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Abstract

A computer-aided algorithm is developed for the manageﬁent
of reactive power flow in an electric power system. The
technique is designed to assist transmission planning engineers
in establishing satisfactory base-case power flow solutions.
The objective in the algorithm is to reduce real power loss
in the system through control of reactive power flow, and so
is different than conventional "VAr allocation" algorithms.

The minimisation is performed by a specially adapted gradient
search with a sub-optimal step-size, which can be simply
incorporated into a standard Newton-Raphson power flow
‘program.

A special feature of this thesis is the presentation of
a set of contour plots of the objective function versus
various pairs of control variables. An analysis of these plots
is presented, and is used to demonstrate the validity of the
steepest descent minimisation technique for this problem.

Comments are given on tests conducted with this technique
on a typical British Columbia Hydro and Power Authority power
flow simulation consisting of 245 busses and 327 branches, with
47 controllable generators and 44 controllable variable-tap

transformers. The algorithm is claimed to be effective and

efficient for studies of this size.
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NOTATION

Notes:

1)

2)

3)

4)

Scalar quantities are written as simple or subscripted
variables (e.g. V). Vector quantities are written as
simple variables with an overhead bar (e.g. V). Matrix
quantities are written as simple variables within square
brackets (e.g. [Y]).

The null matfix is written [0], while the identity
matrix is written {1} . The zero vector is written 0.

A "A" preceding some variable (e.g. AV) indicates a
variation in that variable. The real and reactive power
mismatches are the exceptions to this rule. They are
written AP and AQ. That these are mismatches will
always be pointed out in the text.

A subscript (i, j, or k) applied to a scalar variable
(e.g. V) indicates that the variable pertains to the
bus indicated by the subscript. Similarly, a variable
with two subscripts indicates that the variable pertains
to the pair of busses indicated. A partial derivative
of subscripted variables indicates that thé aerivative.
is an element of the derivative matrix (e.g. BQ:‘

J
(i,j) element of the matrix E%?]). A special subscript,

is the

s, is used to indicate the slack bus.



5)

6)

7)

8)

9)

10)

11)

12)

13)

for the power system is > (AQ;)~

—ix—

The unqualified term "power" refers to the complex power
S.

Absolute value is indicated with two vertical bars (e.qg.
]fl’ = 1), while\the Euclidean norm is indicated with
two pairs of vertical bars (e.g. "l + 3 l” = Y¥2).

Summations are given over elements of a set. For example,

the sum of the squares of the reactive power mismatches

2
L€ NL
The superscript "des" indicates the desired value of the

variable. »tSimilarly, “"sched" indicates the scheduled

value of the variable. E.g. v?es

indicates the desired
value of the voltage magnitude at bus i.
The superscript "max" indicates the maximum desired value
§f the variable. Similarly, "min" indicates the minimum
desired value.
Where a'vector or vector-valued expression is shown to be
greater than 0, this is intended to mean that each
element of the vector (or expression) is greater than 0.
An asterisk superscript indicates the complex conjugate,
e.qg. s* is the complex conjugate of the power.
A. "T" superscript indicates the transpose of the vector

T

or matrix. E.g. V- is the transpose of the voltage vector.

A subscript "o" indicates the initial value of the variable,



e.g. Xg is the initial value of vector x.

14) A "Y" preceding a variable indicates the gradient of that
variable, e.g. 6Ea: indicates the gradient of F with
respect to u. A "Vz" similarly indicates the Hessian of
£he variable.

15) A superséript such as "k" or "k+1" is used to indicate the
value of_the variable at step k or k+1 in the iterative

process.
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complex power. Sometimes used for the sensitivity

matrixléﬁ%ﬂ, but always indicated as such.
real (active) power = Re{S}. Positive from bus into

system (or ground).

imaginary (reactive) power = Im{Sf. Positive from
bus into syétem (or ground).

voltage magnitude.

voltage angle relative to an arbitrary reference
Qoltage (usually the slack bus voltage).

impedance (complex).

résistance = Re{Z}.

reactance = Imfzg.

admittance (complex) = 7 1.
conductance = Rngf.
susceptance = Im%Yf.

transmission real power loss.

objective function to be minimised.

the vector of equality constraints (equal to 6).
the vector of inequality constraints (greater than
0) .

vector of control variables: generator voltages,

transformer taps, and allocated reactive power.
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X - vector of independent variables: load bus voltages,

voltage angles.

w - weighting factors for voltage penalty term.

z - weighting factors for reactive allocation term.

t - tap setting for variable tap transformers of the
set NT.

N - set of all busses in the system.

NL - set of all load and other busses in the system for

which the bus voltage is not fixed.

NG - set of all generators in the system eligible for
voltage adjustment during optimisation.

NQ - set of all busses in the system eligible as locations
for shunt reactive banks during optimisation.

NV - set of all busses at which the voltage is to be
held to within some tolerance of nominal.

NT - set of all variable transformer taps eligible for
adjustment during optimisation.

NCI - set of all busses with a connecting branch to bus i.

NVH subset of NV for which voltages are higher than the
desired maximum.

NVL - subset of NV for which voltages are lower than the

desired minimum.
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INTRODUCTION

With power systems becoming larger and more tightly
meshed, the development of good power flow simulations for
each year and loading condition of a capficious ten-year
system plan is becoming one of the most tedious procedures
involved in planning transmission networks.

The procedure involved in producing a good power flow
solution is sufficiently well defined that the majority of the
adjustments can be done by an automated technique. Someone
familiar with the power system (e.g. a good technologist) can
set up the constraints for the process and evaluate the results.

If the results are not exactly right the first time, as is
likely (depending on the ability of the user), the technique
can be used iteratively. Provided the person "at the controls"
understands what constitutes a good solution, it is possible to
achieve a good simulation in much less time, and with much less
frustration, than is possible with standard manual powef flow
simulation techniques.

There are basically only three steps in producing a power
flow simulation. First, the transmission and generation must
be modelled, and the system loads must be adjusted to the load

forecast for the year and loading condition (e.g. 1984 heavy



winter peak) under consideration. Second, a reasonable genera-
tion schedule, including import/export schedules, must be
established to support the total load. This schedule must take
into account the effect of upstream hydro plants on downstream
plants (e.g. B.C. Hydro and Power Authority's Site One plant is
dependent on the upstream G.M. Shrum plant), the availability
of water for hydro plants, the desirability of operating
thermal plants, the merit order of available hydro and thermal
plants, etc. Third, the generator voltages, variable transform-
er taps, switchable capacitor/reactor banks and the like all
must be adjusted so that the voltages around the system are
within safe (and stable) operating limits. The voltages are
then further adjusted using available and planned reactive
powef sources, so as to obtain a reasonable™ voltage profile.
This final trimming of voltages is carried out in increasing
detail according to the nearness of the study date to the
actual date, with the most attention being given to the first
year of the plan..

This third and last step, the adjustment of generators,

* Usually this is a subjective evaluation, which involves
many inter-relating factors, such as whether the simulation
is for a normal or emergency (outage) condition, and the
location, size, and nature of the affected load.



variable transformer taps, switched reactive banks, etc., and
particularly the detailed investigation involved in early
budget years, generally requires the most work in any power
flow simulation, and it is thus for the resolution of this step
that many computer-aided techniques have been proposed.

This thesis summarizes several of the various techniques
proposed for reactive power management*, and then presents the
development and analysis 6f an objective functionidifferent
from fhat adopted by most other authors. Instead of minimising
the deviation of system voltages from "standard" values as is
usually done, the technique presented here reduces the transmi-
ssion losses in the system, which, in the opinion of the author,
provides the solution which good "voltage deviation” techniques
only approximate. This amounts to solving the reactive half of

the general optimal power flow problem addressed by Dommel [l]

* Reactive power management is defined here to be the control
of generator voltages, variable transformer tap settings,
and existing switchable shunt capacitor and reactor banks,

. and the allocation of new capacitor and reactor banks, in a
manner which best achieves the desired goal of voltage
control, loss reduction, or both. This is more general than
reactive power allocation ("VAr allocation") which deals
only with the allocation of new and existing blocks of shunt
compensation.



and Sasson [2].
Finally, the analysis of the objective function is used to
select and test a computationally efficient solution technique

which will require a minimum of user interaction to be effective.



CHAPTER I

Principles and Techniques of Reactive Power Management

.Although reactive power does not usefully contribute to the
flow of energy in the power system, it has a significant effect
on power system pefformance and efficiency. By reducing unne-
cessary reactive power flows, it is possible to increase therm-
aliy restricted active power capacities of lines, transformers,
and generators. System stability is improved by reducing the
wide variation in bus voltages which characteristically accom-
pany high reactive power flows. The lower currents improve
voltage regulation on distribution circuits, and reduce energy
losses throughout the system.

There are several ways in which unnecessary reactive power
flows can be reduced. The most common way is to supply the
necessary reactive power generation at the load itself. This
is usually done using shunt capacitors or reactors.

Although, ideally, shunt reactive devices should be
provided at all busses where the power factor is less than
unity, the cost of these devices prohibits this practice.
Instead, it is usual to install shunt devices in such a way

that the benefits are shared over several adjacent busses. A



tradeoff is thus made between the effectiveness of the correc-
tion, and the cost of the equipment. The allocation of new and
existing shunt devices in a manner which offers the greatest
benefit for the lowest cost is the problem addressed by most
"VAr allocation” techniques.

Some techniques perform true reactive power management,
offering additional ways of controlling reactive power flow.
Within stator current, field current, and stability restrictions,
generator voltages may be controlled, altering both the reactive
power production (or absorption) at the generator itself, and
the reactive power flow through adjacent, strongly conneéted
busses.

Another method of controlling the reactive power flow in a
system is transformer tap adjustment. In overhead transmission
networks, the line inductance is typically much greater than
line resistance. Under these conditions, the active power flow
along a transmission line is nearly independent of the difference
between the voltage magnitudes at the ends of the line, while
the reactive power flow is nearly proportional to this voltage
difference. By using transformer taps to alter one or more bus
voltagés, it is possible to control the flow of reactive power
through these busses independently of the flow of real power.»'

(Note that only the reactive power flowing through a bus may be



controlled. Any reactive power absorbed by a load must always

be supplied, irrespective of any adjustments in transformer taps.)

Manual Techniques

Perhaps the most obvious method for allocating reactive
power sources is by inspection of the power flows on various
lines. Adjustments to generator voltages, existing (switchable)
shunt reactive banks, and variable transformer tap settings can
be determined froﬁ careful study of bus voltages and circuit
reactive power flows. After these adjustments have been determ-
ined and checked with a new power flow simulation, remaining
regions of high or low voltage,‘and transmission lines with high
reactive power flows are identified from the newly calculated
results. New shuﬁt reactive -devices can then be located at
busses central to the problem areas. This procedure is repeated
for each loading condition to determine the total system
requirements for the year being studied.

