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Abstract

This thesis 1introduces a new Petri net formulation for
the general scheduling problem. The first part of this thesis
concerns the development of the Petri net formulation. The
Petri net formulation is a synthesis of concepts from three
classes of Petri nets, marked graphs, timed Petri nets and
colou;ed Petri nets. The general approach to the‘ scheduling
problem begins with the construction of a Petri net which
models the structure of the general scheduling problem. The
scheduling strategy is modeled by modifying the algorithm for
the analysis of Petri nets. A schedule 1is generated by the

execution of the Petri net model under the modified analysis.

In the second part of this thesis, The Petri net
formulation 1is wused for the analysis of a particular
scheduling problem. The problem addressed is the scheduiing of
a task system on a set of processors of different speeds. The
scheduling strategy to be analyzed is list scheduling. A new
heuristic 1is proposed for the ordering of the tasks into a
list. The proposed heuristic combines notions from the highest
levels first heuristic and the longest processing time

heuristic.

The performance of the proposed heuristic is evaluated by
a comparision with other 1list ordering heuristics. The
schedules which are generated by the proposed heuristic are

compared to the schedules which are generated by the highest
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levels first heuristic, the Coffman and Graham Algorithm A and
a random list for fifteen precedence constraints. The proposed
heuristic generated a better schedule in 98 of 160 cases
tested for the 15 precedence constraints. The proposed
heuristic generated a schedule as good as the schedule which

is generated by any other list in a further 39 cases.
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CHAPTER 1

INTRODUCTION

A Petri net is a formal model of information flow. Petri
nets are particularly wuseful for the description and the
analysis of systems which exhibit asynchrondus concurrent
behavior. Petri nets provide a natural and compact
representation for asynchronous concurrent systems. The
natural and compact rep;esentation is reflected in a simple
graphical representation. Petri nets are easily extended so as
to increase their ability to model systems. This extendibility
allows compact and natural descriptions for a wide variety of

systems.

An important aspect of Petri nets is the ability to model
both the structure and the behavior of systems. The stucture
of a system is the static properties in a system which impose
restrictions on the behavior of the system. The behavior of a
system is the set of actions which occur as a result of
conditions in the  system. The behavior is dynamic in nature
‘since the occurrence of an action causes new conditions to
become valid. The new conditions in turn allow more actions to
occur. Thus, Petri nets are a powerful method of describing
systems in which the structure and behavior are of egual

importance.

The general scheduling problem is that of scheduling the



execution of a set of tasks on a set of resources. For the
purposes of this thesis, the set of resources is a computer
system. The computer system 1is comprised of processors,
primary and secondary storage, and possibly other devices. The
task system then consists of blocks of independent code from a
program. It 1is assumed the resources are sufficient for the
execution of all of the tasks; that is, the minimum amount of
any resource 1is the maximum, over all tasks, of the minimum
amount required by any single task. It is assumed that a valid
schedule exists. The scope of the problem is to find the best
schedule given a task system, a set of resources and a

scheduling strategy.

The general scheduling problem may be considered in terms
of structure and behavior. The structure of the general
scheduling problem 1is the operational precedence constraints
of the task system. Further structure 1is imposed by the
resources which‘are used for the execution of the task system.
If we consider storage devices as a set oﬁ'resources, the set
of resources may be subdivided 1into primary and secondary
storage with primary storage being the faster of the two. The
secondary storage may be comprised of disk and tape drives. In
either case, there are differences which impose constraints on
the use of the resource of storage space. These relations
between the members of a set of resources add to the structure

of the general scheduling problem.

The total behavior of a system is characterised by a



state space. The transitions between the states are the
possible actions which may occur in a particular state.
Suppose that a particular behavior is imposed on the actions
of the system. As the system progresses through the state
space, a certain sequence of states is followed. In terms of
the general scheduling problem, the states are defined by the
tasks which have completed execution, the tasks which are to
be executed and the tasks which are currently executing. A
schedule in this description is a sequence of states. The
scheduling strategy determines which sequence of states is
followed. Hence, the scheduling strategy is the behavior of

‘the general scheduling problem.

The objective of this thesis 1is the development of a
Petri net formulation to provide a means of studying general
scheduling problems. Petri nets have the ability to model both
the structure arising from the precedence relation of the task
system  and the structure arising from the relationships
present in the resources. Petri nets also have the ability to
describe the behavior of the system. The scheduling strategies
to be evaluated are modeled by modifications to the Petri net

analysis.

In an early paper by Shapiro and Saint [84], Petri nets
are appiied to a sequencing problem. The machine code for a
FORTRAN DO-loop executing on a CDC 6600 is optimised wusing a
Petri net model of the DO loop andrthe hardware constraints.

The modeling which was presented is at a much lower level than



is intended by the Petri net formulation to be presented here.
The method of optimization is execution of the net until a
solution which 1s at or near a theoretical optimal one is

found.

A second use of Petri nets in a scheduling context uses a
restricted class of Petri nets which cannot model conflicts
[92, 93]. To resolve a conflict, a Petri net is generated for
each possible resolution. Each net 1is then evaluated to
determine the best manner in which to resolve the conflict. In
both approaches the optimization is through exhaustive
searches; this is not the aim of the formulation to be
presented here. Both approaches are discussed in detail after

the introduction of the formulation.

1.2 Overview of the Thesis

Chapter 2 is an introduction to Petri nets. The basic
ideas and properties are discusssed at an informal level. The
analysis of Petri nets 1is presented in .two sections, the
structural analysis and the behavioral anaylsis. Three classes
of Petri nets, marked graphs, timed Petri nets and coloured
Petri nets, are introduced with emphasis on the properties
which are relevant to the development of the formulation in

Chapter 3.

Chapter 3 deals with the definition of the Petri net

formulation of the general scheduling problem. The general



scheduling model wupon which the formulation 1is based is
presented. The definition of the Petri net formulation is
separated into two logical sections. First, the construction
of the Petri net model of the formulatioﬁ is discussed.
Secondly, the modeling of the behavior of the scheduling
strategy by the Petri net analysis is presented. The Petri net
formulation is compared 1in detail to previous uses of Petri

nets for scheduling.

Chapter 4 presents the analysis of a specific scheduling
problem to demonstrate the use of the Petri net formulation.
The problem which is analyzed is the use of list scheduling on
processors of different speeds. Results of the comparison of

the heuristics and a discussion of the results is presented.

Chapter 5 1is a summary of the significant results and
conclusions. Suggestions for further research are also

included.

Appendix A contains the formal definitions and the formal
notation for the terms which are discussed at an informal

level in this thesis,



CHAPTER 2

PETRI NETS

A Petri net is a formal model for the representation of
systems. Petri nets are useful for the modeling of systems in
which the concurrency of actions is an important aspect of the
system. In these situations, the Petri nets provide a natural
representation for the system which is reflected in a simple
graphical representation. The Petri net is easily extended to

increase its ability to model different concurrent systems.

2.1 Basic Concepts and Ideas

A Petri net is a pair, <P,T>, where P is a set of places
and T is a set of transitions [53]. A convenient means of
.conceptualizing a Petri net 1is 1in terms of its graphical
representation, a bipartite directed graph. Figure 2.1(a)
shows the graph of a simple net whose formal representation
appears in Figure 2.1(b). The formal representation is defined
in Appendix A. In the graphical representation, the two types
.of nodes, 'circles and‘ rectangles; represent 'places and

transitions, respectively.

The structural properties of the net are the
relationships between the places and the transitions of the
net. The relationships are the directed edges in the graphical

representation of the net. A place which is connected by an



- (a) Graphical_Representatidh':

p={P1,P2,P3,P4,P5,P6}
T={T1,T2,T3,T4}

Ti: P1 > P2
| T2: P2+P4 > P1+P3

T3: P3+P5 > P4+P6

T4: P6 > P5
(b) Formal Representation:

Figure 2.1: A simple Petri net-



edge from itself to a transition, is said to be an input place
to that transition. A place which is connected by an edge from
a transition to itself is said to be an output place of that
transition. Similarily, transitions may be described in terms
of inputs and outputs to places. In Figure 2.1(a), place P5 is
an - output place of transition T4. Places P2 and P4 are input

places to transition T2.

Consider the analogy of the flowchart of a computer
program. The structure of the flowchart represents the
relationship between the different sections bf the program. If
a marker is used to trace on the flowchart . the execution of.
the program, then, the marker'traverses the flowchart as the
different sections of the program are executed. The markers in
a Petri net are called tokens which are held in the places of
‘the net. The graphical representation of a token is a dot', as
shown 1in Figure 2.2. A marked Petri net is a triple, <P,T,m>,
where m is a marking. A marking is a distribution of tokens in
the places of a net. Each marking represents a different state
of the Petri net; Jjust as in the flowchart analogy, the

flowchart marker indicates the state of the computer program.

The behavioral or dynamic properties of the net are
characterized by the movement of tokens in the net. Tokens

move through the net by the firing of the transitions. A

'1f a place holds several tokens it is convenient to indicate
the number of tokens by the number rather than a number of
dots. ' '



. Figure 2.2: A marked Petri net
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transition may fire if it is enabled‘in the current marking
under the assumed firing rules. In the simplest firing rule, a
transition is enabled when there is at least one token in each
of 1its 1input places. In more complex firing rules, weights
which are assigned to the- edges and capacities which are
assigned to places are taken 1into consideration when

determining whether a transition is enabled.

In Figure 2.2, transition T4 is enabled under the marking
shown. A transition fires by removing a token from each of its
input places and depositing a token into each of its output
places. The firing of a transition 1is assumed to occur
instantaneously. The movement of tokens is shown in Figures
2.3 and 2.4 which illustrates the firing of transitions, T4
then T3, respectively, on the marked net of Figure 2.2. The
execution of a net is the firing of a sequence of transitions

from an initial marking of the net.

The Petri net models the structure and the behavior of
systems which may be expressed 1in terms of conditions and
events. The places represent conditions which may be present
in the system and the transitions represent the events in the
system which occur as a result of the conditions present. The
edges indicate which conditions are necessary for the
occurrence of an event and which conditions result from the
occurrence of an event. Consider the following conditions and

events for the net shown in Figure 2.1,



.Figure 2.4: T3 fired

1
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P1: consumer ready to consume a unit

P2: consumer ready to take a unit from buffer -
P3: buffer empty

P4: buffer full

P5: producer ready to produce a unit

P6: producer ready to deposit a unit into buffer

T1: consumer consumes a unit
T2: consumer takes a unit from buffer
T3: producer deposits a unit into buffer

T4: producer produces a unit

The Petri net now models the interaction of a producer and a
consumer through a bounded buffer. The marking indicate the

conditions in the system which are currently valid.

The example illustrates two important ideas underlying
the ability of Petri nets to model systems. First, the net
correctly models the concurrency in the system. In Figure 2.4,
transitions T2 and T4 are enabled under the marking. In terms
-of the producer-consumer system, the consumer can take a unit
from the buffer or the producer can produce another unit,
These actions may occur concurrently, which is modeled if both
T2 and T4 fire together. The ability to model concurrency
arises since the firing of a transition causes only a local
change of state. Only places which are input or output to a

transition are affected.



13

The second important idea is that the Petri net model
imposes the correct sequencing of events in the system. In the
example, transitions T4 and T3 are fired before T2 may fire.
In terms of the producer-consumer system, the producer must
produce a unit and deposit it into the buffer before the
consumer can take a unit from the buffer. The transitions are
sequenced since they are connected by a series of edges upon
which the tokens travel. Petri nets thus have the ability to
model correctly both the concurrency between events and the

sequencing constraints of events of the system.

Consider the addition of a second consumer to the
producer-consumer example shown in Figure 2.2. The Petri net
must model the contention between the consumers when both are
ready to take a unit from the buffer. The Petri net model is
shown in Figure 2.5 where the additional ©places are the
conditions and events of the second consumer. Transitions T2
and Té share a common input place, P4, and are said to be in
conflict. Under the marking shown, either T2 or T6 but not
both may fire. Hence the Petri net correctly models the
contention for the wunit 1in the bﬁffer. Conflict 1is a
structural property which exists as a result of the

relationship between related events.

The behavior of a system is characterized by the movement
of tokens in the Petri net model of the system. Properties of
the behavior of the system can be inferred from the behavioral

properties of the Petri net. Three such properties of Petri



'Figure 2.5: 2 consumer - single producer system

14
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nets are liveness, persistence and boundedness.

