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Abstract 

Current online identification techniques are recursive and involve local search tech­

niques. In this thesis, we show how genetic algorithms, a parallel, global search tech­

nique emulating natural genetic operators can be used to estimate the poles and zeros 

of a dynamical system. We also design an adaptive controller based on the estimates. 

The algorithms are shown to be useful for continuous time parameter identifications 

and to be able to identify directly physical parameters of a system. Simulations and an 

experiment show the technique to be satisfactory and to provide unbiased estimates in 

presence of colored noise. 
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Chapter 1 

Introduction 

1.1 General introduction 

The area of system identification has been given a lot of attention over the years. Many 

methods have been used and many extended versions exist, but all of them are based 

upon eighteenth century mathematics which assumes smooth search space with ever 

present derivatives. 

In the last few years Artificial Intelligence and learning have been gaining lot of 

popularity and have been entering many fields, but little has been done to apply them 

in the field of system identification and control. 

1.2 "Standard" identification methods 

On-line system identification methods used to date are based on recursive implemen­

tation of off-line methods such as least-squares, maximum-likelihood or instrumental 

variable. All those methods are based on the same principle and a unified description 

exists [23]. Those recursive schemes are in essence local search techniques that search 

for zero gradient by going in a direction suggested by the local gradient. They go to the 

nearest point that gives zero gradient and stay there. Nothing will get the methods to 

search further as long as the gradient stays zero. It is therefore very difficult for those 

methods to find a global maximum and they often fail in the search for global maxi­

mum if the search space is not differentiable or linear in the parameters. Because of 

1 



Chapter 1. Introduction 2 

the linearity condition they have difficulty locating directly poles and zeros or physical 

parameters of a system. 

Another aspect is that these methods are all serial. They go from one point in the 

search space to another at every sampling instant, as a new input-output pair becomes 

available. They are not capable of iterating more than once on each data they receive, 

they need new data to direct the search. 

1.3 Motivation for this work 

Genetic algorithms are a parallel, global search technique that emulates natural genetic 

operators. They search many points simultaneously and thus have the potential to 

converge more rapidly. In every generation new artificial chromosomes are created 

by taking parts of the fittest chromosomes of the previous generation and combining 

them to make a highly fit chromosome. They do not need to assume that the search 

space is differentiable or continuous because they go from one generation to another 

with transition rules that are probabilistic. This means the algorithms do not have to 

wait for new data, but can iterate a few times on each data they receive. They work 

with a population of binary coded strings so they can explore the search space in each 

generation and then direct the search to regions where there is a high probability of 

finding improved performance. Genetic algorithms have also been shown to excel in 

multimodal optimization [10], and thus have the potential to give unbiased estimates 

in presence of coloured noise. 

In this thesis, a Genetic Algorithm (GA) is implemented as an estimator for dis­

crete time systems. The results obtained employing this new identification method 

are particularly favourable and they are considered to be well suited to the adaptive 
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control problem. Although the use of G A has been gaining popularity, its use in adap­

tive control has not been investigated. The algorithm is used on few discrete time 

systems, both minimum and nonminimum phase and with or without colored noise. It 

is used to identify either parameters or poles-and-zeros. The encouraging results are 

then compared with Recursive Least Squares. 

1.4 Outline of this thesis 

This thesis is organised as follows: 

Chapter 2. Genetic Algorithms are described and some of the simple genetic opera­

tors are explained. The algorithm is then used to find the maximum for a function 

with eleven local maxima. 

Chapter 3. A G A for system identification is implemented both in discrete and con­

tinuous time and simulations results are shown. The algorithm is also compared 

to Recursive Least Squares algorithm. 

Chapter 4. The pole placement controller design is outlined and simulations results 

are shown using the G A to identify plants with either minimum phase or non-

minimum phase characteristic and unmodeled dynamics. One simulation is then 

done using Recursive Least Squares for the identification for comparison. 

Chapter 5. A n experiment with a water tank is explained and identification results 

are shown. 

Chapter 6. Conclusions and suggestions for further work are given. 



Chapter 2 

Genetic Algorithms 

2.1 History of Genetic Algorithms 

The algorithms come out of work done by John H . Holland and his students at the 

University of Michigan. The underlying principles of genetic algorithms were first 

published by Holland in 1962 [18]. The mathematical framework was developed in the 

late 1960's and in 1975, Holland's pioneering book, Adaptation in Natural and Artificial 

Systems was published [19]. The same year it was shown by one of his student that 

Genetic Algorithms (GAs) are very useful in function optimization even on "difficult" 

domains that are multimodal, noisy and high-dimensional [10]. In 1983, Goldberg used 

G A to minimize power consumption in gas-pipelines and then combined a learning 

classifier system with a G A to detect leakage in the system [13]. In the last four years 

a lot of research has been devoted to G A , two conferences have been held [16,17] and 

two books have been written on the subject [15,9]. Genetic Algorithms have proven 

to be useful in many different applications [15], like function optimization, computer 

network design, travelling salesman problem, pattern recognition and many more. 

2.2 The algorithm 

Genetic algorithms differ from other search techniques by the use of concepts taken 

from natural genetics and evolution theory. They are different in four ways: 

1. GAs work with coding of the parameters, not the parameters themselves. 

4 



Chapter 2. Genetic Algorithms 5 

2. GAs search from a population of points, not a single point. 

3. GAs only need fitness values. There is no requirement for derivatives or other 

auxiliary knowledge. 

4. GAs use probabilistic transition rules, not deterministic rules. 

The parameters to be found by the G A , need to be coded as a finite length string over 

a finite search space. As an example, consider a stable real pole, (magnitude less than 

one) the search space would be on the interval [0,1] or if we want a resolution of 1/1000 

the search space would be in the integer interval [0,1000] and with a binary coding 

this would be coded as a 10 bit string. The algorithm works with a population of 

strings, searching many peaks in parallel, hence reducing the possibility of ending at a 

local minimum and missing the global minimum. The only available feedback from the 

system is the value of the performance measure (fitness). Although transition rules are 

probabilistic, the algorithm is not simply a random search. It is a randomized search 

that is guided by the fitness values of each string. The algorithm uses information, 

already in the population, about things that have worked well in the past. By use of 

operators taken from population genetics the algorithm efficiently explores part of the 

search space where the probability of finding improved performance is high. 

A genetic algorithm in its simplest form consists of 3 steps: (see Figure 2.1) 

1. Reproduction 

2. Crossover 

3. Mutation 

In the next three sections these will be described in details. 



Chapter 2. Genetic Algorithms 6 

Randomly generated 
initial population 

r " O n e - ~| 
generation 

Reproduction 

Crossover 

Mutation 

L I J 

Figure 2.1: Genetic Algorithm 



Chapter 2. Genetic Algorithms 7 

2.3 C o d i n g 

It has been shown that binary coding is in a certain sense the optimal coding [19]. 

Suppose we have the binary strings 1010010111 and 1110100110, by comparing them 

we can see some similarity, 1 * 10* *011*, where * is a don't care. We call 1 * 10* *011*, 

a schema (plural, schemata). A string can be an instance of 2 1 0 = 1024 schemata which 

can be found by replacing any of the bits in the string by a don't care. The number 

of possible schemata on the alphabet {*,0,1} for the binary coding is 3 1 0 = 59094 so 

by carefully selecting the string all schemata could be represented by 58 strings. If the 

coding is decimal we would need 3 decimal number to represent the same search space 

as a 10 bit binary string would. A three bit decimal string would be an instance of 

2 3 = 8 schemata but the number of possible schemata on the alphabet {*,0,1, . . . , 9} 

would be l l 3 = 1331 so all schemata would have to be represented by 166 strings. So 

binary coding would need 3 times fewer strings to explore the search space. Therefore 

binary coding is chosen with each parameter corresponding to a fixed length binary 

substring of j bits [0 , . . . , 2d — 1]. The value, (x), of the binary substring is mapped to 

an interval of the real numbers [/6,u6] to give 

y = -^—(Ub - lb) + lb (2.1) 

With n parameters, the final string consists of n concatenated substrings. 

I ai | • • • | a n | 

(2.2) 
| 10 - -01 | ••• | 01---11 I 

2.4 R e p r o d u c t i o n 

In the reproduction part of the algorithm it is decided which strings are going to survive 

and which ones are going to disappear, based on what in biological terms, is known as 
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number of 
F(i) offsprings 
100 0.50 1 
10 0.05 0 

200 1.00 1 
300 1.50 2 
210 1.05 1 
290 1.45 1 
310 1.55 1 
280 1.40 2 
120 0.60 1 
180 0.90 0 

Table 2.1: Fitness dependent reproduction. 

the survival of the fittest principle. It is done by assigning a positive number, fitness 

F(i), to each individual in the population. It must be positive because high fitness 

individuals should receive more offsprings than low fitness individuals. Based on the 

normalized fitness Fn(i), the number of offsprings for each individual is calculated. 

The fitness function tells us how well the system, to optimize or control, is behaving 

under a certain string. The fitness function can be any nonlinear, nondifferentiable, 

discontinuous function, because the algorithm only needs a fitness value assigned to 

each string. 

