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ABSTRACT

Many design problems from diverse enginéering disciplines
can be formulated as signomial'pfograms with both equality and inequa-
lity constraintsf Howefer, existing computational.methods of signomial
programming are applicable to programs with inéquality constféintsAonly.
In fhis thesis an algorithﬁ is proposedband imblemented to solve éigno—
mial programs with mixed inequality and equality constréints;' Thé algo-
rithm requires no manipulation of the constraints by the user and is
compatible with the results of sigﬁomial programmiﬁg.

The proposed élgorithm is a synthesis shapedvby three concepts:
the method of multipliers viewed as a primal-dual method, partial dua~
lization, and the-retention of the structure of a signomial progrém. The
strategy of the algorithm is to replace the original problem'with a se-
quence of subproblems each subject to the original signomial inequality
.constfaints only. The subprobleﬁ's objective function is the original
cost augmented with the equality const:ainté and speéified by a parameter
vector A and a penalty constant K. The algorithm tﬁen élternates.between
solving the subproblem and updating A;and K. The convergence of fhe
algorithm is, under suitable aséumptions, guaranteed by the convergence of
the method of multipliers and the method used to solve the subproblem. -
Because the subproblem has thé fofm of a regular éignbmial érogram, it
can in principle be solved by the‘techniques of signomial programming.

A new numeriéal method implementing a variant of the Avriel;
Williams algorithm for signomial pfograms is éuggested for solving the
: subpr&blem. The method relies on monomial condensation, and the combined

.use of the reduced gradient method and a cutting plane scheme. Details
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of the method's implemenfation’are considered, and some computational
experience has been acquired. The proposed method also has the advan-
tageous flexibility of being able to handle non-signomial differentiable
objective-  functions.

Four updating schemes for ) and K are formulated and,evaluated
in a serieé of numerical experiments. In terms ofvthe rate of convergénce,
the most promising scheme tested is the.uée of the Hestenes-Powell rule.
for updating A.énd the moderate monptonic increase of K éfter.the comple—
tion of each subproblem. Convergence can élso be considerably accele;
rated by properly scaling thebequality constraints and perfofming only '
inexact minimizationvin the first few subproblems. |

The applicabllity of the algorithms developed in this thesis
is illustrated with the solution of three design exaﬁples drawn ﬁrom

structural design and chemical process engineering.
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I. INTRODUCTION

1.1 Nonlinear Programming and Engineefing’Design

Design is the essential task of engineering. ‘The design pro-
cess usually beginsvwith the recognition of a need. The process then
proceeds with the'gnalysis of the need,.the synthesis of solutioﬁ con~
cepts likely to satiéfyvthe need, the evaluatioﬁ of the proposed solu-
tions, and the selection of a final proposal. The selected concept is
then further refined and made éufficiently specific for prototype eva-
luation and possible revision. »Finally, the design plan is’iﬁplemented.‘

In‘most stages‘of the design procesé Opportﬁnities for optiﬁi—
zation exist. However, the disparate ﬁroblems faced in each stage dic-.
tate the use of radically different optimization methods; One importaht
step of the design process in which the effica;y of optimizatibn has
been amply demonstrated is the specification of a selected solution con-
cept. At this point of the design process,‘the thorough analysis of
'the perceived need aﬁd the evaluation of the set of suggested solutions
have usually producea a mathematical model. The model charactefizes
the sﬁructure of the accepted concept, identifies‘the decision variables
and- their functional reiatioﬁships, and listé the constraints that have
to be impdsed because of physical, economic, or social considerations.

. The task the desiéner now faces is to choose the values of the design
variébles in order to impart to the seleéted solution-concept a quanti-
;ative indi&iduality. Most often, there is a gamut of acceptable choiées,
with each éhoice iﬁplying a cértain level of performance by the modei.

If the designer's expectations from the model can be stated mathematically,
as they often can, then each chosen set of satisfactory design variables

can be judged relative to the mathematical norm of performance. This is



precisely a situation ripevfor systematic optimization.

In many problen@ of engineering design, the mathematical model
is describedbby a set of cbntinuous functions of a Euclidean space. For
such models, the searéh for the optimal set of design parameters is nothing
else but a nonlinear program. .For the realm of nonlinear programming is

-to solve the optimization problem

minimize (min) £(x) - ()
subject to (s.t.) gi(gg <0, 3=1,2, ..., : - (1.2)
B =0, k=1,2, .oopq 1.3)

where X is an m—dimehsional vecfor, and f,rgj, and hk are all.continuous
functions of the Euclidean space R". ‘The designer therefore has at his
disposal the powerful methods of nonlinear programming to seek the opti-
mum design. He can abandon the traditiomal approach of obtaining only
feasible solutions. With the aid of nonlinear ﬁrogramming he can achieve

better performance with economical savings, improve modeling by sensiti-

vity analysis, and even generate new solution concepts.

1.2 A Preview of the Thesis

A signomiai is a nonlinear function defined by the difference
of two positive sums of power functions. If a nonlinear program in-
volves only signomials, it isvknown as a signomial program.b In engin-
eering design, many models from diverse enginéering disciplines can be
déscribed by signomial programs. This observation is confirﬁed by the
" increasing number of published articles applying signomial programming
‘to desigﬁ. However, while‘éngineering design modelsvgenerally have both'
: inequality and equality éonstraints; the theory of‘signomial programming

- has been developed in terms of inequality constraints only."App1y1ng the



theory to solve design problems, therefore, often requireé the transforma-
tién of equality constraints to inequélities.. While such a transforﬁation‘
can be conveniently carried out in some cases,'it is not clear how the
transfofmationAshould be undertaken in general. The aim of this thesis is
to develop a numerical ﬁethod which the designer can use to solve signomial
.progfams with mixed.éonstrainis without having to'éhange one fype tO’;he-
rbther. 'The method is'sfill rooted in the Fheory of_signémial programming.
Consequently, the method can make full use of the results of the theory.

In ofder to provide the background necesséry for later discuss-
ions,-the ﬁain resplts 6f signomial programming are summarized in Chapter
IT. Geomefric programming is.reviewed as a significant SPecial case of
signomial programming. Methods for solving both geometric programs and
signomial programs are discussed.

In Chaﬁter'III,.the central problem of signomial programs ﬁitﬁ
inequality and equélity constraints is formulated and solved by a primal-
dual method. The development of the éroposed algorithm is based on threé
ideaé: the method of multipliers viewed as a primal-dual algorithm,
partial dualization, and the retention'of a signomial program's‘stru¢ture
in the primal problem. The algqrithm replaces the origiﬁal problem with
a sequence of inequality—cﬁnstrained signomial programs dependent on a
set of parameters defined as the vector A and the séalar K. Between the
solution of successive signomial programs, the parameters are updated
iteratively according to some rules. The convergence of the algqfithm is
guaranteed by that of the method of mgltipliers and by the convergence of
the élgorithm'used to solve the sequence of primal signomial programs.

The implementation of the algorithm proposed in Chapter III

requires'the selection of an algorithm for solving the primal signomial



programs and the specification of how the parameters A and K should be
updated. In Chapter IV, a new numerical method based on the Avriel-.
Williams algdrithm for solving signbmiél programs is proposed. In this
method the original nonconvex feasible set defined by signomial inequali-
- ties 1is approximated by.a convex set obtained by monomial condensation.
The nonconvex objectivé function is then minimized over the.convex appro-
xiﬁant by a éombined reduced grédient and cutting plane élgorithm.' The
minimiéation's solutién in ;urn determines the next convex aéproximant.
Considerations for implementing the new method are discussed in detail.
Numerical experience with the method shows that it is comparable to, at
times better than, another recent implementation of the Avriel%Williams
algorithm. The proposed method, however, has the flexibility of handling
a wide; claés of objective functions such as algebraié functionals ofi
signomials. Finally, the proposed algofithmvis refined to treat separately
‘simple upper-bound constraints.

The work in Chabter V focuses on thé performance of a set of
updating rules for the paraﬁeters A_an& K. A total of fouf combinations
of updating fules for A and K is tested.iﬁ a series of numerical_gay§;¢
ments. In the experiments, a sensitivity study is also performed to hélp
understand the impact of the range of values of K. The results‘of the .
experiments serve as the basis for the choice of the.suitable updating
rules for solving the design pfoblems of Chaptef VI. |

To illustrate how the algorithms discussed in the preceding
chaptefs can be applied to éngineering design,lthree‘selecfed desigh
problems are presented in Chapter VI. The first is on obtaining the
minimum-cost design of a hyperstatic pin-jointed stfucture. The second

is concerned with achieving the optimum operating conditions of an



alkylation process. The iast example invplves the optimal trade-off
between_installation and operating costs of a small heat exchanger ne twork.
In each example, the problem is formulated with sufficient detail to allow
appreciation of the physical basis of the objective function and the con-
straints. Numerical data are theﬁ substituted into the problem to cast
it into a format compatible with thisvthesis'.élgorithms. The numerical
solution is then obtainéd and interpreted.

Chapter VII concludes the thesis by giving a sypopsis of the

thesis and some suggestions for further research.



II. SIGNOMIAL PROGRAMMING

2.1 Introduction

The basic theory of signomial programming is reviewed in this
chapter. The funeamental notion of a posynomial is first defined, and
ifs relations to convexity and tﬁe geometric inequality are euﬁmarized.
The formulation of a signomial pregram is then given, and the import-
ant properties of the fofmulation are examined. The stated problem is
‘also compared to other equivalent formulations. If a signomial program
has no negative terms, then a geometric program results. The theory of
geometric programming, in particular, its dualitybproperties, are dis-
cussed along the lines of Duffin, Peterson and Zener [1].‘ Finally,

algorithms for solving geometric and signomial programs are considered.

2.2 Posynomials and Their Condensation

A posynomial Pk(})'is a real-valued function defined as

be

. k m a
P(x) = § e, I x ik o
k"'_. j=1 Jk i=]1 1 - (2‘1)

where x = [xl, x25 ;3., xm]'. The exponents aijk are arbitrary real
numbers ﬁhile the coefficienfs 5k and the variables xi are restricted
" to being positive. Each term of (2.1) is called a monomial. The
form of a posynomial appears in many engineering design equetions.
Hence an optimization theory such as signemial programming that is
based on posynomials ie a powerful aid to the'&esignerAin his search
for optimal designs.

In generai, a posynomial is nonconvex in the/space of x.

. R _ = - ) v'
But if ti = 1n X; and t [tl,‘ Eys enes tm] , then



= exp(t,)
Xi .1 (2.2)
and : rk ; m
P, (t) = . ( P ) :
= jZl Sk S i-z-l ESLE (2.3)

: since the ekponential function is convéx and all the coeffi- o
,¢ients cjk are positivé, it follows [1, p 54jvthat Pk(E) is convex in
the spacebof t, which is just the Euclidean space R". Hehée any pbéy— »
nomial can bé ﬁransformed into é convéx function. A consequence of
this convexity propert&yof poéynomials is the bounding from beiow of

any posynomial by a monomial. Let ¥k(2) be defined as

N
P () = In P, (O

(2.4)
It can be shown that %k(g;.is a continuously differentiabletconvek’
function. Then for a given point i >0,
v N A m. A nNooa | ,
P (t) 2P (D) + ;l-(ti.-— t;) 9P, (8)/3t, o ©(2.5)

i
- The inequality (2.5) is simply the definition of a continuously differ-
entiable convex function [2, p 28]. Exponentiating both sides of (2.5)

gives
n o . D A
ex(F (D) > e (D) T em((e; - £ B @/oe,  @2.6)

~ ~

Substituting ty = 1n'xi and L, = In X simplifies (2.6) to

| .. m by n R
. > A p > , ,
Pk(g) > Pk(_)g) ,Hl(xi/xi)_ 1apr (x | (2.7)
where

b, = Bfk(i)/ati = [(gpk(_}g)/axi)(xi/Pk(z))]X =% .8



8.

Observe that Pk(zc_, %) is a monomial. This technique of approx-

imating a posynomial Pk(g)at X = X with a monomial Pk(z, ) is called the

2
condensation of 'Pk(gc_) at x = R, Pk(_>_<_, g) is known as the dondensed posy-

nomial of Py (x) at X.

The relationship between Pk(z) and Pk(z, &) is given by Lemma 2.1.

Lemma 2.1

~

Let Pk(zc_,' %) be the monomial condensed from the posynomial '

Pk(g).at %. Then .
(a) Pk(g) > ng(gc_, _)Ag) for all x > 0
® P& =B (% B | - (2.9)

() [aPk/axilz -3 [aﬁk/axi]§_=q§

Part (a) of Lemma 2.1 follows directly from the definition of
the condensed posynomial. Part (b) can be verified by direct substi-
-tution. Part (c¢) can be shown by differéntiating the right side of
(2.7) and direct substitutioﬁ.' |

Another approach to condensing posynomials is fo use the
geometric inequality based 6n the following lemma.

-Lemma 2.2

If uy >0 and €; >0 for j =1, 2, ..., N, then

. J - — p— -
N N
A €5 LA
(Z u, )" > T (u./e.) I A
j=1 3 j=1 1] (2.10)
where
N .
=, | | (2.11)
j=1 _ . |
and . : :
ey 1 =1 if e, =0
| (us/es) if e (2.12)
Moreover the inequality becomes an equality if and only if
) D s 'R
€. ) u, = u, e., j=1,2, ..., N (2.13)
ST R e R



The proof of Lemma 2.2 may be found in [3].

Given a posynomial Pk(gg defined by
: - v :
k m ajik
'y = - j
P, (%) j;l U@, ug ® = ey gl X,
Lemma 2.2 may be used to derive the condensed posynomial Pk(§’ &) at the

(2.14)

point % by setting

e, = u,, (X)/P, (%
i Jk(5)/ X (2.15)
and
A=1.0
: (2.16)
The condensed posynomial PR(§, &) becomes
~ m O (;{) ) .
2) = 4 ik ™= : .
where ' r, .
N : 81 v . .
B, (x) = I (c,,/8.)°3 : :
k x j=1 ( jk J) o (2.18)
and - Tk
| O‘ik@ = jll €5 %49k D (2.19)
It can be easily verified that (2.17) satisfies Lemma 2.1. |
2.3 Signomial Programming
A'signoﬁial gk(§) is a.real—valued function defined as
g (%) = P (%) - 0, (x) '
B k k (2.20)

where X € R+m A positive orthant of Rm; Pk and Qk are posynomials of

the form given in (2.1). A signomial program(SP) with inequality con-

straints only is the optimization problem defined as follows
(s?) min x

(2.21)
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A signomial program with a signomial 6bjective function go(g)
can be easily put into the format of (2.21) by adding the ineqﬁality
(go(g) + C) 5-X1 to the constrain; set, C is a constant added to insure
the positivity of the left side for all feasible x. Note' 'th‘at (2.21)
also a}lowé simple uppef'and lower bound constraints. Hence in this
tﬁesis, the fprmulétion of (2.21) is considered as the standard problem
statement of a signomial program. Different but equivalent formuiations
had been introduced by Passy and Wilde [4], Avriel and Williams [5],
apd Duffin and Petersdﬁ.[6].

Because the difference of two convex functions is genérally
nonconvex, a signomial program is nonconvex. The solution of a sig-
nomial program cannot therefore guarantee a global minimum. Only 1pcal
minima are assgred under certain regularity conditions. Another con-
sequence of the ﬁonconvexity of‘signomial programs is the loss 6f a
strong duality theory that is associated with convex programs. There
~is, however, a weak duality theory reléting tﬁellocal solutions of (SP)
(the primal problem) to those of a linearly constrained dual problem.
The precise definition of the dual problem depends on how the primal
signomial program is formulated. The essence of the duality theory,
however, remains the same, namely under some dual constraint qualif-
~icatiomns é‘dual Kuhn;Tucker point can be derived from a known priﬁal
Kuhn-Tucker point, and vice versa. In either caée, the-primal and
duél objective functions are equal when evaluated at the respeétive
Kuhn-Tucker points. More details on the duality properties of sig—

nomial programs may be found in'[4] - [6].
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2.4 Geometric Programming

If no negative term is present in the signomial program of

(2.21), then the problem becomes a geometric program involving posy-

nomials only. The problem statement may, for later convenience, be

rephrased as

(cp) o min P, (x)
s.t. P (® <1.0, k=1,2, ..., p = C(2.22)
. ' ' X € R+m a :
where -
Nk .oom a,. : ‘
P =} w@®, uw® - ey M ox M - (2.23)
=M
.and ‘ : ‘
MO = 1, A Mk. = Nk—l + 1, Nk. = Mk"l + nk (2 24)
ny is the number of terms in Py (x). o
(2.22) is called the primal geometric program and x, are
the primal variables. If the logarifhmic transformation ti = 1n X;

is used and (2.22) is expressed in terms of ti’ i-= 1; 2, ..., m, then
from the discussion of Section 2.2, the minimization problem reduces

to a convex program since‘Pk(E), k=0,1, ..., p, are convex funcfions '
of t. By exploiting the monotone increasing property of the natural
logarithﬁic functioﬁ, tﬁe primal geometric program can be cast into the

following transformed primal problem associated with the primal geo-

metric program.
: : min 1n P, (t)

(TGP) | . ' ) (2.25)
B s.t. ln.Pk(E) 20, k=1,2, ..., p
where N v :
' k : m . i
Pk(E) = jZMk cj[exp(izl aijti)] - .> (2.26)

and Mk and Nk are given by (2.24).

Another important problem that can be associated with a given

primal geometric program is the dual geometric program stated as follows:




| N §, P 2
(DGP) | max v(§) = jgl (cj/oj) 101 M | (2.27)‘
Ny ' |
st A= ] 8 k=1,2, ..., p (2.28)
=M
N : ‘ :
I ag 6,=0, 1=1,2, ..,m (2.29)
31 . ‘
N _ ..
I s (2.30)
and A ' _
Gj >0, ] B (2.31)
-In this program aij’ Cj,‘Mk agd Nk are defined in the same way

as in the primal programs. - (see (2.23) and (2.24).)

The function v(§) is called the dual function and the variables

Gj are the dual variables. The relations (2.29), (2.30), and (2.31) ére
knoﬁn as, respectively, the”orthogonélity condition, the nérmality
condition, and the positivity condition. Note that each dual wariable
Sj is linked to a monomial term in the primal problem (GP), while each
-‘Ak is paired with a pﬁsynomial inequality constraint of (GP). "It is
shown in [1] that 1lgv($§) is concave. Sincé max log (v (g)) = max v(§)
over any feasiblebset of §, withlogv(§) replacing v(§) as the objecﬁive
function, (DGP) is a c§nca§e prograﬁ with linear constraints. The'signi—
ficance of this transformation will be seen in the following discussion of
the'duality properties of geoﬁetricAprograms. |

It has been shown that the solution Qf a geometric program
(GP) is equivalent to-the solution of a convex program (TGP) derived
from (GP). Since convex programs have strong duality_propertiés, the
primal problem (GP) is expected to saﬁisfy a strong dualit& theorem.

This indeed is the case as shown by Theorem 2.1 due to Duffin, Peterson

and Zener [1].
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A program (primal or dual) is consistent if there exists a
vector satisfying the program's constraints. (GP). is superconsistent
if there exists a vector % such that Pk(g)< I, k=1,2, ..., p, and

% > 0.

Theorem 2.1
Suppose that a primal geometric prograﬁ (GP) is supercon-
sistent and PO(EQ is minimum at x*, a feasible vector of (GP). Let

FP and FD be, respectively, the feasible sets of (GP) and its associ-

ated dual program (DGP). "Then
(1) Fy is non-empty, and for all x € FP.and § e Fpo
Po(x) > min P (x) & Py(x*) = v(§*) & max v(§) > v(§) (2.32)
- Xefp | - sefp |
(ii) there exist non-negative Lagrange multipliers My associated with

Pk(z%); k=1, 2, ..., p, such that

L (2.33)
uj('}i*)/PO(E*)’ =1, 2, ..., NO .
*
8j = v
A /R (), S M, e, N k= 1,2, ey p o (2036)
Furthermore, . A |

(iii) if 8% is the maximizer of (DGP), then x* is the solution to any

system of m 1inearly.independant equations selected from the following

equations:
7 (2.36)
.% ajj log x; = log (aj*v(ﬁf)cj), j=1,2, ..., N
i=1
m
. : (2.37)
.. = * * =
]'_:'Z-lalj log Xi log (6:] /CJuk )s 3 Mk, ce sy Nk,

k.

I
[
-
N
-
.
.
-
s~



14,

Theorem 2.1 has two important practical inplications. From
a computational point of_view, it is indeed attractive that the solution
to the primal program can be obtained via the solu;ion of a concave
.program with linear constraints, and the\solution of a system of linear
algebraic equations. From an engineering design viewpoint,‘(2.32) is
appealing since it allows the designervto use the inequality P (x).> v(é).
for x € FP and § € FD to decide whether the current feasible de31gn is

acceptable, depending on the gap P (x) - v(8).

2.5 Solution of Geometric Programs

Theorem 2.1 offers two options for'solving a geometric program -
a direct primal solution or one via the dual problem (DGP) The main
advantage of the dual method is the structure of (DGP) - the max1mlzation
of a concave function ovér a linear manifold. Algoritth'tailored for

this class of nonlinear programs may be-used. (e.g. see feferences [7] -

[10].) A prime con31deration in the dual approach is the linear manifold s

dimension usually called the degree of difficulty d Since,there are Np
dual variables and m + 1 dual linear equality constraints, d = prf (m + 1)
for the case when the m x Np(m>< Np)'exponent mafrix A= [aij] haS'full‘
rank. If the rank of A is less than m, the primal variables can be rede-
fined to insure that A has full rank [1, pp 82-83]. 1If d = 0, the dual
optimal solution &* is conveniently obtained as thelunique solution of a
-system of linear algebraic equations. But if,d > 0, iterative methods
must be.used. |

Employing the dual approach has its difficulties. The degree‘
of difficulty d can be qu1te large, although the primal space has low

dimensionality. Hence the use of the dual method involves a trade off



.15,

between the case of linear comstraints and the possible burden of high
dimensionality; Another serious potential difficulty is due to the
existence of slack primal constraints. From the.necessary.compiemehtaryv
slackness condition for optimality, the optimal Lagrange .multiplier
uk#'assoc1ated with the kth slack primal 1nequa11ty constraint must be
zefo. ‘Hence the kth set of equations defined by (2.37) cannot be used
It is possible that not enough equations are available to yield the
optimal'primal vector x%, lTo overcome the difficulty posed by slack
. primal constraints, Kochenberger [11] proﬁosed the addition of slack
variables to loose constraints. The drawback of this method is that
the‘loosé constraints have to be known 2 priori or else slack variables
need to be added to each constraint. 1In the latter case, both the
dimension of the primal problem and the degfee,of difficﬁlfy are in-
creased. |

A primal approach would solve the transformed primal geometric
program (TGP) given in (2.25). The motivation is obvious. While (GP)
is generally nonconvex, its equivalent problem (TGP) is a nice convex
prograﬁ that can be.solved by any of the algorithms developed for convex
programs.. For example, Avriel ggigl [12] has applied a cutting plane
algorithm. to solve geqmetric progfams. Beside exploitir;g convexity,
the primal approéch can handle loose constraints with no difficulty.
Simple upper and lower bound constraints on X can also be easily ﬁaken
into account, while the same type of constraints would mean 1ncreased

degree of d1ff1cu1ty in a dual method

2.6 Solution of Signomial Programs

Signomial programs are nonconvex programs and their solutions

are usually at best local minima only. As in the case of geometric pro-
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grams, the soiution to a signomial program can be obtained by a
primal or a dual method. The dual approach solves a ddal'program that
- still has only linear constraints, but the logarithmvof its dual objec-
tive'functien is not concave [4] [6]. Furthermore, the dual solution
no longer satisfies astrong duality theory. However, the potential
difficulties of a dual appreech, as discussed in Sectim 2.5, remain. .
The primal approach to solving signomial programs is based
on convex approximation. In lieu of solving the original nonconvex
program, a sequence of convex programs is solved such.thet the cor-
responding seduence of solutions abproaches a local minimum of the don—
convex program. Charnes and Cooperv[13] first suggested such a comp-
~ utational strategy for signomial programs. Later several authors [5],
[14], [15] adopted the same strategy but differed in the specifics of
how. to convexify the orig1nal nonconvex program A practical algorlthm‘
that has been used for this thesis is that proposed by Avriel and
Williams [5] and further developed by Avriel et al [12].> A computer
code implementing the algorithm was written by Dembo [16].
The Avriel - Williams algorithm solves the folloﬁing sig-'
nomial program |
(s?).

