Application of Catastrophe Theory to Transient Stability Analysis of Multimachine Power Systems

Raiomand Parsi-Feraidoonian

B.A.Sc.(Hons.), Southem Illinois University U.S.A., 1987

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Appled Science in
the faculty of graduate studies department of Electrical Engineering We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
July 1990
© Raiomand Parsi-Feraidoonian, 1990

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, 1 agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Electrecal Engeneng.
The University of British Columbia
Vancouver, Canada
Date Anguat 31990.

Abstract

Transient stability analysis is an important part of power planning and operation. For large power systems, such analysis is very time consuming and expensive. Therefore, an online transient stability assessment will be required as these large power systems are operated close to their maximum limits. In this thesis swallowtail catastrophe is used to determine the transient stability regions. The bifurcation set represents the transient stability region in terms of power system transient parameters bounded by the transient stability limits. The system modelling is generalized in such, that the analysis could handle either one or any number of critical machines. This generalized model is then tested on a three-machine as well as a seven-machine system. The results of the stability analysis done with the generalized method is compared with the time solution and the results were satisfactory. The transient stability regions determined are valid for any changes in loading conditions and fault location. This method is a good candidate for on-line assessment of transient stability of power systems.

Table of Contents

Abstract ii
List of Tables iv
List of Figures v
Acknowledgments vi
1 Introduction 1
2 Transient Stability Analysis of Multimachine Power Systems Using Catastrophe Theory 6
2.1 Introduction 6
2.2 Catastrophe Theory Applied to Single Machine Infinite Bus System 7
2.3 General Dynamic Equivalent Method for Multimachine Power Systems 10
2.4 Application of Catastrophe Theory to Multimachine Power Systems 16
2.5 Identification of the Critical Machines 22
3 Numerical Examples 23
3.1 The Three-Machine System 23
3.2 The Seven-Machine System 31
4 Conclusion 37
References 39
Appendlx Fortran Program Listing of Swallowtail Catastrophe Applied to Multimachine Power Systems 41

List of Tables

1.1 The seven elementary catastrophes 5
3.2 Network parameters of the three-machine system 24
3.3 Three-machine generator data and operating conditions 25
3.4 Cases of faulted generating buses 27
3.5 Cases of non-generating buses 28
3.6 CIGRE 7-machine bus data 31
3.7 CIGRE 7 - machine branch data 32
3.8 CIGRE 7 - machine voltage and power summary 34
3.9 Cases of CIGRE 7-machine grounded buses 35

List of Figures

2.1 Single-machine Infinite-bus power system 7
2.2 The energy function stability criteria \mathbf{a} : Stable \mathbf{b} : Critically Stable c : Unstable 8
2.3 The transient stability limits given by the swallowtail catastrophe for a multimachine power system. 21
3.4 Nine-bus three-machine power system 25
3.5 Three-machine system load flow showing prefault conditions; all flows in MW and MVAR. 26
3.6 Results for the 3-machine power system with faulted generator buses . All cases are stable. 29
3.7 Results for the 3-machine power system with faulted load buses. All cases are stable. 30
3.8 CIGRE 7 - machine test system 33
3.9 Results for the CIGRE test system. All cases except for faults at buses 5, 9 and 10 are stable. 36

Acknowledgments

I would like to thank Dr. M.D. Wvong for his continual encouragement, invaluable guidance throughout the course of this thesis and most of all as being so understanding, listening and guiding me during difficult periods.

I would also like to thank my parents Feraidoon and Homai for their incredible patience, my brother Hootash for his constant encouragement and my aunts Parvaneh, Golly and Kianoosh for having faith in me.

Chapter 1
Introduction

Instability in electric power systems, leading to loss of system synchronization, is a very sensitive problem for power utility engineers. In assessing power system stability there are two separate criteria to be considered, viz :

- Steady-state stability, for small perturbations, i.e., leading effectively to linear system analysis.
- Transient stability, for large system disturbances and involving non-linear system analysis.

The stability problem of power systems became very important following the famous power blackout in north eastern U.S.A. in 1965 . Planning, operations and control procedures of power systems had to be revised to ensure secure and reliable operation of power systems. Considerable research effort has gone into the stability investigation both for off-line and on-line purposes [1] .

A stable power system implies that all its interconnected generators are operating in synchronism with the network and with each other. These generators start to oscillate when a disturbance occurs due to a transmission fault or switching operation. Loss of synchronism must be prevented or controlled because it has a disturbing effect on voltages, frequency and power, and it may cause serious damage to generators, which are the most expensive components in a power system [2]. The generators which are losing synchronism due to the disturbance should be tripped, i.e. disconnected from the system before any serious damage occurs, and afterwards brought back to synchronism. Loss of synchronism may also cause some protective relays to operate falsely and trip the circuit breakers of unfaulted lines. In such cases the problem is very complicated and may result in more generators losing synchronism.

Therefore, an understanding of system stability requires a thorough knowledge of both the mathematical modelling of the system and effective numerical techniques. In most cases, the model

Chapter 1: Introduction

consists of a set of linear or non-linear algebraic and/or differential equations depending upon the type of study that is to be performed. It is important to select a numerical method which will provide accurate results, but the rapid growth of power systems makes it extremely difficult, expensive and time consuming to carry out these careful and detailed stability studies through solution of the system equations. Two possibilities for improving the speed of transient studies are : [3]

- Reduction of the total system to a smaller one, that could be solved faster but has the disadvantage of inaccuracy because of approximations.
- Improvement in the numerical solution techniques such as the trapezoidal rule of integration method which has already been used successfully for the solution of switching transients at the Bonneville Power Administration (BPA) [4] .

Much work has been done to find ways to reduce the amount of computation required for stability studies and to find direct methods to solve the transient stability problem that do not require the solution of the system equations . One direct method used is Lyapunov's direct method of determining stability [5]. However, this method is still not suitable for on-line applications [6] and has practical difficulties such as :

- The method is conservative and, although some stable points are readily identified, others are inconclusive.
- This method has difficulty deducing the Lyapunov's function which defines all possible stability regions, and it cannot predict instability, therefore, it may produce false alarms.

Other Direct methods of stability analysis are currently under consideration and investigation [7] .

Catastrophe theory is a new way of thinking about changes such as in a course of events, a systems behavior, or even change in ideas themselves. Its name suggests disaster, and indeed the theory can be applied to literal catastrophes. The mathematical principles we are used to are ideally suited to analyse smooth, continuous, qualitative change, [8] but there is another kind of change,
that is less suited to mathematical analysis : such as the discontinuous transition from ice at its melting point to water at its freezing point or the transition from stable to unstable state for a power system following a disturbance. The foundations of catastrophe theory were developed by the French mathematician Rene'Thom and became widely known through his book Stabilite' Structurelle et Morphogenese in which he proposed them as a foundation for biology.

A catastrophe, in the very broad sense Thom gives to the word, is any discontinuous transition that occurs when a system can have more than one stable state, or can follow more than one stable pathway of change. The catastrophe is the jump from one state or pathway to another [9] . The elementary catastrophes are the seven simplest ways such a transaction from one state to another state can occur. This is true for any system governed by a potential, and in which the behavior of the system is determined by no more than four different factors, then only seven qualitatively different types of discontinuity are possible [10] . The qualitative type of any stable discontinuity does not depend on the specific nature of the potential involved, merely on its existence, i.e. on the existence of cause-and-effect relationship between conditions. Now we can see how the elementary catastrophes are comparable to the regular forms of classical geometry. Just as we can say that any three dimensional object, if it is regular (i.e. all its faces are identical polygons), must be one of the five solids, so the catastrophe theory asserts that any discontinuous process whose behavior can be described by a graph in as many as six dimensions, if structurally stable, must correspond to one of the seven elementary catastrophes [11]. The seven elementary catastrophes is shown in Table 1.1.

Catastrophe theory is used for stability analysis of multimachine power systems. This theory has been applied previously to the steady-state stability of power systems, one-machine infinite bus system, as well as multimachine systems [12] with the worst case approach i.e., only one generator becoming critical for a three-phase fault. Catastrophe theory has also been used as a tool for determining synchronous power system dynamic stability [13]. The application of catastrophe theory to steady-state and transient stability of power systems is attractive because it provides comprehensive

Chapter 1: Introduction

stability regions with minimal computation. The transient stability regions have been shown to be applicable for changes in loading conditions and fault locations [12] .

This thesis generalizes the use of catastrophe theory to the case of multimachine power systems, with more than one machine being critical (likely to go unstable). Chapter 2 of this thesis derives the mathematical ideas involved in reducing the multimachine power system and the application of catastrophe theory by first briefly going through the single machine infinite bus system. In deriving the equations for the multimachine system, the general dynamic equivalent approach is used, grouping all the critical generators as one equivalent machine and grouping the rest of the system as another single equivalent machine. Then the swallowtail catastrophe is applied to this general system. Chapter 3 contains test results from two power systems, and the conclusion of the application of catastrophe theory to multimachine power systems is in Chapter 4. The program listing for the catastrophe application is given in Appendix.

Catastrophe	Control Dimensions	Catastrophe Manifold
Fold	1	$x^{2}+u$
Cusp	2	$x^{3}+u x+v$
Swallowtail	3	$x^{4}+u x^{2}+v x+w$
Butterfly	4	$6 x^{\bar{j}}+u x^{3}+v x^{2}+w x+r$
Elliptic	3	$\begin{aligned} & 3 x^{2}-3 y^{2}+2 u x+v \\ & -6 x y+2 u y+w \end{aligned}$
Hyperbolic	3	$\begin{aligned} & 3 x^{2}+u y+v \\ & 3 y^{2}+u x+w \end{aligned}$
Parabolic	4	$\begin{aligned} & 2 x y+2 u x+w \\ & 4 y^{3}+x^{2}+2 v y+r \end{aligned}$

Table 1.1: The seven elementary catastrophes

Chapter 2
Transient Stability Analysis of Multimachine Power Systems Using Catastrophe Theory

2.1 Introduction

The transient stability analysis of multimachine power systems is more complicated than that of a single machine infinite bus system because the behavior of each machine is effected by and has an effect on the behavior of all the other machines coupled to it. During a large system disturbance, usually there are two switching done, one during the occurrence of the fault and the other at the time of clearance of the fault.

For transient stability analysis the following assumptions are made :

- Each generator, i is modelled by a constant voltage, $\left|E_{i}\right|$, behind its direct axis transient reactance, $x_{d i}^{\prime}$.
- Turbine dynamics are ignored so that the mechanical power input to each generator, $P_{m i}$, is assumed constant.
- Mechanical damping is ignored.
- The loads are modelled as constant impedances.

In this chapter we briefly review the application of catastrophe theory to a single machine infinite bus system [14]. Then we apply the General Dynamic Equivalent Method [15] [16]to multimachine power systems such that a suitable energy function can be defined for the application of catastrophe theory. This general method requires the identification of the critical machines involved for each fault being considered. The group of critical machines is then replaced by an equivalent machine and the rest of the system which is not significantly affected by the disturbance is also replaced by an equivalent machine.