The number of offsprings is chosen according to the string normalized fitness. The 

fitness is normalized with the average value of the fitness, 

£ . ( 0 = •
 F}'] (2-3) 

1=1 

so the strings with above average fitness will have more than 1 offspring and those 

with below average fitness will have less than 1 offspring on the average (see Table 

2.1). The strings are selected according to the expected value of the normalized fitness 

or what has become known as Stochastic Remainder Selection without Replacement, 
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[15]. That means the strings will receive number of offsprings equal to the integer value 

of their normalized fitnesses and then the population is filled up by choosing another 

offspring for each of the strings with probability equal to their fractional part until the 

total number of offsprings are equal to the population size TV. 

The algorithm keeps track of the best string in the population and if it is not in the 

new population (because some other G A operators destroyed it) it randomly replaces 

another string in the new population. 

2.4.1 Ranking 

It is important to regulate the number of offsprings an individual can get, to maintain 

a diversity in the population. Especially for the first few generations, when a few 

"super" individuals can potentially take over a large part of the population, thereby 

reducing the diversity of the population. The presence of super individuals can be 

sensed by monitoring the number of individuals that are going to receive 0 offsprings. 

It is somewhat a better way than limiting the number of offsprings an individual can 

get, because it could be desirable to give a good individual many offsprings as long as 

the diversity is maintained. 

To control the reproduction, ranking can be introduced [3]. Whenever a certain 

ratio of the normalized fitness is going to receive 0 offsprings, the strings are sorted 

according to their fitness values. Then, instead of calculating the normalized fitness as 

in Equation 2.3, the normalized fitness is given to each string according to 

„ ... 2 ( m a x - l ) w . , , x iV + l , 
F ^ = / y _ i + 1 - (ma* ~ VjfZi <2-4) 

where max as shown in Figure 2.2 is a user defined value, 1 < max < 2, and N is the 

population size. The range of the normalized fitness will then be [2-max,max]. This 

means that no matter how big the fitness is for the best string its normalized fitness 
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max 

1 

2-max - -

1 N rank(i) 

Figure 2.2: Ranking 

will never be more than max when ranking is in effect. The lowest ranking string will 

similarly always be guaranteed 2 — max as its normalized fitness. 

2.5 Crossover 

Reproduction directs the search towards the best but does not create any new indi­

viduals. The offsprings are identical to their parent. In nature, the offsprings are not 

exact copy of the parents, they usually have two parents and then inherit their char­

acteristic from both parents to make up a new individual. The main operator to work 

on the parents is crossover, the main searching operator. This operator takes valuable 

information from both parents and combines it to find a highly fit individual. To apply 

this operator, two strings from the reproduced population are mated at random and 

they are cut once randomly between two bits. The new strings are then created by 

interchanging the tails. It means that parent A will get the tail cut from parent B as 

it tail and vice versa. This can best be explained by an example. Suppose there are 



Chapter 2. Genetic Algorithms 11 

two strings 

00000000 and 11111111 

and assume a random number generator comes up with a 3 as the cutting place or 

crossover site. Then the new strings will be 

11100000 and 00011111 

Reproduction and crossover give genetic algorithms much of their power. The search is 

emphasized towards the best and new regions are explored by using information about 

things that have worked well in the past. 

2.6 Mutation 

Even though reproduction and crossover come up with many new strings they do not 

introduce any new information into the population at the bit level. They work with the 

bits that are already in the population and do not get any new bits into the population. 

The bits can only reproduce or die, so if at certain position all the bits have the same 

value, there is no way that crossover and reproduction can get the lost bit back. To 

insure against such a loss and as a source of new bits, mutation is introduced. In the 

case of binary coding, the mutation operator simply flips the state of a bit from 0 to 1 

or vice versa. But it should be used sparingly because it is a random search operator 

that searches the space randomly and the algorithm is intended to be a randomized 

searching algorithm, not a random search. 

2.7 Mathematical Foundations 

The theoretical properties of genetic algorithms can be studied using the theory of 
schemata1 proposed by Holland [19]. The defining length of a schema, 6(h), is the 

1see definition of schemata in Section 2.3 



Chapter 2. Genetic Algorithms 12 

length between its outermost denning positions, for example 6(0 *0) = 3 — 1 = 2 and 

S(* — 3 — 3 = 0. The defining length is a measure of how often crossover may be 

destructive for a particular schema. For the schema 0*0 there are two ways to destruct 

it by cutting it, but the schema * * 0 can not be destructed by crossover, providing 

both offsprings created by crossover are kept. The order of a schema, o(h), on the other 

hand, is a measure of how often mutation will be destructive for a schema. The order 

of a schema is the number of defining positions for a string, for example o(0 * 0) = 2 

and o(* * 0) = 1, or in other words, mutation can possibly destruct schema 0 * 0 in 

two places but schema * * 0 in one place. In other words, schemata with short defining 

length and low order, stands the biggest chance of surviving into the next generation. 

This can be written as the Schemata Theorem [19] 

T h e o r e m 1 Consider a GA using both crossover and mutation. The expected pro­

portion of each schema represented in the population changes in one generation from 

m(h,t) to 

m(h,t + 1) > m ( M ) : 7 ^ ( l - - ro(M)) (X - *")° < f c ) 

Where pc is the probability of a particular mating to undergo a crossover and pm is 

the probability of a single bit to mutate during a generation. The average fitness of 

the strings at time t representing the schema h is denoted by F(h,t) and F(t) is the 

average fitness of the population. 

What it means is that the number of schemata at time t + 1 is greater or equal to the 

number at time t multiplied by the expected number of offsprings less those schemata 

that are destructed by crossover or mutation. In other words the schemata theorem 

states that the algorithm is going to converge towards the best, but there is no guarantee 

that it is converging to the optimum. As Goldberg [15] puts it (pp.74): 
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"Convergent behavior without guarantee of optimality bothers many people 

who approach genetic algorithms from other, more traditional, optimization 

backgrounds. . . .the fact of the matter is that genetic algorithms have no 

convergence guarantees in arbitrary problems. They do sort out interesting 

areas of a space quickly, but they are a weak method, without the guarantees 

of more convergent procedures. This does not reduce their utility. Quite 

the contrary, more convergent methods sacrifice globality and flexibility for 

their convergence." 

G A have been shown to behave well on multimodal functions, although there is no 

known necessary and sufficient condition under which a function is genetically opti-

mizable. However, numerous studies have shown that functions on which G A fail are 

pathological, and generally fail to be optimized by any other known technique except 

exhaustive search [4]. In a recent study by Goldberg [14] it has been shown that even 

though the algorithm is misled, it will converge for a wide range of starting conditions 

(initial population) and under unfavorable conditions. 

2.8 Example 

Suppose we have the function 

(1 - cos2nt) sin2lint (2.5) 

and wish to find the maximum on the time interval [0,1]. The function has 11 local 

maxima, the global one being in the middle as shown in Figure 2.3. By not knowing 

the underlying function itself, but only the values of it, it is very difficult to locate the 

maximum. If the direction of steepest gradient is followed the maximum will be the 

one closest to the starting point. The G A on the other hand should be able to find the 

maximum by climbing more than one peak at a time. 
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rt rt 

1.6 -

o. o.e 0 .4 o.e O .B 1.0 

Figure 2.3: Function with 11 local maxima 

Assume the interval [0,1] is coded as 10 bit binary string and the population size is 

10. The initial population is chosen randomly and the binary string then mapped onto 

the time interval. The fitness is read from Figure 2.3. The average fitness is calculated 

and the number of offsprings for each individual found (see Table 2.2). Crossover and 

mutation are done by choosing mates and crossover site, both at random. Mutation 

is applied by mutating every bit of the new population with probability equal to pm 

(approx. 1/1000), see Table 2.3. After three generations the algorithm is able to find 

a solution within 3.5% of the maximum, as can be seen in Figure 2.4. It is not until 

after 12 generations it finds The Maximum, but that is one of the underlying principles 

of the algorithm that it does its best while learning to do better. 

2.9 Summary 

Because the algorithm works with a population of strings, it is given more chance to 

locate the global maximum in a multimodal search space. It is in fact searching many 

points (peaks) in parallel and exchanging information between the peaks. The initial 
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para­ fitness normalized off­
meters fitness springs 

1000001101 0.513 1.61 2.18 2 
0011110101 0.239 0.78 1.05 2 
0000001110 0.014 0.00 0.00 0 
1100010111 0.773 0.85 1.16 1 
1000110111 0.554 0.17 0.24 0 
0101011011 0.339 0.80 1.16 1 
1111010111 0.961 0.03 0.04 0 
1001100101 0.599 1.67 2.26 2 
0111010011 0.457 0.01 0.01 0 
0101001011 0.324 1.40 1.89 2 

av. 0.74 

Table 2.2: Reproduction 

reproduction mate x-site new 
generation 

10-00001101 3 2 1011110101 
100-0001101 8 3 1001100101 
00-11110101 1 2 0000001101 
00111101-01 10 8 0011110111 
110001-0111 7 6 1100110101 
01010110-11 9 8 0101011011 
100110-0101 5 6 1001100111 
100-1100101 2 3 1000001101 
01010010-11 6 8 0101001011 
01010010-11 4 8 0101001001 

Table 2.3: Crossover and mutation 



Generation 3 Generation 1 

CTl 



Generation 14 Generation 12 

Generation 11 Generation 9 
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population is generated randomly and the population size is kept constant throughout 

the process. The algorithm only requires payoff information (fitness) for each of the 

string, without the need for assumptions such as differentiability, thus making it very 

useful for discontinuous surfaces. 