(2.38)

where x = [x7, X9, ..., x,]',

X=fx:xe B PG - QG <1, k=1,2,,p3 0 < 5k < x < 2V}

Note that (2.38) is almost identical in formulation te (2.21) except
in the former the simple upper and lower bounds on x are exﬁlicitly
stated. Consider the kth signomial inequality constraint in the
feasible set X. The constraint can be rewritten as |

Pkcg)/(1'+ QN <1 ) | »(2.39)
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(2.39) is eleafly a ratio of two posynomials. Assume that a pointv
(1-1) € X is known. The denominator (1 + Qk (%)) can be condensed at

X
‘éi‘l)to yield a monomial 6k(§’-§(1-1))'

If the denominator of éach..
constraint in X is replaced by their respective condensed posynomial,

the féllowing problem, calledl@P(l5, results.

(GP(i)) o min X;
st 2 /G G xXP) <1, k=12, 0 (2.40)
o0<x<x<A
Thé above problem has the following properties:
(a) It is a geometric program since a posynomial divided by a
monomial remains.a posynomial.
(b) 1Its feasible set is contaihed in.the feasiﬁle set X of (2,38).
because by (2.9)
P G0/(1 + 0 () < B (/G (x x0Ty 1 -
k'E (X)) < B 0 /Q (%, x =
(2.41)

for any x feasible for (GP(i))
(¢) By (2.41), its optimal solution is feasible, but not necessarily

optimal,'for (sP) (2.38). |

The Avriel - Williams algorithm solves a sequence of problems

of the form specified by (2.40). It.is shown in [5] that the algorithm
produces a sequence of points converging to a local minimum of the
original problem (SP), provided that the signomial program has a regular
feasible set. A féasible.set X is regular if it is»noﬁ;empty and
compact, and the gradients of its tightvconstraints generate a pointéd

cone, (i.e., the origin £ convex hull of the gradients mentioned).

In summary, the algorithm may be stated in the following manner:

Algorithm 2.1

A 0 » . 3
Step 0: leenAg( ) € X and let.§(1> be the solution to GP(l). Set 1 = 1.



Step 1:
Step 2:
SteE_B:

(1) according to (2.40).

(1)

Construct GP
Solve'GP(i) and obtain the point x
Stop if the ¢0nvergence critérion is satisfied, Otherwise,
i=1i+1 and go to Steé 1. |

It is worth noting that this algorithm may use any primal.

or dual algorithm for solving the geometric programs. The Avriel—

Williams algorithm is a primal method only with respecf to the nonconvex

program (SP).
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ITTI. SIGNOMIAL PROGRAMS

WITH EQUALITY CONSTRAINTS

3.1 Motivation
Since its first introduction in 1961, geometric programming, and

later its generélizatioh signomial programming, have been formulated in
terms of inéquality coﬁstraints oniy. Such a formulation allows the dev~
elbpmeﬁt of a duality theory that is, in the case of geometric pfogramming,
elegant and‘cqmputationally attraétive. However, an examination of many
engineering design'préblems shows that there is a strong need for ex-
tending the problem formulation to include explicitly equality constraints
in the feasibility set.. From the theoretical and comﬁutatidnal viewpoints,
there.are also compelling reasons for an algorithm that caﬁ handle équality
constraints and still retain the basic structure of the original signomial
programming formulation. |

" The presence'of equality constraints in engineering design can
be attributed to numerous reasons. Sdme of these are: 1) the conservation
laws of mass, energy, momeﬁtum, and charge, 2) the input—output relation
of a transformatioﬁ, such .as a stage in a process, 3) ‘the need to main-
tain equilibrium conditions, original topology, etc., 4) the relation of
a variable in the cost function to other design parameters, 5) the need
to satisfy Béundary conditions. Some specific examples that are amenable
to the signomial programming formulation and that illustrate well some of
the-mentioned reésons are chemical reactor design (171, steady-state process
optimization [18], and optimal_stfucture design [19].

A nonlinear program with nonlinear equality constraints is

élways nonconvex. In the case of geometric programming, the strong duality

relations of Theorem 2.1 no longer apply. In fact, it can easily be shown



that a geometric program with equality constraints is equivalent to an in-
equality-constrained signomial program, just as are signomial programs
with equality constraints. 'Theéretically, these equivalent signoﬁial pro-
grams can be solved by algorithms for solving signomial-programs. But
this approach requires the replacement of each equality constraint gk(§)=1
with the pair of inequalities gk(§)§} and gk(gjz}. The ﬁethpd has two
computational drawbécks: 1) the size of the problem is increased, 2) the
primal feasible set has no interior and hence is not regular. Another
possible scheme is to replace each quality COnstraint gk(§)=1 with either
gk(§)§} or gk(z)z}; The first objection to this scheme is that if the
_number q of equality constraihts is large, there are 2% combinations to
consider, and the trial-and-error computation can be prohibitive unless

some heuristic search plan is followed. A more important objection to

this scheme is that there is no guarantee that the original solution will

be obtained. It is conceivable, for example, that each of the 29 combin-
ations has a slack coﬁstraint, yet the solution sought.requires all the
constraints to be tight since they are_eqﬁality constraints.

In this chapter an.algorithm is developed to handle sigﬁomial_
equality constraints without the replacement by equivalent inequality con-
straints. The algorithm incorporates the equality constraints into tﬁe
objective function and solves a sequence of inequality-constrained sig-
nOmial programs in lieu of the given.problem. The.6riginal inequality

constraints are retained as they are.

3.2 Previous Work

The published literature on signomial programming contains

very limited work on the solution of signomial programs with equality

FAUN



constraints. Blau and Wilde [17] reported an application of signomial
programming inyolving equality constraints. They, however, used'physical‘
reasoning and some algebré to transform the constraints into iﬁequalities;
The same approach was adopted by Rijckaert [18]. In applying signomial
programming to nonlineﬁr assignment problems, Passy [20] used the stand- -
ard technique of substituting eaéh equality conétraint with a pair of in-
equalities opposite in sense. Later, Blau and'Wilde [21] considered sig-
nomial programs with equality constraints only. ’They proposed a Newton-
Raphson method to solve for the stationary points of the primal's Lagran-
gian. It seems that the algdri#hm reported in this thesis and in [22]

is the first effort to solve signomial programs with mixed inequality and
equality constraiﬁts, in a manner that preserves the key'properties of -

signomials without requiring any constraint transformation by the user.

3.3 Problem Statement

The problem that is of interest in this chapter may be stated

formally as follows

(SPE) min Xj .

s.t. Xxeg X

(3.1)

il
-
-
N
-

.
.
N

. hk(zi_)é gp+k(§) -1=90, k
where ) .
: m L U,
X=1{x:xeR% g(x) <1, k=1,2, ..., p; 0 < x <x<x1}
All the functions g : R+?—>R are signomials as defined in‘(2.20). The dif-
ference between problem (SP) (2.38) and (SPE) (3.1) is solely due to the g
signomial equality constraints. The next section details the development
of an algorithm that solves (SPE) via a sequence of (SP)—type problems

which can be convenientiy solved by the various algorithms referred to in

Section 2.6.

21.
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3.4 Proposed Algorithm

3.4.1 Background

Constraints in nonlinear programming are generally treated.in
four wayé, each being the basis of a family:of algorithms. The first is
to transform the constrained problém into an ﬁnconstrained one by incor-
porating all the constraints into the objéctive function. While such aﬁ
aéproach exploits the efficiency and.éase‘of unconstrained optimization
algofithms,its major disadvantage is that whatever special structure the
constraints may have, is lost. The second strategy is the primal feasible
method in whiCﬁ unconstrained optimizatién élgorithms are modified to in-
sure that the sequence of points generated are all feasible for the given
problem; ~The primal feaéible method works well with linear constraints,
but with nonlinearvconstraints,vit is-plagued with the aifficuities of
;getting an’initial feaéible point and remaining within the feasible set.
Approximation 1eadiné to the use of linear programming or simplex-type
operations is the third way to solve coﬁstrained nonlinear programs. This'
approach can be quite efficient, depending on how well the feasible set
is approximated. The fourth approach is the Lagrangian or dual method
which is motivated by the viewpoint that the Lagrange multipliers are the
fundamental unknowns associated with a constrained optimization problem.
Hence, the method does not solve directly the original problem but instead
aétacks an alternate problem, the dual problem, whosg unknowns are the
Lagrange.multiéliers of the original problem.

In élmost all the algorithms of each family, both equality'and
inequélity constrainté are treated in the same manner. They are all included
in the objéctive function of a new problem, or all are used to maintain

feasibility, or all are approximated in some form, or all are dualized to
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define the dual problem. The algorithm discussed in this chapter is an
exception to this pattern of handling identically both equality and inequal-
ity constfaiﬁts. The algorithm is designed to be a synthesis of the four
basic solution strategies in order to preserve the uéeful propertiés of a

signomial program.

3.4.2 Development of the Algorithm

The difficulty of Problem (SPE) defined in (3.1) is posed by
the signomial equality constraints (3.1b). Without these comstraints the
problem simply>reduces to a signomial program that can be conveniently sol-~
ved by a variety of algorithms discussed in Section 2.6. It is clear then
that the inequality constraints of (3.1) should remain untouched. The
immediate question that has to be confronted is: How should the equality
constraints be manipulated? The techniques discussed in Section 3.1 have
been ruled out for the reasons mentioned there. An examination of the
basic solution'strategies in nonlinear programmihg suggests that the trans-
formation.method, otherwise known as the penalty function method, is perhaps
the suitable approach.

Using an external penalty formulation [23], the problem (SPE)

can be rewritten as

9
min  x; + r<l) Y ]hk(g)ls
k=1

(3.2)

s.t. x X

" In (3.2), B8 Z_i and the sequence:{r(i)} is an uﬁboupded increasing positive
sequence. If B is an"éven integer (it is usually 2), then the objective func-
tion of (3.2) is a signomial since any even integral power.of a signomial is it-
self a signomial. Thus in this case (3.2) is a signomial program as defined as
(i) | |

problem (SP). Let x be the solution to the ith subproblem defined by
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(3.2). Also let Xl* be the minimum value of ) in‘(SPE). The‘convergence'
of the'sequence‘{g(i)} to a local minimum of (SPE) is obtained according
to the following result due to Fiacco and McCormick [23]: If the local
minima of problem (SPE’fornla nonempty compact set A and r(il—* © . as

i— =, then there exists a compact set S such that_A.c:interior of § and
for sufficiently large i,'§(i)’e interior of S. Moreover, xl—»ixl*, and
every limit point of any convergent subsequeﬁce of {g(i)} is in A, While
"the convergence of the exterior penalty formulation is satisfactory, the
.transformation, indeed all penalty function methods, possess the unfavorable
property of exhibiting ill—coﬁditioned Hessians. It is a fundamental prop-
erty [24] of penalty function methods that as r(i)—* o, the Hessian of the
transformed objective function is:equal'to the sum of fhe Hessian of the
original problem's Lagrangian and a matrix of rank R, whose eigenvalues
approach iﬁfinity.. The number R gives the number of active constraints.
To overcome the numerical difficulties caused by the ill—conditioning.of

(i) (1)

the Hessian as r' = «, the requirement that r

~—» © in order to achieve
convergence must be relaxed.A This goal is realized by the method of
multipliers first independently proposed by Hestenes [25] énd Powell [26].
Becaﬁse the method is a modified penalty function method, it preserveé the
attractive property that the transforméd problem is an inequality-constrained
signomial program. | |

In its original formulation the méthod of'multipliers solves the
nonlinear program

min fo.( X)

s.t.  £(0) =0,k=1,2, ..., q (3.3)

: m
XeR

by solving a sequence of unconstrained subproblems each defined as
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s.t. Xe E™ o 3.4

.,Kq]'. In (3.45, Ak(i) is the ith
(1)

It is understood that A = [Al,lz,

*
" estimate of the optimal Lagrange multipliers A k=1,2, ...,q and K

k 3

is a'sufficiently large but finite positive constant. The general outline

of the algorithm is as follows:
Algorithm 3.1

(1)

and K(l) are specified.

Step 2 Solve (3.4). Let the solution belz(l).

Step 1 Set i = 1. "Assume )\

Step 3 If (x(i)) = 0, ¥k, stop. Otherwise, set i = i +1.
Step 3 X ,
(1) | '

(1) and/er K

Update A » and go to step 2.

The ﬁpdating rulesbfor_gfi) and K(i) will be discussed later. Conditions
for the convergence of the algorithms will be considergd in the next sec-
tion. NowAwhat is of interest is thé adaptation of the method of multi-
pliers to accomodate inequality constraints.

Bésides being considered as a modified penalty method, the method
of multipliers can also be viewed as a modified primal-dual method. This view

was sketched by Luenberger 124] and more recentiy discussedvinldetail by Bertsekas

" [271.  Several other researchers (e.g. [28] - [32]) have adopted the same

point of view to study the theoretical properties of the method of multipliers.
Consider the nonlinear program given by (3.3). An equivalent problem, in the
sense of having the same solution and the same minimum objective function,

is the following problem q

in f (x) +K £, 2 (x)
w00 +x T 2

S - - (3.5)
s.t. fk(gj =0, k=1, 2, ..., q

x e R®
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for any K > 0. The Lagrangian of (3.5) is _

. 2(x, A, K) = £,(x) + kil Mef () + K kil £ (3.6)
Let x be a local minimum of the original problem (3.3). Associated with
this solution is the opfimﬁl Lagrange multiplier'gf. Then for sufficiently
large but finite K, say:K Z.K* for some K*, the Hessian of 2(x,A,K) at
(gf,lf) ié positive definite. As a result, for'évery K'Z_K*, problem (3.5)
has a locally convéx stgucture, and local duality théory is applicable.

Let the function'dK: R*— R be defined as

xeRD : © (3.6)
Then themethod of multipliers can be cast as a primal-dual algorithm alter-

nating between the primal problem (3.6) and the dual problem defined as

max dk(l) ' - (3.7)
PS

Note that both problems are unconsﬁrained. Now suppose that a set of in-
'equality'constraints 63(5) <0, j=1,2, ..., p, is dppended to the feasible
set of (3.5). vThese additional constraints can be easily handled by the
.concept of partial duality [24], [32]. The definition of the dual function
dk(A) need not include the Lagrange multipliers éf-all the primal constraints.
'If local convexity applies, dualization can be with respect to any subset of

the_primal constraints. Hence,'the dual function dK(A) can be redefined

as »
N = max 'Q/(Z(_, A, K)
dk xeX, ’ (3.8)
where 'i:='{§.: xeR% 6. (x <0, 3j=1,2, ..., p}

The dual problem is the same as that of (3.7). Since the method of multi-
pliers is a primal-dual method, it follows that one way to apply the method

of multipliers to nonlinear programs with inequality constraints is simply to



use partiél duality and‘incorporate the inequality constraints into the
definition of the dual function. As a result, the original problemAis
replaced with a sequence of less obnstrained subproblems. Clearly such
an approach is advantageous only if the subproblem's constraints exhibit
a special structure worthy of épecial consideration. This is precisely
the case with signomial programs wifh equality constraints.

Applying the method of muitipliers to the signomial program

stated in (3.1) yields the following ith subproblem

. A . * g
s. t. xe X -2

where X = {x:xeR"

x s g(® <1, k=1,2, ..., p; 0 <xk<x<xU}
It can be seen that the minimization problem (3.9) is an inequality-con-
strained signomial progfam. If a sufficiently large constant is added

to the objective function, (3.9) can be easily cast into the standard

format of (2.21) for solution by-the Avriel-Williams algorithm,

3.4.3 Statement of the Algorithm

The algorithm that has just been developed for solving signomial
programs with equality constraints may now be formally stated.
Given the problem (SPE) posed in'(3;1) a solution can be ob-

. tained iteratively by the foilowing algorithm:
Algorithm 3.2

Step 1 Set i = 1. Assume that_l(l) and K(l) are specified. Obtain a

point E‘Q) that is feasible for problem (ﬂ{i)) as stated in (3.9).

Step 2 Solve (ﬂ{i)) by the Avriel-Williams algorithm with E‘i”l) as the

starting point. Let the solution be_z(i).
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Step 3 If‘thé equality constraints hk(E‘i)) =0,k=1,2, ..., q, are
satisfied, stop. Otherwise, i = i + 1. Update Afi) and/or K(i).

Go to Step 2. The parameters A and K may be updated in various

ways, and the updating rules will be discussed latér.

| The operation of the proposed algorithm may be ilJustrated by

considering the following simple signomial program with both equality

and inequality constraints.’

min xl2 | , | (3.10)
s.t. 3 - ) <1
X, = 1
0 < X5 X,
Assuming that K is sufficiently large and fixed, the kth subproblem is
min x, 2 + %) - 2k) x) + kx)? (3.11)
s.t. 3 - X - X, <1
0 < xl,. xz

From the Kuhn-Tucker conditions of the subproblem, the solution to'(3.11)

is ) _ 2k +2® ® 2k +3-2®

X = o X =
1 T®+D 2 2®F 1) (3.12)

One effective updating rule for A is the Hestenes-Powell formula [25],
(k+1) _ '

[26] given as X 'Aﬂk) + Zkhjzﬁk)). Using this formula yields

(41) _ , 1 | (k) 2K : '
A = &ED M freT | (3.13)
8220 4p, a, b0

From the theory of difference equations, the closed-form solution to

(3.13) is |
» k+1
A e (3.14)

for some arbitrary constant c. Set X(O) = 0. Then ¢ = -b and
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ALY SR S } (3.15)

(K + 1)
It follows that

x® o1y i, 2, ®) =1+ 1@+
. (3.16)
As k » o, convergence to the unique. solution (xl =1, X, = 1) occurs for
all K > 0. Hence, K need not approach infinity. However, the rate of
convergence increases rapidly with modest increase in K. This fact can
be verified by substituting values of K into (3.15) - (3.16). 1If the
objective function is just Xy it can be shown that there is a one-step
convergence independent of the initial value of A. The genefal converg-

ence properties of Algorithm 3.2 are discussed in the next section.

3.5 Convergence Considerations

The proposed algorithm.is a specialization of the method of
multipliers to signomial ﬁrograms with equalify constraints, The con-
vergence of the algorithm is therefore determined by the convergence of
the methﬁd of ﬁultipliers. In this section, the theoretical results
pertaining to the convergence properties qf the method of multipliefs
are stated. ~The theorems quoted here are due to Polyak and Tret'yakov
[34], although recently Bértéekas [35] independently proved similar re-
sults.

The problem of interest is

min fo(zp

s.t. hk(§)

xeX S;RF

]
o
=

(|
H .
N

0

- (3.17)

Where.fo and hk are functions mapping X to R. Note that in (3.17) x is
restricted to X. The augmented Lagrangian 2(5}'A) K) can be constructed

as _ ‘ 9
2, A, K) = £ + 2" h(x) + K[ |nG)|[” (3.18)
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where h(x) = .[hl(g)’ cees hk(E)]' and || . || is the Euclidean norm.
Then a primal-dual pair can be defined as follows
(®) S min 2(x, A, K) | o (3.19)
- s.t. xeX
~and
(D) max dK(A) ' - (3.20)
s.t. e rY
where the dual functional is defined as
4G (M) = nin 2(x, 1, K) . (3.21)
s.t. xe X
Suppose that at (x*, A*¥), x* is a local minimum of (3.17) apd together
with A% satisfies the second-order sufficient optimalify conditiohs.
Also assume that theiHessian matrices V2f(§) and Vzhk(g) are Lipschitz
in the neighborhood of x*. Then the following two theorems are valid.
Theorem 3.1
| | For every A in the bounded set Y = {} : []A - A% < p},
there exists a number K*(p) such that for K > K*(p), the following are
true: a) (P) has a unique 1oqal minimum ; in the neighborhood of x*;
'b) 2 (x, A} K) is locally convex about x%;

c) For some scalar c, > 0,

[1% - =[] < o 1a - 2%}/k, x> xs (3.22)
12+ 0@ = 2| < e f[a - 2] /%, ¥ & > xx (3.23)

Theorem 3.2
For every p, there exists a number K*(p) such that if K > K#,
the dual functional dK(A) is twice differentiable and strictly concave

with respect to A . Furthermore, the first and second derivatives of

dK(l) are given by
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V4, () = h(x) | (3.24)

Va0 = 3@ 2 26, A 01 3@ (3.25)

" where J 1is the Jacobian of the equality constraints.

Theorem 3.1 proves not only the existence of local convexity
at‘zfg but also the convergence of é_to X* as.A_+ A*, Furthermore, the
rate of convergence is estimated by (3.22) - (3.23). If K is finite, a
linear rate is in effect. If K + =, the rate is superlineér.

Theorem 3.2 gives the differentiability properties of the dual.
functionél dK(A). The.theorem also bears relevance to the choice of the
updating rule for A. This point is discussed further in Chapter V.

The coﬁvergence of the overall algorithm relies on reaching a
-local minimum of fhe primal problem (P). vThis is equivalent to the ex~
' ecution>of Step 2 of the proposed algorithm in which the Avriel-Williams
algorithm is used. That the latter algorithm yields a local minimum was
proved By Avriel aﬁd Williams [5] using Zangwill's Convergence Theorem
- with some regularity condition imposed on the inequality constraints.

It follows that subject to the suitable assumptions, the proposed algo-

rithm éonverges.

3.6 Solution of the Subproblem

The proposed algorithm, as stated in Section 3.4.3, leaves un-
specified two major steps: the solution of the subproﬁlem (3.9) apd the
updatiﬁg formulaé for A and K. In tﬁis section the discussion is focﬁsed
on some ways of splving the subﬁroblem. Considerations on how A and K
should bé updated are deferred to éhapter v,

'A:significant property of the signomial program defined by (3.9)
is that the program.is likely to have a large number of terms. Specifically,

q
if gp+k(§) has Nk terms, the subproblem (3.9) has kgl Nk(Nk+l)/2 terms more
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than tﬁe éfiginal problem (3.1). A large number of pfimal terms means that

the degree of difficulty is large, or equivélently fhat the dual problem's
‘dimensionality is hiéh: For éxample, a three-varizhle geometfic program

with a monomial objéctive function and two three-term equality constraints
would have a signomial subproblem whose dual problem has a dimensioﬁalify of 16.
In view of the potential difficulty posed by the dual problem's high dimension-
ality a primal approach hasvbeen selected to solve the subfroblem (3.9)..

