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Abstract 

Transient stability analysis is an important part of power planning and operation. For 

large power systems, such analysis is very time consuming and expensive. Therefore, an on

line transient stability assessment will be required as these large power systems are operated 

close to their maximum limits. In this thesis swallowtail catastrophe is used to determine the 

transient stability regions. The bifurcation set represents the transient stability region in terms 

of power system transient parameters bounded by the transient stability limits. The system 

modelling is generalized in such, that the analysis could handle either one or any number 

of critical machines. This generalized model is then tested on a three-machine as well as a 

seven-machine system. The results of the stability analysis done with the generalized method 

is compared with the time solution and the results were satisfactory. The transient stability 

regions determined are valid for any changes in loading conditions and fault location. This 

method is a good candidate for on-line assessment of transient stability of power systems. 
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Chapter 1: Introduction 

Chapter 1 
Introduction 

Instability in electric power systems, leading to loss of system synchronization, is a very sensitive 

problem for power utility engineers. In assessing power system stability there are two separate 

criteria to be considered, v i z : 

• Steady-state stability, for small perturbations, i.e., leading effectively to linear system analysis. 

• Transient stability, for large system disturbances and involving non-linear system analysis. 

The stability problem of power systems became very important fol lowing the famous power 

blackout in north eastern U .S .A . in 1965 . Planning, operations and control procedures of power 

systems had to be revised to ensure secure and reliable operation of power systems. Considerable 

research effort has gone into the stability investigation both for off-line and on-line purposes [1] . 

A stable power system implies that all its interconnected generators are operating in synchronism 

with the network and with each other. These generators start to oscillate when a disturbance occurs 

due to a transmission fault or switching operatioa Loss of synchronism must be prevented or 

controlled because it has a disturbing effect on voltages, frequency and power, and it may cause 

serious damage to generators, which are the most expensive components in a power system [2]. The 

generators which are losing synchronism due to the disturbance should be tripped, i.e. disconnected 

from the system before any serious damage occurs, and afterwards brought back to synchronism. 

Loss o f synchronism may also cause some protective relays to operate falsely and trip the circuit 

breakers of unfaulted lines. In such cases the problem is very complicated and may result in more 

generators losing synchronism. 

Therefore, an understanding of system stability requires a thorough knowledge of both the 

mathematical modell ing of the system and effective numerical techniques. In most cases, the model 
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Chapter 1: Introduction 

consists of a set of linear or non-linear algebraic and/or differential equations depending upon the 

type of study that is to be performed. It is important to select a numerical method which will provide 

accurate results, but the rapid growth of power systems makes it extremely difficult, expensive and 

time consuming to carry out these careful and detailed stabihty studies through solution of the system 

equations. Two possibilities for improving the speed of transient studies are : [3] 

• Reduction of the total system to a smaller one, that could be solved faster but has the 

disadvantage of inaccuracy because of approximations. 

• Improvement in the numerical solution techniques such as the trapezoidal rule of integration 

method which has already been used successfuhy for the solution of switching transients at 

the Bonneville Power Administration ( BPA ) [4] . 

Much work has been done to find ways to reduce the amount of computation required for 

stability studies and to find direct methods to solve the transient stability problem that do not require 

the solution of the system equations . One direct method used is Lyapunov's direct method of 

determining stability [5]. However, this method is still not suitable for on-line applications [6] and 

has practical difficulties such as : 

• The method is conservative and, although some stable points are readily identified, others 

are inconclusive. 

• This method has difficulty deducing the Lyapunov's function which defines all possible 

stability regions, and it cannot predict instability, therefore, it may produce false alarms. 

Other Direct methods of stabihty analysis are currently under consideration and investigation 

[7] . 

Catastrophe theory is a new way of thinking about changes such as in a course of events, a 

systems behavior, or even change in ideas themselves. Its name suggests disaster, and indeed the 

theory can be applied to literal catastrophes. The mathematical principles we are used to are ideally 

suited to analyse smooth, continuous, qualitative change, [8] but there is another kind of change, 
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Chapter 1: Introduction 

that is less suited to mathematical analysis : such as the discontinuous transition from ice at its 

melt ing point to water at its freezing point or the transition from stable to unstable state for a power 

system fol lowing a disturbance. The foundations of catastrophe theory were developed by the French 

mathematician Rene'Thorn and became widely known through his book Stabilite' Structurelle et 

Morphogenese in which he proposed them as a foundation for biology. 

A catastrophe, in the very broad sense Thom gives to the word, is any discontinuous transition 

that occurs when a system can have more than one stable state, or can fol low more than one stable 

pathway of change. The catastrophe is the jump from one state or pathway to another [9] . The 

elementary catastrophes are the seven simplest ways such a transaction from one state to another 

state can occur. This is true for any system governed by a potential, and in which the behavior 

of the system is determined by no more than four different factors, then only seven qualitatively 

different types of discontinuity are possible [10] . The qualitative type of any stable discontinuity 

does not depend on the specific nature of the potential involved, merely on its existence, i.e. on the 

existence o f cause-and-effect relationship between conditions. N o w we can see how the elementary 

catastrophes are comparable to the regular forms of classical geometry. Just as we can say that any 

three dimensional object, i f it is regular ( i .e . al l its faces are identical polygons ), must be one of the 

five solids, so the catastrophe theory asserts that any discontinuous process whose behavior can be 

described by a graph in as many as six dimensions, i f structurally stable, must correspond to one of 

the seven elementary catastrophes [11] . The seven elementary catastrophes is shown in Table 1.1. 

Catastrophe theory is used for stability analysis of multimachine power systems. This theory 

has been applied previously to the steady-state stability o f power systems, one-machine infinite bus 

system, as wel l as multimachine systems [12] with the worst case approach i.e., only one generator 

becoming crit ical for a three-phase fault. Catastrophe theory has also been used as a tool for 

determining synchronous power system dynamic stability [13]. The application of catastrophe theory 

to steady-state and transient stability of power systems is attractive because it provides comprehensive 
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Chapter 1: Introduction 

stability regions with minimal computation. The transient stability regions have been shown to be 

applicable for changes in loading conditions and fault locations [12] . 

This thesis generalizes the use of catastrophe theory to the case of multimachine power systems, 

with more than one machine being critical (likely to go unstable ). Chapter 2 of this thesis derives 

the mathematical ideas involved in reducing the multimachine power system and the application of 

catastrophe theory by first briefly going through the single machine infinite bus system. In deriving the 

equations for the multimachine system, the general dynamic equivalent approach is used, grouping all 

the critical generators as one equivalent machine and grouping the rest of the system as another single 

equivalent machine. Then the swallowtail catastrophe is applied to this general system. Chapter 3 

contains test results from two power systems, and the conclusion of the application of catastrophe 

theory to multimachine power systems is in Chapter 4. The program listing for the catastrophe 

application is given in Appendix. 
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Chapter 1: Introduction 

Catastrophe 
Control 

Dimensions 
Catastrophe Mani fo ld 

Fo ld 1 x 2 + u 

Cusp 2 X 3 + UX + V 

Swallowtai l 3 X4 + ux2 + vx + w 

Butterfly 4 6x° + ux* + vx2 + wx + r 

El l ip t ic 3 3x2 — 3j/2 + 2ux + v 

— 6x3/ + 2uy + w 

Hyperbol ic 3 3x2 + «j/ + v 

3t/2 + ux + w 

Parabolic 4 
2xy + 2ux + w 

4y* + x 2 + 2vy + r 

Table 1.1: The seven elementary catastrophes 
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Chapter 2 

Transient Stability Analysis of Multimachine Power Systems Using Catastrophe Theory 

2.1 Introduction 

The transient stability analysis of multimachine power systems is more complicated than that of a 

single machine infinite bus system because the behavior of each machine is effected by and has an 

effect on the behavior of al l the other machines coupled to it. During a large system disturbance, 

usually there are two switching done, one during the occurrence of the fault and the other at the 

time o f clearance of the fault. 
For transient stability analysis the fol lowing assumptions are made : 

• Each generator, i is modelled by a constant voltage, | E,; |, behind its direct axis transient 

reactance, x'a. 

• Turbine dynamics are ignored so that the mechanical power input to each generator, P m t , 

is assumed constant. 

• Mechanical damping is ignored. 