This technique, which is often referred to as the trial and
error method, can also be used to plan voltage support for
outage cases. Lines can be reﬁoved from the study, as necessary,
to investigate each system contingency. The power flows are

calculated as for the normal condition base case, and reactive



compensation located so as to correct for adverse voltages, and
to minimise the power flows along heavily loaded transmission
lines. The shunt compensation requirements for all cases would
then be assimilated into a single system plan.

While this method of allocating reactive power sources
gives exact power flow solutions, it does have several drawbacks.
Firstly, at least two power flows&—onetihitial to find the
uncorrected voltages and power flows, and at least one other to
test the allocation scheme--are required for each loading and
contingency condition.

ASecondly,>it is difficult té determine the correct size
for each reactive installation, particularly when it is necessary
to keep voltages at several adjacent busses within some tolerance
of nominal. This problem is further complicated by the need to
combine reactive requirements for all contingencies into a
single plan for the system, in that compensation added for one
contihgency will affect the amount of compensation needed for
other contingencies,

In spite of the amount of work involved in this type of
reactive power allocation study, the trial and error technique
is the one used by most Canadian utilities [3] for studies of
the first one or two years of the system plan.

Another manual technique which is sometimes used (and is



presently in use at B.C. Hydro) is the sensitivity technique

{4]. In this method, the partial derivatives of voltage change

AV
IQ §i

network data (these derivatives can easily be obtained from the

with respect to reactive power ( ) are calculated from the
Jacobian matrix of a Newton-Raphson power flow program). It is
then possible to find the bus voltages which accompany a change

in reactive power:

AV = [s3] Ac (1)
where

BV = expected voltage change;

AQ = changes in reactive power out of busses

[SJ]= [—%g)(sensitivity matrix derived from Jacobian

matrix) .

From this equation, it is possible to calculate the changes
in bus reactive shunts which will adjust the voltage at bus i by
AVi. The most effective location for a shunt reactive bank is
then at the bus with the highest sensitivity coefficient
(element of [SJJ) for the voltage at bus i (i.e. bus k, where
[S;%) = maxilsij‘, for all j € NQ}). Both the location and the
sizing of the bank are thus obtained directly.

It is interesting to note that for differences (6; - ej):s o,
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voltage magnitudes V; = 1 p.u., and low resistance branches

(le << le) , then

Q¢ Xij {

Fx ~Vj Bjs cos(8; - 8:) = -B,. = =5k o .
V] J 173 S PAY! R
which is just the short-circuit ratio of the branch between

busses i and j. This, along with the approximation

-1
Vi <3QL)
QL \dVj
has been exploited by Maliszewski, Garver, and Wood [5].
Domme 1 [6] has shown that the sensitivity technique can be
modified to determine the amount of reactive compensation Qi

required at a single bus i to minimise the objective function

where

Vi = voltage at bus i

Vges = desired voltage at bus 1i.

Inserting the first-order sensitivity relation of V; about VOi

gives
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des, 2
f = ZE(V + S:. AQ: - VITD)
LENV o1 lJ ] *
where
Sij AQj is the expfession for Av; = 3ZéAQ from (1).

At the minimum

_df _
dAQ;
des

2_L% (o + 815005 - V3°0) Sj5

des
=2§ (Vo; ~ Vi77) S5+ + AQ4 Es 3 0
LZVVDI 1] Jfew 3

0, or

from which

"2 (Vo des) SLJ
> Sz

LENV

AQj =

The sensitivity technique has the advantage of being a
true reactive power management technique, and can be used to
calculate required adjustments in transformer taps and generator
voltages in the same way as was done above for shunt compensation.
The major disadvantage of the sensitivity technique is that
it assumes that the relationship between SV and AQ is a linear
one, while in practice it is very complex. The calculated

values, therefore, are valid only for small changes in bus
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voltage.® After an allocation scheme is selected, it must be
tested with a power flow to find the exact bus voltages. If
the voltages are still unsatisfactory, the procedure can be
repeated.

Note the similarity between this technique and the trial
and error approach: they both begin with the solution of an
initial power flow, and end with the solution of a confirming
power flow. The difference is solely in the way the reactive
installations are located and sized. TIn the trial and error
technique, the planning engineer selects the location on the
basis of the reactive power flows and voltage levels. He must
then use judgement to size the installation--a task complicated
by the difficulty of predicting the effect of the new installa—
tion on voltages at adjaceht busses. The sensitivity technique
provides this information directly (albeit approximately), and
much more quickly.

The sensitivity technique is‘fast, fairly simple, handles
all contingencies, all loading conditions, and all types of
* The accuracy of the predictions always improves as the mag-

nitude of voltage correction decreases. For example, using
this .technique on a typical B.C. Hydro system, to change a
bus voltage from 0.998 p.u. to 1.025 p.u., the predicted
change in Q at that bus brings the voltage to 1.026--an
error of 0.12%. For a starting voltage (at the same bus) of

1.007 p.u., the new predicted change in Q brings the voltage
to 1.0253 p.u.--an error of only 0.03%.
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reactive power management (shunt compensation, transformer taps,
and generator voltages). Unfortunately, it is only approximate,
and it shares with all manual techniques, and many of the
"optimal" automatic techniques, the difficulty of combining
allocations for all loading conditions and contingencies into a

single, least-cost system plan.

Optimal (Automatic) Technigues

The major difference between manual and optimal reactive
power allocation techniques is that optimal techniques both
locate and size shunt reactive banks automatically. The term
"optimal"” implies--in some cases correctly--that the resultant
allocation scheme is the best possible, subject to constraints
such as bus voltage limits, maximum and minimum acceptable
installation sizes, etc.

Optimal reactive power allocation techniques can be generally
divided into two types. The simplest, and the one on which the
majority of the literature has been written, is the group of
linearized techniques: linear programming, integer programming,
and 0-1 programming. These techniques usually deal only with
the allocation of shunt reactive banks, and always assume a

linear "objective function" (which in this case means that AV
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and 56 are assumed proportional), subject to linear constraints.
(There is a variation of linear programming known as gquadratic

programming, which allows the use of a quadratic objective

function subject to linear constraints.)
The second type of optimal technique, and the most complex,
is the group of nonlinear technigues often termed nonlinear

programming. ' ‘These techniques deal with all types of reactive

power management, can handle a wide range of objective functions,
and can have both linear and nonlinear constraints. This great
flexibility is not without penalty, however, as the computation
time required for solution increases rapidly with problem
complexity, and the solution technique used must often be tailored
to the problem in order to find any solution at all.

Nevertheless, if the extra flexibility is required, it is nearly
always possible to develop a.workable algorithm. Since the
objective function is unrestricted, these techniques produce as
exact an answer as the precision of the computer, the data, and

the convergence behaviour of the algorithm will permit.
Linear Optimal Techniques

The basic linear optimal reactive power allocation technique

is linear programming. In the linear programming approach, the
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voltage changes in the system are assumed to be proportional to

the changes in reactive power;

av = [s] 4o (2)
where

AvV = expected changes in bus voltages

AQ = changes in reactive power out of

busses
[S] = constant matrix, which may or may

not be the [Sj} of equation (1).

The constrailnts on &V,

min v

Av; 2 vy -V .
. max for all i € NV
Avi = Vi - vy

are combined with (2) to obtain the set of inequalities:

min
2835 A0y 2 Vi -V (3)
J ENQ mas for all i € NV
J.ezNgij AQy =Vi - Vi (4)

The constraints on Ea are:
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Aoy = Q3% - gy (5)

AQj 2 0, or for all j € NQ (6a)

-AQjEi 0 (6b)
where

equation (6a) is used for inductive allocations, and

equation (6b) is used for capacitive allocations.

The objective function to be minimised is the sum of the absolute

values of all the reactive additions:

£(0) = = |a05] - (7)
JE.NQ
The series of equations (3) - (7) form a standard linear

programming problem, and can be solved by any of the available
linear programming algorithms. The result of the optimisation
is a set of reactive allocations 56 for the busses chosen by the
planning engineer. 1In some methods, 56 is permitted to assume
any value, while in others it is constrained to be one of a set
of standard sizes. In the case where any value is permissible,
the sizes must later be rounded to the nearest standard size by
the planning engineer. A power flow can then be run with the
standardized allocations to obtain the exact bus voltages.

Although differing in some points--especially in the
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formulation of equation (2)--all linear programming allocation
techniques have this general form [5,7]. They are usually
solved with the Simplex linear programming algorithm, for which
standard code is available.

These techniques can be made to handle multiple contin-
gencies automatically. Maliszewski et al. [5] accomplish this
by solving all contingencies together as one massive linear
programming problem. If necessary, some of the capacity needed
for one contingency can be removed during other contingencies
to prevent the voltage from exceeding that experienced under
normal conditions. The installed capacity is permitted to take
any value, later being rounded to the nearest standard value by
the user.

The linear programming techniques based on (2) through (7)
use linearized sensitivity information. A different technique,

by Kohli and Kohli [8], uses an integer programming technique

to allocate capacitors in unit sizes. This technique builds a
"tree" of all possible capacitor configurations, subject to the
restrictions determined by the planning engineer. These
configurations are then systematically tested to see if they
satisfy bus voltage constraints. The search is ordered so that
the first feasible solution will be optimal (least number of

capacitors). The authors suggest that the extent of the
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(otherwise substantial) search can be reduced by assuming that
the voltage on a bus will be affected the most by capacitors at
that bus. Unfortunately this is not always true. (The voltage
increase which accompanies capacitor additions is due to a reduc-
tion of current in the transmission feeding the bus in question.
The current reduction--and hence voltage increase--will be the
greatest when the capacity is added directly at the point of the
reactive load, due to the saving in reactive power losses between
the bus in question and the load point. The exception to this is
when there is a constant volﬁage bus in the wvicinity, in which
case prediction is complex, and is best done directly from the
sensitivities.)

As a result, the search remains substantial, and so is of
little, if any, practical value for use with other than small
subsystems of usual power networks.

Convergence of all of these techniques may be hampered by
automatic transformer tap switching or generator Q limits, as

these upset the assumed network linearity.
Nonlinear Optimal Techniques

Nonlinear optimal reactive power management technigues may

treat the reactive power problem sepa{a&ﬂyg or as a part of the
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complete optimal power flow problem, which would also optimise
real power flows.

Kuppurajulu and Nayar [9] treat the reactive power problem
separately. They minimise the total capacity allocated, subject
to voltage and shunt capacity constraints.