Applying a primal algorithm to (3.9) would require either the

'expansioﬁ of the quadratic terms or the avoidancé of.such expansion by

using some_indirect method. The former coﬁrse of action is tedious and
_ entails cumbersome preparation work for data'entry. It would indeéd be de-
sirable to just have.to enter the terms as stated in the equality constraints.
In the’fest of this section, three techniques whiph satisfy this requirement

and which have been numerically tested are discussed and compared.

The first technique, referred to as Method I, is the condensa-

tion scheme of Avriel and Gurovich [36] for algebraic programs (programs

involving algebraic functions of signomials). Consider problem (nl(i)).
Let z 3_|gp+k(§)| = le+k(§) - Qp+k(§9|‘
Then the following problem is equivaleﬁf to (3.9)
. (i) (1) i) 2
min x, + Y O - 2K77) 8p+k‘29 +K 1 %
k=1 - k=1
s.t. .(a) Igp+k(§)l <z
_ , (3.26)
() 0 < Zy s k=1, 2, ..., q

(¢) =xeX
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Constraint (3.26a) (omitting the index subscript) is equivalent to

the following pair of inequalities:

P(x)/G(x, z) &

Q(x) /H(x, z) &

Condeﬁsing G and H at (g,

P(x)/G(x, z) < P(x)/(G(X, 2

Q(x) /H(x, z) < Q(x)/(H(x,

z)

N
~’

N>
~r

P(x)/(0(x) +2) <1,

Qx)/(P(x) + 2) <1

gives

m

==

‘where
oy = (1/6(x, z)) [xj ac;/ale_}E - %
_Bj = (1/8(x, z)) [xj 8H/3xj]2£ - 3
ji= 1,'2, .
o, = 2/6(x, 2); B, = 2/H(x, 2)
Since L) and 8m+1 are both-Positlve, the

be written as the following single inequality:

ma_x' {EZ/am-l-l’ F2/Bm+l} < 22 .

T (x, /%)% (2/5)°™]) <1
j=1 J ] -

G /%% (2/)P Yy <1

(3.27)

(3.28)‘

(3.29)

‘righr'inequalities'of (3.28) can

(3.30)
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_ ~Cmt+1
where : E A 2~ P
= mn o B
A A ~ ; 3.31
G(x, )T (x./x,) I (3.3
j=1
B
- 5 m+l 0(29

H(X, z) n (x /x ) % (3.32)

From (3.28), satlsfylng (3. 30) implies that (3 26a) is - satisfied. Further-

more, (3.30) has to be tight at the minimum. Hence, (3.26) is solved by

soiving a sequence of problems each of the form
nin wgy
s.t. (a) q
2 2/8
W + Y max {E /ak,m+l, F k,mtly < uwo

LI s

)+ c® 4 Z Algi) - x), e <k wi (3.33)

(c) x € X, wi >0, wy>0
In (3.33) w, and w, are positive auxiliary variables satisfying (3.33a)
and (3.33b). They are introduced to put the subproblem into the standard

(1)

format and to eliminate the parameters )\ and K(l) from constraint (3.33a).

(_) is a suff1c1ent1y pos1t1ve constant to insure that the left side of
(3.33b) is positive.

The minimization prdbiem~poséd in (3.33) is a piecewise "pseudo"
signomial program. One way to solve it ié as followé: (i) Use the scheme
proposed in [36] to condense (3.33a) to a monomial, (ii) Simultaneously
condense the signomiéls in (3.33b) and (3.33c)_to posyﬁomials; (iii)Solve
the resulting geometric program, (iv) Repeat steps (i) - (iii) until some
coﬁvergence criterion is satisfied.

The advantage of this technique is that the size of tﬁe original

problem remains the same. A major weakness is the numerical difficulty

that can result from either o or 8

ol being very small. When this

m+1l
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condition oécurs, exponent overflow or gross clipping errors destroy the
convergence of the iterative solution.

The second method, named Method II, exploits the quadratic character
of the penalty terms in the subproblem's objective function. The subproblem
(3.9) is recast as follows:

(79) : - min w,
s.t. (a) 2 + § 2 ( 5 <Aw
e “1 Bk = Yo
k=1 ,
q

2
(b) x +C+ kzl(;\k - 2K) gp+k(§) < Kuj (3.34)

(e xeX, w >0, wg > 0

where C is large enough to make the left side of (3.34b) positive. Since a
primal approach to solﬁing problem (ﬂz) has been adopted, the positive. and
negative terms of all the signomial inequality constraints must be distin-
guished. Such a distinction among the terms in (3.34b) and (3.34c) is
sfraightforward. In (3.34a2) because of the quadratic exponents, the
- separation of positive and negative terms can also be easily carried out
by replacing gp+k(§) with Pp+k(§) - Qp+k(§) and expanding the squares.
Then the constraint (3.12a) can be written as

2. T 2 T

wpt L P @ e, @12 PO G <uy  (3.35)
, k=1
k=1 : : :

: . oo ’ 2
Being posynomlalg, Pp+k(§) and Qp+k(§) are positive for x ¢ X. Hence, Wy
and the first summation constitute the positive terms while the rest are
the negative terms.

The specific primal algorithm selected to solve (3.34) is the



Avriel-Williams algorithm explained in Section 2.6. The algorithm requires

36.

that each signomial inequality constraint of (3.34) be rewritten as a ratio

of positive terms to one plus the negative terms,‘with the.ratio bounded
from above bybunity. The solution to problem (ﬂZ) (3.34) 1is then obtainéd
by solving a sequence of geometrié programs each of which is obtained by
condensing the denominator of each ratio conétréint af a feasiBle point
of (wz). |

The condensation of the ratio version of (3.35) merits special

attention. Written as a ratio of posynomials, (3.35) becomes

q .
2 2 2
w] +k£l [Pp+k(§) + Qp+k(§)]

k=1
If condensation is viewed as an application of the arithmetic—geometric'

q
w, +2) Pp+k(§) Qp+k(§)

inequality, then the multiplication in each squared or product term has to
be carried out. Butvthis is the precise pfocedure that is unwanted. How-
ever, if condensation is interpreted as exponentiation following the first—
order Taylor approximation of the logarithm of a posynomial, then either
the numerator.or thé denominator of (3.36) can be condensed directly in the
mannet of (2.7) - (2.8).

The geometric programs approximating the problem (ﬂz) have been
solved by ngbo's cﬁtting—plane method [12], [16]. The numerical exper-
ience acquired suggests that convergence is attained rather slowly. A
closer‘analysis of the results shows that a gqod part of the computing time
is spent on approximating the constraint (3.34a). This discove;y leads to
the adoption of the:third method detailed in Chapter V following the dis-
cussion of an intimately related algorithm in the‘nekt chapter. Method III

differs from Method II in the following ways: -

< 1 (3.36) -
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1) The objective function in (3.9) is not incorporatea into the constraint
set, as it is done in (3.34)
2) Only the set X is cénvexified by monomial condensation.
3) The nonconvex objective function of (3.9), not its approkimation, is
~ directly minimized over the convei appfoximaﬁt of X.

The numerical results obtained with Method III are detailed in
Chapter VI. As a whole, the results indicate that Method III is preferred.
3.7 . 'Conclusion

In this chapter an algorithm has been éynthesized to solve
signomial programs with equality constraints. The.development of the algo-
rithm has been shaped by three main concepts: the method of multipliers
viewed as.a primal—duél élgorithm, partial duality, and the retention of
.the sfructure of signomial programs for convexification. ‘The algorithm
replaces the original problem with a sequence of inequality-constrained
signomial programs. However, if each subproblem is written out explicitly
in the standard format of a signomial progfam, inconvenience in data
pfeparation and computational difficulty due to.large problem size are
both very likely. To circumvent these probiems; three indirect methods‘based
on monomial condensation have been numerically explored, and one has been
singled out as computationally promising. These methods require no or
limited iﬁcrease-in variables and constraints,.and the effort for data
.entry is the necessary minimum. Finally, the convergence of the proposed
- algorithm is related to that of the method of multipliers and the Avriel-
Williams algorithm.

The ptoposéd algorithm, as stated in Section 3.4.3, serves as a
broad framework for specific methods. The conditions for the algorithm's

convergence permit wide latitude of arbitrariness in casting the algorithm
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into a more concrete form for implementation in é‘computer. One major
arbitrary area, the algorithm for solying thé'subproblem (3.9), has been
discussed and will be continued in Chapter V. The other important uﬁ—
specified step in the proposed élgorithﬁ is the updating rules of A and

K. The discussion of theseArules .is.deferred to Chépter'V. In both parts;
the selected procedures not only must satisfy the basiclconditions for
convergence, but also éhbuld exhibit experimental efficiency iﬁ soi&ing
problems. In Section 3;6, the computatiénal performance of the three
indirect methods has been assessed on the basis of numerical ekperience
acquired in the process of selecting a suitable method.' In the subsequent
chapters, furﬁher computational considerations afe discussed and more

numerical experimental results are offered.



IV. A PROPOSED ALGORiiHM FOR INEQUALITY—CONSTRAINED
SIGNOMIAL PROGRAMS |

4.1 Introduction

The Method II discussed in Séction.3.6 for éolving the subproblem
(3.9) is effectively the application of.the Avriel-Williams algorithm to
transforn a nonconveé signoﬁial program to a-sequencevof convex geohetric
programs‘via posynomial condensation. Eachiof the convex géometric programs,
in turn, is s§lved by Dembo's.[12], [16] cutting plaﬁe algorithm. Iﬁ this
method, the signomial dbjective function is treated as a constraint through
the use of an édditional variable. The computational éxperience associated
with Method II indicated that convergence is slow, that many cuts may be re-
quired, and that most of required cuts are to satisfy the constraint defived
from the objective function. A suspected reason why tﬁe objective function
turned constraint requires so many lineafizations is the twq—stage approxi-
mation of its many terms with a single monomial term. To o&ercome this:
probable block.on achieving aﬁceptable coﬁvergencé, an algorithm is proposed
in which only the nonconvex feasible set of an inequality-constrained signomial
progfam is convexified and then outer linearized. The nénconvex objective
function remains unchanged in the.whole iterati§e process. |

As in any approximation-based strategy, the approkimating problem is
useful only if it can be handled with ease. 1In the problem of interest, an
effective_algorithm for minimizing a ndncoﬁvex function subject to linear con=-
straints must. be selected. A promising candidate in this regard is the reduced .
gradient method first suggested by Wolfe [37]. Its generalized vefsion [38] |
for nonlinear constraints was ranked as among the best of the techniques

tested in Colville's study [39]. The reduced gradient method is a hybrid of
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simplex—tyﬁe algorithms and those that are gradient-based. Thus, if the solu-
tion point is an interior boint, themethod zeroes in towards the éolution

point with the characteristic rate of the steepest descent method. This feature
is a potential aid to accelerate the solution of the approiimating convex
program either by reéching‘an inferior soluﬁion without too many cuts, or by
ending at a point at which a deep éut can be made.

The algorithm proposed in this.chapter is, in principle, applicable‘
to all inequality-constrained signomial programs. For this reason the préblem
solved by the algorithm-is formulated in Section 4.2 as a general signomial
program. In Section 4.3, the algorithm is developed and éompared with related
algorithms. iImpbrtant computational considerations are elaborated in Séction
4.4, Section 4.5 repofts the computational experience with the algorithm.

In the lasﬁ two sections, thg inclusion of simple upper-bound constraints .

-and .the extension to non-signomial objective functions are considered.

4.2 Problem Statement

The problem to be solved is

(T) | min g_(x) : _ (4 1
s.t. xXeF '

where F = {x: x ¢ R™; 0 < xL < x; gk(gj <1, k=1,2, ..., p} and gd(g) are

signomials. Note that F differs from X of (3.1) only in that there is no simple
upper bound éonstraint on x in F, Considération of such type of coﬁstraint is
taken up in Section 4.6. | |

A primal appréach is adopted to solve (4.15, Such an approach is

favorable if the problem has a high degree of difficulty and/or slack primal
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constraints. The algorithm to be discussed is particularly useful if the
objective function gé(g) possesses so many terms that approximating it with

a monomial is not preferred.

4.3 The Proposed Algorithm

4.3.1 Preview

Consider the'problem.(T) in (4.1). It is aAnonconvek program whose
- nonconvex feasible set F can be conveéified by posynomial condensation. In
the Avriel-Williams algorithm, the objéctive function gé(ﬁ) is first trans-
formed into a constraint and addedbto the set F before conve#ification. The
whole problem is thus replaced with an’appro#imating convexbprogram. In the
algorithm proposed in this seétion, the set.F is.not augmented wifh g6(§).
Hence, only F is convexified while g0(§) remains unchanged. The,origiﬁal prob-
lem in this case is approximated by a subprqblem, séy (ST), involving the min-
imization of the‘original nonconvex cost over an approximating convex feasible
set. The subproblem is then solved by a combine& reduced gradient and cutting
plane (CRGCP).algorithm to be detailed later in tﬁe chapter.

The proposed method has two major steps: the convexification of the

.set F and the solution of the resultant subproblem (ST) by a CRGCP algorithm.
The discussion of how F can be convexified by posynomial condensation may be
found in Section 2.6, and is not dealt with here. The reduced gradient method
as proposéd by Wolfe [37] is stated in the next section for completeness and |
for explaining subsequent algebréic manipulations and computatibnalvconsidera—
tions.

4.3.2 The Reduced Gradient Method

Assume that the problem to be solved is
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min M(x)
s.t. Ax=Db, x>0 (4-2)

where A is an m x n matrix and m < n. Let x be partitioned into basic (depen-

dent) wvariables Xy = (xB s eens me)' and nonbasic (independent) variables

1 :
= ( vos )'. Without any loss of generality, a nonsingular square.
Xy = Oggpo Xy , nevd |
m X m matrix B can be defined as that consisting of the columns of A associated
with X5 Then
| Bx, + Cx, =b .
B2 (4.3)
Or | x; = -B7lox, + B~1p | .
where C are the colums of A after thoseAbelonging to B_have been deleted.
The reduced grédient, i.e., dM(x) /dEN,. is

dM(z)/d_?:N = VEN'M(E)_— C'(VB')'-1 VX M(x) - (4.48)
_ N _

The strategy of the reduged'gradient method is té decrease M(x) by maneuvering
only in the subspace of Xy subject to the simple éonstraint §N > 0. The
equality constraint Ax = b is satisfied by (4.3) “and the positivity of Xg

is assured by suitable restrictioﬁ on'the step size in Xy Fufthermore,
whenéver a basic variable vanishes, a simplex pivot operation is done to inter-
change the vanishing basic vafiabie with a nonzero nonbésic variable. Algo-

rithm 4.1 states formally the reduced gradient method for solving (4.2).

Algorithm 4.1 (Wolfe's Reduced Gradient Mehtod)
Step 1: Set k = O;'E? satisfies Agé = b.

SteRAZ: Compute VM(EF) and .
vk =Vx M(EF) + C?EF
_N

where g} = - (BT)—l-V M(zk)

Step 3: Define the descent direction s as

. ko . k k
i): Syi = 0 if gNi = 0 and vy >0
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k k

Else, syt © Vs
oy k-1 'k
ii) sy = “B “Csy

Step 4: 1If ]]s§|| < ¢, € >0 and small, stop; Else go to Step 5.

k k
i s

L is; <0, i=1,2, eee, 0}

Step 5: Find 1) ‘A; =>min'{—x§/s
1) A

‘Step 6: Set Ak = A

L K kK

1f 51;'1 >'0, set k = k+1 and go to Step 2.

minimizing M(EF + A§F),,X € (Q,kﬁ]

* = ow

Eise go to Step 7.
Step 7: "Perform a pivot oéeration on B-l to interchange the vanishing basic

variable with a nonvanishing nonbasic variable, Update the indices

of the basic and nonbasic variables. Set k = k+1 and go to Step 2.

From the foregoing summary of the reduced gradient method, four

important requirements have‘to be met if Algorithm 4.1 is to be applied. They
are 1) the constraint structure of (4.1) has to be satisfied; 2) an initial
feasible poiﬂt has to be available; 3) an initiél basis matrixvand its in-
verse has to be deterﬁined;bé) the gradient of the objective function can be
calculated. The next section gives the necessary algebraic manipulations for
casting the outer-linearized vérsion of the subproblem (ST) into the form of

(4.1). Consideration of the other requirements is found irn Section 4.4,

. 4.3.3 Algorithm Develdpment
Consider the problem (4.1). Let gk(z) = Pk(g) - Qk(z), k=1, 2,

.++5 P, where P, and Qk are posynomials. The feasible set F can be rewritteh

k

as

Fefx:xeR0<x <x; P 0/(1+0,®) <1,k=1,2, ..., p} (4.5
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A

Assuming that a point £ ¢ F is known, the set F can be approximated with a

smaller set ﬁ'by applying posynomial condensation (see Section 2.2) to tﬁe
denominator of Qk(ﬁ) atlg to yield the monomial ak(k,g). The set F is then
defined as - | | | o

F={x:x e B%; 0 <'§F §_§j Pk(z)/ak(g, % <1, k= 1,>2, s P} (4:6)
The appro#imate problem (ST) is ‘
(ST) min go(39 's.t. X € F : A(4.7)
Both probiéms (T) and (ST) are nonconvex programs because F and ?iére gener-
ally nonconvex for 2_2_2} > 0, é_e R®. But if the logarithmié transformation

z; = 1n X; 1s used to replace x with z, the problem equivalent to (T) and (sT),

Trespectively, may be stated as follows:

(T)z ‘ min go(g) ‘ s.t; ze Z | | ' ' (4.8)

where | i
Z={z:2eR® 2" <2 P@ /AL +0(2) <1, k=1, 2, ..., p}(4.9)

and

(sT), min g, (z) s.t. ze 2 ' ‘ (4.10)

where

Z=1{z:2z¢eRM "< g, P(2)/0 (2, 2) <1, k=1,2, ..., p) (4.11)

Note that now problem (ST)z is convex. Another formulation of (ST)Z equiva-

lent to (4.10) - (4.11) is

(ST, omin g (2) . s.t. ze z, (4.12)
where
Zp=1{z:zeRY 2" < g, G (z, 2) <0, k=1,2, ..., p} - (4.13)
and ¢, (2, 2) = In(Pk(2) /Q(z, 2)) | (4.14)
' In (4.12) - (4.14), the following statements are true:

A . ’ . . m
1. Gk(gxg) is a convex function ¥ z ¢ R, zL <z
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2'..ZL=Z

3. zL is a convex set.

In Problem (ST)ZL; a nonconve;{ func‘tion. is minimized over a convex
set. .To solve this problem, a combined reduced gradient and cutting plane
algorithm is used. The algorithm's strategy requires 1) the outer lineariz-
ation of the éet ZL, 2) the casFing <_Jf the problem formulation inté that of
(4.2), 3) the use of Algorithm 4.1, 4) if required, the improvement of the ap-

proximation of ZL withvcutting planes.

L° replace the convex function GI;(_z_'_,g) with its

' m
first-order Taylor approximation Gk(g_,_ﬁ_) +(z - a)' VGk(g,_ﬁ_) for some a € R

To outer linearize 7.

satisfying a > _z_L. Define the resultant polyhedron 2L c R" as

2, ={z:ze®% 2l < 2z, Ga,2) + (z-8)" VG (2,2) <0, k=1,...,p)  (4.15)

Because of the convexity of Gk(_z_,g), ZL

.o i;sp] be the vector.of slack variables.” Then define the hyperplane

A L - -
< Z;. Next let g =2 - 2 and L =

L

I

I-ICRUHLp as _
B= 0@, 5) @) e RT3 02 (@, 205 [0 T, £) = BH4.16)

where J is the p x m Jacobian matrix [BGk(g,_:z_)/azi],- I is the pth-order ident-
ity matrix, and b is the p x 1 vector —[(EL - a)' VGk(g,_ﬁ_) + Gk(g,_z_)]. The
problem suitable for s'olutioﬁ by Algorithm 4.1 is

(LST) min g, (%)
(4.17)
s.t‘. (z, Es) e H

L * ‘ *
Let the solution to (LST) be t (or correspondingly, some z ). If

. . o '
Z € Zps proceed to the next convex approximation of Z. Otherwise, add a

cutting plane to Z

L’ The cutting plane is obtained by linearizing the most

- *
violated constraint of ZL at z .
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4.3.4 The Algorithm

In thié»section the proposed algorithm for solving inequality-con-
strained signomial programs of the type (4.1) is formally stated as Algorithm
.4.2.

Algorithm 4.2

S(k)

‘Iteration O: Set k = 1. Assume that a point 2 € Z is known

‘Iteration ki ‘Step 1: Condense at ﬁ(k) to pfoduce problem (ST)Z

'Step 2: Set i = 1. Set al®) = (¥

'IStep,3: Linearize EL at a(k) and set up problem (LST).

j‘SteE 42 .Solvg (LST) by Algorithm 4.1. Let the solution (in
the z - domain) be Z(i).

'Step 5: If E(i) € Z go to Step 7. Otherwise determine thé most
violated constraint, linearize it at E(i), and-use the
linearization as the next cutting plane. Proceed to

~ the next step.
' 'Step 6: Deterﬁine a new basis and abnew feasible point for proﬁ—

lem (LST). Set i = i+l and go to Step 4.
"Step_7: If.i(i) satisfies the termination criterion, stop. Elsé,
set k = k+1, 2(k) = E(i), and'go to Step 1.
Step'6‘has to be included because before Algérithm 4.1 éaﬁ be épplied

a feasible point and a basis must be available. How Step 6 is carried out

is. among the practical computational considerations taken up in Section 4.4

4.3.5 The Algorithm in Perspective
Algorithm 4.2 has been developed to solve signomial programs character-
ized by a high degree of difficulty and by an objective function with many terms.

The main basis of the algorithm is that a set defined by signomial inequalities
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caﬁ be readily approiimated by a convex set via posynomial condensation. In
this regard, the algorithm is similar to the Avriel-Williams algorithm. There
is, however, a major difference between the two; Unlike the,Avriel—Williams
algorithm, the approach taken here does not incorpqrate the objective func-~
‘tion into the constraint set. ItAis hoped that by miﬁimiéing the original
generally nonconve# objéctive function over the approiimatiﬁg convex set,
convergence towards the original éolution can be attained faster. 3
The.decision to approximate only the feaéible set»aﬁd leave the
objective function untouéhed means that an efficient method for minimizing a
nonconvex function over a conve# set must be employed. A ﬁfomising method is

the novel algorithm proposed in this chapter. The algorithm merges the ability
of Kelly's [40] cutting plane method to handle convex constraints with the

efficiency of the reduced gradient method to minimize a general nonlinear func-

tion subject to linear constraints.

Io tackle the issue of feasibilit&, the algorithm eﬁploits the con-
vexity property by adopting the strategy of relaxiﬁg the constraints by outer
linearization and pfogressively tightening thé‘constraints with cutting planes.
The reduction of the nonconvex cost over the set defined by the relaxed con-
straint (a convex polyhedroh) is achieved by the.feduced gradient method. Thus
the algorithm_translates.into a sequence of programs each solved by the reduced
gradient metho&. In contrast, Kelley's cutting‘plane method for convex programs
requires the éolution of a sequence of linear programs. The likely benefit of.
Algorithm 4.2 is that because maneuvers into the interior of the feasible set
are allowed, an interior solution point can be reachedAsooner, or if the sol-
ution is a boundary point, feésibility can bé achieved with deeper cuts.