The transient stability regions are found by use of catastrophe theory in terms of system parameters.

2.2 Catastrophe Theory Applied to Single Machine Infinite Bus System

Consider the one machine-infinite bus system [17]in Figure 2.1 which has two transmission lines.

Figure 2.1: Single-machine Infinite-bus power system

The swing equation is given by

$$
\begin{align*}
M \frac{d^{2} \psi}{d t^{2}} & =P_{i}-P_{e} \\
& =P_{i}-P_{\max } \sin \psi \tag{2.1}\\
& =P_{a}
\end{align*}
$$

where

$$
\begin{align*}
M & =\text { inertia constant of machine } \\
P_{e} & =\text { electrical power output } \\
P_{i} & =\text { mechanical power input } \tag{2.2}\\
P_{a} & =\text { accelerating power } \\
\psi & =\text { rotor angle of the machine } \\
P_{\max } & =\text { maximum power for post fault condition }
\end{align*}
$$

If a three-phase fault occurs on one of the transmission lines near the generator bus, the rotor will start to accelerate and hence the machine would gain kinetic energy. If the fault is cleared at a clearing time such that the kinetic energy produced by the fault is absorbed by the potential energy produced after the clearance of the fault and the gained energy is less than zero then the system is stable and, if exactly zero the system is critically stable. This is shown in figure 2.2

Consider the critical clearing case for a three-phase fault initiated near the generator bus. Then
kinetic energy = potential energy

Equation 2.3 can be derived by multiplying equation 2.1 by $\dot{\psi}$ and integrating with respect to time once between ψ_{0}, ψ_{c} and next between ψ_{c}, ψ_{m} to obtain

$$
\begin{equation*}
\frac{1}{2} M \dot{\psi}_{c}^{2}=P_{m} \cos \psi_{c}+P_{i} \psi_{c}-P_{i} \psi_{m}-P_{m} \cos \psi_{m} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
& \psi_{c}=\text { critical clearing angle } \\
& P_{m}=\text { maximum power of post-fault network } \tag{2.5}\\
& \psi_{m}=\text { maximum angle }
\end{align*}
$$

Using Taylor series expansion to approximate $\dot{\psi}_{c}$ and ψ_{c} as a function of time we get

$$
\begin{align*}
\dot{\psi}_{c} & =\omega_{c} \tag{2.6}\\
& =\gamma t_{c}
\end{align*}
$$

and

$$
\begin{equation*}
\psi_{c}=\psi_{0}+\frac{1}{2} \gamma t_{c}^{2} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
\gamma & =\text { acceleration at instant of occurrence of fault } \\
& =\frac{1}{M}\left[P_{i}-P_{e}\left(t_{0+}\right)\right] \tag{2.8}
\end{align*}
$$

Replacing $\cos \psi_{c}$ in equation (2.4) by cosine series expansion and defining

$$
\begin{gather*}
x \triangleq \frac{1}{2} \gamma t_{c}^{2} \tag{2.9}\\
k \triangleq P_{i} \psi_{m}+P_{m} \cos \psi_{m} \tag{2.10}
\end{gather*}
$$

we obtain

$$
\begin{align*}
-\frac{P_{m}}{24} x^{4}-\frac{P_{m}}{6} \psi_{0} x^{3} & +\left(\frac{2-\psi_{0}^{2}}{4}\right) P_{m} x^{2} \\
& +\left(M \gamma+P_{m} \psi_{0}-\frac{P_{m}}{6} \psi_{0}^{3}-P_{i}\right) x \tag{2.11}\\
& +\left(\frac{P_{m}}{2} \psi_{0}^{2}-\frac{P_{m}}{24} \psi_{0}^{4}-P_{m}-P_{i} \psi_{0}+k\right)=0
\end{align*}
$$

For the above equation to be in the form of swallowtail catastrophe manifold divide the equation by $-\frac{24}{P_{m}}$ and eliminate the cubic term, by setting

$$
\begin{equation*}
x=y-\psi_{0} \tag{2.12}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
y^{4}-12 y^{2}+\frac{24}{P_{m}}\left[P_{i}-M \gamma\right] y+\left[\frac{24}{P_{m}}\left(M \gamma \psi_{0}-k\right)+24\right]=0 \tag{2.13}
\end{equation*}
$$

This is in the form of the standard swallowtail catastrophe manifold namely:

$$
\begin{equation*}
y^{4}+u y^{2}+v y+w=0 \tag{2.14}
\end{equation*}
$$

where

$$
\begin{align*}
u & =-12 \\
v & =\frac{24}{P_{m}}\left[P_{i}-M \gamma\right] \tag{2.15}\\
w & =\frac{24}{P_{m}}\left[M \gamma \psi_{0}-k\right]+24
\end{align*}
$$

The bifurcation set can then be defined by

$$
\begin{equation*}
4 y^{3}+2 u y+v=0 \tag{2.16}
\end{equation*}
$$

and the transient stability region in terms of the power system parameters then takes the shape of the swallowtail bifurcation set. The region is defined by the above u, v and w parameters.

2.3 General Dynamic Equivalent Method for Multimachine Power Systems

The general dynamic equivalent method [15] [16]will be discussed in this section.

The equation of motion of machine i in a multimachine power system using classical model representation is given by

$$
\begin{gather*}
\dot{\delta}_{i}=\omega_{i} \\
M_{i} \ddot{\delta}_{i}=P_{m i}-P_{e i} \tag{2.17}\\
P_{e i}=\text { electrical power output of machines } \\
=\sum_{j=1}^{n}\left[D_{i j} \cos \delta_{i j}+C_{i j} \sin \delta_{i j}\right] \tag{2.18}\\
P_{m i}=\text { mechanical power input } \\
M_{i}=\text { inertia constant } \\
E_{i}=\text { intermal generator voltage } \tag{2.19}\\
\omega_{i}=\text { rotor speed } \\
b_{i j}=\text { transfer susceptance } \\
g_{i j}=\text { transfer conductance } \\
\delta_{i}=\text { rotor angle } \\
\delta_{i j}=\delta_{i}-\delta_{j} \tag{2.20}\\
D_{i j}=E_{i} E_{j} g_{i j} \\
C_{i j}=E_{i} E_{j} b_{i j}
\end{gather*}
$$

The critical machines are those machines that tend to respond actively to the occurrence of the fault and may lose synchronism. Therefore, in order to determine the transient stability of the power system it would be sufficient to group these critical machines as one equivalent machine and study the response of this equivalent machine with respect to the undisturbed equivalent machine representing the rest of the system.

Consider that A represents the critical machines for a specific three-phase fault. These machines are considered as one equivalent critical machine which oscillates against B, the rest of the power
system which is not significantly disturbed by the fault and also considered to be equivalent to one machine. Let

$$
\begin{align*}
M_{c} & =\sum_{k \in A} M_{k} \\
M_{0} & =\sum_{i \in B} M_{i} \\
\delta_{c} & =\frac{1}{M_{c}} \sum_{k \in A} M_{k} \delta_{k} \tag{2.21}\\
\delta_{0} & =\frac{1}{M_{0}} \sum_{i \in B} M_{i} \delta_{i}
\end{align*}
$$

where M_{0} and δ_{0} are, respectively, the inertia constant and the angle of the centre of angle of the power system with the critical machines excluded.

Let

$$
\begin{aligned}
\eta_{k} & =\delta_{k}-\delta_{c} \\
\theta_{i} & =\delta_{i}-\delta_{0}
\end{aligned}
$$

then

$$
\begin{align*}
\psi & =\delta_{c}-\delta_{0} \\
\psi & =\frac{1}{M_{c}} \sum_{k \in A} M_{k} \delta_{k}-\frac{1}{M_{0}} \sum_{i \in B} M_{i} \delta_{i} \tag{2.24}\\
\ddot{\psi} & =\frac{1}{M_{c}} \sum_{k \in A}\left(M_{k} \ddot{\delta}_{k}\right)-\frac{1}{M_{0}} \sum_{i \in B}\left(M_{i} \ddot{\delta}_{i}\right) \\
M_{c} \ddot{\psi} & =\sum_{k \in A}\left(M_{k} \ddot{\delta}_{k}\right)-\frac{M_{c}}{M_{0}} \sum_{i \in B}\left(M_{i} \ddot{\delta}_{i}\right) \tag{2.25}
\end{align*}
$$

But

$$
\begin{align*}
M_{k} \ddot{\delta_{k}} & =P_{m k}-P_{e k} \\
& =P_{m k}-\sum_{l=1}^{n}\left[D_{l k} \cos \left(\eta_{k}-\eta_{l}\right)+C_{k l} \sin \left(\eta_{k}-\eta_{l}\right)\right] \tag{2.26}
\end{align*}
$$

and similarly

$$
\begin{align*}
M_{i} \ddot{\delta}_{i} & =P_{m i}-P_{e i} \\
& =P_{m i}-\sum_{j=1}^{n}\left[D_{i j} \cos \left(\theta_{i}-\theta_{j}\right)+C_{i j} \sin \left(\theta_{i}-\theta_{j}\right)\right] \tag{2.27}
\end{align*}
$$

Substituting equation (2.26) and (2.27) in (2.25) and following some mathematical manipulation we obtain the swing equation of the critical machines against the rest of the system.