This technique solves the nonlinear problem with a series
of linear approximations designed to make each gradient step
terminate on a constraint boundary. After each gradient step,

a power flow is solved to find the exact bus voltages. By
assuming tﬂat the optimal solution lies at the intersection of

constraint boundaries, this technique applies linear approximation

programming {101 to find the solution. This technique is very
similar to the linear programming approach of [5].

Sachdeva and Billinton [ii] solve the reactive power man-
agement problem as a portion of a complete optimal power flow.
This technique performs true reactive power management including
transformer taps and generator voltages. The shunt compensation
is allocated in unit sizes.

Although the technique does handle multiple éontingencies,
this increases the data storage requirements considerably. A
modified method which uses less storage is presented in [12].
This modified technique solves the optimal real power flow first,

and then the optimal reactive power flow (with reactive shunt
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allocation). This cycle is repeated if the optimal reactive
step alters the voltage angles by an amount sufficient to change
the real power flow significantly from the optimum.

Both of these methods, the full and the decoupled, use a
Fletcher-Reeves or Fletcher-Powell technique for the minimisation,
with all constraints treated as penalty functions (similarly to
D).

Two other optimal power flow techniques are also applicable
to reactive power management. Sasson et al. [13] use a technique
similar to that of [ll], with all constraints handled as penalty
functions. The coefficients of the penalty terms are altered
during the solution to speed convergence to a feasible solution.
The major difference between the techniques of @3] and ‘iﬂ is
in the minimisation, for which Sasson et al. use the Hessian,
which is computed from the Newton-Raphson Jacobian matrix.

Dommel and Tinnef [i] use a gradient search (and also a
Hessian approximation) for minimisation, treating the power
flow équations (equality constraints) with Lagrange multipliers.
The inequality constraints are treated as absolute limits for
independent variables (e.g. generator voltages), and as penalty
functions for dependent variables (e.g. load bus voltages).

The gradient technique, While sometimes slower to converge than

Fletcher-Powell or Hessian techniques, requires considerabiy
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less storage and computation time per step.
All of the techniques [1,2,11—13) solve the optimal power
flow (and the reactive power management extension) without

assuming objective function linearity.
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CHAPTER II

The Management of Reactive Power Using Loss Reduction

Most of the many papers written on reactive power allocation
propose the use of linear programming and related techniques to
determine the least amount of shunt capacitance which must be
added at various busses to ensure that system voltages are above
user-specified minimums. Most of these linear programming
teghniques are adaptable to shunt inductor switching also,
allowing the scheduling of all shunt reactive devices in a
roughly? least cost way. The computer program thus does in an
orderly fashion exactly what a planning engineer would do in an
"educated” manual way: add capacitors or inducﬁors as necessary
to adjust all voltages to within set limits. If this is all
that is desired, these techniqués work very well: they are fast,
easy to use, and inexpensive to run.

The allocation of new shunt installations cannot reasonably
begin, however, until all generator voltages, variable transform-
er taps, static and synchronous compensators, and existing
switched shunt reactive banks have been adjusted to obtain the
* These techniques minimise the total additional capacity,

neglecting the fact that the cost of a new installation is
likely much more than the cost of enlarging an existing one.
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best possible base case. Only then is it reasonable to attempt
identifying sizes and locations for any new installations.

The task of obtaining the initial "optimum" base case is
considerably more difficult--at least for major transmission
networks--than locating new reactive banks. A transmission.
system is planned for continuous expansion.. With a load growth
of 7% or less per year, it should never be hecéssary to add
extra reactive banks at more than a few busses at a time--even
in large systems. This is especially true in view of the fact
that it is cheaper to add one or two large banks (or expand
existing banks) than to add several smaller ones, due mainly to
the cost of the switchgear, buswork, concrete pads, etc. that
are required to transform a symbol on a diagram into a reality
on the system. It is even reasonable to do this manually,
using V-Q sensitivities when necessary. The major difficulty,
not only for reactive power allocation, but whenever power flow
studies are made, 1is to obtain the best possible base case.

To many people, particularly practising power engineers, a
"good" base case is one with a uniform, or nearly so, voltage
profile. This explains the frequent appearance in the literature
of "VAr allocation" techniques designed to correct bus voltages
to within specified bounds. The need for specifying these bounds,

however, and in particular the difficulty and importance of
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determining the "correct" bounds to use, limits the effective-
ness of this approach. A pdor choice of voltage limits for any
of the linear programming techniques discussed earlier can
prevent convergence by placing incompatible constraints on the
solution. Some busses, particularly those near constant voltage
busses, will be insensitive to changes in shunt reactive power
at busses to which they are connected through relatively large
branch impedances. If the voltage constraints on the bus and
its neighbour do not allow for a realistic relationship between
the two voltages, the problem will be either unsolvable, or the
solution will require an unreasonably large amount of shunt
compensation.

The avoidance of this type of difficulty is generally left
as the responsibility of the user. Although it is not, perhaps,
unreasonable to assume that an experienced engineer can set
satisfactory voltage constraints, one of the most common ar-
guments given in favour of reactive power allocation techniques
in general is that they require less experienée with the power
system to use effecﬁively than do manual techniques. The diff-
iculty of setting proper voltage limits weakens this argument
considerably for voltage-correction techniques.

Although there is little question that voltage-correction

techniques can assist with the allocation process, and may even
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occasionally provide allocation schemes requiring little or no
further modification, the requirement for user-selected voltage
limits can lead to an unnecessary amount of preliminary work,
and the resulting allocation scheme is always sensitive to the
limits selected.

The more experience one gains with power flow studies, the
more apparent it becomes that uniform (or other selected) vol-
tages are not of primafy importance at transmission, and to a
lesser extent subtransmission system levels. Of mére importance
are the magnitudes, and the relative magnitudes, of the real and
reactive power flows.

Whereas real power flows are usually determined by avail-
ability of (extremely expensive) generation sources,venergy
reserves, and the current system load, reactive power flows are
more flexible. As‘there: is no energy required for the generation
of reactive power, it is much easier and less expensive to gen-
erate than is real power, and so can be produced nearer the load,
reducing transmission losses, equipment loadiﬁgs, and voltage
drops’. By reducing uﬁnecessary reactive power flows, it is
possible to approximate a uniform voltage condition. Indeed,
it is by controlling reactive power flows that voltage-correction
type "VAr allocation" techniques attempt to satisfy voltage

constraints.
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Reactive power flow is, in this way, more fundamental to a
"good" base case than is a selected voltage profile. It is
always possible to minimise reactive power flows; it is not
always possible to achieve a desired voltage profile (given
normal operating constraints). It is for these reasons that
minimum reactive power flow, and not voltage profile, will be
used in this thesis as the primary criterion for the selection

of a "good" base.case.

The Development of an Objective Function

From the foregoing discussion, it should be clear that a
suitable objective function for a minimisation process will be
related directly to the reactive power flow in the transmission
system. There are several such functions which would be suit- .
able: -

(2) the sum of the sqguares of the currents in each branch

(b) the sum of the squares of the reactive power flows in

each branch

(c) the reactive power loss in the system (sum of "I"2|X‘

for all branches, which is effectively a weighted sum

of squares of currents)
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(d) the real power loss in the system (sum of ”IH2 R for
all branches, similarly to (c))
(e) the slack bus real power (constant term + real power
loss if real power injections are not altered)
or any similar function.

Function (a) is general, since it is the current which
produces both the real and the reactive power losses. Unfort-
unately, it would tend to equalise branch currents irrespective
of the equipment represented by the branch. Single-circuit, low
capacity branches would thus be loaded at current levels com-
parable to multi-circuit, high capacity branches--obviously an
untenable prospect:

Function (b) partially avoids the problem, since it places
no restrictions on the regl power flow. It does tend to balance
reactive power flows between branches in the same way as (a)
balances currents, however, which, although not resulting in
quite such an unreasonable situation as (a), is still ;n undesir-
able characteristic for reasons analogous to those given above
for (a).

Function (c) is a variation of (a) which tends to avoid
the problem of equalising current flows by weighting the squares
of the currents in each branch with a factor equal to the branch

reactance. Effectively, this function tends to equalise the
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product HIHIXI*:- A branch of twice the reactance of another
branch will, therefore, be scheduled to carry about half of the
current in the low reactance branch (assuming that the braﬁches
are effectively in parallel, and that the total current is con-
stant). This is a near ideal sharing of current, and has the
advantage of minimising the total reactive power generation
which must be provided to meet a (fixed) reactive power load.

Function (d) is an interesting analog to (c). It produces
a result similar to that of (c¢) in most cases, and identical if
the ratio X/R is constant for every branch. The advantage of
this function over (c) lies in the cost difference, economically,
environmentally, and socially, between real and reactive power.
Real power comes from large dams and reservoirs, conventional
thermal stations burning irreplaceable and expensive.supplies of
coal or petroleum, or nuclear thermal stations which produce
unmanageable, or nearly so, fission by-products. Reactive power,
in contrast, is generated naturally by transmission lines and
cables, and can be generated deliberately in shunt capacitor
banks.

Function (d) shares with functions (a) to (c¢) a difficulty

* See appendix section A6 for a proof of this.
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of calculation, in that currents must be calculated for each
branch, and then summed according to the function employed.
Function (e) is more elegant, as the slack bus power may be
calculated with trivial effort from the solution voltages. For
constant real power injections at busses other than the slack
bus, as is the case here, this function produces results iden-
tical to those of (d). It is this objective function which will
be used in this thesis.

In order to prevent the solution algorithm from driving
the bus voltages excessivel? high, it is necessary either to
augment the objective function with a term designed to increase
or "penalise" the objective function as the bus voltages deviate
from nominal, or to formally constrain the objective function
with a voltage constraint during the minimisation. The former
technique permits a voltage to deviate far from nominal if to
do so significantly reduces either other voltage deviations, or
the primary objective function (system real power loss). The
latter technique will not permit the voltages to violate their
respective constraints even if the constraints are preventing
solution of the problem. The augmented objective function
("penalty factor") technique is therefore preferable for this -
‘use, as it at least ensures the existence of a solution.

If the algorithm is to be useful for the allocation of new
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shunt reactive power sources, the objective function will require
an additional term accounting for the cost of the additional
shunt capacity which is to be supplied. This may easily be
accomplished by adding a term similar to the voltage (penalty)
term, which will add to the objective function an amount equal
to the weighted sum of squarés of the compensation added.