Another interesting comparison that can be made here is with Abadie

and Carpentier's [38] generalized reduced gradient (GRG) algorithm for handling
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nonlinear constraints. Because GRG is designed for general ndqlinear~constraints,
feasibility is maintained in eaCH iteraﬁion by a restoration phase in which a
system of nonliﬁear‘equations (the constréints) is s@lved by Newton's method.
‘In the préblem of interest in this chépter, because of the conve%ity of the
feasible set, the need to ﬁaintain feasibility in each iteration is dispensed
with and is replaced withAa relaéation_strategy [41]. 1In GRG,Athe inverse.
of the Jacobian of the constraints Qitb respect to the basic variables has to
be eithef exactly or approximately updated at each point or when the basic
variables are changed. This step can become a heavy computational load.

In the suggested combined approach, because the relaked.coﬁstraints are just
" linear equations, the basis' inverse is constant and is easily updated by

simple pivot operations when the basis is changed.

4.4 Considerations for Implementation

Together, Sections 4.3.2 and 4.3.4 spell out clearly'the major steps
of the proposed technique for solvihg signomial programs; However, if the |
proposed method is to be implemented in a éomputer, some impértant practical
questions need to be answered. How can the point é‘i) € Z be found? How can -
the initial basis and the initial feasible point be derived before a call to,b
the reduced gradient method (Algorithm 4.1)? How can the basis' inverse be
updated? How should the one-dimensional minimization required in Step 5 of
Algorithm 4.1 be carried out? What are the termination criteria and toler—

ances? These are the questions to which this section is addressed.

4.4.1 Finding a feasible Point of a Signomial Program

- A requisite for approximating the set F defined in (4.1) with a
smaller disguised convex set F is a point X € F. To find X, Dembo's [16]

Phase I method is used. In thié method, a sequence of programs each of the
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form

(PHST) min @

p
Oy oy

k
s.t. .Pk(z)/(l + 0 (x) < oy : (4.18)
0<xl<x, 1<w,k=1, ..., p
is solved. Each problem (PHSI) is solved by Avriel-William's algorithm in

conjunction with Kelley's cutting plane method. (See [12], [16]). The se-

k

solution to (PHSI) has been obtained.

quence 1s terminated either if w, = 1, V‘k,_or some wk<# 1 when the optimal

4.4,2 Getting an Initial Basic Feasible Solutiop of Prolbem (LST)

-~ No Cut Added

From (4.16), the problem (LST) is defined as

min g, ()
s .  (4.19)

where L =2z -z, J = [BGk(gjéD/BZi], b = —[(EF - a)' VGk(§92>+Gk<EA 2)];}5 s.Z,
and a € RY satisfying E,Z.EF-: A convenient initial feasible solution to (4.19)
can be obtained by the following lemma.

- Lemma 4.1 |

Assume thét 2 e Z and let z = z - EF’ If a = % and és =b ~ J¢

then the pdint (é, é%) is a feasible solution of problem (LST).

Proof:
By the ﬁypothesis and Lemma 2.1,
622 = 1o B(D/QLD) = In BUD/A+ QD) )\ ¥k (4.20)
. But é_e Z., It follows that

In(P, (2)/(1 + Q (DN < 0 . Ak (4.21)

Or for some > 0,

g
25

G (z, 2) + 5 =0 T A (4.22)
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~Adding to both sides (4.22) the quantityjqé leads to the desired conclusion.
Q.E.D.

While the point:(éyés)is feasible for (4.18), its nonzero basic vari-
ables still have to be identified. A basis of (4.19a} has to be specified. Or
equivalenfly, a set.of m .liﬁearly independent columns of the composite mx (mtp)
matrix [J:I] has to be known. A procedure to identify a set of.sucﬁ columns
.is e#plained in the next paragraph.

lLet the index sets V and W be defined as

v

[]

{kzcsk =0} .= {yl, Vos eees le} (4.23)

{k:QSk > Q} = {wl, Wys woes wLZ} (4.24)

Clearly, Ll + Lo = p. Reorder the rows of (4.19a) such that the first L1 rows

w

are indexed by V and the'last L2 rows, by W. Let the reordered equation with

T =£ and ¢ = 25 be written as

S
o ', ! o z
i "Ly = -
- === - -'I—- - - : - = E . (4'25)
S 1 0 I - |
i : Lg Es
§

It is assumed.that the components of és have bgen appropriately’recbrded. Then
a basic solution to (4.25) consists of Ll variableé selected from the nonzero
elements of é_ and the last L2 nonzero slack vafiables. This basic soiutidn
is feasiblg by Lemma 4.1. The L1 variables from élmust correspond to lin-
early independent columms selectéd from [—g—] or simply from Q. An algo-
rithm such as Gaussian elimination used for the determination of a matrix's
rank can be used to pick the desired Ll'columnSa Let the L1 iiﬁearly
independent colums of [—g—] be [—g—] wﬁere Qis a Ll x_Ll matrix and S is

a Ly x Ly matrix. Then the initial basis B of (4.25) is

Pols

B= | ~=-p---| | (4.26)

wnt
=
=
(V]
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Since @ is nonsingular by construction, the initial inverse of the bas;s is

TSR P B _ . (4.27)

Hence, in general, only a smaller matrix Q need to be inverted to obtain the
full basis inverse.

To summarize, the following steps are undertaken to obtain an ini- |
tial basic feasible solution to the problem (LST) with no cut added:

. . ~ A ‘»t\- L
1. Obtain a point 2 ¢ Z and set a = %, t=2-2z .

2. Generate the matrix J and the vector b. Set. L, = Ji-— b .

3. Reorder J, b and QS such that the first Ll rows are inde}-ted by V
while the last L2 Tows are inde#ed by W.

4. Identify L linearly independent columns in Q. Let these columns

-~

form the Ll XLl matrix Q .

5. Invert Q and generate B_1 according to (4.27).

4.4.3 Getting an Initial Basic Feasible Solution of Problem (LST)

- After the Addition of a Cut »

At the end of one application of the reduced gradient algorithm
(i.e. the completion of Step 4 of Algorithm 4.2), let the solution be (_é,és). _
Suppose that at this solution point, at least one of the constraints of the

convex set ZL is violated. Let the most violated constraint's index be r.

Thenwith_z_=£+z

s Gr(i,g) > 0. The cut to be added to the polyhedron
2L is the supporting plane of Gr(g,_?:) at z = z. Expressed in terms of &, the

- equation of the new cut is

B'z+y=c o a9
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where 8 = VGf(5»2>» e = ‘L(EF - z)! VGr(g)g) + Gr(392>] and Y is the new slack

variable associated with the new cut. Equation (4.25) becomes

-— — p— — -—

i I 1 o
Q| Ly | _E_ . _
Ts T oo : - - (4.29)
S, 0 | 1L, z, = |-Z- .
Sk °
l Y
L —l- | L - L. ~

Let ¥ = ¢ = ﬁ'é. Clearly, (—E’*Z—s’ ¥) is a basic so?.ution to (4.29).
However, it is not feasible since by the assumption that Gr(éﬂg) >0, y<0.
A method to drive Y into the feasible set defined by (4.29) and the positivity
constraint on'(é,és,v) is to solve the.following auxiliary problem (AUX)
(AUX) o min -y
' : (4.30)
| »s.t... (4.29), £ >0,z >0
As it is formally stafed, the éroblem (AUX) is a linear program in a form ame-
nable to the use of a composite algorithm [42] to obtain an initial basic
feasible solution. But becaﬁse the reduced gradient method allows nonzero
nonbasic variables, the point (é,és,?) cannot be ﬁsed as the initial basic
feasible point for the LP solution éfv(AUX). Using a completely different
étarting point would not only require a Phaée I operation but also would des-
troy the conﬁinuity of thé original iterative procéss. ‘A very convenient
answer to this difficulty is to solve problem (AUX) by a slightly'modifiéd Ver-A
sion of the reduced gradient method.

The only modifications are the ijective function and the definition

of the bound.)\M on the stép size variable _X. The usual bound is defined as

Ay = min {—xi/si Psy < 0, ¥ i} (4.31)

For solving problem (AUX), (4.31) is changed to the following
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Am = min'[min'{-—xi/si Pxg > 0, sy < 0,*#1},A{—Y/SY: Yy <0, sy > 0}] (4.32)

where'sY is the component of the d%rgction vector s along the new‘dimension of
Y. The criterion specified by (4.32) ensures no new infeasibility, and elimin-
étgs the infeasibilitj due to vy ? 0 as soon as it is possible. If both A and

S_ are negative, then the constraints are inconsistentf_ Once y > 0, the

bound given by (4.31) is used, and the original nonconvex objective function

. gé(g) is in force. The initial basic feasible solution to the problem (AUX)

is simply'(étéé,?). The starting basis' inverse is
| v
-1 [ '
B "= |-=-~---- - - - = (4.33)
| :
|

where B—l is the basis' inverse at the termination of Step 4 in Algorithm 4f2,
and w' is the vector of the components of B' that are éssociated with the Basic
variables in éf Note that once y > 0, 5_1 serves as the starting inverse for
the next execution of Step 4 in Algorithm 4.2. Thus, from a computational
viewpoinﬁ, using the modified redﬁced gradient ﬁethod does ﬁot perturb too much
the sequence of solution poiﬁts obtained by Algorithm 4.2 , Furthermore, the
additional programming effért required té implement the method is very small
since the method is still within the algorithmic framework of the main reduced

gradient method.

4.,4,.4 A Linear Search Method

Like other gradient-based algorithms, the reduced gradient method

requires in each of its iterations the solution of the following one-dimensional

problem:

£0Xy = min £00)

]

min gO(EF + A§F)
(4.34)
s.t. A

.

(0, A

[P]

)
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The conceptual algorithm calls for an ekact linear search.'.In.practice, how-
ever, e#act linear searches often‘consumg an eéorbitant part of the total com-
puting time of a problem. Generally; approgimate linear mihimization is.found
adequate to achieve convergence at a reasonable rate. The iﬁekact approach is .
adopted in this séction.

B IneQaCt linear search methods generally fall'undervthevfollowing
categories: direct searches involving function values. only, low-order curvé
fitting requiriﬁg both function and/or gradient values, and nonéptimal step
methods; The first two types are‘effectively iterative éphemes which produce
a sequencé'converging to the true minimizer of g(A). The nonoptiﬁal step
method subscribes to a different viewpoint,‘namely, that liﬁear search is a
step imbedded in allarger algorithm. The convergence of the larger algorithm
can be, and.is, maintained as long as the cost function is decreased suffic-
iently in each linear search. Nonoptimal step methods are prefe;red becaqse
they are operatiOnally'well defined and are efficient. Examples of_ﬁonoptimal»'
step_methods are the step size rules of Goldstein [43] and Armijo [44]. oOther
strategies were outlined by Bard [45].

In the problem (LST) that is of interest; the signomial ijective
function goﬁg) is continuous and différentiable over H. Furthermore; the
evaluation of the derivative at a trial point requires very little additional .
effort once the function has been evaluated.l This obéervation suggests that
a low-order polynomial fit, sugh»asvthe cubic fit scheme derived by Davidon
[46] is suitable. " However, a cur§e fitting scheme by itself may still reqﬁiré

‘numerous repetitions if the termination criterion is the usual reiative change
in f(lk) or in Ak. An appealing approach is to couple Armijo's test for suffic-

ient descent to the cubic fit method. The strategy is to use Armijo's step size
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rule except when it is clear that a relative minimum exists in the interval
(0, Xp]. This condition is confirmed. when df/d)\ < 0 at A = 0 and df/dA >0
at Am. The proposed linear search method, stéted as Algorithm 4.3, is thus

a synthesis of the cubic fit method and Armijo's step size rule.

‘Algorithm 4.3

'Step 0: Given o ¢ (0,1), B € (0,1), vy € (0,1), and A, > 0. Let A, be determined
by Step 5 of Algorithm 4.1. Set Ag = min [A_,A,] and Ap = 0.
Calculate f(Az) and f'(Az).

Step 1: Set A = A » and evaluate £(1) and £'(}).

Step 2: If f'(A) > 0, go to Step 4. Else go to Step 3.

Step 3: Set A = Am if'f(Am) < f(Az) and go to Step 5. Else,}lm = yAm and go
to Step 1.

Step 4: Apply Algorithm 4.4 to flt.a cubic through((kz, f(Al)) énd (Am, f(lm)).
Let the minimum estimate be A.

Step 5: If £(}) ;'f(xz).i -a|x = Azlllfﬂ(xl)l,,xk = A stop. Else continue.

Step 6: If X = Am,'go to Step 7. Else, set‘)\2 =X if £'(}) < 0, or A, = A
if £'()) > 0. Go to Step 4.

Step 7: X = Bllm.AvGo to Step 1.

m

Algorithm 4.4 (Cubic Fit)

Step 0: Given Ao, A, £(A)), £(A), £'(X,) and £'( ). Assume'f{(xz) <0

T
and f.(km)_i 0.

I

1)+ £10) - 3EQ) - £00) 1 Gy = A)
[ 2
2~ 1Y
Ai) (fﬂ(Am) + u, —}ul) / (ff(lm) - f'(kz) + 2u2)

Step 1: Calculate ul

u - £' (1) f{(xm)]l/z

w
t
®
N
>

]
>

B

]
~~
>

|
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Algorithm 4.3 combines the useful features of a cubic fit and Armijo's
step size rule. The rule assures convergence by stipulating sufficient descent
before a trial point is accepted as the neét solution point; But the ith trial
pointis not always obtained by the relation i(i) = Bikm(o), as it is the caée
in Armijo's algorithm; Wﬂen the situation warrantsvit, the ability of a cubic
fit to rapidly pick a good interior estimate is exploifed to pfoduce a trial
point.‘ |

4.4,5 Optimality Criterié, Feasibility Tolerahcé, and ﬁpdating,the

Basis' Tnverse

The main problem (T) posed in (4.1) is a nonconvex program. Solving
(T) numerically with an algorithm generally leads to at best a local minimum
at which the Kuhn-Tucker optimality conditions must be satisfied. In practice,.
unless a Lagrangian-~type algorithm is used, testing the first-order neceséary
6ptimality conditions is likely not possible since the optimal Lagrange multi-

pliers may not be known. Even if the multipliers are known, checking the Kuhn-

Tucker conditions at the end of éach iteration may create too large a compu-
tational load. The whole question of knowing when optimality ié reached.Be—
comes a trade-off between reliability and extravagance. For the sake of com-
putétional efficiency, simple but imperfect stopping rules far terminating the
iterative process have to be adopted. The rule adopted in this chapter is:
Terminate if the relative change in g,(Z) < € and the relative change in 5;5_9,
where ¢ is a small preaSSignedvpositiye number.b If either 8, O L 0, replace
relative change with absolute change. Depending on which quantity is of in-
terest, the rule may be relaxed in two ways. If only 8 is important (e.g. only
cost, not the design parameters, is sought), the test on the relative change in
% may be dropped. Analogously, if only the accﬁracy of ¢ is emphasized, the

test on g, may be avoided. An excellent operational check on the answer obtained
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by the previous stopping rules is to perturb the solution and resolve the
problem with the perturbed point as the starting point.

Another important issﬁe that must be faced in implementing a con-
ceptual algorithm is the definition of feasibility, or more generally, the
definition of inequality and equality. Theoretically, whether a and b are
scalars or Vectors, the egpression a s_b, a z_b, and a = b are unambiguous.
However, in the implemenfed vérsion of'an-algorithm, begause numbers are repre-
sented in finite lengths, interpreting inequalities and equalities in their
strict mathematical sense could just spawn a myriad of nuisances such as un-
expected early program termipation, undesired negative quantities, division by
zero and other difficulties. For this reason, in the implemeﬁtation of this
thesis' algorithms, inequalities and equalities are replaced with e~-inequali-~
ties and e-equalities. This means that given scalars a and b, and a small
e > 0, a j_bv+ € replaces a <bj a>b~¢, a>b ;aﬁd la - bl < € replaces a =
If 2 and b are vectors, then §_§;§_+ € %’ai <b, Fe. | Similarlyilg >b-e3
a; :; b,- e > and |la - b|] <e3a=>b. Note that the Euclidean norm is used.

The final point considered in this section is the updating of the
basis' inverse B—l = [bi 1. The procedure followed is very similar to that §f
the revised simplex methgd; Let ¥ be the index of the leaving basic variable.

' The key steps are: (1) Determine a nonzero nonbasic variable, say, Ty Let

. . 5 R ' _
its associated column be»gs. (2) Calculgte Yo = B a- If Yps = 0, return to

(1) to determine another variable. If Yes = 0 for all s; the system is ill-
defined. (3) Assume that Yre # 0. Let ﬁ-l = [Sij] be the new inverse. Then
bij - bij - (yisbrj)/yrs’ tfr
. (4.35)
b.=b./y , i=r

Tj rji’‘rs
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4.5 Computational Experience '

4.5.1 Posynomial Representation
A posynomial P(x) is usually written as =

n

P(?_i_) = z ci
i=1 N

3. .
i i i ‘
%y 1, ¢ > 0 ¥1, x>0 ¥ (4.36)

=g

1

An alternative way of expressing the function P is to map the positive

. . m . .
orthant x > 0 (x-domain) to the real space R (z-domain) by the logarith-
" mic tfansformation-zj = In xj. As a function of z, P can be written as

n ) m

e - 121 i exp(jZ1 2347 7y € R’.)VLJ' (4.37)

The right side of (4.37) is defined as the exponential form of P(x).
While the expression in (4.36) is generally nonconvex, the function P(z)
is always a convex function of 2. The hidden convexity of (4.36) over
the whole real space is thus unveiled by the logarithmic transformation."
Further discussion on convex-transformable nonconvex functions may be.
found in [47].

The exponential form has more than a formal significance.- In
this chapter's primal approach to solving signomial programs, the expon-
ential form is favored for two important practical reasons: 1) TheAprob—
lem {LST) soived by the proposed combined reduced gradient~cutting plahe
algorithm is defined in the z-domain. 2) The CPU time required b§ the
algebraic operations in the exponential.fofm is much less than that of
.the ordinary form. The second reason can be easily explained by consid-
ering the computational effort required to compute (4.36) and (4.37).

The first.equation requires nm multipliéations,.nm exponentiétions, and
~nm-1 additions , while the second requires nmtn multiplications, n ex-

ponentiations, and nm-1 additions. A comparison between the two shows
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that the exponential form requires n‘multiplications and n(ﬁ—l)'additions '
more, but n(m-1) exponentiations less than the‘ordinary form. Becausé
an exponentiation usually requires'much more time than an addition ar a
multiplication ;, using the exponential form iq any repetitiye calculé—
tion of posynoﬁiais should defiﬁifely be prefefred. It is true that if
the initial starting point and’the‘final solution are given ih the x--
domain, there is the additional overhead of taking m 1ogérithms and m
exponentiations. This overhead, however, becomes insignificant whén
compared to‘the savings in the iterations. In an attempt to gain some
idea on how much saving can be obtained, Dembo'é [16] program was com-
piled in two.versions and then used to solve a four-variable, two-con-
straint problem.b The improvement in total CPU time of usihg (4.37) in.

- lieu of (4.36) was about 26%.

4.5.2 Software Implementation
In this section the software implementation in FORTRAN IV of
.the proposed CRGCP algorithm is briefly described. The complete software
package,.hereafter referenced-as SP, ‘consists of a méste: program -
MAIN ﬁhich oversees the operations of 16 subroutines. Asvé whole, the
computer program SP has the following highlighting features:
1., It contains all the capabilities of Dembo's program
cep [161. |
2. It is compétible with the I/0 format of GGP except for
minor changes in the control cards and in the order of

reading the data of the objective function.

For example, in the IBM 370/168, the CPU time required by an expon-
entiation operation is approximately 17 and 26 times more than that
of multiplication and addition, respectively.
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3. It uses the exponential forﬁ (4.37) for computihg'pdsynomials.

4. It offers a choice of whether GGP or CRGCP should be used.

The choice is indicated.by the value of a single control -
 parameter. |

5. 1If CRGCP is- selected, a function QBJFCN declared in an

EXTERNAL statemenf haé to be supplied for the purpose of
computigg the function and gradienf values of the objective
function.

The last two features provide tﬁe flexibility of using CRGCP to
solve signomial progfams whose ‘objective function is more complex than an
A explicitly stated signomial. This aspect will be thoroughlyfdischssed
in Section 4.7. It will'also prove usefui for solving the squroblem
(3.9) of Algorithm 3.2 designed to solve signomial programs with equality
constraints. | | | |

4.5.3 Computational Results

In order to acquire some experience with thevperformance of
the CRGCP algorithm, the code SP was used to solve a set of signomial
programs. The test problems together with the starting points are‘given
below. Note that all the starting points are infeasible.

" Problem A (A quadratically constrained quadratic program)

e .2 2 2 2.
minimize go(§} = 3x1 + 232 + Xq + X, + 7xl + 565 - 39x2 l7x3 - %,

sot g () = (1/6)x) + (1/18>x§‘+‘<1/9>x2 + (1/18)x) - (/9%
- (1/18)x2 < 1
2. X -
gz(x).= xi + x2 + 2.5x2 + x. +9.,5 - 4x§_— x4 < 1A

3 4 3
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g, (x) = x2 + 3x2 + x2 + x —lx2 -X,-%, -2 < 1
3= 2 3 74 2 2. 1 4 :

0.01 2 x; < 10.0, j =1, 2, 3, 4

Starting Point: x = (2.0, 2.0, 2.0, 2.0)"'

Problem B

minimize go(g)

3 3 S | ' -1
0.000392x1‘+ 5.46x3 + 0.09x1.x2x3 + 6.032x3 + 2.5856x2

- 0,125x§v— 1.8x.x

173
: 2 2 2
s. t. gl(§) = 0.03xl + O.lx2 - 0. le3 1
i - 0.5 2 -1
gz(g) = S.Qxlgz + 3.6x2 Xg = 0.04xlx3 < 1

0.01 < xj < 10.0, j=1,2, 3

Starting Point: x = (2.0, 2.0, 2.0)'
' Problem C (Heat Exchanger Design [48])

minimize go(g) = ¥y + CoX, + C3XB

: =1 -1 -1
sf t. gl(g) =% x4x6 + CoXg + CeXq X < 1

I -1 -1 -1 |

‘82(5) = c7x2 x5x7 + ;8x4x7 + c9x2 x4x7 < 1
S S -1 -1

83(%) = cppXyxg + oy xexg” + c12"3 Xgxg < 1

8,(0) = ¢;gx, Tep¥e s 1

85(x) = ¢jgxg + .°16.x7 * °1.7x4 =1
8 (%) = cpgxg + °i9x5 = 1

100.0 < x. < 10000.0

1000.0 < X < 100000, =2, 3

10.0 < x, < 1000.0, j =4, ..., 8
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Starting Point: x = (5000.0, 5000.0, 5000.0, 200.0, 350.0, 150.0,

+225.0, 425.0)

The‘coefficienté Cys wees Cqq a¥E given in Téble 4.1,

Tﬁe statistics of the tesf p;oblems aré‘summarized in Table 4.2.
“Iﬁ this table the degree of difficulty D is defined as the difference be-
tween the total number of terms énd thé number of variables plus one. The
ferms due to the artificial simple lower and upper bounds are neglected.
If a dual approach were ﬁséd to solve the problems, then the dimensién of
the respective dual problem would be ﬁ.

