jr"(j-(n+d-degB) g*
A*R* + q~(n+d-degB) fi*q-(k-(2(n+d)-j-degB + - 1)) g*

where * denotes that the polynomial is in the backward shift operator. If degAm —

degBm = deg A -f- d — degB and the equality in Equation 4.53 is true, the transfer

function becomes
f* n-{n+d-degB) ft*

(4.58) A*R* -+ q-{^+d-degB)ff*S*

The controller can then be implemented as shown in Figure 4.36.

4.3 Pole-zero based design

Wittenmark and Evans [24] have come up with a pole-zero placement algorithm based

on pole-zero parameterization. What they have done is to model a high order system

as a concatenation of second order systems, identify the parameters of the second order

subsystems and then calculate the poles and zeros. The solution of the Diophantine

equation corresponds then to a solution of a. linear triangular system of equations where

the controller parameters can be calculated recursively.

Chapter 4. Controller design 51

Assume that the poles and zeros of A and B respectively, are known and the poles

of Am and A0 are chosen.

A(q) = (<7 - Pi) •••(?- Pn)

B~(q) = buiq - zx) • • • (q - zm)
(4.59)

Am{q) = {q ~ Piw) • • • (q ~ pjw)

Mq) = {q ~ Pio) • • • (q ~ Pko)

As before Equation 4.51 needs to be solved for R and S. The solution can be split up

into three parts: One for finding coefficients of the terms with degree less than d, the

second for finding coefficients of the terms with degree rn + n + d and higher and the

third one for finding the rest of the coefficients. The polynomial R can be split up into

two parts, one with terms of degree lower than m and the other with terms of degree

m and higher.

R{q) = qmR" + R'

= + ^y+i-m-n-rf-l + . . . + ^ (4 . 6 0)

where R" can be calculated recursively by long division of Equation 4.51. Similarly for

the S polynomial.

S = qdS'+S"

= qd(30qn-' + • • • + !„_!) + s'^qd-1 + --- + 3^, (4.61)

where 5" can be found by long division. By using the fact that A(pi) — 0 and B~(zi) — 0

the coefficients in R' and S' can be calculated separately by evaluating Equation 4.51

for q — pi and q = zit

B-{Vi)pdS\Pl) = A^pAA^pA-B-ipAS'Xpt) (4.62)

zfA{zi)R'(zi) = A0{zi)Am{zi)-zfA{zi)zrR"{zi) (4.63)

Chapter 4. Controller design 52

where 2, are uncancelled process zero (zi € B~). By reparameterizing R and S' into

Newton coefficients, solution to Equations 4.62 and 4.63 can be found by solving a set

of triangular system of equations.

m — l

S'{q) = E-S/i(9)
i = 0

where

9i(q) =

fi(q) =

and

9i{*k)

fi(Pk) = '

1 i = 0

I n;=i(g-^) i<t<m-i
1 t = 0

nj=i(?-Pi) l < i < n - l

0 1 < k < i

Yl)=1(zk - Zj) i + 1 < k < m

' 0 1 < k < i

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

Now, the parameters of R' and S' can be found by solving the following set of triangular

equations

AotPiMmtPi) _ S"(PI) __ /
PfB-(Pl) HP? _ 0

^ f f 1 - ^ = * 0 + ' i / l (P n) + - " + < . 1 / „ - 1 (P „)

(4.70)

Chapter 4. Controller design 53

and for R'

A0(zi)Am(zi) -mjjii/ \ _ I

Ao(z2)A„l(z2) _m D»/ \ _ / , -I „ („ \
\iMz2) ! - ^ R (^) - r0 + rl9l{z2)

" " l i f e) " 0 ~ = < + r[gi{zm) + • • • + r'm_igm_x{zm)

4.3.1 Multiple poles and zeros

Assume that the algorithm estimates that there is a pole p; with multiplicity m^. It

implies that is has to find m; coefficients from the pole. That can be done by replacing

m; equations in Equation 4.62 by the following

B-(Pi)pdS'(Pi) = A0(Pi)Am(Pi) - B-(Pi)S"(Pi)

A [B-(q)q

dS'(q)}q=pi = A [Ao(q)Am(q) - B-(q)S"(q))q=pi

(4.72)

^ [B-(q)qdS'(q)} = i^[A0(q)Am(q)-B-(q)S''(q)]q=pi
I g=Pi

from the first equation we can get and the last one we get s[_1+ . In the case of

multiple zeros we differentiate Equation 4.63 instead of Equation 4.62.