The final form of the objective function is, therefore,

4,%) = 4,% min, 2
£(4,%) = Pg(u,x) +~§E;Wi(vi - VIR 2y

L € NVL 5
Swivs - V)2 4 S,oB2 (8)
. J*°3 J
JENVH kENQ
where
min, 2

term wj (Vi - Vi )° is low voltage penalty for bus i
term wj(Vj - V?a‘x)2 is high voltage penalty for bus j
term szﬁ is shunt capacity penalty for bus k

Py = slack bus real power

w; = voltage weighting factor for bus i

Zx = shunt capacity weighting factor for bus k

By = reactive shunt added at bus k

The constraints on f(uU,X) are:

_ AP} _
5 =\55 1" 0 for all busses (9)
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which are the power flow equations requiring the power mismatches
to be zero at all busses (E? and AQ are the vectors of real and

reactive power mismatches, respectively),

vV - v s (5 (10a)
—_ - _ for all busses € NG
viE v >0 (10Db)

which are the minimum and maximum voltage limits for all

controlled voltage (generator) busses,

min -
>0 (11a)
. for all busses € NT
- T >0 (11b)
which are the minimum and maximum tap limits for all controlled

transformers,

B-B"">0 (12a)
—nax _ _ for all busses € NQ
B - B >0 (12b)

which are the minimum and maximum limits of reactive compensation

to be added to eligible busses (of the set NQ), and finally
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min

0-0 >0 (13a)
~max o for all generator
Q - >0 busses (13b)

which are the minimum and maximum reactive power iimits for the
generators. The inequalities (10) - (13) collectively constitute
the inequality constraint set h > 0.

Note that the limits on the control variables, equations
(10) through (12) are linear, which will permit the use of a

simpler constrained optimisation technique.



-33-

CHAPTER IIT

The Investigation of the Constrained Objective Function

The choice of a numerical minimisation technique requires
knowledge of the nature of the constrained objective function.
One of the simplest ways of getting this information is through
‘the use of contour plots, in which contours of consﬁant objec-
tive function value are plotted versus the various coﬁtrol var--
iables. Such contour plots éan be produced by using a power
flow prodgram to evaluate the objective function for various
values of two control variables. The contour plots in this
thesis were produced by a power flow program which automatically
varied the control variables on the two axes through each of
eight values, giving a total of 64 power flows {(or function
evaluations). The values of the objective function were then
interpolated between these points to obtain the contours for
plotting.

The objective function chosen (equation 8) is composed of
three parts: the slack bus real power*, the voltage penalties,

* The real power loss is equal to the slack bus real power plus
a constant. The contours of real power loss thus have iden-
tical form to the contours of slack bus real power. The
contours of real power loss will be used herein.
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and the allocated reactive power penalties. Although it is not
difficult to plot the contours for this objective function, it
will be difficult to analyse such a complex set of contours
directly. It is simpler to analyse the loss contours first,
and then analyse the effect that the penalties will have on

these contours.

Contours of Constant Loss

The system for which contours have been obtained is shown
in figure 1. This three-bus system is a simplified representa-
tion of the pbrtion of B.C. Hydro;s 230 kV system from Bridge
River (bus 2) through Cheekeye (bus 3) to Vancouver (bus 1).

The contours of constant loss versus the voltages at busses
1 and 2 are shown in figure 2. These contours appear to be
strongly parabolic, with the axis parallel to and slightly
displaced frém the line V; = V,.

The reduction of loss with increasing voltage at busses 1
and 2 is due to the resultant increase in voltage at bus 3,
which reduces the current necessary to provide the load P and Q.
This reduced current flow then results in reduced loss in the
two branches,.

On either side of the axis the loss increases. This is not
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due to a variation in the voltage at bus 3, which is essentially
constant along a locus at right angles to the axis (parallel to
the directrix). For example, along the line AB defined by A =
(1.20,0.85) and B = (0.85,1.20), the per unit bus 3 voltages are:
1.00, 1.00, 1.00, 1.00, 1.00, 1.01, 1.01, 1.01 for increments of
0.05 pu in Vi and Vs,. (The fact that the voltages increase
slightly as Vy increases and Vi decreases indicates that the

line AB défined above actually intersects the axis at an angle
slightly less than 90°, which means that the axis is not quite
parallel to the line 41 =«V2.)

The reason for the increase of loss to either side of the
axis becomes apparent upon close examination of the power flows
corresponding to each point on the plot: points off the axis
correspond to a transfer of reactive power (and hence current)
from one generator to thé other. The axis of the contours is
the locus of solution voltages for which this interchange of
reactive power is zero. The following table shows this effect

for three points on the plot of figure 2:-

Vi Yy Q from 2 to 3 Q from 1 to 3. system‘ldss
(pu) (pu) (pu) (pu) (pu)
0.95 1.10 2.364 -1.014 0.239
1.00 1.05 0.746 0.485 0.216

1.05 1.00 -0.718 2.128 0.250
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The axis in this case runs approximately along the line CD
defined by C = (0.85,0.93) and D = (1.15,1.20). The reactive
power is seen to flow from generator 2 to generator 1 for voltage
(0.95,1.10), and from 1 to 2 for voltage (1.05,1.00). The loca-
tion of the axis is affected by such parameters as the relative
impedances of the branches, the real power flows along each of
the branches, and the R/X ratios of the branches. By way of
example, for the case of figure 2, the real power flows from
bus 2 to bus 1. For the case Qf figure 3, however, both gen-
erators supply power to bus 3 equally, resulting in a smaller
displacemeqt of the axis from the line vy = V2 than is the case
for figure 2.

Figure 3, which is for a case identical to that of figure
2 except for the generation, also shows more elongated contours
due to the reduced power, and so current, flowing on the branch
from bus 2 to bus 3. The loss (f) thus decreases less répidly
with increasing voltage than for the more heavily.laided case

aL

(the derivative Ji:= 2IR and so is proportional.to the current
flow), while the loss due to the interchange of reactive power
between generators is aff;cted relatively less by the reduction
in load current. Hence the greater elongation of the contours.

The relationship between the shape of the contours and the

line loading is further apparent from inspection of figure 5.
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Thié is the contour plot for the situation of figure 4, with
a (hypothetical) branch from bus 1 to bus 2 paralleling the
previous path. Any reactive power flowing from generator 2 to
generator 1 therefore has an alternate path around the load
bus 3. This reduces significantly the current on the other
lines. The contours have been elongated to the point where
they are virtually‘parallél lines.
i This extreme elongation of the contours is due, as with
the case of figure 3, to the fact that the currents associated
with the transfer of real power are now very small (due to
equal load-sharing by the two generators), and the variation
in loss with current is significantly less than woiild be the
case for a higher current flow. The vériation in loss due to
the exchange of reactive power between the two generators,
however, is.much greater than for the case of figure 3. This
is due to the fact that with a reduced impedance between the
two generator busses, a given difference in voltage magnitude
produces higher current than previously. Since the current
increases more rapidly than before, the sguare of the current
increases much more rapidly, with a correspondingly rapid
increase in loss.

Figure 6 shows the contours for the same case: as figure 2,

but with a load at bus 3 of only 40% of the previous value.
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Here again the dramatic elongation of the contours is very
evident. This is again due to the substantial decrease in
loading of the transmission line between bus 2 and the load
at bus 3.

The contours of figure 7 were obtaiﬂed by placing a trans-
former of zero impedance in the transmission line between busses
2 and 3 (with the tap at bﬁs 3). In this way the tap of the
transformer could control the voltage at load bus 3 without
directly affecting the current flow along the line between
busses 2 and 3. The contours of figure 7 therefore, are essen-
tially the constant loss contouré for the transmission line
between bus 3 and bus 1. These contours are very similar to the
light load contours for the whole system.

Figure 8 shows contours for a case identical to figure 4,
but with a zero-impedance trgnsformer as for figure 7. The
contours are again elongated, but this time they appear to be
elliptical, with a minimum.within the plot range. The voltage
at bus 2 for this case, as for the case of figure 7, is'one
per-unit. This explains the minimum located about a tap of one
and a voltage on bus 1 of one per-unit. The closed contours in
this example result from the fact that the tap now controls a
circulating reactive power flow throughout the system. The

minimum loss condition occurs for a circulating Q flow of zero,
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which occurs for a tap setting of 1 and for no transfer of
reactive power between generators--i.e. when the voltage at
bus 1 approximately equals the voltage of bus 2 at one per-unit.

One of the objectives of the algorithm being developed is
to allocate reactive power in such a way as to minimise the
transmission losses in the system, and so it is reasonable to
investigate the effect of the power factor of the load at bus
3 on the transmission losses. For the cases of figures 9 and 10
the power factor of the load was reduced from the 95% of the
previous cases to 80%. As can be seen from comparison with the
previous cases (figures 2 and 6, respectively), altering the
power factor has a négligible effect on the shape of the con-
tours. |

This is further demonstrated by the contours of figures 11
to 13. In é&ch case, and particularly in the case of figure 13
(branch between bus 1 and bus 2), the contours are very elon-
gated for the variation in shunt at bus 3. This is true because,
in this particular case, the voltage magnitude at bus 3 is
relatively insensitive to changes in the shunt at bus 3. Since
the reactive power flow, and so the system loss, is determined
by the voltage of bus 3 relative to the voltages of busses 1
and 2, the system loss is also relatively insensitive to

changes in the shunt at bus 3. (For Vo = 1.0 pu and Vy = 1.0 pu,
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V3 varies from 0.9791 pu to 0.9893 pu over the range of shunts
0.0 to 0.7 pu for the case of figure 11.)

There are four conclusions, then, that can be drawn from
these results. Firstly, in the absence of extreme conditions,
the loss will depend more on generator voltages and on trans-
former taps than.oh load power factors. Secondly, the loss
decreases with a simultaneous increase in generator voltages.
Thirdly, the loss decreases as the generator voltage magnitudes
approach a uniform value.* And lastly, the deQree of elongation
of the contours increasesuvery rapidly as the loading decreases.
(Conversely, the contours become more circular as the loading
increases. This last point suggests that the optimisation
process will be more difficult under light-load conditions
because of the elongation of the contours, indicating poor
scaling of the variables. As the magnitude of the loss.is less
under light-load, however, the optimisation can be terminated
before * .- completion with little penalty; this difficulty is

not a serious one.)

* This point is important in that it spans the gap between the
"equal voltage" criterion used by most utility engineers and
the "minimum loss" criterion presented here. Generally the
two criteria produce very similar results, as they must if
the"minimum loss" criterion is to carry credibility.
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The Effect of the Penalty Terms

The effect of the penalty terms depends to a large extent
on the penalty factors used. By adjusting the penalty factors,
the balance in the objective function between the loss and the
two penalty terms can be shifted to obtain different perform-
ance characteristics. Because the dependence of the chjective
function on loss is linear, while the dependence on the penal-
ties is quadratic, it is not possible to equate, for example,
a loss of 1 MW with a voltage deviation of 0.0l pu or a
reactive shunt allocation of 1 MVAr. Nevertheless, it is
possible to determine the general effect of the penalty terms
on the contours by using values of 7.5 and 1.0 for the voltage
and reactive power penalties, respectively. (These values were
found to give acceptable performance in the final program.)