All the problems were solved on an IBM 360/168 computer using
double-precision arithmetic. The sign tolerance was 10°12 while the feas-
ibility tolerance wasi10—6.‘ The linear search was inexact and waé'term-
inated either when the norm of the directional derivative along the search
~direction was less than 10‘"3 or when a specified number of searches Ns -
had been-completed. The final termination criterioﬁ was relaxed to be
that the relative change in go(g),be less than 10 . The solutions obtain-
éd by SP are given in Tables 4.3 (a)-(b) for Ns = 5 and Ns = 10. Also
quoted in the tables are the elapsed CPU time for obtaining each solution.
The elapsed time.is.the time between the moment when a feasible point
has been obtained and the time when the termination criterion is satis—
fied. For the purpose‘of comparison, the soluﬁions obtained by Dembo's
GGP code under the same feasibility and optimality tole¥yances are includ-.

ed in the last column of each table.



3 cj J cj

1 1.0 11 1.0

2 1.0 12 =2500.0

3 1.0 13 0.0025
4 833.33252 14 0.0025
5 100.0 15 0.0025
6 '-83333.333 16 0.0025

7 1250.0 17 - -0.0025
8 1.0 18 0.01

9 -1250.0 19 -0.01
10 12500000

Table 4.1 Coefficients for Problem C
A B c

No. of Variables 4 3

No. of Constraints 3

No. of Terms 30 13 19
Degree of Difficulty 25 9 10 .

Table 4.2 ‘Statistics of the test problems for
the CRGCP algorithm.



"Starting SP SP GGP
Point NS =5 Ns = 10
x) 2.0 2.05478 - 2.05510 2.04978
x, 2.0 2.45474 2.45420 2.46178
EN 2.0 0.48977  0.59120  0.57044
x, 2.0 0.44928  0.44892  0.44517
Optimal - 498.44053  498.44000  498.45041

Cost I . :

C?U - 1.190 sec 0.933 sec  0.531 sec
Time

(a)
Starting SP - SP GGP
Point N =5 N, =10
%, 2.0 2.92012  2.92008 2.92042
X, 2.0 2.72930 2.72931 2.72920
X, 2.0 10.06929 0.06929 0.06930
Optimal - 0.40205 0.40205 0.40205
Cost ’ :
C?U - 0.264 sec 0.109 sec 0.307 sec
T1me_ :
(b)

Table 4.3 Starting point and solution of (a) Problem A,

{b) Problem B

64.
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The numerical results of Table 4.3 indicate that while the code
SP is not consistently faster than GGP, the rate of convergence is in the
same order of magnitude’as that of GGP. The solutions obtained by the two
codes are reasonably close. On a percentage basis, the variation’in the
optimal cost is less than that in the norm of x. The smaller difference
in the optimal cost is ﬁerhaps due to the bias introduced by the choice
of the termination criterion. Stopping the inexact linear search earlier
by reducing Ns may hasten convergencef However, in certain probléms the

 gain in time due to less linear searches may be offset by the need to

solve more approximating geometric programs.

Starting SP ' SP GGP
Point N =5 N =10
s s
x1 5.D3 553.58153 569.28585  568.55211
x2 5.D3 ~1367.87035 1369.15269 1372.33969
x3 5.D3 5128.21662 5110.96764 5108.52350
x4 200. 179.82943 181.17369 181.11155
x5 350. 294.87134 295.56165 295.65912
x6 150. 220.17088 218.82631 218.88862
x7 225. 284.95809 285.61097 285.45120
X8 425. 394.87134 395.56161 395.65911
Optimal - 7049.6685 7049.4062 7049.4107
Cost : .
C?U - 1.025 sec 1.268 sec 1.501 sec
Time
Table 4.3 (cont'd) Starting point and solution of (c¢) Problem C 4




4.6 Presence of Simple Upper Bounds

Simple upper bound constraints of the form’

u
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x < x frequently

occur in engineering design problems. In the problem statement of (4.1),

such type of constraint is not explicitly

expressed since in principle

X §_§P can be included in the feasible set F by writing m monomial con-

straints of the form xj/x? < 1. Such a straightforward approach,bhowever,

is computationally very inefficient, 1In this section the problem formu-

lation of (4.1) is extended to aliow explicit simple upper bounds on Xx.

The special simple structure of these constraints is exploited to specify

modifications in Algorithm 4.1 so that the upper bounds are indirectly =

taken into account without any increase in the number of variables or

constraints.

-The problem to be solved is

4

min g (2) (4.37)
s.t. | xe X
where X = {x : x € R'; 0<§_L_<_§_§_§u; gk(_)il, k=1, 2, p}
and g-(g) are signoﬁials.' As in Section.4.3.3, if Xj = exp(zj), (4.37)
.can be expressed in terms of Z to field the following problem
min g, (z) - (4.38)‘.
s.t. . z € z
wﬁere Z = fg.: z e R EF <z <z P (2)/(+Q (2)) <1, k=1, 2, ... 5}.

It follows that (4.38) can be solved by Algorithm 4.2 of Section 4.3.4

except now the problem corresponding to problem (LST) of (4.17) is defined as

min g, (Z) -

| 4

1} 11[-=-1=b
z
S

0<z=z,0=¢z

. (4.39)
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where J-and b are as defined in (4.16), éﬁd C; = ln(X;/XjL), i=1,2, .c.,
m. Thus, the presence of simple upper bounds on X leads to simple upper
.bounds on g, but not on the slack variables és' It follows that simple
upper bounds in the original problem necessitate changes only in the re-
duced gradient.method used to solve (4.39). |

Consider thé reduced gradient method summarized in Algorithm
' 4.1, For coﬂvenience of ﬁotation, define>the upper bound ont_ asa
vector E: of arbitrarily large numbers. Then the required changes in
Algorithm 4.1 are in the definition of the search direction §?, the de-
termination of the maximum allowable step size AE, and the criterion for
thé replécement of a basic variable.- The revised algorithm capable of
solving (4.39) is like Algorithm 4.1 except in’thevfollowing steps in the
kth iteration: - o .

. _ . o ‘ o _ u
Step 2 :1) sNi =0 1f»a)‘?;Ni 0 and Ni >0 or b) ;Ni ;Ni and VNi <0

Else, sy = —VN.;
i i
u

| o | L. -z,
Step 5 A, = min [min{—cj/sjlsj'< 0,%il, min{—l—g——l-l sy > 0}1;-

~'Step 6 Ca becomes nonbasic if tp. = 0 or ;Bu . Note that a basic vari-
: i i '

i i .
able has to be between the two bounds while a nonbasic variable

can be nonzero.
for reférence purposes, the reduced gradient method>with the
above rules is called Algorifhm 4.1(a).
A numerical example solved byvAlgorithm 4.1(a) is Colville's

[39] third test problem given below.
. _ 2 _ .
min g (%) = ¢ X3+ ¢y X gt eyx toe

s.t. gl(g) = ¢ %3 X% + cé X, ¥g + c; X X <1
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g,(x) = cgx, x. +c x x +c¢ 1

g X2 ¥s T Sg ¥ X4 T G0 ¥3 %5 =

ORI ey K T x5 x5 | <1
8@ = C4 % X5 F €5 X X ¥ O <l
85(§) = Cl7 x;l Xgl + 018 X xgl + ;19 X, xgl <1
'86'(5_5 = %o *3 x5_+ cél %y x3'+ c22 Xy X, <1

78 < x <102

33 < x, 245

27 2%, <45, §=3, 45

The'coefficienﬁs,cl, see 5 G, are given in Tabie 4.4, All the
lower and upper bounds on Xj, j=1, ..., 5, are part of the problem form-
ulation. Hence the degree of difficulty éf the problem is 26. Two feas—
ible starting poiﬁts and their respective solutions are presented in
Table 4.5. The solutions were obtained with a feasibility tolerance of
10_6 and an optimality tolerance of 10_4, Note that the solution in-

volves lower and upper bounds. The CPU elapsed times quoted in Table

4.5 are as defined in Section 4.5.3.
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j C. j C.
J‘ 3 J A
1 5.35785470 12 -0.4200261
2 '0.83568910 13 -0.30585975
3 37.239239 14 0.00024186
4 -40792.141 15 0.00010159
5 - ~ 0.00002584 16 0.00007379
6 ~0.00006663 17 2275.132693
7 -0.00000734 18 -0.26680980
8. 0.00853007 19 -0.40583930
9 0.00009395 20 0.00029955
10 -0.0087777 21 0.00007992
11 1330.32937 22 0.00012157
Table 4.4 Coefficients of example problem
with simple upper. bounds.
1st 2nd -
Starting Pt. Solution Starting Pt. Solution
x; 78.62 78.0 80.0 78.0
X, 33.44 33.0 35.0 33.0
Xy 31.07 29.99307 35.0 29.99307
x, 44,18 45.0 35.0 45.0
Xq 35.22 -36.78135 35.0 36.78135
Optimal - -30670.093 - -30670.093
Cost )
CPU - 0.086 sec - 0.094 sec
Time -

Table 4.5 Starting points and solutions of example
problem with simple upper bounds.
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4,7 Minimizing Algebraic Functionals of Sienomizals

4.7.1 Introduction

The algebraié operations are addition, subtraction, multipli-
-cation, divisidn, and exponentiation. An algebraic functional of signomi-
als is a real-valued fun;tional generated by performing specified algebraié
operations on a finite set.of signomials. The additién, sﬁbtraction,
multiplication, and the positive integral powers of signomialsvcan in
principle be formally expressed as‘signomials. Ratios and real powers
.o} ;ignomials generally cannot be reduced to the standafd form of a sig—
nomial. The problem of interest in this section is the ﬁinimization of

algebfaic functionals of signomials subject to signomial inequality con-

straints. This type of problem is termed as é‘semiéalgebraic program.

The reasoﬁs fo; considering this class of problems are:

1. The subproblem (3.9) required in Step 1 of Algorithm 3.2 for sig¥
_nomial programs with equality cbnstraints belongs to thisrclass of

. problems. |

2. A wider range of applications can be modeled by signomial programs.
3. Considerable saving_in the effort for data breparation is likely as
the algebraic operations on the signomials need not-be carried out.

In Section 4.7.1, the problem of interest is formulated. The
same section also disqusses how the combined reduced gradient - cuﬁting
plane algorithm can be used to solve semi—algebraié programs; A numerical
example of semi-algebraic programs is alsoAprésented in Section 4.7.1. In
Section 4.7.2 the imporfant.practical constrained location—allocationA
probleﬁ is shown as an illustrative example of semi-algebraic programs.
Although some constrained lccation—ailocation problems can be formu-

lated as standard signomial programs, such a formulation usually has a



71.

large number of terms, hence, a high degree of difficulty. The advantage
of solving constrained location-allocation problems by the CRGCP algo-
rithm (Algorithm 4.2(a)) is demonstrated via an example.

4.7.2 Problem Formulation and Solution

Let sl(g),‘..;., sL(§Q be signomials and define f(sl(g), cee s
SL(E)) as a réal—valued'functional generated by executing a set of sgpeci-
fied algebraic operations on sl’,"' > Sp - Then a semi-algebraic pro-
gram may be formally defined as |

min f(s-(x), . . . , s(x)) (4.40)
1~ 1, :

where X = {x : x ¢ R 0 < x f.E.f.EPi gk(g) <1, k=1,2, ... , p}
and gk(z), k=1, 2, ... , p, are signomials.

The only difference between (4.40) and (4.37) .is the form
of the objective functionf But since Algorithm 4.2(a) does not really
assume that the objective function has to be a signomial, it follows that
the algorithm'remains applicable if it is used to solve a semi-algebraic
program. This is precisely the approach adopted in this section. In
fact, the only necessary restriction of f as a function of x is that £
be continuously differentiable over X.

To illustrate the problem just fofmuléted and the proposed
method for solving the problem, corsider the following two-variable

. numerical example

min £G2) = (s;00) (5, ) T~ (5,603 (s, (0207
s. t. (a) x0/2.25 + xé/l6 +5 = bx /1.5 - 0.5x, < 1 o (.41)

\(b) x /5 + %,/15 < 1
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() 0.947x§’_'\7 +2.0 - x) S 1

(d) 0.1 < x; £100.0, j =1, 2

where s So» s3,»and s, are signomials given as

19
_ 0.5 0.4

sl(x) =% - %,

) = x2 +
s,(x x; +x,

(4.42)
s, (x) = x.x,- Xl.25 ‘
3% 1%2” *1
-0.4 -1.0

() =

54\§) Xy + X1 X,

Note that the objectiﬁe function is a signoﬁial—like func-
tional of the signomials S1s Sp5 Sy and S, The feasible set defined by
(4.41) (a) - (d) is a nonconvex set. Example (4.41) was solved by Algo-
rithm 4.2 on the IBM 370/168 computer. Beginning with the infeasible in-
itial point (1.5, 1.5) the algorithm obtains via Dembo's Phase T proced-
ure the feasible statrting point (1.67477, 2.45071). Frpm this feasible
point, the algorithm obtains, after four approximations of the noncon-
vex feasible set, the final solution of (2.43246, 7.70263). At the sol-
ution, constraints (4.41) (a) and (b) are tight while constraint (4.41)

(c)'is loose. The overall CPU time required is 1.0l sec.

4.,7.3 Application to Constrained Location-Allocation Problems

The optimal location~allocation problem may be generally
stated as follows: Given the location and the requirements of a set of
fixed known destinations, determine (a) the number of sources, (b) the
location and the capacity of each source, (c) the source-to-source and
source-to-destination shipment ﬁattern such that the destinations' re-

quirements are satisfied and that the total set-up, operation and ship-
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ping costs are minimized. This problem arises in the planning of ware-
houses, distribution centers, communication switching centers, production
and municipal services facilities..

Undér the guise of such names as the Férmat, the Steiner, or
the Generalized Weber prbblem, variants of the location-aliocation prob—.
lem have been considered by a host of fesearchers._ A recent bibiiography
[49] lists over 200 papers in the decade before 1973. Most of the propos-—
.ed methods, however, cannot handle constraints restricting the sources'’
coordinates. In real situations, some constraints need to be imposed on
" the location of thersources for a variety of reasons such as geographical
barriers,>zbning laws, or safety requirements. In recent years some theor-
etical [50] and élgorithmic [51] - [53] results related to the constrained
location problem have been reported. In this section, a restricted ver-:
sion of the general problem is formulated as a semi-algebraic program
that can be solved by the approach discussed_in this chapter. .Algorithm
4.2 is demonstrated to be another tool availéble for solving certain types
of constrained location—allocafionvproblems. -

The version of the constrained location-allocation problem
to be solved in thié secfion isvposed'as follows: Suppose that the co-—
ordinates éj and the demand ?jOf the jth sink, j =1, 2, ... , m, are
known. Let the ith source, i = 1, 2, .;. , n have arlocation at §i.and
a capacity ci. If it is assumed that the shipping cost frbm one point

to another is proportional to the distance between the points, then the

mathematical formulation is

L m n ' n n
min = )
C) = ;& j&y wygd(xge 2)) + R adn qcd Gy 1)
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m n-1 '. _
sete @ By - gBgvey s t=L2...5m (4.43)
a .
(b) iglei < rj s j=1,2,0.., m-
(¢) g (x)5..0x) < 1.0, k=1,2,.0., P

where d(x, y) is a diétance fgnction'of x and vy, ;nd gk(gl, e s gn),
k=1,2, ... , p are signqmials expressed in terms of the sources' co-
ordinates. Wji is the amount shipped from source j to §ink i while vjk
is the shipment from source j to source k. Note that source n is assum-
ed not to supply anything to other sdurces in order to model a facility
whose output does‘not serve asvthe raw material of other sources. 1In
(4.43), if the variables wji and ij

becomes a multi-source location problem. The common distance functions

are all held fixed, the problem

used are the Euclidean and the rectangular ("city block') distance fume-
tions. In the example . of this section, the Euclidean distance is
~ used. |

In‘(4.43), if each d is replaced by the appropriate Euclideén
diétance expression, it becomes clear that the constrained location -
allocation problem as formulated in (4.43) is a semi-algebraic prOgram.
It follows that Algorithm 4.2 can bé used in a straightforward manner.
This poinf is illustrated by the solution of the following single-source
constrained location problem adapted from [51].

| 24

. i
min .Z .wi[(xl - al)
i=1

2 i2 1/2v’

+ (x2 - az)

(4.44)
s. ot (@) (- 46.007 4 (x, - 36.2)° < 2.0
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(6) x, + 1.25x, < 92.75

(c) 0.0 < x., x

1’ 72

The constraints in (4.44) require the éource to be located with-
in 2 umits of (44, 3652) and to be below the line_x2 = —1.25xll+.92.75.
‘The data of the problem are given in,Table 4.6. Originally préﬁided by>
Kuhn and Kuenne [54], the data aré those of the 24 cities in the Ukraine
which rank among the 100 most popﬁlous cities in fhe U.S.S.R. The weight '
wi of the ith city is taken as the proportion of the_city's‘populafioﬁ
of the tofal.pqpulation of the 100 largest Russian cities. The coordin-
ates (ai, aé) of the ith city are the city's north latitudé and east.
longitude correct to the nearest full degree.-

The results of solving (4.44) by Algorithm 4.2 are suﬁmarized
in Table 4.7. In [51], Gurovich did not énforce the two constraints of
(4.44) simultaneously. Hence it is not possibie to make a direct compar-
~ison betwéen her results obtained by algebraic prbgramming.(AP) [36],

[51] and those reported here. However, the results in Tablé 4,7 still

are very ﬁuch superior to Gurovich's';esults obtained when only either

of the constraints is enforced. Fof example, in [51] enfcreing (4.44a) only
requires 6 convex approximations and>about 6 CPU secs, while enforcing

(4.44 b) gnly requires eight convex approximations and about 13 CPU secs.
(IBM 370/168). With the use of Aigorithm 4.2, enforcing both constraints
requires only four convex approximations and 0.874 CPU sec. A plausible
explanation for the wide margin in performance is that in AP the objective
function is incorporated into the constraint set. This not only increases
the number of varizbles b& one but also requires more éppro#imations. It

was precisely this difficulty that led to the development of the main

algorithm proposed in this chapter.
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Table 4.6 Locations and weights for major Ukraime cities.

i | :ali a2i wi
1 | s4 28 0.012
2 | s0 24 0.010
3] a7 28 0.005
4. | 46 . 31 . 0.014
s |47 32 0.005
6| 47 33 0.004
7 | 45 3% 0.004
8 | 45 34 0.004
9 | 46 . 3 0.001
10 | 48 35 0.004
11 | 48 35 0.015
12 | 48 36 0.010

Initial Point

Optimal Point

Optimal Cost

No. of Convex Approx

Constraint Tolerance

Optimality Tolerance

Total CPU Time

24

(40.0, 20.0)
(45.3268, 36.0105)
1.0896.

4
10

~4

10

0.874 sec

i a a 'wi
1 )
13 | 47 38 0.007
14 | 48 37 0.016
15 48 38 0.008
16 | 48 38 0.007
17 | 47 39 0.005
18 [ 45 39 0.007
19 47 40 0.014
20 48 40 0.004
21 49 39 0.004
22 41 37 0.021
23 50 31 0.026
52 31 0.004

Table 4.7 Summary of the solution of the constrained location

problem.
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V. NUMERICAL SOLUTION OF SIGNOMIAL PROGRAMS

WITH EQUALITY CONSTRAINTS

5.1 Introduction

In Chapter III an algorithm based on the multiplier method and A
bthe concept of partial duality has been developed to solve signomial
programs with equality conétraints. The algorithm is so structured that
a sequence of inequality-cons;rained signomial programs is solved. This
approach alloﬁs the éxploitatién of a key propérty of siénomial programs,
namely, their easy approximation by convex programs. As discussed in
Section 3.5, the convergence of the proposed method is assured by the
convergence of tﬁe ﬁéthod of multiplier provided that the assumptions
for convergence hold and the following conditions are satisfied:

1) the penaity constant K is sufficiently large after a finite
number of'iieratioﬁs, |
'2) a local minimizing poiné of the primal problem (m;) is obtained;‘
and |
3) the unconstrained dual problem is maiimized.
Except for the discussion on how (ﬂi) could be solved, no specific
methods for achieving conditions (1) and (3) are mentiéned in Chaﬁtef
III. The first purpose of thié chapter is to delineate clearly how‘
each of the three conditions can be met. Secondly, the proposed alter-
natives are tested in a numerical experiment and their computational
efficiency is assessed. | |

How the subproblem (m;) is solved is important nof only be-
cause the solution method determines the accuracy of‘the answer wanted
but also becauée it consumes a major part of the total computing time.

As summarized in Section 3.6, earlier computational experience revealed
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the nqmerical difficulties of the two indirect methods, Method I and
Method II, that had been considered for solving (wlj. In Section 5.2;
the Algorithm 4.2 developed in thé previous chapter is adopted to solwve
(rp. ‘The numerical results presented in Chaptef IV suggest that Algori-
thm 4.2 can handle weil signomial programs whose objective function may
have many terms or may not even be pure signomialé. This ability of the
algorithm is confirmed in the numerical tests of this chapter.v In Sec-
tion 5.3,>the discussion focuses on the_importantvquestion of how to
update the multiplier estimate vector A and the penalty constant K, given
the initiél values of these parameters. Section 5.4 contains the des-
cription and the results of the numerical experiments conducted to test

the proposals formulated in Section 5.3.

5.2 Solution of the Subproblem (my)

The subproblem (m;) of Algorithm 3.2 is

. q q .

(1) min 2(x, A, K) = x; + ] M (0 +K ) h% (0 (5.1)
k:l k=l ’ .

s.t. ‘ xe X

where hk(g) = gp_l_k(z{_) -1, k=1, 2, ... q,

and X=f{x:xeR% g(® 1, k=1,2,...p; 0sxsxzx")

It is pointed out in Section 3.6 that the signomial 2(x, A, K) is likely
to have many terms. This observation suggests that any method which
approximates 2(x, 3, K) grossly may fail to exhibit good convergence, if
there is any at all. Algorithm 4.2 developed in the last chapter is
designed to solve inequality-constrained signomial programs without
approximating the objective function. Later in Section 4.7, the aigori—

thm is extended to solve programs whose objective fumctions are algebraic
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functionals of signomials. Thus, Algorithm 4.2 is just suitable for
(my) sinée a quick examination of (5.1) shows that 2(x, A, K) is a qua-
dratic form of the vector {hy, ho, ... hq]'. In the numerical.tests
reported in this chapter, the solution of the subéroblem (my) 1is accoﬁ-
plished with Algorithm 4.2, This is the Method III alluded to at the

end of Chapter III.

The application of Algorithm 4.2 requires the calculation of

3

both the function 2(x, A, K) and its gradient Vxl(g,.iﬁ K) = %
1

9 osevy

3% .,

3Xm The additional effort to calculate V 1 is little indeed. Let
P u c E ik and
1Y . = . X. Ve =
ptk je[k] Qp+k Je{k} Jk T S 0% ik

dJk H X, bijk . " [k] and {k} are appropriately defined index sets. Then

i=1
for j 2 2
q .
'} hk . .
e y - 2Kh ) = o, (5.2)
j k=1
where . ' ,
on,
——— a, .« u., - z b.. V. . (5'3)
2 . iijk .
X ey RIR gy 13RIk

Since in the process of calculating hk’ ujk’ jelk], and ‘ﬁk’ jé{k} can
be temporarily stored, calculating ;EE.simply needs the additional

X

J

arithmetic operations specified by (5.3).