The liveness property is important for the determination
of the properties of a system. A transition is live 1if there
exists a marking reachable from the initial marking in which
the transition is enabled. A marking, m,, is reachable from a
marking, m,, 1f there exists a sequence of transitions, o,
which takes m,; through a sequence of states resulfing in my. A
stronger statement of liveness is that a transition is live if
there exists a marking reachable from all other markings of
the net 1in which the transition is enabled. A net is live if
all of its transitions are live. If the Petri net model of a
system is live, then one can infer (assuming a correct model),
that the system has no actions which never occur and that the

system cannot reach a state in which no actions may occur.

The liveness property of Petri nets has been the subject
of much research [3, 5, 6, 11, 43, 52, 53, 55, 68, 69, 76, 88,
94]. The use of the  liveness property for determining
properties of parallel programs (36, 38, 44, 48] and for
determining properties of concurrent systems [18, 31, 37, 41,

50, 51, 70, 7%, 72, 76, 83, 91, 98, 99] is also well studied.

The behavioral property closely related to <conflict 1is
persistence. A marked net is persistent if the firing of a
transition does not disable any other transition. 1In Figure
2.5, 'the. firing of one of T2 or T6, under the marking shown,

removes a token from the place, P4, thus disabling the other
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transitién. Hence, the net is not persistent. If no conflicts
exist in the net, then, the net is persistent. However, a net
may have a conflict and exhibit persistence. In Figure 2.6,
the transitions T1 and T2 are in conflict since they share a
common input place. The firing of T1 under the marking shown
does not disable T2. The firing of T2 wunder 1its enabling
marking does not disable T1. The persistence property of Petri
nets is useful in the modeling and design of hardware [8, 66].
A persistent Petri net model of a hardware circuit ensures

that no race hazards exist in the circuit.

The final property of Petri nets to be discussed |is
boundednéss. For some interpretations of a net, one may
consider the tokens to represent resources and.the places to
represent storage for the resources. For most real systems of
interest, the amount of storage for resources 1is finite. A
place 1is k-bounded 1if the token count of that place never
exceeds k. A net is bounded if all of its places are bounded.
A net is safe if all of its places are bounded by a value of
one. It can easily be seen that the examples discussed are not

only bounded but also safe.

This completes the introduction to Petri nets and the
properties relevant to the model introduced in Chapter 3.
Petri nets are a rich area of research covering a wide range
of applications and theoretical topics. A selection of papers
is listed in the Bibliography and also in the two survey

papers [2, 78].



'Fi>gure 2.6: A persistent Petri net
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2.2 Analysis of Petri Nets

The analysis of Petri nets is separated into two phases:
structural and behavioral analysis [74]. The separation of the
analysis into two phases is based wupon the two stages of
modeling, synthesis of the model and operation of the model.
The structural analysis determines the static properties of
the net and the behavioral analysis determines the dynamic
properties of the net. The structural analysis 1s wused to
restrict the behavioral analysis to Petri nets which are live

and bounded.

2.2.1 Structural Analysis

Structural analysis is based upon the notion that certain
structures in the net affect the behavior of the net. The
characteristic matrix 1is an nXm matrix representing the
structure of the net. The elements of T, rij' are the net
effect on the token count of place i by the firing of
transition j. The struétures are identified by the solutions
to

reg<g,
reg20,
fer<g,
and fer>Q,

where f and g are vectors and "e" is a matix multiplication.

The solutions to Teg20 and to regs<QO identify sets of
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transitions which create or destroy tokens. Consider the
example shown in Figure 2.7. g, is the transpose of ‘a positive
integer solution to reg20'. Each element of g, is greater than
,or equal to zero. T2 and T3 are identified by the non-zero
‘elements of g,;. The structures 1identified by the positive
integer solutions to reg20 are called generators. As T2 and T3
are repeatedly fired, an arbitrafy number of tokens can
accumulate in place P4. g, is the transpose of a non-trivial
solution to Teg<0. T1 and T2 form an absorber. If T1 and T2
are repeatedly fired, an arbitrary number of tokens can be
removed from the place P4. If a generator exists, the net
cannot.be bounded. If an absorber exists in a net which 1is

bounded, then, the net is not live [88].

The solutions to fer<0 and to ferx0 ideﬁtify sets of»
places which affect the movement of tokens through the net. f,
is a positive integer solution to fer<0. The places P3 and P4
which are identified by the non-zero elements of f, are called
a deadlock. If transition T3 or T2 is fired a token remains in
P4 or P3, respectively. However, if T1 or T4 is fired, then,
P3 loses a token which it cannot regain by the firing of any
other transition. f, is a solution to fer>0 which identifies
P5 as a trap. Once a token is placed in P5 it cannot be return
to the rest of the net. In general a trap consists of se§eral

places; the tokens 1in the trap remain in the trap unable to

"The relations < and 2 are component-wise comparisons.



? _

P1 - T

;

P5 T4

(a) A Petri net

(b) Characteristic matrix, T

ig;=(d,.j, 1,
A-g;=<1, 1, 0,
£,=(0, 0, 1,
£,=(0, 0, 0,

(c) Solutions to reg, fer

Figure 2.7: Structural analysis

0) .
0)

1, 0)
0, 1)
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circulate in the rest of the net. If a deadlock exists in a
net, then, the net 1is not live. If a trap exists in a net,

then, the net is live if it is not bounded [88].

The dot product, reg, is the overall result on the token
count of a place by the firing of a sequence of transitions,
c. In the fifing sequence, ¢, each transition 1is fired Kk;
times, where |

g={(k;,Kg,eee,RKireee,km)-
If reg=0, then, the net effect of a firing seqguence, ¢, oOn a
marking x is 0. If the net effect is 0 , then, a marking
returns to 1itself, that 1is, x=¢® x. The firing sequence, o,
may be executed infinitely many times on the state x. If the
.firing sequence contains each transition, then, the state x is
salid to be strongly non-terminating. A Petri net is strongly
non-terminating if there is such a state in the net [53]. 1If
the solution to fer=0 and each of the elements of f is a
positive integer, then, the net is both a deadlock and a trap.
A net which is a single trap and a single deadlock is bounded

[88].

A special case exists when the net is both strongly nbn—
terminating and bounded. The net is said to be well-behaved.
The necessary and sufficient conditions for a net to be well-
behaved are given by
Theorem 1 [53]

A GPN 1s well-behaved if and only if reg=0 and fer=0

have positive integer solutions for the variables f
and g. I is the characteristic matrix.
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A well-behaved net precludes the modeling of systems with
transient behavior. The well-behavedness is used to restrict

the analysis to nets which are live and bounded.

2.2.2 Behavioral Analysis

The behavioral analysis of a Petri net is a systematic
search of the possible states reachable from the 1initial
marking. The systematic search is performed by the generation
of a tree representingvall of the markings reachable from the
initial marking. The tree is called the reachability tree. The
behavioral  properties of liveness, boundedness and persistence

are decided by examination of the reachability tree.

The reachability tree is a directed graph. The nodes are
labeled with a marking and the edges are ‘labeled with a
transition. The root node is labeled with the initial marking.
The generation of the reachability tree begins with the root
node. For each unmarked leaf of the tree, generate all of the
markings which are directly reachable from the marking
labeling the leaf. For each new marking, create a new node and
label it with that marking. Draw an edge from the leaf to each
new node and label the edge with the transition which was
fired to <create the marking 1labeling the new node. If the
marking is a dead marking, that is, there are no transitions
enabled, then mark 1t as a dead marking. If the marking
already labels another node in the tree, then, mark the node

as an existing node. Repeat the above process until all of the
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leaves have been marked and no new nodes can be generated.

It can easily be seen that a bounded net generates a
finite tree, since a finite number of states are possible.
Héwever, if a place is not bounded there exist infinitely many
markings for the net. A symbol, u; is introduced to indicate
places with arbitrarily many tokens. The behavior of o is

defined to be

a<eg,
where a is a natural number. o may be though of as an infinity
coefficient to a place in the marking, x (see Definitions 1
and 3, Appendix A). For a marking, x, 1in the reachability
tree, 1if x2y, where y is any marking on a path from the root
node and 2 is a component-wise comparison, iiZyi, 1<i<n, then,

¢ replaces the coefficients for which x{>y; is true.

Figure 2.8 shows a Petri net and its reachability tree.
The 1initial marking of the net 1is P1+P3. T3 is the only
transition enabled in the initial marking. The marking ?1+P4
is created by the firing of T3. Transition T2 fires on the
marking P1+P4 yielding the marking P1+P2+P3. Note that
P1+P2+P32P1+P3 and P2>0P2, hence, the coefficient of P2
becomes . Transitions T1 and T3 are enabled under P1+uP2+P3,
The firing of Ti1 creates the marking P1+¢P2, since w-1=u.
Since there are no transitions which are enabled under P1+uP2,

the node is marked as a dead mérking. The firing of T3 in the
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‘(a) a Petri net

(P1+P3) -
T3

(P1+P4)

T2

(P1+§92+P3)

T N\ |

(P1+uP2)** . (P1+oP2+P4)
- ' T2

(P1+0oP2+P3)*

where * 1nd1cates an ex1st1ng state and *% 1nd1cates
a dead state

(b) Réachabiliiy'Tree‘

Figure 2.8: Behavioral analysis
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marking P1+0P2+P3 creates the marking P1+wP2+P4. Transition T2
is fired to create the marking P1+4P2+P3. Since the marking
labels a node, the leaf is marked as an existing node. The
generation of the tree is complete since all of the leaves are
either dead markings or existing markings and no new markings

can be generated.

The properties of the net are decided by inspection of
the reachability tree. The tree of Figure 2.8(b) has a leaf
marked as a dead state. Thus, the net is not live. Since the
tree contains nodes which are labeled with markings which use
o for a coefficient, the net is not bounded. The net 1is not

persistence since the net is not live.

Figure 2.9 shows the reachability tree for the Petri net
of Figure 2.6. The tree contains no leaves which are marked as
dead markings, hence, the net is live. The coefficients for
each place in each of the markings is 1, therefore the net is
safe. The net is also persistent, since, éach node has at most

a single sucessor.

2.3 Classes of Petri Nets

The Petri net model presented in Chapter 3.3 1is based
upon three <classes of Petri nets: marked graphs, timed Petri
nets and coloured Petri nets. Marked graphs are a class of
Petri nets with a restricted structure. The restriction

permits general conditions for the liveness and the safeness



.7 . (P1+P2)

T1
|
- (P3+P4)

T3
v
(P3+P1)
T2
v

- (P2+P4)

T3

v
(P1+pP2)*

where * indicates an existing state

Figure 2.9: Reachability tree for net of Figure 2.6
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of nets belonging to the <class. The timed nets model the
notion of time in the net. Coloured nets allow the modeling of
resource attributes and dynamic hierarchies. The timed Petri
nets and coloured Petri nets are extensions to the Petri nets
described in Chapter 2.1. The extensions increase ability of

Petri nets to model systems in a natural and compact manner.

2.3.1 Marked Graphs

The <class of Petri nets known as marked graphs', is
created by restricting the structure of the net. Each place of
the net is restricted to be an input to a 'single transition
and to be output to a single transition. The example shown in
Figure 2.1 is a marked graph. Since no conflicts are allowed,
only deterministic. systems can be modeled with a marked graph.
However, the restrictions do allow a simplification of the
analysis of the nets. Marked graphs are a particularily well-
studied class of Petri nets [17, 44, 39, 52, 53, 67, 69, 70,
92, 93, 100] and many results are known for this class of

Petri nets.

Due to the restricted nature of the structure of the
marked graph, a directed graph, G=<V,E>, where V is a set of
vertices and E is a set of edges, may be used as the graphical
representation of a marked graph. The sets V and E are the

transitions and places, respectively, of the marked graph. The

'A marked graph is not to be confused with a marked Petri net.
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tokens in this representation are rectangles placed on the
edges of the graph. The producer-consumer model of Figure 2.2

1s shown in its directed graph representation in Figure 2.10.

As a marked graph is executed, the tokens move from edge
to edge as the transitions fire. The tokens follow the
directed paths in the graph, G. The 1liveness and safeness
properties can be specified in terms of the directed paths.

The following theorems define these properties.

Theorem 2 [17]

A marking is live if and only if the token count of
every directed circuit is positive.

Theorem 3 [17]

A live marking is safe if and only if every edge is

in a directed circuit with a token count of 1.
In the producer~-consumer example shown in Figure 2.10, the
liveness and safeness are verified easily. There are three
directed circuits, T2—P1-T1-P2-T2, T2—-P3~T3—-P4-T2 and
T4—-P5-T3—P6-T4. By inspection, each circuit has a token count

of 1. Hence, the marked graph is live and safe.