4.3.2 Complex poles and zeros

Complex poles and zeros do not cause any problem because Equations 4.70 and 4.71

can be assumed to be defined on the complex plane. That means that some of the

coefficients r,- and will be complex so a filtering of complex signals has to be included

(see Figure 4.38 Section 4.3.3). The total signal will however always be real as can

be seen if Z\ and z2 from Equation 4.71 are assumed to be complex conjugate zeros

(zj = z2 = a — jb) and further more assume that r'0 — a + j/3. Then the first two

Chapter 4. Controller design 54

equations in Equation 4.71 become

a + j/3 = r'0

(4.73)
a-jB - r'0 + r[{zx - Zl)

so rj is
I

1 ~ b
r, = - (4.74)

Because r'u is used in combination with — r'1z1 the total signal is always a real signal.

r'0 - r\zx = a - j 3 - {{a + jb) = a - -J (4.75)

4.3.3 Implementation

The polynomials in the backward shift operator are

k + j-m-n-d m - 1

i=0 i=0

= R"" + g-(f c+J-"- d-m+ 1) jR'* (4.76)

s- = E*sM9 _ 1)9~ B + 1 + i+9" n i : *r9 _ i

» = 0 t = 0

= 5'* + g-"5"* (4.77)

If the equality in Equation 4.53 holds (k = 2(n + d) — j — degB+ — 1) Equation 4.77

becomes R* = R"* + q-(n+d-degB)Ru & n d t h e c o n t r o u e r

can be implemented as shown

in Figure 4.37, where R" and S" are implemented using a ladder network as shown in

Figure 4.38.

4.4 Results

In the simulation runs that follow, the input has been chosen to be a square wave

with period of 60 steps, the desired closed loop system is supposed to have a deadbeat

response and the observer is deadbeat as well. A n impulse is used to initialize the G A ,

i . e. fill up the window.

Chapter 4. Controller design 55

Vr
T*

+ Vr
T* , 1 T* T*

+
o—o 1

H"*

R"

+

I

/ = deg A + d - degB

S"
y

J S"

q -n

S'" S'"

Figure 4.37: Factorized Controller

-n + l „'

l - Viq 1 1 - pn-iq 1

q-'<-2 'n-l

-o-
Figure 4.38: Ladder

Chapter 4. Controller design 56

P .

_ 2 . I 1 1 ! 1 ! 1 1 1

—SO. O.OO 60. 100. 160 200.
N u m b e r o f s a m p l e s

Figure 4.39: Reference input and output of a minimum phase system without noise

4.4.1 M i n i m u m phase plant

The plant to be controlled is the same one as used in Chapter 3.

Aiq-'Ml) = B{q-l)u{i - 1) + C{q-l)e{i) (4.78)

with

A{q~l) = 1 .0- 1.5?-1 + 0 .7 9 - 2

Biq-1) = 1.0(1.0 + 0.5c; - 1 + 0.0q~2) (4.79)

C{q-X) = l . O - l . O g ^ + O ^ g - 2

The poles and zeros of A and B are identified using the IV criterion from Equation 3.13

using the same parameters settings as in Table 3.4.

W i t h o u t noise

Chapter 4. Controller design

"to
>

0}

Figure 4.40: Pole-Zero estimates for a minimum phase system without noise

•a

900.
G e n e r a t i o n s

Figure 4.41: Estimates of gain and delay for a minimum phase system without noi

Chapter 4. Controller design 58

2-1

-2-J

Figure 4.42: Pole zero locations

Chapter 4. Controller design 59

fx
o

ex

-2. ' ' 1 1 " '
— BO. 0.00 BO. 100. 160. 200.

N u m b e r o f s a m p l e s

Figure 4.43: Reference input and output of a minimum phase system with noise using
pole-zeros estimates

Figure 4.39 shows the reference input and output of the plant when there is no added

noise in the system (<r2 = 0.0). The output follows the reference input within the

first 30 steps and there is a bit of oscillations in the control signal because of zeros

cancellations. The estimates of the poles and zeros are plotted in Figure 4.40 and it

can be seen that unbiased estimates are obtained after about 300 generations or 100

time steps. Prior to that there is a small bias in the estimates, particularly in the

zeros, that contributes to the small ripples in the output whenever the reference input

is changed. The gain converges to the true value after about 81 generations or 27 steps

as can be seen in Figure 4.41. Figure 4.42 shows then the locations of the poles and

zeros estimates in the complex plane.