Genetic algorithms are inherently parallel. Indeed, all strings or individuals in a 

population evolve simultaneously without central coordination. To realize their full 

potential, they must be implemented on parallel computer architectures. 



Chapter 3 

System Identification 

3.1 Background 

Although a variety of techniques have been developed for system identification, none 

has proven to be effective in all domains. It would be nice to have a method that is 

sufficiently robust, that is, could be used on a broad class of problems. GAs have been 

used on a variety of problems as have been reported in [16,17,15,14]. In this chapter 

the algorithms are going to be applied to both discrete and continuous time systems. 

But first we look at some previous work in this area. 

Etter et. al. [11] studied the system below and modelled it as having only two poles. 

y(t) = 1 + 1 0 g 1

 u(t) (3.6) 

They identified o,\ and a 2 with the input as a white noise and used population size of 

11. They showed that the G A did better in locating the true values than a random 

search did. 

Das and Goldberg [8] worked with system of the form 

M O = ^ £ ^ £ ( « ( < ) + <(«)) (3.7) 1 + a^q 1 + a2q 

with 60 = —0.2, bi — 0.1, b2 — 0.4, at = —1.6 and a 2 — 0.95. The system they used 

was non-minimum phase and very oscillating (£ = 0.04). They successfully identified 

the five parameters with the input as a P R B S signal and e(t) as Gaussian noise with 

variance equal to 10% of the input. 

19 
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Smith and DeJong [22] used G A to calibrate a nonlinear model of US. migration 

patterns. 

There has been one application of G A for continuous time systems. Goldberg [12] 

identified mass-spring system with small damping (£ = 0.05) 

mx(t) + cx{t) + kx{t) = f(t) (3.8) 

where m — 1.0, c = 0.1 and k = 1.0. The force function, /(<), was a two step staircase 

function and he identified directly the parameters of the continuous time system, m,c 

and k. 

A l l the applications so far have been on open loop systems and for the discrete time 

systems have identified the parameters of the models which RLS can easily do. Nobody 

has seen the ability of the G A to identify directly the poles and zeros. When estimating 

poles and zeros with conventional estimation methods the problem is that the system 

is no longer linear in the parameters. Standard algorithms do not identify directly the 

poles and zeros. They change the system into a concatenation of second order systems 

and then calculate the poles and zeros for each 2nd order block [24]. GAs on the other 

hand can directly identify the poles and zeros. There is really no difference from GA's 

point of view whether it is identifying the poles and zeros or the parameters. A l l it 

needs is a fitness value to assign to each string. The advantage of knowing the poles 

and zeros is simpler controller design as can be seen in Chapter 4. 

GAs could also be used to identify physical parameters, like Goldberg did in [12] 

for a mass-spring system. For instance, using this method the friction coefficient in a 

motor drive could be identified directly. Traditionally discrete time estimation is used 

which results in coefficients that are nonlinearly dependent upon the sampling time. 

Because of GAs ability to deal with nonlinearity they can be used to identify continuous 

time systems. 
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The simulations were performed on Pulp and Paper Centre /nVAX. Programs were 

written in P A S C A L for the Genetic Algorithm and in F O R T R A N for the RLS part. 

3.2 Discrete time identification 

Consider the system 

A{q-')y{t) = 2?(<f > ( « - d) + C{q-X)e{i) (3-9) 

Where A,B and C are polynomials in the backward shift operator, q'1, i . e. y(t — 1) = 

q~1y(t) and y,u and e are the output, input and noise respectively. The noise e(t) is a 

normally distributed random sequence with zero mean and a unit variance (cr^). The 

polynomials A and C are assumed to be monic. The objective is to estimate A(q~1), 

B(q~1) and the delay d, when given the input u(t) and the output y(t). The estimates 

are denoted by Two sequences e(t) and n(t), can be defined, for calculating how 

well the estimates fit the system, as: 

Mq-'M*) = Biq-'Ht - d) + e(t) (3.10) 

or 

v(t) = y(t)-m (3 . i i ) 

with 

Aiq-^yit) = Biq-'Ht - d) 

Then we try to minimize i?[e2(f.)] or E[n2(t)}. The first case corresponds to the least-

squares case and has a search space which is quadratic, the second is akin to the 

Instrumental Variable (IV) case and has a highly nonlinear search space. 

Depending on the method used, the fitness function is chosen as 

= X > "(*(«-*))' (3-12) 
i=0 
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G e n e r a t i o n s 

Figure 3.5: Window size = 5 Figure 3.6: Window size = 10 

or as 

F(t) = Y,M-(v(t-i)Y (3.13) 
t = 0 

where M is a bias term needed to ensure a positive fitness as explained in Chapter 

2 and w is the window size or the number of time steps the fitness is accumulated 

over, with a effect akin to that of the forgetting factor in R L S . The effect of different 

window sizes can be seen in Figures 3.5 to 3.8 where the algorithm is run on a system 

with P R B S input and colored noise. For the moment just assume that the figures 

show some parameters of a second order system. From these figures it can be seen 

that the variance of the parameter estimates reduces as the window size increases. But 

there is a price to pay for increasing the window size. Implementing these fitness 

functions is expensive in terms of C P U time. Because of the nature of the algorithm, (i. 

e. coding, probabilistic transfer rules, etc.) no recursive version of the fitness function 

exists. So at every generation the algorithm has to calculate the estimated output for 

the whole window which makes the execution time proportional to the window size. 

There is also an advantage of not having a recursive fitness function. That means that 
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Figure 3.7: Window size = 20 
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Figure 3.8: Window size = 30 

the algorithm does not have to wait for new input-output data before coining up with 

new estimates. It can actually iterate as often as one likes for each sample but there 

is some upper limit because of time constraints and in the window the input has to 

be persistently excited (see Chapter 4, Section 4.4.4) for the algorithm to converge to 

a certain value. Figures 3.9 to 3.11 show parameter estimates for different number of 

trials (generations per sample) for a system with P R B S input and no noise. It is seen 

that the algorithm actually needs fewer generations (200,175,150) to converge as the 

number of trials increases from 1 to 3 and hence number of data points (200,87,50). 

But there should be some limit on number of trials as can be seen from Figure 3.12 

where the algorithm uses 30 trials for each data it needs about 2250 generations to 

converge or 75 samples. 
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G e n e r a t i o n s 

Figure 3.9: Number of trials = 1 Figure 3.10: Number of trials = 2 

- -7.1IMOC-03 

G e n e r a t i o n s G e n e r a t i o n s 

Figure 3.11: Number of trials = 3 Figure 3.12: Number of trials = 30 
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3.2.1 Parameter identification 

The system of Equation 3.9 can be described by the following polynomials 

A{q~l) = 1 + a l 9 - 1 +--- + anq-n 

B(q-') = 6 0 (l + 6 i g - 1 + --- + M - n ) ( 3 - 1 4 ) 

C{q-1) = 1 + c1q-1 + • • • + cnq~n 

The G A can be used to identify the parameters in A and B and the delay, using either 

Equation 3.12 or 3.13 as a fitness function. For a second order stable system it gives a 

search space for ai and a2 of the form seen in Figure 3.13. If the system is also inversely 

stable the search space for f>i and b2 is of the same form too. 

3.2.2 Pole-zero identification 

Because they do not require linearity in the parameters, genetic algorithms can directly 

identify the poles and zeros of the system. In pole-zero form, the plant can be written 

as: 

(3.15) 

Biq-1) = b0{l-ziq-1){l-z1q-1)-..{l-zmq-l){l-zmq-1) 

Where m = n/2 if n is even and m = (n + l) /2 if n is odd. The parameters, p m and 

zm will be zero if n is odd. It can also be reparameterized so that a complex conjugate 

poles or two real poles will be represented by two parameters. 

A{q-i) = ( l - ( a 1 ± / 3 1 ) g - 1 ) - . . ( l - ( a m ± / ? m ) g - 1 ) 
(3.16) 

B{q~') = M l - ( 7 l ± t f l ) g - 1 ) - " ( l - ( 7 m ± * n x ) ? - 1 ) 

The parameters Pi and Si can be either imaginary (complex conjugate poles) or real 

(two real poles). Because the signs on (3 and 8 are of no importance we can use the signs 

to decide if the numbers are imaginary or real, negative will mean complex number and 
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(3.17) 

positive will mean real numbers. As an example 

l + 2 9 - 1 - f 0 g - 2 = ( l - ( _ l + l ) g - 1 ) ( l - ( - l - l ) 9 - 1 ) = [-1,+1] 

l + 2 g - 1 + 2 g - 2 = {l-{-l+jl)q-i){l-(-l-ji)q-i) = [-1,-1] 

That gives search space for a stable system of the form seen in Figure 3.15. Where the 

lower half plane excluding the real axes, represents the complex conjugate poles and 

the upper half plane represents the real axes. 