2.3.2 Timed Petri Nets

In a real system, actions occur over a duration of time.
During this time neither the input conditions nor the output
conditions are valid. As described above, the transitions have

been assumed to occur instantaneously. The notion of time is
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introduced in the form of a delay between the time the
transition initiates firing by removing tokens from the input
places and the time the transition completes firing by
depositing tokens in the output places [63, 64, 82, 81, 92,
93, 102]. Figure 2.11 illutrates how a timed transition fires

where transition T1 has a delay of r,, a positive real number.

An alternative method of modeling the notion of time is a
deiay in the places of the net [10, 71, 73, 87]. Tokens are
unable to be used to enable transitions for a delay time after
it 1is deposited in a place. The modeling of the time delay in
this manner reguires a complex mechanism for the execution of

a timed net.

Using the 1ideas of stepwise refinements [94], the two
methods of modeling time can be shown to equivalent. Consider
transition T1 of Figure 2.12(a) with time delay, r,.
Transition T1 can be substituted by two transitions, Ti1' and
T1", and a place PT1, as shown in Figure 2.12(b). In the net
of Figure 2.12(b), T1' and T1" occur instantaneously and tﬁe
token 1is held in place PT! for a time r,. The time delay is
now modeled as a delay in a place. Similarily, a place with a
delay may be replaced by a transition with a delay and two

places as shown in Figure 2.13.

A second concept of importance for timed Petri nets 1is
synchrony. In real systems, several actions may begin close

enough in time that they may be considered to begin
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Figure 2.13: A timed transition
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simultaneously. If each action 1is modeled as a separate
transition, then in order to correctly simulate the behavior
of the actions, the transitions must begin firing at the same
time. The notion of synchronous firing of transitions also
reduces the size of the state space of the net. Consider two
states, one in which k transitions are enabled and the second
in which the k transitions have been fired. If a single
transition is fired at a time; there are k! different orders
in which the transitions may be fired. For the firing
sequences, there are gﬁf) intermediate states in which some
of the transitions have been fired. If the transitions are
allowed to fire synchronously, then, all of the intermediate
states are eliminated. Hence, a more compact representation of

the state space is possible.

The introduction of the notion of time to Petri nets
complicates the description of the state of a net. A marking,
m, of a net is no longer sufficient to describe the state of a
net. At any tihe, transitions may be firing and this
information must be include in the state description. The time
at which the descriptor 1is taken 1is an 1issue here. A
convenient - time to describe the net is the instant after a
transition completes firing [102]. At this time, other
transitions may become enabled and begin firing as a result of
the transition completing its firing. The transitions which
have not completed firing are described by the remaining time

function, r.
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where Rj; 1is a real positive number which is the time remaining
in the firing of transition T;. The state of a timed net is a

pair, (m,r), when a transition has just completed firing.

Since the modeling of the notion of time is a behavioral
extension, the analysis of timed Petri nets differs only in
the behavioral analysis. A tree called the graph of
instantaneous descriptors, GRID, represents the state space of
the timed net. The graph of instantaneous descriptors is
generated in the same manner as the reachability tree,
describéd in Chapter 2.2.2. The nodes of the GRID are
instantaneous descriptors, di=(mi,ri), and the edges are
labeled with a selector, where a selector, seT*. The selector,
s

1» indicates which transitions were fired to create the

state, di'

Since tokens become available to enable transitions at
the completion of the firing of a transition, a state is not
dead if transitions have yet to complete firing. A state 1is
dead 1if there are no transitions which have not completed

firing and there are no transitions enabled.
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2.3.3 Coloured Petri Nets

In a Petri net model of a system, the tokens often
represent resources in the system. The resources may have
attributes which may not be easily represented in a Petri net.
Many authors have addressed this problem by assigning the
attributes to the tokens {21, 32, 38, 71, 73, 83, 98, 99,
101]. Coloured tokens are a convenient method of visualizing
tokens with attributes [38, 83, 101]. Except in the case of an
infinite number of colours, a Petri net with coloured tokens
has an equivalent Petri net with uncoloured tokens. The
construction of the equivalent net without coloured tokens
involves a duplication of transitions and places for each
colour [79]. The construction results in a large and complex
net. The use of coloured tokens provides a natural and compact

representation.

Beyond the simple use of attributes, the.imposition of a
partial order on the colours allows the modeling of priorty
hierarchies. Consider the example shown in Figure 2.14 [38].
The producers, Pi, and Pi,, deposit wunits 1into the
corresponding buffer, B4. The consumers, C, and C, consume
units from buffers, B, and B,, respectively. The consumers
interact with their corresponding buffer through a channel of
capacity one. Consumer C; taking a unit produced by producer
P,, has the highest priority on the channel over all others.
Consumer C, taking a unit produced by producer P,, has the

lowest priority on the channel. The priority is a dynamic
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Figure 2.14: A producer-consumer system
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priority since the priority of the consumers depends on the

units present in the buffers.

The coloured Petri net model of the producer-consumer
system of Figure 2.14 1is shown in Figure 2.15. The partial
order on the colours is shown at the bottom of Figure 2.15.
The labels on the output edges of the transitions are the
colour of the token deposited in the output place. The 1labels
on the 1input edges of the transitions are the minimum colour
which may be used to enable the transition. The tokens are
compared under the partial order shown. Tokens not connected
by a path are not comparable and cannot be used for an edge so

labeled.

The priority of a transition is determined by the minimum
colour of the tokens which are available to enable the
transition at that point in the execution of the net. Supppse
P7 contains a token of colour C,, and P8 contains a token of
colour C,,. Both T5 and Té are enabled but T5 has a higher
priority since ﬁhe minimum enabling colour of T5, C,,, 1is
higher than the minimum enabling colour of T6, C,,. 1f P7 has
a token of colour C,, and P8 has a token of colour C,,, either
T5 or T6 may fire since C,, and C,, are incomparable under the
partial order. One can easily see that if P7 has a token of
colour C,;, then, T5 has priority over the firing of any other
transition. The coloured Peﬁri net correctly models the
dynamic priority hierarchy specified. The coloured Petri nets

may also be used to model reentrency in computer software [38,
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Figure 2.15: A coloured Petri net
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101].

A further abstraction of the coloured Petri net model is
the introduction of transition schemes [32, 98]. Transitions
are similar if they are connected to the same places in the
same manner except for the labels on the connecting edges. An
example of similar transitions is shown in Figure 2.16. The
two transitions may be thought to be two instances of the
transition shown in Figure 2.17. A transition scheme may be
thought of as a mapping of elements of P* onto other elements
of P*, Thus, transition schemes allow a coloured net to retain

the natural representation of a system.
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CHAPTER 3

THE PETRI NET FORMULATION

A scheduling problem is comprised of a task system, the
resources for its execution and a strategy for the scheduling
of tasks. A Petri net is used here to formulate the structure
of the task system and the structure of the resources. The
tools of analysis of Petri nets are used to model the behavior
of the scheduling strategy. The approach which is defined here
differs significantly from previous Petri-net-based approaches

to scheduling problems.

3.1 The General Scheduling Model

The general scheduling model presented here differs
slightly from a more conventional treatment of the model [16,
26, 27, 28]. The formalization for the model is presented in
Appendik A. The main difference is that the prbcessors are to
be considered as Jjust another resource and not as a special
resource. The reason for thé treatment of the processors as
another resource 1is demonstrated during the construction of
the Petri net model. The scheduling problems are drawn from

the general scheduling model.

The resources of the general scheduling model are any
physical resource which a task may require in order for it to
be executed. In general, the resources include at least one

set of processors. Additional resources may represent primary
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or secondary storage, input/ouput devices or subroutine
libraries. A set of resources may contain 1identical  units,
units of different functionality, units of different speed or
a combination of units of varying functionality and/or speed.
For example, several subroutine 1libraries may each contain
different sets of subroutines. The subroutine libraries may be
considered to be a single type of resource with wunits of
varing functionality. It 1is convenient to consider the
resburces to be available in discrete units, where a unit 1is

the smallest amount which can be agquired by a task.

The task system of the general scheduling model is
defined on a set of tasks,:7 ={T,, T;,..., T,}, where r is the
cardinality of the set. Each task of the set, &/, is assumed to
be executed once. The operational precedence constraints
specify the data dependencies between the tasks. Thev
precedence constraints are a partial order, <, on the tasks.

If T, <T then, task T; must complete execution before task T;:

i’ J
begins execution. The partial order 1is  represented by a
directed acyclic graph with no transitive edges. The directed
acyclic graph is assumed to be given as a list of edges which
is O(r) in general. Note that if the graph 1is specified in

terms of an rXr matrix, any operations on the matrix are

O(r?).

Each task in the set, §7, is executed in a finite amount
of time. An nXr matrix, {Tij}r is the matrix of execution

times. rijZO is the execution time of task j on processor 1i.
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The equality 1is introduced since two dummy tasks are used in
the construction of the Petri net formulation. If a task T; is
unable to be executed on a processor j, then, Tij is infinite.
Each task is assumed to execute on at least one processor.

A task system is shown in Figure 3.1. The task set
consists of ten tasks, Ti1 through T10. Each node in the graph
represents a task. The labels of the nodes indicate the task
and the execution time of the task. The directed edges of the

graph indicate that data is transferred between tasks and the

direction of the transfer.

" The tasks require résources to execute. The resource
requirements are specified by ﬂ? =[R1(Tj), Rz(Tj),..., Rs(Tj)]
for each task j, where s is the number of sets of resources.
The component Ri(Tj) specifies the the amount of resource i
required for the execution of task T;. It is assumed that the
maximum requirement of any task‘ may be satisfied by the
initial resource configuration. The resource fequirements are
specified in the discrete units in which the. resources are
available. It 1is assumed that a task reguires an amount of
resource for the duration of its execution. The task neither
requires more resources during the execution nor does the task
release any resources until it completes execution. Tasks

whose resource requirements are such may be modeled as

separate tasks.

The class of scheduling strategies to be considered here
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is restricted to strategies which are nonpreemptive,
Nonpreemptive scheduling strategies are characterized by tasks
being executed without interruption, that 1is, once a task
begins execution, it runs to completion without stopping. The
performance criteria used here is to minimise the execution
time, w, which is the time to execute all of the tasks of the
task set &/ . The optimal execution time is denoted by w*. The
performance of a scheduling strategy on a given problem is

expressed as a ratio, w/w¥*.

3.2 The Petri Net Formulation

The Petri net based approach to the scheduling problem is
separated into two phases.- Fifst, the scheduling model is
formulated as a timed-coloured Petri net. The Petri net models
the structure of the scheduling problem, the data
relationships between the tasks and the properties of the
resources. The second phase models the behavior of the
scheduling problem. The behavior of the scheduling problem is
determined by‘the scheduling strategy and the initial set of
resources. The scheduling strategy is modeled by modifications
to the behavioral analysis of the Petri net. Hence, a schedule
is generated by the execution of the net for an initial

marking.
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3.2.1 The Construction of the Petri Net Model

The Petri net model is a coloured Petri net extended with
the use of transition firing times. The net structure is
derived from the precedence contraints of the task system. The
coloured tokens are used to model the resources, both the data
and physical resources, required for the execution of the task
system. Each task is represented by a transition scheme. Each
instantiation of the transition scheme is assigned a firing
time, the execution time of the task given the particular set
of resources. The coloured-timed Petri net provides a natural
representation for the task system and for the resources used

for the execution of the task system.

Algorithm 1 is‘an algorithm for the construction of the
Petri net model given the task system and the resources. The
algorithm is shown in Figure 3.2. The initial portion ‘of the
construction may be ﬁhought of in terms of manipulations to

the graphical representation of the precedence constraints.

The construction of the Petri net model begins with the
directed acyclic graph repfesenting the precedence constraints
of the task system. The general precedence relation is first
converted to a single-entry node, single exit node ‘precedence
graph. The addition of the STOP-START edge completes the
augmented precedence graph. Recall, a marked graph may be
defined in terms of a directed graph. Hence, the augmented

precedence graph defines a marked graph. The nodes and edges
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1.
12,
13,

14.

To the precedence graph, add two nodes labelled

"START" and "STOP"

Add a dlrected edge from the START node to each
. node which has no incoming edges except the STOP

node.

Add a directed edge from each node wh1ch has ' no

outgoing edges to the STOP. node.

‘Add a directed edge from the STOP node to the -
' .START node. Label the edge "READY" and mark it

with a single uncoloured token.
Label each of the edges with agplace name, -

Label each of the nodes with a transition name.

- Repeat .Steps 8-11 for eech¥resoufce..”'

Define a set of colours,'C;e(Xi,<i).

Add a place and label'ituﬁifh'the-name of the

resource,

Add directed edges to and from each _node(task)
Whlch requ1res that resource and label the edges

Mark the place‘ with the number of tokens.

representing the initial resource conditions.