5.3 Schemes for Updating A and K

5.3.1 Introduction

Algorithm 3.2 developed to solve signomial programs with equa-

lity constraints is an adaptation of the method of multipliers as modified
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by partial duality. TFor a sufficiently large penalty constant K, the
algorithm can be viewed as a primal-dual method that solves the original

probiem (SPE) (3.1) by solving the unconstrained dual problem

®  max 4,0 | (5.4)

where the dual functional dK(A) isvdefined as
® dg () = min 2(x, A, K) , . (5.5)

xe X

The objective function %2(x, A, K) and the feasible set X are as defined

in (3.9). It is stated in Section 3.5 that subject to certain assump-

tions, the dual functional d (A) is twice continuously differentiable

with . .
Uy .

va () = h(®) | (5.6)

24, (1) = - V@ [722G, 2, O] @ 5.7

where h(x) is the vector of»éignomial equality constraints, Vh is the
Jacobian of h and V22 is thevHessian of 2(x, l) K) with respect to X.
.g is the solution 6f (575) given A_aﬁd K. It follows that the problem
(D_) can, in principlé, be solved by any unconstrained gradient-based
ascent algorifhm. In such type of algorithm, the (k + 1)st iterate is

obtained according to the following general form

0D G0 (0D G () gy (5.8)

(k) (k)

where a is the step size and M is a q x q positive definite matrix.

A special case of (5.8) is the fixed-step steepest ascent formula of

(k) (k)

Hestenes and Powell in which a = 2K and M = I, the identity matrix.

Note that in (5.8), K remains constant in each iteration. Also the
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dependence of X on A and K is emphasized in the equation. In Section

() _ ()

5.3.2, assuming that M I, two choices of the step size a are con-
sidered. In Section 5.3.3, alternative ways of specifying K to ensure,

albeit probabilistically, the global convergence of the algorithm.

_5{3.2' Choice'of'Step Size a
Assume that M(k) = 1I,¥k and that K(k) = K > K%, for k > k,
wherekK* is the minimum value of K to assure glqbal convergence and k
. Is some finite integer. Then (5.8) simplifies to the iteratioh equation

of the method of steepest ascent given by

(k)

The remaining question is; How should the step size o be selected?
Before answeriﬁg this question, it must first be noted that while dK(})
and Vdg (1) = bﬁ%ﬁl) K)) can be calculated, the effort required to compute
dK(A) amounts to solving a minimization problem. The gra&ient VdK(A) is
essentially a free byproduct of the minimization., For this reason, the
step size a(k) should be determined as simpiy as it is possible. Schemes
requiring gradient information are acceptable, provided they do not re-
quire too many trial points since each point calls for a miﬁimization
problem._

Two step size choices are considered. The first is the simple

but effective Hestenes-Powell rule stipulating that in general,

®) ) g0 k-1

o » So that
Note that the pénalty constant K(k) may change from iteration to itera-
tion. 1If K(k) = Ko,b‘k, then (5.10) becomes the fixed-step gradient
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method. The local convergence rate of (5.10) was studied by Bertsekas
[27] who proved that if (x*, A*) satisfies the second-order sufficient
optimality conditions and K(k) =K%, k 2 E', for some positive number K#*

(k)

and integer'E ,- then A + A* at a linear rate with a convergence ratio

(k) L, (o)

essentially inversely proportional to K provided A is sufficiently
close to A%,
If K(k) = Ko,tfk,~the Hestenes—-Powell updating formula (5.10)

(k)

uses only the gradient Vdy (1) at the pfesent point A to estimate the
o

next point A‘k+l). A possible acceleration scheme that requires a modest

increase in computational effort is to use a low-order polynomial inter-
polation scheme such as fitting a cubic. However, Ko may have to be

increased after some iterations in order to ensure convergence. Suppose
(k+l) _ (k)

K, and K

that K 1

= Ko’ K, > Ko' Then VdKl(l) and VdKo(A) are

1
gradients of different dual functionals. Clearly, they cannot be used
to interpolate either dK (}) or dK (). A common functional is needed
‘ 0 1

if interpolation is to be used and the penalty constant K can still be

changed. A solution is to use dO(A)’ i.e.,

4o = min 2(x, A, O | (5.11)

xe X

(5.11) is just the minimization of the ordinary Lagrangian; Observe that
do(d + 2Kh(x(1,K))) = & () (5.12)

Hence to approximate dO(A) by passing a low-order polynomial fit through
two points, do(§_+ 2Kh(x(1,K))) has to be evaluated for any two pairs of
A and K. This is the rationale of the following algorithm whose local

convergence was proved by Bertsekas [27]. However, no comparative



numerical evidence was provided.

Algorithm 5.1

Step 0O: Set k = 1. Assume Akadl) and the_sequence{K(J)}are specified.
Step 1: Obtainizfzk;l) by minimizing l(g,”l(ZR-l), K(Zk—l)) s.t. Xxe X.
step 2:  F2OL PD og (D) (2R 1)y gt follows from (5.12) and
Step 2. that do(l(zk)) and Vdo(l(Zk)) are known.
Step 3: Obtain §F2k) by minimizing 2(x, AFZk), K(Zk)) s.t. x ¢ X,
Hence de(A(Zk) + ZK(Zk) h(§(2k))) and its gradient are known.
:fSteE 4:  Approximate dogﬁ) by fitting a cubic through {l(zg), dO(L(Zk)))
and 20 4 2K(21;) n(x 20y, doQ(Zk) + 9 (20 E(zz('zk))))'
Let the estimated step size be d(2k).
~Step 5: Set the final step choice E(Zk) according to the following
rule: _
‘rz;KCZk) 15 420 ¢ (20
w2 _] (20 ir k@) ¢ G0 (20
2x (21 ig o2 ¢ (20
\
"~ Step 6: 1Set l‘2k+l) = AFZk) + E(Zk) h(x (Zk)), k=%k+ 1, and go to

Step 1.

- In Algorithm 5.1 , cubic fit is used every second iteration,

i.e., after every even iteration.  The Hestenes-Powell step size rule is

used in every odd iterationm.

is bounded within [2K ,

In Step 5, the estimated step size a(Zk)

(2k) 4K(2k)] because the rate of convergence ana-

lysis by Bertsekas shows such an interval provides linear local conver-

gence.,
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5.3.3 Updating the Penaltv Constant K
As discussed in Section 3.6, the penalty constant K must be
sﬁfficiently large to assure convergenée. Another view of this condi-
tion oh K is that K must be greater than some lower bound K* in order
that_é locai‘convex structure exists.- The latter condition, in turn,
implies that local duality theofy can be used. Furfhermore, as K increases,
the dual convefgéncé_rate improves, provided the initial value of ) is
clése enough to the Optimal Lagrange multiplier véctoriéf. In practice,:
however, it is difficult, if not impossible, to determine K*, If K is
' ﬁoo large, the primal problem may be difficult to solve because of ill-
conditioning. This situation is particularly likely if the initial A is
-not in the neighborhood of A}.' It seems that the only practical recourée
is to;start with a modest value of'K, and let it increase in some way so
that both the-convergence and the fast rate of convergence promised by
the method of multipliers éan be attained with high probability. This
approach seems*fo be not different from the ordinary penalty method.
There is, however, a crucial difference - the consolation that K does not
have to approach = for convergence to occur.
' Two rules for choosiﬁg'the sequence'{K(k)} are considered here.

Their performance in numerical experiments is detailed in Section 5.4.

The two rules are stated below.

‘mute 1: KD L@ e aa® Py <o paa®yy) L 6 < 1.0,

(k+1) _ (k)

Else, K 6 k¥ 4> 1.0

Rule 2: KOY o K 45 10,

Rule 1 increases the penalty constant only when a prescribed rate of con-

vergence is not met. Rule 2 divorces the increase in K from the current
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condition of the problem. In both rules, the penalty constant is in-
creased in a geometric fashion. The geometric increase, however, is a
convenient arbitrary realization of the requirement that there should be .

an increase.

5.4 Numerical Experimerts

5.4.1 Introduction

The schemes discussed in Section 5.3 for updating A and K are
combined and tested in a series of numerical experiments. The experi—_
menté are designéd_to compare the convergence and the rate of convergence
of each of the foﬁr possible combinations of updating rules. The numeri-
_cal study also lobké at the senéitivity of each scheme's performance to
the key varying parameter of the updating rule for K.‘

Section 5.4.2 explains the software implementation and other
related details. The test functions used in the study are given in |
Section 5.4.3 while the experiment plan is described in Section 5.4.4.

' The results of the experiments are preéented an& discussed in Sectioﬁ
- 5.4.5.

5.4.2 Software Details

The software needed to perform the numericai study requires
‘the computer éqde SP developed in Chapter v and an additional subroutine
incorporated into the code. The funcfions of this subroutine are to
monitér the viqlations of the equality constraints énd, if required, to
update A_énd/or K. At the éntry to this subroutine, thé subproblem (wi)
has been approximately éolved._ Since thé ébjective function of (m;) is
the augmeﬁted Lagraﬁgian l(zg,éé K) which involves all the equality con-
straints, these constraiﬁts need not be éaiculated_inside the subroutine

itself., They are all‘implicitly calculated in the last evaluation of
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2(x, A, K) prior to the call of the subroutine.

p+k (5) -

The violations of the equality constraints hk(z) =P
Qp+k(§) -1, k=1, 2, ..., q, can be measured by various distance func-
tions. For the stﬁdy of this chapter, the measure of the equality con-
straint violations is given by the Euclidean distancé function §(N) de-~
fined as

q
s = [ ] 02 (x®y1/2 6D
_ k=1 '

(N) is the solution of the Nth

where N is the dual iteration count and‘g
' subproblem (m;). The equality constraints are said to be satisfied if
‘ S(N) < EEQ’ where EEQ is a prescribed small positive number. Another

" possible measure 1is the Chebyshev‘distance Eaf [hk<§), used by
- k=l,...,q

Powell [26]. However, the.Eucliaean distance yields an error region
sméller than that of the Chebyshev distance.
Two other important ;oleranceé are the tolerance for termina-

‘ting the subproblem (7)) and the feasibility tolerance of the inequality
constréints. Both are defined as in>Section 4.4.5. Computational ex-
perience acquired during the preparatéry-phase of the experiments re—
vealed that if the threéhold for terminating the subproblem is small
(é.g. < 10_4) and uniform.for'all (dual) iterations, an inordinate amount
’of.gomputing time would be consumed, especially in the first couple of
iterations, without improving.much tﬁé overall performance. Faster con-
vergehce could be achieved with earlier updating of &_and/or K. Hence

a Heufistic rule to accelerate.convérgencé'through controlling the thres—
hold,fof términaﬁiﬁg a subprdblem is included in the subroutine. The
rule caﬁ be described as follows: Let‘the threshold for terminating a

: s . C crae A (o) _ -2
" subproblem be'GCGP and thé iteration count be k. Step 0: Set €cep = 10 =,
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(k) _

' -1 (o) '
Step 1: If 8(k) <10 ~ or k > 2, €cep = eCGP/lO.O. Step 2: 1If

. o (1+5) . (k) _ (k) h| . _
(k) < 10 » 1 <j <5, €cep = ECGP/IO . The rule links the reduc

tion of the threshold to the closeness of the approximate solution to

the true solution.

5.4.3 Test Problems

Four signomial'programs of varying sizes serve as the test pro-
blems in the numerical experiments. The statistics of.the problems are
summarized in Table 5.1. The details of each problem are described in
this section. Note that the starting value of A in all cases is the

'zero vector with the appropriate dimension.

Test No. of No. of No. of | Total No. Degree of
Problem | Variables |Ineq. Const. | Eq. Const. | of Terms* | Difficulty

A 2 1 3 5 12
B 4 1 1 9 4
c 3 2 2 20 16
D 4 1 2 30 25

Excludes lower and upper bounds on variables.

Table 5.1 Summary of Characteristics of Test Problems.



The following are the four test problems:

Test Problem A

) :

min . go(§) =_x1x;2 - 0.5 XZ—
s.t. gl(z) = 0.5 xl_l’sz‘ - < 1.0
() = 2x,2 + 2x.2 + 5.0 - 6x. - 2x. = 1.0
gy X 1 2 . 1 2 =

I
=
Q

g4(x) = (?-/3)x1 +‘(1/.3)x2

g, = 4x,” + %, + 10,0 - 12x - 2x, = 1.0
0.01 <x <4.0
o
0.01 < xj <10.0, j=1, 2
Solution: X, = 0.5, X = 1.0, X, = 1.0
Al = 0.48793, AZ = 0.075643, A3 = 0.0189
Starting point: X, = 0.5, X = 0.5, X, = 1.0
Test Problem B
min gé(z) = 2.0 - X ¥y Xq

+ 3.75 x,%x, + 0.375 x.x, < 1.0

s.t. gl(§) = 0.25 Xy 3 3%,
gz(z_) =% + 2x2 + 2x3 + 1.0 - x, = 1.0
0.01 <x <2.0

o .
0.01 <%, <1.0, j=1,2,3
0.01 < X, < 2.0
Solution: X = 52/27, X, = 2/3, x2'= 1/3, Xy = 1/3, x, =
Al =1/9
Starting point: ' X, = 2.0, X, = 0.5, X, = 0.5, Xy = 0.25, x4 =



Test Problem C

min

Solution:

Starting Point:

Test Problem D

min

Solution:

Starting Point:

g () =

'gz(gg) =

| 83 (x) =

>
Il
f
w
.
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0.6 . -0.5 ‘ 2 ‘
Xl x2 + x2x3 + 15.98}{1 + 9.0824}{2 60.72625%
-2 ' -2
X%, + 1.48 - X, x3§_l.0
N Px, b5+ 6,75 - 10 <10
2 2 2 _
Xy + 4.0x2 + 2.0x3 -57.0 = 1.0
-1.2.5 2 e
X%, Xq + x2x3— X, = 15.55 = 1.0
< 1000.0
<10.0, j=1,2,3
A, X1 1.0, X, = 2.5, Xy = 4,0
0, Az f'l.S

= 2.0, X3 = 8.0

2 2 2 2
go(g) = 3xl + 2x, + X, tx, + 7x1 + 565 - 39X2 - l7x3
g (0 = (1/6)x> + (1/18)%> + (1/9) x> + (1/18)x, -
1% = S 2 4 *1
(1/9)%5 - (1/18)x, < 1.0

2 2 2. 2 '
g2(§) —.Xl + Xq + 2.5x4 + x3 + 9.5 4x2 x4 1.0

.2 2 4 U2 _ _ _
g3(§) = X, + 3x3 + X, + X, X %y X, 2.0 1.0
1.0 < X, < 1,000.0
0.1 <% £10.0, =1, ..., 4
X, = 505.0, X = 2.0, X, = 2.0, x3 = 1.0, X, =.1.0
Al = -1.0, Kz = 3,0
Xo = 700.0, X = 1.0, x2 = 1.0, Xy = 3'0’,X4 = 2.0

3
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IA

.In Test Eroblém A, the inequality constraint gl(z) 1.0 is loose

at the solution. The same is true with the constraint gl(z) 1.0 of Test

A

Problem D.. All the other inequality constraints of all four test pro-

blems are tight at the quoted solutions.

5.4.4 Experiment Plan

Four schemes are considered in the experiments. The first two,
Schemes I and II, resulf frdm cpmbining the Hestenes-Powell step size
rule aﬁd Rules 1 énd 2, respectively, for updating K. Schemes III and
. IV are the combination of the same two rules for updating K and the use
 of Algorithm 5.1 to obtain the steﬁ size. When Rule 1 is used to update
K, the initial values K(o) tested are 0.1, i.O, and 10.0. The reduction
factor 6 is 1.0 while tﬁé_expansion factor ¢ is sét_to'Z.O. When Rule
2 is used, the values of ¢ are 2.0, 4.0, andA8.0. Thé parameter Ko-is
set to 1.0.

.Of the four schemes, Scheme I is the most éimilar to the algori-
thm proposed by Powell [26]. There are, however, significant differences.
The first is that while only either A or K; but not both, is updated in
Powell's algofithm! both can bé.updated in the same iteration in Scheme I.
The second difference is the definition of the norm of h(x) as explained
in.Sectidﬁ'5.4.2. VFinally, Powell assumes that M(k) is a Aiagonal matrix
not necessarily éqﬁai to I, the identity matrix. Because of this more
generél assumption, ﬁbt’one'but a maximum of ‘g > 1 numbers have to be
upd&ted.

To carry out the numerical experiments, two performance mea-
sures need fo be defiﬁed. The first is the éonvergence 5easure while
the éeéond ié.forbthe rate.of convergence. In this study, overall qon—'

vergence is attained if'ﬁ(N) < €_.s.-provided the Nth subproblem satisfies

EQ
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the convergence criterion of Section 4.4.5 as modified by the heuristic
rule explained in Section 5.4.2. An alternative convergence measure is

(N)) (N~ 1)),/|d (N 1)

to stop if 8(N) < ey, and ld e dk(N_l)(A (N l)(x ) |

< eLe Both.eEQ and g, are small positive numbers.

Choosing a performance measure to reflect the ratefof conver-
" gence requires some care. A first candidate is the number of dual itera-
tions (i.e. updatings of }) before convergence is éttained. This measure
can be viewed as the number of evaluations of the dual functional dK(A)
and ité gradient. While this measure may indicate the dual rate of
convergence, it is not a fair indicator of the computationai effort re—.
quired to achieve a given rate. In a primal unconstréined oétimization '
problem, a function evaluation réquires the same effort at any point of
the iterative process.'-This is not true with the evaluation of the un~
constrained dual functional. In the dual caée,'each evaluatioﬁ is é mini-
mization problem whose coﬁpletion depends on many féctors such as the
proximity of the current test point to the solution, the accuracy required,
and the tolerance levels. A second candidate is the number of linéarly
constrained nonlinear programs solved. This measure,.while it is an
-improvement over the fifst, nevertheless is still wmacceptable because
each such problem requires different computational effort. The final

choice adopted is the CPU time measurgd ffom the confirmation of a féasi—
ble splution td the satisfaction of the convergence criterionl_ The time
used for acceptipg problem data and checking/achieving feasibility is
common to all schémes and hence is ignored. In the literature on

numerical studies of optimization algorithms, the chief objection to the

1
For the rest of this chapter, this time period is 51mply referred to as
CPU time. :
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use of CPU time is that its significénce varies with the computer code
used and with the computer system. But sincebthese two factors are con-
stant in this study, the use of CPU time seems to be the most meaningful
measure for rate of convérgence.
Throughout the experiments the folloﬁing tolerance levels are
-4. (o) _ 6

] A _ .
observed: EEQ = 10 ; €ocp 10 ’_EIN = 10 . (Recall tha§ €y 18 the

feasibility tolerance for inequality constraints.) Nonconvergence is
defined by the following condition:

CPU time > 3 sec or number of dual iterations > 20.

5.4.5 Results and Discussion

The performance results of solving ail four test»problems by
each of the four schemes are presented in Tables 5.2(a)—(d); In each
box of each table, the top number is the CPU time in seconds; the middlé
number, the number of linearly conmstrained nonlinear programs.solved;
an& the bottom one gives the number of dual iterations needed to satisfy
the convergence criterion. The latter two criteria are included for
completeness. Their lack of consistent correlation with computational
effort is confirmed by the numerical data.

Overall, the experiments verify the convergence of the algori-
thms proposed in Chapters iII and IV, ifrespective qf which scheme is used
to update A and K. In all cases except those noted in Table 5;2,.con-
vergence is attained in the sense thaf.the satisfaction of the conver-
gence measure implies a final primal solution of reésoﬁablé accuracy.

In this sfuay, the accuracy is witbin at least 10_3 of the true solution.
Even in those few cases that were terminated because of likely excessive
icomputétion, the approximate solution progresses stgadily but too slowly

towards the theoretical solution.. Similarly, when Problem D is solved



Probisy 0.1 1.0 10.0
_ 0.651 0.559 0.436
A 30 18
(i) 10 5
2.019 1.217 0.820
B ’ 89 46 48
21 11 8
- 1.009 0.392 1.637
C 49 21 79
9 5 8
_ 1.434 2.418
D 33 68
(ii) 15 12
(a) Scheme I
¢
Problen 2.0 4.0 8f0
0.423 0.448 0.727
A 18 18 24
: 5 4 5
0.756 0.579 0.455
B 28 23 15
7 4 3
0.363 0.366 0.371
e 17 17 16
3 3 3
1.156 0.675 0.681
D 29 17 17
12 6 6

(1)
(ii)

(b) Scheﬁe II

Terminated after 20 dual iterations.
Terminated after 3 seconds of CPU time. -

Table 5.2 Performance results of Schemes I.- IV
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(0)
o . . 10.
Problem 0.1 1.0 0.0
1.081 0.621 0.446
A 30 18
(i) 10 5
1.877 0.936
B 61 54
(ii) 18 5
1.046 '0.393
C 51 21
' 10 5 (ii)
1.43 2.251
D 37 | 62
(ii) 15 9
(c) -Scheme ITI
4
Problem 2.0 4.0 8.0
0.541 1.06 0.722
A 20 30 24
: 5 6 "5
0.961 0.781 0.543
B - 26 24 15
5 4 3
0.350 0.354 0.361
C 17 17 - 16
3 ' 3 3
0.605 0.494 0.415
D 16 13 13
* 6| * 51% 5

(1)
(*)

(d) Scheme IV

. Terminated after 20 'dual iterations.
(ii) Terminated after 3 seconds of CPU time.

 Approaching but did not reach primal solution when dual

convergence was satisfied.

Table 5.2 Performance results of Schemes I - IV

9 .
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by Scheme IV, termination occurs because the equality constraints are
satisfied, although the primal solution is still approaching but not
sufficiently near the true solution. In this case, the dual rate is
much faster than tﬁe brimal rate of convergence. Some likely reasons .
for the discrepanéy between the two rates are the inexactness in solving
the subproblem and the poor performance df the primal algorithm in this
particular problem. The global convergence of A to a region near the
optimal Lagrange multiplier A* is satisfactory in all cases. However,
the local convergence to A* itself is sensitive to the tolerances,
hence accuracy,'of:the priﬁal computation as well as to the step size o.
While it is essential to confirm expérimentally the convergence
of the proposed-algorithms, a major purpose of the experiments is to
assess the effect of the updating rules of A and K on the rate of con-
vergenée. To this end, the data of Téble 5.2 reveal significant informa-
tion. The foremost is that by far, the preferred scheme is Scheme II
usiné the Hestenes~-Powell choice for‘a’and a moﬁotonic geometric increase
of K. From the convergence viewpoint, bofh step size choices are almost
| equally effective. However, the Hestenes-Powell updating formula is
preferred for its simplicity, less demand for computation, énd indepen;
dence of the numerical accuracy of other quantities. Choosing tﬁe step
size by cubic fit does not yield the benefit commensurate with the extra
computational work. As for-the‘updating rule of K, Rule 2 relying on
increasing K acéording to a-geometrié p;ogressidn is definitely superior
to Rule 1 in which K is increased only if [[h(x)ll fails to decrease at
a specified rate. The choice of Rule 2 is based on two related reasons.
The first is that independent of how the steé size is-selected, Rule 2

generally needs far less CPU time. This observation can be. checked by
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comparing Tables 5.2(a) and (b), and Tables 5.2(¢) and (d). The second
reason is that Rule 2 almost invariably yields a fast monotonic decrease
in 6§(N) (or ||h(x)]|). On the other hand, using Rule 1 seems more likely

fo have nondecreasé or increase in §(N). When such a condition exists,

it necessitates solving more.éubproblems.