With noise

Chapter 4. Controller design

s
to

0.2280

B.0000E-03

Figure 4.44: Pole-zero estimates for a minimum phase system with noise

T8

soo.
G e n e r a t i o n s

Figure 4.45: Estimates of gain and delay for a minimum phase system with noi

Chapter 4. Controller design 61

2-1

Figure 4.46: Pole zero locations

Chapter 4. Controller design 62

2.

1.

3
OH
D o.

- 1 .

-2.
-60. O.OO 60. 100. 160. 200.

N u m b e r o f s a m p l e s

Figure 4.47: Reference input and output of a minimum phase system with noise using
parameter estimates

2.

1.

11
I*.

,*.
i\

va
lu

es
 1 -'

P: ,1.
,?

; 1"
: h

1

ZL. -L--. - f " I 1

ti
m

at
ed

O. _ J i .

Es

i
1 1

-z.
O.O 1B0. 300. 460. 600.

Generat ions

Figure 4.48: Parameter estimates for a minimum phase system with noise

Chapter 4. Controller design 63

goo.
G e n e r a t i o n s

Figure 4.49: Estimates of gain and delay for a minimum phase system with noise

Chapter 4. Controller design 64

Figure 4.43 shows the reference input and the output of the plant when a colored noise

is added to the output. The white noise, e(*), has standard deviation <J\ — 0.1. By

looking at Figures 4.44 and 4.45 it can be seen that good estimates are found after

50 generations or 17 steps, but there is still a small bias in the estimates especially

the zeros. It should though be remembered that even though the zeros have a, big

bias, if the parameters are calculated they do not have a big bias. For example the

final estimates for the zeros of 0.228 and 0.008 (true value 0.25 and 0.25) gives the

parameters 0.456 and 0.052 which is not far from the true values of 0.5 and 0.0. The

estimates in the complex plane for every generation are then shown in Figure 4.46.

To see how the controller based on its parameters behaved compared to the con

troller based on the poles and zeros, the G A was run again but now estimating the

parameters not the poles and zeros. It was shown (Figure 4.47) that the parameters

controller does as good job as the pole-zero controller. The estimates take a little bit

longer time to converge to acceptable level (Figures 4.48 and 4.50) than they did in

Figures 4.44 and 4.45 and the zeros take long time to find refined values because the

objective function is more sensitive to changes in the poles than zeros because of steady

state gain of 7.5. Figure 4.50 shows then the ax — a 2 and bx — b2 plane for each generation

and how the estimates evolve.

4.4.2 Nonminimum phase plant

The plant to be controlled is taken from Clarke [7].

O.lg-iQ. +2g~ 1)(l + 0q-1)
(1 - O . ^ X l - O.Sq-1)

(4.80)

Chapter 4. Controller design 65

Using the parameterization given in Chapter 3 the plant parameters are as follows:

b0 = 0.1 d = 1

= 0.85 7 l = 1.0 (4.81)

p\ = 0.05 ^ = 1.0

The search space for the poles and the gain is the same as previously but the search

space for the zeros has been doubled in size (see Table 4.6) to account for the nonmin-

inium phase behaviour. The observer is chosen to be deadbeat and the desired closed

lower bound upper bound # of bits precision
7ii*i -2.0 2.0 7 0.032

Table 4.6: Search space for nonminimum phase

loop plant is assumed to have poles at 0.2 and 0.0 and because unstable process zeros

B~ are not cancelled the desired transfer function becomes:

q-*B-
0.2?-1

(4.82)

It is not until after 300 generation or 100 time steps that estimates (Figures 4.52

and 4.53) are found that give a good control and the output is following the reference

input quite nicely as can be seen in Figure 4.51. The estimates have a small bias but

that does not seem to affect the output.

4.4.3 Unmodeled dynamics

We use the same N M P plant as in the previous section (Section 4.4.2) but now the GA

uses a first order model

^ , 4 . 8 3)

Similar test sequence as used by Clarke [7], i . e. the system is initially run in open

loop and then there are setpoint changes every 25th step. The window is chosen as 50

Chapter 4. Controller design

Z3
P .

-4->
&

o
p.

N u m b e r o f s a m p l e s

Figure 4.51: Reference input and output for a nonminimum phase syst em

CO
-B .0000E-03

O.O ISO. 300 . 4 B 0 . eoo .