Define a set of colours, . C4=(X,,<4), for the
data.tokens. :

Define a transition scheme for each node(task)
in the graph

Define a set 'of" colours for the - net
C= ()C UCoUC,, where C, is the uncoloured token.

Figure 3.2 Algorithm 1
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are labeled for the formal representation. The directed
acyclic graph of the precedence constraints of a task system
is shown 1in Figure 3.1 [16]. The precedence is assumed to be
from the top to the bottom. The marked graph resulting from
Steps 1-6, 1s shown in Figure 3.3. The marked graph retains
the natural representation of the precedence constraint of the

task system,

The remainder of the construction deals with . the
resources necessary for the execution of the task system. It
is convenient to consider this portion of the construction as

operating on the formal representation of the net.

The resources are represented by a place in the Petri net
marked with tokens from a colour set. A place is added to the
net which is generated by Steps 1-6 of Algorithm 1. The place
is connected to and from each transition(task) which requires
that resources. The modeling of the resources in this Amanﬁer
is based on the assumption that a task uses the resource for
the duration of its execution time and does not release the
resource until the execution 1is completed. The edges are
labeled with the colour set defined for the resource. The
Petri net model allows the modeling of a variety of resources

and processor situations.

The modeling of the processors as a resource allows a
slightly more flexible modeling of functionally dedicated

processors [57]. Groups of functionally dedicated processors



Figure 3.3: The marked graph after Step 6
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may be modeled by different places in the net. A colour set
and partial order is defined for each group allowing for the

modeling of variation within the group of processors.

A colour set is defined for each resource place added in
Step 9. A colour 1 defined for each attribute to be considered.
for the resource. A partial order is defined on the.colour set
reflecting the relationships between the attributes of the
resources. The special case of identical resources, either
resources or processors, is modeled by uncoloured tokens. If
the resources are not interchangable, a null partial order is

specified.

A transition scheme is defined for each transition(task)
of the net after all of the resource places have been added.
The transition scheme is the final step in the specification
of the behavior of the transition(task). The instances of a
transition scheme map a set of input tokens on to a set of
output tokens.vThis corresponds to different input conditions
for the execution of the‘task resulting in different output
conditions. The transition schemes are defined 1in such a
manner that none of the colours defined in Step 8 are

redundant.

A simple transition scheme 1is shown in Table 3.1. The
task is task T4 from the example shown in Figure 3.1. The task
system is assumed to require no additional resources for the

execution except the processors. The processors are of speeds
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b,:b,:b3=1:2/3:1/2. The data tokens are all uncoloured. The
top to bottom order may be used to define a priority hierarchy

between the instantiations of the transition scheme,.

Three examples illustrate the use of colour sets, partial
orders and the transition»scheme in modeling resources. First
consider the example of a set of processors of different
speeds. A colour set and partial order are shown in Figure
3.4(b). The colours are depicted by the different shading of
the tokens. CO0 and C2 represent the fastest and the slowest
procéssors, respectively. It 1is assumed  that the faster
processor 1is to be wused before a slower processor, so the

partial order is directed downwards.

Figure 3.4(a) shows a slightly more complex colour set
and partial order. The colour set models a group of processors
of different speeds and some of which are functionally
dedicated. C2 and C3 represent processors with special
hardware, for example, a floating-point processor and’an array
processor. C1 and CO are general purpose processors of
different speeds. C!1 is assumed to be faster than CO0. The
general purpose processors can perform the functions of C2 and
C3 in software, and hence at a slower speed. The partial order
reflects the differences between the processors both in the

functionality and the speed.

The final example 1is a dynamically reconfigurable

architecture [45, 46, 97]. The architecture to be modeled,
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Figure 3.5: A dynamically reconfigurable architecture
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shown in Figure 3.5, consists of three 16-bit computing
elements, CEj. Each CE; consists of a processing element, PE;,
a memory element, ME;, and an input/output element, GE;. The
computing elements are connected by two connecting elements,
MS ;. The connecting elements control the size of the
processors created by the computing elements. The

reconfiguration is controlled by the control element, V.

The architecture can be reconfigured into 16-bit, 32-bit
or 48-bit ©processors. If a connecting element allows a
connection, then, the two computing elements act as a single
32-bit processor. If the connecting element does not allow a
connection, then, the two computing elements are considered to
be two separate processors. The connecting elements allow the
architecture to be reconfigured into combinations of the 16—
bit computing elements. The only restriction 1is the two
outermost computing elements cannot be connected to form a 32-

bit processor.

Consider the precedence constraints shown in Figure 3.1.
The processor requirements and new task execution times appear
in Table 3.2. The task execution times are random integers
between 1 and 5. The marked graph portion of the Petri net
model remains the unchanged as shown in Figure 3.3. A single
processors place is added to the marked graph. Three coloured
tokens, Ct, C2 and C3, are .wused to represent the three
computing elements, CE,, CE, and .CE3, respectively. The

partial order on the colours is null since the relationships



Task No. of bits i
T‘I .16 3
T2 32 3
73 16 g
T4 48 3
5 32 4
- T6 32 5
o7 32 3.
T8 16 1
T9 32 2
TI0 1:6_ 1

'.Table_3.2:»Task processor requirements and execution times .
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between the computing elements is more clearly modeled in the

transition schemes.

For the specification ofbthe transition schemes, consider
task T3. The execution of task T3 requires a 16-bit processor.
This reqﬁirement is satisfied by any of the three computing
elements acting as a 16-bit processor. If the middle computing
element, CE,, is assignd task T3, the remaining computing
elements could only be configured as two 16-bit processors. A
better configuration would be to configure an end computing
element as a 16-bit processor, which allows the possibility of
a 32-bit processor to be configured. The transition scheme for
task T3 is shown in Table 3.3 in which the priority is assumed
to be top to bottom. A task requiring a 32-bit processor, for
example task T7, is executed on a processor comprised of. the
computing elements, CE,;-CE, or CE,-CE;. The computing elements
must all be connected in order to execute task T4 which
requires a 48-bit processor. The transition schemes for tasks

T7 and T4 are shown in Tables 3.4 and 3.5, respectively.

In contrast to the transition scheme approach to the
modeling of the dynamically reconfigurable architecture,
consider modeling the three computing elements by three
uncoloured tékens. The Petri net would be a generalised Petri
net (see Appendix 1). The weights on the edges from the
pfocessor place indicate the number of computing elements to
create the processor of correct word width. A partial net of

tasks T3 and T7 modeled in this fashion is shown in Figure



Input Data Processor Output Data
P3 1 P8+P9
P3 C3 P8+P9
P3 C2 P8+P9

" Table 3.3;'Transitidn scheme for task T3

Input Data Processor - Output Data
 P11+P12 C1+C2 P15
P11+P12 C2+C3 P15

Table 3.4: Transition scheme for task T7

'Input Data

Processor

Output Data

P5+P6+P7

- C1+C2+C3

P10+P11

Table 3.5E Transition scheme for task T4




Processors

FigureA3.6: Tasks T3 and T7-
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3.6. However, this approach does not allow the modeling of the
special 1interconnections between the processors, that is, the
end computing elements, CE, and CE,, cannot be used to form a
32-bit processor. The uncoloured tokens cannot model the
priority given to assigning a task requiring a 16-bit

processor to an end computing element, CE, or CE;.

The final step in the construction of the Petri net model
is the assertion that a valid Petri net has ben constructed. A
valid Petri net modei is a 'live and bounded net, since the
problem is assumed to be executable on finite resources. The
modeling of the scheduling strategy depeﬁds on the state space
of the net, the graph of instantaneous descriptors, GRID. The
GRID for a live and bounded timed net 1is finite. Theorem 4
asserts that the Petri net model constructed by Algorithm 1 is

live and bounded.

Theorem 4
Algorithm 1 constructs a live and bounded Petri net
from the acyclic directed graph reprentation of the
precedence constraints of a task system.
PROOF: First it is shown that steps 1-6 yields a live and safe
marked graph. Then it is to be demonstrated that the addition

of the resource places does not affect the structural liveness

property and the net remains bounded.

Steps 1-3 converts an arbitrary precedence relation into
a single-entry node, single-exit node relation. If one

considers the graphical representation of the precedence
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relation, an acyclic graph, £hen, there exists a directed path
from the START node to any node in the graph. If a node had no
predecessors, then, it would be connected to the START node by
step 2. If a node had predecessors, then, one could trace back
along a directed path to a node with no predecessors which
would be connected to the START node by step 2. Similarily,
each node is on a directed path to thé STOP node. Therefore
each node and each edge is on a path from the START node to

the STOP node.

Step 4 adds an edgé from the STOP node to the START node.
The directed paths of the precedence graph become directed
cicuits in which all the nodes and all of the edges lie on at
least one such circuit. All of the directed circuits contain
the STOP-START edge since the original graph was assdmed to be
acyclic. Now consider the graph to be a marked graph. When the
STOP-START edge is marked with a READY token, every directed
circuit has a token count of 1. Hence, the net is live and

safe by Theorems 2 and 3.

The remainder of the proof is based upon the structural
liveness of the net. Consider the initial state of the net
with the READY place marked with single token. The vfiring of
the START node enables the execution of the tasks. By
definition of the problem, all tasks execute once, hence, all
transitions must fire once. Firing the STOP node returns the
net to the original state. Hence, the net 1is strongly

repetitive and reg=0 has a positive integer solution , where'T
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is the characteristic matrix. Since the net is safe, fer=0 has

a positive integer solution.

Now consider the characteristic matrices before and after
the addition of the resource places, T and I'', respectively.
If r is an nX m matrix, then, the first n rows of T' are
identical to the first n rows of r. The rows in r' for the
resource places are rows of zeroes. Since the edges are drawn-
to and from each task which requires the resource and the
tasks do not consume the resources, then, aiy =bjj. ajj is the
number of tokens from place i which is required for the‘firing
of transition . bij is the number of tokens deposited in
place i by the firing of transition j. Since the entries T4
only reflect the net result on the token count of a place,

therefore rj; =0 for the entries for the resource places.

Consider the solution to the -eguation T'eg'=0. Since
reg=0 and only rows were added to T' to get r',‘then r'eg=0,

Therefore g is a positive integer solution to r',

Consider the solutions to the equation, f'er'=0. Since
fer=0 and only zero rows are added to I to get I', then the
first n elements of f' are the same as £f. The remaining
elementsyof f' are abitrary positive integers for the solution
to be a positive integer solution.

)

L
f —(f1,f2,-c.,fn,61,Cz,...,CS

where o; are arbitrary positive integers and s is the number

of resource places added.
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Since f'er'=0Q
and r'eg'=0,
therefore the net with the resource places is well-behaved and

hence, structurally live.

Since the initial state of the marked graph portion of
the net 1is 1live, only the resource places must be marked in
such a fashion that a live state is created. The resource
places are self-loops, hence, each resource place must be
marked by at least the minimum set of enabling tokens from the
colour set. The minimum set of enabling tokens is the maximum
for any single task. The presence of the minimum set of
enabling tokens ensures that each transition scheme may fire.
Since the net is well-behaved, and the initial state is live

therefore the net is live and bounded. Q.E.D.

This completes the construction of the Petri net model
for the scheduling model. The Petri net is live and bounded
for a live initial marking. The initial marking for the net
represents the 1initial resource conditions for the execution
of the task system. A live initial marking is a token in the
READY place and -at least one token in each of the resource
places. The execution of the Petri net simulates the execution

of the task system.
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3.2.2 Modeling the Behavior of a Scheduling Strategy

Consider a scheduling problem, a task system and the
resources for 1its execution. The state space for the problem
is all of the combinations of completed, partially completed
and unexecuted tasks. The transitions between the states are
the tasks which began execution to lead to the next state. One
may consider the state space to be a directed graph where the
nodes and edges are the states and the state transitions,
respectively. The paths between the initial state in which no
tasks have been executed and a final state in which all tasks
have been executed represent possible schedules for the task

system.

Since the schedules are paths in the state space, the
optimal schedule is a path with the shortest execution time
along its 1length. To find the optimal schedulé all of the
paths between the initial state and a final state 1in general
must be searched. A scheduling heuristic may be applied to the
problem to reduce the amount éf the searching of the state
space to achieve optimal or near optimal schedules. A
scheduling - heuristic may bé thought of as selecting a path
through the state space based on information from only a

portion of the state space.

If the formulation of the scheduling model is a timed
Petri net, then, the state space of the problem is the state

space of the Petri net. A valid schedule may be thought of as
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a path through the state space of the Petri net. The state
space of a timed Petri net is searched by the construction of
the graph of instantaneous descriptors, GRID. A valid schedule
may be found by finding a path from the 1initial descriptor,
do, to a descriptor in which all transitions have been fired

once.