• The loads are modelled as constant impedances. 

In this chapter we briefly review the application of catastrophe theory to a single machine infinite 

bus system [14] . Then we apply the General Dynamic Equivalent Method [15] [16]to multimachine 

power systems such that a suitable energy function can be defined for the application of catastrophe 

theory. This general method requires the identification of the crit ical machines involved for each 

fault being considered. The group of critical machines is then replaced by an equivalent machine 

and the rest o f the system which is not significantly affected by the disturbance is also replaced by 

an equivalent machine. 
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The transient stabihty regions are found by use of catastrophe theory in terms of system 

parameters. 

2.2 Catastrophe Theory Applied to Single Machine Infinite Bus System 

Consider the one machine-infinite bus system [17]in Figure 2.1 which has two transmission lines. 

\ 
\ 
\ 

Figure 2.1: Single-machine Infinite-bus power system 

The swing equation is given by 

where 

= Pi - Pmax sin 

= P* 

M = inertia constant of machine 

Pe = electrical power output 

Pi = mechanical power input 

Pa = accelerating power 

ip = rotor angle of the machine 

Pmax = maximum power for post fault condition 

(2.1) 

(2.2) 
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If a three-phase fault occurs on one of the transmission lines near the generator bus, the rotor 

w i l l start to accelerate and hence the machine would gain kinetic energy. If the fault is cleared at a 

clearing time such that the kinetic energy produced by the fault is absorbed by the potential energy 

produced after the clearance of the fault and the gained energy is less than zero then the system is 

stable and, i f exactly zero the system is crit ically stable. This is shown in figure 2.2 

> 

> 

> 

(c) t i m e ( s ) 
a : Stable 

b : Critically Stable 

c : Unstable 
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Consider the crit ical clearing case for a three-phase fault initiated near the generator bus. Then 

kinetic energy = potential energy (2.3) 

Equation 2.3 can be derived by mult iplying equation 2.1 by and integrating with respect to time 

once between fa, fa and next between fa, ipm to obtain 

^Mtf = Pm COS fa + Pi fa - Pi fa - Pm cos Vm (2-4) 

where 
fa = critical clearing angle 

Pm — maximum power of post-fault network (2.5) 

ipm = maximum angle 

Using Taylor series expansion to approximate fa and fa as a function of time we get 

= ltc 

and 

1 

where 
7 = acceleration at instant of occurrence of fault 

Pi - Pe(*0+)] 
~ M 

Replacing cos fa in equation (2.4) by cosine series expansion and denning 

we obtain 

Pm 4 Pm i 3 . /2 — Ipf 

+ - t i ^ O ~Pm- Pith + k) = 0 

(2.6) 

i>c = fa + ^Itl (2.7) 

(2.8) 

x £ ± 7 * c

2 (2.9) 

k = PiTPm + Pm cos ipm (2.10) 

24 6 r v 4 

+ {M1 + pmfa - - Pi) * ( 2 - n ) 

9 



Chapter 2: Transient Stability Analysis of Multimachine Power Systems Using Catastrophe Theory 

For the above equation to be in the form of swallowtail catastrophe manifold divide the equation 

by and eliminate the cubic term, by setting 

x = y-rpo (2.12) 

Therefore, 

y - 12s/2 + 
24 

Pi - M 7 y + 
24 

— ( M 7 V 0 - k) + 24 
•* m 

= 0 (2.13) 

This is in the form of the standard swallowtail catastrophe manifold namely: 

j / 4 + uy2 + vy + w = 0 (2.14) 

where 
u = -12 

24 
v = 

w — 

Pm 
24 

Pi - M-/ 

Mjtpr, - k 

(2.15) 

+ 24 

The bifurcation set can then be defined by 

4y3 + 2uy + t; = 0 (2.16) 

and the transient stability region in terms of the power system parameters then takes the shape of the 

swallowtail bifurcation set. The region is defined by the above u, v and w parameters. 

23 General Dynamic Equivalent Method for Multimachine Power Systems 

The general dynamic equivalent method [15] [16]will be discussed in this section. 

The equation of motion of machine i in a multimachine power system using classical model 

representation is given by 
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Si = u>i i = 1, . . . . ,n 

MiSi = Pmi ~ Pei 

Pei = electrical power output of machines 
n 

= E [A j c o s % + Cij sin 6^ 

Pmi — mechanical power input 

Mi = inertia constant 

Ei = internal generator voltage 

Ui = rotor speed 

bij = transfer susceptance 

5,j = transfer conductance 

= rotor angle 

= $ - *j 

Dij = EiEjQij 

Cij = EiEjbij 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

The critical machines are those machines that tend to respond actively to the occurrence of the 

fault and may lose synchronism. Therefore, in order to determine the transient stability of the power 

system it would be sufficient to group these critical machines as one equivalent machine and study the 

response of this equivalent machine with respect to the undisturbed equivalent machine representing 

the rest of the system. 

Consider that A represents the critical machines for a specific three-phase fault. These machines 

are considered as one equivalent critical machine which oscillates against B, the rest of the power 
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system which is not significantly disturbed by the fault and also considered to be equivalent to one 

machine. Let 

k£A 

i€B 

where Mo and So are , respectively , the inertia constant and the angle of the centre of angle of the 

power system with the critical machines excluded. 

Let 

then 

But 

and similarly 

Vk = h - Sc 

Oi = 6i - #o 

V> = Sc- So 

M<kTA M»ttB 

0 k£A " «€B 

«=EM-sE(«) 
keA ieB 

MkSk = Pmk - Pek 
n 

= Pmk - 2 [D'*
 c o s fa* + cki sin (nk - m) 

Mi Si = Pmi - Pei 

n 
= p™ - £ [ D i i c o s W ~ei) + casin(*< - 9i) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

J = 1 

Substituting equation (2.26) and (2.27) in (2.25) and fol lowing some mathematical manipulation we 

obtain the swing equation of the critical machines against the rest of the system. 
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This is explained i n the following steps: 

Mci> = ]T \ Pmk - ^ \Dki cos (tj* -rfi) + Cki s in ( 7 7 * - 7 ? , ) ] 

keA K 

_ Mc 
Mo 

1=1 

E { P™ - E cos ~9i) + CH s i n ~ 9>)] 
ieB [ j=l 

separating the Dkk term from the rest o f the equation we obtain 

Mcxl> cos (j]k - rj,) + CM s in (% - rj,) 
keA K i=k 

n •> 

+ ^2[Dkicos(rik-r],) + Cki sin(rjk-n,) \ 

Mc 
Mo E{P™ - E [DH c o s -*>) + C'i s i n ^ ~ °i) 

ieB jeA 

+ E [Di> cos (*«' - 9i) + CH s i n _ 9i) 
grouping the appropriate terms together i.e. 

M, 
Mcip 

ieB ' 

Dki cos - r)i) + Cfc/ sin ( 7 7 * - 7 / , ) - EE[ 
- I F E E^cos - + a * s i n - M} 

0 ieB jeB } 

-{EE [Dki cos fa* ~ *w) + ̂ s i n fa* - rn) 
^k£A l^k 

- w E E [ D ' i c o s ('•• -)+c«isin (ft - )]} 
Let 

P m ~ { E P M F C M „ E P m ' } 
KkeA " ieB J 

= \ E E \Dki cos fa* ~ + s i n fafc ~ 
_M 

Mo Y, E [̂ o-cos (9i
 c a s i n ($i - ej)]} 

i€B j€B 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 
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Simplifying the Pc term 

K Un A 

P - ^ ^ - F E E [ A i cos (ft - Bi) (2.33) 

Therefore , 

Mcxi> = Pk - | ]jT E I"0*' c o s fa* ~ + Cw sin (f?jt - »») 

^ E E [DH c o s (ft " ^) + ^ (ft - )] } 

(2.34) 

where we have defined 

Pk = Pm — Pc 
(2.35) 

Since 
ip = 6c- 60 

rji = 6i - 6C 

therefore we can write 

Bk = Vk + i> 

Tji = ft - V 

Substituting equation (2.37) in equation (2.34) and rearranging : 

M, $ = PK~ { E E [DK c o s fa* ~ ft + VO + sin (7/fc - ft + V) 
/I . - X L kfc£.4 «yfc 

E E [ D k i c o s f a * - + Ckisinfa* - ft + vo]} 
Lr- A Ir- 13 ' k€A i^B 

(2.36) 

(2.37) 

(2.38) 

14 
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Expanding the sine and cosine terms of the above equation we obtain : 

^ = flc-|EE D k i [COS (̂  ~ v k ) c o s ^ + s i n ( f t - s i n ^ 

^ E E A.' cos (ft - r}k) cos V> + sin (ft - sin tp 
Mo k€A ieB 

n 

- Y2 E ^ [SIN ~Vk)costp- cos ( f t - ?7fc) s in 0 

~ W E E ^ s i n ( f t ~ 7 ? f c) c o s ^ ~ c o s ( f t ~ Vk) s in V> } 
0 k€A ieB ' 

(2.39) 

$ = P K" { { E E [AK s i n (*•' - + c o s (ft - Vk)] 
k£A i^k 
M. 