If the parameters for a second order system are given by [23] (see Figure 3.13) : 

Aiq-1) = l.O-l.bq'1 + 0.7q~2 

B(q-X) = 1.0(1.0+ 0.5g- 1 + 0.0g- 2) 

C(q-X) = 1 .0- 1.0?"1 + 0.2g- 2 

The poles and zeros are (see Figure 3.14) : 

A\q~x) = 1.0 - (0.75 i j O . 3 7 ) ? - 1 

Biq-1) = 1.0(1.0- (-0.25 i-0.25)?- 1 ) 

or (see Figure 3.15 ) : 

' 0.75 + j'0.37 

(3.18) 

(3.19) 

pit2 = [0.75,-0.37] = p x , 2 = 
0.75 - j'0.37 

(3.20) 
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and the zeros 
f -0.5 

z l i 2 = [-0.25,+0.25] = zi,2 = < (3.21) 

( 0.0 

For a stable minimum phase plant, the poles and zeros are inside the unit circle (Figure 

3.14), therefore the search space can be limited to be the unit circle or a box enclosing 

the unit circle. For a nonminimum phase plant some of its zeros will be outside the 

unit circle, so one has to decide how big the search space is going to be depending on 

a priori knowledge of the system. 

3.2.3 Results 

Parameter settings 

The crossover rate is chosen so as to give some of the population the opportunity to 

survive into the next generation without any changes. The mutation rate is chosen such 

that on the average one string in the population is mutated. Unless stated otherwise 

the genetic parameters have therefore been chosen as follows [8] : 

Pc = 0.8 

pm = 0.01 (3.22) 

population — 100 

Second order systems were used so six parameters needed to be identified, that is d and 

60 and then either parameters, bi,&2> ai and a 2 or poles-zeros, a i , / ? i , 7 i and h\. The 

delay is coded as two bit string to give 4 choices for the delay and the other parameters 

are coded as 7 bit strings, making totally a 37 bit string, which leaves the search space 

with 2 3 7 = 1.37 1 0 n alternatives. The parameters have been concatenated as follows 

M|o a |o 2 |6 1 |6 2 |6 0 | (3-23) 
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or 

M |ai|/?i|7il*ilM (3.24) 

depending on whether poles-zeros or parameters were identified. Upper and lower 

bound on the parameters are defined (see Figures 3.13 and 3.14) and the resolution of 

the coding is calculated using Equation 2.1. 

lower bound upper bound # of bits resolution 
d 1 4 2 1 
b0 

0.0 2.0 7 0.016 
CLi,bi -2.0 2.0 7 0.032 
0-2, b2 

-1.0 1.0 7 0.016 
ai,/?i»7i»*i -1.0 1.0 7 0.016 

Table 3.4: Search space for a stable minimum phase system 

Ident i f i ca t ion w i t h PRBS 

A P R B S signal is used as an input for the system of Equation 3.18. The P R B S input 

has a period of 127 with the bit interval equal to four times the sampling interval. The 

G A is run for 600 generations and 3 trials are used for each input-output data so 200 

samples will be used. The window (forgetting factor) has been set as 30, i . e. the fitness 

function is calculated for the current input-output and the 30 previous samples. 

Figure 3.16 shows the output for the P R B S signal when there is no noise in the 

system (cr2 = 0). Figures 3.171 and 3.18 show the estimated parameters for each 

generation using instrumental variable criterion as given in Equation 3.13. The values 

of the estimates of the last generation are written at the right hand side of the graphs. 

After about 150 generations or 50 samples the algorithm comes up with unbiased 

estimates for all parameters except the zeros. Parameters —ji and 8i should both be 

0.250 so a bias of 0.321 for 6\ seems rather big. But if bi and 62 are calculated we 

Estimation of — Q i , / ? i , — 71,6X 
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Figure 3.17: Pole-Zero estimate of a system without noise 
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get 0.426 and 0.050 respectively (true values 0.50, 0.0). The steady state gain of the 

system is 7.5 so Equation 3.13 is less sensitive to changes in the zeros than the poles 

and it should also be emphasized that the algorithm does not necessarily converge to 

T H E optimum. "It does its best while learning to do better." Figure 3.19 show how 

the poles and zeros move around in the complex plane for each generation where the 

initial generation is at the back and the final generation is in front. The unit circle is 

also plotted every 100 generations together with the estimates at that point. 

3.3 Recurs i ve Least Squares es t imat ion 

The actual process, or the system, is assumed to be described by an equation of the 

form 

where e(t) is a white noise with zero mean and a variance o~\ and the polynomials 

A(q~1), B(q~1) and C(q~1) are given as 

A(q->)y(t) = B(q-*)u(t) + Ciq-'Mt) (3.25) 

Aiq-1) = 1.0 + a jg- 1 + • • • + anaq-n« 

Biq-1) = q~l( 1.0 + b i q - l + -.- + bnbq-n>) 

Ciqr1) = i.o 

(3.26) 

Now introduce the parameter vectors 9 and 6 and a vector, <p(t), with the previous 

inputs and outputs 

9 = [a-^, - • • ,ana,l,bx, - • • ,bnb] 

0 = [ a 1 , . . . , a n . , l , & i , - " , & n „ ] T (3- 2 7 ) 

tp{t) = [-y{t-l),---,-y{t-na),u{t-l),---,u(t-nb-l)]T 

The output of the model (A(q x) and B(q J )) can then be written as 

(3.28) 
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so the system output can be written as 

y(t) = y{t) + *(t) (3.29) 

Least squares is a prescription that one should take the value of 6 which makes the 

sum of the squares of the e(t), J^^=1 e2(tf) as small as possible. It can be shown [23] that 

the LS estimate of 0 is 

£ = ( $ r $ ) - 1 $ T y (3.30) 

where 

Y = 

<P(N)T 

The estimate of 0 can be made recursive by 

2/(1) 

y(N) 

(3.31) 

Kt+i = 

Pt+1 = ( l - J W f + 1 ) f 

(3.32) 

£t+i = yt+i - pf+iOt 

where A is the forgetting factor. For numerical stability, the P matrix is factorized as 

Pt = sts? (3.33) 

where 5" is an upper-triangular matrix and St is then updated at each iteration [6]. 

3.3.1 Results 

The Recursive Least Square (RLS) algorithm is run for the system of Equation 3.25 

with the polynomials A, B and C described by Equation 3.18 with the noise variance, 

o\ = 1.0. The forgetting factor is set to 0.9 to resemble a window for the GA of 30 
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Figure 3.21: Parameter identification using R L S 
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Figure 3.23: G A , pole zero identification 
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Figure 3.25: GA, parameters locations calculated from the pole zero identification 
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Figure 3.27: GA, parameters locations 
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steps (0.93 0 = 0.04) and a 1 ; a 2 , &i and b2 are then identified.2 Figure 3.21 shows the 

result using the input shown in Figure 3.20. It can be seen that the estimates have 

rather large variance especially b\ and b2 (the long dashed and dotted line respectively). 

Their value after 200 samples is 1.3957 and 0.6088 respectively but 10 samples before 

their values were 0.4214 and 1.2141 respectively so it is difficult to say what value they 

are converging to. The estimates for ai and a2 have also a variance but much smaller 

and they converge to biased estimates with the final estimates as -1.1543 and 0.4974 

respectively. Figure 3.22 shows plot of a2 as a function of and b2 as a function of 

bx with the time axis running out of the page and the triangle for a stable estimates 

plotted every 50 samples. 

To compare those results with the G A , the G A is run identifying the same parame­

ters as those identified by the R L S . That means that the gain, b0 and the delay, d, are 

assumed to be known so there are only four parameters to be identified. Using same 

parameter settings as in Table 3.4 it gives a total string length of 28 bits, so the popu­

lation size has been set to 50. The G A is run twice, first identifying the poles and zeros 

and secondly identifying the parameters. The results of the pole-zeros identification is 

shown in Figure 3.23, it is then converted into the parameters, Figure 3.24 and a 3-D 

figure is plotted, Figure 3.25. The parameters estimation is shown in Figure 3.26 and 

the corresponding 3-D figure is shown in Figure 3.27. It can be seen that in both cases 

the poles have almost zero bias, they are only limited by the resolution of the search 

space. They converge in about 50 generations for the pole-zero identification but in 

about 100 generations for the parameters identification or about twice as fast for the 

pole-zero identification than for the parameters. The zeros converge slowly for both 

cases but the final estimates are close to the true values (0.5 and 0.0) in both cases. 

If G A is then compared to the RLS it can be seen that the RLS needs more than 50 
2True values from Equation 3.18 are -1.5, 0.7, 0.5 and 0.0 respectively. 



Chapter 3. System Identification 38 

samples for the poles to converge but the zeros do not converge, whereas the G A needs 

between 50 and 100 generations for the poles to converge which means that with 3 trials 

per sample it needs between 17 and 33 samples and the zeros are slowly converging. 

So in terms of number of samples the G A converges faster. But as mentioned earlier 

the fitness function for the G A can not be calculated recursively so the algorithm has 

to calculate the outputs for all the window and to calculate every output it involves 

(?ia + rif, + 1) multiplications and (n a + rif,) additions. The difference in bias of the 

estimates are mostly caused by different objective (cost) function, the RLS uses a 

simple least square whereas the G A uses IV alike objective function. 

3.4 Continuous time identification 

Consider n-th order system with a differential operator s = ^ and unknown coefficients 

a; and bi 

y(t) = V " + 6 n <t) (3-34) 

The goal is to estimate directly the unknown coefficients a '̂s and 6j's using the knowl­

edge of the continuous time input and output. Current techniques would find a model 

of the process with filtered input and output and then use any suitable method like 

R L S for identification of the parameters of the model and consequently the parameters 

of the continuous time system [20]. One way to do the estimation using the G A would 

be to find the parameters 0 (0 — [d a, • • •, d n , 61 ? • • •, bn]T) such that the area of the dif­

ference between the actual output y and the output of the model y over a time window 

W is the smallest. 

min / (y(t) - y(tj))2 (3.35) 
e Jw 

At every sampling time T„ the area is calculated for previous W seconds, putting the 

initial conditions of y equal to the initial conditions of y at time kT, — W. As in the 
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Figure 3.28: Continuous-time-system input and output 

discrete time case, the algorithm can be run several times for each sampling time. 