An algorithm for the construction of a GRID of a live and
bounded timed Petri net is shown in Figure 3.7. The Algorithm
constructs the complete graph representing all of ghe states
reachable from the initial descriptor. The complete graph is
necessary in the original application-of the analysis of timed
nets [102], where the timed nets were used for preliminary
performance evaluation. The construction of the complete graph
in the context of the scheduling model would yield the optimal
schedule. However, since it is known that both the analysis of
Petri nets and the general scheduling problem are NP—coleete
(16, 27, 55], heuristic methods are an approach to reducing~
the amount of searching ‘and yet achieve optimal or near
optimal results. The algorithm may be modified to search a
restricted amount of the state space of the net. The
modifications to the algorithm are used to model the behavior

of the heuristic approach.

The behavior of the scheduling heuristic 1is modeled by
Step 4 of the algorithm. The problem of finding which
transitions to fire on the current descriptor is exactly the

problem of finding which tasks to execute on the current



Label the rdet node d°=(m°,~f°)3%where'movi53theh

initial marking and re={} 1is the 1initial
remaining time. : L : .

~d;:=d,, where‘di is the current node.

Repeat Steps 4- 9 untll there are no unmarked

leafs. . | |
Find ‘the selectors, {s;}, enabled on m; of d;
Repeat Steps 6-8 for”each'sj,'“ el

Generate a new descrlptor, d1+l

Create a new node and label it d ¥|.

~.Join the node with an edge and label it 53.,1_

If 44,, is an ex1st1ng node,‘then ‘mark it w1th

'a*o

~Set the current node, di, to any unmarked leaf.

11ve and bounded net
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Flgure 3.7: An algorithm for the generatlon of the GRID of a‘
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state. This is easily seen since the tasks are modeled as
transitions in the Petri net formulation of the scheduling
problem. The number of selectors which is generated by Step ¢
controls the amount of the graph searched, and the particular
selectors control the paths searched. The modeling of the
behavior of a scheduling heuristic may be thought of in terms

of a static or a dynamic scheduling heuristic.

Consider the modeling of the behavior of a simple
scheduling heuristic, 1list scheduling. The list scheduling
heuristic schedules the first wunexecuted task from a
prioritzed list, L, as soon as a processor becomes free to
execute a new task. The performance of the 1list scheduling
heuristic is dependent uponvthe generation of the list, L. The
Coffman and Graham Algorithm A for the generation of the list,
L, 1s optimal 1in the two identical processor case [16]. The
behavior of the 1list scheduling 1is modeled simply by
implementing the search for selectors as a scan of the iist,

L.

The list scheduling heuristic involves no searching of
the state space other than the states along the path selected.
Another <class of heuristics, lookahead heuristics, involves a
limited search of the state space [4]. If the paths represent
schedules, then, paths not ending in a final state are partial
schedules. Several paths may be searched gntil they are found
to be dominated by other partial schedules. Consider a subset

of the task set, &/ . Possible schedules are permutations of
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the subset of tasks. If a permutation has a smaller completion
time, then, it dominates the other permutations [4, 80]. The
idea of sequence dominance may be used to control the amount

of the graph which is constructed.

3.3 Related Work

The extension of Petri nets to include the notion of time
is directly founded on the desire for useful informafion from
the Petri net model. The use of timed Petri nets for the
performance evaluation of system is well documented [10, 21,
33, 70, 81, 82, 86, 102]. However .much of the work is limited
to system which may be modeled by well-behaved Petri nets. The
use of timed Petri nets for the performance evaluation of
general systems 1is beyond the scope of the present work.
Within the scope of the present work, timed Petri nets have
also been wused 1in the optimization of sequencing decisions
[84, 92, 93]. The notion of time constrains the net,

precluding some of the sequences possible in the untimed case.

An example of the use of Petri nets for the optimization
of sequencing decision is presented by Shapiro and Saint [84].
The problem addressed is that of generating efficient programs
for machines with parallel operation capabilitites. The
algorithms are expressed in a high level algorithmic language.
The example detailed 1in the paper 1is a FORTRAN DO-loop

executed on a CDC 6600.
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The approach to the sequencing problem 5egins with the
decompilation of the algorithm. The decompilation 1is the
removal of the incidental sequencing constraints introduced by
the high 1level language. The decompiled version of the
algorithm 1is modeled as a Petri net. Next the hardware
contraints are added to the Petri net model. The optimization
is performed by a simulation of the algorithm, that is,
executing the net. The net is executed for each set of initial
conditions. The simulétion 1s stopped when all sets of initial
conditions have been tried or when a solution near the

theoretical optimal is achieved.

The scope of the problem which is addfeSsed by Shapiro
and Saint is more restricted than the scope of the problem
which is addressed by the present work. The Petri net model of
Shapiro and Saint models the FORTRAN DO-loop and the hardware
at the level of machine operations and machine functional .
units. Thus, the Shapiro and Saint model is at a lower level
than the Petri net formulation of Section 3.2.1. The objeétive
of the work of Shapiro and Saint is the optimization of the
machine code. 1In contrast, part of the objective of the
present work is the modeling of scheduling strategies, whethér
the strategy is a heuristic strategy or an optimal strategy.
The FORTRAN  DO-loops imply repetition of the machine
operations. The tasks in the general scheduling problem, which
is considered in the present work are assumed to be executed a

single time. The problem addressed by Shapiro and Saint 1is a
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form of the general scheduling problem, and so, the present

work is applicable.

A more recent approach to the problem of the optimization
of the sequencing of events using a Petri net approach is
presented by Tani et. al. [82, 93]. The basis for the Petri
net model used in [92, 93] is a theoretical model of parallel
computation, hence, the name capacitated computation graph.
The problems addressed for capacitated computation graphs are
the existence of admissable schedules, algorithms for‘the
eariiest and latest schedules, the termination property and

the maximum computation rate for periodic schedules.

A computation graph, CG, is a marked graph in which self-
loops are allowed. A self-loop is an edge which is input and
output to a single node. A capacitated compﬁtation graph, CCG,
1s a computation graph with the edges 1limited in the total
number df tokens which may be held on an edge. The firing
rules must be altered since a node cannot fire if any of its
output edges holds the maximum number of tokens. Each edge in
a CCG, is assigned a time. The time represents the delay in
placing the token on the edge after the initiation of the

firing of a node. Each node is fired a maximum of X.

; times,

where X3 is a positive integer.

A capacitated computation graph is shown in Figure 3.8.
The labels on the edges, (ce, 4%, r.,), indicate the capcity of

the edge, ce, the inital marking of the edge, 4d°, and the time



k=1 k=2 k=3 . k=4 k=5 ... | :
. s4(k) -3 8 13 - 18 23
s, (k) 0 5 10 15 20
ss(k) | 0 2 5 10 15 ...
Csl(k) | 2 7 12 17 22 ...

. Table 3.6: An admissable schedule for CCG of Figure 3.8
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delay of the edge, r.. The schedule for the CCG 1is expressed
in terms of the s;(k) which is the time of the k™ initiation
of the firing of node 1i. Table 3.6 shows an admissable
earliest schedule for the CCG of Figure 3.2. An algorithm for

the finding of the s;(k) is shown in Figure 3.9.

The capacitated computation graph model does not have the
ability to model resource contention between operations [83].
A system yith resource contention 1is first modeled as a
generalized Petri net. The conflict is resolved arbitrarily.
Each possible resolution of the conflict is modeled using a
combination of the duplication of . places and edges, the

initial marking and the time delay in the places.

Figure 3.10 1illustrates the resolution of a conflict by
the duplication of the places and two initial markings. Each
resolution of the conflict 1is converted to a CCG model for
which a schedule is found. The best schedule, the schedule
with the smallest completion time, specifies the conflict

resolution in the structure of the CCG.

Part of the Petri net model which is presented in Section
3.2 is a special case of the «capacitated computation graph
model. Consider the marked graph representation constructed by
Step 1-6 of Algorithm 1. Each task executes a single time by
definition of the problem, hence, X;=1, 1<i<r, where r is the
number of tasks. The marked graph is safe, hence, the capacity

on each edge may be arbitrarily assigned any non-zero value.



‘Figure

Initialize s-(1)'- 1<jsm

Repeat Step 3 untll no more changes are p0551ble
for all nodes. S

s5(1):=max 755(1);

.85 (1) +ry5 for all. 1nput edges whlch
are unmarked A

| osi(1)-1 for all output edges
;_,wh1ch are marked to capacity :

‘Repeat Step 5 for 2<k5maxXJ.:

s (k)°=max (k- 1)+r
si(k-do)+rj for all ihput edges ij
Vs,(k -c; 1+d )-rji for all output
edges : ' '

3.9: An algorithm to construct the earllest schedule

of a CCG
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(b) T, precedes T,

Figure 3.10: Resource

(c) T, precedes T,

conflict resolution
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This is the 1limit of the similarity between the two
approaches. The‘methodology described above for the resolution
of conflicts becomes unmanagable and awkward for even the
simple case of a task system executing on a set of identical
processors. The number of CCG's possible when a number of
resource conflicts exists 1is the product of the number of
resolutions for each cdnflict. In general, during the
execution of a task system, a conflict exists each time a task»
1s assigned to a processor. A large number of CCG models would
be needed to find the best schedule or even a good schedule.
The methodology also does not adapt easily for the evaluation
of varying initial resource conditions. The Qholé process of
conflict resolution, the conversion to a CCG and generating

schedules must be repeated for each set of initial resources.

The scope of the work of Tani et. al. is more applicable
to the problem which is addressed by Shapiro and Saint. The
transitions of a CCG are allowed to fire an arbitrary number
of times. Due to the choice of a restricted‘ class of Petri
nets as a basis fér the model, the limited ability to
adequately model resource contention restricts the use of the
model. The use of the coloured Petri nets as a basis for the
model in the present work provides the ability to model
resource contention and the ability to model hierarchies in
the resources. The present work defines a formulation which is
more flexible model if resource contention is an important

factor.
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CHAPTER 4

THE ANALYSIS OF A SCHEDULING PROBLEM

The scheduling problem to be addressed here 1is the
execution of a task system on a set of processors of different
speeds. The scheduling strategy to be considered here is list
scheduling. The performance cfiteria for the scheduling
problem is the minimization of the execution time for the task

system.

List scheduling in a multiprocessor environment is well-
studied [1, 14, 15, 16, 24, 26, 27, 28, 30, 57, 56]. List
'séheduling is known to yield good performance for the case of
identical processors [1]. Three methods of generating ordered
lists of tasks are compared, highest levels first, Algorithm A
of Coffman and Graham, and a proposed heuristic, maximum chain
length maximum time. The three heuristics are compared using
sample precedence graphs from the literature and from randomly

generated precedence’graphs.

Much of the research in the use of list scheduling for
processors of different speeds is in the area of upper bounds
on the performance of the list:scheduling. A summary of the
bounds is showﬁ in Table 4.1. From the work of Liu and Liu
[56], the bound suggests poor performance for sets of
processors in which the difference between the fastest and
slowest speed is large. A much tighter bound is presented for

the case of a null precedence relation, that 1is, independent
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"Partial Order Bound w/w* Reference

arbitrary o 1+

i

Liu and Liu [56]

iy

Gonzales et. al. [28]

¢ 3_ 1
2 2n
_ arbitrary(, ‘tﬁs,ﬁ_l + ZJH ;a[;. ,_Jaffé [40]
Vh + O(nVﬁ)
Notes

1. n is the number of processors.
2. by is the speed of processor i. e
3. B, is processing power of n processors.

Table.4.1: Bounds for list scheduling'on processors -
o of different speeds
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tasks. The bound of Jaffe is a bound for the execution of any
task system on a machine of n processors using the i fastest
processors for executing the task system [40]. The i fastest
processors are found by the minimization of B,/Bi+b,/b;. The

bounds suggest poor performance for a general list,

4.1 The Scheduling Model

The scheduling model for the problem is a subset of the
model presented in Section 3.1. The resources for the problem
are restricted to a single set of processors,
P={P,,P,,...,Pn}. The task system is completely as described
in Section 3.1. The performance criteria to be used is the

minimization of the execution time of the task system.