Figure S.Ingves a specific but typical example of the behavior
of 6(N) as a function of the dual iteration count N.»_The figure, in’
which log 8(N) is plotted against N, is derived from tﬁe results of solv-
ing the test problems by Scheme I (K(o) = 1.0,7¢ = 2.0, 6 = 1.0)‘and
Scheme II (Ko = 1.0, ¢»= 2.0). The corresponding»fesults from Schemes IIIL
and IV are not showﬁ because updating ) by cubié fit is not as promising.
Note that for the indicated parameters of Séhemés I and II, each problem
 has the same sﬁarting subproblem. The step size choice is common to
both. Also, whenever K‘haé to be updated, it is increased by the same
factor $=2.0. Hence there is a fair 5asiS'for'comparing thé two:updating
rules for K. Let SI(N) and 6II(N) be the function §(N) obtained when
Scheme I and Scheme II are used reépgctively. Several usefﬁl observa-
tions abogt,SI(N) and SII(N) can be deduced from Fig. 5.1. The first is
that_in all caseé, GII(N) < ’6I(N)' Furthermore, GII(N) tends to decrease
faster than BI(N). The two points tqgether suggest that not onl&;does

Scheme II lead to an earlier convergence when €., = 10_4 (as it is the

EQ

case in the experiments),‘the scheme also consistently finishes earlier

than Scheme I for all values of € This means that whether an accurate

Q"

and not too accurate solution is sought, Rule 2 should still be preferred.

In both Schemes I and III, the experimentél data attest to the

(o)

expected sensitivity of the rate of convergence to the value K' '. As

o) . ' L R . :
K( ) is larger, the rate generally improves. The improvement is reflected

in less dual iterations and a faster reduction of [lh(x)]] . The same
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’effect is true for a latger $ in Schemes II andFIV. .In both instances,
thé CPU time usually décreases too. There are cases, however, in which'
the CPU time increases. This phenomenon is not caused by ill-conditioning
in the primal problem. insteéd it can be explained as follows. Whén
K(o) (or ¢) is selected to be too large, the dual convergence rate is
higher andjlhﬁggn tends to decrease‘mucﬁ faster. This means thatl{hﬂgpu’
becomes sméll early in the iterative process. Becauée of the heuristic
rule controlling the toleranqe €ogp? 2 small value.oflulgguveffectively
implies accurate minimization of the primal subproblem. Hence more com-
putational work is needed.

To avoid ﬁoor convergence or.exceséive effort to solve subpro-
blems, prudent choices 6f the initial value K(o)(Ko in Schemes II and IV)-
and.the factor ¢ must be made. It seems that fof suitably scaled con-
stréints, Ko = 1.0 and ¢.= 4.0 are qﬁite acceptable., The emphasis herebis
on thevsuitable scaling of the equality constraints. ‘That thése cons-—
traints should be properly scaled is implied by assuming M( ) - =1 in
Section 5.3.2. Hence the scaling of the equality constraints and that
ofl& are equivaleﬁt. Since’Kob= 1;0; it is advisable to scale hk(z?,
¥k, such that initially, lhk(§)| ~ 1.0, where "M means "in the order of".

Similarly, the original objective function should not be too much larger

or smaller than K(°> 2 hk(x)

In summary, the Hestenés—POwell*step.size rule and the updating
of K tf é geomettic ptbgréssion‘form an effective scheme to implément
.Step 3 of Algofitbh 3,2-for solving signomial programs with equality

‘ consttaints; .To achieve the high convergence rate promised by this
schémé, cafe mﬁst be taken to scale the equality constraints .and the ori-

ginal objective function. Furthermore, approximate minimization of the
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first few subproblems can save considerable computing time without diminish-~

ing the power of the algorithm.
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VI. APPLICATIONS IN ENGINEERING DESIGN

6.1 Optimum Design of Statically Indeterminate Pin-Jointed Structure

6.1.1 Introduction

In the last decade the use of optimization techniques in struc-
tural design has been recognized as a moré powerful approach than tradi-
tionél direct design methods. The optimization approach can handle more
design constraints and still produce the most economic solution within
the limits set by the constraints. The applicability of the optimizétion
approach spans thé whdle structural design‘process ranging from the choice
of the topology of the structuré to the selection of the member sizes of
structures with a defined shape. This section_is‘devoted to the optimum
design of a class of structures with a fixed shape. As it will be made
élear in the problem formulation, signomial equality constraints arise
natufally in this class of strué;ure design problems.. Furthermore, bbth
the objective function and the inequality constraints are signomials.

It follows that the algorithms developed in this thesis can be conveni-
ently employed to jield the optimum design.

The ﬁsefulness of the proposed algorithms extends beyond the
group of structures coﬁsidered in detail in this section. There are
structures of other types (e.g. rigidly jointed structures) whose design
requires the satisfaction of signomial equality constraints. Constraints
 of similar type also appear in different fofmulations of.optimum struc—
tural design. It is, however, beyond fhe scope of this section to con-

sider them.

6.1.2 Problem Formulation

Consider a statically indeterminate pin-jointed N-member struc-

ture'with a specified geometry. It is desired to choose the most economical
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" cross-sectional area of each member such that some étructural constraints
are satisfied. In order to obtain the optimum design wanted, both the
‘objective function and the constraints need to be established.

The objective function is the cost of the structure. Lef zi
and Ai be, respectively, the length and the area of the ith member.
Then; if Yi is the weight density of the ith member, the member's weight
is YiliAi' Suppose that the cost of the ith member is ci/unit'weight.

The desired objective function becomes

C = .2 e Y4854 | (6.1)

The structural constraints are of three types: stress con-
straints, deflgCtion constraints, and compatibility constraint. The
first two types ére imposed for safety reasons and are in the form of
inequalities. The compatibility constraints ensure that the topology of
the structure remains the same during and after the application of ex-
ternal forces. These constraints are equalities. To derive allkthe
constraints, it is first necessary to detéfmine the member forces P =

[Pl, PZ’ eeas P Assume that there are m loading points with the

N
external load vector Lb = [Ll, LZ, cens Lm]' acting at these points. In

a statically determinate structure, P is linearly related to and uniquely

determined by Lb' That is, . _
- P=3BL , (6.2)

where Bb'is known as the load transformation matrix. However, in a

statically indeterminate or hyperstatic structure is not sufficient

L
to specify P. The forces in the redundant members have to be included.

In this case,

P= be;_b +BL (6.3)
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where Lr f [Rl’ R2, oo RQ]', Rk being the force in thg redundant member
k, and Br is the force transformation matrix relating P to LT.

The stress in a member is defined as the ratio of the member's
force to its cross-sectional area. For hyperstatic structures, the

streés constraints are therefore given by
= + < ‘ ) 6.4
AP AB] Lb AB. L ] (6 )

where A is an‘NxN diagonal matrix whose ith diagonal'entry-is l/Ai°
From (6.4), it can be.seen that the stress constraint on member i is a
éignomial in Ai’ 31, R R RQ'

To derive the deflection constraints, the deflection Vectorlg
must first be related to the load vector?&, It can be shown [19] that
in general for.elastic structures,

X=TFL
where F, known as the overall flexibility matrix, is given by B'fB. B
is thé force transformation matrix and f is an NxN diagonal matrix
whose ith entry is 2i/EiAi, Ei being the Young's modulus of elasticity
of member i. In the case of hyperstatic structures;igvcan be partitioned
into §£, the deflections due toexternal loads and Kr’ the deflections due
to the redundant forces Lr’ Hence |
§b 'BB'fBb -Bb'fBr L%
= (6.5)

"B_'fB B_'fB
r

X
- b T r L&

The deflection constraints impose an upper bound on some or all of the

components of 35. Mathematically, these constraints are

B ) 1 ' '
B,'fBL + B 'fBL <3 (6.6)
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Again, the ith inequality is a signomial inequality constraint in Ai’ Ri’

'...,RQ. |
In (6.4) and (6.6), the redundant forces Er are unknown. For
this reason, grmust be required to be null. Otherwise, the structure

would assume a different topology after the application of Lb; Thus,

' v ' =
Br fBbLb + Br fBrI_._r 0 (6.7)

This equality constraint is called the compatibility constraint. (6.7)
is clearly a set of signomial equality constraints.
In summary, the design problem is to minimize the cost fumction

‘given by (6.1) subject to the constraints (6.4), (6.6), and (6.7).

6.1.3 Example:

Consider the pin-jointed structure shown in fig. 6.1(a) and
adapted from [19]. Supposé that the horizontal and vertical deflections
at D are both limited to 4 mm, and that the numerical value of the
stress in any member is not to exceed 106kN/m2.' All three,meﬁbers are
one meter in length. Let.Ai be the cross-sectional area of member i.

It is required to choose the cross-sectional areas Al,'Az, and A3 such

that the structure has minimum volume. Assume that Young's modulus of

elasticity E is 207 kN/mmz.

The first step is to derive the constraints (6.4), (6.6), and

(6.7). To construct the matrig B, , the redundant force is removed. In

b
this example,vmémber 3 may be designated as the redundant member. With |
member 3 removed, the structure becomes that shown in Fig. 6.1(b).

Resolution of the forces at D gives

B, - [V3/2 /3/2 0]" (6.8)

Next remove the external load H and subject joint D to force P3 as shown



(a)

)

Fig. 6.1 The hyperstatic_pin—jointed structure of the example.
(a) Frame and loading (b) Basic frame with external load (c)

(»)

Basic frame subject to
redundant force.

50T
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in Fig. 6.1(c). Again, resolving the forces at D yields

B = [1'> 0 1]‘ (6.9)'

The flexibility matrix f is

l/EAl 0 0
£ =] 0 1/EA, O (6.10)
0 0. l/EABJ
while the load vector Lb and the redundant force vector Lr are simply

It follows from (6.4) that the stress constraints are

(a) \' (20080 (W/o)ATh By <1

() (/Z/20)8,7" < 1 _- | (6.12)

() (1/c:)A3‘1 P,s1

3

6

where ¢ = 10 kN/mz. From (6.6), (6.8)-(6.11), the deflection constraint

may be written as

1y ®/2e8)8,7" + (/2/2E6)AI1 Pys 1 (6.13)

(H/2E8)A;
Young's modulus of elasticity E is assumed to be 207'kN/mm2 and the

deflection tolerance § is set at 0.004 m. The compatibility constraint

- defined in (6.7) is given by -

-1 -1 . =1 _ _
(V2H/2)A]" + A7 Py + AT Py =0 (6.14)
Finally, the areas Al’ A2, and A3 must be nonnegative.

The optimizatioﬁ problem is to minimize the volume V = A1 +
A2 + A3 subject to the inequality cqnstraints (6.12)-(6.13), the equality
constraint (6.14), and the nonnegativity'constraint on the areas. 'To

put the problem into a form compatible with the formulation of signomial

programs defined in (3.1), several steps need to be undertaken. First,
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from (6.14), it can be easily shown that P3 is nonpositive. But signo-
mial programs have only positive variables. Hence P3 has to be replaced

3

with -P,. After this substitution, (6.12¢) can immediately be dropped
since theiéonstraint is loose for all feasible values of A3 and P3. : |
The final manipulétion is to impose bounds on all the variables. Since
signomials are defined over the positive orthant only, all the vari-
ables except A2 need to be bounded from below by a small positive quan-

tity.‘ With the artificial upper bounds imposed and the problem data

entered, the final problem is

1 2 3

s.t. ~ (7.0711 x 10%ya. 1

‘min A, + A, + A.

- 107, "1

1 1 B4 21

(6.0385 x 107)A, ™" + (6.0385 x 107°)a,”" -

_ -7, -1
(8.54 x 10 )A1 P3

-1 - :
70.7107A; " = AT Py - AT Pi41=1 - (6.15)

1078 < A < 1.0

-8
1077 < A,

-8

IA
=
(]

10 P

3

In
A

1.0

Note that the areas are in m2 while P3 is in kN.

‘The numerical example was solved with the computer code SP
using Scheme II of Section 5.4.4 to update.x and K. The feasible primal
.starting poinf ié at Al = A2 = A2 = 0,001 ﬁ? and P3 = 0.001 kN, while
A(o)_= 0.0. K0 and ¢, the two parameters needed for updating K, are 1.0

and 4.0, respectively. Within 7 dual iterations (CPU time = 0.66 sec),

the final answer obtained is V = 0.00141412 m3, A1 = 0.000707 ﬁz,.
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A, = 0.00070711 n’, Ay = 1078 n2, P, = 0.11159 kN, and A = 0.6. The

(o) _ -2 _ -5
cep = 10 7, ¢ 10

IN * fro
it can be deduced from the computed solution that the true solution is

= 107%, Ssince A, n 0.0,

tolerance used are ¢ 3

Al* = 0.00070711, Aé* = 0.00070711, A3* = 0.0, and P3* = 0.0. The last

- relation is based on the fact that Py = A3/(A1 + A3). The discrepancy
between.P3 and P3* ié due to the finite error e in the equality constraint
and the smallness of A. In fact, it can be shown that for negligible

A, Py X e/Al. In the example, e = 7.8 x 10—5.‘

From the design point of view, how should the optimalvsolution
be interpreted? The most important result is thét the proposed design
coﬁcept should be changed. Instead of a three-member structure, a two-
mémber structure is édequate (and'optimal) to meet the design require-
ments. At‘the computed solution, the stress constraints are tight while
the deflection cénstraint'is loose. This result may prompt a re-examina-

tion of the allowable stress and deflection because usually the deflec-

tion constraint is more significant,

6.2 Optimization Examples from Chemical Process Engineering

6.2.1 Introduction

The history‘of applying signomial programming to steady-state
chemical procesé design is almost as o0ld as the optiﬁization method's.
Rijckaert [18] gives a gobd sumﬁafy of thié area's key‘application papers
published in the period 1963-1972., A distinctive feature of the mathe-
matical models used in process aesign is the frequent presence of signo-
mials in both the cost (or profit) function and the design constraints.
This affinity of the process models to signomials is.fhe main reason why
processvengineefing is such a ferfile‘field for possible application of

signomial programming. Another notable feature of the models is that
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équality constraints are very common. These constraints arise because of
mass and energy balahce, as well as functional relationships dérived
empirically or from first principles. In all the related papers referenced
by Rijckaert [18], the models containing both equality énd inequality
vconsfraints are first transformed on the basis of "engineering intﬁition"
into one with either only equality.constraints or onIy inequality cons-
traints. The design problems are then solved by metﬁods_accommodating
one type'of constraints oﬁly In this section, two'examples drawn from
chemical process de31gn demonstrate how the algorithms of Chapters III
and IV can be used to solve the de51gn problems based on the orlglnal
models with mixed equallty and 1nequa11ty constraints. Because no con-

" straint transformation is required, the physical arguments for‘eqdality

or inequality constraints are not blurred by algebraic manipulations.

6.2.2 Alkylation Process Optimization

The example used in this section is typical of the models used
in seeking the optimum operating conditions for a chemical prbcess in
order to maximize a éréfit function. This section's model of an alkyla-
‘tion process; a common process iﬁvthe petroleum industry, was first
described by Sauver, Colville, and Burwick [55] on the basis of the pro-
v cess'relationships given bvaayne [56]. The optimization problem was
solved by Sauer EEIE&' [55] via the solution of a sequence of linear pro-
grams. Later Bfacken and McCormick.[57] éolved the problem using the.
penalty function method (SUMT). Récently, the same model, after it had
been.tfansformed into an inequalify—constfainéd signoﬁial_program, was
solved by Avriel et al. [12] usinglthe computer code GGP developed by
Démbo [16]. The mathematical formulatibn-given below follows that of

Bracken and McCormick.
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Figure 6.2 shows a simplified process diagram of an alkylation
process. The sysfem's main units are the reactor and the fractionator.
Olefin feed and isobutane make-up are pumped into the reactor. To cata-
lyze the reaction,vfresh acid is added and the spent acid is withdrawn.
The hydrocarbon product from the reactor is.fed into a fracticnator,
from the f0p of which isobutane is recycled back to the reactor. Alky-.
late product is withdrawn from the bottom of the fractionator. It is
assumed that the olefin is pure butylene, that both‘thé isobutane make-
ﬁp and the isobutane recycle are pure butane, and that the fresh acid
strength is 987 by weight.

The process variables and their upper and lower bounds are
defined in Table 6.1. The bounds on the variables Xys eees Xg are due

to the limitations imposed by the capability of the plant and/or the

economic situation under analysis. For example, only 2,000 barrels per

ISOBUTANE _
RECYCLE - HYDROCARBON -
PRODUCT , FRACTIONATOR-:
OLEFIN
FEED o — -
) REACTOR _ o | ALKYLATE
ISOBUTANE : | PrODUCT
MARE-UP | . .SPENT >
FRESH - ACID
ACID _

Fig. 6.2 Simplified alkylation process diagram.



VARTABLE LOWER UPPER

BOUND BOUND

%y olefin feed.(barrels per day) 1.0 2000.0
X, isdbutane recycle (barrels per day) 1.0 16000.0
xy acid dilution rate (1000 1b/day) 1.0 120.0
X, alkylate yield (barrels per day) | 1.0 5000.0
X isobutane make-up (bafrels per day) 1.0 2000.0
Xe acid strength (weight per cent) 85.0 93.0
Xy motor octane number 90.0 95.0
Xg _external isobutane-to-olefin ratio 3.0 iZ.O
% acid dilution factor 1.2 4.0
X F—4 performance number 145.0 162.0

Table 6.1 The alkylation process problem's variables and their

bounds,

PROFIT AND COST PARAMETER

VALUE

110.

cq alkylate product value
cy olefin feed cost
c3 isobutane recycle cost

c4 acid addition cost

Cg isobutane make-up cost

Table 6.2 Definitions and values of the cost coefficients of the

alkylation process problem.

$0.063

$5.04

$0.035
$10.00

$3.36

per octane-barrel

per barrel

per barrel

per thousand pounds

per barrel
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day of olefin feed may be available. Thé othér variables Kgs vo0s Xqq
have bounds dirggtly related to the process.

The process constraints consist of two groups: statistical
relations among some variables within certain épefating rénges, and
relationships due to material 5a1ances. The first group, described by
linear or nonlinear regressions, leads fo inequality constrainfé while
the latter gfoup is just a set of equality constraints. Each regression
relationship is replaced with two inequélity.constraints,bwhich specify
the range for which the regression relationship is vaiid. Considex the
regression equatioh Y = f(z). This relationship would be expressed in

the model as

dlY < f(z) < qu . (6.l§)
Or i £(z) f_qu
- £(z) < - dgY (6.17)

The deviation parameters dg and du establish the percentagévdifference'
of the estimated value from the true value. In this model; the values
of the d2 an.d..du for'eaéh regression relation are set to the same vélues
‘as those given in [57].

Assuming that the reactor temperature is between 80°F and 90°F,
and that the reactor acid by weight percent strength is 85-93%, nonlinear
regression analysis relates the alkylate yield X, to the olefin feed %
and the external isobutane—tp—olefiﬁ ration Xg by the following pair of

inequalities:

o N

(99/100)x4 i_l.lle + 0.13167X1X8 - 0.00667x1x 5_(100/99)}{4 - (6.18)

Similarly, under the same reactor conditions, the motor octane number X,

is related to x

8 and the acid strength by weight percent Xe by
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(99/100)x7 < 86.35 + 1.098x8 - 0.038x§ + 0.325(x6—89) 5_(100/99)X7v(6.l9)

A linear regression relation expresses the acid dilution factor

X, @ a linear function of the F-4 per formance number X10° which in turn

9

is linearly related to'x7 by regression analysis.

(9/10)x, < 35.82 - 0.222x ) < (10/9)xy - (6.20)

1

(9/100)% < -133 + 3x, < (100/99)x;, (6.21)

Mass balance requires equality constraints for the isobutane

55 the acid dilution factor Xgs and the external isobutame-to-

olefin ration Xg- Assuming that the volumetric shrinkage is 0.22 volume

make-up x

per volume alkylate yield, the isobutane make-up X, may be determined

by a volumetric reactor balance given by

X, =% + X5 = O.22x4 _ : . (6.22)
or - X5 = 1.22x4 - % (6.?3)
The acid dilution factor-x9 may be derived from an equation expressing
acid addition rate Xy as a function of alkylate yield Xy acid dilution
factor Xg» and acid strength by weight percent X Thus,
1,000x3 = x4x9x6/(98 - x6) (6.24)
or Xy = 98,000x3x4 6 1,000x3x4 (6.25)
Finally, by definition,
xg = (%, + %) /%, - (6.26)
Combining (6.23) and (6.26), and rearranging yields
X, = X Xg = l.22x4 + %) _ (6.27)

The profit function is taken as the value of the output, the
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alkylate yield, minus the feed and recycle costs. Other operating costs

are assumed to be constant. The total daily profit to be maximized is

P=c.Xx,x, - C,X

154%7 9%y = Cg¥y = X5 = CoX _ - (6.28)

372 473 575

where the cost coefficients ¢ ¢, are as defined in Table 6.2,

1> **s S5
Also given in the same table are values of the coefficients used in the
numerical soiution.
To cast the design problem into the format éompatible with the
formul;tion of Chapter II1I, the following are done: |
1) The maximization of P is replacea with the minimization of'xo
subject to xgl(—P + ¢} <1, where ¢ is a sufficiently laxge
positive constant (e.g. 3,000) to insure that x < 0.
2) Each of the constraints (6.18)-(6.21) is rewritten as a pair of
signomial iﬁequality constraints. |

3) .Each of (6.23), (6.25), and (6.27) is stated as a signomial

equality constraint, The resulting signomial program is

-1 ' .
s.t. (a) x (5.04xl + 0.035x2 + IOX3 + 3.36X5 f_3,000 - 0.063x4x7)51

‘ 2, n.
b . + 0. + - 1.12 - 0.131
(b) O 00667x1x8 0 99x4 1 1 Xl 0.13 67xlx <1

2

(c) ;.12x1 + 0.13167x;xg+ 1 - 0.00667x;xg ~ 1.0101x, 5_1‘

(4) 0.038x + 0.99x, - 0.325x, - 1.098x, ~ 56.425 < 1

() 0.325x, + 1.098x, + 58.425 - 0.038x - 1.0101x, < 1

(F) 0.222x, .+ 0.9x, - 34.82 < 1 |
10 g = T2 | C(6.29)

- ]

(g) 36.82 - 0.222x , - 1.1111x, < 1

(h? 134 + O.99x10 - 3x7 <1

(i) 3%, - 1.010lx,. - 132 < 1

7 10
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.y -1 ~
&), 1,22x4xS - xlXS_ = 1
-1 -1 -1 -1
(k) 98,000x3x4 Xe Xg - l.22x2 %, = 1
-1, -1 =
(1).xlx2 Xg = X X, - 1.22};2 %, = 1

(m) the boﬁnds specified in Table 6.1.