Generat ions
Figure 4.52: Parameter estimate for a nonminimum phase system

Chapter 4. Controller design 67

Figure 4.54: Pole zero locations for a nonminimum phase system

Chapter 4. Controller design 68

3

-60. 0.00 60. 100. 160. 800. 260. 3O0. 360. 400.
N u m b e r o f s a m p l e s

Figure 4.55: Input-Output for 3 parameters estimate with unmodeled dynamics

samples and the search space is defined as in Table 4.7. The desired pole was set

lower bound upper bound # of bits precision
d 1 4 2 1
bo 0.0 2.0 7 0.016
ai -1.0 1.0 7 0.016

-2.0 20.0 9 0.043

Table 4.7: Search space for unmodeled dynamics

at 0 (dead-beat). For the first simulation the delay d is assumed to be known so only

the gain, the pole and the zero (b0, a x and bx) are identified. That gives a response

that has about 70% overshoot and has a low damping as shown in Figure 4.55 and

the parameter estimates are as shown in Figures 4.56 and 4.57 with the estimates for

the zero not converging to a certain value. But when all the four parameters (b0, 6 1 }

d and aj) are identified (population size = 50, total string length = 23) the overshoot

is reduced to about 30% and the damping is higher, Figure 4.58, and the system is

Chapter 4. Controller design 69

BO.

>

to
B

'V'

* >' S U V " ! ! !l

Generat ions

Figure 4.56: Parameter estimate for unmodeled dynamics

8 . 4 0 0 0 E 0 2

Figure 4.57: Gain and delay estimate for unmodeled dynamics

Chapter 4. Controller design

=3

1=5 o -»->
CL,

0.00 60. lOO. 160. 200. 260. 300. 360.
N u m b e r o f s a m p l e s

Figure 4.58: Input-Output with dead beat control

13

ro

6

Generat ions

Figure 4.59: Parameter estimate for unmodeled dynamics with dead beat control

Chapter 4. Controller design 71

82.

M
—»
to

1 1 1 11 1 1 1
G e n e r a t i o n s

Figure 4.60: Gain and delay estimate for unmodeled dynamics with dead beat control

3

ex

o
Q L ,

a

- e o . o o o e o . 100 . i s o e o o . e s o . a o o . 3GO. 4 0 0 .

N u m b e r o f s a m p l e s

Figure 4.61: Input-Output with desired pole = 0.7

Chapter 4. Controller design

C D

"(0
t>

-O C O -4->
s

Generat ions

Figure 4.62: Parameter estimates for unmodeled dynamics with desired pole

•si

•B5

eoo.
G e n e r a t i o n s

Figure 4.63: Gain and delay estimate for unmodeled dynamics with desired pole

Chapter 4. Controller design 73

3
QH

H-»
3 o
"3

QH

-60. 0.00 60. 100. 160. ZOO. Z60. 30O 360.

30

N u m b e r o f s a m p l e s

Figure 4.64: Reference input and output of a system with window size

estimated to be (see Figures 4.59 and 4.60)

0.599g- 2(l + 0.798g-1)
1 - 0.953?-1

Further improvement is obtained if a slower response is chosen (desired pole at 0.7),

Figure 4.61. The estimated model becomes (see Figures 4.62 and 4.63)

(4.84)

0.662g- 3(l + 0.712g-1)
1 - 0.937?-1

(4.85)

4.4.4 Persistently exciting signal

To show the effect of a persistent excitation, the minimum phase system of Equation

4.79 without noise (<T2 = 0.0) is run for a step change every 60 sample and a. window

size of 30 and 60. For the smaller window the algorithm comes up with good estimates

after about 150 generations (see Figures 4.65 and 4.66), but is not able to keep them

because the input and the output does not change over the window. The estimates

Chapter 4. Controller design 74

n
co

>

ca
s
co

E d

800.
Generat ions

Figure 4.65: Parameters for a window size = 30

-a

-65
CM

G e n e r a t i o n s

Figure 4.66: Gain and delay for a window size = 30

Chapter 4. Controller design

3
OH -l->
o
3
QH

— lOO. —60. O.OO 60. lOO. 160. 200. 260. 300. 360. 400.

N u m b e r o f s a m p l e s

Figure 4.67: Reference input and output of a system with window size

>

G e n e r a t i o n s

Figure 4.68: Parameters for a window size = 60

Chapter 4. Controller design 76

fz.

eoo.
G e n e r a t i o n s

Figure 4.69: Gain and delay for a window size = 60

starts to deteriorate and the algorithm is not able to bring them back consequently the

output does not follow the input very well (Figure 4.64). When the window is increased

to 60, to be able to include a step change in the window at all time, the estimates are

shown to converge to the true value (Figures 4.68 and 4.69). Because of a small bias in

the estimates the output has a small overshoot at every setpoint change (Figure 4.67).