The set of processors, P, -is a set of processors of
different speeds. The speed of a processor i, b;, is the speed
of execution relative to the speed of the fastest processor.
P, is assumed_to be the fastest processor of speed b,=1. The
speed of the‘remaining processors is restricted to the range
12bi>0. The set of processors is assumed to be ordered , such
that,

b;2b,2...2b,.
A measure of a set of processors is the processing power, B.
The processing power of the 1 fastest processors, Bj, 1is the
sum of the speeds of the first i processors. The processing

power of P is B,.
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The set of processors P, is modeled by a colour set,
CP=(XP,<P). Each colour, c¢;, in the set X, represents
processors of a certain speed. Since it is assumed that the
set P 1s ordered, the <colour set models the oraering. For
convenience, c,; represents the processors which have a speed
of bij=1. In the colour set, a larger subscript indicates a

slower processor.

The 1list scheduling assigns tasks to the fastest
available processor. The assignment of the tasks to the
fastest processors is modeled by the partial order, <p. Under
the assumptions for <coloured Petri nets, the least enabling
coloured token from each input place is wused to fire a
transition. The partial order has c, at the bottom and c, at
the top, where k is the number of differént speeds and c, is
the slowest processors. The general form of the partial order
is shown in Figure 4.1. The partial order 1is from top to
bottom. Thus, the least enabling coloured token from the
processor place represents the fastest processor available at

the time of firing the transistion.

The execution times of the tasks are {r.}, 1<igr. r; is a
general execution time for the task. The execution time of a
task 1 on processor j is given by Ti/bj- The processors are
assumed to differ only in their speed of execution, hence,

Ti/bj is valid for all processors.

List scheduling assigns the execution of a task to a
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Cpo=(ZXp,<p)

XP={C1,C2,Ooo’ck}

b_ck
Ck_1

C 'I

g e |
C2
Ch

Figure 4.1: Colour set for processors of different speeds.
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processor by scanning a list of tasks. The tasks in the list,
L, are assumed to be in order of decreasing priority. A task
closer to the head of the list is of higher priority than a
task near the tail of the 1list. When a processor becomes
avalilable to execute a new task, the list is scanned from head
to -tail. As tasks which are ready to execute are found on the
list, they are assigned to the - fastest processor available.
The assignment continues until there are no processors
available or until there are no tasks ready to execute. List
scheduling is relatively simple but relies on the ordered list

to yield good results.

A characteristic of list scheduling is that no processors
are 1idle if there are tasks ready to execute. This is a cause
of non-optimality of list scheduling in general. An optimal
schedule may contain tasks which are are delayed in order to
"fit" better. This problem is compounded for processors of
different speeds. For a simple case, suppose the next taék on
the list is the last task to be executed and the tasks 1is
assigned to a slow processor. If the slow processor extends
the execution time of the task beyond the time of waiting for
a faster processor plus the execution time on the faster
processor, then, a better schedule would result from delaying

the task until the faster processor becomes available.



81

4.2 Algorithms for List Ordering

The effectiveness of 1list scheduling is dependent upon
the prioritized list L, which is scanned to find the next
task(s) to be executed. Three heuristic algorithms for the
generation of the list L, are to bevcohpared for the problem
considered here. The highest levels first, HLF, heuristic is
known to perform well in the case of identical processors [1].
The second heuristic to be compared is Algorithm A of Coffman
and Graham, CG [14]. The lists generated by Algorithm A
produce optimal schedules for the case of identical processors
and unit execution times. A heuristic is proposed for the case
of processors of different speeds which considers the .effects

of the execution times and the processor speeds.

The following definitions are necessary for the
discussion of the heuristics, [40]. A chain is a sequence of
tasks for which each task of the chain is the immediate
~sucessor to the task preceéding it in the chain., In Example 1
shown in Figure 4.2, C=(T5,T6,T9,T14) is a chain. The length
of a chain is the sum of the execution times of the tasks in
the chain. The height of a task T is the length of the longest
chain sta;ting with the task T. The height of task T10 in
Example 1 is 34. The height, h, of a task system, (,<,{r;}),
is the length of the longest chain  starting with Te9/. The
height, h, of Example 1 is 62. The subsequent chain of a task
T is the longest chain starting with an immediate sucessor of

task T. The subsequent chain of task T5 in Example 1 is (T7,
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“11/100 -

CT17/2 O

T20/20 .

task/execution time

Figure 4.2: Example 1
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TS, T13, T16, T18, T21). u», the total execution time for a
task system, is the sum cf the execution times of the tasks in

. w for Example 1 is 132.

The highest levels first heuristic orders the tasks in a
list in decreasing order of levels. The level of a task T is
defined simply by the <cardinality of the 1longest chain
starting with task T. Figure 4.3 shows the levels of the tasks
in Example 1. Tasks at the same level are ordered in the 1list
arbitrarily. Since in general a task system has more than one
task at each level, there are many lists which may result from

a highest levels first ordering on the tasks.

Algorithm A of Coffman and Graham assigns an integer,
1<6(T)<r, to each task T of ¢/. The tasks are ordered in a
list according to decreasing o(T). Algorithm A is shown 1in
Figure 4.4. .S(T) is -defined to be the set of immediate
sucessors of task T. Note that 1in Algorithm A arbitrary
decisions must be made only when S(T)=S(T'). Thus, Algorithm A .
in general does not generate a unique 1list L. An «(T)

assignment for Example 1 is shown in Figure 4.5,

The proposed heuristic, maximum chain 1length maximum
execution time, MCLMT, combines notions from two heuristics,
highest levels first and longest processing time. From the
highest 1levels first heuristic, a task which has a longer
chain should be of higher priority, such that, it is assigned

to a faster processor than a task with a shorter chain length.
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- T1/9 T2/90 13/9

task/level

Figure 4.3: Example 1 levels'_



'An arbitray task T, with S(T,)=¢ is chosen and

¢(To) is defined to be 1.

Suppose for some k<r, the integers 1,2,...,k
have been assigned. For each task T for which
has been defined on all elements of S(T), let
N(T) denote the decreasing sequence. of 1ntegers

. formed by ordering the set {a(T'):T'eS(T)}.
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least one of these tasks T* must satlsfy

N(T*)<N(T) for all such tasks T. Choose one such
T* and deflne e (T*) to be ke . - - . .

Repeat the assignment in Step 2 unt11 all tasks
of T have been a551gned some 1nteger.

Where N (n1,n2,..;,nt)<N "(n1,n2,ocn’n€) t t'ZO’.

- if (1) for some i20, ny=n;, for all j, 1<J<1—1 and

n<n

or (11) t<t' and n-=nj,'1$35t.-

J

Figure 4.4: Coffman-Graham Algorithm A
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T1/21Q_ T2/20Q T3/19

T11/2 O

VT20/3~ | T21/1

task/o(T)

Figure 4.5: Example 1; CG Algorithm A
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: For: example, . consider "the tasks 'on the Chaln deflnlng the'
height of the task system. If there is sufficient proce551ng}_
power, then, h/b, is the lower bound of the optlmal schedule

*, All the tasks of the longest chain must be executed on the
fastest processor if the bound is to be achieved. From the
longest execution time heuristic,: the tasks are ordered by
decrea51ng execution time for the case of equal chaln lengths.
It is easily shown that vthe'_shortest ~execution time isr,
achleved.by assignihg the task with the.1ongest'ekecutlon_time'
to thevfastest processor.available.

For the derivation of *he proposed heuristic, MCLMT,

>

. consider some point in“‘the-pexecutionu,ofcpthe task. system.“-~;,'

1Suppose -two processors, 1 and ], are available to execute new'vr -

v

tasks. Tne speeds of the processors,vlband ],vare b and b

- respectlvely._“Processors‘_i,:is. assumed to"be faster ‘than _g o

processor j,'b'>hj TWo tasks, Tk and: Tl,'are ready to execute

and are to be a551gned to the processors. The executlon. tlmes :

for the tasks are Tk ano~rl;'respect1vely.

~ To derive the first sprting'condition'of the heuristic,

define a gquantity, ‘A. Let the chain length of the tasks T and

k
-Ti be lk_aﬁdhll, respectively. Suppose_taskVTk\is assigned to
execute on processor i and task T1 is assicned to eXecute on
processor j., Let 6ki‘ be the length of the cha1n of task T
_when it is assigned to the processor i,

6\“1 ,1\4 —r Tk/bi

To con51der only the effect of the current a551gnment assume
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the remainder of the chain is executed on the fastest:
processor. Similarily for task Tl,'
6lj = l1 -1y + Tl/bj

Consider the difference, A,_between'the chain lengths.

=8y 7613 - | |
a=l =v *1, /b= (1 -7, +7,/bj) | (1)
1f the assumption that T is assigned to processor i is valid,
then, A>0. . _ ‘ » | _
- (1k-fk+fk/b-)-(1l-f +11/b~)>0. @
(lk-ll)?fk -fk/b cn /by o (3

Equation (3) states that the the dlfference 'in  the chain

lenoths of the tasks must be greater than the difference

between the amount the executlon tlmes are extended by the '

" execution on'vproceSSOr}'i_‘ortjj._ Since, the llstvshoulo'be

ordered'such'that task Tk is- higher 'priority, therefore,
equation (3) ‘may be 'interpreted' to order the llSt in
decre351ng chaln lengths. The chain lengths for Example lﬂfare -

shown in Figure 4.6.

‘The second criteria for sorting the 1list of tasks

resolves the case of egual chain 1ength Consider theb

- situation with two processors ready’ to execute two tasks, as

described above. Assume task rk,ls a551gned to processor i and
task Tl'is assigned to processor j;}?rom equation (1),

1/b )-r (1-1/b ).

1
If the assumptlon that task Tk is a551gned to processor i is

valid, then a>0.
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T20/20 - T21/100

~ task/chain length

~ Figure 4.6: Example 1 chain length
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T /T >01=1/b)/(1=1/by)
But, |1—1/bj]>[1—1/bi|
Hence, (1-1/bj)/(1-1/bi)21
Therefore, Tk/7121'
and, TkZTI.

The second criteria 1s to order the tasks in order of

decreasing execution time when the chain lengths are equal.

Note equation (1) can also be interpreted to order the
list L according to decreasing subsequent chain length.
Similarily, a second sorting criteria is the execution time of
the tasks. The maximum subsequent chain length maximum
.execution time, MSCMT, heuristic and the maximum chain length
maximum execution time, MCLMT, heuristic are identical, in
general, except 1in certain situations when either heuristic

may yield the wrong schedule.

Consider two processors ready to execute tasks and two
tasks, T\ and Tl’ as above. Suppose the chain length of Tk is
greater than the chain length of Tl'

lk>11
Further suppose the subsequent chain length of task Tk is less

than the subsequent chain length of T

1
L, mr <1y

Using the MSCMT list, T1 has a higher priority and is assigned

to a faster processor. Using the MCLMT list, T, has a higher

k

priority and 1is assigned to a faster processor. Either list

may result in a worse schedule than the reversed schedule
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depending on the differences in the 1lengths and the
differences in the processor speeds. This is a possible source

of non-optimality for either heuristic.

The heuristic reduces to simpler forms if restricted
problems are considered. If the execution times are restricted
to be unit times, then the heuristic reduces to highest levels
first. Each task can only add a single unit to the length,
therefore, the length 1is identical to the 1level. If the
pértial order is restricted to a null partial order, then, the
heuristic reduces to a longest processing time heuristic. A
null partial order means the tasks are 1independent. 1In this
case. the subequent chain lengths of all tasks is 0. The tasks
are then, ordered using thevsecond criteria into a 1list of

decreasing execution times.

The 1lists for Example 1 resulting from each of the three
heuristics and a random list are shown in Figure 4.7. The
lists are sorted from the random list shown. The Gantt charts
of the schedules for the execution of Example ﬂ on a set of
processors P={P,,P,,P;,P,} are shown on Figures 4;8 and 4.9.

The speeds of the processors are b1=1“and b,=b,=b,=2/3.



(T1 T2 T3 T4 T5 .T7 T10 T6 TO T8 T14 T12 T13 T16 T15 T18 T19 T11 T21 T17 720)

-

(a) mMcLMT

(71 T2 T3 T4 75 77 T6 19 T8 T10 Ti14 T12 T13 T16 715 T18 T19 T17 T11 T20 T21)

(b) HLF

(T2 T1 T3 T4 75 T6 T7 79 T10 T8 Tja T12 T14 T16 T15 T18 T19 T17. 720 Ti1 T21)

o (c) ca

(T6 Ti3 T12 f18 T3 TS T21 T2 T1 T16 T20 T14 T10 Ti1 T4 T17 T7 T8 T9 T19 T15)

. (d) RANDOM

Figure 4.7: Ordered lists of tasks for Example 1
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25 30 35 40 45

(b) MCLMT

50 ' 55

Figure 4.8: Schedules for Example 1

€6



Pa
P>

P

Figure 4.9: Schedules for Example 1
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T3 T7 Ti2 T19
T1 Ti1 T14 TiS
T2 T4 |T5 T8 T9 T13 T16 _|T17
- T6 T18' T20
L ) 1 1 ! 1 1 1 1 i1 1 1 1 1 A 3
o} 10 15 20 25 .30 35 40 45 50 ‘ 55 60 65 70 75 80, 85
(a) Coffman-Graham
T10 [_I T20
T T12 T19
T3 T4 5 T7 . T14 T15 T17
T2 T11 T8 T9 T13] |T16 fra
T6 T18
L 1 1 1 1 o 1 1 Lo 1 1 1 1 1 3
o 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
(b) Random
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4.3 Experimental Outline

The GRID analysis algorithm and the additional programs
for the comparison of the heuristics are implemented in LISP.
The symbolic computational capabilities of LISP allow the
retention of the grammar-style definition of the transitions
(see Appendix A and Figure 2.1(b)). The grammar-style
definitioﬁs also allow the wuse of self-loops, an essential

part of the Petri net formalization.