- y ^ E E iDki s i n (ft ~Vk)~ Cki cos (ft - r}k)) I sin V> 
fce-4 tgB 

{Wo E E [A.-COS (*«• -»/*)+SIN (*«• - %)] 
/te.4 «'eB 

n <. 

+ 53 E S l n (ft ~ Vk) ~ Dki COS (ft - T)k)] | COS V> | 

Therefore, the swing equation of the single machine representing the group of critical machines 

has the form : 

Mci> = Pk-Tk s in (if> - ak) (2.41) 

where 

•k£A ieB 

- { E ^ - ^ E E ^ - S ^ - ^ ) ] } 
(2.42) 

Tk = y/al + b\ (2.43) 

15 
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-I
 ak 

ak = tan — 
h 

ak = 
Mc 
Mo ]C YI [Dki cos " +^sin ~ 

+ 2 E S i Q ̂ ' ~ ~ A, C O S ~ 
(2.45) 

MO 

+ YI E S l n (ft ~rlk) + Cki COS (ft - Tjk) 
k£A i?k 

2.4 Application of Catastrophe Theory to Multimachine Power Systems 

(2.46) 

During the transient period an exchange of energy takes place between the rotor of the critical 

machines and the post-fault network [18] . The kinetic energy generated by the accelerating power 

during the fault-on period must be ful ly absorbed by the post-fault network in order to maintain 

stability. 

Us ing equation (2.41 ) from the previous section, namely 

Mk^k = Pk-Tk sin (V>* - ak) (2.47) 

which represents the motion of the group of critical machines represented as a single machine with 

respect to the rest of the system, also represented as a single machine, for a certain three-phase 

fault. Since we have assumed that the rest of the system is not responding to the disturbance, it is 

reasonable to use the pre-disturbance angles Oo and 770 to calculate the parameters Pk , Tk and a * . 

B y solving equation (2.47) for ipk, the stable and unstable points are computed i.e. 

Pk-Tksin(xli-ak) = 0 (2.48) 
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fa = stable equlibrium point (2.49) 

and the unstable equil ibrium point ( UEP ) is 

rk = * - rk (2.50) 

Mul t ip ly equation (2.47) by fa and integrate between ip^ and fa with respect to time we, obtain 

the kinetic energy generated by the fault : 

^Mkfa K . E . 
(2.51) 

= Pi {it ~ - Tl [cos (fk - a() - cos {fa - a°k) 

where P / , 7 1 / and a { are the fault-on parameters and fa is the clearing angle. 

The potential energy of the post-fault system is derived in the same fashion but is integrated 

between fa and fa using the post-fault parameters 

-\Mkfak = P.E. 

= p m - n ) - n c o s (rk - <%) - c o s -
(2.52) 

The L .H .S . of equation (2.52) represents the kinetic energy produced during the fault and the 

R .H .S . represents the potential energy of the post-fault network. In order for the system to be stable 

the kinetic energy should be equal to or less than the potential energy. Therefore, 

±Mkfak - Plfak - Tl cos (fa -al)+ku = 0 (2.53) 

where we define 

ku = Pp

kfa + Tp

k cos (fa - ap

k) (2.54) 

17 
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Expanding xpi by a Taylor series and using the first two terms only 

(2.55) 

and 

V'fc = Iktc (2.56) 

where 

lk = Mk 

Pk - J*fc(«0+) (2.57) 

Replacing the cosine term by cosine series expansion up to the fourth order and defining 

(2.58) 

then after some mathematical manipulation, we get the catastrophe manifold equation as shown in 

the fo l lowing steps : 

\Mk{lktcf - PP

K (V2 + x) - Tp

k cos (V>2 + x - al) + ku = 0 

Mklkx - PI +*) - n cos^ ( x + ^ ~ ^ 
2! (2.59) 

4! 
+ ku = 0 

M f c 7 f c x - p f c

p ( ^ ° + x ) - ^ 1 -
(x + /?)2 , (* + /?)' 

2! + 4! 
+ ku = 0 (2.60) 

Therefore, expanding and simplifying equation (2.60) we obtain 

.2 rpp rpp 
.tJL x4 _ ik_Q 3 + 

24 6 P 

rpp rpp 

2 4 ^ x 

24~' + *" = 0 

(2.61) 

18 



Chapter 2: Transient Stability Analysis of Multimachine Power Systems Using Catastrophe Theory 

dividing equation (2.61) by - y r to give 

x 4 + (4/3) x a - 12 1 -

24 

n 

24 

Mklk + Tv

kf3-Pp

k-^-f (2.62) 

= 0 

In order to obtain the swallowtail catastrophe manifold , we have to eliminate the third order 

term in equation (2.62), by letting : 

x = y-P (2.63) 

Therefore, 

( y _ / ? ) 4

 + 4 / 3 ( y - / 3 ) 3 - 1 2 

24 

1 - 0 2 -, 
(y - P? 

Mk7k + Tpp - Pp

k - ^p*] (y - P) 

24 
rrP 
1k 

and expanding we get 

( y 4 - 4y 3 /? + 6 y 2 / ? 2 - 4y /? 3 + /? 4 ) 

+ 4/? ( y 3 - 3y 2 /? + 3y/? 2 - 03) 

+ (6/? 2 - 12) (y2-2yP + P*) 
'24 r Tp -\ 

lMklk + Tlt5-Pl--±p\{y-(S) 

= o 

= o 

rearranging the terms and simplifying the above equation 

y4 - 12y2+U {PI - Mklk ) y 
Tv v- k 

24 

+ 
^(PP

K^K -ku- PIP + Mklkp) + 24j = 0 

equation (2.66) is in the form of the swallowtail catastrophe manifold i.e : 

(2.64) 

(2.65) 

(2.66) 

y4 + uy3 + vy + w = 0 
(2.67) 
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where 

u -12 

w 

v Mklk 

-ku -Pp

kf3 + Mklkp +24 

(2.68) 

The control variables u , v , w for the swallowtail catastrophe obtained for the multimachine 

power system can be compared to the control variables of the single machine infinite bus system 

namely equation (2.15 ) . It is seen that the control variables have the same form and the equations 

derived for the multimachine power system reduces to that of the single machine infinite bus system 

when the number of the critical machines is one and the rest of the system is also one. 

The bifurcation manifold is reduced from three dimensions to only two dimensions in v and w 

as u = —12. The boundaries of the bifurcation set of Figure 2.3 represents the degenerate transient 

stability limits of the power system. It should be noted that for a generator the stable points are 

in the region of a positive v and w and for a motor the stable points lie between a negative v 

and a positive w. 

Several comments are in order here : 

• During a three-phase short-circuit of a generation bus the transfer admittances between 

machine k and other machines are zero i.e. gkj = bkj = 0 so Tk = 0 and the electric 

power output during fault-on period is found using equation 2.18 

• When combining critical machines in an equivalent machine if the fault duration is short, 

the machine angle offsets will not change ; thus we may use the prefault steady-state values 

along with fault-on values for the b's and the g's to compute the fault-on parameters. 
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Figure 23: The transient stability limits given by the swallowtail catastrophe for a multimachine power system. 
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2.5 Identification of the Critical Machines 

The method presented depends upon the accurate identification of the crit ical machines for a specified 

disturbance. Correct identification could be achieved by calculating the unstable equilibrium points 

for al l machines in the power system; the machine having the highest unstable equil ibrium point 

would be identified as the crit ical machine [19] , but its drawback is the calculation of the unstable 

equil ibrium points, which is time consuming. 