This is explained in the following steps:

$$
\begin{align*}
M_{c} \ddot{\psi}= & \sum_{k \in A}\left\{P_{m k}-\sum_{l=1}^{n}\left[D_{k l} \cos \left(\eta_{k}-\eta_{l}\right)+C_{k l} \sin \left(\eta_{k}-\eta_{l}\right)\right]\right\} \\
& -\frac{M_{c}}{M_{0}} \sum_{i \in B}\left\{P_{m i}-\sum_{j=1}^{n}\left[D_{i j} \cos \left(\theta_{i}-\theta_{j}\right)+C_{i j} \sin \left(\theta_{i}-\theta_{j}\right)\right]\right\} \tag{2.28}
\end{align*}
$$

separating the $D_{k k}$ term from the rest of the equation we obtain

$$
\begin{align*}
& M_{c} \ddot{\psi}=\sum_{k \in A}\{ P_{m k}-\sum_{l=k}^{n}\left[D_{k l} \cos \left(\eta_{k}-\eta_{l}\right)+C_{k l} \sin \left(\eta_{k}-\eta_{l}\right)\right] \\
&\left.+\sum_{l \neq k}^{n}\left[D_{k l} \cos \left(\eta_{k}-\eta_{l}\right)+C_{k l} \sin \left(\eta_{k}-\eta_{l}\right)\right]\right\} \tag{2.29}\\
&-\frac{M_{c}}{M_{0}} \sum_{i \in B}\left\{P_{m i}-\sum_{j \in A}\left[D_{i j} \cos \left(\theta_{i}-\theta_{j}\right)+C_{i j} \sin \left(\theta_{i}-\theta_{j}\right)\right]\right. \\
&\left.+\sum_{j \in B}\left[D_{i j} \cos \left(\theta_{i}-\theta_{j}\right)+C_{i j} \sin \left(\theta_{i}-\theta_{j}\right)\right]\right\}
\end{align*}
$$

grouping the appropriate terms together i.e.

$$
\begin{align*}
M_{c} \ddot{\psi}=\{ & \left.\sum_{k \in A} P_{m k}-\frac{M_{c}}{M_{0}} \sum_{i \in B} P_{m i}\right\} \\
& -\left\{\sum_{k \in A} \sum_{l=k}^{n}\left[D_{k l} \cos \left(\eta_{k}-\eta_{l}\right)+C_{k l} \sin \left(\eta_{k}-\eta_{l}\right)\right]\right. \\
& \left.-\frac{M_{c}}{M_{0}} \sum_{i \in B} \sum_{j \in B}\left[D_{i j} \cos \left(\theta_{i}-\theta_{j}\right)+C_{i j} \sin \left(\theta_{i}-\theta_{j}\right)\right]\right\} \tag{2.30}\\
& -\left\{\sum_{k \in A} \sum_{l \neq k}^{n}\left[D_{k l} \cos \left(\eta_{k}-\eta_{l}\right)+C_{k l} \sin \left(\eta_{k}-\eta_{l}\right)\right]\right. \\
& \left.-\frac{M_{c}}{M_{0}} \sum_{i \in B} \sum_{j \in A}\left[D_{i j} \cos \left(\theta_{i}-\theta_{j}\right)+C_{i j} \sin \left(\theta_{i}-\theta_{j}\right)\right]\right\}
\end{align*}
$$

Let

$$
\begin{gather*}
P_{m}=\left\{\sum_{k \in A} P_{m k}-\frac{M_{c}}{M_{0}} \sum_{i \in B} P_{m i}\right\} \tag{2.31}\\
P_{c}=\left\{\sum_{k \in A} \sum_{l=k}^{n}\left[D_{k l} \cos \left(\eta_{k}-\eta_{l}\right)+C_{k l} \sin \left(\eta_{k}-\eta_{l}\right)\right]\right. \\
\left.-\frac{M_{c}}{M_{0}} \sum_{i \in B} \sum_{j \in B}\left[D_{i j} \cos \left(\theta_{i}-\theta_{j}\right)+C_{i j} \sin \left(\theta_{i}-\theta_{j}\right)\right]\right\} \tag{2.32}
\end{gather*}
$$

Simplifying the P_{c} term

$$
\begin{equation*}
P_{c}=\left\{\sum_{k \in A} D_{k k}-\frac{M_{c}}{M_{0}} \sum_{i \in B} \sum_{j \in B}\left[D_{i j} \cos \left(\theta_{i}-\theta_{j}\right)\right]\right\} \tag{2.33}
\end{equation*}
$$

Therefore ,

$$
\begin{align*}
M_{c} \ddot{\psi}=P_{k}-\{ & \sum_{k \in A} \sum_{l \neq k}^{n}\left[D_{k l} \cos \left(\eta_{k}-\eta_{l}\right)+C_{k l} \sin \left(\eta_{k}-\eta_{l}\right)\right] \tag{2.34}\\
& \left.-\frac{M_{c}}{M_{0}} \sum_{i \in B} \sum_{j \in A}\left[D_{i j} \cos \left(\theta_{i}-\theta_{j}\right)+C_{i j} \sin \left(\theta_{i}-\theta_{j}\right)\right]\right\}
\end{align*}
$$

where we have defined

$$
\begin{equation*}
P_{k}=P_{m}-P_{c} \tag{2.35}
\end{equation*}
$$

Since

$$
\begin{align*}
\psi & =\delta_{c}-\delta_{0} \\
\eta_{i} & =\delta_{i}-\delta_{c} \tag{2.36}\\
\theta_{k} & =\delta_{k}-\delta_{0}
\end{align*}
$$

therefore we can write

$$
\begin{align*}
\theta_{k} & =\eta_{k}+\psi \\
\eta_{i} & =\theta_{i}-\psi \tag{2.37}
\end{align*}
$$

Substituting equation (2.37) in equation (2.34) and rearranging :

$$
\begin{align*}
M_{c} \ddot{\psi}=P_{k}- & \left\{\sum_{k \in A} \sum_{i \neq k}\left[D_{k i} \cos \left(\eta_{k}-\theta_{i}+\psi\right)+C_{k i} \sin \left(\eta_{k}-\theta_{i}+\psi\right)\right]\right. \\
& \left.-\frac{M_{c}}{M_{0}} \sum_{k \in A} \sum_{i \in B}\left[D_{k i} \cos \left(\eta_{k}-\theta_{i}+\psi\right)-C_{k i} \sin \left(\eta_{k}-\theta_{i}+\psi\right)\right]\right\} \tag{2.38}
\end{align*}
$$

Expanding the sine and cosine terms of the above equation we obtain :

$$
\begin{align*}
& M_{c} \ddot{\psi}=P_{k}-\left\{\sum_{k \in A} \sum_{i \neq k} D_{k i}\left[\cos \left(\theta_{i}-\eta_{k}\right) \cos \psi+\sin \left(\theta_{i}-\eta_{k}\right) \sin \psi\right]\right. \\
&-\frac{M_{c}}{M_{0}} \sum_{k \in A} \sum_{i \in B} D_{k i}\left[\cos \left(\theta_{i}-\eta_{k}\right) \cos \psi+\sin \left(\theta_{i}-\eta_{k}\right) \sin \psi\right] \\
&-\sum_{k \in A} \sum_{i \neq k}^{n} C_{k i}\left[\sin \left(\theta_{i}-\eta_{k}\right) \cos \psi-\cos \left(\theta_{i}-\eta_{k}\right) \sin \psi\right] \tag{2.39}\\
&\left.-\frac{M_{c}}{M_{0}} \sum_{k \in A} \sum_{i \in B} C_{k i}\left[\sin \left(\theta_{i}-\eta_{k}\right) \cos \psi-\cos \left(\theta_{i}-\eta_{k}\right) \sin \psi\right]\right\} \\
& M_{c} \ddot{\psi}=P_{k}-\left\{\left\{\sum_{k \in A} \sum_{i \neq k}^{n}\left[D_{k i} \sin \left(\theta_{i}-\eta_{k}\right)+C_{k i} \cos \left(\theta_{i}-\eta_{k}\right)\right]\right.\right. \\
&\left.-\frac{M_{c}}{M_{0}} \sum_{k \in A} \sum_{i \in B}\left[D_{k i} \sin \left(\theta_{i}-\eta_{k}\right)-C_{k i} \cos \left(\theta_{i}-\eta_{k}\right)\right]\right\} \sin \psi \\
&-\left\{\frac{M_{c}}{M_{0}} \sum_{k \in A} \sum_{i \in B}\left[D_{k i} \cos \left(\theta_{i}-\eta_{k}\right)+C_{k i} \sin \left(\theta_{i}-\eta_{k}\right)\right]\right. \\
&\left.\left.+\sum_{k \in A} \sum_{i \neq k}^{n}\left[C_{k i} \sin \left(\theta_{i}-\eta_{k}\right)-D_{k i} \cos \left(\theta_{i}-\eta_{k}\right)\right]\right\} \cos \psi\right\}
\end{align*}
$$

Therefore, the swing equation of the single machine representing the group of critical machines has the form :

$$
\begin{equation*}
M_{\mathrm{c}} \ddot{\psi}=P_{k}-T_{k} \sin \left(\psi-\alpha_{k}\right) \tag{2.41}
\end{equation*}
$$

where

$$
\begin{align*}
& P_{k}=\left\{\sum_{k \in A} P_{m k}-\frac{M_{c}}{M_{0}} \sum_{i \in B} P_{m i}\right\} \\
&-\left\{\sum_{k \in A} D_{k k}-\frac{M_{c}}{M_{0}} \sum_{i \in B} \sum_{j \in B}\left[D_{i j} \cos \left(\theta_{i}-\theta_{j}\right)\right]\right\} \tag{2.42}
\end{align*}
$$

$$
\begin{equation*}
T_{k}=\sqrt{a_{k}^{2}+b_{k}^{2}} \tag{2.43}
\end{equation*}
$$

$$
\begin{gather*}
\alpha_{k}=\tan ^{-1} \frac{a_{k}}{b_{k}} \\
a_{k}=\frac{M_{c}}{M_{0}} \sum_{k \in A} \sum_{i \in B}\left[D_{k i} \cos \left(\theta_{i}-\eta_{k}\right)+C_{k i} \sin \left(\theta_{i}-\eta_{k}\right)\right] \\
+\sum_{k \in A} \sum_{i \neq k}^{n}\left[C_{k i} \sin \left(\theta_{i}-\eta_{k}\right)-D_{k i} \cos \left(\theta_{i}-\eta_{k}\right)\right] \tag{2.45}\\
b_{k}=-\frac{M_{c}}{M 0} \sum_{k \in A} \sum_{i \in B}\left[D_{k i} \sin \left(\theta_{i}-\eta_{k}\right)-C_{k i} \cos \left(\theta_{i}-\eta_{k}\right)\right] \\
+\sum_{k \in A} \sum_{i \neq k}^{n}\left[D_{k i} \sin \left(\theta_{i}-\eta_{k}\right)+C_{k i} \cos \left(\theta_{i}-\eta_{k}\right)\right] \tag{2.46}
\end{gather*}
$$

2.4 Application of Catastrophe Theory to Multimachine Power Systems

During the transient period an exchange of energy takes place between the rotor of the critical machines and the post-fault network [18]. The kinetic energy generated by the accelerating power during the fault-on period must be fully absorbed by the post-fault network in order to maintain stability.

Using equation (2.41) from the previous section, namely :

$$
\begin{equation*}
M_{k} \ddot{\psi}_{k}=P_{k}-T_{k} \sin \left(\psi_{k}-\alpha_{k}\right) \tag{2.47}
\end{equation*}
$$

which represents the motion of the group of critical machines represented as a single machine with respect to the rest of the system, also represented as a single machine, for a certain three-phase fault. Since we have assumed that the rest of the system is not responding to the disturbance, it is reasonable to use the pre-disturbance angles θ_{0} and η_{0} to calculate the parameters P_{k}, T_{k} and α_{k}.