Figure 14 illustrates the effect of the voltage penalty on
the contours of figure 2. The contours have been closed at the
high voltage end of the plot range, and have become generally
rounded. The most extreme effect of the voltage penalty is
observed in figure 15, which corresponds to the light-load case
of figure 6; Here the elongated contours have been rounded to
near-circular. In both cases, the minimum is clearly bounded,

as opposed to the original cases.

The rounding of the contours occurs in all cases except. -
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those in which one parameter is the shunt on bus 3. Figure 16
shows the contours of figure 11 augmented with the voltage pen-
alty term. This lack of rounding is due.mainly to the relative
insensitivity of the bus 3 voltage to the bus 3 shunt--a
characteristic which was.pointed out earlier. This voltage
insensitivity results in only a very émall change in voltage
penalty with shunt, so that the moderating effect of the
Vpltage'peﬁaltytonrthéigohﬁoun,shape is minimal.

The effect of the reactive power penalty can be seen in
figure 17, which corresponds to the same case as figure 16.

The contours have now become nearly circular. This is again
due to the relative insensitivity of the voltage of bus 3 to

the shunt, which results in the reactive power penalty term
dominating the objective function in the absence of reactive
power transfer between generators. Both the reactive power
penalty term and the loss due to an interchange of reactive
power are quadratic terms, and so will produce circular contours
with a suitableA choice of reactive penalty factor.

It may appear from the foregoing discussion that there is
little point in altering bus shunts. For the example used here,
this is quite true. In cases where the sensitivity of a load
bus voltage to a bus shunt is great, however, there will be a

strong variation of loss with shunt, and the associated contours
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will be distinctly more rounded than for this exampie system.
As it is only for cases exhibiting this strong sensitivity that
shunt control would be used, there is no cause to doubt the
effectiveness or usefulness of sﬁunt control from the preceding

results.

Reactive Power Limits on Generators

The set of equations (8) to (12) does not quite describe
the reactive power management problem completely. All generators
have limits on the reactive power they may absorb or produce,
and so are constrained by equations (13), analogous to the equa-
tions (12) for allocation busses. Because of the analogous
situation with the reactive allocation busses, it may seem
desirable to treat generator reactive power limits in the same
manner--i.e. as penalty terms.

This would, in fact, be a bad choice, as the contours of
figure 18 indicate. Generator busses 1 and 2.in this case were
penalised (quite lightly, in fact) to 0.95 power factor. The
elongation of the contours--even with the voltage term included--
is clearly the worst yet encountered. The explanation is that
the real and reactive losses in a power system are very closely

related--in fact, they are proportional for each branch in the
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system. Although the sum of the reactive losses in the system
"will not be quite proportional to the sum of the real losses
(unless the X/R ratio is constant for every branch), it . is
nevertheless true that the minimum reactive power loss situation
will correspond generally to the minimum real power loss situation.
Since the minimum reactive power loss situation is the minimum
reactive power generation condition, the generators will be

called upon to generate the most reactive power when the real
power loss is high, and vice versa. Penalising the generator Q
violations as a square term is thus very much like using an

objective function of

2
f=d + k&
where

k = constant

which exhibits very elongated contours.

| It is better, then, to handle the generator Q limits in
another way, thereby avoiding the minimisation problems which
attend very poor scaling. An effective method of handling the

generator limits will be presented in the following chapter.
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CHAPTER IV

The Choice of a Suitable Minimisation Technigue

The problem described by equations (8) through (13) requires
the minimisation of a nonlinear objective function subject to
linear and nonlinear constraints. There are a great many poss-
ible approaches to the solution of this type of problem. These
many approaches differ mainly in the degree to which they
utilise information about the objective function (such as first,
second, and higher order derivatives), and the manner in which
they treat the constraints. Constrained optimisation is gen-
erally much more complex than unconstrained optimisation, and
it is therefore important that the cOnStr&ints‘be ﬁreated in

the way least likely to upset the minimisation procedure.

The Treatment of Constraints

Both equality and inequality constraints can be handled in
either of two ways. Firstly, they can be handled directly,
wherein the equality constraints are solved along with the other
conditions for a minimum as a set of simultaneous equations, and

the active inequality constraints are observed at each step as
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additional equations on the control variables. In each case,

ﬁhe constraints are‘met to within the precision of the calculations
at every step, so that all intermediate solutions are feasible.
This approach is essentially identical whether it is implemented

as Lagrange multipliers, gradient projection, or gradient reduc-

tion.

The second approach is to use the penalty fqnction technique,
in which the steps are permitted to enter and leave the feasible
region at will. For steps terminating outside the feasible
region, a."penalty'ﬁerm" is added to the objective function.

This penalfy term usualiy increases quadratically as the step
leaves the feasible region. The steps are thus "encouraged"”,
and not, as with the previous approach, "fofced”‘to remain
within the boundaries of the feasible regibn. As the minimisa-
tion progresses, the penalty term is often multiplied by an
ever-increasing factor, which tends to keep the intermediate
solutions successively less infeasible until, at the solution
point, the solution is feasible to within some tolerance.

Note that both techniques are essentiaily the same--as of
course they must be--in that the second approach uses the
minimisation process to solve the same equations as are solved
algebraically by the first technique. Because the two techniques

solve the constraint equations differently, it is reasonable to
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expect one technique to be sgperior to the other for certain
forms of constraints. If tﬂe equations of constraint can be
solved analytically without an extraordinary amount of computa-
tion, the first method is clearly superior, especially as the
intermediate solutions for this method are all feasible, and so
usable-—-although™ sub-optimal.. An important disadvantage of the
penalty function approach is that the penalty terms distort the
contoufs, often making the resulﬁing augmented objective function .
much more difficult to minimise (the generator Q limits of the
last chapter are an example). For cases of constraint equations
which may not be easily solved analytically, however, the penalty
function approach is preferable.

The constraints on the control variables--transformer taps,
generator voltages, and shunt reactive source allocations--can
be easily treated as absolute limits on the allowable variation
" in the control variables, and so handled directly. The other
constraints, however, must be treated by one of the two methods
discussed above. While the equality constraints could likely
be treated with either of the two'techniques, the inequality
constraints on the generator reactive power limits should not
be handled as penalty terms. As was demonstrated in the last
chapter, these penalties have a severe influence on the objective

function contours, even with a small multiplying factor. Both
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equality and generator reactive power inequality constraints will
thus be treated here using the analytic method of constraint
handling.

It is not possible to solve explicitly the nonlinear equa-
tion (9) for the dependent variables as a function of the indepen-
dent variables. If the function g (equation 9) is expanded about
the current intermediate solution point in a first-order Taylor
expansion, however, it is possible to solve the new linear rela-
tion explicitly for the independent variables. This relationship
between the dependent and independent variables may then be sub-
stituted into the expression for the gradient of the objective
function to obtain a reduced expression in which the gradient is
a function of the independent variables only.* The equations are
calculated in appendix section A2.

Because of the linearization of the constraint equation,
each intermediate step will not.necessarily end within the feas-
ible region, and it is thus necessary to adjust the solution
vector at each step to correct this. The most efficient way to

do this for the equality constraints (9) is to solve the set of

* It is worth noting here that if the objective function were
linearized along with the constraints, and if the minimum was
assumed to lie along a constraint boundary, the problem could
be solved using a standard linear programming program. This
is the method used in {9].
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simultaneous nonlinear equations using a conventional Newton-
Raphson power flow program (the reader will recall that
constraints (9) are just the set of power flow equations).

There are a number of advantages to this approach. First,
the power flow program provides the slack bus power and load bus
voltages which are necessary fqr the evaluatioﬁ of the objective
function at each step. Second, as was pointed out by Dommel and
Tinney in [ﬁ], the gradient may be easily formulated at each step
from terms of the Jacobian matrix (derived in éﬁpéndix section |
Al) produced in the power flow program. As an additional advan-

tage, this approach permits the bus-type switching portion of the

power flow program to ensure the satisfaction of the generator
reactive power constraints of equation (13).

Bus-type switching is the most common way of ensuring the
operation of generator busses within their reactive power gen-
eration restrictions. It acts by switching generator (constant

¢
P, constant V) busses to load (constant P, constant Q) busses
whenever they are no longer able to hold the scheduled voltage
without exceeding a Q limit (i.e. when the constraints become
active). When the scheduled voltage may again be held without
exceeding a Q limit, the switched bus is permitted to revert

back to constant voltage.

Switching busses from type P,V to P,Q amounts to changing
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the active inequality constraints into equality constraints,
reducing the dimension of the solution space by one for each bus
switched. This moves one bus voltage from the set of independent
variables to the set of dependent variables, thereby reducing the
dimensionality of the gradient by one (which is the same as
projecting the full gradient onto the appropriate constraint
boundary). The bus-type switching technique used in power flow
programs is therefore identical in its effect to gradient reduc-
tion or gradient projection in a constrained optimisation.
Summarizing, it is not possible to use penalty function
methods on the generator inequality constraints due to the
adverse effects these penalties have on the objective function
contours. It is possible, however, to use a gradient reduction
technique, by using the linearized equations for the equality
and active inequality constraints to reduce the dimensionality
of the gradient, and then correcting for the effects of the
linearization at the end of each step. If this correction is
done using a conventional Newton-Raphson power flow program, the
objective function and its gradient may be evaluated with little
extra effort, and ;he generator reactive power (inequality)
constraints are automatically satisfied by being converted to

equality constraints, when they become active, by the bus-type

switching algorithm.
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The Method of Minimisation

It has been presumed above that the gradient would be an
essential part of any selected minimisation technique. While
the minimisation can, of course, be performed without knowledge
of the gradient, better performance can usually be realized by
taking advantage of this and any other information about the
objective function. With the method of constraint handling
described above, the calculation of the gradient requires a
relatively minor amount of computation (most of which consists
of one repeat solution with the factorized Jacobian matrix from
the éower flow step).

It is also possible, as has been pointed out by Sasson [}3],
to calculate the matrix of second partial derivatives--called
the Hessian matrix--using the terms of the Jacobian matrix as
for the gradient.f Using the Hessian matrix the minimisation
problem may be solved using a generalized version of the Newton-
Raphson method of solvingcnonlinear equations. . For objective
functions with elongated contours, the generalized Newton-
Raphson method exhibits more rapid and reliable convergence

than steepest descent or modified steepest descent methods,

* See appendix section A3.
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which make use of>the gradient only.