4.4.5 Recursive Least Squares

To compare the G A to some method that is widely known, a standard RLS algorithm

is used on the same system as before with noise variance o\ = 0.1. The same pole

placement controller design is used. A deadbeat observer is chosen and the closed loop

poles and zeros are set at zero (deadbeat). The forgetting factor is set to 0.9 to resemble

a window for the G A of 30 steps (0.9 3 0 = 0.04) and a 1,a 2,fe 1 and 62 are then identified.

Figure 4.70 shows the reference input and the output of the system. It can be seen that

Chapter 4. Controller design 77

3 ex
-4-» a o
a
OH

T i m e s t e p s
Figure 4.70: Reference input and output of a system using RLS

CD
J 3

!>
T 3

CD

CO

s

2.8200E-02

e o . i o o . 160.

N u m b e r o f s a m p l e s

Figure 4.71: Parameter estimates for RLS

Chapter 4. Controller design

Figure 4.72: Parameter locations for RLS

Chapter 4. Controller design 79

3

-BO. 0.00 60. lOO. 160. 200.
N u m b e r o f s a m p l e s

Figure 4.73: Reference input and output of a system using G A to compare to RLS

the overshoots becomes larger as the parameter estimates deteriorates (Figure 4.71).

Figure 4.72 shows plot of a 2 as a function of a x and b2 as a function of b\. To compare

those results with G A , the G A has been run for same parameter estimates (only pole

and zeros, not gain and delay) using IV criterion and the results are shown in Figures

4.73, 4.74 and 4.75. Comparing Figure 4.70 and Figure 4.73 one can see that there is

not much of a difference in their response. Both have transients while searching for

good parameters and after few steps output follows the input. The RLS is quicker to

converge to a value whereas the G A is satisfied with suboptimal estimates.

4.5 Summary

It has been shown how knowledge of the plant (.4 and B), either its parameters or

poles-and-zeros, can be used to design a pole-placement controller. Simulations results

Chapter 4. Controller design 80

3

cu
.*->
eo

0
m

1BO. 300. 400.
Generat ions

Figure 4.74: Parameter estimates for G A to compare with R L S

Chapter 4. Controller design 81

show that the G A is as well fit for doing the identification as the RLS. The GA has

proven to be able to handle both minimum and nonminimum phase systems and has

also shown its ability to control when there is unmodeled dynamics.

Chapter 5

Experiment

5.1 Water level in a tank

A n experiment was carried out on a tank system at the Pulp and Paper Centre. The

tank has a sensor to measure the height h of the water and a pump to pump the water,

given a drive voltage u, into the tank. The outflow of the tank is a function of the

tank level so the dynamics will be nonlinear. Therefore the tank can be described by

a nonlinear differential equation of the form [2]:

^ = -AVh + Bf(u(t)) (5.86)
at

Where A depends on gravity and the ratio between the effective outlet area and the

cross section of the tank and B depends on the cross section of the tank and also relates

the pump flow to the drive voltage u of the pump motor electronics. A linear model of

the tank is given in A s t r o m and Ostberg [2] as:

KT
His) = (5.87)

K ' Ts + l K 1

where T depends on A and the initial height and K depends on the sensor and the

constant B. A Z O H is used together with the A/D converter to read the water height

so the Z-transform would be:

„ , , KT(1 - e-%)z~1

H (z) = — r IT-T— (5-88)
(1 — e T z~1)

where T, is the sampling time.

82

Chapter 5. Experiment 83

10. 80. 30. 40. 60. 60. 70.

N u m b e r o f s a m p l e s

Figure 5.76: Tank Input-Output
5.2 Simulation results

To collect the data the sampling time is chosen as 0.55 sec. and 80 samples are obtained

using P R B S as the input (see figure 5.76). Because of the prohibitive time it takes to

run the G A on an I B M A T we were not able to do any online control on the tank. The

G A is therefore run offline using the IV fitness function (see equation 3.13) to identify

directly the poles and zeros. The algorithm assumes that there are two poles, one zero

and it also identifies the gain b0.

il+Piq-W+Piq-1) [j

The poles are decoded as in chapter 3. Both the poles and the zero are assumed to

be stable so they are assumed to lie between -1 and +1. The gain is assumed to be

in the range [0,10] The length of each string is chosen as 11 which give resolution of

about 1/1000 for the poles and the zero and about 5/1000 for the gain. With four

Chapter 5. Experiment 84

cu

>
cu -•->
0
co

G e n e r a t i o n s

Figure 5.77: Parameter estimate for a tank

.s

0.8000E-02

G e n e r a t i o n s

Figure 5.78: Estimated gain for a tank

Chapter 5. Experiment

-2-"
Figure 5.79: Pole zero locations for a tank

Chapter 5. Experiment 86

parameters to identify, the total string length is 44 bits so the population size is set to

100. The probability of crossover and mutation is chosen as before to be 0.80 and 0.01

respectively and 6 generations were generated each sampling interval.