3.4.1 Results 

This has been implemented in ACSL using the PASCAL subroutines from previous 

implementations of the algorithm. A second order system has been used with the 

transfer function: 
y(t) 0.0/1+ 1.0 

u{t) s2 +0.5s+ 1.0 [ ' 

The GA is used to find all four parameters of the plant. The search space has been 

defined as in Table 3.5. The total string length is 36 bits so the GA parameters have 

lower bound upper bound # of bits precision 
oi, a2,h,b2 0.0 12.775 9 0.025 

Table 3.5: Search space for continuous time parameters 
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Figure 3.29: Continuous-time parameter estimates 

0.4 

0.3 

0.2 

0.1 

O.O 

— . 2 -

- .3 I 1 1 1 1 1 1 1 1 . 1 
o.o to. eo. 30. 40. BO. eo. 70. eo. 90. 100. 

T i m e 

Figure 3.30: Actual output and the output using the final estimates 
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been set the same as in Equation 3.23. The input u(t) has been chosen as (see the 

dashed line in Figure 3.28) : 

u(t) = 0.08 sin 0.5* + sin 3.0* (3.37)' 

The input is chosen so as to excite the system both above and below the natural 

frequency and they should have about the same amplitude in the output for the pa­

rameters to converge to the true value. The sampling time T, is 0.5 seconds and the 

window is chosen as 8 seconds. The parameter estimates are shown in Figure 3.29. 

The convergence is slow but they approach the actual values and the estimate after 

450 generations, i. e. 150 sampling intervals is 

0.000. + 1.050 
s2 + 0.6005 + 1.025 ' j 

which has a natural frequency, a;n = 1.01 and a damping ratio, £ = 0.30 instead of 

1.0 and 0.25 respectively. If both the actual output and the output using the final 

estimates are plotted (Figure 3.30) one can see that the response is almost identical 

excluding the transient. 

3.5 Friction compensation 

Now look at the estimation of physical parameters, namely the friction of a motor. A 

motor with friction torque T/ and a load disturbance torque TJ can be described by the 

following model, 

J ^ = KI{t)-Tf(i) + Tl(t) (3.39) 

where J is the total moment of inertia, K is the current constant and / is the motor 

current. Neglecting the load disturbance and introducing 

m = «(0 + ^ (3-40) 
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Figure 3.31: Friction model 

the motor model can be written as 

J ^ = Ku(t) + {ff(u>)-Tf(u,)} (3.41) 

If the estimates are good the term inside the bracket is going to vanish and the model 

looks like a frictionless motor. 

Many models for the friction have been suggested but a model used in [5] has been 

adopted. The model is: 

aiu> + / ? i iv > 0 
z>(o,) = { (3.42) 

a2iv + j32 iv < 0 

Therefore the estimation of Tf(iv) requires estimation of four parameters, on, a2 

and f32. Only two of them can be estimated at a given time depending on whether 

the angular velocity iv is greater than zero or less than zero. G A can be applied to 

this problem ones the objective function has been defined. Assuming it is required 

to minimize the error between the actual angular velocity and the estimated one, the 

fitness function becomes 

minj (u>(t) -<v{t))2dt (3.43) 

where W is a time window over which the objective function is calculated. 
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Figure 3.32: Motor input (I) and output (w) 

3.5.1 Results 

The parameters of the friction model have been chosen as : 

Q l = 0.1 Bx = 0.4 

a 2 = 0.2 32 = -0 .2 

and the motor is assumed to have K = 1.0 and J = 0.1. The parameters that are 

identified are a l 5 /?!, a 2 , — f32 and they are assumed to lie between 0 and 1.2775 which 

with a string length of 9 gives precision of 0.0025 for each one of them. When the 

output is greater then zero a i and f3i are identified and when the output is less than 

zero the other two, a 2 and j32 are identified. Therefore two populations are maintained, 

one for cti and /?i and the other for a 2 and (32. The string length in each population is 

18 so the population size is chosen as 50 for each one of them. The time window W 

for the integral of Equation 3.43 is chosen as 2 seconds and there are 3 trials for each 
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Figure 3.33: Friction parameters identification 

sample which is sampled at the rate of 5 per second. The input is a square wave with 

period equal to 12 seconds, which can be seen together with the output in Figure 3.32. 

Figure 3.33 shows the estimated parameters using G A and the final value that the G A 

comes up with is: 

dj = 0.100 0X = 0.400 
(3.45) 

d 2 = 0.205 -32 = 0.180 

which have almost zero bias. The algorithm takes less than 100 generations to find 

approximate estimates for each one of the populations and further refinements are 

then found along the way. 

3.6 S u m m a r y 

In this chapter it has been demonstrated how GAs can be used to estimate both con­

tinuous and discrete time systems and for identifying parameters, poles and zeros or 
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physical parameters of a system. The G A has proven to be a. robust algorithm, whereas 

in all the applications the basic algorithm (procedures) stays the same. The only dif­

ference between these different applications is a different routine to calculate the fitness 

function. 

In all the applications shown in this chapter, the G A has been able to converge 

towards the actual values of the parameters. In most cases it gives unbiased estimates 

but in some cases it takes time, like the identification of the zeros, primarily because 

the objective function is not as sensitive to changes in the zeros as changes in the poles 

and the G A is only looking for a good solution not necessarily the best. 

In comparison to some widely known identification technique, RLS, the G A perform 

as well or even better in terms of number of samples required to converge. But G A 

can also easily be used on problem where RLS is difficult or even not possible to use 

because of the requirement of linearity in the parameters of the system. 



C h a p t e r 4 

Con t ro l l e r design 

4.1 C o n t r o l l e r 

There are a large variety of adaptive design techniques. In this thesis I have chosen to 

use an indirect scheme and I am not identifying the stochastic part, so an adaptive pole 

placement design has been chosen. It is a simple design method that makes use of the 

knowledge about the poles and zeros to obtain a desired transfer function or desired 

response. 

A SISO plant is described by an A R M A X 1 model: 

*>=S-(<)+3£(<) (4-46) 

The control law for a two-degree of freedom pole-placement controller (Figure 4.34) 

can be written as 

R(q)u(t) = -S(q)y(t) + T(q)yT(t) (4.47) 

where yT is the reference signal and R is assumed to be monic. To simplify the writing 

in the analysis that follows, the arguments of polynomials are suppressed. If Equation 

(4.47) is written in terms of the system input u(t) and then put into Equation (4.46) 

the closed loop system becomes 

TB . . qdRC , . / 

xAuto Regressive A(q), Moving Average C(q), eXternal signal B(q) 

46 
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The desired closed loop transfer function is given by 

H(q) = f=g (4,9) 

or 
TB B m 

q*AR + BS Am

 ( 4 - 5 0 ) 

By choosing the desired closed loop transfer function and estimating the plant, the 

controller design has been reduced to finding the polynomials R, S and T that satisfy 

Equation 4.50. Some of the process zeros can be cancelled in the design. 

If B is factorized as B = B+ B~, where B+ is cancelled stable process zeros and 

B~ is uncancelled process zeros, Bm must be written as, Bm = B~B'm The parts of B 

that are not factors of Bm must be factors of qdAR + BS so B+ must be a factor of 

R. Therefore R must be written as R = B+R. Generally the degree of qdAR + BS is 

higher than Am so there must be some cancellation on the transfer function. So the 

Diophantine equations becomes 

qdAR + B~S = A0Am (4.51) 

and T can be found from 

T = B'mAot0 (4.52) 

where tf0 is to ensure proper gain and A0 is the observer polynomial that is cancelled 

in the transfer function [1]. In order to design the controller we need to solve the 

Diophantine Equation 4.51 for R and S. In order to find a unique solution the degree 

of S has to be less than the sum of d and degree of A. We choose degS = deg A + d — 1. 

Using the causality conditions (degR > degS) the degree of A0 can be found from 

Equation 4.51 to be 

degA0 > 2(degA + d) - degAm - degB+ - 1 (4.53) 
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Figure 4.34: Two-degree of freedom controller 

The degree of R can be found from Equation 4.51 as 

degR = degA0 + degAm — deg A — d (4.54) 

This procedure assumes that the true plant A, B is known. When the true plant is not 

known, one can use the G A to do the estimation of the plant A, B and then design an 

indirect adaptive control scheme as shown in Figure 4.35. 