In this thesis for a certain three-phase fault sequence occurring at either generator or non-generator 

buses, the crit ical machine (s) are identified as fol lows : 

• Calculate the init ial acceleration for each machine using 

Pmi ~ Pzi {IQ ) (2.69) 

where Pei ( t j ) is the electrical power output during fault at the instant of fault occurrence. 

The machines which have high and positive initial accelerations are injecting kinetic energy 

to the system; therefore, they al l contribute to the system instability and should be combined 

to form a single critical machine. In practice, only two, at times three, machines having the 

largest init ial acceleration w i l l be declared as candidates [15]. 
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Chapter 3 
Numerical Examples 

In this chapter two test systems are presented to demonstrate the validity and advantages of the 

application of catastrophe theory to transient stabihty assessment of power systems. Three and seven 

machine power systems are used, where three-phase short circuits are considered at different locations. 

For each test system there w i l l be a one line diagram, the steady state loadflow and the systems data. 

Transient stabihty regions in terms of systems catastrophe control parameters are given for each 

example used and they are compared with the time solution. 

Each three-phase short-circuit case considered is evaluated by the fol lowing steps : 

• Construct the systems reduced prefault, during-fault and the post-fault matrices. 

• Identify the crit ical machine or machines for each case. 

• Calculate the general dynamic equivalent parameters i.e. Pk, Tk, cxk, i>k and M * . 

• Calculate the bifurcation set parameters for the swallowtail catastrophe. 

• Each case is then compared with the time solution. 

3.1 The Three-Machine System 

This system has nine buses, three machines and three loads [20] . It is widely referred to in the 

literature as the Western Systems Coordinating Counci l ( W S C C ) test system. A one-line diagram for 

the system is given in Figure 3.4 . The prefault normal load flow is given in Figure 3.5. Transmission 

l ine parameters and loads impedances are given in per unit on a 100 M V A base in Table 3.2. Generator 

data and initial operating conditions are given in Table 3.3. 

Three-phase short circuits are considered at different locations. The transient stability of each 

fault location is evaluated by the use of the swallowtail catastrophe. 
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Bus No . 

Admittances (pu) 

Bus No . 
G B 

Generators 

1 1 • • 4 0.0 -8.446 

2 2 • • 7 0.0 -5.485 

3 3 • - 9 0.0 -4.168 

Transmission Lines 

4 - 5 1.365 -11.604 

4 • 6 1.942 -10.511 

5 • 7 1.188 -5.975 

6 - 9 1.282 -5.588 

7 • 8 1.617 -13.698 

8 - 9 1.155 -9.784 

Shunt Admittances 

Load A 5 - 0 1.261 -0.263 

Load B 6 - 0 0.878 -0.035 

Load C 8 - 0 0.969 -0.160 

4 - 0 0.167 

7 - 0 0.227 

9 - 0 0.283 

Table 3.2: Network parameters of the three-machine system 
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Generator Data Initial Operating Conditions 

Gen. No. 
H 

(Mw/MVA) < 
E 

(pu) 
<$o(deg) 

1 23.64 0.0608 7.16 1.056 2.272 

2 6.40 0.1198 1.63 1.050 19.732 

3 3.01 0.1813 0.85 1.017 13.175 

Table 33: Three-machine generator data and operating conditions 

2 Load C ;i 

Figure 3.4: Nine-bus three-machine power system 
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Three-phase faults applied at the generator buses, the lines that were opened, the number of 

critical generators that were involved, the electrical power produced during the fault as well as the 

catastrophe control parameters v and w are shown in Table 3.4. Those buses which are not generator 

buses are shown in Table 3.5. 

The transient stability region using the general dynamic method is shown for generation buses in 

Figure 3.6 and for non-generating buses in Figure3.7 . All stable cases are shown inside the region 

in terms of the catastrophe control parameters. 

Node 

Grounded 
Line Opened 

No. Critical 

Generators 

Elec. Power 

DuringFault 
V W 

7 7 - 8 1 0.0 1.9 13.5 

7' 7-5 1 0.0 1.05 16.1 

9 ' 9 - 6 1 0.0 0.7 28.5 

9 9-8 1 0.0 1.02 27.1 

4 4 - 5 3 0.304 1.02 31.7 

4 4 -6 3 0.304 1.16 31.9 

Table 3.4: Cases of faulted generating buses 
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Node 

Grounded 
L ine Opened 

No . Cri t ical 

Generators 

Elec. Power 

DuringFault 
V W 

5 4 - 5 1 0.652 2.0 27.0 

5 5 - 7 1 0.652 7.2 14.3 

6 6 - 4 2 0.720 1.8 29.0 

6 6 - 9 2 0.720 3.8 23.1 

8 8 - 9 2 0.487 1.0 27.2 

8 8 - 7 2 0.487 1.5 26.0 

Table 3.5: Cases of non-generating buses 
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3.2 The Seven-Machine System 

The C I G R E 225 K V test system is shown in Figure 3.8. This system has 10 buses and 13 unique 

branches. Buses 1 through 7 are generating buses while loads are located at buses 2, 4, 6, 7, 8, 9, 

and 10. The base values used are 225 K V and 100 M V A [21] . The systems bus data, branch data 

and the systems loadflow summary is given in Table 3.6, Table 3.7and Table 3.8 respectively. 

Bus P gen. X P l o a d Q load 

# ( M W ) ( % ) ( M W ) ( M V A R ) 

1 217.00 7.4 0.00 0.00 

2 120.00 11.8 200.00 120.00 

3 256.00 6.2 0.00 0.00 

4 300.00 4.9 650.00 405.00 

5 230.00 7.4 0.00 0.00 

6 160.00 7.1 80.00 30.00 

7 174.00 8.7 90.00 40.00 

8 0.00 0.0 100.00 50.00 

9 0.00 0.0 230.00 140.00 

10 0.00 0.0 90.00 45.00 

Table 3.6: C IGRE 7-machine bus data 
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Bus Bus 
R 

(pu) 

X 

(pu) 

CHARG 

( MVAR ) 

1 3 0.0099 0.0484 20.250 

1 4 0.0099 0.0484 10.125 

2 3 0.0450 0.1237 20.250 

2 10 0.0164 0.0638 30.375 

3 4 0.0119 0.0780 30.375 

3 9 0.0114 0.0553 20.250 

4 5 0.0040 0.0198 20.250 

4 6 0.0075 0.0198 121.50 

4 9 0.0488 0.1916 20.250 

4 10 0.0164 0.0652 30.375 

6 8 0.0188 0.0628 20.250 

7 8 0.0119 0.0780 30.375 

8 9 0.0488 0.1916 20.250 

Table 3.7: CIGRE 7 - machine branch data 

32 



Chapter 3: Numerical Examples 

Figure 3.8: CIGRE 7 - machine test system 
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Three-phase faults are applied and the transient stability is evaluated for each fault. The bus 

which the fault is applied, the number of critical generators involved, the values of the catastrophe 

control parameters and weather the system is stable or not is shown in Table 3.9. The transient 

stability regions in terms of the swallowtail catastrophe control parameters are shown in Figure 

3.9which show good agreement with the time solution. 

Bus V m a g Vang Pgen Qgen 

# ( p u ) ( d e g ) ( M W ) ( M V A R ) 

1 1.106 7.9 227.83 -49.54 

2 1.156 0.35 120.00 232.96 

3 1.098 6.42 256.00 -59.687 

4 1.110 4.07 300.00 746.462 

5 1.118 6.17 230.00 -9.748 

6 1.039 5.89 160.00 -434.255 

7 1.054 7.84 174.00 39.866 

8 1.034 4.50 0.00 0.00 

9 1.032 1.95 0.00 0.00 

10 1.124 0.88 0.00 0.00 

Table 3.8: CIGRE 7 - machine voltage and power summary 
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Node 

Grounded 

No . Cri t ical 

Generators 

Elec. Power 

DuringFault 
V W Stable 

1 2 1.0404 2.9 25.1 yes 

2 2 1.057 0.9 33.5 yes 

3 2 0.8045 3.9 19.3 yes 

4 2 0.317 5.4 21.04 yes 

5 1 0.00 12.76 -26.75 no 

6 1 0.00 9.4 5.5 yes 

7 1 0.0 5.24 21.4 yes 

8 1 0.7152 12.53 11.27 yes 

9 3 1.098 0.33 44.0 no 

10 2 0.1507 0.245 40.0 no 

Table 3.9: Cases of CIGRE 7-machine grounded buses 
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-24 

Figure 3.7: Results for the 3-machine power system with faulted load buses. All cases are stable. 
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Chapter 4 
Conclusion 

Catastrophe theory has been applied to the study of stability o f various dynamic systems such as 

aircraft stability [22] , and in recent years to the steady state stability problem of power systems 

[23]. However, that application was l imited only to salient-pole type synchronous generators. Then 

after swal low tail catastrophe was applied to transient stability of single-machine infinite bus system 

[17] and also to transient stability of multimachine power systems with the worst case approach i.e. 

only one generator being crit ical [18]. 