Figure 5.77 and 5.78 show the estimated parameters for each generation using the

input output data of figure 5.76. The estimated system after 300 generations is:

o.oesg-Mi-o.eeig-1) o.oesg-1

(1 - 0.637g-1)(l - 0.965-r1) (1 - 0.965-?-1) [' '

So the zero cancels one of the poles and the system is a first order system with a delay

and a pole close to the unit circle. The time it takes to fill up the tank is about 10

seconds so with a sampling time close to half a second the pole should be according to

equation 5.88 about -0.95 so the estimates seems good. In figure 5.76 the output of the

tank is shown if the final estimated parameters were used (dashed line). It can be seen

that the estimated output is not far from the actual one and it should be pointed out

that the estimated output is put equal to the actual output at the beginning of every

window, which means that the two output are much closer than suggested in figure

5.76. In figure 5.79 the locations of the poles and the zero are shown in the complex

plane for every generation where the cancellation of one of the poles with the zero can

be clearly seen.

Chapter 6

Conclusions

In this thesis a new approach was taken to the identification problem. The usual hill

climbing algorithms that follow the steepest gradient were abandoned for a method

that uses concepts from evolutionary theory called Genetic Algorithms. They proved

to be able to identify both discrete time and continuous time systems and could give

unbiased estimates in the presence of colored noise. They showed some advantage over

R L S and could be used in cases were the system is not linear in the parameters were

RLS can not be used, for example identify physical parameters, delays and pole-zeros.

They were used to design an adaptive pole-placement controller and gave good control

for a variety of problems as demonstrated by simulations.

A n experiment was presented. The algorithm was tested on a real data from a tank

system. The algorithm behaved well but because of the prohibitive time it takes for

the algorithm to run on an I B M - A T , no real time online control was attempted.

Genetic Algorithms have proven to be useful on wide range of applications without

any changes in the basic algorithm. The only interface with the system the algorithm

is working on is through the objective or fitness function. That function is the only

thing that needs to be changed from one application to another. Because the GAs

search within a population not from a single value they are insensitive to noise. As

with the R L S , there must be some priori knowledge about the system to identify, the

search space that the parameters are likely to lie within must be specified and also

the resolution. For a proper choice of the resolution the algorithm will prevent the

87

Chapter 6. Conclusions 88

estimates from jumping around and hence could be used to filter some noise. It should

also be remembered that the algorithm is a randomized search technique, so there is

no guarantee of optimality, the algorithm does its best while learning to do better.

A n area for further research is the exploitation of more than the best string in the

population for the design of a robust controller. For example the average of the ten best

strings in the population could be used for preventing abrupt changes in the estimates.

Also dominance could be used for a changing plant and for a multimodal search space,

like the example from chapter 2, some sort of distribution among the peaks could be

maintained by introducing sharing, that is the individuals are prevented from crowding

around one particular peak by punishing them for being too close together. That could

be particularly useful in changing environment where by maintaining diversity in the

population the algorithm does not put all of its effort into searching around a particular

peak.

Finally, GAs are parallel algorithm, so every attempt to run the algorithm on non-

parallel computer is bound to be slow. For our case the algorithm uses little bit less

than 1 second of C P U time for each generation, on a /A-VAX (1 MIPS) for population

size of 100, string length of 37 and window size of 30 steps. Once parallel computer

architectures become readily available, G A will become more attractive.

Bibliography

strom, K . J . and B . Wittenmark, (1984). Computer controlled systems, Prentice

Hall Inc., Englewood Cliffs N . J .

[2] Ast r6m, K . J . and A . B . Ostberg, (1985). "A teaching laboratory for process

control," Proceedings of the American Control Conference, pp. 1380-1385, vol. 3.

[3] Baker, J . E . , (1985). "Adaptive Selection Methods for Genetic Algorithms," Pro

ceedings of an International conference on Genetic Algorithms and Their Applica

tions, pp. 101-111.