4.2 Parameter based design 

By assuming that we have knowledge of A and B~ and that A0 is chosen we can solve 

Equation 4.51 for R and S. Define n = deg A, m = degB~, fc = degA0 and j = degAm, 

then 

A(q) = qn + a1qn~1 + • • • + o n 

B~{q) = b0(qm+b1qm-1 + --- + bm) 
Ao{q) = g f c + a i 0 g f c _ 1 + ••• + «fc0 

Am(q) = q3 + aiwq3"1 H h ajw 

S(q) = s0qn*d-1 •\-s1qn+d-2 + • • • + J n + r f - i 

R(q) = q><+J-»-<t + ryqk+3-»-d-1+ --. + rk+j_n_d 

(4.55) 
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Figure 4.35: G A adaptive controller 

In matrix form 4.51 can be written as 

1 0 0 0 

ax '•• 0 : 

• • ' . 1 0 

an a x 1 

0 '•• : h 

0 0 a n : 

0 ••• 0 bm 

': ! 0 

0 ••• 0 0 

... o 

... o 
0 0 

••• 0 

'•• 1 

h 

0 bm 

1 

rk+j-n-d 

boSo 

boSn+d-i 

1 0 0 

0 

\ ' • . 1 

Ofco 0 \ 0 

0 '• 

0 0 

1 

a JW 

(4.56) 

where the upper right hand zero matrix has degAa — (degA + d — degAm + degB~ — 1) 

number of rows and the lower left hand zero matrix has d number of rows. If A and 

B~ have no common factors, Equation 4.56 can be solved for r< and S;, to design the 
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(4.57) 

Figure 4.36: Parameter Controller 

controller. Equation 4.50 in the backward shift operator (<j~a) becomes 

fj-{j-degBm-(n+d-degB))'jr"(j-(n+d-degB) g* 
A*R* + q~(n+d-degB) fi*q-(k-(2(n+d)-j-degB + - 1 ) ) g* 

where * denotes that the polynomial is in the backward shift operator. If degAm — 

degBm = deg A -f- d — degB and the equality in Equation 4.53 is true, the transfer 

function becomes 
f* n-{n+d-degB) ft* 

(4.58) A*R* -+ q-{^+d-degB)ff*S* 

The controller can then be implemented as shown in Figure 4.36. 

4.3 Pole-zero based design 

Wittenmark and Evans [24] have come up with a pole-zero placement algorithm based 

on pole-zero parameterization. What they have done is to model a high order system 

as a concatenation of second order systems, identify the parameters of the second order 

subsystems and then calculate the poles and zeros. The solution of the Diophantine 

equation corresponds then to a solution of a. linear triangular system of equations where 

the controller parameters can be calculated recursively. 
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Assume that the poles and zeros of A and B respectively, are known and the poles 

of Am and A0 are chosen. 

A(q) = (<7 - Pi) •••(?- Pn) 

B~(q) = buiq - zx) • • • (q - zm) 
(4.59) 

Am{q) = {q ~ Piw) • • • (q ~ pjw) 

Mq) = {q ~ Pio) • • • (q ~ Pko) 

As before Equation 4.51 needs to be solved for R and S. The solution can be split up 

into three parts: One for finding coefficients of the terms with degree less than d, the 

second for finding coefficients of the terms with degree rn + n + d and higher and the 

third one for finding the rest of the coefficients. The polynomial R can be split up into 

two parts, one with terms of degree lower than m and the other with terms of degree 

m and higher. 

R{q) = qmR" + R' 

= + ^y+i-m-n-rf-l + . . . + ^ ( 4 . 6 0 ) 

where R" can be calculated recursively by long division of Equation 4.51. Similarly for 

the S polynomial. 

S = qdS'+S" 

= qd(30qn-' + • • • + !„_!) + s'^qd-1 + --- + 3^, (4.61) 

where 5" can be found by long division. By using the fact that A(pi) — 0 and B~(zi) — 0 

the coefficients in R' and S' can be calculated separately by evaluating Equation 4.51 

for q — pi and q = zit 

B-{Vi)pdS\Pl) = A^pAA^pA-B-ipAS'Xpt) (4.62) 

zfA{zi)R'(zi) = A0{zi)Am{zi)-zfA{zi)zrR"{zi) (4.63) 
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where 2, are uncancelled process zero (zi € B~). By reparameterizing R and S' into 

Newton coefficients, solution to Equations 4.62 and 4.63 can be found by solving a set 

of triangular system of equations. 

m — l 

S'{q) = E-S/i(9) 
i = 0 

where 

9i(q) = 

fi(q) = 

and 

9i{*k) 

fi(Pk) = ' 

1 i = 0 

I n;=i(g-^) i<t<m-i 
1 t = 0 

nj=i(?-Pi) l < i < n - l 

0 1 < k < i 

Yl)=1(zk - Zj) i + 1 < k < m 

' 0 1 < k < i 

(4.64) 

(4.65) 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

Now, the parameters of R' and S' can be found by solving the following set of triangular 

equations 

AotPiMmtPi ) _ S"(PI) __ / 
PfB-(Pl) HP? _ 0 

^ f f 1 - ^ = * 0 + ' i / l ( P n ) + - " + < . 1 / „ - 1 ( P „ ) 

(4.70) 
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and for R' 

A0(zi)Am(zi) -mjjii/ \ _ I 

Ao(z2 )A„l(z2) _m D»/ \ _ / , -I „ („ \ 
\iMz2) ! - ^ R ( ^ ) - r0 + rl9l{z2) 

" " l i f e ) " 0 ~ = < + r[gi{zm) + • • • + r'm_igm_x{zm) 

4.3.1 Multiple poles and zeros 

Assume that the algorithm estimates that there is a pole p; with multiplicity m^. It 

implies that is has to find m; coefficients from the pole. That can be done by replacing 

m; equations in Equation 4.62 by the following 

B-(Pi)pdS'(Pi) = A0(Pi)Am(Pi) - B-(Pi)S"(Pi) 

A [B-(q)q

dS'(q)}q=pi = A [Ao(q)Am(q) - B-(q)S"(q))q=pi 

(4.72) 

^ [B-(q)qdS'(q)} = i^[A0(q)Am(q)-B-(q)S''(q)]q=pi 
I g=Pi 

from the first equation we can get and the last one we get s[_1+ . In the case of 

multiple zeros we differentiate Equation 4.63 instead of Equation 4.62. 

4.3.2 Complex poles and zeros 

Complex poles and zeros do not cause any problem because Equations 4.70 and 4.71 

can be assumed to be defined on the complex plane. That means that some of the 

coefficients r,- and will be complex so a filtering of complex signals has to be included 

(see Figure 4.38 Section 4.3.3). The total signal will however always be real as can 

be seen if Z\ and z2 from Equation 4.71 are assumed to be complex conjugate zeros 

(zj = z2 = a — jb) and further more assume that r'0 — a + j/3. Then the first two 
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equations in Equation 4.71 become 

a + j/3 = r'0 

(4.73) 
a-jB - r'0 + r[{zx - Zl) 

so rj is 
I 

1 ~ b 
r, = - (4.74) 

Because r'u is used in combination with — r'1z1 the total signal is always a real signal. 

r'0 - r\zx = a - j 3 - {{a + jb) = a - -J (4.75) 

4.3.3 Implementation 

The polynomials in the backward shift operator are 

k + j-m-n-d m - 1 

i=0 i=0 

= R"" + g-( f c+J-"- d-m+ 1) jR'* (4.76) 

s- = E*sM9 _ 1)9~ B + 1 + i+9" n i : *r9 _ i 

» = 0 t = 0 

= 5'* + g-"5"* (4.77) 

If the equality in Equation 4.53 holds (k = 2(n + d) — j — degB+ — 1) Equation 4.77 

becomes R* = R"* + q-(n+d-degB)Ru & n d t h e c o n t r o u e r 

can be implemented as shown 

in Figure 4.37, where R" and S" are implemented using a ladder network as shown in 

Figure 4.38. 

4.4 Results 

In the simulation runs that follow, the input has been chosen to be a square wave 

with period of 60 steps, the desired closed loop system is supposed to have a deadbeat 

response and the observer is deadbeat as well. A n impulse is used to initialize the G A , 

i . e. fill up the window. 
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Figure 4.37: Factorized Controller 
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Figure 4.38: Ladder 
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Figure 4.39: Reference input and output of a minimum phase system without noise 

4.4.1 M i n i m u m phase plant 

The plant to be controlled is the same one as used in Chapter 3. 

Aiq-'Ml) = B{q-l)u{i - 1) + C{q-l)e{i) (4.78) 

with 

A{q~l) = 1 .0- 1.5?-1 + 0 .7 9 - 2 

Biq-1) = 1.0(1.0 + 0.5c; - 1 + 0.0q~2) (4.79) 

C{q-X) = l . O - l . O g ^ + O ^ g - 2 

The poles and zeros of A and B are identified using the IV criterion from Equation 3.13 

using the same parameters settings as in Table 3.4. 

W i t h o u t noise 
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Figure 4.40: Pole-Zero estimates for a minimum phase system without noise 
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Figure 4.41: Estimates of gain and delay for a minimum phase system without noi 
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Figure 4.42: Pole zero locations 
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Figure 4.43: Reference input and output of a minimum phase system with noise using 
pole-zeros estimates 

Figure 4.39 shows the reference input and output of the plant when there is no added 

noise in the system (<r2 = 0.0). The output follows the reference input within the 

first 30 steps and there is a bit of oscillations in the control signal because of zeros 

cancellations. The estimates of the poles and zeros are plotted in Figure 4.40 and it 

can be seen that unbiased estimates are obtained after about 300 generations or 100 

time steps. Prior to that there is a small bias in the estimates, particularly in the 

zeros, that contributes to the small ripples in the output whenever the reference input 

is changed. The gain converges to the true value after about 81 generations or 27 steps 

as can be seen in Figure 4.41. Figure 4.42 shows then the locations of the poles and 

zeros estimates in the complex plane. 