By solving equation (2.47) for ψ_{k}, the stable and unstable points are computed i.e.

$$
\begin{equation*}
P_{k}-T_{k} \sin \left(\psi_{k}^{s}-\alpha_{k}\right)=0 \tag{2.48}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{k}^{s}=\text { stable equlibrium point } \tag{2.49}
\end{equation*}
$$

and the unstable equilibrium point (UEP) is

$$
\begin{equation*}
\psi_{k}^{u}=\pi-\psi_{k}^{s} \tag{2.50}
\end{equation*}
$$

Multiply equation (2.47) by $\dot{\psi}_{k}$ and integrate between ψ_{k}^{0} and ψ_{k}^{c} with respect to time we, obtain the kinetic energy generated by the fault :

$$
\begin{align*}
\frac{1}{2} M_{k} \dot{\psi}_{k}^{c^{2}} & =\text { K.E. } \tag{2.51}\\
& =P_{k}^{f}\left(\psi_{k}^{c}-\psi_{k}^{0}\right)-T_{k}^{f}\left[\cos \left(\psi_{k}^{0}-\alpha_{k}^{f}\right)-\cos \left(\psi_{k}^{c}-\alpha_{k}^{0}\right)\right]
\end{align*}
$$

where P_{k}^{f}, T_{k}^{f} and α_{k}^{f} are the fault-on parameters and ψ_{k}^{c} is the clearing angle.

The potential energy of the post-fault system is derived in the same fashion but is integrated between ψ_{k}^{c} and ψ_{k}^{u} using the post-fault parameters

$$
\begin{align*}
-\frac{1}{2} M_{k} \dot{\psi}_{k}^{c^{2}} & =\text { P.E. } \tag{2.52}\\
& =P_{k}^{p}\left(\psi_{k}^{u}-\psi_{k}^{c}\right)-T_{k}^{p}\left[\cos \left(\psi_{k}^{c}-\alpha_{k}^{p}\right)-\cos \left(\psi_{k}^{u}-\alpha_{k}^{p}\right)\right]
\end{align*}
$$

The L.H.S. of equation (2.52) represents the kinetic energy produced during the fault and the R.H.S. represents the potential energy of the post-fault network. In order for the system to be stable the kinetic energy should be equal to or less than the potential energy. Therefore,

$$
\begin{equation*}
\frac{1}{2} M_{k} \dot{\psi}_{k}^{c^{2}}-P_{k}^{p} \psi_{k}^{c}-T_{k}^{p} \cos \left(\psi_{k}^{c}-\alpha_{k}^{p}\right)+k^{u}=0 \tag{2.53}
\end{equation*}
$$

where we define

$$
\begin{equation*}
k^{u} \triangleq P_{k}^{p} \psi_{k}^{u}+T_{k}^{p} \cos \left(\psi_{k}^{u}-\alpha_{k}^{p}\right) \tag{2.54}
\end{equation*}
$$

Expanding ψ_{k}^{c} by a Taylor series and using the first two terms only :

$$
\begin{equation*}
\psi_{k}^{c}=\psi_{k}^{0}+\frac{1}{2} \gamma_{k} t_{c}^{2} \tag{2.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\psi}_{k}^{c}=\gamma_{k} t_{c} \tag{2.56}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{k}=\frac{1}{M_{k}}\left[P_{k}-P_{e k}^{t}\left(t_{0+}\right)\right] \tag{2.57}
\end{equation*}
$$

Replacing the cosine term by cosine series expansion up to the fourth order and defining

$$
\begin{align*}
& x \triangleq \frac{1}{2} \gamma_{k} t_{c}^{2} \tag{2.58}\\
& \beta \triangleq \psi_{k}^{0}-\alpha_{k}^{p}
\end{align*}
$$

then after some mathematical manipulation, we get the catastrophe manifold equation as shown in the following steps :

$$
\begin{gather*}
\frac{1}{2} M_{k}\left(\gamma_{k} t_{c}\right)^{2}-P_{k}^{p}\left(\psi_{k}^{0}+x\right)-T_{k}^{p} \cos \left(\psi_{k}^{0}+x-\alpha_{k}^{p}\right)+k^{u}=0 \\
M_{k} \gamma_{k} x-P_{k}^{p}\left(\psi_{k}^{0}+x\right)-T_{k}^{p} \cos \left[1-\frac{\left(x+\psi_{k}^{0}-\alpha_{k}^{p}\right)^{2}}{2!}\right. \tag{2.59}\\
\left.\frac{\left(x+\psi_{k}^{0}-\alpha_{k}^{p}\right)^{4}}{4!}\right]+k^{u}=0 \\
M_{k} \gamma_{k} x-P_{k}^{p}\left(\psi_{k}^{0}+x\right)-T_{k}^{p}\left[1-\frac{(x+\beta)^{2}}{2!}+\frac{(x+\beta)^{4}}{4!}\right]+k^{u}=0 \tag{2.60}
\end{gather*}
$$

Therefore, expanding and simplifying equation (2.60) we obtain :

$$
\begin{align*}
-\frac{T_{k}^{p}}{24} x^{4}-\frac{T_{k}^{p}}{6} \beta x^{3}+ & {\left[\frac{T_{k}^{p}}{2}-\frac{T_{k}^{p}}{4} \beta^{2}\right] x^{2} } \\
+ & {\left[T_{k}^{p} \beta-P_{k}^{p}-\frac{T_{k}^{p}}{6} \beta^{3}+M_{k} \gamma_{k}\right] x } \tag{2.61}\\
& +\left[\frac{T_{k}^{p}}{2} \beta^{2}-P_{k}^{p} \psi_{k}^{0}-\frac{T_{k}^{p}}{24} \beta^{4}\right]+k^{u}=0
\end{align*}
$$

dividing equation (2.61) by $-\frac{24}{T_{k}^{p}}$ to give :

$$
\begin{align*}
x^{4}+(4 \beta) x^{3} & -12\left[1-\frac{\beta^{2}}{2}\right] x^{2} \\
& -\frac{24}{T_{k}^{p}}\left[M_{k} \gamma_{k}+T_{k}^{p} \beta-P_{k}^{p}-\frac{T_{k}^{p}}{6} \beta^{3}\right] x \tag{2.62}\\
& -\frac{24}{T_{k}^{p}}\left[\frac{T_{k}^{p}}{2} \beta^{2}-P_{k}^{p} \psi_{k}^{0}-\frac{T_{k}^{p}}{24} \beta^{4}-T_{k}^{p}+k^{u}\right]=0
\end{align*}
$$

In order to obtain the swallowtail catastrophe manifold, we have to eliminate the third order term in equation (2.62), by letting :

$$
\begin{equation*}
x=y-\beta \tag{2.63}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
(y-\beta)^{4} & +4 \beta(y-\beta)^{3}-12\left[1-\frac{\beta^{2}}{2}\right](y-\beta)^{2} \\
& -\frac{24}{T_{k}^{p}}\left[M_{k} \gamma_{k}+T_{k}^{p} \beta-P_{k}^{p}-\frac{T_{k}^{p}}{6} \beta^{3}\right](y-\beta) \tag{2.64}\\
& \quad-\frac{24}{T_{k}^{p}}\left[\frac{T_{k}^{p}}{2} \beta^{2}-P_{k}^{p} \psi_{k}^{0}-\frac{T_{k}^{p}}{24} \beta^{4}-T_{k}^{p}+k^{u}\right]=0
\end{align*}
$$

and expanding we get

$$
\begin{align*}
& \left(y^{4}-4 y^{3} \beta+6 y^{2} \beta^{2}-4 y \beta^{3}+\beta^{4}\right) \\
& \quad+4 \beta\left(y^{3}-3 y^{2} \beta+3 y \beta^{2}-\beta^{3}\right) \\
& \quad+\left(6 \beta^{2}-12\right)\left(y^{2}-2 y \beta+\beta^{2}\right) \tag{2.65}\\
& \quad-\frac{24}{T_{k}^{p}}\left[M_{k} \gamma_{k}+T_{k}^{p} \beta-P_{k}^{p}-\frac{T_{k}^{p}}{6} \beta^{3}\right](y-\beta) \\
& \quad \quad-\frac{24}{T_{k}^{p}}\left[\frac{T_{k}^{p}}{2} \beta^{2}-P_{k}^{p} \psi_{k}^{0}-\frac{T_{k}^{p}}{24} \beta^{4}-T_{k}^{p}+k^{u}\right]=0
\end{align*}
$$

rearranging the terms and simplifying the above equation

$$
\begin{align*}
y^{4}-12 y^{2} & +\frac{24}{T_{k}^{p}}\left(P_{k}^{p}-M_{k} \gamma_{k}\right) y \tag{2.66}\\
& +\left[\frac{24}{T_{k}^{p}}\left(P_{k}^{p} \psi_{k}^{0}-k^{u}-P_{k}^{p} \beta+M_{k} \gamma_{k} \beta\right)+24\right]=0
\end{align*}
$$

equation (2.66) is in the form of the swallowtail catastrophe manifold i.e :

$$
\begin{equation*}
y^{4}+u y^{3}+v y+w=0 \tag{2.67}
\end{equation*}
$$

where

$$
\begin{align*}
u & =-12 \\
v & =\frac{24}{T_{k}^{p}}\left[P_{k}^{p}-M_{k} \gamma_{k}\right] \tag{2.68}\\
w & =\frac{24}{T_{k}^{p}}\left[P_{k}^{p} \psi_{k}^{0}-k^{u}-P_{k}^{p} \beta+M_{k} \gamma_{k} \beta\right]+24
\end{align*}
$$

The control variables u, v, w for the swallowtail catastrophe obtained for the multimachine power system can be compared to the control variables of the single machine infinite bus system namely equation (2.15) . It is seen that the control variables have the same form and the equations derived for the multimachine power system reduces to that of the single machine infinite bus system when the number of the critical machines is one and the rest of the system is also one.

The bifurcation manifold is reduced from three dimensions to only two dimensions in v and w as $u=-12$. The boundaries of the bifurcation set of Figure 2.3 represents the degenerate transient stability limits of the power system. It should be noted that for a generator the stable points are in the region of a positive v and w and for a motor the stable points lie between a negative v and a positive w.

Several comments are in order here :

- During a three-phase short-circuit of a generation bus the transfer admittances between machine k and other machines are zero i.e. $g_{k j}=b_{k j}=0$ so $T_{k}=0$ and the electric power output during fault-on period is found using equation 2.18
- When combining critical machines in an equivalent machine if the fault duration is short, the machine angle offsets will not change; thus we may use the prefault steady-state values along with fault-on values for the b 's and the g 's to compute the fault-on parameters.

Flgure 2.3: The transient stability limits given by the swallowtail catastrophe for a multimachine power system.

2.5 Identification of the Critical Machines

The method presented depends upon the accurate identification of the critical machines for a specified disturbance. Correct identification could be achieved by calculating the unstable equilibrium points for all machines in the power system; the machine having the highest unstable equilibrium point would be identified as the critical machine [19] , but its drawback is the calculation of the unstable equilibrium points, which is time consuming.

In this thesis for a certain three-phase fault sequence occurring at either generator or non-generator buses, the critical machine (s) are identified as follows :

- Calculate the initial acceleration for each machine using

$$
\begin{equation*}
\gamma_{i}=\frac{1}{M_{i}}\left[P_{m i}-P_{e i}\left(t_{0}^{+}\right)\right] \tag{2.69}
\end{equation*}
$$

where $P_{e i}\left(t_{0}^{+}\right)$is the electrical power output during fault at the instant of fault occurrence.