The disadvantage of Hessian-based techniques in this
application is the large amount of storage and computation
required to produce the Hessian matrix. Further, Himmelblau
ﬁAJ points out that, while Hessian-based techniques exhibit
quadratic convergence in the vicinity of the minimum, steepest
descent methods may be superior far away from the minimum. For
this application, it is not necessary to know the optimum
exactly, but only to within, perhaps, a few percent, so that the
major portion of the optimisation effort will occur away from
the minimum. Bearing in mind the observations of the last
chapter, where the objective function contours were found to be
only moderately elliptical (for a reasonable selection of
penalty factors), with no irregularities in shape to cause
convergence failure, the steepest descent method appears to be
a~slightly better choice for thié application than Hessian-
based methods. It was the steepest descent method, coupled
with a Lagrangian treaﬁment of equality constraints, which was
chosen by Dommel and Tinney in Eﬂ.

In order to gain the maximum improvement at each step,
steepest descent searches generally use step lengths calculated
to terminate each step at the function minimum in each successive

search direction. These searches are termed "optimal step-size”
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searches.

The optimal step length can be approximated from the value
of the objective function, and perhaps its deri&atives, at one
.or more points in the current direction of search. The number
of values needed is dependent upon the desired accuracy of the
approximation, which determines the order of the polynomial used
for interpolation (or extrapolation) in the current search
direction. If only the function value is known at each point,
various types of direct searches (see, for‘examplé, Himmelblau
{15]) may be used.

The first derivative of the objective function in the
diréction of steepest descent is the negative of the gradient
of the objective function (this is the directional derivative
of the objective function in the direction of search). As the
gradient is evaluated at each point to determine the next direc-
tion of search, both the value of the objective fﬁnction and its
first directional derivative are available immediately, without
further work. To interpolate with a second-order polynomial
(the lowest order polynomial which can reasonably describe the
objective function in the direction of search), one other piece
of information is required.

While this missing piece of information could be obtained

from a further function evaluation in the direction of search,
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it is computationally more efficient to approxﬁméte the second
directional derivative of the objective function. The reason
the second directional derivative must be approximated is that
its exact calculation would require the Hessian (second-order
gradient) matrix. If this matrix were available, which would
require considerable effort, it could be used directly for a
Hessian-based minimisation.

Two observations permit the Hessian to be easily approximated.
First, Smirnov lﬁé] has pointed out that, as can be illustrated
graphically, for each fwo—dimensional projection of the (ellip-
ticai) contour space, a steepest descent search converges to the
optimum along the major axis of the ellipse. 1In the multi-
~ dimensional case, the search will converge along the major axis
of the hyper-ellipsoid, which is in the direction of the eigen-
vector corresponding to the minimum eigenvalue of the Hessian
matrix. The second derivative in subsequent directions of search
may, therefore, be approximated as a constant equal to the
minimum eigenvalue.

Second, as has already been pointed out, the contours
discussed in the previous chapter are nearly circular. This
indi#cates that the Hessian matrix has diagonal terms which are
all of the same order of magnitude, and off-diagonal terms which

are relatively small. This further improves the usefulness of
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of Smirnov's observation for this type of problem.

The second directional derivative may, therefore, be cal-
culated on the basis of the previous step, and then used in a
second-order Taylor expansion to predicé& the optimum step length
for the current step (see appendix section A4). Although this
method for calculating the step-size is approximate, the approx-
imation improves during the minimisation, and substantially
less computer time can be required than for the calculation of

the Hessian matrix.

Summary

The best scheme for the solution of equations (8) through
(13) is, therefore,

1) Newton-Raphson power flow solution, satisfying equality
constraints, and evaluating the objective function
and its gradient.

(2) steepest-descent search, using a sub-optimal step-
size calculated from the preceding step assuming
circular objective function contours (i.e. assuming
that the Hessian is of the form ﬁﬂ = k[i}, where

k = constant).
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(3) equality constraints (9) are handled using gradient
reduction.

(4) 1inequality constraints (10) - (12) are handled as
absolute‘limits on control variable variations
(analogous to gradient reduction for active
constraints).

(5) inequality constraints (13) are éutomatically handled
using gradient reduction by a bus-type switching
feature in the power flow program used at stage (1).

This approach is virtually identical to the general.approach

of Dommél and Tinney, and is in contrast to the more computa-
tionally complex scheme of Sasson et al. It is worth noting
that, although Dommel and Tinney treated the equality constraints
as Lagrange terms, the equations for the optimisation are
mathematically identical to those developed for the gradient
reduction approach used here. If the equality constraints are

to be considered using Lagrange multiplier theory, then the bus-
type switching scheme in the power flow routine causes the active
inequality coﬁstraints of (13) to be treated as Kuhn-Tucker
terms. The approach of [iJ_is thus identical to that outlined

here.
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CHAPTER V

The Performance of the Technique

Because the technique outlined in the last chapter is
essentially an enhancement (to account for generator reactive
power constraints and shunt capacitor and reactor allocations)
of the reactive power optimisation technique described by Dommel
and Tinney, it was implemented by modifying an available program
based on the technique described in Eﬂ.

As there was an interpolation scheme in!the original pro-
gram, it was retained on the assumption that it would improve
the estimate of optimal shepQSize near the minimum, thereby
speeding convergence. As it is in the vicinity of the minimum
that steepest descent exhibits the worst performance, the
interpolation process was activated only near the end of the
optimisation process.

This interpolation routine calculates the approximate
second derivative assuming that the first directional deriva-
tive depends only on the control variables (uj), using the
equations derived in appendix section A5,

This was the only modification to the scheme developed in

the last chapter.
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The progress of the optimisation technique when performing
an unconstrained minimisation on the three-bus system of figure
1 is plotted in figure 19 on the objective function contours of
figure 14 (for the control of two generator voltages). In
figure 20, the progress is plotted on the contours for the
control of one tranéformer tap and one generator voltage (as
for figure 7), and in figure 21, it is-plotted on the contours
of figure 17 for the control of one bus voltage and one reac-
tive shunt (at bus 3). As can be seen from these plots, the
optimisation progresses well in the first few steps, and
reaches the minimum (to within practical tolerances) after 3
steps.

To test the procedure on a realistic, fullyvconstrained
problem, a 1976 winter heavy load representation of the B.C.
Hydro system was used, consisting of 245 busses and 327
branches, with 47 controllable generators, and 44 controllable
(on-load tap-changing) transformers.

After 16 iterations of the minimisation, which required a
total of 72 power flow iterations, the solution was acceptably
close to the optimum. Careful observation of the progress of
convergence revealed that occasionally an iteration would
apparently diverge, resulting in an increase in the value of

the objective function and/or the derivative, both of which
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must reduce for the process to be convergent. This apparent
divergence would occur for one or two steps, with the next
several steps converging normally. This process may occur
several times during a minimisation (see Table I).

The most probable cause for this peculiar behaviour is that
the step-size chosen at each iteration is only an approximation
to the optimal step. This approximation is based on the
assumptions that!

a) the objective function is of order 2 or less in the
direction of search.

b) the second derivative of the objective function is
constant for all directions of search (i.e. the
Hessian matrix is diagonal, with all diagonal terms
equal).

c) the equality and active generator reactive power
inequality constraints are approximately linear over
the region of the step.

-d) no inactive inequality constraints will become active
during the step, and no active inequality constraints
will become inactive.

If any of these assumptions are invalid for a given step--as, in
general, at least one will be-- the calculated step-size will
be sub-optimal. Depending on the degree to which the assump-

tions are invalid, the calculated step-size may become sub-
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TABLE I

Progress of Convergence for 245 Bus Problem

Step No. - First Directional Slack Bus Power
Derivative plus penalties
1 7.37 15.88
2 2.68 15.58
3 2.23 15.52
4 - 3.27 15.50
5 2.61 , 15.48
6 1.03 . 15.46
7 0.853 ' 15.45
8 0.674 +15.44
.9 0.797 15.42
10 9.37 15.59
11 9.05 15.64
12 1.14 . 15.44
13 0.911 15.43
14 1.56 15.42
15 1.73 15.43
16 0.382 15.41
17 0.271 15.41
18 0.238 15.41
19 0.364 15.41
20 0.175 15.41
21 0.122 15.41

22 0.098 15.41
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optimal to the point of being divergent.

While--for . a steepest descent search--a step-size of less
than the optimal amount will generally only hold the conver-
gence rate down somewhat, too large a step-size can cause the
new value for the objective function and/or gradient to be
greater than the previous value, giving a divergent step. For
a step-size larger than the optimum, whether or not the step
itself will be divergent depends on by how much the step length
is too large, and on how rapidly the objective function and
gradient change in the new direction of search.

Of the above four assumptions, there are two which are the
most likely to disturb the approximation to the optimum step-
Size. For problems with a large number of inequality con-
straints, the fourth assumption will likely be violated at
most steps. The switching of constraints from the inactive
set to the active set produces a discontinuity in the optimi-
sation process which could give rise to sporadic divergénce.
This constraint switching was observed to be occurring at most
steps in the minimisation.

The second assumption is also known to be sometimes
unreliable, as it implies that the objective function contours
must be circular, whereas they are known to be always ellipti-

cal to some degree. From this observation, we can predict
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that the calculated step—éize will be too small in some direc=
tions, and too large in others.

Since the estimate for the optimal step-size is based upon
the rate of change of the gradient in the direction of search
for the previous step (and evaluated over the span of that step),
a greater-than-optimal step—siée will most likely result when
the new direction of search‘is more perpendicular to the major
axis of the contours than was the last. The effect is more
pronounced, and more readily leads to divergenqe, when the
contours are strongly elliptical. It is mitigated somewhat by
constraint activation,. in that the successive search directions
are thereby altered from the usual near-orthogonal search direc-
tions of an unconstrained (nearly-optimal step-size) search.

Of the two assumptions listed above as potential causes of
the observed sporadic divergence, it is the second which is the
probable major contributor. This would account for the fact
that the divergent steps occur rarely; the steps would usually
be convergent until the contours became too elliptical.

One way this could occur, for example, is when a generator
on a long, lightly loaded feeder "came off" a minimum-Q limit
(that is, the generator had been, but is no longer, limited to.
its minimum available reactive power output). 1In the plane of

this and some other generator voltage, it is reasonable that the
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second generator voltage may affect the objective function
considerably more than the first--leading to elliptical contours
in the plane corresponding to these two generator voltages.

When the first generator reaches a minimum-Q limit (which is
more likely, ﬁnder the circumstances, than a high limit), this
plane vanishes because the first generator voltage is no longer
a control variable. This would then (effectively) reduce the
elliptiéity of the multi-dimensional contours, stabilizing the
adaptive step-size and fhus the convergence.

It may appear from the above discussion that a better
approximation to the optimal step—size,_or perhaps even a more
powerful unconstrained minimisation technique is needed. These
are not necessarily solutions, however, in that the improvement
gained will be much less than.would be expected due to the effect
of the inequality constraints, and may not be sufficient td
warrant the extra calculation necessary.