This thesis suggests a method to solve the transient stability problem of multimachine power 

systems with the system having more than one crit ical machine for a specified disturbance. Here 

the crit ical machines during a three-phase fault are identified, singled out and combined to be one 

equivalent machine and also the rest of the system as another single equivalent machine using the 

general dynamic equivalent approach. Then the energy balance equation is derived from the equation 

of motion of the equivalent critical machine against the rest o f the system. The energy balance 

equation is then used to form the equil ibrium surface of the swallowtail catastrophe manifold from 

which the transient stability region is derived by the bifurcation technique. The results obtained by 

this general swallowtail catastrophe approach is in good agreement with those obtained by the time 

solution method. 

It should be noted that the application of swallowtail catastrophe to transient stability of 

multimachine power systems has the fol lowing advantages : 

• The regions of stability are wel l denned in terms of the swallowtail catastrophe control 

parameters u, v and w. 

• The computations required to define the stability regions are few and done in a very short time. 

• The generator swing equations need not be solved. 
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New areas of research need to be explored in order to reach the goal of an efficient on-line direct 

method of transient stability analysis. The future research should include the fol lowing : 

• Stability controls such as fast valving, braking resistors, single pole switching, series capac

itors and generator trippings are usually applied in practice to restore transient stability of 

power systems. The inclusion of these controls in the transient stability using the swallowtail 

catastrophe approach would be of great interest to power utility companies. 

• In this thesis we only considered three-phase faults. However single-phase faults as wel l as 

multiple disturbances also occur. 
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Appendix 
Fortran Program Listing of Swallowtail Catastrophe Applied to Multimachine Power Systems 

INTEGER N L , B U S ( 8 0 ) , N G E N , L N ( 8 0 ) , N L L L 
INTEGER F R ( 8 0 ) , T 0 ( 8 0 ) . N L L , N B B , N O D E , C A N C E L 
INTEGER N . R . N N . N B . N N F . R F , I I , J J . K K 

C NB: NUMBER OF BUSES 
C N: NUMBER OF GENERATORS IN THE SYSTEM 
C NN:MAXIMUM DIMENSION OF THE PREFAULT AND POST FAULT MATRIX 
C NNF:MAXIMUM DIMENSION OF THE DURING FAULT MATRIX 
C R: NN-N 
C R F : NNF-N 
C 

PARAMETER(NB=9,N=3) 
PARAMETER(NN=9, R=6) 
PARAMETER(NNF=8.RF=5) 

INTEGER N P R S T A ( N ) , B A S E ( N ) , K G ( 5 0 ) 

INTEGER C L I M ( 5 0 ) , N C L I M , C R I ( 8 0 ) , N C R I ( 8 0 ) 

REAL V ( 8 0 ) , A N G ( 8 0 ) , P G E N ( 8 0 ) , 0 G E N ( 8 0 ) , P L 0 A D ( 8 0 ) 
REAL 0 L 0 A D ( 8 0 ) . M A G V ( 8 0 ) , R V ( 8 0 ) , I V ( 8 0 ) ,A 
REAL M A G E ( 8 0 ) . G ( N . N ) , M A G D F ( N . N ) . T E T A F ( N . N ) . D E L T A ( 8 0 ) 
REAL M A G I ( N B ) . A L F A ( N B ) , M A G 0 P ( N , N ) , D E L TA t (80) 
REAL TETAP(N.N) 
REAL P M ( 8 0 ) , P M 1 ( 5 0 ) , P E F ( 5 0 ) . G A M M A ( 5 0 ) . P E P ( 5 0 ) 
REAL R A T I N G ( N ) , H ( N ) , M ( 5 0 ) 
REAL T O L . D E L T . T C 

REAL MNOT.CM,NCM.CMECH,NCMECH,CD,COF.COP 
REAL CDEL.NCDEL.CANG.NCANG,RATIO ,PMECH 

REAL ATEMP,A1 TEMP,A2TEMP,A3TEMP,BTEMP.B1TEMP,B2TEMP 
REAL 83TEMP,CTEMP,C1 TEMP,C2TEMP,C3TEMP 

REAL P R E D ( N , N ) , P R E C ( N , N ) , P R E P K ( 8 0 ) , P R E A K , P R E 8 K , P R E A L F 
REAL P R E T K , P R E C Y 1 ( 5 0 ) . P R E C Y 2 . P R E P C 

REAL DURD(N.N) ,DURC(N.N) ,DURPK.DURAK.0UR8K,DURALF 
REAL 0URTK.DURPC.DURPE(5O) 

REAL P O S D ( N . N ) . P O S C ( N . N ) , P O S P K , P O S A K , P O S B K . P O S A L F 
REAL POSTK.POSPC.POSPE 

REAL E T A X ( 8 0 ) , T E T A I ( 8 0 ) . B E T A . S P O S C Y , U P O S C Y . M K G A M K ( 5 0 ) 
REAL UK.UCAT.VCAT.WCAT 

COMPLEX SGEN(80) ' ,V1(80) ,CUR(60) ,SL0AD(80) 
COMPLEX YLOAD(BO) ,EPRIM(80) 
COMPLEX X P R I M D ( 8 0 ) , T E M P . Y ( 8 0 ) , Y S H ( 8 0 ) 
COMPLEX YBUS(NB.NB) . Y B U S K N B . N B ) , YBUS2(N8- 1 .NB- 1) 
COMPLEX YBUS3(NB.NB) 
COMPLEX Y N N ( N . N ) , Y N R ( N . R ) , Y R N ( R . N ) 
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COMPLEX YRR(R.R),YRRR(R.R).AA(R.R),DET,COND 
COMPLEX B(N,R).C(N.N),D(N.N) ,TEM 
COMPLEX YNNF(N.N),YNRF(N,RF).YRNF(RF,N) 
COMPLEX YRRF(RF,RF),YRRRF(RF,RF),AAF(RF,RF) 
COMPLEX BF(N,RF),CF(N,N),OF(N,N) 
COMPLEX YNNP(N.N),YNRP(N,R).YRNP(R.N) 
COMPLEX YRRP(R.R).YRRRP(R,R).AAP(R,R) 
COMPLEX BP(N,R).CP(N.N),DP(N,N) 

OPEN(UNIT=5>FILE=•FOUAD•,STATUS='OLD') 
OPEN(UNIT=6.FILE='OUT',STATUS='UNKNOWN') 

READ STATEMENTS 

READ(5,*)NL,NGEN,NODE,CANCEL,KK 

DO 228 1=1,NL 
READ(5,*)BUS(I ) ,V(I),ANG(I),PGEN(I),QGEN(I) , 
PLOAD(I).OLOAD(I).XPRIMD(I) 

CONTINUE 

READ(5,*)NLL 

DO 111 1=1,NLL 
READ15,*)LN(I),FR(1),TO(I),Y(I).YSH(I) 

CONTINUE 

DO 199 1=1,N 
READ(5,*)NPRSTA(I),RATING!I),H(I),BASE(I) 

CONTINUE 

CALCULATE TRANSIENT VOLTAGE,INITIAL OPERATING 
ANGLE,LOAD IMPEDANCE,CURRENT AT 

GENERATING NODE. 