- The machines which have high and positive initial accelerations are injecting kinetic energy to the system; therefore, they all contribute to the system instability and should be combined to form a single critical machine. In practice, only two, at times three, machines having the largest initial acceleration will be declared as candidates [15].

Chapter 3
 Numerical Examples

In this chapter two test systems are presented to demonstrate the validity and advantages of the application of catastrophe theory to transient stability assessment of power systems. Three and seven machine power systems are used, where three-phase short circuits are considered at different locations. For each test system there will be a one line diagram, the steady state loadflow and the systems data. Transient stability regions in terms of systems catastrophe control parameters are given for each example used and they are compared with the time solution.

Each three-phase short-circuit case considered is evaluated by the following steps :

- Construct the systems reduced prefault, during-fault and the post-fault matrices.
- Identify the critical machine or machines for each case.
- Calculate the general dynamic equivalent parameters i.e. $P_{k}, T_{k}, \alpha_{k}, \psi_{k}$ and M_{k}.
- Calculate the bifurcation set parameters for the swallowtail catastrophe.
- Each case is then compared with the time solution.

3.1 The Three-Machine System

This system has nine buses, three machines and three loads [20] . It is widely referred to in the literature as the Westem Systems Coordinating Council (WSCC) test system. A one-line diagram for the system is given in Figure 3.4. The prefault normal load flow is given in Figure 3.5. Transmission line parameters and loads impedances are given in per unit on a 100 MVA base in Table 3.2. Generator data and initial operating conditions are given in Table 3.3.

Three-phase short circuits are considered at different locations. The transient stability of each fault location is evaluated by the use of the swallowtail catastrophe.

	Bus No.	Admittances (pu)	
		G	B
Generators			
1	1-4	0.0	-8.446
2	2-7	0.0	-5.485
3	3-9	0.0	-4.168
Transmission Lines			
	4-5	1.365	-11.604
	4-6	1.942	-10.511
	5-7	1.188	-5.975
	6-9	1.282	-5.588
	7-8	1.617	-13.698
	8-9	1.155	-9.784
Shunt Admittances			
Load A	5-0	1.261	-0.263
Load B	6-0	0.878	-0.035
Load C	8-0	0.969	-0.160
	4-0		0.167
	7-0		0.227
	9-0		0.283

Table 3.2: Network parameters of the three-machine system

Chapter 3: Numerical Examples

Generator Data			Initial Operating Conditions		
Gen. No.	H $(\mathrm{Mw} / \mathrm{MVA})$	x_{d}^{\prime}	P_{m}	E (pu)	$\delta_{0}(\mathrm{deg})$
1	23.64	0.0608	7.16	1.056	2.272
2	6.40	0.1198	1.63	1.050	19.732
3	3.01	0.1813	0.85	1.017	13.175

Table 3.3: Three-machine generator data and operating conditions

Flgure 3.4: Nine-bus three-machine power system

Three-machine system load flow showing prefault conditions ; all flows in MW and MVAR.
Figure 35:

Chapter 3: Numerical Examples

Three-phase faults applied at the generator buses, the lines that were opened, the number of critical generators that were involved, the electrical power produced during the fault as well as the catastrophe control parameters v and w are shown in Table 3.4. Those buses which are not generator buses are shown in Table 3.5.

The transient stability region using the general dynamic method is shown for generation buses in Figure 3.6 and for non-generating buses in Figure3.7. All stable cases are shown inside the region in terms of the catastrophe control parameters.

Node Grounded	Line Opened	No. Critical Generators	Elec. Power DuringFault	V	W
7	$7-8$	1	0.0	1.9	13.5
7^{\prime}	$7-5$	1	0.0	1.05	16.1
9	$9-6$	1	0.0	0.7	28.5
9	$9-8$	1	0.0	1.02	27.1
4	$4-5$	3	0.304	1.02	31.7
4^{\prime}	$4-6$	3	0.304	1.16	31.9

Table 3.4: Cases of faulted generating buses

Node Grounded	Line Opened	No. Critical Generators	Elec. Power DuringFault	V	W
5^{\prime}	4-5	1	0.652	2.0	27.0
5	5-7	1	0.652	7.2	14.3
6^{\prime}	6-4	2	0.720	1.8	29.0
6	6-9	2	0.720	3.8	23.1
8^{\prime}	8-9	2	0.487	1.0	27.2
8	8-7	2	0.487	1.5	26.0

Table 3.5: Cases of non-generating buses

Chapter 3: Numerical Examples

Figure 3.6: Results for the 3-machine power system with faulted generator buses . All cases are stable.

Chapter 3: Numerical Examples

Figure 3.9: Results for the CIGRE test system. All cases except for faults at buses 5,9 and 10 are stable.

3.2 The Seven-Machine System

The CIGRE 225 KV test system is shown in Figure 3.8. This system has 10 buses and 13 unique branches. Buses 1 through 7 are generating buses while loads are located at buses $2,4,6,7,8,9$, and 10. The base values used are 225 KV and 100 MVA [21]. The systems bus data, branch data and the systems loadflow summary is given in Table 3.6, Table 3.7and Table 3.8 respectively.

$\begin{gathered} \hline \text { Bus } \\ \# \end{gathered}$	P gen. (MW)	$\begin{gathered} \mathrm{X} \\ (\%) \end{gathered}$	P load (MW)	$\begin{gathered} \text { Q load } \\ \text { (MVAR) } \end{gathered}$
1	217.00	7.4	0.00	0.00
2	120.00	11.8	200.00	120.00
3	256.00	6.2	0.00	0.00
4	300.00	4.9	650.00	405.00
5	230.00	7.4	0.00	0.00
6	160.00	7.1	80.00	30.00
7	174.00	8.7	90.00	40.00
8	0.00	0.0	100.00	50.00
9	0.00	0.0	230.00	140.00
10	0.00	0.0	90.00	45.00

Table 3.6: CIGRE 7-machine bus data

Bus	Bus	$\begin{gathered} R \\ (\mathrm{pu}) \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{pu}) \end{gathered}$	CHARG (MVAR)
1	3	0.0099	0.0484	20.250
1	4	0.0099	0.0484	10.125
2	3	0.0450	0.1237	20.250
2	10	0.0164	0.0638	30.375
3	4	0.0119	0.0780	30.375
3	9	0.0114	0.0553	20.250
4	5	0.0040	0.0198	20.250
4	6	0.0075	0.0198	121.50
4	9	0.0488	0.1916	20.250
4	10	0.0164	0.0652	30.375
6	8	0.0188	0.0628	20.250
7	8	0.0119	0.0780	30.375
8	9	0.0488	0.1916	20.250

Table 3.7: CIGRE 7 - machine branch data

Chapter 3: Numerical Examples

Figure 3.8: CIGRE 7 - machine test system

Three-phase faults are applied and the transient stability is evaluated for each fault. The bus which the fault is applied, the number of critical generators involved, the values of the catastrophe control parameters and weather the system is stable or not is shown in Table 3.9. The transient stability regions in terms of the swallowtail catastrophe control parameters are shown in Figure 3.9 which show good agreement with the time solution.

Bus \#	Vmag (pu)	$\begin{aligned} & \text { Vang } \\ & \text { (deg) } \end{aligned}$		Qgen (MVAR)
1	1.106	7.9	227.83	-49.54
2	1.156	0.35	120.00	232.96
3	1.098	6.42	256.00	-59.687
4	1.110	4.07	300.00	746.462
5	1.118	6.17	230.00	-9.748
6	1.039	5.89	160.00	-434.255
7	1.054	7.84	174.00	39.866
8	1.034	4.50	0.00	0.00
9	1.032	1.95	0.00	0.00
10	1.124	0.88	0.00	0.00

Table 3.8: CIGRE 7 - machine voltage and power summary

Node Grounded	No. Critical Generators	Elec. Power DuringFault	V	W	Stable
1	2	1.0404	2.9	25.1	yes
2	2	1.057	0.9	33.5	yes
3	2	0.8045	3.9	19.3	yes
4	2	0.317	5.4	21.04	yes
5	1	0.00	12.76	-26.75	no
6	1	0.00	9.4	5.5	yes
7	1	0.0	5.24	21.4	yes
8	1	0.7152	12.53	11.27	yes
9	3	1.098	0.33	44.0	no
10	2	0.1507	0.245	40.0	no

Table 3.9: Cases of CIGRE 7-machine grounded buses

Chapter 3: Numerical Examples

Figure 3.7: Results for the 3-machine power system with faulted load buses. All cases are stable.

Chapter 4
 Conclusion

Catastrophe theory has been applied to the study of stability of various dynamic systems such as aircraft stability [22], and in recent years to the steady state stability problem of power systems [23]. However, that application was limited only to salient-pole type synchronous generators. Then after swallow tail catastrophe was applied to transient stability of single-machine infinite bus system [17] and also to transient stability of multimachine power systems with the worst case approach i.e. only one generator being critical [18].

This thesis suggests a method to solve the transient stability problem of multimachine power systems with the system having more than one critical machine for a specified disturbance. Here the critical machines during a three-phase fault are identified, singled out and combined to be one equivalent machine and also the rest of the system as another single equivalent machine using the general dynamic equivalent approach. Then the energy balance equation is derived from the equation of motion of the equivalent critical machine against the rest of the system. The energy balance equation is then used to form the equilibrium surface of the swallowtail catastrophe manifold from which the transient stability region is derived by the bifurcation technique. The results obtained by this general swallowtail catastrophe approach is in good agreement with those obtained by the time solution method.

It should be noted that the application of swallowtail catastrophe to transient stability of multimachine power systems has the following advantages :

- The regions of stability are well defined in terms of the swallowtail catastrophe control parameters u, v and w.
- The computations required to define the stability regions are few and done in a very short time.
- The generator swing equations need not be solved.

New areas of research need to be explored in order to reach the goal of an efficient on-line direct method of transient stability analysis. The future research should include the following :

- Stability controls such as fast valving, braking resistors, single pole switching, series capacitors and generator trippings are usually applied in practice to restore transient stability of power systems. The inclusion of these controls in the transient stability using the swallowtail catastrophe approach would be of great interest to power utility companies.
- In this thesis we only considered three-phase faults. However single-phase faults as well as multiple disturbances also occur.