The code SP was used to solve (6.29) with A and K upaated accor-
ding to Scheme TI. As in Section 6.1, A(® = (0.0, 0.0, 0.0)", KO = 1.0,
and ¢ = 4.0. The optiﬁality and feasibility tolerancés are also the
same as those in‘Section 6.1.' In the first few computation runs, it was
discovered that the dual convergence was not satisfactory in the sense
‘that 8§(N) was either constant for several dual iterations or decréasing.
very slowly in spife of K being vefy large.(e.g. 107). A modification
bthat correctea the situafion is to rewrite the equality constraints as

(j) 1.22%

4

- xl - xs + l.Q = 1.0

(k) 98000.Ox3x6 - lOOO-.Ox3 - XX + 1.0 = 1.0

x, - 1.22%, - x. + 1.0 = 1.0

(1) xxg - x; 4~ %2

The above equations, however, are poorly scaled. The final scaled equa-

tions used are

(3) 1.22x4 - x; - x5 + 1.0 = 1.0

(k) 980.0x x, + 1.0 = 1.0

-1 - ,
%¥g 1O.Ox3 - 0.01}:4 9

1 O'lxiXS - 0.1x, - 0.122x, - 0.1x, + 1.0-= 1.0

1 4 2

Table 6.3 giﬁes‘the'starting point and the optimal solution
computed. Note.that the initial point is feasible with respect to the
'inequality constraints. The solution obﬁéined here is very close but
not identical to thatvof Bracken' and McCormick [57]. The slight dis-

crepancy is perhaps due to the primal algorithm used. As can be



"expeéted from the nature of the constraints (6.18)-(6.21), four of the

inequality constraints of (6.29) are loose at the optimum,
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OPTIMAL SOLUTION

STARTING POINT
X, - 2200.0
x 1745.0
%, B 12000.0
X3 110.0
%, | | 3048.0
Xg C R 1974.0
X a 89.5
x, 92.8
Xg | _ 8.0
g . 3.6
X10 145.0

1232.88
1696.78
15805.58
54.07
3028.87
1958.44
90.11
95.0
10.49
1.56

153.53

Table 6.3 The initial and optimal solution of the alkylation process

problem.

Since the profit P is C =~ xo, the maximum profit is deduced to
be 1767.11 dollars/day. From Table 6.3, it can be seen that one of

the inputs, the isobutane make-up XS’ is at its upper bound. This

suggests that the profit may be increased further by allowing more iso-

butane - make-up, the maximum profit is raised»by about 5% to 1857.23

' dollars/day. To accomplish this, the capacity of the fractionator has

to be expanded to yield the isobutane recycle flow of 16593.27 barrels/

day;
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The computational experience with the alkylation problem offers
some valuable insight into how an equality constraint of the formy = f(x),
where.fkg) is a signomial, should be converted fo a standard signomial
equality constraint g(x) = 1.0. Such type of equation often arises in
input-output relations aﬁd in functional rglétions defining one design
variable in terms of_other variaﬁles. The first wéy to transform the
equation is to write y—lf(§} ; 1.0. This format is usually well scaled
provided y is in the proper range. However the factor y~1'0 appears in
every term of f£(x) and the augmented objective function is very nonlinear
~in y. The second way is to rewrite the équation as f(x) - y + 1.0 = 1.0.
The advantage of this format is that tﬁé'augmented cost is quadratic in
-y. This format, however, is susceptible to poor scaling. If the latter
form is to be used a scale factor B must be introduced such that, for
example, initially B|f(x) - y| ~ 1.0. The final form becomes Bf(x)- By +
1.0 = 1.0. As long as B is suitably selected, the second format seems to

be preferable.

6.2.3 Design of a Heat Exchénger Network

| The design of the heat transfer_capability of a process varies
very widely in complexity. The design task may range from the size
épecification of a simple heat exchange unit to the optimal structural
synthesis of a heat exchanger network. The example in this section is
concerned with the optimal choice of the heat transfer areas and the
'tempefature variables in a small heat exchanger network with a known -
configuration.

Suppose that in an industrial chemical process, a flow denoted

as Stream 2 has to be cooled from T21°F to T22°F. It is found that the

required heat loss by Stream 2 cannot be completely absorbed by an
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existing cooler C through which cooling water is pumped. There ére,
Howevér, two streams in ﬁhe process, Streams 1 and 3, which need to Be
heated and which can be conveniently routed to.the vi;inity of Stream 2.
The two streams are therefore potential sinks for absorbing via heat
exchangers part of the heat of Stream 2. Such a scheme, as shown dia-
grammatiéally in Fig. 6.3, not oniy makes if»feasible to reduce thevfeuh
perature of Stream 2.to T22°F, but also may be cheaper than cooling by
water.alone, assuming the water flow is fast enough. The desigﬁ goal isb
to satisfy system constraints and_still‘achieve the 0ptima1 trade-off
betweén the exchangers' installation costs and the operating cost of
_using cooling watef.' The exchangérs afe assumed to be the double-pipe type

ﬁith coﬁntercurrent flow.

| The design variables are the output températures tl’ ey t5
as indicated in Fig. 6.3, and the heat transfer areas Al and A2 of
exchangers X1 and X2, respectively. The annual cost is the sum of the

exchanger's annual depreciation and the annual cost of cooling by water.

The cost of installing a heat exchanger with a heat transfer area A is

STREAM 2

ts ty

@ Ly ——  HEAT > HEAT > s—
EXCHANGER | EXCHANGER COOLER
F X1 f— X2 F ¢ —1
§ ' _} t, . . _ ‘} t: : I
- STREAM 1 STREAM 3 | COOLING WATER
@ Iy R @1,

Fig. 6.3 A small heat»exchanger_netWOrk;
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generally taken as_hAY dollars [58] for some posifive'constants h and vy.
If the cost is spread over its expected service lifetime.of n yeats,.the
~annual depreciatioﬁ cost is cAY dollars/year where ¢ = h/n. Because
Streams-l and 3 have different corrosion properties, X1 and X2 need to
be constructed with different materials, and hence have different cost
pafameters ¢ and y. If the annual cost rate of cooling by water is Cq
dollars/°F, then itbfollows that the total annual cost‘f(Al, AZ’ t4)

.is . :
= Y1 Y2 -
£(Aps Ays £) = c AT+ A Y2 4 (e, - T,) (6.30)

The constraints on the system of Fig. 6.3 consist of four
groups: |
" 1) Boﬁnds_on the minimum temperéture difference (called the approach)
between the hot and cold streams of an exchanger;
2) Bounds on the output temperature of the cold streéms and on the
areas of the heat exchangers;
3) Energy balance equalities relating the input and output tem—
peratures of both streaﬁs;
.4) Energy balance equalifies relating the heat transferred and
the heat transfer area of an exchanger.
Since_the'temperature profile of the hot and cold streams of

an exchanger is not known, the approach TA cannot be explicitly bounded..

A

Tho - Tci and Thi - TCO' The subscripts o and i refer to the output

temperature and input temperature respectively while the subscripts h and

An approximate bound on T, may be obtained by bounding the differences

c refer to the hot and cold streams. Hence, from Fig. 6.3, the follow-

ing inequalities must hold.
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(@ Typ =127y
(B) ty-Ty; 27,
() ty-t, 271, (6.31)

(d) ¢, -T > T

i

[9%)

=
!

(e) t4 - t5 Z_TC

Ty is fhe ﬁinimum allowable approach for the heat exchanger while TC‘iS
that for the cooler. -
Becausé'Streams 1 and 3 are required for othér purposes, the
: temperatu?es ty and tz may have to be bounded. It is assumed that
ti j_bi and a, < t, i'bz. Furthermore, because of heat polluﬁion control,
the cooiing water cannot be‘heated beyond TW°F. Spaée limitation also
demandé that the heat exchangers' areas must be Qithin 100 sq. ft.
Let Wi and»CPi be, respectively, the flow rate (1b/hr) and
the heat capacity (BTU/1b-°F) of Stream i. Also, let the water's flow

rate be W& and its heat capacity be pr. ~Then energy balance requires.

() WyCop(Tyy — tg) = WC ey - Tpy)

(b) W2Cp2(t3 - t4) = W3CP3(t2 - T3l) (6.32)

(o) WZCPZ(F4 -‘TZZ) = wwcw(t5 - TW)

 Furthermore, the heat transfer rate Q of a heat exchanger can zlso be .

expressed as

Q = UA AT (6.33)

log
where U is the ovérall coefficient of heat’transfer (BTU/hrfft2—°F), A
is the area avéilable for heat transfer,'and_ATlog_is the lqgarithmic

mean'temperature differenéé. In termé of_fhe input and output tempera-

tures of both hot and cold streams, the logarithmic mean temperature
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difference is defined as.

(Thi " Tco) B (Tho— Tci) : ' (6.34)

log i lnI(Thi - Tco)/(Tho - Tcin

AT

where Thi and Tci are the input temperatures of the hot and cold streams,
-~ respectively, and Tho and TCo are the output temperatures. Frequently
ATlog is replaced with the arithmetic mean [(T hi " Tco) - (Tho - Tci)]/2.0.
This approximation has less than 17 error if (T T )/(T - Tci) is

' 2_0.7 énd.less than 10% if (Thi - Tco)/(Tho - Tci) is > 0.33 [59]. For
the purpose of this example, the arithmetic mean is used to yield

' - = ( -
() WyCy(eq = Tyy) = 0.50 A1[(T21 t)) + (tg - Ty
‘ ‘ (6.35)

(b) Ww.,C

3 133(t2 - T31) = 0.5U Az[(t —' t2) + (t:4 T31)]

In summary, the aesign probleﬁ calls'for the minimization of
(6.30) subject to the inequality constraints (6.31), fhe bounds on ti,
rfz,-ts, A and Az; and the equality constraints (6.32) and (6.35).
Table 6. 4 gives the required data used to solve the numerical example
_ presented in this section. To 51mp11fy and put the optlmlzation problem
into the proper format, the follow1ng are done: 1) The constant term
¢3T22
is ignored since T,, - Tc.= 260°F > bw = 180°F 2 tg. 3) Constraints

is dropped from the objective function. 2) Constraint (6.31c)

(6.32a) and (6.32c) are used to eliminate ty and-t4. The resulting

signomial program is

" min 350Ag‘6 + 275Ag'8 + 142.5¢,

(a) (9.634669 x 107", + (1.67124 x 107 D, < 1.0

(b) O.7225_1t2 + O,95t53+ 0.5765t1 - $33.21639 = 1.0

(q) ty + 0.0lOZSDAltl— 5.58343A1 - 239.0 = 1.0
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Stream 1

Input temperature 111 240 °F

Flow rate o Y1 23,060 1b/nr.

Heat capacity Cpi ' 0.5 BTU/1b °F

Upper bound of output temp. bl 550 °F
‘Stream 2 '

T 480 °F

: Output temperature T 280 °F
Flow rate . A 25,000 1b/hr.
c 0.8 BTU/1b °F

Input temperature

"~ Heat éapacity

p2
Stream 3 » :
Input temperature | | Tqg 278 °F
Flow rate o W3 ’ _ 20,643 1b/hr.
Heat capacity ) _ Cp3 0.7 BTU/lb °F
~ Range of output temp. ' a,<t,<b, 300 °F < t, <350 °F

Cooling Water :

Input temperature T, B 100 °F

Flow rate : WW : 19,000 1b/hr.
Heat capacity | ‘ pr ' | 1 BTU/1b °F
Upper bound of output temp. bW . 180 °F
Annual cooling cost . ey 1508/°F yr.

Heat Exchanger X1 _ - Y, 0.
Installation cost ‘clA~ 35047 " $/yr.
Overall hgat transfer coefficient Ul ‘ 150 BTU/hr. ft.2 °F

Heat Exghanger X2 | Y, b .
Installation cost _ ' c,A : 275A7" "$/yr.
Overall heat transfer coefficient U, . 150 BTU/hr. ft.? °F
Minimum approach for exchangers T 20 °F
Minimum approach for cooler T 20 °F

(o4

Table 6.4 Datéffor the heat exchanger network design problem.
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(@ €, + 0.00519034,¢t, + 0.00299224,t, - 2.726764, -

272 271
0.00493084,t, - 277.0 = 1.0
(e) 0 < t; < 500.0 |
(£) 300.0 < t, < 350.0
(2) 119.0 < tg < 180.0 | |
(h) 0 < A, <100.0, 1 - 1, 2 o (6.36)

As in the previous two design problems, the optimal solution is
obtained by the code SP using Scheme II to update A_énd K. The parameters
of Scheme II are as before. Table 6.5 gives both the starting point and
the.optimal solution (6.36). The optimal values of.t3 and t4 are obtained
from t, and t. according to the following linear_relationé derived from

1 5
(6.32a), (6.32c)‘and the data of Table 6.4,

3 —0.5765t1 + 618.0

t
(6.37)

0.95t. + 185.0

t 5

Thus at the optimum t, = 391.13°F and t. = 355.9°F. It can be easily

, 3 5
verified that the error due to replacing the ldgarithmic mean with the

- arithmetic mean is less than 5% in exchanger X1 and less than 17 in‘
vexchangér X2. Thus the approximation by the arithmetic mean is reason- .
able. The energy balance equations (6.32) and (6.35) are all satisfied
within a relative discrepancy of only 0.027.

From Fhe optima; solu;ion,_it can be.seen that tS’ the éooling
water's output témperatﬁre, is almost at the makimum allowable value.
This'confirms that even at the optimum, the cooler'by itself cannot
absorb the heat load. The»solutioﬁ also reveals the interesting result
that it is more economical to have A, at it upper bound than to have.

1

- a ‘higher output temperature t, in exchanger Xl.

1
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OPTIMAL SOLUTION

STARTING POINT
Cost | 313226.83
t, | 300.0
o 325.0
tg ) 1500
Ay 50.0
A 50.0
2

24787.63
394.15
326.76
179.9
100.0

66.04

Table 6.5 Starting point and optimal solution of the heat exchanger

network problem.
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VII. CONCLUSION

7.1 Synopsis

A wide range of engineering design problems can be modeled as
signomial programs with both equality énd inequality constraints. Thé
theory of signomial programming, however, has been developed in terms of
inequality constraints only. In this thesis, an algorithm is proposed
and.implemeﬁted to solve signomial programs Witﬁ mixed inequality and
equality constraints.. The algorithm does not require its user to trans-
form the équality constraints to inedualities. The equéiity constraints
are automatically incorporatéd into the briginal»objectivé function to
reduce the original préblem into‘a sequence of less constrained signomial
programs with.inequality constraints only. Because it is within the
framework of signomial prbgramming, the préposed algorithm is computatio-
nally préctical. Because no problem manipulation is needed prior to data
entry,-thé>physical significance of the original problem. formulation is
preserved, .

In ChapterII, a concise review of signomial programming is
given. “Signomial programs are defined and shown to be nonconvex. Because
of noncoﬁvexity,‘thé sglﬁtion of a signomial program can at best be gua-
ranteed as a local minimum. Another consequence of nonconvexity is the
existence'of only a weak duality theorem relating the Kuhn-Tucker points
6f a primal signomial program fo the Kuhn-Tucker points of .a linearly
constrained dual'problem. At these Kuhn-Tucker points, the primal and
dual objective'funcﬁions aré equal. An important special class §f signo-
mial frograms is that of geometricAprograms; It is shown that geometric

programs can be changed via the logarithmic transformation into convex
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programs. - As a result, géometric programmihg possesses an elegaﬁt strong
duality theorem thch identifies the global minimum of a geometric program
bas the global maximum of a concave dual function restricted to a 1inear'
manifold. The duélity theorem thus offers two options, the primal and the
dual approach, for computing the solution of a geometric program. Nei-
ther option can be categorically stated as being.superio: in all cases.
However, given an adopted method to solve geometric programs, the numeri-
cal solution of a signomial program can be obtained b& successively appro-
ximating the.nonconvex signomial program with convex geometric programs,
each of which can be conveniently solved. This is the strategy of tbe
promising Avriel-Williams algorithm used in a slightly différeﬁt.form in
the later chapters of the thesis. In fhe Avriel-Williams algorithm, the
approximation is accomplished by condensing the ‘signomials' nggative terms
into monouﬁals. |
The main problem of signomial programs with equaiityband inequé—

lity cdnstraints is formulated and solved in Chapter ITII. The proposed al;
gorithm, Algorithm 3.2, ié the synthesis of three basic gulding concepts:
the multiplier method viewe& as a primal-dual method, partial dualizatioﬁ,.
and preservation of compatibility with signomial programming. In lieu of
confronting the original problem, the algorithm solves a sequence of in-
equality-constrained signomial programs each specified by the Lagrange
multiplier estimate vector ) and the penalty constant K. Alternating with
the solution of each signomial program of the sequence is the updating of
A'and K accéfding_to some rules. The convergence of Algorithm 3.2 is as-
sured by that of the method of multipliers and by the convergence of the

Avriel-Williams algorithm used to solve the sequence of sigﬁomial programs.

It is observed that expressing each problem of the sequence in the stan-.
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dard‘format of a signomial program would likely entail inconvenience in

data preparation‘anc compctational difficulty due to lécge problem size.
To circumvent these problems,.three indirect methods of applying the Avriel-
Williams algorithm to the subproblem (3.9) have been numerically explored.
All.three'are based on monomial condensation, require no or small increase
in variables and constraints, and need only the minimum effort for data
entry. Of the:three methods‘tested, one is selected as promising and dis-
‘cussed in detail in Chapter'IV. The ccnsideration of the other major step
~of Algorithm 3.2;'the updating of A and K,.is deferred to Chapter V.

'Chapterlﬁ7pfesents a new numerical method to implemenﬁ a proposed
variant of the Avriel-Williams algorithm for solving signomial programs.
In this method the original nonconvex feasible set defined by signomial
inequalities is approximated by»a.convex set obtained by monomial conden-
sacion. The nonconvex objective function is then minimized>cver the convex.
o approximant by a combined rcduced gradient and cutting plane algorithm.
The minimization's solution in turn determines the next convex approximant.
In contrast to this method is the original version of the Avriel-Williams
aigorithm in which the signomial objective function is first incorporated
into the feasible set prior to the convex approximation. The proposed
method séems to match better the need cf signomiéllprograms characterized
by a‘high'degree_of.difficulty with most of'the terms being in the objec-
tive fuﬁction. Unlike other methods reported in the literature, the method
here reédily admits extension to problems with a nonsignomial objective
functionvbut'signomial inequality constraints. A practical example of such
a problem is che'cocstrained location problcm solved in Section 4.7.3.

The software implementation of the combined reduced gradient

and ‘cutting plane method requires detailed considerations of several aspects
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of the algorithm. .Section 4.4 considers the questions relating to how
to obtain an initial basic feasible solution, how to generate an initial
basis of the linear constréints, how to augment the basis' inverse and
geﬁ a basic feasible solution after adding a cut, how to perform the linear
seafch, and how fo update the basis. In the same section; the optimality
criteria aha the feasibility tolerances are défiﬁed. Computational expe-
riepce‘with the software implemented shows that the proposed numerical
metho& compares favorably with another well tested recent implementation.
However, the method suggestgd in this thesis has the added advantageous
fléxibility of handling general nonconvex objective functions such as the
algebraic functionals of signomials demonstrated in Section 4.7.
The_formulétién'and testing of the updating_rules for A_and K
are reportéd.in Chapfer V. . The two rules for updating A are the Hestenes-
Powell rule and one based on fitting a cubic to the ordinary Lagrangian.
The paramet¢r>K is increased by a factor ¢ > 1 either oniy when the norm
of thg equality constraints does not decreasevsufficiently,.or'in every
dﬁal iteration independent of the behavior of the.equality qonstraints.
Altogether four schemes are tested in a series of numerical experiments.
In terms of rateb of convergence, th.e most promising.scheme is that using
the Hestenes-Powell rule for A and increasing K according to the second
criterion. The impact»of the range of values of K on the rate of conver-
gence is also studied. it appears thaf best results are .obtained when
K is ihitially émall_and'then is moderately increased, provided the équa—
lity constraints are initially scéled proportionately. Furthermore appro-
ximate.minimizafioh:in the first few iterations can reduce considerably
coﬁputing time without any serious loss of convergence and the required

accuracy.
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Ih Chaﬁter'VI,the-algorithms discussed in this thesis are épplied
to three engineering design préblems. The first design problem.involves
chooéing the cross-sectional areas of a hyperstatic pin-jointed structure
such that the totalvﬁoiume is minimized subjecﬁ to stress, deflection and
" topology cpnstrainfs. The second example reqqired:the specificaticn of
the most profifable opefating condition of an alkylation process commonly
found in the‘petroleum industry. Thé last problem aims at achieving the
optimal trade-off between installation and operating costs of a small heat
exchénger network that is typical of thése ﬁse& in process engineering.
Each desién problem is first formulated from its engineering point of view

before the numerical solution is obtained and intefpreted.

6.2 Contributions of the Thesis

- The research reported in this thesis is the first known effort
to develoéAan algorithm for solving signomial programs with ﬁixed inequa-
1i£y-and equality constraints without having to transform one type of cons-
traints to the other. ‘Furthermore, the algorithm is compatible with the
exigting methods of signomial programming. The specific original contri-
butions of this thesis.may be listed as follows:
1. .the proposal of.an algorithm that can automatically handle both
| ‘inequality and equélity signomial constraints within the framef
work of Signomiai programming and without any need_fbr user mani-
pulatiqn Qf the constraints; |
2. . the development of a new numerical_méthod to realize a variant
of the AvrielQWilliéms algorithﬁ for signomial.programs whose
objective funcfion may have many terms or is an implicit signomial;

3. the extension of the numerical method of Item 2 to include non-

'signomial objective functions such as algebraic functionals of
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 signomia1s, aed the application of the meehod to constralned
locatlon allocatlon problems;

4. the software implementation of the aforementioned algorithms,
and the'acquisition of compqtational experience with the imple;
mentation;

5. the numerical study of the updafing.sehemes for the parameters
_lAand K yielding usefel guidelines for later applications of
the algorithms;

6; the formulation and numerical solution of selecte& realistic
design problems cast as signomial programs with mixed types of

constraints,

6.3 Suggestions for Further Research

Furtﬁer research based on the.results of.this thesis ma& be
pursued along several directions. The first is to investigate alter-
native more efficient ways of solving the primal sebproblem (3.9). The
solution of the subproblem consumes a good part of the total computing
time. Hence the'ability to solve the subproblem faster is definitely
desirable. Faster con&érgence mey be achieved iﬁ various ways. Within
the present framework of the combined reduced gradient and cutting plane
(CRGCP) algorithm, effort may be focused on 1mprov1ng the inexact llnear
search, the procedure of obtainlng 81multaneously a basis and its inverse
in the presence of tlght constraints, and the method of obtaining a fea-
sible and better point after the addition of a cut. A more.involved study
is to consider incorporating a quaéi—Nthon feature into the CRGCP algorithm
so that superlinear convergence may replace the present elgorithm's linear

convergence.
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_ Another item ﬁorthy of further research is to considef using
_the CRGCP algorithm for solving the class of problems cﬁaracterized by
a nonconvex objective function and convex constraiﬁts. This study would
include devising procédures for obtaining an initial feasible (possibly
interior) point and.comparing different cutting plane schemes so as to
achieve feasibility earlier. |

More investigation is also needed on the specification and the
updating Qf Z_and K. For example, the initial.values of.l_and K may be
more judiéiouély selected on thé basis of primal feasibility or optimality.
K may be allowed to be different with each 6f the q equality constraints,
and then the q penalty constants may be autdmatically adjusted in an
-adaptive fashion to maintain proper scaling in the dual space.

The algorithms.proposed in this thesis may also bé used to
sblve wider classes of problems to extend thé applicability of signomial
programming. One such class is that of "pseudo" signomial programs a

- few térms of which have transéendental funétions. Clearly such problems
are not sigﬁomial programs. However, through signomial approximation of
the transcendental functions and the use of new variables and equality
cénstfaints, the programs can be closely apprﬁximafed by true signomial
programs with eQuality.constraihts. Hénée they éan be solved by the al-
gorithms of this tﬁeSis. The_approximafion schemes need té be explored,
and it would be very convenient if the approximation and the required
new.§ériables and equality constraints could be internally generated by

the software package.
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