A=3.14159/180.00 
00 191 1=1,NL 

EPRIM(I)=(0.0,0.0) 
YLOAO(I)=(0.0,0.0) 
DELTA(I)=0.0 
DELTA1(I)=0.0 
CUR(I)=(0.0.0.0) 
ALFA(I)=0.0 
MAGI(I)=0.0 
PM(I)=0.0 

CONTINUE 

DO 100 1=1,NL 
RV(I)=V(I)*COS(ANG(I)'A) 
IV(I)=V(I)'SIN(ANG(I) ,A) 
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V 1 ( I ) = C M P L X ( R V ( I ) , I V ( I ) ) 
M A G V ( I ) = S Q R T ( ( R V ( I ) * R V ( I ) ) • ( I V ( I ) • I V ( I ) ) ) 

I F ( ( P G E N t I ) .GT.O.O).OR.(0GEN(I).GT.0.0))THEN 
SGEN(I)=CMPLX(PGEN(I).OGEN(I)) 
CUR(I)=(CONJG(SGEN(I)))/(CONJG(V1(I))) 
EPRIMtI)=V1 (I) + (CUR(I)*XPRIMD(I)) 

ELSE 
E P R IMd ) = (0.0,0.0) 

ENDIF 
SL0A0(I)=CMPLX(PL0AD(I),QL0AD(I)) 
YL0AD(I)=(C0NJG(SL0AD(I)))/(MAGV(I)'MAGV(I)) 

100 CONTINUE 

CALCULATE ABOVE VALUES IN POLAR FORM 

DO 192 1=1.NL 
MAGE(I)=SQRT((REAL(EPRIM(I))* REAL(EPRIMtI))) 

& +(AIMAGtEPRIMtI))* AIMAG ( EPRIM( I ) ) ) ) 
MAGI(I)=SORT((REAL(CUR(I))•REAL(CUR(I))) 

& •(AIMAGtCURtI))'AIMAGtCURtI)))) 
IF((AIMAG(EPRIMtI)).NE.O.O).OR.(REAL(EPRIMtI)).NE.O.O))THEN 

DELTA(I)=ATAN2(AIMAGtEPRIMtI)).REAL(EPRIMtI))) 
ELSE 

DELTA(I)=0.0 
ENDIF 
IFt(AIMAGtCUR(I)).NE.0.0).OR.(REAL(CUR(I)).NE.0.0))THEN 

ALFAtI)=ATAN2(AIMAGtCURtI)),REAL(CUR(I))) 
ELSE 

CURtI)=0.0 
ENDIF 

DELTA(I)=DELTA(I)/A 
JELTA1(I)=DELTA(I)'A 
ALFA(I)=ALFA(I)/A 

192 CONTINUE 

INITIALISE ALL THREE MATRICES 

DO 112 1=1,NB 
DO 112 J=1,NB 

YBUS(I,J)=(0.0.0.0) 
YBUSKI .J) = (0.0,0.0) 
YBUS3(I,J)=(0.0,0.0) 

112 CONTINUE 

DO 131 I=1.(NB-1) 
DO 131 J=1,(NB-1) 

YBUS2(I.J)=(0.0,0.0) 
131 CONTINUE 

FORMULATE THE PREFAULT MATRIX 

43 



c 

00 113 I=1,NB 
DO 114 J=1.NLL 

IF( (FR(J) .EQ.LN(I)).OR. (T0( J).EQ.LN( I )))THEN 
YBUS(1,1)=YBUS(I,I) + ( Y ( J)•YSH ( J ) ) 

ENDIF 
114 CONTINUE 

YBUS(I,I)=YBUS(I,I )+YLOAD<I) 
113 CONTINUE 

DO 115 K=1 ,NLL 
IF((FR(K).NE.LN(K)).OR.<TO(K).NE.LN(K)))THEN 

I=FR(K) 
J=TO(K) 
YBUS(I,J)=YBUS(I,J)-Y(K) 
YBUS(J.I)=YBUS(I,J) 

ENDIF 
115 CONTINUE 

C REDUCE THE PREFAULT MATRIX 
C 

DO 146 I = (N +1),NN 
DO 132 J=(N+1),NN 

TEMP=YBUS(I,J) 
II=I-N 
JJ=J-N 
YRR(II,JJ)=TEMP 
YRRR(II,JJ)=YRR(II,JJ) 

132 CONTINUE 
146 CONTINUE 

DO 134 1=1,N 
DO 134 J=1.N 

YNN(I,J)=YBUS(I.J) 
134 CONTINUE 

DO 136 1=1.N 
DO 136 J=(N +1),NN 

TEMP=YBUS(I.J) 
11 = 1 
JJ=J-N 
YNR(11,JJ)=TEMP 

136 CONTINUE 

DO 138 I=(N+1),NN 
DO 138 J=1,N 

TEMP=YBUS(I.J) 
II=I-N 
JJ=J 
YRN(11,JJ)=TEMP 

138 CONTINUE 

CALL CINVRKYRR,R,R,DET,COND) 
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CALL CMULT(YRRR,YRR,AA,R.R,R.R,R.R) 
CALL CMULT(YNR,YRR,B,N,R,R,N,R,N) 
CALL CMULT(B,YRN,C,N,R,N,N,R,N) 
CALL CSUB(YNN,C,D.N.N,N,N,N) 

FORMULATE THE DURING FAULT MATRIX 

125 

DO 125 1=1,NB 
DO 125 J=1,NB 

YBUS1(I.J)=YBUS(I,J) 
CONTINUE 

117 

DO 117 1=1.NB 
DO 117 J=1,NB 

IF((I.EQ.NODE).OR.(J.EQ.NODE))YBUS1(I.J)=(0.0,0.0) 
CONTINUE 

120 
1 19 

DO 119 I=1.NB 
DO 120 J=1,NB 

K=J+1 
IF((K.LE.NB).AND.{J.GE.NODE))THEN 

YBUS1(I,J)=YBUS1(I,K) 
YBUS1(I,K)=(0.0,0.0) 

ELSE 
ENDIF 

CONTINUE 
CONTINUE 

121 

DO 121 1=1,NB 
DO 121 J=1,NB 

K = I • 1 
IF((K.LE.NB).ANO.(I.GE.NODE)(THEN 

Y B U S K I , J ) =YBUS 1 (K , J ) 
Y8USKK, J) = (0. 0,0.0) 

ELSE 
ENDIF 

CONTINUE 

123 

DO 123 1=1,NB-1 
DO 123 J=1.NB-1 

YBUS2U, J)=YBUS1(I . J) 
CONTINUE 

REDUCE THE FAULTED MATRIX 

DO 160 I=(N+1),NNF 
DO 161 J=(N+1).NNF 

TEMP=YBUS2(I,J) 
II=I-N 
JJ=J-N 
YRRF(II.JJ)=TEMP 
YRRRF(11,JJ)=YRRF(II.JJ) 
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161 
160 

CONTINUE 
CONTINUE 

00 163 1=1,N 
DO 163 J=1,N 

YNNF(I.J)=YBUS2(I,J) 
163 CONTINUE 

DO 165 1=1,N 
DO 165 J=(N+1),NNF 

TEMP=YBUS2(I,J) 
11 = 1 
JJ=J-N 
YNRF(II,JJ)=TEMP 

165 CONTINUE 

DO 167 I=(N+1),NNF 
DO 167 J=1,N 

TEMP=YBUS2(I,J) 
II=I-N 
JJ=J 
YRNF(11,JJ)=TEMP 

167 CONTINUE 

CALL CINVRT(YRRF,RF,RF,DET,COND) 
CALL CMULT(YRRRF,YRRF.AAF,RF,RF,RF,RF.RF,RF) 
CALL CMULT(YNRF.YRRF,BF,N,RF,RF,N,RF,N) 
CALL CMULT(BF.YRNF,CF,N,RF,N,N,RF.N) 
CALL CSUB(YNNF,CF,DF,N,N,N,N,N) 

DO 126 1=1,NB 
DO 126 J=1,NB 

YBUS3U , J)=YBUS(I . J) 
126 CONTINUE 

C FORMULATE THE AFTER FAULT MATRIX 
C • 

DO 127 1=1.NB 
DO 127 J=1.NB 

IF((I.EQ.FR(CANCEL)).AND.(J.EO.TO(CANCEL)))THEN 
YBUS3(I.J)=(0.0.0.0) 
YBUS3(J,I)=(0.0,0.0) 