[4] Bethke, A . D. , (1980). Genetic algorithms as function optimizers. Doctoral disser

tation (CCS), University of Michigan, Ann Arbor, MI .

[5] Canudas, C , K . J . Astrom and K . Braun, (1987). "Adaptive compensation in DC-

motor drives," IEEE Journal of robotics and automation, pp. 680-685, vol. RA-3 ,

No. 6, December.

[6] Clarke, D. W. , (1981). "Implementation of self tuning controllers," Self-tuning and

adaptive control: Theory and applications, (eds. C . J . Harris and S.A. Billings), pp.

144-165.

[7] Clarke, D. W. , (1984). "Self-tuning control of nonminimum-phase systems," Au-

tomatica, vol. 20, pp. 501-517.

[8] Das, R. and D. E . Goldberg, (1988). "Discrete-Time parameter estimation with

89

Bibliography 90

Genetic algorithms," Proceedings of the 19l annual Pittsburgh conference on mod

elling and simulation.

[9] Davis, L . (Ed.) (1987). Genetic Algorithms and Simulated Annealing, London:

Pitman.

[10] DeJong, K . A . , (1975). An analysis of the behavior of a class of genetic adaptive

systems. Doctoral dissertation (CCS), University of Michigan, Ann Arbor.

[11] Etter, D. M . , M . J . Hicks, and K . II. Cho, (1982). "Recursive adaptive filter

design using an adaptive genetic algorithm." Proceedings of the IEEE International

conference on Acoustics, Speech and Signal Processing, pp. 635-638, vol. 2.

[12] Goldberg, D. E . , (1981). System identification via genetic algorithm, Unpublished

manuscript, University of Michigan, Ann Arbor, MI .

[13] Goldberg, D. E . , (1983). Computer-aided gas pipeline operation using genetic al

gorithms and rule learning. Doctoral dissertation (civil engineering), University of

Michigan, Ann Arbor.

[14] Goldberg, D. E . , (1987). "Simple genetic algorithms and the minimal deceptive

problem," Genetic algorithms and simulated annealing, Lawrence, D. (Ed.), Pit

man Publishing, pp. 74-88.

[15] Goldberg, D. E . , (1989). Genetic algorithms in Search, optimization and Machine

Learning, Addison-Wesley.

[16] Grefenstette, J . J . (Ed.), (1985). Proceedings of an International conference on

genetic algorithms and their applications, Hillsdale, N J : Lawrence Erlbaum Asso

ciates.

Bibliography 9 1

[17] Grefenstette, J . J . (Ed.), (1987). Genetic algorithms and their applications: Pro

ceedings of the second international conference on genetic algorithms, Hillsdale,

N J : Lawrence Erlbaurn Associates.

[18] Holland, J . H . , (1970). "Outline for a logical theory of adaptive systems," A. W.

Burks (Ed.), Essays on cellular automata, pp. 297-319, University of Illinois Press.

[19] Holland, J . H . , (1975). Adaptation in Natural and Artificial Systems, University

of Michigan Press, Ann Arbor.

[20] Johansson, R., (1986). Identification of continuous time dynamic systems, Tech

nical Report, Department of Automatic Control, Lund Institute of Technology,

Lund, Sweden.

[21] Kristinsson K . and G. A . Dumont (1988). "Genetic algorithms in system identi

fication", Third I E E E international symposium on intelligent control, Arlington,

V A , U S A .

[22] Smith, T. and K . A . DeJong, (1981). "Genetic Algorithms applied to the calibra

tion of information driven models of US migration patterns," Proceedings of the

12th Annual Pittsburgh conference on Modelling and Simulation, pp. 955-959.

[23] Soderstrom, T., L . Ljung, and I. Gustavsson, (1974). A comparative study of re

cursive identification methods, Report 7427, Lund Institute of Technology, Lund,

Sweden.

[24] Wittenmark, B . and B . J . Evans, (1988). " A n adaptive pole placement controller

based on pole-zero parameterization," Preprint from the 8th IFAC/IFORS sympo

sium on identification and system parameter estimation, pp.98-103, Beijing, China.