With noise 
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Figure 4.44: Pole-zero estimates for a minimum phase system with noise 

T8 

soo. 
G e n e r a t i o n s 

Figure 4.45: Estimates of gain and delay for a minimum phase system with noi 
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Figure 4.46: Pole zero locations 
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Figure 4.47: Reference input and output of a minimum phase system with noise using 
parameter estimates 
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Figure 4.48: Parameter estimates for a minimum phase system with noise 
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Figure 4.49: Estimates of gain and delay for a minimum phase system with noise 
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Figure 4.43 shows the reference input and the output of the plant when a colored noise 

is added to the output. The white noise, e(*), has standard deviation <J\ — 0.1. By 

looking at Figures 4.44 and 4.45 it can be seen that good estimates are found after 

50 generations or 17 steps, but there is still a small bias in the estimates especially 

the zeros. It should though be remembered that even though the zeros have a, big 

bias, if the parameters are calculated they do not have a big bias. For example the 

final estimates for the zeros of 0.228 and 0.008 (true value 0.25 and 0.25) gives the 

parameters 0.456 and 0.052 which is not far from the true values of 0.5 and 0.0. The 

estimates in the complex plane for every generation are then shown in Figure 4.46. 

To see how the controller based on its parameters behaved compared to the con­

troller based on the poles and zeros, the G A was run again but now estimating the 

parameters not the poles and zeros. It was shown (Figure 4.47) that the parameters 

controller does as good job as the pole-zero controller. The estimates take a little bit 

longer time to converge to acceptable level (Figures 4.48 and 4.50) than they did in 

Figures 4.44 and 4.45 and the zeros take long time to find refined values because the 

objective function is more sensitive to changes in the poles than zeros because of steady 

state gain of 7.5. Figure 4.50 shows then the ax — a 2 and bx — b2 plane for each generation 

and how the estimates evolve. 

4.4.2 Nonminimum phase plant 

The plant to be controlled is taken from Clarke [7]. 

O.lg-iQ. +2g~ 1 )( l + 0q-1) 
(1 - O . ^ X l - O.Sq-1) 

(4.80) 
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Using the parameterization given in Chapter 3 the plant parameters are as follows: 

b0 = 0.1 d = 1 

= 0.85 7 l = 1.0 (4.81) 

p\ = 0.05 ^ = 1.0 

The search space for the poles and the gain is the same as previously but the search 

space for the zeros has been doubled in size (see Table 4.6) to account for the nonmin-

inium phase behaviour. The observer is chosen to be deadbeat and the desired closed 

lower bound upper bound # of bits precision 
7ii*i -2.0 2.0 7 0.032 

Table 4.6: Search space for nonminimum phase 

loop plant is assumed to have poles at 0.2 and 0.0 and because unstable process zeros 

B~ are not cancelled the desired transfer function becomes: 

q-*B-
0.2?-1 

(4.82) 

It is not until after 300 generation or 100 time steps that estimates (Figures 4.52 

and 4.53) are found that give a good control and the output is following the reference 

input quite nicely as can be seen in Figure 4.51. The estimates have a small bias but 

that does not seem to affect the output. 

4.4.3 Unmodeled dynamics 

We use the same N M P plant as in the previous section (Section 4.4.2) but now the GA 

uses a first order model 

^ , 4 . 8 3 ) 

Similar test sequence as used by Clarke [7], i . e. the system is initially run in open 

loop and then there are setpoint changes every 25th step. The window is chosen as 50 
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Figure 4.51: Reference input and output for a nonminimum phase syst em 
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Figure 4.54: Pole zero locations for a nonminimum phase system 
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Figure 4.55: Input-Output for 3 parameters estimate with unmodeled dynamics 

samples and the search space is defined as in Table 4.7. The desired pole was set 

lower bound upper bound # of bits precision 
d 1 4 2 1 
bo 0.0 2.0 7 0.016 
ai -1.0 1.0 7 0.016 

-2.0 20.0 9 0.043 

Table 4.7: Search space for unmodeled dynamics 

at 0 (dead-beat). For the first simulation the delay d is assumed to be known so only 

the gain, the pole and the zero (b0, a x and bx) are identified. That gives a response 

that has about 70% overshoot and has a low damping as shown in Figure 4.55 and 

the parameter estimates are as shown in Figures 4.56 and 4.57 with the estimates for 

the zero not converging to a certain value. But when all the four parameters (b0, 6 1 } 

d and aj) are identified (population size = 50, total string length = 23) the overshoot 

is reduced to about 30% and the damping is higher, Figure 4.58, and the system is 
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Figure 4.56: Parameter estimate for unmodeled dynamics 
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Figure 4.57: Gain and delay estimate for unmodeled dynamics 
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Figure 4.58: Input-Output with dead beat control 
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Figure 4.59: Parameter estimate for unmodeled dynamics with dead beat control 
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Figure 4.60: Gain and delay estimate for unmodeled dynamics with dead beat control 
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Figure 4.61: Input-Output with desired pole = 0.7 
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Figure 4.63: Gain and delay estimate for unmodeled dynamics with desired pole 
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Figure 4.64: Reference input and output of a system with window size 

estimated to be (see Figures 4.59 and 4.60) 

0.599g- 2(l + 0.798g-1) 
1 - 0.953?-1 

Further improvement is obtained if a slower response is chosen (desired pole at 0.7), 

Figure 4.61. The estimated model becomes (see Figures 4.62 and 4.63) 

(4.84) 

0.662g- 3(l + 0.712g-1) 
1 - 0.937?-1 

(4.85) 

4.4.4 Persistently exciting signal 

To show the effect of a persistent excitation, the minimum phase system of Equation 

4.79 without noise (<T2 = 0.0) is run for a step change every 60 sample and a. window 

size of 30 and 60. For the smaller window the algorithm comes up with good estimates 

after about 150 generations (see Figures 4.65 and 4.66), but is not able to keep them 

because the input and the output does not change over the window. The estimates 
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Figure 4.65: Parameters for a window size = 30 
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Figure 4.66: Gain and delay for a window size = 30 
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Figure 4.67: Reference input and output of a system with window size 
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Figure 4.68: Parameters for a window size = 60 
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Figure 4.69: Gain and delay for a window size = 60 

starts to deteriorate and the algorithm is not able to bring them back consequently the 

output does not follow the input very well (Figure 4.64). When the window is increased 

to 60, to be able to include a step change in the window at all time, the estimates are 

shown to converge to the true value (Figures 4.68 and 4.69). Because of a small bias in 

the estimates the output has a small overshoot at every setpoint change (Figure 4.67). 

4.4.5 Recursive Least Squares 

To compare the G A to some method that is widely known, a standard RLS algorithm 

is used on the same system as before with noise variance o\ = 0.1. The same pole 

placement controller design is used. A deadbeat observer is chosen and the closed loop 

poles and zeros are set at zero (deadbeat). The forgetting factor is set to 0.9 to resemble 

a window for the G A of 30 steps (0.9 3 0 = 0.04) and a 1,a 2,fe 1 and 62 are then identified. 

Figure 4.70 shows the reference input and the output of the system. It can be seen that 
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Figure 4.72: Parameter locations for RLS 
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Figure 4.73: Reference input and output of a system using G A to compare to RLS 

the overshoots becomes larger as the parameter estimates deteriorates (Figure 4.71). 

Figure 4.72 shows plot of a 2 as a function of a x and b2 as a function of b\. To compare 

those results with G A , the G A has been run for same parameter estimates (only pole 

and zeros, not gain and delay) using IV criterion and the results are shown in Figures 

4.73, 4.74 and 4.75. Comparing Figure 4.70 and Figure 4.73 one can see that there is 

not much of a difference in their response. Both have transients while searching for 

good parameters and after few steps output follows the input. The RLS is quicker to 

converge to a value whereas the G A is satisfied with suboptimal estimates. 

4.5 Summary 

It has been shown how knowledge of the plant (.4 and B), either its parameters or 

poles-and-zeros, can be used to design a pole-placement controller. Simulations results 
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show that the G A is as well fit for doing the identification as the RLS. The GA has 

proven to be able to handle both minimum and nonminimum phase systems and has 

also shown its ability to control when there is unmodeled dynamics. 



Chapter 5 

Experiment 

5.1 Water level in a tank 

A n experiment was carried out on a tank system at the Pulp and Paper Centre. The 

tank has a sensor to measure the height h of the water and a pump to pump the water, 

given a drive voltage u, into the tank. The outflow of the tank is a function of the 

tank level so the dynamics will be nonlinear. Therefore the tank can be described by 

a nonlinear differential equation of the form [2]: 

^ = -AVh + Bf(u(t)) (5.86) 
at 

Where A depends on gravity and the ratio between the effective outlet area and the 

cross section of the tank and B depends on the cross section of the tank and also relates 

the pump flow to the drive voltage u of the pump motor electronics. A linear model of 

the tank is given in A s t r o m and Ostberg [2] as: 

KT 
His) = (5.87) 

K ' Ts + l K 1 

where T depends on A and the initial height and K depends on the sensor and the 

constant B. A Z O H is used together with the A/D converter to read the water height 

so the Z-transform would be: 

„ , , KT(1 - e-%)z~1 

H ( z ) = — r IT-T— (5-88) 
(1 — e T z~1) 

where T, is the sampling time. 
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Figure 5.76: Tank Input-Output 
5.2 Simulation results 

To collect the data the sampling time is chosen as 0.55 sec. and 80 samples are obtained 

using P R B S as the input (see figure 5.76). Because of the prohibitive time it takes to 

run the G A on an I B M A T we were not able to do any online control on the tank. The 

G A is therefore run offline using the IV fitness function (see equation 3.13) to identify 

directly the poles and zeros. The algorithm assumes that there are two poles, one zero 

and it also identifies the gain b0. 

il+Piq-W+Piq-1) [ j 

The poles are decoded as in chapter 3. Both the poles and the zero are assumed to 

be stable so they are assumed to lie between -1 and +1. The gain is assumed to be 

in the range [0,10] The length of each string is chosen as 11 which give resolution of 

about 1/1000 for the poles and the zero and about 5/1000 for the gain. With four 
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Figure 5.79: Pole zero locations for a tank 
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parameters to identify, the total string length is 44 bits so the population size is set to 

100. The probability of crossover and mutation is chosen as before to be 0.80 and 0.01 

respectively and 6 generations were generated each sampling interval. 