ENDIF 
127 CONTINUE 

DO 128 1=1.NB 
00 128 J=1 ,NB ' 

IF((I.EQ.FR(CANCEL)) .AND.(J.EO.FR(CANCEL)))THEN 
YBUS3I1,1)=YBUS3(I,I)-(Y(CANCEL)•YSH(CANCEL) ) 

C YBUS3(I,I)=YBUS3(I . I)-Y(CANCEL) 
ENDIF 

128 CONTINUE 

DO 129 1=1,NB 
DO 129 J=1,NB 
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IF({I.EQ.T0(CANCEL)).AND.(J.EQ.T0(CANCEL>))THEN 
YBUS31I,I)=YBUS3(1,1)-(Y(CANCEL)+ YSH(CANCEL)) 
YBUS3(1,1)=YBUS3(I,I)-Y(CANCEL) 

ENDIF 
129 CONTINUE 

C REDUCE THE AFTER FAULT MATRIX 
C 

DO 172 I=(N+1),NN 
DO 173 J=(N+ 1 ),NN 

TEMP=YBUS3(I,J) 
II=I-N 
JJ=J-N 
Y R R P d l , JJ)=TEMP 
YRRRP(II.JJ)=YRRP(II,JJ) 

173 CONTINUE 
172 CONTINUE 

DO 175 1=1,N 
DO 175 J=1,N 

YNNP(I,J)=YBUS3(I,J) 
175 CONTINUE 

DO 177 1=1,N 
DO 177 J=(N + 1 ),NN 

TEMP=YBUS3(I.J) 
11 = 1 
JJ=J-N 
YNRP (II,JJ)=TEMP 

177 CONTINUE 

DO 179 I = (N+1 ),NN 
DO 179 J=1,N 

TEMP=YBUS3(I,J) 
11 = 1 N 
JJ=J 
YRNP(II,JJ)=TEMP 

179 CONTINUE 

CALL CINVRT(YRRP,R.R,DET,CONO) 
CALL CMULT(YRRRP,YRRP,AAP,R,R,R,R,R,R) 
CALL CMULT(YNRP.YRRP,BP.N,R,R,N.R.N) 
CALL CMULT(BP,YRNP.CP,N,R.N.N,R.N) 
CALL CSUB(YNNP.CP.DP,N,N,N,N,N) 

C FAULTED AND AFTER FAULT MATRIX IN POLAR FORM 
C 

DO 193 1=1,N 
DO 194 J=1.N 

MAGDF(I.J)=SQRT((REAL(DF(I.J))•REAL(DF(I,J))) 
+ (AIMAG(DF(I,J))* AIMAG(DF(I,J)))) 

MAGDP(I.J)=SQRT((REAL(DP(I,J))•REAL(DP(I,J))) 
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+ (AIMAG(OP(I,J))* AIMAG(DP(I,J)))) 
I F ( R E A L ( D F ( I , J ) ).NE.0.0.OR.AIMAG(DF(I.J)).NE.0.0)THEN 

TETAF(I,J)=ATAN2(AIMAGIDF(I,J)),REAL(DF(I,J))) 
ELSE 

TETAF(I,J)=0.0 
ENDIF 
IF(REAL(DP(I.J)).NE.0.0.OR.AIMAG(DP(I,J)).NE.0.0)THEN 

TETAP(I,J)=ATAN2(AIMAG(DP(I,J)),REAL(DP(I,J))) 
ELSE 

TETAP(I , J)=0.0 
ENDIF 
T E T A F ( I , J ) = T E T A F ( I , J ) / A 
T E T A P ( I , J ) = T E T A P ( I . J ) / A 
CONTINUE 
CONTINUE 

D i j . C i j USING PRE,DURING AND POST REDUCED MATRIX 

DO 222 1=1,N 
DO 223 J=1,N 

PRED (I , J) =MAGE (I) * MAGE (J)•(REAL(D <I.J))) 
PREC(I,J)=MAGE(I)"MAGE(J)*(AIMAG(D(I , J ) ) ) 
DURD(I,J)=MAGE(I)'MAGE(J)*(REAL(DF(I,J))) 
DURC(I >J)=MAGE(I) ,MAGE<J)MAIMAG(DF(I,J))) 
POSD(I,J)=MAGE(I)* MAGE(J)*(REAL(DP (I , J ) ) ) 
POSC(I.J)=MAGE(I)* MAGE(J)•(AIMAG(DPI I , J ) ) ) 

CONTINUE 
CONTINUE 

MECHANICAL INPUT=GENERATED POWER - LOACAL LOAD 

DO 198 1=1,NL 
IF(PGEN(I) .GT.0.0)PM(I)=PGEN(I) -PLOAD( I) 

CONTINUE 

DO 221 1=1,N 
PEF(I)=0.0 
PM1(I)=0.0 
00 220 J=1 ,N 

ATEMP=DELTA1(I)-DELTA 1(J) 
PM1(I)=PM1(I)+((PRED(1,J)* COS(ATEMP)) 

+(PREC(I,J)*SIN(ATEMP))) 

P E F ( I ) = P E F ( I ) + ((DURD(I,J)* COS(ATEMP)) 
•(DURCU.JJ'SINUTEMP))) 

CONTINUE 
CONTINUE 
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C CALCULATE THE INERTIA CONSTANTS OF EACH MACHINE 
C • 

DO 200 1=1,N 
C TEMP3=NPRSTA(I)'RATING(I)'H(I) 

TEMP3=NPRSTA(1) ,H(I) 
M(I)=TEMP3/(60.0'3.14159'BASE(I)) 
IF(M(I).NE.0)THEN 

GAMMA(I)=(PM1(I)-PEF(I))/M(I) 
KG(I)=I 

ENDIF 
200 CONTINUE 

C SORTING 
C 

DO 610 1=1,(N-1) 
DO 611 J=(I+1),N 

IF(GAMMA(I).LT.GAMMA(J))THEN 
ATEMP=GAMMA(I) 
BTEMP=KG(I) 
CTEMP=PEF(I) 

GAMMA(I)=GAMMA ( J) 
KG(I)=KG(J) 
P E F ( I ) = P E F ( J ) 

GAMMA(J)=ATEMP 
KG(J)=BTEMP 
PEF(J)=CTEMP 

ENDIF 
611 CONTINUE 
610 CONTINUE 

C WRITE(6,700) 
C 700 FORMAT)////) 
C WRITE(6.701) 
C 701 FORMAT{4X,'GAMMA' ,3X,'GEN' ,5X,'DUR FAULT PE ' ) 
C DO 999 1=1,N 
C WRITE(6,702)GAMMA(I),KG(I),PEF(I) 
C 702 F0RMAT(/4X,F11 5.5X,I3,4X.F11.5) 
C 999 CONTINUE 

C CM=CRITICAL MOMENT OF INERTIA 
C CANG=CRITICAL EQUIVALENT ANGLE 
C NCANG=NON CRITICAL EQUIVALENT ANGLE 
C CMECH=CRITICAL MECHANICAL POWER 
C NCMECH=NON CRITICAL MECHANICAL POWER 
C PMECH=EQUIVALENT MECHANICAL POWER 
C RATIO=CRITICAL MOMENT OF INERTIA/NON CRITICAL 
C ============================================== 
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CLIM(KK)=0.0 
CLIM(KK)=KK 

DO 612 1=1,CLIM(KK) 
CRI(I)=KG<I) 

612 CONTINUE 

NCLIM=NGEN-CLIM(KK) 
IF(NCLIM.EQ.O)THEN 

NCLIM=1 
DO 637 1=1,NCLIM 

NCRI(I)=0 
637 CONTINUE 

ELSE 
DO 613 1=1,NCLIM 

J=I+CLIM(KK) 
NCRI(I)=KG(J) 

613 CONTINUE 
ENDIF 

CMECH=0.0 
CDEL=0.0 
MNOT=0.0 
CM=0.0 
CD=0.0 
CDF=0.0 
CDP=0.0 
NCM=0.0 
NCDEL=0.0 
NCMECH=0.0 

DO 600 1=1.CLIM(KK) 
CM=CM+M(CRI(I)) 
CDEL=CDEL+(M(CRI(I))'DELTA 1 ( C R I ( I ) ) ) 
CMECH=CMECH+PM1(CRI(I)) 
CD=CD+PRED(CRI(I).CRI(I)) 