Transitions can also be defined as vectors of 1length n,
where n 1is the number of places. A vector is defined for the
input places and also for the output places. The non-zero
elements of the vector indicate which places are connected to
the transition. Since in general, a transition is connected to
a small number of places, relative to n, many of the elements

of the vector are zero.

The three heuristics described in Chapter 4.2, and a
randomly generated list, are compared for 15 partial orders.
The sources of the partial orders are as hoted in Table 4.3.
Three special cases of the partial orders are used 1in the
comparison, a null partial order, a most constrained partial
order and a least constrained partial order, the latter two
partial orders are shown in Figures B.1 and B.2 of Appendix B.
The size of the task set, ;7, ranges in size from 10 tasks to
85 tasks. Four randomly generated partial orders of sizes, 40

tasks, 50 tasks, 65 tasks and 75 tasks, are included for the
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comparison.

Each task in the partial orders is assigned an execution
time chosen from a wuniform distribution between a minimum
execution time and a maximum execution time. The execution
time 1is assumed to be a positive integer. For the examples
taken from other sources, the comparisons are made for the
defined execution times 1in addition to the random execution
times if the execution time are not defined to be unit

execution times.

The colour set, X,, which is used for the comparisons is
shown in Table 4.2. The assumption that the speeds are
rational numbers and the execution times are positive integers
avoids the problems associated with finite machine arithmatic
for real numbers. This assmption 1is made without 1loss of.

generality.

A task system is defined by a taskvset, a partial order,
and the execution times for the tasks. The tasks of the
partial orders are assigned different execution times, thus
creating several task systems based on a single partial order.
‘For each task system, the schedule is found for its execution
on several different sets of processors. In terms, of the
Petri net formalization, the Petri net 1is executed with
several initial markings, m0, of the form,

m0=(READY ¢, cj ... cj).

Each 1initial marking is a list of tokens with a single READY



Colour - Processor |
‘ Speed
c, 1
C, ‘ 2/3
C3 .. 1/2
Cos ﬁ/3
c. s
| Ce R '_ 1/6

Table 4.2: Colour set for experiments‘
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token and two or more processor tokens. The READY token is
necessary for the portion of the Petri net modeling the data
dependencies (see Step 4 of Algorithm 1). ¢, and c; are
elements of the colour set, Xo. At least one token in the
initial marking is the token c¢,, since it is assumed that the

fastest processor has its speed normalized to 1.

4.4 Results and Discussion

A summary of the results is shown in Table 4.3. n, is the
number of different sets of processors tested for the task
systems based on the partial order. n, is the number of times
the 1list from the heuristic generates the schedule with the
shortest execution time. n, is the number of times the 1list
from the heuristic generates a schedule as good as at least

one other list.

The maximum chain length maximum time, MCLMT, list is
found to generate a schedule whose length is shorter than the
length of the schedules which are generated by the other
heuristics in 98 of 160 cases for the fifteen examples. The
MCLMT list is also found to generate a schedule whose length
is no longer than one or more of the heuristics compared in 39
of 160 cases tested. Overall, the MCLMT list generated the
best schedule of the four lists compared 86 per cent of the

cases tested.

Note Example 1 accounts for over 20 per cent of the cases
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MSCMT HLF : CG RANDOM
Example . r No N ne n ne ' n, n: n n: Notes

1 21 34 23 -9 .0 7 2 2 (o} 2 Example 2 less 1
2 22 11 10 1 0 1 -0 (o} 0 o [14] p. 88

3. 19 21 ‘9 -3 4 (6] 4 . 3 1. (o] [24] .

4 85 10 6 2 1 1 1 1 o] 0 [57}

5 16 6 5 o] 1 -0 o] 0 0 (o] <:¢

6 10 13 -4 6 0 1 .3 4 (o] 6 - [15] p. 6

7 12 20 13 6 (o) 2 1 6 0 -1 [1] .

8 16 6 2 2 (o} -2 2 2 o} (o} <:most constrained
9 15 6 5 1 0 1 o 1 0 1 <:least constrained
10 19 7 2 -4 M 4 0 - 0 1 {14) p. 92

i1 30 6 3 3 0 3 -0 -2 (o} (o] [591]

12 40 6 5 o} 1 o} e o} (o} (o] Randomly generated
13 50 5 5 o (o] 0O .0 0 o] o] Randomly generated
14 65 6 6 0 o} 0 0 0 o} [o 2 Randomly generated
15 75 3 | -1 1 1 (o} 1 o} (o] Randomly generated

Total 160 98 39 9 23 14 23 1 11
Notes
1. r is the number of'tasks.ﬂ

" 2. no is the number of cases.

3. n: is the number of best schedules. : :

4. n: is the number of schedules at least as good as one other.

Table 4.3: Sumary of Results

66
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tested. Since, Example 1 1is Example 2 1less a single
independent task, consider only the results for examples 2
through 15. In this case, the MCLMT list is found to generate
the shortest schedule in 75 of 127 cases and  to generate a
schedule at 1least as good as one other list in 30 of 127
cases. The MCLMT is found to generate the best schedule in 83

per cent of the cases if Example 1 is ommitted.

The results are heavily weighted by task system with
fewer than 20 tasks. Examples 2, 4, and 11-15 are the examples
in which the number of tasks ranges from 20 to 85, excluding
Example 1. For these Examples, it is found that the MCLMT list
generated the shortest schedule in 35 of 47 cases and a
schedule at least as good as one other list in another 8 of 47
cases. For the larger task systems, the MCLMT 1is found to
generate the best schedule in 91 per cent of the cases which

. were tested.

The lengths of the schedules generated by each of the
heuristics is compared to Jaffe's lower bound on the length of
an optimal schedule. The ratio 1is an indication of the
absolute preformance of the héuristics. Jaffe's bound is used
since the bound 1is easily calculated. The ratids w/w*' are
shown in Table 4.4. The lower bound, w*', is defined by the

following lemma.



“101

Example r MCLMT HLF CG RANDOM
1 21 1.17 1.35 1.35 1.38
2 - 22 1.10 1,18 1.27 1.38
3 19 1.26 1.50 1.30 1.42
4 85 1.14 S 1.20 1.19 1.37
5 16 1.05 1.15 1.25 1.29
6 10 1.21 1,45 1.29 1.35
7 12 - 119 |17 1 1.26 2.00
8 16 1.53 1.53 1.65 1.76
9 15 1,13 1.22 1,20 - 1.19

10 19 1.11 1.1 1.28 1.41
11 30 1.08 1. - 1.15 1.21
12 40 - 1.41 S 1.57 1.54 -1.61
13 50 | 1.00 1.04 1.02 1.15
14 65 - 1.04 1.13 1.14 1.15
15 75 1.05 1.06 -1.08 51.22

where w*'

is the lower bound on the length
of the optlmal schedule ‘

| Table 4.4:

Avefage w/w*'
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Lemma 1 [40]

Let (Z/,<,») be a task system to be scheduled on a
set of processors of different speeds. Let w* be the
finishing time of an optimal schedule. Then,

w*>max(s/Bn,h/b,).

The ratios given in Table 4.4 are a simple mean of the cases
tested for each example. The actual value of w/w*' ranges in
value from 1.00 to 2.31. In general, the values are found to

be in the range from 1.00 to 1.50.

The ratio w/w*' 1s an indicator of performance for the
list ordering heuristics compared. A large value of w/w*' may
be caused by two feasons. Under certain conditions, any list
used for list scheduling results in poor performance. This
case 1s to be discussed later in the specific test on Example
1. The second cause of a large value of w/w*' is that the
lower bound may underestimate the length of an optimal

schedule.

Jaffe's bound is a very loose bound for certain types of
operational precedence constraints. ‘If the partial order is
very highly constrained, such as Example 8, then, there are
many chains which are of approximately the same length as the
chain defining the height, h. Consider the case where several
such chains differ from the longest chain by only a few tasks.
Assume the set of processors includes only a single fast
processor and the bound for the optimal is defined by h/b,. If

the tasks on the longest chain are executed on the fastest
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processors, then the remaining tasks on the chains which share
tasks with the 1longest chain must be executed on a slower
processor so delaying the execution of the shared portions of
the longest chain. Thus, an optimal schedule for the set of
processors may be longer than the length of the longest <chain

in this case. An example of this situation is discussed later.

Table 4.5 1is an example of a test run for a particular
assignment cf execution times for Example 1. The lengths of
the schedules are compared to Jaffe's lower bound for the
length of the optimal, w*', and the 1length of an optimal
schedule, w*. The length of an optimal schedule is included as

a comparison for Jaffe's lower bound.

In general, the problem of finding an optimal schedule is
intractable. The structure of the precedence constraints of
Example 1 and the small size of the set of tasks enables the
construction of an optimal schedule. The method of
construction of an optimal schedule is similar to the .method
of Fernandez and Bussell [25] for finding the lower bound in
the case of identical processors. In general, the following

procedure amounts to an exhaustive search.

The construction of an optimal begins with the inspection
of the Gantt chart of the best schedule resulting from the
four lists. The task éssignments are swapped if the swapping
shortens the 1length of the schedule. The swapping continues

until no further improvemant can be made.



. Execution Time w
Processors

MCLMT HLF CG RANDOM wH/ w*

Ci Ci 70 72 72 72 66 68
cCi Ci1 € 62 64 64 62 62 62
Ci C: 88 88 95 93 80 82
. Ci1 €2 C: 67 . 67 82 82 62 67
Ci1'C: Cz2 C:2 67 69 Y 82 62 67
Ci1 C» 90 92 g2 92 88 90
Ci Ca Ca 78 94 78 94 66 78
Ci1 Ci1 Ci1 Ca 78 80 92 - 104 62 78

Table 4.5: Results for Example 1

ol
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As an example, it is shown that the length of an optimal
schedule for the set of processors defined by (c¢,, ¢,, c;, ¢c.)
is 68. From the Gantt chart shown in Figure.4.7(b), the task
system can be partitioned into three partitions. T1 to Ti11,
T12 to T14 and T15 to T21. There is no overlap between the
execution of the tasks in each of the partitions except for
tasks T10 and T11 due to the precedence constraints. T10 and
T11 may overlap the second and third partitions but 1if they
are executed as early as possible, then, there is no overlap.
The length of the optimal schedule is the sum of the lengths

the optimal schedule for each partition.

In the first partition, the longest chain is (T1, T4, TS5,
T7, T9). The longest chain is of length 38 units. Each task in
the chain 1is exectuted on the fastest processor. All other
tasks. in the partition is executed on the slower processors
and they complete execution before the tasks on the longest
chain complete execution. Therefore the tasks not on the
longest chain do not delay the the tasks on the longest chain.
Since the partition cannot be executed in less time, the

schedule of length 38 units is optimal.

In the second partition there are sufficient processors
for each task to be executed concurrently. The tasks are of
equal execution times and two of the tasks are assigned to the
slow processors. Note that no benefit can result from delaying
the execution of any of the three tasks since the the

execution of two of the tasks on the fast processor would
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result in an execution time of 8 units. Hence, the optimal is

6 units.

In the third partition, consider the chains
C1=(T16,T18,T21) and C2=(T16,T19). Chain C1 is of 1length 20
units and chain C2 1is of length 18. Since only one of the
chains may be executed fully on the fast processor, either T19
or T18 and T21 must be executed on a slower processor. Assume
Ti6 1s executed on the fast prcessor since it is common to
both chains., If T19 is executed on a slower processor, then,
the actual execution time for chain C2 is 23 units and fof
chain C1 is 22 units. If tasks T18 and T21 are executed on the
slower processor, then, the actual execution time for chain C1
is 28 and for chain C2 is 20. Hence, the execution time 1is
minimized if T19 is executed on a slower processor. Note the
execution of tasks T15, T17 and T20 does not affect the
execution time of the partition since the tasks may be
executed serially on a slow processor in 21 units of time. The
length of the optimal schedule for the third partition 1is 22

units.