Figure 5.77 and 5.78 show the estimated parameters for each generation using the 

input output data of figure 5.76. The estimated system after 300 generations is: 

o.oesg-Mi-o.eeig-1) o.oesg-1 

(1 - 0.637g-1)(l - 0.965-r1) (1 - 0.965-?-1) [ ' ' 

So the zero cancels one of the poles and the system is a first order system with a delay 

and a pole close to the unit circle. The time it takes to fill up the tank is about 10 

seconds so with a sampling time close to half a second the pole should be according to 

equation 5.88 about -0.95 so the estimates seems good. In figure 5.76 the output of the 

tank is shown if the final estimated parameters were used (dashed line). It can be seen 

that the estimated output is not far from the actual one and it should be pointed out 

that the estimated output is put equal to the actual output at the beginning of every 

window, which means that the two output are much closer than suggested in figure 

5.76. In figure 5.79 the locations of the poles and the zero are shown in the complex 

plane for every generation where the cancellation of one of the poles with the zero can 

be clearly seen. 



Chapter 6 

Conclusions 

In this thesis a new approach was taken to the identification problem. The usual hill 

climbing algorithms that follow the steepest gradient were abandoned for a method 

that uses concepts from evolutionary theory called Genetic Algorithms. They proved 

to be able to identify both discrete time and continuous time systems and could give 

unbiased estimates in the presence of colored noise. They showed some advantage over 

R L S and could be used in cases were the system is not linear in the parameters were 

RLS can not be used, for example identify physical parameters, delays and pole-zeros. 

They were used to design an adaptive pole-placement controller and gave good control 

for a variety of problems as demonstrated by simulations. 

A n experiment was presented. The algorithm was tested on a real data from a tank 

system. The algorithm behaved well but because of the prohibitive time it takes for 

the algorithm to run on an I B M - A T , no real time online control was attempted. 

Genetic Algorithms have proven to be useful on wide range of applications without 

any changes in the basic algorithm. The only interface with the system the algorithm 

is working on is through the objective or fitness function. That function is the only 

thing that needs to be changed from one application to another. Because the GAs 

search within a population not from a single value they are insensitive to noise. As 

with the R L S , there must be some priori knowledge about the system to identify, the 

search space that the parameters are likely to lie within must be specified and also 

the resolution. For a proper choice of the resolution the algorithm will prevent the 
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estimates from jumping around and hence could be used to filter some noise. It should 

also be remembered that the algorithm is a randomized search technique, so there is 

no guarantee of optimality, the algorithm does its best while learning to do better. 

A n area for further research is the exploitation of more than the best string in the 

population for the design of a robust controller. For example the average of the ten best 

strings in the population could be used for preventing abrupt changes in the estimates. 

Also dominance could be used for a changing plant and for a multimodal search space, 

like the example from chapter 2, some sort of distribution among the peaks could be 

maintained by introducing sharing, that is the individuals are prevented from crowding 

around one particular peak by punishing them for being too close together. That could 

be particularly useful in changing environment where by maintaining diversity in the 

population the algorithm does not put all of its effort into searching around a particular 

peak. 

Finally, GAs are parallel algorithm, so every attempt to run the algorithm on non-

parallel computer is bound to be slow. For our case the algorithm uses little bit less 

than 1 second of C P U time for each generation, on a /A-VAX (1 MIPS) for population 

size of 100, string length of 37 and window size of 30 steps. Once parallel computer 

architectures become readily available, G A will become more attractive. 
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Appendix A 

Genetic algorithms procedures 

Program P P C G A 

P R O C E D U R E Select a population ; 

B E G I N 

F O R all the population size DO 

F O R all the bits DO 

IF random > 0.5 T H E N bit := 1 

E L S E bit := 0 ; 

E N D ; 

P R O C E D U R E Schemata ; 

B E G I N 

{ Count how many 1 there are in each bit position using one counter for 

each bit position. Then count lost bits by counting number of counters 

that have value equal to 0 or population size. Then count converged 

bits by counting number of counters that have value less than converged 

% or those with value greater than (1 - converged) %. } 

E N D ; 

P R O C E D U R E System ; 
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B E G I N 

{ Choose either P R B S input (no control) or setpoint changes } 

IF setpoint changes T H E N 

Every bitinterval multiply the input yref(t) with -1.0 ; 

IF P R B S input T H E N 

Every bitinterval make the P R B S sequence using shift register as given 

Eykhoff [1974] ; 

Find e(t), the normally distributed random sequence ; 

Call the controller design with the best estimate to find the next controller 

output, u(t) ; 

E N D ; 

P R O C E D U R E Convert the strings into the parameters ; 

B E G I N 

F O R all the population DO 

F O R all the substrings DO 

B E G I N 

x := decimal value of the binary substring ; 

resolution := maximum value - minimum value 
2length oi substring _ j ' 

y := x * resolution + minimum value ; 

E N D ; 

E N D ; 

P R O C E D U R E Fitness evaluation ; 
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B E G I N 

F O R all the population DO 

B E G I N 

F O R t-window size T O t-0 DO 

B E G I N 

IF RLS T H E N 

B E G I N 

e:=y-ju; 

fitness := bias - e2 + fitness ; 

E N D 

E L S E 

B E G I N 

y := f u • 

v-=y-y ; 

fitness := bias - r/2 + fitness ; 

E N D 

E N D ; 

E N D ; 

E N D ; 

P R O C E D U R E Quicksort; 

Use algorithm given in the book D A T A S T R U C T U R E T E C H N I Q U E S 

by Thomas A . Stan dish page 25-27 

or any other sorting algorithm 
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PROCEDURE Rank; 

BEGIN 
max — 1 

a := 2 popsize — 1 ' 
max — 1 

b := 1 - : -(popsize + 1) ; 
popsize — 1 

FOR all the popsize DO 

fitness := a * rank + b ; 

END ; 

PROCEDURE Offspring ; 

BEGIN 

FOR all the population DO 

BEGIN 

Normalized fitness := fitness / meanfit ; 

Int fit := integer value of normalized fitness ; 

Offspring count := Intfit ; 

Throw a dice to decide if the string gets one offspring for the 

fractionalpart or not ; 

END ; 

IF there are too few or too many in the population THEN choose 

the one that were most likely to get additional offspring and did 

not or the one that were most unlikely to get additional offspring 

and did, depending on whether the population size is too small or 

too large respectively. ; 

END ; 
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P R O C E D U R E Copies ; 

B E G I N 

W H I L E population size is not full DO 

B E G I N 

Next string ; 

W H I L E offspring count < 0 DO 

B E G I N 

Copy string ; 

Offspring count := offspring count - 1 

E N D ; 

E N D ; 

E N D ; 

P R O C E D U R E Crossover ; 

B E G I N 

F O R half the population size DO 

B E G I N 

Find the first string that has not been used 

Choose another string randomly ; 

Apply crossover with pc probability ; 

IF crossover T H E N 

B E G I N 

Choose crossover point randomly ; 
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Copy first half of first string up to crossover point and 

second half of second string from crossover point to 

the end into the first offspring ; 

Copy first half of second string up to crossover point and 

second half of first string from crossover point to the 

end into the second offspring ; 

E N D 

E L S E 

B E G I N 

Copy first string into first offspring ; 

Copy second string into second offspring ; 

E N D ; 

E N D ; 

E N D ; 

P R O C E D U R E Mutation ; 

B E G I N 

F O R all the population size DO 

F O R all the bits in each string DO 

Mutate each bit with pm probability ; 

E N D ; 

B E G I N 

Get all parameters ; 

Initialize random generators ; 
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Initialize system input and output ; 

Print initial values ; 

Select a population ; 

Start with the initial estimate as 1, 0, ..., 0 ; 

F O R kids := 1 T O number of kids DO 

B E G I N 

Schemata ; 

IF (kids-1) / trial = integer T H E N system ; 

Convert the strings into the parameters ; 

Fitness evaluation ; 

Calculate the average fitness ; 

Offspring ; 

Count how many receive 0 offsprings ; 

IF (receive 0 offsprings) > (fitOpct * popsize) T H E N 

B E G I N 

Quicksort ; 

Rank ; 

Offspring ; 

E N D ; 

Copies ; 

Crossover ; 

Mutation ; 

Find the best string ; 

IF it is not in the new population T H E N 

Replace a string randomly chosen with the best one 
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Print report ; 

Make the new generation the current one ; 

E N D ; 

E N D ; 