References

[1] E. Kimbark and R. Byerly, "Stability of Large Power Systems,". A Volume in the IEEE Press Selected Reprint Series, pp. 221-231, 1974.
[2] E. W. Kimbark, "Power System Stability," Vol. 1. John Wiley and Sons Inc., NewYork, 1948.
[3] H. W. Dommel and N. Sato, "Fast transient stability solutions," IEEE Transactions on Power Apparatus System, July / August 1972.
[4] H. W. Dommel, "Digital computer solution of electromagnetic transients in single and multiphase networks," IEEE Transactions Power Apparatus and Systems, Vol. PAS-88, pp. 388-399, April 1969.
[5] F. S. Prabhakara and A. H. El-Abiad, "A simplified determination of transient stability regions for lyapunov methods," IEEE Transaction Power Apparatus Systems, Vol-94, No.2, pp. 672-689, March / April 1975.
[6] A. A. Fouad, "Application of transient energy functions to practical system problems," IEEE Special Publication on Rapid Analysis of Transient Stability, Winter meeting 1987.
[7] M. Ribbens-Pavella and F. J. Evans, "Direct methods for studying dynamics of large-scale electric power systems," A Survey Automica, Vol. 21, No. 1, pp. 1-21, 1985.
[8] P. Saunders, "An Introduction to Catastrophe Theory,". Cambridge University Press, 1980.
[9] C. Panati, "Catastrophe theory," Newsweek, January 19, 1976.
[10] M. Davis and A. Woodcock, "Catastrophe Theory,". Clarke, Irwin and Company Limited, Toronto, 1978.
[11] I. Stewart and T.Poston, "Catastrophe Theory and its Applications," . Pitman Publishing, London, 1979.
[12] A. Mihirig, "Transient Stability of Multi-Machine Power Systems by Catastrophe Theory,". PhD thesis, Faculty of Applied Science, University of British Columbia, December 1987.
[13] A. A. Sallam and J. L. Dineley, "Catastrophe theory as a tool for determining synchronous power system stability," IEEE Transactions on Power Apparatus and System, Vol. PAS-102, No. 3, pp. 622630, March 1983.
[14] M. D. Wvong and A. Mihirig, "Application of catastrophe theory to transient stability analysis of power systems," Proc. IASTED International Conference on High Technology in Power Industry, Bozmann, Montana, pp. 101-105, August 1986.
[15] Y. Xue and T. V. Cutsen, "A simple direct method for fast transient stability assessments of large power systems," IEEE Transactions on Power Systems, Vol. 3, No. 2, pp. 400-412, May 1988.
[16] A. Rahimi and G. Schaffer, "Power system transient stability indexes for on line analysis of worst case dynamic contingencies," IEEE Transactions on Power Systems, Vol. PWRS-2, No. 3, pp. 660-665, August 1987.
[17] M. Wvong and A. Mihirig, "Catastrophe theory applied to transient stability assessment of power systems," Proc. IEEE, 133, part C. 314-318, September 1986.
[18] M. D. Wvong and A. Mihirig, "Transient stability regions of multi-machine power systems by catastrophe theory," Proc. IASTED International Conference on High Technology in the Power Industry, Phoenix, Arizona, U.S.A., March 1988.
[19] A. Michel and A. Fouad, "Power system transient stability using individual machine energy functions," IEEE Transactions, CAS-30, pp. 266-276, May 1983.
[20] Anderson and Fouad, "Power System Control and Stability," Vol. 1. Iowa State University Press, Ames, Iowa, 1977.
[21] M. Pai, "Power System Stability," Vol. 3. North Holland Publishing Co., 1980.
[22] R.K.Mehra, "Catastrophe theory, non-linear system identification and bifurcation control," Proc. IEE of 1st Automatic Control Conference, SanFrancisco, California, June 1977.
[23] A. Sallam, "Power system stability using catastrophe theory," IEE Proceedings, Vol. 135, pt C, No. 3, pp. 189-195, May 1988.
[24] W. Stevenson, "Elements of Power System Analysis,". McGraw-Hill Book Company, 1982.
[25] Stagg and El-Abiad, "Computer Methods in Power System Analysis,". McGraw-Hill Kogakusha, Ltd, 1968.
[26] A. Fouad, "Application of transient energy functions to practical power system problem,"" IEEE special publication on Rapid Analysis of Transient Stability, Power Winter Meeting,, 1987.

Appendix
 Fortran Program Listing of Swallowtail Catastrophe Applied to Multimachine Power Systems

```
INTEGER NL,BUS(80),NGEN,LN(80),NLLL
INTEGER FR(80), TO(80),NLL,NBB,NODE, CANCEL
INTEGER N,R,NN,NB.NNF,RF,II,JJ,KK
C [rN: NUMBER OF BUSES 
```

PARAMETER (NB $=9, N=3)$
PARAMETER ($N N=9, R=6$)
PARAMETER (NNF = 8,$~ R F=5)$
INTEGER NPRSTA(N), BASE(N),KG(50)
INTEGER CLIM(50),NCLIM,CRI(80),NCRI(80)
REAL V(80), ANG (80), PGEN(BO), OGEN(80), PLOAD (80)
REAL OLOAD (80), MAGV (80), RV(80). IV (80), A
REAL MAGE (80), G(N,N), MAGOF (N,N), TETAF (N,N), OELTA(80)
REAL MAGI (NB), ALFA(NB), MAGOP (N,N), DELTA1(8O)
REAL TETAP(N,N)
REAL PM(80). PMI(50). PEF (50). GAMMA (50). PEP(50)
REAL RATING(N), H(N),M(50)
REAL TOL. DELT. TC
REAL NYOT, CM, NCM, CMECH, NCMECH, CD, COF , CDP
REAL CDEL, NCDEL, CANG, NCANG,RATIO, PMECH
REAL ATEMP. AITEMP. A2TEMP, A3TEMP. BTEMP.BITEMP, B2IEMP
REAL B3TEMP.CTEMP.CITEMP.C2TEMP.C3TEMP
REAL PRED (N,N), PREC (N,N), PREPK (80), PREAK, PRE8K, PREALF
REAL PRETK, PRECYI(50), PRECYZ, PREPC
REAL DURD (N, N) , DURC (N, N), DURPK, DURAK, DURBK, DURALF
REAL DURTK, DURPC, DURPE (50)
REAL POSD(N,N), POSC(N,N), POSPK, POSAK, POSBK, POSALF
REAL POSTK, POSPC, POSPE
REAL ETAK (80), TETAI (80), BETA, SPOSCY, UPOSCY, NKGAMK (50)
REAL UK, UCAT, VCAT, WCAT
COMPLEX SGEN(80), VI(80).CUR(80), SLOAD(80)
COMPLEX YLOAD (80), EPRIM(80)
COMPLEX XPRIMD (80) , TEMP, Y(80$), Y S H(80)$
COMPLEX YBUS(NB,NB), YBUSI(NB,NB), YBUS2(NB-1,NB-1)
COMPLEX YBUS3(NB,NB)
COMPLEX YNN(N,N),YNR(N,R),YRN(R,N)

```
        COMPLEX YRR(R,R),YRRR(R,R),AA(R,R),DET,COND
        COMPLEX B(N,R),C(N,N),D(N,N),TEM
        COMPLEX YNNF (N,N),YNRF (N,RF),YRNF (RF,N)
        COMPLEX YRRF(RF,RF),YRRRF (RF ,RF), AAF (RF ,RF)
        COMPLEX BF (N,RF),CF(N,N),DF(N,N)
        COMPLEX YNNP(N,N),YNRP(N,R),YRNP(R,N)
        COMPLEX YRRP(R,R), YRRRP(R,R), AAP(R,R)
        COMPLEX BP(N,R),CP(N,N),DP(N,N)
        OPEN(UNIT=5,FILE='FOUAD',STATUS='OLD')
C OPEN(UNIT=6,FILE='OUT'.STATUS='UNKNOWN')
C . READ STATEMENTS
28
        DO 228 I=1,NL
        READ(5.*)BUS(I),V(I).ANG(I),PGEN(I),QGEN(I).
        PLOAD(I),QLOAD(I),XPRIMD(I)
        CONTINUE
        READ(5.*)NLL
        DO 111 I=1,NLL
        READ(5,*)LN(I),FR(I),TO(I),Y(I),YSH(I)
    CONTINUE
        DO 199 I=1,N
        READ(5,*)NPASTA(I),RATING(I),H(I),BASE(I)
    CONTINUE
    CALCULATE TRANSIENT VOLTAGE,INITIAL OPERATING
        ANGLE,LOAD IMPEDANCE, CURRENT AT
        GENERATING NODE
        A=3.14159/180.00
        OO 191 I=1,NL
        EPRIM(I)=(0.0,0.0)
        YLOAD(I)=(0.0,0.0)
        DELTA(I)=0.0
        DELTA1(I)=0.0
        CUR(I)=(0.0.0.0)
        ALFA(I)=0.0
        MAGI(I)=0.0
        PM(I) =0.0
CONTINUE
DO 100 I=1,NL
    RV(I)=V(I)*COS(ANG(I)*A)
    IV(I)=V(I)*SIN(ANG(I)*A)
```

```
                VI(I)=CMPLX(RV(I),IV(I))
                MAGV(I)=SQRT((RV(I)\cdotRV(I))+(IV(I)'IV(I)))
                IF((PGEN(I).GT.O.0).OR.(OGEN(I).GT.O.O))THEN
                    SGEN(I)=CMPLX(PGEN(I), QGEN(I))
                    CUR(I)=(CONJG(SGEN(I)))/(CONJG(VI(I)))
                    EPRIM(I)=V1(I)+(CUR(I)*XPRIMD(I))
            ELSE
                    EPRIM(I) =(0.0,0.0)
            ENDIF
            SLOAD(I)=CMPLX(PLOAD(I),QLOAD(I))
                            YLOAD(I)=(CONJG(SLOAD(I)))/(MAGV(I)}\operatorname{MAGGV(I))
CONTINUE
    CALCULATE ABOVE VALUES IN POLAR FORM
C
        MAGE(I)=SQRT((REAL(EPRIM(I))•REAL(EPRIM(I)))
                                    +(AIMAG(EPRIM(I))*AIMAG(EPRIM(I))))
    MAGI(I)=SQRT((REAL(CUR(I))
    & +(AIMAG(CUR(I)).AIMAG(CUR(I))))
    IF((AIMAG(EPRIM(I)).NE.O.O).OR.(REAL(EPRIM(I)).NE.O.O))THEN
            DELTA(I)=ATANZ(AIMAG(EPRIM(I)),REAL(EPRIM(I)))
    ELSE
            DELTA(I)=0.0
ENDIF
IF((AIMAG(CUR(I)).NE.0.0).OR.(REAL(CUR(I)).NE.O.0))THEN
                            ALFA(I)=ATAN2(AIMAG(CUR(I)),REAL(CUR(I)))
ELSE
    CUR(I)=0.0
    ENDIF
            DELTA(I)=DELTA(I)/A
            JELTAI(I)=DELTA(I)*A
            ALFA(I)=ALFA(I)/A
    CONTINUE
C INITIALISE ALL THREE MATRICES
C
    DO 112I=1,NB
    DO 112 J=1,NB
        YBUS(I,j)=(0.0.0.0)
        YBUS1(1,J)=(0.0.0.0)
        YBUS3(1,j)=(0.0,0.0)
    CONTINUE
        DO 131 I= 1,(NB-1)
        DO 131 J=1,(NB-1)
        YBUS2(I,J)=(0.0,0.0)
    CONTINUE
```