The effect of the inequality constraints is rather hard to
predict, other than that they are likely to disturb the steady
convergehce of the same unconstrained problem. This disturbance
is so powerful that improvements in the unconstrained optimisation
technique used at each step do not necessarily speed up the
overall solution. In particular, knowing the optimal step-size

is of little advantage if the search direction is deflected from
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the negative gradient direction by inequality constraints. The
same is true for Hessian and related_searches, in that the
search direction calculated may bear little relation to the
final deflected search direction.

Another problem which exhibited itself was the effect of
the voltage penalty factors on the convergence rate. Values
for the voltage penalty factors which are too large can lead to
erratic convergence, probably due to the resulting sensitivity
of the objective function to the voltage penalties. This is
not unduly surprising, since if the "circularizing” effect of
the voltage penalties demonstrated in chapter III is carried to
extremes, the contours will become elliptical again, this time
with the minor and major axes interchanged. Machine precision
may also be a problem with large voltage penalty multipliers due
to the larger second derivative terms and: consequent shorter
step lengths.

The use of moderate voltage penalty factors permitted the
500 kV busses at: remote generator sites to rise well over the
desired value of 1.05 per unit to values as high as 1.10 pu.
Larger values of voltage penalty factors on these busses wor-
sened convergence without decreasing the final voltages signif-
icantly, indicating that the high remote site voltages were

important to the minimisation of the balance of the total
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objective function--i.e. the maintenance of reasonable voltages
on other system busses and the reduction of system loss.

The best way to reduce these voltages, where necessary, is
to control the maximum value of generator voltage on the asso-
ciated generator busses. Since the generator voltage is treated
as an absolute limit, this will prevent the high-voltage bus
from exceeding safe voltage levels. This.problem is most likely
to arise when transformer taps, reactor banks, etc. which were
not made controllable are poorly set. This was, in fact, the
problem with the test case, as too many reactors had been used
at stations between the remote generation and the load center.

It is important to realize that, while problems such as the
high voltages noted apove appear serious, they can in fact be
important clues to deficiencies in the power system on which
the minimisation was operating. The optimisation process acts
on the control variables in any way necessary to achieve its
objective. Provided always that the objective is a reasonable
one, unconventional solutions may indicate poor adjustment of
other parameters not controllable by the program, or--as is
perhaps too often the case--merely inveteratg thinking on the
part of the person evaluating the solution.

Other than these isolated high voltages, the resulting

system state was much better than the author had been able to
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achieve when using this case previously for system studies with
a conventional manual power flow, one major improvement being

the system voltage profile.
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CHAPTER VI

Conclusions

The optimal reactive power flow problem can be solved using
a steepest descent search with gradient reduction (or equivalently,
Lagrange) constraint terms, using an objeetive function composed
of the slack bus real power, and voltage and reactive power
penalty terms for load bus voltages and allocation (load) busses,
respectively. This objective function is generally well-scaled,
and a sub-optimal step-size search performs effectively on the
fully constrained problem, provided that the voltage penalty
factors are not excessive.

The resulting set of generator and transformer settings,
and sizings for shunt reactive compensation banks produce a
generally good power flow case with less engineering effort

than would be required using conventional manual adjustments.
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CHAPTER VII

Directions for Further Work

The most important remaining work is the evaluation of the
technique in a production environment. The two problems
encountered--the sporadic divergence and the difficulty in
holding down remote bus voltages with penalty terms alane——are
not thought to be serious. The only way of confirming this
belief however, is by obtaining production experience.

In addition to the aforementioned production testing, the
technique may need to be extended to cover the many automatic
features available in modern power flow programs (e.g. blocks
of shunt reactive capacity activated by voltage magnitude,
generators with reactive power adjusted to hold remote bus
voltages within limits, etc.). In many cases, these features
of power flow programs will be made unnecessary by an optimal
reactive power management feature. Nevertheless, allowance must
ﬁe made for possible conflicts between the optimisation process
and the (generally rather crude) automatic control provided by
such features, and the features should be removed, inhibited
during optimisation, or formally incorporated into the optimisa-

tion process.
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One further problem which should be investigated is multiple
contingency optimisation. This is somewhat different than
optimisation for a normal operating condition, in that the outage
conditions must meet certain minimum operating limits (generally
on load bus voltage) with only on-load transformer taps, gen-
erator voltages, and switchable banks of shunt compensation
being adjusted from normal operating settings. This means that
off-load transformer taps must be set so that it is possible to
achieve the minimum operating limits using only the adjustable
parameters. Although the optimisation may be performed sep-
arately on each contingency condition, a method is required for
efficiently combining the separate contingency optima into a

single result.
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APPENDIX

Derivation of Relevant Equations

Al The-Terms of the Jacobian Matrix

The power entering the system at bus i is given by

*
S. = (P. - j Qi) = vi (Gii + 3 Bii) +

Vi (cos 8; - J sin 8, ) *
‘:E usij + 3 Bij) Vj (cos ej + j sin ej)
JGNCI .

Breaking this equation into real and imaginary components:

Pi = Vi’EXIj[COS ei (Glj cos ej - Bij sin OJ) +
Jenr

: . 2
sin Gi (Gij sin ej + Bij cos ejﬂ + ViGi;4
Qi = —ViJ‘E&C\éJ (COS Gi (Gij sin GJ + Blj CcCoOs GJ) -
. . L2
sSin el (G’lj CcCOs ej - Blj S1in ej)] - VlBll
The terms of the Jacobian matrix are:
H.. =éA_B N: . =V,.§.Q_PC J.. = be‘L L. =V__a_QQ_L
1] aeJ- i] JaVj 1] aeJ' 1] J V),
_ AR Y YA . _ 9AQ¢ e YAYAT

Hii - ae" Nii = VI <)Vg Jli - ae Lii = Vl av"
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where
AP and DQ are the real and reactive power mismatches

(positive into bus), respectively

Define

Xij = Gij 3 i3 3

|
@
N
O
0]
D
1
o
n
-
o
@

ﬁij = Gij sin ej + B;s cos ej
SO

Jot y
SeF= A B¢ - «,
J

Now, since

AP; = Pgeni - Ploadi - Py

80; = Qgeni - Qload:.L - Q4

T where

Pgen ’ Ploadi' Qgeni' and Qloadi are constant,

i
then

_ 9P _ .

Hij‘— 353— \A Vj (“ij sin 6; _(gij cos 6;)
d P .
H.. = —m«—= V. V. . . (@] 8. - . 0. =
ii 7 "6 {ﬁgérj (Bij cos O3 -4y sin 6;)
2
Qi * ViBij
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dP: _ .
Nij = -~ Vj aVJ" = —Vi Vj (O(ij cos Qi +ﬂlj sin ei)
N.. = = V. aP _ _v.EV. (£, . cos 8. +ﬂ-- sin 8;)
11 19V 1J.6qu 1] 1 1] 1
-2 V?G.. = - P, - V?G..
iii i i7ii
J.. = -9%_ v v, («.. cos o, +B;; sin 6))
1] aQJ 1 J 17 1 1] 1
="—3—QL= - T
Ji-jr T ViJ%IC\I]j (O(ij cos Gi +ﬁij sin Oi)
- _p, + V3G,
i iii
L. = - v. 2%_ \ 9@-- cos 8; -d.. sin ©;)
ij Jv; - i Y3 ij i ij i
o Q¢ .
L., = -V, ==V, V. .. COS B, -¢g/.. sin @,
ii i Ve Jj?,qzzgj (/glj i dlj l)
2 2
=2 VijBjj = -Qi + ViB;;

The Terms of the Gradient

The objective function is

o = = hed, 2
f(xlu) = Ps(xru) +‘§I_l\//vi(vi - V?_c e ) +
sched, 2
. . - B.
=z, (Bj ] )

SENQI

%L = ‘_e v]
i v, B]

o voltage on busses of the set NG

<
Il

w
il

reactive shunt on busses of the set NQ
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Let F(u) = £(X,d). The gradient 6§u may be found by
observing that the first-order variation of F is given by

T,
LK

il

_V_ (A2.1)

°’l
°’I
x‘*ﬂ

Now, expanding the equality constraint (9) in a first-order

Taylor expansion:
- — - - XN e 91i-
g(x,q) = g(xo,uo)-+i9i Ax:+-[3u]Au

Since g(x,u) = g(xX

oy .
Ax = -E%f% E%f%l;ﬁu (a2.2)

Substituting (A2.2) into (A2.1):

- |

T — —

AF:-a—‘E-ETJ- 3( as}Fﬁ-}A_ﬁ=VF Au
R]vS % Ox ] ldu

The gradient Gfu is thus given by

T
= -
—— -,QFT N 3FT ag] [3.9])
VF, = W, taﬁ 3 x _3“
- 5_—__{_“1} %_L]T"_a_f. (32.3)
du w] |dx IX
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This is the same expression for the gradient as Dommel and

Tinney obtain for the gradient in [i] using the Lagrange multiplier

approach.

The terms of this expression are:

- 34P JAQ
dg o6 P Y]
3x | AP 2AQ (h2.4)
AV 3
-
_3.*;_ _ [—%% %‘3 + 2w(V - vSChedJ (A2.5)
(4P 3pa)
3t 3t
9" | 24P  3AQ
du | dVe Ve (22.6)
3aa
- \O-. a ~
.
%{_ _ [%% %%E 22(B - BSChedﬂ (32.7)

Equation (A2.3) can be calculated easily by taking advantage of

the fact that the expression

agT B—F—
ax ax

(which corresponds to the vector of Lagrange multipliers in the
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Dommel and Tinney approach) can be obtained from one repeat
solution using the transposed factorized Jacobian matrix from
the Newton-~-Raphson power flow.

Expressed in terms of the Jacobian matrix, this expression
becomes

=l
-H -J -Hs

-N -1 _NS + 2w V(V _Vscheo()

The terms for (A2.4) and (A2.5) can be obtained directly from

the Jacobian matrix. The terms for (A2.6) and (A2.7) are

Mp; _ Vily . N
= Xis cos O; +/3;+ sin 63) = -
o, Wi cos 05 vfFuy sin o) = - HA

if i is non-tap side bus, or
_ NG 2viag
- = 2

if 1 is tap side bus.

Similarly,
8@ _ _ Ly if i is non-tap side bus, or
at(j tzj
Ly 2%g,

2 if i is tap side bus.
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a_.A_&‘- = N.
AV 1]
d 8P _

Vi Nii
24Q _
= L
2V, ij
dAaac .
v, Lii
38Qc _
285 0

30Q: _ ;2

B¢ 1

A3 The Terms of the Hessian Matrix

Following the same procedure as for the calculation:- of the

terms of the gradient, let f(ﬁ) = E}g,ﬁ), so that

e __T__ —
AF =VF 8u + % AuT[pF, ] Bu
v R VA R Y A ek P ) Pt d P
= Af = uA +3x ax + % Au au_zu+2A asz
T % | =
+ Au aqu] X

Using the same expression for 4x in terms of Au as in section A2

’

Jdu?