CDF=CDF+DURD(CRI(I),CRI(I)> 
CDP=CDP+POSD(CRI(I),CRI(I)) 

600 CONTINUE 

CANG=CDEL/CM 

DO 601 1=1.NCLIM 
IF(NCRI(I).NE.0)THEN 

NCM=NCM+M(NCRI(I>) 
NCDEL=NCDEL*(M(NCRI(I))'DEL TA1(NCRI(I))) 
NCMECH=NCMECH+PM1(NCRI ( I ) ) 

NCANG=NCDEL/NCM 
RATIO=CM/NCM 

ELSE 

NCANG=0.0 
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RATIO=0.0 

ENDIF 
CONTINUE 

PMECH=CMECH-(RATIO*NCMECH) 

DO 602 1=1,N 
ETAK(I)=DELTA1(I)-CANG 
TETAI(I)=DELTA1(I)-NCANG 

CONTINUE 

ATEMP=0.0 
A1TEMP=0.0 
A2TEMP=0.0 
A3TEMP=0.0 
BTEMP=0.0 
B1TEMP=0.0 
B2TEMP=0.0 
B3TEMP=0.0 
CTEMP=0.0 
C1TEMP=0.0 
C2TEMP=0.0 
C3TEMP=0.0 

DO 622 1=1,NCLIM 
DO 623 J=1.NCLIM 

IF((NCRI(I).NE.0).OR.(NCRI(J).NE.0))THEN 
ATEMP=ATEMP+(PRED(NCRI(I).NCRI(J))' 

COS (TETAI ( N C R K I ) ) - TETAI (NCRI ( J) ) ) ) 

CTEMP = CTEMP+(POSD( N C R K I ) . N C R I ( J ) ) * 
COStTETAI ( N C R K I ) ) - TETAI (NCRI ( J) ) ) ) 

ENDIF 
CONTINUE 

CONTINUE 

PREPK(CLIM(KK))=PMECH-(CD -(RAT 10*ATEMP)) 
POSPK=PMECH-(CDP-(RAT 10"CTEMP)) 

PRECY1(CLIM(KK))=CANG-NCANG 

IF(CLIM ( K ).EQ.1)THEN 
DURPE(CLIM(K K))=PEF(CLIM(K K ) ) 

DO 641 1=1.CLIM (KK) 
DO 638 J=1,NCLIM 

IF(NCRI(J).NE.O.OJTHEN 
DTEMP=TETAI(NCRI(J))-ETAK ( CRI ( I ) ) 

CTEMP=CTEMP+( (POSD(CRKI) .NCRI(J))*COS(DTEMP))• 
( P O S C ( C R I ( I ) , N C R I ( J ) ) * SIN(DTEMP))) 

C1TEMP=C1TEMP+((POSD(CRI(I).NCRI(J))'SIN(DTEMP))-
(POSC(CRI(I),NCRI(J))"COS(DTEMP))) 
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638 
641 

ENDIF 
CONTINUE 

CONTINUE 

DO 639 I=1,CLIM(KK) 
DO 640 J=1,N 

I F ( J . N E . C R I ( I ) ) T H E N 

DTEMP=TETAI(J)-ETAK(CRI(I)) 

C2TEMP=C2TEMP+( (POSD(CRKI) , J) *SIN(DTEMP) ) + 
( P O S C ( C R K I ) , J) 'COS (DTEMP) ) ) 

C3TEMP=C3TEMP+< (POS C ( C R K I ) , J) • SIN (DTEMP)) -
(POSD(CRKI) , J)'COS(DTEMP))) 

ENDIF 
640 CONTINUE 
639 CONTINUE 

ELSE 
DO 616 I=1.CLIM(KK) 

DO 617 J=1 .NCLIM 
IF(NCRI(J).NE.0.0)THEN 

DTEMP=TETAI(NCRI(J))-ETAK(CRI(I)) 

BTEMP=BTEMP+((DURD(CRI(I),NCRI(J))* COS(DTEMP)) + 
(DURC(CRKI) ,NCRI(J))'SIN(DTEMP))) 

CTEMP=CTEMP+((POSD(CRKI),NCRI(J)>'COS(DTEMP))+ 
(POSCtCRI(I).NCRI(J))'SIN(OTEMP))) 

B1TEMP=B1TEMP+((DURD(CRI(I),NCRI(J))•SIN(DTEMP)) 
(DURC(CRKI) ,NCRI ( J ) ) 'COS(DTEMP)) ) 

C1TEMP=C1TEMP+((POSD(CRKI),NCRI(J))'SIN(DTEMP)) 
(POSC(CRI(I).NCRI(J))'COS(DTEMP))) 

ENDIF 
617 CONTINUE 
616 CONTINUE 

DO 618 1=1.CLIM(KK) 
DO 619 J=1,N 

IF(J.NE.CRI(I))THEN 

DTEMP=TETAI(J)-ETAK(CRI(I)) 

B2TEMP=B2TEMP+((DURD(CRI(I),J)'SIN(DTEMP))• 
(DURC(CRKI) .J)'COS(DTEMP))) 

C2TEMP=C2TEMP*((POSD(CRKI),J)'SIN(DTEMP)) + 
(POSC(CRI(I).J)'COS(DTEMP))) 
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& 
B3TEMP=B3TEMP+((DURC(CRI(I),J)"SIN(DTEMP))-

(DURD(CRI(I).J)* COS(DTEMP))) 

C3TEMP=C3TEMP+((POSC(CRI(I),J)•SIN(DTEMP))-
& (P0SD(CRI(I),J)'C0S(DTEMP))) 

ENDIF 
619 CONTINUE 
618 CONTINUE 

DURAK=B3TEMP+(RATIO'BTEMP) 
DURBK=B2TEMP-(RATIO*B1 TEMP) 
DURALF=ATAN2(DURAK,DURBK) 
DURTK=SQRT((DURAK*DURAK)+(DURBK*DURBK)) 
DURPE(CLIM(K))=DURTK'SIN(PRECY1(CLIM(K))-DURALF) 

ENDIF 

P0SAK=C3TEMP+(RATI0'CTEMP) 
POSBK=C2TEMP-(RAT 10'C1 TEMP) 
P0SALF=ATAN2(POSAK,POSBK) 
POSTK=SORT((POSAK'POSAK)•(POSBK•POSBK)) 
SPOSCY=POSALF + ASIN< POSPK/POSTK) 
UP0SCY=3.14159-SPOSCY 
P0SPE=P0STK'SIN(SPOSCY-POSALF) 

MKGAMKtCLIM(KK)}=PREPK(CLIM(KK))-DURPE(CLIM(KK)) 

BETA=PRECY1(CLIM(KK))-POSALF 

UK=(POSPK'UPOSCY) + (POSTK * COS(UPOSCY-POSALF)) 

UCAT=-12.000 

VCAT=(24.0/POSTK)*(POSPK-MKGAMK (CLIM(KK ) ) ) 

WCAT=(24.0/POSTK) *((POSPK•PRECY1(CLIM(KK)))-UK-
& (POSPK'BETA) + (MKGAMK(KK)* BETA))+24 . 00 

C WRITE(6,700) 
C WRITE(6,703) 
C 703 FORMAT(5X, 'CRIT GENS' , 4X , ' DURPE' ,5X, 'MKGAMK') 
C WRITE(6,704)CLIM(KK),DURPE(CLIM(KK)),MKGAMK(CLIM(KK)) 
C 704 FORMAT(/6X,I3,5X.F11.5,5X.F11.5) 
C WRITE(6,700) 
C WRITE(6,705) 
C 705 FORMAT(5X,'CRIT GENS',4X,'POST CYE',4X,'UK') 
C WRITE(6.706)CLIM(KK),SPOSCY , UK 
C 706 FORMAT(/5X.I3.5X,F11.5,5X.F11.5) 
C WRITE(6.700) 

WRITE(6,707) 
707 FORMAT(5X,'UCAT' ,4X,'VCAT' ,6X, 'WCAT') 

WRITE(6.708)UCAT,VCAT.WCAT 
708 F0RMAT(/4X.F11.5.4X.F11.5.6X.F11.5) 

STOP 
END 
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