The 1length of the optimal schedule is the sum of the

_lengths of the optimal schedules for each partition.
wW*=38+6+22=67

The length of an optimal schedule for the execution of Example

1 on the set of processors defined by (c,, ¢,, c,, c,) is 68

units.
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A comparison between Jaffe's lower bound and the length
of an optimal schedule indiéates that, in general, the bound
is relatively close to the 1length of an optimal schedule.
However, note that for the last two sets of processors tested.
The length of an optimal schedule exceeds the bound by a
significant amount, w*'/w*=1,26. In this case, the bound
yields a poor estimate of the length of an optimal, as
described above. The tasks of Example 1 are highly constrained
as 1illustrated in Figure 4.2. The second condition, that a
single fast processor is included in the set of processors, is
also met in the last two <cases. This behavior is verified

using the other precedence relations.

The. processor speeds and the maximum execution times are
arbitrary parameters in the experimental procedure outlined in
Chapter 4.3. Sample results for test runs to examine the
effect of . altering these parameters are shown in Appendix B.
The parameters are changed to alter the ratios, Tma/Ta. and
‘b;/bw. In the first test, Twmax/Tmwm=b:/b,. and longer execution
times and slower speeds are used. In the second test,
Tway / Tmia <b1/b, 1s achieved by using very slow processors. In
the third test, r qa/Tmw >b, /b, is achieved by the use of a
large value for ruax. In each test, the parameters did not
significantly affect the dominance of the proposed heuristic,

MCLMT,

The final test on Example 1 illustrates the restriction

to unit execution times. Note that the HLF and the MCLMT lists
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generate the same schedule. This behavior'is verified with the
other precedence relations. The schedules for the sets of
processors 1including c,; are further examples of situations in
which the list scheduling strategy yields poor performance.
The Coffman and Graham Algorithm A list generates a schedule
of the same length as the HLF list and the MCLMT 1list. This
behavior is due to the unit execution times and the relatively

simple structure of the partial order.

A final Qbservation in the results 1is a comparison
between the schedules generated by the MCLMT 1list and the
MSCMT 1list, described in Chapter 4.2. Over the 160 cases
tested, the MSCMT list and the MCLMT list generated  schedules
of the same length in 121 of the cases. In 20 of the cases the
MCLMT 1list generated a better schedule and in 19‘of the cases
the MSCMT list generated a better schedule. This agrees with

the notion that the two heuristics are almost identical.
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

5.1 Summary and Conclusions

A Petri net formulation for the general scheduling
problem is de&eloped in this thesis. The Petri net formulation
is based upon three classes of Petri nets, marked graphs,
timed Petri nets and coloured Petri nets. The general approach
to the formulation begins by expressing the structure of the
general scheduling problem in terms of a Petri net model. The
scheduling strategy is modeled by modifying the algorithm for
the analysis of the Petri net. A schedule is generated by the
execution of the Petri net. The Petri net formulation may be
thought of as the result of a transformation onv the formal

definition of the general scheduling problem.

The main advantages of the Petri net formulation are
these of Petri nets in general. As presented in this thesis,
the Petri net. formulation has the ability to model a wide
variety of resource and processor configurations. If a
configuration arises 'which cannot be modeled under the
formulation presented here, then the Petri nets are easily
extended to improve their ability to model a particular
situation. Schedules are easily generated for the execution of
a task system on different sets'of initial resources by simply
executing the Petri net model with different initial markings.

The Petri net formulation is a compact and natural description



110

of the general scheduling problem.

The logical separation of the modeling of the structure
and the modeling of the behavior in the scheduling problem
allows changes to made in either the structure or the behavior
of the problem without independently. Consider the problem
analysed 1in Chapter 4, namely, list scheduling for a set of
processors of different speeds. Suppose the processors are now
to be functionally dedicated and to be of different speeds
within a functional group. The set of processors is modeled by
a set of coloured tokens but the analysis modeling the list
scheduling remains unchanged. Suppose instead, a different
scheduling strategy is desired to be modeled for the set of
processors of different speeds. The GRID analysis is modified
to model the scheduling strategy and the Petri net remains the
same. The logical separation of the modeling of the behavior
and of the structure of systems provides flexibility 1in the

use of the formulation.

There are two disadvantages to their formulation. The
Petri net formulation takes advantage of the assumption that a
transition is.defined to fire as soon as it 1is enabled,
subject to conflict resolution. Since the tasks are modeled as
transitions, the earliest schedules are generated under the
Petri net formulation. The formulation does not include a
natural representation for the modeling of arbitrary delays. A
transition 1is also assumed to fire completely and to be

uninterrupted once it begins firing. This notion prevents



consideration of preemptive strategies. Note that both of
these disadvantages may be overcome by modifications to the
implementation of the behavioral analysis which is used for

the study of the problem in Chapter 4.

The use of the Petri net formulation of the general
scheduling problem is demonstrated in list scheduling for the
execution of a task system on a set of processors of different
speeds. A new heuristic is proposed for ordering the 1list of
the tasks. The proposed heuristic, MCLMT, orders the list in
order of decreasing chain 1length, and decreasing execution
time in the case of equal chain lengths. The schedules which
are generated by the proposed heuristic are compared to the
schedules which are generated by the highest levels first
heuristic, Algorithm A of Coffman and Graham, and a randomly
generated .list. In the comparisons, the proposed heuristic
generated a better schedule in 98 of 160 cases tested and a
schedule as good as at least one other schedule .in an

additional 39 of 160 cases.

5.2 Suggestions for Further Research

The major suggestion for further research is the further
use of the Petri net formulation. The use of the formulation
presented in this thesis is a relatively simple scheduling
problem. The scheduling problem discussed list scheduling for
a simple resource structure consisting of a single set of

processors of different speeds.
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The formulation may be used to evaluate scheduling
strategies other than list scheduling. List scheduling, as
noted 1in the comparison of the heuristics, is known to yield
poor performance in the case where there exists a large
difference the the speed of the fastest and slowest processor.
The problem with 1list scheduling 1is that a task may be
assigned to a slow processor when a better schedule would
result 1if the execution of the task is delayed until a faster
processor is available. This situation suggests ~a look-ahead
strategy may perform better in this situation. A look-ahead
strategy 1s within the modeling capabilities of the Petri net

formulation as presented in Chapter 3.

The formulation may be used for the examination of the
effects of more structured sets of resources. The set of
processors which was wused for the comparisons in Chapter 4
specified no interconnections between the processors. It is
shown through the example of the dynamically reconfigurable
architecture that the formulation is capable of modeling an
arbitrary structure in the resources. The special relationship
between the computing elements of the reconfigurable
architecture is modeled naturally through the use of a set of
coloured tokens and the transition schemes. Other relations in
the resources, such as those imposed by a network
architecture, may be modeled using a combination of colour
sets for the resources, the transition schemes and the set of

coloured data tokens.
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The final suggestion for further research takes 1ideas
from the scheduling problem to suggest changes in Petri net
theory. The Petri net formulation is unable to model either
arbitrary delays, or the partial firing of a transition which
has a time duration associated with it., Extension of the Petri
net theory to allow consideration of Petri nets which possess

these modeling characteristics is desirable.
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Appendix A Definitions and Notation

Petri Net Notation

n is the number of places.

m is the number of transitions.

Scheduling Notation

n is the number of processors.
r is the number of tasks.

s is the number of resources.

Definition 1 [53]

If P={A,,A,,...,A,} is a set symbols, then P* is defined
recursively, as follows.

(i) A, the empty state, is in P*,

(ii) Ay is in P*, 1<i<n.

(iii) If x and y are in P*, so is x+y.
where + 1is a commutative, associative binary'operator.

A general form x= § X: A

iA;, where x; 1is the number of

occurrences of A; in x.

Definition 2 [53]

A generalized Petri net, GPN,
GPN=<P,T>
P={A,,4,,...,An} is a set of places.
T={t,,t2,...,tm} P*¥ P* is a set of transitions

ty: Ziaiin - Ebiin
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Definition 3 [53]

A marked Petri net, MPN,
MPN=<P,T,m>

m is an element of P*

Definition 4 [53]

The characteristic matrix, T.

(rij )= aij _bij

Definition 5 [80)

A timed Petri net, TPN.
TPN=<GPN, 0>
Q: Ty e»(Ti,ri ) a function mapping a transition

onto a positive real number, r.

Definition 6 [102]

An instantaneous descriptor, d
di=(mi,ri)
mie P* is the marking.

rie TXR is the remaining time.

Definition 7 [38]

A coloured Petri net, CPN,
CPN=<GPN,C,F>
C=(X,<): a set of colours X and a partial order, <.
F: A >X a function mapping each edge € A onto a

colour, where A is the set of edges.
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Definition 8

A state y is directly reachable from a state ¥, 1if there
exists a transition, - t, enabled in x which when fired

results in the state x, =t y,

Definition 9

A state y is'reachable frbm a state x through a sequeﬁce

of transitions; ¢=¢i62...0,, if there exists a seguence’

of stateé, X;, 1<€i<k, such that,
.xi_=ei 2 X1l

X =6, DY

X=d'1=? X«, '

. " Definition 10

A path in a directed graph is a sequence of edges such

that the edges are connected head to tail.

‘Definition 11

A di;ected circuit is a path with one - common node,  the

first and last node.
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Definition 12 [16]

A task system (Z7,<,{rij},{éq })
€7=(T1,Tz,...,Tr): a set of tasks
<: an irreflexive partial order on .
Tij: execution time of task i on processor j.

A =[R1(Tj),Rz(Tj),...,Rs(Tj)]: resource requirement

of task j.

Definition 13 [40]

The total execution time, », of a task system,

Definition 14 [40]

A chain starting with task, T;, 1is a set of tasks,
(Ti""'Tj'Tk'°"'T1)' such that, Ty is an immediate

sucessor of Tj, Tj<Tk' for all tasks in the chain.

Definition 15 [40]

The height of a task system, h, is the length of the

longest chain in the task system.

Definition 16

The level of a task, T4, 1is the cardinality of the

longest chain starting with task, Tj.
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Definition 17 [40]

The total processing power of i processors, Bj,

1
B; = '\Z__ b

.
von
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Appendix B - : ' ‘ ‘

T1
T3
‘TS5

9

T15

- Figure B.1: Example 8 - <:most constrained
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Figure B.2: Example 9 - <:least constrained
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Execution Time w
Processors ;

: MCLMT HLF CG RANDOM w*’
Ci Cs Cs 298 334 380 408 226
Ci1 Cs Cs 380 388 388 388 248
Ci Ca 304 328 328 304 260
Ci Ca Ca 300 284 328 328 208
Ci1 Cs = 432 472" 384 432 289
ci Ci 198 208 - 208 200 190
Ci Ci Ci 180, 190 130 190 190

Table B.1: Example

‘1 with longer execution times and slower processors

Execution Time w

Processors

' MCLMT HLF CG RANDOM w*’
ci C 68 68 70 70" .68
Ci Cs 98 152 110 120 89
Ci Cs . 104 178 102 - 138 .91
Ci Cs Ces 142 178 - 176 172 80
Ci Cs Cs - 90 | t70 ° 138 148 76
C1 Cs Cs 130 152 180 162 78

Table B.2: Example 1 executed on slower processors

oct



Execution Time w

210

Processors -

. MCLMT HLF ofe] RANDOM W’
Ci1 Ci 120 126 128 126 104
Ci C: 135 145 146 139 123
Ci C: C: 119 - 130 131 133 104
Ci C:3 140 - 168 154 144 136
.Cit C: C1 138 160 158 156 104
C: €1 C3 C» 138 160 158 156 104
Ci C2 Cy 129 148 149 154 104
Ci € 186 - 188 188 190" 177
Ci C: 238 244 248 243 213
C:t Cz C: 184 184 222 236 168
ci C» 244 246 290 248 236
Ci1 C1 C» 210 210 286 282 177
€1 €2 C3 210 251 ¢ 258 168

Table B.3: Ekample 1 with tonger: execution times -

1€l



Execution Time w
Processors

MCLMT HLF CG RANDOM w*’
ci1 C: 12 12 12 12 11
Ci1 Cs 24 . 24 24 24 18
C: Ca 15 i5 15 15 14
Ci1 Cs C3 24 24 24 | 24 i3
C: Cs Cs 24 .24 24 24 i5
Ci Ci1 Ca 13 13 13 14 i1

Table B.4: Example 1 with unit execution times

Zel