— TTT__ Al - —_ - 2.7
A ==%:mu-ﬁ—-ﬁg gi Auﬁ-%AuT&i£1Au
+
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The gradient term is as before, but the ternl[VFuQ] is

The evaluation of this matrix requires a considerably greater
amount of computation than does the evaluation of the gradient.

The additional matrices needed are:

—A" Ps 3P 0 7
dtat 3t Ve
"R %P
2 _ 5 2K
v fuu - av. ot Ve Ve 0
L 0 o 22 J
[22n oA
3056 A0V
V% =
XX JZ— PS a?— PS . 2
V36 VIV
3% pg 3P o
09t 20 dVe
2
f =
V xua él Ps‘ az Ps 0

Vit AVale
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for which the terms are:

Rk _
atsj atsk
3R 2Nsf
atzsj tsz
= ZNS,J' é ‘/s GSJ
. 3,
2 s 'éSJ
o F .
=0
P Ns,

It Vsts/
N{/' ~ 4“5’ GsJ'

- \/sfsJ' -ézSJ'
XPs _ M
IE; Y Vs
QzPs = _ /Vsj
JVS 3\{1 VS I{/
2p
av: 2 CGgs
PR
25 -9
z
BIVJ.
" Fs
S ————— = - N »
26548/ 5]
R _ 2
-———ag-";i = - Pg + VgGgg
*R
de% Ns
A - _ Ly
QGSatsJ. ti/
.i:%. =0
96/dtsk
,‘;_‘-_PL. = - 8s_ v B
9059 Vs Vs S ss
aZPS _ LSJ.
305V Vy
SR _ _ Ly
Vs 36, Vs
A
éQJ.avJ. VJ.
PR _ Ly

desdts, T/

non-tap side bus, or

tap side bus.

non-tap: side bus, or

tap side bus.
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Ad The Approximation to the Optimal Step-size

Let F(Q) = f(x,u) as in section A2. Now expand F(T) to

second order:
=\ _ ~7r 2. AT 2 ree
F(u) = F, + VFu 4u + % Au [V Fuu] Au

For steepest descent

Ao = - c[AJEE;
Jl 1A @F, ||
where

pﬂ‘represents the rotation and scaling of au as a

result of eonstraint reflection (diagonal

matrix) .

Substituting,
I Cr c[AIF. |, cPvh (A PRI TR
(u) = Fy - — + 5 —
Il TAT 7F_ 2 Jiavr |
so that

< 0'e, (A 0?6.IrA] 77,
AT 7R, ||*

dE - _ 6%%[%]522 +
({Ia] P ||

de
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2F e, [A oA J[A] vF.
der ~ \\VAR®

Assuming that the objective function is of order 2 or less in

d°F _

the direction of search, so that =t
c

G (constant), then

k+]

oo
n

4E"
dc

a
n

K :G

The derivative at step k.+ 1 in the direction of step k is

dF_k-«»l—— VTE,,k“ [AJKEEuk

——— ==

c [ LAT* wrk |l

so that

TG <

dee

The optimal step-size will ensure that T < 0, and is given

by

— k+/ ktl— k+(
kil _ Ve Al OR
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kl[A] VFk// VT kH[A]IG/VF
H[A]kﬁ VFK“” ( VTFkH[A] VFk V;—Fk[A] Vf)

and

Kl [A]kﬂ___ kel

A—uk+l -
' LAjkflkai-l“ .
_ ! D 7 K aladd L A Tk T N A
!EAJKH VE‘I«»I/ (__ Vrﬁkﬂ [A] VE;/c_,_vTE‘k.[A] [7F“k)
p— LI T —
Substituting{éFVFE = A “Zﬂ Vﬁ;ﬂand laa®l2 = (c¥) 2
Y11 T [ 7okl ) 77l ) 7

”[A]k*"VT{‘kHH?—(VTF“k\HAu ~VF Au“)

At step k+1, L%F+l is still unknown, and so we assume

@ - [
giving

FakL . (A ll® TRA
(PEX Juk - VTR Eu")

For the first step, there is no previous information, so
d*c

there is no information for Jc? in
c
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2
p? = pl ‘Hﬁ\ll“ el & 1 (cl)?2 -j—cf?:

d*F

1 without knowing det’ we assume

In order to solve this for c
that an optimal step will reduce the objective function by an

arbitrary amount. Experience indicates that 2% is reasonable,

SO

1
F - Fl = -0.02 F

and

2
0.02 F' = FFgct + H(ch)? Cd‘; i

Since the step is optimal,

2 —1 14%F
R L RS K

which implies that

F _ UZEs(
dc? ct

and

0.02 7' = J7Fafct + % FFL = -4 H7Ea|
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Thus
1 _ 2-o.anl=O-_gle1
© T NEA (7FAl
and
—1 -0.04Fr gF?
= :____ o .
Aa” = R

A5 . Interpolated Step-size

If the sign of any partial derivative changes, the
corresponding variable can be interpolated, as the minimum in

that direction has been passed.

- Assuming
N BFk'”_ .a‘__k
g Fz_ o 24 dd¢ = Ri (constant)
dug Auf
then
BF‘“Z__ BFk’”

AuRtl o dw d Ui

i RL

k+2

For an optimal step, = 0 and



- apk*" 3 k+1 A K
K+l du UL -4
ui = ] Y=Y

R¢ -
du; oug

A6 Proof that the Objective Function §EJKHIZ|X‘ for all

SYétéﬁ’Branches Equalizes the Product ﬂ;ﬂjxl

Consider the following section of a power system:

¥

Pt

L2
r—

The total current Iy = I; + I, is assumed constant, while
the two component currents I, and I, may be altered by adjust-

ment of the transformer tap t.

The reactive power loss in these two branches is given by

- 2 2 2
‘(q = I7X; + I5X, = ITX; + (IT - I4) Xy

The value of Ij for whichJ(q:is a minimum can be determined by
setting the first derivative Ofczq with respect to Il equal to

Zero.

%S:

o
g
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R =514 pu Y,=4.989-j29.72 pu
R =-2.076 pu Y,=-4.989+j29.84 pu
Q,=-0.535 pu Y,,=6.063-j28.4 pu

Y,3=-6.063+j28.67 pu
Y;;=11.05-j 58.12 pu

on 100 MVA & 230 kV

Figure 1. Three-bus example System.
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Figure 2. Contours of constant loss for
system of figure 1. Voltages are per unit
based on 230 kV, and contour values are MW.
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Figure 3. Conéburs of constant loss for
system of figure 1, except that Py = 1.0 pu,
so that both generators provide approximately
half of the bus 3 real power each.



3
v
R=1.0 pu Y, =6.985-41.37 pu
R =-2.076 pu Y.=-1.996+j11.94 pu
Q;=-0.835 pu Y:=-4.989+)29.84 pu
Y;.= 8.059-j40.05 pu
Y=-6.063+ j28.67 pu

Y,:=11.05-58.12 pu
on 100 MVA & 230 kV

Figure 4. Three-bus example system of figure 1, with additional
hypothetical branch between Jbusses 1 and 2, and Py = 1.0 pu.
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Figure 5. Contours of constant loss for

system of figure 4.

T ™ v v
0.95 1.00 . Lo

BUS | VOLTAGE

Figure 6. Contours of constant loss for
system of figure 1, but with only 40% of

the load at bus 3 (P2 = 2.056 pu, S3 =
-0.83 - j 0.214 pu).
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1

100

0.95

TAP FROM 2 TO 3

0.55 1700

BUS | VOLTAGE

Figure 7. Contours of constant loss versus
voltage at bus 1, and tap setting of hypodthet-
ical, zero impedance transformer inserted at
the bus 3 end of the branch between busses 1
and 3. The tap is on the bus 3 side. .
Otherwise the system is identical to that of
figure 1.

0.95 .bo

BUS | VOLTAGE

Figure 8. Contours of constant loss versus
voltage at bus 1, and tap setting of hypothet-
ical transformer identical to that for fig-
ure 7. Otherwise the system is identical to
that of figure 4.
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Figure 9.

voltage. System is that of figure 1, except

-that the power factor of the load at bus 3

is only 80% = -1.715 - j 1.286

pu) .

(so that S3

Contours of constant loss versus *

BUS 2 VOLTAGE
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Contours of constant loss versus
System is that of figure 1, except

Figure 10.
voltage.

that the load at bus 3 has been reduced to ' -

only 40% (as for figure 6), and the power
factor reduced to 80%. Thus 53 = -0.686 -
j 0.515 pu.
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BUS 3 SHUNT

Figure 11. Contours of constant loss versus
voltage at bus 2, and the value of reactive
shunt at bus 3. Other than the bus 3 shunt,
the system is that of figure 1.
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Figure 12. Contours of constant loss wversus

the tap on the hypothetical transformer (as
for figure 7), and bus 3 reactive shunt (as
for figure 11). Otherwise the system is
that of figure 1.
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Figure 13. Contours of constant loss versus
voltage at bus 2, and the value of reactive
shunt at bus 3. Other than the bus 3 shunt,
the system is that of figure 4.
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Figure 14. Contours of figure 2 augmented
with a voltage pénalty term for bus 3 vol-
tage. The penalty factor is 7.5, and the
maximum and minimum unpenalized voltages
are 1.05 and 1.00 pu, respectively.
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Figure 15. Contours of figure 3 augmented

with a voltage penalty term as for figure 14.

BUS 2 VOLTAGE

L2

I..l5

1.0

.95

.85

250

105

230

210

230

250

270

290

3L0

330

35.0

370

390
410

43.0

450

02 03 04 05 06 a7

BUS 3 SHUNT

Figure 16. Contours of figure 11 augmented
with a voltage penalty term as for figure 14.
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Figure 17. Contours of figure 16 augmented
with a penalty term for the shunt reactive
power injected at bus 3. Any amount of
reactive injection is penalized, with the
penalty factor being 1.0.
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Figure 18. Contours of figure 14 augmented
with a penalty term for the reactive power
produced or absorbed by generators 1 and 2.
The generators are allowed to produce (or
absorb) reactive power to a power factor of
0.95, excess reactive power being penalized
with a penalty factor of 1.0.
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Figure 19. Contours of figure 14, on which Figure 20. Contours of figure 7 augmented

with a voltage penalty term as for figure
14, on which has been plotted the progress
of the programmed optimisation method.

has been plotted the progress of the prog-
rammed optimisation method.
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Figure 21. Contours of figure 17, on which
has been plotted the progress of the prog-
rammed optimisation method.

. 765 -
820
87.5
/ 93.0
0.6 or

—T0T-