Appendix A

Genetic algorithms procedures

Program P P C G A

P R O C E D U R E Select a population ;

B E G I N

F O R all the population size DO

F O R all the bits DO

IF random > 0.5 T H E N bit := 1

E L S E bit := 0 ;

E N D ;

P R O C E D U R E Schemata ;

B E G I N

{ Count how many 1 there are in each bit position using one counter for

each bit position. Then count lost bits by counting number of counters

that have value equal to 0 or population size. Then count converged

bits by counting number of counters that have value less than converged

% or those with value greater than (1 - converged) %. }

E N D ;

P R O C E D U R E System ;

92

Appendix A. Genetic algorithms procedures

B E G I N

{ Choose either P R B S input (no control) or setpoint changes }

IF setpoint changes T H E N

Every bitinterval multiply the input yref(t) with -1.0 ;

IF P R B S input T H E N

Every bitinterval make the P R B S sequence using shift register as given

Eykhoff [1974] ;

Find e(t), the normally distributed random sequence ;

Call the controller design with the best estimate to find the next controller

output, u(t) ;

E N D ;

P R O C E D U R E Convert the strings into the parameters ;

B E G I N

F O R all the population DO

F O R all the substrings DO

B E G I N

x := decimal value of the binary substring ;

resolution := maximum value - minimum value
2length oi substring _ j '

y := x * resolution + minimum value ;

E N D ;

E N D ;

P R O C E D U R E Fitness evaluation ;

Appendix A. Genetic algorithms procedures

B E G I N

F O R all the population DO

B E G I N

F O R t-window size T O t-0 DO

B E G I N

IF RLS T H E N

B E G I N

e:=y-ju;

fitness := bias - e2 + fitness ;

E N D

E L S E

B E G I N

y := f u •

v-=y-y ;

fitness := bias - r/2 + fitness ;

E N D

E N D ;

E N D ;

E N D ;

P R O C E D U R E Quicksort;

Use algorithm given in the book D A T A S T R U C T U R E T E C H N I Q U E S

by Thomas A . Stan dish page 25-27

or any other sorting algorithm

Appendix A. Genetic algorithms procedures

PROCEDURE Rank;

BEGIN
max — 1

a := 2 popsize — 1 '
max — 1

b := 1 - : -(popsize + 1) ;
popsize — 1

FOR all the popsize DO

fitness := a * rank + b ;

END ;

PROCEDURE Offspring ;

BEGIN

FOR all the population DO

BEGIN

Normalized fitness := fitness / meanfit ;

Int fit := integer value of normalized fitness ;

Offspring count := Intfit ;

Throw a dice to decide if the string gets one offspring for the

fractionalpart or not ;

END ;

IF there are too few or too many in the population THEN choose

the one that were most likely to get additional offspring and did

not or the one that were most unlikely to get additional offspring

and did, depending on whether the population size is too small or

too large respectively. ;

END ;

Appendix A. Genetic algorithms procedures

P R O C E D U R E Copies ;

B E G I N

W H I L E population size is not full DO

B E G I N

Next string ;

W H I L E offspring count < 0 DO

B E G I N

Copy string ;

Offspring count := offspring count - 1

E N D ;

E N D ;

E N D ;

P R O C E D U R E Crossover ;

B E G I N

F O R half the population size DO

B E G I N

Find the first string that has not been used

Choose another string randomly ;

Apply crossover with pc probability ;

IF crossover T H E N

B E G I N

Choose crossover point randomly ;

Appendix A. Genetic algorithms procedures 97

Copy first half of first string up to crossover point and

second half of second string from crossover point to

the end into the first offspring ;

Copy first half of second string up to crossover point and

second half of first string from crossover point to the

end into the second offspring ;

E N D

E L S E

B E G I N

Copy first string into first offspring ;

Copy second string into second offspring ;

E N D ;

E N D ;

E N D ;

P R O C E D U R E Mutation ;

B E G I N

F O R all the population size DO

F O R all the bits in each string DO

Mutate each bit with pm probability ;

E N D ;

B E G I N

Get all parameters ;

Initialize random generators ;

Appendix A. Genetic algorithms procedures

Initialize system input and output ;

Print initial values ;

Select a population ;

Start with the initial estimate as 1, 0, ..., 0 ;

F O R kids := 1 T O number of kids DO

B E G I N

Schemata ;

IF (kids-1) / trial = integer T H E N system ;

Convert the strings into the parameters ;

Fitness evaluation ;

Calculate the average fitness ;

Offspring ;

Count how many receive 0 offsprings ;

IF (receive 0 offsprings) > (fitOpct * popsize) T H E N

B E G I N

Quicksort ;

Rank ;

Offspring ;

E N D ;

Copies ;

Crossover ;

Mutation ;

Find the best string ;

IF it is not in the new population T H E N

Replace a string randomly chosen with the best one

Appendix A. Genetic algorithms procedures 99

Print report ;

Make the new generation the current one ;

E N D ;

E N D ;