 DO 113 I=1,NB
 DO 114 J=1.NLL
 IF((FR(J).EQ.LN(I)).OR.(TO(J).EQ.LN(I)))THEN
 YBUS(I,I)=YBUS(I,I)+(Y(J)+YSH(J))
 ENDIF
 114 CONTINUE
 YBUS(I,I)=YBUS(I,I)+YLOAD(I)
 113 CONTINUE
 DO 115 K=1,NLL
 IF((FR(K).NE.LN(K)).OR.(TO(K).NE.LN(K)))THEN
 I=FR(K)
 J=TO(K)
 YBUS(I,J)=YBUS(I,J)-Y(K)
 YBUS(J,I)=YBUS(I,J)
 ENDIF
 115 CONTINUE
C REDUCE THE PREFAULT MATRIX
C
DO 146 I=(N+1).NN
DO 132 J=(N+1),NN
TEMP=YBUS(I.J)
II=I N
JJ=J-N
YRR(II,JJ)=TEMP
YRRR(III,JJ)=YRR(III,JJ)
132 CONTINUE
146 CONTINUE
DO 134 I=1,N
DO 134 J=1.N
YNN(I,J)=YBUS(1.J)
134 CONTINUE
DO 136 I=1,N
DO 136 J=(N+1).NN
TEMP=YBUS(I.J)
II=I
JJ=J-N
YNR(III,JJ)=TEMP
CONTINUE
DO 138 I=(N+1),NN
DO 138 J=1.N
TEMP=YBUS(I,J)
II=I-N
JJ=J
YRN(II.JJ)=TEMP
CONTINUE
CALL CINVRT(YRR,R,R,OET,COND)

```

CALL CMULT(YRRR, YRR, AA, R,R,R,R,R,R)
CALL CMULT(YNR,YRR, B,N,R,R,N,R,N)
CALL CMULT(B,YRN, C,N,R,N,N,R,N)
CALL CSUB(YNN,C,D,N,N,N,N,N)

C FORMULATE THE DURING FAULT MATRIX
C
```

DO 125 I= N,NB
DO 125 J=1.NB
YBUS1(I,J)=YBUS(I,J)

```

DO \(119 \mathrm{I}=1\), NB
DO \(120 J=1\), NB \(K=J+1\)
IF ( (K.LE.NB).AND ( \(J\). GE. NODE) ) THEN
YBUS \(1(I, J)=\) YBUS \(1(I, K)\)
YBUSI \((I, K)=(0.0,0.0)\)
ELSE
ENOIF
120
CONTINUE
CONTINUE
```

DO 121 I=1.NB
DO 121 J=1,NB
K=I +1
IF((K.LE.NB).AND.(I.GE.NODE))THEN
YBUS 1(I,J)=YBUS 1(K,J)
YBUS1(K,J)=(0.0.0.0)
ELSE
ENDIF
CONTINUE

```
```

DO 123 I=1.NB-1

```
DO 123 I=1.NB-1
DO 123 J=1.NB-1
DO 123 J=1.NB-1
    YBUS2(I,J)=YBUS1(I,J)
    YBUS2(I,J)=YBUS1(I,J)
CONTINUE
```

C REDUCE THE FAULTED MATRIX
C

```
00 160 I=(N+1),NNF
DO 161 J=(N+1),NNF
    TEMP=YBUS2(1.J)
    II=I
    JJ=J-N
    YRRF(II,JJ)=TEMP
    YRRRF(II;JJ)=YRRF(II,JJ)
```

161 CONTINUE
160 CONTINUE
$00163 \mathrm{I}=1 . \mathrm{N}$
DO $163 \mathrm{~J}=1, \mathrm{~N}$
$\operatorname{YNNF}(I, J)=Y B U S 2(I, J)$
CONTINUE
DO $165 \mathrm{I}=1 . \mathrm{N}$
$00165 \mathrm{~J}=(\mathrm{N}+1)$. NNF
TEMP=YBUS2 (i, J)
II=I
$J J=J-N$
$\operatorname{YNRF}(I I, J J)=\operatorname{TEMP}$
CONTINUE
DO $167 \mathrm{I}=(\mathrm{N}+1)$, NNF
DO $167 \mathrm{~J}=1, \mathrm{~N}$
$\operatorname{TEMP}=$ YBUS2 $(1, J)$
$I I=I-N$
$J J=J$
$\operatorname{YRNF}(I I, J J)=$ TEMP
CONTINUE
CALL CINVRT(YRRF, RF, RF, DET, COND)
CALL CMUL T (YRRRF, YRRF , AAF, RF , RF , RF , RF , RF , RF)
CALL CMULT(YNRF, YRRF, BF, N, RF, RF, N,RF,N)
CALL CMULT(BF, YRNF, CF, N, RF, N,N, RF,N)
CALL CSUB(YNNF,CF,DF,N,N,N,N,N)
DO $126 \mathrm{I}=1$, NB
DO $126 \mathrm{~J}=1$, NB YBUS3(I, J) = YBUS(I, J)
CONTINUE

C FORMULATE THE AFTER FAULT MATRIX
C

DO $127 \mathrm{I}=1$.NB
DO $127 \mathrm{~J}=1$, NB
IF((I.EQ.FR(CANCEL)).AND.(J.EQ.TO(CANCEL)))THEN YBUS3(I.J) $=(0.0 .0 .0)$
YBUS3(J,I) $=(0.0,0.0)$
ENDIF

C
CONTINUE
DO $128 \mathrm{I}=1$. NB
$00128 \mathrm{~J}=1 . \mathrm{NB}$
IF((I.EQ.FA(CANCEL)).AND.(J.EQ.FR(CANCEL)))THEN YBUS $3(I, I)=Y B U S 3(I, I) \cdot(Y(C A N C E L)+Y S H(C A N C E L))$ YBUS3(I,I) $=$ YBUS3(I,I)-Y(CANCEL)
ENDIF
128
CONTINUE
DO $129 \mathrm{I}=1$, NB
DO $129 \mathrm{~J}=1$. N8

```
        IF({I.EQ.TO{CANCEL)).AND.(J.EQ.TO(CANCEL)))THEN
        YBUS3(I,I)=YBUS3(I,I) - (Y(CANCEL) +YSH(CANCEL))
            YBUS3(I,I)=YBUS3(I,I)
        ENDIF
    continue
C REDUCE THE AFTER FAULT MATRIX
C
    DO 172 I=(N+1),NN
    DO 173 J=(N+1),NN
        TEMP=YBUS 3(I,J)
        II=I - N
        JJ=J-N
        YRRP(II ,JJ)=TEMP
        YRRRP(II,JJ)=YRRP(III,JJ)
    CONTINUE
    CONTINUE
    DO 175 I=1,N
    DO 175 J=1.N
    YNNP(I,J)=YBUS3(I,J)
    CONTINUE
    DO 177 I=1,N
    DO 177 J=(N+1),NN
    TEMP=Y8US3(I.J)
    II=I
    JJ=J-N
    YNRP(II,JJ)=TEMP
CONTINUE
DO 179 I=(N+1).NN
DO 179 J=1.N
    TEMP=YBUS3(I,J)
    II=I-N
    JJ=J
    YRNP(II,JJ)=TEMP
CONTINUE
CALL CINVRT (YRRP,R,R,DET,COND)
CALL CMULT(YRRRP,YRRP,AAP,R,R,R,R,R,R)
CALL CMULT (YNRP,YRRP,BP,N,R,R,N,R,N)
CALL CMULT(BP,YRNP,CP,N,R,N,N,R,N)
CALL CSUB(YNNP,CP,DP,N,N,N,N,N)
C FAULIED AND AFTER FAULT MATRIX IN POLAR FORM
C
    DO 193 I=1,N
DO 194 J=1,N
    MAGDF(I,j) =SORT((REAL(DF(I,J))\cdot\operatorname{REAL}(DF(I,J)))
        +(AIMAG(DF(I,J))*AIMAG(DF(I,J))))
    MAGDP(I,J)=SQRT((REAL(DP(I,J))\cdotREAL(OP(I,J)))
```

```
        8
            IF(REAL(DF(I,J)).NE.O.O.OR.AIMAG(DF (I,J)).NE.O.O)THEN
            TETAF(I,J)=ATAN2(AIMAG(DF(I,J)),REAL(DF(I,J)))
    ELSE
    TETAF(I,J)=0.0
    ENDIF
    IF(REAL(DP(I,J)).NE.O.O.OR.AIMAG(DP(I,J)).NE.O.O)THEN
        TETAP(I,J)=ATAN2(AIMAG(DP(I,J)), REAL(DP(I,J)))
    ELSE
            TETAP(I,J)=0.0
    ENDIF
    TETAF(I,J)=TETAF(I,J)/A
    TETAP(I,J)=TETAP(I,J)/A
    CONTINUE
    CONTINUE
    Dij, Cij USING PRE,DURING AND POST REDUCED MATRIX
    DO 222 I=1,N
        DO 223 J=1.N
                PRED(I,J)=MAGE (I)*MAGE (J)*(REAL (D(I,J)))
                PREC(I,J)=MAGE (I)*MAGE (J)*(AIMMAG(D (I,J)))
                DURD (I,J)=MAGE (I)*MAGE (J) ((REAL (DF (I,J)))
                DURC (I,J)=MAGE (I) MMAGE (J)*(AIMAG(DF (I,J)))
                POSD(I,J)=MAGE (I)*MAGE(J)*(REAL(OP(I,J)))
                POSC(I,J)=MAGE(I)*MAGE (J)*(AIMAG(DP(I,J)))
    CONTINUE
    CONTINUE
C
\(\operatorname{PEF}(1)=\operatorname{PEF}(1)+((\operatorname{DURD}(I, J) * \operatorname{COS}(\operatorname{ATEMP}))\)
            CONTINUE
        CONTINUE
```

```
C
CALCULATE THE INERTIA CONSTANTS OF EACH MACHINE
DO 200 I=1,N
    TEMP3=NPRSTA(I)*RATING(I)*H(I)
    TEMP3=NPRSTA(I)*H(I)
    M(I)=TEMP 3/(60.0'3.14159*BASE(I))
    IF(M(I).NE.0)THEN
            GAMMA(I)=(PM1(I)-PEF(I))/M(I)
            KG(I)=I
        ENDIF
continue
c
    SORTING
    DO 610 I=1,(N-1)
    DO 611 J=(I+1),N
            IF(GAMMA(I).LT.GAMMA(J))THEN
                ATEMP=GAMMA (I)
                BTEMP=KG(I)
                CTEMP=PEF(I)
                    GAMMA(I)=GAMMA(J)
                KG(I)=KG(J)
                PEF(I)=PEF(J)
                    GAMMA(J)=ATEMP
                KG(J)=BTEMP
                PEF (J)=CTEMP
            ENDIF
        CONTINUE
    CONTINUE
c
    WRITE(6,700)
c }70
    FORMAT(////)
c
    WRITE (6.701)
C }70
    FORMAT(4X,'GAMMA'.3X.'GEN`,5X,'DUR FAULT PE')
    DO 999 I=1.N
    WRITE(6,702)GAMMA(I),KG(I),PEF(I)
C
C }70
    FORMAT(/4X,F11.5,5X,13,4X,F11.5)
C }99
    CONTINUE
C CM=CRITICAL MOMENT OF INERTIA
C CANG=CRITICAL EOUIVALENT ANGLE
C
    NCANG=NON CRITICAL EQUIVALENT ANGLE
    CMECH=CRITICAL MECHANICAL POWER
    NCMECH=NON CRITICAL MECHANICAL POWER
    PMECH=EQUIVALENT MECHANICAL POWER
    RATIO=CRITICAL MOMENT OF INERTIA/NON CRITICAL
    ================================================
```

```
```

 CLIM(KK) =0.0
    ```
```

 CLIM(KK) =0.0
 CLIM(KK)=KK
 CLIM(KK)=KK
 DO 612 I=1,CLIM(KK)
 DO 612 I=1,CLIM(KK)
 CRI(I)=KG(I)
    ```
        CRI(I)=KG(I)
```

```
    CONTINUE
```

 CONTINUE
 NCLIM=NGEN-CLIM(KK)
 NCLIM=NGEN-CLIM(KK)
 IF(NCLIM.EQ.O)THEN
 IF(NCLIM.EQ.O)THEN
 NCLIM=1
 NCLIM=1
 DO 637 I=1,NCLIM
 DO 637 I=1,NCLIM
 NCRI(I)=0
 NCRI(I)=0
 CONTINUE
 CONTINUE
 ELSE
 ELSE
 DO 613 I=1,NCLIM
 DO 613 I=1,NCLIM
 J=I+CLIM(KK)
 J=I+CLIM(KK)
 NCRI(I)=KG(J)
 NCRI(I)=KG(J)
 CONTINUE
 CONTINUE
 ENDIF
 ENDIF
 CMECH=0.0
CDEL=0.0
MNOT=0.0
CM=0.0
CD=0.0
CDF=0.0
CDP=0.0
NCM=0.0
NCDEL=0.0
NCMECH=0.0
DO 600 I=1.CLIM(KK)
CM=CM+M(CRI(I))
CDEL=CDEL+(M(CRI(I))\cdotDELTAT(CRI(I)))
CMECH=CMECH+PM1(CRI(I))
CD=CD+PRED(CRI(I),CRI(I))
CDF=CDF+DURD(CRI(I),CRI(I))
CDP=CDP+POSD(CRI(I),CRI(I))
CONTINUE
CANG=CDEL/CM
DO 601 I=1,NCLIM
IF(NCRI(I).NE.0)THEN
NCM=NCM+M(NCRI(I))
NCDEL=NCDEL+(M(NCRI(I))\cdotDELTA1(NCRI(I)))
NCMECH=NCMECH+PM1(NCRI(I))
NCANG=NCDEL/NCM
RATIO=CM/NCM
ELSE
NCANG=0.0

```
```

 RATIO=0.0
 ENDIF
 CONTINUE
 PMECH=CMECH-(RATIO*NCMECH)
 DO 602 I=1.N
ETAK(I)=DELTA1(I)-CANG
TETAI(I)=DELTA1(I)-NCANG
CONTINUE
ATEMP=0.0
A1TEMP=0.0
A2TEMP=0.0
A 3TEMP=0.0
BTEMP=0.0
B1IEMP=0.0
B2TEMP=0.0
B3TEMP=0.0
CTEMP=0.0
C \TEMP=0.0
C2TEMP=0.0
C3TEMP=0.0
DO 622 I=1.NCLIM
DO 623 J=1.NCLIM
IF((NCRI(I).NE.O).OR.(NCRI(J).NE.O))THEN
ATEMP=ATEMP + (PRED(NCRI(I),NCRI(J))*
COS(TETAI(NCRI(I))-TETAI(NCRI(J))))
CTEMP=CTEMP+(POSD(NCRI(I).NCRI(J))*
ENDIF
CONTINUE
CONTINUE
PREPK(CLIM(KK))=PMECH.(CD-(RATIO'ATEMP))
POSPK=PMECH-(CDP-(RATIO*'CTEMP))
PRECYI(CLIM(KK))=CANG}\cdotNCANG
IF(CLIM(K).EQ.1)THEN
DURPE(CLIM(KK))=PEF(CLIM(KK))
DO 641I I= .CLIM(KK)
DO 638 J=1.NCLIM
IF(NCRI(J).NE.O.O)THEN
DTEMP=TETAI(NCRI(J))-ETAK(CRI(I))
CTEMP=CTEMP +((POSD(CRI(I),NCRI(J))}\operatorname{COS(DTEMP))+
(POSC(CRI(I),NCRI(J))\cdotSIN(DTEMP)))
C1TEMP=C1TEMP+((POSD(CRI(I),NCRI(J))*SIN(DTEMP))-
(POSC(CRI(I),NCRI(J)j:COS(DTEMP)))

```
```

 ENDIF
 CONTINUE
 CONTINUE
 DO 639 I= 1.CLIM(KK)
 DO 640 J=1,N
 IF(J.NE.CRI(I))THEN
 DTEMP=TETAI(J)-ETAK(CRI(I))
 C2TEMP=C2TEMP + ((POSD(CRI(I),J)*SIN(DTEMP)) +
 (POSC(CRI(I),J)*COS(DTEMP)))
 C3TEMP=C3TEMP+((POSC(CRI(I),J)•SIN(DTEMP)).
 (POSD(CRI(I),J)*COS(DTEMP)))
 ENOIF
 CONTINUE
 CONTINUE
 ELSE
DO 616 I=1.CLIM(KK)
DO 617 J=1,NCLIM
IF(NCRI(J).NE.O.O)THEN
DTEMP=TETAI(NCRI(J))-ETAK(CRI(I))
BTEMP=8TEMP +((DURO(CRI(I),NCRI(J))}\operatorname{COS(DTEMP)) +
(DURC(CRI(I) NCRI(J))*SIN(DTEMP)))
CTEMP=CTEMP+((POSD(CRI(I),NCRI(J))}\cdot\operatorname{COS(DTEMP))+
(POSC(CRI(I).NCRI(J))`SIN(DTEMP)))
B1TEMP=B1TEMP + ((DURD(CRI(I),NCRI(J))'SIN(DTEMP)).
(DURC(CRI(I),NCRI(J))*COS(DTEMP)))
C1TEMP=C1TEMP+((POSD(CRI(I) NCRI(J))'SIN(DTEMP)) -
(POSC(CRI(I),NCRI(J))\cdotCOS(DTEMP)))
ENDIF
CONTINUE
CONTINUE
DO 618 I=1.CLIM(KK)
DO 619 J=1,N
IF(J.NE.CRI(I))THEN
DTEMP=TETAI(J)-ETAK(CRI(I))
B2TEMP=B2TEMP + ((DURD(CRI(I),J)•SIN(DTEMP)) +
(DURC(CRI(I),J)*COS(OTEMP)))
C2TEMP=C2TEMP+((POSD(CRI(I),J)*SIN(DTEMP)) +
(POSC(CRI(I).J)•COS(DTEMP)))

``` CONTINUE CONTINUE

DURAK=B3TEMP + (RATIO.BTEMP)
DURBK = B 2 TEMP - (RATIO B 1 TEMP)
DURALF =ATAN2 (DURAK, DURBK) DURTK = SQRT ( (DURAK•DURAK) + (DURBK•DURBK)) DURPE(CLIM(K))=DURTK'SIN(PRECY1(CLIM(K))-DURALF) ENDIF

POSAK = C 3TEMP + (RATIO CTEMP) POSBK \(=\) C \(2 T E M P-\left(\right.\) RATIO \(0^{\circ}\) C 1 TEMP \()\) POSALF=ATAN2 (POSAK, POSBK) POSTK = SORT ( (POSAK 'POSAK) + (POSBK •POSBK) ) SPOSCY=POSALF+ASIN(POSPK/POSTK) UPOSC \(Y=3.14159 \cdot\) SPOSCY POSPE=POSTK•SIN(SPOSCY-POSALF)
\(\operatorname{MKGAMK}(\operatorname{CLIM}(K K))=\operatorname{PREPK}(C L I M(K K))-\operatorname{DURPE}(C L I M(K K))\)

BETA=PRECY1(CLIM(KK))-POSALF
\(U K=(P O S P K \cdot U P O S C Y)+(P O S T K \cdot \operatorname{COS}(U P O S C Y \cdot P O S A L F))\)
UCAT \(=\cdot 12.000\)
VCAT=(24.0/POSTK) (POSPK-MKGAMK (CLIM(KK)) )
WCAT \(=(24.0 /\) POSTK \() \cdot\left(\left(\right.\right.\) POSPK \(\left.{ }^{(P R E C Y 1(C L I M(K K)))}\right)-U K\) -
(POSPK•BETA \()+(\) MKGAMK \((K K) \cdot\) BETA \())+24.00\)
                    C3TEMP=C3TEMP+((POSC(CRI(I), J)•SIN(DTEMP))-
                        (POSD(CRI (I), J)•COS(DTEMP)))
            ENDIF
        CONIINUE
        NDIF
            WRITE (6,700)
    WRITE 6,703 )
    FORMAT(5X,'CRIT' GENS', 4 X , 'DURPE', 5 X , 'MKGAMK')
    WRITE(6,704)CLIM(KK), DURPE(CLIM(KK)), MKGAMK (CLIM(KK))
    FORMAT(/6X, I 3, 5X, F11.5.5X,F11.5)
    WRITE 6.700 )
    WRITE \((6,705)\)
    FORMAT(5X.'CRIT GENS'. 4 X, 'POST CYE', \(4 \mathrm{X} . \mathrm{C}^{\prime}\) UK')
    WRITE(6.706)CLIM(KK), SPOSCY, UK
    FORMAT(/5X, I3.5X,F11.5,5X,F11.5)
    WRITE (6.700)
WRITE (6.707)
FORMAT(5X, 'UCAT', \(4 X\), 'VCAT', \(6 X\), 'WCAT')
WRITE (6.708)UCAT, VCAT, WCAT
FORMAT(/4X,F11.5, 4X,Fi1.5,6X,F11.5)
                    \(\begin{aligned} \mathrm{B} 3 \mathrm{TEMP}= & \mathrm{B} 3 \text { TEMP }+((\operatorname{DURC}(\operatorname{CRI}(I), J) \cdot \operatorname{SIN}(D T E M P))- \\ & (D U R D(C R I(I), J) \cdot \operatorname{COS}(D T E M P)))\end{aligned}\)
    STOP
    END```

